(decode_coding_iso_2022): Ignore ISO_CODE_SS2_7 (0x19)
[bpt/emacs.git] / src / coding.c
1 /* Coding system handler (conversion, detection, etc).
2 Copyright (C) 2001, 2002, 2003, 2004, 2005,
3 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
5 2005, 2006, 2007, 2008, 2009
6 National Institute of Advanced Industrial Science and Technology (AIST)
7 Registration Number H14PRO021
8 Copyright (C) 2003
9 National Institute of Advanced Industrial Science and Technology (AIST)
10 Registration Number H13PRO009
11
12 This file is part of GNU Emacs.
13
14 GNU Emacs is free software: you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation, either version 3 of the License, or
17 (at your option) any later version.
18
19 GNU Emacs is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
26
27 /*** TABLE OF CONTENTS ***
28
29 0. General comments
30 1. Preamble
31 2. Emacs' internal format (emacs-utf-8) handlers
32 3. UTF-8 handlers
33 4. UTF-16 handlers
34 5. Charset-base coding systems handlers
35 6. emacs-mule (old Emacs' internal format) handlers
36 7. ISO2022 handlers
37 8. Shift-JIS and BIG5 handlers
38 9. CCL handlers
39 10. C library functions
40 11. Emacs Lisp library functions
41 12. Postamble
42
43 */
44
45 /*** 0. General comments ***
46
47
48 CODING SYSTEM
49
50 A coding system is an object for an encoding mechanism that contains
51 information about how to convert byte sequences to character
52 sequences and vice versa. When we say "decode", it means converting
53 a byte sequence of a specific coding system into a character
54 sequence that is represented by Emacs' internal coding system
55 `emacs-utf-8', and when we say "encode", it means converting a
56 character sequence of emacs-utf-8 to a byte sequence of a specific
57 coding system.
58
59 In Emacs Lisp, a coding system is represented by a Lisp symbol. In
60 C level, a coding system is represented by a vector of attributes
61 stored in the hash table Vcharset_hash_table. The conversion from
62 coding system symbol to attributes vector is done by looking up
63 Vcharset_hash_table by the symbol.
64
65 Coding systems are classified into the following types depending on
66 the encoding mechanism. Here's a brief description of the types.
67
68 o UTF-8
69
70 o UTF-16
71
72 o Charset-base coding system
73
74 A coding system defined by one or more (coded) character sets.
75 Decoding and encoding are done by a code converter defined for each
76 character set.
77
78 o Old Emacs internal format (emacs-mule)
79
80 The coding system adopted by old versions of Emacs (20 and 21).
81
82 o ISO2022-base coding system
83
84 The most famous coding system for multiple character sets. X's
85 Compound Text, various EUCs (Extended Unix Code), and coding systems
86 used in the Internet communication such as ISO-2022-JP are all
87 variants of ISO2022.
88
89 o SJIS (or Shift-JIS or MS-Kanji-Code)
90
91 A coding system to encode character sets: ASCII, JISX0201, and
92 JISX0208. Widely used for PC's in Japan. Details are described in
93 section 8.
94
95 o BIG5
96
97 A coding system to encode character sets: ASCII and Big5. Widely
98 used for Chinese (mainly in Taiwan and Hong Kong). Details are
99 described in section 8. In this file, when we write "big5" (all
100 lowercase), we mean the coding system, and when we write "Big5"
101 (capitalized), we mean the character set.
102
103 o CCL
104
105 If a user wants to decode/encode text encoded in a coding system
106 not listed above, he can supply a decoder and an encoder for it in
107 CCL (Code Conversion Language) programs. Emacs executes the CCL
108 program while decoding/encoding.
109
110 o Raw-text
111
112 A coding system for text containing raw eight-bit data. Emacs
113 treats each byte of source text as a character (except for
114 end-of-line conversion).
115
116 o No-conversion
117
118 Like raw text, but don't do end-of-line conversion.
119
120
121 END-OF-LINE FORMAT
122
123 How text end-of-line is encoded depends on operating system. For
124 instance, Unix's format is just one byte of LF (line-feed) code,
125 whereas DOS's format is two-byte sequence of `carriage-return' and
126 `line-feed' codes. MacOS's format is usually one byte of
127 `carriage-return'.
128
129 Since text character encoding and end-of-line encoding are
130 independent, any coding system described above can take any format
131 of end-of-line (except for no-conversion).
132
133 STRUCT CODING_SYSTEM
134
135 Before using a coding system for code conversion (i.e. decoding and
136 encoding), we setup a structure of type `struct coding_system'.
137 This structure keeps various information about a specific code
138 conversion (e.g. the location of source and destination data).
139
140 */
141
142 /* COMMON MACROS */
143
144
145 /*** GENERAL NOTES on `detect_coding_XXX ()' functions ***
146
147 These functions check if a byte sequence specified as a source in
148 CODING conforms to the format of XXX, and update the members of
149 DETECT_INFO.
150
151 Return 1 if the byte sequence conforms to XXX, otherwise return 0.
152
153 Below is the template of these functions. */
154
155 #if 0
156 static int
157 detect_coding_XXX (coding, detect_info)
158 struct coding_system *coding;
159 struct coding_detection_info *detect_info;
160 {
161 const unsigned char *src = coding->source;
162 const unsigned char *src_end = coding->source + coding->src_bytes;
163 int multibytep = coding->src_multibyte;
164 int consumed_chars = 0;
165 int found = 0;
166 ...;
167
168 while (1)
169 {
170 /* Get one byte from the source. If the souce is exausted, jump
171 to no_more_source:. */
172 ONE_MORE_BYTE (c);
173
174 if (! __C_conforms_to_XXX___ (c))
175 break;
176 if (! __C_strongly_suggests_XXX__ (c))
177 found = CATEGORY_MASK_XXX;
178 }
179 /* The byte sequence is invalid for XXX. */
180 detect_info->rejected |= CATEGORY_MASK_XXX;
181 return 0;
182
183 no_more_source:
184 /* The source exausted successfully. */
185 detect_info->found |= found;
186 return 1;
187 }
188 #endif
189
190 /*** GENERAL NOTES on `decode_coding_XXX ()' functions ***
191
192 These functions decode a byte sequence specified as a source by
193 CODING. The resulting multibyte text goes to a place pointed to by
194 CODING->charbuf, the length of which should not exceed
195 CODING->charbuf_size;
196
197 These functions set the information of original and decoded texts in
198 CODING->consumed, CODING->consumed_char, and CODING->charbuf_used.
199 They also set CODING->result to one of CODING_RESULT_XXX indicating
200 how the decoding is finished.
201
202 Below is the template of these functions. */
203
204 #if 0
205 static void
206 decode_coding_XXXX (coding)
207 struct coding_system *coding;
208 {
209 const unsigned char *src = coding->source + coding->consumed;
210 const unsigned char *src_end = coding->source + coding->src_bytes;
211 /* SRC_BASE remembers the start position in source in each loop.
212 The loop will be exited when there's not enough source code, or
213 when there's no room in CHARBUF for a decoded character. */
214 const unsigned char *src_base;
215 /* A buffer to produce decoded characters. */
216 int *charbuf = coding->charbuf + coding->charbuf_used;
217 int *charbuf_end = coding->charbuf + coding->charbuf_size;
218 int multibytep = coding->src_multibyte;
219
220 while (1)
221 {
222 src_base = src;
223 if (charbuf < charbuf_end)
224 /* No more room to produce a decoded character. */
225 break;
226 ONE_MORE_BYTE (c);
227 /* Decode it. */
228 }
229
230 no_more_source:
231 if (src_base < src_end
232 && coding->mode & CODING_MODE_LAST_BLOCK)
233 /* If the source ends by partial bytes to construct a character,
234 treat them as eight-bit raw data. */
235 while (src_base < src_end && charbuf < charbuf_end)
236 *charbuf++ = *src_base++;
237 /* Remember how many bytes and characters we consumed. If the
238 source is multibyte, the bytes and chars are not identical. */
239 coding->consumed = coding->consumed_char = src_base - coding->source;
240 /* Remember how many characters we produced. */
241 coding->charbuf_used = charbuf - coding->charbuf;
242 }
243 #endif
244
245 /*** GENERAL NOTES on `encode_coding_XXX ()' functions ***
246
247 These functions encode SRC_BYTES length text at SOURCE of Emacs'
248 internal multibyte format by CODING. The resulting byte sequence
249 goes to a place pointed to by DESTINATION, the length of which
250 should not exceed DST_BYTES.
251
252 These functions set the information of original and encoded texts in
253 the members produced, produced_char, consumed, and consumed_char of
254 the structure *CODING. They also set the member result to one of
255 CODING_RESULT_XXX indicating how the encoding finished.
256
257 DST_BYTES zero means that source area and destination area are
258 overlapped, which means that we can produce a encoded text until it
259 reaches at the head of not-yet-encoded source text.
260
261 Below is a template of these functions. */
262 #if 0
263 static void
264 encode_coding_XXX (coding)
265 struct coding_system *coding;
266 {
267 int multibytep = coding->dst_multibyte;
268 int *charbuf = coding->charbuf;
269 int *charbuf_end = charbuf->charbuf + coding->charbuf_used;
270 unsigned char *dst = coding->destination + coding->produced;
271 unsigned char *dst_end = coding->destination + coding->dst_bytes;
272 unsigned char *adjusted_dst_end = dst_end - _MAX_BYTES_PRODUCED_IN_LOOP_;
273 int produced_chars = 0;
274
275 for (; charbuf < charbuf_end && dst < adjusted_dst_end; charbuf++)
276 {
277 int c = *charbuf;
278 /* Encode C into DST, and increment DST. */
279 }
280 label_no_more_destination:
281 /* How many chars and bytes we produced. */
282 coding->produced_char += produced_chars;
283 coding->produced = dst - coding->destination;
284 }
285 #endif
286
287 \f
288 /*** 1. Preamble ***/
289
290 #include <config.h>
291 #include <stdio.h>
292 #include <setjmp.h>
293
294 #include "lisp.h"
295 #include "buffer.h"
296 #include "character.h"
297 #include "charset.h"
298 #include "ccl.h"
299 #include "composite.h"
300 #include "coding.h"
301 #include "window.h"
302 #include "frame.h"
303 #include "termhooks.h"
304
305 Lisp_Object Vcoding_system_hash_table;
306
307 Lisp_Object Qcoding_system, Qcoding_aliases, Qeol_type;
308 Lisp_Object Qunix, Qdos;
309 extern Lisp_Object Qmac; /* frame.c */
310 Lisp_Object Qbuffer_file_coding_system;
311 Lisp_Object Qpost_read_conversion, Qpre_write_conversion;
312 Lisp_Object Qdefault_char;
313 Lisp_Object Qno_conversion, Qundecided;
314 Lisp_Object Qcharset, Qiso_2022, Qutf_8, Qutf_16, Qshift_jis, Qbig5;
315 Lisp_Object Qbig, Qlittle;
316 Lisp_Object Qcoding_system_history;
317 Lisp_Object Qvalid_codes;
318 Lisp_Object QCcategory, QCmnemonic, QCdefault_char;
319 Lisp_Object QCdecode_translation_table, QCencode_translation_table;
320 Lisp_Object QCpost_read_conversion, QCpre_write_conversion;
321 Lisp_Object QCascii_compatible_p;
322
323 extern Lisp_Object Qinsert_file_contents, Qwrite_region;
324 Lisp_Object Qcall_process, Qcall_process_region;
325 Lisp_Object Qstart_process, Qopen_network_stream;
326 Lisp_Object Qtarget_idx;
327
328 Lisp_Object Qinsufficient_source, Qinconsistent_eol, Qinvalid_source;
329 Lisp_Object Qinterrupted, Qinsufficient_memory;
330
331 extern Lisp_Object Qcompletion_ignore_case;
332
333 /* If a symbol has this property, evaluate the value to define the
334 symbol as a coding system. */
335 static Lisp_Object Qcoding_system_define_form;
336
337 int coding_system_require_warning;
338
339 Lisp_Object Vselect_safe_coding_system_function;
340
341 /* Mnemonic string for each format of end-of-line. */
342 Lisp_Object eol_mnemonic_unix, eol_mnemonic_dos, eol_mnemonic_mac;
343 /* Mnemonic string to indicate format of end-of-line is not yet
344 decided. */
345 Lisp_Object eol_mnemonic_undecided;
346
347 /* Format of end-of-line decided by system. This is Qunix on
348 Unix and Mac, Qdos on DOS/Windows.
349 This has an effect only for external encoding (i.e. for output to
350 file and process), not for in-buffer or Lisp string encoding. */
351 static Lisp_Object system_eol_type;
352
353 #ifdef emacs
354
355 Lisp_Object Vcoding_system_list, Vcoding_system_alist;
356
357 Lisp_Object Qcoding_system_p, Qcoding_system_error;
358
359 /* Coding system emacs-mule and raw-text are for converting only
360 end-of-line format. */
361 Lisp_Object Qemacs_mule, Qraw_text;
362 Lisp_Object Qutf_8_emacs;
363
364 /* Coding-systems are handed between Emacs Lisp programs and C internal
365 routines by the following three variables. */
366 /* Coding-system for reading files and receiving data from process. */
367 Lisp_Object Vcoding_system_for_read;
368 /* Coding-system for writing files and sending data to process. */
369 Lisp_Object Vcoding_system_for_write;
370 /* Coding-system actually used in the latest I/O. */
371 Lisp_Object Vlast_coding_system_used;
372 /* Set to non-nil when an error is detected while code conversion. */
373 Lisp_Object Vlast_code_conversion_error;
374 /* A vector of length 256 which contains information about special
375 Latin codes (especially for dealing with Microsoft codes). */
376 Lisp_Object Vlatin_extra_code_table;
377
378 /* Flag to inhibit code conversion of end-of-line format. */
379 int inhibit_eol_conversion;
380
381 /* Flag to inhibit ISO2022 escape sequence detection. */
382 int inhibit_iso_escape_detection;
383
384 /* Flag to inhibit detection of binary files through null bytes. */
385 int inhibit_null_byte_detection;
386
387 /* Flag to make buffer-file-coding-system inherit from process-coding. */
388 int inherit_process_coding_system;
389
390 /* Coding system to be used to encode text for terminal display when
391 terminal coding system is nil. */
392 struct coding_system safe_terminal_coding;
393
394 Lisp_Object Vfile_coding_system_alist;
395 Lisp_Object Vprocess_coding_system_alist;
396 Lisp_Object Vnetwork_coding_system_alist;
397
398 Lisp_Object Vlocale_coding_system;
399
400 #endif /* emacs */
401
402 /* Flag to tell if we look up translation table on character code
403 conversion. */
404 Lisp_Object Venable_character_translation;
405 /* Standard translation table to look up on decoding (reading). */
406 Lisp_Object Vstandard_translation_table_for_decode;
407 /* Standard translation table to look up on encoding (writing). */
408 Lisp_Object Vstandard_translation_table_for_encode;
409
410 Lisp_Object Qtranslation_table;
411 Lisp_Object Qtranslation_table_id;
412 Lisp_Object Qtranslation_table_for_decode;
413 Lisp_Object Qtranslation_table_for_encode;
414
415 /* Alist of charsets vs revision number. */
416 static Lisp_Object Vcharset_revision_table;
417
418 /* Default coding systems used for process I/O. */
419 Lisp_Object Vdefault_process_coding_system;
420
421 /* Char table for translating Quail and self-inserting input. */
422 Lisp_Object Vtranslation_table_for_input;
423
424 /* Two special coding systems. */
425 Lisp_Object Vsjis_coding_system;
426 Lisp_Object Vbig5_coding_system;
427
428 /* ISO2022 section */
429
430 #define CODING_ISO_INITIAL(coding, reg) \
431 (XINT (AREF (AREF (CODING_ID_ATTRS ((coding)->id), \
432 coding_attr_iso_initial), \
433 reg)))
434
435
436 #define CODING_ISO_REQUEST(coding, charset_id) \
437 (((charset_id) <= (coding)->max_charset_id \
438 ? ((coding)->safe_charsets[charset_id] != 255 \
439 ? (coding)->safe_charsets[charset_id] \
440 : -1) \
441 : -1))
442
443
444 #define CODING_ISO_FLAGS(coding) \
445 ((coding)->spec.iso_2022.flags)
446 #define CODING_ISO_DESIGNATION(coding, reg) \
447 ((coding)->spec.iso_2022.current_designation[reg])
448 #define CODING_ISO_INVOCATION(coding, plane) \
449 ((coding)->spec.iso_2022.current_invocation[plane])
450 #define CODING_ISO_SINGLE_SHIFTING(coding) \
451 ((coding)->spec.iso_2022.single_shifting)
452 #define CODING_ISO_BOL(coding) \
453 ((coding)->spec.iso_2022.bol)
454 #define CODING_ISO_INVOKED_CHARSET(coding, plane) \
455 CODING_ISO_DESIGNATION ((coding), CODING_ISO_INVOCATION ((coding), (plane)))
456 #define CODING_ISO_CMP_STATUS(coding) \
457 (&(coding)->spec.iso_2022.cmp_status)
458 #define CODING_ISO_EXTSEGMENT_LEN(coding) \
459 ((coding)->spec.iso_2022.ctext_extended_segment_len)
460 #define CODING_ISO_EMBEDDED_UTF_8(coding) \
461 ((coding)->spec.iso_2022.embedded_utf_8)
462
463 /* Control characters of ISO2022. */
464 /* code */ /* function */
465 #define ISO_CODE_LF 0x0A /* line-feed */
466 #define ISO_CODE_CR 0x0D /* carriage-return */
467 #define ISO_CODE_SO 0x0E /* shift-out */
468 #define ISO_CODE_SI 0x0F /* shift-in */
469 #define ISO_CODE_SS2_7 0x19 /* single-shift-2 for 7-bit code */
470 #define ISO_CODE_ESC 0x1B /* escape */
471 #define ISO_CODE_SS2 0x8E /* single-shift-2 */
472 #define ISO_CODE_SS3 0x8F /* single-shift-3 */
473 #define ISO_CODE_CSI 0x9B /* control-sequence-introducer */
474
475 /* All code (1-byte) of ISO2022 is classified into one of the
476 followings. */
477 enum iso_code_class_type
478 {
479 ISO_control_0, /* Control codes in the range
480 0x00..0x1F and 0x7F, except for the
481 following 5 codes. */
482 ISO_shift_out, /* ISO_CODE_SO (0x0E) */
483 ISO_shift_in, /* ISO_CODE_SI (0x0F) */
484 ISO_single_shift_2_7, /* ISO_CODE_SS2_7 (0x19) */
485 ISO_escape, /* ISO_CODE_SO (0x1B) */
486 ISO_control_1, /* Control codes in the range
487 0x80..0x9F, except for the
488 following 3 codes. */
489 ISO_single_shift_2, /* ISO_CODE_SS2 (0x8E) */
490 ISO_single_shift_3, /* ISO_CODE_SS3 (0x8F) */
491 ISO_control_sequence_introducer, /* ISO_CODE_CSI (0x9B) */
492 ISO_0x20_or_0x7F, /* Codes of the values 0x20 or 0x7F. */
493 ISO_graphic_plane_0, /* Graphic codes in the range 0x21..0x7E. */
494 ISO_0xA0_or_0xFF, /* Codes of the values 0xA0 or 0xFF. */
495 ISO_graphic_plane_1 /* Graphic codes in the range 0xA1..0xFE. */
496 };
497
498 /** The macros CODING_ISO_FLAG_XXX defines a flag bit of the
499 `iso-flags' attribute of an iso2022 coding system. */
500
501 /* If set, produce long-form designation sequence (e.g. ESC $ ( A)
502 instead of the correct short-form sequence (e.g. ESC $ A). */
503 #define CODING_ISO_FLAG_LONG_FORM 0x0001
504
505 /* If set, reset graphic planes and registers at end-of-line to the
506 initial state. */
507 #define CODING_ISO_FLAG_RESET_AT_EOL 0x0002
508
509 /* If set, reset graphic planes and registers before any control
510 characters to the initial state. */
511 #define CODING_ISO_FLAG_RESET_AT_CNTL 0x0004
512
513 /* If set, encode by 7-bit environment. */
514 #define CODING_ISO_FLAG_SEVEN_BITS 0x0008
515
516 /* If set, use locking-shift function. */
517 #define CODING_ISO_FLAG_LOCKING_SHIFT 0x0010
518
519 /* If set, use single-shift function. Overwrite
520 CODING_ISO_FLAG_LOCKING_SHIFT. */
521 #define CODING_ISO_FLAG_SINGLE_SHIFT 0x0020
522
523 /* If set, use designation escape sequence. */
524 #define CODING_ISO_FLAG_DESIGNATION 0x0040
525
526 /* If set, produce revision number sequence. */
527 #define CODING_ISO_FLAG_REVISION 0x0080
528
529 /* If set, produce ISO6429's direction specifying sequence. */
530 #define CODING_ISO_FLAG_DIRECTION 0x0100
531
532 /* If set, assume designation states are reset at beginning of line on
533 output. */
534 #define CODING_ISO_FLAG_INIT_AT_BOL 0x0200
535
536 /* If set, designation sequence should be placed at beginning of line
537 on output. */
538 #define CODING_ISO_FLAG_DESIGNATE_AT_BOL 0x0400
539
540 /* If set, do not encode unsafe charactes on output. */
541 #define CODING_ISO_FLAG_SAFE 0x0800
542
543 /* If set, extra latin codes (128..159) are accepted as a valid code
544 on input. */
545 #define CODING_ISO_FLAG_LATIN_EXTRA 0x1000
546
547 #define CODING_ISO_FLAG_COMPOSITION 0x2000
548
549 #define CODING_ISO_FLAG_EUC_TW_SHIFT 0x4000
550
551 #define CODING_ISO_FLAG_USE_ROMAN 0x8000
552
553 #define CODING_ISO_FLAG_USE_OLDJIS 0x10000
554
555 #define CODING_ISO_FLAG_FULL_SUPPORT 0x100000
556
557 /* A character to be produced on output if encoding of the original
558 character is prohibited by CODING_ISO_FLAG_SAFE. */
559 #define CODING_INHIBIT_CHARACTER_SUBSTITUTION '?'
