Fix display of R2L lines and cursor motion in bidi buffers.
[bpt/emacs.git] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985, 1986, 1987, 1993, 1994, 1995, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004,
4 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #ifdef HAVE_UNISTD_H
24 #include <unistd.h>
25 #endif
26 #include <time.h>
27 #include <setjmp.h>
28
29 /* Note on some machines this defines `vector' as a typedef,
30 so make sure we don't use that name in this file. */
31 #undef vector
32 #define vector *****
33
34 #include "lisp.h"
35 #include "commands.h"
36 #include "character.h"
37 #include "coding.h"
38 #include "buffer.h"
39 #include "keyboard.h"
40 #include "keymap.h"
41 #include "intervals.h"
42 #include "frame.h"
43 #include "window.h"
44 #include "blockinput.h"
45 #ifdef HAVE_MENUS
46 #if defined (HAVE_X_WINDOWS)
47 #include "xterm.h"
48 #endif
49 #endif /* HAVE_MENUS */
50
51 #ifndef NULL
52 #define NULL ((POINTER_TYPE *)0)
53 #endif
54
55 /* Nonzero enables use of dialog boxes for questions
56 asked by mouse commands. */
57 int use_dialog_box;
58
59 /* Nonzero enables use of a file dialog for file name
60 questions asked by mouse commands. */
61 int use_file_dialog;
62
63 extern int minibuffer_auto_raise;
64 extern Lisp_Object minibuf_window;
65 extern Lisp_Object Vlocale_coding_system;
66 extern int load_in_progress;
67
68 Lisp_Object Qstring_lessp, Qprovide, Qrequire;
69 Lisp_Object Qyes_or_no_p_history;
70 Lisp_Object Qcursor_in_echo_area;
71 Lisp_Object Qwidget_type;
72 Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
73
74 extern Lisp_Object Qinput_method_function;
75
76 static int internal_equal P_ ((Lisp_Object , Lisp_Object, int, int));
77
78 extern long get_random ();
79 extern void seed_random P_ ((long));
80
81 #ifndef HAVE_UNISTD_H
82 extern long time ();
83 #endif
84 \f
85 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
86 doc: /* Return the argument unchanged. */)
87 (arg)
88 Lisp_Object arg;
89 {
90 return arg;
91 }
92
93 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
94 doc: /* Return a pseudo-random number.
95 All integers representable in Lisp are equally likely.
96 On most systems, this is 29 bits' worth.
97 With positive integer LIMIT, return random number in interval [0,LIMIT).
98 With argument t, set the random number seed from the current time and pid.
99 Other values of LIMIT are ignored. */)
100 (limit)
101 Lisp_Object limit;
102 {
103 EMACS_INT val;
104 Lisp_Object lispy_val;
105 unsigned long denominator;
106
107 if (EQ (limit, Qt))
108 seed_random (getpid () + time (NULL));
109 if (NATNUMP (limit) && XFASTINT (limit) != 0)
110 {
111 /* Try to take our random number from the higher bits of VAL,
112 not the lower, since (says Gentzel) the low bits of `random'
113 are less random than the higher ones. We do this by using the
114 quotient rather than the remainder. At the high end of the RNG
115 it's possible to get a quotient larger than n; discarding
116 these values eliminates the bias that would otherwise appear
117 when using a large n. */
118 denominator = ((unsigned long)1 << VALBITS) / XFASTINT (limit);
119 do
120 val = get_random () / denominator;
121 while (val >= XFASTINT (limit));
122 }
123 else
124 val = get_random ();
125 XSETINT (lispy_val, val);
126 return lispy_val;
127 }
128 \f
129 /* Random data-structure functions */
130
131 DEFUN ("length", Flength, Slength, 1, 1, 0,
132 doc: /* Return the length of vector, list or string SEQUENCE.
133 A byte-code function object is also allowed.
134 If the string contains multibyte characters, this is not necessarily
135 the number of bytes in the string; it is the number of characters.
136 To get the number of bytes, use `string-bytes'. */)
137 (sequence)
138 register Lisp_Object sequence;
139 {
140 register Lisp_Object val;
141 register int i;
142
143 if (STRINGP (sequence))
144 XSETFASTINT (val, SCHARS (sequence));
145 else if (VECTORP (sequence))
146 XSETFASTINT (val, ASIZE (sequence));
147 else if (CHAR_TABLE_P (sequence))
148 XSETFASTINT (val, MAX_CHAR);
149 else if (BOOL_VECTOR_P (sequence))
150 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
151 else if (COMPILEDP (sequence))
152 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
153 else if (CONSP (sequence))
154 {
155 i = 0;
156 while (CONSP (sequence))
157 {
158 sequence = XCDR (sequence);
159 ++i;
160
161 if (!CONSP (sequence))
162 break;
163
164 sequence = XCDR (sequence);
165 ++i;
166 QUIT;
167 }
168
169 CHECK_LIST_END (sequence, sequence);
170
171 val = make_number (i);
172 }
173 else if (NILP (sequence))
174 XSETFASTINT (val, 0);
175 else
176 wrong_type_argument (Qsequencep, sequence);
177
178 return val;
179 }
180
181 /* This does not check for quits. That is safe since it must terminate. */
182
183 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
184 doc: /* Return the length of a list, but avoid error or infinite loop.
185 This function never gets an error. If LIST is not really a list,
186 it returns 0. If LIST is circular, it returns a finite value
187 which is at least the number of distinct elements. */)
188 (list)
189 Lisp_Object list;
190 {
191 Lisp_Object tail, halftail, length;
192 int len = 0;
193
194 /* halftail is used to detect circular lists. */
195 halftail = list;
196 for (tail = list; CONSP (tail); tail = XCDR (tail))
197 {
198 if (EQ (tail, halftail) && len != 0)
199 break;
200 len++;
201 if ((len & 1) == 0)
202 halftail = XCDR (halftail);
203 }
204
205 XSETINT (length, len);
206 return length;
207 }
208
209 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
210 doc: /* Return the number of bytes in STRING.
211 If STRING is multibyte, this may be greater than the length of STRING. */)
212 (string)
213 Lisp_Object string;
214 {
215 CHECK_STRING (string);
216 return make_number (SBYTES (string));
217 }
218
219 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
220 doc: /* Return t if two strings have identical contents.
221 Case is significant, but text properties are ignored.
222 Symbols are also allowed; their print names are used instead. */)
223 (s1, s2)
224 register Lisp_Object s1, s2;
225 {
226 if (SYMBOLP (s1))
227 s1 = SYMBOL_NAME (s1);
228 if (SYMBOLP (s2))
229 s2 = SYMBOL_NAME (s2);
230 CHECK_STRING (s1);
231 CHECK_STRING (s2);
232
233 if (SCHARS (s1) != SCHARS (s2)
234 || SBYTES (s1) != SBYTES (s2)
235 || bcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
236 return Qnil;
237 return Qt;
238 }
239
240 DEFUN ("compare-strings", Fcompare_strings,
241 Scompare_strings, 6, 7, 0,
242 doc: /* Compare the contents of two strings, converting to multibyte if needed.
243 In string STR1, skip the first START1 characters and stop at END1.
244 In string STR2, skip the first START2 characters and stop at END2.
245 END1 and END2 default to the full lengths of the respective strings.
246
247 Case is significant in this comparison if IGNORE-CASE is nil.
248 Unibyte strings are converted to multibyte for comparison.
249
250 The value is t if the strings (or specified portions) match.
251 If string STR1 is less, the value is a negative number N;
252 - 1 - N is the number of characters that match at the beginning.
253 If string STR1 is greater, the value is a positive number N;
254 N - 1 is the number of characters that match at the beginning. */)
255 (str1, start1, end1, str2, start2, end2, ignore_case)
256 Lisp_Object str1, start1, end1, start2, str2, end2, ignore_case;
257 {
258 register int end1_char, end2_char;
259 register int i1, i1_byte, i2, i2_byte;
260
261 CHECK_STRING (str1);
262 CHECK_STRING (str2);
263 if (NILP (start1))
264 start1 = make_number (0);
265 if (NILP (start2))
266 start2 = make_number (0);
267 CHECK_NATNUM (start1);
268 CHECK_NATNUM (start2);
269 if (! NILP (end1))
270 CHECK_NATNUM (end1);
271 if (! NILP (end2))
272 CHECK_NATNUM (end2);
273
274 i1 = XINT (start1);
275 i2 = XINT (start2);
276
277 i1_byte = string_char_to_byte (str1, i1);
278 i2_byte = string_char_to_byte (str2, i2);
279
280 end1_char = SCHARS (str1);
281 if (! NILP (end1) && end1_char > XINT (end1))
282 end1_char = XINT (end1);
283
284 end2_char = SCHARS (str2);
285 if (! NILP (end2) && end2_char > XINT (end2))
286 end2_char = XINT (end2);
287
288 while (i1 < end1_char && i2 < end2_char)
289 {
290 /* When we find a mismatch, we must compare the
291 characters, not just the bytes. */
292 int c1, c2;
293
294 if (STRING_MULTIBYTE (str1))
295 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
296 else
297 {
298 c1 = SREF (str1, i1++);
299 MAKE_CHAR_MULTIBYTE (c1);
300 }
301
302 if (STRING_MULTIBYTE (str2))
303 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
304 else
305 {
306 c2 = SREF (str2, i2++);
307 MAKE_CHAR_MULTIBYTE (c2);
308 }
309
310 if (c1 == c2)
311 continue;
312
313 if (! NILP (ignore_case))
314 {
315 Lisp_Object tem;
316
317 tem = Fupcase (make_number (c1));
318 c1 = XINT (tem);
319 tem = Fupcase (make_number (c2));
320 c2 = XINT (tem);
321 }
322
323 if (c1 == c2)
324 continue;
325
326 /* Note that I1 has already been incremented
327 past the character that we are comparing;
328 hence we don't add or subtract 1 here. */
329 if (c1 < c2)
330 return make_number (- i1 + XINT (start1));
331 else
332 return make_number (i1 - XINT (start1));
333 }
334
335 if (i1 < end1_char)
336 return make_number (i1 - XINT (start1) + 1);
337 if (i2 < end2_char)
338 return make_number (- i1 + XINT (start1) - 1);
339
340 return Qt;
341 }
342
343 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
344 doc: /* Return t if first arg string is less than second in lexicographic order.
345 Case is significant.
346 Symbols are also allowed; their print names are used instead. */)
347 (s1, s2)
348 register Lisp_Object s1, s2;
349 {
350 register int end;
351 register int i1, i1_byte, i2, i2_byte;
352
353 if (SYMBOLP (s1))
354 s1 = SYMBOL_NAME (s1);
355 if (SYMBOLP (s2))
356 s2 = SYMBOL_NAME (s2);
357 CHECK_STRING (s1);
358 CHECK_STRING (s2);
359
360 i1 = i1_byte = i2 = i2_byte = 0;
361
362 end = SCHARS (s1);
363 if (end > SCHARS (s2))
364 end = SCHARS (s2);
365
366 while (i1 < end)
367 {
368 /* When we find a mismatch, we must compare the
369 characters, not just the bytes. */
370 int c1, c2;
371
372 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
373 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
374
375 if (c1 != c2)
376 return c1 < c2 ? Qt : Qnil;
377 }
378 return i1 < SCHARS (s2) ? Qt : Qnil;
379 }
380 \f
381 #if __GNUC__
382 /* "gcc -O3" enables automatic function inlining, which optimizes out
383 the arguments for the invocations of this function, whereas it
384 expects these values on the stack. */
385 static Lisp_Object concat P_ ((int nargs, Lisp_Object *args, enum Lisp_Type target_type, int last_special)) __attribute__((noinline));
386 #else /* !__GNUC__ */
387 static Lisp_Object concat P_ ((int nargs, Lisp_Object *args, enum Lisp_Type target_type, int last_special));
388 #endif
389
390 /* ARGSUSED */
391 Lisp_Object
392 concat2 (s1, s2)
393 Lisp_Object s1, s2;
394 {
395 Lisp_Object args[2];
396 args[0] = s1;
397 args[1] = s2;
398 return concat (2, args, Lisp_String, 0);
399 }
400
401 /* ARGSUSED */
402 Lisp_Object
403 concat3 (s1, s2, s3)
404 Lisp_Object s1, s2, s3;
405 {
406 Lisp_Object args[3];
407 args[0] = s1;
408 args[1] = s2;
409 args[2] = s3;
410 return concat (3, args, Lisp_String, 0);
411 }
412
413 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
414 doc: /* Concatenate all the arguments and make the result a list.
415 The result is a list whose elements are the elements of all the arguments.
416 Each argument may be a list, vector or string.
417 The last argument is not copied, just used as the tail of the new list.
418 usage: (append &rest SEQUENCES) */)
419 (nargs, args)
420 int nargs;
421 Lisp_Object *args;
422 {
423 return concat (nargs, args, Lisp_Cons, 1);
424 }
425
426 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
427 doc: /* Concatenate all the arguments and make the result a string.
428 The result is a string whose elements are the elements of all the arguments.
429 Each argument may be a string or a list or vector of characters (integers).
430 usage: (concat &rest SEQUENCES) */)
431 (nargs, args)
432 int nargs;
433 Lisp_Object *args;
434 {
435 return concat (nargs, args, Lisp_String, 0);
436 }
437
438 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
439 doc: /* Concatenate all the arguments and make the result a vector.
440 The result is a vector whose elements are the elements of all the arguments.
441 Each argument may be a list, vector or string.
442 usage: (vconcat &rest SEQUENCES) */)
443 (nargs, args)
444 int nargs;
445 Lisp_Object *args;
446 {
447 return concat (nargs, args, Lisp_Vectorlike, 0);
448 }
449
450
451 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
452 doc: /* Return a copy of a list, vector, string or char-table.
453 The elements of a list or vector are not copied; they are shared
454 with the original. */)
455 (arg)
456 Lisp_Object arg;
457 {
458 if (NILP (arg)) return arg;
459
460 if (CHAR_TABLE_P (arg))
461 {
462 return copy_char_table (arg);
463 }
464
465 if (BOOL_VECTOR_P (arg))
466 {
467 Lisp_Object val;
468 int size_in_chars
469 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
470 / BOOL_VECTOR_BITS_PER_CHAR);
471
472 val = Fmake_bool_vector (Flength (arg), Qnil);
473 bcopy (XBOOL_VECTOR (arg)->data, XBOOL_VECTOR (val)->data,
474 size_in_chars);
475 return val;
476 }
477
478 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
479 wrong_type_argument (Qsequencep, arg);
480
481 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
482 }
483
484 /* This structure holds information of an argument of `concat' that is
485 a string and has text properties to be copied. */
486 struct textprop_rec
487 {
488 int argnum; /* refer to ARGS (arguments of `concat') */
489 int from; /* refer to ARGS[argnum] (argument string) */
490 int to; /* refer to VAL (the target string) */
491 };
492
493 static Lisp_Object
494 concat (nargs, args, target_type, last_special)
495 int nargs;
496 Lisp_Object *args;
497 enum Lisp_Type target_type;
498 int last_special;
499 {
500 Lisp_Object val;
501 register Lisp_Object tail;
502 register Lisp_Object this;
503 int toindex;
504 int toindex_byte = 0;
505 register int result_len;
506 register int result_len_byte;
507 register int argnum;
508 Lisp_Object last_tail;
509 Lisp_Object prev;
510 int some_multibyte;
511 /* When we make a multibyte string, we can't copy text properties
512 while concatinating each string because the length of resulting
513 string can't be decided until we finish the whole concatination.
514 So, we record strings that have text properties to be copied
515 here, and copy the text properties after the concatination. */
516 struct textprop_rec *textprops = NULL;
517 /* Number of elments in textprops. */
518 int num_textprops = 0;
519 USE_SAFE_ALLOCA;
520
521 tail = Qnil;
522
523 /* In append, the last arg isn't treated like the others */
524 if (last_special && nargs > 0)
525 {
526 nargs--;
527 last_tail = args[nargs];
528 }
529 else
530 last_tail = Qnil;
531
532 /* Check each argument. */
533 for (argnum = 0; argnum < nargs; argnum++)
534 {
535 this = args[argnum];
536 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
537 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
538 wrong_type_argument (Qsequencep, this);
539 }
540
541 /* Compute total length in chars of arguments in RESULT_LEN.
