(CCL_WRITE_MULTIBYTE_CHAR): New macro.
[bpt/emacs.git] / src / ccl.c
1 /* CCL (Code Conversion Language) interpreter.
2 Copyright (C) 1995, 1997 Electrotechnical Laboratory, JAPAN.
3 Licensed to the Free Software Foundation.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #ifdef emacs
23 #include <config.h>
24 #endif
25
26 #include <stdio.h>
27
28 #ifdef emacs
29
30 #include "lisp.h"
31 #include "charset.h"
32 #include "ccl.h"
33 #include "coding.h"
34
35 #else /* not emacs */
36
37 #include "mulelib.h"
38
39 #endif /* not emacs */
40
41 /* This contains all code conversion map available to CCL. */
42 Lisp_Object Vcode_conversion_map_vector;
43
44 /* Alist of fontname patterns vs corresponding CCL program. */
45 Lisp_Object Vfont_ccl_encoder_alist;
46
47 /* This symbol is a property which assocates with ccl program vector.
48 Ex: (get 'ccl-big5-encoder 'ccl-program) returns ccl program vector. */
49 Lisp_Object Qccl_program;
50
51 /* These symbols are properties which associate with code conversion
52 map and their ID respectively. */
53 Lisp_Object Qcode_conversion_map;
54 Lisp_Object Qcode_conversion_map_id;
55
56 /* Symbols of ccl program have this property, a value of the property
57 is an index for Vccl_protram_table. */
58 Lisp_Object Qccl_program_idx;
59
60 /* Table of registered CCL programs. Each element is a vector of
61 NAME, CCL_PROG, and RESOLVEDP where NAME (symbol) is the name of
62 the program, CCL_PROG (vector) is the compiled code of the program,
63 RESOLVEDP (t or nil) is the flag to tell if symbols in CCL_PROG is
64 already resolved to index numbers or not. */
65 Lisp_Object Vccl_program_table;
66
67 /* CCL (Code Conversion Language) is a simple language which has
68 operations on one input buffer, one output buffer, and 7 registers.
69 The syntax of CCL is described in `ccl.el'. Emacs Lisp function
70 `ccl-compile' compiles a CCL program and produces a CCL code which
71 is a vector of integers. The structure of this vector is as
72 follows: The 1st element: buffer-magnification, a factor for the
73 size of output buffer compared with the size of input buffer. The
74 2nd element: address of CCL code to be executed when encountered
75 with end of input stream. The 3rd and the remaining elements: CCL
76 codes. */
77
78 /* Header of CCL compiled code */
79 #define CCL_HEADER_BUF_MAG 0
80 #define CCL_HEADER_EOF 1
81 #define CCL_HEADER_MAIN 2
82
83 /* CCL code is a sequence of 28-bit non-negative integers (i.e. the
84 MSB is always 0), each contains CCL command and/or arguments in the
85 following format:
86
87 |----------------- integer (28-bit) ------------------|
88 |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
89 |--constant argument--|-register-|-register-|-command-|
90 ccccccccccccccccc RRR rrr XXXXX
91 or
92 |------- relative address -------|-register-|-command-|
93 cccccccccccccccccccc rrr XXXXX
94 or
95 |------------- constant or other args ----------------|
96 cccccccccccccccccccccccccccc
97
98 where, `cc...c' is a non-negative integer indicating constant value
99 (the left most `c' is always 0) or an absolute jump address, `RRR'
100 and `rrr' are CCL register number, `XXXXX' is one of the following
101 CCL commands. */
102
103 /* CCL commands
104
105 Each comment fields shows one or more lines for command syntax and
106 the following lines for semantics of the command. In semantics, IC
107 stands for Instruction Counter. */
108
109 #define CCL_SetRegister 0x00 /* Set register a register value:
110 1:00000000000000000RRRrrrXXXXX
111 ------------------------------
112 reg[rrr] = reg[RRR];
113 */
114
115 #define CCL_SetShortConst 0x01 /* Set register a short constant value:
116 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
117 ------------------------------
118 reg[rrr] = CCCCCCCCCCCCCCCCCCC;
119 */
120
121 #define CCL_SetConst 0x02 /* Set register a constant value:
122 1:00000000000000000000rrrXXXXX
123 2:CONSTANT
124 ------------------------------
125 reg[rrr] = CONSTANT;
126 IC++;
127 */
128
129 #define CCL_SetArray 0x03 /* Set register an element of array:
130 1:CCCCCCCCCCCCCCCCCRRRrrrXXXXX
131 2:ELEMENT[0]
132 3:ELEMENT[1]
133 ...
134 ------------------------------
135 if (0 <= reg[RRR] < CC..C)
136 reg[rrr] = ELEMENT[reg[RRR]];
137 IC += CC..C;
138 */
139
140 #define CCL_Jump 0x04 /* Jump:
141 1:A--D--D--R--E--S--S-000XXXXX
142 ------------------------------
143 IC += ADDRESS;
144 */
145
146 /* Note: If CC..C is greater than 0, the second code is omitted. */
147
148 #define CCL_JumpCond 0x05 /* Jump conditional:
149 1:A--D--D--R--E--S--S-rrrXXXXX
150 ------------------------------
151 if (!reg[rrr])
152 IC += ADDRESS;
153 */
154
155
156 #define CCL_WriteRegisterJump 0x06 /* Write register and jump:
157 1:A--D--D--R--E--S--S-rrrXXXXX
158 ------------------------------
159 write (reg[rrr]);
160 IC += ADDRESS;
161 */
162
163 #define CCL_WriteRegisterReadJump 0x07 /* Write register, read, and jump:
164 1:A--D--D--R--E--S--S-rrrXXXXX
165 2:A--D--D--R--E--S--S-rrrYYYYY
166 -----------------------------
167 write (reg[rrr]);
168 IC++;
169 read (reg[rrr]);
170 IC += ADDRESS;
171 */
172 /* Note: If read is suspended, the resumed execution starts from the
173 second code (YYYYY == CCL_ReadJump). */
174
175 #define CCL_WriteConstJump 0x08 /* Write constant and jump:
176 1:A--D--D--R--E--S--S-000XXXXX
177 2:CONST
178 ------------------------------
179 write (CONST);
180 IC += ADDRESS;
181 */
182
183 #define CCL_WriteConstReadJump 0x09 /* Write constant, read, and jump:
184 1:A--D--D--R--E--S--S-rrrXXXXX
185 2:CONST
186 3:A--D--D--R--E--S--S-rrrYYYYY
187 -----------------------------
188 write (CONST);
189 IC += 2;
190 read (reg[rrr]);
191 IC += ADDRESS;
192 */
193 /* Note: If read is suspended, the resumed execution starts from the
194 second code (YYYYY == CCL_ReadJump). */
195
196 #define CCL_WriteStringJump 0x0A /* Write string and jump:
197 1:A--D--D--R--E--S--S-000XXXXX
198 2:LENGTH
199 3:0000STRIN[0]STRIN[1]STRIN[2]
200 ...
201 ------------------------------
202 write_string (STRING, LENGTH);
203 IC += ADDRESS;
204 */
205
206 #define CCL_WriteArrayReadJump 0x0B /* Write an array element, read, and jump:
207 1:A--D--D--R--E--S--S-rrrXXXXX
208 2:LENGTH
209 3:ELEMENET[0]
210 4:ELEMENET[1]
211 ...
212 N:A--D--D--R--E--S--S-rrrYYYYY
213 ------------------------------
214 if (0 <= reg[rrr] < LENGTH)
215 write (ELEMENT[reg[rrr]]);
216 IC += LENGTH + 2; (... pointing at N+1)
217 read (reg[rrr]);
218 IC += ADDRESS;
219 */
220 /* Note: If read is suspended, the resumed execution starts from the
221 Nth code (YYYYY == CCL_ReadJump). */
222
223 #define CCL_ReadJump 0x0C /* Read and jump:
224 1:A--D--D--R--E--S--S-rrrYYYYY
225 -----------------------------
226 read (reg[rrr]);
227 IC += ADDRESS;
228 */
229
230 #define CCL_Branch 0x0D /* Jump by branch table:
231 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
232 2:A--D--D--R--E-S-S[0]000XXXXX
233 3:A--D--D--R--E-S-S[1]000XXXXX
234 ...
235 ------------------------------
236 if (0 <= reg[rrr] < CC..C)
237 IC += ADDRESS[reg[rrr]];
238 else
239 IC += ADDRESS[CC..C];
240 */
241
242 #define CCL_ReadRegister 0x0E /* Read bytes into registers:
243 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
244 2:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
245 ...
246 ------------------------------
247 while (CCC--)
248 read (reg[rrr]);
249 */
250
251 #define CCL_WriteExprConst 0x0F /* write result of expression:
252 1:00000OPERATION000RRR000XXXXX
253 2:CONSTANT
254 ------------------------------
255 write (reg[RRR] OPERATION CONSTANT);
256 IC++;
257 */
258
259 /* Note: If the Nth read is suspended, the resumed execution starts
260 from the Nth code. */
261
262 #define CCL_ReadBranch 0x10 /* Read one byte into a register,
263 and jump by branch table:
264 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
265 2:A--D--D--R--E-S-S[0]000XXXXX
266 3:A--D--D--R--E-S-S[1]000XXXXX
267 ...
268 ------------------------------
269 read (read[rrr]);
270 if (0 <= reg[rrr] < CC..C)
271 IC += ADDRESS[reg[rrr]];
272 else
273 IC += ADDRESS[CC..C];
274 */
275
276 #define CCL_WriteRegister 0x11 /* Write registers:
277 1:CCCCCCCCCCCCCCCCCCCrrrXXXXX
278 2:CCCCCCCCCCCCCCCCCCCrrrXXXXX
279 ...
280 ------------------------------
281 while (CCC--)
282 write (reg[rrr]);
283 ...
284 */
285
286 /* Note: If the Nth write is suspended, the resumed execution
287 starts from the Nth code. */
288
289 #define CCL_WriteExprRegister 0x12 /* Write result of expression
290 1:00000OPERATIONRrrRRR000XXXXX
291 ------------------------------
292 write (reg[RRR] OPERATION reg[Rrr]);
293 */
294
295 #define CCL_Call 0x13 /* Call the CCL program whose ID is
296 CC..C or cc..c.
297 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX
298 [2:00000000cccccccccccccccccccc]
299 ------------------------------
300 if (FFF)
301 call (cc..c)
302 IC++;
303 else
304 call (CC..C)
305 */
306
307 #define CCL_WriteConstString 0x14 /* Write a constant or a string:
308 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
309 [2:0000STRIN[0]STRIN[1]STRIN[2]]
310 [...]