560
561 /* UTF-8 section */
562 #define CODING_UTF_8_BOM(coding) \
563 ((coding)->spec.utf_8_bom)
564
565 /* UTF-16 section */
566 #define CODING_UTF_16_BOM(coding) \
567 ((coding)->spec.utf_16.bom)
568
569 #define CODING_UTF_16_ENDIAN(coding) \
570 ((coding)->spec.utf_16.endian)
571
572 #define CODING_UTF_16_SURROGATE(coding) \
573 ((coding)->spec.utf_16.surrogate)
574
575
576 /* CCL section */
577 #define CODING_CCL_DECODER(coding) \
578 AREF (CODING_ID_ATTRS ((coding)->id), coding_attr_ccl_decoder)
579 #define CODING_CCL_ENCODER(coding) \
580 AREF (CODING_ID_ATTRS ((coding)->id), coding_attr_ccl_encoder)
581 #define CODING_CCL_VALIDS(coding) \
582 (SDATA (AREF (CODING_ID_ATTRS ((coding)->id), coding_attr_ccl_valids)))
583
584 /* Index for each coding category in `coding_categories' */
585
586 enum coding_category
587 {
588 coding_category_iso_7,
589 coding_category_iso_7_tight,
590 coding_category_iso_8_1,
591 coding_category_iso_8_2,
592 coding_category_iso_7_else,
593 coding_category_iso_8_else,
594 coding_category_utf_8_auto,
595 coding_category_utf_8_nosig,
596 coding_category_utf_8_sig,
597 coding_category_utf_16_auto,
598 coding_category_utf_16_be,
599 coding_category_utf_16_le,
600 coding_category_utf_16_be_nosig,
601 coding_category_utf_16_le_nosig,
602 coding_category_charset,
603 coding_category_sjis,
604 coding_category_big5,
605 coding_category_ccl,
606 coding_category_emacs_mule,
607 /* All above are targets of code detection. */
608 coding_category_raw_text,
609 coding_category_undecided,
610 coding_category_max
611 };
612
613 /* Definitions of flag bits used in detect_coding_XXXX. */
614 #define CATEGORY_MASK_ISO_7 (1 << coding_category_iso_7)
615 #define CATEGORY_MASK_ISO_7_TIGHT (1 << coding_category_iso_7_tight)
616 #define CATEGORY_MASK_ISO_8_1 (1 << coding_category_iso_8_1)
617 #define CATEGORY_MASK_ISO_8_2 (1 << coding_category_iso_8_2)
618 #define CATEGORY_MASK_ISO_7_ELSE (1 << coding_category_iso_7_else)
619 #define CATEGORY_MASK_ISO_8_ELSE (1 << coding_category_iso_8_else)
620 #define CATEGORY_MASK_UTF_8_AUTO (1 << coding_category_utf_8_auto)
621 #define CATEGORY_MASK_UTF_8_NOSIG (1 << coding_category_utf_8_nosig)
622 #define CATEGORY_MASK_UTF_8_SIG (1 << coding_category_utf_8_sig)
623 #define CATEGORY_MASK_UTF_16_AUTO (1 << coding_category_utf_16_auto)
624 #define CATEGORY_MASK_UTF_16_BE (1 << coding_category_utf_16_be)
625 #define CATEGORY_MASK_UTF_16_LE (1 << coding_category_utf_16_le)
626 #define CATEGORY_MASK_UTF_16_BE_NOSIG (1 << coding_category_utf_16_be_nosig)
627 #define CATEGORY_MASK_UTF_16_LE_NOSIG (1 << coding_category_utf_16_le_nosig)
628 #define CATEGORY_MASK_CHARSET (1 << coding_category_charset)
629 #define CATEGORY_MASK_SJIS (1 << coding_category_sjis)
630 #define CATEGORY_MASK_BIG5 (1 << coding_category_big5)
631 #define CATEGORY_MASK_CCL (1 << coding_category_ccl)
632 #define CATEGORY_MASK_EMACS_MULE (1 << coding_category_emacs_mule)
633 #define CATEGORY_MASK_RAW_TEXT (1 << coding_category_raw_text)
634
635 /* This value is returned if detect_coding_mask () find nothing other
636 than ASCII characters. */
637 #define CATEGORY_MASK_ANY \
638 (CATEGORY_MASK_ISO_7 \
639 | CATEGORY_MASK_ISO_7_TIGHT \
640 | CATEGORY_MASK_ISO_8_1 \
641 | CATEGORY_MASK_ISO_8_2 \
642 | CATEGORY_MASK_ISO_7_ELSE \
643 | CATEGORY_MASK_ISO_8_ELSE \
644 | CATEGORY_MASK_UTF_8_AUTO \
645 | CATEGORY_MASK_UTF_8_NOSIG \
646 | CATEGORY_MASK_UTF_8_SIG \
647 | CATEGORY_MASK_UTF_16_AUTO \
648 | CATEGORY_MASK_UTF_16_BE \
649 | CATEGORY_MASK_UTF_16_LE \
650 | CATEGORY_MASK_UTF_16_BE_NOSIG \
651 | CATEGORY_MASK_UTF_16_LE_NOSIG \
652 | CATEGORY_MASK_CHARSET \
653 | CATEGORY_MASK_SJIS \
654 | CATEGORY_MASK_BIG5 \
655 | CATEGORY_MASK_CCL \
656 | CATEGORY_MASK_EMACS_MULE)
657
658
659 #define CATEGORY_MASK_ISO_7BIT \
660 (CATEGORY_MASK_ISO_7 | CATEGORY_MASK_ISO_7_TIGHT)
661
662 #define CATEGORY_MASK_ISO_8BIT \
663 (CATEGORY_MASK_ISO_8_1 | CATEGORY_MASK_ISO_8_2)
664
665 #define CATEGORY_MASK_ISO_ELSE \
666 (CATEGORY_MASK_ISO_7_ELSE | CATEGORY_MASK_ISO_8_ELSE)
667
668 #define CATEGORY_MASK_ISO_ESCAPE \
669 (CATEGORY_MASK_ISO_7 \
670 | CATEGORY_MASK_ISO_7_TIGHT \
671 | CATEGORY_MASK_ISO_7_ELSE \
672 | CATEGORY_MASK_ISO_8_ELSE)
673
674 #define CATEGORY_MASK_ISO \
675 ( CATEGORY_MASK_ISO_7BIT \
676 | CATEGORY_MASK_ISO_8BIT \
677 | CATEGORY_MASK_ISO_ELSE)
678
679 #define CATEGORY_MASK_UTF_16 \
680 (CATEGORY_MASK_UTF_16_AUTO \
681 | CATEGORY_MASK_UTF_16_BE \
682 | CATEGORY_MASK_UTF_16_LE \
683 | CATEGORY_MASK_UTF_16_BE_NOSIG \
684 | CATEGORY_MASK_UTF_16_LE_NOSIG)
685
686 #define CATEGORY_MASK_UTF_8 \
687 (CATEGORY_MASK_UTF_8_AUTO \
688 | CATEGORY_MASK_UTF_8_NOSIG \
689 | CATEGORY_MASK_UTF_8_SIG)
690
691 /* List of symbols `coding-category-xxx' ordered by priority. This
692 variable is exposed to Emacs Lisp. */
693 static Lisp_Object Vcoding_category_list;
694
695 /* Table of coding categories (Lisp symbols). This variable is for
696 internal use oly. */
697 static Lisp_Object Vcoding_category_table;
698
699 /* Table of coding-categories ordered by priority. */
700 static enum coding_category coding_priorities[coding_category_max];
701
702 /* Nth element is a coding context for the coding system bound to the
703 Nth coding category. */
704 static struct coding_system coding_categories[coding_category_max];
705
706 /*** Commonly used macros and functions ***/
707
708 #ifndef min
709 #define min(a, b) ((a) < (b) ? (a) : (b))
710 #endif
711 #ifndef max
712 #define max(a, b) ((a) > (b) ? (a) : (b))
713 #endif
714
715 #define CODING_GET_INFO(coding, attrs, charset_list) \
716 do { \
717 (attrs) = CODING_ID_ATTRS ((coding)->id); \
718 (charset_list) = CODING_ATTR_CHARSET_LIST (attrs); \
719 } while (0)
720
721
722 /* Safely get one byte from the source text pointed by SRC which ends
723 at SRC_END, and set C to that byte. If there are not enough bytes
724 in the source, it jumps to `no_more_source'. If multibytep is
725 nonzero, and a multibyte character is found at SRC, set C to the
726 negative value of the character code. The caller should declare
727 and set these variables appropriately in advance:
728 src, src_end, multibytep */
729
730 #define ONE_MORE_BYTE(c) \
731 do { \
732 if (src == src_end) \
733 { \
734 if (src_base < src) \
735 record_conversion_result \
736 (coding, CODING_RESULT_INSUFFICIENT_SRC); \
737 goto no_more_source; \
738 } \
739 c = *src++; \
740 if (multibytep && (c & 0x80)) \
741 { \
742 if ((c & 0xFE) == 0xC0) \
743 c = ((c & 1) << 6) | *src++; \
744 else \
745 { \
746 src--; \
747 c = - string_char (src, &src, NULL); \
748 record_conversion_result \
749 (coding, CODING_RESULT_INVALID_SRC); \
750 } \
751 } \
752 consumed_chars++; \
753 } while (0)
754
755 /* Safely get two bytes from the source text pointed by SRC which ends
756 at SRC_END, and set C1 and C2 to those bytes while skipping the
757 heading multibyte characters. If there are not enough bytes in the
758 source, it jumps to `no_more_source'. If multibytep is nonzero and
759 a multibyte character is found for C2, set C2 to the negative value
760 of the character code. The caller should declare and set these
761 variables appropriately in advance:
762 src, src_end, multibytep
763 It is intended that this macro is used in detect_coding_utf_16. */
764
765 #define TWO_MORE_BYTES(c1, c2) \
766 do { \
767 do { \
768 if (src == src_end) \
769 goto no_more_source; \
770 c1 = *src++; \
771 if (multibytep && (c1 & 0x80)) \
772 { \
773 if ((c1 & 0xFE) == 0xC0) \
774 c1 = ((c1 & 1) << 6) | *src++; \
775 else \
776 { \
777 src += BYTES_BY_CHAR_HEAD (c1) - 1; \
778 c1 = -1; \
779 } \
780 } \
781 } while (c1 < 0); \
782 if (src == src_end) \
783 goto no_more_source; \
784 c2 = *src++; \
785 if (multibytep && (c2 & 0x80)) \
786 { \
787 if ((c2 & 0xFE) == 0xC0) \
788 c2 = ((c2 & 1) << 6) | *src++; \
789 else \
790 c2 = -1; \
791 } \
792 } while (0)
793
794
795 #define ONE_MORE_BYTE_NO_CHECK(c) \
796 do { \
797 c = *src++; \
798 if (multibytep && (c & 0x80)) \
799 { \
800 if ((c & 0xFE) == 0xC0) \
801 c = ((c & 1) << 6) | *src++; \
802 else \
803 { \
804 src--; \
805 c = - string_char (src, &src, NULL); \
806 record_conversion_result \
807 (coding, CODING_RESULT_INVALID_SRC); \
808 } \
809 } \
810 consumed_chars++; \
811 } while (0)
812
813
814 /* Store a byte C in the place pointed by DST and increment DST to the
815 next free point, and increment PRODUCED_CHARS. The caller should
816 assure that C is 0..127, and declare and set the variable `dst'
817 appropriately in advance.
