Use macro SPECPDL_INDEX.
[bpt/emacs.git] / src / keymap.c
1 /* Manipulation of keymaps
2 Copyright (C) 1985, 86,87,88,93,94,95,98,99, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 #include <config.h>
24 #include <stdio.h>
25 #include "lisp.h"
26 #include "commands.h"
27 #include "buffer.h"
28 #include "charset.h"
29 #include "keyboard.h"
30 #include "termhooks.h"
31 #include "blockinput.h"
32 #include "puresize.h"
33 #include "intervals.h"
34 #include "keymap.h"
35
36 /* The number of elements in keymap vectors. */
37 #define DENSE_TABLE_SIZE (0200)
38
39 /* Actually allocate storage for these variables */
40
41 Lisp_Object current_global_map; /* Current global keymap */
42
43 Lisp_Object global_map; /* default global key bindings */
44
45 Lisp_Object meta_map; /* The keymap used for globally bound
46 ESC-prefixed default commands */
47
48 Lisp_Object control_x_map; /* The keymap used for globally bound
49 C-x-prefixed default commands */
50
51 /* was MinibufLocalMap */
52 Lisp_Object Vminibuffer_local_map;
53 /* The keymap used by the minibuf for local
54 bindings when spaces are allowed in the
55 minibuf */
56
57 /* was MinibufLocalNSMap */
58 Lisp_Object Vminibuffer_local_ns_map;
59 /* The keymap used by the minibuf for local
60 bindings when spaces are not encouraged
61 in the minibuf */
62
63 /* keymap used for minibuffers when doing completion */
64 /* was MinibufLocalCompletionMap */
65 Lisp_Object Vminibuffer_local_completion_map;
66
67 /* keymap used for minibuffers when doing completion and require a match */
68 /* was MinibufLocalMustMatchMap */
69 Lisp_Object Vminibuffer_local_must_match_map;
70
71 /* Alist of minor mode variables and keymaps. */
72 Lisp_Object Vminor_mode_map_alist;
73
74 /* Alist of major-mode-specific overrides for
75 minor mode variables and keymaps. */
76 Lisp_Object Vminor_mode_overriding_map_alist;
77
78 /* List of emulation mode keymap alists. */
79 Lisp_Object Vemulation_mode_map_alists;
80
81 /* Keymap mapping ASCII function key sequences onto their preferred forms.
82 Initialized by the terminal-specific lisp files. See DEFVAR for more
83 documentation. */
84 Lisp_Object Vfunction_key_map;
85
86 /* Keymap mapping ASCII function key sequences onto their preferred forms. */
87 Lisp_Object Vkey_translation_map;
88
89 /* A list of all commands given new bindings since a certain time
90 when nil was stored here.
91 This is used to speed up recomputation of menu key equivalents
92 when Emacs starts up. t means don't record anything here. */
93 Lisp_Object Vdefine_key_rebound_commands;
94
95 Lisp_Object Qkeymapp, Qkeymap, Qnon_ascii, Qmenu_item, Qremap;
96
97 /* Alist of elements like (DEL . "\d"). */
98 static Lisp_Object exclude_keys;
99
100 /* Pre-allocated 2-element vector for Fremap_command to use. */
101 static Lisp_Object remap_command_vector;
102
103 /* A char with the CHAR_META bit set in a vector or the 0200 bit set
104 in a string key sequence is equivalent to prefixing with this
105 character. */
106 extern Lisp_Object meta_prefix_char;
107
108 extern Lisp_Object Voverriding_local_map;
109
110 /* Hash table used to cache a reverse-map to speed up calls to where-is. */
111 static Lisp_Object where_is_cache;
112 /* Which keymaps are reverse-stored in the cache. */
113 static Lisp_Object where_is_cache_keymaps;
114
115 static Lisp_Object store_in_keymap P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
116 static void fix_submap_inheritance P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
117
118 static Lisp_Object define_as_prefix P_ ((Lisp_Object, Lisp_Object));
119 static void describe_command P_ ((Lisp_Object, Lisp_Object));
120 static void describe_translation P_ ((Lisp_Object, Lisp_Object));
121 static void describe_map P_ ((Lisp_Object, Lisp_Object,
122 void (*) P_ ((Lisp_Object, Lisp_Object)),
123 int, Lisp_Object, Lisp_Object*, int));
124 static void silly_event_symbol_error P_ ((Lisp_Object));
125 \f
126 /* Keymap object support - constructors and predicates. */
127
128 DEFUN ("make-keymap", Fmake_keymap, Smake_keymap, 0, 1, 0,
129 doc: /* Construct and return a new keymap, of the form (keymap CHARTABLE . ALIST).
130 CHARTABLE is a char-table that holds the bindings for the ASCII
131 characters. ALIST is an assoc-list which holds bindings for function keys,
132 mouse events, and any other things that appear in the input stream.
133 All entries in it are initially nil, meaning "command undefined".
134
135 The optional arg STRING supplies a menu name for the keymap
136 in case you use it as a menu with `x-popup-menu'. */)
137 (string)
138 Lisp_Object string;
139 {
140 Lisp_Object tail;
141 if (!NILP (string))
142 tail = Fcons (string, Qnil);
143 else
144 tail = Qnil;
145 return Fcons (Qkeymap,
146 Fcons (Fmake_char_table (Qkeymap, Qnil), tail));
147 }
148
149 DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, Smake_sparse_keymap, 0, 1, 0,
150 doc: /* Construct and return a new sparse keymap.
151 Its car is `keymap' and its cdr is an alist of (CHAR . DEFINITION),
152 which binds the character CHAR to DEFINITION, or (SYMBOL . DEFINITION),
153 which binds the function key or mouse event SYMBOL to DEFINITION.
154 Initially the alist is nil.
155
156 The optional arg STRING supplies a menu name for the keymap
157 in case you use it as a menu with `x-popup-menu'. */)
158 (string)
159 Lisp_Object string;
160 {
161 if (!NILP (string))
162 return Fcons (Qkeymap, Fcons (string, Qnil));
163 return Fcons (Qkeymap, Qnil);
164 }
165
166 /* This function is used for installing the standard key bindings
167 at initialization time.
168
169 For example:
170
171 initial_define_key (control_x_map, Ctl('X'), "exchange-point-and-mark"); */
172
173 void
174 initial_define_key (keymap, key, defname)
175 Lisp_Object keymap;
176 int key;
177 char *defname;
178 {
179 store_in_keymap (keymap, make_number (key), intern (defname));
180 }
181
182 void
183 initial_define_lispy_key (keymap, keyname, defname)
184 Lisp_Object keymap;
185 char *keyname;
186 char *defname;
187 {
188 store_in_keymap (keymap, intern (keyname), intern (defname));
189 }
190
191 DEFUN ("keymapp", Fkeymapp, Skeymapp, 1, 1, 0,
192 doc: /* Return t if OBJECT is a keymap.
193
194 A keymap is a list (keymap . ALIST),
195 or a symbol whose function definition is itself a keymap.
196 ALIST elements look like (CHAR . DEFN) or (SYMBOL . DEFN);
197 a vector of densely packed bindings for small character codes
198 is also allowed as an element. */)
199 (object)
200 Lisp_Object object;
201 {
202 return (KEYMAPP (object) ? Qt : Qnil);
203 }
204
205 DEFUN ("keymap-prompt", Fkeymap_prompt, Skeymap_prompt, 1, 1, 0,
206 doc: /* Return the prompt-string of a keymap MAP.
207 If non-nil, the prompt is shown in the echo-area
208 when reading a key-sequence to be looked-up in this keymap. */)
209 (map)
210 Lisp_Object map;
211 {
212 while (CONSP (map))
213 {
214 register Lisp_Object tem;
215 tem = Fcar (map);
216 if (STRINGP (tem))
217 return tem;
218 map = Fcdr (map);
219 }
220 return Qnil;
221 }
222
223 /* Check that OBJECT is a keymap (after dereferencing through any
224 symbols). If it is, return it.
225
226 If AUTOLOAD is non-zero and OBJECT is a symbol whose function value
227 is an autoload form, do the autoload and try again.
228 If AUTOLOAD is nonzero, callers must assume GC is possible.
229
230 If the map needs to be autoloaded, but AUTOLOAD is zero (and ERROR
231 is zero as well), return Qt.
232
233 ERROR controls how we respond if OBJECT isn't a keymap.
234 If ERROR is non-zero, signal an error; otherwise, just return Qnil.
235
236 Note that most of the time, we don't want to pursue autoloads.
237 Functions like Faccessible_keymaps which scan entire keymap trees
238 shouldn't load every autoloaded keymap. I'm not sure about this,
239 but it seems to me that only read_key_sequence, Flookup_key, and
240 Fdefine_key should cause keymaps to be autoloaded.
241
242 This function can GC when AUTOLOAD is non-zero, because it calls
243 do_autoload which can GC. */
244
245 Lisp_Object
246 get_keymap (object, error, autoload)
247 Lisp_Object object;
248 int error, autoload;
249 {
250 Lisp_Object tem;
251
252 autoload_retry:
253 if (NILP (object))
254 goto end;
255 if (CONSP (object) && EQ (XCAR (object), Qkeymap))
256 return object;
257
258 tem = indirect_function (object);
259 if (CONSP (tem))
260 {
261 if (EQ (XCAR (tem), Qkeymap))
262 return tem;
263
264 /* Should we do an autoload? Autoload forms for keymaps have
265 Qkeymap as their fifth element. */
266 if ((autoload || !error) && EQ (XCAR (tem), Qautoload))
267 {
268 Lisp_Object tail;
269
270 tail = Fnth (make_number (4), tem);
271 if (EQ (tail, Qkeymap))
272 {
273 if (autoload)
274 {
275 struct gcpro gcpro1, gcpro2;
276
277 GCPRO2 (tem, object);
278 do_autoload (tem, object);
279 UNGCPRO;
280
281 goto autoload_retry;
282 }
283 else
284 return Qt;
285 }
286 }
287 }
288
289 end:
290 if (error)
291 wrong_type_argument (Qkeymapp, object);
292 return Qnil;
293 }
294 \f
295 /* Return the parent map of KEYMAP, or nil if it has none.
296 We assume that KEYMAP is a valid keymap. */
297
298 Lisp_Object
299 keymap_parent (keymap, autoload)
300 Lisp_Object keymap;
301 int autoload;
302 {
303 Lisp_Object list;
304
305 keymap = get_keymap (keymap, 1, autoload);
306
307 /* Skip past the initial element `keymap'. */
308 list = XCDR (keymap);
309 for (; CONSP (list); list = XCDR (list))
310 {
311 /* See if there is another `keymap'. */
312 if (KEYMAPP (list))
313 return list;
314 }
315
316 return get_keymap (list, 0, autoload);
317 }
318
319 DEFUN ("keymap-parent", Fkeymap_parent, Skeymap_parent, 1, 1, 0,
320 doc: /* Return the parent keymap of KEYMAP. */)
321 (keymap)
322 Lisp_Object keymap;
323 {
324 return keymap_parent (keymap, 1);
325 }
326
327 /* Check whether MAP is one of MAPS parents. */
328 int
329 keymap_memberp (map, maps)
330 Lisp_Object map, maps;
331 {
332 if (NILP (map)) return 0;
333 while (KEYMAPP (maps) && !EQ (map, maps))
334 maps = keymap_parent (maps, 0);
335 return (EQ (map, maps));
336 }
337
338 /* Set the parent keymap of MAP to PARENT. */
339
340 DEFUN ("set-keymap-parent", Fset_keymap_parent, Sset_keymap_parent, 2, 2, 0,
341 doc: /* Modify KEYMAP to set its parent map to PARENT.
342 PARENT should be nil or another keymap. */)
343 (keymap, parent)
344 Lisp_Object keymap, parent;
345 {
346 Lisp_Object list, prev;
347 struct gcpro gcpro1, gcpro2;
348 int i;
349
350 /* Force a keymap flush for the next call to where-is.
351 Since this can be called from within where-is, we don't set where_is_cache
352 directly but only where_is_cache_keymaps, since where_is_cache shouldn't
353 be changed during where-is, while where_is_cache_keymaps is only used at
354 the very beginning of where-is and can thus be changed here without any
355 adverse effect.
356 This is a very minor correctness (rather than safety) issue. */
357 where_is_cache_keymaps = Qt;
358
359 GCPRO2 (keymap, parent);
360 keymap = get_keymap (keymap, 1, 1);
361
362 if (!NILP (parent))
363 {
364 parent = get_keymap (parent, 1, 1);
365
366 /* Check for cycles. */
367 if (keymap_memberp (keymap, parent))
368 error ("Cyclic keymap inheritance");
369 }
370
371 /* Skip past the initial element `keymap'. */
372 prev = keymap;
373 while (1)
374 {
375 list = XCDR (prev);
376 /* If there is a parent keymap here, replace it.
377 If we came to the end, add the parent in PREV. */
378 if (!CONSP (list) || KEYMAPP (list))
379 {
380 /* If we already have the right parent, return now
381 so that we avoid the loops below. */
382 if (EQ (XCDR (prev), parent))
383 RETURN_UNGCPRO (parent);
384
385 XSETCDR (prev, parent);
386 break;
387 }
388 prev = list;
389 }
390
391 /* Scan through for submaps, and set their parents too. */
392
393 for (list = XCDR (keymap); CONSP (list); list = XCDR (list))
394 {
395 /* Stop the scan when we come to the parent. */
396 if (EQ (XCAR (list), Qkeymap))
397 break;
398
399 /* If this element holds a prefix map, deal with it. */
400 if (CONSP (XCAR (list))
401 && CONSP (XCDR (XCAR (list))))
402 fix_submap_inheritance (keymap, XCAR (XCAR (list)),
403 XCDR (XCAR (list)));
404
405 if (VECTORP (XCAR (list)))
406 for (i = 0; i < XVECTOR (XCAR (list))->size; i++)
407 if (CONSP (XVECTOR (XCAR (list))->contents[i]))
408 fix_submap_inheritance (keymap, make_number (i),
409 XVECTOR (XCAR (list))->contents[i]);
410
411 if (CHAR_TABLE_P (XCAR (list)))
412 {
413 Lisp_Object indices[3];
414
415 map_char_table (fix_submap_inheritance, Qnil, XCAR (list),
416 keymap, 0, indices);
417 }
418 }
419
420 RETURN_UNGCPRO (parent);
421 }
422
423 /* EVENT is defined in MAP as a prefix, and SUBMAP is its definition.
424 if EVENT is also a prefix in MAP's parent,
425 make sure that SUBMAP inherits that definition as its own parent. */
426
427 static void
428 fix_submap_inheritance (map, event, submap)
429 Lisp_Object map, event, submap;
430 {
431 Lisp_Object map_parent, parent_entry;
432
433 /* SUBMAP is a cons that we found as a key binding.
434 Discard the other things found in a menu key binding. */
435
436 submap = get_keymap (get_keyelt (submap, 0), 0, 0);
437
438 /* If it isn't a keymap now, there's no work to do. */
439 if (!CONSP (submap))
440 return;
441
442 map_parent = keymap_parent (map, 0);
443 if (!NILP (map_parent))
444 parent_entry =
445 get_keymap (access_keymap (map_parent, event, 0, 0, 0), 0, 0);
446 else
447 parent_entry = Qnil;
448
449 /* If MAP's parent has something other than a keymap,
450 our own submap shadows it completely. */
451 if (!CONSP (parent_entry))
452 return;
453
454 if (! EQ (parent_entry, submap))
455 {
456 Lisp_Object submap_parent;
457 submap_parent = submap;
458 while (1)
459 {
460 Lisp_Object tem;
461
462 tem = keymap_parent (submap_parent, 0);
463
464 if (KEYMAPP (tem))
465 {
466 if (keymap_memberp (tem, parent_entry))
467 /* Fset_keymap_parent could create a cycle. */
468 return;
469 submap_parent = tem;
470 }
471 else
472 break;
473 }
474 Fset_keymap_parent (submap_parent, parent_entry);
475 }
476 }
477 \f
478 /* Look up IDX in MAP. IDX may be any sort of event.
479 Note that this does only one level of lookup; IDX must be a single
480 event, not a sequence.
481
482 If T_OK is non-zero, bindings for Qt are treated as default
483 bindings; any key left unmentioned by other tables and bindings is
484 given the binding of Qt.
