Merge from emacs-24; up to 2012-04-26T03:04:36Z!cyd@gnu.org
[bpt/emacs.git] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985-1987, 1993-1995, 1997-2012
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21
22 #include <unistd.h>
23 #include <time.h>
24 #include <setjmp.h>
25
26 #include <intprops.h>
27
28 #include "lisp.h"
29 #include "commands.h"
30 #include "character.h"
31 #include "coding.h"
32 #include "buffer.h"
33 #include "keyboard.h"
34 #include "keymap.h"
35 #include "intervals.h"
36 #include "frame.h"
37 #include "window.h"
38 #include "blockinput.h"
39 #ifdef HAVE_MENUS
40 #if defined (HAVE_X_WINDOWS)
41 #include "xterm.h"
42 #endif
43 #endif /* HAVE_MENUS */
44
45 Lisp_Object Qstring_lessp;
46 static Lisp_Object Qprovide, Qrequire;
47 static Lisp_Object Qyes_or_no_p_history;
48 Lisp_Object Qcursor_in_echo_area;
49 static Lisp_Object Qwidget_type;
50 static Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
51
52 static Lisp_Object Qmd5, Qsha1, Qsha224, Qsha256, Qsha384, Qsha512;
53
54 static int internal_equal (Lisp_Object , Lisp_Object, int, int);
55
56 #ifndef HAVE_UNISTD_H
57 extern long time ();
58 #endif
59 \f
60 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
61 doc: /* Return the argument unchanged. */)
62 (Lisp_Object arg)
63 {
64 return arg;
65 }
66
67 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
68 doc: /* Return a pseudo-random number.
69 All integers representable in Lisp are equally likely.
70 On most systems, this is 29 bits' worth.
71 With positive integer LIMIT, return random number in interval [0,LIMIT).
72 With argument t, set the random number seed from the current time and pid.
73 Other values of LIMIT are ignored. */)
74 (Lisp_Object limit)
75 {
76 EMACS_INT val;
77 Lisp_Object lispy_val;
78
79 if (EQ (limit, Qt))
80 {
81 EMACS_TIME t;
82 EMACS_GET_TIME (t);
83 seed_random (getpid () ^ EMACS_SECS (t) ^ EMACS_USECS (t));
84 }
85
86 if (NATNUMP (limit) && XFASTINT (limit) != 0)
87 {
88 /* Try to take our random number from the higher bits of VAL,
89 not the lower, since (says Gentzel) the low bits of `random'
90 are less random than the higher ones. We do this by using the
91 quotient rather than the remainder. At the high end of the RNG
92 it's possible to get a quotient larger than n; discarding
93 these values eliminates the bias that would otherwise appear
94 when using a large n. */
95 EMACS_INT denominator = (INTMASK + 1) / XFASTINT (limit);
96 do
97 val = get_random () / denominator;
98 while (val >= XFASTINT (limit));
99 }
100 else
101 val = get_random ();
102 XSETINT (lispy_val, val);
103 return lispy_val;
104 }
105 \f
106 /* Heuristic on how many iterations of a tight loop can be safely done
107 before it's time to do a QUIT. This must be a power of 2. */
108 enum { QUIT_COUNT_HEURISTIC = 1 << 16 };
109
110 /* Random data-structure functions */
111
112 DEFUN ("length", Flength, Slength, 1, 1, 0,
113 doc: /* Return the length of vector, list or string SEQUENCE.
114 A byte-code function object is also allowed.
115 If the string contains multibyte characters, this is not necessarily
116 the number of bytes in the string; it is the number of characters.
117 To get the number of bytes, use `string-bytes'. */)
118 (register Lisp_Object sequence)
119 {
120 register Lisp_Object val;
121
122 if (STRINGP (sequence))
123 XSETFASTINT (val, SCHARS (sequence));
124 else if (VECTORP (sequence))
125 XSETFASTINT (val, ASIZE (sequence));
126 else if (CHAR_TABLE_P (sequence))
127 XSETFASTINT (val, MAX_CHAR);
128 else if (BOOL_VECTOR_P (sequence))
129 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
130 else if (COMPILEDP (sequence))
131 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
132 else if (CONSP (sequence))
133 {
134 EMACS_INT i = 0;
135
136 do
137 {
138 ++i;
139 if ((i & (QUIT_COUNT_HEURISTIC - 1)) == 0)
140 {
141 if (MOST_POSITIVE_FIXNUM < i)
142 error ("List too long");
143 QUIT;
144 }
145 sequence = XCDR (sequence);
146 }
147 while (CONSP (sequence));
148
149 CHECK_LIST_END (sequence, sequence);
150
151 val = make_number (i);
152 }
153 else if (NILP (sequence))
154 XSETFASTINT (val, 0);
155 else
156 wrong_type_argument (Qsequencep, sequence);
157
158 return val;
159 }
160
161 /* This does not check for quits. That is safe since it must terminate. */
162
163 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
164 doc: /* Return the length of a list, but avoid error or infinite loop.
165 This function never gets an error. If LIST is not really a list,
166 it returns 0. If LIST is circular, it returns a finite value
167 which is at least the number of distinct elements. */)
168 (Lisp_Object list)
169 {
170 Lisp_Object tail, halftail;
171 double hilen = 0;
172 uintmax_t lolen = 1;
173
174 if (! CONSP (list))
175 return make_number (0);
176
177 /* halftail is used to detect circular lists. */
178 for (tail = halftail = list; ; )
179 {
180 tail = XCDR (tail);
181 if (! CONSP (tail))
182 break;
183 if (EQ (tail, halftail))
184 break;
185 lolen++;
186 if ((lolen & 1) == 0)
187 {
188 halftail = XCDR (halftail);
189 if ((lolen & (QUIT_COUNT_HEURISTIC - 1)) == 0)
190 {
191 QUIT;
192 if (lolen == 0)
193 hilen += UINTMAX_MAX + 1.0;
194 }
195 }
196 }
197
198 /* If the length does not fit into a fixnum, return a float.
199 On all known practical machines this returns an upper bound on
200 the true length. */
201 return hilen ? make_float (hilen + lolen) : make_fixnum_or_float (lolen);
202 }
203
204 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
205 doc: /* Return the number of bytes in STRING.
206 If STRING is multibyte, this may be greater than the length of STRING. */)
207 (Lisp_Object string)
208 {
209 CHECK_STRING (string);
210 return make_number (SBYTES (string));
211 }
212
213 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
214 doc: /* Return t if two strings have identical contents.
215 Case is significant, but text properties are ignored.
216 Symbols are also allowed; their print names are used instead. */)
217 (register Lisp_Object s1, Lisp_Object s2)
218 {
219 if (SYMBOLP (s1))
220 s1 = SYMBOL_NAME (s1);
221 if (SYMBOLP (s2))
222 s2 = SYMBOL_NAME (s2);
223 CHECK_STRING (s1);
224 CHECK_STRING (s2);
225
226 if (SCHARS (s1) != SCHARS (s2)
227 || SBYTES (s1) != SBYTES (s2)
228 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
229 return Qnil;
230 return Qt;
231 }
232
233 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
234 doc: /* Compare the contents of two strings, converting to multibyte if needed.
235 In string STR1, skip the first START1 characters and stop at END1.
236 In string STR2, skip the first START2 characters and stop at END2.
237 END1 and END2 default to the full lengths of the respective strings.
238
239 Case is significant in this comparison if IGNORE-CASE is nil.
240 Unibyte strings are converted to multibyte for comparison.
241
242 The value is t if the strings (or specified portions) match.
243 If string STR1 is less, the value is a negative number N;
244 - 1 - N is the number of characters that match at the beginning.
245 If string STR1 is greater, the value is a positive number N;
246 N - 1 is the number of characters that match at the beginning. */)
247 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
248 {
249 register ptrdiff_t end1_char, end2_char;
250 register ptrdiff_t i1, i1_byte, i2, i2_byte;
251
252 CHECK_STRING (str1);
253 CHECK_STRING (str2);
254 if (NILP (start1))
255 start1 = make_number (0);
256 if (NILP (start2))
257 start2 = make_number (0);
258 CHECK_NATNUM (start1);
259 CHECK_NATNUM (start2);
260 if (! NILP (end1))
261 CHECK_NATNUM (end1);
262 if (! NILP (end2))
263 CHECK_NATNUM (end2);
264
265 end1_char = SCHARS (str1);
266 if (! NILP (end1) && end1_char > XINT (end1))
267 end1_char = XINT (end1);
268 if (end1_char < XINT (start1))
269 args_out_of_range (str1, start1);
270
271 end2_char = SCHARS (str2);
272 if (! NILP (end2) && end2_char > XINT (end2))
273 end2_char = XINT (end2);
274 if (end2_char < XINT (start2))
275 args_out_of_range (str2, start2);
276
277 i1 = XINT (start1);
278 i2 = XINT (start2);
279
280 i1_byte = string_char_to_byte (str1, i1);
281 i2_byte = string_char_to_byte (str2, i2);
282
283 while (i1 < end1_char && i2 < end2_char)
284 {
285 /* When we find a mismatch, we must compare the
286 characters, not just the bytes. */
287 int c1, c2;
288
289 if (STRING_MULTIBYTE (str1))
290 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
291 else
292 {
293 c1 = SREF (str1, i1++);
294 MAKE_CHAR_MULTIBYTE (c1);
295 }
296
297 if (STRING_MULTIBYTE (str2))
298 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
299 else
300 {
301 c2 = SREF (str2, i2++);
302 MAKE_CHAR_MULTIBYTE (c2);
303 }
304
305 if (c1 == c2)
306 continue;
307
308 if (! NILP (ignore_case))
309 {
310 Lisp_Object tem;
311
312 tem = Fupcase (make_number (c1));
313 c1 = XINT (tem);
314 tem = Fupcase (make_number (c2));
315 c2 = XINT (tem);
316 }
317
318 if (c1 == c2)
319 continue;
320
321 /* Note that I1 has already been incremented
322 past the character that we are comparing;
323 hence we don't add or subtract 1 here. */
324 if (c1 < c2)
325 return make_number (- i1 + XINT (start1));
326 else
327 return make_number (i1 - XINT (start1));
328 }
329
330 if (i1 < end1_char)
331 return make_number (i1 - XINT (start1) + 1);
332 if (i2 < end2_char)
333 return make_number (- i1 + XINT (start1) - 1);
334
335 return Qt;
336 }
337
338 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
339 doc: /* Return t if first arg string is less than second in lexicographic order.
340 Case is significant.
341 Symbols are also allowed; their print names are used instead. */)
342 (register Lisp_Object s1, Lisp_Object s2)
343 {
344 register ptrdiff_t end;
345 register ptrdiff_t i1, i1_byte, i2, i2_byte;
346
347 if (SYMBOLP (s1))
348 s1 = SYMBOL_NAME (s1);
349 if (SYMBOLP (s2))
350 s2 = SYMBOL_NAME (s2);
351 CHECK_STRING (s1);
352 CHECK_STRING (s2);
353
354 i1 = i1_byte = i2 = i2_byte = 0;
355
356 end = SCHARS (s1);
357 if (end > SCHARS (s2))
358 end = SCHARS (s2);
359
360 while (i1 < end)
361 {
362 /* When we find a mismatch, we must compare the
363 characters, not just the bytes. */
364 int c1, c2;
365
366 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
367 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
368
369 if (c1 != c2)
370 return c1 < c2 ? Qt : Qnil;
371 }
372 return i1 < SCHARS (s2) ? Qt : Qnil;
373 }
374 \f
375 static Lisp_Object concat (ptrdiff_t nargs, Lisp_Object *args,
376 enum Lisp_Type target_type, int last_special);
377
378 /* ARGSUSED */
379 Lisp_Object
380 concat2 (Lisp_Object s1, Lisp_Object s2)
381 {
382 Lisp_Object args[2];
383 args[0] = s1;
384 args[1] = s2;
385 return concat (2, args, Lisp_String, 0);
386 }
387
388 /* ARGSUSED */
389 Lisp_Object
390 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
391 {
392 Lisp_Object args[3];
393 args[0] = s1;
394 args[1] = s2;
395 args[2] = s3;
396 return concat (3, args, Lisp_String, 0);
397 }
398
399 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
400 doc: /* Concatenate all the arguments and make the result a list.
401 The result is a list whose elements are the elements of all the arguments.
402 Each argument may be a list, vector or string.
403 The last argument is not copied, just used as the tail of the new list.
404 usage: (append &rest SEQUENCES) */)
405 (ptrdiff_t nargs, Lisp_Object *args)
406 {
407 return concat (nargs, args, Lisp_Cons, 1);
408 }
409
410 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
411 doc: /* Concatenate all the arguments and make the result a string.
412 The result is a string whose elements are the elements of all the arguments.
413 Each argument may be a string or a list or vector of characters (integers).
414 usage: (concat &rest SEQUENCES) */)
415 (ptrdiff_t nargs, Lisp_Object *args)
416 {
417 return concat (nargs, args, Lisp_String, 0);
418 }
419
420 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
421 doc: /* Concatenate all the arguments and make the result a vector.
422 The result is a vector whose elements are the elements of all the arguments.
423 Each argument may be a list, vector or string.
424 usage: (vconcat &rest SEQUENCES) */)
425 (ptrdiff_t nargs, Lisp_Object *args)
426 {
427 return concat (nargs, args, Lisp_Vectorlike, 0);
428 }
429
430
431 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
432 doc: /* Return a copy of a list, vector, string or char-table.
433 The elements of a list or vector are not copied; they are shared
434 with the original. */)
435 (Lisp_Object arg)
436 {
437 if (NILP (arg)) return arg;
438
439 if (CHAR_TABLE_P (arg))
440 {
441 return copy_char_table (arg);
442 }
443
444 if (BOOL_VECTOR_P (arg))
445 {
446 Lisp_Object val;
447 ptrdiff_t size_in_chars
448 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
449 / BOOL_VECTOR_BITS_PER_CHAR);
450
451 val = Fmake_bool_vector (Flength (arg), Qnil);
452 memcpy (XBOOL_VECTOR (val)->data, XBOOL_VECTOR (arg)->data,
453 size_in_chars);
454 return val;
455 }
456
457 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
458 wrong_type_argument (Qsequencep, arg);
459
460 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
461 }
462
463 /* This structure holds information of an argument of `concat' that is
464 a string and has text properties to be copied. */
465 struct textprop_rec
466 {
467 ptrdiff_t argnum; /* refer to ARGS (arguments of `concat') */
468 ptrdiff_t from; /* refer to ARGS[argnum] (argument string) */
469 ptrdiff_t to; /* refer to VAL (the target string) */
470 };
471
472 static Lisp_Object
473 concat (ptrdiff_t nargs, Lisp_Object *args,
474 enum Lisp_Type target_type, int last_special)
475 {
476 Lisp_Object val;
477 register Lisp_Object tail;
478 register Lisp_Object this;
479 ptrdiff_t toindex;
480 ptrdiff_t toindex_byte = 0;
481 register EMACS_INT result_len;
482 register EMACS_INT result_len_byte;
483 ptrdiff_t argnum;
484 Lisp_Object last_tail;
485 Lisp_Object prev;
486 int some_multibyte;
487 /* When we make a multibyte string, we can't copy text properties
488 while concatenating each string because the length of resulting
489 string can't be decided until we finish the whole concatenation.
490 So, we record strings that have text properties to be copied
491 here, and copy the text properties after the concatenation. */
492 struct textprop_rec *textprops = NULL;
493 /* Number of elements in textprops. */
494 ptrdiff_t num_textprops = 0;
495 USE_SAFE_ALLOCA;
496
497 tail = Qnil;
498
499 /* In append, the last arg isn't treated like the others */
500 if (last_special && nargs > 0)
501 {
502 nargs--;
503 last_tail = args[nargs];
504 }
505 else
506 last_tail = Qnil;
507
508 /* Check each argument. */
509 for (argnum = 0; argnum < nargs; argnum++)
510 {
511 this = args[argnum];
512 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
513 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
514 wrong_type_argument (Qsequencep, this);
515 }
516
517 /* Compute total length in chars of arguments in RESULT_LEN.
