Merge from emacs-24; up to 2012-05-07T14:57:18Z!michael.albinus@gmx.de
[bpt/emacs.git] / doc / lispref / numbers.texi
1 @c -*-texinfo-*-
2 @c This is part of the GNU Emacs Lisp Reference Manual.
3 @c Copyright (C) 1990-1995, 1998-1999, 2001-2012
4 @c Free Software Foundation, Inc.
5 @c See the file elisp.texi for copying conditions.
6 @node Numbers
7 @chapter Numbers
8 @cindex integers
9 @cindex numbers
10
11 GNU Emacs supports two numeric data types: @dfn{integers} and
12 @dfn{floating point numbers}. Integers are whole numbers such as
13 @minus{}3, 0, 7, 13, and 511. Their values are exact. Floating point
14 numbers are numbers with fractional parts, such as @minus{}4.5, 0.0, or
15 2.71828. They can also be expressed in exponential notation: 1.5e2
16 equals 150; in this example, @samp{e2} stands for ten to the second
17 power, and that is multiplied by 1.5. Floating point values are not
18 exact; they have a fixed, limited amount of precision.
19
20 @menu
21 * Integer Basics:: Representation and range of integers.
22 * Float Basics:: Representation and range of floating point.
23 * Predicates on Numbers:: Testing for numbers.
24 * Comparison of Numbers:: Equality and inequality predicates.
25 * Numeric Conversions:: Converting float to integer and vice versa.
26 * Arithmetic Operations:: How to add, subtract, multiply and divide.
27 * Rounding Operations:: Explicitly rounding floating point numbers.
28 * Bitwise Operations:: Logical and, or, not, shifting.
29 * Math Functions:: Trig, exponential and logarithmic functions.
30 * Random Numbers:: Obtaining random integers, predictable or not.
31 @end menu
32
33 @node Integer Basics
34 @section Integer Basics
35
36 The range of values for an integer depends on the machine. The
37 minimum range is @minus{}536870912 to 536870911 (30 bits; i.e.,
38 @ifnottex
39 -2**29
40 @end ifnottex
41 @tex
42 @math{-2^{29}}
43 @end tex
44 to
45 @ifnottex
46 2**29 - 1),
47 @end ifnottex
48 @tex
49 @math{2^{29}-1}),
50 @end tex
51 but some machines provide a wider range. Many examples in this
52 chapter assume that an integer has 30 bits and that floating point
53 numbers are IEEE double precision.
54 @cindex overflow
55
56 The Lisp reader reads an integer as a sequence of digits with optional
57 initial sign and optional final period. An integer that is out of the
58 Emacs range is treated as a floating-point number.
59
60 @example
61 1 ; @r{The integer 1.}
62 1. ; @r{The integer 1.}
63 +1 ; @r{Also the integer 1.}
64 -1 ; @r{The integer @minus{}1.}
65 1073741825 ; @r{The floating point number 1073741825.0.}
66 0 ; @r{The integer 0.}
67 -0 ; @r{The integer 0.}
68 @end example
69
70 @cindex integers in specific radix
71 @cindex radix for reading an integer
72 @cindex base for reading an integer
73 @cindex hex numbers
74 @cindex octal numbers
75 @cindex reading numbers in hex, octal, and binary
76 The syntax for integers in bases other than 10 uses @samp{#}
77 followed by a letter that specifies the radix: @samp{b} for binary,
78 @samp{o} for octal, @samp{x} for hex, or @samp{@var{radix}r} to
79 specify radix @var{radix}. Case is not significant for the letter
80 that specifies the radix. Thus, @samp{#b@var{integer}} reads
81 @var{integer} in binary, and @samp{#@var{radix}r@var{integer}} reads
82 @var{integer} in radix @var{radix}. Allowed values of @var{radix} run
83 from 2 to 36. For example:
84
85 @example
86 #b101100 @result{} 44
87 #o54 @result{} 44
88 #x2c @result{} 44
89 #24r1k @result{} 44
90 @end example
91
92 To understand how various functions work on integers, especially the
93 bitwise operators (@pxref{Bitwise Operations}), it is often helpful to
94 view the numbers in their binary form.
95
96 In 30-bit binary, the decimal integer 5 looks like this:
97
98 @example
99 0000...000101 (30 bits total)
100 @end example
101
102 @noindent
103 (The @samp{...} stands for enough bits to fill out a 30-bit word; in
104 this case, @samp{...} stands for twenty 0 bits. Later examples also
105 use the @samp{...} notation to make binary integers easier to read.)
106
107 The integer @minus{}1 looks like this:
108
109 @example
110 1111...111111 (30 bits total)
111 @end example
112
113 @noindent
114 @cindex two's complement
115 @minus{}1 is represented as 30 ones. (This is called @dfn{two's
116 complement} notation.)
117
118 The negative integer, @minus{}5, is creating by subtracting 4 from
119 @minus{}1. In binary, the decimal integer 4 is 100. Consequently,
120 @minus{}5 looks like this:
121
122 @example
123 1111...111011 (30 bits total)
124 @end example
125
126 In this implementation, the largest 30-bit binary integer value is
127 536,870,911 in decimal. In binary, it looks like this:
128
129 @example
130 0111...111111 (30 bits total)
131 @end example
132
133 Since the arithmetic functions do not check whether integers go
134 outside their range, when you add 1 to 536,870,911, the value is the
135 negative integer @minus{}536,870,912:
136
137 @example
138 (+ 1 536870911)
139 @result{} -536870912
140 @result{} 1000...000000 (30 bits total)
141 @end example
142
143 Many of the functions described in this chapter accept markers for
144 arguments in place of numbers. (@xref{Markers}.) Since the actual
145 arguments to such functions may be either numbers or markers, we often
146 give these arguments the name @var{number-or-marker}. When the argument
147 value is a marker, its position value is used and its buffer is ignored.