542 If desired output is a string, also compute length in bytes
543 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
544 whether the result should be a multibyte string. */
545 result_len_byte = 0;
546 result_len = 0;
547 some_multibyte = 0;
548 for (argnum = 0; argnum < nargs; argnum++)
549 {
550 int len;
551 this = args[argnum];
552 len = XFASTINT (Flength (this));
553 if (target_type == Lisp_String)
554 {
555 /* We must count the number of bytes needed in the string
556 as well as the number of characters. */
557 int i;
558 Lisp_Object ch;
559 int this_len_byte;
560
561 if (VECTORP (this))
562 for (i = 0; i < len; i++)
563 {
564 ch = AREF (this, i);
565 CHECK_CHARACTER (ch);
566 this_len_byte = CHAR_BYTES (XINT (ch));
567 result_len_byte += this_len_byte;
568 if (! ASCII_CHAR_P (XINT (ch)) && ! CHAR_BYTE8_P (XINT (ch)))
569 some_multibyte = 1;
570 }
571 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
572 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
573 else if (CONSP (this))
574 for (; CONSP (this); this = XCDR (this))
575 {
576 ch = XCAR (this);
577 CHECK_CHARACTER (ch);
578 this_len_byte = CHAR_BYTES (XINT (ch));
579 result_len_byte += this_len_byte;
580 if (! ASCII_CHAR_P (XINT (ch)) && ! CHAR_BYTE8_P (XINT (ch)))
581 some_multibyte = 1;
582 }
583 else if (STRINGP (this))
584 {
585 if (STRING_MULTIBYTE (this))
586 {
587 some_multibyte = 1;
588 result_len_byte += SBYTES (this);
589 }
590 else
591 result_len_byte += count_size_as_multibyte (SDATA (this),
592 SCHARS (this));
593 }
594 }
595
596 result_len += len;
597 if (result_len < 0)
598 error ("String overflow");
599 }
600
601 if (! some_multibyte)
602 result_len_byte = result_len;
603
604 /* Create the output object. */
605 if (target_type == Lisp_Cons)
606 val = Fmake_list (make_number (result_len), Qnil);
607 else if (target_type == Lisp_Vectorlike)
608 val = Fmake_vector (make_number (result_len), Qnil);
609 else if (some_multibyte)
610 val = make_uninit_multibyte_string (result_len, result_len_byte);
611 else
612 val = make_uninit_string (result_len);
613
614 /* In `append', if all but last arg are nil, return last arg. */
615 if (target_type == Lisp_Cons && EQ (val, Qnil))
616 return last_tail;
617
618 /* Copy the contents of the args into the result. */
619 if (CONSP (val))
620 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
621 else
622 toindex = 0, toindex_byte = 0;
623
624 prev = Qnil;
625 if (STRINGP (val))
626 SAFE_ALLOCA (textprops, struct textprop_rec *, sizeof (struct textprop_rec) * nargs);
627
628 for (argnum = 0; argnum < nargs; argnum++)
629 {
630 Lisp_Object thislen;
631 int thisleni = 0;
632 register unsigned int thisindex = 0;
633 register unsigned int thisindex_byte = 0;
634
635 this = args[argnum];
636 if (!CONSP (this))
637 thislen = Flength (this), thisleni = XINT (thislen);
638
639 /* Between strings of the same kind, copy fast. */
640 if (STRINGP (this) && STRINGP (val)
641 && STRING_MULTIBYTE (this) == some_multibyte)
642 {
643 int thislen_byte = SBYTES (this);
644
645 bcopy (SDATA (this), SDATA (val) + toindex_byte,
646 SBYTES (this));
647 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
648 {
649 textprops[num_textprops].argnum = argnum;
650 textprops[num_textprops].from = 0;
651 textprops[num_textprops++].to = toindex;
652 }
653 toindex_byte += thislen_byte;
654 toindex += thisleni;
655 }
656 /* Copy a single-byte string to a multibyte string. */
657 else if (STRINGP (this) && STRINGP (val))
658 {
659 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
660 {
661 textprops[num_textprops].argnum = argnum;
662 textprops[num_textprops].from = 0;
663 textprops[num_textprops++].to = toindex;
664 }
665 toindex_byte += copy_text (SDATA (this),
666 SDATA (val) + toindex_byte,
667 SCHARS (this), 0, 1);
668 toindex += thisleni;
669 }
670 else
671 /* Copy element by element. */
672 while (1)
673 {
674 register Lisp_Object elt;
675
676 /* Fetch next element of `this' arg into `elt', or break if
677 `this' is exhausted. */
678 if (NILP (this)) break;
679 if (CONSP (this))
680 elt = XCAR (this), this = XCDR (this);
681 else if (thisindex >= thisleni)
682 break;
683 else if (STRINGP (this))
684 {
685 int c;
686 if (STRING_MULTIBYTE (this))
687 {
688 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
689 thisindex,
690 thisindex_byte);
691 XSETFASTINT (elt, c);
692 }
693 else
694 {
695 XSETFASTINT (elt, SREF (this, thisindex)); thisindex++;
696 if (some_multibyte
697 && !ASCII_CHAR_P (XINT (elt))
698 && XINT (elt) < 0400)
699 {
700 c = BYTE8_TO_CHAR (XINT (elt));
701 XSETINT (elt, c);
702 }
703 }
704 }
705 else if (BOOL_VECTOR_P (this))
706 {
707 int byte;
708 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
709 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
710 elt = Qt;
711 else
712 elt = Qnil;
713 thisindex++;
714 }
715 else
716 {
717 elt = AREF (this, thisindex);
718 thisindex++;
719 }
720
721 /* Store this element into the result. */
722 if (toindex < 0)
723 {
724 XSETCAR (tail, elt);
725 prev = tail;
726 tail = XCDR (tail);
727 }
728 else if (VECTORP (val))
729 {
730 ASET (val, toindex, elt);
731 toindex++;
732 }
733 else
734 {
735 CHECK_NUMBER (elt);
736 if (some_multibyte)
737 toindex_byte += CHAR_STRING (XINT (elt),
738 SDATA (val) + toindex_byte);
739 else
740 SSET (val, toindex_byte++, XINT (elt));
741 toindex++;
742 }
743 }
744 }
745 if (!NILP (prev))
746 XSETCDR (prev, last_tail);
747
748 if (num_textprops > 0)
749 {
750 Lisp_Object props;
751 int last_to_end = -1;
752
753 for (argnum = 0; argnum < num_textprops; argnum++)
754 {
755 this = args[textprops[argnum].argnum];
756 props = text_property_list (this,
757 make_number (0),
758 make_number (SCHARS (this)),
759 Qnil);
760 /* If successive arguments have properites, be sure that the
761 value of `composition' property be the copy. */
762 if (last_to_end == textprops[argnum].to)
763 make_composition_value_copy (props);
764 add_text_properties_from_list (val, props,
765 make_number (textprops[argnum].to));
766 last_to_end = textprops[argnum].to + SCHARS (this);
767 }
768 }
769
770 SAFE_FREE ();
771 return val;
772 }
773 \f
774 static Lisp_Object string_char_byte_cache_string;
775 static EMACS_INT string_char_byte_cache_charpos;
776 static EMACS_INT string_char_byte_cache_bytepos;
777
778 void
779 clear_string_char_byte_cache ()
780 {
781 string_char_byte_cache_string = Qnil;
782 }
783
784 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
785
786 EMACS_INT
787 string_char_to_byte (string, char_index)
788 Lisp_Object string;
789 EMACS_INT char_index;
790 {
791 EMACS_INT i_byte;
792 EMACS_INT best_below, best_below_byte;
793 EMACS_INT best_above, best_above_byte;
794
795 best_below = best_below_byte = 0;
796 best_above = SCHARS (string);
797 best_above_byte = SBYTES (string);
798 if (best_above == best_above_byte)
799 return char_index;
800
801 if (EQ (string, string_char_byte_cache_string))
802 {
803 if (string_char_byte_cache_charpos < char_index)
804 {
805 best_below = string_char_byte_cache_charpos;
806 best_below_byte = string_char_byte_cache_bytepos;
807 }
808 else
809 {
810 best_above = string_char_byte_cache_charpos;
811 best_above_byte = string_char_byte_cache_bytepos;
812 }
813 }
814
815 if (char_index - best_below < best_above - char_index)
816 {
817 unsigned char *p = SDATA (string) + best_below_byte;
818
819 while (best_below < char_index)
820 {
821 p += BYTES_BY_CHAR_HEAD (*p);
822 best_below++;
823 }
824 i_byte = p - SDATA (string);
825 }
826 else
827 {
828 unsigned char *p = SDATA (string) + best_above_byte;
829
830 while (best_above > char_index)
831 {
832 p--;
833 while (!CHAR_HEAD_P (*p)) p--;
834 best_above--;
835 }
836 i_byte = p - SDATA (string);
837 }
838
839 string_char_byte_cache_bytepos = i_byte;
840 string_char_byte_cache_charpos = char_index;
841 string_char_byte_cache_string = string;
842
843 return i_byte;
844 }
845 \f
846 /* Return the character index corresponding to BYTE_INDEX in STRING. */
847
848 EMACS_INT
849 string_byte_to_char (string, byte_index)
850 Lisp_Object string;
851 EMACS_INT byte_index;
852 {
853 EMACS_INT i, i_byte;
854 EMACS_INT best_below, best_below_byte;
855 EMACS_INT best_above, best_above_byte;
856
857 best_below = best_below_byte = 0;
858 best_above = SCHARS (string);
859 best_above_byte = SBYTES (string);
860 if (best_above == best_above_byte)
861 return byte_index;
862
863 if (EQ (string, string_char_byte_cache_string))
864 {
865 if (string_char_byte_cache_bytepos < byte_index)
866 {
867 best_below = string_char_byte_cache_charpos;
868 best_below_byte = string_char_byte_cache_bytepos;
869 }
870 else
871 {
872 best_above = string_char_byte_cache_charpos;
873 best_above_byte = string_char_byte_cache_bytepos;
874 }
875 }
876
877 if (byte_index - best_below_byte < best_above_byte - byte_index)
878 {
879 unsigned char *p = SDATA (string) + best_below_byte;
880 unsigned char *pend = SDATA (string) + byte_index;
881
882 while (p < pend)
883 {
884 p += BYTES_BY_CHAR_HEAD (*p);
885 best_below++;
886 }
887 i = best_below;
888 i_byte = p - SDATA (string);
889 }
890 else
891 {
892 unsigned char *p = SDATA (string) + best_above_byte;
893 unsigned char *pbeg = SDATA (string) + byte_index;
894
895 while (p > pbeg)
896 {
897 p--;
898 while (!CHAR_HEAD_P (*p)) p--;
899 best_above--;
900 }
901 i = best_above;
902 i_byte = p - SDATA (string);
903 }
904
905 string_char_byte_cache_bytepos = i_byte;
906 string_char_byte_cache_charpos = i;
907 string_char_byte_cache_string = string;
908
909 return i;
910 }
911 \f
912 /* Convert STRING to a multibyte string. */
913
914 Lisp_Object
915 string_make_multibyte (string)
916 Lisp_Object string;
917 {
918 unsigned char *buf;
919 EMACS_INT nbytes;
920 Lisp_Object ret;
921 USE_SAFE_ALLOCA;
922
923 if (STRING_MULTIBYTE (string))
924 return string;
925
926 nbytes = count_size_as_multibyte (SDATA (string),
927 SCHARS (string));
928 /* If all the chars are ASCII, they won't need any more bytes
929 once converted. In that case, we can return STRING itself. */
930 if (nbytes == SBYTES (string))
931 return string;
932
933 SAFE_ALLOCA (buf, unsigned char *, nbytes);
934 copy_text (SDATA (string), buf, SBYTES (string),
935 0, 1);
936
937 ret = make_multibyte_string (buf, SCHARS (string), nbytes);
938 SAFE_FREE ();
939
940 return ret;
941 }
942
943
944 /* Convert STRING (if unibyte) to a multibyte string without changing
945 the number of characters. Characters 0200 trough 0237 are
946 converted to eight-bit characters. */
947
948 Lisp_Object
949 string_to_multibyte (string)
950 Lisp_Object string;
951 {
952 unsigned char *buf;
953 EMACS_INT nbytes;
954 Lisp_Object ret;
955 USE_SAFE_ALLOCA;
956
957 if (STRING_MULTIBYTE (string))
958 return string;
959
960 nbytes = parse_str_to_multibyte (SDATA (string), SBYTES (string));
961 /* If all the chars are ASCII, they won't need any more bytes once
962 converted. */
963 if (nbytes == SBYTES (string))
964 return make_multibyte_string (SDATA (string), nbytes, nbytes);
965
966 SAFE_ALLOCA (buf, unsigned char *, nbytes);
967 bcopy (SDATA (string), buf, SBYTES (string));
968 str_to_multibyte (buf, nbytes, SBYTES (string));
969
970 ret = make_multibyte_string (buf, SCHARS (string), nbytes);
971 SAFE_FREE ();
972
973 return ret;
974 }
975
976
977 /* Convert STRING to a single-byte string. */
978
979 Lisp_Object
980 string_make_unibyte (string)
981 Lisp_Object string;
982 {
983 int nchars;
984 unsigned char *buf;
985 Lisp_Object ret;
986 USE_SAFE_ALLOCA;
987
988 if (! STRING_MULTIBYTE (string))
989 return string;
990
991 nchars = SCHARS (string);
992
993 SAFE_ALLOCA (buf, unsigned char *, nchars);
994 copy_text (SDATA (string), buf, SBYTES (string),
995 1, 0);
996
997 ret = make_unibyte_string (buf, nchars);
998 SAFE_FREE ();
999
1000 return ret;
1001 }
1002
1003 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
1004 1, 1, 0,
1005 doc: /* Return the multibyte equivalent of STRING.
1006 If STRING is unibyte and contains non-ASCII characters, the function
1007 `unibyte-char-to-multibyte' is used to convert each unibyte character
1008 to a multibyte character. In this case, the returned string is a
1009 newly created string with no text properties. If STRING is multibyte
1010 or entirely ASCII, it is returned unchanged. In particular, when
1011 STRING is unibyte and entirely ASCII, the returned string is unibyte.
1012 \(When the characters are all ASCII, Emacs primitives will treat the
1013 string the same way whether it is unibyte or multibyte.) */)
1014 (string)
1015 Lisp_Object string;
1016 {
1017 CHECK_STRING (string);
1018
1019 return string_make_multibyte (string);
1020 }
1021
1022 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
1023 1, 1, 0,
1024 doc: /* Return the unibyte equivalent of STRING.
1025 Multibyte character codes are converted to unibyte according to
1026 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
1027 If the lookup in the translation table fails, this function takes just
1028 the low 8 bits of each character. */)
1029 (string)
1030 Lisp_Object string;
1031 {
1032 CHECK_STRING (string);
1033
1034 return string_make_unibyte (string);
1035 }
1036
1037 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
1038 1, 1, 0,
1039 doc: /* Return a unibyte string with the same individual bytes as STRING.
1040 If STRING is unibyte, the result is STRING itself.
1041 Otherwise it is a newly created string, with no text properties.
1042 If STRING is multibyte and contains a character of charset
1043 `eight-bit', it is converted to the corresponding single byte. */)
1044 (string)
1045 Lisp_Object string;
1046 {
1047 CHECK_STRING (string);
1048
1049 if (STRING_MULTIBYTE (string))
1050 {
1051 int bytes = SBYTES (string);
1052 unsigned char *str = (unsigned char *) xmalloc (bytes);
1053
1054 bcopy (SDATA (string), str, bytes);
1055 bytes = str_as_unibyte (str, bytes);
1056 string = make_unibyte_string (str, bytes);
1057 xfree (str);
1058 }
1059 return string;
1060 }
1061
1062 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1063 1, 1, 0,
1064 doc: /* Return a multibyte string with the same individual bytes as STRING.
1065 If STRING is multibyte, the result is STRING itself.
1066 Otherwise it is a newly created string, with no text properties.
1067
1068 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1069 part of a correct utf-8 sequence), it is converted to the corresponding
1070 multibyte character of charset `eight-bit'.
1071 See also `string-to-multibyte'.
1072
1073 Beware, this often doesn't really do what you think it does.
1074 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1075 If you're not sure, whether to use `string-as-multibyte' or
1076 `string-to-multibyte', use `string-to-multibyte'. */)
1077 (string)
1078 Lisp_Object string;
1079 {
1080 CHECK_STRING (string);
1081
1082 if (! STRING_MULTIBYTE (string))
1083 {
1084 Lisp_Object new_string;
1085 int nchars, nbytes;
1086
1087 parse_str_as_multibyte (SDATA (string),
1088 SBYTES (string),
1089 &nchars, &nbytes);
1090 new_string = make_uninit_multibyte_string (nchars, nbytes);
1091 bcopy (SDATA (string), SDATA (new_string),
1092 SBYTES (string));
1093 if (nbytes != SBYTES (string))
1094 str_as_multibyte (SDATA (new_string), nbytes,
1095 SBYTES (string), NULL);
1096 string = new_string;
1097 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1098 }
1099 return string;
1100 }
1101
1102 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1103 1, 1, 0,
1104 doc: /* Return a multibyte string with the same individual chars as STRING.
1105 If STRING is multibyte, the result is STRING itself.
1106 Otherwise it is a newly created string, with no text properties.
1107
1108 If STRING is unibyte and contains an 8-bit byte, it is converted to
1109 the corresponding multibyte character of charset `eight-bit'.
1110
1111 This differs from `string-as-multibyte' by converting each byte of a correct
1112 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1113 correct sequence. */)
1114 (string)
1115 Lisp_Object string;
1116 {
1117 CHECK_STRING (string);
1118
1119 return string_to_multibyte (string);
1120 }
1121
1122 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1123 1, 1, 0,
1124 doc: /* Return a unibyte string with the same individual chars as STRING.
1125 If STRING is unibyte, the result is STRING itself.
1126 Otherwise it is a newly created string, with no text properties,
1127 where each `eight-bit' character is converted to the corresponding byte.
1128 If STRING contains a non-ASCII, non-`eight-bit' character,
1129 an error is signaled. */)
1130 (string)
1131 Lisp_Object string;
1132 {
1133 CHECK_STRING (string);
1134
1135 if (STRING_MULTIBYTE (string))
1136 {
1137 EMACS_INT chars = SCHARS (string);
1138 unsigned char *str = (unsigned char *) xmalloc (chars);
1139 EMACS_INT converted = str_to_unibyte (SDATA (string), str, chars, 0);
1140
1141 if (converted < chars)
1142 error ("Can't convert the %dth character to unibyte", converted);
1143 string = make_unibyte_string (str, chars);
1144 xfree (str);
1145 }
1146 return string;
1147 }
1148
1149 \f
1150 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1151 doc: /* Return a copy of ALIST.
1152 This is an alist which represents the same mapping from objects to objects,
1153 but does not share the alist structure with ALIST.
1154 The objects mapped (cars and cdrs of elements of the alist)
1155 are shared, however.
1156 Elements of ALIST that are not conses are also shared. */)
1157 (alist)
1158 Lisp_Object alist;
1159 {
1160 register Lisp_Object tem;
1161
1162 CHECK_LIST (alist);
1163 if (NILP (alist))
1164 return alist;
1165 alist = concat (1, &alist, Lisp_Cons, 0);
1166 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1167 {
1168 register Lisp_Object car;
1169 car = XCAR (tem);
1170
1171 if (CONSP (car))
1172 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1173 }
1174 return alist;
1175 }
1176
1177 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1178 doc: /* Return a new string whose contents are a substring of STRING.
1179 The returned string consists of the characters between index FROM
1180 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1181 zero-indexed: 0 means the first character of STRING. Negative values
1182 are counted from the end of STRING. If TO is nil, the substring runs
1183 to the end of STRING.
1184
1185 The STRING argument may also be a vector. In that case, the return
1186 value is a new vector that contains the elements between index FROM
1187 \(inclusive) and index TO (exclusive) of that vector argument. */)
1188 (string, from, to)
1189 Lisp_Object string;
1190 register Lisp_Object from, to;
1191 {
1192 Lisp_Object res;
1193 int size;
1194 int size_byte = 0;
1195 int from_char, to_char;
1196 int from_byte = 0, to_byte = 0;
1197
1198 CHECK_VECTOR_OR_STRING (string);
1199 CHECK_NUMBER (from);
1200
1201 if (STRINGP (string))
1202 {
1203 size = SCHARS (string);
1204 size_byte = SBYTES (string);
1205 }
1206 else
1207 size = ASIZE (string);
1208
1209 if (NILP (to))
1210 {
1211 to_char = size;
1212 to_byte = size_byte;
1213 }
1214 else
1215 {
1216 CHECK_NUMBER (to);
1217
1218 to_char = XINT (to);
1219 if (to_char < 0)
1220 to_char += size;
1221
1222 if (STRINGP (string))
1223 to_byte = string_char_to_byte (string, to_char);
1224 }
1225
1226 from_char = XINT (from);
1227 if (from_char < 0)
1228 from_char += size;
1229 if (STRINGP (string))
1230 from_byte = string_char_to_byte (string, from_char);
1231
1232 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1233 args_out_of_range_3 (string, make_number (from_char),
1234 make_number (to_char));
1235
1236 if (STRINGP (string))
1237 {
1238 res = make_specified_string (SDATA (string) + from_byte,
1239 to_char - from_char, to_byte - from_byte,
1240 STRING_MULTIBYTE (string));
1241 copy_text_properties (make_number (from_char), make_number (to_char),
1242 string, make_number (0), res, Qnil);
1243 }
1244 else
1245 res = Fvector (to_char - from_char, &AREF (string, from_char));
1246
1247 return res;
1248 }
1249
1250
1251 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1252 doc: /* Return a substring of STRING, without text properties.
1253 It starts at index FROM and ending before TO.
1254 TO may be nil or omitted; then the substring runs to the end of STRING.
1255 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1256 If FROM or TO is negative, it counts from the end.
1257
1258 With one argument, just copy STRING without its properties. */)
1259 (string, from, to)
1260 Lisp_Object string;
1261 register Lisp_Object from, to;
1262 {
1263 int size, size_byte;
1264 int from_char, to_char;
1265 int from_byte, to_byte;
1266
1267 CHECK_STRING (string);
1268
1269 size = SCHARS (string);
1270 size_byte = SBYTES (string);
1271
1272 if (NILP (from))
1273 from_char = from_byte = 0;
1274 else
1275 {
1276 CHECK_NUMBER (from);
1277 from_char = XINT (from);
1278 if (from_char < 0)
1279 from_char += size;
1280
1281 from_byte = string_char_to_byte (string, from_char);
1282 }
1283
1284 if (NILP (to))
1285 {
1286 to_char = size;
1287 to_byte = size_byte;
1288 }
1289 else
1290 {
1291 CHECK_NUMBER (to);
1292
1293 to_char = XINT (to);
1294 if (to_char < 0)
1295 to_char += size;
1296
1297 to_byte = string_char_to_byte (string, to_char);
1298 }
1299
1300 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1301 args_out_of_range_3 (string, make_number (from_char),
1302 make_number (to_char));
1303
1304 return make_specified_string (SDATA (string) + from_byte,
1305 to_char - from_char, to_byte - from_byte,
1306 STRING_MULTIBYTE (string));
1307 }
1308
1309 /* Extract a substring of STRING, giving start and end positions
1310 both in characters and in bytes. */
1311
1312 Lisp_Object
1313 substring_both (string, from, from_byte, to, to_byte)
1314 Lisp_Object string;
1315 int from, from_byte, to, to_byte;
1316 {
1317 Lisp_Object res;
1318 int size;
1319 int size_byte;
1320
1321 CHECK_VECTOR_OR_STRING (string);
1322
1323 if (STRINGP (string))
1324 {
1325 size = SCHARS (string);
1326 size_byte = SBYTES (string);
1327 }
1328 else
1329 size = ASIZE (string);
1330
1331 if (!(0 <= from && from <= to && to <= size))
1332 args_out_of_range_3 (string, make_number (from), make_number (to));
1333
1334 if (STRINGP (string))
1335 {
1336 res = make_specified_string (SDATA (string) + from_byte,
1337 to - from, to_byte - from_byte,
1338 STRING_MULTIBYTE (string));
1339 copy_text_properties (make_number (from), make_number (to),
1340 string, make_number (0), res, Qnil);
1341 }
1342 else
1343 res = Fvector (to - from, &AREF (string, from));
1344
1345 return res;
1346 }
1347 \f
1348 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1349 doc: /* Take cdr N times on LIST, returns the result. */)
1350 (n, list)
1351 Lisp_Object n;
1352 register Lisp_Object list;
1353 {
1354 register int i, num;
1355 CHECK_NUMBER (n);
1356 num = XINT (n);
1357 for (i = 0; i < num && !NILP (list); i++)
1358 {
1359 QUIT;
1360 CHECK_LIST_CONS (list, list);
1361 list = XCDR (list);
1362 }
1363 return list;
1364 }
1365
1366 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1367 doc: /* Return the Nth element of LIST.