518 If desired output is a string, also compute length in bytes
519 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
520 whether the result should be a multibyte string. */
521 result_len_byte = 0;
522 result_len = 0;
523 some_multibyte = 0;
524 for (argnum = 0; argnum < nargs; argnum++)
525 {
526 EMACS_INT len;
527 this = args[argnum];
528 len = XFASTINT (Flength (this));
529 if (target_type == Lisp_String)
530 {
531 /* We must count the number of bytes needed in the string
532 as well as the number of characters. */
533 ptrdiff_t i;
534 Lisp_Object ch;
535 int c;
536 ptrdiff_t this_len_byte;
537
538 if (VECTORP (this) || COMPILEDP (this))
539 for (i = 0; i < len; i++)
540 {
541 ch = AREF (this, i);
542 CHECK_CHARACTER (ch);
543 c = XFASTINT (ch);
544 this_len_byte = CHAR_BYTES (c);
545 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
546 string_overflow ();
547 result_len_byte += this_len_byte;
548 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
549 some_multibyte = 1;
550 }
551 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
552 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
553 else if (CONSP (this))
554 for (; CONSP (this); this = XCDR (this))
555 {
556 ch = XCAR (this);
557 CHECK_CHARACTER (ch);
558 c = XFASTINT (ch);
559 this_len_byte = CHAR_BYTES (c);
560 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
561 string_overflow ();
562 result_len_byte += this_len_byte;
563 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
564 some_multibyte = 1;
565 }
566 else if (STRINGP (this))
567 {
568 if (STRING_MULTIBYTE (this))
569 {
570 some_multibyte = 1;
571 this_len_byte = SBYTES (this);
572 }
573 else
574 this_len_byte = count_size_as_multibyte (SDATA (this),
575 SCHARS (this));
576 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
577 string_overflow ();
578 result_len_byte += this_len_byte;
579 }
580 }
581
582 result_len += len;
583 if (MOST_POSITIVE_FIXNUM < result_len)
584 memory_full (SIZE_MAX);
585 }
586
587 if (! some_multibyte)
588 result_len_byte = result_len;
589
590 /* Create the output object. */
591 if (target_type == Lisp_Cons)
592 val = Fmake_list (make_number (result_len), Qnil);
593 else if (target_type == Lisp_Vectorlike)
594 val = Fmake_vector (make_number (result_len), Qnil);
595 else if (some_multibyte)
596 val = make_uninit_multibyte_string (result_len, result_len_byte);
597 else
598 val = make_uninit_string (result_len);
599
600 /* In `append', if all but last arg are nil, return last arg. */
601 if (target_type == Lisp_Cons && EQ (val, Qnil))
602 return last_tail;
603
604 /* Copy the contents of the args into the result. */
605 if (CONSP (val))
606 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
607 else
608 toindex = 0, toindex_byte = 0;
609
610 prev = Qnil;
611 if (STRINGP (val))
612 SAFE_NALLOCA (textprops, 1, nargs);
613
614 for (argnum = 0; argnum < nargs; argnum++)
615 {
616 Lisp_Object thislen;
617 ptrdiff_t thisleni = 0;
618 register ptrdiff_t thisindex = 0;
619 register ptrdiff_t thisindex_byte = 0;
620
621 this = args[argnum];
622 if (!CONSP (this))
623 thislen = Flength (this), thisleni = XINT (thislen);
624
625 /* Between strings of the same kind, copy fast. */
626 if (STRINGP (this) && STRINGP (val)
627 && STRING_MULTIBYTE (this) == some_multibyte)
628 {
629 ptrdiff_t thislen_byte = SBYTES (this);
630
631 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
632 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
633 {
634 textprops[num_textprops].argnum = argnum;
635 textprops[num_textprops].from = 0;
636 textprops[num_textprops++].to = toindex;
637 }
638 toindex_byte += thislen_byte;
639 toindex += thisleni;
640 }
641 /* Copy a single-byte string to a multibyte string. */
642 else if (STRINGP (this) && STRINGP (val))
643 {
644 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
645 {
646 textprops[num_textprops].argnum = argnum;
647 textprops[num_textprops].from = 0;
648 textprops[num_textprops++].to = toindex;
649 }
650 toindex_byte += copy_text (SDATA (this),
651 SDATA (val) + toindex_byte,
652 SCHARS (this), 0, 1);
653 toindex += thisleni;
654 }
655 else
656 /* Copy element by element. */
657 while (1)
658 {
659 register Lisp_Object elt;
660
661 /* Fetch next element of `this' arg into `elt', or break if
662 `this' is exhausted. */
663 if (NILP (this)) break;
664 if (CONSP (this))
665 elt = XCAR (this), this = XCDR (this);
666 else if (thisindex >= thisleni)
667 break;
668 else if (STRINGP (this))
669 {
670 int c;
671 if (STRING_MULTIBYTE (this))
672 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
673 thisindex,
674 thisindex_byte);
675 else
676 {
677 c = SREF (this, thisindex); thisindex++;
678 if (some_multibyte && !ASCII_CHAR_P (c))
679 c = BYTE8_TO_CHAR (c);
680 }
681 XSETFASTINT (elt, c);
682 }
683 else if (BOOL_VECTOR_P (this))
684 {
685 int byte;
686 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
687 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
688 elt = Qt;
689 else
690 elt = Qnil;
691 thisindex++;
692 }
693 else
694 {
695 elt = AREF (this, thisindex);
696 thisindex++;
697 }
698
699 /* Store this element into the result. */
700 if (toindex < 0)
701 {
702 XSETCAR (tail, elt);
703 prev = tail;
704 tail = XCDR (tail);
705 }
706 else if (VECTORP (val))
707 {
708 ASET (val, toindex, elt);
709 toindex++;
710 }
711 else
712 {
713 int c;
714 CHECK_CHARACTER (elt);
715 c = XFASTINT (elt);
716 if (some_multibyte)
717 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
718 else
719 SSET (val, toindex_byte++, c);
720 toindex++;
721 }
722 }
723 }
724 if (!NILP (prev))
725 XSETCDR (prev, last_tail);
726
727 if (num_textprops > 0)
728 {
729 Lisp_Object props;
730 ptrdiff_t last_to_end = -1;
731
732 for (argnum = 0; argnum < num_textprops; argnum++)
733 {
734 this = args[textprops[argnum].argnum];
735 props = text_property_list (this,
736 make_number (0),
737 make_number (SCHARS (this)),
738 Qnil);
739 /* If successive arguments have properties, be sure that the
740 value of `composition' property be the copy. */
741 if (last_to_end == textprops[argnum].to)
742 make_composition_value_copy (props);
743 add_text_properties_from_list (val, props,
744 make_number (textprops[argnum].to));
745 last_to_end = textprops[argnum].to + SCHARS (this);
746 }
747 }
748
749 SAFE_FREE ();
750 return val;
751 }
752 \f
753 static Lisp_Object string_char_byte_cache_string;
754 static ptrdiff_t string_char_byte_cache_charpos;
755 static ptrdiff_t string_char_byte_cache_bytepos;
756
757 void
758 clear_string_char_byte_cache (void)
759 {
760 string_char_byte_cache_string = Qnil;
761 }
762
763 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
764
765 ptrdiff_t
766 string_char_to_byte (Lisp_Object string, ptrdiff_t char_index)
767 {
768 ptrdiff_t i_byte;
769 ptrdiff_t best_below, best_below_byte;
770 ptrdiff_t best_above, best_above_byte;
771
772 best_below = best_below_byte = 0;
773 best_above = SCHARS (string);
774 best_above_byte = SBYTES (string);
775 if (best_above == best_above_byte)
776 return char_index;
777
778 if (EQ (string, string_char_byte_cache_string))
779 {
780 if (string_char_byte_cache_charpos < char_index)
781 {
782 best_below = string_char_byte_cache_charpos;
783 best_below_byte = string_char_byte_cache_bytepos;
784 }
785 else
786 {
787 best_above = string_char_byte_cache_charpos;
788 best_above_byte = string_char_byte_cache_bytepos;
789 }
790 }
791
792 if (char_index - best_below < best_above - char_index)
793 {
794 unsigned char *p = SDATA (string) + best_below_byte;
795
796 while (best_below < char_index)
797 {
798 p += BYTES_BY_CHAR_HEAD (*p);
799 best_below++;
800 }
801 i_byte = p - SDATA (string);
802 }
803 else
804 {
805 unsigned char *p = SDATA (string) + best_above_byte;
806
807 while (best_above > char_index)
808 {
809 p--;
810 while (!CHAR_HEAD_P (*p)) p--;
811 best_above--;
812 }
813 i_byte = p - SDATA (string);
814 }
815
816 string_char_byte_cache_bytepos = i_byte;
817 string_char_byte_cache_charpos = char_index;
818 string_char_byte_cache_string = string;
819
820 return i_byte;
821 }
822 \f
823 /* Return the character index corresponding to BYTE_INDEX in STRING. */
824
825 ptrdiff_t
826 string_byte_to_char (Lisp_Object string, ptrdiff_t byte_index)
827 {
828 ptrdiff_t i, i_byte;
829 ptrdiff_t best_below, best_below_byte;
830 ptrdiff_t best_above, best_above_byte;
831
832 best_below = best_below_byte = 0;
833 best_above = SCHARS (string);
834 best_above_byte = SBYTES (string);
835 if (best_above == best_above_byte)
836 return byte_index;
837
838 if (EQ (string, string_char_byte_cache_string))
839 {
840 if (string_char_byte_cache_bytepos < byte_index)
841 {
842 best_below = string_char_byte_cache_charpos;
843 best_below_byte = string_char_byte_cache_bytepos;
844 }
845 else
846 {
847 best_above = string_char_byte_cache_charpos;
848 best_above_byte = string_char_byte_cache_bytepos;
849 }
850 }
851
852 if (byte_index - best_below_byte < best_above_byte - byte_index)
853 {
854 unsigned char *p = SDATA (string) + best_below_byte;
855 unsigned char *pend = SDATA (string) + byte_index;
856
857 while (p < pend)
858 {
859 p += BYTES_BY_CHAR_HEAD (*p);
860 best_below++;
861 }
862 i = best_below;
863 i_byte = p - SDATA (string);
864 }
865 else
866 {
867 unsigned char *p = SDATA (string) + best_above_byte;
868 unsigned char *pbeg = SDATA (string) + byte_index;
869
870 while (p > pbeg)
871 {
872 p--;
873 while (!CHAR_HEAD_P (*p)) p--;
874 best_above--;
875 }
876 i = best_above;
877 i_byte = p - SDATA (string);
878 }
879
880 string_char_byte_cache_bytepos = i_byte;
881 string_char_byte_cache_charpos = i;
882 string_char_byte_cache_string = string;
883
884 return i;
885 }
886 \f
887 /* Convert STRING to a multibyte string. */
888
889 static Lisp_Object
890 string_make_multibyte (Lisp_Object string)
891 {
892 unsigned char *buf;
893 ptrdiff_t nbytes;
894 Lisp_Object ret;
895 USE_SAFE_ALLOCA;
896
897 if (STRING_MULTIBYTE (string))
898 return string;
899
900 nbytes = count_size_as_multibyte (SDATA (string),
901 SCHARS (string));
902 /* If all the chars are ASCII, they won't need any more bytes
903 once converted. In that case, we can return STRING itself. */
904 if (nbytes == SBYTES (string))
905 return string;
906
907 SAFE_ALLOCA (buf, unsigned char *, nbytes);
908 copy_text (SDATA (string), buf, SBYTES (string),
909 0, 1);
910
911 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
912 SAFE_FREE ();
913
914 return ret;
915 }
916
917
918 /* Convert STRING (if unibyte) to a multibyte string without changing
919 the number of characters. Characters 0200 trough 0237 are
920 converted to eight-bit characters. */
921
922 Lisp_Object
923 string_to_multibyte (Lisp_Object string)
924 {
925 unsigned char *buf;
926 ptrdiff_t nbytes;
927 Lisp_Object ret;
928 USE_SAFE_ALLOCA;
929
930 if (STRING_MULTIBYTE (string))
931 return string;
932
933 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
934 /* If all the chars are ASCII, they won't need any more bytes once
935 converted. */
936 if (nbytes == SBYTES (string))
937 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
938
939 SAFE_ALLOCA (buf, unsigned char *, nbytes);
940 memcpy (buf, SDATA (string), SBYTES (string));
941 str_to_multibyte (buf, nbytes, SBYTES (string));
942
943 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
944 SAFE_FREE ();
945
946 return ret;
947 }
948
949
950 /* Convert STRING to a single-byte string. */
951
952 Lisp_Object
953 string_make_unibyte (Lisp_Object string)
954 {
955 ptrdiff_t nchars;
956 unsigned char *buf;
957 Lisp_Object ret;
958 USE_SAFE_ALLOCA;
959
960 if (! STRING_MULTIBYTE (string))
961 return string;
962
963 nchars = SCHARS (string);
964
965 SAFE_ALLOCA (buf, unsigned char *, nchars);
966 copy_text (SDATA (string), buf, SBYTES (string),
967 1, 0);
968
969 ret = make_unibyte_string ((char *) buf, nchars);
970 SAFE_FREE ();
971
972 return ret;
973 }
974
975 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
976 1, 1, 0,
977 doc: /* Return the multibyte equivalent of STRING.
978 If STRING is unibyte and contains non-ASCII characters, the function
979 `unibyte-char-to-multibyte' is used to convert each unibyte character
980 to a multibyte character. In this case, the returned string is a
981 newly created string with no text properties. If STRING is multibyte
982 or entirely ASCII, it is returned unchanged. In particular, when
983 STRING is unibyte and entirely ASCII, the returned string is unibyte.
984 \(When the characters are all ASCII, Emacs primitives will treat the
985 string the same way whether it is unibyte or multibyte.) */)
986 (Lisp_Object string)
987 {
988 CHECK_STRING (string);
989
990 return string_make_multibyte (string);
991 }
992
993 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
994 1, 1, 0,
995 doc: /* Return the unibyte equivalent of STRING.
996 Multibyte character codes are converted to unibyte according to
997 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
998 If the lookup in the translation table fails, this function takes just
999 the low 8 bits of each character. */)
1000 (Lisp_Object string)
1001 {
1002 CHECK_STRING (string);
1003
1004 return string_make_unibyte (string);
1005 }
1006
1007 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
1008 1, 1, 0,
1009 doc: /* Return a unibyte string with the same individual bytes as STRING.
1010 If STRING is unibyte, the result is STRING itself.
1011 Otherwise it is a newly created string, with no text properties.
1012 If STRING is multibyte and contains a character of charset
1013 `eight-bit', it is converted to the corresponding single byte. */)
1014 (Lisp_Object string)
1015 {
1016 CHECK_STRING (string);
1017
1018 if (STRING_MULTIBYTE (string))
1019 {
1020 ptrdiff_t bytes = SBYTES (string);
1021 unsigned char *str = (unsigned char *) xmalloc (bytes);
1022
1023 memcpy (str, SDATA (string), bytes);
1024 bytes = str_as_unibyte (str, bytes);
1025 string = make_unibyte_string ((char *) str, bytes);
1026 xfree (str);
1027 }
1028 return string;
1029 }
1030
1031 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1032 1, 1, 0,
1033 doc: /* Return a multibyte string with the same individual bytes as STRING.
1034 If STRING is multibyte, the result is STRING itself.
1035 Otherwise it is a newly created string, with no text properties.
1036
1037 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1038 part of a correct utf-8 sequence), it is converted to the corresponding
1039 multibyte character of charset `eight-bit'.
1040 See also `string-to-multibyte'.
1041
1042 Beware, this often doesn't really do what you think it does.
1043 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1044 If you're not sure, whether to use `string-as-multibyte' or
1045 `string-to-multibyte', use `string-to-multibyte'. */)
1046 (Lisp_Object string)
1047 {
1048 CHECK_STRING (string);
1049
1050 if (! STRING_MULTIBYTE (string))
1051 {
1052 Lisp_Object new_string;
1053 ptrdiff_t nchars, nbytes;
1054
1055 parse_str_as_multibyte (SDATA (string),
1056 SBYTES (string),
1057 &nchars, &nbytes);
1058 new_string = make_uninit_multibyte_string (nchars, nbytes);
1059 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1060 if (nbytes != SBYTES (string))
1061 str_as_multibyte (SDATA (new_string), nbytes,
1062 SBYTES (string), NULL);
1063 string = new_string;
1064 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1065 }
1066 return string;
1067 }
1068
1069 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1070 1, 1, 0,
1071 doc: /* Return a multibyte string with the same individual chars as STRING.
1072 If STRING is multibyte, the result is STRING itself.
1073 Otherwise it is a newly created string, with no text properties.
1074
1075 If STRING is unibyte and contains an 8-bit byte, it is converted to
1076 the corresponding multibyte character of charset `eight-bit'.
1077
1078 This differs from `string-as-multibyte' by converting each byte of a correct
1079 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1080 correct sequence. */)
1081 (Lisp_Object string)
1082 {
1083 CHECK_STRING (string);
1084
1085 return string_to_multibyte (string);
1086 }
1087
1088 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1089 1, 1, 0,
1090 doc: /* Return a unibyte string with the same individual chars as STRING.
1091 If STRING is unibyte, the result is STRING itself.
1092 Otherwise it is a newly created string, with no text properties,
1093 where each `eight-bit' character is converted to the corresponding byte.
1094 If STRING contains a non-ASCII, non-`eight-bit' character,
1095 an error is signaled. */)
1096 (Lisp_Object string)
1097 {
1098 CHECK_STRING (string);
1099
1100 if (STRING_MULTIBYTE (string))
1101 {
1102 ptrdiff_t chars = SCHARS (string);
1103 unsigned char *str = (unsigned char *) xmalloc (chars);
1104 ptrdiff_t converted = str_to_unibyte (SDATA (string), str, chars, 0);
1105
1106 if (converted < chars)
1107 error ("Can't convert the %"pD"dth character to unibyte", converted);
1108 string = make_unibyte_string ((char *) str, chars);
1109 xfree (str);
1110 }
1111 return string;
1112 }
1113
1114 \f
1115 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1116 doc: /* Return a copy of ALIST.
1117 This is an alist which represents the same mapping from objects to objects,
1118 but does not share the alist structure with ALIST.
1119 The objects mapped (cars and cdrs of elements of the alist)
1120 are shared, however.
1121 Elements of ALIST that are not conses are also shared. */)
1122 (Lisp_Object alist)
1123 {
1124 register Lisp_Object tem;
1125
1126 CHECK_LIST (alist);
1127 if (NILP (alist))
1128 return alist;
1129 alist = concat (1, &alist, Lisp_Cons, 0);
1130 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1131 {
1132 register Lisp_Object car;
1133 car = XCAR (tem);
1134
1135 if (CONSP (car))
1136 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1137 }
1138 return alist;
1139 }
1140
1141 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1142 doc: /* Return a new string whose contents are a substring of STRING.
1143 The returned string consists of the characters between index FROM
1144 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1145 zero-indexed: 0 means the first character of STRING. Negative values
1146 are counted from the end of STRING. If TO is nil, the substring runs
1147 to the end of STRING.
1148
1149 The STRING argument may also be a vector. In that case, the return
1150 value is a new vector that contains the elements between index FROM
1151 \(inclusive) and index TO (exclusive) of that vector argument. */)
1152 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1153 {
1154 Lisp_Object res;
1155 ptrdiff_t size;
1156 EMACS_INT from_char, to_char;
1157
1158 CHECK_VECTOR_OR_STRING (string);
1159 CHECK_NUMBER (from);
1160
1161 if (STRINGP (string))
1162 size = SCHARS (string);
1163 else
1164 size = ASIZE (string);
1165
1166 if (NILP (to))
1167 to_char = size;
1168 else
1169 {
1170 CHECK_NUMBER (to);
1171
1172 to_char = XINT (to);
1173 if (to_char < 0)
1174 to_char += size;
1175 }
1176
1177 from_char = XINT (from);
1178 if (from_char < 0)
1179 from_char += size;
1180 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1181 args_out_of_range_3 (string, make_number (from_char),
1182 make_number (to_char));
1183
1184 if (STRINGP (string))
1185 {
1186 ptrdiff_t to_byte =
1187 (NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char));
1188 ptrdiff_t from_byte = string_char_to_byte (string, from_char);
1189 res = make_specified_string (SSDATA (string) + from_byte,
1190 to_char - from_char, to_byte - from_byte,
1191 STRING_MULTIBYTE (string));
1192 copy_text_properties (make_number (from_char), make_number (to_char),
1193 string, make_number (0), res, Qnil);
1194 }
1195 else
1196 res = Fvector (to_char - from_char, &AREF (string, from_char));
1197
1198 return res;
1199 }
1200
1201
1202 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1203 doc: /* Return a substring of STRING, without text properties.
1204 It starts at index FROM and ends before TO.
1205 TO may be nil or omitted; then the substring runs to the end of STRING.
1206 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1207 If FROM or TO is negative, it counts from the end.
1208
1209 With one argument, just copy STRING without its properties. */)
1210 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1211 {
1212 ptrdiff_t size;
1213 EMACS_INT from_char, to_char;
1214 ptrdiff_t from_byte, to_byte;
1215
1216 CHECK_STRING (string);
1217
1218 size = SCHARS (string);
1219
1220 if (NILP (from))
1221 from_char = 0;
1222 else
1223 {
1224 CHECK_NUMBER (from);
1225 from_char = XINT (from);
1226 if (from_char < 0)
1227 from_char += size;
1228 }
1229
1230 if (NILP (to))
1231 to_char = size;
1232 else
1233 {
1234 CHECK_NUMBER (to);
1235 to_char = XINT (to);
1236 if (to_char < 0)
1237 to_char += size;
1238 }
1239
1240 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1241 args_out_of_range_3 (string, make_number (from_char),
1242 make_number (to_char));
1243
1244 from_byte = NILP (from) ? 0 : string_char_to_byte (string, from_char);
1245 to_byte =
1246 NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char);
1247 return make_specified_string (SSDATA (string) + from_byte,
1248 to_char - from_char, to_byte - from_byte,
1249 STRING_MULTIBYTE (string));
1250 }
1251
1252 /* Extract a substring of STRING, giving start and end positions
1253 both in characters and in bytes. */
1254
1255 Lisp_Object
1256 substring_both (Lisp_Object string, ptrdiff_t from, ptrdiff_t from_byte,
1257 ptrdiff_t to, ptrdiff_t to_byte)
1258 {
1259 Lisp_Object res;
1260 ptrdiff_t size;
1261
1262 CHECK_VECTOR_OR_STRING (string);
1263
1264 size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
1265
1266 if (!(0 <= from && from <= to && to <= size))
1267 args_out_of_range_3 (string, make_number (from), make_number (to));
1268
1269 if (STRINGP (string))
1270 {
1271 res = make_specified_string (SSDATA (string) + from_byte,
1272 to - from, to_byte - from_byte,
1273 STRING_MULTIBYTE (string));
1274 copy_text_properties (make_number (from), make_number (to),
1275 string, make_number (0), res, Qnil);
1276 }
1277 else
1278 res = Fvector (to - from, &AREF (string, from));
1279
1280 return res;
1281 }
1282 \f
1283 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1284 doc: /* Take cdr N times on LIST, return the result. */)
1285 (Lisp_Object n, Lisp_Object list)
1286 {
1287 EMACS_INT i, num;
1288 CHECK_NUMBER (n);
1289 num = XINT (n);
1290 for (i = 0; i < num && !NILP (list); i++)
1291 {
1292 QUIT;
1293 CHECK_LIST_CONS (list, list);
1294 list = XCDR (list);
1295 }
1296 return list;
1297 }
1298
1299 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1300 doc: /* Return the Nth element of LIST.
