Add arch taglines
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 86, 88, 93, 94, 95, 97, 98, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
29
30 /* Note that this declares bzero on OSF/1. How dumb. */
31
32 #include <signal.h>
33
34 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
35 memory. Can do this only if using gmalloc.c. */
36
37 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
38 #undef GC_MALLOC_CHECK
39 #endif
40
41 /* This file is part of the core Lisp implementation, and thus must
42 deal with the real data structures. If the Lisp implementation is
43 replaced, this file likely will not be used. */
44
45 #undef HIDE_LISP_IMPLEMENTATION
46 #include "lisp.h"
47 #include "process.h"
48 #include "intervals.h"
49 #include "puresize.h"
50 #include "buffer.h"
51 #include "window.h"
52 #include "keyboard.h"
53 #include "frame.h"
54 #include "blockinput.h"
55 #include "charset.h"
56 #include "syssignal.h"
57 #include <setjmp.h>
58
59 #ifdef HAVE_UNISTD_H
60 #include <unistd.h>
61 #else
62 extern POINTER_TYPE *sbrk ();
63 #endif
64
65 #ifdef DOUG_LEA_MALLOC
66
67 #include <malloc.h>
68 /* malloc.h #defines this as size_t, at least in glibc2. */
69 #ifndef __malloc_size_t
70 #define __malloc_size_t int
71 #endif
72
73 /* Specify maximum number of areas to mmap. It would be nice to use a
74 value that explicitly means "no limit". */
75
76 #define MMAP_MAX_AREAS 100000000
77
78 #else /* not DOUG_LEA_MALLOC */
79
80 /* The following come from gmalloc.c. */
81
82 #define __malloc_size_t size_t
83 extern __malloc_size_t _bytes_used;
84 extern __malloc_size_t __malloc_extra_blocks;
85
86 #endif /* not DOUG_LEA_MALLOC */
87
88 /* Value of _bytes_used, when spare_memory was freed. */
89
90 static __malloc_size_t bytes_used_when_full;
91
92 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
93 to a struct Lisp_String. */
94
95 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
96 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
97 #define STRING_MARKED_P(S) ((S)->size & ARRAY_MARK_FLAG)
98
99 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
100 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
101 #define VECTOR_MARKED_P(V) ((V)->size & ARRAY_MARK_FLAG)
102
103 /* Value is the number of bytes/chars of S, a pointer to a struct
104 Lisp_String. This must be used instead of STRING_BYTES (S) or
105 S->size during GC, because S->size contains the mark bit for
106 strings. */
107
108 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
109 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
110
111 /* Number of bytes of consing done since the last gc. */
112
113 int consing_since_gc;
114
115 /* Count the amount of consing of various sorts of space. */
116
117 EMACS_INT cons_cells_consed;
118 EMACS_INT floats_consed;
119 EMACS_INT vector_cells_consed;
120 EMACS_INT symbols_consed;
121 EMACS_INT string_chars_consed;
122 EMACS_INT misc_objects_consed;
123 EMACS_INT intervals_consed;
124 EMACS_INT strings_consed;
125
126 /* Number of bytes of consing since GC before another GC should be done. */
127
128 EMACS_INT gc_cons_threshold;
129
130 /* Nonzero during GC. */
131
132 int gc_in_progress;
133
134 /* Nonzero means abort if try to GC.
135 This is for code which is written on the assumption that
136 no GC will happen, so as to verify that assumption. */
137
138 int abort_on_gc;
139
140 /* Nonzero means display messages at beginning and end of GC. */
141
142 int garbage_collection_messages;
143
144 #ifndef VIRT_ADDR_VARIES
145 extern
146 #endif /* VIRT_ADDR_VARIES */
147 int malloc_sbrk_used;
148
149 #ifndef VIRT_ADDR_VARIES
150 extern
151 #endif /* VIRT_ADDR_VARIES */
152 int malloc_sbrk_unused;
153
154 /* Two limits controlling how much undo information to keep. */
155
156 EMACS_INT undo_limit;
157 EMACS_INT undo_strong_limit;
158
159 /* Number of live and free conses etc. */
160
161 static int total_conses, total_markers, total_symbols, total_vector_size;
162 static int total_free_conses, total_free_markers, total_free_symbols;
163 static int total_free_floats, total_floats;
164
165 /* Points to memory space allocated as "spare", to be freed if we run
166 out of memory. */
167
168 static char *spare_memory;
169
170 /* Amount of spare memory to keep in reserve. */
171
172 #define SPARE_MEMORY (1 << 14)
173
174 /* Number of extra blocks malloc should get when it needs more core. */
175
176 static int malloc_hysteresis;
177
178 /* Non-nil means defun should do purecopy on the function definition. */
179
180 Lisp_Object Vpurify_flag;
181
182 /* Non-nil means we are handling a memory-full error. */
183
184 Lisp_Object Vmemory_full;
185
186 #ifndef HAVE_SHM
187
188 /* Force it into data space! Initialize it to a nonzero value;
189 otherwise some compilers put it into BSS. */
190
191 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
192 #define PUREBEG (char *) pure
193
194 #else /* HAVE_SHM */
195
196 #define pure PURE_SEG_BITS /* Use shared memory segment */
197 #define PUREBEG (char *)PURE_SEG_BITS
198
199 #endif /* HAVE_SHM */
200
201 /* Pointer to the pure area, and its size. */
202
203 static char *purebeg;
204 static size_t pure_size;
205
206 /* Number of bytes of pure storage used before pure storage overflowed.
207 If this is non-zero, this implies that an overflow occurred. */
208
209 static size_t pure_bytes_used_before_overflow;
210
211 /* Value is non-zero if P points into pure space. */
212
213 #define PURE_POINTER_P(P) \
214 (((PNTR_COMPARISON_TYPE) (P) \
215 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
216 && ((PNTR_COMPARISON_TYPE) (P) \
217 >= (PNTR_COMPARISON_TYPE) purebeg))
218
219 /* Index in pure at which next pure object will be allocated.. */
220
221 EMACS_INT pure_bytes_used;
222
223 /* If nonzero, this is a warning delivered by malloc and not yet
224 displayed. */
225
226 char *pending_malloc_warning;
227
228 /* Pre-computed signal argument for use when memory is exhausted. */
229
230 Lisp_Object Vmemory_signal_data;
231
232 /* Maximum amount of C stack to save when a GC happens. */
233
234 #ifndef MAX_SAVE_STACK
235 #define MAX_SAVE_STACK 16000
236 #endif
237
238 /* Buffer in which we save a copy of the C stack at each GC. */
239
240 char *stack_copy;
241 int stack_copy_size;
242
243 /* Non-zero means ignore malloc warnings. Set during initialization.
244 Currently not used. */
245
246 int ignore_warnings;
247
248 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
249
250 /* Hook run after GC has finished. */
251
252 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
253
254 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
255 EMACS_INT gcs_done; /* accumulated GCs */
256
257 static void mark_buffer P_ ((Lisp_Object));
258 extern void mark_kboards P_ ((void));
259 static void gc_sweep P_ ((void));
260 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
261 static void mark_face_cache P_ ((struct face_cache *));
262
263 #ifdef HAVE_WINDOW_SYSTEM
264 static void mark_image P_ ((struct image *));
265 static void mark_image_cache P_ ((struct frame *));
266 #endif /* HAVE_WINDOW_SYSTEM */
267
268 static struct Lisp_String *allocate_string P_ ((void));
269 static void compact_small_strings P_ ((void));
270 static void free_large_strings P_ ((void));
271 static void sweep_strings P_ ((void));
272
273 extern int message_enable_multibyte;
274
275 /* When scanning the C stack for live Lisp objects, Emacs keeps track
276 of what memory allocated via lisp_malloc is intended for what
277 purpose. This enumeration specifies the type of memory. */
278
279 enum mem_type
280 {
281 MEM_TYPE_NON_LISP,
282 MEM_TYPE_BUFFER,
283 MEM_TYPE_CONS,
284 MEM_TYPE_STRING,
285 MEM_TYPE_MISC,
286 MEM_TYPE_SYMBOL,
287 MEM_TYPE_FLOAT,
288 /* Keep the following vector-like types together, with
289 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
290 first. Or change the code of live_vector_p, for instance. */
291 MEM_TYPE_VECTOR,
292 MEM_TYPE_PROCESS,
293 MEM_TYPE_HASH_TABLE,
294 MEM_TYPE_FRAME,
295 MEM_TYPE_WINDOW
296 };
297
298 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
299
300 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
301 #include <stdio.h> /* For fprintf. */
302 #endif
303
304 /* A unique object in pure space used to make some Lisp objects
305 on free lists recognizable in O(1). */
306
307 Lisp_Object Vdead;
308
309 #ifdef GC_MALLOC_CHECK
310
311 enum mem_type allocated_mem_type;
312 int dont_register_blocks;
313
314 #endif /* GC_MALLOC_CHECK */
315
316 /* A node in the red-black tree describing allocated memory containing
317 Lisp data. Each such block is recorded with its start and end
318 address when it is allocated, and removed from the tree when it
319 is freed.
320
321 A red-black tree is a balanced binary tree with the following
322 properties:
323
324 1. Every node is either red or black.
325 2. Every leaf is black.
326 3. If a node is red, then both of its children are black.
327 4. Every simple path from a node to a descendant leaf contains
328 the same number of black nodes.
329 5. The root is always black.
330
331 When nodes are inserted into the tree, or deleted from the tree,
332 the tree is "fixed" so that these properties are always true.
333
334 A red-black tree with N internal nodes has height at most 2
335 log(N+1). Searches, insertions and deletions are done in O(log N).
336 Please see a text book about data structures for a detailed
337 description of red-black trees. Any book worth its salt should
338 describe them. */
339
340 struct mem_node
341 {
342 /* Children of this node. These pointers are never NULL. When there
343 is no child, the value is MEM_NIL, which points to a dummy node. */
344 struct mem_node *left, *right;
345
346 /* The parent of this node. In the root node, this is NULL. */
347 struct mem_node *parent;
348
349 /* Start and end of allocated region. */
350 void *start, *end;
351
352 /* Node color. */
353 enum {MEM_BLACK, MEM_RED} color;
354
355 /* Memory type. */
356 enum mem_type type;
357 };
358
359 /* Base address of stack. Set in main. */
360
361 Lisp_Object *stack_base;
362
363 /* Root of the tree describing allocated Lisp memory. */
364
365 static struct mem_node *mem_root;
366
367 /* Lowest and highest known address in the heap. */
368
369 static void *min_heap_address, *max_heap_address;
370
371 /* Sentinel node of the tree. */
372
373 static struct mem_node mem_z;
374 #define MEM_NIL &mem_z
375
376 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
377 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
378 static void lisp_free P_ ((POINTER_TYPE *));
379 static void mark_stack P_ ((void));
380 static int live_vector_p P_ ((struct mem_node *, void *));
381 static int live_buffer_p P_ ((struct mem_node *, void *));
382 static int live_string_p P_ ((struct mem_node *, void *));
383 static int live_cons_p P_ ((struct mem_node *, void *));
384 static int live_symbol_p P_ ((struct mem_node *, void *));
385 static int live_float_p P_ ((struct mem_node *, void *));
386 static int live_misc_p P_ ((struct mem_node *, void *));
387 static void mark_maybe_object P_ ((Lisp_Object));
388 static void mark_memory P_ ((void *, void *));
389 static void mem_init P_ ((void));
390 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
391 static void mem_insert_fixup P_ ((struct mem_node *));
392 static void mem_rotate_left P_ ((struct mem_node *));
393 static void mem_rotate_right P_ ((struct mem_node *));
394 static void mem_delete P_ ((struct mem_node *));
395 static void mem_delete_fixup P_ ((struct mem_node *));
396 static INLINE struct mem_node *mem_find P_ ((void *));
397
398 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
399 static void check_gcpros P_ ((void));
400 #endif
401
402 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
403
404 /* Recording what needs to be marked for gc. */
405
406 struct gcpro *gcprolist;
407
408 /* Addresses of staticpro'd variables. Initialize it to a nonzero
409 value; otherwise some compilers put it into BSS. */
410
411 #define NSTATICS 1280
412 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
413
414 /* Index of next unused slot in staticvec. */
415
416 int staticidx = 0;
417
418 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
419
420
421 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
422 ALIGNMENT must be a power of 2. */
423
424 #define ALIGN(ptr, ALIGNMENT) \
425 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
426 & ~((ALIGNMENT) - 1)))
427
428
429 \f
430 /************************************************************************
431 Malloc
432 ************************************************************************/
433
434 /* Function malloc calls this if it finds we are near exhausting storage. */
435
436 void
437 malloc_warning (str)
438 char *str;
439 {
440 pending_malloc_warning = str;
441 }
442
443
444 /* Display an already-pending malloc warning. */
445
446 void
447 display_malloc_warning ()
448 {
449 call3 (intern ("display-warning"),
450 intern ("alloc"),
451 build_string (pending_malloc_warning),
452 intern ("emergency"));
453 pending_malloc_warning = 0;
454 }
455
456
457 #ifdef DOUG_LEA_MALLOC
458 # define BYTES_USED (mallinfo ().arena)
459 #else
460 # define BYTES_USED _bytes_used
461 #endif
462
463
464 /* Called if malloc returns zero. */
465
466 void
467 memory_full ()
468 {
469 Vmemory_full = Qt;
470
471 #ifndef SYSTEM_MALLOC
472 bytes_used_when_full = BYTES_USED;
473 #endif
474
475 /* The first time we get here, free the spare memory. */
476 if (spare_memory)
477 {
478 free (spare_memory);
479 spare_memory = 0;
480 }
481
482 /* This used to call error, but if we've run out of memory, we could
483 get infinite recursion trying to build the string. */
484 while (1)
485 Fsignal (Qnil, Vmemory_signal_data);
486 }
487
488
489 /* Called if we can't allocate relocatable space for a buffer. */
490
491 void
492 buffer_memory_full ()
493 {
494 /* If buffers use the relocating allocator, no need to free
495 spare_memory, because we may have plenty of malloc space left
496 that we could get, and if we don't, the malloc that fails will
497 itself cause spare_memory to be freed. If buffers don't use the
498 relocating allocator, treat this like any other failing
499 malloc. */
500
501 #ifndef REL_ALLOC
502 memory_full ();
503 #endif
504
505 Vmemory_full = Qt;
506
507 /* This used to call error, but if we've run out of memory, we could
508 get infinite recursion trying to build the string. */
509 while (1)
510 Fsignal (Qnil, Vmemory_signal_data);
511 }
512
513
514 /* Like malloc but check for no memory and block interrupt input.. */
515
516 POINTER_TYPE *
517 xmalloc (size)
518 size_t size;
519 {
520 register POINTER_TYPE *val;
521
522 BLOCK_INPUT;
523 val = (POINTER_TYPE *) malloc (size);
524 UNBLOCK_INPUT;
525
526 if (!val && size)
527 memory_full ();
528 return val;
529 }
530
531
532 /* Like realloc but check for no memory and block interrupt input.. */
533
534 POINTER_TYPE *
535 xrealloc (block, size)
536 POINTER_TYPE *block;
537 size_t size;
538 {
539 register POINTER_TYPE *val;
540
541 BLOCK_INPUT;
542 /* We must call malloc explicitly when BLOCK is 0, since some
543 reallocs don't do this. */
544 if (! block)
545 val = (POINTER_TYPE *) malloc (size);
546 else
547 val = (POINTER_TYPE *) realloc (block, size);
548 UNBLOCK_INPUT;
549
550 if (!val && size) memory_full ();
551 return val;
552 }
553
554
555 /* Like free but block interrupt input. */
556
557 void
558 xfree (block)
559 POINTER_TYPE *block;
560 {
561 BLOCK_INPUT;
562 free (block);
563 UNBLOCK_INPUT;
564 }
565
566
567 /* Like strdup, but uses xmalloc. */
568
569 char *
570 xstrdup (s)
571 const char *s;
572 {
573 size_t len = strlen (s) + 1;
574 char *p = (char *) xmalloc (len);
575 bcopy (s, p, len);
576 return p;
577 }
578
579
580 /* Like malloc but used for allocating Lisp data. NBYTES is the
581 number of bytes to allocate, TYPE describes the intended use of the
582 allcated memory block (for strings, for conses, ...). */
583
584 static void *lisp_malloc_loser;
585
586 static POINTER_TYPE *
587 lisp_malloc (nbytes, type)
588 size_t nbytes;
589 enum mem_type type;
590 {
591 register void *val;
592
593 BLOCK_INPUT;
594
595 #ifdef GC_MALLOC_CHECK
596 allocated_mem_type = type;
597 #endif
598
599 val = (void *) malloc (nbytes);
600
601 /* If the memory just allocated cannot be addressed thru a Lisp
602 object's pointer, and it needs to be,
603 that's equivalent to running out of memory. */
604 if (val && type != MEM_TYPE_NON_LISP)
605 {
606 Lisp_Object tem;
607 XSETCONS (tem, (char *) val + nbytes - 1);
608 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
609 {
610 lisp_malloc_loser = val;
611 free (val);
612 val = 0;
613 }
614 }
615
616 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
617 if (val && type != MEM_TYPE_NON_LISP)
618 mem_insert (val, (char *) val + nbytes, type);
619 #endif
620
621 UNBLOCK_INPUT;
622 if (!val && nbytes)
623 memory_full ();
624 return val;
625 }
626
627 /* Free BLOCK. This must be called to free memory allocated with a
628 call to lisp_malloc. */
629
630 static void
631 lisp_free (block)
632 POINTER_TYPE *block;
633 {
634 BLOCK_INPUT;
635 free (block);
636 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
637 mem_delete (mem_find (block));
638 #endif
639 UNBLOCK_INPUT;
640 }
641
642 /* Allocation of aligned blocks of memory to store Lisp data. */
643 /* The entry point is lisp_align_malloc which returns blocks of at most */
644 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
645
646
647 /* BLOCK_ALIGN has to be a power of 2. */
648 #define BLOCK_ALIGN (1 << 10)
649
650 /* Padding to leave at the end of a malloc'd block. This is to give
651 malloc a chance to minimize the amount of memory wasted to alignment.
652 It should be tuned to the particular malloc library used.
653 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
654 posix_memalign on the other hand would ideally prefer a value of 4
655 because otherwise, there's 1020 bytes wasted between each ablocks.
656 But testing shows that those 1020 will most of the time be efficiently
657 used by malloc to place other objects, so a value of 0 is still preferable
658 unless you have a lot of cons&floats and virtually nothing else. */
659 #define BLOCK_PADDING 0
660 #define BLOCK_BYTES \
661 (BLOCK_ALIGN - sizeof (struct aligned_block *) - BLOCK_PADDING)
662
663 /* Internal data structures and constants. */
664
665 #define ABLOCKS_SIZE 16
666
667 /* An aligned block of memory. */
668 struct ablock
669 {
670 union
671 {
672 char payload[BLOCK_BYTES];
673 struct ablock *next_free;
674 } x;
675 /* `abase' is the aligned base of the ablocks. */
676 /* It is overloaded to hold the virtual `busy' field that counts
677 the number of used ablock in the parent ablocks.
678 The first ablock has the `busy' field, the others have the `abase'
679 field. To tell the difference, we assume that pointers will have
680 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
681 is used to tell whether the real base of the parent ablocks is `abase'
682 (if not, the word before the first ablock holds a pointer to the
683 real base). */
684 struct ablocks *abase;
685 /* The padding of all but the last ablock is unused. The padding of
686 the last ablock in an ablocks is not allocated. */
687 #if BLOCK_PADDING
688 char padding[BLOCK_PADDING];
689 #endif
690 };
691
692 /* A bunch of consecutive aligned blocks. */
693 struct ablocks
694 {
695 struct ablock blocks[ABLOCKS_SIZE];
696 };
697
698 /* Size of the block requested from malloc or memalign. */
699 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
700
701 #define ABLOCK_ABASE(block) \
702 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
703 ? (struct ablocks *)(block) \
704 : (block)->abase)
705
706 /* Virtual `busy' field. */
707 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
708
709 /* Pointer to the (not necessarily aligned) malloc block. */
710 #ifdef HAVE_POSIX_MEMALIGN
711 #define ABLOCKS_BASE(abase) (abase)
712 #else
713 #define ABLOCKS_BASE(abase) \
714 (1 & (int) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
715 #endif
716
717 /* The list of free ablock. */
718 static struct ablock *free_ablock;
719
720 /* Allocate an aligned block of nbytes.