485
486 If T_OK is zero, bindings for Qt are not treated specially.
487
488 If NOINHERIT, don't accept a subkeymap found in an inherited keymap. */
489
490 Lisp_Object
491 access_keymap (map, idx, t_ok, noinherit, autoload)
492 Lisp_Object map;
493 Lisp_Object idx;
494 int t_ok;
495 int noinherit;
496 int autoload;
497 {
498 Lisp_Object val;
499
500 /* Qunbound in VAL means we have found no binding yet. */
501 val = Qunbound;
502
503 /* If idx is a list (some sort of mouse click, perhaps?),
504 the index we want to use is the car of the list, which
505 ought to be a symbol. */
506 idx = EVENT_HEAD (idx);
507
508 /* If idx is a symbol, it might have modifiers, which need to
509 be put in the canonical order. */
510 if (SYMBOLP (idx))
511 idx = reorder_modifiers (idx);
512 else if (INTEGERP (idx))
513 /* Clobber the high bits that can be present on a machine
514 with more than 24 bits of integer. */
515 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
516
517 /* Handle the special meta -> esc mapping. */
518 if (INTEGERP (idx) && XUINT (idx) & meta_modifier)
519 {
520 /* See if there is a meta-map. If there's none, there is
521 no binding for IDX, unless a default binding exists in MAP. */
522 struct gcpro gcpro1;
523 Lisp_Object meta_map;
524 GCPRO1 (map);
525 meta_map = get_keymap (access_keymap (map, meta_prefix_char,
526 t_ok, noinherit, autoload),
527 0, autoload);
528 UNGCPRO;
529 if (CONSP (meta_map))
530 {
531 map = meta_map;
532 idx = make_number (XUINT (idx) & ~meta_modifier);
533 }
534 else if (t_ok)
535 /* Set IDX to t, so that we only find a default binding. */
536 idx = Qt;
537 else
538 /* We know there is no binding. */
539 return Qnil;
540 }
541
542 /* t_binding is where we put a default binding that applies,
543 to use in case we do not find a binding specifically
544 for this key sequence. */
545 {
546 Lisp_Object tail;
547 Lisp_Object t_binding = Qnil;
548 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
549
550 GCPRO4 (map, tail, idx, t_binding);
551
552 /* If `t_ok' is 2, both `t' and generic-char bindings are accepted.
553 If it is 1, only generic-char bindings are accepted.
554 Otherwise, neither are. */
555 t_ok = t_ok ? 2 : 0;
556
557 for (tail = XCDR (map);
558 (CONSP (tail)
559 || (tail = get_keymap (tail, 0, autoload), CONSP (tail)));
560 tail = XCDR (tail))
561 {
562 Lisp_Object binding;
563
564 binding = XCAR (tail);
565 if (SYMBOLP (binding))
566 {
567 /* If NOINHERIT, stop finding prefix definitions
568 after we pass a second occurrence of the `keymap' symbol. */
569 if (noinherit && EQ (binding, Qkeymap))
570 RETURN_UNGCPRO (Qnil);
571 }
572 else if (CONSP (binding))
573 {
574 Lisp_Object key = XCAR (binding);
575
576 if (EQ (key, idx))
577 val = XCDR (binding);
578 else if (t_ok
579 && INTEGERP (idx)
580 && (XINT (idx) & CHAR_MODIFIER_MASK) == 0
581 && INTEGERP (key)
582 && (XINT (key) & CHAR_MODIFIER_MASK) == 0
583 && !SINGLE_BYTE_CHAR_P (XINT (idx))
584 && !SINGLE_BYTE_CHAR_P (XINT (key))
585 && CHAR_VALID_P (XINT (key), 1)
586 && !CHAR_VALID_P (XINT (key), 0)
587 && (CHAR_CHARSET (XINT (key))
588 == CHAR_CHARSET (XINT (idx))))
589 {
590 /* KEY is the generic character of the charset of IDX.
591 Use KEY's binding if there isn't a binding for IDX
592 itself. */
593 t_binding = XCDR (binding);
594 t_ok = 0;
595 }
596 else if (t_ok > 1 && EQ (key, Qt))
597 {
598 t_binding = XCDR (binding);
599 t_ok = 1;
600 }
601 }
602 else if (VECTORP (binding))
603 {
604 if (NATNUMP (idx) && XFASTINT (idx) < ASIZE (binding))
605 val = AREF (binding, XFASTINT (idx));
606 }
607 else if (CHAR_TABLE_P (binding))
608 {
609 /* Character codes with modifiers
610 are not included in a char-table.
611 All character codes without modifiers are included. */
612 if (NATNUMP (idx) && (XFASTINT (idx) & CHAR_MODIFIER_MASK) == 0)
613 {
614 val = Faref (binding, idx);
615 /* `nil' has a special meaning for char-tables, so
616 we use something else to record an explicitly
617 unbound entry. */
618 if (NILP (val))
619 val = Qunbound;
620 }
621 }
622
623 /* If we found a binding, clean it up and return it. */
624 if (!EQ (val, Qunbound))
625 {
626 if (EQ (val, Qt))
627 /* A Qt binding is just like an explicit nil binding
628 (i.e. it shadows any parent binding but not bindings in
629 keymaps of lower precedence). */
630 val = Qnil;
631 val = get_keyelt (val, autoload);
632 if (KEYMAPP (val))
633 fix_submap_inheritance (map, idx, val);
634 RETURN_UNGCPRO (val);
635 }
636 QUIT;
637 }
638 UNGCPRO;
639 return get_keyelt (t_binding, autoload);
640 }
641 }
642
643 /* Given OBJECT which was found in a slot in a keymap,
644 trace indirect definitions to get the actual definition of that slot.
645 An indirect definition is a list of the form
646 (KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one
647 and INDEX is the object to look up in KEYMAP to yield the definition.
648
649 Also if OBJECT has a menu string as the first element,
650 remove that. Also remove a menu help string as second element.
651
652 If AUTOLOAD is nonzero, load autoloadable keymaps
653 that are referred to with indirection. */
654
655 Lisp_Object
656 get_keyelt (object, autoload)
657 Lisp_Object object;
658 int autoload;
659 {
660 while (1)
661 {
662 if (!(CONSP (object)))
663 /* This is really the value. */
664 return object;
665
666 /* If the keymap contents looks like (keymap ...) or (lambda ...)
667 then use itself. */
668 else if (EQ (XCAR (object), Qkeymap) || EQ (XCAR (object), Qlambda))
669 return object;
670
671 /* If the keymap contents looks like (menu-item name . DEFN)
672 or (menu-item name DEFN ...) then use DEFN.
673 This is a new format menu item. */
674 else if (EQ (XCAR (object), Qmenu_item))
675 {
676 if (CONSP (XCDR (object)))
677 {
678 Lisp_Object tem;
679
680 object = XCDR (XCDR (object));
681 tem = object;
682 if (CONSP (object))
683 object = XCAR (object);
684
685 /* If there's a `:filter FILTER', apply FILTER to the
686 menu-item's definition to get the real definition to
687 use. */
688 for (; CONSP (tem) && CONSP (XCDR (tem)); tem = XCDR (tem))
689 if (EQ (XCAR (tem), QCfilter) && autoload)
690 {
691 Lisp_Object filter;
692 filter = XCAR (XCDR (tem));
693 filter = list2 (filter, list2 (Qquote, object));
694 object = menu_item_eval_property (filter);
695 break;
696 }
697 }
698 else
699 /* Invalid keymap. */
700 return object;
701 }
702
703 /* If the keymap contents looks like (STRING . DEFN), use DEFN.
704 Keymap alist elements like (CHAR MENUSTRING . DEFN)
705 will be used by HierarKey menus. */
706 else if (STRINGP (XCAR (object)))
707 {
708 object = XCDR (object);
709 /* Also remove a menu help string, if any,
710 following the menu item name. */
711 if (CONSP (object) && STRINGP (XCAR (object)))
712 object = XCDR (object);
713 /* Also remove the sublist that caches key equivalences, if any. */
714 if (CONSP (object) && CONSP (XCAR (object)))
715 {
716 Lisp_Object carcar;
717 carcar = XCAR (XCAR (object));
718 if (NILP (carcar) || VECTORP (carcar))
719 object = XCDR (object);
720 }
721 }
722
723 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
724 else
725 {
726 struct gcpro gcpro1;
727 Lisp_Object map;
728 GCPRO1 (object);
729 map = get_keymap (Fcar_safe (object), 0, autoload);
730 UNGCPRO;
731 return (!CONSP (map) ? object /* Invalid keymap */
732 : access_keymap (map, Fcdr (object), 0, 0, autoload));
733 }
734 }
735 }
736
737 static Lisp_Object
738 store_in_keymap (keymap, idx, def)
739 Lisp_Object keymap;
740 register Lisp_Object idx;
741 register Lisp_Object def;
742 {
743 /* Flush any reverse-map cache. */
744 where_is_cache = Qnil;
745 where_is_cache_keymaps = Qt;
746
747 /* If we are preparing to dump, and DEF is a menu element
748 with a menu item indicator, copy it to ensure it is not pure. */
749 if (CONSP (def) && PURE_P (def)
750 && (EQ (XCAR (def), Qmenu_item) || STRINGP (XCAR (def))))
751 def = Fcons (XCAR (def), XCDR (def));
752
753 if (!CONSP (keymap) || !EQ (XCAR (keymap), Qkeymap))
754 error ("attempt to define a key in a non-keymap");
755
756 /* If idx is a list (some sort of mouse click, perhaps?),
757 the index we want to use is the car of the list, which
758 ought to be a symbol. */
759 idx = EVENT_HEAD (idx);
760
761 /* If idx is a symbol, it might have modifiers, which need to
762 be put in the canonical order. */
763 if (SYMBOLP (idx))
764 idx = reorder_modifiers (idx);
765 else if (INTEGERP (idx))
766 /* Clobber the high bits that can be present on a machine
767 with more than 24 bits of integer. */
768 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
769
770 /* Scan the keymap for a binding of idx. */
771 {
772 Lisp_Object tail;
773
774 /* The cons after which we should insert new bindings. If the
775 keymap has a table element, we record its position here, so new
776 bindings will go after it; this way, the table will stay
777 towards the front of the alist and character lookups in dense
778 keymaps will remain fast. Otherwise, this just points at the
779 front of the keymap. */
780 Lisp_Object insertion_point;
781
782 insertion_point = keymap;
783 for (tail = XCDR (keymap); CONSP (tail); tail = XCDR (tail))
784 {
785 Lisp_Object elt;
786
787 elt = XCAR (tail);
788 if (VECTORP (elt))
789 {
790 if (NATNUMP (idx) && XFASTINT (idx) < ASIZE (elt))
791 {
792 ASET (elt, XFASTINT (idx), def);
793 return def;
794 }
795 insertion_point = tail;
796 }
797 else if (CHAR_TABLE_P (elt))
798 {
799 /* Character codes with modifiers
800 are not included in a char-table.
801 All character codes without modifiers are included. */
802 if (NATNUMP (idx) && !(XFASTINT (idx) & CHAR_MODIFIER_MASK))
803 {
804 Faset (elt, idx,
805 /* `nil' has a special meaning for char-tables, so
806 we use something else to record an explicitly
807 unbound entry. */
808 NILP (def) ? Qt : def);
809 return def;
810 }
811 insertion_point = tail;
812 }
813 else if (CONSP (elt))
814 {
815 if (EQ (idx, XCAR (elt)))
816 {
817 XSETCDR (elt, def);
818 return def;
819 }
820 }
821 else if (EQ (elt, Qkeymap))
822 /* If we find a 'keymap' symbol in the spine of KEYMAP,
823 then we must have found the start of a second keymap
824 being used as the tail of KEYMAP, and a binding for IDX
825 should be inserted before it. */
826 goto keymap_end;
827
828 QUIT;
829 }
830
831 keymap_end:
832 /* We have scanned the entire keymap, and not found a binding for
833 IDX. Let's add one. */
834 XSETCDR (insertion_point,
835 Fcons (Fcons (idx, def), XCDR (insertion_point)));
836 }
837
838 return def;
839 }
840
841 EXFUN (Fcopy_keymap, 1);
842
843 Lisp_Object
844 copy_keymap_item (elt)
845 Lisp_Object elt;
846 {
847 Lisp_Object res, tem;
848
849 if (!CONSP (elt))
850 return elt;
851
852 res = tem = elt;
853
854 /* Is this a new format menu item. */
855 if (EQ (XCAR (tem), Qmenu_item))
856 {
857 /* Copy cell with menu-item marker. */
858 res = elt = Fcons (XCAR (tem), XCDR (tem));
859 tem = XCDR (elt);
860 if (CONSP (tem))
861 {
862 /* Copy cell with menu-item name. */
863 XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
864 elt = XCDR (elt);
865 tem = XCDR (elt);
866 }
867 if (CONSP (tem))
868 {
869 /* Copy cell with binding and if the binding is a keymap,
870 copy that. */
871 XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
872 elt = XCDR (elt);
873 tem = XCAR (elt);
874 if (CONSP (tem) && EQ (XCAR (tem), Qkeymap))
875 XSETCAR (elt, Fcopy_keymap (tem));
876 tem = XCDR (elt);
877 if (CONSP (tem) && CONSP (XCAR (tem)))
878 /* Delete cache for key equivalences. */
879 XSETCDR (elt, XCDR (tem));
880 }
881 }
882 else
883 {
884 /* It may be an old fomat menu item.
885 Skip the optional menu string. */
886 if (STRINGP (XCAR (tem)))
887 {
888 /* Copy the cell, since copy-alist didn't go this deep. */
889 res = elt = Fcons (XCAR (tem), XCDR (tem));
890 tem = XCDR (elt);
891 /* Also skip the optional menu help string. */
892 if (CONSP (tem) && STRINGP (XCAR (tem)))
893 {
894 XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
895 elt = XCDR (elt);
896 tem = XCDR (elt);
897 }
898 /* There may also be a list that caches key equivalences.
899 Just delete it for the new keymap. */
900 if (CONSP (tem)
901 && CONSP (XCAR (tem))
902 && (NILP (XCAR (XCAR (tem)))
903 || VECTORP (XCAR (XCAR (tem)))))
904 {
905 XSETCDR (elt, XCDR (tem));
906 tem = XCDR (tem);
907 }
908 if (CONSP (tem) && EQ (XCAR (tem), Qkeymap))
909 XSETCDR (elt, Fcopy_keymap (tem));
910 }
911 else if (EQ (XCAR (tem), Qkeymap))
912 res = Fcopy_keymap (elt);
913 }
914 return res;
915 }
916
917 void
918 copy_keymap_1 (chartable, idx, elt)
919 Lisp_Object chartable, idx, elt;
920 {
921 Faset (chartable, idx, copy_keymap_item (elt));
922 }
923
924 DEFUN ("copy-keymap", Fcopy_keymap, Scopy_keymap, 1, 1, 0,
925 doc: /* Return a copy of the keymap KEYMAP.
926 The copy starts out with the same definitions of KEYMAP,
927 but changing either the copy or KEYMAP does not affect the other.
928 Any key definitions that are subkeymaps are recursively copied.
929 However, a key definition which is a symbol whose definition is a keymap
930 is not copied. */)
931 (keymap)
932 Lisp_Object keymap;
933 {
934 register Lisp_Object copy, tail;
935 keymap = get_keymap (keymap, 1, 0);
936 copy = tail = Fcons (Qkeymap, Qnil);
937 keymap = XCDR (keymap); /* Skip the `keymap' symbol. */
938
939 while (CONSP (keymap) && !EQ (XCAR (keymap), Qkeymap))
940 {
941 Lisp_Object elt = XCAR (keymap);
942 if (CHAR_TABLE_P (elt))
943 {
944 Lisp_Object indices[3];
945 elt = Fcopy_sequence (elt);
946 map_char_table (copy_keymap_1, Qnil, elt, elt, 0, indices);
947 }
948 else if (VECTORP (elt))
949 {
950 int i;
951 elt = Fcopy_sequence (elt);
952 for (i = 0; i < ASIZE (elt); i++)
953 ASET (elt, i, copy_keymap_item (AREF (elt, i)));
954 }
955 else if (CONSP (elt))
956 elt = Fcons (XCAR (elt), copy_keymap_item (XCDR (elt)));
957 XSETCDR (tail, Fcons (elt, Qnil));
958 tail = XCDR (tail);
959 keymap = XCDR (keymap);
960 }
961 XSETCDR (tail, keymap);
962 return copy;
963 }
964 \f
965 /* Simple Keymap mutators and accessors. */
966
967 /* GC is possible in this function if it autoloads a keymap. */
968
969 DEFUN ("define-key", Fdefine_key, Sdefine_key, 3, 3, 0,
970 doc: /* Args KEYMAP, KEY, DEF. Define key sequence KEY, in KEYMAP, as DEF.
971 KEYMAP is a keymap.
972
973 KEY is a string or a vector of symbols and characters meaning a
974 sequence of keystrokes and events. Non-ASCII characters with codes
975 above 127 (such as ISO Latin-1) can be included if you use a vector.