1368 N counts from zero. If LIST is not that long, nil is returned. */)
1369 (n, list)
1370 Lisp_Object n, list;
1371 {
1372 return Fcar (Fnthcdr (n, list));
1373 }
1374
1375 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1376 doc: /* Return element of SEQUENCE at index N. */)
1377 (sequence, n)
1378 register Lisp_Object sequence, n;
1379 {
1380 CHECK_NUMBER (n);
1381 if (CONSP (sequence) || NILP (sequence))
1382 return Fcar (Fnthcdr (n, sequence));
1383
1384 /* Faref signals a "not array" error, so check here. */
1385 CHECK_ARRAY (sequence, Qsequencep);
1386 return Faref (sequence, n);
1387 }
1388
1389 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1390 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1391 The value is actually the tail of LIST whose car is ELT. */)
1392 (elt, list)
1393 register Lisp_Object elt;
1394 Lisp_Object list;
1395 {
1396 register Lisp_Object tail;
1397 for (tail = list; CONSP (tail); tail = XCDR (tail))
1398 {
1399 register Lisp_Object tem;
1400 CHECK_LIST_CONS (tail, list);
1401 tem = XCAR (tail);
1402 if (! NILP (Fequal (elt, tem)))
1403 return tail;
1404 QUIT;
1405 }
1406 return Qnil;
1407 }
1408
1409 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1410 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1411 The value is actually the tail of LIST whose car is ELT. */)
1412 (elt, list)
1413 register Lisp_Object elt, list;
1414 {
1415 while (1)
1416 {
1417 if (!CONSP (list) || EQ (XCAR (list), elt))
1418 break;
1419
1420 list = XCDR (list);
1421 if (!CONSP (list) || EQ (XCAR (list), elt))
1422 break;
1423
1424 list = XCDR (list);
1425 if (!CONSP (list) || EQ (XCAR (list), elt))
1426 break;
1427
1428 list = XCDR (list);
1429 QUIT;
1430 }
1431
1432 CHECK_LIST (list);
1433 return list;
1434 }
1435
1436 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1437 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1438 The value is actually the tail of LIST whose car is ELT. */)
1439 (elt, list)
1440 register Lisp_Object elt;
1441 Lisp_Object list;
1442 {
1443 register Lisp_Object tail;
1444
1445 if (!FLOATP (elt))
1446 return Fmemq (elt, list);
1447
1448 for (tail = list; CONSP (tail); tail = XCDR (tail))
1449 {
1450 register Lisp_Object tem;
1451 CHECK_LIST_CONS (tail, list);
1452 tem = XCAR (tail);
1453 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1454 return tail;
1455 QUIT;
1456 }
1457 return Qnil;
1458 }
1459
1460 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1461 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1462 The value is actually the first element of LIST whose car is KEY.
1463 Elements of LIST that are not conses are ignored. */)
1464 (key, list)
1465 Lisp_Object key, list;
1466 {
1467 while (1)
1468 {
1469 if (!CONSP (list)
1470 || (CONSP (XCAR (list))
1471 && EQ (XCAR (XCAR (list)), key)))
1472 break;
1473
1474 list = XCDR (list);
1475 if (!CONSP (list)
1476 || (CONSP (XCAR (list))
1477 && EQ (XCAR (XCAR (list)), key)))
1478 break;
1479
1480 list = XCDR (list);
1481 if (!CONSP (list)
1482 || (CONSP (XCAR (list))
1483 && EQ (XCAR (XCAR (list)), key)))
1484 break;
1485
1486 list = XCDR (list);
1487 QUIT;
1488 }
1489
1490 return CAR (list);
1491 }
1492
1493 /* Like Fassq but never report an error and do not allow quits.
1494 Use only on lists known never to be circular. */
1495
1496 Lisp_Object
1497 assq_no_quit (key, list)
1498 Lisp_Object key, list;
1499 {
1500 while (CONSP (list)
1501 && (!CONSP (XCAR (list))
1502 || !EQ (XCAR (XCAR (list)), key)))
1503 list = XCDR (list);
1504
1505 return CAR_SAFE (list);
1506 }
1507
1508 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1509 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1510 The value is actually the first element of LIST whose car equals KEY. */)
1511 (key, list)
1512 Lisp_Object key, list;
1513 {
1514 Lisp_Object car;
1515
1516 while (1)
1517 {
1518 if (!CONSP (list)
1519 || (CONSP (XCAR (list))
1520 && (car = XCAR (XCAR (list)),
1521 EQ (car, key) || !NILP (Fequal (car, key)))))
1522 break;
1523
1524 list = XCDR (list);
1525 if (!CONSP (list)
1526 || (CONSP (XCAR (list))
1527 && (car = XCAR (XCAR (list)),
1528 EQ (car, key) || !NILP (Fequal (car, key)))))
1529 break;
1530
1531 list = XCDR (list);
1532 if (!CONSP (list)
1533 || (CONSP (XCAR (list))
1534 && (car = XCAR (XCAR (list)),
1535 EQ (car, key) || !NILP (Fequal (car, key)))))
1536 break;
1537
1538 list = XCDR (list);
1539 QUIT;
1540 }
1541
1542 return CAR (list);
1543 }
1544
1545 /* Like Fassoc but never report an error and do not allow quits.
1546 Use only on lists known never to be circular. */
1547
1548 Lisp_Object
1549 assoc_no_quit (key, list)
1550 Lisp_Object key, list;
1551 {
1552 while (CONSP (list)
1553 && (!CONSP (XCAR (list))
1554 || (!EQ (XCAR (XCAR (list)), key)
1555 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1556 list = XCDR (list);
1557
1558 return CONSP (list) ? XCAR (list) : Qnil;
1559 }
1560
1561 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1562 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1563 The value is actually the first element of LIST whose cdr is KEY. */)
1564 (key, list)
1565 register Lisp_Object key;
1566 Lisp_Object list;
1567 {
1568 while (1)
1569 {
1570 if (!CONSP (list)
1571 || (CONSP (XCAR (list))
1572 && EQ (XCDR (XCAR (list)), key)))
1573 break;
1574
1575 list = XCDR (list);
1576 if (!CONSP (list)
1577 || (CONSP (XCAR (list))
1578 && EQ (XCDR (XCAR (list)), key)))
1579 break;
1580
1581 list = XCDR (list);
1582 if (!CONSP (list)
1583 || (CONSP (XCAR (list))
1584 && EQ (XCDR (XCAR (list)), key)))
1585 break;
1586
1587 list = XCDR (list);
1588 QUIT;
1589 }
1590
1591 return CAR (list);
1592 }
1593
1594 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1595 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1596 The value is actually the first element of LIST whose cdr equals KEY. */)
1597 (key, list)
1598 Lisp_Object key, list;
1599 {
1600 Lisp_Object cdr;
1601
1602 while (1)
1603 {
1604 if (!CONSP (list)
1605 || (CONSP (XCAR (list))
1606 && (cdr = XCDR (XCAR (list)),
1607 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1608 break;
1609
1610 list = XCDR (list);
1611 if (!CONSP (list)
1612 || (CONSP (XCAR (list))
1613 && (cdr = XCDR (XCAR (list)),
1614 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1615 break;
1616
1617 list = XCDR (list);
1618 if (!CONSP (list)
1619 || (CONSP (XCAR (list))
1620 && (cdr = XCDR (XCAR (list)),
1621 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1622 break;
1623
1624 list = XCDR (list);
1625 QUIT;
1626 }
1627
1628 return CAR (list);
1629 }
1630 \f
1631 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1632 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1633 The modified LIST is returned. Comparison is done with `eq'.
1634 If the first member of LIST is ELT, there is no way to remove it by side effect;
1635 therefore, write `(setq foo (delq element foo))'
1636 to be sure of changing the value of `foo'. */)
1637 (elt, list)
1638 register Lisp_Object elt;
1639 Lisp_Object list;
1640 {
1641 register Lisp_Object tail, prev;
1642 register Lisp_Object tem;
1643
1644 tail = list;
1645 prev = Qnil;
1646 while (!NILP (tail))
1647 {
1648 CHECK_LIST_CONS (tail, list);
1649 tem = XCAR (tail);
1650 if (EQ (elt, tem))
1651 {
1652 if (NILP (prev))
1653 list = XCDR (tail);
1654 else
1655 Fsetcdr (prev, XCDR (tail));
1656 }
1657 else
1658 prev = tail;
1659 tail = XCDR (tail);
1660 QUIT;
1661 }
1662 return list;
1663 }
1664
1665 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1666 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1667 SEQ must be a list, a vector, or a string.
1668 The modified SEQ is returned. Comparison is done with `equal'.
1669 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1670 is not a side effect; it is simply using a different sequence.
1671 Therefore, write `(setq foo (delete element foo))'
1672 to be sure of changing the value of `foo'. */)
1673 (elt, seq)
1674 Lisp_Object elt, seq;
1675 {
1676 if (VECTORP (seq))
1677 {
1678 EMACS_INT i, n;
1679
1680 for (i = n = 0; i < ASIZE (seq); ++i)
1681 if (NILP (Fequal (AREF (seq, i), elt)))
1682 ++n;
1683
1684 if (n != ASIZE (seq))
1685 {
1686 struct Lisp_Vector *p = allocate_vector (n);
1687
1688 for (i = n = 0; i < ASIZE (seq); ++i)
1689 if (NILP (Fequal (AREF (seq, i), elt)))
1690 p->contents[n++] = AREF (seq, i);
1691
1692 XSETVECTOR (seq, p);
1693 }
1694 }
1695 else if (STRINGP (seq))
1696 {
1697 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1698 int c;
1699
1700 for (i = nchars = nbytes = ibyte = 0;
1701 i < SCHARS (seq);
1702 ++i, ibyte += cbytes)
1703 {
1704 if (STRING_MULTIBYTE (seq))
1705 {
1706 c = STRING_CHAR (SDATA (seq) + ibyte);
1707 cbytes = CHAR_BYTES (c);
1708 }
1709 else
1710 {
1711 c = SREF (seq, i);
1712 cbytes = 1;
1713 }
1714
1715 if (!INTEGERP (elt) || c != XINT (elt))
1716 {
1717 ++nchars;
1718 nbytes += cbytes;
1719 }
1720 }
1721
1722 if (nchars != SCHARS (seq))
1723 {
1724 Lisp_Object tem;
1725
1726 tem = make_uninit_multibyte_string (nchars, nbytes);
1727 if (!STRING_MULTIBYTE (seq))
1728 STRING_SET_UNIBYTE (tem);
1729
1730 for (i = nchars = nbytes = ibyte = 0;
1731 i < SCHARS (seq);
1732 ++i, ibyte += cbytes)
1733 {
1734 if (STRING_MULTIBYTE (seq))
1735 {
1736 c = STRING_CHAR (SDATA (seq) + ibyte);
1737 cbytes = CHAR_BYTES (c);
1738 }
1739 else
1740 {
1741 c = SREF (seq, i);
1742 cbytes = 1;
1743 }
1744
1745 if (!INTEGERP (elt) || c != XINT (elt))
1746 {
1747 unsigned char *from = SDATA (seq) + ibyte;
1748 unsigned char *to = SDATA (tem) + nbytes;
1749 EMACS_INT n;
1750
1751 ++nchars;
1752 nbytes += cbytes;
1753
1754 for (n = cbytes; n--; )
1755 *to++ = *from++;
1756 }
1757 }
1758
1759 seq = tem;
1760 }
1761 }
1762 else
1763 {
1764 Lisp_Object tail, prev;
1765
1766 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1767 {
1768 CHECK_LIST_CONS (tail, seq);
1769
1770 if (!NILP (Fequal (elt, XCAR (tail))))
1771 {
1772 if (NILP (prev))
1773 seq = XCDR (tail);
1774 else
1775 Fsetcdr (prev, XCDR (tail));
1776 }
1777 else
1778 prev = tail;
1779 QUIT;
1780 }
1781 }
1782
1783 return seq;
1784 }
1785
1786 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1787 doc: /* Reverse LIST by modifying cdr pointers.
1788 Return the reversed list. */)
1789 (list)
1790 Lisp_Object list;
1791 {
1792 register Lisp_Object prev, tail, next;
1793
1794 if (NILP (list)) return list;
1795 prev = Qnil;
1796 tail = list;
1797 while (!NILP (tail))
1798 {
1799 QUIT;
1800 CHECK_LIST_CONS (tail, list);
1801 next = XCDR (tail);
1802 Fsetcdr (tail, prev);
1803 prev = tail;
1804 tail = next;
1805 }
1806 return prev;
1807 }
1808
1809 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1810 doc: /* Reverse LIST, copying. Return the reversed list.
1811 See also the function `nreverse', which is used more often. */)
1812 (list)
1813 Lisp_Object list;
1814 {
1815 Lisp_Object new;
1816
1817 for (new = Qnil; CONSP (list); list = XCDR (list))
1818 {
1819 QUIT;
1820 new = Fcons (XCAR (list), new);
1821 }
1822 CHECK_LIST_END (list, list);
1823 return new;
1824 }
1825 \f
1826 Lisp_Object merge ();
1827
1828 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1829 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1830 Returns the sorted list. LIST is modified by side effects.
1831 PREDICATE is called with two elements of LIST, and should return non-nil
1832 if the first element should sort before the second. */)
1833 (list, predicate)
1834 Lisp_Object list, predicate;
1835 {
1836 Lisp_Object front, back;
1837 register Lisp_Object len, tem;
1838 struct gcpro gcpro1, gcpro2;
1839 register int length;
1840
1841 front = list;
1842 len = Flength (list);
1843 length = XINT (len);
1844 if (length < 2)
1845 return list;
1846
1847 XSETINT (len, (length / 2) - 1);
1848 tem = Fnthcdr (len, list);
1849 back = Fcdr (tem);
1850 Fsetcdr (tem, Qnil);
1851
1852 GCPRO2 (front, back);
1853 front = Fsort (front, predicate);
1854 back = Fsort (back, predicate);
1855 UNGCPRO;
1856 return merge (front, back, predicate);
1857 }
1858
1859 Lisp_Object
1860 merge (org_l1, org_l2, pred)
1861 Lisp_Object org_l1, org_l2;
1862 Lisp_Object pred;
1863 {
1864 Lisp_Object value;
1865 register Lisp_Object tail;
1866 Lisp_Object tem;
1867 register Lisp_Object l1, l2;
1868 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1869
1870 l1 = org_l1;
1871 l2 = org_l2;
1872 tail = Qnil;
1873 value = Qnil;
1874
1875 /* It is sufficient to protect org_l1 and org_l2.
1876 When l1 and l2 are updated, we copy the new values
1877 back into the org_ vars. */
1878 GCPRO4 (org_l1, org_l2, pred, value);
1879
1880 while (1)
1881 {
1882 if (NILP (l1))
1883 {
1884 UNGCPRO;
1885 if (NILP (tail))
1886 return l2;
1887 Fsetcdr (tail, l2);
1888 return value;
1889 }
1890 if (NILP (l2))
1891 {
1892 UNGCPRO;
1893 if (NILP (tail))
1894 return l1;
1895 Fsetcdr (tail, l1);
1896 return value;
1897 }
1898 tem = call2 (pred, Fcar (l2), Fcar (l1));
1899 if (NILP (tem))
1900 {
1901 tem = l1;
1902 l1 = Fcdr (l1);
1903 org_l1 = l1;
1904 }
1905 else
1906 {
1907 tem = l2;
1908 l2 = Fcdr (l2);
1909 org_l2 = l2;
1910 }
1911 if (NILP (tail))
1912 value = tem;
1913 else
1914 Fsetcdr (tail, tem);
1915 tail = tem;
1916 }
1917 }
1918
1919 \f
1920 /* This does not check for quits. That is safe since it must terminate. */
1921
1922 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1923 doc: /* Extract a value from a property list.
1924 PLIST is a property list, which is a list of the form
1925 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1926 corresponding to the given PROP, or nil if PROP is not one of the
1927 properties on the list. This function never signals an error. */)
1928 (plist, prop)
1929 Lisp_Object plist;
1930 Lisp_Object prop;
1931 {
1932 Lisp_Object tail, halftail;
1933
1934 /* halftail is used to detect circular lists. */
1935 tail = halftail = plist;
1936 while (CONSP (tail) && CONSP (XCDR (tail)))
1937 {
1938 if (EQ (prop, XCAR (tail)))
1939 return XCAR (XCDR (tail));
1940
1941 tail = XCDR (XCDR (tail));
1942 halftail = XCDR (halftail);
1943 if (EQ (tail, halftail))
1944 break;
1945
1946 #if 0 /* Unsafe version. */
1947 /* This function can be called asynchronously
1948 (setup_coding_system). Don't QUIT in that case. */
1949 if (!interrupt_input_blocked)
1950 QUIT;
1951 #endif
1952 }
1953
1954 return Qnil;
1955 }
1956
1957 DEFUN ("get", Fget, Sget, 2, 2, 0,
1958 doc: /* Return the value of SYMBOL's PROPNAME property.
1959 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1960 (symbol, propname)
1961 Lisp_Object symbol, propname;
1962 {
1963 CHECK_SYMBOL (symbol);
1964 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1965 }
1966
1967 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1968 doc: /* Change value in PLIST of PROP to VAL.
1969 PLIST is a property list, which is a list of the form
1970 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1971 If PROP is already a property on the list, its value is set to VAL,
1972 otherwise the new PROP VAL pair is added. The new plist is returned;
1973 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1974 The PLIST is modified by side effects. */)
1975 (plist, prop, val)
1976 Lisp_Object plist;
1977 register Lisp_Object prop;
1978 Lisp_Object val;
1979 {
1980 register Lisp_Object tail, prev;
1981 Lisp_Object newcell;
1982 prev = Qnil;
1983 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1984 tail = XCDR (XCDR (tail)))
1985 {
1986 if (EQ (prop, XCAR (tail)))
1987 {
1988 Fsetcar (XCDR (tail), val);
1989 return plist;
1990 }
1991
1992 prev = tail;
1993 QUIT;
1994 }
1995 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1996 if (NILP (prev))
1997 return newcell;
1998 else
1999 Fsetcdr (XCDR (prev), newcell);
2000 return plist;
2001 }
2002
2003 DEFUN ("put", Fput, Sput, 3, 3, 0,
2004 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
2005 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
2006 (symbol, propname, value)
2007 Lisp_Object symbol, propname, value;
2008 {
2009 CHECK_SYMBOL (symbol);
2010 XSYMBOL (symbol)->plist
2011 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
2012 return value;
2013 }
2014 \f
2015 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
2016 doc: /* Extract a value from a property list, comparing with `equal'.
2017 PLIST is a property list, which is a list of the form
2018 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
2019 corresponding to the given PROP, or nil if PROP is not
2020 one of the properties on the list. */)
2021 (plist, prop)
2022 Lisp_Object plist;
2023 Lisp_Object prop;
2024 {
2025 Lisp_Object tail;
2026
2027 for (tail = plist;
2028 CONSP (tail) && CONSP (XCDR (tail));
2029 tail = XCDR (XCDR (tail)))
2030 {
2031 if (! NILP (Fequal (prop, XCAR (tail))))
2032 return XCAR (XCDR (tail));
2033
2034 QUIT;
2035 }
2036
2037 CHECK_LIST_END (tail, prop);
2038
2039 return Qnil;
2040 }
2041
2042 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
2043 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
2044 PLIST is a property list, which is a list of the form
2045 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
2046 If PROP is already a property on the list, its value is set to VAL,
2047 otherwise the new PROP VAL pair is added. The new plist is returned;
2048 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
2049 The PLIST is modified by side effects. */)
2050 (plist, prop, val)
2051 Lisp_Object plist;
2052 register Lisp_Object prop;
2053 Lisp_Object val;
2054 {
2055 register Lisp_Object tail, prev;
2056 Lisp_Object newcell;
2057 prev = Qnil;
2058 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2059 tail = XCDR (XCDR (tail)))
2060 {
2061 if (! NILP (Fequal (prop, XCAR (tail))))
2062 {
2063 Fsetcar (XCDR (tail), val);
2064 return plist;
2065 }
2066
2067 prev = tail;
2068 QUIT;
2069 }
2070 newcell = Fcons (prop, Fcons (val, Qnil));
2071 if (NILP (prev))
2072 return newcell;
2073 else
2074 Fsetcdr (XCDR (prev), newcell);
2075 return plist;
2076 }
2077 \f
2078 DEFUN ("eql", Feql, Seql, 2, 2, 0,
2079 doc: /* Return t if the two args are the same Lisp object.