721 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
722 smaller or equal to BLOCK_BYTES. */
723 static POINTER_TYPE *
724 lisp_align_malloc (nbytes, type)
725 size_t nbytes;
726 enum mem_type type;
727 {
728 void *base, *val;
729 struct ablocks *abase;
730
731 eassert (nbytes <= BLOCK_BYTES);
732
733 BLOCK_INPUT;
734
735 #ifdef GC_MALLOC_CHECK
736 allocated_mem_type = type;
737 #endif
738
739 if (!free_ablock)
740 {
741 int i;
742 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
743
744 #ifdef DOUG_LEA_MALLOC
745 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
746 because mapped region contents are not preserved in
747 a dumped Emacs. */
748 mallopt (M_MMAP_MAX, 0);
749 #endif
750
751 #ifdef HAVE_POSIX_MEMALIGN
752 {
753 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
754 abase = err ? (base = NULL) : base;
755 }
756 #else
757 base = malloc (ABLOCKS_BYTES);
758 abase = ALIGN (base, BLOCK_ALIGN);
759 #endif
760
761 aligned = (base == abase);
762 if (!aligned)
763 ((void**)abase)[-1] = base;
764
765 #ifdef DOUG_LEA_MALLOC
766 /* Back to a reasonable maximum of mmap'ed areas. */
767 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
768 #endif
769
770 /* If the memory just allocated cannot be addressed thru a Lisp
771 object's pointer, and it needs to be, that's equivalent to
772 running out of memory. */
773 if (type != MEM_TYPE_NON_LISP)
774 {
775 Lisp_Object tem;
776 char *end = (char *) base + ABLOCKS_BYTES - 1;
777 XSETCONS (tem, end);
778 if ((char *) XCONS (tem) != end)
779 {
780 lisp_malloc_loser = base;
781 free (base);
782 UNBLOCK_INPUT;
783 memory_full ();
784 }
785 }
786
787 /* Initialize the blocks and put them on the free list.
788 Is `base' was not properly aligned, we can't use the last block. */
789 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
790 {
791 abase->blocks[i].abase = abase;
792 abase->blocks[i].x.next_free = free_ablock;
793 free_ablock = &abase->blocks[i];
794 }
795 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
796
797 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
798 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
799 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
800 eassert (ABLOCKS_BASE (abase) == base);
801 eassert (aligned == (int)ABLOCKS_BUSY (abase));
802 }
803
804 abase = ABLOCK_ABASE (free_ablock);
805 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (int) ABLOCKS_BUSY (abase));
806 val = free_ablock;
807 free_ablock = free_ablock->x.next_free;
808
809 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
810 if (val && type != MEM_TYPE_NON_LISP)
811 mem_insert (val, (char *) val + nbytes, type);
812 #endif
813
814 UNBLOCK_INPUT;
815 if (!val && nbytes)
816 memory_full ();
817
818 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
819 return val;
820 }
821
822 static void
823 lisp_align_free (block)
824 POINTER_TYPE *block;
825 {
826 struct ablock *ablock = block;
827 struct ablocks *abase = ABLOCK_ABASE (ablock);
828
829 BLOCK_INPUT;
830 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
831 mem_delete (mem_find (block));
832 #endif
833 /* Put on free list. */
834 ablock->x.next_free = free_ablock;
835 free_ablock = ablock;
836 /* Update busy count. */
837 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (int) ABLOCKS_BUSY (abase));
838
839 if (2 > (int) ABLOCKS_BUSY (abase))
840 { /* All the blocks are free. */
841 int i = 0, aligned = (int) ABLOCKS_BUSY (abase);
842 struct ablock **tem = &free_ablock;
843 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
844
845 while (*tem)
846 {
847 if (*tem >= (struct ablock *) abase && *tem < atop)
848 {
849 i++;
850 *tem = (*tem)->x.next_free;
851 }
852 else
853 tem = &(*tem)->x.next_free;
854 }
855 eassert ((aligned & 1) == aligned);
856 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
857 free (ABLOCKS_BASE (abase));
858 }
859 UNBLOCK_INPUT;
860 }
861
862 /* Return a new buffer structure allocated from the heap with
863 a call to lisp_malloc. */
864
865 struct buffer *
866 allocate_buffer ()
867 {
868 struct buffer *b
869 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
870 MEM_TYPE_BUFFER);
871 return b;
872 }
873
874 \f
875 /* Arranging to disable input signals while we're in malloc.
876
877 This only works with GNU malloc. To help out systems which can't
878 use GNU malloc, all the calls to malloc, realloc, and free
879 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
880 pairs; unfortunately, we have no idea what C library functions
881 might call malloc, so we can't really protect them unless you're
882 using GNU malloc. Fortunately, most of the major operating systems
883 can use GNU malloc. */
884
885 #ifndef SYSTEM_MALLOC
886 #ifndef DOUG_LEA_MALLOC
887 extern void * (*__malloc_hook) P_ ((size_t));
888 extern void * (*__realloc_hook) P_ ((void *, size_t));
889 extern void (*__free_hook) P_ ((void *));
890 /* Else declared in malloc.h, perhaps with an extra arg. */
891 #endif /* DOUG_LEA_MALLOC */
892 static void * (*old_malloc_hook) ();
893 static void * (*old_realloc_hook) ();
894 static void (*old_free_hook) ();
895
896 /* This function is used as the hook for free to call. */
897
898 static void
899 emacs_blocked_free (ptr)
900 void *ptr;
901 {
902 BLOCK_INPUT;
903
904 #ifdef GC_MALLOC_CHECK
905 if (ptr)
906 {
907 struct mem_node *m;
908
909 m = mem_find (ptr);
910 if (m == MEM_NIL || m->start != ptr)
911 {
912 fprintf (stderr,
913 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
914 abort ();
915 }
916 else
917 {
918 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
919 mem_delete (m);
920 }
921 }
922 #endif /* GC_MALLOC_CHECK */
923
924 __free_hook = old_free_hook;
925 free (ptr);
926
927 /* If we released our reserve (due to running out of memory),
928 and we have a fair amount free once again,
929 try to set aside another reserve in case we run out once more. */
930 if (spare_memory == 0
931 /* Verify there is enough space that even with the malloc
932 hysteresis this call won't run out again.
933 The code here is correct as long as SPARE_MEMORY
934 is substantially larger than the block size malloc uses. */
935 && (bytes_used_when_full
936 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
937 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
938
939 __free_hook = emacs_blocked_free;
940 UNBLOCK_INPUT;
941 }
942
943
944 /* If we released our reserve (due to running out of memory),
945 and we have a fair amount free once again,
946 try to set aside another reserve in case we run out once more.
947
948 This is called when a relocatable block is freed in ralloc.c. */
949
950 void
951 refill_memory_reserve ()
952 {
953 if (spare_memory == 0)
954 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
955 }
956
957
958 /* This function is the malloc hook that Emacs uses. */
959
960 static void *
961 emacs_blocked_malloc (size)
962 size_t size;
963 {
964 void *value;
965
966 BLOCK_INPUT;
967 __malloc_hook = old_malloc_hook;
968 #ifdef DOUG_LEA_MALLOC
969 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
970 #else
971 __malloc_extra_blocks = malloc_hysteresis;
972 #endif
973
974 value = (void *) malloc (size);
975
976 #ifdef GC_MALLOC_CHECK
977 {
978 struct mem_node *m = mem_find (value);
979 if (m != MEM_NIL)
980 {
981 fprintf (stderr, "Malloc returned %p which is already in use\n",
982 value);
983 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
984 m->start, m->end, (char *) m->end - (char *) m->start,
985 m->type);
986 abort ();
987 }
988
989 if (!dont_register_blocks)
990 {
991 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
992 allocated_mem_type = MEM_TYPE_NON_LISP;
993 }
994 }
995 #endif /* GC_MALLOC_CHECK */
996
997 __malloc_hook = emacs_blocked_malloc;
998 UNBLOCK_INPUT;
999
1000 /* fprintf (stderr, "%p malloc\n", value); */
1001 return value;
1002 }
1003
1004
1005 /* This function is the realloc hook that Emacs uses. */
1006
1007 static void *
1008 emacs_blocked_realloc (ptr, size)
1009 void *ptr;
1010 size_t size;
1011 {
1012 void *value;
1013
1014 BLOCK_INPUT;
1015 __realloc_hook = old_realloc_hook;
1016
1017 #ifdef GC_MALLOC_CHECK
1018 if (ptr)
1019 {
1020 struct mem_node *m = mem_find (ptr);
1021 if (m == MEM_NIL || m->start != ptr)
1022 {
1023 fprintf (stderr,
1024 "Realloc of %p which wasn't allocated with malloc\n",
1025 ptr);
1026 abort ();
1027 }
1028
1029 mem_delete (m);
1030 }
1031
1032 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1033
1034 /* Prevent malloc from registering blocks. */
1035 dont_register_blocks = 1;
1036 #endif /* GC_MALLOC_CHECK */
1037
1038 value = (void *) realloc (ptr, size);
1039
1040 #ifdef GC_MALLOC_CHECK
1041 dont_register_blocks = 0;
1042
1043 {
1044 struct mem_node *m = mem_find (value);
1045 if (m != MEM_NIL)
1046 {
1047 fprintf (stderr, "Realloc returns memory that is already in use\n");
1048 abort ();
1049 }
1050
1051 /* Can't handle zero size regions in the red-black tree. */
1052 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1053 }
1054
1055 /* fprintf (stderr, "%p <- realloc\n", value); */
1056 #endif /* GC_MALLOC_CHECK */
1057
1058 __realloc_hook = emacs_blocked_realloc;
1059 UNBLOCK_INPUT;
1060
1061 return value;
1062 }
1063
1064
1065 /* Called from main to set up malloc to use our hooks. */
1066
1067 void
1068 uninterrupt_malloc ()
1069 {
1070 if (__free_hook != emacs_blocked_free)
1071 old_free_hook = __free_hook;
1072 __free_hook = emacs_blocked_free;
1073
1074 if (__malloc_hook != emacs_blocked_malloc)
1075 old_malloc_hook = __malloc_hook;
1076 __malloc_hook = emacs_blocked_malloc;
1077
1078 if (__realloc_hook != emacs_blocked_realloc)
1079 old_realloc_hook = __realloc_hook;
1080 __realloc_hook = emacs_blocked_realloc;
1081 }
1082
1083 #endif /* not SYSTEM_MALLOC */
1084
1085
1086 \f
1087 /***********************************************************************
1088 Interval Allocation
1089 ***********************************************************************/
1090
1091 /* Number of intervals allocated in an interval_block structure.
1092 The 1020 is 1024 minus malloc overhead. */
1093
1094 #define INTERVAL_BLOCK_SIZE \
1095 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1096
1097 /* Intervals are allocated in chunks in form of an interval_block
1098 structure. */
1099
1100 struct interval_block
1101 {
1102 struct interval_block *next;
1103 struct interval intervals[INTERVAL_BLOCK_SIZE];
1104 };
1105
1106 /* Current interval block. Its `next' pointer points to older
1107 blocks. */
1108
1109 struct interval_block *interval_block;
1110
1111 /* Index in interval_block above of the next unused interval
1112 structure. */
1113
1114 static int interval_block_index;
1115
1116 /* Number of free and live intervals. */
1117
1118 static int total_free_intervals, total_intervals;
1119
1120 /* List of free intervals. */
1121
1122 INTERVAL interval_free_list;
1123
1124 /* Total number of interval blocks now in use. */
1125
1126 int n_interval_blocks;
1127
1128
1129 /* Initialize interval allocation. */
1130
1131 static void
1132 init_intervals ()
1133 {
1134 interval_block
1135 = (struct interval_block *) lisp_malloc (sizeof *interval_block,
1136 MEM_TYPE_NON_LISP);
1137 interval_block->next = 0;
1138 bzero ((char *) interval_block->intervals, sizeof interval_block->intervals);
1139 interval_block_index = 0;
1140 interval_free_list = 0;
1141 n_interval_blocks = 1;
1142 }
1143
1144
1145 /* Return a new interval. */
1146
1147 INTERVAL
1148 make_interval ()
1149 {
1150 INTERVAL val;
1151
1152 if (interval_free_list)
1153 {
1154 val = interval_free_list;
1155 interval_free_list = INTERVAL_PARENT (interval_free_list);
1156 }
1157 else
1158 {
1159 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1160 {
1161 register struct interval_block *newi;
1162
1163 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1164 MEM_TYPE_NON_LISP);
1165
1166 newi->next = interval_block;
1167 interval_block = newi;
1168 interval_block_index = 0;
1169 n_interval_blocks++;
1170 }
1171 val = &interval_block->intervals[interval_block_index++];
1172 }
1173 consing_since_gc += sizeof (struct interval);
1174 intervals_consed++;
1175 RESET_INTERVAL (val);
1176 val->gcmarkbit = 0;
1177 return val;
1178 }
1179
1180
1181 /* Mark Lisp objects in interval I. */
1182
1183 static void
1184 mark_interval (i, dummy)
1185 register INTERVAL i;
1186 Lisp_Object dummy;
1187 {
1188 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1189 i->gcmarkbit = 1;
1190 mark_object (i->plist);
1191 }
1192
1193
1194 /* Mark the interval tree rooted in TREE. Don't call this directly;
1195 use the macro MARK_INTERVAL_TREE instead. */
1196
1197 static void
1198 mark_interval_tree (tree)
1199 register INTERVAL tree;
1200 {
1201 /* No need to test if this tree has been marked already; this
1202 function is always called through the MARK_INTERVAL_TREE macro,
1203 which takes care of that. */
1204
1205 traverse_intervals_noorder (tree, mark_interval, Qnil);
1206 }
1207
1208
1209 /* Mark the interval tree rooted in I. */
1210
1211 #define MARK_INTERVAL_TREE(i) \
1212 do { \
1213 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1214 mark_interval_tree (i); \
1215 } while (0)
1216
1217
1218 #define UNMARK_BALANCE_INTERVALS(i) \
1219 do { \
1220 if (! NULL_INTERVAL_P (i)) \
1221 (i) = balance_intervals (i); \
1222 } while (0)
1223
1224 \f
1225 /* Number support. If NO_UNION_TYPE isn't in effect, we
1226 can't create number objects in macros. */
1227 #ifndef make_number
1228 Lisp_Object
1229 make_number (n)
1230 int n;
1231 {
1232 Lisp_Object obj;
1233 obj.s.val = n;
1234 obj.s.type = Lisp_Int;
1235 return obj;
1236 }
1237 #endif
1238 \f
1239 /***********************************************************************
1240 String Allocation
1241 ***********************************************************************/
1242
1243 /* Lisp_Strings are allocated in string_block structures. When a new
1244 string_block is allocated, all the Lisp_Strings it contains are
1245 added to a free-list string_free_list. When a new Lisp_String is
1246 needed, it is taken from that list. During the sweep phase of GC,
1247 string_blocks that are entirely free are freed, except two which
1248 we keep.
1249
1250 String data is allocated from sblock structures. Strings larger
1251 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1252 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1253
1254 Sblocks consist internally of sdata structures, one for each
1255 Lisp_String. The sdata structure points to the Lisp_String it
1256 belongs to. The Lisp_String points back to the `u.data' member of
1257 its sdata structure.
1258
1259 When a Lisp_String is freed during GC, it is put back on
1260 string_free_list, and its `data' member and its sdata's `string'
1261 pointer is set to null. The size of the string is recorded in the
1262 `u.nbytes' member of the sdata. So, sdata structures that are no
1263 longer used, can be easily recognized, and it's easy to compact the
1264 sblocks of small strings which we do in compact_small_strings. */
1265
1266 /* Size in bytes of an sblock structure used for small strings. This
1267 is 8192 minus malloc overhead. */
1268
1269 #define SBLOCK_SIZE 8188
1270
1271 /* Strings larger than this are considered large strings. String data
1272 for large strings is allocated from individual sblocks. */
1273
1274 #define LARGE_STRING_BYTES 1024
1275
1276 /* Structure describing string memory sub-allocated from an sblock.
1277 This is where the contents of Lisp strings are stored. */
1278
1279 struct sdata
1280 {
1281 /* Back-pointer to the string this sdata belongs to. If null, this
1282 structure is free, and the NBYTES member of the union below
1283 contains the string's byte size (the same value that STRING_BYTES
1284 would return if STRING were non-null). If non-null, STRING_BYTES
1285 (STRING) is the size of the data, and DATA contains the string's
1286 contents. */
1287 struct Lisp_String *string;
1288
1289 #ifdef GC_CHECK_STRING_BYTES
1290
1291 EMACS_INT nbytes;
1292 unsigned char data[1];
1293
1294 #define SDATA_NBYTES(S) (S)->nbytes
1295 #define SDATA_DATA(S) (S)->data
1296
1297 #else /* not GC_CHECK_STRING_BYTES */
1298
1299 union
1300 {
1301 /* When STRING in non-null. */
1302 unsigned char data[1];
1303
1304 /* When STRING is null. */
1305 EMACS_INT nbytes;
1306 } u;
1307
1308
1309 #define SDATA_NBYTES(S) (S)->u.nbytes
1310 #define SDATA_DATA(S) (S)->u.data
1311
1312 #endif /* not GC_CHECK_STRING_BYTES */
1313 };
1314
1315
1316 /* Structure describing a block of memory which is sub-allocated to
1317 obtain string data memory for strings. Blocks for small strings
1318 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1319 as large as needed. */
1320
1321 struct sblock
1322 {
1323 /* Next in list. */
1324 struct sblock *next;
1325
1326 /* Pointer to the next free sdata block. This points past the end
1327 of the sblock if there isn't any space left in this block. */
1328 struct sdata *next_free;
1329
1330 /* Start of data. */
1331 struct sdata first_data;
1332 };
1333
1334 /* Number of Lisp strings in a string_block structure. The 1020 is
1335 1024 minus malloc overhead. */
1336
1337 #define STRING_BLOCK_SIZE \
1338 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1339
1340 /* Structure describing a block from which Lisp_String structures
1341 are allocated. */
1342
1343 struct string_block
1344 {
1345 struct string_block *next;
1346 struct Lisp_String strings[STRING_BLOCK_SIZE];
1347 };
1348
1349 /* Head and tail of the list of sblock structures holding Lisp string
1350 data. We always allocate from current_sblock. The NEXT pointers
1351 in the sblock structures go from oldest_sblock to current_sblock. */
1352
1353 static struct sblock *oldest_sblock, *current_sblock;
1354
1355 /* List of sblocks for large strings. */
1356
1357 static struct sblock *large_sblocks;
1358
1359 /* List of string_block structures, and how many there are. */
1360
1361 static struct string_block *string_blocks;
1362 static int n_string_blocks;
1363
1364 /* Free-list of Lisp_Strings. */
1365
1366 static struct Lisp_String *string_free_list;
1367
1368 /* Number of live and free Lisp_Strings. */
1369
1370 static int total_strings, total_free_strings;
1371
1372 /* Number of bytes used by live strings. */
1373
1374 static int total_string_size;
1375
1376 /* Given a pointer to a Lisp_String S which is on the free-list
1377 string_free_list, return a pointer to its successor in the
1378 free-list. */
1379
1380 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1381
1382 /* Return a pointer to the sdata structure belonging to Lisp string S.