976 Using [t] for KEY creates a default definition, which applies to any
977 event type that has no other definition in thus keymap.
978
979 DEF is anything that can be a key's definition:
980 nil (means key is undefined in this keymap),
981 a command (a Lisp function suitable for interactive calling)
982 a string (treated as a keyboard macro),
983 a keymap (to define a prefix key),
984 a symbol. When the key is looked up, the symbol will stand for its
985 function definition, which should at that time be one of the above,
986 or another symbol whose function definition is used, etc.
987 a cons (STRING . DEFN), meaning that DEFN is the definition
988 (DEFN should be a valid definition in its own right),
989 or a cons (KEYMAP . CHAR), meaning use definition of CHAR in map KEYMAP.
990
991 If KEYMAP is a sparse keymap, the pair binding KEY to DEF is added at
992 the front of KEYMAP. */)
993 (keymap, key, def)
994 Lisp_Object keymap;
995 Lisp_Object key;
996 Lisp_Object def;
997 {
998 register int idx;
999 register Lisp_Object c;
1000 register Lisp_Object cmd;
1001 int metized = 0;
1002 int meta_bit;
1003 int length;
1004 struct gcpro gcpro1, gcpro2, gcpro3;
1005
1006 GCPRO3 (keymap, key, def);
1007 keymap = get_keymap (keymap, 1, 1);
1008
1009 if (!VECTORP (key) && !STRINGP (key))
1010 key = wrong_type_argument (Qarrayp, key);
1011
1012 length = XFASTINT (Flength (key));
1013 if (length == 0)
1014 RETURN_UNGCPRO (Qnil);
1015
1016 if (SYMBOLP (def) && !EQ (Vdefine_key_rebound_commands, Qt))
1017 Vdefine_key_rebound_commands = Fcons (def, Vdefine_key_rebound_commands);
1018
1019 meta_bit = VECTORP (key) ? meta_modifier : 0x80;
1020
1021 idx = 0;
1022 while (1)
1023 {
1024 c = Faref (key, make_number (idx));
1025
1026 if (CONSP (c) && lucid_event_type_list_p (c))
1027 c = Fevent_convert_list (c);
1028
1029 if (SYMBOLP (c))
1030 silly_event_symbol_error (c);
1031
1032 if (INTEGERP (c)
1033 && (XINT (c) & meta_bit)
1034 && !metized)
1035 {
1036 c = meta_prefix_char;
1037 metized = 1;
1038 }
1039 else
1040 {
1041 if (INTEGERP (c))
1042 XSETINT (c, XINT (c) & ~meta_bit);
1043
1044 metized = 0;
1045 idx++;
1046 }
1047
1048 if (!INTEGERP (c) && !SYMBOLP (c) && !CONSP (c))
1049 error ("Key sequence contains invalid event");
1050
1051 if (idx == length)
1052 RETURN_UNGCPRO (store_in_keymap (keymap, c, def));
1053
1054 cmd = access_keymap (keymap, c, 0, 1, 1);
1055
1056 /* If this key is undefined, make it a prefix. */
1057 if (NILP (cmd))
1058 cmd = define_as_prefix (keymap, c);
1059
1060 keymap = get_keymap (cmd, 0, 1);
1061 if (!CONSP (keymap))
1062 /* We must use Fkey_description rather than just passing key to
1063 error; key might be a vector, not a string. */
1064 error ("Key sequence %s uses invalid prefix characters",
1065 XSTRING (Fkey_description (key))->data);
1066 }
1067 }
1068
1069 /* This function may GC (it calls Fkey_binding). */
1070
1071 DEFUN ("remap-command", Fremap_command, Sremap_command, 1, 1, 0,
1072 doc: /* Return the remapping for command COMMAND in current keymaps.
1073 Returns nil if COMMAND is not remapped. */)
1074 (command)
1075 Lisp_Object command;
1076 {
1077 ASET (remap_command_vector, 1, command);
1078 return Fkey_binding (remap_command_vector, Qnil, Qt);
1079 }
1080
1081 /* Value is number if KEY is too long; nil if valid but has no definition. */
1082 /* GC is possible in this function if it autoloads a keymap. */
1083
1084 DEFUN ("lookup-key", Flookup_key, Slookup_key, 2, 3, 0,
1085 doc: /* In keymap KEYMAP, look up key sequence KEY. Return the definition.
1086 nil means undefined. See doc of `define-key' for kinds of definitions.
1087
1088 A number as value means KEY is "too long";
1089 that is, characters or symbols in it except for the last one
1090 fail to be a valid sequence of prefix characters in KEYMAP.
1091 The number is how many characters at the front of KEY
1092 it takes to reach a non-prefix command.
1093
1094 Normally, `lookup-key' ignores bindings for t, which act as default
1095 bindings, used when nothing else in the keymap applies; this makes it
1096 usable as a general function for probing keymaps. However, if the
1097 third optional argument ACCEPT-DEFAULT is non-nil, `lookup-key' will
1098 recognize the default bindings, just as `read-key-sequence' does. */)
1099 (keymap, key, accept_default)
1100 Lisp_Object keymap;
1101 Lisp_Object key;
1102 Lisp_Object accept_default;
1103 {
1104 register int idx;
1105 register Lisp_Object cmd;
1106 register Lisp_Object c;
1107 int length;
1108 int t_ok = !NILP (accept_default);
1109 struct gcpro gcpro1, gcpro2;
1110
1111 GCPRO2 (keymap, key);
1112 keymap = get_keymap (keymap, 1, 1);
1113
1114 if (!VECTORP (key) && !STRINGP (key))
1115 key = wrong_type_argument (Qarrayp, key);
1116
1117 length = XFASTINT (Flength (key));
1118 if (length == 0)
1119 RETURN_UNGCPRO (keymap);
1120
1121 idx = 0;
1122 while (1)
1123 {
1124 c = Faref (key, make_number (idx++));
1125
1126 if (CONSP (c) && lucid_event_type_list_p (c))
1127 c = Fevent_convert_list (c);
1128
1129 /* Turn the 8th bit of string chars into a meta modifier. */
1130 if (XINT (c) & 0x80 && STRINGP (key))
1131 XSETINT (c, (XINT (c) | meta_modifier) & ~0x80);
1132
1133 /* Allow string since binding for `menu-bar-select-buffer'
1134 includes the buffer name in the key sequence. */
1135 if (!INTEGERP (c) && !SYMBOLP (c) && !CONSP (c) && !STRINGP (c))
1136 error ("Key sequence contains invalid event");
1137
1138 cmd = access_keymap (keymap, c, t_ok, 0, 1);
1139 if (idx == length)
1140 RETURN_UNGCPRO (cmd);
1141
1142 keymap = get_keymap (cmd, 0, 1);
1143 if (!CONSP (keymap))
1144 RETURN_UNGCPRO (make_number (idx));
1145
1146 QUIT;
1147 }
1148 }
1149
1150 /* Make KEYMAP define event C as a keymap (i.e., as a prefix).
1151 Assume that currently it does not define C at all.
1152 Return the keymap. */
1153
1154 static Lisp_Object
1155 define_as_prefix (keymap, c)
1156 Lisp_Object keymap, c;
1157 {
1158 Lisp_Object cmd;
1159
1160 cmd = Fmake_sparse_keymap (Qnil);
1161 /* If this key is defined as a prefix in an inherited keymap,
1162 make it a prefix in this map, and make its definition
1163 inherit the other prefix definition. */
1164 cmd = nconc2 (cmd, access_keymap (keymap, c, 0, 0, 0));
1165 store_in_keymap (keymap, c, cmd);
1166
1167 return cmd;
1168 }
1169
1170 /* Append a key to the end of a key sequence. We always make a vector. */
1171
1172 Lisp_Object
1173 append_key (key_sequence, key)
1174 Lisp_Object key_sequence, key;
1175 {
1176 Lisp_Object args[2];
1177
1178 args[0] = key_sequence;
1179
1180 args[1] = Fcons (key, Qnil);
1181 return Fvconcat (2, args);
1182 }
1183
1184 /* Given a event type C which is a symbol,
1185 signal an error if is a mistake such as RET or M-RET or C-DEL, etc. */
1186
1187 static void
1188 silly_event_symbol_error (c)
1189 Lisp_Object c;
1190 {
1191 Lisp_Object parsed, base, name, assoc;
1192 int modifiers;
1193
1194 parsed = parse_modifiers (c);
1195 modifiers = (int) XUINT (XCAR (XCDR (parsed)));
1196 base = XCAR (parsed);
1197 name = Fsymbol_name (base);
1198 /* This alist includes elements such as ("RET" . "\\r"). */
1199 assoc = Fassoc (name, exclude_keys);
1200
1201 if (! NILP (assoc))
1202 {
1203 char new_mods[sizeof ("\\A-\\C-\\H-\\M-\\S-\\s-")];
1204 char *p = new_mods;
1205 Lisp_Object keystring;
1206 if (modifiers & alt_modifier)
1207 { *p++ = '\\'; *p++ = 'A'; *p++ = '-'; }
1208 if (modifiers & ctrl_modifier)
1209 { *p++ = '\\'; *p++ = 'C'; *p++ = '-'; }
1210 if (modifiers & hyper_modifier)
1211 { *p++ = '\\'; *p++ = 'H'; *p++ = '-'; }
1212 if (modifiers & meta_modifier)
1213 { *p++ = '\\'; *p++ = 'M'; *p++ = '-'; }
1214 if (modifiers & shift_modifier)
1215 { *p++ = '\\'; *p++ = 'S'; *p++ = '-'; }
1216 if (modifiers & super_modifier)
1217 { *p++ = '\\'; *p++ = 's'; *p++ = '-'; }
1218 *p = 0;
1219
1220 c = reorder_modifiers (c);
1221 keystring = concat2 (build_string (new_mods), XCDR (assoc));
1222
1223 error ((modifiers & ~meta_modifier
1224 ? "To bind the key %s, use [?%s], not [%s]"
1225 : "To bind the key %s, use \"%s\", not [%s]"),
1226 XSTRING (SYMBOL_NAME (c))->data, XSTRING (keystring)->data,
1227 XSTRING (SYMBOL_NAME (c))->data);
1228 }
1229 }
1230 \f
1231 /* Global, local, and minor mode keymap stuff. */
1232
1233 /* We can't put these variables inside current_minor_maps, since under
1234 some systems, static gets macro-defined to be the empty string.
1235 Ickypoo. */
1236 static Lisp_Object *cmm_modes = NULL, *cmm_maps = NULL;
1237 static int cmm_size = 0;
1238
1239 /* Error handler used in current_minor_maps. */
1240 static Lisp_Object
1241 current_minor_maps_error ()
1242 {
1243 return Qnil;
1244 }
1245
1246 /* Store a pointer to an array of the keymaps of the currently active
1247 minor modes in *buf, and return the number of maps it contains.
1248
1249 This function always returns a pointer to the same buffer, and may
1250 free or reallocate it, so if you want to keep it for a long time or
1251 hand it out to lisp code, copy it. This procedure will be called
1252 for every key sequence read, so the nice lispy approach (return a
1253 new assoclist, list, what have you) for each invocation would
1254 result in a lot of consing over time.
1255
1256 If we used xrealloc/xmalloc and ran out of memory, they would throw
1257 back to the command loop, which would try to read a key sequence,
1258 which would call this function again, resulting in an infinite
1259 loop. Instead, we'll use realloc/malloc and silently truncate the
1260 list, let the key sequence be read, and hope some other piece of
1261 code signals the error. */
1262 int
1263 current_minor_maps (modeptr, mapptr)
1264 Lisp_Object **modeptr, **mapptr;
1265 {
1266 int i = 0;
1267 int list_number = 0;
1268 Lisp_Object alist, assoc, var, val;
1269 Lisp_Object emulation_alists;
1270 Lisp_Object lists[2];
1271
1272 emulation_alists = Vemulation_mode_map_alists;
1273 lists[0] = Vminor_mode_overriding_map_alist;
1274 lists[1] = Vminor_mode_map_alist;
1275
1276 for (list_number = 0; list_number < 2; list_number++)
1277 {
1278 if (CONSP (emulation_alists))
1279 {
1280 alist = XCAR (emulation_alists);
1281 emulation_alists = XCDR (emulation_alists);
1282 if (SYMBOLP (alist))
1283 alist = find_symbol_value (alist);
1284 list_number = -1;
1285 }
1286 else
1287 alist = lists[list_number];
1288
1289 for ( ; CONSP (alist); alist = XCDR (alist))
1290 if ((assoc = XCAR (alist), CONSP (assoc))
1291 && (var = XCAR (assoc), SYMBOLP (var))
1292 && (val = find_symbol_value (var), !EQ (val, Qunbound))
1293 && !NILP (val))
1294 {
1295 Lisp_Object temp;
1296
1297 /* If a variable has an entry in Vminor_mode_overriding_map_alist,
1298 and also an entry in Vminor_mode_map_alist,
1299 ignore the latter. */
1300 if (list_number == 1)
1301 {
1302 val = assq_no_quit (var, lists[0]);
1303 if (!NILP (val))
1304 continue;
1305 }
1306
1307 if (i >= cmm_size)
1308 {
1309 int newsize, allocsize;
1310 Lisp_Object *newmodes, *newmaps;
1311
1312 newsize = cmm_size == 0 ? 30 : cmm_size * 2;
1313 allocsize = newsize * sizeof *newmodes;
1314
1315 /* Use malloc here. See the comment above this function.
1316 Avoid realloc here; it causes spurious traps on GNU/Linux [KFS] */
1317 BLOCK_INPUT;
1318 newmodes = (Lisp_Object *) malloc (allocsize);
1319 if (newmodes)
1320 {
1321 if (cmm_modes)
1322 {
1323 bcopy (cmm_modes, newmodes, cmm_size * sizeof cmm_modes[0]);
1324 free (cmm_modes);
1325 }
1326 cmm_modes = newmodes;
1327 }
1328
1329 newmaps = (Lisp_Object *) malloc (allocsize);
1330 if (newmaps)
1331 {
1332 if (cmm_maps)
1333 {
1334 bcopy (cmm_maps, newmaps, cmm_size * sizeof cmm_maps[0]);
1335 free (cmm_maps);
1336 }
1337 cmm_maps = newmaps;
1338 }
1339 UNBLOCK_INPUT;
1340
1341 if (newmodes == NULL || newmaps == NULL)
1342 break;
1343 cmm_size = newsize;
1344 }
1345
1346 /* Get the keymap definition--or nil if it is not defined. */
1347 temp = internal_condition_case_1 (Findirect_function,
1348 XCDR (assoc),
1349 Qerror, current_minor_maps_error);
1350 if (!NILP (temp))
1351 {
1352 cmm_modes[i] = var;
1353 cmm_maps [i] = temp;
1354 i++;
1355 }
1356 }
1357 }
1358
1359 if (modeptr) *modeptr = cmm_modes;
1360 if (mapptr) *mapptr = cmm_maps;
1361 return i;
1362 }
1363
1364 DEFUN ("current-active-maps", Fcurrent_active_maps, Scurrent_active_maps,
1365 0, 1, 0,
1366 doc: /* Return a list of the currently active keymaps.
1367 OLP if non-nil indicates that we should obey `overriding-local-map' and
1368 `overriding-terminal-local-map'. */)
1369 (olp)
1370 Lisp_Object olp;
1371 {
1372 Lisp_Object keymaps = Fcons (current_global_map, Qnil);
1373
1374 if (!NILP (olp))
1375 {
1376 if (!NILP (Voverriding_local_map))
1377 keymaps = Fcons (Voverriding_local_map, keymaps);
1378 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1379 keymaps = Fcons (current_kboard->Voverriding_terminal_local_map, keymaps);
1380 }
1381 if (NILP (XCDR (keymaps)))
1382 {
1383 Lisp_Object local;
1384 Lisp_Object *maps;
1385 int nmaps, i;
1386
1387 local = get_local_map (PT, current_buffer, Qlocal_map);
1388 if (!NILP (local))
1389 keymaps = Fcons (local, keymaps);
1390
1391 nmaps = current_minor_maps (0, &maps);
1392
1393 for (i = --nmaps; i >= 0; i--)
1394 if (!NILP (maps[i]))
1395 keymaps = Fcons (maps[i], keymaps);
1396
1397 local = get_local_map (PT, current_buffer, Qkeymap);
1398 if (!NILP (local))
1399 keymaps = Fcons (local, keymaps);
1400 }
1401
1402 return keymaps;
1403 }
1404
1405 /* GC is possible in this function if it autoloads a keymap. */
1406
1407 DEFUN ("key-binding", Fkey_binding, Skey_binding, 1, 3, 0,
1408 doc: /* Return the binding for command KEY in current keymaps.
