(def-edebug-spec): Fix typo in docstring.
[bpt/emacs.git] / lisp / subr.el
1 ;;; subr.el --- basic lisp subroutines for Emacs
2
3 ;; Copyright (C) 1985, 1986, 1992, 1994, 1995, 1999, 2000, 2001, 2002, 2003,
4 ;; 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 ;; Maintainer: FSF
7 ;; Keywords: internal
8
9 ;; This file is part of GNU Emacs.
10
11 ;; GNU Emacs is free software; you can redistribute it and/or modify
12 ;; it under the terms of the GNU General Public License as published by
13 ;; the Free Software Foundation; either version 2, or (at your option)
14 ;; any later version.
15
16 ;; GNU Emacs is distributed in the hope that it will be useful,
17 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
18 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 ;; GNU General Public License for more details.
20
21 ;; You should have received a copy of the GNU General Public License
22 ;; along with GNU Emacs; see the file COPYING. If not, write to the
23 ;; Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 ;; Boston, MA 02110-1301, USA.
25
26 ;;; Commentary:
27
28 ;;; Code:
29 (defvar custom-declare-variable-list nil
30 "Record `defcustom' calls made before `custom.el' is loaded to handle them.
31 Each element of this list holds the arguments to one call to `defcustom'.")
32
33 ;; Use this, rather than defcustom, in subr.el and other files loaded
34 ;; before custom.el.
35 (defun custom-declare-variable-early (&rest arguments)
36 (setq custom-declare-variable-list
37 (cons arguments custom-declare-variable-list)))
38
39 \f
40 ;;;; Basic Lisp macros.
41
42 (defalias 'not 'null)
43
44 (defmacro noreturn (form)
45 "Evaluate FORM, expecting it not to return.
46 If FORM does return, signal an error."
47 `(prog1 ,form
48 (error "Form marked with `noreturn' did return")))
49
50 (defmacro 1value (form)
51 "Evaluate FORM, expecting a constant return value.
52 This is the global do-nothing version. There is also `testcover-1value'
53 that complains if FORM ever does return differing values."
54 form)
55
56 (defmacro def-edebug-spec (symbol spec)
57 "Set the `edebug-form-spec' property of SYMBOL according to SPEC.
58 Both SYMBOL and SPEC are unevaluated. The SPEC can be 0, t, a symbol
59 \(naming a function), or a list."
60 `(put (quote ,symbol) 'edebug-form-spec (quote ,spec)))
61
62 (defmacro lambda (&rest cdr)
63 "Return a lambda expression.
64 A call of the form (lambda ARGS DOCSTRING INTERACTIVE BODY) is
65 self-quoting; the result of evaluating the lambda expression is the
66 expression itself. The lambda expression may then be treated as a
67 function, i.e., stored as the function value of a symbol, passed to
68 `funcall' or `mapcar', etc.
69
70 ARGS should take the same form as an argument list for a `defun'.
71 DOCSTRING is an optional documentation string.
72 If present, it should describe how to call the function.
73 But documentation strings are usually not useful in nameless functions.
74 INTERACTIVE should be a call to the function `interactive', which see.
75 It may also be omitted.
76 BODY should be a list of Lisp expressions.
77
78 \(fn ARGS [DOCSTRING] [INTERACTIVE] BODY)"
79 ;; Note that this definition should not use backquotes; subr.el should not
80 ;; depend on backquote.el.
81 (list 'function (cons 'lambda cdr)))
82
83 (defmacro push (newelt listname)
84 "Add NEWELT to the list stored in the symbol LISTNAME.
85 This is equivalent to (setq LISTNAME (cons NEWELT LISTNAME)).
86 LISTNAME must be a symbol."
87 (declare (debug (form sexp)))
88 (list 'setq listname
89 (list 'cons newelt listname)))
90
91 (defmacro pop (listname)
92 "Return the first element of LISTNAME's value, and remove it from the list.
93 LISTNAME must be a symbol whose value is a list.
94 If the value is nil, `pop' returns nil but does not actually
95 change the list."
96 (declare (debug (sexp)))
97 (list 'car
98 (list 'prog1 listname
99 (list 'setq listname (list 'cdr listname)))))
100
101 (defmacro when (cond &rest body)
102 "If COND yields non-nil, do BODY, else return nil.
103 When COND yields non-nil, eval BODY forms sequentially and return
104 value of last one, or nil if there are none.
105
106 \(fn COND BODY ...)"
107 (declare (indent 1) (debug t))
108 (list 'if cond (cons 'progn body)))
109
110 (defmacro unless (cond &rest body)
111 "If COND yields nil, do BODY, else return nil.
112 When COND yields nil, eval BODY forms sequentially and return
113 value of last one, or nil if there are none.
114
115 \(fn COND BODY ...)"
116 (declare (indent 1) (debug t))
117 (cons 'if (cons cond (cons nil body))))
118
119 (defvar --dolist-tail-- nil
120 "Temporary variable used in `dolist' expansion.")
121
122 (defmacro dolist (spec &rest body)
123 "Loop over a list.
124 Evaluate BODY with VAR bound to each car from LIST, in turn.
125 Then evaluate RESULT to get return value, default nil.
126
127 \(fn (VAR LIST [RESULT]) BODY...)"
128 (declare (indent 1) (debug ((symbolp form &optional form) body)))
129 ;; It would be cleaner to create an uninterned symbol,
130 ;; but that uses a lot more space when many functions in many files
131 ;; use dolist.
132 (let ((temp '--dolist-tail--))
133 `(let ((,temp ,(nth 1 spec))
134 ,(car spec))
135 (while ,temp
136 (setq ,(car spec) (car ,temp))
137 ,@body
138 (setq ,temp (cdr ,temp)))
139 ,@(if (cdr (cdr spec))
140 `((setq ,(car spec) nil) ,@(cdr (cdr spec)))))))
141
142 (defvar --dotimes-limit-- nil
143 "Temporary variable used in `dotimes' expansion.")
144
145 (defmacro dotimes (spec &rest body)
146 "Loop a certain number of times.
147 Evaluate BODY with VAR bound to successive integers running from 0,
148 inclusive, to COUNT, exclusive. Then evaluate RESULT to get
149 the return value (nil if RESULT is omitted).
150
151 \(fn (VAR COUNT [RESULT]) BODY...)"
152 (declare (indent 1) (debug dolist))
153 ;; It would be cleaner to create an uninterned symbol,
154 ;; but that uses a lot more space when many functions in many files
155 ;; use dotimes.
156 (let ((temp '--dotimes-limit--)
157 (start 0)
158 (end (nth 1 spec)))
159 `(let ((,temp ,end)
160 (,(car spec) ,start))
161 (while (< ,(car spec) ,temp)
162 ,@body
163 (setq ,(car spec) (1+ ,(car spec))))
164 ,@(cdr (cdr spec)))))
165
166 (defmacro declare (&rest specs)
167 "Do not evaluate any arguments and return nil.
168 Treated as a declaration when used at the right place in a
169 `defmacro' form. \(See Info anchor `(elisp)Definition of declare'.)"
170 nil)
171 \f
172 ;;;; Basic Lisp functions.
173
174 (defun ignore (&rest ignore)
175 "Do nothing and return nil.
176 This function accepts any number of arguments, but ignores them."
177 (interactive)
178 nil)
179
180 (defun error (&rest args)
181 "Signal an error, making error message by passing all args to `format'.
182 In Emacs, the convention is that error messages start with a capital
183 letter but *do not* end with a period. Please follow this convention
184 for the sake of consistency."
185 (while t
186 (signal 'error (list (apply 'format args)))))
187
188 ;; We put this here instead of in frame.el so that it's defined even on
189 ;; systems where frame.el isn't loaded.
190 (defun frame-configuration-p (object)
191 "Return non-nil if OBJECT seems to be a frame configuration.
192 Any list whose car is `frame-configuration' is assumed to be a frame
193 configuration."
194 (and (consp object)
195 (eq (car object) 'frame-configuration)))
196
197 (defun functionp (object)
198 "Non-nil if OBJECT is any kind of function or a special form.
199 Also non-nil if OBJECT is a symbol and its function definition is
200 \(recursively) a function or special form. This does not include
201 macros."
202 (or (and (symbolp object) (fboundp object)
203 (condition-case nil
204 (setq object (indirect-function object))
205 (error nil))
206 (eq (car-safe object) 'autoload)
207 (not (car-safe (cdr-safe (cdr-safe (cdr-safe (cdr-safe object)))))))
208 (subrp object) (byte-code-function-p object)
209 (eq (car-safe object) 'lambda)))
210 \f
211 ;;;; List functions.
212
213 (defsubst caar (x)
214 "Return the car of the car of X."
215 (car (car x)))
216
217 (defsubst cadr (x)
218 "Return the car of the cdr of X."
219 (car (cdr x)))
220
221 (defsubst cdar (x)
222 "Return the cdr of the car of X."
223 (cdr (car x)))
224
225 (defsubst cddr (x)
226 "Return the cdr of the cdr of X."
227 (cdr (cdr x)))
228
229 (defun last (list &optional n)
230 "Return the last link of LIST. Its car is the last element.
231 If LIST is nil, return nil.
232 If N is non-nil, return the Nth-to-last link of LIST.
233 If N is bigger than the length of LIST, return LIST."
234 (if n
235 (let ((m 0) (p list))
236 (while (consp p)
237 (setq m (1+ m) p (cdr p)))
238 (if (<= n 0) p
239 (if (< n m) (nthcdr (- m n) list) list)))
240 (while (consp (cdr list))
241 (setq list (cdr list)))
242 list))
243
244 (defun butlast (list &optional n)
245 "Return a copy of LIST with the last N elements removed."
246 (if (and n (<= n 0)) list
247 (nbutlast (copy-sequence list) n)))
248
249 (defun nbutlast (list &optional n)
250 "Modifies LIST to remove the last N elements."
251 (let ((m (length list)))
252 (or n (setq n 1))
253 (and (< n m)
254 (progn
255 (if (> n 0) (setcdr (nthcdr (- (1- m) n) list) nil))
256 list))))
257
258 (defun delete-dups (list)
259 "Destructively remove `equal' duplicates from LIST.
260 Store the result in LIST and return it. LIST must be a proper list.
261 Of several `equal' occurrences of an element in LIST, the first
262 one is kept."
263 (let ((tail list))
264 (while tail
265 (setcdr tail (delete (car tail) (cdr tail)))
266 (setq tail (cdr tail))))
267 list)
268
269 (defun number-sequence (from &optional to inc)
270 "Return a sequence of numbers from FROM to TO (both inclusive) as a list.
271 INC is the increment used between numbers in the sequence and defaults to 1.
272 So, the Nth element of the list is \(+ FROM \(* N INC)) where N counts from
273 zero. TO is only included if there is an N for which TO = FROM + N * INC.
274 If TO is nil or numerically equal to FROM, return \(FROM).
275 If INC is positive and TO is less than FROM, or INC is negative
276 and TO is larger than FROM, return nil.
277 If INC is zero and TO is neither nil nor numerically equal to
278 FROM, signal an error.
279
280 This function is primarily designed for integer arguments.
281 Nevertheless, FROM, TO and INC can be integer or float. However,
282 floating point arithmetic is inexact. For instance, depending on
283 the machine, it may quite well happen that
284 \(number-sequence 0.4 0.6 0.2) returns the one element list \(0.4),
285 whereas \(number-sequence 0.4 0.8 0.2) returns a list with three
286 elements. Thus, if some of the arguments are floats and one wants
287 to make sure that TO is included, one may have to explicitly write
288 TO as \(+ FROM \(* N INC)) or use a variable whose value was
289 computed with this exact expression. Alternatively, you can,
290 of course, also replace TO with a slightly larger value
291 \(or a slightly more negative value if INC is negative)."
292 (if (or (not to) (= from to))
293 (list from)
294 (or inc (setq inc 1))
295 (when (zerop inc) (error "The increment can not be zero"))
296 (let (seq (n 0) (next from))
297 (if (> inc 0)
298 (while (<= next to)
299 (setq seq (cons next seq)
300 n (1+ n)
301 next (+ from (* n inc))))
302 (while (>= next to)
303 (setq seq (cons next seq)
304 n (1+ n)
305 next (+ from (* n inc)))))
306 (nreverse seq))))
307
308 (defun copy-tree (tree &optional vecp)
309 "Make a copy of TREE.
310 If TREE is a cons cell, this recursively copies both its car and its cdr.
311 Contrast to `copy-sequence', which copies only along the cdrs. With second
312 argument VECP, this copies vectors as well as conses."
313 (if (consp tree)
314 (let (result)
315 (while (consp tree)
316 (let ((newcar (car tree)))
317 (if (or (consp (car tree)) (and vecp (vectorp (car tree))))
318 (setq newcar (copy-tree (car tree) vecp)))
319 (push newcar result))
320 (setq tree (cdr tree)))
321 (nconc (nreverse result) tree))
322 (if (and vecp (vectorp tree))
323 (let ((i (length (setq tree (copy-sequence tree)))))
324 (while (>= (setq i (1- i)) 0)
325 (aset tree i (copy-tree (aref tree i) vecp)))
326 tree)
327 tree)))
328 \f
329 ;;;; Various list-search functions.
330
331 (defun assoc-default (key alist &optional test default)
332 "Find object KEY in a pseudo-alist ALIST.
333 ALIST is a list of conses or objects. Each element (or the element's car,
334 if it is a cons) is compared with KEY by evaluating (TEST (car elt) KEY).
335 If that is non-nil, the element matches;
336 then `assoc-default' returns the element's cdr, if it is a cons,
337 or DEFAULT if the element is not a cons.
338
339 If no element matches, the value is nil.
340 If TEST is omitted or nil, `equal' is used."
341 (let (found (tail alist) value)
342 (while (and tail (not found))
343 (let ((elt (car tail)))
344 (when (funcall (or test 'equal) (if (consp elt) (car elt) elt) key)
345 (setq found t value (if (consp elt) (cdr elt) default))))
346 (setq tail (cdr tail)))
347 value))
348
349 (make-obsolete 'assoc-ignore-case 'assoc-string)
350 (defun assoc-ignore-case (key alist)
351 "Like `assoc', but ignores differences in case and text representation.
352 KEY must be a string. Upper-case and lower-case letters are treated as equal.
353 Unibyte strings are converted to multibyte for comparison."
354 (assoc-string key alist t))
355
356 (make-obsolete 'assoc-ignore-representation 'assoc-string)
357 (defun assoc-ignore-representation (key alist)
358 "Like `assoc', but ignores differences in text representation.
359 KEY must be a string.
360 Unibyte strings are converted to multibyte for comparison."
361 (assoc-string key alist nil))
362
363 (defun member-ignore-case (elt list)
364 "Like `member', but ignores differences in case and text representation.
365 ELT must be a string. Upper-case and lower-case letters are treated as equal.
366 Unibyte strings are converted to multibyte for comparison.
367 Non-strings in LIST are ignored."
368 (while (and list
369 (not (and (stringp (car list))
370 (eq t (compare-strings elt 0 nil (car list) 0 nil t)))))
371 (setq list (cdr list)))
372 list)
373
374 (defun assq-delete-all (key alist)
375 "Delete from ALIST all elements whose car is `eq' to KEY.
376 Return the modified alist.
377 Elements of ALIST that are not conses are ignored."
378 (while (and (consp (car alist))
379 (eq (car (car alist)) key))
380 (setq alist (cdr alist)))
381 (let ((tail alist) tail-cdr)
382 (while (setq tail-cdr (cdr tail))
383 (if (and (consp (car tail-cdr))
384 (eq (car (car tail-cdr)) key))
385 (setcdr tail (cdr tail-cdr))
386 (setq tail tail-cdr))))
387 alist)
388
389 (defun rassq-delete-all (value alist)
390 "Delete from ALIST all elements whose cdr is `eq' to VALUE.
391 Return the modified alist.
392 Elements of ALIST that are not conses are ignored."
393 (while (and (consp (car alist))
394 (eq (cdr (car alist)) value))
395 (setq alist (cdr alist)))
396 (let ((tail alist) tail-cdr)
397 (while (setq tail-cdr (cdr tail))
398 (if (and (consp (car tail-cdr))
399 (eq (cdr (car tail-cdr)) value))
400 (setcdr tail (cdr tail-cdr))
401 (setq tail tail-cdr))))
402 alist)
403
404 (defun remove (elt seq)
405 "Return a copy of SEQ with all occurrences of ELT removed.
406 SEQ must be a list, vector, or string. The comparison is done with `equal'."
407 (if (nlistp seq)
408 ;; If SEQ isn't a list, there's no need to copy SEQ because
409 ;; `delete' will return a new object.
410 (delete elt seq)
411 (delete elt (copy-sequence seq))))
412
413 (defun remq (elt list)
414 "Return LIST with all occurrences of ELT removed.
415 The comparison is done with `eq'. Contrary to `delq', this does not use
416 side-effects, and the argument LIST is not modified."
417 (if (memq elt list)
418 (delq elt (copy-sequence list))
419 list))
420 \f
421 ;;;; Keymap support.
422
423 (defmacro kbd (keys)
424 "Convert KEYS to the internal Emacs key representation.
425 KEYS should be a string constant in the format used for
426 saving keyboard macros (see `edmacro-mode')."
427 (read-kbd-macro keys))
428
429 (defun undefined ()
430 (interactive)
431 (ding))
432
433 ;; Prevent the \{...} documentation construct
434 ;; from mentioning keys that run this command.
435 (put 'undefined 'suppress-keymap t)
436
437 (defun suppress-keymap (map &optional nodigits)
438 "Make MAP override all normally self-inserting keys to be undefined.
439 Normally, as an exception, digits and minus-sign are set to make prefix args,
440 but optional second arg NODIGITS non-nil treats them like other chars."
441 (define-key map [remap self-insert-command] 'undefined)
442 (or nodigits
443 (let (loop)
444 (define-key map "-" 'negative-argument)
445 ;; Make plain numbers do numeric args.
446 (setq loop ?0)
447 (while (<= loop ?9)
448 (define-key map (char-to-string loop) 'digit-argument)
449 (setq loop (1+ loop))))))
450
451 (defun define-key-after (keymap key definition &optional after)
452 "Add binding in KEYMAP for KEY => DEFINITION, right after AFTER's binding.
453 This is like `define-key' except that the binding for KEY is placed
454 just after the binding for the event AFTER, instead of at the beginning
455 of the map. Note that AFTER must be an event type (like KEY), NOT a command
456 \(like DEFINITION).