311 -----------------------------
312 if (!rrr)
313 write (CC..C)
314 else
315 write_string (STRING, CC..C);
316 IC += (CC..C + 2) / 3;
317 */
318
319 #define CCL_WriteArray 0x15 /* Write an element of array:
320 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
321 2:ELEMENT[0]
322 3:ELEMENT[1]
323 ...
324 ------------------------------
325 if (0 <= reg[rrr] < CC..C)
326 write (ELEMENT[reg[rrr]]);
327 IC += CC..C;
328 */
329
330 #define CCL_End 0x16 /* Terminate:
331 1:00000000000000000000000XXXXX
332 ------------------------------
333 terminate ();
334 */
335
336 /* The following two codes execute an assignment arithmetic/logical
337 operation. The form of the operation is like REG OP= OPERAND. */
338
339 #define CCL_ExprSelfConst 0x17 /* REG OP= constant:
340 1:00000OPERATION000000rrrXXXXX
341 2:CONSTANT
342 ------------------------------
343 reg[rrr] OPERATION= CONSTANT;
344 */
345
346 #define CCL_ExprSelfReg 0x18 /* REG1 OP= REG2:
347 1:00000OPERATION000RRRrrrXXXXX
348 ------------------------------
349 reg[rrr] OPERATION= reg[RRR];
350 */
351
352 /* The following codes execute an arithmetic/logical operation. The
353 form of the operation is like REG_X = REG_Y OP OPERAND2. */
354
355 #define CCL_SetExprConst 0x19 /* REG_X = REG_Y OP constant:
356 1:00000OPERATION000RRRrrrXXXXX
357 2:CONSTANT
358 ------------------------------
359 reg[rrr] = reg[RRR] OPERATION CONSTANT;
360 IC++;
361 */
362
363 #define CCL_SetExprReg 0x1A /* REG1 = REG2 OP REG3:
364 1:00000OPERATIONRrrRRRrrrXXXXX
365 ------------------------------
366 reg[rrr] = reg[RRR] OPERATION reg[Rrr];
367 */
368
369 #define CCL_JumpCondExprConst 0x1B /* Jump conditional according to
370 an operation on constant:
371 1:A--D--D--R--E--S--S-rrrXXXXX
372 2:OPERATION
373 3:CONSTANT
374 -----------------------------
375 reg[7] = reg[rrr] OPERATION CONSTANT;
376 if (!(reg[7]))
377 IC += ADDRESS;
378 else
379 IC += 2
380 */
381
382 #define CCL_JumpCondExprReg 0x1C /* Jump conditional according to
383 an operation on register:
384 1:A--D--D--R--E--S--S-rrrXXXXX
385 2:OPERATION
386 3:RRR
387 -----------------------------
388 reg[7] = reg[rrr] OPERATION reg[RRR];
389 if (!reg[7])
390 IC += ADDRESS;
391 else
392 IC += 2;
393 */
394
395 #define CCL_ReadJumpCondExprConst 0x1D /* Read and jump conditional according
396 to an operation on constant:
397 1:A--D--D--R--E--S--S-rrrXXXXX
398 2:OPERATION
399 3:CONSTANT
400 -----------------------------
401 read (reg[rrr]);
402 reg[7] = reg[rrr] OPERATION CONSTANT;
403 if (!reg[7])
404 IC += ADDRESS;
405 else
406 IC += 2;
407 */
408
409 #define CCL_ReadJumpCondExprReg 0x1E /* Read and jump conditional according
410 to an operation on register:
411 1:A--D--D--R--E--S--S-rrrXXXXX
412 2:OPERATION
413 3:RRR
414 -----------------------------
415 read (reg[rrr]);
416 reg[7] = reg[rrr] OPERATION reg[RRR];
417 if (!reg[7])
418 IC += ADDRESS;
419 else
420 IC += 2;
421 */
422
423 #define CCL_Extension 0x1F /* Extended CCL code
424 1:ExtendedCOMMNDRrrRRRrrrXXXXX
425 2:ARGUEMENT
426 3:...
427 ------------------------------
428 extended_command (rrr,RRR,Rrr,ARGS)
429 */
430
431 /*
432 Here after, Extended CCL Instructions.
433 Bit length of extended command is 14.
434 Therefore, the instruction code range is 0..16384(0x3fff).
435 */
436
437 /* Read a multibyte characeter.
438 A code point is stored into reg[rrr]. A charset ID is stored into
439 reg[RRR]. */
440
441 #define CCL_ReadMultibyteChar2 0x00 /* Read Multibyte Character
442 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
443
444 /* Write a multibyte character.
445 Write a character whose code point is reg[rrr] and the charset ID
446 is reg[RRR]. */
447
448 #define CCL_WriteMultibyteChar2 0x01 /* Write Multibyte Character
449 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
450
451 /* Translate a character whose code point is reg[rrr] and the charset
452 ID is reg[RRR] by a translation table whose ID is reg[Rrr].
453
454 A translated character is set in reg[rrr] (code point) and reg[RRR]
455 (charset ID). */
456
457 #define CCL_TranslateCharacter 0x02 /* Translate a multibyte character
458 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
459
460 /* Translate a character whose code point is reg[rrr] and the charset
461 ID is reg[RRR] by a translation table whose ID is ARGUMENT.
462
463 A translated character is set in reg[rrr] (code point) and reg[RRR]
464 (charset ID). */
465
466 #define CCL_TranslateCharacterConstTbl 0x03 /* Translate a multibyte character
467 1:ExtendedCOMMNDRrrRRRrrrXXXXX
468 2:ARGUMENT(Translation Table ID)
469 */
470
471 /* Iterate looking up MAPs for reg[rrr] starting from the Nth (N =
472 reg[RRR]) MAP until some value is found.
473
474 Each MAP is a Lisp vector whose element is number, nil, t, or
475 lambda.
476 If the element is nil, ignore the map and proceed to the next map.
477 If the element is t or lambda, finish without changing reg[rrr].
478 If the element is a number, set reg[rrr] to the number and finish.
479
480 Detail of the map structure is descibed in the comment for
481 CCL_MapMultiple below. */
482
483 #define CCL_IterateMultipleMap 0x10 /* Iterate multiple maps
484 1:ExtendedCOMMNDXXXRRRrrrXXXXX
485 2:NUMBER of MAPs
486 3:MAP-ID1
487 4:MAP-ID2
488 ...
489 */
490
491 /* Map the code in reg[rrr] by MAPs starting from the Nth (N =
492 reg[RRR]) map.
493
494 MAPs are supplied in the succeeding CCL codes as follows:
495
496 When CCL program gives this nested structure of map to this command:
497 ((MAP-ID11
498 MAP-ID12
499 (MAP-ID121 MAP-ID122 MAP-ID123)
500 MAP-ID13)
501 (MAP-ID21
502 (MAP-ID211 (MAP-ID2111) MAP-ID212)
503 MAP-ID22)),
504 the compiled CCL codes has this sequence:
505 CCL_MapMultiple (CCL code of this command)
506 16 (total number of MAPs and SEPARATORs)
507 -7 (1st SEPARATOR)
508 MAP-ID11
509 MAP-ID12
510 -3 (2nd SEPARATOR)
511 MAP-ID121
512 MAP-ID122
513 MAP-ID123
514 MAP-ID13
515 -7 (3rd SEPARATOR)
516 MAP-ID21
517 -4 (4th SEPARATOR)
518 MAP-ID211
519 -1 (5th SEPARATOR)
520 MAP_ID2111
521 MAP-ID212
522 MAP-ID22
523
524 A value of each SEPARATOR follows this rule:
525 MAP-SET := SEPARATOR [(MAP-ID | MAP-SET)]+
526 SEPARATOR := -(number of MAP-IDs and SEPARATORs in the MAP-SET)
527
528 (*)....Nest level of MAP-SET must not be over than MAX_MAP_SET_LEVEL.
529
530 When some map fails to map (i.e. it doesn't have a value for
531 reg[rrr]), the mapping is treated as identity.
532
533 The mapping is iterated for all maps in each map set (set of maps
534 separated by SEPARATOR) except in the case that lambda is
535 encountered. More precisely, the mapping proceeds as below:
536
537 At first, VAL0 is set to reg[rrr], and it is translated by the
538 first map to VAL1. Then, VAL1 is translated by the next map to
539 VAL2. This mapping is iterated until the last map is used. The
540 result of the mapping is the last value of VAL?. When the mapping
541 process reached to the end of the map set, it moves to the next
542 map set. If the next does not exit, the mapping process terminates,
543 and regard the last value as a result.
544
545 But, when VALm is mapped to VALn and VALn is not a number, the
546 mapping proceed as below:
547
548 If VALn is nil, the lastest map is ignored and the mapping of VALm
549 proceed to the next map.
550
551 In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm
552 proceed to the next map.
553
554 If VALn is lambda, move to the next map set like reaching to the
555 end of the current map set.
556
557 If VALn is a symbol, call the CCL program refered by it.
558 Then, use reg[rrr] as a mapped value except for -1, -2 and -3.
559 Such special values are regarded as nil, t, and lambda respectively.
560
561 Each map is a Lisp vector of the following format (a) or (b):
562 (a)......[STARTPOINT VAL1 VAL2 ...]
563 (b)......[t VAL STARTPOINT ENDPOINT],
564 where
565 STARTPOINT is an offset to be used for indexing a map,
566 ENDPOINT is a maximum index number of a map,
567 VAL and VALn is a number, nil, t, or lambda.
568
569 Valid index range of a map of type (a) is:
570 STARTPOINT <= index < STARTPOINT + map_size - 1
571 Valid index range of a map of type (b) is:
572 STARTPOINT <= index < ENDPOINT */
573
574 #define CCL_MapMultiple 0x11 /* Mapping by multiple code conversion maps
575 1:ExtendedCOMMNDXXXRRRrrrXXXXX
576 2:N-2
577 3:SEPARATOR_1 (< 0)
578 4:MAP-ID_1
579 5:MAP-ID_2
580 ...
581 M:SEPARATOR_x (< 0)
582 M+1:MAP-ID_y
583 ...