1301 N counts from zero. If LIST is not that long, nil is returned. */)
1302 (Lisp_Object n, Lisp_Object list)
1303 {
1304 return Fcar (Fnthcdr (n, list));
1305 }
1306
1307 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1308 doc: /* Return element of SEQUENCE at index N. */)
1309 (register Lisp_Object sequence, Lisp_Object n)
1310 {
1311 CHECK_NUMBER (n);
1312 if (CONSP (sequence) || NILP (sequence))
1313 return Fcar (Fnthcdr (n, sequence));
1314
1315 /* Faref signals a "not array" error, so check here. */
1316 CHECK_ARRAY (sequence, Qsequencep);
1317 return Faref (sequence, n);
1318 }
1319
1320 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1321 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1322 The value is actually the tail of LIST whose car is ELT. */)
1323 (register Lisp_Object elt, Lisp_Object list)
1324 {
1325 register Lisp_Object tail;
1326 for (tail = list; CONSP (tail); tail = XCDR (tail))
1327 {
1328 register Lisp_Object tem;
1329 CHECK_LIST_CONS (tail, list);
1330 tem = XCAR (tail);
1331 if (! NILP (Fequal (elt, tem)))
1332 return tail;
1333 QUIT;
1334 }
1335 return Qnil;
1336 }
1337
1338 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1339 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1340 The value is actually the tail of LIST whose car is ELT. */)
1341 (register Lisp_Object elt, Lisp_Object list)
1342 {
1343 while (1)
1344 {
1345 if (!CONSP (list) || EQ (XCAR (list), elt))
1346 break;
1347
1348 list = XCDR (list);
1349 if (!CONSP (list) || EQ (XCAR (list), elt))
1350 break;
1351
1352 list = XCDR (list);
1353 if (!CONSP (list) || EQ (XCAR (list), elt))
1354 break;
1355
1356 list = XCDR (list);
1357 QUIT;
1358 }
1359
1360 CHECK_LIST (list);
1361 return list;
1362 }
1363
1364 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1365 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1366 The value is actually the tail of LIST whose car is ELT. */)
1367 (register Lisp_Object elt, Lisp_Object list)
1368 {
1369 register Lisp_Object tail;
1370
1371 if (!FLOATP (elt))
1372 return Fmemq (elt, list);
1373
1374 for (tail = list; CONSP (tail); tail = XCDR (tail))
1375 {
1376 register Lisp_Object tem;
1377 CHECK_LIST_CONS (tail, list);
1378 tem = XCAR (tail);
1379 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1380 return tail;
1381 QUIT;
1382 }
1383 return Qnil;
1384 }
1385
1386 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1387 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1388 The value is actually the first element of LIST whose car is KEY.
1389 Elements of LIST that are not conses are ignored. */)
1390 (Lisp_Object key, Lisp_Object list)
1391 {
1392 while (1)
1393 {
1394 if (!CONSP (list)
1395 || (CONSP (XCAR (list))
1396 && EQ (XCAR (XCAR (list)), key)))
1397 break;
1398
1399 list = XCDR (list);
1400 if (!CONSP (list)
1401 || (CONSP (XCAR (list))
1402 && EQ (XCAR (XCAR (list)), key)))
1403 break;
1404
1405 list = XCDR (list);
1406 if (!CONSP (list)
1407 || (CONSP (XCAR (list))
1408 && EQ (XCAR (XCAR (list)), key)))
1409 break;
1410
1411 list = XCDR (list);
1412 QUIT;
1413 }
1414
1415 return CAR (list);
1416 }
1417
1418 /* Like Fassq but never report an error and do not allow quits.
1419 Use only on lists known never to be circular. */
1420
1421 Lisp_Object
1422 assq_no_quit (Lisp_Object key, Lisp_Object list)
1423 {
1424 while (CONSP (list)
1425 && (!CONSP (XCAR (list))
1426 || !EQ (XCAR (XCAR (list)), key)))
1427 list = XCDR (list);
1428
1429 return CAR_SAFE (list);
1430 }
1431
1432 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1433 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1434 The value is actually the first element of LIST whose car equals KEY. */)
1435 (Lisp_Object key, Lisp_Object list)
1436 {
1437 Lisp_Object car;
1438
1439 while (1)
1440 {
1441 if (!CONSP (list)
1442 || (CONSP (XCAR (list))
1443 && (car = XCAR (XCAR (list)),
1444 EQ (car, key) || !NILP (Fequal (car, key)))))
1445 break;
1446
1447 list = XCDR (list);
1448 if (!CONSP (list)
1449 || (CONSP (XCAR (list))
1450 && (car = XCAR (XCAR (list)),
1451 EQ (car, key) || !NILP (Fequal (car, key)))))
1452 break;
1453
1454 list = XCDR (list);
1455 if (!CONSP (list)
1456 || (CONSP (XCAR (list))
1457 && (car = XCAR (XCAR (list)),
1458 EQ (car, key) || !NILP (Fequal (car, key)))))
1459 break;
1460
1461 list = XCDR (list);
1462 QUIT;
1463 }
1464
1465 return CAR (list);
1466 }
1467
1468 /* Like Fassoc but never report an error and do not allow quits.
1469 Use only on lists known never to be circular. */
1470
1471 Lisp_Object
1472 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1473 {
1474 while (CONSP (list)
1475 && (!CONSP (XCAR (list))
1476 || (!EQ (XCAR (XCAR (list)), key)
1477 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1478 list = XCDR (list);
1479
1480 return CONSP (list) ? XCAR (list) : Qnil;
1481 }
1482
1483 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1484 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1485 The value is actually the first element of LIST whose cdr is KEY. */)
1486 (register Lisp_Object key, Lisp_Object list)
1487 {
1488 while (1)
1489 {
1490 if (!CONSP (list)
1491 || (CONSP (XCAR (list))
1492 && EQ (XCDR (XCAR (list)), key)))
1493 break;
1494
1495 list = XCDR (list);
1496 if (!CONSP (list)
1497 || (CONSP (XCAR (list))
1498 && EQ (XCDR (XCAR (list)), key)))
1499 break;
1500
1501 list = XCDR (list);
1502 if (!CONSP (list)
1503 || (CONSP (XCAR (list))
1504 && EQ (XCDR (XCAR (list)), key)))
1505 break;
1506
1507 list = XCDR (list);
1508 QUIT;
1509 }
1510
1511 return CAR (list);
1512 }
1513
1514 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1515 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1516 The value is actually the first element of LIST whose cdr equals KEY. */)
1517 (Lisp_Object key, Lisp_Object list)
1518 {
1519 Lisp_Object cdr;
1520
1521 while (1)
1522 {
1523 if (!CONSP (list)
1524 || (CONSP (XCAR (list))
1525 && (cdr = XCDR (XCAR (list)),
1526 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1527 break;
1528
1529 list = XCDR (list);
1530 if (!CONSP (list)
1531 || (CONSP (XCAR (list))
1532 && (cdr = XCDR (XCAR (list)),
1533 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1534 break;
1535
1536 list = XCDR (list);
1537 if (!CONSP (list)
1538 || (CONSP (XCAR (list))
1539 && (cdr = XCDR (XCAR (list)),
1540 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1541 break;
1542
1543 list = XCDR (list);
1544 QUIT;
1545 }
1546
1547 return CAR (list);
1548 }
1549 \f
1550 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1551 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1552 The modified LIST is returned. Comparison is done with `eq'.
1553 If the first member of LIST is ELT, there is no way to remove it by side effect;
1554 therefore, write `(setq foo (delq element foo))'
1555 to be sure of changing the value of `foo'. */)
1556 (register Lisp_Object elt, Lisp_Object list)
1557 {
1558 register Lisp_Object tail, prev;
1559 register Lisp_Object tem;
1560
1561 tail = list;
1562 prev = Qnil;
1563 while (!NILP (tail))
1564 {
1565 CHECK_LIST_CONS (tail, list);
1566 tem = XCAR (tail);
1567 if (EQ (elt, tem))
1568 {
1569 if (NILP (prev))
1570 list = XCDR (tail);
1571 else
1572 Fsetcdr (prev, XCDR (tail));
1573 }
1574 else
1575 prev = tail;
1576 tail = XCDR (tail);
1577 QUIT;
1578 }
1579 return list;
1580 }
1581
1582 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1583 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1584 SEQ must be a list, a vector, or a string.
1585 The modified SEQ is returned. Comparison is done with `equal'.
1586 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1587 is not a side effect; it is simply using a different sequence.
1588 Therefore, write `(setq foo (delete element foo))'
1589 to be sure of changing the value of `foo'. */)
1590 (Lisp_Object elt, Lisp_Object seq)
1591 {
1592 if (VECTORP (seq))
1593 {
1594 ptrdiff_t i, n;
1595
1596 for (i = n = 0; i < ASIZE (seq); ++i)
1597 if (NILP (Fequal (AREF (seq, i), elt)))
1598 ++n;
1599
1600 if (n != ASIZE (seq))
1601 {
1602 struct Lisp_Vector *p = allocate_vector (n);
1603
1604 for (i = n = 0; i < ASIZE (seq); ++i)
1605 if (NILP (Fequal (AREF (seq, i), elt)))
1606 p->contents[n++] = AREF (seq, i);
1607
1608 XSETVECTOR (seq, p);
1609 }
1610 }
1611 else if (STRINGP (seq))
1612 {
1613 ptrdiff_t i, ibyte, nchars, nbytes, cbytes;
1614 int c;
1615
1616 for (i = nchars = nbytes = ibyte = 0;
1617 i < SCHARS (seq);
1618 ++i, ibyte += cbytes)
1619 {
1620 if (STRING_MULTIBYTE (seq))
1621 {
1622 c = STRING_CHAR (SDATA (seq) + ibyte);
1623 cbytes = CHAR_BYTES (c);
1624 }
1625 else
1626 {
1627 c = SREF (seq, i);
1628 cbytes = 1;
1629 }
1630
1631 if (!INTEGERP (elt) || c != XINT (elt))
1632 {
1633 ++nchars;
1634 nbytes += cbytes;
1635 }
1636 }
1637
1638 if (nchars != SCHARS (seq))
1639 {
1640 Lisp_Object tem;
1641
1642 tem = make_uninit_multibyte_string (nchars, nbytes);
1643 if (!STRING_MULTIBYTE (seq))
1644 STRING_SET_UNIBYTE (tem);
1645
1646 for (i = nchars = nbytes = ibyte = 0;
1647 i < SCHARS (seq);
1648 ++i, ibyte += cbytes)
1649 {
1650 if (STRING_MULTIBYTE (seq))
1651 {
1652 c = STRING_CHAR (SDATA (seq) + ibyte);
1653 cbytes = CHAR_BYTES (c);
1654 }
1655 else
1656 {
1657 c = SREF (seq, i);
1658 cbytes = 1;
1659 }
1660
1661 if (!INTEGERP (elt) || c != XINT (elt))
1662 {
1663 unsigned char *from = SDATA (seq) + ibyte;
1664 unsigned char *to = SDATA (tem) + nbytes;
1665 ptrdiff_t n;
1666
1667 ++nchars;
1668 nbytes += cbytes;
1669
1670 for (n = cbytes; n--; )
1671 *to++ = *from++;
1672 }
1673 }
1674
1675 seq = tem;
1676 }
1677 }
1678 else
1679 {
1680 Lisp_Object tail, prev;
1681
1682 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1683 {
1684 CHECK_LIST_CONS (tail, seq);
1685
1686 if (!NILP (Fequal (elt, XCAR (tail))))
1687 {
1688 if (NILP (prev))
1689 seq = XCDR (tail);
1690 else
1691 Fsetcdr (prev, XCDR (tail));
1692 }
1693 else
1694 prev = tail;
1695 QUIT;
1696 }
1697 }
1698
1699 return seq;
1700 }
1701
1702 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1703 doc: /* Reverse LIST by modifying cdr pointers.
1704 Return the reversed list. */)
1705 (Lisp_Object list)
1706 {
1707 register Lisp_Object prev, tail, next;
1708
1709 if (NILP (list)) return list;
1710 prev = Qnil;
1711 tail = list;
1712 while (!NILP (tail))
1713 {
1714 QUIT;
1715 CHECK_LIST_CONS (tail, list);
1716 next = XCDR (tail);
1717 Fsetcdr (tail, prev);
1718 prev = tail;
1719 tail = next;
1720 }
1721 return prev;
1722 }
1723
1724 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1725 doc: /* Reverse LIST, copying. Return the reversed list.
1726 See also the function `nreverse', which is used more often. */)
1727 (Lisp_Object list)
1728 {
1729 Lisp_Object new;
1730
1731 for (new = Qnil; CONSP (list); list = XCDR (list))
1732 {
1733 QUIT;
1734 new = Fcons (XCAR (list), new);
1735 }
1736 CHECK_LIST_END (list, list);
1737 return new;
1738 }
1739 \f
1740 Lisp_Object merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred);
1741
1742 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1743 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1744 Returns the sorted list. LIST is modified by side effects.
1745 PREDICATE is called with two elements of LIST, and should return non-nil
1746 if the first element should sort before the second. */)
1747 (Lisp_Object list, Lisp_Object predicate)
1748 {
1749 Lisp_Object front, back;
1750 register Lisp_Object len, tem;
1751 struct gcpro gcpro1, gcpro2;
1752 EMACS_INT length;
1753
1754 front = list;
1755 len = Flength (list);
1756 length = XINT (len);
1757 if (length < 2)
1758 return list;
1759
1760 XSETINT (len, (length / 2) - 1);
1761 tem = Fnthcdr (len, list);
1762 back = Fcdr (tem);
1763 Fsetcdr (tem, Qnil);
1764
1765 GCPRO2 (front, back);
1766 front = Fsort (front, predicate);
1767 back = Fsort (back, predicate);
1768 UNGCPRO;
1769 return merge (front, back, predicate);
1770 }
1771
1772 Lisp_Object
1773 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1774 {
1775 Lisp_Object value;
1776 register Lisp_Object tail;
1777 Lisp_Object tem;
1778 register Lisp_Object l1, l2;
1779 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1780
1781 l1 = org_l1;
1782 l2 = org_l2;
1783 tail = Qnil;
1784 value = Qnil;
1785
1786 /* It is sufficient to protect org_l1 and org_l2.
1787 When l1 and l2 are updated, we copy the new values
1788 back into the org_ vars. */
1789 GCPRO4 (org_l1, org_l2, pred, value);
1790
1791 while (1)
1792 {
1793 if (NILP (l1))
1794 {
1795 UNGCPRO;
1796 if (NILP (tail))
1797 return l2;
1798 Fsetcdr (tail, l2);
1799 return value;
1800 }
1801 if (NILP (l2))
1802 {
1803 UNGCPRO;
1804 if (NILP (tail))
1805 return l1;
1806 Fsetcdr (tail, l1);
1807 return value;
1808 }
1809 tem = call2 (pred, Fcar (l2), Fcar (l1));
1810 if (NILP (tem))
1811 {
1812 tem = l1;
1813 l1 = Fcdr (l1);
1814 org_l1 = l1;
1815 }
1816 else
1817 {
1818 tem = l2;
1819 l2 = Fcdr (l2);
1820 org_l2 = l2;
1821 }
1822 if (NILP (tail))
1823 value = tem;
1824 else
1825 Fsetcdr (tail, tem);
1826 tail = tem;
1827 }
1828 }
1829
1830 \f
1831 /* This does not check for quits. That is safe since it must terminate. */
1832
1833 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1834 doc: /* Extract a value from a property list.
1835 PLIST is a property list, which is a list of the form
1836 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1837 corresponding to the given PROP, or nil if PROP is not one of the
1838 properties on the list. This function never signals an error. */)
1839 (Lisp_Object plist, Lisp_Object prop)
1840 {
1841 Lisp_Object tail, halftail;
1842
1843 /* halftail is used to detect circular lists. */
1844 tail = halftail = plist;
1845 while (CONSP (tail) && CONSP (XCDR (tail)))
1846 {
1847 if (EQ (prop, XCAR (tail)))
1848 return XCAR (XCDR (tail));
1849
1850 tail = XCDR (XCDR (tail));
1851 halftail = XCDR (halftail);
1852 if (EQ (tail, halftail))
1853 break;
1854
1855 #if 0 /* Unsafe version. */
1856 /* This function can be called asynchronously
1857 (setup_coding_system). Don't QUIT in that case. */
1858 if (!interrupt_input_blocked)
1859 QUIT;
1860 #endif
1861 }
1862
1863 return Qnil;
1864 }
1865
1866 DEFUN ("get", Fget, Sget, 2, 2, 0,
1867 doc: /* Return the value of SYMBOL's PROPNAME property.
1868 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1869 (Lisp_Object symbol, Lisp_Object propname)
1870 {
1871 CHECK_SYMBOL (symbol);
1872 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1873 }
1874
1875 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1876 doc: /* Change value in PLIST of PROP to VAL.
1877 PLIST is a property list, which is a list of the form
1878 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1879 If PROP is already a property on the list, its value is set to VAL,
1880 otherwise the new PROP VAL pair is added. The new plist is returned;
1881 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1882 The PLIST is modified by side effects. */)
1883 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1884 {
1885 register Lisp_Object tail, prev;
1886 Lisp_Object newcell;
1887 prev = Qnil;
1888 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1889 tail = XCDR (XCDR (tail)))
1890 {
1891 if (EQ (prop, XCAR (tail)))
1892 {
1893 Fsetcar (XCDR (tail), val);
1894 return plist;
1895 }
1896
1897 prev = tail;
1898 QUIT;
1899 }
1900 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1901 if (NILP (prev))
1902 return newcell;
1903 else
1904 Fsetcdr (XCDR (prev), newcell);
1905 return plist;
1906 }
1907
1908 DEFUN ("put", Fput, Sput, 3, 3, 0,
1909 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1910 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1911 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1912 {
1913 CHECK_SYMBOL (symbol);
1914 XSYMBOL (symbol)->plist
1915 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
1916 return value;
1917 }
1918 \f
1919 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1920 doc: /* Extract a value from a property list, comparing with `equal'.