457
458 If AFTER is t or omitted, the new binding goes at the end of the keymap.
459 AFTER should be a single event type--a symbol or a character, not a sequence.
460
461 Bindings are always added before any inherited map.
462
463 The order of bindings in a keymap matters when it is used as a menu."
464 (unless after (setq after t))
465 (or (keymapp keymap)
466 (signal 'wrong-type-argument (list 'keymapp keymap)))
467 (setq key
468 (if (<= (length key) 1) (aref key 0)
469 (setq keymap (lookup-key keymap
470 (apply 'vector
471 (butlast (mapcar 'identity key)))))
472 (aref key (1- (length key)))))
473 (let ((tail keymap) done inserted)
474 (while (and (not done) tail)
475 ;; Delete any earlier bindings for the same key.
476 (if (eq (car-safe (car (cdr tail))) key)
477 (setcdr tail (cdr (cdr tail))))
478 ;; If we hit an included map, go down that one.
479 (if (keymapp (car tail)) (setq tail (car tail)))
480 ;; When we reach AFTER's binding, insert the new binding after.
481 ;; If we reach an inherited keymap, insert just before that.
482 ;; If we reach the end of this keymap, insert at the end.
483 (if (or (and (eq (car-safe (car tail)) after)
484 (not (eq after t)))
485 (eq (car (cdr tail)) 'keymap)
486 (null (cdr tail)))
487 (progn
488 ;; Stop the scan only if we find a parent keymap.
489 ;; Keep going past the inserted element
490 ;; so we can delete any duplications that come later.
491 (if (eq (car (cdr tail)) 'keymap)
492 (setq done t))
493 ;; Don't insert more than once.
494 (or inserted
495 (setcdr tail (cons (cons key definition) (cdr tail))))
496 (setq inserted t)))
497 (setq tail (cdr tail)))))
498
499 (defun map-keymap-internal (function keymap &optional sort-first)
500 "Implement `map-keymap' with sorting.
501 Don't call this function; it is for internal use only."
502 (if sort-first
503 (let (list)
504 (map-keymap (lambda (a b) (push (cons a b) list))
505 keymap)
506 (setq list (sort list
507 (lambda (a b)
508 (setq a (car a) b (car b))
509 (if (integerp a)
510 (if (integerp b) (< a b)
511 t)
512 (if (integerp b) t
513 (string< a b))))))
514 (dolist (p list)
515 (funcall function (car p) (cdr p))))
516 (map-keymap function keymap)))
517
518 (put 'keyboard-translate-table 'char-table-extra-slots 0)
519
520 (defun keyboard-translate (from to)
521 "Translate character FROM to TO at a low level.
522 This function creates a `keyboard-translate-table' if necessary
523 and then modifies one entry in it."
524 (or (char-table-p keyboard-translate-table)
525 (setq keyboard-translate-table
526 (make-char-table 'keyboard-translate-table nil)))
527 (aset keyboard-translate-table from to))
528 \f
529 ;;;; Key binding commands.
530
531 (defun global-set-key (key command)
532 "Give KEY a global binding as COMMAND.
533 COMMAND is the command definition to use; usually it is
534 a symbol naming an interactively-callable function.
535 KEY is a key sequence; noninteractively, it is a string or vector
536 of characters or event types, and non-ASCII characters with codes
537 above 127 (such as ISO Latin-1) can be included if you use a vector.
538
539 Note that if KEY has a local binding in the current buffer,
540 that local binding will continue to shadow any global binding
541 that you make with this function."
542 (interactive "KSet key globally: \nCSet key %s to command: ")
543 (or (vectorp key) (stringp key)
544 (signal 'wrong-type-argument (list 'arrayp key)))
545 (define-key (current-global-map) key command))
546
547 (defun local-set-key (key command)
548 "Give KEY a local binding as COMMAND.
549 COMMAND is the command definition to use; usually it is
550 a symbol naming an interactively-callable function.
551 KEY is a key sequence; noninteractively, it is a string or vector
552 of characters or event types, and non-ASCII characters with codes
553 above 127 (such as ISO Latin-1) can be included if you use a vector.
554
555 The binding goes in the current buffer's local map,
556 which in most cases is shared with all other buffers in the same major mode."
557 (interactive "KSet key locally: \nCSet key %s locally to command: ")
558 (let ((map (current-local-map)))
559 (or map
560 (use-local-map (setq map (make-sparse-keymap))))
561 (or (vectorp key) (stringp key)
562 (signal 'wrong-type-argument (list 'arrayp key)))
563 (define-key map key command)))
564
565 (defun global-unset-key (key)
566 "Remove global binding of KEY.
567 KEY is a string or vector representing a sequence of keystrokes."
568 (interactive "kUnset key globally: ")
569 (global-set-key key nil))
570
571 (defun local-unset-key (key)
572 "Remove local binding of KEY.
573 KEY is a string or vector representing a sequence of keystrokes."
574 (interactive "kUnset key locally: ")
575 (if (current-local-map)
576 (local-set-key key nil))
577 nil)
578 \f
579 ;;;; substitute-key-definition and its subroutines.
580
581 (defvar key-substitution-in-progress nil
582 "Used internally by `substitute-key-definition'.")
583
584 (defun substitute-key-definition (olddef newdef keymap &optional oldmap prefix)
585 "Replace OLDDEF with NEWDEF for any keys in KEYMAP now defined as OLDDEF.
586 In other words, OLDDEF is replaced with NEWDEF where ever it appears.
587 Alternatively, if optional fourth argument OLDMAP is specified, we redefine
588 in KEYMAP as NEWDEF those keys which are defined as OLDDEF in OLDMAP.
589
590 If you don't specify OLDMAP, you can usually get the same results
591 in a cleaner way with command remapping, like this:
592 \(define-key KEYMAP [remap OLDDEF] NEWDEF)
593 \n(fn OLDDEF NEWDEF KEYMAP &optional OLDMAP)"
594 ;; Don't document PREFIX in the doc string because we don't want to
595 ;; advertise it. It's meant for recursive calls only. Here's its
596 ;; meaning
597
598 ;; If optional argument PREFIX is specified, it should be a key
599 ;; prefix, a string. Redefined bindings will then be bound to the
600 ;; original key, with PREFIX added at the front.
601 (or prefix (setq prefix ""))
602 (let* ((scan (or oldmap keymap))
603 (prefix1 (vconcat prefix [nil]))
604 (key-substitution-in-progress
605 (cons scan key-substitution-in-progress)))
606 ;; Scan OLDMAP, finding each char or event-symbol that
607 ;; has any definition, and act on it with hack-key.
608 (map-keymap
609 (lambda (char defn)
610 (aset prefix1 (length prefix) char)
611 (substitute-key-definition-key defn olddef newdef prefix1 keymap))
612 scan)))
613
614 (defun substitute-key-definition-key (defn olddef newdef prefix keymap)
615 (let (inner-def skipped menu-item)
616 ;; Find the actual command name within the binding.
617 (if (eq (car-safe defn) 'menu-item)
618 (setq menu-item defn defn (nth 2 defn))
619 ;; Skip past menu-prompt.
620 (while (stringp (car-safe defn))
621 (push (pop defn) skipped))
622 ;; Skip past cached key-equivalence data for menu items.
623 (if (consp (car-safe defn))
624 (setq defn (cdr defn))))
625 (if (or (eq defn olddef)
626 ;; Compare with equal if definition is a key sequence.
627 ;; That is useful for operating on function-key-map.
628 (and (or (stringp defn) (vectorp defn))
629 (equal defn olddef)))
630 (define-key keymap prefix
631 (if menu-item
632 (let ((copy (copy-sequence menu-item)))
633 (setcar (nthcdr 2 copy) newdef)
634 copy)
635 (nconc (nreverse skipped) newdef)))
636 ;; Look past a symbol that names a keymap.
637 (setq inner-def
638 (or (indirect-function defn t) defn))
639 ;; For nested keymaps, we use `inner-def' rather than `defn' so as to
640 ;; avoid autoloading a keymap. This is mostly done to preserve the
641 ;; original non-autoloading behavior of pre-map-keymap times.
642 (if (and (keymapp inner-def)
643 ;; Avoid recursively scanning
644 ;; where KEYMAP does not have a submap.
645 (let ((elt (lookup-key keymap prefix)))
646 (or (null elt) (natnump elt) (keymapp elt)))
647 ;; Avoid recursively rescanning keymap being scanned.
648 (not (memq inner-def key-substitution-in-progress)))
649 ;; If this one isn't being scanned already, scan it now.
650 (substitute-key-definition olddef newdef keymap inner-def prefix)))))
651
652 \f
653 ;;;; The global keymap tree.
654
655 ;;; global-map, esc-map, and ctl-x-map have their values set up in
656 ;;; keymap.c; we just give them docstrings here.
657
658 (defvar global-map nil
659 "Default global keymap mapping Emacs keyboard input into commands.
660 The value is a keymap which is usually (but not necessarily) Emacs's
661 global map.")
662
663 (defvar esc-map nil
664 "Default keymap for ESC (meta) commands.
665 The normal global definition of the character ESC indirects to this keymap.")
666
667 (defvar ctl-x-map nil
668 "Default keymap for C-x commands.
669 The normal global definition of the character C-x indirects to this keymap.")
670
671 (defvar ctl-x-4-map (make-sparse-keymap)
672 "Keymap for subcommands of C-x 4.")
673 (defalias 'ctl-x-4-prefix ctl-x-4-map)
674 (define-key ctl-x-map "4" 'ctl-x-4-prefix)
675
676 (defvar ctl-x-5-map (make-sparse-keymap)
677 "Keymap for frame commands.")
678 (defalias 'ctl-x-5-prefix ctl-x-5-map)
679 (define-key ctl-x-map "5" 'ctl-x-5-prefix)
680
681 \f
682 ;;;; Event manipulation functions.
683
684 ;; The call to `read' is to ensure that the value is computed at load time
685 ;; and not compiled into the .elc file. The value is negative on most
686 ;; machines, but not on all!
687 (defconst listify-key-sequence-1 (logior 128 (read "?\\M-\\^@")))
688
689 (defun listify-key-sequence (key)
690 "Convert a key sequence to a list of events."
691 (if (vectorp key)
692 (append key nil)
693 (mapcar (function (lambda (c)
694 (if (> c 127)
695 (logxor c listify-key-sequence-1)
696 c)))
697 key)))
698
699 (defsubst eventp (obj)
700 "True if the argument is an event object."
701 (or (and (integerp obj)
702 ;; Filter out integers too large to be events.
703 ;; M is the biggest modifier.
704 (zerop (logand obj (lognot (1- (lsh ?\M-\^@ 1)))))
705 (char-valid-p (event-basic-type obj)))
706 (and (symbolp obj)
707 (get obj 'event-symbol-elements))
708 (and (consp obj)
709 (symbolp (car obj))
710 (get (car obj) 'event-symbol-elements))))
711
712 (defun event-modifiers (event)
713 "Return a list of symbols representing the modifier keys in event EVENT.
714 The elements of the list may include `meta', `control',
715 `shift', `hyper', `super', `alt', `click', `double', `triple', `drag',
716 and `down'.
717 EVENT may be an event or an event type. If EVENT is a symbol
718 that has never been used in an event that has been read as input
719 in the current Emacs session, then this function can return nil,
720 even when EVENT actually has modifiers."
721 (let ((type event))
722 (if (listp type)
723 (setq type (car type)))
724 (if (symbolp type)
725 (cdr (get type 'event-symbol-elements))
726 (let ((list nil)
727 (char (logand type (lognot (logior ?\M-\^@ ?\C-\^@ ?\S-\^@
728 ?\H-\^@ ?\s-\^@ ?\A-\^@)))))
729 (if (not (zerop (logand type ?\M-\^@)))
730 (push 'meta list))
731 (if (or (not (zerop (logand type ?\C-\^@)))
732 (< char 32))
733 (push 'control list))
734 (if (or (not (zerop (logand type ?\S-\^@)))
735 (/= char (downcase char)))
736 (push 'shift list))
737 (or (zerop (logand type ?\H-\^@))
738 (push 'hyper list))
739 (or (zerop (logand type ?\s-\^@))
740 (push 'super list))
741 (or (zerop (logand type ?\A-\^@))
742 (push 'alt list))
743 list))))
744
745 (defun event-basic-type (event)
746 "Return the basic type of the given event (all modifiers removed).
747 The value is a printing character (not upper case) or a symbol.
748 EVENT may be an event or an event type. If EVENT is a symbol
749 that has never been used in an event that has been read as input
750 in the current Emacs session, then this function may return nil."
751 (if (consp event)
752 (setq event (car event)))
753 (if (symbolp event)
754 (car (get event 'event-symbol-elements))
755 (let* ((base (logand event (1- ?\A-\^@)))
756 (uncontrolled (if (< base 32) (logior base 64) base)))
757 ;; There are some numbers that are invalid characters and
758 ;; cause `downcase' to get an error.
759 (condition-case ()
760 (downcase uncontrolled)
761 (error uncontrolled)))))
762
763 (defsubst mouse-movement-p (object)
764 "Return non-nil if OBJECT is a mouse movement event."
765 (eq (car-safe object) 'mouse-movement))
766
767 (defsubst event-start (event)
768 "Return the starting position of EVENT.
769 If EVENT is a mouse or key press or a mouse click, this returns the location
770 of the event.
771 If EVENT is a drag, this returns the drag's starting position.
772 The return value is of the form
773 (WINDOW AREA-OR-POS (X . Y) TIMESTAMP OBJECT POS (COL . ROW)
774 IMAGE (DX . DY) (WIDTH . HEIGHT))
775 The `posn-' functions access elements of such lists."
776 (if (consp event) (nth 1 event)
777 (list (selected-window) (point) '(0 . 0) 0)))
778
779 (defsubst event-end (event)
780 "Return the ending location of EVENT.
781 EVENT should be a click, drag, or key press event.
782 If EVENT is a click event, this function is the same as `event-start'.
783 The return value is of the form
784 (WINDOW AREA-OR-POS (X . Y) TIMESTAMP OBJECT POS (COL . ROW)
785 IMAGE (DX . DY) (WIDTH . HEIGHT))
786 The `posn-' functions access elements of such lists."
787 (if (consp event) (nth (if (consp (nth 2 event)) 2 1) event)
788 (list (selected-window) (point) '(0 . 0) 0)))
789
790 (defsubst event-click-count (event)
791 "Return the multi-click count of EVENT, a click or drag event.
792 The return value is a positive integer."
793 (if (and (consp event) (integerp (nth 2 event))) (nth 2 event) 1))
794 \f
795 ;;;; Extracting fields of the positions in an event.
796
797 (defsubst posn-window (position)
798 "Return the window in POSITION.
799 POSITION should be a list of the form returned by the `event-start'
800 and `event-end' functions."
801 (nth 0 position))
802
803 (defsubst posn-area (position)
804 "Return the window area recorded in POSITION, or nil for the text area.
805 POSITION should be a list of the form returned by the `event-start'
806 and `event-end' functions."
807 (let ((area (if (consp (nth 1 position))
808 (car (nth 1 position))
809 (nth 1 position))))
810 (and (symbolp area) area)))
811
812 (defsubst posn-point (position)
813 "Return the buffer location in POSITION.
814 POSITION should be a list of the form returned by the `event-start'
815 and `event-end' functions."
816 (or (nth 5 position)
817 (if (consp (nth 1 position))
818 (car (nth 1 position))
819 (nth 1 position))))
820
821 (defun posn-set-point (position)
822 "Move point to POSITION.
823 Select the corresponding window as well."
824 (if (not (windowp (posn-window position)))
825 (error "Position not in text area of window"))
826 (select-window (posn-window position))
827 (if (numberp (posn-point position))
828 (goto-char (posn-point position))))
829
830 (defsubst posn-x-y (position)
831 "Return the x and y coordinates in POSITION.
832 POSITION should be a list of the form returned by the `event-start'
833 and `event-end' functions."
834 (nth 2 position))
835
836 (defun posn-col-row (position)
837 "Return the nominal column and row in POSITION, measured in characters.
838 The column and row values are approximations calculated from the x
839 and y coordinates in POSITION and the frame's default character width
840 and height.
841 For a scroll-bar event, the result column is 0, and the row
842 corresponds to the vertical position of the click in the scroll bar.
843 POSITION should be a list of the form returned by the `event-start'
844 and `event-end' functions."
845 (let* ((pair (posn-x-y position))
846 (window (posn-window position))
847 (area (posn-area position)))
848 (cond
849 ((null window)
850 '(0 . 0))
851 ((eq area 'vertical-scroll-bar)
852 (cons 0 (scroll-bar-scale pair (1- (window-height window)))))
853 ((eq area 'horizontal-scroll-bar)
854 (cons (scroll-bar-scale pair (window-width window)) 0))
855 (t
856 (let* ((frame (if (framep window) window (window-frame window)))
857 (x (/ (car pair) (frame-char-width frame)))
858 (y (/ (cdr pair) (+ (frame-char-height frame)
859 (or (frame-parameter frame 'line-spacing)
860 default-line-spacing
861 0)))))
862 (cons x y))))))
863
864 (defun posn-actual-col-row (position)
865 "Return the actual column and row in POSITION, measured in characters.
866 These are the actual row number in the window and character number in that row.
867 Return nil if POSITION does not contain the actual position; in that case
868 `posn-col-row' can be used to get approximate values.
869 POSITION should be a list of the form returned by the `event-start'
870 and `event-end' functions."
871 (nth 6 position))
872
873 (defsubst posn-timestamp (position)
874 "Return the timestamp of POSITION.
875 POSITION should be a list of the form returned by the `event-start'
876 and `event-end' functions."
877 (nth 3 position))
878
879 (defsubst posn-string (position)
880 "Return the string object of POSITION.
881 Value is a cons (STRING . STRING-POS), or nil if not a string.
882 POSITION should be a list of the form returned by the `event-start'
883 and `event-end' functions."
884 (nth 4 position))
885
886 (defsubst posn-image (position)
887 "Return the image object of POSITION.
888 Value is a list (image ...), or nil if not an image.
889 POSITION should be a list of the form returned by the `event-start'
890 and `event-end' functions."
891 (nth 7 position))
892
893 (defsubst posn-object (position)
894 "Return the object (image or string) of POSITION.