1383 S must be live, i.e. S->data must not be null. S->data is actually
1384 a pointer to the `u.data' member of its sdata structure; the
1385 structure starts at a constant offset in front of that. */
1386
1387 #ifdef GC_CHECK_STRING_BYTES
1388
1389 #define SDATA_OF_STRING(S) \
1390 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1391 - sizeof (EMACS_INT)))
1392
1393 #else /* not GC_CHECK_STRING_BYTES */
1394
1395 #define SDATA_OF_STRING(S) \
1396 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1397
1398 #endif /* not GC_CHECK_STRING_BYTES */
1399
1400 /* Value is the size of an sdata structure large enough to hold NBYTES
1401 bytes of string data. The value returned includes a terminating
1402 NUL byte, the size of the sdata structure, and padding. */
1403
1404 #ifdef GC_CHECK_STRING_BYTES
1405
1406 #define SDATA_SIZE(NBYTES) \
1407 ((sizeof (struct Lisp_String *) \
1408 + (NBYTES) + 1 \
1409 + sizeof (EMACS_INT) \
1410 + sizeof (EMACS_INT) - 1) \
1411 & ~(sizeof (EMACS_INT) - 1))
1412
1413 #else /* not GC_CHECK_STRING_BYTES */
1414
1415 #define SDATA_SIZE(NBYTES) \
1416 ((sizeof (struct Lisp_String *) \
1417 + (NBYTES) + 1 \
1418 + sizeof (EMACS_INT) - 1) \
1419 & ~(sizeof (EMACS_INT) - 1))
1420
1421 #endif /* not GC_CHECK_STRING_BYTES */
1422
1423 /* Initialize string allocation. Called from init_alloc_once. */
1424
1425 void
1426 init_strings ()
1427 {
1428 total_strings = total_free_strings = total_string_size = 0;
1429 oldest_sblock = current_sblock = large_sblocks = NULL;
1430 string_blocks = NULL;
1431 n_string_blocks = 0;
1432 string_free_list = NULL;
1433 }
1434
1435
1436 #ifdef GC_CHECK_STRING_BYTES
1437
1438 static int check_string_bytes_count;
1439
1440 void check_string_bytes P_ ((int));
1441 void check_sblock P_ ((struct sblock *));
1442
1443 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1444
1445
1446 /* Like GC_STRING_BYTES, but with debugging check. */
1447
1448 int
1449 string_bytes (s)
1450 struct Lisp_String *s;
1451 {
1452 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1453 if (!PURE_POINTER_P (s)
1454 && s->data
1455 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1456 abort ();
1457 return nbytes;
1458 }
1459
1460 /* Check validity of Lisp strings' string_bytes member in B. */
1461
1462 void
1463 check_sblock (b)
1464 struct sblock *b;
1465 {
1466 struct sdata *from, *end, *from_end;
1467
1468 end = b->next_free;
1469
1470 for (from = &b->first_data; from < end; from = from_end)
1471 {
1472 /* Compute the next FROM here because copying below may
1473 overwrite data we need to compute it. */
1474 int nbytes;
1475
1476 /* Check that the string size recorded in the string is the
1477 same as the one recorded in the sdata structure. */
1478 if (from->string)
1479 CHECK_STRING_BYTES (from->string);
1480
1481 if (from->string)
1482 nbytes = GC_STRING_BYTES (from->string);
1483 else
1484 nbytes = SDATA_NBYTES (from);
1485
1486 nbytes = SDATA_SIZE (nbytes);
1487 from_end = (struct sdata *) ((char *) from + nbytes);
1488 }
1489 }
1490
1491
1492 /* Check validity of Lisp strings' string_bytes member. ALL_P
1493 non-zero means check all strings, otherwise check only most
1494 recently allocated strings. Used for hunting a bug. */
1495
1496 void
1497 check_string_bytes (all_p)
1498 int all_p;
1499 {
1500 if (all_p)
1501 {
1502 struct sblock *b;
1503
1504 for (b = large_sblocks; b; b = b->next)
1505 {
1506 struct Lisp_String *s = b->first_data.string;
1507 if (s)
1508 CHECK_STRING_BYTES (s);
1509 }
1510
1511 for (b = oldest_sblock; b; b = b->next)
1512 check_sblock (b);
1513 }
1514 else
1515 check_sblock (current_sblock);
1516 }
1517
1518 #endif /* GC_CHECK_STRING_BYTES */
1519
1520
1521 /* Return a new Lisp_String. */
1522
1523 static struct Lisp_String *
1524 allocate_string ()
1525 {
1526 struct Lisp_String *s;
1527
1528 /* If the free-list is empty, allocate a new string_block, and
1529 add all the Lisp_Strings in it to the free-list. */
1530 if (string_free_list == NULL)
1531 {
1532 struct string_block *b;
1533 int i;
1534
1535 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1536 bzero (b, sizeof *b);
1537 b->next = string_blocks;
1538 string_blocks = b;
1539 ++n_string_blocks;
1540
1541 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1542 {
1543 s = b->strings + i;
1544 NEXT_FREE_LISP_STRING (s) = string_free_list;
1545 string_free_list = s;
1546 }
1547
1548 total_free_strings += STRING_BLOCK_SIZE;
1549 }
1550
1551 /* Pop a Lisp_String off the free-list. */
1552 s = string_free_list;
1553 string_free_list = NEXT_FREE_LISP_STRING (s);
1554
1555 /* Probably not strictly necessary, but play it safe. */
1556 bzero (s, sizeof *s);
1557
1558 --total_free_strings;
1559 ++total_strings;
1560 ++strings_consed;
1561 consing_since_gc += sizeof *s;
1562
1563 #ifdef GC_CHECK_STRING_BYTES
1564 if (!noninteractive
1565 #ifdef MAC_OS8
1566 && current_sblock
1567 #endif
1568 )
1569 {
1570 if (++check_string_bytes_count == 200)
1571 {
1572 check_string_bytes_count = 0;
1573 check_string_bytes (1);
1574 }
1575 else
1576 check_string_bytes (0);
1577 }
1578 #endif /* GC_CHECK_STRING_BYTES */
1579
1580 return s;
1581 }
1582
1583
1584 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1585 plus a NUL byte at the end. Allocate an sdata structure for S, and
1586 set S->data to its `u.data' member. Store a NUL byte at the end of
1587 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1588 S->data if it was initially non-null. */
1589
1590 void
1591 allocate_string_data (s, nchars, nbytes)
1592 struct Lisp_String *s;
1593 int nchars, nbytes;
1594 {
1595 struct sdata *data, *old_data;
1596 struct sblock *b;
1597 int needed, old_nbytes;
1598
1599 /* Determine the number of bytes needed to store NBYTES bytes
1600 of string data. */
1601 needed = SDATA_SIZE (nbytes);
1602
1603 if (nbytes > LARGE_STRING_BYTES)
1604 {
1605 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1606
1607 #ifdef DOUG_LEA_MALLOC
1608 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1609 because mapped region contents are not preserved in
1610 a dumped Emacs.
1611
1612 In case you think of allowing it in a dumped Emacs at the
1613 cost of not being able to re-dump, there's another reason:
1614 mmap'ed data typically have an address towards the top of the
1615 address space, which won't fit into an EMACS_INT (at least on
1616 32-bit systems with the current tagging scheme). --fx */
1617 mallopt (M_MMAP_MAX, 0);
1618 #endif
1619
1620 b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
1621
1622 #ifdef DOUG_LEA_MALLOC
1623 /* Back to a reasonable maximum of mmap'ed areas. */
1624 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1625 #endif
1626
1627 b->next_free = &b->first_data;
1628 b->first_data.string = NULL;
1629 b->next = large_sblocks;
1630 large_sblocks = b;
1631 }
1632 else if (current_sblock == NULL
1633 || (((char *) current_sblock + SBLOCK_SIZE
1634 - (char *) current_sblock->next_free)
1635 < needed))
1636 {
1637 /* Not enough room in the current sblock. */
1638 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1639 b->next_free = &b->first_data;
1640 b->first_data.string = NULL;
1641 b->next = NULL;
1642
1643 if (current_sblock)
1644 current_sblock->next = b;
1645 else
1646 oldest_sblock = b;
1647 current_sblock = b;
1648 }
1649 else
1650 b = current_sblock;
1651
1652 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1653 old_nbytes = GC_STRING_BYTES (s);
1654
1655 data = b->next_free;
1656 data->string = s;
1657 s->data = SDATA_DATA (data);
1658 #ifdef GC_CHECK_STRING_BYTES
1659 SDATA_NBYTES (data) = nbytes;
1660 #endif
1661 s->size = nchars;
1662 s->size_byte = nbytes;
1663 s->data[nbytes] = '\0';
1664 b->next_free = (struct sdata *) ((char *) data + needed);
1665
1666 /* If S had already data assigned, mark that as free by setting its
1667 string back-pointer to null, and recording the size of the data
1668 in it. */
1669 if (old_data)
1670 {
1671 SDATA_NBYTES (old_data) = old_nbytes;
1672 old_data->string = NULL;
1673 }
1674
1675 consing_since_gc += needed;
1676 }
1677
1678
1679 /* Sweep and compact strings. */
1680
1681 static void
1682 sweep_strings ()
1683 {
1684 struct string_block *b, *next;
1685 struct string_block *live_blocks = NULL;
1686
1687 string_free_list = NULL;
1688 total_strings = total_free_strings = 0;
1689 total_string_size = 0;
1690
1691 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1692 for (b = string_blocks; b; b = next)
1693 {
1694 int i, nfree = 0;
1695 struct Lisp_String *free_list_before = string_free_list;
1696
1697 next = b->next;
1698
1699 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1700 {
1701 struct Lisp_String *s = b->strings + i;
1702
1703 if (s->data)
1704 {
1705 /* String was not on free-list before. */
1706 if (STRING_MARKED_P (s))
1707 {
1708 /* String is live; unmark it and its intervals. */
1709 UNMARK_STRING (s);
1710
1711 if (!NULL_INTERVAL_P (s->intervals))
1712 UNMARK_BALANCE_INTERVALS (s->intervals);
1713
1714 ++total_strings;
1715 total_string_size += STRING_BYTES (s);
1716 }
1717 else
1718 {
1719 /* String is dead. Put it on the free-list. */
1720 struct sdata *data = SDATA_OF_STRING (s);
1721
1722 /* Save the size of S in its sdata so that we know
1723 how large that is. Reset the sdata's string
1724 back-pointer so that we know it's free. */
1725 #ifdef GC_CHECK_STRING_BYTES
1726 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
1727 abort ();
1728 #else
1729 data->u.nbytes = GC_STRING_BYTES (s);
1730 #endif
1731 data->string = NULL;
1732
1733 /* Reset the strings's `data' member so that we
1734 know it's free. */
1735 s->data = NULL;
1736
1737 /* Put the string on the free-list. */
1738 NEXT_FREE_LISP_STRING (s) = string_free_list;
1739 string_free_list = s;
1740 ++nfree;
1741 }
1742 }
1743 else
1744 {
1745 /* S was on the free-list before. Put it there again. */
1746 NEXT_FREE_LISP_STRING (s) = string_free_list;
1747 string_free_list = s;
1748 ++nfree;
1749 }
1750 }
1751
1752 /* Free blocks that contain free Lisp_Strings only, except
1753 the first two of them. */
1754 if (nfree == STRING_BLOCK_SIZE
1755 && total_free_strings > STRING_BLOCK_SIZE)
1756 {
1757 lisp_free (b);
1758 --n_string_blocks;
1759 string_free_list = free_list_before;
1760 }
1761 else
1762 {
1763 total_free_strings += nfree;
1764 b->next = live_blocks;
1765 live_blocks = b;
1766 }
1767 }
1768
1769 string_blocks = live_blocks;
1770 free_large_strings ();
1771 compact_small_strings ();
1772 }
1773
1774
1775 /* Free dead large strings. */
1776
1777 static void
1778 free_large_strings ()
1779 {
1780 struct sblock *b, *next;
1781 struct sblock *live_blocks = NULL;
1782
1783 for (b = large_sblocks; b; b = next)
1784 {
1785 next = b->next;
1786
1787 if (b->first_data.string == NULL)
1788 lisp_free (b);
1789 else
1790 {
1791 b->next = live_blocks;
1792 live_blocks = b;
1793 }
1794 }
1795
1796 large_sblocks = live_blocks;
1797 }
1798
1799
1800 /* Compact data of small strings. Free sblocks that don't contain
1801 data of live strings after compaction. */
1802
1803 static void
1804 compact_small_strings ()
1805 {
1806 struct sblock *b, *tb, *next;
1807 struct sdata *from, *to, *end, *tb_end;
1808 struct sdata *to_end, *from_end;
1809
1810 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1811 to, and TB_END is the end of TB. */
1812 tb = oldest_sblock;
1813 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1814 to = &tb->first_data;
1815
1816 /* Step through the blocks from the oldest to the youngest. We
1817 expect that old blocks will stabilize over time, so that less
1818 copying will happen this way. */
1819 for (b = oldest_sblock; b; b = b->next)
1820 {
1821 end = b->next_free;
1822 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1823
1824 for (from = &b->first_data; from < end; from = from_end)
1825 {
1826 /* Compute the next FROM here because copying below may
1827 overwrite data we need to compute it. */
1828 int nbytes;
1829
1830 #ifdef GC_CHECK_STRING_BYTES
1831 /* Check that the string size recorded in the string is the
1832 same as the one recorded in the sdata structure. */
1833 if (from->string
1834 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
1835 abort ();
1836 #endif /* GC_CHECK_STRING_BYTES */
1837
1838 if (from->string)
1839 nbytes = GC_STRING_BYTES (from->string);
1840 else
1841 nbytes = SDATA_NBYTES (from);
1842
1843 nbytes = SDATA_SIZE (nbytes);
1844 from_end = (struct sdata *) ((char *) from + nbytes);
1845
1846 /* FROM->string non-null means it's alive. Copy its data. */
1847 if (from->string)
1848 {
1849 /* If TB is full, proceed with the next sblock. */
1850 to_end = (struct sdata *) ((char *) to + nbytes);
1851 if (to_end > tb_end)
1852 {
1853 tb->next_free = to;
1854 tb = tb->next;
1855 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1856 to = &tb->first_data;
1857 to_end = (struct sdata *) ((char *) to + nbytes);
1858 }
1859
1860 /* Copy, and update the string's `data' pointer. */
1861 if (from != to)
1862 {
1863 xassert (tb != b || to <= from);
1864 safe_bcopy ((char *) from, (char *) to, nbytes);
1865 to->string->data = SDATA_DATA (to);
1866 }
1867
1868 /* Advance past the sdata we copied to. */
1869 to = to_end;
1870 }
1871 }
1872 }
1873
1874 /* The rest of the sblocks following TB don't contain live data, so
1875 we can free them. */
1876 for (b = tb->next; b; b = next)
1877 {
1878 next = b->next;
1879 lisp_free (b);
1880 }
1881
1882 tb->next_free = to;
1883 tb->next = NULL;
1884 current_sblock = tb;
1885 }
1886
1887
1888 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1889 doc: /* Return a newly created string of length LENGTH, with each element being INIT.
1890 Both LENGTH and INIT must be numbers. */)
1891 (length, init)
1892 Lisp_Object length, init;
1893 {
1894 register Lisp_Object val;
1895 register unsigned char *p, *end;
1896 int c, nbytes;
1897
1898 CHECK_NATNUM (length);
1899 CHECK_NUMBER (init);
1900
1901 c = XINT (init);
1902 if (SINGLE_BYTE_CHAR_P (c))
1903 {
1904 nbytes = XINT (length);
1905 val = make_uninit_string (nbytes);
1906 p = SDATA (val);
1907 end = p + SCHARS (val);
1908 while (p != end)
1909 *p++ = c;
1910 }
1911 else
1912 {
1913 unsigned char str[MAX_MULTIBYTE_LENGTH];
1914 int len = CHAR_STRING (c, str);
1915
1916 nbytes = len * XINT (length);
1917 val = make_uninit_multibyte_string (XINT (length), nbytes);
1918 p = SDATA (val);
1919 end = p + nbytes;
1920 while (p != end)
1921 {
1922 bcopy (str, p, len);
1923 p += len;
1924 }
1925 }
1926
1927 *p = 0;
1928 return val;
1929 }
1930
1931
1932 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
1933 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
1934 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
1935 (length, init)
1936 Lisp_Object length, init;
1937 {
1938 register Lisp_Object val;
1939 struct Lisp_Bool_Vector *p;
1940 int real_init, i;
1941 int length_in_chars, length_in_elts, bits_per_value;
1942
1943 CHECK_NATNUM (length);
1944
1945 bits_per_value = sizeof (EMACS_INT) * BITS_PER_CHAR;
1946
1947 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
1948 length_in_chars = ((XFASTINT (length) + BITS_PER_CHAR - 1) / BITS_PER_CHAR);
1949
1950 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1951 slot `size' of the struct Lisp_Bool_Vector. */
1952 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1953 p = XBOOL_VECTOR (val);
1954
1955 /* Get rid of any bits that would cause confusion. */
1956 p->vector_size = 0;
1957 XSETBOOL_VECTOR (val, p);
1958 p->size = XFASTINT (length);
1959
1960 real_init = (NILP (init) ? 0 : -1);
1961 for (i = 0; i < length_in_chars ; i++)
1962 p->data[i] = real_init;
1963
1964 /* Clear the extraneous bits in the last byte. */
1965 if (XINT (length) != length_in_chars * BITS_PER_CHAR)
1966 XBOOL_VECTOR (val)->data[length_in_chars - 1]
1967 &= (1 << (XINT (length) % BITS_PER_CHAR)) - 1;
1968
1969 return val;
1970 }
1971
1972
1973 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
1974 of characters from the contents. This string may be unibyte or
1975 multibyte, depending on the contents. */
1976
1977 Lisp_Object
1978 make_string (contents, nbytes)
1979 const char *contents;
1980 int nbytes;
1981 {
1982 register Lisp_Object val;
1983 int nchars, multibyte_nbytes;
1984
1985 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
1986 if (nbytes == nchars || nbytes != multibyte_nbytes)
1987 /* CONTENTS contains no multibyte sequences or contains an invalid
1988 multibyte sequence. We must make unibyte string. */
1989 val = make_unibyte_string (contents, nbytes);
1990 else
1991 val = make_multibyte_string (contents, nchars, nbytes);
1992 return val;
1993 }
1994
1995
1996 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
1997
1998 Lisp_Object
1999 make_unibyte_string (contents, length)
2000 const char *contents;
2001 int length;
2002 {
2003 register Lisp_Object val;
2004 val = make_uninit_string (length);
2005 bcopy (contents, SDATA (val), length);
2006 STRING_SET_UNIBYTE (val);
2007 return val;
2008 }
2009
2010
2011 /* Make a multibyte string from NCHARS characters occupying NBYTES
2012 bytes at CONTENTS. */
2013
2014 Lisp_Object
2015 make_multibyte_string (contents, nchars, nbytes)
2016 const char *contents;
2017 int nchars, nbytes;
2018 {
2019 register Lisp_Object val;
2020 val = make_uninit_multibyte_string (nchars, nbytes);
2021 bcopy (contents, SDATA (val), nbytes);
2022 return val;
2023 }
2024
2025
2026 /* Make a string from NCHARS characters occupying NBYTES bytes at
2027 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2028
2029 Lisp_Object
2030 make_string_from_bytes (contents, nchars, nbytes)
2031 const char *contents;
2032 int nchars, nbytes;
2033 {
2034 register Lisp_Object val;
2035 val = make_uninit_multibyte_string (nchars, nbytes);
2036 bcopy (contents, SDATA (val), nbytes);
2037 if (SBYTES (val) == SCHARS (val))
2038 STRING_SET_UNIBYTE (val);
2039 return val;
2040 }
2041
2042
2043 /* Make a string from NCHARS characters occupying NBYTES bytes at
2044 CONTENTS. The argument MULTIBYTE controls whether to label the
2045 string as multibyte. If NCHARS is negative, it counts the number of
2046 characters by itself. */
2047
2048 Lisp_Object
2049 make_specified_string (contents, nchars, nbytes, multibyte)
2050 const char *contents;
2051 int nchars, nbytes;
2052 int multibyte;
2053 {
2054 register Lisp_Object val;
2055
2056 if (nchars < 0)
2057 {
2058 if (multibyte)
2059 nchars = multibyte_chars_in_text (contents, nbytes);
2060 else
2061 nchars = nbytes;
2062 }
2063 val = make_uninit_multibyte_string (nchars, nbytes);
2064 bcopy (contents, SDATA (val), nbytes);
2065 if (!multibyte)
2066 STRING_SET_UNIBYTE (val);
2067 return val;
2068 }
2069
2070
2071 /* Make a string from the data at STR, treating it as multibyte if the
2072 data warrants. */
2073
2074 Lisp_Object
2075 build_string (str)
2076 const char *str;
2077 {
2078 return make_string (str, strlen (str));
2079 }
2080
2081
2082 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2083 occupying LENGTH bytes. */
2084
2085 Lisp_Object
2086 make_uninit_string (length)
2087 int length;
2088 {
2089 Lisp_Object val;
2090 val = make_uninit_multibyte_string (length, length);
2091 STRING_SET_UNIBYTE (val);
2092 return val;
2093 }
2094
2095
2096 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2097 which occupy NBYTES bytes. */
2098
2099 Lisp_Object
2100 make_uninit_multibyte_string (nchars, nbytes)
2101 int nchars, nbytes;
2102 {
2103 Lisp_Object string;
2104 struct Lisp_String *s;
2105
2106 if (nchars < 0)
2107 abort ();
2108
2109 s = allocate_string ();
2110 allocate_string_data (s, nchars, nbytes);
2111 XSETSTRING (string, s);
2112 string_chars_consed += nbytes;
2113 return string;
2114 }
2115
2116
2117 \f
2118 /***********************************************************************
2119 Float Allocation
2120 ***********************************************************************/
2121
2122 /* We store float cells inside of float_blocks, allocating a new
2123 float_block with malloc whenever necessary. Float cells reclaimed
2124 by GC are put on a free list to be reallocated before allocating
2125 any new float cells from the latest float_block. */
2126
2127 #define FLOAT_BLOCK_SIZE \
2128 (((BLOCK_BYTES - sizeof (struct float_block *)) * CHAR_BIT) \
2129 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2130
2131 #define GETMARKBIT(block,n) \
2132 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2133 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2134 & 1)
2135
2136 #define SETMARKBIT(block,n) \
2137 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2138 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2139
2140 #define UNSETMARKBIT(block,n) \
2141 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2142 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2143
2144 #define FLOAT_BLOCK(fptr) \
2145 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2146
2147 #define FLOAT_INDEX(fptr) \
2148 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2149
2150 struct float_block
2151 {
2152 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2153 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2154 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2155 struct float_block *next;
2156 };
2157
2158 #define FLOAT_MARKED_P(fptr) \
2159 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2160
2161 #define FLOAT_MARK(fptr) \
2162 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2163
2164 #define FLOAT_UNMARK(fptr) \
2165 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2166
2167 /* Current float_block. */
2168
2169 struct float_block *float_block;
2170
2171 /* Index of first unused Lisp_Float in the current float_block. */
2172
2173 int float_block_index;
2174
2175 /* Total number of float blocks now in use. */
2176
2177 int n_float_blocks;
2178
2179 /* Free-list of Lisp_Floats. */
2180
2181 struct Lisp_Float *float_free_list;
2182
2183
2184 /* Initialize float allocation. */
2185
2186 void
2187 init_float ()
2188 {
2189 float_block = NULL;
2190 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2191 float_free_list = 0;
2192 n_float_blocks = 0;
2193 }
2194
2195
2196 /* Explicitly free a float cell by putting it on the free-list. */
2197
2198 void
2199 free_float (ptr)
2200 struct Lisp_Float *ptr;
2201 {
2202 *(struct Lisp_Float **)&ptr->data = float_free_list;
2203 float_free_list = ptr;
2204 }
2205
2206
2207 /* Return a new float object with value FLOAT_VALUE. */
2208
2209 Lisp_Object
2210 make_float (float_value)
2211 double float_value;
2212 {
2213 register Lisp_Object val;
2214
2215 if (float_free_list)
2216 {
2217 /* We use the data field for chaining the free list
2218 so that we won't use the same field that has the mark bit. */
2219 XSETFLOAT (val, float_free_list);
2220 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2221 }
2222 else
2223 {
2224 if (float_block_index == FLOAT_BLOCK_SIZE)
2225 {
2226 register struct float_block *new;
2227
2228 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2229 MEM_TYPE_FLOAT);
2230 new->next = float_block;
2231 float_block = new;
2232 float_block_index = 0;
2233 n_float_blocks++;
2234 }
2235 XSETFLOAT (val, &float_block->floats[float_block_index++]);
2236 }
2237
2238 XFLOAT_DATA (val) = float_value;
2239 FLOAT_UNMARK (XFLOAT (val));
2240 consing_since_gc += sizeof (struct Lisp_Float);
2241 floats_consed++;
2242 return val;
2243 }
2244
2245
2246 \f
2247 /***********************************************************************
2248 Cons Allocation
2249 ***********************************************************************/
2250
2251 /* We store cons cells inside of cons_blocks, allocating a new
2252 cons_block with malloc whenever necessary. Cons cells reclaimed by
2253 GC are put on a free list to be reallocated before allocating
2254 any new cons cells from the latest cons_block. */
2255
2256 #define CONS_BLOCK_SIZE \
2257 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2258 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2259
2260 #define CONS_BLOCK(fptr) \
2261 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2262
2263 #define CONS_INDEX(fptr) \
2264 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2265
2266 struct cons_block
2267 {
2268 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2269 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2270 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2271 struct cons_block *next;
2272 };
2273
2274 #define CONS_MARKED_P(fptr) \
2275 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2276
2277 #define CONS_MARK(fptr) \
2278 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2279
2280 #define CONS_UNMARK(fptr) \
2281 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2282
2283 /* Current cons_block. */
2284
2285 struct cons_block *cons_block;
2286
2287 /* Index of first unused Lisp_Cons in the current block. */
2288
2289 int cons_block_index;
2290
2291 /* Free-list of Lisp_Cons structures. */
2292
2293 struct Lisp_Cons *cons_free_list;
2294
2295 /* Total number of cons blocks now in use. */
2296
2297 int n_cons_blocks;
2298
2299
2300 /* Initialize cons allocation. */
2301
2302 void
2303 init_cons ()
2304 {
2305 cons_block = NULL;
2306 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2307 cons_free_list = 0;
2308 n_cons_blocks = 0;
2309 }
2310
2311
2312 /* Explicitly free a cons cell by putting it on the free-list. */
2313
2314 void
2315 free_cons (ptr)
2316 struct Lisp_Cons *ptr;
2317 {
2318 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2319 #if GC_MARK_STACK
2320 ptr->car = Vdead;
2321 #endif
2322 cons_free_list = ptr;
2323 }
2324
2325
2326 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2327 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2328 (car, cdr)
2329 Lisp_Object car, cdr;
2330 {
2331 register Lisp_Object val;
2332
2333 if (cons_free_list)
2334 {
2335 /* We use the cdr for chaining the free list
2336 so that we won't use the same field that has the mark bit. */
2337 XSETCONS (val, cons_free_list);
2338 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2339 }
2340 else
2341 {
2342 if (cons_block_index == CONS_BLOCK_SIZE)
2343 {
2344 register struct cons_block *new;
2345 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2346 MEM_TYPE_CONS);
2347 new->next = cons_block;
2348 cons_block = new;
2349 cons_block_index = 0;
2350 n_cons_blocks++;
2351 }
2352 XSETCONS (val, &cons_block->conses[cons_block_index++]);
2353 }
2354
2355 XSETCAR (val, car);
2356 XSETCDR (val, cdr);
2357 CONS_UNMARK (XCONS (val));
2358 consing_since_gc += sizeof (struct Lisp_Cons);
2359 cons_cells_consed++;
2360 return val;
2361 }
2362
2363
2364 /* Make a list of 2, 3, 4 or 5 specified objects. */
2365
2366 Lisp_Object
2367 list2 (arg1, arg2)
2368 Lisp_Object arg1, arg2;
2369 {
2370 return Fcons (arg1, Fcons (arg2, Qnil));
2371 }
2372
2373
2374 Lisp_Object
2375 list3 (arg1, arg2, arg3)
2376 Lisp_Object arg1, arg2, arg3;
2377 {
2378 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2379 }
2380
2381
2382 Lisp_Object
2383 list4 (arg1, arg2, arg3, arg4)
2384 Lisp_Object arg1, arg2, arg3, arg4;
2385 {
2386 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2387 }
2388
2389
2390 Lisp_Object
2391 list5 (arg1, arg2, arg3, arg4, arg5)
2392 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2393 {
2394 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2395 Fcons (arg5, Qnil)))));
2396 }
2397
2398
2399 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2400 doc: /* Return a newly created list with specified arguments as elements.