2080 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
2081 (obj1, obj2)
2082 Lisp_Object obj1, obj2;
2083 {
2084 if (FLOATP (obj1))
2085 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
2086 else
2087 return EQ (obj1, obj2) ? Qt : Qnil;
2088 }
2089
2090 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
2091 doc: /* Return t if two Lisp objects have similar structure and contents.
2092 They must have the same data type.
2093 Conses are compared by comparing the cars and the cdrs.
2094 Vectors and strings are compared element by element.
2095 Numbers are compared by value, but integers cannot equal floats.
2096 (Use `=' if you want integers and floats to be able to be equal.)
2097 Symbols must match exactly. */)
2098 (o1, o2)
2099 register Lisp_Object o1, o2;
2100 {
2101 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
2102 }
2103
2104 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2105 doc: /* Return t if two Lisp objects have similar structure and contents.
2106 This is like `equal' except that it compares the text properties
2107 of strings. (`equal' ignores text properties.) */)
2108 (o1, o2)
2109 register Lisp_Object o1, o2;
2110 {
2111 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
2112 }
2113
2114 /* DEPTH is current depth of recursion. Signal an error if it
2115 gets too deep.
2116 PROPS, if non-nil, means compare string text properties too. */
2117
2118 static int
2119 internal_equal (o1, o2, depth, props)
2120 register Lisp_Object o1, o2;
2121 int depth, props;
2122 {
2123 if (depth > 200)
2124 error ("Stack overflow in equal");
2125
2126 tail_recurse:
2127 QUIT;
2128 if (EQ (o1, o2))
2129 return 1;
2130 if (XTYPE (o1) != XTYPE (o2))
2131 return 0;
2132
2133 switch (XTYPE (o1))
2134 {
2135 case Lisp_Float:
2136 {
2137 double d1, d2;
2138
2139 d1 = extract_float (o1);
2140 d2 = extract_float (o2);
2141 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2142 though they are not =. */
2143 return d1 == d2 || (d1 != d1 && d2 != d2);
2144 }
2145
2146 case Lisp_Cons:
2147 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2148 return 0;
2149 o1 = XCDR (o1);
2150 o2 = XCDR (o2);
2151 goto tail_recurse;
2152
2153 case Lisp_Misc:
2154 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2155 return 0;
2156 if (OVERLAYP (o1))
2157 {
2158 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2159 depth + 1, props)
2160 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2161 depth + 1, props))
2162 return 0;
2163 o1 = XOVERLAY (o1)->plist;
2164 o2 = XOVERLAY (o2)->plist;
2165 goto tail_recurse;
2166 }
2167 if (MARKERP (o1))
2168 {
2169 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2170 && (XMARKER (o1)->buffer == 0
2171 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2172 }
2173 break;
2174
2175 case Lisp_Vectorlike:
2176 {
2177 register int i;
2178 EMACS_INT size = ASIZE (o1);
2179 /* Pseudovectors have the type encoded in the size field, so this test
2180 actually checks that the objects have the same type as well as the
2181 same size. */
2182 if (ASIZE (o2) != size)
2183 return 0;
2184 /* Boolvectors are compared much like strings. */
2185 if (BOOL_VECTOR_P (o1))
2186 {
2187 int size_in_chars
2188 = ((XBOOL_VECTOR (o1)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2189 / BOOL_VECTOR_BITS_PER_CHAR);
2190
2191 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2192 return 0;
2193 if (bcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2194 size_in_chars))
2195 return 0;
2196 return 1;
2197 }
2198 if (WINDOW_CONFIGURATIONP (o1))
2199 return compare_window_configurations (o1, o2, 0);
2200
2201 /* Aside from them, only true vectors, char-tables, compiled
2202 functions, and fonts (font-spec, font-entity, font-ojbect)
2203 are sensible to compare, so eliminate the others now. */
2204 if (size & PSEUDOVECTOR_FLAG)
2205 {
2206 if (!(size & (PVEC_COMPILED
2207 | PVEC_CHAR_TABLE | PVEC_SUB_CHAR_TABLE | PVEC_FONT)))
2208 return 0;
2209 size &= PSEUDOVECTOR_SIZE_MASK;
2210 }
2211 for (i = 0; i < size; i++)
2212 {
2213 Lisp_Object v1, v2;
2214 v1 = AREF (o1, i);
2215 v2 = AREF (o2, i);
2216 if (!internal_equal (v1, v2, depth + 1, props))
2217 return 0;
2218 }
2219 return 1;
2220 }
2221 break;
2222
2223 case Lisp_String:
2224 if (SCHARS (o1) != SCHARS (o2))
2225 return 0;
2226 if (SBYTES (o1) != SBYTES (o2))
2227 return 0;
2228 if (bcmp (SDATA (o1), SDATA (o2),
2229 SBYTES (o1)))
2230 return 0;
2231 if (props && !compare_string_intervals (o1, o2))
2232 return 0;
2233 return 1;
2234
2235 default:
2236 break;
2237 }
2238
2239 return 0;
2240 }
2241 \f
2242 extern Lisp_Object Fmake_char_internal ();
2243
2244 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2245 doc: /* Store each element of ARRAY with ITEM.
2246 ARRAY is a vector, string, char-table, or bool-vector. */)
2247 (array, item)
2248 Lisp_Object array, item;
2249 {
2250 register int size, index, charval;
2251 if (VECTORP (array))
2252 {
2253 register Lisp_Object *p = XVECTOR (array)->contents;
2254 size = ASIZE (array);
2255 for (index = 0; index < size; index++)
2256 p[index] = item;
2257 }
2258 else if (CHAR_TABLE_P (array))
2259 {
2260 int i;
2261
2262 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2263 XCHAR_TABLE (array)->contents[i] = item;
2264 XCHAR_TABLE (array)->defalt = item;
2265 }
2266 else if (STRINGP (array))
2267 {
2268 register unsigned char *p = SDATA (array);
2269 CHECK_NUMBER (item);
2270 charval = XINT (item);
2271 size = SCHARS (array);
2272 if (STRING_MULTIBYTE (array))
2273 {
2274 unsigned char str[MAX_MULTIBYTE_LENGTH];
2275 int len = CHAR_STRING (charval, str);
2276 int size_byte = SBYTES (array);
2277 unsigned char *p1 = p, *endp = p + size_byte;
2278 int i;
2279
2280 if (size != size_byte)
2281 while (p1 < endp)
2282 {
2283 int this_len = MULTIBYTE_FORM_LENGTH (p1, endp - p1);
2284 if (len != this_len)
2285 error ("Attempt to change byte length of a string");
2286 p1 += this_len;
2287 }
2288 for (i = 0; i < size_byte; i++)
2289 *p++ = str[i % len];
2290 }
2291 else
2292 for (index = 0; index < size; index++)
2293 p[index] = charval;
2294 }
2295 else if (BOOL_VECTOR_P (array))
2296 {
2297 register unsigned char *p = XBOOL_VECTOR (array)->data;
2298 int size_in_chars
2299 = ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2300 / BOOL_VECTOR_BITS_PER_CHAR);
2301
2302 charval = (! NILP (item) ? -1 : 0);
2303 for (index = 0; index < size_in_chars - 1; index++)
2304 p[index] = charval;
2305 if (index < size_in_chars)
2306 {
2307 /* Mask out bits beyond the vector size. */
2308 if (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)
2309 charval &= (1 << (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2310 p[index] = charval;
2311 }
2312 }
2313 else
2314 wrong_type_argument (Qarrayp, array);
2315 return array;
2316 }
2317
2318 DEFUN ("clear-string", Fclear_string, Sclear_string,
2319 1, 1, 0,
2320 doc: /* Clear the contents of STRING.
2321 This makes STRING unibyte and may change its length. */)
2322 (string)
2323 Lisp_Object string;
2324 {
2325 int len;
2326 CHECK_STRING (string);
2327 len = SBYTES (string);
2328 bzero (SDATA (string), len);
2329 STRING_SET_CHARS (string, len);
2330 STRING_SET_UNIBYTE (string);
2331 return Qnil;
2332 }
2333 \f
2334 /* ARGSUSED */
2335 Lisp_Object
2336 nconc2 (s1, s2)
2337 Lisp_Object s1, s2;
2338 {
2339 Lisp_Object args[2];
2340 args[0] = s1;
2341 args[1] = s2;
2342 return Fnconc (2, args);
2343 }
2344
2345 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2346 doc: /* Concatenate any number of lists by altering them.
2347 Only the last argument is not altered, and need not be a list.
2348 usage: (nconc &rest LISTS) */)
2349 (nargs, args)
2350 int nargs;
2351 Lisp_Object *args;
2352 {
2353 register int argnum;
2354 register Lisp_Object tail, tem, val;
2355
2356 val = tail = Qnil;
2357
2358 for (argnum = 0; argnum < nargs; argnum++)
2359 {
2360 tem = args[argnum];
2361 if (NILP (tem)) continue;
2362
2363 if (NILP (val))
2364 val = tem;
2365
2366 if (argnum + 1 == nargs) break;
2367
2368 CHECK_LIST_CONS (tem, tem);
2369
2370 while (CONSP (tem))
2371 {
2372 tail = tem;
2373 tem = XCDR (tail);
2374 QUIT;
2375 }
2376
2377 tem = args[argnum + 1];
2378 Fsetcdr (tail, tem);
2379 if (NILP (tem))
2380 args[argnum + 1] = tail;
2381 }
2382
2383 return val;
2384 }
2385 \f
2386 /* This is the guts of all mapping functions.
2387 Apply FN to each element of SEQ, one by one,
2388 storing the results into elements of VALS, a C vector of Lisp_Objects.
2389 LENI is the length of VALS, which should also be the length of SEQ. */
2390
2391 static void
2392 mapcar1 (leni, vals, fn, seq)
2393 int leni;
2394 Lisp_Object *vals;
2395 Lisp_Object fn, seq;
2396 {
2397 register Lisp_Object tail;
2398 Lisp_Object dummy;
2399 register int i;
2400 struct gcpro gcpro1, gcpro2, gcpro3;
2401
2402 if (vals)
2403 {
2404 /* Don't let vals contain any garbage when GC happens. */
2405 for (i = 0; i < leni; i++)
2406 vals[i] = Qnil;
2407
2408 GCPRO3 (dummy, fn, seq);
2409 gcpro1.var = vals;
2410 gcpro1.nvars = leni;
2411 }
2412 else
2413 GCPRO2 (fn, seq);
2414 /* We need not explicitly protect `tail' because it is used only on lists, and
2415 1) lists are not relocated and 2) the list is marked via `seq' so will not
2416 be freed */
2417
2418 if (VECTORP (seq))
2419 {
2420 for (i = 0; i < leni; i++)
2421 {
2422 dummy = call1 (fn, AREF (seq, i));
2423 if (vals)
2424 vals[i] = dummy;
2425 }
2426 }
2427 else if (BOOL_VECTOR_P (seq))
2428 {
2429 for (i = 0; i < leni; i++)
2430 {
2431 int byte;
2432 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2433 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2434 dummy = call1 (fn, dummy);
2435 if (vals)
2436 vals[i] = dummy;
2437 }
2438 }
2439 else if (STRINGP (seq))
2440 {
2441 int i_byte;
2442
2443 for (i = 0, i_byte = 0; i < leni;)
2444 {
2445 int c;
2446 int i_before = i;
2447
2448 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2449 XSETFASTINT (dummy, c);
2450 dummy = call1 (fn, dummy);
2451 if (vals)
2452 vals[i_before] = dummy;
2453 }
2454 }
2455 else /* Must be a list, since Flength did not get an error */
2456 {
2457 tail = seq;
2458 for (i = 0; i < leni && CONSP (tail); i++)
2459 {
2460 dummy = call1 (fn, XCAR (tail));
2461 if (vals)
2462 vals[i] = dummy;
2463 tail = XCDR (tail);
2464 }
2465 }
2466
2467 UNGCPRO;
2468 }
2469
2470 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2471 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2472 In between each pair of results, stick in SEPARATOR. Thus, " " as
2473 SEPARATOR results in spaces between the values returned by FUNCTION.
2474 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2475 (function, sequence, separator)
2476 Lisp_Object function, sequence, separator;
2477 {
2478 Lisp_Object len;
2479 register int leni;
2480 int nargs;
2481 register Lisp_Object *args;
2482 register int i;
2483 struct gcpro gcpro1;
2484 Lisp_Object ret;
2485 USE_SAFE_ALLOCA;
2486
2487 len = Flength (sequence);
2488 if (CHAR_TABLE_P (sequence))
2489 wrong_type_argument (Qlistp, sequence);
2490 leni = XINT (len);
2491 nargs = leni + leni - 1;
2492 if (nargs < 0) return empty_unibyte_string;
2493
2494 SAFE_ALLOCA_LISP (args, nargs);
2495
2496 GCPRO1 (separator);
2497 mapcar1 (leni, args, function, sequence);
2498 UNGCPRO;
2499
2500 for (i = leni - 1; i > 0; i--)
2501 args[i + i] = args[i];
2502
2503 for (i = 1; i < nargs; i += 2)
2504 args[i] = separator;
2505
2506 ret = Fconcat (nargs, args);
2507 SAFE_FREE ();
2508
2509 return ret;
2510 }
2511
2512 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2513 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2514 The result is a list just as long as SEQUENCE.
2515 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2516 (function, sequence)
2517 Lisp_Object function, sequence;
2518 {
2519 register Lisp_Object len;
2520 register int leni;
2521 register Lisp_Object *args;
2522 Lisp_Object ret;
2523 USE_SAFE_ALLOCA;
2524
2525 len = Flength (sequence);
2526 if (CHAR_TABLE_P (sequence))
2527 wrong_type_argument (Qlistp, sequence);
2528 leni = XFASTINT (len);
2529
2530 SAFE_ALLOCA_LISP (args, leni);
2531
2532 mapcar1 (leni, args, function, sequence);
2533
2534 ret = Flist (leni, args);
2535 SAFE_FREE ();
2536
2537 return ret;
2538 }
2539
2540 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2541 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2542 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2543 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2544 (function, sequence)
2545 Lisp_Object function, sequence;
2546 {
2547 register int leni;
2548
2549 leni = XFASTINT (Flength (sequence));
2550 if (CHAR_TABLE_P (sequence))
2551 wrong_type_argument (Qlistp, sequence);
2552 mapcar1 (leni, 0, function, sequence);
2553
2554 return sequence;
2555 }
2556 \f
2557 /* Anything that calls this function must protect from GC! */
2558
2559 DEFUN ("y-or-n-p", Fy_or_n_p, Sy_or_n_p, 1, 1, 0,
2560 doc: /* Ask user a "y or n" question. Return t if answer is "y".
2561 Takes one argument, which is the string to display to ask the question.
2562 It should end in a space; `y-or-n-p' adds `(y or n) ' to it.
2563 No confirmation of the answer is requested; a single character is enough.
2564 Also accepts Space to mean yes, or Delete to mean no. \(Actually, it uses
2565 the bindings in `query-replace-map'; see the documentation of that variable
2566 for more information. In this case, the useful bindings are `act', `skip',
2567 `recenter', and `quit'.\)
2568
2569 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2570 is nil and `use-dialog-box' is non-nil. */)
2571 (prompt)
2572 Lisp_Object prompt;
2573 {
2574 register Lisp_Object obj, key, def, map;
2575 register int answer;
2576 Lisp_Object xprompt;
2577 Lisp_Object args[2];
2578 struct gcpro gcpro1, gcpro2;
2579 int count = SPECPDL_INDEX ();
2580
2581 specbind (Qcursor_in_echo_area, Qt);
2582
2583 map = Fsymbol_value (intern ("query-replace-map"));
2584
2585 CHECK_STRING (prompt);
2586 xprompt = prompt;
2587 GCPRO2 (prompt, xprompt);
2588
2589 #ifdef HAVE_WINDOW_SYSTEM
2590 if (display_hourglass_p)
2591 cancel_hourglass ();
2592 #endif
2593
2594 while (1)
2595 {
2596
2597 #ifdef HAVE_MENUS
2598 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2599 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2600 && use_dialog_box
2601 && have_menus_p ())
2602 {
2603 Lisp_Object pane, menu;
2604 redisplay_preserve_echo_area (3);
2605 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2606 Fcons (Fcons (build_string ("No"), Qnil),
2607 Qnil));
2608 menu = Fcons (prompt, pane);
2609 obj = Fx_popup_dialog (Qt, menu, Qnil);
2610 answer = !NILP (obj);
2611 break;
2612 }
2613 #endif /* HAVE_MENUS */
2614 cursor_in_echo_area = 1;
2615 choose_minibuf_frame ();
2616
2617 {
2618 Lisp_Object pargs[3];
2619
2620 /* Colorize prompt according to `minibuffer-prompt' face. */
2621 pargs[0] = build_string ("%s(y or n) ");
2622 pargs[1] = intern ("face");
2623 pargs[2] = intern ("minibuffer-prompt");
2624 args[0] = Fpropertize (3, pargs);
2625 args[1] = xprompt;
2626 Fmessage (2, args);
2627 }
2628
2629 if (minibuffer_auto_raise)
2630 {
2631 Lisp_Object mini_frame;
2632
2633 mini_frame = WINDOW_FRAME (XWINDOW (minibuf_window));
2634
2635 Fraise_frame (mini_frame);
2636 }
2637
2638 temporarily_switch_to_single_kboard (SELECTED_FRAME ());
2639 obj = read_filtered_event (1, 0, 0, 0, Qnil);
2640 cursor_in_echo_area = 0;
2641 /* If we need to quit, quit with cursor_in_echo_area = 0. */
2642 QUIT;
2643
2644 key = Fmake_vector (make_number (1), obj);
2645 def = Flookup_key (map, key, Qt);
2646
2647 if (EQ (def, intern ("skip")))
2648 {
2649 answer = 0;
2650 break;
2651 }
2652 else if (EQ (def, intern ("act")))
2653 {
2654 answer = 1;
2655 break;
2656 }
2657 else if (EQ (def, intern ("recenter")))
2658 {
2659 Frecenter (Qnil);
2660 xprompt = prompt;
2661 continue;
2662 }
2663 else if (EQ (def, intern ("quit")))
2664 Vquit_flag = Qt;
2665 /* We want to exit this command for exit-prefix,
2666 and this is the only way to do it. */
2667 else if (EQ (def, intern ("exit-prefix")))
2668 Vquit_flag = Qt;
2669
2670 QUIT;
2671
2672 /* If we don't clear this, then the next call to read_char will
2673 return quit_char again, and we'll enter an infinite loop. */
2674 Vquit_flag = Qnil;
2675
2676 Fding (Qnil);
2677 Fdiscard_input ();
2678 if (EQ (xprompt, prompt))
2679 {
2680 args[0] = build_string ("Please answer y or n. ");
2681 args[1] = prompt;
2682 xprompt = Fconcat (2, args);
2683 }
2684 }
2685 UNGCPRO;
2686
2687 if (! noninteractive)
2688 {
2689 cursor_in_echo_area = -1;
2690 message_with_string (answer ? "%s(y or n) y" : "%s(y or n) n",
2691 xprompt, 0);
2692 }
2693
2694 unbind_to (count, Qnil);
2695 return answer ? Qt : Qnil;
2696 }
2697 \f
2698 /* This is how C code calls `yes-or-no-p' and allows the user
2699 to redefined it.
2700
2701 Anything that calls this function must protect from GC! */
2702
2703 Lisp_Object
2704 do_yes_or_no_p (prompt)
2705 Lisp_Object prompt;
2706 {
2707 return call1 (intern ("yes-or-no-p"), prompt);
2708 }
2709
2710 /* Anything that calls this function must protect from GC! */
2711
2712 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2713 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2714 Takes one argument, which is the string to display to ask the question.