148
149 @cindex largest Lisp integer number
150 @cindex maximum Lisp integer number
151 @defvar most-positive-fixnum
152 The value of this variable is the largest integer that Emacs Lisp
153 can handle.
154 @end defvar
155
156 @cindex smallest Lisp integer number
157 @cindex minimum Lisp integer number
158 @defvar most-negative-fixnum
159 The value of this variable is the smallest integer that Emacs Lisp can
160 handle. It is negative.
161 @end defvar
162
163 @xref{Character Codes, max-char}, for the maximum value of a valid
164 character codepoint.
165
166 @node Float Basics
167 @section Floating Point Basics
168
169 @cindex @acronym{IEEE} floating point
170 Floating point numbers are useful for representing numbers that are
171 not integral. The precise range of floating point numbers is
172 machine-specific; it is the same as the range of the C data type
173 @code{double} on the machine you are using. Emacs uses the
174 @acronym{IEEE} floating point standard where possible (the standard is
175 supported by most modern computers).
176
177 The read syntax for floating point numbers requires either a decimal
178 point (with at least one digit following), an exponent, or both. For
179 example, @samp{1500.0}, @samp{15e2}, @samp{15.0e2}, @samp{1.5e3}, and
180 @samp{.15e4} are five ways of writing a floating point number whose
181 value is 1500. They are all equivalent. You can also use a minus
182 sign to write negative floating point numbers, as in @samp{-1.0}.
183
184 Emacs Lisp treats @code{-0.0} as equal to ordinary zero (with
185 respect to @code{equal} and @code{=}), even though the two are
186 distinguishable in the @acronym{IEEE} floating point standard.
187
188 @cindex positive infinity
189 @cindex negative infinity
190 @cindex infinity
191 @cindex NaN
192 The @acronym{IEEE} floating point standard supports positive
193 infinity and negative infinity as floating point values. It also
194 provides for a class of values called NaN or ``not-a-number'';
195 numerical functions return such values in cases where there is no
196 correct answer. For example, @code{(/ 0.0 0.0)} returns a NaN. (NaN
197 values can also carry a sign, but for practical purposes there's no
198 significant difference between different NaN values in Emacs Lisp.)
199
200 When a function is documented to return a NaN, it returns an
201 implementation-defined value when Emacs is running on one of the
202 now-rare platforms that do not use @acronym{IEEE} floating point. For
203 example, @code{(log -1.0)} typically returns a NaN, but on
204 non-@acronym{IEEE} platforms it returns an implementation-defined
205 value.
206
207 Here are the read syntaxes for these special floating point values:
208
209 @table @asis
210 @item positive infinity
211 @samp{1.0e+INF}
212 @item negative infinity
213 @samp{-1.0e+INF}
214 @item Not-a-number
215 @samp{0.0e+NaN} or @samp{-0.0e+NaN}.
216 @end table
217
218 @defun isnan number
219 This predicate tests whether its argument is NaN, and returns @code{t}
220 if so, @code{nil} otherwise. The argument must be a number.
221 @end defun
222
223 The following functions are specialized for handling floating point
224 numbers:
225
226 @defun frexp x
227 This function returns a cons cell @code{(@var{sig} . @var{exp})},
228 where @var{sig} and @var{exp} are respectively the significand and
229 exponent of the floating point number @var{x}:
230
231 @smallexample
232 @var{x} = @var{sig} * 2^@var{exp}
233 @end smallexample
234
235 @var{sig} is a floating point number between 0.5 (inclusive) and 1.0
236 (exclusive). If @var{x} is zero, the return value is @code{(0 . 0)}.
237 @end defun
238
239 @defun ldexp sig &optional exp
240 This function returns a floating point number corresponding to the
241 significand @var{sig} and exponent @var{exp}.
242 @end defun
243
244 @defun copysign x1 x2
245 This function copies the sign of @var{x2} to the value of @var{x1},
246 and returns the result. @var{x1} and @var{x2} must be floating point
247 numbers.
248 @end defun
249
250 @defun logb number
251 This function returns the binary exponent of @var{number}. More
252 precisely, the value is the logarithm of |@var{number}| base 2, rounded
253 down to an integer.
254
255 @example
256 (logb 10)
257 @result{} 3
258 (logb 10.0e20)
259 @result{} 69
260 @end example
261 @end defun
262
263 @node Predicates on Numbers
264 @section Type Predicates for Numbers
265 @cindex predicates for numbers
266
267 The functions in this section test for numbers, or for a specific
268 type of number. The functions @code{integerp} and @code{floatp} can
269 take any type of Lisp object as argument (they would not be of much
270 use otherwise), but the @code{zerop} predicate requires a number as
271 its argument. See also @code{integer-or-marker-p} and
272 @code{number-or-marker-p}, in @ref{Predicates on Markers}.
273
274 @defun floatp object
275 This predicate tests whether its argument is a floating point
276 number and returns @code{t} if so, @code{nil} otherwise.