2401 Any number of arguments, even zero arguments, are allowed.
2402 usage: (list &rest OBJECTS) */)
2403 (nargs, args)
2404 int nargs;
2405 register Lisp_Object *args;
2406 {
2407 register Lisp_Object val;
2408 val = Qnil;
2409
2410 while (nargs > 0)
2411 {
2412 nargs--;
2413 val = Fcons (args[nargs], val);
2414 }
2415 return val;
2416 }
2417
2418
2419 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2420 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2421 (length, init)
2422 register Lisp_Object length, init;
2423 {
2424 register Lisp_Object val;
2425 register int size;
2426
2427 CHECK_NATNUM (length);
2428 size = XFASTINT (length);
2429
2430 val = Qnil;
2431 while (size > 0)
2432 {
2433 val = Fcons (init, val);
2434 --size;
2435
2436 if (size > 0)
2437 {
2438 val = Fcons (init, val);
2439 --size;
2440
2441 if (size > 0)
2442 {
2443 val = Fcons (init, val);
2444 --size;
2445
2446 if (size > 0)
2447 {
2448 val = Fcons (init, val);
2449 --size;
2450
2451 if (size > 0)
2452 {
2453 val = Fcons (init, val);
2454 --size;
2455 }
2456 }
2457 }
2458 }
2459
2460 QUIT;
2461 }
2462
2463 return val;
2464 }
2465
2466
2467 \f
2468 /***********************************************************************
2469 Vector Allocation
2470 ***********************************************************************/
2471
2472 /* Singly-linked list of all vectors. */
2473
2474 struct Lisp_Vector *all_vectors;
2475
2476 /* Total number of vector-like objects now in use. */
2477
2478 int n_vectors;
2479
2480
2481 /* Value is a pointer to a newly allocated Lisp_Vector structure
2482 with room for LEN Lisp_Objects. */
2483
2484 static struct Lisp_Vector *
2485 allocate_vectorlike (len, type)
2486 EMACS_INT len;
2487 enum mem_type type;
2488 {
2489 struct Lisp_Vector *p;
2490 size_t nbytes;
2491
2492 #ifdef DOUG_LEA_MALLOC
2493 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2494 because mapped region contents are not preserved in
2495 a dumped Emacs. */
2496 mallopt (M_MMAP_MAX, 0);
2497 #endif
2498
2499 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2500 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2501
2502 #ifdef DOUG_LEA_MALLOC
2503 /* Back to a reasonable maximum of mmap'ed areas. */
2504 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2505 #endif
2506
2507 consing_since_gc += nbytes;
2508 vector_cells_consed += len;
2509
2510 p->next = all_vectors;
2511 all_vectors = p;
2512 ++n_vectors;
2513 return p;
2514 }
2515
2516
2517 /* Allocate a vector with NSLOTS slots. */
2518
2519 struct Lisp_Vector *
2520 allocate_vector (nslots)
2521 EMACS_INT nslots;
2522 {
2523 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2524 v->size = nslots;
2525 return v;
2526 }
2527
2528
2529 /* Allocate other vector-like structures. */
2530
2531 struct Lisp_Hash_Table *
2532 allocate_hash_table ()
2533 {
2534 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2535 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2536 EMACS_INT i;
2537
2538 v->size = len;
2539 for (i = 0; i < len; ++i)
2540 v->contents[i] = Qnil;
2541
2542 return (struct Lisp_Hash_Table *) v;
2543 }
2544
2545
2546 struct window *
2547 allocate_window ()
2548 {
2549 EMACS_INT len = VECSIZE (struct window);
2550 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2551 EMACS_INT i;
2552
2553 for (i = 0; i < len; ++i)
2554 v->contents[i] = Qnil;
2555 v->size = len;
2556
2557 return (struct window *) v;
2558 }
2559
2560
2561 struct frame *
2562 allocate_frame ()
2563 {
2564 EMACS_INT len = VECSIZE (struct frame);
2565 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2566 EMACS_INT i;
2567
2568 for (i = 0; i < len; ++i)
2569 v->contents[i] = make_number (0);
2570 v->size = len;
2571 return (struct frame *) v;
2572 }
2573
2574
2575 struct Lisp_Process *
2576 allocate_process ()
2577 {
2578 EMACS_INT len = VECSIZE (struct Lisp_Process);
2579 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2580 EMACS_INT i;
2581
2582 for (i = 0; i < len; ++i)
2583 v->contents[i] = Qnil;
2584 v->size = len;
2585
2586 return (struct Lisp_Process *) v;
2587 }
2588
2589
2590 struct Lisp_Vector *
2591 allocate_other_vector (len)
2592 EMACS_INT len;
2593 {
2594 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2595 EMACS_INT i;
2596
2597 for (i = 0; i < len; ++i)
2598 v->contents[i] = Qnil;
2599 v->size = len;
2600
2601 return v;
2602 }
2603
2604
2605 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2606 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2607 See also the function `vector'. */)
2608 (length, init)
2609 register Lisp_Object length, init;
2610 {
2611 Lisp_Object vector;
2612 register EMACS_INT sizei;
2613 register int index;
2614 register struct Lisp_Vector *p;
2615
2616 CHECK_NATNUM (length);
2617 sizei = XFASTINT (length);
2618
2619 p = allocate_vector (sizei);
2620 for (index = 0; index < sizei; index++)
2621 p->contents[index] = init;
2622
2623 XSETVECTOR (vector, p);
2624 return vector;
2625 }
2626
2627
2628 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
2629 doc: /* Return a newly created char-table, with purpose PURPOSE.
2630 Each element is initialized to INIT, which defaults to nil.
2631 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
2632 The property's value should be an integer between 0 and 10. */)
2633 (purpose, init)
2634 register Lisp_Object purpose, init;
2635 {
2636 Lisp_Object vector;
2637 Lisp_Object n;
2638 CHECK_SYMBOL (purpose);
2639 n = Fget (purpose, Qchar_table_extra_slots);
2640 CHECK_NUMBER (n);
2641 if (XINT (n) < 0 || XINT (n) > 10)
2642 args_out_of_range (n, Qnil);
2643 /* Add 2 to the size for the defalt and parent slots. */
2644 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
2645 init);
2646 XCHAR_TABLE (vector)->top = Qt;
2647 XCHAR_TABLE (vector)->parent = Qnil;
2648 XCHAR_TABLE (vector)->purpose = purpose;
2649 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2650 return vector;
2651 }
2652
2653
2654 /* Return a newly created sub char table with default value DEFALT.
2655 Since a sub char table does not appear as a top level Emacs Lisp
2656 object, we don't need a Lisp interface to make it. */
2657
2658 Lisp_Object
2659 make_sub_char_table (defalt)
2660 Lisp_Object defalt;
2661 {
2662 Lisp_Object vector
2663 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
2664 XCHAR_TABLE (vector)->top = Qnil;
2665 XCHAR_TABLE (vector)->defalt = defalt;
2666 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2667 return vector;
2668 }
2669
2670
2671 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2672 doc: /* Return a newly created vector with specified arguments as elements.
2673 Any number of arguments, even zero arguments, are allowed.
2674 usage: (vector &rest OBJECTS) */)
2675 (nargs, args)
2676 register int nargs;
2677 Lisp_Object *args;
2678 {
2679 register Lisp_Object len, val;
2680 register int index;
2681 register struct Lisp_Vector *p;
2682
2683 XSETFASTINT (len, nargs);
2684 val = Fmake_vector (len, Qnil);
2685 p = XVECTOR (val);
2686 for (index = 0; index < nargs; index++)
2687 p->contents[index] = args[index];
2688 return val;
2689 }
2690
2691
2692 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2693 doc: /* Create a byte-code object with specified arguments as elements.
2694 The arguments should be the arglist, bytecode-string, constant vector,
2695 stack size, (optional) doc string, and (optional) interactive spec.
2696 The first four arguments are required; at most six have any
2697 significance.
2698 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2699 (nargs, args)
2700 register int nargs;
2701 Lisp_Object *args;
2702 {
2703 register Lisp_Object len, val;
2704 register int index;
2705 register struct Lisp_Vector *p;
2706
2707 XSETFASTINT (len, nargs);
2708 if (!NILP (Vpurify_flag))
2709 val = make_pure_vector ((EMACS_INT) nargs);
2710 else
2711 val = Fmake_vector (len, Qnil);
2712
2713 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2714 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2715 earlier because they produced a raw 8-bit string for byte-code
2716 and now such a byte-code string is loaded as multibyte while
2717 raw 8-bit characters converted to multibyte form. Thus, now we
2718 must convert them back to the original unibyte form. */
2719 args[1] = Fstring_as_unibyte (args[1]);
2720
2721 p = XVECTOR (val);
2722 for (index = 0; index < nargs; index++)
2723 {
2724 if (!NILP (Vpurify_flag))
2725 args[index] = Fpurecopy (args[index]);
2726 p->contents[index] = args[index];
2727 }
2728 XSETCOMPILED (val, p);
2729 return val;
2730 }
2731
2732
2733 \f
2734 /***********************************************************************
2735 Symbol Allocation
2736 ***********************************************************************/
2737
2738 /* Each symbol_block is just under 1020 bytes long, since malloc
2739 really allocates in units of powers of two and uses 4 bytes for its
2740 own overhead. */
2741
2742 #define SYMBOL_BLOCK_SIZE \
2743 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2744
2745 struct symbol_block
2746 {
2747 struct symbol_block *next;
2748 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
2749 };
2750
2751 /* Current symbol block and index of first unused Lisp_Symbol
2752 structure in it. */
2753
2754 struct symbol_block *symbol_block;
2755 int symbol_block_index;
2756
2757 /* List of free symbols. */
2758
2759 struct Lisp_Symbol *symbol_free_list;
2760
2761 /* Total number of symbol blocks now in use. */
2762
2763 int n_symbol_blocks;
2764
2765
2766 /* Initialize symbol allocation. */
2767
2768 void
2769 init_symbol ()
2770 {
2771 symbol_block = (struct symbol_block *) lisp_malloc (sizeof *symbol_block,
2772 MEM_TYPE_SYMBOL);
2773 symbol_block->next = 0;
2774 bzero ((char *) symbol_block->symbols, sizeof symbol_block->symbols);
2775 symbol_block_index = 0;
2776 symbol_free_list = 0;
2777 n_symbol_blocks = 1;
2778 }
2779
2780
2781 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
2782 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
2783 Its value and function definition are void, and its property list is nil. */)
2784 (name)
2785 Lisp_Object name;
2786 {
2787 register Lisp_Object val;
2788 register struct Lisp_Symbol *p;
2789
2790 CHECK_STRING (name);
2791
2792 if (symbol_free_list)
2793 {
2794 XSETSYMBOL (val, symbol_free_list);
2795 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
2796 }
2797 else
2798 {
2799 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
2800 {
2801 struct symbol_block *new;
2802 new = (struct symbol_block *) lisp_malloc (sizeof *new,
2803 MEM_TYPE_SYMBOL);
2804 new->next = symbol_block;
2805 symbol_block = new;
2806 symbol_block_index = 0;
2807 n_symbol_blocks++;
2808 }
2809 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index++]);
2810 }
2811
2812 p = XSYMBOL (val);
2813 p->xname = name;
2814 p->plist = Qnil;
2815 p->value = Qunbound;
2816 p->function = Qunbound;
2817 p->next = NULL;
2818 p->gcmarkbit = 0;
2819 p->interned = SYMBOL_UNINTERNED;
2820 p->constant = 0;
2821 p->indirect_variable = 0;
2822 consing_since_gc += sizeof (struct Lisp_Symbol);
2823 symbols_consed++;
2824 return val;
2825 }
2826
2827
2828 \f
2829 /***********************************************************************
2830 Marker (Misc) Allocation
2831 ***********************************************************************/
2832
2833 /* Allocation of markers and other objects that share that structure.
2834 Works like allocation of conses. */
2835
2836 #define MARKER_BLOCK_SIZE \
2837 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2838
2839 struct marker_block
2840 {
2841 struct marker_block *next;
2842 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
2843 };
2844
2845 struct marker_block *marker_block;
2846 int marker_block_index;
2847
2848 union Lisp_Misc *marker_free_list;
2849
2850 /* Total number of marker blocks now in use. */
2851
2852 int n_marker_blocks;
2853
2854 void
2855 init_marker ()
2856 {
2857 marker_block = (struct marker_block *) lisp_malloc (sizeof *marker_block,
2858 MEM_TYPE_MISC);
2859 marker_block->next = 0;
2860 bzero ((char *) marker_block->markers, sizeof marker_block->markers);
2861 marker_block_index = 0;
2862 marker_free_list = 0;
2863 n_marker_blocks = 1;
2864 }
2865
2866 /* Return a newly allocated Lisp_Misc object, with no substructure. */
2867
2868 Lisp_Object
2869 allocate_misc ()
2870 {
2871 Lisp_Object val;
2872
2873 if (marker_free_list)
2874 {
2875 XSETMISC (val, marker_free_list);
2876 marker_free_list = marker_free_list->u_free.chain;
2877 }
2878 else
2879 {
2880 if (marker_block_index == MARKER_BLOCK_SIZE)
2881 {
2882 struct marker_block *new;
2883 new = (struct marker_block *) lisp_malloc (sizeof *new,
2884 MEM_TYPE_MISC);
2885 new->next = marker_block;
2886 marker_block = new;
2887 marker_block_index = 0;
2888 n_marker_blocks++;
2889 }
2890 XSETMISC (val, &marker_block->markers[marker_block_index++]);
2891 }
2892
2893 consing_since_gc += sizeof (union Lisp_Misc);
2894 misc_objects_consed++;
2895 XMARKER (val)->gcmarkbit = 0;
2896 return val;
2897 }
2898
2899 /* Return a Lisp_Misc_Save_Value object containing POINTER and
2900 INTEGER. This is used to package C values to call record_unwind_protect.
2901 The unwind function can get the C values back using XSAVE_VALUE. */
2902
2903 Lisp_Object
2904 make_save_value (pointer, integer)
2905 void *pointer;
2906 int integer;
2907 {
2908 register Lisp_Object val;
2909 register struct Lisp_Save_Value *p;
2910
2911 val = allocate_misc ();
2912 XMISCTYPE (val) = Lisp_Misc_Save_Value;
2913 p = XSAVE_VALUE (val);
2914 p->pointer = pointer;
2915 p->integer = integer;
2916 return val;
2917 }
2918
2919 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
2920 doc: /* Return a newly allocated marker which does not point at any place. */)
2921 ()
2922 {
2923 register Lisp_Object val;
2924 register struct Lisp_Marker *p;
2925
2926 val = allocate_misc ();
2927 XMISCTYPE (val) = Lisp_Misc_Marker;
2928 p = XMARKER (val);
2929 p->buffer = 0;
2930 p->bytepos = 0;
2931 p->charpos = 0;
2932 p->next = NULL;
2933 p->insertion_type = 0;
2934 return val;
2935 }
2936
2937 /* Put MARKER back on the free list after using it temporarily. */
2938
2939 void
2940 free_marker (marker)
2941 Lisp_Object marker;
2942 {
2943 unchain_marker (XMARKER (marker));
2944
2945 XMISC (marker)->u_marker.type = Lisp_Misc_Free;
2946 XMISC (marker)->u_free.chain = marker_free_list;
2947 marker_free_list = XMISC (marker);
2948
2949 total_free_markers++;
2950 }
2951
2952 \f
2953 /* Return a newly created vector or string with specified arguments as
2954 elements. If all the arguments are characters that can fit
2955 in a string of events, make a string; otherwise, make a vector.