895 Value is a list (image ...) for an image object, a cons cell
896 \(STRING . STRING-POS) for a string object, and nil for a buffer position.
897 POSITION should be a list of the form returned by the `event-start'
898 and `event-end' functions."
899 (or (posn-image position) (posn-string position)))
900
901 (defsubst posn-object-x-y (position)
902 "Return the x and y coordinates relative to the object of POSITION.
903 POSITION should be a list of the form returned by the `event-start'
904 and `event-end' functions."
905 (nth 8 position))
906
907 (defsubst posn-object-width-height (position)
908 "Return the pixel width and height of the object of POSITION.
909 POSITION should be a list of the form returned by the `event-start'
910 and `event-end' functions."
911 (nth 9 position))
912
913 \f
914 ;;;; Obsolescent names for functions.
915
916 (define-obsolete-function-alias 'window-dot 'window-point "22.1")
917 (define-obsolete-function-alias 'set-window-dot 'set-window-point "22.1")
918 (define-obsolete-function-alias 'read-input 'read-string "22.1")
919 (define-obsolete-function-alias 'show-buffer 'set-window-buffer "22.1")
920 (define-obsolete-function-alias 'eval-current-buffer 'eval-buffer "22.1")
921 (define-obsolete-function-alias 'string-to-int 'string-to-number "22.1")
922
923 (make-obsolete 'char-bytes "now always returns 1." "20.4")
924
925 (defun insert-string (&rest args)
926 "Mocklisp-compatibility insert function.
927 Like the function `insert' except that any argument that is a number
928 is converted into a string by expressing it in decimal."
929 (dolist (el args)
930 (insert (if (integerp el) (number-to-string el) el))))
931 (make-obsolete 'insert-string 'insert "22.1")
932
933 (defun makehash (&optional test) (make-hash-table :test (or test 'eql)))
934 (make-obsolete 'makehash 'make-hash-table "22.1")
935
936 ;; Some programs still use this as a function.
937 (defun baud-rate ()
938 "Return the value of the `baud-rate' variable."
939 baud-rate)
940 (make-obsolete 'baud-rate "use the `baud-rate' variable instead." "before 19.15")
941
942 ;; These are used by VM and some old programs
943 (defalias 'focus-frame 'ignore "")
944 (make-obsolete 'focus-frame "it does nothing." "22.1")
945 (defalias 'unfocus-frame 'ignore "")
946 (make-obsolete 'unfocus-frame "it does nothing." "22.1")
947
948 \f
949 ;;;; Obsolescence declarations for variables, and aliases.
950
951 (make-obsolete-variable 'directory-sep-char "do not use it." "21.1")
952 (make-obsolete-variable 'mode-line-inverse-video "use the appropriate faces instead." "21.1")
953 (make-obsolete-variable 'unread-command-char
954 "use `unread-command-events' instead. That variable is a list of events
955 to reread, so it now uses nil to mean `no event', instead of -1."
956 "before 19.15")
957
958 ;; Lisp manual only updated in 22.1.
959 (define-obsolete-variable-alias 'executing-macro 'executing-kbd-macro
960 "before 19.34")
961
962 (defvaralias 'x-lost-selection-hooks 'x-lost-selection-functions)
963 (make-obsolete-variable 'x-lost-selection-hooks 'x-lost-selection-functions "22.1")
964 (defvaralias 'x-sent-selection-hooks 'x-sent-selection-functions)
965 (make-obsolete-variable 'x-sent-selection-hooks 'x-sent-selection-functions "22.1")
966
967 (defvaralias 'messages-buffer-max-lines 'message-log-max)
968 \f
969 ;;;; Alternate names for functions - these are not being phased out.
970
971 (defalias 'send-string 'process-send-string)
972 (defalias 'send-region 'process-send-region)
973 (defalias 'string= 'string-equal)
974 (defalias 'string< 'string-lessp)
975 (defalias 'move-marker 'set-marker)
976 (defalias 'rplaca 'setcar)
977 (defalias 'rplacd 'setcdr)
978 (defalias 'beep 'ding) ;preserve lingual purity
979 (defalias 'indent-to-column 'indent-to)
980 (defalias 'backward-delete-char 'delete-backward-char)
981 (defalias 'search-forward-regexp (symbol-function 're-search-forward))
982 (defalias 'search-backward-regexp (symbol-function 're-search-backward))
983 (defalias 'int-to-string 'number-to-string)
984 (defalias 'store-match-data 'set-match-data)
985 (defalias 'make-variable-frame-localizable 'make-variable-frame-local)
986 ;; These are the XEmacs names:
987 (defalias 'point-at-eol 'line-end-position)
988 (defalias 'point-at-bol 'line-beginning-position)
989
990 (defalias 'user-original-login-name 'user-login-name)
991
992 \f
993 ;;;; Hook manipulation functions.
994
995 (defun make-local-hook (hook)
996 "Make the hook HOOK local to the current buffer.
997 The return value is HOOK.
998
999 You never need to call this function now that `add-hook' does it for you
1000 if its LOCAL argument is non-nil.
1001
1002 When a hook is local, its local and global values
1003 work in concert: running the hook actually runs all the hook
1004 functions listed in *either* the local value *or* the global value
1005 of the hook variable.
1006
1007 This function works by making t a member of the buffer-local value,
1008 which acts as a flag to run the hook functions in the default value as
1009 well. This works for all normal hooks, but does not work for most
1010 non-normal hooks yet. We will be changing the callers of non-normal
1011 hooks so that they can handle localness; this has to be done one by
1012 one.
1013
1014 This function does nothing if HOOK is already local in the current
1015 buffer.
1016
1017 Do not use `make-local-variable' to make a hook variable buffer-local."
1018 (if (local-variable-p hook)
1019 nil
1020 (or (boundp hook) (set hook nil))
1021 (make-local-variable hook)
1022 (set hook (list t)))
1023 hook)
1024 (make-obsolete 'make-local-hook "not necessary any more." "21.1")
1025
1026 (defun add-hook (hook function &optional append local)
1027 "Add to the value of HOOK the function FUNCTION.
1028 FUNCTION is not added if already present.
1029 FUNCTION is added (if necessary) at the beginning of the hook list
1030 unless the optional argument APPEND is non-nil, in which case
1031 FUNCTION is added at the end.
1032
1033 The optional fourth argument, LOCAL, if non-nil, says to modify
1034 the hook's buffer-local value rather than its default value.
1035 This makes the hook buffer-local if needed, and it makes t a member
1036 of the buffer-local value. That acts as a flag to run the hook
1037 functions in the default value as well as in the local value.
1038
1039 HOOK should be a symbol, and FUNCTION may be any valid function. If
1040 HOOK is void, it is first set to nil. If HOOK's value is a single
1041 function, it is changed to a list of functions."
1042 (or (boundp hook) (set hook nil))
1043 (or (default-boundp hook) (set-default hook nil))
1044 (if local (unless (local-variable-if-set-p hook)
1045 (set (make-local-variable hook) (list t)))
1046 ;; Detect the case where make-local-variable was used on a hook
1047 ;; and do what we used to do.
1048 (unless (and (consp (symbol-value hook)) (memq t (symbol-value hook)))
1049 (setq local t)))
1050 (let ((hook-value (if local (symbol-value hook) (default-value hook))))
1051 ;; If the hook value is a single function, turn it into a list.
1052 (when (or (not (listp hook-value)) (eq (car hook-value) 'lambda))
1053 (setq hook-value (list hook-value)))
1054 ;; Do the actual addition if necessary
1055 (unless (member function hook-value)
1056 (setq hook-value
1057 (if append
1058 (append hook-value (list function))
1059 (cons function hook-value))))
1060 ;; Set the actual variable
1061 (if local (set hook hook-value) (set-default hook hook-value))))
1062
1063 (defun remove-hook (hook function &optional local)
1064 "Remove from the value of HOOK the function FUNCTION.
1065 HOOK should be a symbol, and FUNCTION may be any valid function. If
1066 FUNCTION isn't the value of HOOK, or, if FUNCTION doesn't appear in the
1067 list of hooks to run in HOOK, then nothing is done. See `add-hook'.
1068
1069 The optional third argument, LOCAL, if non-nil, says to modify
1070 the hook's buffer-local value rather than its default value."
1071 (or (boundp hook) (set hook nil))
1072 (or (default-boundp hook) (set-default hook nil))
1073 ;; Do nothing if LOCAL is t but this hook has no local binding.
1074 (unless (and local (not (local-variable-p hook)))
1075 ;; Detect the case where make-local-variable was used on a hook
1076 ;; and do what we used to do.
1077 (when (and (local-variable-p hook)
1078 (not (and (consp (symbol-value hook))
1079 (memq t (symbol-value hook)))))
1080 (setq local t))
1081 (let ((hook-value (if local (symbol-value hook) (default-value hook))))
1082 ;; Remove the function, for both the list and the non-list cases.
1083 (if (or (not (listp hook-value)) (eq (car hook-value) 'lambda))
1084 (if (equal hook-value function) (setq hook-value nil))
1085 (setq hook-value (delete function (copy-sequence hook-value))))
1086 ;; If the function is on the global hook, we need to shadow it locally
1087 ;;(when (and local (member function (default-value hook))
1088 ;; (not (member (cons 'not function) hook-value)))
1089 ;; (push (cons 'not function) hook-value))
1090 ;; Set the actual variable
1091 (if (not local)
1092 (set-default hook hook-value)
1093 (if (equal hook-value '(t))
1094 (kill-local-variable hook)
1095 (set hook hook-value))))))
1096
1097 (defun add-to-list (list-var element &optional append compare-fn)
1098 "Add ELEMENT to the value of LIST-VAR if it isn't there yet.
1099 The test for presence of ELEMENT is done with `equal',
1100 or with COMPARE-FN if that's non-nil.
1101 If ELEMENT is added, it is added at the beginning of the list,
1102 unless the optional argument APPEND is non-nil, in which case
1103 ELEMENT is added at the end.
1104
1105 The return value is the new value of LIST-VAR.
1106
1107 If you want to use `add-to-list' on a variable that is not defined
1108 until a certain package is loaded, you should put the call to `add-to-list'
1109 into a hook function that will be run only after loading the package.
1110 `eval-after-load' provides one way to do this. In some cases
1111 other hooks, such as major mode hooks, can do the job."
1112 (if (cond
1113 ((null compare-fn)
1114 (member element (symbol-value list-var)))
1115 ((eq compare-fn 'eq)
1116 (memq element (symbol-value list-var)))
1117 ((eq compare-fn 'eql)
1118 (memql element (symbol-value list-var)))
1119 (t
1120 (let ((lst (symbol-value list-var)))
1121 (while (and lst
1122 (not (funcall compare-fn element (car lst))))
1123 (setq lst (cdr lst)))
1124 lst)))
1125 (symbol-value list-var)
1126 (set list-var
1127 (if append
1128 (append (symbol-value list-var) (list element))
1129 (cons element (symbol-value list-var))))))
1130
1131
1132 (defun add-to-ordered-list (list-var element &optional order)
1133 "Add ELEMENT to the value of LIST-VAR if it isn't there yet.
1134 The test for presence of ELEMENT is done with `eq'.
1135
1136 The resulting list is reordered so that the elements are in the
1137 order given by each element's numeric list order. Elements
1138 without a numeric list order are placed at the end of the list.
1139
1140 If the third optional argument ORDER is a number (integer or
1141 float), set the element's list order to the given value. If
1142 ORDER is nil or omitted, do not change the numeric order of
1143 ELEMENT. If ORDER has any other value, remove the numeric order
1144 of ELEMENT if it has one.
1145
1146 The list order for each element is stored in LIST-VAR's
1147 `list-order' property.
1148
1149 The return value is the new value of LIST-VAR."
1150 (let ((ordering (get list-var 'list-order)))
1151 (unless ordering
1152 (put list-var 'list-order
1153 (setq ordering (make-hash-table :weakness 'key :test 'eq))))
1154 (when order
1155 (puthash element (and (numberp order) order) ordering))
1156 (unless (memq element (symbol-value list-var))
1157 (set list-var (cons element (symbol-value list-var))))
1158 (set list-var (sort (symbol-value list-var)
1159 (lambda (a b)
1160 (let ((oa (gethash a ordering))
1161 (ob (gethash b ordering)))
1162 (if (and oa ob)
1163 (< oa ob)
1164 oa)))))))
1165
1166 (defun add-to-history (history-var newelt &optional maxelt keep-all)
1167 "Add NEWELT to the history list stored in the variable HISTORY-VAR.
1168 Return the new history list.
1169 If MAXELT is non-nil, it specifies the maximum length of the history.
1170 Otherwise, the maximum history length is the value of the `history-length'
1171 property on symbol HISTORY-VAR, if set, or the value of the `history-length'
1172 variable.
1173 Remove duplicates of NEWELT if `history-delete-duplicates' is non-nil.
1174 If optional fourth arg KEEP-ALL is non-nil, add NEWELT to history even
1175 if it is empty or a duplicate."
1176 (unless maxelt
1177 (setq maxelt (or (get history-var 'history-length)
1178 history-length)))
1179 (let ((history (symbol-value history-var))
1180 tail)
1181 (when (and (listp history)
1182 (or keep-all
1183 (not (stringp newelt))
1184 (> (length newelt) 0))
1185 (or keep-all
1186 (not (equal (car history) newelt))))
1187 (if history-delete-duplicates
1188 (delete newelt history))
1189 (setq history (cons newelt history))
1190 (when (integerp maxelt)
1191 (if (= 0 maxelt)
1192 (setq history nil)
1193 (setq tail (nthcdr (1- maxelt) history))
1194 (when (consp tail)
1195 (setcdr tail nil)))))
1196 (set history-var history)))
1197
1198 \f
1199 ;;;; Mode hooks.
1200
1201 (defvar delay-mode-hooks nil
1202 "If non-nil, `run-mode-hooks' should delay running the hooks.")
1203 (defvar delayed-mode-hooks nil
1204 "List of delayed mode hooks waiting to be run.")
1205 (make-variable-buffer-local 'delayed-mode-hooks)
1206 (put 'delay-mode-hooks 'permanent-local t)
1207
1208 (defvar after-change-major-mode-hook nil
1209 "Normal hook run at the very end of major mode functions.")
1210
1211 (defun run-mode-hooks (&rest hooks)
1212 "Run mode hooks `delayed-mode-hooks' and HOOKS, or delay HOOKS.
1213 Execution is delayed if `delay-mode-hooks' is non-nil.
1214 If `delay-mode-hooks' is nil, run `after-change-major-mode-hook'
1215 after running the mode hooks.
1216 Major mode functions should use this."
1217 (if delay-mode-hooks
1218 ;; Delaying case.
1219 (dolist (hook hooks)
1220 (push hook delayed-mode-hooks))
1221 ;; Normal case, just run the hook as before plus any delayed hooks.
1222 (setq hooks (nconc (nreverse delayed-mode-hooks) hooks))
1223 (setq delayed-mode-hooks nil)
1224 (apply 'run-hooks hooks)
1225 (run-hooks 'after-change-major-mode-hook)))
1226
1227 (defmacro delay-mode-hooks (&rest body)
1228 "Execute BODY, but delay any `run-mode-hooks'.
1229 These hooks will be executed by the first following call to
1230 `run-mode-hooks' that occurs outside any `delayed-mode-hooks' form.
1231 Only affects hooks run in the current buffer."
1232 (declare (debug t) (indent 0))
1233 `(progn
1234 (make-local-variable 'delay-mode-hooks)
1235 (let ((delay-mode-hooks t))
1236 ,@body)))
1237
1238 ;; PUBLIC: find if the current mode derives from another.
1239
1240 (defun derived-mode-p (&rest modes)
1241 "Non-nil if the current major mode is derived from one of MODES.
1242 Uses the `derived-mode-parent' property of the symbol to trace backwards."
1243 (let ((parent major-mode))
1244 (while (and (not (memq parent modes))
1245 (setq parent (get parent 'derived-mode-parent))))
1246 parent))
1247 \f
1248 ;;;; Minor modes.
1249
1250 ;; If a minor mode is not defined with define-minor-mode,
1251 ;; add it here explicitly.
1252 ;; isearch-mode is deliberately excluded, since you should
1253 ;; not call it yourself.
1254 (defvar minor-mode-list '(auto-save-mode auto-fill-mode abbrev-mode
1255 overwrite-mode view-mode
1256 hs-minor-mode)
1257 "List of all minor mode functions.")
1258
1259 (defun add-minor-mode (toggle name &optional keymap after toggle-fun)
1260 "Register a new minor mode.
1261
1262 This is an XEmacs-compatibility function. Use `define-minor-mode' instead.
1263
1264 TOGGLE is a symbol which is the name of a buffer-local variable that
1265 is toggled on or off to say whether the minor mode is active or not.
1266
1267 NAME specifies what will appear in the mode line when the minor mode
1268 is active. NAME should be either a string starting with a space, or a
1269 symbol whose value is such a string.
1270
1271 Optional KEYMAP is the keymap for the minor mode that will be added
1272 to `minor-mode-map-alist'.
1273
1274 Optional AFTER specifies that TOGGLE should be added after AFTER
1275 in `minor-mode-alist'.
1276
1277 Optional TOGGLE-FUN is an interactive function to toggle the mode.
1278 It defaults to (and should by convention be) TOGGLE.
1279
1280 If TOGGLE has a non-nil `:included' property, an entry for the mode is
1281 included in the mode-line minor mode menu.
1282 If TOGGLE has a `:menu-tag', that is used for the menu item's label."
1283 (unless (memq toggle minor-mode-list)
1284 (push toggle minor-mode-list))
1285
1286 (unless toggle-fun (setq toggle-fun toggle))
1287 (unless (eq toggle-fun toggle)
1288 (put toggle :minor-mode-function toggle-fun))
1289 ;; Add the name to the minor-mode-alist.
1290 (when name
1291 (let ((existing (assq toggle minor-mode-alist)))
1292 (if existing
1293 (setcdr existing (list name))
1294 (let ((tail minor-mode-alist) found)
1295 (while (and tail (not found))
1296 (if (eq after (caar tail))
1297 (setq found tail)
1298 (setq tail (cdr tail))))
1299 (if found
1300 (let ((rest (cdr found)))
1301 (setcdr found nil)
1302 (nconc found (list (list toggle name)) rest))
1303 (setq minor-mode-alist (cons (list toggle name)
1304 minor-mode-alist)))))))
1305 ;; Add the toggle to the minor-modes menu if requested.