277 @end defun
278
279 @defun integerp object
280 This predicate tests whether its argument is an integer, and returns
281 @code{t} if so, @code{nil} otherwise.
282 @end defun
283
284 @defun numberp object
285 This predicate tests whether its argument is a number (either integer or
286 floating point), and returns @code{t} if so, @code{nil} otherwise.
287 @end defun
288
289 @defun natnump object
290 @cindex natural numbers
291 This predicate (whose name comes from the phrase ``natural number'')
292 tests to see whether its argument is a nonnegative integer, and
293 returns @code{t} if so, @code{nil} otherwise. 0 is considered
294 non-negative.
295
296 @findex wholenump number
297 This is a synonym for @code{natnump}.
298 @end defun
299
300 @defun zerop number
301 This predicate tests whether its argument is zero, and returns @code{t}
302 if so, @code{nil} otherwise. The argument must be a number.
303
304 @code{(zerop x)} is equivalent to @code{(= x 0)}.
305 @end defun
306
307 @node Comparison of Numbers
308 @section Comparison of Numbers
309 @cindex number comparison
310 @cindex comparing numbers
311
312 To test numbers for numerical equality, you should normally use
313 @code{=}, not @code{eq}. There can be many distinct floating point
314 number objects with the same numeric value. If you use @code{eq} to
315 compare them, then you test whether two values are the same
316 @emph{object}. By contrast, @code{=} compares only the numeric values
317 of the objects.
318
319 At present, each integer value has a unique Lisp object in Emacs Lisp.
320 Therefore, @code{eq} is equivalent to @code{=} where integers are
321 concerned. It is sometimes convenient to use @code{eq} for comparing an
322 unknown value with an integer, because @code{eq} does not report an
323 error if the unknown value is not a number---it accepts arguments of any
324 type. By contrast, @code{=} signals an error if the arguments are not
325 numbers or markers. However, it is a good idea to use @code{=} if you
326 can, even for comparing integers, just in case we change the
327 representation of integers in a future Emacs version.
328
329 Sometimes it is useful to compare numbers with @code{equal}; it
330 treats two numbers as equal if they have the same data type (both
331 integers, or both floating point) and the same value. By contrast,
332 @code{=} can treat an integer and a floating point number as equal.
333 @xref{Equality Predicates}.
334
335 There is another wrinkle: because floating point arithmetic is not
336 exact, it is often a bad idea to check for equality of two floating
337 point values. Usually it is better to test for approximate equality.
338 Here's a function to do this:
339
340 @example
341 (defvar fuzz-factor 1.0e-6)
342 (defun approx-equal (x y)
343 (or (and (= x 0) (= y 0))
344 (< (/ (abs (- x y))
345 (max (abs x) (abs y)))
346 fuzz-factor)))
347 @end example
348
349 @cindex CL note---integers vrs @code{eq}
350 @quotation
351 @b{Common Lisp note:} Comparing numbers in Common Lisp always requires
352 @code{=} because Common Lisp implements multi-word integers, and two
353 distinct integer objects can have the same numeric value. Emacs Lisp
354 can have just one integer object for any given value because it has a
355 limited range of integer values.
356 @end quotation
357
358 @defun = number-or-marker1 number-or-marker2
359 This function tests whether its arguments are numerically equal, and
360 returns @code{t} if so, @code{nil} otherwise.
361 @end defun
362
363 @defun eql value1 value2
364 This function acts like @code{eq} except when both arguments are
365 numbers. It compares numbers by type and numeric value, so that
366 @code{(eql 1.0 1)} returns @code{nil}, but @code{(eql 1.0 1.0)} and
367 @code{(eql 1 1)} both return @code{t}.
368 @end defun
369
370 @defun /= number-or-marker1 number-or-marker2
371 This function tests whether its arguments are numerically equal, and
372 returns @code{t} if they are not, and @code{nil} if they are.
373 @end defun
374
375 @defun < number-or-marker1 number-or-marker2
376 This function tests whether its first argument is strictly less than
377 its second argument. It returns @code{t} if so, @code{nil} otherwise.
378 @end defun
379
380 @defun <= number-or-marker1 number-or-marker2
381 This function tests whether its first argument is less than or equal
382 to its second argument. It returns @code{t} if so, @code{nil}
383 otherwise.
384 @end defun
385
386 @defun > number-or-marker1 number-or-marker2
387 This function tests whether its first argument is strictly greater
388 than its second argument. It returns @code{t} if so, @code{nil}
389 otherwise.
390 @end defun
391
392 @defun >= number-or-marker1 number-or-marker2
393 This function tests whether its first argument is greater than or
394 equal to its second argument. It returns @code{t} if so, @code{nil}
395 otherwise.
396 @end defun
397
398 @defun max number-or-marker &rest numbers-or-markers
399 This function returns the largest of its arguments.
400 If any of the arguments is floating-point, the value is returned
401 as floating point, even if it was given as an integer.
402
403 @example
404 (max 20)
405 @result{} 20
406 (max 1 2.5)
407 @result{} 2.5
408 (max 1 3 2.5)
409 @result{} 3.0
410 @end example
411 @end defun
412
413 @defun min number-or-marker &rest numbers-or-markers
414 This function returns the smallest of its arguments.
415 If any of the arguments is floating-point, the value is returned
416 as floating point, even if it was given as an integer.