584 N:SEPARATOR_z (< 0)
585 */
586
587 #define MAX_MAP_SET_LEVEL 30
588
589 typedef struct
590 {
591 int rest_length;
592 int orig_val;
593 } tr_stack;
594
595 static tr_stack mapping_stack[MAX_MAP_SET_LEVEL];
596 static tr_stack *mapping_stack_pointer;
597
598 /* If this variable is non-zero, it indicates the stack_idx
599 of immediately called by CCL_MapMultiple. */
600 static int stack_idx_of_map_multiple;
601
602 #define PUSH_MAPPING_STACK(restlen, orig) \
603 do { \
604 mapping_stack_pointer->rest_length = (restlen); \
605 mapping_stack_pointer->orig_val = (orig); \
606 mapping_stack_pointer++; \
607 } while (0)
608
609 #define POP_MAPPING_STACK(restlen, orig) \
610 do { \
611 mapping_stack_pointer--; \
612 (restlen) = mapping_stack_pointer->rest_length; \
613 (orig) = mapping_stack_pointer->orig_val; \
614 } while (0)
615
616 #define CCL_CALL_FOR_MAP_INSTRUCTION(symbol, ret_ic) \
617 if (1) \
618 { \
619 struct ccl_program called_ccl; \
620 if (stack_idx >= 256 \
621 || (setup_ccl_program (&called_ccl, (symbol)) != 0)) \
622 { \
623 if (stack_idx > 0) \
624 { \
625 ccl_prog = ccl_prog_stack_struct[0].ccl_prog; \
626 ic = ccl_prog_stack_struct[0].ic; \
627 } \
628 CCL_INVALID_CMD; \
629 } \
630 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog; \
631 ccl_prog_stack_struct[stack_idx].ic = (ret_ic); \
632 stack_idx++; \
633 ccl_prog = called_ccl.prog; \
634 ic = CCL_HEADER_MAIN; \
635 goto ccl_repeat; \
636 } \
637 else
638
639 #define CCL_MapSingle 0x12 /* Map by single code conversion map
640 1:ExtendedCOMMNDXXXRRRrrrXXXXX
641 2:MAP-ID
642 ------------------------------
643 Map reg[rrr] by MAP-ID.
644 If some valid mapping is found,
645 set reg[rrr] to the result,
646 else
647 set reg[RRR] to -1.
648 */
649
650 /* CCL arithmetic/logical operators. */
651 #define CCL_PLUS 0x00 /* X = Y + Z */
652 #define CCL_MINUS 0x01 /* X = Y - Z */
653 #define CCL_MUL 0x02 /* X = Y * Z */
654 #define CCL_DIV 0x03 /* X = Y / Z */
655 #define CCL_MOD 0x04 /* X = Y % Z */
656 #define CCL_AND 0x05 /* X = Y & Z */
657 #define CCL_OR 0x06 /* X = Y | Z */
658 #define CCL_XOR 0x07 /* X = Y ^ Z */
659 #define CCL_LSH 0x08 /* X = Y << Z */
660 #define CCL_RSH 0x09 /* X = Y >> Z */
661 #define CCL_LSH8 0x0A /* X = (Y << 8) | Z */
662 #define CCL_RSH8 0x0B /* X = Y >> 8, r[7] = Y & 0xFF */
663 #define CCL_DIVMOD 0x0C /* X = Y / Z, r[7] = Y % Z */
664 #define CCL_LS 0x10 /* X = (X < Y) */
665 #define CCL_GT 0x11 /* X = (X > Y) */
666 #define CCL_EQ 0x12 /* X = (X == Y) */
667 #define CCL_LE 0x13 /* X = (X <= Y) */
668 #define CCL_GE 0x14 /* X = (X >= Y) */
669 #define CCL_NE 0x15 /* X = (X != Y) */
670
671 #define CCL_DECODE_SJIS 0x16 /* X = HIGHER_BYTE (DE-SJIS (Y, Z))
672 r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */
673 #define CCL_ENCODE_SJIS 0x17 /* X = HIGHER_BYTE (SJIS (Y, Z))
674 r[7] = LOWER_BYTE (SJIS (Y, Z) */
675
676 /* Terminate CCL program successfully. */
677 #define CCL_SUCCESS \
678 if (1) \
679 { \
680 ccl->status = CCL_STAT_SUCCESS; \
681 goto ccl_finish; \
682 } \
683 else
684
685 /* Suspend CCL program because of reading from empty input buffer or
686 writing to full output buffer. When this program is resumed, the
687 same I/O command is executed. */
688 #define CCL_SUSPEND(stat) \
689 if (1) \
690 { \
691 ic--; \
692 ccl->status = stat; \
693 goto ccl_finish; \
694 } \
695 else
696
697 /* Terminate CCL program because of invalid command. Should not occur
698 in the normal case. */
699 #define CCL_INVALID_CMD \
700 if (1) \
701 { \
702 ccl->status = CCL_STAT_INVALID_CMD; \
703 goto ccl_error_handler; \
704 } \
705 else
706
707 /* Encode one character CH to multibyte form and write to the current
708 output buffer. If CH is less than 256, CH is written as is. */
709 #define CCL_WRITE_CHAR(ch) \
710 do { \
711 int bytes = SINGLE_BYTE_CHAR_P (ch) ? 1: CHAR_BYTES (ch); \
712 if (!dst) \
713 CCL_INVALID_CMD; \
714 else if (dst + bytes + extra_bytes < (dst_bytes ? dst_end : src)) \
715 { \
716 if (bytes == 1) \
717 { \
718 *dst++ = (ch); \
719 if ((ch) >= 0x80 && (ch) < 0xA0) \
720 /* We may have to convert this eight-bit char to \
721 multibyte form later. */ \
722 extra_bytes++; \
723 } \
724 else if (CHAR_VALID_P (ch, 0)) \
725 dst += CHAR_STRING (ch, dst); \
726 else \
727 CCL_INVALID_CMD; \
728 } \
729 else \
730 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
731 } while (0)
732
733 /* Encode one character CH to multibyte form and write to the current
734 output buffer. The output bytes always forms a valid multibyte
735 sequence. */
736 #define CCL_WRITE_MULTIBYTE_CHAR(ch) \
737 do { \
738 int bytes = CHAR_BYTES (ch); \
739 if (!dst) \
740 CCL_INVALID_CMD; \
741 else if (dst + bytes + extra_bytes < (dst_bytes ? dst_end : src)) \
742 { \
743 if (CHAR_VALID_P ((ch), 0)) \
744 dst += CHAR_STRING ((ch), dst); \
745 else \
746 CCL_INVALID_CMD; \
747 } \
748 else \
749 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
750 } while (0)
751
752 /* Write a string at ccl_prog[IC] of length LEN to the current output
753 buffer. */
754 #define CCL_WRITE_STRING(len) \
755 do { \
756 if (!dst) \
757 CCL_INVALID_CMD; \
758 else if (dst + len <= (dst_bytes ? dst_end : src)) \
759 for (i = 0; i < len; i++) \
760 *dst++ = ((XFASTINT (ccl_prog[ic + (i / 3)])) \
761 >> ((2 - (i % 3)) * 8)) & 0xFF; \
762 else \
763 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
764 } while (0)
765
766 /* Read one byte from the current input buffer into REGth register. */
767 #define CCL_READ_CHAR(REG) \
768 do { \
769 if (!src) \
770 CCL_INVALID_CMD; \
771 else if (src < src_end) \
772 { \
773 REG = *src++; \
774 if (REG == '\n' \
775 && ccl->eol_type != CODING_EOL_LF) \
776 { \
777 /* We are encoding. */ \
778 if (ccl->eol_type == CODING_EOL_CRLF) \
779 { \
780 if (ccl->cr_consumed) \
781 ccl->cr_consumed = 0; \
782 else \
783 { \
784 ccl->cr_consumed = 1; \
785 REG = '\r'; \
786 src--; \
787 } \
788 } \
789 else \
790 REG = '\r'; \
791 } \
792 if (REG == LEADING_CODE_8_BIT_CONTROL \
793 && ccl->multibyte) \
794 REG = *src++ - 0x20; \
795 } \
796 else if (ccl->last_block) \
797 { \
798 ic = ccl->eof_ic; \
799 goto ccl_repeat; \
800 } \
801 else \
802 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC); \
803 } while (0)
804
805
806 /* Set C to the character code made from CHARSET and CODE. This is
807 like MAKE_CHAR but check the validity of CHARSET and CODE. If they
808 are not valid, set C to (CODE & 0xFF) because that is usually the
809 case that CCL_ReadMultibyteChar2 read an invalid code and it set
810 CODE to that invalid byte. */
811
812 #define CCL_MAKE_CHAR(charset, code, c) \
813 do { \
814 if (charset == CHARSET_ASCII) \
815 c = code & 0xFF; \
816 else if (CHARSET_DEFINED_P (charset) \
817 && (code & 0x7F) >= 32 \
818 && (code < 256 || ((code >> 7) & 0x7F) >= 32)) \
819 { \
820 int c1 = code & 0x7F, c2 = 0; \
821 \
822 if (code >= 256) \
823 c2 = c1, c1 = (code >> 7) & 0x7F; \
824 c = MAKE_CHAR (charset, c1, c2); \
825 } \
826 else \
827 c = code & 0xFF; \
828 } while (0)
829
830
831 /* Execute CCL code on SRC_BYTES length text at SOURCE. The resulting
832 text goes to a place pointed by DESTINATION, the length of which
833 should not exceed DST_BYTES. The bytes actually processed is
834 returned as *CONSUMED. The return value is the length of the
835 resulting text. As a side effect, the contents of CCL registers
836 are updated. If SOURCE or DESTINATION is NULL, only operations on
837 registers are permitted. */
838
839 #ifdef CCL_DEBUG
840 #define CCL_DEBUG_BACKTRACE_LEN 256
841 int ccl_backtrace_table[CCL_BACKTRACE_TABLE];
842 int ccl_backtrace_idx;
843 #endif
844
845 struct ccl_prog_stack
846 {
847 Lisp_Object *ccl_prog; /* Pointer to an array of CCL code. */
848 int ic; /* Instruction Counter. */
849 };
850
851 /* For the moment, we only support depth 256 of stack. */
852 static struct ccl_prog_stack ccl_prog_stack_struct[256];
853
854 int
855 ccl_driver (ccl, source, destination, src_bytes, dst_bytes, consumed)
856 struct ccl_program *ccl;
857 unsigned char *source, *destination;
858 int src_bytes, dst_bytes;
859 int *consumed;
860 {
861 register int *reg = ccl->reg;
862 register int ic = ccl->ic;
863 register int code, field1, field2;
864 register Lisp_Object *ccl_prog = ccl->prog;
865 unsigned char *src = source, *src_end = src + src_bytes;