1921 PLIST is a property list, which is a list of the form
1922 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1923 corresponding to the given PROP, or nil if PROP is not
1924 one of the properties on the list. */)
1925 (Lisp_Object plist, Lisp_Object prop)
1926 {
1927 Lisp_Object tail;
1928
1929 for (tail = plist;
1930 CONSP (tail) && CONSP (XCDR (tail));
1931 tail = XCDR (XCDR (tail)))
1932 {
1933 if (! NILP (Fequal (prop, XCAR (tail))))
1934 return XCAR (XCDR (tail));
1935
1936 QUIT;
1937 }
1938
1939 CHECK_LIST_END (tail, prop);
1940
1941 return Qnil;
1942 }
1943
1944 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1945 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1946 PLIST is a property list, which is a list of the form
1947 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1948 If PROP is already a property on the list, its value is set to VAL,
1949 otherwise the new PROP VAL pair is added. The new plist is returned;
1950 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1951 The PLIST is modified by side effects. */)
1952 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1953 {
1954 register Lisp_Object tail, prev;
1955 Lisp_Object newcell;
1956 prev = Qnil;
1957 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1958 tail = XCDR (XCDR (tail)))
1959 {
1960 if (! NILP (Fequal (prop, XCAR (tail))))
1961 {
1962 Fsetcar (XCDR (tail), val);
1963 return plist;
1964 }
1965
1966 prev = tail;
1967 QUIT;
1968 }
1969 newcell = Fcons (prop, Fcons (val, Qnil));
1970 if (NILP (prev))
1971 return newcell;
1972 else
1973 Fsetcdr (XCDR (prev), newcell);
1974 return plist;
1975 }
1976 \f
1977 DEFUN ("eql", Feql, Seql, 2, 2, 0,
1978 doc: /* Return t if the two args are the same Lisp object.
1979 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1980 (Lisp_Object obj1, Lisp_Object obj2)
1981 {
1982 if (FLOATP (obj1))
1983 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
1984 else
1985 return EQ (obj1, obj2) ? Qt : Qnil;
1986 }
1987
1988 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1989 doc: /* Return t if two Lisp objects have similar structure and contents.
1990 They must have the same data type.
1991 Conses are compared by comparing the cars and the cdrs.
1992 Vectors and strings are compared element by element.
1993 Numbers are compared by value, but integers cannot equal floats.
1994 (Use `=' if you want integers and floats to be able to be equal.)
1995 Symbols must match exactly. */)
1996 (register Lisp_Object o1, Lisp_Object o2)
1997 {
1998 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
1999 }
2000
2001 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2002 doc: /* Return t if two Lisp objects have similar structure and contents.
2003 This is like `equal' except that it compares the text properties
2004 of strings. (`equal' ignores text properties.) */)
2005 (register Lisp_Object o1, Lisp_Object o2)
2006 {
2007 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
2008 }
2009
2010 /* DEPTH is current depth of recursion. Signal an error if it
2011 gets too deep.
2012 PROPS, if non-nil, means compare string text properties too. */
2013
2014 static int
2015 internal_equal (register Lisp_Object o1, register Lisp_Object o2, int depth, int props)
2016 {
2017 if (depth > 200)
2018 error ("Stack overflow in equal");
2019
2020 tail_recurse:
2021 QUIT;
2022 if (EQ (o1, o2))
2023 return 1;
2024 if (XTYPE (o1) != XTYPE (o2))
2025 return 0;
2026
2027 switch (XTYPE (o1))
2028 {
2029 case Lisp_Float:
2030 {
2031 double d1, d2;
2032
2033 d1 = extract_float (o1);
2034 d2 = extract_float (o2);
2035 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2036 though they are not =. */
2037 return d1 == d2 || (d1 != d1 && d2 != d2);
2038 }
2039
2040 case Lisp_Cons:
2041 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2042 return 0;
2043 o1 = XCDR (o1);
2044 o2 = XCDR (o2);
2045 goto tail_recurse;
2046
2047 case Lisp_Misc:
2048 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2049 return 0;
2050 if (OVERLAYP (o1))
2051 {
2052 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2053 depth + 1, props)
2054 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2055 depth + 1, props))
2056 return 0;
2057 o1 = XOVERLAY (o1)->plist;
2058 o2 = XOVERLAY (o2)->plist;
2059 goto tail_recurse;
2060 }
2061 if (MARKERP (o1))
2062 {
2063 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2064 && (XMARKER (o1)->buffer == 0
2065 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2066 }
2067 break;
2068
2069 case Lisp_Vectorlike:
2070 {
2071 register int i;
2072 ptrdiff_t size = ASIZE (o1);
2073 /* Pseudovectors have the type encoded in the size field, so this test
2074 actually checks that the objects have the same type as well as the
2075 same size. */
2076 if (ASIZE (o2) != size)
2077 return 0;
2078 /* Boolvectors are compared much like strings. */
2079 if (BOOL_VECTOR_P (o1))
2080 {
2081 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2082 return 0;
2083 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2084 ((XBOOL_VECTOR (o1)->size
2085 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2086 / BOOL_VECTOR_BITS_PER_CHAR)))
2087 return 0;
2088 return 1;
2089 }
2090 if (WINDOW_CONFIGURATIONP (o1))
2091 return compare_window_configurations (o1, o2, 0);
2092
2093 /* Aside from them, only true vectors, char-tables, compiled
2094 functions, and fonts (font-spec, font-entity, font-object)
2095 are sensible to compare, so eliminate the others now. */
2096 if (size & PSEUDOVECTOR_FLAG)
2097 {
2098 if (!(size & (PVEC_COMPILED
2099 | PVEC_CHAR_TABLE | PVEC_SUB_CHAR_TABLE | PVEC_FONT)))
2100 return 0;
2101 size &= PSEUDOVECTOR_SIZE_MASK;
2102 }
2103 for (i = 0; i < size; i++)
2104 {
2105 Lisp_Object v1, v2;
2106 v1 = AREF (o1, i);
2107 v2 = AREF (o2, i);
2108 if (!internal_equal (v1, v2, depth + 1, props))
2109 return 0;
2110 }
2111 return 1;
2112 }
2113 break;
2114
2115 case Lisp_String:
2116 if (SCHARS (o1) != SCHARS (o2))
2117 return 0;
2118 if (SBYTES (o1) != SBYTES (o2))
2119 return 0;
2120 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2121 return 0;
2122 if (props && !compare_string_intervals (o1, o2))
2123 return 0;
2124 return 1;
2125
2126 default:
2127 break;
2128 }
2129
2130 return 0;
2131 }
2132 \f
2133
2134 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2135 doc: /* Store each element of ARRAY with ITEM.
2136 ARRAY is a vector, string, char-table, or bool-vector. */)
2137 (Lisp_Object array, Lisp_Object item)
2138 {
2139 register ptrdiff_t size, idx;
2140
2141 if (VECTORP (array))
2142 {
2143 register Lisp_Object *p = XVECTOR (array)->contents;
2144 size = ASIZE (array);
2145 for (idx = 0; idx < size; idx++)
2146 p[idx] = item;
2147 }
2148 else if (CHAR_TABLE_P (array))
2149 {
2150 int i;
2151
2152 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2153 XCHAR_TABLE (array)->contents[i] = item;
2154 XCHAR_TABLE (array)->defalt = item;
2155 }
2156 else if (STRINGP (array))
2157 {
2158 register unsigned char *p = SDATA (array);
2159 int charval;
2160 CHECK_CHARACTER (item);
2161 charval = XFASTINT (item);
2162 size = SCHARS (array);
2163 if (STRING_MULTIBYTE (array))
2164 {
2165 unsigned char str[MAX_MULTIBYTE_LENGTH];
2166 int len = CHAR_STRING (charval, str);
2167 ptrdiff_t size_byte = SBYTES (array);
2168
2169 if (INT_MULTIPLY_OVERFLOW (SCHARS (array), len)
2170 || SCHARS (array) * len != size_byte)
2171 error ("Attempt to change byte length of a string");
2172 for (idx = 0; idx < size_byte; idx++)
2173 *p++ = str[idx % len];
2174 }
2175 else
2176 for (idx = 0; idx < size; idx++)
2177 p[idx] = charval;
2178 }
2179 else if (BOOL_VECTOR_P (array))
2180 {
2181 register unsigned char *p = XBOOL_VECTOR (array)->data;
2182 size =
2183 ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2184 / BOOL_VECTOR_BITS_PER_CHAR);
2185
2186 if (size)
2187 {
2188 memset (p, ! NILP (item) ? -1 : 0, size);
2189
2190 /* Clear any extraneous bits in the last byte. */
2191 p[size - 1] &= (1 << (size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2192 }
2193 }
2194 else
2195 wrong_type_argument (Qarrayp, array);
2196 return array;
2197 }
2198
2199 DEFUN ("clear-string", Fclear_string, Sclear_string,
2200 1, 1, 0,
2201 doc: /* Clear the contents of STRING.
2202 This makes STRING unibyte and may change its length. */)
2203 (Lisp_Object string)
2204 {
2205 ptrdiff_t len;
2206 CHECK_STRING (string);
2207 len = SBYTES (string);
2208 memset (SDATA (string), 0, len);
2209 STRING_SET_CHARS (string, len);
2210 STRING_SET_UNIBYTE (string);
2211 return Qnil;
2212 }
2213 \f
2214 /* ARGSUSED */
2215 Lisp_Object
2216 nconc2 (Lisp_Object s1, Lisp_Object s2)
2217 {
2218 Lisp_Object args[2];
2219 args[0] = s1;
2220 args[1] = s2;
2221 return Fnconc (2, args);
2222 }
2223
2224 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2225 doc: /* Concatenate any number of lists by altering them.
2226 Only the last argument is not altered, and need not be a list.
2227 usage: (nconc &rest LISTS) */)
2228 (ptrdiff_t nargs, Lisp_Object *args)
2229 {
2230 ptrdiff_t argnum;
2231 register Lisp_Object tail, tem, val;
2232
2233 val = tail = Qnil;
2234
2235 for (argnum = 0; argnum < nargs; argnum++)
2236 {
2237 tem = args[argnum];
2238 if (NILP (tem)) continue;
2239
2240 if (NILP (val))
2241 val = tem;
2242
2243 if (argnum + 1 == nargs) break;
2244
2245 CHECK_LIST_CONS (tem, tem);
2246
2247 while (CONSP (tem))
2248 {
2249 tail = tem;
2250 tem = XCDR (tail);
2251 QUIT;
2252 }
2253
2254 tem = args[argnum + 1];
2255 Fsetcdr (tail, tem);
2256 if (NILP (tem))
2257 args[argnum + 1] = tail;
2258 }
2259
2260 return val;
2261 }
2262 \f
2263 /* This is the guts of all mapping functions.
2264 Apply FN to each element of SEQ, one by one,
2265 storing the results into elements of VALS, a C vector of Lisp_Objects.
2266 LENI is the length of VALS, which should also be the length of SEQ. */
2267
2268 static void
2269 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2270 {
2271 register Lisp_Object tail;
2272 Lisp_Object dummy;
2273 register EMACS_INT i;
2274 struct gcpro gcpro1, gcpro2, gcpro3;
2275
2276 if (vals)
2277 {
2278 /* Don't let vals contain any garbage when GC happens. */
2279 for (i = 0; i < leni; i++)
2280 vals[i] = Qnil;
2281
2282 GCPRO3 (dummy, fn, seq);
2283 gcpro1.var = vals;
2284 gcpro1.nvars = leni;
2285 }
2286 else
2287 GCPRO2 (fn, seq);
2288 /* We need not explicitly protect `tail' because it is used only on lists, and
2289 1) lists are not relocated and 2) the list is marked via `seq' so will not
2290 be freed */
2291
2292 if (VECTORP (seq) || COMPILEDP (seq))
2293 {
2294 for (i = 0; i < leni; i++)
2295 {
2296 dummy = call1 (fn, AREF (seq, i));
2297 if (vals)
2298 vals[i] = dummy;
2299 }
2300 }
2301 else if (BOOL_VECTOR_P (seq))
2302 {
2303 for (i = 0; i < leni; i++)
2304 {
2305 unsigned char byte;
2306 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2307 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2308 dummy = call1 (fn, dummy);
2309 if (vals)
2310 vals[i] = dummy;
2311 }
2312 }
2313 else if (STRINGP (seq))
2314 {
2315 ptrdiff_t i_byte;
2316
2317 for (i = 0, i_byte = 0; i < leni;)
2318 {
2319 int c;
2320 ptrdiff_t i_before = i;
2321
2322 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2323 XSETFASTINT (dummy, c);
2324 dummy = call1 (fn, dummy);
2325 if (vals)
2326 vals[i_before] = dummy;
2327 }
2328 }
2329 else /* Must be a list, since Flength did not get an error */
2330 {
2331 tail = seq;
2332 for (i = 0; i < leni && CONSP (tail); i++)
2333 {
2334 dummy = call1 (fn, XCAR (tail));
2335 if (vals)
2336 vals[i] = dummy;
2337 tail = XCDR (tail);
2338 }
2339 }
2340
2341 UNGCPRO;
2342 }
2343
2344 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2345 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2346 In between each pair of results, stick in SEPARATOR. Thus, " " as
2347 SEPARATOR results in spaces between the values returned by FUNCTION.
2348 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2349 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2350 {
2351 Lisp_Object len;
2352 register EMACS_INT leni;
2353 EMACS_INT nargs;
2354 ptrdiff_t i;
2355 register Lisp_Object *args;
2356 struct gcpro gcpro1;
2357 Lisp_Object ret;
2358 USE_SAFE_ALLOCA;
2359
2360 len = Flength (sequence);
2361 if (CHAR_TABLE_P (sequence))
2362 wrong_type_argument (Qlistp, sequence);
2363 leni = XINT (len);
2364 nargs = leni + leni - 1;
2365 if (nargs < 0) return empty_unibyte_string;
2366
2367 SAFE_ALLOCA_LISP (args, nargs);
2368
2369 GCPRO1 (separator);
2370 mapcar1 (leni, args, function, sequence);
2371 UNGCPRO;
2372
2373 for (i = leni - 1; i > 0; i--)
2374 args[i + i] = args[i];
2375
2376 for (i = 1; i < nargs; i += 2)
2377 args[i] = separator;
2378
2379 ret = Fconcat (nargs, args);
2380 SAFE_FREE ();
2381
2382 return ret;
2383 }
2384
2385 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2386 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2387 The result is a list just as long as SEQUENCE.
2388 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2389 (Lisp_Object function, Lisp_Object sequence)
2390 {
2391 register Lisp_Object len;
2392 register EMACS_INT leni;
2393 register Lisp_Object *args;
2394 Lisp_Object ret;
2395 USE_SAFE_ALLOCA;
2396
2397 len = Flength (sequence);
2398 if (CHAR_TABLE_P (sequence))
2399 wrong_type_argument (Qlistp, sequence);
2400 leni = XFASTINT (len);
2401
2402 SAFE_ALLOCA_LISP (args, leni);
2403
2404 mapcar1 (leni, args, function, sequence);
2405
2406 ret = Flist (leni, args);
2407 SAFE_FREE ();
2408
2409 return ret;
2410 }
2411
2412 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2413 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2414 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2415 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2416 (Lisp_Object function, Lisp_Object sequence)
2417 {
2418 register EMACS_INT leni;
2419
2420 leni = XFASTINT (Flength (sequence));
2421 if (CHAR_TABLE_P (sequence))
2422 wrong_type_argument (Qlistp, sequence);
2423 mapcar1 (leni, 0, function, sequence);
2424
2425 return sequence;
2426 }
2427 \f
2428 /* This is how C code calls `yes-or-no-p' and allows the user
2429 to redefined it.
2430
2431 Anything that calls this function must protect from GC! */
2432
2433 Lisp_Object
2434 do_yes_or_no_p (Lisp_Object prompt)
2435 {
2436 return call1 (intern ("yes-or-no-p"), prompt);
2437 }
2438
2439 /* Anything that calls this function must protect from GC! */
2440
2441 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2442 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2443 PROMPT is the string to display to ask the question. It should end in
2444 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2445
2446 The user must confirm the answer with RET, and can edit it until it
2447 has been confirmed.
2448
2449 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2450 is nil, and `use-dialog-box' is non-nil. */)
2451 (Lisp_Object prompt)
2452 {
2453 register Lisp_Object ans;
2454 Lisp_Object args[2];
2455 struct gcpro gcpro1;
2456
2457 CHECK_STRING (prompt);
2458
2459 #ifdef HAVE_MENUS
2460 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2461 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2462 && use_dialog_box
2463 && have_menus_p ())
2464 {
2465 Lisp_Object pane, menu, obj;
2466 redisplay_preserve_echo_area (4);
2467 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2468 Fcons (Fcons (build_string ("No"), Qnil),
2469 Qnil));
2470 GCPRO1 (pane);
2471 menu = Fcons (prompt, pane);
2472 obj = Fx_popup_dialog (Qt, menu, Qnil);
2473 UNGCPRO;
2474 return obj;
2475 }
2476 #endif /* HAVE_MENUS */
2477
2478 args[0] = prompt;
2479 args[1] = build_string ("(yes or no) ");
2480 prompt = Fconcat (2, args);
2481
2482 GCPRO1 (prompt);
2483
2484 while (1)
2485 {
2486 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2487 Qyes_or_no_p_history, Qnil,
2488 Qnil));
2489 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2490 {
2491 UNGCPRO;
2492 return Qt;
2493 }
2494 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2495 {
2496 UNGCPRO;
2497 return Qnil;
2498 }
2499
2500 Fding (Qnil);
2501 Fdiscard_input ();
2502 message ("Please answer yes or no.");
2503 Fsleep_for (make_number (2), Qnil);
2504 }
2505 }
2506 \f
2507 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2508 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2509
2510 Each of the three load averages is multiplied by 100, then converted
2511 to integer.
2512
2513 When USE-FLOATS is non-nil, floats will be used instead of integers.
2514 These floats are not multiplied by 100.
2515
2516 If the 5-minute or 15-minute load averages are not available, return a
2517 shortened list, containing only those averages which are available.
2518
2519 An error is thrown if the load average can't be obtained. In some
2520 cases making it work would require Emacs being installed setuid or
2521 setgid so that it can read kernel information, and that usually isn't
2522 advisable. */)
2523 (Lisp_Object use_floats)
2524 {
2525 double load_ave[3];
2526 int loads = getloadavg (load_ave, 3);
2527 Lisp_Object ret = Qnil;
2528
2529 if (loads < 0)
2530 error ("load-average not implemented for this operating system");
2531
2532 while (loads-- > 0)
2533 {
2534 Lisp_Object load = (NILP (use_floats)
2535 ? make_number (100.0 * load_ave[loads])
2536 : make_float (load_ave[loads]));
2537 ret = Fcons (load, ret);
2538 }
2539
2540 return ret;
2541 }
2542 \f
2543 static Lisp_Object Qsubfeatures;
2544
2545 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2546 doc: /* Return t if FEATURE is present in this Emacs.
2547
2548 Use this to conditionalize execution of lisp code based on the
2549 presence or absence of Emacs or environment extensions.
2550 Use `provide' to declare that a feature is available. This function
2551 looks at the value of the variable `features'. The optional argument
2552 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2553 (Lisp_Object feature, Lisp_Object subfeature)
2554 {
2555 register Lisp_Object tem;
2556 CHECK_SYMBOL (feature);
2557 tem = Fmemq (feature, Vfeatures);
2558 if (!NILP (tem) && !NILP (subfeature))
2559 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2560 return (NILP (tem)) ? Qnil : Qt;
2561 }
2562
2563 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2564 doc: /* Announce that FEATURE is a feature of the current Emacs.