2715 It should end in a space; `yes-or-no-p' adds `(yes or no) ' to it.
2716 The user must confirm the answer with RET,
2717 and can edit it until it has been confirmed.
2718
2719 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2720 is nil, and `use-dialog-box' is non-nil. */)
2721 (prompt)
2722 Lisp_Object prompt;
2723 {
2724 register Lisp_Object ans;
2725 Lisp_Object args[2];
2726 struct gcpro gcpro1;
2727
2728 CHECK_STRING (prompt);
2729
2730 #ifdef HAVE_MENUS
2731 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2732 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2733 && use_dialog_box
2734 && have_menus_p ())
2735 {
2736 Lisp_Object pane, menu, obj;
2737 redisplay_preserve_echo_area (4);
2738 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2739 Fcons (Fcons (build_string ("No"), Qnil),
2740 Qnil));
2741 GCPRO1 (pane);
2742 menu = Fcons (prompt, pane);
2743 obj = Fx_popup_dialog (Qt, menu, Qnil);
2744 UNGCPRO;
2745 return obj;
2746 }
2747 #endif /* HAVE_MENUS */
2748
2749 args[0] = prompt;
2750 args[1] = build_string ("(yes or no) ");
2751 prompt = Fconcat (2, args);
2752
2753 GCPRO1 (prompt);
2754
2755 while (1)
2756 {
2757 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2758 Qyes_or_no_p_history, Qnil,
2759 Qnil));
2760 if (SCHARS (ans) == 3 && !strcmp (SDATA (ans), "yes"))
2761 {
2762 UNGCPRO;
2763 return Qt;
2764 }
2765 if (SCHARS (ans) == 2 && !strcmp (SDATA (ans), "no"))
2766 {
2767 UNGCPRO;
2768 return Qnil;
2769 }
2770
2771 Fding (Qnil);
2772 Fdiscard_input ();
2773 message ("Please answer yes or no.");
2774 Fsleep_for (make_number (2), Qnil);
2775 }
2776 }
2777 \f
2778 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2779 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2780
2781 Each of the three load averages is multiplied by 100, then converted
2782 to integer.
2783
2784 When USE-FLOATS is non-nil, floats will be used instead of integers.
2785 These floats are not multiplied by 100.
2786
2787 If the 5-minute or 15-minute load averages are not available, return a
2788 shortened list, containing only those averages which are available.
2789
2790 An error is thrown if the load average can't be obtained. In some
2791 cases making it work would require Emacs being installed setuid or
2792 setgid so that it can read kernel information, and that usually isn't
2793 advisable. */)
2794 (use_floats)
2795 Lisp_Object use_floats;
2796 {
2797 double load_ave[3];
2798 int loads = getloadavg (load_ave, 3);
2799 Lisp_Object ret = Qnil;
2800
2801 if (loads < 0)
2802 error ("load-average not implemented for this operating system");
2803
2804 while (loads-- > 0)
2805 {
2806 Lisp_Object load = (NILP (use_floats) ?
2807 make_number ((int) (100.0 * load_ave[loads]))
2808 : make_float (load_ave[loads]));
2809 ret = Fcons (load, ret);
2810 }
2811
2812 return ret;
2813 }
2814 \f
2815 Lisp_Object Vfeatures, Qsubfeatures;
2816 extern Lisp_Object Vafter_load_alist;
2817
2818 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2819 doc: /* Returns t if FEATURE is present in this Emacs.
2820
2821 Use this to conditionalize execution of lisp code based on the
2822 presence or absence of Emacs or environment extensions.
2823 Use `provide' to declare that a feature is available. This function
2824 looks at the value of the variable `features'. The optional argument
2825 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2826 (feature, subfeature)
2827 Lisp_Object feature, subfeature;
2828 {
2829 register Lisp_Object tem;
2830 CHECK_SYMBOL (feature);
2831 tem = Fmemq (feature, Vfeatures);
2832 if (!NILP (tem) && !NILP (subfeature))
2833 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2834 return (NILP (tem)) ? Qnil : Qt;
2835 }
2836
2837 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2838 doc: /* Announce that FEATURE is a feature of the current Emacs.
2839 The optional argument SUBFEATURES should be a list of symbols listing
2840 particular subfeatures supported in this version of FEATURE. */)
2841 (feature, subfeatures)
2842 Lisp_Object feature, subfeatures;
2843 {
2844 register Lisp_Object tem;
2845 CHECK_SYMBOL (feature);
2846 CHECK_LIST (subfeatures);
2847 if (!NILP (Vautoload_queue))
2848 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2849 Vautoload_queue);
2850 tem = Fmemq (feature, Vfeatures);
2851 if (NILP (tem))
2852 Vfeatures = Fcons (feature, Vfeatures);
2853 if (!NILP (subfeatures))
2854 Fput (feature, Qsubfeatures, subfeatures);
2855 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2856
2857 /* Run any load-hooks for this file. */
2858 tem = Fassq (feature, Vafter_load_alist);
2859 if (CONSP (tem))
2860 Fprogn (XCDR (tem));
2861
2862 return feature;
2863 }
2864 \f
2865 /* `require' and its subroutines. */
2866
2867 /* List of features currently being require'd, innermost first. */
2868
2869 Lisp_Object require_nesting_list;
2870
2871 Lisp_Object
2872 require_unwind (old_value)
2873 Lisp_Object old_value;
2874 {
2875 return require_nesting_list = old_value;
2876 }
2877
2878 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2879 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2880 If FEATURE is not a member of the list `features', then the feature
2881 is not loaded; so load the file FILENAME.
2882 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2883 and `load' will try to load this name appended with the suffix `.elc' or
2884 `.el', in that order. The name without appended suffix will not be used.
2885 If the optional third argument NOERROR is non-nil,
2886 then return nil if the file is not found instead of signaling an error.
2887 Normally the return value is FEATURE.
2888 The normal messages at start and end of loading FILENAME are suppressed. */)
2889 (feature, filename, noerror)
2890 Lisp_Object feature, filename, noerror;
2891 {
2892 register Lisp_Object tem;
2893 struct gcpro gcpro1, gcpro2;
2894 int from_file = load_in_progress;
2895
2896 CHECK_SYMBOL (feature);
2897
2898 /* Record the presence of `require' in this file
2899 even if the feature specified is already loaded.
2900 But not more than once in any file,
2901 and not when we aren't loading or reading from a file. */
2902 if (!from_file)
2903 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2904 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2905 from_file = 1;
2906
2907 if (from_file)
2908 {
2909 tem = Fcons (Qrequire, feature);
2910 if (NILP (Fmember (tem, Vcurrent_load_list)))
2911 LOADHIST_ATTACH (tem);
2912 }
2913 tem = Fmemq (feature, Vfeatures);
2914
2915 if (NILP (tem))
2916 {
2917 int count = SPECPDL_INDEX ();
2918 int nesting = 0;
2919
2920 /* This is to make sure that loadup.el gives a clear picture
2921 of what files are preloaded and when. */
2922 if (! NILP (Vpurify_flag))
2923 error ("(require %s) while preparing to dump",
2924 SDATA (SYMBOL_NAME (feature)));
2925
2926 /* A certain amount of recursive `require' is legitimate,
2927 but if we require the same feature recursively 3 times,
2928 signal an error. */
2929 tem = require_nesting_list;
2930 while (! NILP (tem))
2931 {
2932 if (! NILP (Fequal (feature, XCAR (tem))))
2933 nesting++;
2934 tem = XCDR (tem);
2935 }
2936 if (nesting > 3)
2937 error ("Recursive `require' for feature `%s'",
2938 SDATA (SYMBOL_NAME (feature)));
2939
2940 /* Update the list for any nested `require's that occur. */
2941 record_unwind_protect (require_unwind, require_nesting_list);
2942 require_nesting_list = Fcons (feature, require_nesting_list);
2943
2944 /* Value saved here is to be restored into Vautoload_queue */
2945 record_unwind_protect (un_autoload, Vautoload_queue);
2946 Vautoload_queue = Qt;
2947
2948 /* Load the file. */
2949 GCPRO2 (feature, filename);
2950 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2951 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2952 UNGCPRO;
2953
2954 /* If load failed entirely, return nil. */
2955 if (NILP (tem))
2956 return unbind_to (count, Qnil);
2957
2958 tem = Fmemq (feature, Vfeatures);
2959 if (NILP (tem))
2960 error ("Required feature `%s' was not provided",
2961 SDATA (SYMBOL_NAME (feature)));
2962
2963 /* Once loading finishes, don't undo it. */
2964 Vautoload_queue = Qt;
2965 feature = unbind_to (count, feature);
2966 }
2967
2968 return feature;
2969 }
2970 \f
2971 /* Primitives for work of the "widget" library.
2972 In an ideal world, this section would not have been necessary.
2973 However, lisp function calls being as slow as they are, it turns
2974 out that some functions in the widget library (wid-edit.el) are the
2975 bottleneck of Widget operation. Here is their translation to C,
2976 for the sole reason of efficiency. */
2977
2978 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2979 doc: /* Return non-nil if PLIST has the property PROP.
2980 PLIST is a property list, which is a list of the form
2981 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2982 Unlike `plist-get', this allows you to distinguish between a missing
2983 property and a property with the value nil.
2984 The value is actually the tail of PLIST whose car is PROP. */)
2985 (plist, prop)
2986 Lisp_Object plist, prop;
2987 {
2988 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2989 {
2990 QUIT;
2991 plist = XCDR (plist);
2992 plist = CDR (plist);
2993 }
2994 return plist;
2995 }
2996
2997 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2998 doc: /* In WIDGET, set PROPERTY to VALUE.
2999 The value can later be retrieved with `widget-get'. */)
3000 (widget, property, value)
3001 Lisp_Object widget, property, value;
3002 {
3003 CHECK_CONS (widget);
3004 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
3005 return value;
3006 }
3007
3008 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
3009 doc: /* In WIDGET, get the value of PROPERTY.
3010 The value could either be specified when the widget was created, or
3011 later with `widget-put'. */)
3012 (widget, property)
3013 Lisp_Object widget, property;
3014 {
3015 Lisp_Object tmp;
3016
3017 while (1)
3018 {
3019 if (NILP (widget))
3020 return Qnil;
3021 CHECK_CONS (widget);
3022 tmp = Fplist_member (XCDR (widget), property);
3023 if (CONSP (tmp))
3024 {
3025 tmp = XCDR (tmp);
3026 return CAR (tmp);
3027 }
3028 tmp = XCAR (widget);
3029 if (NILP (tmp))
3030 return Qnil;
3031 widget = Fget (tmp, Qwidget_type);
3032 }
3033 }
3034
3035 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
3036 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
3037 ARGS are passed as extra arguments to the function.
3038 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
3039 (nargs, args)
3040 int nargs;
3041 Lisp_Object *args;
3042 {
3043 /* This function can GC. */
3044 Lisp_Object newargs[3];
3045 struct gcpro gcpro1, gcpro2;
3046 Lisp_Object result;
3047
3048 newargs[0] = Fwidget_get (args[0], args[1]);
3049 newargs[1] = args[0];
3050 newargs[2] = Flist (nargs - 2, args + 2);
3051 GCPRO2 (newargs[0], newargs[2]);
3052 result = Fapply (3, newargs);
3053 UNGCPRO;
3054 return result;
3055 }
3056
3057 #ifdef HAVE_LANGINFO_CODESET
3058 #include <langinfo.h>
3059 #endif
3060
3061 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
3062 doc: /* Access locale data ITEM for the current C locale, if available.
3063 ITEM should be one of the following:
3064
3065 `codeset', returning the character set as a string (locale item CODESET);
3066
3067 `days', returning a 7-element vector of day names (locale items DAY_n);
3068
3069 `months', returning a 12-element vector of month names (locale items MON_n);
3070
3071 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
3072 both measured in milimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
3073
3074 If the system can't provide such information through a call to
3075 `nl_langinfo', or if ITEM isn't from the list above, return nil.
3076
3077 See also Info node `(libc)Locales'.
3078
3079 The data read from the system are decoded using `locale-coding-system'. */)
3080 (item)
3081 Lisp_Object item;
3082 {
3083 char *str = NULL;
3084 #ifdef HAVE_LANGINFO_CODESET
3085 Lisp_Object val;
3086 if (EQ (item, Qcodeset))
3087 {
3088 str = nl_langinfo (CODESET);
3089 return build_string (str);
3090 }
3091 #ifdef DAY_1
3092 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
3093 {
3094 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
3095 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
3096 int i;
3097 struct gcpro gcpro1;
3098 GCPRO1 (v);
3099 synchronize_system_time_locale ();
3100 for (i = 0; i < 7; i++)
3101 {
3102 str = nl_langinfo (days[i]);
3103 val = make_unibyte_string (str, strlen (str));
3104 /* Fixme: Is this coding system necessarily right, even if
3105 it is consistent with CODESET? If not, what to do? */
3106 Faset (v, make_number (i),
3107 code_convert_string_norecord (val, Vlocale_coding_system,
3108 0));
3109 }
3110 UNGCPRO;
3111 return v;
3112 }
3113 #endif /* DAY_1 */
3114 #ifdef MON_1
3115 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
3116 {
3117 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
3118 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
3119 MON_8, MON_9, MON_10, MON_11, MON_12};
3120 int i;
3121 struct gcpro gcpro1;
3122 GCPRO1 (v);
3123 synchronize_system_time_locale ();
3124 for (i = 0; i < 12; i++)
3125 {
3126 str = nl_langinfo (months[i]);
3127 val = make_unibyte_string (str, strlen (str));
3128 Faset (v, make_number (i),
3129 code_convert_string_norecord (val, Vlocale_coding_system, 0));
3130 }
3131 UNGCPRO;
3132 return v;
3133 }
3134 #endif /* MON_1 */
3135 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
3136 but is in the locale files. This could be used by ps-print. */
3137 #ifdef PAPER_WIDTH
3138 else if (EQ (item, Qpaper))
3139 {
3140 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
3141 make_number (nl_langinfo (PAPER_HEIGHT)));
3142 }
3143 #endif /* PAPER_WIDTH */
3144 #endif /* HAVE_LANGINFO_CODESET*/
3145 return Qnil;
3146 }
3147 \f
3148 /* base64 encode/decode functions (RFC 2045).
3149 Based on code from GNU recode. */
3150
3151 #define MIME_LINE_LENGTH 76
3152
3153 #define IS_ASCII(Character) \
3154 ((Character) < 128)
3155 #define IS_BASE64(Character) \
3156 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
3157 #define IS_BASE64_IGNORABLE(Character) \
3158 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
3159 || (Character) == '\f' || (Character) == '\r')
3160
3161 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
3162 character or return retval if there are no characters left to
3163 process. */
3164 #define READ_QUADRUPLET_BYTE(retval) \
3165 do \
3166 { \
3167 if (i == length) \
3168 { \
3169 if (nchars_return) \
3170 *nchars_return = nchars; \
3171 return (retval); \
3172 } \
3173 c = from[i++]; \
3174 } \
3175 while (IS_BASE64_IGNORABLE (c))
3176
3177 /* Table of characters coding the 64 values. */
3178 static const char base64_value_to_char[64] =
3179 {
3180 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
3181 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
3182 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
3183 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
3184 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
3185 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
3186 '8', '9', '+', '/' /* 60-63 */
3187 };
3188
3189 /* Table of base64 values for first 128 characters. */
3190 static const short base64_char_to_value[128] =
3191 {
3192 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
3193 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
3194 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
3195 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
3196 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
3197 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
3198 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
3199 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
3200 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
3201 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
3202 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
3203 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
3204 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
3205 };
3206
3207 /* The following diagram shows the logical steps by which three octets
3208 get transformed into four base64 characters.
3209
3210 .--------. .--------. .--------.
3211 |aaaaaabb| |bbbbcccc| |ccdddddd|
3212 `--------' `--------' `--------'
3213 6 2 4 4 2 6
3214 .--------+--------+--------+--------.
3215 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
3216 `--------+--------+--------+--------'
3217
3218 .--------+--------+--------+--------.
3219 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
3220 `--------+--------+--------+--------'
3221
3222 The octets are divided into 6 bit chunks, which are then encoded into
3223 base64 characters. */
3224
3225
3226 static int base64_encode_1 P_ ((const char *, char *, int, int, int));
3227 static int base64_decode_1 P_ ((const char *, char *, int, int, int *));
3228
3229 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
3230 2, 3, "r",
3231 doc: /* Base64-encode the region between BEG and END.
3232 Return the length of the encoded text.
3233 Optional third argument NO-LINE-BREAK means do not break long lines
3234 into shorter lines. */)
3235 (beg, end, no_line_break)
3236 Lisp_Object beg, end, no_line_break;
3237 {
3238 char *encoded;
3239 int allength, length;
3240 int ibeg, iend, encoded_length;
3241 int old_pos = PT;
3242 USE_SAFE_ALLOCA;
3243
3244 validate_region (&beg, &end);
3245
3246 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3247 iend = CHAR_TO_BYTE (XFASTINT (end));
3248 move_gap_both (XFASTINT (beg), ibeg);
3249
3250 /* We need to allocate enough room for encoding the text.
3251 We need 33 1/3% more space, plus a newline every 76
3252 characters, and then we round up. */
3253 length = iend - ibeg;
3254 allength = length + length/3 + 1;
3255 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3256
3257 SAFE_ALLOCA (encoded, char *, allength);
3258 encoded_length = base64_encode_1 (BYTE_POS_ADDR (ibeg), encoded, length,
3259 NILP (no_line_break),
3260 !NILP (current_buffer->enable_multibyte_characters));
3261 if (encoded_length > allength)
3262 abort ();
3263
3264 if (encoded_length < 0)
3265 {
3266 /* The encoding wasn't possible. */
3267 SAFE_FREE ();
3268 error ("Multibyte character in data for base64 encoding");
3269 }
3270
3271 /* Now we have encoded the region, so we insert the new contents
3272 and delete the old. (Insert first in order to preserve markers.) */
3273 SET_PT_BOTH (XFASTINT (beg), ibeg);
3274 insert (encoded, encoded_length);
3275 SAFE_FREE ();
3276 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
3277
3278 /* If point was outside of the region, restore it exactly; else just
3279 move to the beginning of the region. */
3280 if (old_pos >= XFASTINT (end))
3281 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3282 else if (old_pos > XFASTINT (beg))
3283 old_pos = XFASTINT (beg);
3284 SET_PT (old_pos);
3285
3286 /* We return the length of the encoded text. */
3287 return make_number (encoded_length);
3288 }
3289
3290 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3291 1, 2, 0,
3292 doc: /* Base64-encode STRING and return the result.
3293 Optional second argument NO-LINE-BREAK means do not break long lines
3294 into shorter lines. */)
3295 (string, no_line_break)
3296 Lisp_Object string, no_line_break;
3297 {
3298 int allength, length, encoded_length;
3299 char *encoded;
3300 Lisp_Object encoded_string;
3301 USE_SAFE_ALLOCA;
3302
3303 CHECK_STRING (string);
3304
3305 /* We need to allocate enough room for encoding the text.