1409 KEY is a string or vector, a sequence of keystrokes.
1410 The binding is probably a symbol with a function definition.
1411
1412 Normally, `key-binding' ignores bindings for t, which act as default
1413 bindings, used when nothing else in the keymap applies; this makes it
1414 usable as a general function for probing keymaps. However, if the
1415 optional second argument ACCEPT-DEFAULT is non-nil, `key-binding' does
1416 recognize the default bindings, just as `read-key-sequence' does.
1417
1418 Like the normal command loop, `key-binding' will remap the command
1419 resulting from looking up KEY by looking up the command in the
1420 currrent keymaps. However, if the optional third argument NO-REMAP
1421 is non-nil, `key-binding' returns the unmapped command. */)
1422 (key, accept_default, no_remap)
1423 Lisp_Object key, accept_default, no_remap;
1424 {
1425 Lisp_Object *maps, value;
1426 int nmaps, i;
1427 struct gcpro gcpro1;
1428
1429 GCPRO1 (key);
1430
1431 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1432 {
1433 value = Flookup_key (current_kboard->Voverriding_terminal_local_map,
1434 key, accept_default);
1435 if (! NILP (value) && !INTEGERP (value))
1436 goto done;
1437 }
1438 else if (!NILP (Voverriding_local_map))
1439 {
1440 value = Flookup_key (Voverriding_local_map, key, accept_default);
1441 if (! NILP (value) && !INTEGERP (value))
1442 goto done;
1443 }
1444 else
1445 {
1446 Lisp_Object local;
1447
1448 local = get_local_map (PT, current_buffer, Qkeymap);
1449 if (! NILP (local))
1450 {
1451 value = Flookup_key (local, key, accept_default);
1452 if (! NILP (value) && !INTEGERP (value))
1453 goto done;
1454 }
1455
1456 nmaps = current_minor_maps (0, &maps);
1457 /* Note that all these maps are GCPRO'd
1458 in the places where we found them. */
1459
1460 for (i = 0; i < nmaps; i++)
1461 if (! NILP (maps[i]))
1462 {
1463 value = Flookup_key (maps[i], key, accept_default);
1464 if (! NILP (value) && !INTEGERP (value))
1465 goto done;
1466 }
1467
1468 local = get_local_map (PT, current_buffer, Qlocal_map);
1469 if (! NILP (local))
1470 {
1471 value = Flookup_key (local, key, accept_default);
1472 if (! NILP (value) && !INTEGERP (value))
1473 goto done;
1474 }
1475 }
1476
1477 value = Flookup_key (current_global_map, key, accept_default);
1478
1479 done:
1480 UNGCPRO;
1481 if (NILP (value) || INTEGERP (value))
1482 return Qnil;
1483
1484 /* If the result of the ordinary keymap lookup is an interactive
1485 command, look for a key binding (ie. remapping) for that command. */
1486
1487 if (NILP (no_remap) && SYMBOLP (value))
1488 {
1489 Lisp_Object value1;
1490 if (value1 = Fremap_command (value), !NILP (value1))
1491 value = value1;
1492 }
1493
1494 return value;
1495 }
1496
1497 /* GC is possible in this function if it autoloads a keymap. */
1498
1499 DEFUN ("local-key-binding", Flocal_key_binding, Slocal_key_binding, 1, 2, 0,
1500 doc: /* Return the binding for command KEYS in current local keymap only.
1501 KEYS is a string, a sequence of keystrokes.
1502 The binding is probably a symbol with a function definition.
1503
1504 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1505 bindings; see the description of `lookup-key' for more details about this. */)
1506 (keys, accept_default)
1507 Lisp_Object keys, accept_default;
1508 {
1509 register Lisp_Object map;
1510 map = current_buffer->keymap;
1511 if (NILP (map))
1512 return Qnil;
1513 return Flookup_key (map, keys, accept_default);
1514 }
1515
1516 /* GC is possible in this function if it autoloads a keymap. */
1517
1518 DEFUN ("global-key-binding", Fglobal_key_binding, Sglobal_key_binding, 1, 2, 0,
1519 doc: /* Return the binding for command KEYS in current global keymap only.
1520 KEYS is a string, a sequence of keystrokes.
1521 The binding is probably a symbol with a function definition.
1522 This function's return values are the same as those of lookup-key
1523 \(which see).
1524
1525 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1526 bindings; see the description of `lookup-key' for more details about this. */)
1527 (keys, accept_default)
1528 Lisp_Object keys, accept_default;
1529 {
1530 return Flookup_key (current_global_map, keys, accept_default);
1531 }
1532
1533 /* GC is possible in this function if it autoloads a keymap. */
1534
1535 DEFUN ("minor-mode-key-binding", Fminor_mode_key_binding, Sminor_mode_key_binding, 1, 2, 0,
1536 doc: /* Find the visible minor mode bindings of KEY.
1537 Return an alist of pairs (MODENAME . BINDING), where MODENAME is the
1538 the symbol which names the minor mode binding KEY, and BINDING is
1539 KEY's definition in that mode. In particular, if KEY has no
1540 minor-mode bindings, return nil. If the first binding is a
1541 non-prefix, all subsequent bindings will be omitted, since they would
1542 be ignored. Similarly, the list doesn't include non-prefix bindings
1543 that come after prefix bindings.
1544
1545 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1546 bindings; see the description of `lookup-key' for more details about this. */)
1547 (key, accept_default)
1548 Lisp_Object key, accept_default;
1549 {
1550 Lisp_Object *modes, *maps;
1551 int nmaps;
1552 Lisp_Object binding;
1553 int i, j;
1554 struct gcpro gcpro1, gcpro2;
1555
1556 nmaps = current_minor_maps (&modes, &maps);
1557 /* Note that all these maps are GCPRO'd
1558 in the places where we found them. */
1559
1560 binding = Qnil;
1561 GCPRO2 (key, binding);
1562
1563 for (i = j = 0; i < nmaps; i++)
1564 if (!NILP (maps[i])
1565 && !NILP (binding = Flookup_key (maps[i], key, accept_default))
1566 && !INTEGERP (binding))
1567 {
1568 if (KEYMAPP (binding))
1569 maps[j++] = Fcons (modes[i], binding);
1570 else if (j == 0)
1571 RETURN_UNGCPRO (Fcons (Fcons (modes[i], binding), Qnil));
1572 }
1573
1574 UNGCPRO;
1575 return Flist (j, maps);
1576 }
1577
1578 DEFUN ("define-prefix-command", Fdefine_prefix_command, Sdefine_prefix_command, 1, 3, 0,
1579 doc: /* Define COMMAND as a prefix command. COMMAND should be a symbol.
1580 A new sparse keymap is stored as COMMAND's function definition and its value.
1581 If a second optional argument MAPVAR is given, the map is stored as
1582 its value instead of as COMMAND's value; but COMMAND is still defined
1583 as a function.
1584 The third optional argument NAME, if given, supplies a menu name
1585 string for the map. This is required to use the keymap as a menu. */)
1586 (command, mapvar, name)
1587 Lisp_Object command, mapvar, name;
1588 {
1589 Lisp_Object map;
1590 map = Fmake_sparse_keymap (name);
1591 Ffset (command, map);
1592 if (!NILP (mapvar))
1593 Fset (mapvar, map);
1594 else
1595 Fset (command, map);
1596 return command;
1597 }
1598
1599 DEFUN ("use-global-map", Fuse_global_map, Suse_global_map, 1, 1, 0,
1600 doc: /* Select KEYMAP as the global keymap. */)
1601 (keymap)
1602 Lisp_Object keymap;
1603 {
1604 keymap = get_keymap (keymap, 1, 1);
1605 current_global_map = keymap;
1606
1607 return Qnil;
1608 }
1609
1610 DEFUN ("use-local-map", Fuse_local_map, Suse_local_map, 1, 1, 0,
1611 doc: /* Select KEYMAP as the local keymap.
1612 If KEYMAP is nil, that means no local keymap. */)
1613 (keymap)
1614 Lisp_Object keymap;
1615 {
1616 if (!NILP (keymap))
1617 keymap = get_keymap (keymap, 1, 1);
1618
1619 current_buffer->keymap = keymap;
1620
1621 return Qnil;
1622 }
1623
1624 DEFUN ("current-local-map", Fcurrent_local_map, Scurrent_local_map, 0, 0, 0,
1625 doc: /* Return current buffer's local keymap, or nil if it has none. */)
1626 ()
1627 {
1628 return current_buffer->keymap;
1629 }
1630
1631 DEFUN ("current-global-map", Fcurrent_global_map, Scurrent_global_map, 0, 0, 0,
1632 doc: /* Return the current global keymap. */)
1633 ()
1634 {
1635 return current_global_map;
1636 }
1637
1638 DEFUN ("current-minor-mode-maps", Fcurrent_minor_mode_maps, Scurrent_minor_mode_maps, 0, 0, 0,
1639 doc: /* Return a list of keymaps for the minor modes of the current buffer. */)
1640 ()
1641 {
1642 Lisp_Object *maps;
1643 int nmaps = current_minor_maps (0, &maps);
1644
1645 return Flist (nmaps, maps);
1646 }
1647 \f
1648 /* Help functions for describing and documenting keymaps. */
1649
1650
1651 static void
1652 accessible_keymaps_1 (key, cmd, maps, tail, thisseq, is_metized)
1653 Lisp_Object maps, tail, thisseq, key, cmd;
1654 int is_metized; /* If 1, `key' is assumed to be INTEGERP. */
1655 {
1656 Lisp_Object tem;
1657
1658 cmd = get_keyelt (cmd, 0);
1659 if (NILP (cmd))
1660 return;
1661
1662 tem = get_keymap (cmd, 0, 0);
1663 if (CONSP (tem))
1664 {
1665 cmd = tem;
1666 /* Ignore keymaps that are already added to maps. */
1667 tem = Frassq (cmd, maps);
1668 if (NILP (tem))
1669 {
1670 /* If the last key in thisseq is meta-prefix-char,
1671 turn it into a meta-ized keystroke. We know
1672 that the event we're about to append is an
1673 ascii keystroke since we're processing a
1674 keymap table. */
1675 if (is_metized)
1676 {
1677 int meta_bit = meta_modifier;
1678 Lisp_Object last = make_number (XINT (Flength (thisseq)) - 1);
1679 tem = Fcopy_sequence (thisseq);
1680
1681 Faset (tem, last, make_number (XINT (key) | meta_bit));
1682
1683 /* This new sequence is the same length as
1684 thisseq, so stick it in the list right
1685 after this one. */
1686 XSETCDR (tail,
1687 Fcons (Fcons (tem, cmd), XCDR (tail)));
1688 }
1689 else
1690 {
1691 tem = append_key (thisseq, key);
1692 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1693 }
1694 }
1695 }
1696 }
1697
1698 static void
1699 accessible_keymaps_char_table (args, index, cmd)
1700 Lisp_Object args, index, cmd;
1701 {
1702 accessible_keymaps_1 (index, cmd,
1703 XCAR (XCAR (args)),
1704 XCAR (XCDR (args)),
1705 XCDR (XCDR (args)),
1706 XINT (XCDR (XCAR (args))));
1707 }
1708
1709 /* This function cannot GC. */
1710
1711 DEFUN ("accessible-keymaps", Faccessible_keymaps, Saccessible_keymaps,
1712 1, 2, 0,
1713 doc: /* Find all keymaps accessible via prefix characters from KEYMAP.
1714 Returns a list of elements of the form (KEYS . MAP), where the sequence
1715 KEYS starting from KEYMAP gets you to MAP. These elements are ordered
1716 so that the KEYS increase in length. The first element is ([] . KEYMAP).
1717 An optional argument PREFIX, if non-nil, should be a key sequence;
1718 then the value includes only maps for prefixes that start with PREFIX. */)
1719 (keymap, prefix)
1720 Lisp_Object keymap, prefix;
1721 {
1722 Lisp_Object maps, good_maps, tail;
1723 int prefixlen = 0;
1724
1725 /* no need for gcpro because we don't autoload any keymaps. */
1726
1727 if (!NILP (prefix))
1728 prefixlen = XINT (Flength (prefix));
1729
1730 if (!NILP (prefix))
1731 {
1732 /* If a prefix was specified, start with the keymap (if any) for
1733 that prefix, so we don't waste time considering other prefixes. */
1734 Lisp_Object tem;
1735 tem = Flookup_key (keymap, prefix, Qt);
1736 /* Flookup_key may give us nil, or a number,
1737 if the prefix is not defined in this particular map.
1738 It might even give us a list that isn't a keymap. */
1739 tem = get_keymap (tem, 0, 0);
1740 if (CONSP (tem))
1741 {
1742 /* Convert PREFIX to a vector now, so that later on
1743 we don't have to deal with the possibility of a string. */
1744 if (STRINGP (prefix))
1745 {
1746 int i, i_byte, c;
1747 Lisp_Object copy;
1748
1749 copy = Fmake_vector (make_number (XSTRING (prefix)->size), Qnil);
1750 for (i = 0, i_byte = 0; i < XSTRING (prefix)->size;)
1751 {
1752 int i_before = i;
1753
1754 FETCH_STRING_CHAR_ADVANCE (c, prefix, i, i_byte);
1755 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
1756 c ^= 0200 | meta_modifier;
1757 ASET (copy, i_before, make_number (c));
1758 }
1759 prefix = copy;
1760 }
1761 maps = Fcons (Fcons (prefix, tem), Qnil);
1762 }
1763 else
1764 return Qnil;
1765 }
1766 else
1767 maps = Fcons (Fcons (Fmake_vector (make_number (0), Qnil),
1768 get_keymap (keymap, 1, 0)),
1769 Qnil);
1770
1771 /* For each map in the list maps,
1772 look at any other maps it points to,
1773 and stick them at the end if they are not already in the list.
1774
1775 This is a breadth-first traversal, where tail is the queue of
1776 nodes, and maps accumulates a list of all nodes visited. */
1777
1778 for (tail = maps; CONSP (tail); tail = XCDR (tail))
1779 {
1780 register Lisp_Object thisseq, thismap;
1781 Lisp_Object last;
1782 /* Does the current sequence end in the meta-prefix-char? */
1783 int is_metized;
1784
1785 thisseq = Fcar (Fcar (tail));
1786 thismap = Fcdr (Fcar (tail));
1787 last = make_number (XINT (Flength (thisseq)) - 1);
1788 is_metized = (XINT (last) >= 0
1789 /* Don't metize the last char of PREFIX. */
1790 && XINT (last) >= prefixlen
1791 && EQ (Faref (thisseq, last), meta_prefix_char));
1792
1793 for (; CONSP (thismap); thismap = XCDR (thismap))
1794 {
1795 Lisp_Object elt;
1796
1797 elt = XCAR (thismap);
1798
1799 QUIT;
1800
1801 if (CHAR_TABLE_P (elt))
1802 {
1803 Lisp_Object indices[3];
1804
1805 map_char_table (accessible_keymaps_char_table, Qnil,
1806 elt, Fcons (Fcons (maps, make_number (is_metized)),
1807 Fcons (tail, thisseq)),
1808 0, indices);
1809 }
1810 else if (VECTORP (elt))
1811 {
1812 register int i;
1813
1814 /* Vector keymap. Scan all the elements. */
1815 for (i = 0; i < ASIZE (elt); i++)
1816 accessible_keymaps_1 (make_number (i), AREF (elt, i),
1817 maps, tail, thisseq, is_metized);
1818
1819 }
1820 else if (CONSP (elt))
1821 accessible_keymaps_1 (XCAR (elt), XCDR (elt),
1822 maps, tail, thisseq,
1823 is_metized && INTEGERP (XCAR (elt)));
1824
1825 }
1826 }
1827
1828 if (NILP (prefix))
1829 return maps;
1830
1831 /* Now find just the maps whose access prefixes start with PREFIX. */
1832
1833 good_maps = Qnil;
1834 for (; CONSP (maps); maps = XCDR (maps))
1835 {
1836 Lisp_Object elt, thisseq;
1837 elt = XCAR (maps);
1838 thisseq = XCAR (elt);
1839 /* The access prefix must be at least as long as PREFIX,
1840 and the first elements must match those of PREFIX. */
1841 if (XINT (Flength (thisseq)) >= prefixlen)
1842 {
1843 int i;
1844 for (i = 0; i < prefixlen; i++)
1845 {
1846 Lisp_Object i1;
1847 XSETFASTINT (i1, i);
1848 if (!EQ (Faref (thisseq, i1), Faref (prefix, i1)))
1849 break;
1850 }
1851 if (i == prefixlen)
1852 good_maps = Fcons (elt, good_maps);
1853 }
1854 }
1855
1856 return Fnreverse (good_maps);
1857 }
1858 \f
1859 Lisp_Object Qsingle_key_description, Qkey_description;
1860
1861 /* This function cannot GC. */
1862
1863 DEFUN ("key-description", Fkey_description, Skey_description, 1, 1, 0,
1864 doc: /* Return a pretty description of key-sequence KEYS.