2565 The optional argument SUBFEATURES should be a list of symbols listing
2566 particular subfeatures supported in this version of FEATURE. */)
2567 (Lisp_Object feature, Lisp_Object subfeatures)
2568 {
2569 register Lisp_Object tem;
2570 CHECK_SYMBOL (feature);
2571 CHECK_LIST (subfeatures);
2572 if (!NILP (Vautoload_queue))
2573 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2574 Vautoload_queue);
2575 tem = Fmemq (feature, Vfeatures);
2576 if (NILP (tem))
2577 Vfeatures = Fcons (feature, Vfeatures);
2578 if (!NILP (subfeatures))
2579 Fput (feature, Qsubfeatures, subfeatures);
2580 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2581
2582 /* Run any load-hooks for this file. */
2583 tem = Fassq (feature, Vafter_load_alist);
2584 if (CONSP (tem))
2585 Fprogn (XCDR (tem));
2586
2587 return feature;
2588 }
2589 \f
2590 /* `require' and its subroutines. */
2591
2592 /* List of features currently being require'd, innermost first. */
2593
2594 static Lisp_Object require_nesting_list;
2595
2596 static Lisp_Object
2597 require_unwind (Lisp_Object old_value)
2598 {
2599 return require_nesting_list = old_value;
2600 }
2601
2602 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2603 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2604 If FEATURE is not a member of the list `features', then the feature
2605 is not loaded; so load the file FILENAME.
2606 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2607 and `load' will try to load this name appended with the suffix `.elc' or
2608 `.el', in that order. The name without appended suffix will not be used.
2609 See `get-load-suffixes' for the complete list of suffixes.
2610 If the optional third argument NOERROR is non-nil,
2611 then return nil if the file is not found instead of signaling an error.
2612 Normally the return value is FEATURE.
2613 The normal messages at start and end of loading FILENAME are suppressed. */)
2614 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2615 {
2616 register Lisp_Object tem;
2617 struct gcpro gcpro1, gcpro2;
2618 int from_file = load_in_progress;
2619
2620 CHECK_SYMBOL (feature);
2621
2622 /* Record the presence of `require' in this file
2623 even if the feature specified is already loaded.
2624 But not more than once in any file,
2625 and not when we aren't loading or reading from a file. */
2626 if (!from_file)
2627 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2628 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2629 from_file = 1;
2630
2631 if (from_file)
2632 {
2633 tem = Fcons (Qrequire, feature);
2634 if (NILP (Fmember (tem, Vcurrent_load_list)))
2635 LOADHIST_ATTACH (tem);
2636 }
2637 tem = Fmemq (feature, Vfeatures);
2638
2639 if (NILP (tem))
2640 {
2641 ptrdiff_t count = SPECPDL_INDEX ();
2642 int nesting = 0;
2643
2644 /* This is to make sure that loadup.el gives a clear picture
2645 of what files are preloaded and when. */
2646 if (! NILP (Vpurify_flag))
2647 error ("(require %s) while preparing to dump",
2648 SDATA (SYMBOL_NAME (feature)));
2649
2650 /* A certain amount of recursive `require' is legitimate,
2651 but if we require the same feature recursively 3 times,
2652 signal an error. */
2653 tem = require_nesting_list;
2654 while (! NILP (tem))
2655 {
2656 if (! NILP (Fequal (feature, XCAR (tem))))
2657 nesting++;
2658 tem = XCDR (tem);
2659 }
2660 if (nesting > 3)
2661 error ("Recursive `require' for feature `%s'",
2662 SDATA (SYMBOL_NAME (feature)));
2663
2664 /* Update the list for any nested `require's that occur. */
2665 record_unwind_protect (require_unwind, require_nesting_list);
2666 require_nesting_list = Fcons (feature, require_nesting_list);
2667
2668 /* Value saved here is to be restored into Vautoload_queue */
2669 record_unwind_protect (un_autoload, Vautoload_queue);
2670 Vautoload_queue = Qt;
2671
2672 /* Load the file. */
2673 GCPRO2 (feature, filename);
2674 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2675 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2676 UNGCPRO;
2677
2678 /* If load failed entirely, return nil. */
2679 if (NILP (tem))
2680 return unbind_to (count, Qnil);
2681
2682 tem = Fmemq (feature, Vfeatures);
2683 if (NILP (tem))
2684 error ("Required feature `%s' was not provided",
2685 SDATA (SYMBOL_NAME (feature)));
2686
2687 /* Once loading finishes, don't undo it. */
2688 Vautoload_queue = Qt;
2689 feature = unbind_to (count, feature);
2690 }
2691
2692 return feature;
2693 }
2694 \f
2695 /* Primitives for work of the "widget" library.
2696 In an ideal world, this section would not have been necessary.
2697 However, lisp function calls being as slow as they are, it turns
2698 out that some functions in the widget library (wid-edit.el) are the
2699 bottleneck of Widget operation. Here is their translation to C,
2700 for the sole reason of efficiency. */
2701
2702 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2703 doc: /* Return non-nil if PLIST has the property PROP.
2704 PLIST is a property list, which is a list of the form
2705 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2706 Unlike `plist-get', this allows you to distinguish between a missing
2707 property and a property with the value nil.
2708 The value is actually the tail of PLIST whose car is PROP. */)
2709 (Lisp_Object plist, Lisp_Object prop)
2710 {
2711 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2712 {
2713 QUIT;
2714 plist = XCDR (plist);
2715 plist = CDR (plist);
2716 }
2717 return plist;
2718 }
2719
2720 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2721 doc: /* In WIDGET, set PROPERTY to VALUE.
2722 The value can later be retrieved with `widget-get'. */)
2723 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2724 {
2725 CHECK_CONS (widget);
2726 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2727 return value;
2728 }
2729
2730 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2731 doc: /* In WIDGET, get the value of PROPERTY.
2732 The value could either be specified when the widget was created, or
2733 later with `widget-put'. */)
2734 (Lisp_Object widget, Lisp_Object property)
2735 {
2736 Lisp_Object tmp;
2737
2738 while (1)
2739 {
2740 if (NILP (widget))
2741 return Qnil;
2742 CHECK_CONS (widget);
2743 tmp = Fplist_member (XCDR (widget), property);
2744 if (CONSP (tmp))
2745 {
2746 tmp = XCDR (tmp);
2747 return CAR (tmp);
2748 }
2749 tmp = XCAR (widget);
2750 if (NILP (tmp))
2751 return Qnil;
2752 widget = Fget (tmp, Qwidget_type);
2753 }
2754 }
2755
2756 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2757 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2758 ARGS are passed as extra arguments to the function.
2759 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2760 (ptrdiff_t nargs, Lisp_Object *args)
2761 {
2762 /* This function can GC. */
2763 Lisp_Object newargs[3];
2764 struct gcpro gcpro1, gcpro2;
2765 Lisp_Object result;
2766
2767 newargs[0] = Fwidget_get (args[0], args[1]);
2768 newargs[1] = args[0];
2769 newargs[2] = Flist (nargs - 2, args + 2);
2770 GCPRO2 (newargs[0], newargs[2]);
2771 result = Fapply (3, newargs);
2772 UNGCPRO;
2773 return result;
2774 }
2775
2776 #ifdef HAVE_LANGINFO_CODESET
2777 #include <langinfo.h>
2778 #endif
2779
2780 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2781 doc: /* Access locale data ITEM for the current C locale, if available.
2782 ITEM should be one of the following:
2783
2784 `codeset', returning the character set as a string (locale item CODESET);
2785
2786 `days', returning a 7-element vector of day names (locale items DAY_n);
2787
2788 `months', returning a 12-element vector of month names (locale items MON_n);
2789
2790 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2791 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2792
2793 If the system can't provide such information through a call to
2794 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2795
2796 See also Info node `(libc)Locales'.
2797
2798 The data read from the system are decoded using `locale-coding-system'. */)
2799 (Lisp_Object item)
2800 {
2801 char *str = NULL;
2802 #ifdef HAVE_LANGINFO_CODESET
2803 Lisp_Object val;
2804 if (EQ (item, Qcodeset))
2805 {
2806 str = nl_langinfo (CODESET);
2807 return build_string (str);
2808 }
2809 #ifdef DAY_1
2810 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2811 {
2812 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2813 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2814 int i;
2815 struct gcpro gcpro1;
2816 GCPRO1 (v);
2817 synchronize_system_time_locale ();
2818 for (i = 0; i < 7; i++)
2819 {
2820 str = nl_langinfo (days[i]);
2821 val = make_unibyte_string (str, strlen (str));
2822 /* Fixme: Is this coding system necessarily right, even if
2823 it is consistent with CODESET? If not, what to do? */
2824 Faset (v, make_number (i),
2825 code_convert_string_norecord (val, Vlocale_coding_system,
2826 0));
2827 }
2828 UNGCPRO;
2829 return v;
2830 }
2831 #endif /* DAY_1 */
2832 #ifdef MON_1
2833 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2834 {
2835 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2836 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2837 MON_8, MON_9, MON_10, MON_11, MON_12};
2838 int i;
2839 struct gcpro gcpro1;
2840 GCPRO1 (v);
2841 synchronize_system_time_locale ();
2842 for (i = 0; i < 12; i++)
2843 {
2844 str = nl_langinfo (months[i]);
2845 val = make_unibyte_string (str, strlen (str));
2846 Faset (v, make_number (i),
2847 code_convert_string_norecord (val, Vlocale_coding_system, 0));
2848 }
2849 UNGCPRO;
2850 return v;
2851 }
2852 #endif /* MON_1 */
2853 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2854 but is in the locale files. This could be used by ps-print. */
2855 #ifdef PAPER_WIDTH
2856 else if (EQ (item, Qpaper))
2857 {
2858 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
2859 make_number (nl_langinfo (PAPER_HEIGHT)));
2860 }
2861 #endif /* PAPER_WIDTH */
2862 #endif /* HAVE_LANGINFO_CODESET*/
2863 return Qnil;
2864 }
2865 \f
2866 /* base64 encode/decode functions (RFC 2045).
2867 Based on code from GNU recode. */
2868
2869 #define MIME_LINE_LENGTH 76
2870
2871 #define IS_ASCII(Character) \
2872 ((Character) < 128)
2873 #define IS_BASE64(Character) \
2874 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2875 #define IS_BASE64_IGNORABLE(Character) \
2876 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2877 || (Character) == '\f' || (Character) == '\r')
2878
2879 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2880 character or return retval if there are no characters left to
2881 process. */
2882 #define READ_QUADRUPLET_BYTE(retval) \
2883 do \
2884 { \
2885 if (i == length) \
2886 { \
2887 if (nchars_return) \
2888 *nchars_return = nchars; \
2889 return (retval); \
2890 } \
2891 c = from[i++]; \
2892 } \
2893 while (IS_BASE64_IGNORABLE (c))
2894
2895 /* Table of characters coding the 64 values. */
2896 static const char base64_value_to_char[64] =
2897 {
2898 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2899 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2900 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2901 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2902 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2903 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2904 '8', '9', '+', '/' /* 60-63 */
2905 };
2906
2907 /* Table of base64 values for first 128 characters. */
2908 static const short base64_char_to_value[128] =
2909 {
2910 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2911 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2912 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2913 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2914 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2915 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2916 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2917 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2918 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2919 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2920 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2921 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2922 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2923 };
2924
2925 /* The following diagram shows the logical steps by which three octets
2926 get transformed into four base64 characters.
2927
2928 .--------. .--------. .--------.
2929 |aaaaaabb| |bbbbcccc| |ccdddddd|
2930 `--------' `--------' `--------'
2931 6 2 4 4 2 6
2932 .--------+--------+--------+--------.
2933 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2934 `--------+--------+--------+--------'
2935
2936 .--------+--------+--------+--------.
2937 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2938 `--------+--------+--------+--------'
2939
2940 The octets are divided into 6 bit chunks, which are then encoded into
2941 base64 characters. */
2942
2943
2944 static ptrdiff_t base64_encode_1 (const char *, char *, ptrdiff_t, int, int);
2945 static ptrdiff_t base64_decode_1 (const char *, char *, ptrdiff_t, int,
2946 ptrdiff_t *);
2947
2948 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2949 2, 3, "r",
2950 doc: /* Base64-encode the region between BEG and END.
2951 Return the length of the encoded text.
2952 Optional third argument NO-LINE-BREAK means do not break long lines
2953 into shorter lines. */)
2954 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2955 {
2956 char *encoded;
2957 ptrdiff_t allength, length;
2958 ptrdiff_t ibeg, iend, encoded_length;
2959 ptrdiff_t old_pos = PT;
2960 USE_SAFE_ALLOCA;
2961
2962 validate_region (&beg, &end);
2963
2964 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2965 iend = CHAR_TO_BYTE (XFASTINT (end));
2966 move_gap_both (XFASTINT (beg), ibeg);
2967
2968 /* We need to allocate enough room for encoding the text.
2969 We need 33 1/3% more space, plus a newline every 76
2970 characters, and then we round up. */
2971 length = iend - ibeg;
2972 allength = length + length/3 + 1;
2973 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2974
2975 SAFE_ALLOCA (encoded, char *, allength);
2976 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
2977 encoded, length, NILP (no_line_break),
2978 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
2979 if (encoded_length > allength)
2980 abort ();
2981
2982 if (encoded_length < 0)
2983 {
2984 /* The encoding wasn't possible. */
2985 SAFE_FREE ();
2986 error ("Multibyte character in data for base64 encoding");
2987 }
2988
2989 /* Now we have encoded the region, so we insert the new contents
2990 and delete the old. (Insert first in order to preserve markers.) */
2991 SET_PT_BOTH (XFASTINT (beg), ibeg);
2992 insert (encoded, encoded_length);
2993 SAFE_FREE ();
2994 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
2995
2996 /* If point was outside of the region, restore it exactly; else just
2997 move to the beginning of the region. */
2998 if (old_pos >= XFASTINT (end))
2999 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3000 else if (old_pos > XFASTINT (beg))
3001 old_pos = XFASTINT (beg);
3002 SET_PT (old_pos);
3003
3004 /* We return the length of the encoded text. */
3005 return make_number (encoded_length);
3006 }
3007
3008 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3009 1, 2, 0,
3010 doc: /* Base64-encode STRING and return the result.
3011 Optional second argument NO-LINE-BREAK means do not break long lines
3012 into shorter lines. */)
3013 (Lisp_Object string, Lisp_Object no_line_break)
3014 {
3015 ptrdiff_t allength, length, encoded_length;
3016 char *encoded;
3017 Lisp_Object encoded_string;
3018 USE_SAFE_ALLOCA;
3019
3020 CHECK_STRING (string);
3021
3022 /* We need to allocate enough room for encoding the text.
3023 We need 33 1/3% more space, plus a newline every 76
3024 characters, and then we round up. */
3025 length = SBYTES (string);
3026 allength = length + length/3 + 1;
3027 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3028
3029 /* We need to allocate enough room for decoding the text. */
3030 SAFE_ALLOCA (encoded, char *, allength);
3031
3032 encoded_length = base64_encode_1 (SSDATA (string),
3033 encoded, length, NILP (no_line_break),
3034 STRING_MULTIBYTE (string));
3035 if (encoded_length > allength)
3036 abort ();
3037
3038 if (encoded_length < 0)
3039 {
3040 /* The encoding wasn't possible. */
3041 SAFE_FREE ();
3042 error ("Multibyte character in data for base64 encoding");
3043 }
3044
3045 encoded_string = make_unibyte_string (encoded, encoded_length);
3046 SAFE_FREE ();
3047
3048 return encoded_string;
3049 }
3050
3051 static ptrdiff_t
3052 base64_encode_1 (const char *from, char *to, ptrdiff_t length,
3053 int line_break, int multibyte)
3054 {
3055 int counter = 0;
3056 ptrdiff_t i = 0;
3057 char *e = to;
3058 int c;
3059 unsigned int value;
3060 int bytes;
3061
3062 while (i < length)
3063 {
3064 if (multibyte)
3065 {
3066 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3067 if (CHAR_BYTE8_P (c))
3068 c = CHAR_TO_BYTE8 (c);
3069 else if (c >= 256)
3070 return -1;
3071 i += bytes;
3072 }
3073 else
3074 c = from[i++];
3075
3076 /* Wrap line every 76 characters. */
3077
3078 if (line_break)
3079 {
3080 if (counter < MIME_LINE_LENGTH / 4)
3081 counter++;
3082 else
3083 {
3084 *e++ = '\n';
3085 counter = 1;
3086 }
3087 }
3088
3089 /* Process first byte of a triplet. */
3090
3091 *e++ = base64_value_to_char[0x3f & c >> 2];
3092 value = (0x03 & c) << 4;
3093
3094 /* Process second byte of a triplet. */
3095
3096 if (i == length)
3097 {
3098 *e++ = base64_value_to_char[value];
3099 *e++ = '=';
3100 *e++ = '=';
3101 break;
3102 }
3103
3104 if (multibyte)
3105 {
3106 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3107 if (CHAR_BYTE8_P (c))
3108 c = CHAR_TO_BYTE8 (c);
3109 else if (c >= 256)
3110 return -1;
3111 i += bytes;
3112 }
3113 else
3114 c = from[i++];
3115
3116 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3117 value = (0x0f & c) << 2;
3118
3119 /* Process third byte of a triplet. */
3120
3121 if (i == length)
3122 {
3123 *e++ = base64_value_to_char[value];
3124 *e++ = '=';
3125 break;
3126 }
3127
3128 if (multibyte)
3129 {
3130 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3131 if (CHAR_BYTE8_P (c))
3132 c = CHAR_TO_BYTE8 (c);
3133 else if (c >= 256)
3134 return -1;
3135 i += bytes;
3136 }
3137 else
3138 c = from[i++];
3139
3140 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3141 *e++ = base64_value_to_char[0x3f & c];
3142 }
3143
3144 return e - to;
3145 }
3146
3147
3148 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3149 2, 2, "r",
3150 doc: /* Base64-decode the region between BEG and END.