3306 We need 33 1/3% more space, plus a newline every 76
3307 characters, and then we round up. */
3308 length = SBYTES (string);
3309 allength = length + length/3 + 1;
3310 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3311
3312 /* We need to allocate enough room for decoding the text. */
3313 SAFE_ALLOCA (encoded, char *, allength);
3314
3315 encoded_length = base64_encode_1 (SDATA (string),
3316 encoded, length, NILP (no_line_break),
3317 STRING_MULTIBYTE (string));
3318 if (encoded_length > allength)
3319 abort ();
3320
3321 if (encoded_length < 0)
3322 {
3323 /* The encoding wasn't possible. */
3324 SAFE_FREE ();
3325 error ("Multibyte character in data for base64 encoding");
3326 }
3327
3328 encoded_string = make_unibyte_string (encoded, encoded_length);
3329 SAFE_FREE ();
3330
3331 return encoded_string;
3332 }
3333
3334 static int
3335 base64_encode_1 (from, to, length, line_break, multibyte)
3336 const char *from;
3337 char *to;
3338 int length;
3339 int line_break;
3340 int multibyte;
3341 {
3342 int counter = 0, i = 0;
3343 char *e = to;
3344 int c;
3345 unsigned int value;
3346 int bytes;
3347
3348 while (i < length)
3349 {
3350 if (multibyte)
3351 {
3352 c = STRING_CHAR_AND_LENGTH (from + i, bytes);
3353 if (CHAR_BYTE8_P (c))
3354 c = CHAR_TO_BYTE8 (c);
3355 else if (c >= 256)
3356 return -1;
3357 i += bytes;
3358 }
3359 else
3360 c = from[i++];
3361
3362 /* Wrap line every 76 characters. */
3363
3364 if (line_break)
3365 {
3366 if (counter < MIME_LINE_LENGTH / 4)
3367 counter++;
3368 else
3369 {
3370 *e++ = '\n';
3371 counter = 1;
3372 }
3373 }
3374
3375 /* Process first byte of a triplet. */
3376
3377 *e++ = base64_value_to_char[0x3f & c >> 2];
3378 value = (0x03 & c) << 4;
3379
3380 /* Process second byte of a triplet. */
3381
3382 if (i == length)
3383 {
3384 *e++ = base64_value_to_char[value];
3385 *e++ = '=';
3386 *e++ = '=';
3387 break;
3388 }
3389
3390 if (multibyte)
3391 {
3392 c = STRING_CHAR_AND_LENGTH (from + i, bytes);
3393 if (CHAR_BYTE8_P (c))
3394 c = CHAR_TO_BYTE8 (c);
3395 else if (c >= 256)
3396 return -1;
3397 i += bytes;
3398 }
3399 else
3400 c = from[i++];
3401
3402 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3403 value = (0x0f & c) << 2;
3404
3405 /* Process third byte of a triplet. */
3406
3407 if (i == length)
3408 {
3409 *e++ = base64_value_to_char[value];
3410 *e++ = '=';
3411 break;
3412 }
3413
3414 if (multibyte)
3415 {
3416 c = STRING_CHAR_AND_LENGTH (from + i, bytes);
3417 if (CHAR_BYTE8_P (c))
3418 c = CHAR_TO_BYTE8 (c);
3419 else if (c >= 256)
3420 return -1;
3421 i += bytes;
3422 }
3423 else
3424 c = from[i++];
3425
3426 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3427 *e++ = base64_value_to_char[0x3f & c];
3428 }
3429
3430 return e - to;
3431 }
3432
3433
3434 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3435 2, 2, "r",
3436 doc: /* Base64-decode the region between BEG and END.
3437 Return the length of the decoded text.
3438 If the region can't be decoded, signal an error and don't modify the buffer. */)
3439 (beg, end)
3440 Lisp_Object beg, end;
3441 {
3442 int ibeg, iend, length, allength;
3443 char *decoded;
3444 int old_pos = PT;
3445 int decoded_length;
3446 int inserted_chars;
3447 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
3448 USE_SAFE_ALLOCA;
3449
3450 validate_region (&beg, &end);
3451
3452 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3453 iend = CHAR_TO_BYTE (XFASTINT (end));
3454
3455 length = iend - ibeg;
3456
3457 /* We need to allocate enough room for decoding the text. If we are
3458 working on a multibyte buffer, each decoded code may occupy at
3459 most two bytes. */
3460 allength = multibyte ? length * 2 : length;
3461 SAFE_ALLOCA (decoded, char *, allength);
3462
3463 move_gap_both (XFASTINT (beg), ibeg);
3464 decoded_length = base64_decode_1 (BYTE_POS_ADDR (ibeg), decoded, length,
3465 multibyte, &inserted_chars);
3466 if (decoded_length > allength)
3467 abort ();
3468
3469 if (decoded_length < 0)
3470 {
3471 /* The decoding wasn't possible. */
3472 SAFE_FREE ();
3473 error ("Invalid base64 data");
3474 }
3475
3476 /* Now we have decoded the region, so we insert the new contents
3477 and delete the old. (Insert first in order to preserve markers.) */
3478 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3479 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3480 SAFE_FREE ();
3481
3482 /* Delete the original text. */
3483 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3484 iend + decoded_length, 1);
3485
3486 /* If point was outside of the region, restore it exactly; else just
3487 move to the beginning of the region. */
3488 if (old_pos >= XFASTINT (end))
3489 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3490 else if (old_pos > XFASTINT (beg))
3491 old_pos = XFASTINT (beg);
3492 SET_PT (old_pos > ZV ? ZV : old_pos);
3493
3494 return make_number (inserted_chars);
3495 }
3496
3497 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3498 1, 1, 0,
3499 doc: /* Base64-decode STRING and return the result. */)
3500 (string)
3501 Lisp_Object string;
3502 {
3503 char *decoded;
3504 int length, decoded_length;
3505 Lisp_Object decoded_string;
3506 USE_SAFE_ALLOCA;
3507
3508 CHECK_STRING (string);
3509
3510 length = SBYTES (string);
3511 /* We need to allocate enough room for decoding the text. */
3512 SAFE_ALLOCA (decoded, char *, length);
3513
3514 /* The decoded result should be unibyte. */
3515 decoded_length = base64_decode_1 (SDATA (string), decoded, length,
3516 0, NULL);
3517 if (decoded_length > length)
3518 abort ();
3519 else if (decoded_length >= 0)
3520 decoded_string = make_unibyte_string (decoded, decoded_length);
3521 else
3522 decoded_string = Qnil;
3523
3524 SAFE_FREE ();
3525 if (!STRINGP (decoded_string))
3526 error ("Invalid base64 data");
3527
3528 return decoded_string;
3529 }
3530
3531 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
3532 MULTIBYTE is nonzero, the decoded result should be in multibyte
3533 form. If NCHARS_RETRUN is not NULL, store the number of produced
3534 characters in *NCHARS_RETURN. */
3535
3536 static int
3537 base64_decode_1 (from, to, length, multibyte, nchars_return)
3538 const char *from;
3539 char *to;
3540 int length;
3541 int multibyte;
3542 int *nchars_return;
3543 {
3544 int i = 0;
3545 char *e = to;
3546 unsigned char c;
3547 unsigned long value;
3548 int nchars = 0;
3549
3550 while (1)
3551 {
3552 /* Process first byte of a quadruplet. */
3553
3554 READ_QUADRUPLET_BYTE (e-to);
3555
3556 if (!IS_BASE64 (c))
3557 return -1;
3558 value = base64_char_to_value[c] << 18;
3559
3560 /* Process second byte of a quadruplet. */
3561
3562 READ_QUADRUPLET_BYTE (-1);
3563
3564 if (!IS_BASE64 (c))
3565 return -1;
3566 value |= base64_char_to_value[c] << 12;
3567
3568 c = (unsigned char) (value >> 16);
3569 if (multibyte && c >= 128)
3570 e += BYTE8_STRING (c, e);
3571 else
3572 *e++ = c;
3573 nchars++;
3574
3575 /* Process third byte of a quadruplet. */
3576
3577 READ_QUADRUPLET_BYTE (-1);
3578
3579 if (c == '=')
3580 {
3581 READ_QUADRUPLET_BYTE (-1);
3582
3583 if (c != '=')
3584 return -1;
3585 continue;
3586 }
3587
3588 if (!IS_BASE64 (c))
3589 return -1;
3590 value |= base64_char_to_value[c] << 6;
3591
3592 c = (unsigned char) (0xff & value >> 8);
3593 if (multibyte && c >= 128)
3594 e += BYTE8_STRING (c, e);
3595 else
3596 *e++ = c;
3597 nchars++;
3598
3599 /* Process fourth byte of a quadruplet. */
3600
3601 READ_QUADRUPLET_BYTE (-1);
3602
3603 if (c == '=')
3604 continue;
3605
3606 if (!IS_BASE64 (c))
3607 return -1;
3608 value |= base64_char_to_value[c];
3609
3610 c = (unsigned char) (0xff & value);
3611 if (multibyte && c >= 128)
3612 e += BYTE8_STRING (c, e);
3613 else
3614 *e++ = c;
3615 nchars++;
3616 }
3617 }
3618
3619
3620 \f
3621 /***********************************************************************
3622 ***** *****
3623 ***** Hash Tables *****
3624 ***** *****
3625 ***********************************************************************/
3626
3627 /* Implemented by gerd@gnu.org. This hash table implementation was
3628 inspired by CMUCL hash tables. */
3629
3630 /* Ideas:
3631
3632 1. For small tables, association lists are probably faster than
3633 hash tables because they have lower overhead.
3634
3635 For uses of hash tables where the O(1) behavior of table
3636 operations is not a requirement, it might therefore be a good idea
3637 not to hash. Instead, we could just do a linear search in the
3638 key_and_value vector of the hash table. This could be done
3639 if a `:linear-search t' argument is given to make-hash-table. */
3640
3641
3642 /* The list of all weak hash tables. Don't staticpro this one. */
3643
3644 struct Lisp_Hash_Table *weak_hash_tables;
3645
3646 /* Various symbols. */
3647
3648 Lisp_Object Qhash_table_p, Qeq, Qeql, Qequal, Qkey, Qvalue;
3649 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3650 Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3651
3652 /* Function prototypes. */
3653
3654 static struct Lisp_Hash_Table *check_hash_table P_ ((Lisp_Object));
3655 static int get_key_arg P_ ((Lisp_Object, int, Lisp_Object *, char *));
3656 static void maybe_resize_hash_table P_ ((struct Lisp_Hash_Table *));
3657 static int cmpfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
3658 Lisp_Object, unsigned));
3659 static int cmpfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
3660 Lisp_Object, unsigned));
3661 static int cmpfn_user_defined P_ ((struct Lisp_Hash_Table *, Lisp_Object,
3662 unsigned, Lisp_Object, unsigned));
3663 static unsigned hashfn_eq P_ ((struct Lisp_Hash_Table *, Lisp_Object));
3664 static unsigned hashfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object));
3665 static unsigned hashfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object));
3666 static unsigned hashfn_user_defined P_ ((struct Lisp_Hash_Table *,
3667 Lisp_Object));
3668 static unsigned sxhash_string P_ ((unsigned char *, int));
3669 static unsigned sxhash_list P_ ((Lisp_Object, int));
3670 static unsigned sxhash_vector P_ ((Lisp_Object, int));
3671 static unsigned sxhash_bool_vector P_ ((Lisp_Object));
3672 static int sweep_weak_table P_ ((struct Lisp_Hash_Table *, int));
3673
3674
3675 \f
3676 /***********************************************************************
3677 Utilities
3678 ***********************************************************************/
3679
3680 /* If OBJ is a Lisp hash table, return a pointer to its struct
3681 Lisp_Hash_Table. Otherwise, signal an error. */
3682
3683 static struct Lisp_Hash_Table *
3684 check_hash_table (obj)
3685 Lisp_Object obj;
3686 {
3687 CHECK_HASH_TABLE (obj);
3688 return XHASH_TABLE (obj);
3689 }
3690
3691
3692 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3693 number. */
3694
3695 int
3696 next_almost_prime (n)
3697 int n;
3698 {
3699 if (n % 2 == 0)
3700 n += 1;
3701 if (n % 3 == 0)
3702 n += 2;
3703 if (n % 7 == 0)
3704 n += 4;
3705 return n;
3706 }
3707
3708
3709 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3710 which USED[I] is non-zero. If found at index I in ARGS, set
3711 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3712 -1. This function is used to extract a keyword/argument pair from
3713 a DEFUN parameter list. */
3714
3715 static int
3716 get_key_arg (key, nargs, args, used)
3717 Lisp_Object key;
3718 int nargs;
3719 Lisp_Object *args;
3720 char *used;
3721 {
3722 int i;
3723
3724 for (i = 0; i < nargs - 1; ++i)
3725 if (!used[i] && EQ (args[i], key))
3726 break;
3727
3728 if (i >= nargs - 1)
3729 i = -1;
3730 else
3731 {
3732 used[i++] = 1;
3733 used[i] = 1;
3734 }
3735
3736 return i;
3737 }
3738
3739
3740 /* Return a Lisp vector which has the same contents as VEC but has
3741 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
3742 vector that are not copied from VEC are set to INIT. */
3743
3744 Lisp_Object
3745 larger_vector (vec, new_size, init)
3746 Lisp_Object vec;
3747 int new_size;
3748 Lisp_Object init;
3749 {
3750 struct Lisp_Vector *v;
3751 int i, old_size;
3752
3753 xassert (VECTORP (vec));
3754 old_size = ASIZE (vec);
3755 xassert (new_size >= old_size);
3756
3757 v = allocate_vector (new_size);
3758 bcopy (XVECTOR (vec)->contents, v->contents,
3759 old_size * sizeof *v->contents);
3760 for (i = old_size; i < new_size; ++i)
3761 v->contents[i] = init;
3762 XSETVECTOR (vec, v);
3763 return vec;
3764 }
3765
3766
3767 /***********************************************************************
3768 Low-level Functions
3769 ***********************************************************************/
3770
3771 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3772 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
3773 KEY2 are the same. */
3774
3775 static int
3776 cmpfn_eql (h, key1, hash1, key2, hash2)
3777 struct Lisp_Hash_Table *h;
3778 Lisp_Object key1, key2;
3779 unsigned hash1, hash2;
3780 {
3781 return (FLOATP (key1)
3782 && FLOATP (key2)
3783 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3784 }
3785
3786
3787 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3788 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
3789 KEY2 are the same. */
3790
3791 static int
3792 cmpfn_equal (h, key1, hash1, key2, hash2)
3793 struct Lisp_Hash_Table *h;
3794 Lisp_Object key1, key2;
3795 unsigned hash1, hash2;
3796 {
3797 return hash1 == hash2 && !NILP (Fequal (key1, key2));
3798 }
3799
3800
3801 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3802 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
3803 if KEY1 and KEY2 are the same. */
3804
3805 static int
3806 cmpfn_user_defined (h, key1, hash1, key2, hash2)
3807 struct Lisp_Hash_Table *h;
3808 Lisp_Object key1, key2;
3809 unsigned hash1, hash2;
3810 {
3811 if (hash1 == hash2)
3812 {
3813 Lisp_Object args[3];
3814
3815 args[0] = h->user_cmp_function;
3816 args[1] = key1;
3817 args[2] = key2;
3818 return !NILP (Ffuncall (3, args));
3819 }
3820 else
3821 return 0;
3822 }
3823
3824
3825 /* Value is a hash code for KEY for use in hash table H which uses
3826 `eq' to compare keys. The hash code returned is guaranteed to fit
3827 in a Lisp integer. */
3828
3829 static unsigned
3830 hashfn_eq (h, key)
3831 struct Lisp_Hash_Table *h;
3832 Lisp_Object key;
3833 {
3834 unsigned hash = XUINT (key) ^ XTYPE (key);
3835 xassert ((hash & ~INTMASK) == 0);
3836 return hash;
3837 }
3838
3839
3840 /* Value is a hash code for KEY for use in hash table H which uses
3841 `eql' to compare keys. The hash code returned is guaranteed to fit
3842 in a Lisp integer. */
3843
3844 static unsigned
3845 hashfn_eql (h, key)
3846 struct Lisp_Hash_Table *h;
3847 Lisp_Object key;
3848 {
3849 unsigned hash;
3850 if (FLOATP (key))
3851 hash = sxhash (key, 0);
3852 else
3853 hash = XUINT (key) ^ XTYPE (key);
3854 xassert ((hash & ~INTMASK) == 0);
3855 return hash;
3856 }
3857
3858
3859 /* Value is a hash code for KEY for use in hash table H which uses
3860 `equal' to compare keys. The hash code returned is guaranteed to fit
3861 in a Lisp integer. */
3862
3863 static unsigned
3864 hashfn_equal (h, key)
3865 struct Lisp_Hash_Table *h;
3866 Lisp_Object key;
3867 {
3868 unsigned hash = sxhash (key, 0);
3869 xassert ((hash & ~INTMASK) == 0);
3870 return hash;
3871 }
3872
3873
3874 /* Value is a hash code for KEY for use in hash table H which uses as
3875 user-defined function to compare keys. The hash code returned is
3876 guaranteed to fit in a Lisp integer. */
3877
3878 static unsigned
3879 hashfn_user_defined (h, key)
3880 struct Lisp_Hash_Table *h;
3881 Lisp_Object key;
3882 {
3883 Lisp_Object args[2], hash;
3884
3885 args[0] = h->user_hash_function;
3886 args[1] = key;
3887 hash = Ffuncall (2, args);
3888 if (!INTEGERP (hash))
3889 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3890 return XUINT (hash);
3891 }
3892
3893
3894 /* Create and initialize a new hash table.
3895
3896 TEST specifies the test the hash table will use to compare keys.
3897 It must be either one of the predefined tests `eq', `eql' or
3898 `equal' or a symbol denoting a user-defined test named TEST with
3899 test and hash functions USER_TEST and USER_HASH.
3900
3901 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3902
3903 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3904 new size when it becomes full is computed by adding REHASH_SIZE to
3905 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3906 table's new size is computed by multiplying its old size with
3907 REHASH_SIZE.
3908
3909 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3910 be resized when the ratio of (number of entries in the table) /
3911 (table size) is >= REHASH_THRESHOLD.