2956
2957 Any number of arguments, even zero arguments, are allowed. */
2958
2959 Lisp_Object
2960 make_event_array (nargs, args)
2961 register int nargs;
2962 Lisp_Object *args;
2963 {
2964 int i;
2965
2966 for (i = 0; i < nargs; i++)
2967 /* The things that fit in a string
2968 are characters that are in 0...127,
2969 after discarding the meta bit and all the bits above it. */
2970 if (!INTEGERP (args[i])
2971 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
2972 return Fvector (nargs, args);
2973
2974 /* Since the loop exited, we know that all the things in it are
2975 characters, so we can make a string. */
2976 {
2977 Lisp_Object result;
2978
2979 result = Fmake_string (make_number (nargs), make_number (0));
2980 for (i = 0; i < nargs; i++)
2981 {
2982 SSET (result, i, XINT (args[i]));
2983 /* Move the meta bit to the right place for a string char. */
2984 if (XINT (args[i]) & CHAR_META)
2985 SSET (result, i, SREF (result, i) | 0x80);
2986 }
2987
2988 return result;
2989 }
2990 }
2991
2992
2993 \f
2994 /************************************************************************
2995 C Stack Marking
2996 ************************************************************************/
2997
2998 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
2999
3000 /* Conservative C stack marking requires a method to identify possibly
3001 live Lisp objects given a pointer value. We do this by keeping
3002 track of blocks of Lisp data that are allocated in a red-black tree
3003 (see also the comment of mem_node which is the type of nodes in
3004 that tree). Function lisp_malloc adds information for an allocated
3005 block to the red-black tree with calls to mem_insert, and function
3006 lisp_free removes it with mem_delete. Functions live_string_p etc
3007 call mem_find to lookup information about a given pointer in the
3008 tree, and use that to determine if the pointer points to a Lisp
3009 object or not. */
3010
3011 /* Initialize this part of alloc.c. */
3012
3013 static void
3014 mem_init ()
3015 {
3016 mem_z.left = mem_z.right = MEM_NIL;
3017 mem_z.parent = NULL;
3018 mem_z.color = MEM_BLACK;
3019 mem_z.start = mem_z.end = NULL;
3020 mem_root = MEM_NIL;
3021 }
3022
3023
3024 /* Value is a pointer to the mem_node containing START. Value is
3025 MEM_NIL if there is no node in the tree containing START. */
3026
3027 static INLINE struct mem_node *
3028 mem_find (start)
3029 void *start;
3030 {
3031 struct mem_node *p;
3032
3033 if (start < min_heap_address || start > max_heap_address)
3034 return MEM_NIL;
3035
3036 /* Make the search always successful to speed up the loop below. */
3037 mem_z.start = start;
3038 mem_z.end = (char *) start + 1;
3039
3040 p = mem_root;
3041 while (start < p->start || start >= p->end)
3042 p = start < p->start ? p->left : p->right;
3043 return p;
3044 }
3045
3046
3047 /* Insert a new node into the tree for a block of memory with start
3048 address START, end address END, and type TYPE. Value is a
3049 pointer to the node that was inserted. */
3050
3051 static struct mem_node *
3052 mem_insert (start, end, type)
3053 void *start, *end;
3054 enum mem_type type;
3055 {
3056 struct mem_node *c, *parent, *x;
3057
3058 if (start < min_heap_address)
3059 min_heap_address = start;
3060 if (end > max_heap_address)
3061 max_heap_address = end;
3062
3063 /* See where in the tree a node for START belongs. In this
3064 particular application, it shouldn't happen that a node is already
3065 present. For debugging purposes, let's check that. */
3066 c = mem_root;
3067 parent = NULL;
3068
3069 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3070
3071 while (c != MEM_NIL)
3072 {
3073 if (start >= c->start && start < c->end)
3074 abort ();
3075 parent = c;
3076 c = start < c->start ? c->left : c->right;
3077 }
3078
3079 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3080
3081 while (c != MEM_NIL)
3082 {
3083 parent = c;
3084 c = start < c->start ? c->left : c->right;
3085 }
3086
3087 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3088
3089 /* Create a new node. */
3090 #ifdef GC_MALLOC_CHECK
3091 x = (struct mem_node *) _malloc_internal (sizeof *x);
3092 if (x == NULL)
3093 abort ();
3094 #else
3095 x = (struct mem_node *) xmalloc (sizeof *x);
3096 #endif
3097 x->start = start;
3098 x->end = end;
3099 x->type = type;
3100 x->parent = parent;
3101 x->left = x->right = MEM_NIL;
3102 x->color = MEM_RED;
3103
3104 /* Insert it as child of PARENT or install it as root. */
3105 if (parent)
3106 {
3107 if (start < parent->start)
3108 parent->left = x;
3109 else
3110 parent->right = x;
3111 }
3112 else
3113 mem_root = x;
3114
3115 /* Re-establish red-black tree properties. */
3116 mem_insert_fixup (x);
3117
3118 return x;
3119 }
3120
3121
3122 /* Re-establish the red-black properties of the tree, and thereby
3123 balance the tree, after node X has been inserted; X is always red. */
3124
3125 static void
3126 mem_insert_fixup (x)
3127 struct mem_node *x;
3128 {
3129 while (x != mem_root && x->parent->color == MEM_RED)
3130 {
3131 /* X is red and its parent is red. This is a violation of
3132 red-black tree property #3. */
3133
3134 if (x->parent == x->parent->parent->left)
3135 {
3136 /* We're on the left side of our grandparent, and Y is our
3137 "uncle". */
3138 struct mem_node *y = x->parent->parent->right;
3139
3140 if (y->color == MEM_RED)
3141 {
3142 /* Uncle and parent are red but should be black because
3143 X is red. Change the colors accordingly and proceed
3144 with the grandparent. */
3145 x->parent->color = MEM_BLACK;
3146 y->color = MEM_BLACK;
3147 x->parent->parent->color = MEM_RED;
3148 x = x->parent->parent;
3149 }
3150 else
3151 {
3152 /* Parent and uncle have different colors; parent is
3153 red, uncle is black. */
3154 if (x == x->parent->right)
3155 {
3156 x = x->parent;
3157 mem_rotate_left (x);
3158 }
3159
3160 x->parent->color = MEM_BLACK;
3161 x->parent->parent->color = MEM_RED;
3162 mem_rotate_right (x->parent->parent);
3163 }
3164 }
3165 else
3166 {
3167 /* This is the symmetrical case of above. */
3168 struct mem_node *y = x->parent->parent->left;
3169
3170 if (y->color == MEM_RED)
3171 {
3172 x->parent->color = MEM_BLACK;
3173 y->color = MEM_BLACK;
3174 x->parent->parent->color = MEM_RED;
3175 x = x->parent->parent;
3176 }
3177 else
3178 {
3179 if (x == x->parent->left)
3180 {
3181 x = x->parent;
3182 mem_rotate_right (x);
3183 }
3184
3185 x->parent->color = MEM_BLACK;
3186 x->parent->parent->color = MEM_RED;
3187 mem_rotate_left (x->parent->parent);
3188 }
3189 }
3190 }
3191
3192 /* The root may have been changed to red due to the algorithm. Set
3193 it to black so that property #5 is satisfied. */
3194 mem_root->color = MEM_BLACK;
3195 }
3196
3197
3198 /* (x) (y)
3199 / \ / \
3200 a (y) ===> (x) c
3201 / \ / \
3202 b c a b */
3203
3204 static void
3205 mem_rotate_left (x)
3206 struct mem_node *x;
3207 {
3208 struct mem_node *y;
3209
3210 /* Turn y's left sub-tree into x's right sub-tree. */
3211 y = x->right;
3212 x->right = y->left;
3213 if (y->left != MEM_NIL)
3214 y->left->parent = x;
3215
3216 /* Y's parent was x's parent. */
3217 if (y != MEM_NIL)
3218 y->parent = x->parent;
3219
3220 /* Get the parent to point to y instead of x. */
3221 if (x->parent)
3222 {
3223 if (x == x->parent->left)
3224 x->parent->left = y;
3225 else
3226 x->parent->right = y;
3227 }
3228 else
3229 mem_root = y;
3230
3231 /* Put x on y's left. */
3232 y->left = x;
3233 if (x != MEM_NIL)
3234 x->parent = y;
3235 }
3236
3237
3238 /* (x) (Y)
3239 / \ / \
3240 (y) c ===> a (x)
3241 / \ / \
3242 a b b c */
3243
3244 static void
3245 mem_rotate_right (x)
3246 struct mem_node *x;
3247 {
3248 struct mem_node *y = x->left;
3249
3250 x->left = y->right;
3251 if (y->right != MEM_NIL)
3252 y->right->parent = x;
3253
3254 if (y != MEM_NIL)
3255 y->parent = x->parent;
3256 if (x->parent)
3257 {
3258 if (x == x->parent->right)
3259 x->parent->right = y;
3260 else
3261 x->parent->left = y;
3262 }
3263 else
3264 mem_root = y;
3265
3266 y->right = x;
3267 if (x != MEM_NIL)
3268 x->parent = y;
3269 }
3270
3271
3272 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3273
3274 static void
3275 mem_delete (z)
3276 struct mem_node *z;
3277 {
3278 struct mem_node *x, *y;
3279
3280 if (!z || z == MEM_NIL)
3281 return;
3282
3283 if (z->left == MEM_NIL || z->right == MEM_NIL)
3284 y = z;
3285 else
3286 {
3287 y = z->right;
3288 while (y->left != MEM_NIL)
3289 y = y->left;
3290 }
3291
3292 if (y->left != MEM_NIL)
3293 x = y->left;
3294 else
3295 x = y->right;
3296
3297 x->parent = y->parent;
3298 if (y->parent)
3299 {
3300 if (y == y->parent->left)
3301 y->parent->left = x;
3302 else
3303 y->parent->right = x;
3304 }
3305 else
3306 mem_root = x;
3307
3308 if (y != z)
3309 {
3310 z->start = y->start;
3311 z->end = y->end;
3312 z->type = y->type;
3313 }
3314
3315 if (y->color == MEM_BLACK)
3316 mem_delete_fixup (x);
3317
3318 #ifdef GC_MALLOC_CHECK
3319 _free_internal (y);
3320 #else
3321 xfree (y);
3322 #endif
3323 }
3324
3325
3326 /* Re-establish the red-black properties of the tree, after a
3327 deletion. */
3328
3329 static void
3330 mem_delete_fixup (x)
3331 struct mem_node *x;
3332 {
3333 while (x != mem_root && x->color == MEM_BLACK)
3334 {
3335 if (x == x->parent->left)
3336 {
3337 struct mem_node *w = x->parent->right;
3338
3339 if (w->color == MEM_RED)
3340 {
3341 w->color = MEM_BLACK;
3342 x->parent->color = MEM_RED;
3343 mem_rotate_left (x->parent);
3344 w = x->parent->right;
3345 }
3346
3347 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3348 {
3349 w->color = MEM_RED;
3350 x = x->parent;
3351 }
3352 else
3353 {
3354 if (w->right->color == MEM_BLACK)
3355 {
3356 w->left->color = MEM_BLACK;
3357 w->color = MEM_RED;
3358 mem_rotate_right (w);
3359 w = x->parent->right;
3360 }
3361 w->color = x->parent->color;
3362 x->parent->color = MEM_BLACK;
3363 w->right->color = MEM_BLACK;
3364 mem_rotate_left (x->parent);
3365 x = mem_root;
3366 }
3367 }
3368 else
3369 {
3370 struct mem_node *w = x->parent->left;
3371
3372 if (w->color == MEM_RED)
3373 {
3374 w->color = MEM_BLACK;
3375 x->parent->color = MEM_RED;
3376 mem_rotate_right (x->parent);
3377 w = x->parent->left;
3378 }
3379
3380 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3381 {
3382 w->color = MEM_RED;
3383 x = x->parent;
3384 }
3385 else
3386 {
3387 if (w->left->color == MEM_BLACK)
3388 {
3389 w->right->color = MEM_BLACK;
3390 w->color = MEM_RED;
3391 mem_rotate_left (w);
3392 w = x->parent->left;
3393 }
3394
3395 w->color = x->parent->color;
3396 x->parent->color = MEM_BLACK;
3397 w->left->color = MEM_BLACK;
3398 mem_rotate_right (x->parent);
3399 x = mem_root;
3400 }
3401 }
3402 }
3403
3404 x->color = MEM_BLACK;
3405 }
3406
3407
3408 /* Value is non-zero if P is a pointer to a live Lisp string on
3409 the heap. M is a pointer to the mem_block for P. */
3410
3411 static INLINE int
3412 live_string_p (m, p)
3413 struct mem_node *m;
3414 void *p;
3415 {
3416 if (m->type == MEM_TYPE_STRING)
3417 {
3418 struct string_block *b = (struct string_block *) m->start;
3419 int offset = (char *) p - (char *) &b->strings[0];
3420
3421 /* P must point to the start of a Lisp_String structure, and it
3422 must not be on the free-list. */
3423 return (offset >= 0
3424 && offset % sizeof b->strings[0] == 0
3425 && ((struct Lisp_String *) p)->data != NULL);
3426 }
3427 else
3428 return 0;
3429 }
3430
3431
3432 /* Value is non-zero if P is a pointer to a live Lisp cons on
3433 the heap. M is a pointer to the mem_block for P. */
3434
3435 static INLINE int
3436 live_cons_p (m, p)
3437 struct mem_node *m;
3438 void *p;
3439 {
3440 if (m->type == MEM_TYPE_CONS)
3441 {
3442 struct cons_block *b = (struct cons_block *) m->start;
3443 int offset = (char *) p - (char *) &b->conses[0];
3444
3445 /* P must point to the start of a Lisp_Cons, not be
3446 one of the unused cells in the current cons block,
3447 and not be on the free-list. */
3448 return (offset >= 0
3449 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3450 && offset % sizeof b->conses[0] == 0
3451 && (b != cons_block
3452 || offset / sizeof b->conses[0] < cons_block_index)
3453 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3454 }
3455 else
3456 return 0;
3457 }
3458
3459
3460 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3461 the heap. M is a pointer to the mem_block for P. */
3462
3463 static INLINE int
3464 live_symbol_p (m, p)
3465 struct mem_node *m;
3466 void *p;
3467 {
3468 if (m->type == MEM_TYPE_SYMBOL)
3469 {
3470 struct symbol_block *b = (struct symbol_block *) m->start;
3471 int offset = (char *) p - (char *) &b->symbols[0];
3472
3473 /* P must point to the start of a Lisp_Symbol, not be
3474 one of the unused cells in the current symbol block,
3475 and not be on the free-list. */
3476 return (offset >= 0
3477 && offset % sizeof b->symbols[0] == 0
3478 && (b != symbol_block
3479 || offset / sizeof b->symbols[0] < symbol_block_index)
3480 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3481 }
3482 else
3483 return 0;
3484 }
3485
3486
3487 /* Value is non-zero if P is a pointer to a live Lisp float on
3488 the heap. M is a pointer to the mem_block for P. */
3489
3490 static INLINE int
3491 live_float_p (m, p)
3492 struct mem_node *m;
3493 void *p;
3494 {
3495 if (m->type == MEM_TYPE_FLOAT)
3496 {
3497 struct float_block *b = (struct float_block *) m->start;
3498 int offset = (char *) p - (char *) &b->floats[0];
3499
3500 /* P must point to the start of a Lisp_Float and not be
3501 one of the unused cells in the current float block. */
3502 return (offset >= 0
3503 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3504 && offset % sizeof b->floats[0] == 0
3505 && (b != float_block
3506 || offset / sizeof b->floats[0] < float_block_index));
3507 }
3508 else
3509 return 0;
3510 }
3511
3512
3513 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3514 the heap. M is a pointer to the mem_block for P. */
3515
3516 static INLINE int
3517 live_misc_p (m, p)
3518 struct mem_node *m;
3519 void *p;
3520 {
3521 if (m->type == MEM_TYPE_MISC)
3522 {
3523 struct marker_block *b = (struct marker_block *) m->start;
3524 int offset = (char *) p - (char *) &b->markers[0];
3525
3526 /* P must point to the start of a Lisp_Misc, not be
3527 one of the unused cells in the current misc block,
3528 and not be on the free-list. */
3529 return (offset >= 0
3530 && offset % sizeof b->markers[0] == 0
3531 && (b != marker_block
3532 || offset / sizeof b->markers[0] < marker_block_index)
3533 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3534 }
3535 else
3536 return 0;
3537 }
3538
3539
3540 /* Value is non-zero if P is a pointer to a live vector-like object.