1306 (when (get toggle :included)
1307 (define-key mode-line-mode-menu
1308 (vector toggle)
1309 (list 'menu-item
1310 (concat
1311 (or (get toggle :menu-tag)
1312 (if (stringp name) name (symbol-name toggle)))
1313 (let ((mode-name (if (symbolp name) (symbol-value name))))
1314 (if (and (stringp mode-name) (string-match "[^ ]+" mode-name))
1315 (concat " (" (match-string 0 mode-name) ")"))))
1316 toggle-fun
1317 :button (cons :toggle toggle))))
1318
1319 ;; Add the map to the minor-mode-map-alist.
1320 (when keymap
1321 (let ((existing (assq toggle minor-mode-map-alist)))
1322 (if existing
1323 (setcdr existing keymap)
1324 (let ((tail minor-mode-map-alist) found)
1325 (while (and tail (not found))
1326 (if (eq after (caar tail))
1327 (setq found tail)
1328 (setq tail (cdr tail))))
1329 (if found
1330 (let ((rest (cdr found)))
1331 (setcdr found nil)
1332 (nconc found (list (cons toggle keymap)) rest))
1333 (setq minor-mode-map-alist (cons (cons toggle keymap)
1334 minor-mode-map-alist))))))))
1335 \f
1336 ;;; Load history
1337
1338 ;; (defvar symbol-file-load-history-loaded nil
1339 ;; "Non-nil means we have loaded the file `fns-VERSION.el' in `exec-directory'.
1340 ;; That file records the part of `load-history' for preloaded files,
1341 ;; which is cleared out before dumping to make Emacs smaller.")
1342
1343 ;; (defun load-symbol-file-load-history ()
1344 ;; "Load the file `fns-VERSION.el' in `exec-directory' if not already done.
1345 ;; That file records the part of `load-history' for preloaded files,
1346 ;; which is cleared out before dumping to make Emacs smaller."
1347 ;; (unless symbol-file-load-history-loaded
1348 ;; (load (expand-file-name
1349 ;; ;; fns-XX.YY.ZZ.el does not work on DOS filesystem.
1350 ;; (if (eq system-type 'ms-dos)
1351 ;; "fns.el"
1352 ;; (format "fns-%s.el" emacs-version))
1353 ;; exec-directory)
1354 ;; ;; The file name fns-%s.el already has a .el extension.
1355 ;; nil nil t)
1356 ;; (setq symbol-file-load-history-loaded t)))
1357
1358 (defun symbol-file (symbol &optional type)
1359 "Return the input source in which SYMBOL was defined.
1360 The value is an absolute file name.
1361 It can also be nil, if the definition is not associated with any file.
1362
1363 If TYPE is nil, then any kind of definition is acceptable.
1364 If TYPE is `defun' or `defvar', that specifies function
1365 definition only or variable definition only.
1366 `defface' specifies a face definition only."
1367 (if (and (or (null type) (eq type 'defun))
1368 (symbolp symbol) (fboundp symbol)
1369 (eq 'autoload (car-safe (symbol-function symbol))))
1370 (nth 1 (symbol-function symbol))
1371 (let ((files load-history)
1372 file)
1373 (while files
1374 (if (if type
1375 (if (eq type 'defvar)
1376 ;; Variables are present just as their names.
1377 (member symbol (cdr (car files)))
1378 ;; Other types are represented as (TYPE . NAME).
1379 (member (cons type symbol) (cdr (car files))))
1380 ;; We accept all types, so look for variable def
1381 ;; and then for any other kind.
1382 (or (member symbol (cdr (car files)))
1383 (rassq symbol (cdr (car files)))))
1384 (setq file (car (car files)) files nil))
1385 (setq files (cdr files)))
1386 file)))
1387
1388 ;;;###autoload
1389 (defun locate-library (library &optional nosuffix path interactive-call)
1390 "Show the precise file name of Emacs library LIBRARY.
1391 This command searches the directories in `load-path' like `\\[load-library]'
1392 to find the file that `\\[load-library] RET LIBRARY RET' would load.
1393 Optional second arg NOSUFFIX non-nil means don't add suffixes `load-suffixes'
1394 to the specified name LIBRARY.
1395
1396 If the optional third arg PATH is specified, that list of directories
1397 is used instead of `load-path'.
1398
1399 When called from a program, the file name is normaly returned as a
1400 string. When run interactively, the argument INTERACTIVE-CALL is t,
1401 and the file name is displayed in the echo area."
1402 (interactive (list (completing-read "Locate library: "
1403 'locate-file-completion
1404 (cons load-path (get-load-suffixes)))
1405 nil nil
1406 t))
1407 (let ((file (locate-file library
1408 (or path load-path)
1409 (append (unless nosuffix (get-load-suffixes))
1410 load-file-rep-suffixes))))
1411 (if interactive-call
1412 (if file
1413 (message "Library is file %s" (abbreviate-file-name file))
1414 (message "No library %s in search path" library)))
1415 file))
1416
1417 \f
1418 ;;;; Specifying things to do later.
1419
1420 (defmacro eval-at-startup (&rest body)
1421 "Make arrangements to evaluate BODY when Emacs starts up.
1422 If this is run after Emacs startup, evaluate BODY immediately.
1423 Always returns nil.
1424
1425 This works by adding a function to `before-init-hook'.
1426 That function's doc string says which file created it."
1427 `(progn
1428 (if command-line-processed
1429 (progn . ,body)
1430 (add-hook 'before-init-hook
1431 '(lambda () ,(concat "From " (or load-file-name "no file"))
1432 . ,body)
1433 t))
1434 nil))
1435
1436 (defun load-history-regexp (file)
1437 "Form a regexp to find FILE in `load-history'.
1438 FILE, a string, is described in the function `eval-after-load'."
1439 (if (file-name-absolute-p file)
1440 (setq file (file-truename file)))
1441 (concat (if (file-name-absolute-p file) "\\`" "\\(\\`\\|/\\)")
1442 (regexp-quote file)
1443 (if (file-name-extension file)
1444 ""
1445 ;; Note: regexp-opt can't be used here, since we need to call
1446 ;; this before Emacs has been fully started. 2006-05-21
1447 (concat "\\(" (mapconcat 'regexp-quote load-suffixes "\\|") "\\)?"))
1448 "\\(" (mapconcat 'regexp-quote jka-compr-load-suffixes "\\|")
1449 "\\)?\\'"))
1450
1451 (defun load-history-filename-element (file-regexp)
1452 "Get the first elt of `load-history' whose car matches FILE-REGEXP.
1453 Return nil if there isn't one."
1454 (let* ((loads load-history)
1455 (load-elt (and loads (car loads))))
1456 (save-match-data
1457 (while (and loads
1458 (or (null (car load-elt))
1459 (not (string-match file-regexp (car load-elt)))))
1460 (setq loads (cdr loads)
1461 load-elt (and loads (car loads)))))
1462 load-elt))
1463
1464 (defun eval-after-load (file form)
1465 "Arrange that, if FILE is ever loaded, FORM will be run at that time.
1466 If FILE is already loaded, evaluate FORM right now.
1467
1468 If a matching file is loaded again, FORM will be evaluated again.
1469
1470 If FILE is a string, it may be either an absolute or a relative file
1471 name, and may have an extension \(e.g. \".el\") or may lack one, and
1472 additionally may or may not have an extension denoting a compressed
1473 format \(e.g. \".gz\").
1474
1475 When FILE is absolute, this first converts it to a true name by chasing
1476 symbolic links. Only a file of this name \(see next paragraph regarding
1477 extensions) will trigger the evaluation of FORM. When FILE is relative,
1478 a file whose absolute true name ends in FILE will trigger evaluation.
1479
1480 When FILE lacks an extension, a file name with any extension will trigger
1481 evaluation. Otherwise, its extension must match FILE's. A further
1482 extension for a compressed format \(e.g. \".gz\") on FILE will not affect
1483 this name matching.
1484
1485 Alternatively, FILE can be a feature (i.e. a symbol), in which case FORM
1486 is evaluated whenever that feature is `provide'd.
1487
1488 Usually FILE is just a library name like \"font-lock\" or a feature name
1489 like 'font-lock.
1490
1491 This function makes or adds to an entry on `after-load-alist'."
1492 ;; Add this FORM into after-load-alist (regardless of whether we'll be
1493 ;; evaluating it now).
1494 (let* ((regexp-or-feature
1495 (if (stringp file) (load-history-regexp file) file))
1496 (elt (assoc regexp-or-feature after-load-alist)))
1497 (unless elt
1498 (setq elt (list regexp-or-feature))
1499 (push elt after-load-alist))
1500 ;; Add FORM to the element unless it's already there.
1501 (unless (member form (cdr elt))
1502 (nconc elt (list form)))
1503
1504 ;; Is there an already loaded file whose name (or `provide' name)
1505 ;; matches FILE?
1506 (if (if (stringp file)
1507 (load-history-filename-element regexp-or-feature)
1508 (featurep file))
1509 (eval form))))
1510
1511 (defun do-after-load-evaluation (abs-file)
1512 "Evaluate all `eval-after-load' forms, if any, for ABS-FILE.
1513 ABS-FILE, a string, should be the absolute true name of a file just loaded."
1514 (let ((after-load-elts after-load-alist)
1515 a-l-element file-elements file-element form)
1516 (while after-load-elts
1517 (setq a-l-element (car after-load-elts)
1518 after-load-elts (cdr after-load-elts))
1519 (when (and (stringp (car a-l-element))
1520 (string-match (car a-l-element) abs-file))
1521 (while (setq a-l-element (cdr a-l-element)) ; discard the file name
1522 (setq form (car a-l-element))
1523 (eval form))))))
1524
1525 (defun eval-next-after-load (file)
1526 "Read the following input sexp, and run it whenever FILE is loaded.
1527 This makes or adds to an entry on `after-load-alist'.
1528 FILE should be the name of a library, with no directory name."
1529 (eval-after-load file (read)))
1530 \f
1531 ;;;; Process stuff.
1532
1533 ;; open-network-stream is a wrapper around make-network-process.
1534
1535 (when (featurep 'make-network-process)
1536 (defun open-network-stream (name buffer host service)
1537 "Open a TCP connection for a service to a host.
1538 Returns a subprocess-object to represent the connection.
1539 Input and output work as for subprocesses; `delete-process' closes it.
1540
1541 Args are NAME BUFFER HOST SERVICE.
1542 NAME is name for process. It is modified if necessary to make it unique.
1543 BUFFER is the buffer (or buffer name) to associate with the process.
1544 Process output goes at end of that buffer, unless you specify
1545 an output stream or filter function to handle the output.
1546 BUFFER may be also nil, meaning that this process is not associated
1547 with any buffer.
1548 HOST is name of the host to connect to, or its IP address.
1549 SERVICE is name of the service desired, or an integer specifying
1550 a port number to connect to."
1551 (make-network-process :name name :buffer buffer
1552 :host host :service service)))
1553
1554 ;; compatibility
1555
1556 (make-obsolete 'process-kill-without-query
1557 "use `process-query-on-exit-flag' or `set-process-query-on-exit-flag'."
1558 "22.1")
1559 (defun process-kill-without-query (process &optional flag)
1560 "Say no query needed if PROCESS is running when Emacs is exited.
1561 Optional second argument if non-nil says to require a query.
1562 Value is t if a query was formerly required."
1563 (let ((old (process-query-on-exit-flag process)))
1564 (set-process-query-on-exit-flag process nil)
1565 old))
1566
1567 ;; process plist management
1568
1569 (defun process-get (process propname)
1570 "Return the value of PROCESS' PROPNAME property.
1571 This is the last value stored with `(process-put PROCESS PROPNAME VALUE)'."
1572 (plist-get (process-plist process) propname))
1573
1574 (defun process-put (process propname value)
1575 "Change PROCESS' PROPNAME property to VALUE.
1576 It can be retrieved with `(process-get PROCESS PROPNAME)'."
1577 (set-process-plist process
1578 (plist-put (process-plist process) propname value)))
1579
1580 \f
1581 ;;;; Input and display facilities.
1582
1583 (defvar read-quoted-char-radix 8
1584 "*Radix for \\[quoted-insert] and other uses of `read-quoted-char'.
1585 Legitimate radix values are 8, 10 and 16.")
1586
1587 (custom-declare-variable-early
1588 'read-quoted-char-radix 8
1589 "*Radix for \\[quoted-insert] and other uses of `read-quoted-char'.
1590 Legitimate radix values are 8, 10 and 16."
1591 :type '(choice (const 8) (const 10) (const 16))
1592 :group 'editing-basics)
1593
1594 (defun read-quoted-char (&optional prompt)
1595 "Like `read-char', but do not allow quitting.
1596 Also, if the first character read is an octal digit,
1597 we read any number of octal digits and return the
1598 specified character code. Any nondigit terminates the sequence.
1599 If the terminator is RET, it is discarded;
1600 any other terminator is used itself as input.
1601
1602 The optional argument PROMPT specifies a string to use to prompt the user.
1603 The variable `read-quoted-char-radix' controls which radix to use
1604 for numeric input."
1605 (let ((message-log-max nil) done (first t) (code 0) char translated)
1606 (while (not done)
1607 (let ((inhibit-quit first)
1608 ;; Don't let C-h get the help message--only help function keys.
1609 (help-char nil)
1610 (help-form
1611 "Type the special character you want to use,
1612 or the octal character code.
1613 RET terminates the character code and is discarded;
1614 any other non-digit terminates the character code and is then used as input."))
1615 (setq char (read-event (and prompt (format "%s-" prompt)) t))
1616 (if inhibit-quit (setq quit-flag nil)))
1617 ;; Translate TAB key into control-I ASCII character, and so on.
1618 ;; Note: `read-char' does it using the `ascii-character' property.
1619 ;; We could try and use read-key-sequence instead, but then C-q ESC
1620 ;; or C-q C-x might not return immediately since ESC or C-x might be
1621 ;; bound to some prefix in function-key-map or key-translation-map.
1622 (setq translated char)
1623 (let ((translation (lookup-key function-key-map (vector char))))
1624 (if (arrayp translation)
1625 (setq translated (aref translation 0))))
1626 (cond ((null translated))
1627 ((not (integerp translated))
1628 (setq unread-command-events (list char)
1629 done t))
1630 ((/= (logand translated ?\M-\^@) 0)
1631 ;; Turn a meta-character into a character with the 0200 bit set.
1632 (setq code (logior (logand translated (lognot ?\M-\^@)) 128)
1633 done t))
1634 ((and (<= ?0 translated) (< translated (+ ?0 (min 10 read-quoted-char-radix))))
1635 (setq code (+ (* code read-quoted-char-radix) (- translated ?0)))
1636 (and prompt (setq prompt (message "%s %c" prompt translated))))
1637 ((and (<= ?a (downcase translated))
1638 (< (downcase translated) (+ ?a -10 (min 36 read-quoted-char-radix))))
1639 (setq code (+ (* code read-quoted-char-radix)
1640 (+ 10 (- (downcase translated) ?a))))
1641 (and prompt (setq prompt (message "%s %c" prompt translated))))
1642 ((and (not first) (eq translated ?\C-m))
1643 (setq done t))
1644 ((not first)
1645 (setq unread-command-events (list char)
1646 done t))
1647 (t (setq code translated
1648 done t)))
1649 (setq first nil))
1650 code))
1651
1652 (defun read-passwd (prompt &optional confirm default)
1653 "Read a password, prompting with PROMPT, and return it.
1654 If optional CONFIRM is non-nil, read the password twice to make sure.
1655 Optional DEFAULT is a default password to use instead of empty input.
1656
1657 This function echoes `.' for each character that the user types.
1658 The user ends with RET, LFD, or ESC. DEL or C-h rubs out. C-u kills line.
1659 C-g quits; if `inhibit-quit' was non-nil around this function,
1660 then it returns nil if the user types C-g, but quit-flag remains set.
1661
1662 Once the caller uses the password, it can erase the password
1663 by doing (clear-string STRING)."
1664 (with-local-quit
1665 (if confirm
1666 (let (success)
1667 (while (not success)
1668 (let ((first (read-passwd prompt nil default))
1669 (second (read-passwd "Confirm password: " nil default)))
1670 (if (equal first second)
1671 (progn
1672 (and (arrayp second) (clear-string second))
1673 (setq success first))
1674 (and (arrayp first) (clear-string first))
1675 (and (arrayp second) (clear-string second))
1676 (message "Password not repeated accurately; please start over")
1677 (sit-for 1))))
1678 success)
1679 (let ((pass nil)
1680 ;; Copy it so that add-text-properties won't modify
1681 ;; the object that was passed in by the caller.
1682 (prompt (copy-sequence prompt))
1683 (c 0)
1684 (echo-keystrokes 0)
1685 (cursor-in-echo-area t)
1686 (message-log-max nil))
1687 (add-text-properties 0 (length prompt)
1688 minibuffer-prompt-properties prompt)
1689 (while (progn (message "%s%s"
1690 prompt
1691 (make-string (length pass) ?.))
1692 (setq c (read-char-exclusive nil t))
1693 (and (/= c ?\r) (/= c ?\n) (/= c ?\e)))
1694 (clear-this-command-keys)
1695 (if (= c ?\C-u)
1696 (progn
1697 (and (arrayp pass) (clear-string pass))
1698 (setq pass ""))
1699 (if (and (/= c ?\b) (/= c ?\177))
1700 (let* ((new-char (char-to-string c))
1701 (new-pass (concat pass new-char)))
1702 (and (arrayp pass) (clear-string pass))
1703 (clear-string new-char)
1704 (setq c ?\0)
1705 (setq pass new-pass))
1706 (if (> (length pass) 0)
1707 (let ((new-pass (substring pass 0 -1)))
1708 (and (arrayp pass) (clear-string pass))
1709 (setq pass new-pass))))))
1710 (message nil)
1711 (or pass default "")))))
1712
1713 ;; This should be used by `call-interactively' for `n' specs.
1714 (defun read-number (prompt &optional default)
1715 (let ((n nil))
1716 (when default
1717 (setq prompt
1718 (if (string-match "\\(\\):[ \t]*\\'" prompt)
1719 (replace-match (format " (default %s)" default) t t prompt 1)
1720 (replace-regexp-in-string "[ \t]*\\'"
1721 (format " (default %s) " default)
1722 prompt t t))))
1723 (while
1724 (progn
1725 (let ((str (read-from-minibuffer prompt nil nil nil nil
1726 (and default
1727 (number-to-string default)))))
1728 (setq n (cond
1729 ((zerop (length str)) default)
1730 ((stringp str) (read str)))))
1731 (unless (numberp n)
1732 (message "Please enter a number.")