3912
3913 WEAK specifies the weakness of the table. If non-nil, it must be
3914 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3915
3916 Lisp_Object
3917 make_hash_table (test, size, rehash_size, rehash_threshold, weak,
3918 user_test, user_hash)
3919 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
3920 Lisp_Object user_test, user_hash;
3921 {
3922 struct Lisp_Hash_Table *h;
3923 Lisp_Object table;
3924 int index_size, i, sz;
3925
3926 /* Preconditions. */
3927 xassert (SYMBOLP (test));
3928 xassert (INTEGERP (size) && XINT (size) >= 0);
3929 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3930 || (FLOATP (rehash_size) && XFLOATINT (rehash_size) > 1.0));
3931 xassert (FLOATP (rehash_threshold)
3932 && XFLOATINT (rehash_threshold) > 0
3933 && XFLOATINT (rehash_threshold) <= 1.0);
3934
3935 if (XFASTINT (size) == 0)
3936 size = make_number (1);
3937
3938 /* Allocate a table and initialize it. */
3939 h = allocate_hash_table ();
3940
3941 /* Initialize hash table slots. */
3942 sz = XFASTINT (size);
3943
3944 h->test = test;
3945 if (EQ (test, Qeql))
3946 {
3947 h->cmpfn = cmpfn_eql;
3948 h->hashfn = hashfn_eql;
3949 }
3950 else if (EQ (test, Qeq))
3951 {
3952 h->cmpfn = NULL;
3953 h->hashfn = hashfn_eq;
3954 }
3955 else if (EQ (test, Qequal))
3956 {
3957 h->cmpfn = cmpfn_equal;
3958 h->hashfn = hashfn_equal;
3959 }
3960 else
3961 {
3962 h->user_cmp_function = user_test;
3963 h->user_hash_function = user_hash;
3964 h->cmpfn = cmpfn_user_defined;
3965 h->hashfn = hashfn_user_defined;
3966 }
3967
3968 h->weak = weak;
3969 h->rehash_threshold = rehash_threshold;
3970 h->rehash_size = rehash_size;
3971 h->count = 0;
3972 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3973 h->hash = Fmake_vector (size, Qnil);
3974 h->next = Fmake_vector (size, Qnil);
3975 /* Cast to int here avoids losing with gcc 2.95 on Tru64/Alpha... */
3976 index_size = next_almost_prime ((int) (sz / XFLOATINT (rehash_threshold)));
3977 h->index = Fmake_vector (make_number (index_size), Qnil);
3978
3979 /* Set up the free list. */
3980 for (i = 0; i < sz - 1; ++i)
3981 HASH_NEXT (h, i) = make_number (i + 1);
3982 h->next_free = make_number (0);
3983
3984 XSET_HASH_TABLE (table, h);
3985 xassert (HASH_TABLE_P (table));
3986 xassert (XHASH_TABLE (table) == h);
3987
3988 /* Maybe add this hash table to the list of all weak hash tables. */
3989 if (NILP (h->weak))
3990 h->next_weak = NULL;
3991 else
3992 {
3993 h->next_weak = weak_hash_tables;
3994 weak_hash_tables = h;
3995 }
3996
3997 return table;
3998 }
3999
4000
4001 /* Return a copy of hash table H1. Keys and values are not copied,
4002 only the table itself is. */
4003
4004 Lisp_Object
4005 copy_hash_table (h1)
4006 struct Lisp_Hash_Table *h1;
4007 {
4008 Lisp_Object table;
4009 struct Lisp_Hash_Table *h2;
4010 struct Lisp_Vector *next;
4011
4012 h2 = allocate_hash_table ();
4013 next = h2->vec_next;
4014 bcopy (h1, h2, sizeof *h2);
4015 h2->vec_next = next;
4016 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
4017 h2->hash = Fcopy_sequence (h1->hash);
4018 h2->next = Fcopy_sequence (h1->next);
4019 h2->index = Fcopy_sequence (h1->index);
4020 XSET_HASH_TABLE (table, h2);
4021
4022 /* Maybe add this hash table to the list of all weak hash tables. */
4023 if (!NILP (h2->weak))
4024 {
4025 h2->next_weak = weak_hash_tables;
4026 weak_hash_tables = h2;
4027 }
4028
4029 return table;
4030 }
4031
4032
4033 /* Resize hash table H if it's too full. If H cannot be resized
4034 because it's already too large, throw an error. */
4035
4036 static INLINE void
4037 maybe_resize_hash_table (h)
4038 struct Lisp_Hash_Table *h;
4039 {
4040 if (NILP (h->next_free))
4041 {
4042 int old_size = HASH_TABLE_SIZE (h);
4043 int i, new_size, index_size;
4044 EMACS_INT nsize;
4045
4046 if (INTEGERP (h->rehash_size))
4047 new_size = old_size + XFASTINT (h->rehash_size);
4048 else
4049 new_size = old_size * XFLOATINT (h->rehash_size);
4050 new_size = max (old_size + 1, new_size);
4051 index_size = next_almost_prime ((int)
4052 (new_size
4053 / XFLOATINT (h->rehash_threshold)));
4054 /* Assignment to EMACS_INT stops GCC whining about limited range
4055 of data type. */
4056 nsize = max (index_size, 2 * new_size);
4057 if (nsize > MOST_POSITIVE_FIXNUM)
4058 error ("Hash table too large to resize");
4059
4060 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
4061 h->next = larger_vector (h->next, new_size, Qnil);
4062 h->hash = larger_vector (h->hash, new_size, Qnil);
4063 h->index = Fmake_vector (make_number (index_size), Qnil);
4064
4065 /* Update the free list. Do it so that new entries are added at
4066 the end of the free list. This makes some operations like
4067 maphash faster. */
4068 for (i = old_size; i < new_size - 1; ++i)
4069 HASH_NEXT (h, i) = make_number (i + 1);
4070
4071 if (!NILP (h->next_free))
4072 {
4073 Lisp_Object last, next;
4074
4075 last = h->next_free;
4076 while (next = HASH_NEXT (h, XFASTINT (last)),
4077 !NILP (next))
4078 last = next;
4079
4080 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
4081 }
4082 else
4083 XSETFASTINT (h->next_free, old_size);
4084
4085 /* Rehash. */
4086 for (i = 0; i < old_size; ++i)
4087 if (!NILP (HASH_HASH (h, i)))
4088 {
4089 unsigned hash_code = XUINT (HASH_HASH (h, i));
4090 int start_of_bucket = hash_code % ASIZE (h->index);
4091 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4092 HASH_INDEX (h, start_of_bucket) = make_number (i);
4093 }
4094 }
4095 }
4096
4097
4098 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
4099 the hash code of KEY. Value is the index of the entry in H
4100 matching KEY, or -1 if not found. */
4101
4102 int
4103 hash_lookup (h, key, hash)
4104 struct Lisp_Hash_Table *h;
4105 Lisp_Object key;
4106 unsigned *hash;
4107 {
4108 unsigned hash_code;
4109 int start_of_bucket;
4110 Lisp_Object idx;
4111
4112 hash_code = h->hashfn (h, key);
4113 if (hash)
4114 *hash = hash_code;
4115
4116 start_of_bucket = hash_code % ASIZE (h->index);
4117 idx = HASH_INDEX (h, start_of_bucket);
4118
4119 /* We need not gcpro idx since it's either an integer or nil. */
4120 while (!NILP (idx))
4121 {
4122 int i = XFASTINT (idx);
4123 if (EQ (key, HASH_KEY (h, i))
4124 || (h->cmpfn
4125 && h->cmpfn (h, key, hash_code,
4126 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4127 break;
4128 idx = HASH_NEXT (h, i);
4129 }
4130
4131 return NILP (idx) ? -1 : XFASTINT (idx);
4132 }
4133
4134
4135 /* Put an entry into hash table H that associates KEY with VALUE.
4136 HASH is a previously computed hash code of KEY.
4137 Value is the index of the entry in H matching KEY. */
4138
4139 int
4140 hash_put (h, key, value, hash)
4141 struct Lisp_Hash_Table *h;
4142 Lisp_Object key, value;
4143 unsigned hash;
4144 {
4145 int start_of_bucket, i;
4146
4147 xassert ((hash & ~INTMASK) == 0);
4148
4149 /* Increment count after resizing because resizing may fail. */
4150 maybe_resize_hash_table (h);
4151 h->count++;
4152
4153 /* Store key/value in the key_and_value vector. */
4154 i = XFASTINT (h->next_free);
4155 h->next_free = HASH_NEXT (h, i);
4156 HASH_KEY (h, i) = key;
4157 HASH_VALUE (h, i) = value;
4158
4159 /* Remember its hash code. */
4160 HASH_HASH (h, i) = make_number (hash);
4161
4162 /* Add new entry to its collision chain. */
4163 start_of_bucket = hash % ASIZE (h->index);
4164 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4165 HASH_INDEX (h, start_of_bucket) = make_number (i);
4166 return i;
4167 }
4168
4169
4170 /* Remove the entry matching KEY from hash table H, if there is one. */
4171
4172 static void
4173 hash_remove_from_table (h, key)
4174 struct Lisp_Hash_Table *h;
4175 Lisp_Object key;
4176 {
4177 unsigned hash_code;
4178 int start_of_bucket;
4179 Lisp_Object idx, prev;
4180
4181 hash_code = h->hashfn (h, key);
4182 start_of_bucket = hash_code % ASIZE (h->index);
4183 idx = HASH_INDEX (h, start_of_bucket);
4184 prev = Qnil;
4185
4186 /* We need not gcpro idx, prev since they're either integers or nil. */
4187 while (!NILP (idx))
4188 {
4189 int i = XFASTINT (idx);
4190
4191 if (EQ (key, HASH_KEY (h, i))
4192 || (h->cmpfn
4193 && h->cmpfn (h, key, hash_code,
4194 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4195 {
4196 /* Take entry out of collision chain. */
4197 if (NILP (prev))
4198 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
4199 else
4200 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
4201
4202 /* Clear slots in key_and_value and add the slots to
4203 the free list. */
4204 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
4205 HASH_NEXT (h, i) = h->next_free;
4206 h->next_free = make_number (i);
4207 h->count--;
4208 xassert (h->count >= 0);
4209 break;
4210 }
4211 else
4212 {
4213 prev = idx;
4214 idx = HASH_NEXT (h, i);
4215 }
4216 }
4217 }
4218
4219
4220 /* Clear hash table H. */
4221
4222 void
4223 hash_clear (h)
4224 struct Lisp_Hash_Table *h;
4225 {
4226 if (h->count > 0)
4227 {
4228 int i, size = HASH_TABLE_SIZE (h);
4229
4230 for (i = 0; i < size; ++i)
4231 {
4232 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
4233 HASH_KEY (h, i) = Qnil;
4234 HASH_VALUE (h, i) = Qnil;
4235 HASH_HASH (h, i) = Qnil;
4236 }
4237
4238 for (i = 0; i < ASIZE (h->index); ++i)
4239 ASET (h->index, i, Qnil);
4240
4241 h->next_free = make_number (0);
4242 h->count = 0;
4243 }
4244 }
4245
4246
4247 \f
4248 /************************************************************************
4249 Weak Hash Tables
4250 ************************************************************************/
4251
4252 void
4253 init_weak_hash_tables ()
4254 {
4255 weak_hash_tables = NULL;
4256 }
4257
4258 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
4259 entries from the table that don't survive the current GC.
4260 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
4261 non-zero if anything was marked. */
4262
4263 static int
4264 sweep_weak_table (h, remove_entries_p)
4265 struct Lisp_Hash_Table *h;
4266 int remove_entries_p;
4267 {
4268 int bucket, n, marked;
4269
4270 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
4271 marked = 0;
4272
4273 for (bucket = 0; bucket < n; ++bucket)
4274 {
4275 Lisp_Object idx, next, prev;
4276
4277 /* Follow collision chain, removing entries that
4278 don't survive this garbage collection. */
4279 prev = Qnil;
4280 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
4281 {
4282 int i = XFASTINT (idx);
4283 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
4284 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
4285 int remove_p;
4286
4287 if (EQ (h->weak, Qkey))
4288 remove_p = !key_known_to_survive_p;
4289 else if (EQ (h->weak, Qvalue))
4290 remove_p = !value_known_to_survive_p;
4291 else if (EQ (h->weak, Qkey_or_value))
4292 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
4293 else if (EQ (h->weak, Qkey_and_value))
4294 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
4295 else
4296 abort ();
4297
4298 next = HASH_NEXT (h, i);
4299
4300 if (remove_entries_p)
4301 {
4302 if (remove_p)
4303 {
4304 /* Take out of collision chain. */
4305 if (NILP (prev))
4306 HASH_INDEX (h, bucket) = next;
4307 else
4308 HASH_NEXT (h, XFASTINT (prev)) = next;
4309
4310 /* Add to free list. */
4311 HASH_NEXT (h, i) = h->next_free;
4312 h->next_free = idx;
4313
4314 /* Clear key, value, and hash. */
4315 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
4316 HASH_HASH (h, i) = Qnil;
4317
4318 h->count--;
4319 }
4320 else
4321 {
4322 prev = idx;
4323 }
4324 }
4325 else
4326 {
4327 if (!remove_p)
4328 {
4329 /* Make sure key and value survive. */
4330 if (!key_known_to_survive_p)
4331 {
4332 mark_object (HASH_KEY (h, i));
4333 marked = 1;
4334 }
4335
4336 if (!value_known_to_survive_p)
4337 {
4338 mark_object (HASH_VALUE (h, i));
4339 marked = 1;
4340 }
4341 }
4342 }
4343 }
4344 }
4345
4346 return marked;
4347 }
4348
4349 /* Remove elements from weak hash tables that don't survive the
4350 current garbage collection. Remove weak tables that don't survive
4351 from Vweak_hash_tables. Called from gc_sweep. */
4352
4353 void
4354 sweep_weak_hash_tables ()
4355 {
4356 struct Lisp_Hash_Table *h, *used, *next;
4357 int marked;
4358
4359 /* Mark all keys and values that are in use. Keep on marking until
4360 there is no more change. This is necessary for cases like
4361 value-weak table A containing an entry X -> Y, where Y is used in a
4362 key-weak table B, Z -> Y. If B comes after A in the list of weak
4363 tables, X -> Y might be removed from A, although when looking at B
4364 one finds that it shouldn't. */
4365 do
4366 {
4367 marked = 0;
4368 for (h = weak_hash_tables; h; h = h->next_weak)
4369 {
4370 if (h->size & ARRAY_MARK_FLAG)
4371 marked |= sweep_weak_table (h, 0);
4372 }
4373 }
4374 while (marked);
4375
4376 /* Remove tables and entries that aren't used. */
4377 for (h = weak_hash_tables, used = NULL; h; h = next)
4378 {
4379 next = h->next_weak;
4380
4381 if (h->size & ARRAY_MARK_FLAG)
4382 {
4383 /* TABLE is marked as used. Sweep its contents. */
4384 if (h->count > 0)
4385 sweep_weak_table (h, 1);
4386
4387 /* Add table to the list of used weak hash tables. */
4388 h->next_weak = used;
4389 used = h;
4390 }
4391 }
4392
4393 weak_hash_tables = used;
4394 }
4395
4396
4397 \f
4398 /***********************************************************************
4399 Hash Code Computation
4400 ***********************************************************************/
4401
4402 /* Maximum depth up to which to dive into Lisp structures. */
4403
4404 #define SXHASH_MAX_DEPTH 3
4405
4406 /* Maximum length up to which to take list and vector elements into
4407 account. */
4408
4409 #define SXHASH_MAX_LEN 7
4410
4411 /* Combine two integers X and Y for hashing. */
4412
4413 #define SXHASH_COMBINE(X, Y) \
4414 ((((unsigned)(X) << 4) + (((unsigned)(X) >> 24) & 0x0fffffff)) \
4415 + (unsigned)(Y))
4416
4417
4418 /* Return a hash for string PTR which has length LEN. The hash
4419 code returned is guaranteed to fit in a Lisp integer. */
4420
4421 static unsigned
4422 sxhash_string (ptr, len)
4423 unsigned char *ptr;
4424 int len;
4425 {
4426 unsigned char *p = ptr;
4427 unsigned char *end = p + len;
4428 unsigned char c;
4429 unsigned hash = 0;
4430
4431 while (p != end)
4432 {
4433 c = *p++;
4434 if (c >= 0140)
4435 c -= 40;
4436 hash = ((hash << 4) + (hash >> 28) + c);
4437 }
4438
4439 return hash & INTMASK;
4440 }
4441
4442
4443 /* Return a hash for list LIST. DEPTH is the current depth in the
4444 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4445
4446 static unsigned
4447 sxhash_list (list, depth)
4448 Lisp_Object list;
4449 int depth;
4450 {
4451 unsigned hash = 0;
4452 int i;
4453
4454 if (depth < SXHASH_MAX_DEPTH)
4455 for (i = 0;
4456 CONSP (list) && i < SXHASH_MAX_LEN;
4457 list = XCDR (list), ++i)
4458 {
4459 unsigned hash2 = sxhash (XCAR (list), depth + 1);
4460 hash = SXHASH_COMBINE (hash, hash2);
4461 }
4462
4463 if (!NILP (list))
4464 {
4465 unsigned hash2 = sxhash (list, depth + 1);
4466 hash = SXHASH_COMBINE (hash, hash2);
4467 }
4468
4469 return hash;
4470 }
4471
4472
4473 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4474 the Lisp structure. */
4475
4476 static unsigned
4477 sxhash_vector (vec, depth)
4478 Lisp_Object vec;
4479 int depth;
4480 {
4481 unsigned hash = ASIZE (vec);
4482 int i, n;
4483
4484 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4485 for (i = 0; i < n; ++i)
4486 {
4487 unsigned hash2 = sxhash (AREF (vec, i), depth + 1);
4488 hash = SXHASH_COMBINE (hash, hash2);
4489 }
4490
4491 return hash;
4492 }
4493
4494
4495 /* Return a hash for bool-vector VECTOR. */
4496
4497 static unsigned
4498 sxhash_bool_vector (vec)
4499 Lisp_Object vec;
4500 {
4501 unsigned hash = XBOOL_VECTOR (vec)->size;
4502 int i, n;
4503
4504 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->vector_size);
4505 for (i = 0; i < n; ++i)
4506 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4507
4508 return hash;
4509 }
4510
4511
4512 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4513 structure. Value is an unsigned integer clipped to INTMASK. */
4514
4515 unsigned
4516 sxhash (obj, depth)
4517 Lisp_Object obj;
4518 int depth;
4519 {
4520 unsigned hash;
4521
4522 if (depth > SXHASH_MAX_DEPTH)
4523 return 0;
4524
4525 switch (XTYPE (obj))
4526 {
4527 case_Lisp_Int:
4528 hash = XUINT (obj);
4529 break;
4530
4531 case Lisp_Misc:
4532 hash = XUINT (obj);
4533 break;
4534
4535 case Lisp_Symbol:
4536 obj = SYMBOL_NAME (obj);
4537 /* Fall through. */
4538
4539 case Lisp_String:
4540 hash = sxhash_string (SDATA (obj), SCHARS (obj));
4541 break;
4542
4543 /* This can be everything from a vector to an overlay. */
4544 case Lisp_Vectorlike:
4545 if (VECTORP (obj))
4546 /* According to the CL HyperSpec, two arrays are equal only if
4547 they are `eq', except for strings and bit-vectors. In
4548 Emacs, this works differently. We have to compare element
4549 by element. */
4550 hash = sxhash_vector (obj, depth);
4551 else if (BOOL_VECTOR_P (obj))
4552 hash = sxhash_bool_vector (obj);
4553 else
4554 /* Others are `equal' if they are `eq', so let's take their
4555 address as hash. */
4556 hash = XUINT (obj);
4557 break;
4558
4559 case Lisp_Cons:
4560 hash = sxhash_list (obj, depth);
4561 break;
4562
4563 case Lisp_Float:
4564 {
4565 double val = XFLOAT_DATA (obj);
4566 unsigned char *p = (unsigned char *) &val;
4567 unsigned char *e = p + sizeof val;
4568 for (hash = 0; p < e; ++p)
4569 hash = SXHASH_COMBINE (hash, *p);
4570 break;
4571 }
4572
4573 default:
4574 abort ();
4575 }
4576
4577 return hash & INTMASK;
4578 }
4579
4580
4581 \f
4582 /***********************************************************************
4583 Lisp Interface
4584 ***********************************************************************/
4585
4586
4587 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4588 doc: /* Compute a hash code for OBJ and return it as integer. */)
4589 (obj)
4590 Lisp_Object obj;
4591 {
4592 unsigned hash = sxhash (obj, 0);
4593 return make_number (hash);
4594 }
4595
4596
4597 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4598 doc: /* Create and return a new hash table.
4599
4600 Arguments are specified as keyword/argument pairs. The following
4601 arguments are defined:
4602
4603 :test TEST -- TEST must be a symbol that specifies how to compare
4604 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4605 `equal'. User-supplied test and hash functions can be specified via
4606 `define-hash-table-test'.
4607
4608 :size SIZE -- A hint as to how many elements will be put in the table.
4609 Default is 65.
4610
4611 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4612 fills up. If REHASH-SIZE is an integer, add that many space. If it
4613 is a float, it must be > 1.0, and the new size is computed by
4614 multiplying the old size with that factor. Default is 1.5.
4615
4616 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4617 Resize the hash table when ratio of the number of entries in the
4618 table. Default is 0.8.
4619
4620 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4621 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4622 returned is a weak table. Key/value pairs are removed from a weak
4623 hash table when there are no non-weak references pointing to their
4624 key, value, one of key or value, or both key and value, depending on
4625 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4626 is nil.
4627
4628 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4629 (nargs, args)
4630 int nargs;
4631 Lisp_Object *args;
4632 {
4633 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4634 Lisp_Object user_test, user_hash;
4635 char *used;
4636 int i;
4637
4638 /* The vector `used' is used to keep track of arguments that
4639 have been consumed. */
4640 used = (char *) alloca (nargs * sizeof *used);
4641 bzero (used, nargs * sizeof *used);
4642
4643 /* See if there's a `:test TEST' among the arguments. */
4644 i = get_key_arg (QCtest, nargs, args, used);
4645 test = i < 0 ? Qeql : args[i];
4646 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
4647 {
4648 /* See if it is a user-defined test. */
4649 Lisp_Object prop;
4650
4651 prop = Fget (test, Qhash_table_test);
4652 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4653 signal_error ("Invalid hash table test", test);
4654 user_test = XCAR (prop);
4655 user_hash = XCAR (XCDR (prop));
4656 }
4657 else
4658 user_test = user_hash = Qnil;
4659
4660 /* See if there's a `:size SIZE' argument. */
4661 i = get_key_arg (QCsize, nargs, args, used);
4662 size = i < 0 ? Qnil : args[i];
4663 if (NILP (size))
4664 size = make_number (DEFAULT_HASH_SIZE);
4665 else if (!INTEGERP (size) || XINT (size) < 0)
4666 signal_error ("Invalid hash table size", size);
4667
4668 /* Look for `:rehash-size SIZE'. */
4669 i = get_key_arg (QCrehash_size, nargs, args, used);
4670 rehash_size = i < 0 ? make_float (DEFAULT_REHASH_SIZE) : args[i];
4671 if (!NUMBERP (rehash_size)
4672 || (INTEGERP (rehash_size) && XINT (rehash_size) <= 0)
4673 || XFLOATINT (rehash_size) <= 1.0)
4674 signal_error ("Invalid hash table rehash size", rehash_size);
4675
4676 /* Look for `:rehash-threshold THRESHOLD'. */
4677 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4678 rehash_threshold = i < 0 ? make_float (DEFAULT_REHASH_THRESHOLD) : args[i];
4679 if (!FLOATP (rehash_threshold)
4680 || XFLOATINT (rehash_threshold) <= 0.0
4681 || XFLOATINT (rehash_threshold) > 1.0)
4682 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4683
4684 /* Look for `:weakness WEAK'. */
4685 i = get_key_arg (QCweakness, nargs, args, used);
4686 weak = i < 0 ? Qnil : args[i];
4687 if (EQ (weak, Qt))
4688 weak = Qkey_and_value;
4689 if (!NILP (weak)
4690 && !EQ (weak, Qkey)
4691 && !EQ (weak, Qvalue)
4692 && !EQ (weak, Qkey_or_value)
4693 && !EQ (weak, Qkey_and_value))
4694 signal_error ("Invalid hash table weakness", weak);
4695
4696 /* Now, all args should have been used up, or there's a problem. */
4697 for (i = 0; i < nargs; ++i)
4698 if (!used[i])
4699 signal_error ("Invalid argument list", args[i]);
4700
4701 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4702 user_test, user_hash);
4703 }
4704
4705
4706 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4707 doc: /* Return a copy of hash table TABLE. */)
4708 (table)
4709 Lisp_Object table;
4710 {
4711 return copy_hash_table (check_hash_table (table));
4712 }
4713
4714
4715 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4716 doc: /* Return the number of elements in TABLE. */)
4717 (table)
4718 Lisp_Object table;
4719 {
4720 return make_number (check_hash_table (table)->count);
4721 }
4722
4723
4724 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4725 Shash_table_rehash_size, 1, 1, 0,
4726 doc: /* Return the current rehash size of TABLE. */)
4727 (table)
4728 Lisp_Object table;
4729 {
4730 return check_hash_table (table)->rehash_size;
4731 }
4732
4733
4734 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4735 Shash_table_rehash_threshold, 1, 1, 0,
4736 doc: /* Return the current rehash threshold of TABLE. */)
4737 (table)
4738 Lisp_Object table;
4739 {
4740 return check_hash_table (table)->rehash_threshold;
4741 }
4742
4743
4744 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4745 doc: /* Return the size of TABLE.