417
418 @example
419 (min -4 1)
420 @result{} -4
421 @end example
422 @end defun
423
424 @defun abs number
425 This function returns the absolute value of @var{number}.
426 @end defun
427
428 @node Numeric Conversions
429 @section Numeric Conversions
430 @cindex rounding in conversions
431 @cindex number conversions
432 @cindex converting numbers
433
434 To convert an integer to floating point, use the function @code{float}.
435
436 @defun float number
437 This returns @var{number} converted to floating point.
438 If @var{number} is already a floating point number, @code{float} returns
439 it unchanged.
440 @end defun
441
442 There are four functions to convert floating point numbers to integers;
443 they differ in how they round. All accept an argument @var{number}
444 and an optional argument @var{divisor}. Both arguments may be
445 integers or floating point numbers. @var{divisor} may also be
446 @code{nil}. If @var{divisor} is @code{nil} or omitted, these
447 functions convert @var{number} to an integer, or return it unchanged
448 if it already is an integer. If @var{divisor} is non-@code{nil}, they
449 divide @var{number} by @var{divisor} and convert the result to an
450 integer. An @code{arith-error} results if @var{divisor} is 0.
451
452 @defun truncate number &optional divisor
453 This returns @var{number}, converted to an integer by rounding towards
454 zero.
455
456 @example
457 (truncate 1.2)
458 @result{} 1
459 (truncate 1.7)
460 @result{} 1
461 (truncate -1.2)
462 @result{} -1
463 (truncate -1.7)
464 @result{} -1
465 @end example
466 @end defun
467
468 @defun floor number &optional divisor
469 This returns @var{number}, converted to an integer by rounding downward
470 (towards negative infinity).
471
472 If @var{divisor} is specified, this uses the kind of division
473 operation that corresponds to @code{mod}, rounding downward.
474
475 @example
476 (floor 1.2)
477 @result{} 1
478 (floor 1.7)
479 @result{} 1
480 (floor -1.2)
481 @result{} -2
482 (floor -1.7)
483 @result{} -2
484 (floor 5.99 3)
485 @result{} 1
486 @end example
487 @end defun
488
489 @defun ceiling number &optional divisor
490 This returns @var{number}, converted to an integer by rounding upward
491 (towards positive infinity).
492
493 @example
494 (ceiling 1.2)
495 @result{} 2
496 (ceiling 1.7)
497 @result{} 2
498 (ceiling -1.2)
499 @result{} -1
500 (ceiling -1.7)
501 @result{} -1
502 @end example
503 @end defun
504
505 @defun round number &optional divisor
506 This returns @var{number}, converted to an integer by rounding towards the
507 nearest integer. Rounding a value equidistant between two integers
508 may choose the integer closer to zero, or it may prefer an even integer,
509 depending on your machine.
510
511 @example
512 (round 1.2)
513 @result{} 1
514 (round 1.7)
515 @result{} 2
516 (round -1.2)
517 @result{} -1
518 (round -1.7)
519 @result{} -2
520 @end example
521 @end defun
522
523 @node Arithmetic Operations
524 @section Arithmetic Operations
525 @cindex arithmetic operations
526
527 Emacs Lisp provides the traditional four arithmetic operations:
528 addition, subtraction, multiplication, and division. Remainder and modulus
529 functions supplement the division functions. The functions to
530 add or subtract 1 are provided because they are traditional in Lisp and
531 commonly used.
532
533 All of these functions except @code{%} return a floating point value
534 if any argument is floating.
535
536 It is important to note that in Emacs Lisp, arithmetic functions
537 do not check for overflow. Thus @code{(1+ 536870911)} may evaluate to
538 @minus{}536870912, depending on your hardware.
539
540 @defun 1+ number-or-marker
541 This function returns @var{number-or-marker} plus 1.
542 For example,
543
544 @example
545 (setq foo 4)
546 @result{} 4
547 (1+ foo)
548 @result{} 5
549 @end example
550
551 This function is not analogous to the C operator @code{++}---it does not
552 increment a variable. It just computes a sum. Thus, if we continue,
553
554 @example
555 foo
556 @result{} 4
557 @end example
558
559 If you want to increment the variable, you must use @code{setq},
560 like this:
561
562 @example
563 (setq foo (1+ foo))
564 @result{} 5
565 @end example
566 @end defun
567
568 @defun 1- number-or-marker
569 This function returns @var{number-or-marker} minus 1.
570 @end defun
571
572 @defun + &rest numbers-or-markers
573 This function adds its arguments together. When given no arguments,
574 @code{+} returns 0.
575
576 @example
577 (+)
578 @result{} 0
579 (+ 1)
580 @result{} 1
581 (+ 1 2 3 4)
582 @result{} 10
583 @end example
584 @end defun
585
586 @defun - &optional number-or-marker &rest more-numbers-or-markers
587 The @code{-} function serves two purposes: negation and subtraction.
588 When @code{-} has a single argument, the value is the negative of the
589 argument. When there are multiple arguments, @code{-} subtracts each of
590 the @var{more-numbers-or-markers} from @var{number-or-marker},
591 cumulatively. If there are no arguments, the result is 0.
592
593 @example
594 (- 10 1 2 3 4)
595 @result{} 0
596 (- 10)
597 @result{} -10
598 (-)
599 @result{} 0
600 @end example
601 @end defun
602
603 @defun * &rest numbers-or-markers
604 This function multiplies its arguments together, and returns the
605 product. When given no arguments, @code{*} returns 1.