866 unsigned char *dst = destination, *dst_end = dst + dst_bytes;
867 int jump_address;
868 int i, j, op;
869 int stack_idx = ccl->stack_idx;
870 /* Instruction counter of the current CCL code. */
871 int this_ic;
872 /* CCL_WRITE_CHAR will produce 8-bit code of range 0x80..0x9F. But,
873 each of them will be converted to multibyte form of 2-byte
874 sequence. For that conversion, we remember how many more bytes
875 we must keep in DESTINATION in this variable. */
876 int extra_bytes = 0;
877
878 if (ic >= ccl->eof_ic)
879 ic = CCL_HEADER_MAIN;
880
881 if (ccl->buf_magnification ==0) /* We can't produce any bytes. */
882 dst = NULL;
883
884 /* Set mapping stack pointer. */
885 mapping_stack_pointer = mapping_stack;
886
887 #ifdef CCL_DEBUG
888 ccl_backtrace_idx = 0;
889 #endif
890
891 for (;;)
892 {
893 ccl_repeat:
894 #ifdef CCL_DEBUG
895 ccl_backtrace_table[ccl_backtrace_idx++] = ic;
896 if (ccl_backtrace_idx >= CCL_DEBUG_BACKTRACE_LEN)
897 ccl_backtrace_idx = 0;
898 ccl_backtrace_table[ccl_backtrace_idx] = 0;
899 #endif
900
901 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
902 {
903 /* We can't just signal Qquit, instead break the loop as if
904 the whole data is processed. Don't reset Vquit_flag, it
905 must be handled later at a safer place. */
906 if (consumed)
907 src = source + src_bytes;
908 ccl->status = CCL_STAT_QUIT;
909 break;
910 }
911
912 this_ic = ic;
913 code = XINT (ccl_prog[ic]); ic++;
914 field1 = code >> 8;
915 field2 = (code & 0xFF) >> 5;
916
917 #define rrr field2
918 #define RRR (field1 & 7)
919 #define Rrr ((field1 >> 3) & 7)
920 #define ADDR field1
921 #define EXCMD (field1 >> 6)
922
923 switch (code & 0x1F)
924 {
925 case CCL_SetRegister: /* 00000000000000000RRRrrrXXXXX */
926 reg[rrr] = reg[RRR];
927 break;
928
929 case CCL_SetShortConst: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
930 reg[rrr] = field1;
931 break;
932
933 case CCL_SetConst: /* 00000000000000000000rrrXXXXX */
934 reg[rrr] = XINT (ccl_prog[ic]);
935 ic++;
936 break;
937
938 case CCL_SetArray: /* CCCCCCCCCCCCCCCCCCCCRRRrrrXXXXX */
939 i = reg[RRR];
940 j = field1 >> 3;
941 if ((unsigned int) i < j)
942 reg[rrr] = XINT (ccl_prog[ic + i]);
943 ic += j;
944 break;
945
946 case CCL_Jump: /* A--D--D--R--E--S--S-000XXXXX */
947 ic += ADDR;
948 break;
949
950 case CCL_JumpCond: /* A--D--D--R--E--S--S-rrrXXXXX */
951 if (!reg[rrr])
952 ic += ADDR;
953 break;
954
955 case CCL_WriteRegisterJump: /* A--D--D--R--E--S--S-rrrXXXXX */
956 i = reg[rrr];
957 CCL_WRITE_CHAR (i);
958 ic += ADDR;
959 break;
960
961 case CCL_WriteRegisterReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
962 i = reg[rrr];
963 CCL_WRITE_CHAR (i);
964 ic++;
965 CCL_READ_CHAR (reg[rrr]);
966 ic += ADDR - 1;
967 break;
968
969 case CCL_WriteConstJump: /* A--D--D--R--E--S--S-000XXXXX */
970 i = XINT (ccl_prog[ic]);
971 CCL_WRITE_CHAR (i);
972 ic += ADDR;
973 break;
974
975 case CCL_WriteConstReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
976 i = XINT (ccl_prog[ic]);
977 CCL_WRITE_CHAR (i);
978 ic++;
979 CCL_READ_CHAR (reg[rrr]);
980 ic += ADDR - 1;
981 break;
982
983 case CCL_WriteStringJump: /* A--D--D--R--E--S--S-000XXXXX */
984 j = XINT (ccl_prog[ic]);
985 ic++;
986 CCL_WRITE_STRING (j);
987 ic += ADDR - 1;
988 break;
989
990 case CCL_WriteArrayReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
991 i = reg[rrr];
992 j = XINT (ccl_prog[ic]);
993 if ((unsigned int) i < j)
994 {
995 i = XINT (ccl_prog[ic + 1 + i]);
996 CCL_WRITE_CHAR (i);
997 }
998 ic += j + 2;
999 CCL_READ_CHAR (reg[rrr]);
1000 ic += ADDR - (j + 2);
1001 break;
1002
1003 case CCL_ReadJump: /* A--D--D--R--E--S--S-rrrYYYYY */
1004 CCL_READ_CHAR (reg[rrr]);
1005 ic += ADDR;
1006 break;
1007
1008 case CCL_ReadBranch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1009 CCL_READ_CHAR (reg[rrr]);
1010 /* fall through ... */
1011 case CCL_Branch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1012 if ((unsigned int) reg[rrr] < field1)
1013 ic += XINT (ccl_prog[ic + reg[rrr]]);
1014 else
1015 ic += XINT (ccl_prog[ic + field1]);
1016 break;
1017
1018 case CCL_ReadRegister: /* CCCCCCCCCCCCCCCCCCCCrrXXXXX */
1019 while (1)
1020 {
1021 CCL_READ_CHAR (reg[rrr]);
1022 if (!field1) break;
1023 code = XINT (ccl_prog[ic]); ic++;
1024 field1 = code >> 8;
1025 field2 = (code & 0xFF) >> 5;
1026 }
1027 break;
1028
1029 case CCL_WriteExprConst: /* 1:00000OPERATION000RRR000XXXXX */
1030 rrr = 7;
1031 i = reg[RRR];
1032 j = XINT (ccl_prog[ic]);
1033 op = field1 >> 6;
1034 jump_address = ic + 1;
1035 goto ccl_set_expr;
1036
1037 case CCL_WriteRegister: /* CCCCCCCCCCCCCCCCCCCrrrXXXXX */
1038 while (1)
1039 {
1040 i = reg[rrr];
1041 CCL_WRITE_CHAR (i);
1042 if (!field1) break;
1043 code = XINT (ccl_prog[ic]); ic++;
1044 field1 = code >> 8;
1045 field2 = (code & 0xFF) >> 5;
1046 }
1047 break;
1048
1049 case CCL_WriteExprRegister: /* 1:00000OPERATIONRrrRRR000XXXXX */
1050 rrr = 7;
1051 i = reg[RRR];
1052 j = reg[Rrr];
1053 op = field1 >> 6;
1054 jump_address = ic;
1055 goto ccl_set_expr;
1056
1057 case CCL_Call: /* 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX */
1058 {
1059 Lisp_Object slot;
1060 int prog_id;
1061
1062 /* If FFF is nonzero, the CCL program ID is in the
1063 following code. */
1064 if (rrr)
1065 {
1066 prog_id = XINT (ccl_prog[ic]);
1067 ic++;
1068 }
1069 else
1070 prog_id = field1;
1071
1072 if (stack_idx >= 256
1073 || prog_id < 0
1074 || prog_id >= XVECTOR (Vccl_program_table)->size
1075 || (slot = XVECTOR (Vccl_program_table)->contents[prog_id],
1076 !VECTORP (slot))
1077 || !VECTORP (XVECTOR (slot)->contents[1]))
1078 {
1079 if (stack_idx > 0)
1080 {
1081 ccl_prog = ccl_prog_stack_struct[0].ccl_prog;
1082 ic = ccl_prog_stack_struct[0].ic;
1083 }
1084 CCL_INVALID_CMD;
1085 }
1086
1087 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog;
1088 ccl_prog_stack_struct[stack_idx].ic = ic;
1089 stack_idx++;
1090 ccl_prog = XVECTOR (XVECTOR (slot)->contents[1])->contents;
1091 ic = CCL_HEADER_MAIN;
1092 }
1093 break;
1094
1095 case CCL_WriteConstString: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1096 if (!rrr)
1097 CCL_WRITE_CHAR (field1);
1098 else
1099 {
1100 CCL_WRITE_STRING (field1);
1101 ic += (field1 + 2) / 3;
1102 }
1103 break;
1104
1105 case CCL_WriteArray: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1106 i = reg[rrr];
1107 if ((unsigned int) i < field1)
1108 {
1109 j = XINT (ccl_prog[ic + i]);
1110 CCL_WRITE_CHAR (j);
1111 }
1112 ic += field1;
1113 break;
1114
1115 case CCL_End: /* 0000000000000000000000XXXXX */
1116 if (stack_idx > 0)
1117 {
1118 stack_idx--;
1119 ccl_prog = ccl_prog_stack_struct[stack_idx].ccl_prog;
1120 ic = ccl_prog_stack_struct[stack_idx].ic;
1121 break;
1122 }
1123 if (src)
1124 src = src_end;
1125 /* ccl->ic should points to this command code again to
1126 suppress further processing. */
1127 ic--;
1128 CCL_SUCCESS;
1129
1130 case CCL_ExprSelfConst: /* 00000OPERATION000000rrrXXXXX */
1131 i = XINT (ccl_prog[ic]);
1132 ic++;
1133 op = field1 >> 6;
1134 goto ccl_expr_self;
1135
1136 case CCL_ExprSelfReg: /* 00000OPERATION000RRRrrrXXXXX */
1137 i = reg[RRR];
1138 op = field1 >> 6;
1139
1140 ccl_expr_self:
1141 switch (op)
1142 {
1143 case CCL_PLUS: reg[rrr] += i; break;
1144 case CCL_MINUS: reg[rrr] -= i; break;
1145 case CCL_MUL: reg[rrr] *= i; break;
1146 case CCL_DIV: reg[rrr] /= i; break;
1147 case CCL_MOD: reg[rrr] %= i; break;
1148 case CCL_AND: reg[rrr] &= i; break;
1149 case CCL_OR: reg[rrr] |= i; break;
1150 case CCL_XOR: reg[rrr] ^= i; break;
1151 case CCL_LSH: reg[rrr] <<= i; break;
1152 case CCL_RSH: reg[rrr] >>= i; break;
1153 case CCL_LSH8: reg[rrr] <<= 8; reg[rrr] |= i; break;
1154 case CCL_RSH8: reg[7] = reg[rrr] & 0xFF; reg[rrr] >>= 8; break;
1155 case CCL_DIVMOD: reg[7] = reg[rrr] % i; reg[rrr] /= i; break;
1156 case CCL_LS: reg[rrr] = reg[rrr] < i; break;
1157 case CCL_GT: reg[rrr] = reg[rrr] > i; break;
1158 case CCL_EQ: reg[rrr] = reg[rrr] == i; break;
1159 case CCL_LE: reg[rrr] = reg[rrr] <= i; break;
1160 case CCL_GE: reg[rrr] = reg[rrr] >= i; break;
1161 case CCL_NE: reg[rrr] = reg[rrr] != i; break;
1162 default: CCL_INVALID_CMD;
1163 }
1164 break;
1165
1166 case CCL_SetExprConst: /* 00000OPERATION000RRRrrrXXXXX */
1167 i = reg[RRR];
1168 j = XINT (ccl_prog[ic]);
1169 op = field1 >> 6;
1170 jump_address = ++ic;