4746 The size can be used as an argument to `make-hash-table' to create
4747 a hash table than can hold as many elements of TABLE holds
4748 without need for resizing. */)
4749 (table)
4750 Lisp_Object table;
4751 {
4752 struct Lisp_Hash_Table *h = check_hash_table (table);
4753 return make_number (HASH_TABLE_SIZE (h));
4754 }
4755
4756
4757 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4758 doc: /* Return the test TABLE uses. */)
4759 (table)
4760 Lisp_Object table;
4761 {
4762 return check_hash_table (table)->test;
4763 }
4764
4765
4766 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4767 1, 1, 0,
4768 doc: /* Return the weakness of TABLE. */)
4769 (table)
4770 Lisp_Object table;
4771 {
4772 return check_hash_table (table)->weak;
4773 }
4774
4775
4776 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4777 doc: /* Return t if OBJ is a Lisp hash table object. */)
4778 (obj)
4779 Lisp_Object obj;
4780 {
4781 return HASH_TABLE_P (obj) ? Qt : Qnil;
4782 }
4783
4784
4785 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4786 doc: /* Clear hash table TABLE and return it. */)
4787 (table)
4788 Lisp_Object table;
4789 {
4790 hash_clear (check_hash_table (table));
4791 /* Be compatible with XEmacs. */
4792 return table;
4793 }
4794
4795
4796 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4797 doc: /* Look up KEY in TABLE and return its associated value.
4798 If KEY is not found, return DFLT which defaults to nil. */)
4799 (key, table, dflt)
4800 Lisp_Object key, table, dflt;
4801 {
4802 struct Lisp_Hash_Table *h = check_hash_table (table);
4803 int i = hash_lookup (h, key, NULL);
4804 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4805 }
4806
4807
4808 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4809 doc: /* Associate KEY with VALUE in hash table TABLE.
4810 If KEY is already present in table, replace its current value with
4811 VALUE. */)
4812 (key, value, table)
4813 Lisp_Object key, value, table;
4814 {
4815 struct Lisp_Hash_Table *h = check_hash_table (table);
4816 int i;
4817 unsigned hash;
4818
4819 i = hash_lookup (h, key, &hash);
4820 if (i >= 0)
4821 HASH_VALUE (h, i) = value;
4822 else
4823 hash_put (h, key, value, hash);
4824
4825 return value;
4826 }
4827
4828
4829 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4830 doc: /* Remove KEY from TABLE. */)
4831 (key, table)
4832 Lisp_Object key, table;
4833 {
4834 struct Lisp_Hash_Table *h = check_hash_table (table);
4835 hash_remove_from_table (h, key);
4836 return Qnil;
4837 }
4838
4839
4840 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4841 doc: /* Call FUNCTION for all entries in hash table TABLE.
4842 FUNCTION is called with two arguments, KEY and VALUE. */)
4843 (function, table)
4844 Lisp_Object function, table;
4845 {
4846 struct Lisp_Hash_Table *h = check_hash_table (table);
4847 Lisp_Object args[3];
4848 int i;
4849
4850 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4851 if (!NILP (HASH_HASH (h, i)))
4852 {
4853 args[0] = function;
4854 args[1] = HASH_KEY (h, i);
4855 args[2] = HASH_VALUE (h, i);
4856 Ffuncall (3, args);
4857 }
4858
4859 return Qnil;
4860 }
4861
4862
4863 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4864 Sdefine_hash_table_test, 3, 3, 0,
4865 doc: /* Define a new hash table test with name NAME, a symbol.
4866
4867 In hash tables created with NAME specified as test, use TEST to
4868 compare keys, and HASH for computing hash codes of keys.
4869
4870 TEST must be a function taking two arguments and returning non-nil if
4871 both arguments are the same. HASH must be a function taking one
4872 argument and return an integer that is the hash code of the argument.
4873 Hash code computation should use the whole value range of integers,
4874 including negative integers. */)
4875 (name, test, hash)
4876 Lisp_Object name, test, hash;
4877 {
4878 return Fput (name, Qhash_table_test, list2 (test, hash));
4879 }
4880
4881
4882 \f
4883 /************************************************************************
4884 MD5
4885 ************************************************************************/
4886
4887 #include "md5.h"
4888
4889 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4890 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4891
4892 A message digest is a cryptographic checksum of a document, and the
4893 algorithm to calculate it is defined in RFC 1321.
4894
4895 The two optional arguments START and END are character positions
4896 specifying for which part of OBJECT the message digest should be
4897 computed. If nil or omitted, the digest is computed for the whole
4898 OBJECT.
4899
4900 The MD5 message digest is computed from the result of encoding the
4901 text in a coding system, not directly from the internal Emacs form of
4902 the text. The optional fourth argument CODING-SYSTEM specifies which
4903 coding system to encode the text with. It should be the same coding
4904 system that you used or will use when actually writing the text into a
4905 file.
4906
4907 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4908 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4909 system would be chosen by default for writing this text into a file.
4910
4911 If OBJECT is a string, the most preferred coding system (see the
4912 command `prefer-coding-system') is used.
4913
4914 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4915 guesswork fails. Normally, an error is signaled in such case. */)
4916 (object, start, end, coding_system, noerror)
4917 Lisp_Object object, start, end, coding_system, noerror;
4918 {
4919 unsigned char digest[16];
4920 unsigned char value[33];
4921 int i;
4922 int size;
4923 int size_byte = 0;
4924 int start_char = 0, end_char = 0;
4925 int start_byte = 0, end_byte = 0;
4926 register int b, e;
4927 register struct buffer *bp;
4928 int temp;
4929
4930 if (STRINGP (object))
4931 {
4932 if (NILP (coding_system))
4933 {
4934 /* Decide the coding-system to encode the data with. */
4935
4936 if (STRING_MULTIBYTE (object))
4937 /* use default, we can't guess correct value */
4938 coding_system = preferred_coding_system ();
4939 else
4940 coding_system = Qraw_text;
4941 }
4942
4943 if (NILP (Fcoding_system_p (coding_system)))
4944 {
4945 /* Invalid coding system. */
4946
4947 if (!NILP (noerror))
4948 coding_system = Qraw_text;
4949 else
4950 xsignal1 (Qcoding_system_error, coding_system);
4951 }
4952
4953 if (STRING_MULTIBYTE (object))
4954 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4955
4956 size = SCHARS (object);
4957 size_byte = SBYTES (object);
4958
4959 if (!NILP (start))
4960 {
4961 CHECK_NUMBER (start);
4962
4963 start_char = XINT (start);
4964
4965 if (start_char < 0)
4966 start_char += size;
4967
4968 start_byte = string_char_to_byte (object, start_char);
4969 }
4970
4971 if (NILP (end))
4972 {
4973 end_char = size;
4974 end_byte = size_byte;
4975 }
4976 else
4977 {
4978 CHECK_NUMBER (end);
4979
4980 end_char = XINT (end);
4981
4982 if (end_char < 0)
4983 end_char += size;
4984
4985 end_byte = string_char_to_byte (object, end_char);
4986 }
4987
4988 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4989 args_out_of_range_3 (object, make_number (start_char),
4990 make_number (end_char));
4991 }
4992 else
4993 {
4994 struct buffer *prev = current_buffer;
4995
4996 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
4997
4998 CHECK_BUFFER (object);
4999
5000 bp = XBUFFER (object);
5001 if (bp != current_buffer)
5002 set_buffer_internal (bp);
5003
5004 if (NILP (start))
5005 b = BEGV;
5006 else
5007 {
5008 CHECK_NUMBER_COERCE_MARKER (start);
5009 b = XINT (start);
5010 }
5011
5012 if (NILP (end))
5013 e = ZV;
5014 else
5015 {
5016 CHECK_NUMBER_COERCE_MARKER (end);
5017 e = XINT (end);
5018 }
5019
5020 if (b > e)
5021 temp = b, b = e, e = temp;
5022
5023 if (!(BEGV <= b && e <= ZV))
5024 args_out_of_range (start, end);
5025
5026 if (NILP (coding_system))
5027 {
5028 /* Decide the coding-system to encode the data with.
5029 See fileio.c:Fwrite-region */
5030
5031 if (!NILP (Vcoding_system_for_write))
5032 coding_system = Vcoding_system_for_write;
5033 else
5034 {
5035 int force_raw_text = 0;
5036
5037 coding_system = XBUFFER (object)->buffer_file_coding_system;
5038 if (NILP (coding_system)
5039 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
5040 {
5041 coding_system = Qnil;
5042 if (NILP (current_buffer->enable_multibyte_characters))
5043 force_raw_text = 1;
5044 }
5045
5046 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
5047 {
5048 /* Check file-coding-system-alist. */
5049 Lisp_Object args[4], val;
5050
5051 args[0] = Qwrite_region; args[1] = start; args[2] = end;
5052 args[3] = Fbuffer_file_name(object);
5053 val = Ffind_operation_coding_system (4, args);
5054 if (CONSP (val) && !NILP (XCDR (val)))
5055 coding_system = XCDR (val);
5056 }
5057
5058 if (NILP (coding_system)
5059 && !NILP (XBUFFER (object)->buffer_file_coding_system))
5060 {
5061 /* If we still have not decided a coding system, use the
5062 default value of buffer-file-coding-system. */
5063 coding_system = XBUFFER (object)->buffer_file_coding_system;
5064 }
5065
5066 if (!force_raw_text
5067 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
5068 /* Confirm that VAL can surely encode the current region. */
5069 coding_system = call4 (Vselect_safe_coding_system_function,
5070 make_number (b), make_number (e),
5071 coding_system, Qnil);
5072
5073 if (force_raw_text)
5074 coding_system = Qraw_text;
5075 }
5076
5077 if (NILP (Fcoding_system_p (coding_system)))
5078 {
5079 /* Invalid coding system. */
5080
5081 if (!NILP (noerror))
5082 coding_system = Qraw_text;
5083 else
5084 xsignal1 (Qcoding_system_error, coding_system);
5085 }
5086 }
5087
5088 object = make_buffer_string (b, e, 0);
5089 if (prev != current_buffer)
5090 set_buffer_internal (prev);
5091 /* Discard the unwind protect for recovering the current
5092 buffer. */
5093 specpdl_ptr--;
5094
5095 if (STRING_MULTIBYTE (object))
5096 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
5097 }
5098
5099 md5_buffer (SDATA (object) + start_byte,
5100 SBYTES (object) - (size_byte - end_byte),
5101 digest);
5102
5103 for (i = 0; i < 16; i++)
5104 sprintf (&value[2 * i], "%02x", digest[i]);
5105 value[32] = '\0';
5106
5107 return make_string (value, 32);
5108 }
5109
5110 \f
5111 void
5112 syms_of_fns ()
5113 {
5114 /* Hash table stuff. */
5115 Qhash_table_p = intern_c_string ("hash-table-p");
5116 staticpro (&Qhash_table_p);
5117 Qeq = intern_c_string ("eq");
5118 staticpro (&Qeq);
5119 Qeql = intern_c_string ("eql");
5120 staticpro (&Qeql);
5121 Qequal = intern_c_string ("equal");
5122 staticpro (&Qequal);
5123 QCtest = intern_c_string (":test");
5124 staticpro (&QCtest);
5125 QCsize = intern_c_string (":size");
5126 staticpro (&QCsize);
5127 QCrehash_size = intern_c_string (":rehash-size");
5128 staticpro (&QCrehash_size);
5129 QCrehash_threshold = intern_c_string (":rehash-threshold");
5130 staticpro (&QCrehash_threshold);
5131 QCweakness = intern_c_string (":weakness");
5132 staticpro (&QCweakness);
5133 Qkey = intern_c_string ("key");
5134 staticpro (&Qkey);
5135 Qvalue = intern_c_string ("value");
5136 staticpro (&Qvalue);
5137 Qhash_table_test = intern_c_string ("hash-table-test");
5138 staticpro (&Qhash_table_test);
5139 Qkey_or_value = intern_c_string ("key-or-value");
5140 staticpro (&Qkey_or_value);
5141 Qkey_and_value = intern_c_string ("key-and-value");
5142 staticpro (&Qkey_and_value);
5143
5144 defsubr (&Ssxhash);
5145 defsubr (&Smake_hash_table);
5146 defsubr (&Scopy_hash_table);
5147 defsubr (&Shash_table_count);
5148 defsubr (&Shash_table_rehash_size);
5149 defsubr (&Shash_table_rehash_threshold);
5150 defsubr (&Shash_table_size);
5151 defsubr (&Shash_table_test);
5152 defsubr (&Shash_table_weakness);
5153 defsubr (&Shash_table_p);
5154 defsubr (&Sclrhash);
5155 defsubr (&Sgethash);
5156 defsubr (&Sputhash);
5157 defsubr (&Sremhash);
5158 defsubr (&Smaphash);
5159 defsubr (&Sdefine_hash_table_test);
5160
5161 Qstring_lessp = intern_c_string ("string-lessp");
5162 staticpro (&Qstring_lessp);
5163 Qprovide = intern_c_string ("provide");
5164 staticpro (&Qprovide);
5165 Qrequire = intern_c_string ("require");
5166 staticpro (&Qrequire);
5167 Qyes_or_no_p_history = intern_c_string ("yes-or-no-p-history");
5168 staticpro (&Qyes_or_no_p_history);
5169 Qcursor_in_echo_area = intern_c_string ("cursor-in-echo-area");
5170 staticpro (&Qcursor_in_echo_area);
5171 Qwidget_type = intern_c_string ("widget-type");
5172 staticpro (&Qwidget_type);
5173
5174 staticpro (&string_char_byte_cache_string);
5175 string_char_byte_cache_string = Qnil;
5176
5177 require_nesting_list = Qnil;
5178 staticpro (&require_nesting_list);
5179
5180 Fset (Qyes_or_no_p_history, Qnil);
5181
5182 DEFVAR_LISP ("features", &Vfeatures,
5183 doc: /* A list of symbols which are the features of the executing Emacs.
5184 Used by `featurep' and `require', and altered by `provide'. */);
5185 Vfeatures = Fcons (intern_c_string ("emacs"), Qnil);
5186 Qsubfeatures = intern_c_string ("subfeatures");
5187 staticpro (&Qsubfeatures);
5188
5189 #ifdef HAVE_LANGINFO_CODESET
5190 Qcodeset = intern_c_string ("codeset");
5191 staticpro (&Qcodeset);
5192 Qdays = intern_c_string ("days");
5193 staticpro (&Qdays);
5194 Qmonths = intern_c_string ("months");
5195 staticpro (&Qmonths);
5196 Qpaper = intern_c_string ("paper");
5197 staticpro (&Qpaper);
5198 #endif /* HAVE_LANGINFO_CODESET */
5199
5200 DEFVAR_BOOL ("use-dialog-box", &use_dialog_box,
5201 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
5202 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
5203 invoked by mouse clicks and mouse menu items.
5204
5205 On some platforms, file selection dialogs are also enabled if this is
5206 non-nil. */);
5207 use_dialog_box = 1;
5208
5209 DEFVAR_BOOL ("use-file-dialog", &use_file_dialog,
5210 doc: /* *Non-nil means mouse commands use a file dialog to ask for files.
5211 This applies to commands from menus and tool bar buttons even when
5212 they are initiated from the keyboard. If `use-dialog-box' is nil,
5213 that disables the use of a file dialog, regardless of the value of
5214 this variable. */);
5215 use_file_dialog = 1;
5216
5217 defsubr (&Sidentity);
5218 defsubr (&Srandom);
5219 defsubr (&Slength);
5220 defsubr (&Ssafe_length);
5221 defsubr (&Sstring_bytes);
5222 defsubr (&Sstring_equal);
5223 defsubr (&Scompare_strings);
5224 defsubr (&Sstring_lessp);
5225 defsubr (&Sappend);
5226 defsubr (&Sconcat);
5227 defsubr (&Svconcat);
5228 defsubr (&Scopy_sequence);
5229 defsubr (&Sstring_make_multibyte);
5230 defsubr (&Sstring_make_unibyte);
5231 defsubr (&Sstring_as_multibyte);
5232 defsubr (&Sstring_as_unibyte);
5233 defsubr (&Sstring_to_multibyte);
5234 defsubr (&Sstring_to_unibyte);
5235 defsubr (&Scopy_alist);
5236 defsubr (&Ssubstring);
5237 defsubr (&Ssubstring_no_properties);
5238 defsubr (&Snthcdr);
5239 defsubr (&Snth);
5240 defsubr (&Selt);
5241 defsubr (&Smember);
5242 defsubr (&Smemq);
5243 defsubr (&Smemql);
5244 defsubr (&Sassq);
5245 defsubr (&Sassoc);
5246 defsubr (&Srassq);
5247 defsubr (&Srassoc);
5248 defsubr (&Sdelq);
5249 defsubr (&Sdelete);
5250 defsubr (&Snreverse);
5251 defsubr (&Sreverse);
5252 defsubr (&Ssort);
5253 defsubr (&Splist_get);
5254 defsubr (&Sget);
5255 defsubr (&Splist_put);
5256 defsubr (&Sput);
5257 defsubr (&Slax_plist_get);
5258 defsubr (&Slax_plist_put);
5259 defsubr (&Seql);
5260 defsubr (&Sequal);
5261 defsubr (&Sequal_including_properties);
5262 defsubr (&Sfillarray);
5263 defsubr (&Sclear_string);
5264 defsubr (&Snconc);
5265 defsubr (&Smapcar);
5266 defsubr (&Smapc);
5267 defsubr (&Smapconcat);
5268 defsubr (&Sy_or_n_p);
5269 defsubr (&Syes_or_no_p);
5270 defsubr (&Sload_average);
5271 defsubr (&Sfeaturep);
5272 defsubr (&Srequire);
5273 defsubr (&Sprovide);
5274 defsubr (&Splist_member);
5275 defsubr (&Swidget_put);
5276 defsubr (&Swidget_get);
5277 defsubr (&Swidget_apply);
5278 defsubr (&Sbase64_encode_region);
5279 defsubr (&Sbase64_decode_region);
5280 defsubr (&Sbase64_encode_string);
5281 defsubr (&Sbase64_decode_string);
5282 defsubr (&Smd5);
5283 defsubr (&Slocale_info);
5284 }
5285
5286
5287 void
5288 init_fns ()
5289 {
5290 }
5291
5292 /* arch-tag: 787f8219-5b74-46bd-8469-7e1cc475fa31
5293 (do not change this comment) */