818 */
819
820
821 #define EMIT_ONE_ASCII_BYTE(c) \
822 do { \
823 produced_chars++; \
824 *dst++ = (c); \
825 } while (0)
826
827
828 /* Like EMIT_ONE_ASCII_BYTE byt store two bytes; C1 and C2. */
829
830 #define EMIT_TWO_ASCII_BYTES(c1, c2) \
831 do { \
832 produced_chars += 2; \
833 *dst++ = (c1), *dst++ = (c2); \
834 } while (0)
835
836
837 /* Store a byte C in the place pointed by DST and increment DST to the
838 next free point, and increment PRODUCED_CHARS. If MULTIBYTEP is
839 nonzero, store in an appropriate multibyte from. The caller should
840 declare and set the variables `dst' and `multibytep' appropriately
841 in advance. */
842
843 #define EMIT_ONE_BYTE(c) \
844 do { \
845 produced_chars++; \
846 if (multibytep) \
847 { \
848 int ch = (c); \
849 if (ch >= 0x80) \
850 ch = BYTE8_TO_CHAR (ch); \
851 CHAR_STRING_ADVANCE (ch, dst); \
852 } \
853 else \
854 *dst++ = (c); \
855 } while (0)
856
857
858 /* Like EMIT_ONE_BYTE, but emit two bytes; C1 and C2. */
859
860 #define EMIT_TWO_BYTES(c1, c2) \
861 do { \
862 produced_chars += 2; \
863 if (multibytep) \
864 { \
865 int ch; \
866 \
867 ch = (c1); \
868 if (ch >= 0x80) \
869 ch = BYTE8_TO_CHAR (ch); \
870 CHAR_STRING_ADVANCE (ch, dst); \
871 ch = (c2); \
872 if (ch >= 0x80) \
873 ch = BYTE8_TO_CHAR (ch); \
874 CHAR_STRING_ADVANCE (ch, dst); \
875 } \
876 else \
877 { \
878 *dst++ = (c1); \
879 *dst++ = (c2); \
880 } \
881 } while (0)
882
883
884 #define EMIT_THREE_BYTES(c1, c2, c3) \
885 do { \
886 EMIT_ONE_BYTE (c1); \
887 EMIT_TWO_BYTES (c2, c3); \
888 } while (0)
889
890
891 #define EMIT_FOUR_BYTES(c1, c2, c3, c4) \
892 do { \
893 EMIT_TWO_BYTES (c1, c2); \
894 EMIT_TWO_BYTES (c3, c4); \
895 } while (0)
896
897
898 /* Prototypes for static functions. */
899 static void record_conversion_result P_ ((struct coding_system *coding,
900 enum coding_result_code result));
901 static int detect_coding_utf_8 P_ ((struct coding_system *,
902 struct coding_detection_info *info));
903 static void decode_coding_utf_8 P_ ((struct coding_system *));
904 static int encode_coding_utf_8 P_ ((struct coding_system *));
905
906 static int detect_coding_utf_16 P_ ((struct coding_system *,
907 struct coding_detection_info *info));
908 static void decode_coding_utf_16 P_ ((struct coding_system *));
909 static int encode_coding_utf_16 P_ ((struct coding_system *));
910
911 static int detect_coding_iso_2022 P_ ((struct coding_system *,
912 struct coding_detection_info *info));
913 static void decode_coding_iso_2022 P_ ((struct coding_system *));
914 static int encode_coding_iso_2022 P_ ((struct coding_system *));
915
916 static int detect_coding_emacs_mule P_ ((struct coding_system *,
917 struct coding_detection_info *info));
918 static void decode_coding_emacs_mule P_ ((struct coding_system *));
919 static int encode_coding_emacs_mule P_ ((struct coding_system *));
920
921 static int detect_coding_sjis P_ ((struct coding_system *,
922 struct coding_detection_info *info));
923 static void decode_coding_sjis P_ ((struct coding_system *));
924 static int encode_coding_sjis P_ ((struct coding_system *));
925
926 static int detect_coding_big5 P_ ((struct coding_system *,
927 struct coding_detection_info *info));
928 static void decode_coding_big5 P_ ((struct coding_system *));
929 static int encode_coding_big5 P_ ((struct coding_system *));
930
931 static int detect_coding_ccl P_ ((struct coding_system *,
932 struct coding_detection_info *info));
933 static void decode_coding_ccl P_ ((struct coding_system *));
934 static int encode_coding_ccl P_ ((struct coding_system *));
935
936 static void decode_coding_raw_text P_ ((struct coding_system *));
937 static int encode_coding_raw_text P_ ((struct coding_system *));
938
939 static void coding_set_source P_ ((struct coding_system *));
940 static void coding_set_destination P_ ((struct coding_system *));
941 static void coding_alloc_by_realloc P_ ((struct coding_system *, EMACS_INT));
942 static void coding_alloc_by_making_gap P_ ((struct coding_system *,
943 EMACS_INT, EMACS_INT));
944 static unsigned char *alloc_destination P_ ((struct coding_system *,
945 EMACS_INT, unsigned char *));
946 static void setup_iso_safe_charsets P_ ((Lisp_Object));
947 static unsigned char *encode_designation_at_bol P_ ((struct coding_system *,
948 int *, int *,
949 unsigned char *));
950 static int detect_eol P_ ((const unsigned char *,
951 EMACS_INT, enum coding_category));
952 static Lisp_Object adjust_coding_eol_type P_ ((struct coding_system *, int));
953 static void decode_eol P_ ((struct coding_system *));
954 static Lisp_Object get_translation_table P_ ((Lisp_Object, int, int *));
955 static Lisp_Object get_translation P_ ((Lisp_Object, int *, int *));
956 static int produce_chars P_ ((struct coding_system *, Lisp_Object, int));
957 static INLINE void produce_charset P_ ((struct coding_system *, int *,
958 EMACS_INT));
959 static void produce_annotation P_ ((struct coding_system *, EMACS_INT));
960 static int decode_coding P_ ((struct coding_system *));
961 static INLINE int *handle_composition_annotation P_ ((EMACS_INT, EMACS_INT,
962 struct coding_system *,
963 int *, EMACS_INT *));
964 static INLINE int *handle_charset_annotation P_ ((EMACS_INT, EMACS_INT,
965 struct coding_system *,
966 int *, EMACS_INT *));
967 static void consume_chars P_ ((struct coding_system *, Lisp_Object, int));
968 static int encode_coding P_ ((struct coding_system *));
969 static Lisp_Object make_conversion_work_buffer P_ ((int));
970 static Lisp_Object code_conversion_restore P_ ((Lisp_Object));
971 static INLINE int char_encodable_p P_ ((int, Lisp_Object));
972 static Lisp_Object make_subsidiaries P_ ((Lisp_Object));
973
974 static void
975 record_conversion_result (struct coding_system *coding,
976 enum coding_result_code result)
977 {
978 coding->result = result;
979 switch (result)
980 {
981 case CODING_RESULT_INSUFFICIENT_SRC:
982 Vlast_code_conversion_error = Qinsufficient_source;
983 break;
984 case CODING_RESULT_INCONSISTENT_EOL:
985 Vlast_code_conversion_error = Qinconsistent_eol;
986 break;
987 case CODING_RESULT_INVALID_SRC:
988 Vlast_code_conversion_error = Qinvalid_source;
989 break;
990 case CODING_RESULT_INTERRUPT:
991 Vlast_code_conversion_error = Qinterrupted;
992 break;
993 case CODING_RESULT_INSUFFICIENT_MEM:
994 Vlast_code_conversion_error = Qinsufficient_memory;
995 break;
996 case CODING_RESULT_SUCCESS:
997 break;
998 default:
999 Vlast_code_conversion_error = intern ("Unknown error");
1000 }
1001 }
1002
1003 #define CODING_DECODE_CHAR(coding, src, src_base, src_end, charset, code, c) \
1004 do { \
1005 charset_map_loaded = 0; \
1006 c = DECODE_CHAR (charset, code); \
1007 if (charset_map_loaded) \
1008 { \
1009 const unsigned char *orig = coding->source; \
1010 EMACS_INT offset; \
1011 \
1012 coding_set_source (coding); \
1013 offset = coding->source - orig; \
1014 src += offset; \
1015 src_base += offset; \
1016 src_end += offset; \
1017 } \
1018 } while (0)
1019
1020
1021 /* If there are at least BYTES length of room at dst, allocate memory
1022 for coding->destination and update dst and dst_end. We don't have
1023 to take care of coding->source which will be relocated. It is
1024 handled by calling coding_set_source in encode_coding. */
1025
1026 #define ASSURE_DESTINATION(bytes) \
1027 do { \
1028 if (dst + (bytes) >= dst_end) \
1029 { \
1030 int more_bytes = charbuf_end - charbuf + (bytes); \
1031 \
1032 dst = alloc_destination (coding, more_bytes, dst); \
1033 dst_end = coding->destination + coding->dst_bytes; \
1034 } \
1035 } while (0)
1036
1037
1038 /* Store multibyte form of the character C in P, and advance P to the
1039 end of the multibyte form. This is like CHAR_STRING_ADVANCE but it
1040 never calls MAYBE_UNIFY_CHAR. */
1041
1042 #define CHAR_STRING_ADVANCE_NO_UNIFY(c, p) \
1043 do { \
1044 if ((c) <= MAX_1_BYTE_CHAR) \
1045 *(p)++ = (c); \
1046 else if ((c) <= MAX_2_BYTE_CHAR) \
1047 *(p)++ = (0xC0 | ((c) >> 6)), \
1048 *(p)++ = (0x80 | ((c) & 0x3F)); \
1049 else if ((c) <= MAX_3_BYTE_CHAR) \
1050 *(p)++ = (0xE0 | ((c) >> 12)), \
1051 *(p)++ = (0x80 | (((c) >> 6) & 0x3F)), \
1052 *(p)++ = (0x80 | ((c) & 0x3F)); \
1053 else if ((c) <= MAX_4_BYTE_CHAR) \
1054 *(p)++ = (0xF0 | (c >> 18)), \
1055 *(p)++ = (0x80 | ((c >> 12) & 0x3F)), \
1056 *(p)++ = (0x80 | ((c >> 6) & 0x3F)), \
1057 *(p)++ = (0x80 | (c & 0x3F)); \
1058 else if ((c) <= MAX_5_BYTE_CHAR) \
1059 *(p)++ = 0xF8, \
1060 *(p)++ = (0x80 | ((c >> 18) & 0x0F)), \
1061 *(p)++ = (0x80 | ((c >> 12) & 0x3F)), \
1062 *(p)++ = (0x80 | ((c >> 6) & 0x3F)), \
1063 *(p)++ = (0x80 | (c & 0x3F)); \
1064 else \
1065 (p) += BYTE8_STRING ((c) - 0x3FFF80, p); \
1066 } while (0)
1067
1068
1069 /* Return the character code of character whose multibyte form is at
1070 P, and advance P to the end of the multibyte form. This is like
1071 STRING_CHAR_ADVANCE, but it never calls MAYBE_UNIFY_CHAR. */
1072
1073 #define STRING_CHAR_ADVANCE_NO_UNIFY(p) \
1074 (!((p)[0] & 0x80) \
1075 ? *(p)++ \
1076 : ! ((p)[0] & 0x20) \
1077 ? ((p) += 2, \
1078 ((((p)[-2] & 0x1F) << 6) \
1079 | ((p)[-1] & 0x3F) \
1080 | ((unsigned char) ((p)[-2]) < 0xC2 ? 0x3FFF80 : 0))) \
1081 : ! ((p)[0] & 0x10) \
1082 ? ((p) += 3, \
1083 ((((p)[-3] & 0x0F) << 12) \
1084 | (((p)[-2] & 0x3F) << 6) \
1085 | ((p)[-1] & 0x3F))) \
1086 : ! ((p)[0] & 0x08) \
1087 ? ((p) += 4, \
1088 ((((p)[-4] & 0xF) << 18) \
1089 | (((p)[-3] & 0x3F) << 12) \
1090 | (((p)[-2] & 0x3F) << 6) \
1091 | ((p)[-1] & 0x3F))) \
1092 : ((p) += 5, \
1093 ((((p)[-4] & 0x3F) << 18) \
1094 | (((p)[-3] & 0x3F) << 12) \
1095 | (((p)[-2] & 0x3F) << 6) \
1096 | ((p)[-1] & 0x3F))))
1097
1098
1099 static void
1100 coding_set_source (coding)
1101 struct coding_system *coding;
1102 {
1103 if (BUFFERP (coding->src_object))
1104 {
1105 struct buffer *buf = XBUFFER (coding->src_object);
1106
1107 if (coding->src_pos < 0)
1108 coding->source = BUF_GAP_END_ADDR (buf) + coding->src_pos_byte;
1109 else
1110 coding->source = BUF_BYTE_ADDRESS (buf, coding->src_pos_byte);
1111 }
1112 else if (STRINGP (coding->src_object))
1113 {
1114 coding->source = SDATA (coding->src_object) + coding->src_pos_byte;
1115 }
1116 else
1117 /* Otherwise, the source is C string and is never relocated
1118 automatically. Thus we don't have to update anything. */
1119 ;
1120 }
1121
1122 static void
1123 coding_set_destination (coding)
1124 struct coding_system *coding;
1125 {
1126 if (BUFFERP (coding->dst_object))
1127 {
1128 if (coding->src_pos < 0)
1129 {
1130 coding->destination = BEG_ADDR + coding->dst_pos_byte - BEG_BYTE;
1131 coding->dst_bytes = (GAP_END_ADDR
1132 - (coding->src_bytes - coding->consumed)
1133 - coding->destination);
1134 }
1135 else
1136 {
1137 /* We are sure that coding->dst_pos_byte is before the gap
1138 of the buffer. */
1139 coding->destination = (BUF_BEG_ADDR (XBUFFER (coding->dst_object))
1140 + coding->dst_pos_byte - BEG_BYTE);
1141 coding->dst_bytes = (BUF_GAP_END_ADDR (XBUFFER (coding->dst_object))
1142 - coding->destination);
1143 }
1144 }
1145 else
1146 /* Otherwise, the destination is C string and is never relocated
1147 automatically. Thus we don't have to update anything. */
1148 ;
1149 }
1150
1151
1152 static void
1153 coding_alloc_by_realloc (coding, bytes)
1154 struct coding_system *coding;
1155 EMACS_INT bytes;
1156 {
1157 coding->destination = (unsigned char *) xrealloc (coding->destination,
1158 coding->dst_bytes + bytes);
1159 coding->dst_bytes += bytes;
1160 }
1161
1162 static void
1163 coding_alloc_by_making_gap (coding, gap_head_used, bytes)
1164 struct coding_system *coding;
1165 EMACS_INT gap_head_used, bytes;
1166 {
1167 if (EQ (coding->src_object, coding->dst_object))
1168 {
1169 /* The gap may contain the produced data at the head and not-yet
1170 consumed data at the tail. To preserve those data, we at
1171 first make the gap size to zero, then increase the gap
1172 size. */
1173 EMACS_INT add = GAP_SIZE;
1174
1175 GPT += gap_head_used, GPT_BYTE += gap_head_used;
1176 GAP_SIZE = 0; ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
1177 make_gap (bytes);
1178 GAP_SIZE += add; ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
1179 GPT -= gap_head_used, GPT_BYTE -= gap_head_used;
1180 }
1181 else
1182 {
1183 Lisp_Object this_buffer;
1184
1185 this_buffer = Fcurrent_buffer ();
1186 set_buffer_internal (XBUFFER (coding->dst_object));
1187 make_gap (bytes);
1188 set_buffer_internal (XBUFFER (this_buffer));
1189 }
1190 }
1191
1192
1193 static unsigned char *
1194 alloc_destination (coding, nbytes, dst)
1195 struct coding_system *coding;
1196 EMACS_INT nbytes;
1197 unsigned char *dst;
1198 {
1199 EMACS_INT offset = dst - coding->destination;
1200
1201 if (BUFFERP (coding->dst_object))
1202 {
1203 struct buffer *buf = XBUFFER (coding->dst_object);
1204
1205 coding_alloc_by_making_gap (coding, dst - BUF_GPT_ADDR (buf), nbytes);
1206 }
1207 else
1208 coding_alloc_by_realloc (coding, nbytes);
1209 coding_set_destination (coding);
1210 dst = coding->destination + offset;
1211 return dst;
1212 }
1213
1214 /** Macros for annotations. */
1215
1216 /* An annotation data is stored in the array coding->charbuf in this
1217 format:
1218 [ -LENGTH ANNOTATION_MASK NCHARS ... ]
1219 LENGTH is the number of elements in the annotation.
1220 ANNOTATION_MASK is one of CODING_ANNOTATE_XXX_MASK.
1221 NCHARS is the number of characters in the text annotated.
1222
1223 The format of the following elements depend on ANNOTATION_MASK.
1224
1225 In the case of CODING_ANNOTATE_COMPOSITION_MASK, these elements
1226 follows:
1227 ... NBYTES METHOD [ COMPOSITION-COMPONENTS ... ]
1228
1229 NBYTES is the number of bytes specified in the header part of
1230 old-style emacs-mule encoding, or 0 for the other kind of
1231 composition.
1232
1233 METHOD is one of enum composition_method.
1234
1235 Optionnal COMPOSITION-COMPONENTS are characters and composition
1236 rules.
1237
1238 In the case of CODING_ANNOTATE_CHARSET_MASK, one element CHARSET-ID
1239 follows.
1240
1241 If ANNOTATION_MASK is 0, this annotation is just a space holder to
1242 recover from an invalid annotation, and should be skipped by
1243 produce_annotation. */
1244
1245 /* Maximum length of the header of annotation data. */
1246 #define MAX_ANNOTATION_LENGTH 5
1247
1248 #define ADD_ANNOTATION_DATA(buf, len, mask, nchars) \
1249 do { \
1250 *(buf)++ = -(len); \
1251 *(buf)++ = (mask); \
1252 *(buf)++ = (nchars); \
1253 coding->annotated = 1; \
1254 } while (0);
1255
1256 #define ADD_COMPOSITION_DATA(buf, nchars, nbytes, method) \
1257 do { \
1258 ADD_ANNOTATION_DATA (buf, 5, CODING_ANNOTATE_COMPOSITION_MASK, nchars); \
1259 *buf++ = nbytes; \
1260 *buf++ = method; \
1261 } while (0)
1262
1263
1264 #define ADD_CHARSET_DATA(buf, nchars, id) \
1265 do { \
1266 ADD_ANNOTATION_DATA (buf, 4, CODING_ANNOTATE_CHARSET_MASK, nchars); \
1267 *buf++ = id; \
1268 } while (0)
1269
1270 \f
1271 /*** 2. Emacs' internal format (emacs-utf-8) ***/
1272
1273
1274
1275 \f
1276 /*** 3. UTF-8 ***/
1277
1278 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1279 Check if a text is encoded in UTF-8. If it is, return 1, else
1280 return 0. */
1281
1282 #define UTF_8_1_OCTET_P(c) ((c) < 0x80)
1283 #define UTF_8_EXTRA_OCTET_P(c) (((c) & 0xC0) == 0x80)
1284 #define UTF_8_2_OCTET_LEADING_P(c) (((c) & 0xE0) == 0xC0)
1285 #define UTF_8_3_OCTET_LEADING_P(c) (((c) & 0xF0) == 0xE0)
1286 #define UTF_8_4_OCTET_LEADING_P(c) (((c) & 0xF8) == 0xF0)
1287 #define UTF_8_5_OCTET_LEADING_P(c) (((c) & 0xFC) == 0xF8)
1288
1289 #define UTF_BOM 0xFEFF
1290 #define UTF_8_BOM_1 0xEF
1291 #define UTF_8_BOM_2 0xBB
1292 #define UTF_8_BOM_3 0xBF
1293
1294 static int
1295 detect_coding_utf_8 (coding, detect_info)
1296 struct coding_system *coding;
1297 struct coding_detection_info *detect_info;
1298 {
1299 const unsigned char *src = coding->source, *src_base;
1300 const unsigned char *src_end = coding->source + coding->src_bytes;
1301 int multibytep = coding->src_multibyte;
1302 int consumed_chars = 0;
1303 int bom_found = 0;
1304 int found = 0;
1305
1306 detect_info->checked |= CATEGORY_MASK_UTF_8;
1307 /* A coding system of this category is always ASCII compatible. */
1308 src += coding->head_ascii;
1309
1310 while (1)
1311 {
1312 int c, c1, c2, c3, c4;
1313
1314 src_base = src;
1315 ONE_MORE_BYTE (c);
1316 if (c < 0 || UTF_8_1_OCTET_P (c))
1317 continue;
1318 ONE_MORE_BYTE (c1);
1319 if (c1 < 0 || ! UTF_8_EXTRA_OCTET_P (c1))
1320 break;