1171 goto ccl_set_expr;
1172
1173 case CCL_SetExprReg: /* 00000OPERATIONRrrRRRrrrXXXXX */
1174 i = reg[RRR];
1175 j = reg[Rrr];
1176 op = field1 >> 6;
1177 jump_address = ic;
1178 goto ccl_set_expr;
1179
1180 case CCL_ReadJumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
1181 CCL_READ_CHAR (reg[rrr]);
1182 case CCL_JumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
1183 i = reg[rrr];
1184 op = XINT (ccl_prog[ic]);
1185 jump_address = ic++ + ADDR;
1186 j = XINT (ccl_prog[ic]);
1187 ic++;
1188 rrr = 7;
1189 goto ccl_set_expr;
1190
1191 case CCL_ReadJumpCondExprReg: /* A--D--D--R--E--S--S-rrrXXXXX */
1192 CCL_READ_CHAR (reg[rrr]);
1193 case CCL_JumpCondExprReg:
1194 i = reg[rrr];
1195 op = XINT (ccl_prog[ic]);
1196 jump_address = ic++ + ADDR;
1197 j = reg[XINT (ccl_prog[ic])];
1198 ic++;
1199 rrr = 7;
1200
1201 ccl_set_expr:
1202 switch (op)
1203 {
1204 case CCL_PLUS: reg[rrr] = i + j; break;
1205 case CCL_MINUS: reg[rrr] = i - j; break;
1206 case CCL_MUL: reg[rrr] = i * j; break;
1207 case CCL_DIV: reg[rrr] = i / j; break;
1208 case CCL_MOD: reg[rrr] = i % j; break;
1209 case CCL_AND: reg[rrr] = i & j; break;
1210 case CCL_OR: reg[rrr] = i | j; break;
1211 case CCL_XOR: reg[rrr] = i ^ j;; break;
1212 case CCL_LSH: reg[rrr] = i << j; break;
1213 case CCL_RSH: reg[rrr] = i >> j; break;
1214 case CCL_LSH8: reg[rrr] = (i << 8) | j; break;
1215 case CCL_RSH8: reg[rrr] = i >> 8; reg[7] = i & 0xFF; break;
1216 case CCL_DIVMOD: reg[rrr] = i / j; reg[7] = i % j; break;
1217 case CCL_LS: reg[rrr] = i < j; break;
1218 case CCL_GT: reg[rrr] = i > j; break;
1219 case CCL_EQ: reg[rrr] = i == j; break;
1220 case CCL_LE: reg[rrr] = i <= j; break;
1221 case CCL_GE: reg[rrr] = i >= j; break;
1222 case CCL_NE: reg[rrr] = i != j; break;
1223 case CCL_DECODE_SJIS: DECODE_SJIS (i, j, reg[rrr], reg[7]); break;
1224 case CCL_ENCODE_SJIS: ENCODE_SJIS (i, j, reg[rrr], reg[7]); break;
1225 default: CCL_INVALID_CMD;
1226 }
1227 code &= 0x1F;
1228 if (code == CCL_WriteExprConst || code == CCL_WriteExprRegister)
1229 {
1230 i = reg[rrr];
1231 CCL_WRITE_CHAR (i);
1232 ic = jump_address;
1233 }
1234 else if (!reg[rrr])
1235 ic = jump_address;
1236 break;
1237
1238 case CCL_Extension:
1239 switch (EXCMD)
1240 {
1241 case CCL_ReadMultibyteChar2:
1242 if (!src)
1243 CCL_INVALID_CMD;
1244
1245 if (src >= src_end)
1246 {
1247 src++;
1248 goto ccl_read_multibyte_character_suspend;
1249 }
1250
1251 i = *src++;
1252 if (i == '\n' && ccl->eol_type != CODING_EOL_LF)
1253 {
1254 /* We are encoding. */
1255 if (ccl->eol_type == CODING_EOL_CRLF)
1256 {
1257 if (ccl->cr_consumed)
1258 ccl->cr_consumed = 0;
1259 else
1260 {
1261 ccl->cr_consumed = 1;
1262 i = '\r';
1263 src--;
1264 }
1265 }
1266 else
1267 i = '\r';
1268 reg[rrr] = i;
1269 reg[RRR] = CHARSET_ASCII;
1270 }
1271 else if (i < 0x80)
1272 {
1273 /* ASCII */
1274 reg[rrr] = i;
1275 reg[RRR] = CHARSET_ASCII;
1276 }
1277 else if (i <= MAX_CHARSET_OFFICIAL_DIMENSION2)
1278 {
1279 int dimension = BYTES_BY_CHAR_HEAD (i) - 1;
1280
1281 if (dimension == 0)
1282 {
1283 /* `i' is a leading code for an undefined charset. */
1284 reg[RRR] = CHARSET_8_BIT_GRAPHIC;
1285 reg[rrr] = i;
1286 }
1287 else if (src + dimension > src_end)
1288 goto ccl_read_multibyte_character_suspend;
1289 else
1290 {
1291 reg[RRR] = i;
1292 i = (*src++ & 0x7F);
1293 if (dimension == 1)
1294 reg[rrr] = i;
1295 else
1296 reg[rrr] = ((i << 7) | (*src++ & 0x7F));
1297 }
1298 }
1299 else if ((i == LEADING_CODE_PRIVATE_11)
1300 || (i == LEADING_CODE_PRIVATE_12))
1301 {
1302 if ((src + 1) >= src_end)
1303 goto ccl_read_multibyte_character_suspend;
1304 reg[RRR] = *src++;
1305 reg[rrr] = (*src++ & 0x7F);
1306 }
1307 else if ((i == LEADING_CODE_PRIVATE_21)
1308 || (i == LEADING_CODE_PRIVATE_22))
1309 {
1310 if ((src + 2) >= src_end)
1311 goto ccl_read_multibyte_character_suspend;
1312 reg[RRR] = *src++;
1313 i = (*src++ & 0x7F);
1314 reg[rrr] = ((i << 7) | (*src & 0x7F));
1315 src++;
1316 }
1317 else if (i == LEADING_CODE_8_BIT_CONTROL)
1318 {
1319 if (src >= src_end)
1320 goto ccl_read_multibyte_character_suspend;
1321 reg[RRR] = CHARSET_8_BIT_CONTROL;
1322 reg[rrr] = (*src++ - 0x20);
1323 }
1324 else if (i >= 0xA0)
1325 {
1326 reg[RRR] = CHARSET_8_BIT_GRAPHIC;
1327 reg[rrr] = i;
1328 }
1329 else
1330 {
1331 /* INVALID CODE. Return a single byte character. */
1332 reg[RRR] = CHARSET_ASCII;
1333 reg[rrr] = i;
1334 }
1335 break;
1336
1337 ccl_read_multibyte_character_suspend:
1338 src--;
1339 if (ccl->last_block)
1340 {
1341 ic = ccl->eof_ic;
1342 goto ccl_repeat;
1343 }
1344 else
1345 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC);
1346
1347 break;
1348
1349 case CCL_WriteMultibyteChar2:
1350 i = reg[RRR]; /* charset */
1351 if (i == CHARSET_ASCII
1352 || i == CHARSET_8_BIT_CONTROL
1353 || i == CHARSET_8_BIT_GRAPHIC)
1354 i = reg[rrr] & 0xFF;
1355 else if (CHARSET_DIMENSION (i) == 1)
1356 i = ((i - 0x70) << 7) | (reg[rrr] & 0x7F);
1357 else if (i < MIN_CHARSET_PRIVATE_DIMENSION2)
1358 i = ((i - 0x8F) << 14) | reg[rrr];
1359 else
1360 i = ((i - 0xE0) << 14) | reg[rrr];
1361
1362 CCL_WRITE_MULTIBYTE_CHAR (i);
1363
1364 break;
1365
1366 case CCL_TranslateCharacter:
1367 CCL_MAKE_CHAR (reg[RRR], reg[rrr], i);
1368 op = translate_char (GET_TRANSLATION_TABLE (reg[Rrr]),
1369 i, -1, 0, 0);
1370 SPLIT_CHAR (op, reg[RRR], i, j);
1371 if (j != -1)
1372 i = (i << 7) | j;
1373
1374 reg[rrr] = i;
1375 break;
1376
1377 case CCL_TranslateCharacterConstTbl:
1378 op = XINT (ccl_prog[ic]); /* table */
1379 ic++;
1380 CCL_MAKE_CHAR (reg[RRR], reg[rrr], i);
1381 op = translate_char (GET_TRANSLATION_TABLE (op), i, -1, 0, 0);
1382 SPLIT_CHAR (op, reg[RRR], i, j);
1383 if (j != -1)
1384 i = (i << 7) | j;
1385
1386 reg[rrr] = i;
1387 break;
1388
1389 case CCL_IterateMultipleMap:
1390 {
1391 Lisp_Object map, content, attrib, value;
1392 int point, size, fin_ic;
1393
1394 j = XINT (ccl_prog[ic++]); /* number of maps. */
1395 fin_ic = ic + j;
1396 op = reg[rrr];
1397 if ((j > reg[RRR]) && (j >= 0))
1398 {
1399 ic += reg[RRR];
1400 i = reg[RRR];
1401 }
1402 else
1403 {
1404 reg[RRR] = -1;
1405 ic = fin_ic;
1406 break;
1407 }
1408
1409 for (;i < j;i++)
1410 {
1411
1412 size = XVECTOR (Vcode_conversion_map_vector)->size;
1413 point = XINT (ccl_prog[ic++]);
1414 if (point >= size) continue;
1415 map =
1416 XVECTOR (Vcode_conversion_map_vector)->contents[point];
1417
1418 /* Check map varidity. */
1419 if (!CONSP (map)) continue;
1420 map = XCDR (map);
1421 if (!VECTORP (map)) continue;
1422 size = XVECTOR (map)->size;
1423 if (size <= 1) continue;
1424
1425 content = XVECTOR (map)->contents[0];
1426
1427 /* check map type,
1428 [STARTPOINT VAL1 VAL2 ...] or
1429 [t ELELMENT STARTPOINT ENDPOINT] */
1430 if (NUMBERP (content))
1431 {
1432 point = XUINT (content);
1433 point = op - point + 1;
1434 if (!((point >= 1) && (point < size))) continue;
1435 content = XVECTOR (map)->contents[point];
1436 }
1437 else if (EQ (content, Qt))
1438 {
1439 if (size != 4) continue;
1440 if ((op >= XUINT (XVECTOR (map)->contents[2]))
1441 && (op < XUINT (XVECTOR (map)->contents[3])))
1442 content = XVECTOR (map)->contents[1];
1443 else
1444 continue;
1445 }
1446 else
1447 continue;
1448
1449 if (NILP (content))
1450 continue;
1451 else if (NUMBERP (content))
1452 {
1453 reg[RRR] = i;
1454 reg[rrr] = XINT(content);
1455 break;
1456 }
1457 else if (EQ (content, Qt) || EQ (content, Qlambda))
1458 {
1459 reg[RRR] = i;
1460 break;
1461 }
1462 else if (CONSP (content))
1463 {
1464 attrib = XCAR (content);
1465 value = XCDR (content);
1466 if (!NUMBERP (attrib) || !NUMBERP (value))
1467 continue;
1468 reg[RRR] = i;
1469 reg[rrr] = XUINT (value);
1470 break;
1471 }
1472 else if (SYMBOLP (content))
1473 CCL_CALL_FOR_MAP_INSTRUCTION (content, fin_ic);
1474 else
1475 CCL_INVALID_CMD;
1476 }
1477 if (i == j)
1478 reg[RRR] = -1;
1479 ic = fin_ic;
1480 }
1481 break;
1482
1483 case CCL_MapMultiple:
1484 {
1485 Lisp_Object map, content, attrib, value;
1486 int point, size, map_vector_size;
1487 int map_set_rest_length, fin_ic;
1488 int current_ic = this_ic;
1489
1490 /* inhibit recursive call on MapMultiple. */
1491 if (stack_idx_of_map_multiple > 0)
1492 {
1493 if (stack_idx_of_map_multiple <= stack_idx)
1494 {
1495 stack_idx_of_map_multiple = 0;
1496 mapping_stack_pointer = mapping_stack;
1497 CCL_INVALID_CMD;