1733 (sit-for 1)
1734 t)))
1735 n))
1736
1737 (defun sit-for (seconds &optional nodisp obsolete)
1738 "Perform redisplay, then wait for SECONDS seconds or until input is available.
1739 SECONDS may be a floating-point value.
1740 \(On operating systems that do not support waiting for fractions of a
1741 second, floating-point values are rounded down to the nearest integer.)
1742
1743 If optional arg NODISP is t, don't redisplay, just wait for input.
1744 Redisplay does not happen if input is available before it starts.
1745
1746 Value is t if waited the full time with no input arriving, and nil otherwise.
1747
1748 An obsolete, but still supported form is
1749 \(sit-for SECONDS &optional MILLISECONDS NODISP)
1750 where the optional arg MILLISECONDS specifies an additional wait period,
1751 in milliseconds; this was useful when Emacs was built without
1752 floating point support.
1753
1754 \(fn SECONDS &optional NODISP)"
1755 (when (or obsolete (numberp nodisp))
1756 (setq seconds (+ seconds (* 1e-3 nodisp)))
1757 (setq nodisp obsolete))
1758 (cond
1759 (noninteractive
1760 (sleep-for seconds)
1761 t)
1762 ((input-pending-p)
1763 nil)
1764 ((<= seconds 0)
1765 (or nodisp (redisplay)))
1766 (t
1767 (or nodisp (redisplay))
1768 (let ((read (read-event nil nil seconds)))
1769 (or (null read)
1770 (progn
1771 ;; If last command was a prefix arg, e.g. C-u, push this event onto
1772 ;; unread-command-events as (t . EVENT) so it will be added to
1773 ;; this-command-keys by read-key-sequence.
1774 (if (eq overriding-terminal-local-map universal-argument-map)
1775 (setq read (cons t read)))
1776 (push read unread-command-events)
1777 nil))))))
1778 \f
1779 ;;; Atomic change groups.
1780
1781 (defmacro atomic-change-group (&rest body)
1782 "Perform BODY as an atomic change group.
1783 This means that if BODY exits abnormally,
1784 all of its changes to the current buffer are undone.
1785 This works regardless of whether undo is enabled in the buffer.
1786
1787 This mechanism is transparent to ordinary use of undo;
1788 if undo is enabled in the buffer and BODY succeeds, the
1789 user can undo the change normally."
1790 (declare (indent 0) (debug t))
1791 (let ((handle (make-symbol "--change-group-handle--"))
1792 (success (make-symbol "--change-group-success--")))
1793 `(let ((,handle (prepare-change-group))
1794 (,success nil))
1795 (unwind-protect
1796 (progn
1797 ;; This is inside the unwind-protect because
1798 ;; it enables undo if that was disabled; we need
1799 ;; to make sure that it gets disabled again.
1800 (activate-change-group ,handle)
1801 ,@body
1802 (setq ,success t))
1803 ;; Either of these functions will disable undo
1804 ;; if it was disabled before.
1805 (if ,success
1806 (accept-change-group ,handle)
1807 (cancel-change-group ,handle))))))
1808
1809 (defun prepare-change-group (&optional buffer)
1810 "Return a handle for the current buffer's state, for a change group.
1811 If you specify BUFFER, make a handle for BUFFER's state instead.
1812
1813 Pass the handle to `activate-change-group' afterward to initiate
1814 the actual changes of the change group.
1815
1816 To finish the change group, call either `accept-change-group' or
1817 `cancel-change-group' passing the same handle as argument. Call
1818 `accept-change-group' to accept the changes in the group as final;
1819 call `cancel-change-group' to undo them all. You should use
1820 `unwind-protect' to make sure the group is always finished. The call
1821 to `activate-change-group' should be inside the `unwind-protect'.
1822 Once you finish the group, don't use the handle again--don't try to
1823 finish the same group twice. For a simple example of correct use, see
1824 the source code of `atomic-change-group'.
1825
1826 The handle records only the specified buffer. To make a multibuffer
1827 change group, call this function once for each buffer you want to
1828 cover, then use `nconc' to combine the returned values, like this:
1829
1830 (nconc (prepare-change-group buffer-1)
1831 (prepare-change-group buffer-2))
1832
1833 You can then activate that multibuffer change group with a single
1834 call to `activate-change-group' and finish it with a single call
1835 to `accept-change-group' or `cancel-change-group'."
1836
1837 (if buffer
1838 (list (cons buffer (with-current-buffer buffer buffer-undo-list)))
1839 (list (cons (current-buffer) buffer-undo-list))))
1840
1841 (defun activate-change-group (handle)
1842 "Activate a change group made with `prepare-change-group' (which see)."
1843 (dolist (elt handle)
1844 (with-current-buffer (car elt)
1845 (if (eq buffer-undo-list t)
1846 (setq buffer-undo-list nil)))))
1847
1848 (defun accept-change-group (handle)
1849 "Finish a change group made with `prepare-change-group' (which see).
1850 This finishes the change group by accepting its changes as final."
1851 (dolist (elt handle)
1852 (with-current-buffer (car elt)
1853 (if (eq elt t)
1854 (setq buffer-undo-list t)))))
1855
1856 (defun cancel-change-group (handle)
1857 "Finish a change group made with `prepare-change-group' (which see).
1858 This finishes the change group by reverting all of its changes."
1859 (dolist (elt handle)
1860 (with-current-buffer (car elt)
1861 (setq elt (cdr elt))
1862 (let ((old-car
1863 (if (consp elt) (car elt)))
1864 (old-cdr
1865 (if (consp elt) (cdr elt))))
1866 ;; Temporarily truncate the undo log at ELT.
1867 (when (consp elt)
1868 (setcar elt nil) (setcdr elt nil))
1869 (unless (eq last-command 'undo) (undo-start))
1870 ;; Make sure there's no confusion.
1871 (when (and (consp elt) (not (eq elt (last pending-undo-list))))
1872 (error "Undoing to some unrelated state"))
1873 ;; Undo it all.
1874 (while (listp pending-undo-list) (undo-more 1))
1875 ;; Reset the modified cons cell ELT to its original content.
1876 (when (consp elt)
1877 (setcar elt old-car)
1878 (setcdr elt old-cdr))
1879 ;; Revert the undo info to what it was when we grabbed the state.
1880 (setq buffer-undo-list elt)))))
1881 \f
1882 ;;;; Display-related functions.
1883
1884 ;; For compatibility.
1885 (defalias 'redraw-modeline 'force-mode-line-update)
1886
1887 (defun force-mode-line-update (&optional all)
1888 "Force redisplay of the current buffer's mode line and header line.
1889 With optional non-nil ALL, force redisplay of all mode lines and
1890 header lines. This function also forces recomputation of the
1891 menu bar menus and the frame title."
1892 (if all (save-excursion (set-buffer (other-buffer))))
1893 (set-buffer-modified-p (buffer-modified-p)))
1894
1895 (defun momentary-string-display (string pos &optional exit-char message)
1896 "Momentarily display STRING in the buffer at POS.
1897 Display remains until next event is input.
1898 If POS is a marker, only its position is used; its buffer is ignored.
1899 Optional third arg EXIT-CHAR can be a character, event or event
1900 description list. EXIT-CHAR defaults to SPC. If the input is
1901 EXIT-CHAR it is swallowed; otherwise it is then available as
1902 input (as a command if nothing else).
1903 Display MESSAGE (optional fourth arg) in the echo area.
1904 If MESSAGE is nil, instructions to type EXIT-CHAR are displayed there."
1905 (or exit-char (setq exit-char ?\s))
1906 (let ((momentary-overlay (make-overlay pos pos nil t)))
1907 (overlay-put momentary-overlay 'before-string
1908 (propertize string 'face 'momentary))
1909 (unwind-protect
1910 (progn
1911 ;; If the message end is off screen, recenter now.
1912 (if (< (window-end nil t) (+ pos (length string)))
1913 (recenter (/ (window-height) 2)))
1914 ;; If that pushed message start off the screen,
1915 ;; scroll to start it at the top of the screen.
1916 (save-excursion
1917 (move-to-window-line 0)
1918 (if (> (point) pos)
1919 (goto-char pos)
1920 (recenter 0)))
1921 (message (or message "Type %s to continue editing.")
1922 (single-key-description exit-char))
1923 (let (char)
1924 (if (integerp exit-char)
1925 (condition-case nil
1926 (progn
1927 (setq char (read-char))
1928 (or (eq char exit-char)
1929 (setq unread-command-events (list char))))
1930 (error
1931 ;; `exit-char' is a character, hence it differs
1932 ;; from char, which is an event.
1933 (setq unread-command-events (list char))))
1934 ;; `exit-char' can be an event, or an event description
1935 ;; list.
1936 (setq char (read-event))
1937 (or (eq char exit-char)
1938 (eq char (event-convert-list exit-char))
1939 (setq unread-command-events (list char))))))
1940 (delete-overlay momentary-overlay))))
1941
1942 \f
1943 ;;;; Overlay operations
1944
1945 (defun copy-overlay (o)
1946 "Return a copy of overlay O."
1947 (let ((o1 (make-overlay (overlay-start o) (overlay-end o)
1948 ;; FIXME: there's no easy way to find the
1949 ;; insertion-type of the two markers.
1950 (overlay-buffer o)))
1951 (props (overlay-properties o)))
1952 (while props
1953 (overlay-put o1 (pop props) (pop props)))
1954 o1))
1955
1956 (defun remove-overlays (&optional beg end name val)
1957 "Clear BEG and END of overlays whose property NAME has value VAL.
1958 Overlays might be moved and/or split.
1959 BEG and END default respectively to the beginning and end of buffer."
1960 ;; This speeds up the loops over overlays.
1961 (unless beg (setq beg (point-min)))
1962 (unless end (setq end (point-max)))
1963 (overlay-recenter end)
1964 (if (< end beg)
1965 (setq beg (prog1 end (setq end beg))))
1966 (save-excursion
1967 (dolist (o (overlays-in beg end))
1968 (when (eq (overlay-get o name) val)
1969 ;; Either push this overlay outside beg...end
1970 ;; or split it to exclude beg...end
1971 ;; or delete it entirely (if it is contained in beg...end).
1972 (if (< (overlay-start o) beg)
1973 (if (> (overlay-end o) end)
1974 (progn
1975 (move-overlay (copy-overlay o)
1976 (overlay-start o) beg)
1977 (move-overlay o end (overlay-end o)))
1978 (move-overlay o (overlay-start o) beg))
1979 (if (> (overlay-end o) end)
1980 (move-overlay o end (overlay-end o))
1981 (delete-overlay o)))))))
1982 \f
1983 ;;;; Miscellanea.
1984
1985 (defvar suspend-hook nil
1986 "Normal hook run by `suspend-emacs', before suspending.")
1987
1988 (defvar suspend-resume-hook nil
1989 "Normal hook run by `suspend-emacs', after Emacs is continued.")
1990
1991 (defvar temp-buffer-show-hook nil
1992 "Normal hook run by `with-output-to-temp-buffer' after displaying the buffer.
1993 When the hook runs, the temporary buffer is current, and the window it
1994 was displayed in is selected. This hook is normally set up with a
1995 function to make the buffer read only, and find function names and
1996 variable names in it, provided the major mode is still Help mode.")
1997
1998 (defvar temp-buffer-setup-hook nil
1999 "Normal hook run by `with-output-to-temp-buffer' at the start.
2000 When the hook runs, the temporary buffer is current.
2001 This hook is normally set up with a function to put the buffer in Help
2002 mode.")
2003
2004 ;; Avoid compiler warnings about this variable,
2005 ;; which has a special meaning on certain system types.
2006 (defvar buffer-file-type nil
2007 "Non-nil if the visited file is a binary file.
2008 This variable is meaningful on MS-DOG and Windows NT.
2009 On those systems, it is automatically local in every buffer.
2010 On other systems, this variable is normally always nil.")
2011
2012 ;; The `assert' macro from the cl package signals
2013 ;; `cl-assertion-failed' at runtime so always define it.
2014 (put 'cl-assertion-failed 'error-conditions '(error))
2015 (put 'cl-assertion-failed 'error-message "Assertion failed")
2016
2017 \f
2018 ;;;; Misc. useful functions.
2019
2020 (defun find-tag-default ()
2021 "Determine default tag to search for, based on text at point.
2022 If there is no plausible default, return nil."
2023 (save-excursion
2024 (while (looking-at "\\sw\\|\\s_")
2025 (forward-char 1))
2026 (if (or (re-search-backward "\\sw\\|\\s_"
2027 (save-excursion (beginning-of-line) (point))
2028 t)
2029 (re-search-forward "\\(\\sw\\|\\s_\\)+"
2030 (save-excursion (end-of-line) (point))
2031 t))
2032 (progn
2033 (goto-char (match-end 0))
2034 (condition-case nil
2035 (buffer-substring-no-properties
2036 (point)
2037 (progn (forward-sexp -1)
2038 (while (looking-at "\\s'")
2039 (forward-char 1))
2040 (point)))
2041 (error nil)))
2042 nil)))
2043
2044 (defun play-sound (sound)
2045 "SOUND is a list of the form `(sound KEYWORD VALUE...)'.
2046 The following keywords are recognized:
2047
2048 :file FILE - read sound data from FILE. If FILE isn't an
2049 absolute file name, it is searched in `data-directory'.
2050
2051 :data DATA - read sound data from string DATA.
2052
2053 Exactly one of :file or :data must be present.
2054
2055 :volume VOL - set volume to VOL. VOL must an integer in the
2056 range 0..100 or a float in the range 0..1.0. If not specified,
2057 don't change the volume setting of the sound device.
2058
2059 :device DEVICE - play sound on DEVICE. If not specified,
2060 a system-dependent default device name is used."
2061 (if (fboundp 'play-sound-internal)
2062 (play-sound-internal sound)
2063 (error "This Emacs binary lacks sound support")))
2064
2065 (defun shell-quote-argument (argument)
2066 "Quote an argument for passing as argument to an inferior shell."
2067 (if (or (eq system-type 'ms-dos)
2068 (and (eq system-type 'windows-nt) (w32-shell-dos-semantics)))
2069 ;; Quote using double quotes, but escape any existing quotes in
2070 ;; the argument with backslashes.
2071 (let ((result "")
2072 (start 0)
2073 end)
2074 (if (or (null (string-match "[^\"]" argument))
2075 (< (match-end 0) (length argument)))
2076 (while (string-match "[\"]" argument start)
2077 (setq end (match-beginning 0)
2078 result (concat result (substring argument start end)
2079 "\\" (substring argument end (1+ end)))
2080 start (1+ end))))
2081 (concat "\"" result (substring argument start) "\""))
2082 (if (equal argument "")
2083 "''"
2084 ;; Quote everything except POSIX filename characters.
2085 ;; This should be safe enough even for really weird shells.
2086 (let ((result "") (start 0) end)
2087 (while (string-match "[^-0-9a-zA-Z_./]" argument start)
2088 (setq end (match-beginning 0)
2089 result (concat result (substring argument start end)
2090 "\\" (substring argument end (1+ end)))
2091 start (1+ end)))
2092 (concat result (substring argument start))))))
2093
2094 (defun string-or-null-p (object)
2095 "Return t if OBJECT is a string or nil.
2096 Otherwise, return nil."
2097 (or (stringp object) (null object)))
2098
2099 (defun booleanp (object)
2100 "Return non-nil if OBJECT is one of the two canonical boolean values: t or nil."
2101 (memq object '(nil t)))
2102
2103 (defun field-at-pos (pos)
2104 "Return the field at position POS, taking stickiness etc into account"
2105 (let ((raw-field (get-char-property (field-beginning pos) 'field)))
2106 (if (eq raw-field 'boundary)
2107 (get-char-property (1- (field-end pos)) 'field)
2108 raw-field)))
2109
2110 \f
2111 ;;;; Support for yanking and text properties.
2112
2113 (defvar yank-excluded-properties)
2114
2115 (defun remove-yank-excluded-properties (start end)
2116 "Remove `yank-excluded-properties' between START and END positions.
2117 Replaces `category' properties with their defined properties."
2118 (let ((inhibit-read-only t))
2119 ;; Replace any `category' property with the properties it stands for.
2120 (unless (memq yank-excluded-properties '(t nil))
2121 (save-excursion
2122 (goto-char start)
2123 (while (< (point) end)
2124 (let ((cat (get-text-property (point) 'category))
2125 run-end)
2126 (setq run-end
2127 (next-single-property-change (point) 'category nil end))
2128 (when cat
2129 (let (run-end2 original)
2130 (remove-list-of-text-properties (point) run-end '(category))
2131 (while (< (point) run-end)
2132 (setq run-end2 (next-property-change (point) nil run-end))
2133 (setq original (text-properties-at (point)))
2134 (set-text-properties (point) run-end2 (symbol-plist cat))
2135 (add-text-properties (point) run-end2 original)
2136 (goto-char run-end2))))
2137 (goto-char run-end)))))
2138 (if (eq yank-excluded-properties t)
2139 (set-text-properties start end nil)
2140 (remove-list-of-text-properties start end yank-excluded-properties))))
2141
2142 (defvar yank-undo-function)
2143
2144 (defun insert-for-yank (string)
2145 "Calls `insert-for-yank-1' repetitively for each `yank-handler' segment.
2146
2147 See `insert-for-yank-1' for more details."
2148 (let (to)
2149 (while (setq to (next-single-property-change 0 'yank-handler string))
2150 (insert-for-yank-1 (substring string 0 to))
2151 (setq string (substring string to))))
2152 (insert-for-yank-1 string))
2153
2154 (defun insert-for-yank-1 (string)
2155 "Insert STRING at point, stripping some text properties.
2156
2157 Strip text properties from the inserted text according to
2158 `yank-excluded-properties'. Otherwise just like (insert STRING).
2159
2160 If STRING has a non-nil `yank-handler' property on the first character,
2161 the normal insert behavior is modified in various ways. The value of
2162 the yank-handler property must be a list with one to four elements
2163 with the following format: (FUNCTION PARAM NOEXCLUDE UNDO).