1865 Control characters turn into "C-foo" sequences, meta into "M-foo"
1866 spaces are put between sequence elements, etc. */)
1867 (keys)
1868 Lisp_Object keys;
1869 {
1870 int len = 0;
1871 int i, i_byte;
1872 Lisp_Object sep;
1873 Lisp_Object *args = NULL;
1874
1875 if (STRINGP (keys))
1876 {
1877 Lisp_Object vector;
1878 vector = Fmake_vector (Flength (keys), Qnil);
1879 for (i = 0, i_byte = 0; i < XSTRING (keys)->size; )
1880 {
1881 int c;
1882 int i_before = i;
1883
1884 FETCH_STRING_CHAR_ADVANCE (c, keys, i, i_byte);
1885 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
1886 c ^= 0200 | meta_modifier;
1887 XSETFASTINT (AREF (vector, i_before), c);
1888 }
1889 keys = vector;
1890 }
1891
1892 if (VECTORP (keys))
1893 {
1894 /* In effect, this computes
1895 (mapconcat 'single-key-description keys " ")
1896 but we shouldn't use mapconcat because it can do GC. */
1897
1898 len = XVECTOR (keys)->size;
1899 sep = build_string (" ");
1900 /* This has one extra element at the end that we don't pass to Fconcat. */
1901 args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
1902
1903 for (i = 0; i < len; i++)
1904 {
1905 args[i * 2] = Fsingle_key_description (AREF (keys, i), Qnil);
1906 args[i * 2 + 1] = sep;
1907 }
1908 }
1909 else if (CONSP (keys))
1910 {
1911 /* In effect, this computes
1912 (mapconcat 'single-key-description keys " ")
1913 but we shouldn't use mapconcat because it can do GC. */
1914
1915 len = XFASTINT (Flength (keys));
1916 sep = build_string (" ");
1917 /* This has one extra element at the end that we don't pass to Fconcat. */
1918 args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
1919
1920 for (i = 0; i < len; i++)
1921 {
1922 args[i * 2] = Fsingle_key_description (XCAR (keys), Qnil);
1923 args[i * 2 + 1] = sep;
1924 keys = XCDR (keys);
1925 }
1926 }
1927 else
1928 keys = wrong_type_argument (Qarrayp, keys);
1929
1930 if (len == 0)
1931 return empty_string;
1932 return Fconcat (len * 2 - 1, args);
1933 }
1934
1935 char *
1936 push_key_description (c, p, force_multibyte)
1937 register unsigned int c;
1938 register char *p;
1939 int force_multibyte;
1940 {
1941 unsigned c2;
1942
1943 /* Clear all the meaningless bits above the meta bit. */
1944 c &= meta_modifier | ~ - meta_modifier;
1945 c2 = c & ~(alt_modifier | ctrl_modifier | hyper_modifier
1946 | meta_modifier | shift_modifier | super_modifier);
1947
1948 if (c & alt_modifier)
1949 {
1950 *p++ = 'A';
1951 *p++ = '-';
1952 c -= alt_modifier;
1953 }
1954 if ((c & ctrl_modifier) != 0
1955 || (c2 < ' ' && c2 != 27 && c2 != '\t' && c2 != Ctl ('M')))
1956 {
1957 *p++ = 'C';
1958 *p++ = '-';
1959 c &= ~ctrl_modifier;
1960 }
1961 if (c & hyper_modifier)
1962 {
1963 *p++ = 'H';
1964 *p++ = '-';
1965 c -= hyper_modifier;
1966 }
1967 if (c & meta_modifier)
1968 {
1969 *p++ = 'M';
1970 *p++ = '-';
1971 c -= meta_modifier;
1972 }
1973 if (c & shift_modifier)
1974 {
1975 *p++ = 'S';
1976 *p++ = '-';
1977 c -= shift_modifier;
1978 }
1979 if (c & super_modifier)
1980 {
1981 *p++ = 's';
1982 *p++ = '-';
1983 c -= super_modifier;
1984 }
1985 if (c < 040)
1986 {
1987 if (c == 033)
1988 {
1989 *p++ = 'E';
1990 *p++ = 'S';
1991 *p++ = 'C';
1992 }
1993 else if (c == '\t')
1994 {
1995 *p++ = 'T';
1996 *p++ = 'A';
1997 *p++ = 'B';
1998 }
1999 else if (c == Ctl ('M'))
2000 {
2001 *p++ = 'R';
2002 *p++ = 'E';
2003 *p++ = 'T';
2004 }
2005 else
2006 {
2007 /* `C-' already added above. */
2008 if (c > 0 && c <= Ctl ('Z'))
2009 *p++ = c + 0140;
2010 else
2011 *p++ = c + 0100;
2012 }
2013 }
2014 else if (c == 0177)
2015 {
2016 *p++ = 'D';
2017 *p++ = 'E';
2018 *p++ = 'L';
2019 }
2020 else if (c == ' ')
2021 {
2022 *p++ = 'S';
2023 *p++ = 'P';
2024 *p++ = 'C';
2025 }
2026 else if (c < 128
2027 || (NILP (current_buffer->enable_multibyte_characters)
2028 && SINGLE_BYTE_CHAR_P (c)
2029 && !force_multibyte))
2030 {
2031 *p++ = c;
2032 }
2033 else
2034 {
2035 int valid_p = SINGLE_BYTE_CHAR_P (c) || char_valid_p (c, 0);
2036
2037 if (force_multibyte && valid_p)
2038 {
2039 if (SINGLE_BYTE_CHAR_P (c))
2040 c = unibyte_char_to_multibyte (c);
2041 p += CHAR_STRING (c, p);
2042 }
2043 else if (NILP (current_buffer->enable_multibyte_characters)
2044 || valid_p)
2045 {
2046 int bit_offset;
2047 *p++ = '\\';
2048 /* The biggest character code uses 19 bits. */
2049 for (bit_offset = 18; bit_offset >= 0; bit_offset -= 3)
2050 {
2051 if (c >= (1 << bit_offset))
2052 *p++ = ((c & (7 << bit_offset)) >> bit_offset) + '0';
2053 }
2054 }
2055 else
2056 p += CHAR_STRING (c, p);
2057 }
2058
2059 return p;
2060 }
2061
2062 /* This function cannot GC. */
2063
2064 DEFUN ("single-key-description", Fsingle_key_description,
2065 Ssingle_key_description, 1, 2, 0,
2066 doc: /* Return a pretty description of command character KEY.
2067 Control characters turn into C-whatever, etc.
2068 Optional argument NO-ANGLES non-nil means don't put angle brackets
2069 around function keys and event symbols. */)
2070 (key, no_angles)
2071 Lisp_Object key, no_angles;
2072 {
2073 if (CONSP (key) && lucid_event_type_list_p (key))
2074 key = Fevent_convert_list (key);
2075
2076 key = EVENT_HEAD (key);
2077
2078 if (INTEGERP (key)) /* Normal character */
2079 {
2080 unsigned int charset, c1, c2;
2081 int without_bits = XINT (key) & ~((-1) << CHARACTERBITS);
2082
2083 if (SINGLE_BYTE_CHAR_P (without_bits))
2084 charset = 0;
2085 else
2086 SPLIT_CHAR (without_bits, charset, c1, c2);
2087
2088 if (charset
2089 && CHARSET_DEFINED_P (charset)
2090 && ((c1 >= 0 && c1 < 32)
2091 || (c2 >= 0 && c2 < 32)))
2092 {
2093 /* Handle a generic character. */
2094 Lisp_Object name;
2095 name = CHARSET_TABLE_INFO (charset, CHARSET_LONG_NAME_IDX);
2096 CHECK_STRING (name);
2097 return concat2 (build_string ("Character set "), name);
2098 }
2099 else
2100 {
2101 char tem[KEY_DESCRIPTION_SIZE], *end;
2102 int nbytes, nchars;
2103 Lisp_Object string;
2104
2105 end = push_key_description (XUINT (key), tem, 1);
2106 nbytes = end - tem;
2107 nchars = multibyte_chars_in_text (tem, nbytes);
2108 if (nchars == nbytes)
2109 {
2110 *end = '\0';
2111 string = build_string (tem);
2112 }
2113 else
2114 string = make_multibyte_string (tem, nchars, nbytes);
2115 return string;
2116 }
2117 }
2118 else if (SYMBOLP (key)) /* Function key or event-symbol */
2119 {
2120 if (NILP (no_angles))
2121 {
2122 char *buffer
2123 = (char *) alloca (STRING_BYTES (XSTRING (SYMBOL_NAME (key))) + 5);
2124 sprintf (buffer, "<%s>", XSTRING (SYMBOL_NAME (key))->data);
2125 return build_string (buffer);
2126 }
2127 else
2128 return Fsymbol_name (key);
2129 }
2130 else if (STRINGP (key)) /* Buffer names in the menubar. */
2131 return Fcopy_sequence (key);
2132 else
2133 error ("KEY must be an integer, cons, symbol, or string");
2134 return Qnil;
2135 }
2136
2137 char *
2138 push_text_char_description (c, p)
2139 register unsigned int c;
2140 register char *p;
2141 {
2142 if (c >= 0200)
2143 {
2144 *p++ = 'M';
2145 *p++ = '-';
2146 c -= 0200;
2147 }
2148 if (c < 040)
2149 {
2150 *p++ = '^';
2151 *p++ = c + 64; /* 'A' - 1 */
2152 }
2153 else if (c == 0177)
2154 {
2155 *p++ = '^';
2156 *p++ = '?';
2157 }
2158 else
2159 *p++ = c;
2160 return p;
2161 }
2162
2163 /* This function cannot GC. */
2164
2165 DEFUN ("text-char-description", Ftext_char_description, Stext_char_description, 1, 1, 0,
2166 doc: /* Return a pretty description of file-character CHARACTER.
2167 Control characters turn into "^char", etc. */)
2168 (character)
2169 Lisp_Object character;
2170 {
2171 /* Currently MAX_MULTIBYTE_LENGTH is 4 (< 6). */
2172 unsigned char str[6];
2173 int c;
2174
2175 CHECK_NUMBER (character);
2176
2177 c = XINT (character);
2178 if (!SINGLE_BYTE_CHAR_P (c))
2179 {
2180 int len = CHAR_STRING (c, str);
2181
2182 return make_multibyte_string (str, 1, len);
2183 }
2184
2185 *push_text_char_description (c & 0377, str) = 0;
2186
2187 return build_string (str);
2188 }
2189
2190 /* Return non-zero if SEQ contains only ASCII characters, perhaps with
2191 a meta bit. */
2192 static int
2193 ascii_sequence_p (seq)
2194 Lisp_Object seq;
2195 {
2196 int i;
2197 int len = XINT (Flength (seq));
2198
2199 for (i = 0; i < len; i++)
2200 {
2201 Lisp_Object ii, elt;
2202
2203 XSETFASTINT (ii, i);
2204 elt = Faref (seq, ii);
2205
2206 if (!INTEGERP (elt)
2207 || (XUINT (elt) & ~CHAR_META) >= 0x80)
2208 return 0;
2209 }
2210
2211 return 1;
2212 }
2213
2214 \f
2215 /* where-is - finding a command in a set of keymaps. */
2216
2217 static Lisp_Object where_is_internal ();
2218 static Lisp_Object where_is_internal_1 ();
2219 static void where_is_internal_2 ();
2220
2221 /* Like Flookup_key, but uses a list of keymaps SHADOW instead of a single map.
2222 Returns the first non-nil binding found in any of those maps. */
2223
2224 static Lisp_Object
2225 shadow_lookup (shadow, key, flag)
2226 Lisp_Object shadow, key, flag;
2227 {
2228 Lisp_Object tail, value;
2229
2230 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
2231 {
2232 value = Flookup_key (XCAR (tail), key, flag);
2233 if (!NILP (value) && !NATNUMP (value))
2234 return value;
2235 }
2236 return Qnil;
2237 }
2238
2239 /* This function can GC if Flookup_key autoloads any keymaps. */
2240
2241 static Lisp_Object
2242 where_is_internal (definition, keymaps, firstonly, noindirect, no_remap)
2243 Lisp_Object definition, keymaps;
2244 Lisp_Object firstonly, noindirect, no_remap;
2245 {
2246 Lisp_Object maps = Qnil;
2247 Lisp_Object found, sequences;
2248 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2249 /* 1 means ignore all menu bindings entirely. */
2250 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2251
2252 /* If this command is remapped, then it has no key bindings
2253 of its own. */
2254 if (NILP (no_remap) && SYMBOLP (definition))
2255 {
2256 Lisp_Object tem;
2257 if (tem = Fremap_command (definition), !NILP (tem))
2258 return Qnil;
2259 }
2260
2261 found = keymaps;
2262 while (CONSP (found))
2263 {
2264 maps =
2265 nconc2 (maps,
2266 Faccessible_keymaps (get_keymap (XCAR (found), 1, 0), Qnil));
2267 found = XCDR (found);
2268 }
2269
2270 GCPRO5 (definition, keymaps, maps, found, sequences);
2271 found = Qnil;
2272 sequences = Qnil;
2273
2274 for (; !NILP (maps); maps = Fcdr (maps))
2275 {
2276 /* Key sequence to reach map, and the map that it reaches */
2277 register Lisp_Object this, map;
2278
2279 /* In order to fold [META-PREFIX-CHAR CHAR] sequences into
2280 [M-CHAR] sequences, check if last character of the sequence
2281 is the meta-prefix char. */
2282 Lisp_Object last;
2283 int last_is_meta;
2284
2285 this = Fcar (Fcar (maps));
2286 map = Fcdr (Fcar (maps));
2287 last = make_number (XINT (Flength (this)) - 1);
2288 last_is_meta = (XINT (last) >= 0
2289 && EQ (Faref (this, last), meta_prefix_char));
2290
2291 /* if (nomenus && !ascii_sequence_p (this)) */
2292 if (nomenus && XINT (last) >= 0
2293 && !INTEGERP (Faref (this, make_number (0))))
2294 /* If no menu entries should be returned, skip over the
2295 keymaps bound to `menu-bar' and `tool-bar' and other
2296 non-ascii prefixes like `C-down-mouse-2'. */
2297 continue;
2298
2299 QUIT;
2300
2301 while (CONSP (map))
2302 {
2303 /* Because the code we want to run on each binding is rather
2304 large, we don't want to have two separate loop bodies for
2305 sparse keymap bindings and tables; we want to iterate one
2306 loop body over both keymap and vector bindings.
2307
2308 For this reason, if Fcar (map) is a vector, we don't
2309 advance map to the next element until i indicates that we
2310 have finished off the vector. */
2311 Lisp_Object elt, key, binding;
2312 elt = XCAR (map);
2313 map = XCDR (map);
2314
2315 sequences = Qnil;
2316
2317 QUIT;
2318
2319 /* Set key and binding to the current key and binding, and
2320 advance map and i to the next binding. */
2321 if (VECTORP (elt))
2322 {
2323 Lisp_Object sequence;
2324 int i;
2325 /* In a vector, look at each element. */
2326 for (i = 0; i < XVECTOR (elt)->size; i++)
2327 {
2328 binding = AREF (elt, i);
2329 XSETFASTINT (key, i);
2330 sequence = where_is_internal_1 (binding, key, definition,
2331 noindirect, this,
2332 last, nomenus, last_is_meta);
2333 if (!NILP (sequence))
2334 sequences = Fcons (sequence, sequences);
2335 }
2336 }
2337 else if (CHAR_TABLE_P (elt))
2338 {
2339 Lisp_Object indices[3];
2340 Lisp_Object args;
2341
2342 args = Fcons (Fcons (Fcons (definition, noindirect),
2343 Qnil), /* Result accumulator. */
2344 Fcons (Fcons (this, last),
2345 Fcons (make_number (nomenus),
2346 make_number (last_is_meta))));
2347 map_char_table (where_is_internal_2, Qnil, elt, args,
2348 0, indices);
2349 sequences = XCDR (XCAR (args));
2350 }
2351 else if (CONSP (elt))
2352 {
2353 Lisp_Object sequence;
2354
2355 key = XCAR (elt);
2356 binding = XCDR (elt);
2357
2358 sequence = where_is_internal_1 (binding, key, definition,
2359 noindirect, this,
2360 last, nomenus, last_is_meta);
2361 if (!NILP (sequence))
2362 sequences = Fcons (sequence, sequences);
2363 }
2364
2365
2366 while (!NILP (sequences))
2367 {
2368 Lisp_Object sequence, remapped, function;
2369
2370 sequence = XCAR (sequences);
2371 sequences = XCDR (sequences);
2372
2373 /* If the current sequence is a command remapping with
2374 format [remap COMMAND], find the key sequences
2375 which run COMMAND, and use those sequences instead. */
2376 remapped = Qnil;
2377 if (NILP (no_remap)
2378 && VECTORP (sequence) && XVECTOR (sequence)->size == 2
2379 && EQ (AREF (sequence, 0), Qremap)
2380 && (function = AREF (sequence, 1), SYMBOLP (function)))
2381 {
2382 Lisp_Object remapped1;
2383
2384 remapped1 = where_is_internal (function, keymaps, firstonly, noindirect, Qt);
2385 if (CONSP (remapped1))
2386 {
2387 /* Verify that this key binding actually maps to the
2388 remapped command (see below). */
2389 if (!EQ (shadow_lookup (keymaps, XCAR (remapped1), Qnil), function))
2390 continue;
2391 sequence = XCAR (remapped1);
2392 remapped = XCDR (remapped1);
2393 goto record_sequence;
2394 }
2395 }
2396
2397 /* Verify that this key binding is not shadowed by another
2398 binding for the same key, before we say it exists.