606
607 @example
608 (*)
609 @result{} 1
610 (* 1)
611 @result{} 1
612 (* 1 2 3 4)
613 @result{} 24
614 @end example
615 @end defun
616
617 @defun / dividend divisor &rest divisors
618 This function divides @var{dividend} by @var{divisor} and returns the
619 quotient. If there are additional arguments @var{divisors}, then it
620 divides @var{dividend} by each divisor in turn. Each argument may be a
621 number or a marker.
622
623 If all the arguments are integers, then the result is an integer too.
624 This means the result has to be rounded. On most machines, the result
625 is rounded towards zero after each division, but some machines may round
626 differently with negative arguments. This is because the Lisp function
627 @code{/} is implemented using the C division operator, which also
628 permits machine-dependent rounding. As a practical matter, all known
629 machines round in the standard fashion.
630
631 @cindex @code{arith-error} in division
632 If you divide an integer by 0, an @code{arith-error} error is signaled.
633 (@xref{Errors}.) Floating point division by zero returns either
634 infinity or a NaN if your machine supports @acronym{IEEE} floating point;
635 otherwise, it signals an @code{arith-error} error.
636
637 @example
638 @group
639 (/ 6 2)
640 @result{} 3
641 @end group
642 (/ 5 2)
643 @result{} 2
644 (/ 5.0 2)
645 @result{} 2.5
646 (/ 5 2.0)
647 @result{} 2.5
648 (/ 5.0 2.0)
649 @result{} 2.5
650 (/ 25 3 2)
651 @result{} 4
652 @group
653 (/ -17 6)
654 @result{} -2 @r{(could in theory be @minus{}3 on some machines)}
655 @end group
656 @end example
657 @end defun
658
659 @defun % dividend divisor
660 @cindex remainder
661 This function returns the integer remainder after division of @var{dividend}
662 by @var{divisor}. The arguments must be integers or markers.
663
664 For negative arguments, the remainder is in principle machine-dependent
665 since the quotient is; but in practice, all known machines behave alike.
666
667 An @code{arith-error} results if @var{divisor} is 0.
668
669 @example
670 (% 9 4)
671 @result{} 1
672 (% -9 4)
673 @result{} -1
674 (% 9 -4)
675 @result{} 1
676 (% -9 -4)
677 @result{} -1
678 @end example
679
680 For any two integers @var{dividend} and @var{divisor},
681
682 @example
683 @group
684 (+ (% @var{dividend} @var{divisor})
685 (* (/ @var{dividend} @var{divisor}) @var{divisor}))
686 @end group
687 @end example
688
689 @noindent
690 always equals @var{dividend}.
691 @end defun
692
693 @defun mod dividend divisor
694 @cindex modulus
695 This function returns the value of @var{dividend} modulo @var{divisor};
696 in other words, the remainder after division of @var{dividend}
697 by @var{divisor}, but with the same sign as @var{divisor}.
698 The arguments must be numbers or markers.
699
700 Unlike @code{%}, @code{mod} returns a well-defined result for negative
701 arguments. It also permits floating point arguments; it rounds the
702 quotient downward (towards minus infinity) to an integer, and uses that
703 quotient to compute the remainder.
704
705 If @var{divisor} is zero, @code{mod} signals an @code{arith-error}
706 error if both arguments are integers, and returns a NaN otherwise.
707
708 @example
709 @group
710 (mod 9 4)
711 @result{} 1
712 @end group
713 @group
714 (mod -9 4)
715 @result{} 3
716 @end group
717 @group
718 (mod 9 -4)
719 @result{} -3
720 @end group
721 @group
722 (mod -9 -4)
723 @result{} -1
724 @end group
725 @group
726 (mod 5.5 2.5)
727 @result{} .5
728 @end group
729 @end example
730
731 For any two numbers @var{dividend} and @var{divisor},
732
733 @example
734 @group
735 (+ (mod @var{dividend} @var{divisor})
736 (* (floor @var{dividend} @var{divisor}) @var{divisor}))
737 @end group
738 @end example
739
740 @noindent
741 always equals @var{dividend}, subject to rounding error if either
742 argument is floating point. For @code{floor}, see @ref{Numeric
743 Conversions}.
744 @end defun
745
746 @node Rounding Operations
747 @section Rounding Operations
748 @cindex rounding without conversion
749
750 The functions @code{ffloor}, @code{fceiling}, @code{fround}, and
751 @code{ftruncate} take a floating point argument and return a floating
752 point result whose value is a nearby integer. @code{ffloor} returns the
753 nearest integer below; @code{fceiling}, the nearest integer above;
754 @code{ftruncate}, the nearest integer in the direction towards zero;
755 @code{fround}, the nearest integer.
756
757 @defun ffloor float
758 This function rounds @var{float} to the next lower integral value, and
759 returns that value as a floating point number.
760 @end defun
761
762 @defun fceiling float
763 This function rounds @var{float} to the next higher integral value, and
764 returns that value as a floating point number.
765 @end defun
766
767 @defun ftruncate float
768 This function rounds @var{float} towards zero to an integral value, and
769 returns that value as a floating point number.
770 @end defun
771
772 @defun fround float
773 This function rounds @var{float} to the nearest integral value,
774 and returns that value as a floating point number.