1498 }
1499 }
1500 else
1501 mapping_stack_pointer = mapping_stack;
1502 stack_idx_of_map_multiple = 0;
1503
1504 map_set_rest_length =
1505 XINT (ccl_prog[ic++]); /* number of maps and separators. */
1506 fin_ic = ic + map_set_rest_length;
1507 op = reg[rrr];
1508
1509 if ((map_set_rest_length > reg[RRR]) && (reg[RRR] >= 0))
1510 {
1511 ic += reg[RRR];
1512 i = reg[RRR];
1513 map_set_rest_length -= i;
1514 }
1515 else
1516 {
1517 ic = fin_ic;
1518 reg[RRR] = -1;
1519 mapping_stack_pointer = mapping_stack;
1520 break;
1521 }
1522
1523 if (mapping_stack_pointer <= (mapping_stack + 1))
1524 {
1525 /* Set up initial state. */
1526 mapping_stack_pointer = mapping_stack;
1527 PUSH_MAPPING_STACK (0, op);
1528 reg[RRR] = -1;
1529 }
1530 else
1531 {
1532 /* Recover after calling other ccl program. */
1533 int orig_op;
1534
1535 POP_MAPPING_STACK (map_set_rest_length, orig_op);
1536 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1537 switch (op)
1538 {
1539 case -1:
1540 /* Regard it as Qnil. */
1541 op = orig_op;
1542 i++;
1543 ic++;
1544 map_set_rest_length--;
1545 break;
1546 case -2:
1547 /* Regard it as Qt. */
1548 op = reg[rrr];
1549 i++;
1550 ic++;
1551 map_set_rest_length--;
1552 break;
1553 case -3:
1554 /* Regard it as Qlambda. */
1555 op = orig_op;
1556 i += map_set_rest_length;
1557 ic += map_set_rest_length;
1558 map_set_rest_length = 0;
1559 break;
1560 default:
1561 /* Regard it as normal mapping. */
1562 i += map_set_rest_length;
1563 ic += map_set_rest_length;
1564 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1565 break;
1566 }
1567 }
1568 map_vector_size = XVECTOR (Vcode_conversion_map_vector)->size;
1569
1570 do {
1571 for (;map_set_rest_length > 0;i++, ic++, map_set_rest_length--)
1572 {
1573 point = XINT(ccl_prog[ic]);
1574 if (point < 0)
1575 {
1576 /* +1 is for including separator. */
1577 point = -point + 1;
1578 if (mapping_stack_pointer
1579 >= &mapping_stack[MAX_MAP_SET_LEVEL])
1580 CCL_INVALID_CMD;
1581 PUSH_MAPPING_STACK (map_set_rest_length - point,
1582 reg[rrr]);
1583 map_set_rest_length = point;
1584 reg[rrr] = op;
1585 continue;
1586 }
1587
1588 if (point >= map_vector_size) continue;
1589 map = (XVECTOR (Vcode_conversion_map_vector)
1590 ->contents[point]);
1591
1592 /* Check map varidity. */
1593 if (!CONSP (map)) continue;
1594 map = XCDR (map);
1595 if (!VECTORP (map)) continue;
1596 size = XVECTOR (map)->size;
1597 if (size <= 1) continue;
1598
1599 content = XVECTOR (map)->contents[0];
1600
1601 /* check map type,
1602 [STARTPOINT VAL1 VAL2 ...] or
1603 [t ELEMENT STARTPOINT ENDPOINT] */
1604 if (NUMBERP (content))
1605 {
1606 point = XUINT (content);
1607 point = op - point + 1;
1608 if (!((point >= 1) && (point < size))) continue;
1609 content = XVECTOR (map)->contents[point];
1610 }
1611 else if (EQ (content, Qt))
1612 {
1613 if (size != 4) continue;
1614 if ((op >= XUINT (XVECTOR (map)->contents[2])) &&
1615 (op < XUINT (XVECTOR (map)->contents[3])))
1616 content = XVECTOR (map)->contents[1];
1617 else
1618 continue;
1619 }
1620 else
1621 continue;
1622
1623 if (NILP (content))
1624 continue;
1625
1626 reg[RRR] = i;
1627 if (NUMBERP (content))
1628 {
1629 op = XINT (content);
1630 i += map_set_rest_length - 1;
1631 ic += map_set_rest_length - 1;
1632 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1633 map_set_rest_length++;
1634 }
1635 else if (CONSP (content))
1636 {
1637 attrib = XCAR (content);
1638 value = XCDR (content);
1639 if (!NUMBERP (attrib) || !NUMBERP (value))
1640 continue;
1641 op = XUINT (value);
1642 i += map_set_rest_length - 1;
1643 ic += map_set_rest_length - 1;
1644 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1645 map_set_rest_length++;
1646 }
1647 else if (EQ (content, Qt))
1648 {
1649 op = reg[rrr];
1650 }
1651 else if (EQ (content, Qlambda))
1652 {
1653 i += map_set_rest_length;
1654 ic += map_set_rest_length;
1655 break;
1656 }
1657 else if (SYMBOLP (content))
1658 {
1659 if (mapping_stack_pointer
1660 >= &mapping_stack[MAX_MAP_SET_LEVEL])
1661 CCL_INVALID_CMD;
1662 PUSH_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1663 PUSH_MAPPING_STACK (map_set_rest_length, op);
1664 stack_idx_of_map_multiple = stack_idx + 1;
1665 CCL_CALL_FOR_MAP_INSTRUCTION (content, current_ic);
1666 }
1667 else
1668 CCL_INVALID_CMD;
1669 }
1670 if (mapping_stack_pointer <= (mapping_stack + 1))
1671 break;
1672 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1673 i += map_set_rest_length;
1674 ic += map_set_rest_length;
1675 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1676 } while (1);
1677
1678 ic = fin_ic;
1679 }
1680 reg[rrr] = op;
1681 break;
1682
1683 case CCL_MapSingle:
1684 {
1685 Lisp_Object map, attrib, value, content;
1686 int size, point;
1687 j = XINT (ccl_prog[ic++]); /* map_id */
1688 op = reg[rrr];
1689 if (j >= XVECTOR (Vcode_conversion_map_vector)->size)
1690 {
1691 reg[RRR] = -1;
1692 break;
1693 }
1694 map = XVECTOR (Vcode_conversion_map_vector)->contents[j];
1695 if (!CONSP (map))
1696 {
1697 reg[RRR] = -1;
1698 break;
1699 }
1700 map = XCDR (map);
1701 if (!VECTORP (map))
1702 {
1703 reg[RRR] = -1;
1704 break;
1705 }
1706 size = XVECTOR (map)->size;
1707 point = XUINT (XVECTOR (map)->contents[0]);
1708 point = op - point + 1;
1709 reg[RRR] = 0;
1710 if ((size <= 1) ||
1711 (!((point >= 1) && (point < size))))
1712 reg[RRR] = -1;
1713 else
1714 {
1715 reg[RRR] = 0;
1716 content = XVECTOR (map)->contents[point];
1717 if (NILP (content))
1718 reg[RRR] = -1;
1719 else if (NUMBERP (content))
1720 reg[rrr] = XINT (content);
1721 else if (EQ (content, Qt));
1722 else if (CONSP (content))
1723 {
1724 attrib = XCAR (content);
1725 value = XCDR (content);
1726 if (!NUMBERP (attrib) || !NUMBERP (value))
1727 continue;
1728 reg[rrr] = XUINT(value);
1729 break;
1730 }
1731 else if (SYMBOLP (content))
1732 CCL_CALL_FOR_MAP_INSTRUCTION (content, ic);
1733 else
1734 reg[RRR] = -1;
1735 }
1736 }
1737 break;
1738
1739 default:
1740 CCL_INVALID_CMD;
1741 }
1742 break;
1743
1744 default:
1745 CCL_INVALID_CMD;
1746 }
1747 }
1748
1749 ccl_error_handler:
1750 /* The suppress_error member is set when e.g. a CCL-based coding
1751 system is used for terminal output. */
1752 if (!ccl->suppress_error && destination)
1753 {
1754 /* We can insert an error message only if DESTINATION is
1755 specified and we still have a room to store the message
1756 there. */
1757 char msg[256];
1758 int msglen;
1759
1760 if (!dst)
1761 dst = destination;
1762
1763 switch (ccl->status)
1764 {
1765 case CCL_STAT_INVALID_CMD:
1766 sprintf(msg, "\nCCL: Invalid command %x (ccl_code = %x) at %d.",
1767 code & 0x1F, code, this_ic);
1768 #ifdef CCL_DEBUG
1769 {
1770 int i = ccl_backtrace_idx - 1;
1771 int j;
1772
1773 msglen = strlen (msg);
1774 if (dst + msglen <= (dst_bytes ? dst_end : src))
1775 {
1776 bcopy (msg, dst, msglen);
1777 dst += msglen;
1778 }
1779
1780 for (j = 0; j < CCL_DEBUG_BACKTRACE_LEN; j++, i--)
1781 {
1782 if (i < 0) i = CCL_DEBUG_BACKTRACE_LEN - 1;
1783 if (ccl_backtrace_table[i] == 0)
1784 break;
1785 sprintf(msg, " %d", ccl_backtrace_table[i]);
1786 msglen = strlen (msg);
1787 if (dst + msglen > (dst_bytes ? dst_end : src))
1788 break;
1789 bcopy (msg, dst, msglen);
1790 dst += msglen;
1791 }
1792 goto ccl_finish;
1793 }
1794 #endif
1795 break;
1796
1797 case CCL_STAT_QUIT:
1798 sprintf(msg, "\nCCL: Quited.");
1799 break;
1800
1801 default:
1802 sprintf(msg, "\nCCL: Unknown error type (%d).", ccl->status);
1803 }
1804
1805 msglen = strlen (msg);
1806 if (dst + msglen <= (dst_bytes ? dst_end : src))
1807 {
1808 bcopy (msg, dst, msglen);
1809 dst += msglen;
1810 }
1811 if (ccl->status == CCL_STAT_INVALID_CMD)
1812 {
1813 /* Copy the remaining source data. */
1814 int i = src_end - src;
1815 if (dst_bytes && (dst_end - dst) < i)
1816 i = dst_end - dst;
1817 bcopy (src, dst, i);
1818 src += i;
1819 dst += i;
1820 }
1821 }
1822
1823 ccl_finish:
1824 ccl->ic = ic;
1825 ccl->stack_idx = stack_idx;
1826 ccl->prog = ccl_prog;
1827 ccl->eight_bit_control = (extra_bytes > 0);
1828 if (consumed) *consumed = src - source;
1829 return (dst ? dst - destination : 0);
1830 }
1831
1832 /* Resolve symbols in the specified CCL code (Lisp vector). This
1833 function converts symbols of code conversion maps and character
1834 translation tables embeded in the CCL code into their ID numbers.