2164 When FUNCTION is present and non-nil, it is called instead of `insert'
2165 to insert the string. FUNCTION takes one argument--the object to insert.
2166 If PARAM is present and non-nil, it replaces STRING as the object
2167 passed to FUNCTION (or `insert'); for example, if FUNCTION is
2168 `yank-rectangle', PARAM may be a list of strings to insert as a
2169 rectangle.
2170 If NOEXCLUDE is present and non-nil, the normal removal of the
2171 yank-excluded-properties is not performed; instead FUNCTION is
2172 responsible for removing those properties. This may be necessary
2173 if FUNCTION adjusts point before or after inserting the object.
2174 If UNDO is present and non-nil, it is a function that will be called
2175 by `yank-pop' to undo the insertion of the current object. It is
2176 called with two arguments, the start and end of the current region.
2177 FUNCTION may set `yank-undo-function' to override the UNDO value."
2178 (let* ((handler (and (stringp string)
2179 (get-text-property 0 'yank-handler string)))
2180 (param (or (nth 1 handler) string))
2181 (opoint (point))
2182 (inhibit-read-only inhibit-read-only)
2183 end)
2184
2185 (setq yank-undo-function t)
2186 (if (nth 0 handler) ;; FUNCTION
2187 (funcall (car handler) param)
2188 (insert param))
2189 (setq end (point))
2190
2191 ;; Prevent read-only properties from interfering with the
2192 ;; following text property changes.
2193 (setq inhibit-read-only t)
2194
2195 ;; What should we do with `font-lock-face' properties?
2196 (if font-lock-defaults
2197 ;; No, just wipe them.
2198 (remove-list-of-text-properties opoint end '(font-lock-face))
2199 ;; Convert them to `face'.
2200 (save-excursion
2201 (goto-char opoint)
2202 (while (< (point) end)
2203 (let ((face (get-text-property (point) 'font-lock-face))
2204 run-end)
2205 (setq run-end
2206 (next-single-property-change (point) 'font-lock-face nil end))
2207 (when face
2208 (remove-text-properties (point) run-end '(font-lock-face nil))
2209 (put-text-property (point) run-end 'face face))
2210 (goto-char run-end)))))
2211
2212 (unless (nth 2 handler) ;; NOEXCLUDE
2213 (remove-yank-excluded-properties opoint (point)))
2214
2215 ;; If last inserted char has properties, mark them as rear-nonsticky.
2216 (if (and (> end opoint)
2217 (text-properties-at (1- end)))
2218 (put-text-property (1- end) end 'rear-nonsticky t))
2219
2220 (if (eq yank-undo-function t) ;; not set by FUNCTION
2221 (setq yank-undo-function (nth 3 handler))) ;; UNDO
2222 (if (nth 4 handler) ;; COMMAND
2223 (setq this-command (nth 4 handler)))))
2224
2225 (defun insert-buffer-substring-no-properties (buffer &optional start end)
2226 "Insert before point a substring of BUFFER, without text properties.
2227 BUFFER may be a buffer or a buffer name.
2228 Arguments START and END are character positions specifying the substring.
2229 They default to the values of (point-min) and (point-max) in BUFFER."
2230 (let ((opoint (point)))
2231 (insert-buffer-substring buffer start end)
2232 (let ((inhibit-read-only t))
2233 (set-text-properties opoint (point) nil))))
2234
2235 (defun insert-buffer-substring-as-yank (buffer &optional start end)
2236 "Insert before point a part of BUFFER, stripping some text properties.
2237 BUFFER may be a buffer or a buffer name.
2238 Arguments START and END are character positions specifying the substring.
2239 They default to the values of (point-min) and (point-max) in BUFFER.
2240 Strip text properties from the inserted text according to
2241 `yank-excluded-properties'."
2242 ;; Since the buffer text should not normally have yank-handler properties,
2243 ;; there is no need to handle them here.
2244 (let ((opoint (point)))
2245 (insert-buffer-substring buffer start end)
2246 (remove-yank-excluded-properties opoint (point))))
2247
2248 \f
2249 ;;;; Synchronous shell commands.
2250
2251 (defun start-process-shell-command (name buffer &rest args)
2252 "Start a program in a subprocess. Return the process object for it.
2253 NAME is name for process. It is modified if necessary to make it unique.
2254 BUFFER is the buffer (or buffer name) to associate with the process.
2255 Process output goes at end of that buffer, unless you specify
2256 an output stream or filter function to handle the output.
2257 BUFFER may be also nil, meaning that this process is not associated
2258 with any buffer
2259 COMMAND is the name of a shell command.
2260 Remaining arguments are the arguments for the command; they are all
2261 spliced together with blanks separating between each two of them, before
2262 passing the command to the shell.
2263 Wildcards and redirection are handled as usual in the shell.
2264
2265 \(fn NAME BUFFER COMMAND &rest COMMAND-ARGS)"
2266 (cond
2267 ((eq system-type 'vax-vms)
2268 (apply 'start-process name buffer args))
2269 ;; We used to use `exec' to replace the shell with the command,
2270 ;; but that failed to handle (...) and semicolon, etc.
2271 (t
2272 (start-process name buffer shell-file-name shell-command-switch
2273 (mapconcat 'identity args " ")))))
2274
2275 (defun call-process-shell-command (command &optional infile buffer display
2276 &rest args)
2277 "Execute the shell command COMMAND synchronously in separate process.
2278 The remaining arguments are optional.
2279 The program's input comes from file INFILE (nil means `/dev/null').
2280 Insert output in BUFFER before point; t means current buffer;
2281 nil for BUFFER means discard it; 0 means discard and don't wait.
2282 BUFFER can also have the form (REAL-BUFFER STDERR-FILE); in that case,
2283 REAL-BUFFER says what to do with standard output, as above,
2284 while STDERR-FILE says what to do with standard error in the child.
2285 STDERR-FILE may be nil (discard standard error output),
2286 t (mix it with ordinary output), or a file name string.
2287
2288 Fourth arg DISPLAY non-nil means redisplay buffer as output is inserted.
2289 Remaining arguments are strings passed as additional arguments for COMMAND.
2290 Wildcards and redirection are handled as usual in the shell.
2291
2292 If BUFFER is 0, `call-process-shell-command' returns immediately with value nil.
2293 Otherwise it waits for COMMAND to terminate and returns a numeric exit
2294 status or a signal description string.
2295 If you quit, the process is killed with SIGINT, or SIGKILL if you quit again."
2296 (cond
2297 ((eq system-type 'vax-vms)
2298 (apply 'call-process command infile buffer display args))
2299 ;; We used to use `exec' to replace the shell with the command,
2300 ;; but that failed to handle (...) and semicolon, etc.
2301 (t
2302 (call-process shell-file-name
2303 infile buffer display
2304 shell-command-switch
2305 (mapconcat 'identity (cons command args) " ")))))
2306 \f
2307 ;;;; Lisp macros to do various things temporarily.
2308
2309 (defmacro with-current-buffer (buffer &rest body)
2310 "Execute the forms in BODY with BUFFER temporarily current.
2311 BUFFER can be a buffer or a buffer name.
2312 The value returned is the value of the last form in BODY.
2313 See also `with-temp-buffer'."
2314 (declare (indent 1) (debug t))
2315 `(save-current-buffer
2316 (set-buffer ,buffer)
2317 ,@body))
2318
2319 (defmacro with-selected-window (window &rest body)
2320 "Execute the forms in BODY with WINDOW as the selected window.
2321 The value returned is the value of the last form in BODY.
2322
2323 This macro saves and restores the current buffer, since otherwise
2324 its normal operation could potentially make a different
2325 buffer current. It does not alter the buffer list ordering.
2326
2327 This macro saves and restores the selected window, as well as
2328 the selected window in each frame. If the previously selected
2329 window of some frame is no longer live at the end of BODY, that
2330 frame's selected window is left alone. If the selected window is
2331 no longer live, then whatever window is selected at the end of
2332 BODY remains selected.
2333 See also `with-temp-buffer'."
2334 (declare (indent 1) (debug t))
2335 ;; Most of this code is a copy of save-selected-window.
2336 `(let ((save-selected-window-window (selected-window))
2337 ;; It is necessary to save all of these, because calling
2338 ;; select-window changes frame-selected-window for whatever
2339 ;; frame that window is in.
2340 (save-selected-window-alist
2341 (mapcar (lambda (frame) (list frame (frame-selected-window frame)))
2342 (frame-list))))
2343 (save-current-buffer
2344 (unwind-protect
2345 (progn (select-window ,window 'norecord)
2346 ,@body)
2347 (dolist (elt save-selected-window-alist)
2348 (and (frame-live-p (car elt))
2349 (window-live-p (cadr elt))
2350 (set-frame-selected-window (car elt) (cadr elt))))
2351 (if (window-live-p save-selected-window-window)
2352 (select-window save-selected-window-window 'norecord))))))
2353
2354 (defmacro with-temp-file (file &rest body)
2355 "Create a new buffer, evaluate BODY there, and write the buffer to FILE.
2356 The value returned is the value of the last form in BODY.
2357 See also `with-temp-buffer'."
2358 (declare (debug t))
2359 (let ((temp-file (make-symbol "temp-file"))
2360 (temp-buffer (make-symbol "temp-buffer")))
2361 `(let ((,temp-file ,file)
2362 (,temp-buffer
2363 (get-buffer-create (generate-new-buffer-name " *temp file*"))))
2364 (unwind-protect
2365 (prog1
2366 (with-current-buffer ,temp-buffer
2367 ,@body)
2368 (with-current-buffer ,temp-buffer
2369 (widen)
2370 (write-region (point-min) (point-max) ,temp-file nil 0)))
2371 (and (buffer-name ,temp-buffer)
2372 (kill-buffer ,temp-buffer))))))
2373
2374 (defmacro with-temp-message (message &rest body)
2375 "Display MESSAGE temporarily if non-nil while BODY is evaluated.
2376 The original message is restored to the echo area after BODY has finished.
2377 The value returned is the value of the last form in BODY.
2378 MESSAGE is written to the message log buffer if `message-log-max' is non-nil.
2379 If MESSAGE is nil, the echo area and message log buffer are unchanged.
2380 Use a MESSAGE of \"\" to temporarily clear the echo area."
2381 (declare (debug t))
2382 (let ((current-message (make-symbol "current-message"))
2383 (temp-message (make-symbol "with-temp-message")))
2384 `(let ((,temp-message ,message)
2385 (,current-message))
2386 (unwind-protect
2387 (progn
2388 (when ,temp-message
2389 (setq ,current-message (current-message))
2390 (message "%s" ,temp-message))
2391 ,@body)
2392 (and ,temp-message
2393 (if ,current-message
2394 (message "%s" ,current-message)
2395 (message nil)))))))
2396
2397 (defmacro with-temp-buffer (&rest body)
2398 "Create a temporary buffer, and evaluate BODY there like `progn'.
2399 See also `with-temp-file' and `with-output-to-string'."
2400 (declare (indent 0) (debug t))
2401 (let ((temp-buffer (make-symbol "temp-buffer")))
2402 `(let ((,temp-buffer (generate-new-buffer " *temp*")))
2403 (unwind-protect
2404 (with-current-buffer ,temp-buffer
2405 ,@body)
2406 (and (buffer-name ,temp-buffer)
2407 (kill-buffer ,temp-buffer))))))
2408
2409 (defmacro with-output-to-string (&rest body)
2410 "Execute BODY, return the text it sent to `standard-output', as a string."
2411 (declare (indent 0) (debug t))
2412 `(let ((standard-output
2413 (get-buffer-create (generate-new-buffer-name " *string-output*"))))
2414 (let ((standard-output standard-output))
2415 ,@body)
2416 (with-current-buffer standard-output
2417 (prog1
2418 (buffer-string)
2419 (kill-buffer nil)))))
2420
2421 (defmacro with-local-quit (&rest body)
2422 "Execute BODY, allowing quits to terminate BODY but not escape further.
2423 When a quit terminates BODY, `with-local-quit' returns nil but
2424 requests another quit. That quit will be processed as soon as quitting
2425 is allowed once again. (Immediately, if `inhibit-quit' is nil.)"
2426 (declare (debug t) (indent 0))
2427 `(condition-case nil
2428 (let ((inhibit-quit nil))
2429 ,@body)
2430 (quit (setq quit-flag t)
2431 ;; This call is to give a chance to handle quit-flag
2432 ;; in case inhibit-quit is nil.
2433 ;; Without this, it will not be handled until the next function
2434 ;; call, and that might allow it to exit thru a condition-case
2435 ;; that intends to handle the quit signal next time.
2436 (eval '(ignore nil)))))
2437
2438 (defmacro while-no-input (&rest body)
2439 "Execute BODY only as long as there's no pending input.
2440 If input arrives, that ends the execution of BODY,
2441 and `while-no-input' returns t. Quitting makes it return nil.
2442 If BODY finishes, `while-no-input' returns whatever value BODY produced."
2443 (declare (debug t) (indent 0))
2444 (let ((catch-sym (make-symbol "input")))
2445 `(with-local-quit
2446 (catch ',catch-sym
2447 (let ((throw-on-input ',catch-sym))
2448 (or (input-pending-p)
2449 ,@body))))))
2450
2451 (defmacro combine-after-change-calls (&rest body)
2452 "Execute BODY, but don't call the after-change functions till the end.
2453 If BODY makes changes in the buffer, they are recorded
2454 and the functions on `after-change-functions' are called several times
2455 when BODY is finished.
2456 The return value is the value of the last form in BODY.
2457
2458 If `before-change-functions' is non-nil, then calls to the after-change
2459 functions can't be deferred, so in that case this macro has no effect.
2460
2461 Do not alter `after-change-functions' or `before-change-functions'
2462 in BODY."
2463 (declare (indent 0) (debug t))
2464 `(unwind-protect
2465 (let ((combine-after-change-calls t))
2466 . ,body)
2467 (combine-after-change-execute)))
2468 \f
2469 ;;;; Constructing completion tables.
2470
2471 (defmacro dynamic-completion-table (fun)
2472 "Use function FUN as a dynamic completion table.
2473 FUN is called with one argument, the string for which completion is required,
2474 and it should return an alist containing all the intended possible
2475 completions. This alist may be a full list of possible completions so that FUN
2476 can ignore the value of its argument. If completion is performed in the
2477 minibuffer, FUN will be called in the buffer from which the minibuffer was
2478 entered.
2479
2480 The result of the `dynamic-completion-table' form is a function
2481 that can be used as the ALIST argument to `try-completion' and
2482 `all-completion'. See Info node `(elisp)Programmed Completion'."
2483 (declare (debug (lambda-expr)))
2484 (let ((win (make-symbol "window"))
2485 (string (make-symbol "string"))
2486 (predicate (make-symbol "predicate"))
2487 (mode (make-symbol "mode")))
2488 `(lambda (,string ,predicate ,mode)
2489 (with-current-buffer (let ((,win (minibuffer-selected-window)))
2490 (if (window-live-p ,win) (window-buffer ,win)
2491 (current-buffer)))
2492 (cond
2493 ((eq ,mode t) (all-completions ,string (,fun ,string) ,predicate))
2494 ((not ,mode) (try-completion ,string (,fun ,string) ,predicate))
2495 (t (test-completion ,string (,fun ,string) ,predicate)))))))
2496
2497 (defmacro lazy-completion-table (var fun)
2498 ;; We used to have `&rest args' where `args' were evaluated late (at the
2499 ;; time of the call to `fun'), which was counter intuitive. But to get
2500 ;; them to be evaluated early, we have to either use lexical-let (which is
2501 ;; not available in subr.el) or use `(lambda (,str) ...) which prevents the use
2502 ;; of lexical-let in the callers.
2503 ;; So we just removed the argument. Callers can then simply use either of:
2504 ;; (lazy-completion-table var (lambda () (fun x y)))
2505 ;; or
2506 ;; (lazy-completion-table var `(lambda () (fun ',x ',y)))
2507 ;; or
2508 ;; (lexical-let ((x x)) ((y y))
2509 ;; (lazy-completion-table var (lambda () (fun x y))))
2510 ;; depending on the behavior they want.
2511 "Initialize variable VAR as a lazy completion table.
2512 If the completion table VAR is used for the first time (e.g., by passing VAR
2513 as an argument to `try-completion'), the function FUN is called with no
2514 arguments. FUN must return the completion table that will be stored in VAR.
2515 If completion is requested in the minibuffer, FUN will be called in the buffer
2516 from which the minibuffer was entered. The return value of
2517 `lazy-completion-table' must be used to initialize the value of VAR.
2518
2519 You should give VAR a non-nil `risky-local-variable' property."
2520 (declare (debug (symbol lambda-expr)))
2521 (let ((str (make-symbol "string")))
2522 `(dynamic-completion-table
2523 (lambda (,str)
2524 (when (functionp ,var)
2525 (setq ,var (,fun)))
2526 ,var))))
2527
2528 (defmacro complete-in-turn (a b)
2529 "Create a completion table that first tries completion in A and then in B.
2530 A and B should not be costly (or side-effecting) expressions."
2531 (declare (debug (def-form def-form)))
2532 `(lambda (string predicate mode)
2533 (cond
2534 ((eq mode t)
2535 (or (all-completions string ,a predicate)
2536 (all-completions string ,b predicate)))
2537 ((eq mode nil)
2538 (or (try-completion string ,a predicate)
2539 (try-completion string ,b predicate)))
2540 (t
2541 (or (test-completion string ,a predicate)
2542 (test-completion string ,b predicate))))))
2543 \f
2544 ;;; Matching and match data.
2545
2546 (defvar save-match-data-internal)
2547
2548 ;; We use save-match-data-internal as the local variable because
2549 ;; that works ok in practice (people should not use that variable elsewhere).
2550 ;; We used to use an uninterned symbol; the compiler handles that properly
2551 ;; now, but it generates slower code.
2552 (defmacro save-match-data (&rest body)
2553 "Execute the BODY forms, restoring the global value of the match data.
2554 The value returned is the value of the last form in BODY."
2555 ;; It is better not to use backquote here,
2556 ;; because that makes a bootstrapping problem
2557 ;; if you need to recompile all the Lisp files using interpreted code.
2558 (declare (indent 0) (debug t))
2559 (list 'let
2560 '((save-match-data-internal (match-data)))
2561 (list 'unwind-protect
2562 (cons 'progn body)
2563 ;; It is safe to free (evaporate) markers immediately here,
2564 ;; as Lisp programs should not copy from save-match-data-internal.