3541 M is a pointer to the mem_block for P. */
3542
3543 static INLINE int
3544 live_vector_p (m, p)
3545 struct mem_node *m;
3546 void *p;
3547 {
3548 return (p == m->start
3549 && m->type >= MEM_TYPE_VECTOR
3550 && m->type <= MEM_TYPE_WINDOW);
3551 }
3552
3553
3554 /* Value is non-zero if P is a pointer to a live buffer. M is a
3555 pointer to the mem_block for P. */
3556
3557 static INLINE int
3558 live_buffer_p (m, p)
3559 struct mem_node *m;
3560 void *p;
3561 {
3562 /* P must point to the start of the block, and the buffer
3563 must not have been killed. */
3564 return (m->type == MEM_TYPE_BUFFER
3565 && p == m->start
3566 && !NILP (((struct buffer *) p)->name));
3567 }
3568
3569 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3570
3571 #if GC_MARK_STACK
3572
3573 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3574
3575 /* Array of objects that are kept alive because the C stack contains
3576 a pattern that looks like a reference to them . */
3577
3578 #define MAX_ZOMBIES 10
3579 static Lisp_Object zombies[MAX_ZOMBIES];
3580
3581 /* Number of zombie objects. */
3582
3583 static int nzombies;
3584
3585 /* Number of garbage collections. */
3586
3587 static int ngcs;
3588
3589 /* Average percentage of zombies per collection. */
3590
3591 static double avg_zombies;
3592
3593 /* Max. number of live and zombie objects. */
3594
3595 static int max_live, max_zombies;
3596
3597 /* Average number of live objects per GC. */
3598
3599 static double avg_live;
3600
3601 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3602 doc: /* Show information about live and zombie objects. */)
3603 ()
3604 {
3605 Lisp_Object args[8], zombie_list = Qnil;
3606 int i;
3607 for (i = 0; i < nzombies; i++)
3608 zombie_list = Fcons (zombies[i], zombie_list);
3609 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3610 args[1] = make_number (ngcs);
3611 args[2] = make_float (avg_live);
3612 args[3] = make_float (avg_zombies);
3613 args[4] = make_float (avg_zombies / avg_live / 100);
3614 args[5] = make_number (max_live);
3615 args[6] = make_number (max_zombies);
3616 args[7] = zombie_list;
3617 return Fmessage (8, args);
3618 }
3619
3620 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3621
3622
3623 /* Mark OBJ if we can prove it's a Lisp_Object. */
3624
3625 static INLINE void
3626 mark_maybe_object (obj)
3627 Lisp_Object obj;
3628 {
3629 void *po = (void *) XPNTR (obj);
3630 struct mem_node *m = mem_find (po);
3631
3632 if (m != MEM_NIL)
3633 {
3634 int mark_p = 0;
3635
3636 switch (XGCTYPE (obj))
3637 {
3638 case Lisp_String:
3639 mark_p = (live_string_p (m, po)
3640 && !STRING_MARKED_P ((struct Lisp_String *) po));
3641 break;
3642
3643 case Lisp_Cons:
3644 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3645 break;
3646
3647 case Lisp_Symbol:
3648 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3649 break;
3650
3651 case Lisp_Float:
3652 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3653 break;
3654
3655 case Lisp_Vectorlike:
3656 /* Note: can't check GC_BUFFERP before we know it's a
3657 buffer because checking that dereferences the pointer
3658 PO which might point anywhere. */
3659 if (live_vector_p (m, po))
3660 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3661 else if (live_buffer_p (m, po))
3662 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3663 break;
3664
3665 case Lisp_Misc:
3666 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
3667 break;
3668
3669 case Lisp_Int:
3670 case Lisp_Type_Limit:
3671 break;
3672 }
3673
3674 if (mark_p)
3675 {
3676 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3677 if (nzombies < MAX_ZOMBIES)
3678 zombies[nzombies] = obj;
3679 ++nzombies;
3680 #endif
3681 mark_object (obj);
3682 }
3683 }
3684 }
3685
3686
3687 /* If P points to Lisp data, mark that as live if it isn't already
3688 marked. */
3689
3690 static INLINE void
3691 mark_maybe_pointer (p)
3692 void *p;
3693 {
3694 struct mem_node *m;
3695
3696 /* Quickly rule out some values which can't point to Lisp data. We
3697 assume that Lisp data is aligned on even addresses. */
3698 if ((EMACS_INT) p & 1)
3699 return;
3700
3701 m = mem_find (p);
3702 if (m != MEM_NIL)
3703 {
3704 Lisp_Object obj = Qnil;
3705
3706 switch (m->type)
3707 {
3708 case MEM_TYPE_NON_LISP:
3709 /* Nothing to do; not a pointer to Lisp memory. */
3710 break;
3711
3712 case MEM_TYPE_BUFFER:
3713 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
3714 XSETVECTOR (obj, p);
3715 break;
3716
3717 case MEM_TYPE_CONS:
3718 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
3719 XSETCONS (obj, p);
3720 break;
3721
3722 case MEM_TYPE_STRING:
3723 if (live_string_p (m, p)
3724 && !STRING_MARKED_P ((struct Lisp_String *) p))
3725 XSETSTRING (obj, p);
3726 break;
3727
3728 case MEM_TYPE_MISC:
3729 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
3730 XSETMISC (obj, p);
3731 break;
3732
3733 case MEM_TYPE_SYMBOL:
3734 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
3735 XSETSYMBOL (obj, p);
3736 break;
3737
3738 case MEM_TYPE_FLOAT:
3739 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
3740 XSETFLOAT (obj, p);
3741 break;
3742
3743 case MEM_TYPE_VECTOR:
3744 case MEM_TYPE_PROCESS:
3745 case MEM_TYPE_HASH_TABLE:
3746 case MEM_TYPE_FRAME:
3747 case MEM_TYPE_WINDOW:
3748 if (live_vector_p (m, p))
3749 {
3750 Lisp_Object tem;
3751 XSETVECTOR (tem, p);
3752 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
3753 obj = tem;
3754 }
3755 break;
3756
3757 default:
3758 abort ();
3759 }
3760
3761 if (!GC_NILP (obj))
3762 mark_object (obj);
3763 }
3764 }
3765
3766
3767 /* Mark Lisp objects referenced from the address range START..END. */
3768
3769 static void
3770 mark_memory (start, end)
3771 void *start, *end;
3772 {
3773 Lisp_Object *p;
3774 void **pp;
3775
3776 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3777 nzombies = 0;
3778 #endif
3779
3780 /* Make START the pointer to the start of the memory region,
3781 if it isn't already. */
3782 if (end < start)
3783 {
3784 void *tem = start;
3785 start = end;
3786 end = tem;
3787 }
3788
3789 /* Mark Lisp_Objects. */
3790 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
3791 mark_maybe_object (*p);
3792
3793 /* Mark Lisp data pointed to. This is necessary because, in some
3794 situations, the C compiler optimizes Lisp objects away, so that
3795 only a pointer to them remains. Example:
3796
3797 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
3798 ()
3799 {
3800 Lisp_Object obj = build_string ("test");
3801 struct Lisp_String *s = XSTRING (obj);
3802 Fgarbage_collect ();
3803 fprintf (stderr, "test `%s'\n", s->data);
3804 return Qnil;
3805 }
3806
3807 Here, `obj' isn't really used, and the compiler optimizes it
3808 away. The only reference to the life string is through the
3809 pointer `s'. */
3810
3811 for (pp = (void **) start; (void *) pp < end; ++pp)
3812 mark_maybe_pointer (*pp);
3813 }
3814
3815 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
3816 the GCC system configuration. In gcc 3.2, the only systems for
3817 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
3818 by others?) and ns32k-pc532-min. */
3819
3820 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3821
3822 static int setjmp_tested_p, longjmps_done;
3823
3824 #define SETJMP_WILL_LIKELY_WORK "\
3825 \n\
3826 Emacs garbage collector has been changed to use conservative stack\n\
3827 marking. Emacs has determined that the method it uses to do the\n\
3828 marking will likely work on your system, but this isn't sure.\n\
3829 \n\
3830 If you are a system-programmer, or can get the help of a local wizard\n\
3831 who is, please take a look at the function mark_stack in alloc.c, and\n\
3832 verify that the methods used are appropriate for your system.\n\
3833 \n\
3834 Please mail the result to <emacs-devel@gnu.org>.\n\
3835 "
3836
3837 #define SETJMP_WILL_NOT_WORK "\
3838 \n\
3839 Emacs garbage collector has been changed to use conservative stack\n\
3840 marking. Emacs has determined that the default method it uses to do the\n\
3841 marking will not work on your system. We will need a system-dependent\n\
3842 solution for your system.\n\
3843 \n\
3844 Please take a look at the function mark_stack in alloc.c, and\n\
3845 try to find a way to make it work on your system.\n\
3846 \n\
3847 Note that you may get false negatives, depending on the compiler.\n\
3848 In particular, you need to use -O with GCC for this test.\n\
3849 \n\
3850 Please mail the result to <emacs-devel@gnu.org>.\n\
3851 "
3852
3853
3854 /* Perform a quick check if it looks like setjmp saves registers in a
3855 jmp_buf. Print a message to stderr saying so. When this test
3856 succeeds, this is _not_ a proof that setjmp is sufficient for
3857 conservative stack marking. Only the sources or a disassembly
3858 can prove that. */
3859
3860 static void
3861 test_setjmp ()
3862 {
3863 char buf[10];
3864 register int x;
3865 jmp_buf jbuf;
3866 int result = 0;
3867
3868 /* Arrange for X to be put in a register. */
3869 sprintf (buf, "1");
3870 x = strlen (buf);
3871 x = 2 * x - 1;
3872
3873 setjmp (jbuf);
3874 if (longjmps_done == 1)
3875 {
3876 /* Came here after the longjmp at the end of the function.
3877
3878 If x == 1, the longjmp has restored the register to its
3879 value before the setjmp, and we can hope that setjmp
3880 saves all such registers in the jmp_buf, although that
3881 isn't sure.
3882
3883 For other values of X, either something really strange is
3884 taking place, or the setjmp just didn't save the register. */
3885
3886 if (x == 1)
3887 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
3888 else
3889 {
3890 fprintf (stderr, SETJMP_WILL_NOT_WORK);
3891 exit (1);
3892 }
3893 }
3894
3895 ++longjmps_done;
3896 x = 2;
3897 if (longjmps_done == 1)
3898 longjmp (jbuf, 1);
3899 }
3900
3901 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3902
3903
3904 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3905
3906 /* Abort if anything GCPRO'd doesn't survive the GC. */
3907
3908 static void
3909 check_gcpros ()
3910 {
3911 struct gcpro *p;
3912 int i;
3913
3914 for (p = gcprolist; p; p = p->next)
3915 for (i = 0; i < p->nvars; ++i)
3916 if (!survives_gc_p (p->var[i]))
3917 /* FIXME: It's not necessarily a bug. It might just be that the
3918 GCPRO is unnecessary or should release the object sooner. */
3919 abort ();
3920 }
3921
3922 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3923
3924 static void
3925 dump_zombies ()
3926 {
3927 int i;
3928
3929 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
3930 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
3931 {
3932 fprintf (stderr, " %d = ", i);
3933 debug_print (zombies[i]);
3934 }
3935 }
3936
3937 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3938
3939
3940 /* Mark live Lisp objects on the C stack.
3941
3942 There are several system-dependent problems to consider when
3943 porting this to new architectures:
3944
3945 Processor Registers
3946
3947 We have to mark Lisp objects in CPU registers that can hold local
3948 variables or are used to pass parameters.
3949
3950 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
3951 something that either saves relevant registers on the stack, or
3952 calls mark_maybe_object passing it each register's contents.
3953
3954 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
3955 implementation assumes that calling setjmp saves registers we need
3956 to see in a jmp_buf which itself lies on the stack. This doesn't
3957 have to be true! It must be verified for each system, possibly
3958 by taking a look at the source code of setjmp.
3959
3960 Stack Layout
3961
3962 Architectures differ in the way their processor stack is organized.
3963 For example, the stack might look like this
3964
3965 +----------------+
3966 | Lisp_Object | size = 4
3967 +----------------+
3968 | something else | size = 2
3969 +----------------+
3970 | Lisp_Object | size = 4
3971 +----------------+
3972 | ... |
3973
3974 In such a case, not every Lisp_Object will be aligned equally. To
3975 find all Lisp_Object on the stack it won't be sufficient to walk
3976 the stack in steps of 4 bytes. Instead, two passes will be
3977 necessary, one starting at the start of the stack, and a second
3978 pass starting at the start of the stack + 2. Likewise, if the
3979 minimal alignment of Lisp_Objects on the stack is 1, four passes
3980 would be necessary, each one starting with one byte more offset
3981 from the stack start.
3982
3983 The current code assumes by default that Lisp_Objects are aligned
3984 equally on the stack. */
3985
3986 static void
3987 mark_stack ()
3988 {
3989 int i;
3990 jmp_buf j;
3991 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
3992 void *end;
3993
3994 /* This trick flushes the register windows so that all the state of
3995 the process is contained in the stack. */
3996 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
3997 needed on ia64 too. See mach_dep.c, where it also says inline
3998 assembler doesn't work with relevant proprietary compilers. */
3999 #ifdef sparc
4000 asm ("ta 3");
4001 #endif
4002
4003 /* Save registers that we need to see on the stack. We need to see
4004 registers used to hold register variables and registers used to
4005 pass parameters. */
4006 #ifdef GC_SAVE_REGISTERS_ON_STACK
4007 GC_SAVE_REGISTERS_ON_STACK (end);
4008 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4009
4010 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4011 setjmp will definitely work, test it
4012 and print a message with the result
4013 of the test. */
4014 if (!setjmp_tested_p)
4015 {
4016 setjmp_tested_p = 1;
4017 test_setjmp ();
4018 }
4019 #endif /* GC_SETJMP_WORKS */
4020
4021 setjmp (j);
4022 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4023 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4024
4025 /* This assumes that the stack is a contiguous region in memory. If
4026 that's not the case, something has to be done here to iterate
4027 over the stack segments. */
4028 #ifndef GC_LISP_OBJECT_ALIGNMENT
4029 #ifdef __GNUC__
4030 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4031 #else
4032 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4033 #endif
4034 #endif
4035 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4036 mark_memory ((char *) stack_base + i, end);
4037
4038 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4039 check_gcpros ();
4040 #endif
4041 }
4042
4043
4044 #endif /* GC_MARK_STACK != 0 */
4045
4046
4047 \f
4048 /***********************************************************************
4049 Pure Storage Management
4050 ***********************************************************************/
4051
4052 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4053 pointer to it. TYPE is the Lisp type for which the memory is
4054 allocated. TYPE < 0 means it's not used for a Lisp object.
4055
4056 If store_pure_type_info is set and TYPE is >= 0, the type of
4057 the allocated object is recorded in pure_types. */
4058
4059 static POINTER_TYPE *
4060 pure_alloc (size, type)
4061 size_t size;
4062 int type;
4063 {
4064 POINTER_TYPE *result;
4065 size_t alignment = sizeof (EMACS_INT);
4066
4067 /* Give Lisp_Floats an extra alignment. */
4068 if (type == Lisp_Float)
4069 {
4070 #if defined __GNUC__ && __GNUC__ >= 2
4071 alignment = __alignof (struct Lisp_Float);
4072 #else
4073 alignment = sizeof (struct Lisp_Float);
4074 #endif
4075 }
4076
4077 again:
4078 result = ALIGN (purebeg + pure_bytes_used, alignment);
4079 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4080
4081 if (pure_bytes_used <= pure_size)
4082 return result;
4083
4084 /* Don't allocate a large amount here,
4085 because it might get mmap'd and then its address
4086 might not be usable. */
4087 purebeg = (char *) xmalloc (10000);
4088 pure_size = 10000;
4089 pure_bytes_used_before_overflow += pure_bytes_used - size;
4090 pure_bytes_used = 0;
4091 goto again;
4092 }
4093
4094
4095 /* Print a warning if PURESIZE is too small. */
4096
4097 void
4098 check_pure_size ()
4099 {
4100 if (pure_bytes_used_before_overflow)
4101 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4102 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4103 }
4104
4105
4106 /* Return a string allocated in pure space. DATA is a buffer holding
4107 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4108 non-zero means make the result string multibyte.
4109
4110 Must get an error if pure storage is full, since if it cannot hold
4111 a large string it may be able to hold conses that point to that
4112 string; then the string is not protected from gc. */
4113
4114 Lisp_Object
4115 make_pure_string (data, nchars, nbytes, multibyte)
4116 char *data;
4117 int nchars, nbytes;
4118 int multibyte;
4119 {
4120 Lisp_Object string;
4121 struct Lisp_String *s;
4122
4123 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4124 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4125 s->size = nchars;
4126 s->size_byte = multibyte ? nbytes : -1;
4127 bcopy (data, s->data, nbytes);
4128 s->data[nbytes] = '\0';
4129 s->intervals = NULL_INTERVAL;
4130 XSETSTRING (string, s);
4131 return string;
4132 }
4133
4134
4135 /* Return a cons allocated from pure space. Give it pure copies
4136 of CAR as car and CDR as cdr. */
4137
4138 Lisp_Object
4139 pure_cons (car, cdr)
4140 Lisp_Object car, cdr;
4141 {
4142 register Lisp_Object new;
4143 struct Lisp_Cons *p;
4144
4145 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4146 XSETCONS (new, p);
4147 XSETCAR (new, Fpurecopy (car));
4148 XSETCDR (new, Fpurecopy (cdr));
4149 return new;
4150 }
4151
4152
4153 /* Value is a float object with value NUM allocated from pure space. */
4154
4155 Lisp_Object
4156 make_pure_float (num)
4157 double num;
4158 {
4159 register Lisp_Object new;
4160 struct Lisp_Float *p;
4161
4162 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4163 XSETFLOAT (new, p);
4164 XFLOAT_DATA (new) = num;
4165 return new;
4166 }
4167
4168
4169 /* Return a vector with room for LEN Lisp_Objects allocated from
4170 pure space. */
4171
4172 Lisp_Object
4173 make_pure_vector (len)
4174 EMACS_INT len;
4175 {
4176 Lisp_Object new;
4177 struct Lisp_Vector *p;
4178 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4179
4180 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4181 XSETVECTOR (new, p);
4182 XVECTOR (new)->size = len;
4183 return new;
4184 }
4185
4186
4187 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4188 doc: /* Make a copy of OBJECT in pure storage.
4189 Recursively copies contents of vectors and cons cells.
4190 Does not copy symbols. Copies strings without text properties. */)
4191 (obj)
4192 register Lisp_Object obj;
4193 {
4194 if (NILP (Vpurify_flag))
4195 return obj;
4196
4197 if (PURE_POINTER_P (XPNTR (obj)))
4198 return obj;
4199
4200 if (CONSP (obj))
4201 return pure_cons (XCAR (obj), XCDR (obj));
4202 else if (FLOATP (obj))
4203 return make_pure_float (XFLOAT_DATA (obj));
4204 else if (STRINGP (obj))
4205 return make_pure_string (SDATA (obj), SCHARS (obj),
4206 SBYTES (obj),
4207 STRING_MULTIBYTE (obj));
4208 else if (COMPILEDP (obj) || VECTORP (obj))
4209 {
4210 register struct Lisp_Vector *vec;
4211 register int i, size;
4212
4213 size = XVECTOR (obj)->size;
4214 if (size & PSEUDOVECTOR_FLAG)
4215 size &= PSEUDOVECTOR_SIZE_MASK;
4216 vec = XVECTOR (make_pure_vector ((EMACS_INT) size));
4217 for (i = 0; i < size; i++)
4218 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4219 if (COMPILEDP (obj))
4220 XSETCOMPILED (obj, vec);
4221 else
4222 XSETVECTOR (obj, vec);
4223 return obj;
4224 }
4225 else if (MARKERP (obj))
4226 error ("Attempt to copy a marker to pure storage");
4227
4228 return obj;
4229 }
4230
4231
4232 \f
4233 /***********************************************************************
4234 Protection from GC
4235 ***********************************************************************/
4236
4237 /* Put an entry in staticvec, pointing at the variable with address
4238 VARADDRESS. */
4239
4240 void
4241 staticpro (varaddress)
4242 Lisp_Object *varaddress;
4243 {
4244 staticvec[staticidx++] = varaddress;
4245 if (staticidx >= NSTATICS)
4246 abort ();
4247 }
4248
4249 struct catchtag
4250 {
4251 Lisp_Object tag;
4252 Lisp_Object val;
4253 struct catchtag *next;
4254 };
4255
4256 struct backtrace
4257 {
4258 struct backtrace *next;
4259 Lisp_Object *function;
4260 Lisp_Object *args; /* Points to vector of args. */
4261 int nargs; /* Length of vector. */
4262 /* If nargs is UNEVALLED, args points to slot holding list of
4263 unevalled args. */
4264 char evalargs;
4265 };
4266
4267
4268 \f
4269 /***********************************************************************
4270 Protection from GC
4271 ***********************************************************************/
4272
4273 /* Temporarily prevent garbage collection. */
4274
4275 int
4276 inhibit_garbage_collection ()
4277 {
4278 int count = SPECPDL_INDEX ();
4279 int nbits = min (VALBITS, BITS_PER_INT);
4280
4281 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4282 return count;
4283 }
4284
4285
4286 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4287 doc: /* Reclaim storage for Lisp objects no longer needed.
4288 Garbage collection happens automatically if you cons more than
4289 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4290 `garbage-collect' normally returns a list with info on amount of space in use:
4291 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4292 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4293 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4294 (USED-STRINGS . FREE-STRINGS))
4295 However, if there was overflow in pure space, `garbage-collect'
4296 returns nil, because real GC can't be done. */)
4297 ()
4298 {
4299 register struct specbinding *bind;
4300 struct catchtag *catch;
4301 struct handler *handler;
4302 register struct backtrace *backlist;
4303 char stack_top_variable;
4304 register int i;
4305 int message_p;
4306 Lisp_Object total[8];
4307 int count = SPECPDL_INDEX ();
4308 EMACS_TIME t1, t2, t3;
4309
4310 if (abort_on_gc)
4311 abort ();
4312
4313 EMACS_GET_TIME (t1);
4314
4315 /* Can't GC if pure storage overflowed because we can't determine
4316 if something is a pure object or not. */
4317 if (pure_bytes_used_before_overflow)
4318 return Qnil;
4319
4320 /* In case user calls debug_print during GC,
4321 don't let that cause a recursive GC. */
4322 consing_since_gc = 0;
4323
4324 /* Save what's currently displayed in the echo area. */
4325 message_p = push_message ();
4326 record_unwind_protect (pop_message_unwind, Qnil);
4327
4328 /* Save a copy of the contents of the stack, for debugging. */
4329 #if MAX_SAVE_STACK > 0
4330 if (NILP (Vpurify_flag))
4331 {
4332 i = &stack_top_variable - stack_bottom;
4333 if (i < 0) i = -i;
4334 if (i < MAX_SAVE_STACK)
4335 {
4336 if (stack_copy == 0)
4337 stack_copy = (char *) xmalloc (stack_copy_size = i);
4338 else if (stack_copy_size < i)
4339 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4340 if (stack_copy)
4341 {
4342 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4343 bcopy (stack_bottom, stack_copy, i);
4344 else
4345 bcopy (&stack_top_variable, stack_copy, i);
4346 }
4347 }
4348 }
4349 #endif /* MAX_SAVE_STACK > 0 */
4350
4351 if (garbage_collection_messages)
4352 message1_nolog ("Garbage collecting...");
4353
4354 BLOCK_INPUT;
4355
4356 shrink_regexp_cache ();
4357
4358 /* Don't keep undo information around forever. */
4359 {
4360 register struct buffer *nextb = all_buffers;
4361
4362 while (nextb)
4363 {
4364 /* If a buffer's undo list is Qt, that means that undo is
4365 turned off in that buffer. Calling truncate_undo_list on
4366 Qt tends to return NULL, which effectively turns undo back on.
4367 So don't call truncate_undo_list if undo_list is Qt. */
4368 if (! EQ (nextb->undo_list, Qt))
4369 nextb->undo_list
4370 = truncate_undo_list (nextb->undo_list, undo_limit,
4371 undo_strong_limit);
4372
4373 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4374 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4375 {
4376 /* If a buffer's gap size is more than 10% of the buffer
4377 size, or larger than 2000 bytes, then shrink it
4378 accordingly. Keep a minimum size of 20 bytes. */
4379 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4380
4381 if (nextb->text->gap_size > size)
4382 {
4383 struct buffer *save_current = current_buffer;
4384 current_buffer = nextb;
4385 make_gap (-(nextb->text->gap_size - size));
4386 current_buffer = save_current;
4387 }
4388 }
4389
4390 nextb = nextb->next;
4391 }
4392 }
4393
4394 gc_in_progress = 1;
4395
4396 /* clear_marks (); */
4397
4398 /* Mark all the special slots that serve as the roots of accessibility.