1321 if (UTF_8_2_OCTET_LEADING_P (c))
1322 {
1323 found = 1;
1324 continue;
1325 }
1326 ONE_MORE_BYTE (c2);
1327 if (c2 < 0 || ! UTF_8_EXTRA_OCTET_P (c2))
1328 break;
1329 if (UTF_8_3_OCTET_LEADING_P (c))
1330 {
1331 found = 1;
1332 if (src_base == coding->source
1333 && c == UTF_8_BOM_1 && c1 == UTF_8_BOM_2 && c2 == UTF_8_BOM_3)
1334 bom_found = 1;
1335 continue;
1336 }
1337 ONE_MORE_BYTE (c3);
1338 if (c3 < 0 || ! UTF_8_EXTRA_OCTET_P (c3))
1339 break;
1340 if (UTF_8_4_OCTET_LEADING_P (c))
1341 {
1342 found = 1;
1343 continue;
1344 }
1345 ONE_MORE_BYTE (c4);
1346 if (c4 < 0 || ! UTF_8_EXTRA_OCTET_P (c4))
1347 break;
1348 if (UTF_8_5_OCTET_LEADING_P (c))
1349 {
1350 found = 1;
1351 continue;
1352 }
1353 break;
1354 }
1355 detect_info->rejected |= CATEGORY_MASK_UTF_8;
1356 return 0;
1357
1358 no_more_source:
1359 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
1360 {
1361 detect_info->rejected |= CATEGORY_MASK_UTF_8;
1362 return 0;
1363 }
1364 if (bom_found)
1365 {
1366 /* The first character 0xFFFE doesn't necessarily mean a BOM. */
1367 detect_info->found |= CATEGORY_MASK_UTF_8_SIG | CATEGORY_MASK_UTF_8_NOSIG;
1368 }
1369 else
1370 {
1371 detect_info->rejected |= CATEGORY_MASK_UTF_8_SIG;
1372 if (found)
1373 detect_info->found |= CATEGORY_MASK_UTF_8_NOSIG;
1374 }
1375 return 1;
1376 }
1377
1378
1379 static void
1380 decode_coding_utf_8 (coding)
1381 struct coding_system *coding;
1382 {
1383 const unsigned char *src = coding->source + coding->consumed;
1384 const unsigned char *src_end = coding->source + coding->src_bytes;
1385 const unsigned char *src_base;
1386 int *charbuf = coding->charbuf + coding->charbuf_used;
1387 int *charbuf_end = coding->charbuf + coding->charbuf_size;
1388 int consumed_chars = 0, consumed_chars_base = 0;
1389 int multibytep = coding->src_multibyte;
1390 enum utf_bom_type bom = CODING_UTF_8_BOM (coding);
1391 Lisp_Object attr, charset_list;
1392 int eol_crlf =
1393 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
1394 int byte_after_cr = -1;
1395
1396 CODING_GET_INFO (coding, attr, charset_list);
1397
1398 if (bom != utf_without_bom)
1399 {
1400 int c1, c2, c3;
1401
1402 src_base = src;
1403 ONE_MORE_BYTE (c1);
1404 if (! UTF_8_3_OCTET_LEADING_P (c1))
1405 src = src_base;
1406 else
1407 {
1408 ONE_MORE_BYTE (c2);
1409 if (! UTF_8_EXTRA_OCTET_P (c2))
1410 src = src_base;
1411 else
1412 {
1413 ONE_MORE_BYTE (c3);
1414 if (! UTF_8_EXTRA_OCTET_P (c3))
1415 src = src_base;
1416 else
1417 {
1418 if ((c1 != UTF_8_BOM_1)
1419 || (c2 != UTF_8_BOM_2) || (c3 != UTF_8_BOM_3))
1420 src = src_base;
1421 else
1422 CODING_UTF_8_BOM (coding) = utf_without_bom;
1423 }
1424 }
1425 }
1426 }
1427 CODING_UTF_8_BOM (coding) = utf_without_bom;
1428
1429
1430
1431 while (1)
1432 {
1433 int c, c1, c2, c3, c4, c5;
1434
1435 src_base = src;
1436 consumed_chars_base = consumed_chars;
1437
1438 if (charbuf >= charbuf_end)
1439 {
1440 if (byte_after_cr >= 0)
1441 src_base--;
1442 break;
1443 }
1444
1445 if (byte_after_cr >= 0)
1446 c1 = byte_after_cr, byte_after_cr = -1;
1447 else
1448 ONE_MORE_BYTE (c1);
1449 if (c1 < 0)
1450 {
1451 c = - c1;
1452 }
1453 else if (UTF_8_1_OCTET_P(c1))
1454 {
1455 if (eol_crlf && c1 == '\r')
1456 ONE_MORE_BYTE (byte_after_cr);
1457 c = c1;
1458 }
1459 else
1460 {
1461 ONE_MORE_BYTE (c2);
1462 if (c2 < 0 || ! UTF_8_EXTRA_OCTET_P (c2))
1463 goto invalid_code;
1464 if (UTF_8_2_OCTET_LEADING_P (c1))
1465 {
1466 c = ((c1 & 0x1F) << 6) | (c2 & 0x3F);
1467 /* Reject overlong sequences here and below. Encoders
1468 producing them are incorrect, they can be misleading,
1469 and they mess up read/write invariance. */
1470 if (c < 128)
1471 goto invalid_code;
1472 }
1473 else
1474 {
1475 ONE_MORE_BYTE (c3);
1476 if (c3 < 0 || ! UTF_8_EXTRA_OCTET_P (c3))
1477 goto invalid_code;
1478 if (UTF_8_3_OCTET_LEADING_P (c1))
1479 {
1480 c = (((c1 & 0xF) << 12)
1481 | ((c2 & 0x3F) << 6) | (c3 & 0x3F));
1482 if (c < 0x800
1483 || (c >= 0xd800 && c < 0xe000)) /* surrogates (invalid) */
1484 goto invalid_code;
1485 }
1486 else
1487 {
1488 ONE_MORE_BYTE (c4);
1489 if (c4 < 0 || ! UTF_8_EXTRA_OCTET_P (c4))
1490 goto invalid_code;
1491 if (UTF_8_4_OCTET_LEADING_P (c1))
1492 {
1493 c = (((c1 & 0x7) << 18) | ((c2 & 0x3F) << 12)
1494 | ((c3 & 0x3F) << 6) | (c4 & 0x3F));
1495 if (c < 0x10000)
1496 goto invalid_code;
1497 }
1498 else
1499 {
1500 ONE_MORE_BYTE (c5);
1501 if (c5 < 0 || ! UTF_8_EXTRA_OCTET_P (c5))
1502 goto invalid_code;
1503 if (UTF_8_5_OCTET_LEADING_P (c1))
1504 {
1505 c = (((c1 & 0x3) << 24) | ((c2 & 0x3F) << 18)
1506 | ((c3 & 0x3F) << 12) | ((c4 & 0x3F) << 6)
1507 | (c5 & 0x3F));
1508 if ((c > MAX_CHAR) || (c < 0x200000))
1509 goto invalid_code;
1510 }
1511 else
1512 goto invalid_code;
1513 }
1514 }
1515 }
1516 }
1517
1518 *charbuf++ = c;
1519 continue;
1520
1521 invalid_code:
1522 src = src_base;
1523 consumed_chars = consumed_chars_base;
1524 ONE_MORE_BYTE (c);
1525 *charbuf++ = ASCII_BYTE_P (c) ? c : BYTE8_TO_CHAR (c);
1526 coding->errors++;
1527 }
1528
1529 no_more_source:
1530 coding->consumed_char += consumed_chars_base;
1531 coding->consumed = src_base - coding->source;
1532 coding->charbuf_used = charbuf - coding->charbuf;
1533 }
1534
1535
1536 static int
1537 encode_coding_utf_8 (coding)
1538 struct coding_system *coding;
1539 {
1540 int multibytep = coding->dst_multibyte;
1541 int *charbuf = coding->charbuf;
1542 int *charbuf_end = charbuf + coding->charbuf_used;
1543 unsigned char *dst = coding->destination + coding->produced;
1544 unsigned char *dst_end = coding->destination + coding->dst_bytes;
1545 int produced_chars = 0;
1546 int c;
1547
1548 if (CODING_UTF_8_BOM (coding) == utf_with_bom)
1549 {
1550 ASSURE_DESTINATION (3);
1551 EMIT_THREE_BYTES (UTF_8_BOM_1, UTF_8_BOM_2, UTF_8_BOM_3);
1552 CODING_UTF_8_BOM (coding) = utf_without_bom;
1553 }
1554
1555 if (multibytep)
1556 {
1557 int safe_room = MAX_MULTIBYTE_LENGTH * 2;
1558
1559 while (charbuf < charbuf_end)
1560 {
1561 unsigned char str[MAX_MULTIBYTE_LENGTH], *p, *pend = str;
1562
1563 ASSURE_DESTINATION (safe_room);
1564 c = *charbuf++;
1565 if (CHAR_BYTE8_P (c))
1566 {
1567 c = CHAR_TO_BYTE8 (c);
1568 EMIT_ONE_BYTE (c);
1569 }
1570 else
1571 {
1572 CHAR_STRING_ADVANCE_NO_UNIFY (c, pend);
1573 for (p = str; p < pend; p++)
1574 EMIT_ONE_BYTE (*p);
1575 }
1576 }
1577 }
1578 else
1579 {
1580 int safe_room = MAX_MULTIBYTE_LENGTH;
1581
1582 while (charbuf < charbuf_end)
1583 {
1584 ASSURE_DESTINATION (safe_room);
1585 c = *charbuf++;
1586 if (CHAR_BYTE8_P (c))
1587 *dst++ = CHAR_TO_BYTE8 (c);
1588 else
1589 CHAR_STRING_ADVANCE_NO_UNIFY (c, dst);
1590 produced_chars++;
1591 }
1592 }
1593 record_conversion_result (coding, CODING_RESULT_SUCCESS);
1594 coding->produced_char += produced_chars;
1595 coding->produced = dst - coding->destination;
1596 return 0;
1597 }
1598
1599
1600 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1601 Check if a text is encoded in one of UTF-16 based coding systems.
1602 If it is, return 1, else return 0. */
1603
1604 #define UTF_16_HIGH_SURROGATE_P(val) \
1605 (((val) & 0xFC00) == 0xD800)
1606
1607 #define UTF_16_LOW_SURROGATE_P(val) \
1608 (((val) & 0xFC00) == 0xDC00)
1609
1610 #define UTF_16_INVALID_P(val) \
1611 (((val) == 0xFFFE) \
1612 || ((val) == 0xFFFF) \
1613 || UTF_16_LOW_SURROGATE_P (val))
1614
1615
1616 static int
1617 detect_coding_utf_16 (coding, detect_info)
1618 struct coding_system *coding;
1619 struct coding_detection_info *detect_info;
1620 {
1621 const unsigned char *src = coding->source, *src_base = src;
1622 const unsigned char *src_end = coding->source + coding->src_bytes;
1623 int multibytep = coding->src_multibyte;
1624 int consumed_chars = 0;
1625 int c1, c2;
1626
1627 detect_info->checked |= CATEGORY_MASK_UTF_16;
1628 if (coding->mode & CODING_MODE_LAST_BLOCK
1629 && (coding->src_chars & 1))
1630 {
1631 detect_info->rejected |= CATEGORY_MASK_UTF_16;
1632 return 0;
1633 }
1634
1635 TWO_MORE_BYTES (c1, c2);
1636 if ((c1 == 0xFF) && (c2 == 0xFE))
1637 {
1638 detect_info->found |= (CATEGORY_MASK_UTF_16_LE
1639 | CATEGORY_MASK_UTF_16_AUTO);
1640 detect_info->rejected |= (CATEGORY_MASK_UTF_16_BE
1641 | CATEGORY_MASK_UTF_16_BE_NOSIG
1642 | CATEGORY_MASK_UTF_16_LE_NOSIG);
1643 }
1644 else if ((c1 == 0xFE) && (c2 == 0xFF))
1645 {
1646 detect_info->found |= (CATEGORY_MASK_UTF_16_BE
1647 | CATEGORY_MASK_UTF_16_AUTO);
1648 detect_info->rejected |= (CATEGORY_MASK_UTF_16_LE
1649 | CATEGORY_MASK_UTF_16_BE_NOSIG
1650 | CATEGORY_MASK_UTF_16_LE_NOSIG);
1651 }
1652 else if (c2 < 0)
1653 {
1654 detect_info->rejected |= CATEGORY_MASK_UTF_16;
1655 return 0;
1656 }
1657 else
1658 {
1659 /* We check the dispersion of Eth and Oth bytes where E is even and
1660 O is odd. If both are high, we assume binary data.*/
1661 unsigned char e[256], o[256];
1662 unsigned e_num = 1, o_num = 1;
1663
1664 memset (e, 0, 256);
1665 memset (o, 0, 256);
1666 e[c1] = 1;
1667 o[c2] = 1;
1668
1669 detect_info->rejected |= (CATEGORY_MASK_UTF_16_AUTO
1670 |CATEGORY_MASK_UTF_16_BE
1671 | CATEGORY_MASK_UTF_16_LE);
1672
1673 while ((detect_info->rejected & CATEGORY_MASK_UTF_16)
1674 != CATEGORY_MASK_UTF_16)
1675 {
1676 TWO_MORE_BYTES (c1, c2);
1677 if (c2 < 0)
1678 break;
1679 if (! e[c1])
1680 {
1681 e[c1] = 1;
1682 e_num++;
1683 if (e_num >= 128)
1684 detect_info->rejected |= CATEGORY_MASK_UTF_16_BE_NOSIG;
1685 }
1686 if (! o[c2])
1687 {
1688 o[c2] = 1;
1689 o_num++;
1690 if (o_num >= 128)
1691 detect_info->rejected |= CATEGORY_MASK_UTF_16_LE_NOSIG;
1692 }
1693 }
1694 return 0;
1695 }
1696
1697 no_more_source:
1698 return 1;
1699 }
1700
1701 static void
1702 decode_coding_utf_16 (coding)
1703 struct coding_system *coding;
1704 {
1705 const unsigned char *src = coding->source + coding->consumed;
1706 const unsigned char *src_end = coding->source + coding->src_bytes;
1707 const unsigned char *src_base;
1708 int *charbuf = coding->charbuf + coding->charbuf_used;
1709 /* We may produces at most 3 chars in one loop. */
1710 int *charbuf_end = coding->charbuf + coding->charbuf_size - 2;
1711 int consumed_chars = 0, consumed_chars_base = 0;
1712 int multibytep = coding->src_multibyte;
1713 enum utf_bom_type bom = CODING_UTF_16_BOM (coding);
1714 enum utf_16_endian_type endian = CODING_UTF_16_ENDIAN (coding);
1715 int surrogate = CODING_UTF_16_SURROGATE (coding);
1716 Lisp_Object attr, charset_list;
1717 int eol_crlf =
1718 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
1719 int byte_after_cr1 = -1, byte_after_cr2 = -1;
1720
1721 CODING_GET_INFO (coding, attr, charset_list);
1722
1723 if (bom == utf_with_bom)
1724 {
1725 int c, c1, c2;
1726
1727 src_base = src;
1728 ONE_MORE_BYTE (c1);
1729 ONE_MORE_BYTE (c2);
1730 c = (c1 << 8) | c2;
1731
1732 if (endian == utf_16_big_endian
1733 ? c != 0xFEFF : c != 0xFFFE)
1734 {
1735 /* The first two bytes are not BOM. Treat them as bytes
1736 for a normal character. */
1737 src = src_base;
1738 coding->errors++;
1739 }
1740 CODING_UTF_16_BOM (coding) = utf_without_bom;
1741 }
1742 else if (bom == utf_detect_bom)
1743 {
1744 /* We have already tried to detect BOM and failed in
1745 detect_coding. */
1746 CODING_UTF_16_BOM (coding) = utf_without_bom;
1747 }
1748
1749 while (1)
1750 {
1751 int c, c1, c2;
1752
1753 src_base = src;
1754 consumed_chars_base = consumed_chars;
1755
1756 if (charbuf >= charbuf_end)
1757 {
1758 if (byte_after_cr1 >= 0)
1759 src_base -= 2;
1760 break;
1761 }
1762
1763 if (byte_after_cr1 >= 0)
1764 c1 = byte_after_cr1, byte_after_cr1 = -1;
1765 else
1766 ONE_MORE_BYTE (c1);
1767 if (c1 < 0)
1768 {
1769 *charbuf++ = -c1;
1770 continue;
1771 }
1772 if (byte_after_cr2 >= 0)
1773 c2 = byte_after_cr2, byte_after_cr2 = -1;
1774 else
1775 ONE_MORE_BYTE (c2);
1776 if (c2 < 0)
1777 {
1778 *charbuf++ = ASCII_BYTE_P (c1) ? c1 : BYTE8_TO_CHAR (c1);
1779 *charbuf++ = -c2;
1780 continue;
1781 }
1782 c = (endian == utf_16_big_endian
1783 ? ((c1 << 8) | c2) : ((c2 << 8) | c1));
1784
1785 if (surrogate)
1786 {
1787 if (! UTF_16_LOW_SURROGATE_P (c))
1788 {
1789 if (endian == utf_16_big_endian)
1790 c1 = surrogate >> 8, c2 = surrogate & 0xFF;
1791 else
1792 c1 = surrogate & 0xFF, c2 = surrogate >> 8;
1793 *charbuf++ = c1;
1794 *charbuf++ = c2;
1795 coding->errors++;
1796 if (UTF_16_HIGH_SURROGATE_P (c))
1797 CODING_UTF_16_SURROGATE (coding) = surrogate = c;
1798 else
1799 *charbuf++ = c;
1800 }
1801 else
1802 {
1803 c = ((surrogate - 0xD800) << 10) | (c - 0xDC00);
1804 CODING_UTF_16_SURROGATE (coding) = surrogate = 0;
1805 *charbuf++ = 0x10000 + c;
1806 }
1807 }
1808 else
1809 {
1810 if (UTF_16_HIGH_SURROGATE_P (c))
1811 CODING_UTF_16_SURROGATE (coding) = surrogate = c;
1812 else
1813 {
1814 if (eol_crlf && c == '\r')
1815 {
1816 ONE_MORE_BYTE (byte_after_cr1);
1817 ONE_MORE_BYTE (byte_after_cr2);
1818 }
1819 *charbuf++ = c;
1820 }
1821 }
1822 }
1823
1824 no_more_source:
1825 coding->consumed_char += consumed_chars_base;
1826 coding->consumed = src_base - coding->source;
1827 coding->charbuf_used = charbuf - coding->charbuf;
1828 }
1829
1830 static int
1831 encode_coding_utf_16 (coding)
1832 struct coding_system *coding;
1833 {
1834 int multibytep = coding->dst_multibyte;
1835 int *charbuf = coding->charbuf;
1836 int *charbuf_end = charbuf + coding->charbuf_used;
1837 unsigned char *dst = coding->destination + coding->produced;
1838 unsigned char *dst_end = coding->destination + coding->dst_bytes;
1839 int safe_room = 8;
1840 enum utf_bom_type bom = CODING_UTF_16_BOM (coding);
1841 int big_endian = CODING_UTF_16_ENDIAN (coding) == utf_16_big_endian;
1842 int produced_chars = 0;
1843 Lisp_Object attrs, charset_list;
1844 int c;
1845
1846 CODING_GET_INFO (coding, attrs, charset_list);
1847
1848 if (bom != utf_without_bom)
1849 {
1850 ASSURE_DESTINATION (safe_room);
1851 if (big_endian)
1852 EMIT_TWO_BYTES (0xFE, 0xFF);
1853 else
1854 EMIT_TWO_BYTES (0xFF, 0xFE);
1855 CODING_UTF_16_BOM (coding) = utf_without_bom;
1856 }
1857
1858 while (charbuf < charbuf_end)
1859 {
1860 ASSURE_DESTINATION (safe_room);
1861 c = *charbuf++;
1862 if (c > MAX_UNICODE_CHAR)
1863 c = coding->default_char;
1864
1865 if (c < 0x10000)
1866 {
1867 if (big_endian)
1868 EMIT_TWO_BYTES (c >> 8, c & 0xFF);
1869 else
1870 EMIT_TWO_BYTES (c & 0xFF, c >> 8);
1871 }
1872 else
1873 {
1874 int c1, c2;
1875
1876 c -= 0x10000;
1877 c1 = (c >> 10) + 0xD800;
1878 c2 = (c & 0x3FF) + 0xDC00;
1879 if (big_endian)
1880 EMIT_FOUR_BYTES (c1 >> 8, c1 & 0xFF, c2 >> 8, c2 & 0xFF);
1881 else
1882 EMIT_FOUR_BYTES (c1 & 0xFF, c1 >> 8, c2 & 0xFF, c2 >> 8);
1883 }
1884 }
1885 record_conversion_result (coding, CODING_RESULT_SUCCESS);
1886 coding->produced = dst - coding->destination;
1887 coding->produced_char += produced_chars;
1888 return 0;
1889 }
1890
1891 \f
1892 /*** 6. Old Emacs' internal format (emacs-mule) ***/
1893
1894 /* Emacs' internal format for representation of multiple character
1895 sets is a kind of multi-byte encoding, i.e. characters are
1896 represented by variable-length sequences of one-byte codes.
1897
1898 ASCII characters and control characters (e.g. `tab', `newline') are
1899 represented by one-byte sequences which are their ASCII codes, in
1900 the range 0x00 through 0x7F.
1901
1902 8-bit characters of the range 0x80..0x9F are represented by
1903 two-byte sequences of LEADING_CODE_8_BIT_CONTROL and (their 8-bit
1904 code + 0x20).
1905
1906 8-bit characters of the range 0xA0..0xFF are represented by
1907 one-byte sequences which are their 8-bit code.
1908
1909 The other characters are represented by a sequence of `base
1910 leading-code', optional `extended leading-code', and one or two
1911 `position-code's. The length of the sequence is determined by the
1912 base leading-code. Leading-code takes the range 0x81 through 0x9D,
1913 whereas extended leading-code and position-code take the range 0xA0
1914 through 0xFF. See `charset.h' for more details about leading-code
1915 and position-code.
1916
1917 --- CODE RANGE of Emacs' internal format ---
1918 character set range
1919 ------------- -----
1920 ascii 0x00..0x7F
1921 eight-bit-control LEADING_CODE_8_BIT_CONTROL + 0xA0..0xBF
1922 eight-bit-graphic 0xA0..0xBF
1923 ELSE 0x81..0x9D + [0xA0..0xFF]+
1924 ---------------------------------------------
1925
1926 As this is the internal character representation, the format is
1927 usually not used externally (i.e. in a file or in a data sent to a
1928 process). But, it is possible to have a text externally in this
1929 format (i.e. by encoding by the coding system `emacs-mule').