2565 '(set-match-data save-match-data-internal 'evaporate))))
2566
2567 (defun match-string (num &optional string)
2568 "Return string of text matched by last search.
2569 NUM specifies which parenthesized expression in the last regexp.
2570 Value is nil if NUMth pair didn't match, or there were less than NUM pairs.
2571 Zero means the entire text matched by the whole regexp or whole string.
2572 STRING should be given if the last search was by `string-match' on STRING."
2573 (if (match-beginning num)
2574 (if string
2575 (substring string (match-beginning num) (match-end num))
2576 (buffer-substring (match-beginning num) (match-end num)))))
2577
2578 (defun match-string-no-properties (num &optional string)
2579 "Return string of text matched by last search, without text properties.
2580 NUM specifies which parenthesized expression in the last regexp.
2581 Value is nil if NUMth pair didn't match, or there were less than NUM pairs.
2582 Zero means the entire text matched by the whole regexp or whole string.
2583 STRING should be given if the last search was by `string-match' on STRING."
2584 (if (match-beginning num)
2585 (if string
2586 (substring-no-properties string (match-beginning num)
2587 (match-end num))
2588 (buffer-substring-no-properties (match-beginning num)
2589 (match-end num)))))
2590
2591 (defun looking-back (regexp &optional limit greedy)
2592 "Return non-nil if text before point matches regular expression REGEXP.
2593 Like `looking-at' except matches before point, and is slower.
2594 LIMIT if non-nil speeds up the search by specifying a minimum
2595 starting position, to avoid checking matches that would start
2596 before LIMIT.
2597
2598 If GREEDY is non-nil, extend the match backwards as far as possible,
2599 stopping when a single additional previous character cannot be part
2600 of a match for REGEXP."
2601 (let ((start (point))
2602 (pos
2603 (save-excursion
2604 (and (re-search-backward (concat "\\(?:" regexp "\\)\\=") limit t)
2605 (point)))))
2606 (if (and greedy pos)
2607 (save-restriction
2608 (narrow-to-region (point-min) start)
2609 (while (and (> pos (point-min))
2610 (save-excursion
2611 (goto-char pos)
2612 (backward-char 1)
2613 (looking-at (concat "\\(?:" regexp "\\)\\'"))))
2614 (setq pos (1- pos)))
2615 (save-excursion
2616 (goto-char pos)
2617 (looking-at (concat "\\(?:" regexp "\\)\\'")))))
2618 (not (null pos))))
2619
2620 (defun subregexp-context-p (regexp pos &optional start)
2621 "Return non-nil if POS is in a normal subregexp context in REGEXP.
2622 A subregexp context is one where a sub-regexp can appear.
2623 A non-subregexp context is for example within brackets, or within a
2624 repetition bounds operator `\\=\\{...\\}', or right after a `\\'.
2625 If START is non-nil, it should be a position in REGEXP, smaller
2626 than POS, and known to be in a subregexp context."
2627 ;; Here's one possible implementation, with the great benefit that it
2628 ;; reuses the regexp-matcher's own parser, so it understands all the
2629 ;; details of the syntax. A disadvantage is that it needs to match the
2630 ;; error string.
2631 (condition-case err
2632 (progn
2633 (string-match (substring regexp (or start 0) pos) "")
2634 t)
2635 (invalid-regexp
2636 (not (member (cadr err) '("Unmatched [ or [^"
2637 "Unmatched \\{"
2638 "Trailing backslash")))))
2639 ;; An alternative implementation:
2640 ;; (defconst re-context-re
2641 ;; (let* ((harmless-ch "[^\\[]")
2642 ;; (harmless-esc "\\\\[^{]")
2643 ;; (class-harmless-ch "[^][]")
2644 ;; (class-lb-harmless "[^]:]")
2645 ;; (class-lb-colon-maybe-charclass ":\\([a-z]+:]\\)?")
2646 ;; (class-lb (concat "\\[\\(" class-lb-harmless
2647 ;; "\\|" class-lb-colon-maybe-charclass "\\)"))
2648 ;; (class
2649 ;; (concat "\\[^?]?"
2650 ;; "\\(" class-harmless-ch
2651 ;; "\\|" class-lb "\\)*"
2652 ;; "\\[?]")) ; special handling for bare [ at end of re
2653 ;; (braces "\\\\{[0-9,]+\\\\}"))
2654 ;; (concat "\\`\\(" harmless-ch "\\|" harmless-esc
2655 ;; "\\|" class "\\|" braces "\\)*\\'"))
2656 ;; "Matches any prefix that corresponds to a normal subregexp context.")
2657 ;; (string-match re-context-re (substring regexp (or start 0) pos))
2658 )
2659 \f
2660 ;;;; split-string
2661
2662 (defconst split-string-default-separators "[ \f\t\n\r\v]+"
2663 "The default value of separators for `split-string'.
2664
2665 A regexp matching strings of whitespace. May be locale-dependent
2666 \(as yet unimplemented). Should not match non-breaking spaces.
2667
2668 Warning: binding this to a different value and using it as default is
2669 likely to have undesired semantics.")
2670
2671 ;; The specification says that if both SEPARATORS and OMIT-NULLS are
2672 ;; defaulted, OMIT-NULLS should be treated as t. Simplifying the logical
2673 ;; expression leads to the equivalent implementation that if SEPARATORS
2674 ;; is defaulted, OMIT-NULLS is treated as t.
2675 (defun split-string (string &optional separators omit-nulls)
2676 "Split STRING into substrings bounded by matches for SEPARATORS.
2677
2678 The beginning and end of STRING, and each match for SEPARATORS, are
2679 splitting points. The substrings matching SEPARATORS are removed, and
2680 the substrings between the splitting points are collected as a list,
2681 which is returned.
2682
2683 If SEPARATORS is non-nil, it should be a regular expression matching text
2684 which separates, but is not part of, the substrings. If nil it defaults to
2685 `split-string-default-separators', normally \"[ \\f\\t\\n\\r\\v]+\", and
2686 OMIT-NULLS is forced to t.
2687
2688 If OMIT-NULLS is t, zero-length substrings are omitted from the list \(so
2689 that for the default value of SEPARATORS leading and trailing whitespace
2690 are effectively trimmed). If nil, all zero-length substrings are retained,
2691 which correctly parses CSV format, for example.
2692
2693 Note that the effect of `(split-string STRING)' is the same as
2694 `(split-string STRING split-string-default-separators t)'. In the rare
2695 case that you wish to retain zero-length substrings when splitting on
2696 whitespace, use `(split-string STRING split-string-default-separators)'.
2697
2698 Modifies the match data; use `save-match-data' if necessary."
2699 (let ((keep-nulls (not (if separators omit-nulls t)))
2700 (rexp (or separators split-string-default-separators))
2701 (start 0)
2702 notfirst
2703 (list nil))
2704 (while (and (string-match rexp string
2705 (if (and notfirst
2706 (= start (match-beginning 0))
2707 (< start (length string)))
2708 (1+ start) start))
2709 (< start (length string)))
2710 (setq notfirst t)
2711 (if (or keep-nulls (< start (match-beginning 0)))
2712 (setq list
2713 (cons (substring string start (match-beginning 0))
2714 list)))
2715 (setq start (match-end 0)))
2716 (if (or keep-nulls (< start (length string)))
2717 (setq list
2718 (cons (substring string start)
2719 list)))
2720 (nreverse list)))
2721 \f
2722 ;;;; Replacement in strings.
2723
2724 (defun subst-char-in-string (fromchar tochar string &optional inplace)
2725 "Replace FROMCHAR with TOCHAR in STRING each time it occurs.
2726 Unless optional argument INPLACE is non-nil, return a new string."
2727 (let ((i (length string))
2728 (newstr (if inplace string (copy-sequence string))))
2729 (while (> i 0)
2730 (setq i (1- i))
2731 (if (eq (aref newstr i) fromchar)
2732 (aset newstr i tochar)))
2733 newstr))
2734
2735 (defun replace-regexp-in-string (regexp rep string &optional
2736 fixedcase literal subexp start)
2737 "Replace all matches for REGEXP with REP in STRING.
2738
2739 Return a new string containing the replacements.
2740
2741 Optional arguments FIXEDCASE, LITERAL and SUBEXP are like the
2742 arguments with the same names of function `replace-match'. If START
2743 is non-nil, start replacements at that index in STRING.
2744
2745 REP is either a string used as the NEWTEXT arg of `replace-match' or a
2746 function. If it is a function, it is called with the actual text of each
2747 match, and its value is used as the replacement text. When REP is called,
2748 the match-data are the result of matching REGEXP against a substring
2749 of STRING.
2750
2751 To replace only the first match (if any), make REGEXP match up to \\'
2752 and replace a sub-expression, e.g.
2753 (replace-regexp-in-string \"\\\\(foo\\\\).*\\\\'\" \"bar\" \" foo foo\" nil nil 1)
2754 => \" bar foo\"
2755 "
2756
2757 ;; To avoid excessive consing from multiple matches in long strings,
2758 ;; don't just call `replace-match' continually. Walk down the
2759 ;; string looking for matches of REGEXP and building up a (reversed)
2760 ;; list MATCHES. This comprises segments of STRING which weren't
2761 ;; matched interspersed with replacements for segments that were.
2762 ;; [For a `large' number of replacements it's more efficient to
2763 ;; operate in a temporary buffer; we can't tell from the function's
2764 ;; args whether to choose the buffer-based implementation, though it
2765 ;; might be reasonable to do so for long enough STRING.]
2766 (let ((l (length string))
2767 (start (or start 0))
2768 matches str mb me)
2769 (save-match-data
2770 (while (and (< start l) (string-match regexp string start))
2771 (setq mb (match-beginning 0)
2772 me (match-end 0))
2773 ;; If we matched the empty string, make sure we advance by one char
2774 (when (= me mb) (setq me (min l (1+ mb))))
2775 ;; Generate a replacement for the matched substring.
2776 ;; Operate only on the substring to minimize string consing.
2777 ;; Set up match data for the substring for replacement;
2778 ;; presumably this is likely to be faster than munging the
2779 ;; match data directly in Lisp.
2780 (string-match regexp (setq str (substring string mb me)))
2781 (setq matches
2782 (cons (replace-match (if (stringp rep)
2783 rep
2784 (funcall rep (match-string 0 str)))
2785 fixedcase literal str subexp)
2786 (cons (substring string start mb) ; unmatched prefix
2787 matches)))
2788 (setq start me))
2789 ;; Reconstruct a string from the pieces.
2790 (setq matches (cons (substring string start l) matches)) ; leftover
2791 (apply #'concat (nreverse matches)))))
2792 \f
2793 ;;;; invisibility specs
2794
2795 (defun add-to-invisibility-spec (element)
2796 "Add ELEMENT to `buffer-invisibility-spec'.
2797 See documentation for `buffer-invisibility-spec' for the kind of elements
2798 that can be added."
2799 (if (eq buffer-invisibility-spec t)
2800 (setq buffer-invisibility-spec (list t)))
2801 (setq buffer-invisibility-spec
2802 (cons element buffer-invisibility-spec)))
2803
2804 (defun remove-from-invisibility-spec (element)
2805 "Remove ELEMENT from `buffer-invisibility-spec'."
2806 (if (consp buffer-invisibility-spec)
2807 (setq buffer-invisibility-spec (delete element buffer-invisibility-spec))))
2808 \f
2809 ;;;; Syntax tables.
2810
2811 (defmacro with-syntax-table (table &rest body)
2812 "Evaluate BODY with syntax table of current buffer set to TABLE.
2813 The syntax table of the current buffer is saved, BODY is evaluated, and the
2814 saved table is restored, even in case of an abnormal exit.
2815 Value is what BODY returns."
2816 (declare (debug t))
2817 (let ((old-table (make-symbol "table"))
2818 (old-buffer (make-symbol "buffer")))
2819 `(let ((,old-table (syntax-table))
2820 (,old-buffer (current-buffer)))
2821 (unwind-protect
2822 (progn
2823 (set-syntax-table ,table)
2824 ,@body)
2825 (save-current-buffer
2826 (set-buffer ,old-buffer)
2827 (set-syntax-table ,old-table))))))
2828
2829 (defun make-syntax-table (&optional oldtable)
2830 "Return a new syntax table.
2831 Create a syntax table which inherits from OLDTABLE (if non-nil) or
2832 from `standard-syntax-table' otherwise."
2833 (let ((table (make-char-table 'syntax-table nil)))
2834 (set-char-table-parent table (or oldtable (standard-syntax-table)))
2835 table))
2836
2837 (defun syntax-after (pos)
2838 "Return the raw syntax of the char after POS.
2839 If POS is outside the buffer's accessible portion, return nil."
2840 (unless (or (< pos (point-min)) (>= pos (point-max)))
2841 (let ((st (if parse-sexp-lookup-properties
2842 (get-char-property pos 'syntax-table))))
2843 (if (consp st) st
2844 (aref (or st (syntax-table)) (char-after pos))))))
2845
2846 (defun syntax-class (syntax)
2847 "Return the syntax class part of the syntax descriptor SYNTAX.
2848 If SYNTAX is nil, return nil."
2849 (and syntax (logand (car syntax) 65535)))
2850 \f
2851 ;;;; Text clones
2852
2853 (defun text-clone-maintain (ol1 after beg end &optional len)
2854 "Propagate the changes made under the overlay OL1 to the other clones.
2855 This is used on the `modification-hooks' property of text clones."
2856 (when (and after (not undo-in-progress) (overlay-start ol1))
2857 (let ((margin (if (overlay-get ol1 'text-clone-spreadp) 1 0)))
2858 (setq beg (max beg (+ (overlay-start ol1) margin)))
2859 (setq end (min end (- (overlay-end ol1) margin)))
2860 (when (<= beg end)
2861 (save-excursion
2862 (when (overlay-get ol1 'text-clone-syntax)
2863 ;; Check content of the clone's text.
2864 (let ((cbeg (+ (overlay-start ol1) margin))
2865 (cend (- (overlay-end ol1) margin)))
2866 (goto-char cbeg)
2867 (save-match-data
2868 (if (not (re-search-forward
2869 (overlay-get ol1 'text-clone-syntax) cend t))
2870 ;; Mark the overlay for deletion.
2871 (overlay-put ol1 'text-clones nil)
2872 (when (< (match-end 0) cend)
2873 ;; Shrink the clone at its end.
2874 (setq end (min end (match-end 0)))
2875 (move-overlay ol1 (overlay-start ol1)
2876 (+ (match-end 0) margin)))
2877 (when (> (match-beginning 0) cbeg)
2878 ;; Shrink the clone at its beginning.
2879 (setq beg (max (match-beginning 0) beg))
2880 (move-overlay ol1 (- (match-beginning 0) margin)
2881 (overlay-end ol1)))))))
2882 ;; Now go ahead and update the clones.
2883 (let ((head (- beg (overlay-start ol1)))
2884 (tail (- (overlay-end ol1) end))
2885 (str (buffer-substring beg end))
2886 (nothing-left t)
2887 (inhibit-modification-hooks t))
2888 (dolist (ol2 (overlay-get ol1 'text-clones))
2889 (let ((oe (overlay-end ol2)))
2890 (unless (or (eq ol1 ol2) (null oe))
2891 (setq nothing-left nil)
2892 (let ((mod-beg (+ (overlay-start ol2) head)))
2893 ;;(overlay-put ol2 'modification-hooks nil)
2894 (goto-char (- (overlay-end ol2) tail))
2895 (unless (> mod-beg (point))
2896 (save-excursion (insert str))
2897 (delete-region mod-beg (point)))
2898 ;;(overlay-put ol2 'modification-hooks '(text-clone-maintain))
2899 ))))
2900 (if nothing-left (delete-overlay ol1))))))))
2901
2902 (defun text-clone-create (start end &optional spreadp syntax)
2903 "Create a text clone of START...END at point.
2904 Text clones are chunks of text that are automatically kept identical:
2905 changes done to one of the clones will be immediately propagated to the other.
2906
2907 The buffer's content at point is assumed to be already identical to
2908 the one between START and END.
2909 If SYNTAX is provided it's a regexp that describes the possible text of
2910 the clones; the clone will be shrunk or killed if necessary to ensure that
2911 its text matches the regexp.
2912 If SPREADP is non-nil it indicates that text inserted before/after the
2913 clone should be incorporated in the clone."
2914 ;; To deal with SPREADP we can either use an overlay with `nil t' along
2915 ;; with insert-(behind|in-front-of)-hooks or use a slightly larger overlay
2916 ;; (with a one-char margin at each end) with `t nil'.
2917 ;; We opted for a larger overlay because it behaves better in the case
2918 ;; where the clone is reduced to the empty string (we want the overlay to
2919 ;; stay when the clone's content is the empty string and we want to use
2920 ;; `evaporate' to make sure those overlays get deleted when needed).
2921 ;;
2922 (let* ((pt-end (+ (point) (- end start)))
2923 (start-margin (if (or (not spreadp) (bobp) (<= start (point-min)))
2924 0 1))
2925 (end-margin (if (or (not spreadp)
2926 (>= pt-end (point-max))
2927 (>= start (point-max)))
2928 0 1))
2929 (ol1 (make-overlay (- start start-margin) (+ end end-margin) nil t))
2930 (ol2 (make-overlay (- (point) start-margin) (+ pt-end end-margin) nil t))
2931 (dups (list ol1 ol2)))
2932 (overlay-put ol1 'modification-hooks '(text-clone-maintain))
2933 (when spreadp (overlay-put ol1 'text-clone-spreadp t))
2934 (when syntax (overlay-put ol1 'text-clone-syntax syntax))
2935 ;;(overlay-put ol1 'face 'underline)
2936 (overlay-put ol1 'evaporate t)
2937 (overlay-put ol1 'text-clones dups)
2938 ;;
2939 (overlay-put ol2 'modification-hooks '(text-clone-maintain))
2940 (when spreadp (overlay-put ol2 'text-clone-spreadp t))
2941 (when syntax (overlay-put ol2 'text-clone-syntax syntax))
2942 ;;(overlay-put ol2 'face 'underline)
2943 (overlay-put ol2 'evaporate t)
2944 (overlay-put ol2 'text-clones dups)))
2945 \f
2946 ;;;; Mail user agents.
2947
2948 ;; Here we include just enough for other packages to be able
2949 ;; to define them.