2399
2400 Mechanism: look for local definition of this key and if
2401 it is defined and does not match what we found then
2402 ignore this key.
2403
2404 Either nil or number as value from Flookup_key
2405 means undefined. */
2406 if (!EQ (shadow_lookup (keymaps, sequence, Qnil), definition))
2407 continue;
2408
2409 record_sequence:
2410 /* It is a true unshadowed match. Record it, unless it's already
2411 been seen (as could happen when inheriting keymaps). */
2412 if (NILP (Fmember (sequence, found)))
2413 found = Fcons (sequence, found);
2414
2415 /* If firstonly is Qnon_ascii, then we can return the first
2416 binding we find. If firstonly is not Qnon_ascii but not
2417 nil, then we should return the first ascii-only binding
2418 we find. */
2419 if (EQ (firstonly, Qnon_ascii))
2420 RETURN_UNGCPRO (sequence);
2421 else if (!NILP (firstonly) && ascii_sequence_p (sequence))
2422 RETURN_UNGCPRO (sequence);
2423
2424 if (CONSP (remapped))
2425 {
2426 sequence = XCAR (remapped);
2427 remapped = XCDR (remapped);
2428 goto record_sequence;
2429 }
2430 }
2431 }
2432 }
2433
2434 UNGCPRO;
2435
2436 found = Fnreverse (found);
2437
2438 /* firstonly may have been t, but we may have gone all the way through
2439 the keymaps without finding an all-ASCII key sequence. So just
2440 return the best we could find. */
2441 if (!NILP (firstonly))
2442 return Fcar (found);
2443
2444 return found;
2445 }
2446
2447 DEFUN ("where-is-internal", Fwhere_is_internal, Swhere_is_internal, 1, 5, 0,
2448 doc: /* Return list of keys that invoke DEFINITION.
2449 If KEYMAP is non-nil, search only KEYMAP and the global keymap.
2450 If KEYMAP is nil, search all the currently active keymaps.
2451 If KEYMAP is a list of keymaps, search only those keymaps.
2452
2453 If optional 3rd arg FIRSTONLY is non-nil, return the first key sequence found,
2454 rather than a list of all possible key sequences.
2455 If FIRSTONLY is the symbol `non-ascii', return the first binding found,
2456 no matter what it is.
2457 If FIRSTONLY has another non-nil value, prefer sequences of ASCII characters,
2458 and entirely reject menu bindings.
2459
2460 If optional 4th arg NOINDIRECT is non-nil, don't follow indirections
2461 to other keymaps or slots. This makes it possible to search for an
2462 indirect definition itself.
2463
2464 If optional 5th arg NO-REMAP is non-nil, don't search for key sequences
2465 that invoke a command which is remapped to DEFINITION, but include the
2466 remapped command in the returned list. */)
2467 (definition, keymap, firstonly, noindirect, no_remap)
2468 Lisp_Object definition, keymap;
2469 Lisp_Object firstonly, noindirect, no_remap;
2470 {
2471 Lisp_Object sequences, keymaps;
2472 /* 1 means ignore all menu bindings entirely. */
2473 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2474 Lisp_Object result;
2475
2476 /* Find the relevant keymaps. */
2477 if (CONSP (keymap) && KEYMAPP (XCAR (keymap)))
2478 keymaps = keymap;
2479 else if (!NILP (keymap))
2480 keymaps = Fcons (keymap, Fcons (current_global_map, Qnil));
2481 else
2482 keymaps = Fcurrent_active_maps (Qnil);
2483
2484 /* Only use caching for the menubar (i.e. called with (def nil t nil).
2485 We don't really need to check `keymap'. */
2486 if (nomenus && NILP (noindirect) && NILP (keymap))
2487 {
2488 Lisp_Object *defns;
2489 int i, j, n;
2490 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2491
2492 /* Check heuristic-consistency of the cache. */
2493 if (NILP (Fequal (keymaps, where_is_cache_keymaps)))
2494 where_is_cache = Qnil;
2495
2496 if (NILP (where_is_cache))
2497 {
2498 /* We need to create the cache. */
2499 Lisp_Object args[2];
2500 where_is_cache = Fmake_hash_table (0, args);
2501 where_is_cache_keymaps = Qt;
2502
2503 /* Fill in the cache. */
2504 GCPRO5 (definition, keymaps, firstonly, noindirect, no_remap);
2505 where_is_internal (definition, keymaps, firstonly, noindirect, no_remap);
2506 UNGCPRO;
2507
2508 where_is_cache_keymaps = keymaps;
2509 }
2510
2511 /* We want to process definitions from the last to the first.
2512 Instead of consing, copy definitions to a vector and step
2513 over that vector. */
2514 sequences = Fgethash (definition, where_is_cache, Qnil);
2515 n = XINT (Flength (sequences));
2516 defns = (Lisp_Object *) alloca (n * sizeof *defns);
2517 for (i = 0; CONSP (sequences); sequences = XCDR (sequences))
2518 defns[i++] = XCAR (sequences);
2519
2520 /* Verify that the key bindings are not shadowed. Note that
2521 the following can GC. */
2522 GCPRO2 (definition, keymaps);
2523 result = Qnil;
2524 j = -1;
2525 for (i = n - 1; i >= 0; --i)
2526 if (EQ (shadow_lookup (keymaps, defns[i], Qnil), definition))
2527 {
2528 if (ascii_sequence_p (defns[i]))
2529 break;
2530 else if (j < 0)
2531 j = i;
2532 }
2533
2534 result = i >= 0 ? defns[i] : (j >= 0 ? defns[j] : Qnil);
2535 UNGCPRO;
2536 }
2537 else
2538 {
2539 /* Kill the cache so that where_is_internal_1 doesn't think
2540 we're filling it up. */
2541 where_is_cache = Qnil;
2542 result = where_is_internal (definition, keymaps, firstonly, noindirect, no_remap);
2543 }
2544
2545 return result;
2546 }
2547
2548 /* This is the function that Fwhere_is_internal calls using map_char_table.
2549 ARGS has the form
2550 (((DEFINITION . NOINDIRECT) . (KEYMAP . RESULT))
2551 .
2552 ((THIS . LAST) . (NOMENUS . LAST_IS_META)))
2553 Since map_char_table doesn't really use the return value from this function,
2554 we the result append to RESULT, the slot in ARGS.
2555
2556 This function can GC because it calls where_is_internal_1 which can
2557 GC. */
2558
2559 static void
2560 where_is_internal_2 (args, key, binding)
2561 Lisp_Object args, key, binding;
2562 {
2563 Lisp_Object definition, noindirect, this, last;
2564 Lisp_Object result, sequence;
2565 int nomenus, last_is_meta;
2566 struct gcpro gcpro1, gcpro2, gcpro3;
2567
2568 GCPRO3 (args, key, binding);
2569 result = XCDR (XCAR (args));
2570 definition = XCAR (XCAR (XCAR (args)));
2571 noindirect = XCDR (XCAR (XCAR (args)));
2572 this = XCAR (XCAR (XCDR (args)));
2573 last = XCDR (XCAR (XCDR (args)));
2574 nomenus = XFASTINT (XCAR (XCDR (XCDR (args))));
2575 last_is_meta = XFASTINT (XCDR (XCDR (XCDR (args))));
2576
2577 sequence = where_is_internal_1 (binding, key, definition, noindirect,
2578 this, last, nomenus, last_is_meta);
2579
2580 if (!NILP (sequence))
2581 XSETCDR (XCAR (args), Fcons (sequence, result));
2582
2583 UNGCPRO;
2584 }
2585
2586
2587 /* This function cannot GC. */
2588
2589 static Lisp_Object
2590 where_is_internal_1 (binding, key, definition, noindirect, this, last,
2591 nomenus, last_is_meta)
2592 Lisp_Object binding, key, definition, noindirect, this, last;
2593 int nomenus, last_is_meta;
2594 {
2595 Lisp_Object sequence;
2596
2597 /* Search through indirections unless that's not wanted. */
2598 if (NILP (noindirect))
2599 binding = get_keyelt (binding, 0);
2600
2601 /* End this iteration if this element does not match
2602 the target. */
2603
2604 if (!(!NILP (where_is_cache) /* everything "matches" during cache-fill. */
2605 || EQ (binding, definition)
2606 || (CONSP (definition) && !NILP (Fequal (binding, definition)))))
2607 /* Doesn't match. */
2608 return Qnil;
2609
2610 /* We have found a match. Construct the key sequence where we found it. */
2611 if (INTEGERP (key) && last_is_meta)
2612 {
2613 sequence = Fcopy_sequence (this);
2614 Faset (sequence, last, make_number (XINT (key) | meta_modifier));
2615 }
2616 else
2617 sequence = append_key (this, key);
2618
2619 if (!NILP (where_is_cache))
2620 {
2621 Lisp_Object sequences = Fgethash (binding, where_is_cache, Qnil);
2622 Fputhash (binding, Fcons (sequence, sequences), where_is_cache);
2623 return Qnil;
2624 }
2625 else
2626 return sequence;
2627 }
2628 \f
2629 /* describe-bindings - summarizing all the bindings in a set of keymaps. */
2630
2631 DEFUN ("describe-buffer-bindings", Fdescribe_buffer_bindings, Sdescribe_buffer_bindings, 1, 3, 0,
2632 doc: /* Insert the list of all defined keys and their definitions.
2633 The list is inserted in the current buffer, while the bindings are
2634 looked up in BUFFER.
2635 The optional argument PREFIX, if non-nil, should be a key sequence;
2636 then we display only bindings that start with that prefix.
2637 The optional argument MENUS, if non-nil, says to mention menu bindings.
2638 \(Ordinarily these are omitted from the output.) */)
2639 (buffer, prefix, menus)
2640 Lisp_Object buffer, prefix, menus;
2641 {
2642 Lisp_Object outbuf, shadow;
2643 int nomenu = NILP (menus);
2644 register Lisp_Object start1;
2645 struct gcpro gcpro1;
2646
2647 char *alternate_heading
2648 = "\
2649 Keyboard translations:\n\n\
2650 You type Translation\n\
2651 -------- -----------\n";
2652
2653 shadow = Qnil;
2654 GCPRO1 (shadow);
2655
2656 outbuf = Fcurrent_buffer ();
2657
2658 /* Report on alternates for keys. */
2659 if (STRINGP (Vkeyboard_translate_table) && !NILP (prefix))
2660 {
2661 int c;
2662 unsigned char *translate = XSTRING (Vkeyboard_translate_table)->data;
2663 int translate_len = XSTRING (Vkeyboard_translate_table)->size;
2664
2665 for (c = 0; c < translate_len; c++)
2666 if (translate[c] != c)
2667 {
2668 char buf[KEY_DESCRIPTION_SIZE];
2669 char *bufend;
2670
2671 if (alternate_heading)
2672 {
2673 insert_string (alternate_heading);
2674 alternate_heading = 0;
2675 }
2676
2677 bufend = push_key_description (translate[c], buf, 1);
2678 insert (buf, bufend - buf);
2679 Findent_to (make_number (16), make_number (1));
2680 bufend = push_key_description (c, buf, 1);
2681 insert (buf, bufend - buf);
2682
2683 insert ("\n", 1);
2684 }
2685
2686 insert ("\n", 1);
2687 }
2688
2689 if (!NILP (Vkey_translation_map))
2690 describe_map_tree (Vkey_translation_map, 0, Qnil, prefix,
2691 "Key translations", nomenu, 1, 0);
2692
2693
2694 /* Print the (major mode) local map. */
2695 start1 = Qnil;
2696 if (!NILP (current_kboard->Voverriding_terminal_local_map))
2697 start1 = current_kboard->Voverriding_terminal_local_map;
2698 else if (!NILP (Voverriding_local_map))
2699 start1 = Voverriding_local_map;
2700
2701 if (!NILP (start1))
2702 {
2703 describe_map_tree (start1, 1, shadow, prefix,
2704 "\f\nOverriding Bindings", nomenu, 0, 0);
2705 shadow = Fcons (start1, shadow);
2706 }
2707 else
2708 {
2709 /* Print the minor mode and major mode keymaps. */
2710 int i, nmaps;
2711 Lisp_Object *modes, *maps;
2712
2713 /* Temporarily switch to `buffer', so that we can get that buffer's
2714 minor modes correctly. */
2715 Fset_buffer (buffer);
2716
2717 nmaps = current_minor_maps (&modes, &maps);
2718 Fset_buffer (outbuf);
2719
2720 start1 = get_local_map (BUF_PT (XBUFFER (buffer)),
2721 XBUFFER (buffer), Qkeymap);
2722 if (!NILP (start1))
2723 {
2724 describe_map_tree (start1, 1, shadow, prefix,
2725 "\f\n`keymap' Property Bindings", nomenu, 0, 0);
2726 shadow = Fcons (start1, shadow);
2727 }
2728
2729 /* Print the minor mode maps. */
2730 for (i = 0; i < nmaps; i++)
2731 {
2732 /* The title for a minor mode keymap
2733 is constructed at run time.
2734 We let describe_map_tree do the actual insertion
2735 because it takes care of other features when doing so. */
2736 char *title, *p;
2737
2738 if (!SYMBOLP (modes[i]))
2739 abort();
2740
2741 p = title = (char *) alloca (42 + XSTRING (SYMBOL_NAME (modes[i]))->size);
2742 *p++ = '\f';
2743 *p++ = '\n';
2744 *p++ = '`';
2745 bcopy (XSTRING (SYMBOL_NAME (modes[i]))->data, p,
2746 XSTRING (SYMBOL_NAME (modes[i]))->size);
2747 p += XSTRING (SYMBOL_NAME (modes[i]))->size;
2748 *p++ = '\'';
2749 bcopy (" Minor Mode Bindings", p, sizeof (" Minor Mode Bindings") - 1);
2750 p += sizeof (" Minor Mode Bindings") - 1;
2751 *p = 0;
2752
2753 describe_map_tree (maps[i], 1, shadow, prefix, title, nomenu, 0, 0);
2754 shadow = Fcons (maps[i], shadow);
2755 }
2756
2757 start1 = get_local_map (BUF_PT (XBUFFER (buffer)),
2758 XBUFFER (buffer), Qlocal_map);
2759 if (!NILP (start1))
2760 {
2761 if (EQ (start1, XBUFFER (buffer)->keymap))
2762 describe_map_tree (start1, 1, shadow, prefix,
2763 "\f\nMajor Mode Bindings", nomenu, 0, 0);
2764 else
2765 describe_map_tree (start1, 1, shadow, prefix,
2766 "\f\n`local-map' Property Bindings",
2767 nomenu, 0, 0);
2768
2769 shadow = Fcons (start1, shadow);
2770 }
2771 }
2772
2773 describe_map_tree (current_global_map, 1, shadow, prefix,
2774 "\f\nGlobal Bindings", nomenu, 0, 1);
2775
2776 /* Print the function-key-map translations under this prefix. */
2777 if (!NILP (Vfunction_key_map))
2778 describe_map_tree (Vfunction_key_map, 0, Qnil, prefix,
2779 "\f\nFunction key map translations", nomenu, 1, 0);
2780
2781 UNGCPRO;
2782 return Qnil;
2783 }
2784
2785 /* Insert a description of the key bindings in STARTMAP,
2786 followed by those of all maps reachable through STARTMAP.