1930
1931 In that case, a sequence of one-byte codes has a slightly different
1932 form.
1933
1934 At first, all characters in eight-bit-control are represented by
1935 one-byte sequences which are their 8-bit code.
1936
1937 Next, character composition data are represented by the byte
1938 sequence of the form: 0x80 METHOD BYTES CHARS COMPONENT ...,
1939 where,
1940 METHOD is 0xF2 plus one of composition method (enum
1941 composition_method),
1942
1943 BYTES is 0xA0 plus a byte length of this composition data,
1944
1945 CHARS is 0xA0 plus a number of characters composed by this
1946 data,
1947
1948 COMPONENTs are characters of multibye form or composition
1949 rules encoded by two-byte of ASCII codes.
1950
1951 In addition, for backward compatibility, the following formats are
1952 also recognized as composition data on decoding.
1953
1954 0x80 MSEQ ...
1955 0x80 0xFF MSEQ RULE MSEQ RULE ... MSEQ
1956
1957 Here,
1958 MSEQ is a multibyte form but in these special format:
1959 ASCII: 0xA0 ASCII_CODE+0x80,
1960 other: LEADING_CODE+0x20 FOLLOWING-BYTE ...,
1961 RULE is a one byte code of the range 0xA0..0xF0 that
1962 represents a composition rule.
1963 */
1964
1965 char emacs_mule_bytes[256];
1966
1967
1968 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1969 Check if a text is encoded in `emacs-mule'. If it is, return 1,
1970 else return 0. */
1971
1972 static int
1973 detect_coding_emacs_mule (coding, detect_info)
1974 struct coding_system *coding;
1975 struct coding_detection_info *detect_info;
1976 {
1977 const unsigned char *src = coding->source, *src_base;
1978 const unsigned char *src_end = coding->source + coding->src_bytes;
1979 int multibytep = coding->src_multibyte;
1980 int consumed_chars = 0;
1981 int c;
1982 int found = 0;
1983
1984 detect_info->checked |= CATEGORY_MASK_EMACS_MULE;
1985 /* A coding system of this category is always ASCII compatible. */
1986 src += coding->head_ascii;
1987
1988 while (1)
1989 {
1990 src_base = src;
1991 ONE_MORE_BYTE (c);
1992 if (c < 0)
1993 continue;
1994 if (c == 0x80)
1995 {
1996 /* Perhaps the start of composite character. We simply skip
1997 it because analyzing it is too heavy for detecting. But,
1998 at least, we check that the composite character
1999 constitutes of more than 4 bytes. */
2000 const unsigned char *src_base;
2001
2002 repeat:
2003 src_base = src;
2004 do
2005 {
2006 ONE_MORE_BYTE (c);
2007 }
2008 while (c >= 0xA0);
2009
2010 if (src - src_base <= 4)
2011 break;
2012 found = CATEGORY_MASK_EMACS_MULE;
2013 if (c == 0x80)
2014 goto repeat;
2015 }
2016
2017 if (c < 0x80)
2018 {
2019 if (c < 0x20
2020 && (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO))
2021 break;
2022 }
2023 else
2024 {
2025 int more_bytes = emacs_mule_bytes[*src_base] - 1;
2026
2027 while (more_bytes > 0)
2028 {
2029 ONE_MORE_BYTE (c);
2030 if (c < 0xA0)
2031 {
2032 src--; /* Unread the last byte. */
2033 break;
2034 }
2035 more_bytes--;
2036 }
2037 if (more_bytes != 0)
2038 break;
2039 found = CATEGORY_MASK_EMACS_MULE;
2040 }
2041 }
2042 detect_info->rejected |= CATEGORY_MASK_EMACS_MULE;
2043 return 0;
2044
2045 no_more_source:
2046 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
2047 {
2048 detect_info->rejected |= CATEGORY_MASK_EMACS_MULE;
2049 return 0;
2050 }
2051 detect_info->found |= found;
2052 return 1;
2053 }
2054
2055
2056 /* Parse emacs-mule multibyte sequence at SRC and return the decoded
2057 character. If CMP_STATUS indicates that we must expect MSEQ or
2058 RULE described above, decode it and return the negative value of
2059 the deocded character or rule. If an invalid byte is found, return
2060 -1. If SRC is too short, return -2. */
2061
2062 int
2063 emacs_mule_char (coding, src, nbytes, nchars, id, cmp_status)
2064 struct coding_system *coding;
2065 const unsigned char *src;
2066 int *nbytes, *nchars, *id;
2067 struct composition_status *cmp_status;
2068 {
2069 const unsigned char *src_end = coding->source + coding->src_bytes;
2070 const unsigned char *src_base = src;
2071 int multibytep = coding->src_multibyte;
2072 struct charset *charset;
2073 unsigned code;
2074 int c;
2075 int consumed_chars = 0;
2076 int mseq_found = 0;
2077
2078 ONE_MORE_BYTE (c);
2079 if (c < 0)
2080 {
2081 c = -c;
2082 charset = emacs_mule_charset[0];
2083 }
2084 else
2085 {
2086 if (c >= 0xA0)
2087 {
2088 if (cmp_status->state != COMPOSING_NO
2089 && cmp_status->old_form)
2090 {
2091 if (cmp_status->state == COMPOSING_CHAR)
2092 {
2093 if (c == 0xA0)
2094 {
2095 ONE_MORE_BYTE (c);
2096 c -= 0x80;
2097 if (c < 0)
2098 goto invalid_code;
2099 }
2100 else
2101 c -= 0x20;
2102 mseq_found = 1;
2103 }
2104 else
2105 {
2106 *nbytes = src - src_base;
2107 *nchars = consumed_chars;
2108 return -c;
2109 }
2110 }
2111 else
2112 goto invalid_code;
2113 }
2114
2115 switch (emacs_mule_bytes[c])
2116 {
2117 case 2:
2118 if (! (charset = emacs_mule_charset[c]))
2119 goto invalid_code;
2120 ONE_MORE_BYTE (c);
2121 if (c < 0xA0)
2122 goto invalid_code;
2123 code = c & 0x7F;
2124 break;
2125
2126 case 3:
2127 if (c == EMACS_MULE_LEADING_CODE_PRIVATE_11
2128 || c == EMACS_MULE_LEADING_CODE_PRIVATE_12)
2129 {
2130 ONE_MORE_BYTE (c);
2131 if (c < 0xA0 || ! (charset = emacs_mule_charset[c]))
2132 goto invalid_code;
2133 ONE_MORE_BYTE (c);
2134 if (c < 0xA0)
2135 goto invalid_code;
2136 code = c & 0x7F;
2137 }
2138 else
2139 {
2140 if (! (charset = emacs_mule_charset[c]))
2141 goto invalid_code;
2142 ONE_MORE_BYTE (c);
2143 if (c < 0xA0)
2144 goto invalid_code;
2145 code = (c & 0x7F) << 8;
2146 ONE_MORE_BYTE (c);
2147 if (c < 0xA0)
2148 goto invalid_code;
2149 code |= c & 0x7F;
2150 }
2151 break;
2152
2153 case 4:
2154 ONE_MORE_BYTE (c);
2155 if (c < 0 || ! (charset = emacs_mule_charset[c]))
2156 goto invalid_code;
2157 ONE_MORE_BYTE (c);
2158 if (c < 0xA0)
2159 goto invalid_code;
2160 code = (c & 0x7F) << 8;
2161 ONE_MORE_BYTE (c);
2162 if (c < 0xA0)
2163 goto invalid_code;
2164 code |= c & 0x7F;
2165 break;
2166
2167 case 1:
2168 code = c;
2169 charset = CHARSET_FROM_ID (ASCII_BYTE_P (code)
2170 ? charset_ascii : charset_eight_bit);
2171 break;
2172
2173 default:
2174 abort ();
2175 }
2176 c = DECODE_CHAR (charset, code);
2177 if (c < 0)
2178 goto invalid_code;
2179 }
2180 *nbytes = src - src_base;
2181 *nchars = consumed_chars;
2182 if (id)
2183 *id = charset->id;
2184 return (mseq_found ? -c : c);
2185
2186 no_more_source:
2187 return -2;
2188
2189 invalid_code:
2190 return -1;
2191 }
2192
2193
2194 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
2195
2196 /* Handle these composition sequence ('|': the end of header elements,
2197 BYTES and CHARS >= 0xA0):
2198
2199 (1) relative composition: 0x80 0xF2 BYTES CHARS | CHAR ...
2200 (2) altchar composition: 0x80 0xF4 BYTES CHARS | ALT ... ALT CHAR ...
2201 (3) alt&rule composition: 0x80 0xF5 BYTES CHARS | ALT RULE ... ALT CHAR ...
2202
2203 and these old form:
2204
2205 (4) relative composition: 0x80 | MSEQ ... MSEQ
2206 (5) rulebase composition: 0x80 0xFF | MSEQ MRULE ... MSEQ
2207
2208 When the starter 0x80 and the following header elements are found,
2209 this annotation header is produced.
2210
2211 [ -LENGTH(==-5) CODING_ANNOTATE_COMPOSITION_MASK NCHARS NBYTES METHOD ]
2212
2213 NCHARS is CHARS - 0xA0 for (1), (2), (3), and 0 for (4), (5).
2214 NBYTES is BYTES - 0xA0 for (1), (2), (3), and 0 for (4), (5).
2215
2216 Then, upon reading the following elements, these codes are produced
2217 until the composition end is found:
2218
2219 (1) CHAR ... CHAR
2220 (2) ALT ... ALT CHAR ... CHAR
2221 (3) ALT -2 DECODED-RULE ALT -2 DECODED-RULE ... ALT CHAR ... CHAR
2222 (4) CHAR ... CHAR
2223 (5) CHAR -2 DECODED-RULE CHAR -2 DECODED-RULE ... CHAR
2224
2225 When the composition end is found, LENGTH and NCHARS in the
2226 annotation header is updated as below:
2227
2228 (1) LENGTH: unchanged, NCHARS: unchanged
2229 (2) LENGTH: length of the whole sequence minus NCHARS, NCHARS: unchanged
2230 (3) LENGTH: length of the whole sequence minus NCHARS, NCHARS: unchanged
2231 (4) LENGTH: unchanged, NCHARS: number of CHARs
2232 (5) LENGTH: unchanged, NCHARS: number of CHARs
2233
2234 If an error is found while composing, the annotation header is
2235 changed to the original composition header (plus filler -1s) as
2236 below:
2237
2238 (1),(2),(3) [ 0x80 0xF2+METHOD BYTES CHARS -1 ]
2239 (5) [ 0x80 0xFF -1 -1- -1 ]
2240
2241 and the sequence [ -2 DECODED-RULE ] is changed to the original
2242 byte sequence as below:
2243 o the original byte sequence is B: [ B -1 ]
2244 o the original byte sequence is B1 B2: [ B1 B2 ]
2245
2246 Most of the routines are implemented by macros because many
2247 variables and labels in the caller decode_coding_emacs_mule must be
2248 accessible, and they are usually called just once (thus doesn't
2249 increase the size of compiled object). */
2250
2251 /* Decode a composition rule represented by C as a component of
2252 composition sequence of Emacs 20 style. Set RULE to the decoded
2253 rule. */
2254
2255 #define DECODE_EMACS_MULE_COMPOSITION_RULE_20(c, rule) \
2256 do { \
2257 int gref, nref; \
2258 \
2259 c -= 0xA0; \
2260 if (c < 0 || c >= 81) \
2261 goto invalid_code; \
2262 gref = c / 9, nref = c % 9; \
2263 if (gref == 4) gref = 10; \
2264 if (nref == 4) nref = 10; \
2265 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
2266 } while (0)
2267
2268
2269 /* Decode a composition rule represented by C and the following byte
2270 at SRC as a component of composition sequence of Emacs 21 style.
2271 Set RULE to the decoded rule. */
2272
2273 #define DECODE_EMACS_MULE_COMPOSITION_RULE_21(c, rule) \
2274 do { \
2275 int gref, nref; \
2276 \
2277 gref = c - 0x20; \
2278 if (gref < 0 || gref >= 81) \
2279 goto invalid_code; \
2280 ONE_MORE_BYTE (c); \
2281 nref = c - 0x20; \
2282 if (nref < 0 || nref >= 81) \
2283 goto invalid_code; \
2284 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
2285 } while (0)
2286
2287
2288 /* Start of Emacs 21 style format. The first three bytes at SRC are
2289 (METHOD - 0xF2), (BYTES - 0xA0), (CHARS - 0xA0), where BYTES is the
2290 byte length of this composition information, CHARS is the number of
2291 characters composed by this composition. */
2292
2293 #define DECODE_EMACS_MULE_21_COMPOSITION() \
2294 do { \
2295 enum composition_method method = c - 0xF2; \
2296 int *charbuf_base = charbuf; \
2297 int nbytes, nchars; \
2298 \
2299 ONE_MORE_BYTE (c); \
2300 if (c < 0) \
2301 goto invalid_code; \
2302 nbytes = c - 0xA0; \
2303 if (nbytes < 3 || (method == COMPOSITION_RELATIVE && nbytes != 4)) \
2304 goto invalid_code; \
2305 ONE_MORE_BYTE (c); \
2306 nchars = c - 0xA0; \
2307 if (nchars <= 0 || nchars >= MAX_COMPOSITION_COMPONENTS) \
2308 goto invalid_code; \
2309 cmp_status->old_form = 0; \
2310 cmp_status->method = method; \
2311 if (method == COMPOSITION_RELATIVE) \
2312 cmp_status->state = COMPOSING_CHAR; \
2313 else \
2314 cmp_status->state = COMPOSING_COMPONENT_CHAR; \
2315 cmp_status->length = MAX_ANNOTATION_LENGTH; \
2316 cmp_status->nchars = nchars; \
2317 cmp_status->ncomps = nbytes - 4; \
2318 ADD_COMPOSITION_DATA (charbuf, nchars, nbytes, method); \
2319 } while (0)
2320
2321
2322 /* Start of Emacs 20 style format for relative composition. */
2323
2324 #define DECODE_EMACS_MULE_20_RELATIVE_COMPOSITION() \
2325 do { \
2326 cmp_status->old_form = 1; \
2327 cmp_status->method = COMPOSITION_RELATIVE; \
2328 cmp_status->state = COMPOSING_CHAR; \
2329 cmp_status->length = MAX_ANNOTATION_LENGTH; \
2330 cmp_status->nchars = cmp_status->ncomps = 0; \
2331 ADD_COMPOSITION_DATA (charbuf, 0, 0, cmp_status->method); \
2332 } while (0)
2333
2334
2335 /* Start of Emacs 20 style format for rule-base composition. */
2336
2337 #define DECODE_EMACS_MULE_20_RULEBASE_COMPOSITION() \
2338 do { \
2339 cmp_status->old_form = 1; \
2340 cmp_status->method = COMPOSITION_WITH_RULE; \
2341 cmp_status->state = COMPOSING_CHAR; \
2342 cmp_status->length = MAX_ANNOTATION_LENGTH; \
2343 cmp_status->nchars = cmp_status->ncomps = 0; \
2344 ADD_COMPOSITION_DATA (charbuf, 0, 0, cmp_status->method); \
2345 } while (0)
2346
2347
2348 #define DECODE_EMACS_MULE_COMPOSITION_START() \
2349 do { \
2350 const unsigned char *current_src = src; \
2351 \
2352 ONE_MORE_BYTE (c); \
2353 if (c < 0) \
2354 goto invalid_code; \
2355 if (c - 0xF2 >= COMPOSITION_RELATIVE \
2356 && c - 0xF2 <= COMPOSITION_WITH_RULE_ALTCHARS) \
2357 DECODE_EMACS_MULE_21_COMPOSITION (); \
2358 else if (c < 0xA0) \
2359 goto invalid_code; \
2360 else if (c < 0xC0) \
2361 { \
2362 DECODE_EMACS_MULE_20_RELATIVE_COMPOSITION (); \
2363 /* Re-read C as a composition component. */ \
2364 src = current_src; \
2365 } \
2366 else if (c == 0xFF) \
2367 DECODE_EMACS_MULE_20_RULEBASE_COMPOSITION (); \
2368 else \
2369 goto invalid_code; \
2370 } while (0)
2371
2372 #define EMACS_MULE_COMPOSITION_END() \
2373 do { \
2374 int idx = - cmp_status->length; \
2375 \
2376 if (cmp_status->old_form) \
2377 charbuf[idx + 2] = cmp_status->nchars; \
2378 else if (cmp_status->method > COMPOSITION_RELATIVE) \
2379 charbuf[idx] = charbuf[idx + 2] - cmp_status->length; \
2380 cmp_status->state = COMPOSING_NO; \
2381 } while (0)
2382
2383
2384 static int
2385 emacs_mule_finish_composition (charbuf, cmp_status)
2386 int *charbuf;
2387 struct composition_status *cmp_status;
2388 {
2389 int idx = - cmp_status->length;
2390 int new_chars;
2391
2392 if (cmp_status->old_form && cmp_status->nchars > 0)
2393 {
2394 charbuf[idx + 2] = cmp_status->nchars;
2395 new_chars = 0;
2396 if (cmp_status->method == COMPOSITION_WITH_RULE
2397 && cmp_status->state == COMPOSING_CHAR)
2398 {
2399 /* The last rule was invalid. */
2400 int rule = charbuf[-1] + 0xA0;
2401
2402 charbuf[-2] = BYTE8_TO_CHAR (rule);
2403 charbuf[-1] = -1;
2404 new_chars = 1;
2405 }
2406 }
2407 else
2408 {
2409 charbuf[idx++] = BYTE8_TO_CHAR (0x80);
2410
2411 if (cmp_status->method == COMPOSITION_WITH_RULE)
2412 {
2413 charbuf[idx++] = BYTE8_TO_CHAR (0xFF);
2414 charbuf[idx++] = -3;
2415 charbuf[idx++] = 0;
2416 new_chars = 1;
2417 }
2418 else
2419 {
2420 int nchars = charbuf[idx + 1] + 0xA0;
2421 int nbytes = charbuf[idx + 2] + 0xA0;
2422
2423 charbuf[idx++] = BYTE8_TO_CHAR (0xF2 + cmp_status->method);
2424 charbuf[idx++] = BYTE8_TO_CHAR (nbytes);
2425 charbuf[idx++] = BYTE8_TO_CHAR (nchars);
2426 charbuf[idx++] = -1;
2427 new_chars = 4;
2428 }
2429 }
2430 cmp_status->state = COMPOSING_NO;
2431 return new_chars;
2432 }
2433
2434 #define EMACS_MULE_MAYBE_FINISH_COMPOSITION() \
2435 do { \
2436 if (cmp_status->state != COMPOSING_NO) \
2437 char_offset += emacs_mule_finish_composition (charbuf, cmp_status); \
2438 } while (0)
2439
2440
2441 static void
2442 decode_coding_emacs_mule (coding)
2443 struct coding_system *coding;
2444 {
2445 const unsigned char *src = coding->source + coding->consumed;
2446 const unsigned char *src_end = coding->source + coding->src_bytes;
2447 const unsigned char *src_base;
2448 int *charbuf = coding->charbuf + coding->charbuf_used;
2449 /* We may produce two annocations (charset and composition) in one
2450 loop and one more charset annocation at the end. */
2451 int *charbuf_end
2452 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 3);
2453 int consumed_chars = 0, consumed_chars_base;
2454 int multibytep = coding->src_multibyte;
2455 Lisp_Object attrs, charset_list;
2456 int char_offset = coding->produced_char;
2457 int last_offset = char_offset;
2458 int last_id = charset_ascii;
2459 int eol_crlf =
2460 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
2461 int byte_after_cr = -1;
2462 struct composition_status *cmp_status = &coding->spec.emacs_mule.cmp_status;
2463
2464 CODING_GET_INFO (coding, attrs, charset_list);
2465
2466 if (cmp_status->state != COMPOSING_NO)