775 @end defun
776
777 @node Bitwise Operations
778 @section Bitwise Operations on Integers
779 @cindex bitwise arithmetic
780 @cindex logical arithmetic
781
782 In a computer, an integer is represented as a binary number, a
783 sequence of @dfn{bits} (digits which are either zero or one). A bitwise
784 operation acts on the individual bits of such a sequence. For example,
785 @dfn{shifting} moves the whole sequence left or right one or more places,
786 reproducing the same pattern ``moved over''.
787
788 The bitwise operations in Emacs Lisp apply only to integers.
789
790 @defun lsh integer1 count
791 @cindex logical shift
792 @code{lsh}, which is an abbreviation for @dfn{logical shift}, shifts the
793 bits in @var{integer1} to the left @var{count} places, or to the right
794 if @var{count} is negative, bringing zeros into the vacated bits. If
795 @var{count} is negative, @code{lsh} shifts zeros into the leftmost
796 (most-significant) bit, producing a positive result even if
797 @var{integer1} is negative. Contrast this with @code{ash}, below.
798
799 Here are two examples of @code{lsh}, shifting a pattern of bits one
800 place to the left. We show only the low-order eight bits of the binary
801 pattern; the rest are all zero.
802
803 @example
804 @group
805 (lsh 5 1)
806 @result{} 10
807 ;; @r{Decimal 5 becomes decimal 10.}
808 00000101 @result{} 00001010
809
810 (lsh 7 1)
811 @result{} 14
812 ;; @r{Decimal 7 becomes decimal 14.}
813 00000111 @result{} 00001110
814 @end group
815 @end example
816
817 @noindent
818 As the examples illustrate, shifting the pattern of bits one place to
819 the left produces a number that is twice the value of the previous
820 number.
821
822 Shifting a pattern of bits two places to the left produces results
823 like this (with 8-bit binary numbers):
824
825 @example
826 @group
827 (lsh 3 2)
828 @result{} 12
829 ;; @r{Decimal 3 becomes decimal 12.}
830 00000011 @result{} 00001100
831 @end group
832 @end example
833
834 On the other hand, shifting one place to the right looks like this:
835
836 @example
837 @group
838 (lsh 6 -1)
839 @result{} 3
840 ;; @r{Decimal 6 becomes decimal 3.}
841 00000110 @result{} 00000011
842 @end group
843
844 @group
845 (lsh 5 -1)
846 @result{} 2
847 ;; @r{Decimal 5 becomes decimal 2.}
848 00000101 @result{} 00000010
849 @end group
850 @end example
851
852 @noindent
853 As the example illustrates, shifting one place to the right divides the
854 value of a positive integer by two, rounding downward.
855
856 The function @code{lsh}, like all Emacs Lisp arithmetic functions, does
857 not check for overflow, so shifting left can discard significant bits
858 and change the sign of the number. For example, left shifting
859 536,870,911 produces @minus{}2 in the 30-bit implementation:
860
861 @example
862 (lsh 536870911 1) ; @r{left shift}
863 @result{} -2
864 @end example
865
866 In binary, the argument looks like this:
867
868 @example
869 @group
870 ;; @r{Decimal 536,870,911}
871 0111...111111 (30 bits total)
872 @end group
873 @end example
874
875 @noindent
876 which becomes the following when left shifted:
877
878 @example
879 @group
880 ;; @r{Decimal @minus{}2}
881 1111...111110 (30 bits total)
882 @end group
883 @end example
884 @end defun
885
886 @defun ash integer1 count
887 @cindex arithmetic shift
888 @code{ash} (@dfn{arithmetic shift}) shifts the bits in @var{integer1}
889 to the left @var{count} places, or to the right if @var{count}
890 is negative.
891
892 @code{ash} gives the same results as @code{lsh} except when
893 @var{integer1} and @var{count} are both negative. In that case,
894 @code{ash} puts ones in the empty bit positions on the left, while
895 @code{lsh} puts zeros in those bit positions.
896
897 Thus, with @code{ash}, shifting the pattern of bits one place to the right
898 looks like this:
899
900 @example
901 @group
902 (ash -6 -1) @result{} -3
903 ;; @r{Decimal @minus{}6 becomes decimal @minus{}3.}
904 1111...111010 (30 bits total)
905 @result{}
906 1111...111101 (30 bits total)
907 @end group
908 @end example
909
910 In contrast, shifting the pattern of bits one place to the right with
911 @code{lsh} looks like this:
912
913 @example
914 @group
915 (lsh -6 -1) @result{} 536870909
916 ;; @r{Decimal @minus{}6 becomes decimal 536,870,909.}
917 1111...111010 (30 bits total)
918 @result{}
919 0111...111101 (30 bits total)
920 @end group
921 @end example
922
923 Here are other examples:
924
925 @c !!! Check if lined up in smallbook format! XDVI shows problem
926 @c with smallbook but not with regular book! --rjc 16mar92
927 @smallexample
928 @group
929 ; @r{ 30-bit binary values}
930
931 (lsh 5 2) ; 5 = @r{0000...000101}
932 @result{} 20 ; = @r{0000...010100}
933 @end group
934 @group
935 (ash 5 2)
936 @result{} 20
937 (lsh -5 2) ; -5 = @r{1111...111011}
938 @result{} -20 ; = @r{1111...101100}
939 (ash -5 2)
940 @result{} -20
941 @end group
942 @group
943 (lsh 5 -2) ; 5 = @r{0000...000101}
944 @result{} 1 ; = @r{0000...000001}
945 @end group
946 @group
947 (ash 5 -2)
948 @result{} 1
949 @end group
950 @group
951 (lsh -5 -2) ; -5 = @r{1111...111011}
952 @result{} 268435454
953 ; = @r{0011...111110}
954 @end group
955 @group
956 (ash -5 -2) ; -5 = @r{1111...111011}
957 @result{} -2 ; = @r{1111...111110}
958 @end group
959 @end smallexample
960 @end defun
961
962 @defun logand &rest ints-or-markers
963 This function returns the ``logical and'' of the arguments: the
964 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is
965 set in all the arguments. (``Set'' means that the value of the bit is 1
966 rather than 0.)