2950
2951 (defun define-mail-user-agent (symbol composefunc sendfunc
2952 &optional abortfunc hookvar)
2953 "Define a symbol to identify a mail-sending package for `mail-user-agent'.
2954
2955 SYMBOL can be any Lisp symbol. Its function definition and/or
2956 value as a variable do not matter for this usage; we use only certain
2957 properties on its property list, to encode the rest of the arguments.
2958
2959 COMPOSEFUNC is program callable function that composes an outgoing
2960 mail message buffer. This function should set up the basics of the
2961 buffer without requiring user interaction. It should populate the
2962 standard mail headers, leaving the `to:' and `subject:' headers blank
2963 by default.
2964
2965 COMPOSEFUNC should accept several optional arguments--the same
2966 arguments that `compose-mail' takes. See that function's documentation.
2967
2968 SENDFUNC is the command a user would run to send the message.
2969
2970 Optional ABORTFUNC is the command a user would run to abort the
2971 message. For mail packages that don't have a separate abort function,
2972 this can be `kill-buffer' (the equivalent of omitting this argument).
2973
2974 Optional HOOKVAR is a hook variable that gets run before the message
2975 is actually sent. Callers that use the `mail-user-agent' may
2976 install a hook function temporarily on this hook variable.
2977 If HOOKVAR is nil, `mail-send-hook' is used.
2978
2979 The properties used on SYMBOL are `composefunc', `sendfunc',
2980 `abortfunc', and `hookvar'."
2981 (put symbol 'composefunc composefunc)
2982 (put symbol 'sendfunc sendfunc)
2983 (put symbol 'abortfunc (or abortfunc 'kill-buffer))
2984 (put symbol 'hookvar (or hookvar 'mail-send-hook)))
2985 \f
2986 ;;;; Progress reporters.
2987
2988 ;; Progress reporter has the following structure:
2989 ;;
2990 ;; (NEXT-UPDATE-VALUE . [NEXT-UPDATE-TIME
2991 ;; MIN-VALUE
2992 ;; MAX-VALUE
2993 ;; MESSAGE
2994 ;; MIN-CHANGE
2995 ;; MIN-TIME])
2996 ;;
2997 ;; This weirdeness is for optimization reasons: we want
2998 ;; `progress-reporter-update' to be as fast as possible, so
2999 ;; `(car reporter)' is better than `(aref reporter 0)'.
3000 ;;
3001 ;; NEXT-UPDATE-TIME is a float. While `float-time' loses a couple
3002 ;; digits of precision, it doesn't really matter here. On the other
3003 ;; hand, it greatly simplifies the code.
3004
3005 (defsubst progress-reporter-update (reporter value)
3006 "Report progress of an operation in the echo area.
3007 However, if the change since last echo area update is too small
3008 or not enough time has passed, then do nothing (see
3009 `make-progress-reporter' for details).
3010
3011 First parameter, REPORTER, should be the result of a call to
3012 `make-progress-reporter'. Second, VALUE, determines the actual
3013 progress of operation; it must be between MIN-VALUE and MAX-VALUE
3014 as passed to `make-progress-reporter'.
3015
3016 This function is very inexpensive, you may not bother how often
3017 you call it."
3018 (when (>= value (car reporter))
3019 (progress-reporter-do-update reporter value)))
3020
3021 (defun make-progress-reporter (message min-value max-value
3022 &optional current-value
3023 min-change min-time)
3024 "Return progress reporter object to be used with `progress-reporter-update'.
3025
3026 MESSAGE is shown in the echo area. When at least 1% of operation
3027 is complete, the exact percentage will be appended to the
3028 MESSAGE. When you call `progress-reporter-done', word \"done\"
3029 is printed after the MESSAGE. You can change MESSAGE of an
3030 existing progress reporter with `progress-reporter-force-update'.
3031
3032 MIN-VALUE and MAX-VALUE designate starting (0% complete) and
3033 final (100% complete) states of operation. The latter should be
3034 larger; if this is not the case, then simply negate all values.
3035 Optional CURRENT-VALUE specifies the progress by the moment you
3036 call this function. You should omit it or set it to nil in most
3037 cases since it defaults to MIN-VALUE.
3038
3039 Optional MIN-CHANGE determines the minimal change in percents to
3040 report (default is 1%.) Optional MIN-TIME specifies the minimal
3041 time before echo area updates (default is 0.2 seconds.) If
3042 `float-time' function is not present, then time is not tracked
3043 at all. If OS is not capable of measuring fractions of seconds,
3044 then this parameter is effectively rounded up."
3045
3046 (unless min-time
3047 (setq min-time 0.2))
3048 (let ((reporter
3049 (cons min-value ;; Force a call to `message' now
3050 (vector (if (and (fboundp 'float-time)
3051 (>= min-time 0.02))
3052 (float-time) nil)
3053 min-value
3054 max-value
3055 message
3056 (if min-change (max (min min-change 50) 1) 1)
3057 min-time))))
3058 (progress-reporter-update reporter (or current-value min-value))
3059 reporter))
3060
3061 (defun progress-reporter-force-update (reporter value &optional new-message)
3062 "Report progress of an operation in the echo area unconditionally.
3063
3064 First two parameters are the same as for
3065 `progress-reporter-update'. Optional NEW-MESSAGE allows you to
3066 change the displayed message."
3067 (let ((parameters (cdr reporter)))
3068 (when new-message
3069 (aset parameters 3 new-message))
3070 (when (aref parameters 0)
3071 (aset parameters 0 (float-time)))
3072 (progress-reporter-do-update reporter value)))
3073
3074 (defun progress-reporter-do-update (reporter value)
3075 (let* ((parameters (cdr reporter))
3076 (min-value (aref parameters 1))
3077 (max-value (aref parameters 2))
3078 (one-percent (/ (- max-value min-value) 100.0))
3079 (percentage (if (= max-value min-value)
3080 0
3081 (truncate (/ (- value min-value) one-percent))))
3082 (update-time (aref parameters 0))
3083 (current-time (float-time))
3084 (enough-time-passed
3085 ;; See if enough time has passed since the last update.
3086 (or (not update-time)
3087 (when (>= current-time update-time)
3088 ;; Calculate time for the next update
3089 (aset parameters 0 (+ update-time (aref parameters 5)))))))
3090 ;;
3091 ;; Calculate NEXT-UPDATE-VALUE. If we are not going to print
3092 ;; message this time because not enough time has passed, then use
3093 ;; 1 instead of MIN-CHANGE. This makes delays between echo area
3094 ;; updates closer to MIN-TIME.
3095 (setcar reporter
3096 (min (+ min-value (* (+ percentage
3097 (if enough-time-passed
3098 (aref parameters 4) ;; MIN-CHANGE
3099 1))
3100 one-percent))
3101 max-value))
3102 (when (integerp value)
3103 (setcar reporter (ceiling (car reporter))))
3104 ;;
3105 ;; Only print message if enough time has passed
3106 (when enough-time-passed
3107 (if (> percentage 0)
3108 (message "%s%d%%" (aref parameters 3) percentage)
3109 (message "%s" (aref parameters 3))))))
3110
3111 (defun progress-reporter-done (reporter)
3112 "Print reporter's message followed by word \"done\" in echo area."
3113 (message "%sdone" (aref (cdr reporter) 3)))
3114
3115 (defmacro dotimes-with-progress-reporter (spec message &rest body)
3116 "Loop a certain number of times and report progress in the echo area.
3117 Evaluate BODY with VAR bound to successive integers running from
3118 0, inclusive, to COUNT, exclusive. Then evaluate RESULT to get
3119 the return value (nil if RESULT is omitted).
3120
3121 At each iteration MESSAGE followed by progress percentage is
3122 printed in the echo area. After the loop is finished, MESSAGE
3123 followed by word \"done\" is printed. This macro is a
3124 convenience wrapper around `make-progress-reporter' and friends.
3125
3126 \(fn (VAR COUNT [RESULT]) MESSAGE BODY...)"
3127 (declare (indent 2) (debug ((symbolp form &optional form) form body)))
3128 (let ((temp (make-symbol "--dotimes-temp--"))
3129 (temp2 (make-symbol "--dotimes-temp2--"))
3130 (start 0)
3131 (end (nth 1 spec)))
3132 `(let ((,temp ,end)
3133 (,(car spec) ,start)
3134 (,temp2 (make-progress-reporter ,message ,start ,end)))
3135 (while (< ,(car spec) ,temp)
3136 ,@body
3137 (progress-reporter-update ,temp2
3138 (setq ,(car spec) (1+ ,(car spec)))))
3139 (progress-reporter-done ,temp2)
3140 nil ,@(cdr (cdr spec)))))
3141
3142 \f
3143 ;;;; Comparing version strings.
3144
3145 (defvar version-separator "."
3146 "*Specify the string used to separate the version elements.
3147
3148 Usually the separator is \".\", but it can be any other string.")
3149
3150
3151 (defvar version-regexp-alist
3152 '(("^[-_+ ]?a\\(lpha\\)?$" . -3)
3153 ("^[-_+]$" . -3) ; treat "1.2.3-20050920" and "1.2-3" as alpha releases
3154 ("^[-_+ ]cvs$" . -3) ; treat "1.2.3-CVS" as alpha release
3155 ("^[-_+ ]?b\\(eta\\)?$" . -2)
3156 ("^[-_+ ]?\\(pre\\|rc\\)$" . -1))
3157 "*Specify association between non-numeric version part and a priority.
3158
3159 This association is used to handle version string like \"1.0pre2\",
3160 \"0.9alpha1\", etc. It's used by `version-to-list' (which see) to convert the
3161 non-numeric part to an integer. For example:
3162
3163 String Version Integer List Version
3164 \"1.0pre2\" (1 0 -1 2)
3165 \"1.0PRE2\" (1 0 -1 2)
3166 \"22.8beta3\" (22 8 -2 3)
3167 \"22.8 Beta3\" (22 8 -2 3)
3168 \"0.9alpha1\" (0 9 -3 1)
3169 \"0.9AlphA1\" (0 9 -3 1)
3170 \"0.9 alpha\" (0 9 -3)
3171
3172 Each element has the following form:
3173
3174 (REGEXP . PRIORITY)
3175
3176 Where:
3177
3178 REGEXP regexp used to match non-numeric part of a version string.
3179 It should begin with a `^' anchor and end with a `$' to
3180 prevent false hits. Letter-case is ignored while matching
3181 REGEXP.
3182
3183 PRIORITY negative integer which indicate the non-numeric priority.")
3184
3185
3186 (defun version-to-list (ver)
3187 "Convert version string VER into an integer list.
3188
3189 The version syntax is given by the following EBNF:
3190
3191 VERSION ::= NUMBER ( SEPARATOR NUMBER )*.
3192
3193 NUMBER ::= (0|1|2|3|4|5|6|7|8|9)+.
3194
3195 SEPARATOR ::= `version-separator' (which see)
3196 | `version-regexp-alist' (which see).
3197
3198 The NUMBER part is optional if SEPARATOR is a match for an element
3199 in `version-regexp-alist'.
3200
3201 As an example of valid version syntax:
3202
3203 1.0pre2 1.0.7.5 22.8beta3 0.9alpha1 6.9.30Beta
3204
3205 As an example of invalid version syntax:
3206
3207 1.0prepre2 1.0..7.5 22.8X3 alpha3.2 .5
3208
3209 As an example of version convertion:
3210
3211 String Version Integer List Version
3212 \"1.0.7.5\" (1 0 7 5)
3213 \"1.0pre2\" (1 0 -1 2)
3214 \"1.0PRE2\" (1 0 -1 2)
3215 \"22.8beta3\" (22 8 -2 3)
3216 \"22.8Beta3\" (22 8 -2 3)
3217 \"0.9alpha1\" (0 9 -3 1)
3218 \"0.9AlphA1\" (0 9 -3 1)
3219 \"0.9alpha\" (0 9 -3)
3220
3221 See documentation for `version-separator' and `version-regexp-alist'."
3222 (or (and (stringp ver) (> (length ver) 0))
3223 (error "Invalid version string: '%s'" ver))
3224 ;; Change .x.y to 0.x.y
3225 (if (and (>= (length ver) (length version-separator))
3226 (string-equal (substring ver 0 (length version-separator))
3227 version-separator))
3228 (setq ver (concat "0" ver)))
3229 (save-match-data
3230 (let ((i 0)
3231 (case-fold-search t) ; ignore case in matching
3232 lst s al)
3233 (while (and (setq s (string-match "[0-9]+" ver i))
3234 (= s i))
3235 ;; handle numeric part
3236 (setq lst (cons (string-to-number (substring ver i (match-end 0)))
3237 lst)
3238 i (match-end 0))
3239 ;; handle non-numeric part
3240 (when (and (setq s (string-match "[^0-9]+" ver i))
3241 (= s i))
3242 (setq s (substring ver i (match-end 0))
3243 i (match-end 0))
3244 ;; handle alpha, beta, pre, etc. separator
3245 (unless (string= s version-separator)
3246 (setq al version-regexp-alist)
3247 (while (and al (not (string-match (caar al) s)))
3248 (setq al (cdr al)))
3249 (or al (error "Invalid version syntax: '%s'" ver))
3250 (setq lst (cons (cdar al) lst)))))
3251 (if (null lst)
3252 (error "Invalid version syntax: '%s'" ver)
3253 (nreverse lst)))))
3254
3255
3256 (defun version-list-< (l1 l2)
3257 "Return t if integer list L1 is lesser than L2.
3258
3259 Note that integer list (1) is equal to (1 0), (1 0 0), (1 0 0 0),
3260 etc. That is, the trailing zeroes are irrelevant. Also, integer
3261 list (1) is greater than (1 -1) which is greater than (1 -2)
3262 which is greater than (1 -3)."
3263 (while (and l1 l2 (= (car l1) (car l2)))
3264 (setq l1 (cdr l1)
3265 l2 (cdr l2)))
3266 (cond
3267 ;; l1 not null and l2 not null
3268 ((and l1 l2) (< (car l1) (car l2)))
3269 ;; l1 null and l2 null ==> l1 length = l2 length
3270 ((and (null l1) (null l2)) nil)
3271 ;; l1 not null and l2 null ==> l1 length > l2 length
3272 (l1 (< (version-list-not-zero l1) 0))
3273 ;; l1 null and l2 not null ==> l2 length > l1 length
3274 (t (< 0 (version-list-not-zero l2)))))
3275
3276
3277 (defun version-list-= (l1 l2)
3278 "Return t if integer list L1 is equal to L2.
3279
3280 Note that integer list (1) is equal to (1 0), (1 0 0), (1 0 0 0),
3281 etc. That is, the trailing zeroes are irrelevant. Also, integer
3282 list (1) is greater than (1 -1) which is greater than (1 -2)
3283 which is greater than (1 -3)."
3284 (while (and l1 l2 (= (car l1) (car l2)))
3285 (setq l1 (cdr l1)
3286 l2 (cdr l2)))
3287 (cond
3288 ;; l1 not null and l2 not null
3289 ((and l1 l2) nil)
3290 ;; l1 null and l2 null ==> l1 length = l2 length
3291 ((and (null l1) (null l2)))
3292 ;; l1 not null and l2 null ==> l1 length > l2 length
3293 (l1 (zerop (version-list-not-zero l1)))
3294 ;; l1 null and l2 not null ==> l2 length > l1 length
3295 (t (zerop (version-list-not-zero l2)))))
3296
3297
3298 (defun version-list-<= (l1 l2)
3299 "Return t if integer list L1 is lesser than or equal to L2.
3300
3301 Note that integer list (1) is equal to (1 0), (1 0 0), (1 0 0 0),
3302 etc. That is, the trailing zeroes are irrelevant. Also, integer
3303 list (1) is greater than (1 -1) which is greater than (1 -2)
3304 which is greater than (1 -3)."
3305 (while (and l1 l2 (= (car l1) (car l2)))
3306 (setq l1 (cdr l1)
3307 l2 (cdr l2)))
3308 (cond
3309 ;; l1 not null and l2 not null
3310 ((and l1 l2) (< (car l1) (car l2)))
3311 ;; l1 null and l2 null ==> l1 length = l2 length
3312 ((and (null l1) (null l2)))
3313 ;; l1 not null and l2 null ==> l1 length > l2 length
3314 (l1 (<= (version-list-not-zero l1) 0))
3315 ;; l1 null and l2 not null ==> l2 length > l1 length
3316 (t (<= 0 (version-list-not-zero l2)))))
3317
3318 (defun version-list-not-zero (lst)
3319 "Return the first non-zero element of integer list LST.
3320
3321 If all LST elements are zeroes or LST is nil, return zero."
3322 (while (and lst (zerop (car lst)))
3323 (setq lst (cdr lst)))
3324 (if lst
3325 (car lst)
3326 ;; there is no element different of zero
3327 0))
3328
3329
3330 (defun version< (v1 v2)
3331 "Return t if version V1 is lesser than V2.
3332
3333 Note that version string \"1\" is equal to \"1.0\", \"1.0.0\", \"1.0.0.0\",
3334 etc. That is, the trailing \".0\"s are irrelevant. Also, version string \"1\"
3335 is greater than \"1pre\" which is greater than \"1beta\" which is greater than
3336 \"1alpha\"."
3337 (version-list-< (version-to-list v1) (version-to-list v2)))
3338
3339
3340 (defun version<= (v1 v2)
3341 "Return t if version V1 is lesser than or equal to V2.
3342
3343 Note that version string \"1\" is equal to \"1.0\", \"1.0.0\", \"1.0.0.0\",
3344 etc. That is, the trailing \".0\"s are irrelevant. Also, version string \"1\"
3345 is greater than \"1pre\" which is greater than \"1beta\" which is greater than
3346 \"1alpha\"."
3347 (version-list-<= (version-to-list v1) (version-to-list v2)))
3348
3349 (defun version= (v1 v2)
3350 "Return t if version V1 is equal to V2.
3351
3352 Note that version string \"1\" is equal to \"1.0\", \"1.0.0\", \"1.0.0.0\",
3353 etc. That is, the trailing \".0\"s are irrelevant. Also, version string \"1\"
3354 is greater than \"1pre\" which is greater than \"1beta\" which is greater than
3355 \"1alpha\"."
3356 (version-list-= (version-to-list v1) (version-to-list v2)))
3357
3358
3359
3360 ;; arch-tag: f7e0e6e5-70aa-4897-ae72-7a3511ec40bc
3361 ;;; subr.el ends here