2787 If PARTIAL is nonzero, omit certain "uninteresting" commands
2788 (such as `undefined').
2789 If SHADOW is non-nil, it is a list of maps;
2790 don't mention keys which would be shadowed by any of them.
2791 PREFIX, if non-nil, says mention only keys that start with PREFIX.
2792 TITLE, if not 0, is a string to insert at the beginning.
2793 TITLE should not end with a colon or a newline; we supply that.
2794 If NOMENU is not 0, then omit menu-bar commands.
2795
2796 If TRANSL is nonzero, the definitions are actually key translations
2797 so print strings and vectors differently.
2798
2799 If ALWAYS_TITLE is nonzero, print the title even if there are no maps
2800 to look through. */
2801
2802 void
2803 describe_map_tree (startmap, partial, shadow, prefix, title, nomenu, transl,
2804 always_title)
2805 Lisp_Object startmap, shadow, prefix;
2806 int partial;
2807 char *title;
2808 int nomenu;
2809 int transl;
2810 int always_title;
2811 {
2812 Lisp_Object maps, orig_maps, seen, sub_shadows;
2813 struct gcpro gcpro1, gcpro2, gcpro3;
2814 int something = 0;
2815 char *key_heading
2816 = "\
2817 key binding\n\
2818 --- -------\n";
2819
2820 orig_maps = maps = Faccessible_keymaps (startmap, prefix);
2821 seen = Qnil;
2822 sub_shadows = Qnil;
2823 GCPRO3 (maps, seen, sub_shadows);
2824
2825 if (nomenu)
2826 {
2827 Lisp_Object list;
2828
2829 /* Delete from MAPS each element that is for the menu bar. */
2830 for (list = maps; !NILP (list); list = XCDR (list))
2831 {
2832 Lisp_Object elt, prefix, tem;
2833
2834 elt = Fcar (list);
2835 prefix = Fcar (elt);
2836 if (XVECTOR (prefix)->size >= 1)
2837 {
2838 tem = Faref (prefix, make_number (0));
2839 if (EQ (tem, Qmenu_bar))
2840 maps = Fdelq (elt, maps);
2841 }
2842 }
2843 }
2844
2845 if (!NILP (maps) || always_title)
2846 {
2847 if (title)
2848 {
2849 insert_string (title);
2850 if (!NILP (prefix))
2851 {
2852 insert_string (" Starting With ");
2853 insert1 (Fkey_description (prefix));
2854 }
2855 insert_string (":\n");
2856 }
2857 insert_string (key_heading);
2858 something = 1;
2859 }
2860
2861 for (; !NILP (maps); maps = Fcdr (maps))
2862 {
2863 register Lisp_Object elt, prefix, tail;
2864
2865 elt = Fcar (maps);
2866 prefix = Fcar (elt);
2867
2868 sub_shadows = Qnil;
2869
2870 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
2871 {
2872 Lisp_Object shmap;
2873
2874 shmap = XCAR (tail);
2875
2876 /* If the sequence by which we reach this keymap is zero-length,
2877 then the shadow map for this keymap is just SHADOW. */
2878 if ((STRINGP (prefix) && XSTRING (prefix)->size == 0)
2879 || (VECTORP (prefix) && XVECTOR (prefix)->size == 0))
2880 ;
2881 /* If the sequence by which we reach this keymap actually has
2882 some elements, then the sequence's definition in SHADOW is
2883 what we should use. */
2884 else
2885 {
2886 shmap = Flookup_key (shmap, Fcar (elt), Qt);
2887 if (INTEGERP (shmap))
2888 shmap = Qnil;
2889 }
2890
2891 /* If shmap is not nil and not a keymap,
2892 it completely shadows this map, so don't
2893 describe this map at all. */
2894 if (!NILP (shmap) && !KEYMAPP (shmap))
2895 goto skip;
2896
2897 if (!NILP (shmap))
2898 sub_shadows = Fcons (shmap, sub_shadows);
2899 }
2900
2901 /* Maps we have already listed in this loop shadow this map. */
2902 for (tail = orig_maps; !EQ (tail, maps); tail = XCDR (tail))
2903 {
2904 Lisp_Object tem;
2905 tem = Fequal (Fcar (XCAR (tail)), prefix);
2906 if (!NILP (tem))
2907 sub_shadows = Fcons (XCDR (XCAR (tail)), sub_shadows);
2908 }
2909
2910 describe_map (Fcdr (elt), prefix,
2911 transl ? describe_translation : describe_command,
2912 partial, sub_shadows, &seen, nomenu);
2913
2914 skip: ;
2915 }
2916
2917 if (something)
2918 insert_string ("\n");
2919
2920 UNGCPRO;
2921 }
2922
2923 static int previous_description_column;
2924
2925 static void
2926 describe_command (definition, args)
2927 Lisp_Object definition, args;
2928 {
2929 register Lisp_Object tem1;
2930 int column = (int) current_column (); /* iftc */
2931 int description_column;
2932
2933 /* If column 16 is no good, go to col 32;
2934 but don't push beyond that--go to next line instead. */
2935 if (column > 30)
2936 {
2937 insert_char ('\n');
2938 description_column = 32;
2939 }
2940 else if (column > 14 || (column > 10 && previous_description_column == 32))
2941 description_column = 32;
2942 else
2943 description_column = 16;
2944
2945 Findent_to (make_number (description_column), make_number (1));
2946 previous_description_column = description_column;
2947
2948 if (SYMBOLP (definition))
2949 {
2950 tem1 = SYMBOL_NAME (definition);
2951 insert1 (tem1);
2952 insert_string ("\n");
2953 }
2954 else if (STRINGP (definition) || VECTORP (definition))
2955 insert_string ("Keyboard Macro\n");
2956 else if (KEYMAPP (definition))
2957 insert_string ("Prefix Command\n");
2958 else
2959 insert_string ("??\n");
2960 }
2961
2962 static void
2963 describe_translation (definition, args)
2964 Lisp_Object definition, args;
2965 {
2966 register Lisp_Object tem1;
2967
2968 Findent_to (make_number (16), make_number (1));
2969
2970 if (SYMBOLP (definition))
2971 {
2972 tem1 = SYMBOL_NAME (definition);
2973 insert1 (tem1);
2974 insert_string ("\n");
2975 }
2976 else if (STRINGP (definition) || VECTORP (definition))
2977 {
2978 insert1 (Fkey_description (definition));
2979 insert_string ("\n");
2980 }
2981 else if (KEYMAPP (definition))
2982 insert_string ("Prefix Command\n");
2983 else
2984 insert_string ("??\n");
2985 }
2986
2987 /* Describe the contents of map MAP, assuming that this map itself is
2988 reached by the sequence of prefix keys KEYS (a string or vector).
2989 PARTIAL, SHADOW, NOMENU are as in `describe_map_tree' above. */
2990
2991 static void
2992 describe_map (map, keys, elt_describer, partial, shadow, seen, nomenu)
2993 register Lisp_Object map;
2994 Lisp_Object keys;
2995 void (*elt_describer) P_ ((Lisp_Object, Lisp_Object));
2996 int partial;
2997 Lisp_Object shadow;
2998 Lisp_Object *seen;
2999 int nomenu;
3000 {
3001 Lisp_Object elt_prefix;
3002 Lisp_Object tail, definition, event;
3003 Lisp_Object tem;
3004 Lisp_Object suppress;
3005 Lisp_Object kludge;
3006 int first = 1;
3007 struct gcpro gcpro1, gcpro2, gcpro3;
3008
3009 suppress = Qnil;
3010
3011 if (!NILP (keys) && XFASTINT (Flength (keys)) > 0)
3012 {
3013 /* Call Fkey_description first, to avoid GC bug for the other string. */
3014 tem = Fkey_description (keys);
3015 elt_prefix = concat2 (tem, build_string (" "));
3016 }
3017 else
3018 elt_prefix = Qnil;
3019
3020 if (partial)
3021 suppress = intern ("suppress-keymap");
3022
3023 /* This vector gets used to present single keys to Flookup_key. Since
3024 that is done once per keymap element, we don't want to cons up a
3025 fresh vector every time. */
3026 kludge = Fmake_vector (make_number (1), Qnil);
3027 definition = Qnil;
3028
3029 GCPRO3 (elt_prefix, definition, kludge);
3030
3031 for (tail = map; CONSP (tail); tail = XCDR (tail))
3032 {
3033 QUIT;
3034
3035 if (VECTORP (XCAR (tail))
3036 || CHAR_TABLE_P (XCAR (tail)))
3037 describe_vector (XCAR (tail),
3038 elt_prefix, Qnil, elt_describer, partial, shadow, map,
3039 (int *)0, 0);
3040 else if (CONSP (XCAR (tail)))
3041 {
3042 event = XCAR (XCAR (tail));
3043
3044 /* Ignore bindings whose "keys" are not really valid events.
3045 (We get these in the frames and buffers menu.) */
3046 if (!(SYMBOLP (event) || INTEGERP (event)))
3047 continue;
3048
3049 if (nomenu && EQ (event, Qmenu_bar))
3050 continue;
3051
3052 definition = get_keyelt (XCDR (XCAR (tail)), 0);
3053
3054 /* Don't show undefined commands or suppressed commands. */
3055 if (NILP (definition)) continue;
3056 if (SYMBOLP (definition) && partial)
3057 {
3058 tem = Fget (definition, suppress);
3059 if (!NILP (tem))
3060 continue;
3061 }
3062
3063 /* Don't show a command that isn't really visible
3064 because a local definition of the same key shadows it. */
3065
3066 ASET (kludge, 0, event);
3067 if (!NILP (shadow))
3068 {
3069 tem = shadow_lookup (shadow, kludge, Qt);
3070 if (!NILP (tem)) continue;
3071 }
3072
3073 tem = Flookup_key (map, kludge, Qt);
3074 if (!EQ (tem, definition)) continue;
3075
3076 if (first)
3077 {
3078 previous_description_column = 0;
3079 insert ("\n", 1);
3080 first = 0;
3081 }
3082
3083 if (!NILP (elt_prefix))
3084 insert1 (elt_prefix);
3085
3086 /* THIS gets the string to describe the character EVENT. */
3087 insert1 (Fsingle_key_description (event, Qnil));
3088
3089 /* Print a description of the definition of this character.
3090 elt_describer will take care of spacing out far enough
3091 for alignment purposes. */
3092 (*elt_describer) (definition, Qnil);
3093 }
3094 else if (EQ (XCAR (tail), Qkeymap))
3095 {
3096 /* The same keymap might be in the structure twice, if we're
3097 using an inherited keymap. So skip anything we've already
3098 encountered. */
3099 tem = Fassq (tail, *seen);
3100 if (CONSP (tem) && !NILP (Fequal (XCAR (tem), keys)))
3101 break;
3102 *seen = Fcons (Fcons (tail, keys), *seen);
3103 }
3104 }
3105
3106 UNGCPRO;
3107 }
3108
3109 static void
3110 describe_vector_princ (elt, fun)
3111 Lisp_Object elt, fun;
3112 {
3113 Findent_to (make_number (16), make_number (1));
3114 call1 (fun, elt);
3115 Fterpri (Qnil);
3116 }
3117
3118 DEFUN ("describe-vector", Fdescribe_vector, Sdescribe_vector, 1, 2, 0,
3119 doc: /* Insert a description of contents of VECTOR.
3120 This is text showing the elements of vector matched against indices. */)
3121 (vector, describer)
3122 Lisp_Object vector, describer;
3123 {
3124 int count = SPECPDL_INDEX ();
3125 if (NILP (describer))
3126 describer = intern ("princ");
3127 specbind (Qstandard_output, Fcurrent_buffer ());
3128 CHECK_VECTOR_OR_CHAR_TABLE (vector);
3129 describe_vector (vector, Qnil, describer, describe_vector_princ, 0,
3130 Qnil, Qnil, (int *)0, 0);
3131
3132 return unbind_to (count, Qnil);
3133 }
3134
3135 /* Insert in the current buffer a description of the contents of VECTOR.
3136 We call ELT_DESCRIBER to insert the description of one value found
3137 in VECTOR.
3138
3139 ELT_PREFIX describes what "comes before" the keys or indices defined
3140 by this vector. This is a human-readable string whose size
3141 is not necessarily related to the situation.
3142
3143 If the vector is in a keymap, ELT_PREFIX is a prefix key which
3144 leads to this keymap.
3145
3146 If the vector is a chartable, ELT_PREFIX is the vector
3147 of bytes that lead to the character set or portion of a character
3148 set described by this chartable.
3149
3150 If PARTIAL is nonzero, it means do not mention suppressed commands
3151 (that assumes the vector is in a keymap).
3152
3153 SHADOW is a list of keymaps that shadow this map.
3154 If it is non-nil, then we look up the key in those maps
3155 and we don't mention it now if it is defined by any of them.
3156
3157 ENTIRE_MAP is the keymap in which this vector appears.
3158 If the definition in effect in the whole map does not match
3159 the one in this vector, we ignore this one.
3160
3161 When describing a sub-char-table, INDICES is a list of
3162 indices at higher levels in this char-table,
3163 and CHAR_TABLE_DEPTH says how many levels down we have gone.
3164
3165 ARGS is simply passed as the second argument to ELT_DESCRIBER. */
3166
3167 void
3168 describe_vector (vector, elt_prefix, args, elt_describer,
3169 partial, shadow, entire_map,
3170 indices, char_table_depth)
3171 register Lisp_Object vector;
3172 Lisp_Object elt_prefix, args;
3173 void (*elt_describer) P_ ((Lisp_Object, Lisp_Object));
3174 int partial;
3175 Lisp_Object shadow;
3176 Lisp_Object entire_map;
3177 int *indices;
3178 int char_table_depth;
3179 {
3180 Lisp_Object definition;
3181 Lisp_Object tem2;
3182 register int i;
3183 Lisp_Object suppress;
3184 Lisp_Object kludge;
3185 int first = 1;
3186 struct gcpro gcpro1, gcpro2, gcpro3;
3187 /* Range of elements to be handled. */
3188 int from, to;
3189 /* A flag to tell if a leaf in this level of char-table is not a
3190 generic character (i.e. a complete multibyte character). */
3191 int complete_char;
3192 int character;
3193 int starting_i;
3194
3195 suppress = Qnil;
3196
3197 if (indices == 0)
3198 indices = (int *) alloca (3 * sizeof (int));
3199
3200 definition = Qnil;
3201
3202 /* This vector gets used to present single keys to Flookup_key. Since
3203 that is done once per vector element, we don't want to cons up a
3204 fresh vector every time. */
3205 kludge = Fmake_vector (make_number (1), Qnil);
3206 GCPRO3 (elt_prefix, definition, kludge);
3207
3208 if (partial)
3209 suppress = intern ("suppress-keymap");
3210
3211 if (CHAR_TABLE_P (vector))
3212 {
3213 if (char_table_depth == 0)
3214 {
3215 /* VECTOR is a top level char-table. */
3216 complete_char = 1;
3217 from = 0;
3218 to = CHAR_TABLE_ORDINARY_SLOTS;
3219 }
3220 else
3221 {
3222 /* VECTOR is a sub char-table. */
3223 if (char_table_depth >= 3)
3224 /* A char-table is never that deep. */
3225 error ("Too deep char table");
3226
3227 complete_char
3228 = (CHARSET_VALID_P (indices[0])
3229 && ((CHARSET_DIMENSION (indices[0]) == 1
3230 && char_table_depth == 1)
3231 || char_table_depth == 2));
3232
3233 /* Meaningful elements are from 32th to 127th. */
3234 from = 32;
3235 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
3236 }
3237 }
3238 else
3239 {
3240 /* This does the right thing for ordinary vectors. */
3241
3242 complete_char = 1;
3243 from = 0;
3244 to = XVECTOR (vector)->size;
3245 }
3246
3247 for (i = from; i < to; i++)
3248 {
3249 QUIT;
3250
3251 if (CHAR_TABLE_P (vector))
3252 {
3253 if (char_table_depth == 0 && i >= CHAR_TABLE_SINGLE_BYTE_SLOTS)
3254 complete_char = 0;
3255
3256 if (i >= CHAR_TABLE_SINGLE_BYTE_SLOTS
3257 && !CHARSET_DEFINED_P (i - 128))
3258 continue;
3259
3260 definition
3261 = get_keyelt (XCHAR_TABLE (vector)->contents[i], 0);
3262 }
3263 else
3264 definition = get_keyelt (AREF (vector, i), 0);
3265
3266 if (NILP (definition)) continue;
3267
3268 /* Don't mention suppressed commands. */
3269 if (SYMBOLP (definition) && partial)
3270 {
3271 Lisp_Object tem;
3272
3273 tem = Fget (definition, suppress);
3274
3275 if (!NILP (tem)) continue;
3276 }
3277
3278 /* Set CHARACTER to the character this entry describes, if any.