3151 Return the length of the decoded text.
3152 If the region can't be decoded, signal an error and don't modify the buffer. */)
3153 (Lisp_Object beg, Lisp_Object end)
3154 {
3155 ptrdiff_t ibeg, iend, length, allength;
3156 char *decoded;
3157 ptrdiff_t old_pos = PT;
3158 ptrdiff_t decoded_length;
3159 ptrdiff_t inserted_chars;
3160 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3161 USE_SAFE_ALLOCA;
3162
3163 validate_region (&beg, &end);
3164
3165 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3166 iend = CHAR_TO_BYTE (XFASTINT (end));
3167
3168 length = iend - ibeg;
3169
3170 /* We need to allocate enough room for decoding the text. If we are
3171 working on a multibyte buffer, each decoded code may occupy at
3172 most two bytes. */
3173 allength = multibyte ? length * 2 : length;
3174 SAFE_ALLOCA (decoded, char *, allength);
3175
3176 move_gap_both (XFASTINT (beg), ibeg);
3177 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3178 decoded, length,
3179 multibyte, &inserted_chars);
3180 if (decoded_length > allength)
3181 abort ();
3182
3183 if (decoded_length < 0)
3184 {
3185 /* The decoding wasn't possible. */
3186 SAFE_FREE ();
3187 error ("Invalid base64 data");
3188 }
3189
3190 /* Now we have decoded the region, so we insert the new contents
3191 and delete the old. (Insert first in order to preserve markers.) */
3192 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3193 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3194 SAFE_FREE ();
3195
3196 /* Delete the original text. */
3197 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3198 iend + decoded_length, 1);
3199
3200 /* If point was outside of the region, restore it exactly; else just
3201 move to the beginning of the region. */
3202 if (old_pos >= XFASTINT (end))
3203 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3204 else if (old_pos > XFASTINT (beg))
3205 old_pos = XFASTINT (beg);
3206 SET_PT (old_pos > ZV ? ZV : old_pos);
3207
3208 return make_number (inserted_chars);
3209 }
3210
3211 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3212 1, 1, 0,
3213 doc: /* Base64-decode STRING and return the result. */)
3214 (Lisp_Object string)
3215 {
3216 char *decoded;
3217 ptrdiff_t length, decoded_length;
3218 Lisp_Object decoded_string;
3219 USE_SAFE_ALLOCA;
3220
3221 CHECK_STRING (string);
3222
3223 length = SBYTES (string);
3224 /* We need to allocate enough room for decoding the text. */
3225 SAFE_ALLOCA (decoded, char *, length);
3226
3227 /* The decoded result should be unibyte. */
3228 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3229 0, NULL);
3230 if (decoded_length > length)
3231 abort ();
3232 else if (decoded_length >= 0)
3233 decoded_string = make_unibyte_string (decoded, decoded_length);
3234 else
3235 decoded_string = Qnil;
3236
3237 SAFE_FREE ();
3238 if (!STRINGP (decoded_string))
3239 error ("Invalid base64 data");
3240
3241 return decoded_string;
3242 }
3243
3244 /* Base64-decode the data at FROM of LENGTH bytes into TO. If
3245 MULTIBYTE is nonzero, the decoded result should be in multibyte
3246 form. If NCHARS_RETURN is not NULL, store the number of produced
3247 characters in *NCHARS_RETURN. */
3248
3249 static ptrdiff_t
3250 base64_decode_1 (const char *from, char *to, ptrdiff_t length,
3251 int multibyte, ptrdiff_t *nchars_return)
3252 {
3253 ptrdiff_t i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3254 char *e = to;
3255 unsigned char c;
3256 unsigned long value;
3257 ptrdiff_t nchars = 0;
3258
3259 while (1)
3260 {
3261 /* Process first byte of a quadruplet. */
3262
3263 READ_QUADRUPLET_BYTE (e-to);
3264
3265 if (!IS_BASE64 (c))
3266 return -1;
3267 value = base64_char_to_value[c] << 18;
3268
3269 /* Process second byte of a quadruplet. */
3270
3271 READ_QUADRUPLET_BYTE (-1);
3272
3273 if (!IS_BASE64 (c))
3274 return -1;
3275 value |= base64_char_to_value[c] << 12;
3276
3277 c = (unsigned char) (value >> 16);
3278 if (multibyte && c >= 128)
3279 e += BYTE8_STRING (c, e);
3280 else
3281 *e++ = c;
3282 nchars++;
3283
3284 /* Process third byte of a quadruplet. */
3285
3286 READ_QUADRUPLET_BYTE (-1);
3287
3288 if (c == '=')
3289 {
3290 READ_QUADRUPLET_BYTE (-1);
3291
3292 if (c != '=')
3293 return -1;
3294 continue;
3295 }
3296
3297 if (!IS_BASE64 (c))
3298 return -1;
3299 value |= base64_char_to_value[c] << 6;
3300
3301 c = (unsigned char) (0xff & value >> 8);
3302 if (multibyte && c >= 128)
3303 e += BYTE8_STRING (c, e);
3304 else
3305 *e++ = c;
3306 nchars++;
3307
3308 /* Process fourth byte of a quadruplet. */
3309
3310 READ_QUADRUPLET_BYTE (-1);
3311
3312 if (c == '=')
3313 continue;
3314
3315 if (!IS_BASE64 (c))
3316 return -1;
3317 value |= base64_char_to_value[c];
3318
3319 c = (unsigned char) (0xff & value);
3320 if (multibyte && c >= 128)
3321 e += BYTE8_STRING (c, e);
3322 else
3323 *e++ = c;
3324 nchars++;
3325 }
3326 }
3327
3328
3329 \f
3330 /***********************************************************************
3331 ***** *****
3332 ***** Hash Tables *****
3333 ***** *****
3334 ***********************************************************************/
3335
3336 /* Implemented by gerd@gnu.org. This hash table implementation was
3337 inspired by CMUCL hash tables. */
3338
3339 /* Ideas:
3340
3341 1. For small tables, association lists are probably faster than
3342 hash tables because they have lower overhead.
3343
3344 For uses of hash tables where the O(1) behavior of table
3345 operations is not a requirement, it might therefore be a good idea
3346 not to hash. Instead, we could just do a linear search in the
3347 key_and_value vector of the hash table. This could be done
3348 if a `:linear-search t' argument is given to make-hash-table. */
3349
3350
3351 /* The list of all weak hash tables. Don't staticpro this one. */
3352
3353 static struct Lisp_Hash_Table *weak_hash_tables;
3354
3355 /* Various symbols. */
3356
3357 static Lisp_Object Qhash_table_p, Qkey, Qvalue;
3358 Lisp_Object Qeq, Qeql, Qequal;
3359 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3360 static Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3361
3362 /* Function prototypes. */
3363
3364 static struct Lisp_Hash_Table *check_hash_table (Lisp_Object);
3365 static ptrdiff_t get_key_arg (Lisp_Object, ptrdiff_t, Lisp_Object *, char *);
3366 static void maybe_resize_hash_table (struct Lisp_Hash_Table *);
3367 static int sweep_weak_table (struct Lisp_Hash_Table *, int);
3368
3369
3370 \f
3371 /***********************************************************************
3372 Utilities
3373 ***********************************************************************/
3374
3375 /* If OBJ is a Lisp hash table, return a pointer to its struct
3376 Lisp_Hash_Table. Otherwise, signal an error. */
3377
3378 static struct Lisp_Hash_Table *
3379 check_hash_table (Lisp_Object obj)
3380 {
3381 CHECK_HASH_TABLE (obj);
3382 return XHASH_TABLE (obj);
3383 }
3384
3385
3386 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3387 number. A number is "almost" a prime number if it is not divisible
3388 by any integer in the range 2 .. (NEXT_ALMOST_PRIME_LIMIT - 1). */
3389
3390 EMACS_INT
3391 next_almost_prime (EMACS_INT n)
3392 {
3393 verify (NEXT_ALMOST_PRIME_LIMIT == 11);
3394 for (n |= 1; ; n += 2)
3395 if (n % 3 != 0 && n % 5 != 0 && n % 7 != 0)
3396 return n;
3397 }
3398
3399
3400 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3401 which USED[I] is non-zero. If found at index I in ARGS, set
3402 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3403 0. This function is used to extract a keyword/argument pair from
3404 a DEFUN parameter list. */
3405
3406 static ptrdiff_t
3407 get_key_arg (Lisp_Object key, ptrdiff_t nargs, Lisp_Object *args, char *used)
3408 {
3409 ptrdiff_t i;
3410
3411 for (i = 1; i < nargs; i++)
3412 if (!used[i - 1] && EQ (args[i - 1], key))
3413 {
3414 used[i - 1] = 1;
3415 used[i] = 1;
3416 return i;
3417 }
3418
3419 return 0;
3420 }
3421
3422
3423 /* Return a Lisp vector which has the same contents as VEC but has
3424 at least INCR_MIN more entries, where INCR_MIN is positive.
3425 If NITEMS_MAX is not -1, do not grow the vector to be any larger
3426 than NITEMS_MAX. Entries in the resulting
3427 vector that are not copied from VEC are set to nil. */
3428
3429 Lisp_Object
3430 larger_vector (Lisp_Object vec, ptrdiff_t incr_min, ptrdiff_t nitems_max)
3431 {
3432 struct Lisp_Vector *v;
3433 ptrdiff_t i, incr, incr_max, old_size, new_size;
3434 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / sizeof *v->contents;
3435 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
3436 ? nitems_max : C_language_max);
3437 xassert (VECTORP (vec));
3438 xassert (0 < incr_min && -1 <= nitems_max);
3439 old_size = ASIZE (vec);
3440 incr_max = n_max - old_size;
3441 incr = max (incr_min, min (old_size >> 1, incr_max));
3442 if (incr_max < incr)
3443 memory_full (SIZE_MAX);
3444 new_size = old_size + incr;
3445 v = allocate_vector (new_size);
3446 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3447 for (i = old_size; i < new_size; ++i)
3448 v->contents[i] = Qnil;
3449 XSETVECTOR (vec, v);
3450 return vec;
3451 }
3452
3453
3454 /***********************************************************************
3455 Low-level Functions
3456 ***********************************************************************/
3457
3458 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3459 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
3460 KEY2 are the same. */
3461
3462 static int
3463 cmpfn_eql (struct Lisp_Hash_Table *h,
3464 Lisp_Object key1, EMACS_UINT hash1,
3465 Lisp_Object key2, EMACS_UINT hash2)
3466 {
3467 return (FLOATP (key1)
3468 && FLOATP (key2)
3469 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3470 }
3471
3472
3473 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3474 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
3475 KEY2 are the same. */
3476
3477 static int
3478 cmpfn_equal (struct Lisp_Hash_Table *h,
3479 Lisp_Object key1, EMACS_UINT hash1,
3480 Lisp_Object key2, EMACS_UINT hash2)
3481 {
3482 return hash1 == hash2 && !NILP (Fequal (key1, key2));
3483 }
3484
3485
3486 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3487 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
3488 if KEY1 and KEY2 are the same. */
3489
3490 static int
3491 cmpfn_user_defined (struct Lisp_Hash_Table *h,
3492 Lisp_Object key1, EMACS_UINT hash1,
3493 Lisp_Object key2, EMACS_UINT hash2)
3494 {
3495 if (hash1 == hash2)
3496 {
3497 Lisp_Object args[3];
3498
3499 args[0] = h->user_cmp_function;
3500 args[1] = key1;
3501 args[2] = key2;
3502 return !NILP (Ffuncall (3, args));
3503 }
3504 else
3505 return 0;
3506 }
3507
3508
3509 /* Value is a hash code for KEY for use in hash table H which uses
3510 `eq' to compare keys. The hash code returned is guaranteed to fit
3511 in a Lisp integer. */
3512
3513 static EMACS_UINT
3514 hashfn_eq (struct Lisp_Hash_Table *h, Lisp_Object key)
3515 {
3516 EMACS_UINT hash = XUINT (key) ^ XTYPE (key);
3517 xassert ((hash & ~INTMASK) == 0);
3518 return hash;
3519 }
3520
3521
3522 /* Value is a hash code for KEY for use in hash table H which uses
3523 `eql' to compare keys. The hash code returned is guaranteed to fit
3524 in a Lisp integer. */
3525
3526 static EMACS_UINT
3527 hashfn_eql (struct Lisp_Hash_Table *h, Lisp_Object key)
3528 {
3529 EMACS_UINT hash;
3530 if (FLOATP (key))
3531 hash = sxhash (key, 0);
3532 else
3533 hash = XUINT (key) ^ XTYPE (key);
3534 xassert ((hash & ~INTMASK) == 0);
3535 return hash;
3536 }
3537
3538
3539 /* Value is a hash code for KEY for use in hash table H which uses
3540 `equal' to compare keys. The hash code returned is guaranteed to fit
3541 in a Lisp integer. */
3542
3543 static EMACS_UINT
3544 hashfn_equal (struct Lisp_Hash_Table *h, Lisp_Object key)
3545 {
3546 EMACS_UINT hash = sxhash (key, 0);
3547 xassert ((hash & ~INTMASK) == 0);
3548 return hash;
3549 }
3550
3551
3552 /* Value is a hash code for KEY for use in hash table H which uses as
3553 user-defined function to compare keys. The hash code returned is
3554 guaranteed to fit in a Lisp integer. */
3555
3556 static EMACS_UINT
3557 hashfn_user_defined (struct Lisp_Hash_Table *h, Lisp_Object key)
3558 {
3559 Lisp_Object args[2], hash;
3560
3561 args[0] = h->user_hash_function;
3562 args[1] = key;
3563 hash = Ffuncall (2, args);
3564 if (!INTEGERP (hash))
3565 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3566 return XUINT (hash);
3567 }
3568
3569 /* An upper bound on the size of a hash table index. It must fit in
3570 ptrdiff_t and be a valid Emacs fixnum. */
3571 #define INDEX_SIZE_BOUND \
3572 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, PTRDIFF_MAX / sizeof (Lisp_Object)))
3573
3574 /* Create and initialize a new hash table.
3575
3576 TEST specifies the test the hash table will use to compare keys.
3577 It must be either one of the predefined tests `eq', `eql' or
3578 `equal' or a symbol denoting a user-defined test named TEST with
3579 test and hash functions USER_TEST and USER_HASH.
3580
3581 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3582
3583 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3584 new size when it becomes full is computed by adding REHASH_SIZE to
3585 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3586 table's new size is computed by multiplying its old size with
3587 REHASH_SIZE.
3588
3589 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3590 be resized when the ratio of (number of entries in the table) /
3591 (table size) is >= REHASH_THRESHOLD.
3592
3593 WEAK specifies the weakness of the table. If non-nil, it must be
3594 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3595
3596 Lisp_Object
3597 make_hash_table (Lisp_Object test, Lisp_Object size, Lisp_Object rehash_size,
3598 Lisp_Object rehash_threshold, Lisp_Object weak,
3599 Lisp_Object user_test, Lisp_Object user_hash)
3600 {
3601 struct Lisp_Hash_Table *h;
3602 Lisp_Object table;
3603 EMACS_INT index_size, sz;
3604 ptrdiff_t i;
3605 double index_float;
3606
3607 /* Preconditions. */
3608 xassert (SYMBOLP (test));
3609 xassert (INTEGERP (size) && XINT (size) >= 0);
3610 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3611 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
3612 xassert (FLOATP (rehash_threshold)
3613 && 0 < XFLOAT_DATA (rehash_threshold)
3614 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3615
3616 if (XFASTINT (size) == 0)
3617 size = make_number (1);
3618
3619 sz = XFASTINT (size);
3620 index_float = sz / XFLOAT_DATA (rehash_threshold);
3621 index_size = (index_float < INDEX_SIZE_BOUND + 1
3622 ? next_almost_prime (index_float)
3623 : INDEX_SIZE_BOUND + 1);
3624 if (INDEX_SIZE_BOUND < max (index_size, 2 * sz))
3625 error ("Hash table too large");
3626
3627 /* Allocate a table and initialize it. */
3628 h = allocate_hash_table ();
3629
3630 /* Initialize hash table slots. */
3631 h->test = test;
3632 if (EQ (test, Qeql))
3633 {
3634 h->cmpfn = cmpfn_eql;
3635 h->hashfn = hashfn_eql;
3636 }
3637 else if (EQ (test, Qeq))
3638 {
3639 h->cmpfn = NULL;
3640 h->hashfn = hashfn_eq;
3641 }
3642 else if (EQ (test, Qequal))
3643 {
3644 h->cmpfn = cmpfn_equal;
3645 h->hashfn = hashfn_equal;
3646 }
3647 else
3648 {
3649 h->user_cmp_function = user_test;
3650 h->user_hash_function = user_hash;
3651 h->cmpfn = cmpfn_user_defined;
3652 h->hashfn = hashfn_user_defined;
3653 }
3654
3655 h->weak = weak;
3656 h->rehash_threshold = rehash_threshold;
3657 h->rehash_size = rehash_size;
3658 h->count = 0;
3659 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3660 h->hash = Fmake_vector (size, Qnil);
3661 h->next = Fmake_vector (size, Qnil);
3662 h->index = Fmake_vector (make_number (index_size), Qnil);
3663
3664 /* Set up the free list. */
3665 for (i = 0; i < sz - 1; ++i)
3666 HASH_NEXT (h, i) = make_number (i + 1);
3667 h->next_free = make_number (0);
3668
3669 XSET_HASH_TABLE (table, h);
3670 xassert (HASH_TABLE_P (table));
3671 xassert (XHASH_TABLE (table) == h);
3672
3673 /* Maybe add this hash table to the list of all weak hash tables. */
3674 if (NILP (h->weak))
3675 h->next_weak = NULL;
3676 else
3677 {
3678 h->next_weak = weak_hash_tables;
3679 weak_hash_tables = h;
3680 }
3681
3682 return table;
3683 }
3684
3685
3686 /* Return a copy of hash table H1. Keys and values are not copied,
3687 only the table itself is. */
3688
3689 static Lisp_Object
3690 copy_hash_table (struct Lisp_Hash_Table *h1)
3691 {
3692 Lisp_Object table;
3693 struct Lisp_Hash_Table *h2;
3694 struct Lisp_Vector *next;
3695
3696 h2 = allocate_hash_table ();
3697 next = h2->header.next.vector;
3698 memcpy (h2, h1, sizeof *h2);
3699 h2->header.next.vector = next;
3700 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3701 h2->hash = Fcopy_sequence (h1->hash);
3702 h2->next = Fcopy_sequence (h1->next);
3703 h2->index = Fcopy_sequence (h1->index);
3704 XSET_HASH_TABLE (table, h2);
3705
3706 /* Maybe add this hash table to the list of all weak hash tables. */
3707 if (!NILP (h2->weak))
3708 {
3709 h2->next_weak = weak_hash_tables;
3710 weak_hash_tables = h2;
3711 }
3712
3713 return table;
3714 }
3715
3716
3717 /* Resize hash table H if it's too full. If H cannot be resized
3718 because it's already too large, throw an error. */
3719
3720 static inline void
3721 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3722 {
3723 if (NILP (h->next_free))
3724 {
3725 ptrdiff_t old_size = HASH_TABLE_SIZE (h);
3726 EMACS_INT new_size, index_size, nsize;
3727 ptrdiff_t i;
3728 double index_float;
3729
3730 if (INTEGERP (h->rehash_size))
3731 new_size = old_size + XFASTINT (h->rehash_size);
3732 else
3733 {
3734 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3735 if (float_new_size < INDEX_SIZE_BOUND + 1)
3736 {
3737 new_size = float_new_size;
3738 if (new_size <= old_size)
3739 new_size = old_size + 1;
3740 }
3741 else
3742 new_size = INDEX_SIZE_BOUND + 1;
3743 }
3744 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3745 index_size = (index_float < INDEX_SIZE_BOUND + 1
3746 ? next_almost_prime (index_float)
3747 : INDEX_SIZE_BOUND + 1);
3748 nsize = max (index_size, 2 * new_size);
3749 if (INDEX_SIZE_BOUND < nsize)
3750 error ("Hash table too large to resize");
3751
3752 h->key_and_value = larger_vector (h->key_and_value,
3753 2 * (new_size - old_size), -1);
3754 h->next = larger_vector (h->next, new_size - old_size, -1);
3755 h->hash = larger_vector (h->hash, new_size - old_size, -1);
3756 h->index = Fmake_vector (make_number (index_size), Qnil);
3757
3758 /* Update the free list. Do it so that new entries are added at
3759 the end of the free list. This makes some operations like
3760 maphash faster. */
3761 for (i = old_size; i < new_size - 1; ++i)
3762 HASH_NEXT (h, i) = make_number (i + 1);
3763
3764 if (!NILP (h->next_free))
3765 {
3766 Lisp_Object last, next;
3767
3768 last = h->next_free;
3769 while (next = HASH_NEXT (h, XFASTINT (last)),
3770 !NILP (next))
3771 last = next;
3772
3773 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
3774 }
3775 else
3776 XSETFASTINT (h->next_free, old_size);
3777
3778 /* Rehash. */
3779 for (i = 0; i < old_size; ++i)
3780 if (!NILP (HASH_HASH (h, i)))
3781 {
3782 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3783 ptrdiff_t start_of_bucket = hash_code % ASIZE (h->index);
3784 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3785 HASH_INDEX (h, start_of_bucket) = make_number (i);
3786 }
3787 }
3788 }
3789
3790
3791 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3792 the hash code of KEY. Value is the index of the entry in H
3793 matching KEY, or -1 if not found. */
3794
3795 ptrdiff_t
3796 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3797 {
3798 EMACS_UINT hash_code;
3799 ptrdiff_t start_of_bucket;
3800 Lisp_Object idx;
3801
3802 hash_code = h->hashfn (h, key);
3803 if (hash)
3804 *hash = hash_code;
3805
3806 start_of_bucket = hash_code % ASIZE (h->index);
3807 idx = HASH_INDEX (h, start_of_bucket);
3808
3809 /* We need not gcpro idx since it's either an integer or nil. */
3810 while (!NILP (idx))
3811 {
3812 ptrdiff_t i = XFASTINT (idx);
3813 if (EQ (key, HASH_KEY (h, i))
3814 || (h->cmpfn
3815 && h->cmpfn (h, key, hash_code,
3816 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3817 break;
3818 idx = HASH_NEXT (h, i);
3819 }
3820
3821 return NILP (idx) ? -1 : XFASTINT (idx);
3822 }
3823
3824
3825 /* Put an entry into hash table H that associates KEY with VALUE.