2467 {
2468 int i;
2469
2470 for (i = 0; i < cmp_status->length; i++)
2471 *charbuf++ = cmp_status->carryover[i];
2472 coding->annotated = 1;
2473 }
2474
2475 while (1)
2476 {
2477 int c, id;
2478
2479 src_base = src;
2480 consumed_chars_base = consumed_chars;
2481
2482 if (charbuf >= charbuf_end)
2483 {
2484 if (byte_after_cr >= 0)
2485 src_base--;
2486 break;
2487 }
2488
2489 if (byte_after_cr >= 0)
2490 c = byte_after_cr, byte_after_cr = -1;
2491 else
2492 ONE_MORE_BYTE (c);
2493
2494 if (c < 0 || c == 0x80)
2495 {
2496 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2497 if (c < 0)
2498 {
2499 *charbuf++ = -c;
2500 char_offset++;
2501 }
2502 else
2503 DECODE_EMACS_MULE_COMPOSITION_START ();
2504 continue;
2505 }
2506
2507 if (c < 0x80)
2508 {
2509 if (eol_crlf && c == '\r')
2510 ONE_MORE_BYTE (byte_after_cr);
2511 id = charset_ascii;
2512 if (cmp_status->state != COMPOSING_NO)
2513 {
2514 if (cmp_status->old_form)
2515 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2516 else if (cmp_status->state >= COMPOSING_COMPONENT_CHAR)
2517 cmp_status->ncomps--;
2518 }
2519 }
2520 else
2521 {
2522 int nchars, nbytes;
2523
2524 c = emacs_mule_char (coding, src_base, &nbytes, &nchars, &id,
2525 cmp_status);
2526 if (c < 0)
2527 {
2528 if (c == -1)
2529 goto invalid_code;
2530 if (c == -2)
2531 break;
2532 }
2533 src = src_base + nbytes;
2534 consumed_chars = consumed_chars_base + nchars;
2535 if (cmp_status->state >= COMPOSING_COMPONENT_CHAR)
2536 cmp_status->ncomps -= nchars;
2537 }
2538
2539 /* Now if C >= 0, we found a normally encoded characer, if C <
2540 0, we found an old-style composition component character or
2541 rule. */
2542
2543 if (cmp_status->state == COMPOSING_NO)
2544 {
2545 if (last_id != id)
2546 {
2547 if (last_id != charset_ascii)
2548 ADD_CHARSET_DATA (charbuf, char_offset - last_offset,
2549 last_id);
2550 last_id = id;
2551 last_offset = char_offset;
2552 }
2553 *charbuf++ = c;
2554 char_offset++;
2555 }
2556 else if (cmp_status->state == COMPOSING_CHAR)
2557 {
2558 if (cmp_status->old_form)
2559 {
2560 if (c >= 0)
2561 {
2562 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2563 *charbuf++ = c;
2564 char_offset++;
2565 }
2566 else
2567 {
2568 *charbuf++ = -c;
2569 cmp_status->nchars++;
2570 cmp_status->length++;
2571 if (cmp_status->nchars == MAX_COMPOSITION_COMPONENTS)
2572 EMACS_MULE_COMPOSITION_END ();
2573 else if (cmp_status->method == COMPOSITION_WITH_RULE)
2574 cmp_status->state = COMPOSING_RULE;
2575 }
2576 }
2577 else
2578 {
2579 *charbuf++ = c;
2580 cmp_status->length++;
2581 cmp_status->nchars--;
2582 if (cmp_status->nchars == 0)
2583 EMACS_MULE_COMPOSITION_END ();
2584 }
2585 }
2586 else if (cmp_status->state == COMPOSING_RULE)
2587 {
2588 int rule;
2589
2590 if (c >= 0)
2591 {
2592 EMACS_MULE_COMPOSITION_END ();
2593 *charbuf++ = c;
2594 char_offset++;
2595 }
2596 else
2597 {
2598 c = -c;
2599 DECODE_EMACS_MULE_COMPOSITION_RULE_20 (c, rule);
2600 if (rule < 0)
2601 goto invalid_code;
2602 *charbuf++ = -2;
2603 *charbuf++ = rule;
2604 cmp_status->length += 2;
2605 cmp_status->state = COMPOSING_CHAR;
2606 }
2607 }
2608 else if (cmp_status->state == COMPOSING_COMPONENT_CHAR)
2609 {
2610 *charbuf++ = c;
2611 cmp_status->length++;
2612 if (cmp_status->ncomps == 0)
2613 cmp_status->state = COMPOSING_CHAR;
2614 else if (cmp_status->ncomps > 0)
2615 {
2616 if (cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS)
2617 cmp_status->state = COMPOSING_COMPONENT_RULE;
2618 }
2619 else
2620 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2621 }
2622 else /* COMPOSING_COMPONENT_RULE */
2623 {
2624 int rule;
2625
2626 DECODE_EMACS_MULE_COMPOSITION_RULE_21 (c, rule);
2627 if (rule < 0)
2628 goto invalid_code;
2629 *charbuf++ = -2;
2630 *charbuf++ = rule;
2631 cmp_status->length += 2;
2632 cmp_status->ncomps--;
2633 if (cmp_status->ncomps > 0)
2634 cmp_status->state = COMPOSING_COMPONENT_CHAR;
2635 else
2636 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2637 }
2638 continue;
2639
2640 retry:
2641 src = src_base;
2642 consumed_chars = consumed_chars_base;
2643 continue;
2644
2645 invalid_code:
2646 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2647 src = src_base;
2648 consumed_chars = consumed_chars_base;
2649 ONE_MORE_BYTE (c);
2650 *charbuf++ = ASCII_BYTE_P (c) ? c : BYTE8_TO_CHAR (c);
2651 char_offset++;
2652 coding->errors++;
2653 }
2654
2655 no_more_source:
2656 if (cmp_status->state != COMPOSING_NO)
2657 {
2658 if (coding->mode & CODING_MODE_LAST_BLOCK)
2659 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2660 else
2661 {
2662 int i;
2663
2664 charbuf -= cmp_status->length;
2665 for (i = 0; i < cmp_status->length; i++)
2666 cmp_status->carryover[i] = charbuf[i];
2667 }
2668 }
2669 if (last_id != charset_ascii)
2670 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
2671 coding->consumed_char += consumed_chars_base;
2672 coding->consumed = src_base - coding->source;
2673 coding->charbuf_used = charbuf - coding->charbuf;
2674 }
2675
2676
2677 #define EMACS_MULE_LEADING_CODES(id, codes) \
2678 do { \
2679 if (id < 0xA0) \
2680 codes[0] = id, codes[1] = 0; \
2681 else if (id < 0xE0) \
2682 codes[0] = 0x9A, codes[1] = id; \
2683 else if (id < 0xF0) \
2684 codes[0] = 0x9B, codes[1] = id; \
2685 else if (id < 0xF5) \
2686 codes[0] = 0x9C, codes[1] = id; \
2687 else \
2688 codes[0] = 0x9D, codes[1] = id; \
2689 } while (0);
2690
2691
2692 static int
2693 encode_coding_emacs_mule (coding)
2694 struct coding_system *coding;
2695 {
2696 int multibytep = coding->dst_multibyte;
2697 int *charbuf = coding->charbuf;
2698 int *charbuf_end = charbuf + coding->charbuf_used;
2699 unsigned char *dst = coding->destination + coding->produced;
2700 unsigned char *dst_end = coding->destination + coding->dst_bytes;
2701 int safe_room = 8;
2702 int produced_chars = 0;
2703 Lisp_Object attrs, charset_list;
2704 int c;
2705 int preferred_charset_id = -1;
2706
2707 CODING_GET_INFO (coding, attrs, charset_list);
2708 if (! EQ (charset_list, Vemacs_mule_charset_list))
2709 {
2710 CODING_ATTR_CHARSET_LIST (attrs)
2711 = charset_list = Vemacs_mule_charset_list;
2712 }
2713
2714 while (charbuf < charbuf_end)
2715 {
2716 ASSURE_DESTINATION (safe_room);
2717 c = *charbuf++;
2718
2719 if (c < 0)
2720 {
2721 /* Handle an annotation. */
2722 switch (*charbuf)
2723 {
2724 case CODING_ANNOTATE_COMPOSITION_MASK:
2725 /* Not yet implemented. */
2726 break;
2727 case CODING_ANNOTATE_CHARSET_MASK:
2728 preferred_charset_id = charbuf[3];
2729 if (preferred_charset_id >= 0
2730 && NILP (Fmemq (make_number (preferred_charset_id),
2731 charset_list)))
2732 preferred_charset_id = -1;
2733 break;
2734 default:
2735 abort ();
2736 }
2737 charbuf += -c - 1;
2738 continue;
2739 }
2740
2741 if (ASCII_CHAR_P (c))
2742 EMIT_ONE_ASCII_BYTE (c);
2743 else if (CHAR_BYTE8_P (c))
2744 {
2745 c = CHAR_TO_BYTE8 (c);
2746 EMIT_ONE_BYTE (c);
2747 }
2748 else
2749 {
2750 struct charset *charset;
2751 unsigned code;
2752 int dimension;
2753 int emacs_mule_id;
2754 unsigned char leading_codes[2];
2755
2756 if (preferred_charset_id >= 0)
2757 {
2758 charset = CHARSET_FROM_ID (preferred_charset_id);
2759 if (CHAR_CHARSET_P (c, charset))
2760 code = ENCODE_CHAR (charset, c);
2761 else
2762 charset = char_charset (c, charset_list, &code);
2763 }
2764 else
2765 charset = char_charset (c, charset_list, &code);
2766 if (! charset)
2767 {
2768 c = coding->default_char;
2769 if (ASCII_CHAR_P (c))
2770 {
2771 EMIT_ONE_ASCII_BYTE (c);
2772 continue;
2773 }
2774 charset = char_charset (c, charset_list, &code);
2775 }
2776 dimension = CHARSET_DIMENSION (charset);
2777 emacs_mule_id = CHARSET_EMACS_MULE_ID (charset);
2778 EMACS_MULE_LEADING_CODES (emacs_mule_id, leading_codes);
2779 EMIT_ONE_BYTE (leading_codes[0]);
2780 if (leading_codes[1])
2781 EMIT_ONE_BYTE (leading_codes[1]);
2782 if (dimension == 1)
2783 EMIT_ONE_BYTE (code | 0x80);
2784 else
2785 {
2786 code |= 0x8080;
2787 EMIT_ONE_BYTE (code >> 8);
2788 EMIT_ONE_BYTE (code & 0xFF);
2789 }
2790 }
2791 }
2792 record_conversion_result (coding, CODING_RESULT_SUCCESS);
2793 coding->produced_char += produced_chars;
2794 coding->produced = dst - coding->destination;
2795 return 0;
2796 }
2797
2798 \f
2799 /*** 7. ISO2022 handlers ***/
2800
2801 /* The following note describes the coding system ISO2022 briefly.
2802 Since the intention of this note is to help understand the
2803 functions in this file, some parts are NOT ACCURATE or are OVERLY
2804 SIMPLIFIED. For thorough understanding, please refer to the
2805 original document of ISO2022. This is equivalent to the standard
2806 ECMA-35, obtainable from <URL:http://www.ecma.ch/> (*).
2807
2808 ISO2022 provides many mechanisms to encode several character sets
2809 in 7-bit and 8-bit environments. For 7-bit environments, all text
2810 is encoded using bytes less than 128. This may make the encoded
2811 text a little bit longer, but the text passes more easily through
2812 several types of gateway, some of which strip off the MSB (Most
2813 Significant Bit).
2814
2815 There are two kinds of character sets: control character sets and
2816 graphic character sets. The former contain control characters such
2817 as `newline' and `escape' to provide control functions (control
2818 functions are also provided by escape sequences). The latter
2819 contain graphic characters such as 'A' and '-'. Emacs recognizes
2820 two control character sets and many graphic character sets.
2821
2822 Graphic character sets are classified into one of the following
2823 four classes, according to the number of bytes (DIMENSION) and
2824 number of characters in one dimension (CHARS) of the set:
2825 - DIMENSION1_CHARS94
2826 - DIMENSION1_CHARS96
2827 - DIMENSION2_CHARS94
2828 - DIMENSION2_CHARS96
2829
2830 In addition, each character set is assigned an identification tag,
2831 unique for each set, called the "final character" (denoted as <F>
2832 hereafter). The <F> of each character set is decided by ECMA(*)
2833 when it is registered in ISO. The code range of <F> is 0x30..0x7F
2834 (0x30..0x3F are for private use only).
2835
2836 Note (*): ECMA = European Computer Manufacturers Association
2837
2838 Here are examples of graphic character sets [NAME(<F>)]:
2839 o DIMENSION1_CHARS94 -- ASCII('B'), right-half-of-JISX0201('I'), ...
2840 o DIMENSION1_CHARS96 -- right-half-of-ISO8859-1('A'), ...
2841 o DIMENSION2_CHARS94 -- GB2312('A'), JISX0208('B'), ...
2842 o DIMENSION2_CHARS96 -- none for the moment
2843
2844 A code area (1 byte=8 bits) is divided into 4 areas, C0, GL, C1, and GR.
2845 C0 [0x00..0x1F] -- control character plane 0
2846 GL [0x20..0x7F] -- graphic character plane 0
2847 C1 [0x80..0x9F] -- control character plane 1
2848 GR [0xA0..0xFF] -- graphic character plane 1
2849
2850 A control character set is directly designated and invoked to C0 or
2851 C1 by an escape sequence. The most common case is that:
2852 - ISO646's control character set is designated/invoked to C0, and
2853 - ISO6429's control character set is designated/invoked to C1,
2854 and usually these designations/invocations are omitted in encoded
2855 text. In a 7-bit environment, only C0 can be used, and a control
2856 character for C1 is encoded by an appropriate escape sequence to
2857 fit into the environment. All control characters for C1 are
2858 defined to have corresponding escape sequences.
2859
2860 A graphic character set is at first designated to one of four
2861 graphic registers (G0 through G3), then these graphic registers are
2862 invoked to GL or GR. These designations and invocations can be
2863 done independently. The most common case is that G0 is invoked to
2864 GL, G1 is invoked to GR, and ASCII is designated to G0. Usually
2865 these invocations and designations are omitted in encoded text.
2866 In a 7-bit environment, only GL can be used.
2867
2868 When a graphic character set of CHARS94 is invoked to GL, codes
2869 0x20 and 0x7F of the GL area work as control characters SPACE and
2870 DEL respectively, and codes 0xA0 and 0xFF of the GR area should not
2871 be used.
2872
2873 There are two ways of invocation: locking-shift and single-shift.
2874 With locking-shift, the invocation lasts until the next different
2875 invocation, whereas with single-shift, the invocation affects the
2876 following character only and doesn't affect the locking-shift
2877 state. Invocations are done by the following control characters or
2878 escape sequences:
2879
2880 ----------------------------------------------------------------------
2881 abbrev function cntrl escape seq description
2882 ----------------------------------------------------------------------
2883 SI/LS0 (shift-in) 0x0F none invoke G0 into GL
2884 SO/LS1 (shift-out) 0x0E none invoke G1 into GL
2885 LS2 (locking-shift-2) none ESC 'n' invoke G2 into GL
2886 LS3 (locking-shift-3) none ESC 'o' invoke G3 into GL
2887 LS1R (locking-shift-1 right) none ESC '~' invoke G1 into GR (*)
2888 LS2R (locking-shift-2 right) none ESC '}' invoke G2 into GR (*)
2889 LS3R (locking-shift 3 right) none ESC '|' invoke G3 into GR (*)
2890 SS2 (single-shift-2) 0x8E ESC 'N' invoke G2 for one char
2891 SS3 (single-shift-3) 0x8F ESC 'O' invoke G3 for one char
2892 ----------------------------------------------------------------------
2893 (*) These are not used by any known coding system.
2894
2895 Control characters for these functions are defined by macros
2896 ISO_CODE_XXX in `coding.h'.
2897
2898 Designations are done by the following escape sequences:
2899 ----------------------------------------------------------------------
2900 escape sequence description
2901 ----------------------------------------------------------------------
2902 ESC '(' <F> designate DIMENSION1_CHARS94<F> to G0
2903 ESC ')' <F> designate DIMENSION1_CHARS94<F> to G1
2904 ESC '*' <F> designate DIMENSION1_CHARS94<F> to G2
2905 ESC '+' <F> designate DIMENSION1_CHARS94<F> to G3
2906 ESC ',' <F> designate DIMENSION1_CHARS96<F> to G0 (*)
2907 ESC '-' <F> designate DIMENSION1_CHARS96<F> to G1
2908 ESC '.' <F> designate DIMENSION1_CHARS96<F> to G2
2909 ESC '/' <F> designate DIMENSION1_CHARS96<F> to G3
2910 ESC '$' '(' <F> designate DIMENSION2_CHARS94<F> to G0 (**)
2911 ESC '$' ')' <F> designate DIMENSION2_CHARS94<F> to G1
2912 ESC '$' '*' <F> designate DIMENSION2_CHARS94<F> to G2
2913 ESC '$' '+' <F> designate DIMENSION2_CHARS94<F> to G3
2914 ESC '$' ',' <F> designate DIMENSION2_CHARS96<F> to G0 (*)
2915 ESC '$' '-' <F> designate DIMENSION2_CHARS96<F> to G1
2916 ESC '$' '.' <F> designate DIMENSION2_CHARS96<F> to G2
2917 ESC '$' '/' <F> designate DIMENSION2_CHARS96<F> to G3
2918 ----------------------------------------------------------------------
2919
2920 In this list, "DIMENSION1_CHARS94<F>" means a graphic character set
2921 of dimension 1, chars 94, and final character <F>, etc...
2922
2923 Note (*): Although these designations are not allowed in ISO2022,
2924 Emacs accepts them on decoding, and produces them on encoding
2925 CHARS96 character sets in a coding system which is characterized as
2926 7-bit environment, non-locking-shift, and non-single-shift.
2927
2928 Note (**): If <F> is '@', 'A', or 'B', the intermediate character
2929 '(' must be omitted. We refer to this as "short-form" hereafter.
2930
2931 Now you may notice that there are a lot of ways of encoding the
2932 same multilingual text in ISO2022. Actually, there exist many
2933 coding systems such as Compound Text (used in X11's inter client
2934 communication, ISO-2022-JP (used in Japanese Internet), ISO-2022-KR
2935 (used in Korean Internet), EUC (Extended UNIX Code, used in Asian
2936 localized platforms), and all of these are variants of ISO2022.