1835
1836 The return value is a vector (CCL itself or a new vector in which
1837 all symbols are resolved), Qt if resolving of some symbol failed,
1838 or nil if CCL contains invalid data. */
1839
1840 static Lisp_Object
1841 resolve_symbol_ccl_program (ccl)
1842 Lisp_Object ccl;
1843 {
1844 int i, veclen, unresolved = 0;
1845 Lisp_Object result, contents, val;
1846
1847 result = ccl;
1848 veclen = XVECTOR (result)->size;
1849
1850 for (i = 0; i < veclen; i++)
1851 {
1852 contents = XVECTOR (result)->contents[i];
1853 if (INTEGERP (contents))
1854 continue;
1855 else if (CONSP (contents)
1856 && SYMBOLP (XCAR (contents))
1857 && SYMBOLP (XCDR (contents)))
1858 {
1859 /* This is the new style for embedding symbols. The form is
1860 (SYMBOL . PROPERTY). (get SYMBOL PROPERTY) should give
1861 an index number. */
1862
1863 if (EQ (result, ccl))
1864 result = Fcopy_sequence (ccl);
1865
1866 val = Fget (XCAR (contents), XCDR (contents));
1867 if (NATNUMP (val))
1868 XVECTOR (result)->contents[i] = val;
1869 else
1870 unresolved = 1;
1871 continue;
1872 }
1873 else if (SYMBOLP (contents))
1874 {
1875 /* This is the old style for embedding symbols. This style
1876 may lead to a bug if, for instance, a translation table
1877 and a code conversion map have the same name. */
1878 if (EQ (result, ccl))
1879 result = Fcopy_sequence (ccl);
1880
1881 val = Fget (contents, Qtranslation_table_id);
1882 if (NATNUMP (val))
1883 XVECTOR (result)->contents[i] = val;
1884 else
1885 {
1886 val = Fget (contents, Qcode_conversion_map_id);
1887 if (NATNUMP (val))
1888 XVECTOR (result)->contents[i] = val;
1889 else
1890 {
1891 val = Fget (contents, Qccl_program_idx);
1892 if (NATNUMP (val))
1893 XVECTOR (result)->contents[i] = val;
1894 else
1895 unresolved = 1;
1896 }
1897 }
1898 continue;
1899 }
1900 return Qnil;
1901 }
1902
1903 return (unresolved ? Qt : result);
1904 }
1905
1906 /* Return the compiled code (vector) of CCL program CCL_PROG.
1907 CCL_PROG is a name (symbol) of the program or already compiled
1908 code. If necessary, resolve symbols in the compiled code to index
1909 numbers. If we failed to get the compiled code or to resolve
1910 symbols, return Qnil. */
1911
1912 static Lisp_Object
1913 ccl_get_compiled_code (ccl_prog)
1914 Lisp_Object ccl_prog;
1915 {
1916 Lisp_Object val, slot;
1917
1918 if (VECTORP (ccl_prog))
1919 {
1920 val = resolve_symbol_ccl_program (ccl_prog);
1921 return (VECTORP (val) ? val : Qnil);
1922 }
1923 if (!SYMBOLP (ccl_prog))
1924 return Qnil;
1925
1926 val = Fget (ccl_prog, Qccl_program_idx);
1927 if (! NATNUMP (val)
1928 || XINT (val) >= XVECTOR (Vccl_program_table)->size)
1929 return Qnil;
1930 slot = XVECTOR (Vccl_program_table)->contents[XINT (val)];
1931 if (! VECTORP (slot)
1932 || XVECTOR (slot)->size != 3
1933 || ! VECTORP (XVECTOR (slot)->contents[1]))
1934 return Qnil;
1935 if (NILP (XVECTOR (slot)->contents[2]))
1936 {
1937 val = resolve_symbol_ccl_program (XVECTOR (slot)->contents[1]);
1938 if (! VECTORP (val))
1939 return Qnil;
1940 XVECTOR (slot)->contents[1] = val;
1941 XVECTOR (slot)->contents[2] = Qt;
1942 }
1943 return XVECTOR (slot)->contents[1];
1944 }
1945
1946 /* Setup fields of the structure pointed by CCL appropriately for the
1947 execution of CCL program CCL_PROG. CCL_PROG is the name (symbol)
1948 of the CCL program or the already compiled code (vector).
1949 Return 0 if we succeed this setup, else return -1.
1950
1951 If CCL_PROG is nil, we just reset the structure pointed by CCL. */
1952 int
1953 setup_ccl_program (ccl, ccl_prog)
1954 struct ccl_program *ccl;
1955 Lisp_Object ccl_prog;
1956 {
1957 int i;
1958
1959 if (! NILP (ccl_prog))
1960 {
1961 struct Lisp_Vector *vp;
1962
1963 ccl_prog = ccl_get_compiled_code (ccl_prog);
1964 if (! VECTORP (ccl_prog))
1965 return -1;
1966 vp = XVECTOR (ccl_prog);
1967 ccl->size = vp->size;
1968 ccl->prog = vp->contents;
1969 ccl->eof_ic = XINT (vp->contents[CCL_HEADER_EOF]);
1970 ccl->buf_magnification = XINT (vp->contents[CCL_HEADER_BUF_MAG]);
1971 }
1972 ccl->ic = CCL_HEADER_MAIN;
1973 for (i = 0; i < 8; i++)
1974 ccl->reg[i] = 0;
1975 ccl->last_block = 0;
1976 ccl->private_state = 0;
1977 ccl->status = 0;
1978 ccl->stack_idx = 0;
1979 ccl->eol_type = CODING_EOL_LF;
1980 ccl->suppress_error = 0;
1981 return 0;
1982 }
1983
1984 #ifdef emacs
1985
1986 DEFUN ("ccl-program-p", Fccl_program_p, Sccl_program_p, 1, 1, 0,
1987 "Return t if OBJECT is a CCL program name or a compiled CCL program code.\n\
1988 See the documentation of `define-ccl-program' for the detail of CCL program.")
1989 (object)
1990 Lisp_Object object;
1991 {
1992 Lisp_Object val;
1993
1994 if (VECTORP (object))
1995 {
1996 val = resolve_symbol_ccl_program (object);
1997 return (VECTORP (val) ? Qt : Qnil);
1998 }
1999 if (!SYMBOLP (object))
2000 return Qnil;
2001
2002 val = Fget (object, Qccl_program_idx);
2003 return ((! NATNUMP (val)
2004 || XINT (val) >= XVECTOR (Vccl_program_table)->size)
2005 ? Qnil : Qt);
2006 }
2007
2008 DEFUN ("ccl-execute", Fccl_execute, Sccl_execute, 2, 2, 0,
2009 "Execute CCL-PROGRAM with registers initialized by REGISTERS.\n\
2010 \n\
2011 CCL-PROGRAM is a CCL program name (symbol)\n\
2012 or a compiled code generated by `ccl-compile' (for backward compatibility,\n\
2013 in this case, the overhead of the execution is bigger than the former case).\n\
2014 No I/O commands should appear in CCL-PROGRAM.\n\
2015 \n\
2016 REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value\n\
2017 of Nth register.\n\
2018 \n\
2019 As side effect, each element of REGISTERS holds the value of\n\
2020 corresponding register after the execution.\n\
2021 \n\
2022 See the documentation of `define-ccl-program' for the detail of CCL program.")
2023 (ccl_prog, reg)
2024 Lisp_Object ccl_prog, reg;
2025 {
2026 struct ccl_program ccl;
2027 int i;
2028
2029 if (setup_ccl_program (&ccl, ccl_prog) < 0)
2030 error ("Invalid CCL program");
2031
2032 CHECK_VECTOR (reg, 1);
2033 if (XVECTOR (reg)->size != 8)
2034 error ("Length of vector REGISTERS is not 8");
2035
2036 for (i = 0; i < 8; i++)
2037 ccl.reg[i] = (INTEGERP (XVECTOR (reg)->contents[i])
2038 ? XINT (XVECTOR (reg)->contents[i])
2039 : 0);
2040
2041 ccl_driver (&ccl, (unsigned char *)0, (unsigned char *)0, 0, 0, (int *)0);
2042 QUIT;
2043 if (ccl.status != CCL_STAT_SUCCESS)
2044 error ("Error in CCL program at %dth code", ccl.ic);
2045
2046 for (i = 0; i < 8; i++)
2047 XSETINT (XVECTOR (reg)->contents[i], ccl.reg[i]);
2048 return Qnil;
2049 }
2050
2051 DEFUN ("ccl-execute-on-string", Fccl_execute_on_string, Sccl_execute_on_string,
2052 3, 5, 0,
2053 "Execute CCL-PROGRAM with initial STATUS on STRING.\n\
2054 \n\
2055 CCL-PROGRAM is a symbol registered by register-ccl-program,\n\
2056 or a compiled code generated by `ccl-compile' (for backward compatibility,\n\