3826 HASH is a previously computed hash code of KEY.
3827 Value is the index of the entry in H matching KEY. */
3828
3829 ptrdiff_t
3830 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
3831 EMACS_UINT hash)
3832 {
3833 ptrdiff_t start_of_bucket, i;
3834
3835 xassert ((hash & ~INTMASK) == 0);
3836
3837 /* Increment count after resizing because resizing may fail. */
3838 maybe_resize_hash_table (h);
3839 h->count++;
3840
3841 /* Store key/value in the key_and_value vector. */
3842 i = XFASTINT (h->next_free);
3843 h->next_free = HASH_NEXT (h, i);
3844 HASH_KEY (h, i) = key;
3845 HASH_VALUE (h, i) = value;
3846
3847 /* Remember its hash code. */
3848 HASH_HASH (h, i) = make_number (hash);
3849
3850 /* Add new entry to its collision chain. */
3851 start_of_bucket = hash % ASIZE (h->index);
3852 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3853 HASH_INDEX (h, start_of_bucket) = make_number (i);
3854 return i;
3855 }
3856
3857
3858 /* Remove the entry matching KEY from hash table H, if there is one. */
3859
3860 static void
3861 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3862 {
3863 EMACS_UINT hash_code;
3864 ptrdiff_t start_of_bucket;
3865 Lisp_Object idx, prev;
3866
3867 hash_code = h->hashfn (h, key);
3868 start_of_bucket = hash_code % ASIZE (h->index);
3869 idx = HASH_INDEX (h, start_of_bucket);
3870 prev = Qnil;
3871
3872 /* We need not gcpro idx, prev since they're either integers or nil. */
3873 while (!NILP (idx))
3874 {
3875 ptrdiff_t i = XFASTINT (idx);
3876
3877 if (EQ (key, HASH_KEY (h, i))
3878 || (h->cmpfn
3879 && h->cmpfn (h, key, hash_code,
3880 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3881 {
3882 /* Take entry out of collision chain. */
3883 if (NILP (prev))
3884 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
3885 else
3886 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
3887
3888 /* Clear slots in key_and_value and add the slots to
3889 the free list. */
3890 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
3891 HASH_NEXT (h, i) = h->next_free;
3892 h->next_free = make_number (i);
3893 h->count--;
3894 xassert (h->count >= 0);
3895 break;
3896 }
3897 else
3898 {
3899 prev = idx;
3900 idx = HASH_NEXT (h, i);
3901 }
3902 }
3903 }
3904
3905
3906 /* Clear hash table H. */
3907
3908 static void
3909 hash_clear (struct Lisp_Hash_Table *h)
3910 {
3911 if (h->count > 0)
3912 {
3913 ptrdiff_t i, size = HASH_TABLE_SIZE (h);
3914
3915 for (i = 0; i < size; ++i)
3916 {
3917 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
3918 HASH_KEY (h, i) = Qnil;
3919 HASH_VALUE (h, i) = Qnil;
3920 HASH_HASH (h, i) = Qnil;
3921 }
3922
3923 for (i = 0; i < ASIZE (h->index); ++i)
3924 ASET (h->index, i, Qnil);
3925
3926 h->next_free = make_number (0);
3927 h->count = 0;
3928 }
3929 }
3930
3931
3932 \f
3933 /************************************************************************
3934 Weak Hash Tables
3935 ************************************************************************/
3936
3937 void
3938 init_weak_hash_tables (void)
3939 {
3940 weak_hash_tables = NULL;
3941 }
3942
3943 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
3944 entries from the table that don't survive the current GC.
3945 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
3946 non-zero if anything was marked. */
3947
3948 static int
3949 sweep_weak_table (struct Lisp_Hash_Table *h, int remove_entries_p)
3950 {
3951 ptrdiff_t bucket, n;
3952 int marked;
3953
3954 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3955 marked = 0;
3956
3957 for (bucket = 0; bucket < n; ++bucket)
3958 {
3959 Lisp_Object idx, next, prev;
3960
3961 /* Follow collision chain, removing entries that
3962 don't survive this garbage collection. */
3963 prev = Qnil;
3964 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3965 {
3966 ptrdiff_t i = XFASTINT (idx);
3967 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3968 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3969 int remove_p;
3970
3971 if (EQ (h->weak, Qkey))
3972 remove_p = !key_known_to_survive_p;
3973 else if (EQ (h->weak, Qvalue))
3974 remove_p = !value_known_to_survive_p;
3975 else if (EQ (h->weak, Qkey_or_value))
3976 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3977 else if (EQ (h->weak, Qkey_and_value))
3978 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3979 else
3980 abort ();
3981
3982 next = HASH_NEXT (h, i);
3983
3984 if (remove_entries_p)
3985 {
3986 if (remove_p)
3987 {
3988 /* Take out of collision chain. */
3989 if (NILP (prev))
3990 HASH_INDEX (h, bucket) = next;
3991 else
3992 HASH_NEXT (h, XFASTINT (prev)) = next;
3993
3994 /* Add to free list. */
3995 HASH_NEXT (h, i) = h->next_free;
3996 h->next_free = idx;
3997
3998 /* Clear key, value, and hash. */
3999 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
4000 HASH_HASH (h, i) = Qnil;
4001
4002 h->count--;
4003 }
4004 else
4005 {
4006 prev = idx;
4007 }
4008 }
4009 else
4010 {
4011 if (!remove_p)
4012 {
4013 /* Make sure key and value survive. */
4014 if (!key_known_to_survive_p)
4015 {
4016 mark_object (HASH_KEY (h, i));
4017 marked = 1;
4018 }
4019
4020 if (!value_known_to_survive_p)
4021 {
4022 mark_object (HASH_VALUE (h, i));
4023 marked = 1;
4024 }
4025 }
4026 }
4027 }
4028 }
4029
4030 return marked;
4031 }
4032
4033 /* Remove elements from weak hash tables that don't survive the
4034 current garbage collection. Remove weak tables that don't survive
4035 from Vweak_hash_tables. Called from gc_sweep. */
4036
4037 void
4038 sweep_weak_hash_tables (void)
4039 {
4040 struct Lisp_Hash_Table *h, *used, *next;
4041 int marked;
4042
4043 /* Mark all keys and values that are in use. Keep on marking until
4044 there is no more change. This is necessary for cases like
4045 value-weak table A containing an entry X -> Y, where Y is used in a
4046 key-weak table B, Z -> Y. If B comes after A in the list of weak
4047 tables, X -> Y might be removed from A, although when looking at B
4048 one finds that it shouldn't. */
4049 do
4050 {
4051 marked = 0;
4052 for (h = weak_hash_tables; h; h = h->next_weak)
4053 {
4054 if (h->header.size & ARRAY_MARK_FLAG)
4055 marked |= sweep_weak_table (h, 0);
4056 }
4057 }
4058 while (marked);
4059
4060 /* Remove tables and entries that aren't used. */
4061 for (h = weak_hash_tables, used = NULL; h; h = next)
4062 {
4063 next = h->next_weak;
4064
4065 if (h->header.size & ARRAY_MARK_FLAG)
4066 {
4067 /* TABLE is marked as used. Sweep its contents. */
4068 if (h->count > 0)
4069 sweep_weak_table (h, 1);
4070
4071 /* Add table to the list of used weak hash tables. */
4072 h->next_weak = used;
4073 used = h;
4074 }
4075 }
4076
4077 weak_hash_tables = used;
4078 }
4079
4080
4081 \f
4082 /***********************************************************************
4083 Hash Code Computation
4084 ***********************************************************************/
4085
4086 /* Maximum depth up to which to dive into Lisp structures. */
4087
4088 #define SXHASH_MAX_DEPTH 3
4089
4090 /* Maximum length up to which to take list and vector elements into
4091 account. */
4092
4093 #define SXHASH_MAX_LEN 7
4094
4095 /* Combine two integers X and Y for hashing. The result might not fit
4096 into a Lisp integer. */
4097
4098 #define SXHASH_COMBINE(X, Y) \
4099 ((((EMACS_UINT) (X) << 4) + ((EMACS_UINT) (X) >> (BITS_PER_EMACS_INT - 4))) \
4100 + (EMACS_UINT) (Y))
4101
4102 /* Hash X, returning a value that fits into a Lisp integer. */
4103 #define SXHASH_REDUCE(X) \
4104 ((((X) ^ (X) >> (BITS_PER_EMACS_INT - FIXNUM_BITS))) & INTMASK)
4105
4106 /* Return a hash for string PTR which has length LEN. The hash value
4107 can be any EMACS_UINT value. */
4108
4109 EMACS_UINT
4110 hash_string (char const *ptr, ptrdiff_t len)
4111 {
4112 char const *p = ptr;
4113 char const *end = p + len;
4114 unsigned char c;
4115 EMACS_UINT hash = 0;
4116
4117 while (p != end)
4118 {
4119 c = *p++;
4120 hash = SXHASH_COMBINE (hash, c);
4121 }
4122
4123 return hash;
4124 }
4125
4126 /* Return a hash for string PTR which has length LEN. The hash
4127 code returned is guaranteed to fit in a Lisp integer. */
4128
4129 static EMACS_UINT
4130 sxhash_string (char const *ptr, ptrdiff_t len)
4131 {
4132 EMACS_UINT hash = hash_string (ptr, len);
4133 return SXHASH_REDUCE (hash);
4134 }
4135
4136 /* Return a hash for the floating point value VAL. */
4137
4138 static EMACS_INT
4139 sxhash_float (double val)
4140 {
4141 EMACS_UINT hash = 0;
4142 enum {
4143 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
4144 + (sizeof val % sizeof hash != 0))
4145 };
4146 union {
4147 double val;
4148 EMACS_UINT word[WORDS_PER_DOUBLE];
4149 } u;
4150 int i;
4151 u.val = val;
4152 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
4153 for (i = 0; i < WORDS_PER_DOUBLE; i++)
4154 hash = SXHASH_COMBINE (hash, u.word[i]);
4155 return SXHASH_REDUCE (hash);
4156 }
4157
4158 /* Return a hash for list LIST. DEPTH is the current depth in the
4159 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4160
4161 static EMACS_UINT
4162 sxhash_list (Lisp_Object list, int depth)
4163 {
4164 EMACS_UINT hash = 0;
4165 int i;
4166
4167 if (depth < SXHASH_MAX_DEPTH)
4168 for (i = 0;
4169 CONSP (list) && i < SXHASH_MAX_LEN;
4170 list = XCDR (list), ++i)
4171 {
4172 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
4173 hash = SXHASH_COMBINE (hash, hash2);
4174 }
4175
4176 if (!NILP (list))
4177 {
4178 EMACS_UINT hash2 = sxhash (list, depth + 1);
4179 hash = SXHASH_COMBINE (hash, hash2);
4180 }
4181
4182 return SXHASH_REDUCE (hash);
4183 }
4184
4185
4186 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4187 the Lisp structure. */
4188
4189 static EMACS_UINT
4190 sxhash_vector (Lisp_Object vec, int depth)
4191 {
4192 EMACS_UINT hash = ASIZE (vec);
4193 int i, n;
4194
4195 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4196 for (i = 0; i < n; ++i)
4197 {
4198 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4199 hash = SXHASH_COMBINE (hash, hash2);
4200 }
4201
4202 return SXHASH_REDUCE (hash);
4203 }
4204
4205 /* Return a hash for bool-vector VECTOR. */
4206
4207 static EMACS_UINT
4208 sxhash_bool_vector (Lisp_Object vec)
4209 {
4210 EMACS_UINT hash = XBOOL_VECTOR (vec)->size;
4211 int i, n;
4212
4213 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->header.size);
4214 for (i = 0; i < n; ++i)
4215 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4216
4217 return SXHASH_REDUCE (hash);
4218 }
4219
4220
4221 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4222 structure. Value is an unsigned integer clipped to INTMASK. */
4223
4224 EMACS_UINT
4225 sxhash (Lisp_Object obj, int depth)
4226 {
4227 EMACS_UINT hash;
4228
4229 if (depth > SXHASH_MAX_DEPTH)
4230 return 0;
4231
4232 switch (XTYPE (obj))
4233 {
4234 case_Lisp_Int:
4235 hash = XUINT (obj);
4236 break;
4237
4238 case Lisp_Misc:
4239 hash = XUINT (obj);
4240 break;
4241
4242 case Lisp_Symbol:
4243 obj = SYMBOL_NAME (obj);
4244 /* Fall through. */
4245
4246 case Lisp_String:
4247 hash = sxhash_string (SSDATA (obj), SBYTES (obj));
4248 break;
4249
4250 /* This can be everything from a vector to an overlay. */
4251 case Lisp_Vectorlike:
4252 if (VECTORP (obj))
4253 /* According to the CL HyperSpec, two arrays are equal only if
4254 they are `eq', except for strings and bit-vectors. In
4255 Emacs, this works differently. We have to compare element
4256 by element. */
4257 hash = sxhash_vector (obj, depth);
4258 else if (BOOL_VECTOR_P (obj))
4259 hash = sxhash_bool_vector (obj);
4260 else
4261 /* Others are `equal' if they are `eq', so let's take their
4262 address as hash. */
4263 hash = XUINT (obj);
4264 break;
4265
4266 case Lisp_Cons:
4267 hash = sxhash_list (obj, depth);
4268 break;
4269
4270 case Lisp_Float:
4271 hash = sxhash_float (XFLOAT_DATA (obj));
4272 break;
4273
4274 default:
4275 abort ();
4276 }
4277
4278 return hash;
4279 }
4280
4281
4282 \f
4283 /***********************************************************************
4284 Lisp Interface
4285 ***********************************************************************/
4286
4287
4288 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4289 doc: /* Compute a hash code for OBJ and return it as integer. */)
4290 (Lisp_Object obj)
4291 {
4292 EMACS_UINT hash = sxhash (obj, 0);
4293 return make_number (hash);
4294 }
4295
4296
4297 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4298 doc: /* Create and return a new hash table.
4299
4300 Arguments are specified as keyword/argument pairs. The following
4301 arguments are defined:
4302
4303 :test TEST -- TEST must be a symbol that specifies how to compare
4304 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4305 `equal'. User-supplied test and hash functions can be specified via
4306 `define-hash-table-test'.
4307
4308 :size SIZE -- A hint as to how many elements will be put in the table.
4309 Default is 65.
4310
4311 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4312 fills up. If REHASH-SIZE is an integer, increase the size by that
4313 amount. If it is a float, it must be > 1.0, and the new size is the
4314 old size multiplied by that factor. Default is 1.5.
4315
4316 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4317 Resize the hash table when the ratio (number of entries / table size)
4318 is greater than or equal to THRESHOLD. Default is 0.8.
4319
4320 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4321 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4322 returned is a weak table. Key/value pairs are removed from a weak
4323 hash table when there are no non-weak references pointing to their
4324 key, value, one of key or value, or both key and value, depending on
4325 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4326 is nil.
4327
4328 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4329 (ptrdiff_t nargs, Lisp_Object *args)
4330 {
4331 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4332 Lisp_Object user_test, user_hash;
4333 char *used;
4334 ptrdiff_t i;
4335
4336 /* The vector `used' is used to keep track of arguments that
4337 have been consumed. */
4338 used = (char *) alloca (nargs * sizeof *used);
4339 memset (used, 0, nargs * sizeof *used);
4340
4341 /* See if there's a `:test TEST' among the arguments. */
4342 i = get_key_arg (QCtest, nargs, args, used);
4343 test = i ? args[i] : Qeql;
4344 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
4345 {
4346 /* See if it is a user-defined test. */
4347 Lisp_Object prop;
4348
4349 prop = Fget (test, Qhash_table_test);
4350 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4351 signal_error ("Invalid hash table test", test);
4352 user_test = XCAR (prop);
4353 user_hash = XCAR (XCDR (prop));
4354 }
4355 else
4356 user_test = user_hash = Qnil;
4357
4358 /* See if there's a `:size SIZE' argument. */
4359 i = get_key_arg (QCsize, nargs, args, used);
4360 size = i ? args[i] : Qnil;
4361 if (NILP (size))
4362 size = make_number (DEFAULT_HASH_SIZE);
4363 else if (!INTEGERP (size) || XINT (size) < 0)
4364 signal_error ("Invalid hash table size", size);
4365
4366 /* Look for `:rehash-size SIZE'. */
4367 i = get_key_arg (QCrehash_size, nargs, args, used);
4368 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4369 if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
4370 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
4371 signal_error ("Invalid hash table rehash size", rehash_size);
4372
4373 /* Look for `:rehash-threshold THRESHOLD'. */
4374 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4375 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4376 if (! (FLOATP (rehash_threshold)
4377 && 0 < XFLOAT_DATA (rehash_threshold)
4378 && XFLOAT_DATA (rehash_threshold) <= 1))
4379 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4380
4381 /* Look for `:weakness WEAK'. */
4382 i = get_key_arg (QCweakness, nargs, args, used);
4383 weak = i ? args[i] : Qnil;
4384 if (EQ (weak, Qt))
4385 weak = Qkey_and_value;
4386 if (!NILP (weak)
4387 && !EQ (weak, Qkey)
4388 && !EQ (weak, Qvalue)
4389 && !EQ (weak, Qkey_or_value)
4390 && !EQ (weak, Qkey_and_value))
4391 signal_error ("Invalid hash table weakness", weak);
4392
4393 /* Now, all args should have been used up, or there's a problem. */
4394 for (i = 0; i < nargs; ++i)
4395 if (!used[i])
4396 signal_error ("Invalid argument list", args[i]);
4397
4398 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4399 user_test, user_hash);
4400 }
4401
4402
4403 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4404 doc: /* Return a copy of hash table TABLE. */)
4405 (Lisp_Object table)
4406 {
4407 return copy_hash_table (check_hash_table (table));
4408 }
4409
4410
4411 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4412 doc: /* Return the number of elements in TABLE. */)
4413 (Lisp_Object table)
4414 {
4415 return make_number (check_hash_table (table)->count);
4416 }
4417
4418
4419 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4420 Shash_table_rehash_size, 1, 1, 0,
4421 doc: /* Return the current rehash size of TABLE. */)
4422 (Lisp_Object table)
4423 {
4424 return check_hash_table (table)->rehash_size;
4425 }
4426
4427
4428 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4429 Shash_table_rehash_threshold, 1, 1, 0,
4430 doc: /* Return the current rehash threshold of TABLE. */)
4431 (Lisp_Object table)
4432 {
4433 return check_hash_table (table)->rehash_threshold;
4434 }
4435
4436
4437 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4438 doc: /* Return the size of TABLE.