2937
2938 In addition to the above, Emacs handles two more kinds of escape
2939 sequences: ISO6429's direction specification and Emacs' private
2940 sequence for specifying character composition.
2941
2942 ISO6429's direction specification takes the following form:
2943 o CSI ']' -- end of the current direction
2944 o CSI '0' ']' -- end of the current direction
2945 o CSI '1' ']' -- start of left-to-right text
2946 o CSI '2' ']' -- start of right-to-left text
2947 The control character CSI (0x9B: control sequence introducer) is
2948 abbreviated to the escape sequence ESC '[' in a 7-bit environment.
2949
2950 Character composition specification takes the following form:
2951 o ESC '0' -- start relative composition
2952 o ESC '1' -- end composition
2953 o ESC '2' -- start rule-base composition (*)
2954 o ESC '3' -- start relative composition with alternate chars (**)
2955 o ESC '4' -- start rule-base composition with alternate chars (**)
2956 Since these are not standard escape sequences of any ISO standard,
2957 the use of them with these meanings is restricted to Emacs only.
2958
2959 (*) This form is used only in Emacs 20.7 and older versions,
2960 but newer versions can safely decode it.
2961 (**) This form is used only in Emacs 21.1 and newer versions,
2962 and older versions can't decode it.
2963
2964 Here's a list of example usages of these composition escape
2965 sequences (categorized by `enum composition_method').
2966
2967 COMPOSITION_RELATIVE:
2968 ESC 0 CHAR [ CHAR ] ESC 1
2969 COMPOSITION_WITH_RULE:
2970 ESC 2 CHAR [ RULE CHAR ] ESC 1
2971 COMPOSITION_WITH_ALTCHARS:
2972 ESC 3 ALTCHAR [ ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1
2973 COMPOSITION_WITH_RULE_ALTCHARS:
2974 ESC 4 ALTCHAR [ RULE ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1 */
2975
2976 enum iso_code_class_type iso_code_class[256];
2977
2978 #define SAFE_CHARSET_P(coding, id) \
2979 ((id) <= (coding)->max_charset_id \
2980 && (coding)->safe_charsets[id] != 255)
2981
2982
2983 #define SHIFT_OUT_OK(category) \
2984 (CODING_ISO_INITIAL (&coding_categories[category], 1) >= 0)
2985
2986 static void
2987 setup_iso_safe_charsets (attrs)
2988 Lisp_Object attrs;
2989 {
2990 Lisp_Object charset_list, safe_charsets;
2991 Lisp_Object request;
2992 Lisp_Object reg_usage;
2993 Lisp_Object tail;
2994 int reg94, reg96;
2995 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
2996 int max_charset_id;
2997
2998 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
2999 if ((flags & CODING_ISO_FLAG_FULL_SUPPORT)
3000 && ! EQ (charset_list, Viso_2022_charset_list))
3001 {
3002 CODING_ATTR_CHARSET_LIST (attrs)
3003 = charset_list = Viso_2022_charset_list;
3004 ASET (attrs, coding_attr_safe_charsets, Qnil);
3005 }
3006
3007 if (STRINGP (AREF (attrs, coding_attr_safe_charsets)))
3008 return;
3009
3010 max_charset_id = 0;
3011 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
3012 {
3013 int id = XINT (XCAR (tail));
3014 if (max_charset_id < id)
3015 max_charset_id = id;
3016 }
3017
3018 safe_charsets = make_uninit_string (max_charset_id + 1);
3019 memset (SDATA (safe_charsets), 255, max_charset_id + 1);
3020 request = AREF (attrs, coding_attr_iso_request);
3021 reg_usage = AREF (attrs, coding_attr_iso_usage);
3022 reg94 = XINT (XCAR (reg_usage));
3023 reg96 = XINT (XCDR (reg_usage));
3024
3025 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
3026 {
3027 Lisp_Object id;
3028 Lisp_Object reg;
3029 struct charset *charset;
3030
3031 id = XCAR (tail);
3032 charset = CHARSET_FROM_ID (XINT (id));
3033 reg = Fcdr (Fassq (id, request));
3034 if (! NILP (reg))
3035 SSET (safe_charsets, XINT (id), XINT (reg));
3036 else if (charset->iso_chars_96)
3037 {
3038 if (reg96 < 4)
3039 SSET (safe_charsets, XINT (id), reg96);
3040 }
3041 else
3042 {
3043 if (reg94 < 4)
3044 SSET (safe_charsets, XINT (id), reg94);
3045 }
3046 }
3047 ASET (attrs, coding_attr_safe_charsets, safe_charsets);
3048 }
3049
3050
3051 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
3052 Check if a text is encoded in one of ISO-2022 based codig systems.
3053 If it is, return 1, else return 0. */
3054
3055 static int
3056 detect_coding_iso_2022 (coding, detect_info)
3057 struct coding_system *coding;
3058 struct coding_detection_info *detect_info;
3059 {
3060 const unsigned char *src = coding->source, *src_base = src;
3061 const unsigned char *src_end = coding->source + coding->src_bytes;
3062 int multibytep = coding->src_multibyte;
3063 int single_shifting = 0;
3064 int id;
3065 int c, c1;
3066 int consumed_chars = 0;
3067 int i;
3068 int rejected = 0;
3069 int found = 0;
3070 int composition_count = -1;
3071
3072 detect_info->checked |= CATEGORY_MASK_ISO;
3073
3074 for (i = coding_category_iso_7; i <= coding_category_iso_8_else; i++)
3075 {
3076 struct coding_system *this = &(coding_categories[i]);
3077 Lisp_Object attrs, val;
3078
3079 if (this->id < 0)
3080 continue;
3081 attrs = CODING_ID_ATTRS (this->id);
3082 if (CODING_ISO_FLAGS (this) & CODING_ISO_FLAG_FULL_SUPPORT
3083 && ! EQ (CODING_ATTR_CHARSET_LIST (attrs), Viso_2022_charset_list))
3084 setup_iso_safe_charsets (attrs);
3085 val = CODING_ATTR_SAFE_CHARSETS (attrs);
3086 this->max_charset_id = SCHARS (val) - 1;
3087 this->safe_charsets = SDATA (val);
3088 }
3089
3090 /* A coding system of this category is always ASCII compatible. */
3091 src += coding->head_ascii;
3092
3093 while (rejected != CATEGORY_MASK_ISO)
3094 {
3095 src_base = src;
3096 ONE_MORE_BYTE (c);
3097 switch (c)
3098 {
3099 case ISO_CODE_ESC:
3100 if (inhibit_iso_escape_detection)
3101 break;
3102 single_shifting = 0;
3103 ONE_MORE_BYTE (c);
3104 if (c >= '(' && c <= '/')
3105 {
3106 /* Designation sequence for a charset of dimension 1. */
3107 ONE_MORE_BYTE (c1);
3108 if (c1 < ' ' || c1 >= 0x80
3109 || (id = iso_charset_table[0][c >= ','][c1]) < 0)
3110 /* Invalid designation sequence. Just ignore. */
3111 break;
3112 }
3113 else if (c == '$')
3114 {
3115 /* Designation sequence for a charset of dimension 2. */
3116 ONE_MORE_BYTE (c);
3117 if (c >= '@' && c <= 'B')
3118 /* Designation for JISX0208.1978, GB2312, or JISX0208. */
3119 id = iso_charset_table[1][0][c];
3120 else if (c >= '(' && c <= '/')
3121 {
3122 ONE_MORE_BYTE (c1);
3123 if (c1 < ' ' || c1 >= 0x80
3124 || (id = iso_charset_table[1][c >= ','][c1]) < 0)
3125 /* Invalid designation sequence. Just ignore. */
3126 break;
3127 }
3128 else
3129 /* Invalid designation sequence. Just ignore it. */
3130 break;
3131 }
3132 else if (c == 'N' || c == 'O')
3133 {
3134 /* ESC <Fe> for SS2 or SS3. */
3135 single_shifting = 1;
3136 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_8BIT;
3137 break;
3138 }
3139 else if (c == '1')
3140 {
3141 /* End of composition. */
3142 if (composition_count < 0
3143 || composition_count > MAX_COMPOSITION_COMPONENTS)
3144 /* Invalid */
3145 break;
3146 composition_count = -1;
3147 found |= CATEGORY_MASK_ISO;
3148 }
3149 else if (c >= '0' && c <= '4')
3150 {
3151 /* ESC <Fp> for start/end composition. */
3152 composition_count = 0;
3153 break;
3154 }
3155 else
3156 {
3157 /* Invalid escape sequence. Just ignore it. */
3158 break;
3159 }
3160
3161 /* We found a valid designation sequence for CHARSET. */
3162 rejected |= CATEGORY_MASK_ISO_8BIT;
3163 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_7],
3164 id))
3165 found |= CATEGORY_MASK_ISO_7;
3166 else
3167 rejected |= CATEGORY_MASK_ISO_7;
3168 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_7_tight],
3169 id))
3170 found |= CATEGORY_MASK_ISO_7_TIGHT;
3171 else
3172 rejected |= CATEGORY_MASK_ISO_7_TIGHT;
3173 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_7_else],
3174 id))
3175 found |= CATEGORY_MASK_ISO_7_ELSE;
3176 else
3177 rejected |= CATEGORY_MASK_ISO_7_ELSE;
3178 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_8_else],
3179 id))
3180 found |= CATEGORY_MASK_ISO_8_ELSE;
3181 else
3182 rejected |= CATEGORY_MASK_ISO_8_ELSE;
3183 break;
3184
3185 case ISO_CODE_SO:
3186 case ISO_CODE_SI:
3187 /* Locking shift out/in. */
3188 if (inhibit_iso_escape_detection)
3189 break;
3190 single_shifting = 0;
3191 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_8BIT;
3192 break;
3193
3194 case ISO_CODE_CSI:
3195 /* Control sequence introducer. */
3196 single_shifting = 0;
3197 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_7_ELSE;
3198 found |= CATEGORY_MASK_ISO_8_ELSE;
3199 goto check_extra_latin;
3200
3201 case ISO_CODE_SS2:
3202 case ISO_CODE_SS3:
3203 /* Single shift. */
3204 if (inhibit_iso_escape_detection)
3205 break;
3206 single_shifting = 0;
3207 rejected |= CATEGORY_MASK_ISO_7BIT;
3208 if (CODING_ISO_FLAGS (&coding_categories[coding_category_iso_8_1])
3209 & CODING_ISO_FLAG_SINGLE_SHIFT)
3210 found |= CATEGORY_MASK_ISO_8_1, single_shifting = 1;
3211 if (CODING_ISO_FLAGS (&coding_categories[coding_category_iso_8_2])
3212 & CODING_ISO_FLAG_SINGLE_SHIFT)
3213 found |= CATEGORY_MASK_ISO_8_2, single_shifting = 1;
3214 if (single_shifting)
3215 break;
3216 goto check_extra_latin;
3217
3218 default:
3219 if (c < 0)
3220 continue;
3221 if (c < 0x80)
3222 {
3223 if (composition_count >= 0)
3224 composition_count++;
3225 single_shifting = 0;
3226 break;
3227 }
3228 if (c >= 0xA0)
3229 {
3230 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_7_ELSE;
3231 found |= CATEGORY_MASK_ISO_8_1;
3232 /* Check the length of succeeding codes of the range
3233 0xA0..0FF. If the byte length is even, we include
3234 CATEGORY_MASK_ISO_8_2 in `found'. We can check this
3235 only when we are not single shifting. */
3236 if (! single_shifting
3237 && ! (rejected & CATEGORY_MASK_ISO_8_2))
3238 {
3239 int i = 1;
3240 while (src < src_end)
3241 {
3242 ONE_MORE_BYTE (c);
3243 if (c < 0xA0)
3244 break;
3245 i++;
3246 }
3247
3248 if (i & 1 && src < src_end)
3249 {
3250 rejected |= CATEGORY_MASK_ISO_8_2;
3251 if (composition_count >= 0)
3252 composition_count += i;
3253 }
3254 else
3255 {
3256 found |= CATEGORY_MASK_ISO_8_2;
3257 if (composition_count >= 0)
3258 composition_count += i / 2;
3259 }
3260 }
3261 break;
3262 }
3263 check_extra_latin:
3264 single_shifting = 0;
3265 if (! VECTORP (Vlatin_extra_code_table)
3266 || NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
3267 {
3268 rejected = CATEGORY_MASK_ISO;
3269 break;
3270 }
3271 if (CODING_ISO_FLAGS (&coding_categories[coding_category_iso_8_1])
3272 & CODING_ISO_FLAG_LATIN_EXTRA)
3273 found |= CATEGORY_MASK_ISO_8_1;
3274 else
3275 rejected |= CATEGORY_MASK_ISO_8_1;
3276 rejected |= CATEGORY_MASK_ISO_8_2;
3277 }
3278 }
3279 detect_info->rejected |= CATEGORY_MASK_ISO;
3280 return 0;
3281
3282 no_more_source:
3283 detect_info->rejected |= rejected;
3284 detect_info->found |= (found & ~rejected);
3285 return 1;
3286 }
3287
3288
3289 /* Set designation state into CODING. Set CHARS_96 to -1 if the
3290 escape sequence should be kept. */
3291 #define DECODE_DESIGNATION(reg, dim, chars_96, final) \
3292 do { \
3293 int id, prev; \
3294 \
3295 if (final < '0' || final >= 128 \
3296 || ((id = ISO_CHARSET_TABLE (dim, chars_96, final)) < 0) \
3297 || !SAFE_CHARSET_P (coding, id)) \
3298 { \
3299 CODING_ISO_DESIGNATION (coding, reg) = -2; \
3300 chars_96 = -1; \
3301 break; \
3302 } \
3303 prev = CODING_ISO_DESIGNATION (coding, reg); \
3304 if (id == charset_jisx0201_roman) \
3305 { \
3306 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_ROMAN) \
3307 id = charset_ascii; \
3308 } \
3309 else if (id == charset_jisx0208_1978) \
3310 { \
3311 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_OLDJIS) \
3312 id = charset_jisx0208; \
3313 } \
3314 CODING_ISO_DESIGNATION (coding, reg) = id; \
3315 /* If there was an invalid designation to REG previously, and this \
3316 designation is ASCII to REG, we should keep this designation \
3317 sequence. */ \
3318 if (prev == -2 && id == charset_ascii) \
3319 chars_96 = -1; \
3320 } while (0)
3321
3322
3323 /* Handle these composition sequence (ALT: alternate char):
3324
3325 (1) relative composition: ESC 0 CHAR ... ESC 1
3326 (2) rulebase composition: ESC 2 CHAR RULE CHAR RULE ... CHAR ESC 1
3327 (3) altchar composition: ESC 3 ALT ... ALT ESC 0 CHAR ... ESC 1
3328 (4) alt&rule composition: ESC 4 ALT RULE ... ALT ESC 0 CHAR ... ESC 1
3329
3330 When the start sequence (ESC 0/2/3/4) is found, this annotation
3331 header is produced.
3332
3333 [ -LENGTH(==-5) CODING_ANNOTATE_COMPOSITION_MASK NCHARS(==0) 0 METHOD ]
3334
3335 Then, upon reading CHAR or RULE (one or two bytes), these codes are
3336 produced until the end sequence (ESC 1) is found:
3337
3338 (1) CHAR ... CHAR
3339 (2) CHAR -2 DECODED-RULE CHAR -2 DECODED-RULE ... CHAR
3340 (3) ALT ... ALT -1 -1 CHAR ... CHAR
3341 (4) ALT -2 DECODED-RULE ALT -2 DECODED-RULE ... ALT -1 -1 CHAR ... CHAR
3342
3343 When the end sequence (ESC 1) is found, LENGTH and NCHARS in the
3344 annotation header is updated as below:
3345
3346 (1) LENGTH: unchanged, NCHARS: number of CHARs
3347 (2) LENGTH: unchanged, NCHARS: number of CHARs
3348 (3) LENGTH: += number of ALTs + 2, NCHARS: number of CHARs
3349 (4) LENGTH: += number of ALTs * 3, NCHARS: number of CHARs
3350
3351 If an error is found while composing, the annotation header is
3352 changed to:
3353
3354 [ ESC '0'/'2'/'3'/'4' -2 0 ]
3355
3356 and the sequence [ -2 DECODED-RULE ] is changed to the original
3357 byte sequence as below:
3358 o the original byte sequence is B: [ B -1 ]
3359 o the original byte sequence is B1 B2: [ B1 B2 ]
3360 and the sequence [ -1 -1 ] is changed to the original byte
3361 sequence:
3362 [ ESC '0' ]
3363 */
3364
3365 /* Decode a composition rule C1 and maybe one more byte from the
3366 source, and set RULE to the encoded composition rule, NBYTES to the
3367 length of the composition rule. If the rule is invalid, set RULE
3368 to some negative value. */
3369
3370 #define DECODE_COMPOSITION_RULE(rule, nbytes) \
3371 do { \
3372 rule = c1 - 32; \
3373 if (rule < 0) \
3374 break; \
3375 if (rule < 81) /* old format (before ver.21) */ \
3376 { \
3377 int gref = (rule) / 9; \
3378 int nref = (rule) % 9; \
3379 if (gref == 4) gref = 10; \
3380 if (nref == 4) nref = 10; \
3381 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
3382 nbytes = 1; \
3383 } \
3384 else /* new format (after ver.21) */ \
3385 { \
3386 int c; \
3387 \
3388 ONE_MORE_BYTE (c); \
3389 rule = COMPOSITION_ENCODE_RULE (rule - 81, c - 32); \
3390 if (rule >= 0) \
3391 rule += 0x100; /* to destinguish it from the old format */ \
3392 nbytes = 2; \
3393 } \
3394 } while (0)
3395
3396 #define ENCODE_COMPOSITION_RULE(rule) \
3397 do { \
3398 int gref = (rule % 0x100) / 12, nref = (rule % 0x100) % 12; \
3399 \
3400 if (rule < 0x100) /* old format */ \
3401 { \
3402 if (gref == 10) gref = 4; \
3403 if (nref == 10) nref = 4; \
3404 charbuf[idx] = 32 + gref * 9 + nref; \
3405 charbuf[idx + 1] = -1; \
3406 new_chars++; \
3407 } \
3408 else /* new format */ \
3409 { \
3410 charbuf[idx] = 32 + 81 + gref; \
3411 charbuf[idx + 1] = 32 + nref; \
3412 new_chars += 2; \
3413 } \
3414 } while (0)
3415
3416 /* Finish the current composition as invalid. */
3417
3418 static int finish_composition P_ ((int *, struct composition_status *));
3419
3420 static int
3421 finish_composition (charbuf, cmp_status)
3422 int *charbuf;
3423 struct composition_status *cmp_status;
3424 {
3425 int idx = - cmp_status->length;
3426 int new_chars;
3427
3428 /* Recover the original ESC sequence */
3429 charbuf[idx++] = ISO_CODE_ESC;
3430 charbuf[idx++] = (cmp_status->method == COMPOSITION_RELATIVE ? '0'
3431 : cmp_status->method == COMPOSITION_WITH_RULE ? '2'
3432 : cmp_status->method == COMPOSITION_WITH_ALTCHARS ? '3'
3433 /* cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS */
3434 : '4');
3435 charbuf[idx++] = -2;
3436 charbuf[idx++] = 0;
3437 charbuf[idx++] = -1;
3438 new_chars = cmp_status->nchars;
3439 if (cmp_status->method >= COMPOSITION_WITH_RULE)
3440 for (; idx < 0; idx++)
3441 {
3442 int elt = charbuf[idx];
3443
3444 if (elt == -2)
3445 {
3446 ENCODE_COMPOSITION_RULE (charbuf[idx + 1]);
3447 idx++;
3448 }
3449 else if (elt == -1)
3450 {
3451 charbuf[idx++] = ISO_CODE_ESC;
3452 charbuf[idx] = '0';
3453 new_chars += 2;
3454 }
3455 }
3456 cmp_status->state = COMPOSING_NO;
3457 return new_chars;
3458 }
3459
3460 /* If characers are under composition, finish the composition. */
3461 #define MAYBE_FINISH_COMPOSITION() \
3462 do { \
3463 if (cmp_status->state != COMPOSING_NO) \
3464 char_offset += finish_composition (charbuf, cmp_status); \
3465 } while (0)
3466
3467 /* Handle composition start sequence ESC 0, ESC 2, ESC 3, or ESC 4.