2057 in this case, the execution is slower).\n\
2058 \n\
2059 Read buffer is set to STRING, and write buffer is allocated automatically.\n\
2060 \n\
2061 STATUS is a vector of [R0 R1 ... R7 IC], where\n\
2062 R0..R7 are initial values of corresponding registers,\n\
2063 IC is the instruction counter specifying from where to start the program.\n\
2064 If R0..R7 are nil, they are initialized to 0.\n\
2065 If IC is nil, it is initialized to head of the CCL program.\n\
2066 \n\
2067 If optional 4th arg CONTINUE is non-nil, keep IC on read operation\n\
2068 when read buffer is exausted, else, IC is always set to the end of\n\
2069 CCL-PROGRAM on exit.\n\
2070 \n\
2071 It returns the contents of write buffer as a string,\n\
2072 and as side effect, STATUS is updated.\n\
2073 If the optional 5th arg UNIBYTE-P is non-nil, the returned string\n\
2074 is a unibyte string. By default it is a multibyte string.\n\
2075 \n\
2076 See the documentation of `define-ccl-program' for the detail of CCL program.")
2077 (ccl_prog, status, str, contin, unibyte_p)
2078 Lisp_Object ccl_prog, status, str, contin, unibyte_p;
2079 {
2080 Lisp_Object val;
2081 struct ccl_program ccl;
2082 int i, produced;
2083 int outbufsize;
2084 char *outbuf;
2085 struct gcpro gcpro1, gcpro2;
2086
2087 if (setup_ccl_program (&ccl, ccl_prog) < 0)
2088 error ("Invalid CCL program");
2089
2090 CHECK_VECTOR (status, 1);
2091 if (XVECTOR (status)->size != 9)
2092 error ("Length of vector STATUS is not 9");
2093 CHECK_STRING (str, 2);
2094
2095 GCPRO2 (status, str);
2096
2097 for (i = 0; i < 8; i++)
2098 {
2099 if (NILP (XVECTOR (status)->contents[i]))
2100 XSETINT (XVECTOR (status)->contents[i], 0);
2101 if (INTEGERP (XVECTOR (status)->contents[i]))
2102 ccl.reg[i] = XINT (XVECTOR (status)->contents[i]);
2103 }
2104 if (INTEGERP (XVECTOR (status)->contents[i]))
2105 {
2106 i = XFASTINT (XVECTOR (status)->contents[8]);
2107 if (ccl.ic < i && i < ccl.size)
2108 ccl.ic = i;
2109 }
2110 outbufsize = STRING_BYTES (XSTRING (str)) * ccl.buf_magnification + 256;
2111 outbuf = (char *) xmalloc (outbufsize);
2112 ccl.last_block = NILP (contin);
2113 ccl.multibyte = STRING_MULTIBYTE (str);
2114 produced = ccl_driver (&ccl, XSTRING (str)->data, outbuf,
2115 STRING_BYTES (XSTRING (str)), outbufsize, (int *) 0);
2116 for (i = 0; i < 8; i++)
2117 XSET (XVECTOR (status)->contents[i], Lisp_Int, ccl.reg[i]);
2118 XSETINT (XVECTOR (status)->contents[8], ccl.ic);
2119 UNGCPRO;
2120
2121 if (NILP (unibyte_p))
2122 {
2123 int nchars;
2124
2125 produced = str_as_multibyte (outbuf, outbufsize, produced, &nchars);
2126 val = make_multibyte_string (outbuf, nchars, produced);
2127 }
2128 else
2129 val = make_unibyte_string (outbuf, produced);
2130 xfree (outbuf);
2131 QUIT;
2132 if (ccl.status == CCL_STAT_SUSPEND_BY_DST)
2133 error ("Output buffer for the CCL programs overflow");
2134 if (ccl.status != CCL_STAT_SUCCESS
2135 && ccl.status != CCL_STAT_SUSPEND_BY_SRC)
2136 error ("Error in CCL program at %dth code", ccl.ic);
2137
2138 return val;
2139 }
2140
2141 DEFUN ("register-ccl-program", Fregister_ccl_program, Sregister_ccl_program,
2142 2, 2, 0,
2143 "Register CCL program CCL_PROG as NAME in `ccl-program-table'.\n\
2144 CCL_PROG should be a compiled CCL program (vector), or nil.\n\
2145 If it is nil, just reserve NAME as a CCL program name.\n\
2146 Return index number of the registered CCL program.")
2147 (name, ccl_prog)
2148 Lisp_Object name, ccl_prog;
2149 {
2150 int len = XVECTOR (Vccl_program_table)->size;
2151 int idx;
2152 Lisp_Object resolved;
2153
2154 CHECK_SYMBOL (name, 0);
2155 resolved = Qnil;
2156 if (!NILP (ccl_prog))
2157 {
2158 CHECK_VECTOR (ccl_prog, 1);
2159 resolved = resolve_symbol_ccl_program (ccl_prog);
2160 if (NILP (resolved))
2161 error ("Error in CCL program");
2162 if (VECTORP (resolved))
2163 {
2164 ccl_prog = resolved;
2165 resolved = Qt;
2166 }
2167 else
2168 resolved = Qnil;
2169 }
2170
2171 for (idx = 0; idx < len; idx++)
2172 {
2173 Lisp_Object slot;
2174
2175 slot = XVECTOR (Vccl_program_table)->contents[idx];
2176 if (!VECTORP (slot))
2177 /* This is the first unsed slot. Register NAME here. */
2178 break;
2179
2180 if (EQ (name, XVECTOR (slot)->contents[0]))
2181 {
2182 /* Update this slot. */
2183 XVECTOR (slot)->contents[1] = ccl_prog;
2184 XVECTOR (slot)->contents[2] = resolved;
2185 return make_number (idx);
2186 }
2187 }
2188
2189 if (idx == len)
2190 {
2191 /* Extend the table. */
2192 Lisp_Object new_table;
2193 int j;
2194
2195 new_table = Fmake_vector (make_number (len * 2), Qnil);
2196 for (j = 0; j < len; j++)
2197 XVECTOR (new_table)->contents[j]
2198 = XVECTOR (Vccl_program_table)->contents[j];
2199 Vccl_program_table = new_table;
2200 }
2201
2202 {
2203 Lisp_Object elt;
2204
2205 elt = Fmake_vector (make_number (3), Qnil);
2206 XVECTOR (elt)->contents[0] = name;
2207 XVECTOR (elt)->contents[1] = ccl_prog;
2208 XVECTOR (elt)->contents[2] = resolved;
2209 XVECTOR (Vccl_program_table)->contents[idx] = elt;
2210 }
2211
2212 Fput (name, Qccl_program_idx, make_number (idx));
2213 return make_number (idx);
2214 }
2215
2216 /* Register code conversion map.
2217 A code conversion map consists of numbers, Qt, Qnil, and Qlambda.
2218 The first element is start code point.
2219 The rest elements are mapped numbers.
2220 Symbol t means to map to an original number before mapping.
2221 Symbol nil means that the corresponding element is empty.
2222 Symbol lambda menas to terminate mapping here.
2223 */
2224
2225 DEFUN ("register-code-conversion-map", Fregister_code_conversion_map,
2226 Sregister_code_conversion_map,
2227 2, 2, 0,
2228 "Register SYMBOL as code conversion map MAP.\n\
2229 Return index number of the registered map.")
2230 (symbol, map)
2231 Lisp_Object symbol, map;
2232 {
2233 int len = XVECTOR (Vcode_conversion_map_vector)->size;
2234 int i;
2235 Lisp_Object index;
2236
2237 CHECK_SYMBOL (symbol, 0);
2238 CHECK_VECTOR (map, 1);
2239
2240 for (i = 0; i < len; i++)
2241 {
2242 Lisp_Object slot = XVECTOR (Vcode_conversion_map_vector)->contents[i];
2243
2244 if (!CONSP (slot))
2245 break;
2246
2247 if (EQ (symbol, XCAR (slot)))
2248 {
2249 index = make_number (i);
2250 XCDR (slot) = map;
2251 Fput (symbol, Qcode_conversion_map, map);
2252 Fput (symbol, Qcode_conversion_map_id, index);
2253 return index;
2254 }
2255 }
2256
2257 if (i == len)
2258 {
2259 Lisp_Object new_vector = Fmake_vector (make_number (len * 2), Qnil);
2260 int j;
2261
2262 for (j = 0; j < len; j++)
2263 XVECTOR (new_vector)->contents[j]
2264 = XVECTOR (Vcode_conversion_map_vector)->contents[j];
2265 Vcode_conversion_map_vector = new_vector;
2266 }
2267
2268 index = make_number (i);
2269 Fput (symbol, Qcode_conversion_map, map);
2270 Fput (symbol, Qcode_conversion_map_id, index);
2271 XVECTOR (Vcode_conversion_map_vector)->contents[i] = Fcons (symbol, map);
2272 return index;
2273 }
2274
2275
2276 void
2277 syms_of_ccl ()
2278 {
2279 staticpro (&Vccl_program_table);
2280 Vccl_program_table = Fmake_vector (make_number (32), Qnil);
2281
2282 Qccl_program = intern ("ccl-program");
2283 staticpro (&Qccl_program);
2284
2285 Qccl_program_idx = intern ("ccl-program-idx");
2286 staticpro (&Qccl_program_idx);
2287
2288 Qcode_conversion_map = intern ("code-conversion-map");
2289 staticpro (&Qcode_conversion_map);
2290
2291 Qcode_conversion_map_id = intern ("code-conversion-map-id");
2292 staticpro (&Qcode_conversion_map_id);
2293
2294 DEFVAR_LISP ("code-conversion-map-vector", &Vcode_conversion_map_vector,
2295 "Vector of code conversion maps.");
2296 Vcode_conversion_map_vector = Fmake_vector (make_number (16), Qnil);
2297
2298 DEFVAR_LISP ("font-ccl-encoder-alist", &Vfont_ccl_encoder_alist,
2299 "Alist of fontname patterns vs corresponding CCL program.\n\
2300 Each element looks like (REGEXP . CCL-CODE),\n\
2301 where CCL-CODE is a compiled CCL program.\n\
2302 When a font whose name matches REGEXP is used for displaying a character,\n\
2303 CCL-CODE is executed to calculate the code point in the font\n\
2304 from the charset number and position code(s) of the character which are set\n\
2305 in CCL registers R0, R1, and R2 before the execution.\n\
2306 The code point in the font is set in CCL registers R1 and R2\n\
2307 when the execution terminated.\n\
2308 If the font is single-byte font, the register R2 is not used.");
2309 Vfont_ccl_encoder_alist = Qnil;
2310
2311 defsubr (&Sccl_program_p);
2312 defsubr (&Sccl_execute);
2313 defsubr (&Sccl_execute_on_string);
2314 defsubr (&Sregister_ccl_program);
2315 defsubr (&Sregister_code_conversion_map);
2316 }
2317
2318 #endif /* emacs */