4439 The size can be used as an argument to `make-hash-table' to create
4440 a hash table than can hold as many elements as TABLE holds
4441 without need for resizing. */)
4442 (Lisp_Object table)
4443 {
4444 struct Lisp_Hash_Table *h = check_hash_table (table);
4445 return make_number (HASH_TABLE_SIZE (h));
4446 }
4447
4448
4449 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4450 doc: /* Return the test TABLE uses. */)
4451 (Lisp_Object table)
4452 {
4453 return check_hash_table (table)->test;
4454 }
4455
4456
4457 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4458 1, 1, 0,
4459 doc: /* Return the weakness of TABLE. */)
4460 (Lisp_Object table)
4461 {
4462 return check_hash_table (table)->weak;
4463 }
4464
4465
4466 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4467 doc: /* Return t if OBJ is a Lisp hash table object. */)
4468 (Lisp_Object obj)
4469 {
4470 return HASH_TABLE_P (obj) ? Qt : Qnil;
4471 }
4472
4473
4474 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4475 doc: /* Clear hash table TABLE and return it. */)
4476 (Lisp_Object table)
4477 {
4478 hash_clear (check_hash_table (table));
4479 /* Be compatible with XEmacs. */
4480 return table;
4481 }
4482
4483
4484 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4485 doc: /* Look up KEY in TABLE and return its associated value.
4486 If KEY is not found, return DFLT which defaults to nil. */)
4487 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4488 {
4489 struct Lisp_Hash_Table *h = check_hash_table (table);
4490 ptrdiff_t i = hash_lookup (h, key, NULL);
4491 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4492 }
4493
4494
4495 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4496 doc: /* Associate KEY with VALUE in hash table TABLE.
4497 If KEY is already present in table, replace its current value with
4498 VALUE. In any case, return VALUE. */)
4499 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4500 {
4501 struct Lisp_Hash_Table *h = check_hash_table (table);
4502 ptrdiff_t i;
4503 EMACS_UINT hash;
4504
4505 i = hash_lookup (h, key, &hash);
4506 if (i >= 0)
4507 HASH_VALUE (h, i) = value;
4508 else
4509 hash_put (h, key, value, hash);
4510
4511 return value;
4512 }
4513
4514
4515 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4516 doc: /* Remove KEY from TABLE. */)
4517 (Lisp_Object key, Lisp_Object table)
4518 {
4519 struct Lisp_Hash_Table *h = check_hash_table (table);
4520 hash_remove_from_table (h, key);
4521 return Qnil;
4522 }
4523
4524
4525 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4526 doc: /* Call FUNCTION for all entries in hash table TABLE.
4527 FUNCTION is called with two arguments, KEY and VALUE. */)
4528 (Lisp_Object function, Lisp_Object table)
4529 {
4530 struct Lisp_Hash_Table *h = check_hash_table (table);
4531 Lisp_Object args[3];
4532 ptrdiff_t i;
4533
4534 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4535 if (!NILP (HASH_HASH (h, i)))
4536 {
4537 args[0] = function;
4538 args[1] = HASH_KEY (h, i);
4539 args[2] = HASH_VALUE (h, i);
4540 Ffuncall (3, args);
4541 }
4542
4543 return Qnil;
4544 }
4545
4546
4547 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4548 Sdefine_hash_table_test, 3, 3, 0,
4549 doc: /* Define a new hash table test with name NAME, a symbol.
4550
4551 In hash tables created with NAME specified as test, use TEST to
4552 compare keys, and HASH for computing hash codes of keys.
4553
4554 TEST must be a function taking two arguments and returning non-nil if
4555 both arguments are the same. HASH must be a function taking one
4556 argument and return an integer that is the hash code of the argument.
4557 Hash code computation should use the whole value range of integers,
4558 including negative integers. */)
4559 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4560 {
4561 return Fput (name, Qhash_table_test, list2 (test, hash));
4562 }
4563
4564
4565 \f
4566 /************************************************************************
4567 MD5, SHA-1, and SHA-2
4568 ************************************************************************/
4569
4570 #include "md5.h"
4571 #include "sha1.h"
4572 #include "sha256.h"
4573 #include "sha512.h"
4574
4575 /* ALGORITHM is a symbol: md5, sha1, sha224 and so on. */
4576
4577 static Lisp_Object
4578 secure_hash (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror, Lisp_Object binary)
4579 {
4580 int i;
4581 ptrdiff_t size;
4582 EMACS_INT start_char = 0, end_char = 0;
4583 ptrdiff_t start_byte, end_byte;
4584 register EMACS_INT b, e;
4585 register struct buffer *bp;
4586 EMACS_INT temp;
4587 int digest_size;
4588 void *(*hash_func) (const char *, size_t, void *);
4589 Lisp_Object digest;
4590
4591 CHECK_SYMBOL (algorithm);
4592
4593 if (STRINGP (object))
4594 {
4595 if (NILP (coding_system))
4596 {
4597 /* Decide the coding-system to encode the data with. */
4598
4599 if (STRING_MULTIBYTE (object))
4600 /* use default, we can't guess correct value */
4601 coding_system = preferred_coding_system ();
4602 else
4603 coding_system = Qraw_text;
4604 }
4605
4606 if (NILP (Fcoding_system_p (coding_system)))
4607 {
4608 /* Invalid coding system. */
4609
4610 if (!NILP (noerror))
4611 coding_system = Qraw_text;
4612 else
4613 xsignal1 (Qcoding_system_error, coding_system);
4614 }
4615
4616 if (STRING_MULTIBYTE (object))
4617 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4618
4619 size = SCHARS (object);
4620
4621 if (!NILP (start))
4622 {
4623 CHECK_NUMBER (start);
4624
4625 start_char = XINT (start);
4626
4627 if (start_char < 0)
4628 start_char += size;
4629 }
4630
4631 if (NILP (end))
4632 end_char = size;
4633 else
4634 {
4635 CHECK_NUMBER (end);
4636
4637 end_char = XINT (end);
4638
4639 if (end_char < 0)
4640 end_char += size;
4641 }
4642
4643 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4644 args_out_of_range_3 (object, make_number (start_char),
4645 make_number (end_char));
4646
4647 start_byte = NILP (start) ? 0 : string_char_to_byte (object, start_char);
4648 end_byte =
4649 NILP (end) ? SBYTES (object) : string_char_to_byte (object, end_char);
4650 }
4651 else
4652 {
4653 struct buffer *prev = current_buffer;
4654
4655 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
4656
4657 CHECK_BUFFER (object);
4658
4659 bp = XBUFFER (object);
4660 if (bp != current_buffer)
4661 set_buffer_internal (bp);
4662
4663 if (NILP (start))
4664 b = BEGV;
4665 else
4666 {
4667 CHECK_NUMBER_COERCE_MARKER (start);
4668 b = XINT (start);
4669 }
4670
4671 if (NILP (end))
4672 e = ZV;
4673 else
4674 {
4675 CHECK_NUMBER_COERCE_MARKER (end);
4676 e = XINT (end);
4677 }
4678
4679 if (b > e)
4680 temp = b, b = e, e = temp;
4681
4682 if (!(BEGV <= b && e <= ZV))
4683 args_out_of_range (start, end);
4684
4685 if (NILP (coding_system))
4686 {
4687 /* Decide the coding-system to encode the data with.
4688 See fileio.c:Fwrite-region */
4689
4690 if (!NILP (Vcoding_system_for_write))
4691 coding_system = Vcoding_system_for_write;
4692 else
4693 {
4694 int force_raw_text = 0;
4695
4696 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4697 if (NILP (coding_system)
4698 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4699 {
4700 coding_system = Qnil;
4701 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4702 force_raw_text = 1;
4703 }
4704
4705 if (NILP (coding_system) && !NILP (Fbuffer_file_name (object)))
4706 {
4707 /* Check file-coding-system-alist. */
4708 Lisp_Object args[4], val;
4709
4710 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4711 args[3] = Fbuffer_file_name (object);
4712 val = Ffind_operation_coding_system (4, args);
4713 if (CONSP (val) && !NILP (XCDR (val)))
4714 coding_system = XCDR (val);
4715 }
4716
4717 if (NILP (coding_system)
4718 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4719 {
4720 /* If we still have not decided a coding system, use the
4721 default value of buffer-file-coding-system. */
4722 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4723 }
4724
4725 if (!force_raw_text
4726 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4727 /* Confirm that VAL can surely encode the current region. */
4728 coding_system = call4 (Vselect_safe_coding_system_function,
4729 make_number (b), make_number (e),
4730 coding_system, Qnil);
4731
4732 if (force_raw_text)
4733 coding_system = Qraw_text;
4734 }
4735
4736 if (NILP (Fcoding_system_p (coding_system)))
4737 {
4738 /* Invalid coding system. */
4739
4740 if (!NILP (noerror))
4741 coding_system = Qraw_text;
4742 else
4743 xsignal1 (Qcoding_system_error, coding_system);
4744 }
4745 }
4746
4747 object = make_buffer_string (b, e, 0);
4748 if (prev != current_buffer)
4749 set_buffer_internal (prev);
4750 /* Discard the unwind protect for recovering the current
4751 buffer. */
4752 specpdl_ptr--;
4753
4754 if (STRING_MULTIBYTE (object))
4755 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4756 start_byte = 0;
4757 end_byte = SBYTES (object);
4758 }
4759
4760 if (EQ (algorithm, Qmd5))
4761 {
4762 digest_size = MD5_DIGEST_SIZE;
4763 hash_func = md5_buffer;
4764 }
4765 else if (EQ (algorithm, Qsha1))
4766 {
4767 digest_size = SHA1_DIGEST_SIZE;
4768 hash_func = sha1_buffer;
4769 }
4770 else if (EQ (algorithm, Qsha224))
4771 {
4772 digest_size = SHA224_DIGEST_SIZE;
4773 hash_func = sha224_buffer;
4774 }
4775 else if (EQ (algorithm, Qsha256))
4776 {
4777 digest_size = SHA256_DIGEST_SIZE;
4778 hash_func = sha256_buffer;
4779 }
4780 else if (EQ (algorithm, Qsha384))
4781 {
4782 digest_size = SHA384_DIGEST_SIZE;
4783 hash_func = sha384_buffer;
4784 }
4785 else if (EQ (algorithm, Qsha512))
4786 {
4787 digest_size = SHA512_DIGEST_SIZE;
4788 hash_func = sha512_buffer;
4789 }
4790 else
4791 error ("Invalid algorithm arg: %s", SDATA (Fsymbol_name (algorithm)));
4792
4793 /* allocate 2 x digest_size so that it can be re-used to hold the
4794 hexified value */
4795 digest = make_uninit_string (digest_size * 2);
4796
4797 hash_func (SSDATA (object) + start_byte,
4798 end_byte - start_byte,
4799 SSDATA (digest));
4800
4801 if (NILP (binary))
4802 {
4803 unsigned char *p = SDATA (digest);
4804 for (i = digest_size - 1; i >= 0; i--)
4805 {
4806 static char const hexdigit[16] = "0123456789abcdef";
4807 int p_i = p[i];
4808 p[2 * i] = hexdigit[p_i >> 4];
4809 p[2 * i + 1] = hexdigit[p_i & 0xf];
4810 }
4811 return digest;
4812 }
4813 else
4814 return make_unibyte_string (SSDATA (digest), digest_size);
4815 }
4816
4817 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4818 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4819
4820 A message digest is a cryptographic checksum of a document, and the
4821 algorithm to calculate it is defined in RFC 1321.
4822
4823 The two optional arguments START and END are character positions
4824 specifying for which part of OBJECT the message digest should be
4825 computed. If nil or omitted, the digest is computed for the whole
4826 OBJECT.
4827
4828 The MD5 message digest is computed from the result of encoding the
4829 text in a coding system, not directly from the internal Emacs form of
4830 the text. The optional fourth argument CODING-SYSTEM specifies which
4831 coding system to encode the text with. It should be the same coding
4832 system that you used or will use when actually writing the text into a
4833 file.
4834
4835 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4836 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4837 system would be chosen by default for writing this text into a file.
4838
4839 If OBJECT is a string, the most preferred coding system (see the
4840 command `prefer-coding-system') is used.
4841
4842 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4843 guesswork fails. Normally, an error is signaled in such case. */)
4844 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4845 {
4846 return secure_hash (Qmd5, object, start, end, coding_system, noerror, Qnil);
4847 }
4848
4849 DEFUN ("secure-hash", Fsecure_hash, Ssecure_hash, 2, 5, 0,
4850 doc: /* Return the secure hash of OBJECT, a buffer or string.
4851 ALGORITHM is a symbol specifying the hash to use:
4852 md5, sha1, sha224, sha256, sha384 or sha512.
4853
4854 The two optional arguments START and END are positions specifying for
4855 which part of OBJECT to compute the hash. If nil or omitted, uses the
4856 whole OBJECT.
4857
4858 If BINARY is non-nil, returns a string in binary form. */)
4859 (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
4860 {
4861 return secure_hash (algorithm, object, start, end, Qnil, Qnil, binary);
4862 }
4863 \f
4864 void
4865 syms_of_fns (void)
4866 {
4867 DEFSYM (Qmd5, "md5");
4868 DEFSYM (Qsha1, "sha1");
4869 DEFSYM (Qsha224, "sha224");
4870 DEFSYM (Qsha256, "sha256");
4871 DEFSYM (Qsha384, "sha384");
4872 DEFSYM (Qsha512, "sha512");
4873
4874 /* Hash table stuff. */
4875 DEFSYM (Qhash_table_p, "hash-table-p");
4876 DEFSYM (Qeq, "eq");
4877 DEFSYM (Qeql, "eql");
4878 DEFSYM (Qequal, "equal");
4879 DEFSYM (QCtest, ":test");
4880 DEFSYM (QCsize, ":size");
4881 DEFSYM (QCrehash_size, ":rehash-size");
4882 DEFSYM (QCrehash_threshold, ":rehash-threshold");
4883 DEFSYM (QCweakness, ":weakness");
4884 DEFSYM (Qkey, "key");
4885 DEFSYM (Qvalue, "value");
4886 DEFSYM (Qhash_table_test, "hash-table-test");
4887 DEFSYM (Qkey_or_value, "key-or-value");
4888 DEFSYM (Qkey_and_value, "key-and-value");
4889
4890 defsubr (&Ssxhash);
4891 defsubr (&Smake_hash_table);
4892 defsubr (&Scopy_hash_table);
4893 defsubr (&Shash_table_count);
4894 defsubr (&Shash_table_rehash_size);
4895 defsubr (&Shash_table_rehash_threshold);
4896 defsubr (&Shash_table_size);
4897 defsubr (&Shash_table_test);
4898 defsubr (&Shash_table_weakness);
4899 defsubr (&Shash_table_p);
4900 defsubr (&Sclrhash);
4901 defsubr (&Sgethash);
4902 defsubr (&Sputhash);
4903 defsubr (&Sremhash);
4904 defsubr (&Smaphash);
4905 defsubr (&Sdefine_hash_table_test);
4906
4907 DEFSYM (Qstring_lessp, "string-lessp");
4908 DEFSYM (Qprovide, "provide");
4909 DEFSYM (Qrequire, "require");
4910 DEFSYM (Qyes_or_no_p_history, "yes-or-no-p-history");
4911 DEFSYM (Qcursor_in_echo_area, "cursor-in-echo-area");
4912 DEFSYM (Qwidget_type, "widget-type");
4913
4914 staticpro (&string_char_byte_cache_string);
4915 string_char_byte_cache_string = Qnil;
4916
4917 require_nesting_list = Qnil;
4918 staticpro (&require_nesting_list);
4919
4920 Fset (Qyes_or_no_p_history, Qnil);
4921
4922 DEFVAR_LISP ("features", Vfeatures,
4923 doc: /* A list of symbols which are the features of the executing Emacs.
4924 Used by `featurep' and `require', and altered by `provide'. */);
4925 Vfeatures = Fcons (intern_c_string ("emacs"), Qnil);
4926 DEFSYM (Qsubfeatures, "subfeatures");
4927
4928 #ifdef HAVE_LANGINFO_CODESET
4929 DEFSYM (Qcodeset, "codeset");
4930 DEFSYM (Qdays, "days");
4931 DEFSYM (Qmonths, "months");
4932 DEFSYM (Qpaper, "paper");
4933 #endif /* HAVE_LANGINFO_CODESET */
4934
4935 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4936 doc: /* Non-nil means mouse commands use dialog boxes to ask questions.
4937 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4938 invoked by mouse clicks and mouse menu items.
4939
4940 On some platforms, file selection dialogs are also enabled if this is
4941 non-nil. */);
4942 use_dialog_box = 1;
4943
4944 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4945 doc: /* Non-nil means mouse commands use a file dialog to ask for files.
4946 This applies to commands from menus and tool bar buttons even when
4947 they are initiated from the keyboard. If `use-dialog-box' is nil,
4948 that disables the use of a file dialog, regardless of the value of
4949 this variable. */);
4950 use_file_dialog = 1;
4951
4952 defsubr (&Sidentity);
4953 defsubr (&Srandom);
4954 defsubr (&Slength);
4955 defsubr (&Ssafe_length);
4956 defsubr (&Sstring_bytes);
4957 defsubr (&Sstring_equal);
4958 defsubr (&Scompare_strings);
4959 defsubr (&Sstring_lessp);
4960 defsubr (&Sappend);
4961 defsubr (&Sconcat);
4962 defsubr (&Svconcat);
4963 defsubr (&Scopy_sequence);
4964 defsubr (&Sstring_make_multibyte);
4965 defsubr (&Sstring_make_unibyte);
4966 defsubr (&Sstring_as_multibyte);
4967 defsubr (&Sstring_as_unibyte);
4968 defsubr (&Sstring_to_multibyte);
4969 defsubr (&Sstring_to_unibyte);
4970 defsubr (&Scopy_alist);
4971 defsubr (&Ssubstring);
4972 defsubr (&Ssubstring_no_properties);
4973 defsubr (&Snthcdr);
4974 defsubr (&Snth);
4975 defsubr (&Selt);
4976 defsubr (&Smember);
4977 defsubr (&Smemq);
4978 defsubr (&Smemql);
4979 defsubr (&Sassq);
4980 defsubr (&Sassoc);
4981 defsubr (&Srassq);
4982 defsubr (&Srassoc);
4983 defsubr (&Sdelq);
4984 defsubr (&Sdelete);
4985 defsubr (&Snreverse);
4986 defsubr (&Sreverse);
4987 defsubr (&Ssort);
4988 defsubr (&Splist_get);
4989 defsubr (&Sget);
4990 defsubr (&Splist_put);
4991 defsubr (&Sput);
4992 defsubr (&Slax_plist_get);
4993 defsubr (&Slax_plist_put);
4994 defsubr (&Seql);
4995 defsubr (&Sequal);
4996 defsubr (&Sequal_including_properties);
4997 defsubr (&Sfillarray);
4998 defsubr (&Sclear_string);
4999 defsubr (&Snconc);
5000 defsubr (&Smapcar);
5001 defsubr (&Smapc);
5002 defsubr (&Smapconcat);
5003 defsubr (&Syes_or_no_p);
5004 defsubr (&Sload_average);
5005 defsubr (&Sfeaturep);
5006 defsubr (&Srequire);
5007 defsubr (&Sprovide);
5008 defsubr (&Splist_member);
5009 defsubr (&Swidget_put);
5010 defsubr (&Swidget_get);
5011 defsubr (&Swidget_apply);
5012 defsubr (&Sbase64_encode_region);
5013 defsubr (&Sbase64_decode_region);
5014 defsubr (&Sbase64_encode_string);
5015 defsubr (&Sbase64_decode_string);
5016 defsubr (&Smd5);
5017 defsubr (&Ssecure_hash);
5018 defsubr (&Slocale_info);
5019 }
5020
5021
5022 void
5023 init_fns (void)
5024 {
5025 }