3279 Also update *INDICES. */
3280 if (CHAR_TABLE_P (vector))
3281 {
3282 indices[char_table_depth] = i;
3283
3284 if (char_table_depth == 0)
3285 {
3286 character = i;
3287 indices[0] = i - 128;
3288 }
3289 else if (complete_char)
3290 {
3291 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3292 }
3293 else
3294 character = 0;
3295 }
3296 else
3297 character = i;
3298
3299 /* If this binding is shadowed by some other map, ignore it. */
3300 if (!NILP (shadow) && complete_char)
3301 {
3302 Lisp_Object tem;
3303
3304 ASET (kludge, 0, make_number (character));
3305 tem = shadow_lookup (shadow, kludge, Qt);
3306
3307 if (!NILP (tem)) continue;
3308 }
3309
3310 /* Ignore this definition if it is shadowed by an earlier
3311 one in the same keymap. */
3312 if (!NILP (entire_map) && complete_char)
3313 {
3314 Lisp_Object tem;
3315
3316 ASET (kludge, 0, make_number (character));
3317 tem = Flookup_key (entire_map, kludge, Qt);
3318
3319 if (!EQ (tem, definition))
3320 continue;
3321 }
3322
3323 if (first)
3324 {
3325 if (char_table_depth == 0)
3326 insert ("\n", 1);
3327 first = 0;
3328 }
3329
3330 /* For a sub char-table, show the depth by indentation.
3331 CHAR_TABLE_DEPTH can be greater than 0 only for a char-table. */
3332 if (char_table_depth > 0)
3333 insert (" ", char_table_depth * 2); /* depth is 1 or 2. */
3334
3335 /* Output the prefix that applies to every entry in this map. */
3336 if (!NILP (elt_prefix))
3337 insert1 (elt_prefix);
3338
3339 /* Insert or describe the character this slot is for,
3340 or a description of what it is for. */
3341 if (SUB_CHAR_TABLE_P (vector))
3342 {
3343 if (complete_char)
3344 insert_char (character);
3345 else
3346 {
3347 /* We need an octal representation for this block of
3348 characters. */
3349 char work[16];
3350 sprintf (work, "(row %d)", i);
3351 insert (work, strlen (work));
3352 }
3353 }
3354 else if (CHAR_TABLE_P (vector))
3355 {
3356 if (complete_char)
3357 insert1 (Fsingle_key_description (make_number (character), Qnil));
3358 else
3359 {
3360 /* Print the information for this character set. */
3361 insert_string ("<");
3362 tem2 = CHARSET_TABLE_INFO (i - 128, CHARSET_SHORT_NAME_IDX);
3363 if (STRINGP (tem2))
3364 insert_from_string (tem2, 0, 0, XSTRING (tem2)->size,
3365 STRING_BYTES (XSTRING (tem2)), 0);
3366 else
3367 insert ("?", 1);
3368 insert (">", 1);
3369 }
3370 }
3371 else
3372 {
3373 insert1 (Fsingle_key_description (make_number (character), Qnil));
3374 }
3375
3376 /* If we find a sub char-table within a char-table,
3377 scan it recursively; it defines the details for
3378 a character set or a portion of a character set. */
3379 if (CHAR_TABLE_P (vector) && SUB_CHAR_TABLE_P (definition))
3380 {
3381 insert ("\n", 1);
3382 describe_vector (definition, elt_prefix, args, elt_describer,
3383 partial, shadow, entire_map,
3384 indices, char_table_depth + 1);
3385 continue;
3386 }
3387
3388 starting_i = i;
3389
3390 /* Find all consecutive characters or rows that have the same
3391 definition. But, for elements of a top level char table, if
3392 they are for charsets, we had better describe one by one even
3393 if they have the same definition. */
3394 if (CHAR_TABLE_P (vector))
3395 {
3396 int limit = to;
3397
3398 if (char_table_depth == 0)
3399 limit = CHAR_TABLE_SINGLE_BYTE_SLOTS;
3400
3401 while (i + 1 < limit
3402 && (tem2 = get_keyelt (XCHAR_TABLE (vector)->contents[i + 1], 0),
3403 !NILP (tem2))
3404 && !NILP (Fequal (tem2, definition)))
3405 i++;
3406 }
3407 else
3408 while (i + 1 < to
3409 && (tem2 = get_keyelt (AREF (vector, i + 1), 0),
3410 !NILP (tem2))
3411 && !NILP (Fequal (tem2, definition)))
3412 i++;
3413
3414
3415 /* If we have a range of more than one character,
3416 print where the range reaches to. */
3417
3418 if (i != starting_i)
3419 {
3420 insert (" .. ", 4);
3421
3422 if (!NILP (elt_prefix))
3423 insert1 (elt_prefix);
3424
3425 if (CHAR_TABLE_P (vector))
3426 {
3427 if (char_table_depth == 0)
3428 {
3429 insert1 (Fsingle_key_description (make_number (i), Qnil));
3430 }
3431 else if (complete_char)
3432 {
3433 indices[char_table_depth] = i;
3434 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3435 insert_char (character);
3436 }
3437 else
3438 {
3439 /* We need an octal representation for this block of
3440 characters. */
3441 char work[16];
3442 sprintf (work, "(row %d)", i);
3443 insert (work, strlen (work));
3444 }
3445 }
3446 else
3447 {
3448 insert1 (Fsingle_key_description (make_number (i), Qnil));
3449 }
3450 }
3451
3452 /* Print a description of the definition of this character.
3453 elt_describer will take care of spacing out far enough
3454 for alignment purposes. */
3455 (*elt_describer) (definition, args);
3456 }
3457
3458 /* For (sub) char-table, print `defalt' slot at last. */
3459 if (CHAR_TABLE_P (vector) && !NILP (XCHAR_TABLE (vector)->defalt))
3460 {
3461 insert (" ", char_table_depth * 2);
3462 insert_string ("<<default>>");
3463 (*elt_describer) (XCHAR_TABLE (vector)->defalt, args);
3464 }
3465
3466 UNGCPRO;
3467 }
3468 \f
3469 /* Apropos - finding all symbols whose names match a regexp. */
3470 Lisp_Object apropos_predicate;
3471 Lisp_Object apropos_accumulate;
3472
3473 static void
3474 apropos_accum (symbol, string)
3475 Lisp_Object symbol, string;
3476 {
3477 register Lisp_Object tem;
3478
3479 tem = Fstring_match (string, Fsymbol_name (symbol), Qnil);
3480 if (!NILP (tem) && !NILP (apropos_predicate))
3481 tem = call1 (apropos_predicate, symbol);
3482 if (!NILP (tem))
3483 apropos_accumulate = Fcons (symbol, apropos_accumulate);
3484 }
3485
3486 DEFUN ("apropos-internal", Fapropos_internal, Sapropos_internal, 1, 2, 0,
3487 doc: /* Show all symbols whose names contain match for REGEXP.
3488 If optional 2nd arg PREDICATE is non-nil, (funcall PREDICATE SYMBOL) is done
3489 for each symbol and a symbol is mentioned only if that returns non-nil.
3490 Return list of symbols found. */)
3491 (regexp, predicate)
3492 Lisp_Object regexp, predicate;
3493 {
3494 struct gcpro gcpro1, gcpro2;
3495 CHECK_STRING (regexp);
3496 apropos_predicate = predicate;
3497 GCPRO2 (apropos_predicate, apropos_accumulate);
3498 apropos_accumulate = Qnil;
3499 map_obarray (Vobarray, apropos_accum, regexp);
3500 apropos_accumulate = Fsort (apropos_accumulate, Qstring_lessp);
3501 UNGCPRO;
3502 return apropos_accumulate;
3503 }
3504 \f
3505 void
3506 syms_of_keymap ()
3507 {
3508 Qkeymap = intern ("keymap");
3509 staticpro (&Qkeymap);
3510
3511 /* Now we are ready to set up this property, so we can
3512 create char tables. */
3513 Fput (Qkeymap, Qchar_table_extra_slots, make_number (0));
3514
3515 /* Initialize the keymaps standardly used.
3516 Each one is the value of a Lisp variable, and is also
3517 pointed to by a C variable */
3518
3519 global_map = Fmake_keymap (Qnil);
3520 Fset (intern ("global-map"), global_map);
3521
3522 current_global_map = global_map;
3523 staticpro (&global_map);
3524 staticpro (&current_global_map);
3525
3526 meta_map = Fmake_keymap (Qnil);
3527 Fset (intern ("esc-map"), meta_map);
3528 Ffset (intern ("ESC-prefix"), meta_map);
3529
3530 control_x_map = Fmake_keymap (Qnil);
3531 Fset (intern ("ctl-x-map"), control_x_map);
3532 Ffset (intern ("Control-X-prefix"), control_x_map);
3533
3534 exclude_keys
3535 = Fcons (Fcons (build_string ("DEL"), build_string ("\\d")),
3536 Fcons (Fcons (build_string ("TAB"), build_string ("\\t")),
3537 Fcons (Fcons (build_string ("RET"), build_string ("\\r")),
3538 Fcons (Fcons (build_string ("ESC"), build_string ("\\e")),
3539 Fcons (Fcons (build_string ("SPC"), build_string (" ")),
3540 Qnil)))));
3541 staticpro (&exclude_keys);
3542
3543 DEFVAR_LISP ("define-key-rebound-commands", &Vdefine_key_rebound_commands,
3544 doc: /* List of commands given new key bindings recently.
3545 This is used for internal purposes during Emacs startup;
3546 don't alter it yourself. */);
3547 Vdefine_key_rebound_commands = Qt;
3548
3549 DEFVAR_LISP ("minibuffer-local-map", &Vminibuffer_local_map,
3550 doc: /* Default keymap to use when reading from the minibuffer. */);
3551 Vminibuffer_local_map = Fmake_sparse_keymap (Qnil);
3552
3553 DEFVAR_LISP ("minibuffer-local-ns-map", &Vminibuffer_local_ns_map,
3554 doc: /* Local keymap for the minibuffer when spaces are not allowed. */);
3555 Vminibuffer_local_ns_map = Fmake_sparse_keymap (Qnil);
3556 Fset_keymap_parent (Vminibuffer_local_ns_map, Vminibuffer_local_map);
3557
3558 DEFVAR_LISP ("minibuffer-local-completion-map", &Vminibuffer_local_completion_map,
3559 doc: /* Local keymap for minibuffer input with completion. */);
3560 Vminibuffer_local_completion_map = Fmake_sparse_keymap (Qnil);
3561 Fset_keymap_parent (Vminibuffer_local_completion_map, Vminibuffer_local_map);
3562
3563 DEFVAR_LISP ("minibuffer-local-must-match-map", &Vminibuffer_local_must_match_map,
3564 doc: /* Local keymap for minibuffer input with completion, for exact match. */);
3565 Vminibuffer_local_must_match_map = Fmake_sparse_keymap (Qnil);
3566 Fset_keymap_parent (Vminibuffer_local_must_match_map,
3567 Vminibuffer_local_completion_map);
3568
3569 DEFVAR_LISP ("minor-mode-map-alist", &Vminor_mode_map_alist,
3570 doc: /* Alist of keymaps to use for minor modes.
3571 Each element looks like (VARIABLE . KEYMAP); KEYMAP is used to read
3572 key sequences and look up bindings iff VARIABLE's value is non-nil.
3573 If two active keymaps bind the same key, the keymap appearing earlier
3574 in the list takes precedence. */);
3575 Vminor_mode_map_alist = Qnil;
3576
3577 DEFVAR_LISP ("minor-mode-overriding-map-alist", &Vminor_mode_overriding_map_alist,
3578 doc: /* Alist of keymaps to use for minor modes, in current major mode.
3579 This variable is an alist just like `minor-mode-map-alist', and it is
3580 used the same way (and before `minor-mode-map-alist'); however,
3581 it is provided for major modes to bind locally. */);
3582 Vminor_mode_overriding_map_alist = Qnil;
3583
3584 DEFVAR_LISP ("emulation-mode-map-alists", &Vemulation_mode_map_alists,
3585 doc: /* List of keymap alists to use for emulations modes.
3586 It is intended for modes or packages using multiple minor-mode keymaps.
3587 Each element is a keymap alist just like `minor-mode-map-alist', or a
3588 symbol with a variable binding which is a keymap alist, and it is used
3589 the same way. The "active" keymaps in each alist are used before
3590 `minor-mode-map-alist' and `minor-mode-overriding-map-alist'. */);
3591 Vemulation_mode_map_alists = Qnil;
3592
3593
3594 DEFVAR_LISP ("function-key-map", &Vfunction_key_map,
3595 doc: /* Keymap mapping ASCII function key sequences onto their preferred forms.
3596 This allows Emacs to recognize function keys sent from ASCII
3597 terminals at any point in a key sequence.
3598
3599 The `read-key-sequence' function replaces any subsequence bound by
3600 `function-key-map' with its binding. More precisely, when the active
3601 keymaps have no binding for the current key sequence but
3602 `function-key-map' binds a suffix of the sequence to a vector or string,
3603 `read-key-sequence' replaces the matching suffix with its binding, and
3604 continues with the new sequence.
3605
3606 The events that come from bindings in `function-key-map' are not
3607 themselves looked up in `function-key-map'.
3608
3609 For example, suppose `function-key-map' binds `ESC O P' to [f1].
3610 Typing `ESC O P' to `read-key-sequence' would return [f1]. Typing
3611 `C-x ESC O P' would return [?\\C-x f1]. If [f1] were a prefix
3612 key, typing `ESC O P x' would return [f1 x]. */);
3613 Vfunction_key_map = Fmake_sparse_keymap (Qnil);
3614
3615 DEFVAR_LISP ("key-translation-map", &Vkey_translation_map,
3616 doc: /* Keymap of key translations that can override keymaps.
3617 This keymap works like `function-key-map', but comes after that,
3618 and applies even for keys that have ordinary bindings. */);
3619 Vkey_translation_map = Qnil;
3620
3621 Qsingle_key_description = intern ("single-key-description");
3622 staticpro (&Qsingle_key_description);
3623
3624 Qkey_description = intern ("key-description");
3625 staticpro (&Qkey_description);
3626
3627 Qkeymapp = intern ("keymapp");
3628 staticpro (&Qkeymapp);
3629
3630 Qnon_ascii = intern ("non-ascii");
3631 staticpro (&Qnon_ascii);
3632
3633 Qmenu_item = intern ("menu-item");
3634 staticpro (&Qmenu_item);
3635
3636 Qremap = intern ("remap");
3637 staticpro (&Qremap);
3638
3639 remap_command_vector = Fmake_vector (make_number (2), Qremap);
3640 staticpro (&remap_command_vector);
3641
3642 where_is_cache_keymaps = Qt;
3643 where_is_cache = Qnil;
3644 staticpro (&where_is_cache);
3645 staticpro (&where_is_cache_keymaps);
3646
3647 defsubr (&Skeymapp);
3648 defsubr (&Skeymap_parent);
3649 defsubr (&Skeymap_prompt);
3650 defsubr (&Sset_keymap_parent);
3651 defsubr (&Smake_keymap);
3652 defsubr (&Smake_sparse_keymap);
3653 defsubr (&Scopy_keymap);
3654 defsubr (&Sremap_command);
3655 defsubr (&Skey_binding);
3656 defsubr (&Slocal_key_binding);
3657 defsubr (&Sglobal_key_binding);
3658 defsubr (&Sminor_mode_key_binding);
3659 defsubr (&Sdefine_key);
3660 defsubr (&Slookup_key);
3661 defsubr (&Sdefine_prefix_command);
3662 defsubr (&Suse_global_map);
3663 defsubr (&Suse_local_map);
3664 defsubr (&Scurrent_local_map);
3665 defsubr (&Scurrent_global_map);
3666 defsubr (&Scurrent_minor_mode_maps);
3667 defsubr (&Scurrent_active_maps);
3668 defsubr (&Saccessible_keymaps);
3669 defsubr (&Skey_description);
3670 defsubr (&Sdescribe_vector);
3671 defsubr (&Ssingle_key_description);
3672 defsubr (&Stext_char_description);
3673 defsubr (&Swhere_is_internal);
3674 defsubr (&Sdescribe_buffer_bindings);
3675 defsubr (&Sapropos_internal);
3676 }
3677
3678 void
3679 keys_of_keymap ()
3680 {
3681 initial_define_key (global_map, 033, "ESC-prefix");
3682 initial_define_key (global_map, Ctl('X'), "Control-X-prefix");
3683 }