4399
4400 Usually the special slots to mark are contained in particular structures.
4401 Then we know no slot is marked twice because the structures don't overlap.
4402 In some cases, the structures point to the slots to be marked.
4403 For these, we use MARKBIT to avoid double marking of the slot. */
4404
4405 for (i = 0; i < staticidx; i++)
4406 mark_object (*staticvec[i]);
4407
4408 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4409 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4410 mark_stack ();
4411 #else
4412 {
4413 register struct gcpro *tail;
4414 for (tail = gcprolist; tail; tail = tail->next)
4415 for (i = 0; i < tail->nvars; i++)
4416 if (!XMARKBIT (tail->var[i]))
4417 {
4418 mark_object (tail->var[i]);
4419 XMARK (tail->var[i]);
4420 }
4421 }
4422 #endif
4423
4424 mark_byte_stack ();
4425 for (bind = specpdl; bind != specpdl_ptr; bind++)
4426 {
4427 mark_object (bind->symbol);
4428 mark_object (bind->old_value);
4429 }
4430 for (catch = catchlist; catch; catch = catch->next)
4431 {
4432 mark_object (catch->tag);
4433 mark_object (catch->val);
4434 }
4435 for (handler = handlerlist; handler; handler = handler->next)
4436 {
4437 mark_object (handler->handler);
4438 mark_object (handler->var);
4439 }
4440 for (backlist = backtrace_list; backlist; backlist = backlist->next)
4441 {
4442 if (!XMARKBIT (*backlist->function))
4443 {
4444 mark_object (*backlist->function);
4445 XMARK (*backlist->function);
4446 }
4447 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
4448 i = 0;
4449 else
4450 i = backlist->nargs - 1;
4451 for (; i >= 0; i--)
4452 if (!XMARKBIT (backlist->args[i]))
4453 {
4454 mark_object (backlist->args[i]);
4455 XMARK (backlist->args[i]);
4456 }
4457 }
4458 mark_kboards ();
4459
4460 /* Look thru every buffer's undo list
4461 for elements that update markers that were not marked,
4462 and delete them. */
4463 {
4464 register struct buffer *nextb = all_buffers;
4465
4466 while (nextb)
4467 {
4468 /* If a buffer's undo list is Qt, that means that undo is
4469 turned off in that buffer. Calling truncate_undo_list on
4470 Qt tends to return NULL, which effectively turns undo back on.
4471 So don't call truncate_undo_list if undo_list is Qt. */
4472 if (! EQ (nextb->undo_list, Qt))
4473 {
4474 Lisp_Object tail, prev;
4475 tail = nextb->undo_list;
4476 prev = Qnil;
4477 while (CONSP (tail))
4478 {
4479 if (GC_CONSP (XCAR (tail))
4480 && GC_MARKERP (XCAR (XCAR (tail)))
4481 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4482 {
4483 if (NILP (prev))
4484 nextb->undo_list = tail = XCDR (tail);
4485 else
4486 {
4487 tail = XCDR (tail);
4488 XSETCDR (prev, tail);
4489 }
4490 }
4491 else
4492 {
4493 prev = tail;
4494 tail = XCDR (tail);
4495 }
4496 }
4497 }
4498
4499 nextb = nextb->next;
4500 }
4501 }
4502
4503 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4504 mark_stack ();
4505 #endif
4506
4507 #ifdef USE_GTK
4508 {
4509 extern void xg_mark_data ();
4510 xg_mark_data ();
4511 }
4512 #endif
4513
4514 gc_sweep ();
4515
4516 /* Clear the mark bits that we set in certain root slots. */
4517
4518 #if (GC_MARK_STACK == GC_USE_GCPROS_AS_BEFORE \
4519 || GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES)
4520 {
4521 register struct gcpro *tail;
4522
4523 for (tail = gcprolist; tail; tail = tail->next)
4524 for (i = 0; i < tail->nvars; i++)
4525 XUNMARK (tail->var[i]);
4526 }
4527 #endif
4528
4529 unmark_byte_stack ();
4530 for (backlist = backtrace_list; backlist; backlist = backlist->next)
4531 {
4532 XUNMARK (*backlist->function);
4533 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
4534 i = 0;
4535 else
4536 i = backlist->nargs - 1;
4537 for (; i >= 0; i--)
4538 XUNMARK (backlist->args[i]);
4539 }
4540 VECTOR_UNMARK (&buffer_defaults);
4541 VECTOR_UNMARK (&buffer_local_symbols);
4542
4543 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4544 dump_zombies ();
4545 #endif
4546
4547 UNBLOCK_INPUT;
4548
4549 /* clear_marks (); */
4550 gc_in_progress = 0;
4551
4552 consing_since_gc = 0;
4553 if (gc_cons_threshold < 10000)
4554 gc_cons_threshold = 10000;
4555
4556 if (garbage_collection_messages)
4557 {
4558 if (message_p || minibuf_level > 0)
4559 restore_message ();
4560 else
4561 message1_nolog ("Garbage collecting...done");
4562 }
4563
4564 unbind_to (count, Qnil);
4565
4566 total[0] = Fcons (make_number (total_conses),
4567 make_number (total_free_conses));
4568 total[1] = Fcons (make_number (total_symbols),
4569 make_number (total_free_symbols));
4570 total[2] = Fcons (make_number (total_markers),
4571 make_number (total_free_markers));
4572 total[3] = make_number (total_string_size);
4573 total[4] = make_number (total_vector_size);
4574 total[5] = Fcons (make_number (total_floats),
4575 make_number (total_free_floats));
4576 total[6] = Fcons (make_number (total_intervals),
4577 make_number (total_free_intervals));
4578 total[7] = Fcons (make_number (total_strings),
4579 make_number (total_free_strings));
4580
4581 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4582 {
4583 /* Compute average percentage of zombies. */
4584 double nlive = 0;
4585
4586 for (i = 0; i < 7; ++i)
4587 if (CONSP (total[i]))
4588 nlive += XFASTINT (XCAR (total[i]));
4589
4590 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4591 max_live = max (nlive, max_live);
4592 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4593 max_zombies = max (nzombies, max_zombies);
4594 ++ngcs;
4595 }
4596 #endif
4597
4598 if (!NILP (Vpost_gc_hook))
4599 {
4600 int count = inhibit_garbage_collection ();
4601 safe_run_hooks (Qpost_gc_hook);
4602 unbind_to (count, Qnil);
4603 }
4604
4605 /* Accumulate statistics. */
4606 EMACS_GET_TIME (t2);
4607 EMACS_SUB_TIME (t3, t2, t1);
4608 if (FLOATP (Vgc_elapsed))
4609 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4610 EMACS_SECS (t3) +
4611 EMACS_USECS (t3) * 1.0e-6);
4612 gcs_done++;
4613
4614 return Flist (sizeof total / sizeof *total, total);
4615 }
4616
4617
4618 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4619 only interesting objects referenced from glyphs are strings. */
4620
4621 static void
4622 mark_glyph_matrix (matrix)
4623 struct glyph_matrix *matrix;
4624 {
4625 struct glyph_row *row = matrix->rows;
4626 struct glyph_row *end = row + matrix->nrows;
4627
4628 for (; row < end; ++row)
4629 if (row->enabled_p)
4630 {
4631 int area;
4632 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4633 {
4634 struct glyph *glyph = row->glyphs[area];
4635 struct glyph *end_glyph = glyph + row->used[area];
4636
4637 for (; glyph < end_glyph; ++glyph)
4638 if (GC_STRINGP (glyph->object)
4639 && !STRING_MARKED_P (XSTRING (glyph->object)))
4640 mark_object (glyph->object);
4641 }
4642 }
4643 }
4644
4645
4646 /* Mark Lisp faces in the face cache C. */
4647
4648 static void
4649 mark_face_cache (c)
4650 struct face_cache *c;
4651 {
4652 if (c)
4653 {
4654 int i, j;
4655 for (i = 0; i < c->used; ++i)
4656 {
4657 struct face *face = FACE_FROM_ID (c->f, i);
4658
4659 if (face)
4660 {
4661 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
4662 mark_object (face->lface[j]);
4663 }
4664 }
4665 }
4666 }
4667
4668
4669 #ifdef HAVE_WINDOW_SYSTEM
4670
4671 /* Mark Lisp objects in image IMG. */
4672
4673 static void
4674 mark_image (img)
4675 struct image *img;
4676 {
4677 mark_object (img->spec);
4678
4679 if (!NILP (img->data.lisp_val))
4680 mark_object (img->data.lisp_val);
4681 }
4682
4683
4684 /* Mark Lisp objects in image cache of frame F. It's done this way so
4685 that we don't have to include xterm.h here. */
4686
4687 static void
4688 mark_image_cache (f)
4689 struct frame *f;
4690 {
4691 forall_images_in_image_cache (f, mark_image);
4692 }
4693
4694 #endif /* HAVE_X_WINDOWS */
4695
4696
4697 \f
4698 /* Mark reference to a Lisp_Object.
4699 If the object referred to has not been seen yet, recursively mark
4700 all the references contained in it. */
4701
4702 #define LAST_MARKED_SIZE 500
4703 Lisp_Object last_marked[LAST_MARKED_SIZE];
4704 int last_marked_index;
4705
4706 /* For debugging--call abort when we cdr down this many
4707 links of a list, in mark_object. In debugging,
4708 the call to abort will hit a breakpoint.
4709 Normally this is zero and the check never goes off. */
4710 int mark_object_loop_halt;
4711
4712 void
4713 mark_object (arg)
4714 Lisp_Object arg;
4715 {
4716 register Lisp_Object obj = arg;
4717 #ifdef GC_CHECK_MARKED_OBJECTS
4718 void *po;
4719 struct mem_node *m;
4720 #endif
4721 int cdr_count = 0;
4722
4723 loop:
4724 XUNMARK (obj);
4725
4726 if (PURE_POINTER_P (XPNTR (obj)))
4727 return;
4728
4729 last_marked[last_marked_index++] = obj;
4730 if (last_marked_index == LAST_MARKED_SIZE)
4731 last_marked_index = 0;
4732
4733 /* Perform some sanity checks on the objects marked here. Abort if
4734 we encounter an object we know is bogus. This increases GC time
4735 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4736 #ifdef GC_CHECK_MARKED_OBJECTS
4737
4738 po = (void *) XPNTR (obj);
4739
4740 /* Check that the object pointed to by PO is known to be a Lisp
4741 structure allocated from the heap. */
4742 #define CHECK_ALLOCATED() \
4743 do { \
4744 m = mem_find (po); \
4745 if (m == MEM_NIL) \
4746 abort (); \
4747 } while (0)
4748
4749 /* Check that the object pointed to by PO is live, using predicate
4750 function LIVEP. */
4751 #define CHECK_LIVE(LIVEP) \
4752 do { \
4753 if (!LIVEP (m, po)) \
4754 abort (); \
4755 } while (0)
4756
4757 /* Check both of the above conditions. */
4758 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4759 do { \
4760 CHECK_ALLOCATED (); \
4761 CHECK_LIVE (LIVEP); \
4762 } while (0) \
4763
4764 #else /* not GC_CHECK_MARKED_OBJECTS */
4765
4766 #define CHECK_ALLOCATED() (void) 0
4767 #define CHECK_LIVE(LIVEP) (void) 0
4768 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
4769
4770 #endif /* not GC_CHECK_MARKED_OBJECTS */
4771
4772 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
4773 {
4774 case Lisp_String:
4775 {
4776 register struct Lisp_String *ptr = XSTRING (obj);
4777 CHECK_ALLOCATED_AND_LIVE (live_string_p);
4778 MARK_INTERVAL_TREE (ptr->intervals);
4779 MARK_STRING (ptr);
4780 #ifdef GC_CHECK_STRING_BYTES
4781 /* Check that the string size recorded in the string is the
4782 same as the one recorded in the sdata structure. */
4783 CHECK_STRING_BYTES (ptr);
4784 #endif /* GC_CHECK_STRING_BYTES */
4785 }
4786 break;
4787
4788 case Lisp_Vectorlike:
4789 #ifdef GC_CHECK_MARKED_OBJECTS
4790 m = mem_find (po);
4791 if (m == MEM_NIL && !GC_SUBRP (obj)
4792 && po != &buffer_defaults
4793 && po != &buffer_local_symbols)
4794 abort ();
4795 #endif /* GC_CHECK_MARKED_OBJECTS */
4796
4797 if (GC_BUFFERP (obj))
4798 {
4799 if (!VECTOR_MARKED_P (XBUFFER (obj)))
4800 {
4801 #ifdef GC_CHECK_MARKED_OBJECTS
4802 if (po != &buffer_defaults && po != &buffer_local_symbols)
4803 {
4804 struct buffer *b;
4805 for (b = all_buffers; b && b != po; b = b->next)
4806 ;
4807 if (b == NULL)
4808 abort ();
4809 }
4810 #endif /* GC_CHECK_MARKED_OBJECTS */
4811 mark_buffer (obj);
4812 }
4813 }
4814 else if (GC_SUBRP (obj))
4815 break;
4816 else if (GC_COMPILEDP (obj))
4817 /* We could treat this just like a vector, but it is better to
4818 save the COMPILED_CONSTANTS element for last and avoid
4819 recursion there. */
4820 {
4821 register struct Lisp_Vector *ptr = XVECTOR (obj);
4822 register EMACS_INT size = ptr->size;
4823 register int i;
4824
4825 if (VECTOR_MARKED_P (ptr))
4826 break; /* Already marked */
4827
4828 CHECK_LIVE (live_vector_p);
4829 VECTOR_MARK (ptr); /* Else mark it */
4830 size &= PSEUDOVECTOR_SIZE_MASK;
4831 for (i = 0; i < size; i++) /* and then mark its elements */
4832 {
4833 if (i != COMPILED_CONSTANTS)
4834 mark_object (ptr->contents[i]);
4835 }
4836 obj = ptr->contents[COMPILED_CONSTANTS];
4837 goto loop;
4838 }
4839 else if (GC_FRAMEP (obj))
4840 {
4841 register struct frame *ptr = XFRAME (obj);
4842
4843 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4844 VECTOR_MARK (ptr); /* Else mark it */
4845
4846 CHECK_LIVE (live_vector_p);
4847 mark_object (ptr->name);
4848 mark_object (ptr->icon_name);
4849 mark_object (ptr->title);
4850 mark_object (ptr->focus_frame);
4851 mark_object (ptr->selected_window);
4852 mark_object (ptr->minibuffer_window);
4853 mark_object (ptr->param_alist);
4854 mark_object (ptr->scroll_bars);
4855 mark_object (ptr->condemned_scroll_bars);
4856 mark_object (ptr->menu_bar_items);
4857 mark_object (ptr->face_alist);
4858 mark_object (ptr->menu_bar_vector);
4859 mark_object (ptr->buffer_predicate);
4860 mark_object (ptr->buffer_list);
4861 mark_object (ptr->menu_bar_window);
4862 mark_object (ptr->tool_bar_window);
4863 mark_face_cache (ptr->face_cache);
4864 #ifdef HAVE_WINDOW_SYSTEM
4865 mark_image_cache (ptr);
4866 mark_object (ptr->tool_bar_items);
4867 mark_object (ptr->desired_tool_bar_string);
4868 mark_object (ptr->current_tool_bar_string);
4869 #endif /* HAVE_WINDOW_SYSTEM */
4870 }
4871 else if (GC_BOOL_VECTOR_P (obj))
4872 {
4873 register struct Lisp_Vector *ptr = XVECTOR (obj);
4874
4875 if (VECTOR_MARKED_P (ptr))
4876 break; /* Already marked */
4877 CHECK_LIVE (live_vector_p);
4878 VECTOR_MARK (ptr); /* Else mark it */
4879 }
4880 else if (GC_WINDOWP (obj))
4881 {
4882 register struct Lisp_Vector *ptr = XVECTOR (obj);
4883 struct window *w = XWINDOW (obj);
4884 register int i;
4885
4886 /* Stop if already marked. */
4887 if (VECTOR_MARKED_P (ptr))
4888 break;
4889
4890 /* Mark it. */
4891 CHECK_LIVE (live_vector_p);
4892 VECTOR_MARK (ptr);
4893
4894 /* There is no Lisp data above The member CURRENT_MATRIX in
4895 struct WINDOW. Stop marking when that slot is reached. */
4896 for (i = 0;
4897 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
4898 i++)
4899 mark_object (ptr->contents[i]);
4900
4901 /* Mark glyphs for leaf windows. Marking window matrices is
4902 sufficient because frame matrices use the same glyph
4903 memory. */
4904 if (NILP (w->hchild)
4905 && NILP (w->vchild)
4906 && w->current_matrix)
4907 {
4908 mark_glyph_matrix (w->current_matrix);
4909 mark_glyph_matrix (w->desired_matrix);
4910 }
4911 }
4912 else if (GC_HASH_TABLE_P (obj))
4913 {
4914 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
4915
4916 /* Stop if already marked. */
4917 if (VECTOR_MARKED_P (h))
4918 break;
4919
4920 /* Mark it. */
4921 CHECK_LIVE (live_vector_p);
4922 VECTOR_MARK (h);
4923
4924 /* Mark contents. */
4925 /* Do not mark next_free or next_weak.
4926 Being in the next_weak chain
4927 should not keep the hash table alive.
4928 No need to mark `count' since it is an integer. */
4929 mark_object (h->test);
4930 mark_object (h->weak);
4931 mark_object (h->rehash_size);
4932 mark_object (h->rehash_threshold);
4933 mark_object (h->hash);
4934 mark_object (h->next);
4935 mark_object (h->index);
4936 mark_object (h->user_hash_function);
4937 mark_object (h->user_cmp_function);
4938
4939 /* If hash table is not weak, mark all keys and values.
4940 For weak tables, mark only the vector. */
4941 if (GC_NILP (h->weak))
4942 mark_object (h->key_and_value);
4943 else
4944 VECTOR_MARK (XVECTOR (h->key_and_value));
4945 }
4946 else
4947 {
4948 register struct Lisp_Vector *ptr = XVECTOR (obj);
4949 register EMACS_INT size = ptr->size;
4950 register int i;
4951
4952 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4953 CHECK_LIVE (live_vector_p);
4954 VECTOR_MARK (ptr); /* Else mark it */
4955 if (size & PSEUDOVECTOR_FLAG)
4956 size &= PSEUDOVECTOR_SIZE_MASK;
4957
4958 for (i = 0; i < size; i++) /* and then mark its elements */
4959 mark_object (ptr->contents[i]);
4960 }
4961 break;
4962
4963 case Lisp_Symbol:
4964 {
4965 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
4966 struct Lisp_Symbol *ptrx;
4967
4968 if (ptr->gcmarkbit) break;
4969 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
4970 ptr->gcmarkbit = 1;
4971 mark_object (ptr->value);
4972 mark_object (ptr->function);
4973 mark_object (ptr->plist);
4974
4975 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
4976 MARK_STRING (XSTRING (ptr->xname));
4977 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
4978
4979 /* Note that we do not mark the obarray of the symbol.
4980 It is safe not to do so because nothing accesses that
4981 slot except to check whether it is nil. */
4982 ptr = ptr->next;
4983 if (ptr)
4984 {
4985 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
4986 XSETSYMBOL (obj, ptrx);
4987 goto loop;
4988 }
4989 }
4990 break;
4991
4992 case Lisp_Misc:
4993 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
4994 if (XMARKER (obj)->gcmarkbit)
4995 break;
4996 XMARKER (obj)->gcmarkbit = 1;
4997 switch (XMISCTYPE (obj))
4998 {
4999 case Lisp_Misc_Buffer_Local_Value:
5000 case Lisp_Misc_Some_Buffer_Local_Value:
5001 {
5002 register struct Lisp_Buffer_Local_Value *ptr
5003 = XBUFFER_LOCAL_VALUE (obj);
5004 /* If the cdr is nil, avoid recursion for the car. */
5005 if (EQ (ptr->cdr, Qnil))
5006 {
5007 obj = ptr->realvalue;
5008 goto loop;
5009 }
5010 mark_object (ptr->realvalue);
5011 mark_object (ptr->buffer);
5012 mark_object (ptr->frame);
5013 obj = ptr->cdr;
5014 goto loop;
5015 }
5016
5017 case Lisp_Misc_Marker:
5018 /* DO NOT mark thru the marker's chain.