967
968 For example, using 4-bit binary numbers, the ``logical and'' of 13 and
969 12 is 12: 1101 combined with 1100 produces 1100.
970 In both the binary numbers, the leftmost two bits are set (i.e., they
971 are 1's), so the leftmost two bits of the returned value are set.
972 However, for the rightmost two bits, each is zero in at least one of
973 the arguments, so the rightmost two bits of the returned value are 0's.
974
975 @noindent
976 Therefore,
977
978 @example
979 @group
980 (logand 13 12)
981 @result{} 12
982 @end group
983 @end example
984
985 If @code{logand} is not passed any argument, it returns a value of
986 @minus{}1. This number is an identity element for @code{logand}
987 because its binary representation consists entirely of ones. If
988 @code{logand} is passed just one argument, it returns that argument.
989
990 @smallexample
991 @group
992 ; @r{ 30-bit binary values}
993
994 (logand 14 13) ; 14 = @r{0000...001110}
995 ; 13 = @r{0000...001101}
996 @result{} 12 ; 12 = @r{0000...001100}
997 @end group
998
999 @group
1000 (logand 14 13 4) ; 14 = @r{0000...001110}
1001 ; 13 = @r{0000...001101}
1002 ; 4 = @r{0000...000100}
1003 @result{} 4 ; 4 = @r{0000...000100}
1004 @end group
1005
1006 @group
1007 (logand)
1008 @result{} -1 ; -1 = @r{1111...111111}
1009 @end group
1010 @end smallexample
1011 @end defun
1012
1013 @defun logior &rest ints-or-markers
1014 This function returns the ``inclusive or'' of its arguments: the @var{n}th bit
1015 is set in the result if, and only if, the @var{n}th bit is set in at least
1016 one of the arguments. If there are no arguments, the result is zero,
1017 which is an identity element for this operation. If @code{logior} is
1018 passed just one argument, it returns that argument.
1019
1020 @smallexample
1021 @group
1022 ; @r{ 30-bit binary values}
1023
1024 (logior 12 5) ; 12 = @r{0000...001100}
1025 ; 5 = @r{0000...000101}
1026 @result{} 13 ; 13 = @r{0000...001101}
1027 @end group
1028
1029 @group
1030 (logior 12 5 7) ; 12 = @r{0000...001100}
1031 ; 5 = @r{0000...000101}
1032 ; 7 = @r{0000...000111}
1033 @result{} 15 ; 15 = @r{0000...001111}
1034 @end group
1035 @end smallexample
1036 @end defun
1037
1038 @defun logxor &rest ints-or-markers
1039 This function returns the ``exclusive or'' of its arguments: the
1040 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is
1041 set in an odd number of the arguments. If there are no arguments, the
1042 result is 0, which is an identity element for this operation. If
1043 @code{logxor} is passed just one argument, it returns that argument.
1044
1045 @smallexample
1046 @group
1047 ; @r{ 30-bit binary values}
1048
1049 (logxor 12 5) ; 12 = @r{0000...001100}
1050 ; 5 = @r{0000...000101}
1051 @result{} 9 ; 9 = @r{0000...001001}
1052 @end group
1053
1054 @group
1055 (logxor 12 5 7) ; 12 = @r{0000...001100}
1056 ; 5 = @r{0000...000101}
1057 ; 7 = @r{0000...000111}
1058 @result{} 14 ; 14 = @r{0000...001110}
1059 @end group
1060 @end smallexample
1061 @end defun
1062
1063 @defun lognot integer
1064 This function returns the logical complement of its argument: the @var{n}th
1065 bit is one in the result if, and only if, the @var{n}th bit is zero in
1066 @var{integer}, and vice-versa.
1067
1068 @example
1069 (lognot 5)
1070 @result{} -6
1071 ;; 5 = @r{0000...000101} (30 bits total)
1072 ;; @r{becomes}
1073 ;; -6 = @r{1111...111010} (30 bits total)
1074 @end example
1075 @end defun
1076
1077 @node Math Functions
1078 @section Standard Mathematical Functions
1079 @cindex transcendental functions
1080 @cindex mathematical functions
1081 @cindex floating-point functions
1082
1083 These mathematical functions allow integers as well as floating point
1084 numbers as arguments.
1085
1086 @defun sin arg
1087 @defunx cos arg
1088 @defunx tan arg
1089 These are the ordinary trigonometric functions, with argument measured
1090 in radians.