5019 The buffer's markers chain does not preserve markers from gc;
5020 instead, markers are removed from the chain when freed by gc. */
5021 case Lisp_Misc_Intfwd:
5022 case Lisp_Misc_Boolfwd:
5023 case Lisp_Misc_Objfwd:
5024 case Lisp_Misc_Buffer_Objfwd:
5025 case Lisp_Misc_Kboard_Objfwd:
5026 /* Don't bother with Lisp_Buffer_Objfwd,
5027 since all markable slots in current buffer marked anyway. */
5028 /* Don't need to do Lisp_Objfwd, since the places they point
5029 are protected with staticpro. */
5030 case Lisp_Misc_Save_Value:
5031 break;
5032
5033 case Lisp_Misc_Overlay:
5034 {
5035 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5036 mark_object (ptr->start);
5037 mark_object (ptr->end);
5038 mark_object (ptr->plist);
5039 if (ptr->next)
5040 {
5041 XSETMISC (obj, ptr->next);
5042 goto loop;
5043 }
5044 }
5045 break;
5046
5047 default:
5048 abort ();
5049 }
5050 break;
5051
5052 case Lisp_Cons:
5053 {
5054 register struct Lisp_Cons *ptr = XCONS (obj);
5055 if (CONS_MARKED_P (ptr)) break;
5056 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5057 CONS_MARK (ptr);
5058 /* If the cdr is nil, avoid recursion for the car. */
5059 if (EQ (ptr->cdr, Qnil))
5060 {
5061 obj = ptr->car;
5062 cdr_count = 0;
5063 goto loop;
5064 }
5065 mark_object (ptr->car);
5066 obj = ptr->cdr;
5067 cdr_count++;
5068 if (cdr_count == mark_object_loop_halt)
5069 abort ();
5070 goto loop;
5071 }
5072
5073 case Lisp_Float:
5074 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5075 FLOAT_MARK (XFLOAT (obj));
5076 break;
5077
5078 case Lisp_Int:
5079 break;
5080
5081 default:
5082 abort ();
5083 }
5084
5085 #undef CHECK_LIVE
5086 #undef CHECK_ALLOCATED
5087 #undef CHECK_ALLOCATED_AND_LIVE
5088 }
5089
5090 /* Mark the pointers in a buffer structure. */
5091
5092 static void
5093 mark_buffer (buf)
5094 Lisp_Object buf;
5095 {
5096 register struct buffer *buffer = XBUFFER (buf);
5097 register Lisp_Object *ptr, tmp;
5098 Lisp_Object base_buffer;
5099
5100 VECTOR_MARK (buffer);
5101
5102 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5103
5104 if (CONSP (buffer->undo_list))
5105 {
5106 Lisp_Object tail;
5107 tail = buffer->undo_list;
5108
5109 /* We mark the undo list specially because
5110 its pointers to markers should be weak. */
5111
5112 while (CONSP (tail))
5113 {
5114 register struct Lisp_Cons *ptr = XCONS (tail);
5115
5116 if (CONS_MARKED_P (ptr))
5117 break;
5118 CONS_MARK (ptr);
5119 if (GC_CONSP (ptr->car)
5120 && !CONS_MARKED_P (XCONS (ptr->car))
5121 && GC_MARKERP (XCAR (ptr->car)))
5122 {
5123 CONS_MARK (XCONS (ptr->car));
5124 mark_object (XCDR (ptr->car));
5125 }
5126 else
5127 mark_object (ptr->car);
5128
5129 if (CONSP (ptr->cdr))
5130 tail = ptr->cdr;
5131 else
5132 break;
5133 }
5134
5135 mark_object (XCDR (tail));
5136 }
5137 else
5138 mark_object (buffer->undo_list);
5139
5140 if (buffer->overlays_before)
5141 {
5142 XSETMISC (tmp, buffer->overlays_before);
5143 mark_object (tmp);
5144 }
5145 if (buffer->overlays_after)
5146 {
5147 XSETMISC (tmp, buffer->overlays_after);
5148 mark_object (tmp);
5149 }
5150
5151 for (ptr = &buffer->name;
5152 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5153 ptr++)
5154 mark_object (*ptr);
5155
5156 /* If this is an indirect buffer, mark its base buffer. */
5157 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5158 {
5159 XSETBUFFER (base_buffer, buffer->base_buffer);
5160 mark_buffer (base_buffer);
5161 }
5162 }
5163
5164
5165 /* Value is non-zero if OBJ will survive the current GC because it's
5166 either marked or does not need to be marked to survive. */
5167
5168 int
5169 survives_gc_p (obj)
5170 Lisp_Object obj;
5171 {
5172 int survives_p;
5173
5174 switch (XGCTYPE (obj))
5175 {
5176 case Lisp_Int:
5177 survives_p = 1;
5178 break;
5179
5180 case Lisp_Symbol:
5181 survives_p = XSYMBOL (obj)->gcmarkbit;
5182 break;
5183
5184 case Lisp_Misc:
5185 survives_p = XMARKER (obj)->gcmarkbit;
5186 break;
5187
5188 case Lisp_String:
5189 survives_p = STRING_MARKED_P (XSTRING (obj));
5190 break;
5191
5192 case Lisp_Vectorlike:
5193 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5194 break;
5195
5196 case Lisp_Cons:
5197 survives_p = CONS_MARKED_P (XCONS (obj));
5198 break;
5199
5200 case Lisp_Float:
5201 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5202 break;
5203
5204 default:
5205 abort ();
5206 }
5207
5208 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5209 }
5210
5211
5212 \f
5213 /* Sweep: find all structures not marked, and free them. */
5214
5215 static void
5216 gc_sweep ()
5217 {
5218 /* Remove or mark entries in weak hash tables.
5219 This must be done before any object is unmarked. */
5220 sweep_weak_hash_tables ();
5221
5222 sweep_strings ();
5223 #ifdef GC_CHECK_STRING_BYTES
5224 if (!noninteractive)
5225 check_string_bytes (1);
5226 #endif
5227
5228 /* Put all unmarked conses on free list */
5229 {
5230 register struct cons_block *cblk;
5231 struct cons_block **cprev = &cons_block;
5232 register int lim = cons_block_index;
5233 register int num_free = 0, num_used = 0;
5234
5235 cons_free_list = 0;
5236
5237 for (cblk = cons_block; cblk; cblk = *cprev)
5238 {
5239 register int i;
5240 int this_free = 0;
5241 for (i = 0; i < lim; i++)
5242 if (!CONS_MARKED_P (&cblk->conses[i]))
5243 {
5244 this_free++;
5245 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
5246 cons_free_list = &cblk->conses[i];
5247 #if GC_MARK_STACK
5248 cons_free_list->car = Vdead;
5249 #endif
5250 }
5251 else
5252 {
5253 num_used++;
5254 CONS_UNMARK (&cblk->conses[i]);
5255 }
5256 lim = CONS_BLOCK_SIZE;
5257 /* If this block contains only free conses and we have already
5258 seen more than two blocks worth of free conses then deallocate
5259 this block. */
5260 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5261 {
5262 *cprev = cblk->next;
5263 /* Unhook from the free list. */
5264 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5265 lisp_align_free (cblk);
5266 n_cons_blocks--;
5267 }
5268 else
5269 {
5270 num_free += this_free;
5271 cprev = &cblk->next;
5272 }
5273 }
5274 total_conses = num_used;
5275 total_free_conses = num_free;
5276 }
5277
5278 /* Put all unmarked floats on free list */
5279 {
5280 register struct float_block *fblk;
5281 struct float_block **fprev = &float_block;
5282 register int lim = float_block_index;
5283 register int num_free = 0, num_used = 0;
5284
5285 float_free_list = 0;
5286
5287 for (fblk = float_block; fblk; fblk = *fprev)
5288 {
5289 register int i;
5290 int this_free = 0;
5291 for (i = 0; i < lim; i++)
5292 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5293 {
5294 this_free++;
5295 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5296 float_free_list = &fblk->floats[i];
5297 }
5298 else
5299 {
5300 num_used++;
5301 FLOAT_UNMARK (&fblk->floats[i]);
5302 }
5303 lim = FLOAT_BLOCK_SIZE;
5304 /* If this block contains only free floats and we have already
5305 seen more than two blocks worth of free floats then deallocate
5306 this block. */
5307 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5308 {
5309 *fprev = fblk->next;
5310 /* Unhook from the free list. */
5311 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5312 lisp_align_free (fblk);
5313 n_float_blocks--;
5314 }
5315 else
5316 {
5317 num_free += this_free;
5318 fprev = &fblk->next;
5319 }
5320 }
5321 total_floats = num_used;
5322 total_free_floats = num_free;
5323 }
5324
5325 /* Put all unmarked intervals on free list */
5326 {
5327 register struct interval_block *iblk;
5328 struct interval_block **iprev = &interval_block;
5329 register int lim = interval_block_index;
5330 register int num_free = 0, num_used = 0;
5331
5332 interval_free_list = 0;
5333
5334 for (iblk = interval_block; iblk; iblk = *iprev)
5335 {
5336 register int i;
5337 int this_free = 0;
5338
5339 for (i = 0; i < lim; i++)
5340 {
5341 if (!iblk->intervals[i].gcmarkbit)
5342 {
5343 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5344 interval_free_list = &iblk->intervals[i];
5345 this_free++;
5346 }
5347 else
5348 {
5349 num_used++;
5350 iblk->intervals[i].gcmarkbit = 0;
5351 }
5352 }
5353 lim = INTERVAL_BLOCK_SIZE;
5354 /* If this block contains only free intervals and we have already
5355 seen more than two blocks worth of free intervals then
5356 deallocate this block. */
5357 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5358 {
5359 *iprev = iblk->next;
5360 /* Unhook from the free list. */
5361 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5362 lisp_free (iblk);
5363 n_interval_blocks--;
5364 }
5365 else
5366 {
5367 num_free += this_free;
5368 iprev = &iblk->next;
5369 }
5370 }
5371 total_intervals = num_used;
5372 total_free_intervals = num_free;
5373 }
5374
5375 /* Put all unmarked symbols on free list */
5376 {
5377 register struct symbol_block *sblk;
5378 struct symbol_block **sprev = &symbol_block;
5379 register int lim = symbol_block_index;
5380 register int num_free = 0, num_used = 0;
5381
5382 symbol_free_list = NULL;
5383
5384 for (sblk = symbol_block; sblk; sblk = *sprev)
5385 {
5386 int this_free = 0;
5387 struct Lisp_Symbol *sym = sblk->symbols;
5388 struct Lisp_Symbol *end = sym + lim;
5389
5390 for (; sym < end; ++sym)
5391 {
5392 /* Check if the symbol was created during loadup. In such a case
5393 it might be pointed to by pure bytecode which we don't trace,
5394 so we conservatively assume that it is live. */
5395 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5396
5397 if (!sym->gcmarkbit && !pure_p)
5398 {
5399 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5400 symbol_free_list = sym;
5401 #if GC_MARK_STACK
5402 symbol_free_list->function = Vdead;
5403 #endif
5404 ++this_free;
5405 }
5406 else
5407 {
5408 ++num_used;
5409 if (!pure_p)
5410 UNMARK_STRING (XSTRING (sym->xname));
5411 sym->gcmarkbit = 0;
5412 }
5413 }
5414
5415 lim = SYMBOL_BLOCK_SIZE;
5416 /* If this block contains only free symbols and we have already
5417 seen more than two blocks worth of free symbols then deallocate
5418 this block. */
5419 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5420 {
5421 *sprev = sblk->next;
5422 /* Unhook from the free list. */
5423 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5424 lisp_free (sblk);
5425 n_symbol_blocks--;
5426 }
5427 else
5428 {
5429 num_free += this_free;
5430 sprev = &sblk->next;
5431 }
5432 }
5433 total_symbols = num_used;
5434 total_free_symbols = num_free;
5435 }
5436
5437 /* Put all unmarked misc's on free list.
5438 For a marker, first unchain it from the buffer it points into. */
5439 {
5440 register struct marker_block *mblk;
5441 struct marker_block **mprev = &marker_block;
5442 register int lim = marker_block_index;
5443 register int num_free = 0, num_used = 0;
5444
5445 marker_free_list = 0;
5446
5447 for (mblk = marker_block; mblk; mblk = *mprev)
5448 {
5449 register int i;
5450 int this_free = 0;
5451
5452 for (i = 0; i < lim; i++)
5453 {
5454 if (!mblk->markers[i].u_marker.gcmarkbit)
5455 {
5456 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5457 unchain_marker (&mblk->markers[i].u_marker);
5458 /* Set the type of the freed object to Lisp_Misc_Free.
5459 We could leave the type alone, since nobody checks it,
5460 but this might catch bugs faster. */
5461 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5462 mblk->markers[i].u_free.chain = marker_free_list;
5463 marker_free_list = &mblk->markers[i];
5464 this_free++;
5465 }
5466 else
5467 {
5468 num_used++;
5469 mblk->markers[i].u_marker.gcmarkbit = 0;
5470 }
5471 }
5472 lim = MARKER_BLOCK_SIZE;
5473 /* If this block contains only free markers and we have already
5474 seen more than two blocks worth of free markers then deallocate
5475 this block. */
5476 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5477 {
5478 *mprev = mblk->next;
5479 /* Unhook from the free list. */
5480 marker_free_list = mblk->markers[0].u_free.chain;
5481 lisp_free (mblk);
5482 n_marker_blocks--;
5483 }
5484 else
5485 {
5486 num_free += this_free;
5487 mprev = &mblk->next;
5488 }
5489 }
5490
5491 total_markers = num_used;
5492 total_free_markers = num_free;
5493 }
5494
5495 /* Free all unmarked buffers */
5496 {
5497 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5498
5499 while (buffer)
5500 if (!VECTOR_MARKED_P (buffer))
5501 {
5502 if (prev)
5503 prev->next = buffer->next;
5504 else
5505 all_buffers = buffer->next;
5506 next = buffer->next;
5507 lisp_free (buffer);
5508 buffer = next;
5509 }
5510 else
5511 {
5512 VECTOR_UNMARK (buffer);
5513 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5514 prev = buffer, buffer = buffer->next;
5515 }
5516 }
5517
5518 /* Free all unmarked vectors */
5519 {
5520 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5521 total_vector_size = 0;
5522
5523 while (vector)
5524 if (!VECTOR_MARKED_P (vector))
5525 {
5526 if (prev)
5527 prev->next = vector->next;
5528 else
5529 all_vectors = vector->next;
5530 next = vector->next;
5531 lisp_free (vector);
5532 n_vectors--;
5533 vector = next;
5534
5535 }
5536 else
5537 {
5538 VECTOR_UNMARK (vector);
5539 if (vector->size & PSEUDOVECTOR_FLAG)
5540 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5541 else
5542 total_vector_size += vector->size;
5543 prev = vector, vector = vector->next;
5544 }
5545 }
5546
5547 #ifdef GC_CHECK_STRING_BYTES
5548 if (!noninteractive)
5549 check_string_bytes (1);
5550 #endif
5551 }
5552
5553
5554
5555 \f
5556 /* Debugging aids. */
5557
5558 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5559 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5560 This may be helpful in debugging Emacs's memory usage.
5561 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5562 ()
5563 {
5564 Lisp_Object end;
5565
5566 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5567
5568 return end;
5569 }
5570
5571 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5572 doc: /* Return a list of counters that measure how much consing there has been.
5573 Each of these counters increments for a certain kind of object.
5574 The counters wrap around from the largest positive integer to zero.
5575 Garbage collection does not decrease them.
5576 The elements of the value are as follows:
5577 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5578 All are in units of 1 = one object consed
5579 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5580 objects consed.
5581 MISCS include overlays, markers, and some internal types.
5582 Frames, windows, buffers, and subprocesses count as vectors
5583 (but the contents of a buffer's text do not count here). */)
5584 ()
5585 {
5586 Lisp_Object consed[8];
5587
5588 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5589 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5590 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5591 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5592 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5593 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5594 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5595 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5596
5597 return Flist (8, consed);
5598 }
5599
5600 int suppress_checking;
5601 void
5602 die (msg, file, line)
5603 const char *msg;
5604 const char *file;
5605 int line;
5606 {
5607 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5608 file, line, msg);
5609 abort ();
5610 }
5611 \f
5612 /* Initialization */
5613
5614 void
5615 init_alloc_once ()
5616 {
5617 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5618 purebeg = PUREBEG;
5619 pure_size = PURESIZE;
5620 pure_bytes_used = 0;
5621 pure_bytes_used_before_overflow = 0;
5622
5623 /* Initialize the list of free aligned blocks. */
5624 free_ablock = NULL;
5625
5626 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5627 mem_init ();
5628 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5629 #endif
5630
5631 all_vectors = 0;
5632 ignore_warnings = 1;
5633 #ifdef DOUG_LEA_MALLOC
5634 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5635 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5636 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5637 #endif
5638 init_strings ();
5639 init_cons ();
5640 init_symbol ();
5641 init_marker ();
5642 init_float ();
5643 init_intervals ();
5644
5645 #ifdef REL_ALLOC
5646 malloc_hysteresis = 32;
5647 #else
5648 malloc_hysteresis = 0;
5649 #endif
5650
5651 spare_memory = (char *) malloc (SPARE_MEMORY);
5652
5653 ignore_warnings = 0;
5654 gcprolist = 0;
5655 byte_stack_list = 0;
5656 staticidx = 0;
5657 consing_since_gc = 0;
5658 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
5659 #ifdef VIRT_ADDR_VARIES
5660 malloc_sbrk_unused = 1<<22; /* A large number */
5661 malloc_sbrk_used = 100000; /* as reasonable as any number */
5662 #endif /* VIRT_ADDR_VARIES */
5663 }
5664
5665 void
5666 init_alloc ()
5667 {
5668 gcprolist = 0;
5669 byte_stack_list = 0;
5670 #if GC_MARK_STACK
5671 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5672 setjmp_tested_p = longjmps_done = 0;
5673 #endif
5674 #endif
5675 Vgc_elapsed = make_float (0.0);
5676 gcs_done = 0;
5677 }
5678
5679 void
5680 syms_of_alloc ()
5681 {
5682 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
5683 doc: /* *Number of bytes of consing between garbage collections.
5684 Garbage collection can happen automatically once this many bytes have been
5685 allocated since the last garbage collection. All data types count.
5686
5687 Garbage collection happens automatically only when `eval' is called.
5688
5689 By binding this temporarily to a large number, you can effectively
5690 prevent garbage collection during a part of the program. */);
5691
5692 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
5693 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
5694
5695 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
5696 doc: /* Number of cons cells that have been consed so far. */);
5697
5698 DEFVAR_INT ("floats-consed", &floats_consed,
5699 doc: /* Number of floats that have been consed so far. */);
5700
5701 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
5702 doc: /* Number of vector cells that have been consed so far. */);
5703
5704 DEFVAR_INT ("symbols-consed", &symbols_consed,
5705 doc: /* Number of symbols that have been consed so far. */);
5706
5707 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
5708 doc: /* Number of string characters that have been consed so far. */);
5709
5710 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
5711 doc: /* Number of miscellaneous objects that have been consed so far. */);
5712
5713 DEFVAR_INT ("intervals-consed", &intervals_consed,
5714 doc: /* Number of intervals that have been consed so far. */);
5715
5716 DEFVAR_INT ("strings-consed", &strings_consed,
5717 doc: /* Number of strings that have been consed so far. */);
5718
5719 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
5720 doc: /* Non-nil means loading Lisp code in order to dump an executable.
5721 This means that certain objects should be allocated in shared (pure) space. */);
5722
5723 DEFVAR_INT ("undo-limit", &undo_limit,
5724 doc: /* Keep no more undo information once it exceeds this size.
5725 This limit is applied when garbage collection happens.
5726 The size is counted as the number of bytes occupied,
5727 which includes both saved text and other data. */);
5728 undo_limit = 20000;
5729
5730 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
5731 doc: /* Don't keep more than this much size of undo information.
5732 A command which pushes past this size is itself forgotten.
5733 This limit is applied when garbage collection happens.
5734 The size is counted as the number of bytes occupied,
5735 which includes both saved text and other data. */);
5736 undo_strong_limit = 30000;
5737
5738 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
5739 doc: /* Non-nil means display messages at start and end of garbage collection. */);
5740 garbage_collection_messages = 0;
5741
5742 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
5743 doc: /* Hook run after garbage collection has finished. */);
5744 Vpost_gc_hook = Qnil;
5745 Qpost_gc_hook = intern ("post-gc-hook");
5746 staticpro (&Qpost_gc_hook);
5747
5748 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
5749 doc: /* Precomputed `signal' argument for memory-full error. */);
5750 /* We build this in advance because if we wait until we need it, we might
5751 not be able to allocate the memory to hold it. */
5752 Vmemory_signal_data
5753 = list2 (Qerror,
5754 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
5755
5756 DEFVAR_LISP ("memory-full", &Vmemory_full,
5757 doc: /* Non-nil means we are handling a memory-full error. */);
5758 Vmemory_full = Qnil;
5759
5760 staticpro (&Qgc_cons_threshold);
5761 Qgc_cons_threshold = intern ("gc-cons-threshold");
5762
5763 staticpro (&Qchar_table_extra_slots);
5764 Qchar_table_extra_slots = intern ("char-table-extra-slots");
5765
5766 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
5767 doc: /* Accumulated time elapsed in garbage collections.
5768 The time is in seconds as a floating point value. */);
5769 DEFVAR_INT ("gcs-done", &gcs_done,
5770 doc: /* Accumulated number of garbage collections done. */);
5771
5772 defsubr (&Scons);
5773 defsubr (&Slist);
5774 defsubr (&Svector);
5775 defsubr (&Smake_byte_code);
5776 defsubr (&Smake_list);
5777 defsubr (&Smake_vector);
5778 defsubr (&Smake_char_table);
5779 defsubr (&Smake_string);
5780 defsubr (&Smake_bool_vector);
5781 defsubr (&Smake_symbol);
5782 defsubr (&Smake_marker);
5783 defsubr (&Spurecopy);
5784 defsubr (&Sgarbage_collect);
5785 defsubr (&Smemory_limit);
5786 defsubr (&Smemory_use_counts);
5787
5788 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5789 defsubr (&Sgc_status);
5790 #endif
5791 }
5792
5793 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
5794 (do not change this comment) */