1091 @end defun
1092
1093 @defun asin arg
1094 The value of @code{(asin @var{arg})} is a number between
1095 @ifnottex
1096 @minus{}pi/2
1097 @end ifnottex
1098 @tex
1099 @math{-\pi/2}
1100 @end tex
1101 and
1102 @ifnottex
1103 pi/2
1104 @end ifnottex
1105 @tex
1106 @math{\pi/2}
1107 @end tex
1108 (inclusive) whose sine is @var{arg}. If @var{arg} is out of range
1109 (outside [@minus{}1, 1]), @code{asin} returns a NaN.
1110 @end defun
1111
1112 @defun acos arg
1113 The value of @code{(acos @var{arg})} is a number between 0 and
1114 @ifnottex
1115 pi
1116 @end ifnottex
1117 @tex
1118 @math{\pi}
1119 @end tex
1120 (inclusive) whose cosine is @var{arg}. If @var{arg} is out of range
1121 (outside [@minus{}1, 1]), @code{acos} returns a NaN.
1122 @end defun
1123
1124 @defun atan y &optional x
1125 The value of @code{(atan @var{y})} is a number between
1126 @ifnottex
1127 @minus{}pi/2
1128 @end ifnottex
1129 @tex
1130 @math{-\pi/2}
1131 @end tex
1132 and
1133 @ifnottex
1134 pi/2
1135 @end ifnottex
1136 @tex
1137 @math{\pi/2}
1138 @end tex
1139 (exclusive) whose tangent is @var{y}. If the optional second
1140 argument @var{x} is given, the value of @code{(atan y x)} is the
1141 angle in radians between the vector @code{[@var{x}, @var{y}]} and the
1142 @code{X} axis.
1143 @end defun
1144
1145 @defun exp arg
1146 This is the exponential function; it returns @math{e} to the power
1147 @var{arg}.
1148 @end defun
1149
1150 @defun log arg &optional base
1151 This function returns the logarithm of @var{arg}, with base
1152 @var{base}. If you don't specify @var{base}, the natural base
1153 @math{e} is used. If @var{arg} or @var{base} is negative, @code{log}
1154 returns a NaN.
1155 @end defun
1156
1157 @ignore
1158 @defun expm1 arg
1159 This function returns @code{(1- (exp @var{arg}))}, but it is more
1160 accurate than that when @var{arg} is negative and @code{(exp @var{arg})}
1161 is close to 1.
1162 @end defun
1163
1164 @defun log1p arg
1165 This function returns @code{(log (1+ @var{arg}))}, but it is more
1166 accurate than that when @var{arg} is so small that adding 1 to it would
1167 lose accuracy.
1168 @end defun
1169 @end ignore
1170
1171 @defun log10 arg
1172 This function returns the logarithm of @var{arg}, with base 10:
1173 @code{(log10 @var{x})} @equiv{} @code{(log @var{x} 10)}.
1174 @end defun
1175
1176 @defun expt x y
1177 This function returns @var{x} raised to power @var{y}. If both
1178 arguments are integers and @var{y} is positive, the result is an
1179 integer; in this case, overflow causes truncation, so watch out.
1180 If @var{x} is a finite negative number and @var{y} is a finite
1181 non-integer, @code{expt} returns a NaN.
1182 @end defun
1183
1184 @defun sqrt arg
1185 This returns the square root of @var{arg}. If @var{arg} is negative,
1186 @code{sqrt} returns a NaN.
1187 @end defun
1188
1189 In addition, Emacs defines the following common mathematical
1190 constants:
1191
1192 @defvar float-e
1193 The mathematical constant @math{e} (2.71828@dots{}).
1194 @end defvar
1195
1196 @defvar float-pi
1197 The mathematical constant @math{pi} (3.14159@dots{}).
1198 @end defvar
1199
1200 @node Random Numbers
1201 @section Random Numbers
1202 @cindex random numbers
1203
1204 A deterministic computer program cannot generate true random numbers.
1205 For most purposes, @dfn{pseudo-random numbers} suffice. A series of
1206 pseudo-random numbers is generated in a deterministic fashion. The
1207 numbers are not truly random, but they have certain properties that
1208 mimic a random series. For example, all possible values occur equally
1209 often in a pseudo-random series.
1210
1211 In Emacs, pseudo-random numbers are generated from a ``seed''.
1212 Starting from any given seed, the @code{random} function always
1213 generates the same sequence of numbers. Emacs typically starts with a
1214 different seed each time, so the sequence of values of @code{random}
1215 typically differs in each Emacs run.
1216
1217 Sometimes you want the random number sequence to be repeatable. For
1218 example, when debugging a program whose behavior depends on the random
1219 number sequence, it is helpful to get the same behavior in each
1220 program run. To make the sequence repeat, execute @code{(random "")}.
1221 This sets the seed to a constant value for your particular Emacs
1222 executable (though it may differ for other Emacs builds). You can use
1223 other strings to choose various seed values.
1224
1225 @defun random &optional limit
1226 This function returns a pseudo-random integer. Repeated calls return a
1227 series of pseudo-random integers.
1228
1229 If @var{limit} is a positive integer, the value is chosen to be
1230 nonnegative and less than @var{limit}. Otherwise, the value
1231 might be any integer representable in Lisp.
1232
1233 If @var{limit} is @code{t}, it means to choose a new seed based on the
1234 current time of day and on Emacs's process @acronym{ID} number.
1235
1236 If @var{limit} is a string, it means to choose a new seed based on the
1237 string's contents.
1238
1239 @end defun