3468
3469 ESC 0 : relative composition : ESC 0 CHAR ... ESC 1
3470 ESC 2 : rulebase composition : ESC 2 CHAR RULE CHAR RULE ... CHAR ESC 1
3471 ESC 3 : altchar composition : ESC 3 CHAR ... ESC 0 CHAR ... ESC 1
3472 ESC 4 : alt&rule composition : ESC 4 CHAR RULE ... CHAR ESC 0 CHAR ... ESC 1
3473
3474 Produce this annotation sequence now:
3475
3476 [ -LENGTH(==-4) CODING_ANNOTATE_COMPOSITION_MASK NCHARS(==0) METHOD ]
3477 */
3478
3479 #define DECODE_COMPOSITION_START(c1) \
3480 do { \
3481 if (c1 == '0' \
3482 && ((cmp_status->state == COMPOSING_COMPONENT_CHAR \
3483 && cmp_status->method == COMPOSITION_WITH_ALTCHARS) \
3484 || (cmp_status->state == COMPOSING_COMPONENT_RULE \
3485 && cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS))) \
3486 { \
3487 *charbuf++ = -1; \
3488 *charbuf++= -1; \
3489 cmp_status->state = COMPOSING_CHAR; \
3490 cmp_status->length += 2; \
3491 } \
3492 else \
3493 { \
3494 MAYBE_FINISH_COMPOSITION (); \
3495 cmp_status->method = (c1 == '0' ? COMPOSITION_RELATIVE \
3496 : c1 == '2' ? COMPOSITION_WITH_RULE \
3497 : c1 == '3' ? COMPOSITION_WITH_ALTCHARS \
3498 : COMPOSITION_WITH_RULE_ALTCHARS); \
3499 cmp_status->state \
3500 = (c1 <= '2' ? COMPOSING_CHAR : COMPOSING_COMPONENT_CHAR); \
3501 ADD_COMPOSITION_DATA (charbuf, 0, 0, cmp_status->method); \
3502 cmp_status->length = MAX_ANNOTATION_LENGTH; \
3503 cmp_status->nchars = cmp_status->ncomps = 0; \
3504 coding->annotated = 1; \
3505 } \
3506 } while (0)
3507
3508
3509 /* Handle composition end sequence ESC 1. */
3510
3511 #define DECODE_COMPOSITION_END() \
3512 do { \
3513 if (cmp_status->nchars == 0 \
3514 || ((cmp_status->state == COMPOSING_CHAR) \
3515 == (cmp_status->method == COMPOSITION_WITH_RULE))) \
3516 { \
3517 MAYBE_FINISH_COMPOSITION (); \
3518 goto invalid_code; \
3519 } \
3520 if (cmp_status->method == COMPOSITION_WITH_ALTCHARS) \
3521 charbuf[- cmp_status->length] -= cmp_status->ncomps + 2; \
3522 else if (cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS) \
3523 charbuf[- cmp_status->length] -= cmp_status->ncomps * 3; \
3524 charbuf[- cmp_status->length + 2] = cmp_status->nchars; \
3525 char_offset += cmp_status->nchars; \
3526 cmp_status->state = COMPOSING_NO; \
3527 } while (0)
3528
3529 /* Store a composition rule RULE in charbuf, and update cmp_status. */
3530
3531 #define STORE_COMPOSITION_RULE(rule) \
3532 do { \
3533 *charbuf++ = -2; \
3534 *charbuf++ = rule; \
3535 cmp_status->length += 2; \
3536 cmp_status->state--; \
3537 } while (0)
3538
3539 /* Store a composed char or a component char C in charbuf, and update
3540 cmp_status. */
3541
3542 #define STORE_COMPOSITION_CHAR(c) \
3543 do { \
3544 *charbuf++ = (c); \
3545 cmp_status->length++; \
3546 if (cmp_status->state == COMPOSING_CHAR) \
3547 cmp_status->nchars++; \
3548 else \
3549 cmp_status->ncomps++; \
3550 if (cmp_status->method == COMPOSITION_WITH_RULE \
3551 || (cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS \
3552 && cmp_status->state == COMPOSING_COMPONENT_CHAR)) \
3553 cmp_status->state++; \
3554 } while (0)
3555
3556
3557 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
3558
3559 static void
3560 decode_coding_iso_2022 (coding)
3561 struct coding_system *coding;
3562 {
3563 const unsigned char *src = coding->source + coding->consumed;
3564 const unsigned char *src_end = coding->source + coding->src_bytes;
3565 const unsigned char *src_base;
3566 int *charbuf = coding->charbuf + coding->charbuf_used;
3567 /* We may produce two annocations (charset and composition) in one
3568 loop and one more charset annocation at the end. */
3569 int *charbuf_end
3570 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 3);
3571 int consumed_chars = 0, consumed_chars_base;
3572 int multibytep = coding->src_multibyte;
3573 /* Charsets invoked to graphic plane 0 and 1 respectively. */
3574 int charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3575 int charset_id_1 = CODING_ISO_INVOKED_CHARSET (coding, 1);
3576 int charset_id_2, charset_id_3;
3577 struct charset *charset;
3578 int c;
3579 struct composition_status *cmp_status = CODING_ISO_CMP_STATUS (coding);
3580 Lisp_Object attrs, charset_list;
3581 int char_offset = coding->produced_char;
3582 int last_offset = char_offset;
3583 int last_id = charset_ascii;
3584 int eol_crlf =
3585 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
3586 int byte_after_cr = -1;
3587 int i;
3588
3589 CODING_GET_INFO (coding, attrs, charset_list);
3590 setup_iso_safe_charsets (attrs);
3591 /* Charset list may have been changed. */
3592 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
3593 coding->safe_charsets = SDATA (CODING_ATTR_SAFE_CHARSETS (attrs));
3594
3595 if (cmp_status->state != COMPOSING_NO)
3596 {
3597 for (i = 0; i < cmp_status->length; i++)
3598 *charbuf++ = cmp_status->carryover[i];
3599 coding->annotated = 1;
3600 }
3601
3602 while (1)
3603 {
3604 int c1, c2, c3;
3605
3606 src_base = src;
3607 consumed_chars_base = consumed_chars;
3608
3609 if (charbuf >= charbuf_end)
3610 {
3611 if (byte_after_cr >= 0)
3612 src_base--;
3613 break;
3614 }
3615
3616 if (byte_after_cr >= 0)
3617 c1 = byte_after_cr, byte_after_cr = -1;
3618 else
3619 ONE_MORE_BYTE (c1);
3620 if (c1 < 0)
3621 goto invalid_code;
3622
3623 if (CODING_ISO_EXTSEGMENT_LEN (coding) > 0)
3624 {
3625 *charbuf++ = ASCII_BYTE_P (c1) ? c1 : BYTE8_TO_CHAR (c1);
3626 char_offset++;
3627 CODING_ISO_EXTSEGMENT_LEN (coding)--;
3628 continue;
3629 }
3630
3631 if (CODING_ISO_EMBEDDED_UTF_8 (coding))
3632 {
3633 if (c1 == ISO_CODE_ESC)
3634 {
3635 if (src + 1 >= src_end)
3636 goto no_more_source;
3637 *charbuf++ = ISO_CODE_ESC;
3638 char_offset++;
3639 if (src[0] == '%' && src[1] == '@')
3640 {
3641 src += 2;
3642 consumed_chars += 2;
3643 char_offset += 2;
3644 /* We are sure charbuf can contain two more chars. */
3645 *charbuf++ = '%';
3646 *charbuf++ = '@';
3647 CODING_ISO_EMBEDDED_UTF_8 (coding) = 0;
3648 }
3649 }
3650 else
3651 {
3652 *charbuf++ = ASCII_BYTE_P (c1) ? c1 : BYTE8_TO_CHAR (c1);
3653 char_offset++;
3654 }
3655 continue;
3656 }
3657
3658 if ((cmp_status->state == COMPOSING_RULE
3659 || cmp_status->state == COMPOSING_COMPONENT_RULE)
3660 && c1 != ISO_CODE_ESC)
3661 {
3662 int rule, nbytes;
3663
3664 DECODE_COMPOSITION_RULE (rule, nbytes);
3665 if (rule < 0)
3666 goto invalid_code;
3667 STORE_COMPOSITION_RULE (rule);
3668 continue;
3669 }
3670
3671 /* We produce at most one character. */
3672 switch (iso_code_class [c1])
3673 {
3674 case ISO_0x20_or_0x7F:
3675 if (charset_id_0 < 0
3676 || ! CHARSET_ISO_CHARS_96 (CHARSET_FROM_ID (charset_id_0)))
3677 /* This is SPACE or DEL. */
3678 charset = CHARSET_FROM_ID (charset_ascii);
3679 else
3680 charset = CHARSET_FROM_ID (charset_id_0);
3681 break;
3682
3683 case ISO_graphic_plane_0:
3684 if (charset_id_0 < 0)
3685 charset = CHARSET_FROM_ID (charset_ascii);
3686 else
3687 charset = CHARSET_FROM_ID (charset_id_0);
3688 break;
3689
3690 case ISO_0xA0_or_0xFF:
3691 if (charset_id_1 < 0
3692 || ! CHARSET_ISO_CHARS_96 (CHARSET_FROM_ID (charset_id_1))
3693 || CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS)
3694 goto invalid_code;
3695 /* This is a graphic character, we fall down ... */
3696
3697 case ISO_graphic_plane_1:
3698 if (charset_id_1 < 0)
3699 goto invalid_code;
3700 charset = CHARSET_FROM_ID (charset_id_1);
3701 break;
3702
3703 case ISO_control_0:
3704 if (eol_crlf && c1 == '\r')
3705 ONE_MORE_BYTE (byte_after_cr);
3706 MAYBE_FINISH_COMPOSITION ();
3707 charset = CHARSET_FROM_ID (charset_ascii);
3708 break;
3709
3710 case ISO_control_1:
3711 goto invalid_code;
3712
3713 case ISO_shift_out:
3714 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT)
3715 || CODING_ISO_DESIGNATION (coding, 1) < 0)
3716 goto invalid_code;
3717 CODING_ISO_INVOCATION (coding, 0) = 1;
3718 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3719 continue;
3720
3721 case ISO_shift_in:
3722 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT))
3723 goto invalid_code;
3724 CODING_ISO_INVOCATION (coding, 0) = 0;
3725 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3726 continue;
3727
3728 case ISO_single_shift_2_7:
3729 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS))
3730 goto invalid_code;
3731 case ISO_single_shift_2:
3732 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT))
3733 goto invalid_code;
3734 /* SS2 is handled as an escape sequence of ESC 'N' */
3735 c1 = 'N';
3736 goto label_escape_sequence;
3737
3738 case ISO_single_shift_3:
3739 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT))
3740 goto invalid_code;
3741 /* SS2 is handled as an escape sequence of ESC 'O' */
3742 c1 = 'O';
3743 goto label_escape_sequence;
3744
3745 case ISO_control_sequence_introducer:
3746 /* CSI is handled as an escape sequence of ESC '[' ... */
3747 c1 = '[';
3748 goto label_escape_sequence;
3749
3750 case ISO_escape:
3751 ONE_MORE_BYTE (c1);
3752 label_escape_sequence:
3753 /* Escape sequences handled here are invocation,
3754 designation, direction specification, and character
3755 composition specification. */
3756 switch (c1)
3757 {
3758 case '&': /* revision of following character set */
3759 ONE_MORE_BYTE (c1);
3760 if (!(c1 >= '@' && c1 <= '~'))
3761 goto invalid_code;
3762 ONE_MORE_BYTE (c1);
3763 if (c1 != ISO_CODE_ESC)
3764 goto invalid_code;
3765 ONE_MORE_BYTE (c1);
3766 goto label_escape_sequence;
3767
3768 case '$': /* designation of 2-byte character set */
3769 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATION))
3770 goto invalid_code;
3771 {
3772 int reg, chars96;
3773
3774 ONE_MORE_BYTE (c1);
3775 if (c1 >= '@' && c1 <= 'B')
3776 { /* designation of JISX0208.1978, GB2312.1980,
3777 or JISX0208.1980 */
3778 reg = 0, chars96 = 0;
3779 }
3780 else if (c1 >= 0x28 && c1 <= 0x2B)
3781 { /* designation of DIMENSION2_CHARS94 character set */
3782 reg = c1 - 0x28, chars96 = 0;
3783 ONE_MORE_BYTE (c1);
3784 }
3785 else if (c1 >= 0x2C && c1 <= 0x2F)
3786 { /* designation of DIMENSION2_CHARS96 character set */
3787 reg = c1 - 0x2C, chars96 = 1;
3788 ONE_MORE_BYTE (c1);
3789 }
3790 else
3791 goto invalid_code;
3792 DECODE_DESIGNATION (reg, 2, chars96, c1);
3793 /* We must update these variables now. */
3794 if (reg == 0)
3795 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3796 else if (reg == 1)
3797 charset_id_1 = CODING_ISO_INVOKED_CHARSET (coding, 1);
3798 if (chars96 < 0)
3799 goto invalid_code;
3800 }
3801 continue;
3802
3803 case 'n': /* invocation of locking-shift-2 */
3804 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT)
3805 || CODING_ISO_DESIGNATION (coding, 2) < 0)
3806 goto invalid_code;
3807 CODING_ISO_INVOCATION (coding, 0) = 2;
3808 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3809 continue;
3810
3811 case 'o': /* invocation of locking-shift-3 */
3812 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT)
3813 || CODING_ISO_DESIGNATION (coding, 3) < 0)
3814 goto invalid_code;
3815 CODING_ISO_INVOCATION (coding, 0) = 3;
3816 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3817 continue;
3818
3819 case 'N': /* invocation of single-shift-2 */
3820 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
3821 || CODING_ISO_DESIGNATION (coding, 2) < 0)
3822 goto invalid_code;
3823 charset_id_2 = CODING_ISO_DESIGNATION (coding, 2);
3824 if (charset_id_2 < 0)
3825 charset = CHARSET_FROM_ID (charset_ascii);
3826 else
3827 charset = CHARSET_FROM_ID (charset_id_2);
3828 ONE_MORE_BYTE (c1);
3829 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
3830 goto invalid_code;
3831 break;
3832
3833 case 'O': /* invocation of single-shift-3 */
3834 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
3835 || CODING_ISO_DESIGNATION (coding, 3) < 0)
3836 goto invalid_code;
3837 charset_id_3 = CODING_ISO_DESIGNATION (coding, 3);
3838 if (charset_id_3 < 0)
3839 charset = CHARSET_FROM_ID (charset_ascii);
3840 else
3841 charset = CHARSET_FROM_ID (charset_id_3);
3842 ONE_MORE_BYTE (c1);
3843 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
3844 goto invalid_code;
3845 break;
3846
3847 case '0': case '2': case '3': case '4': /* start composition */
3848 if (! (coding->common_flags & CODING_ANNOTATE_COMPOSITION_MASK))
3849 goto invalid_code;
3850 if (last_id != charset_ascii)
3851 {
3852 ADD_CHARSET_DATA (charbuf, char_offset- last_offset, last_id);
3853 last_id = charset_ascii;
3854 last_offset = char_offset;
3855 }
3856 DECODE_COMPOSITION_START (c1);
3857 continue;
3858
3859 case '1': /* end composition */
3860 if (cmp_status->state == COMPOSING_NO)
3861 goto invalid_code;
3862 DECODE_COMPOSITION_END ();
3863 continue;
3864
3865 case '[': /* specification of direction */
3866 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DIRECTION))
3867 goto invalid_code;
3868 /* For the moment, nested direction is not supported.
3869 So, `coding->mode & CODING_MODE_DIRECTION' zero means
3870 left-to-right, and nozero means right-to-left. */
3871 ONE_MORE_BYTE (c1);
3872 switch (c1)
3873 {
3874 case ']': /* end of the current direction */
3875 coding->mode &= ~CODING_MODE_DIRECTION;
3876
3877 case '0': /* end of the current direction */
3878 case '1': /* start of left-to-right direction */
3879 ONE_MORE_BYTE (c1);
3880 if (c1 == ']')
3881 coding->mode &= ~CODING_MODE_DIRECTION;
3882 else
3883 goto invalid_code;
3884 break;
3885
3886 case '2': /* start of right-to-left direction */
3887 ONE_MORE_BYTE (c1);
3888 if (c1 == ']')
3889 coding->mode |= CODING_MODE_DIRECTION;
3890 else
3891 goto invalid_code;
3892 break;
3893
3894 default:
3895 goto invalid_code;
3896 }
3897 continue;
3898
3899 case '%':
3900 ONE_MORE_BYTE (c1);
3901 if (c1 == '/')
3902 {
3903 /* CTEXT extended segment:
3904 ESC % / [0-4] M L --ENCODING-NAME-- \002 --BYTES--
3905 We keep these bytes as is for the moment.
3906 They may be decoded by post-read-conversion. */
3907 int dim, M, L;
3908 int size;
3909
3910 ONE_MORE_BYTE (dim);
3911 if (dim < 0 || dim > 4)
3912 goto invalid_code;
3913 ONE_MORE_BYTE (M);
3914 if (M < 128)
3915 goto invalid_code;
3916 ONE_MORE_BYTE (L);
3917 if (L < 128)
3918 goto invalid_code;
3919 size = ((M - 128) * 128) + (L - 128);
3920 if (charbuf + 6 > charbuf_end)
3921 goto break_loop;
3922 *charbuf++ = ISO_CODE_ESC;
3923 *charbuf++ = '%';
3924 *charbuf++ = '/';
3925 *charbuf++ = dim;
3926 *charbuf++ = BYTE8_TO_CHAR (M);
3927 *charbuf++ = BYTE8_TO_CHAR (L);
3928 CODING_ISO_EXTSEGMENT_LEN (coding) = size;
3929 }
3930 else if (c1 == 'G')
3931 {
3932 /* XFree86 extension for embedding UTF-8 in CTEXT:
3933 ESC % G --UTF-8-BYTES-- ESC % @
3934 We keep these bytes as is for the moment.
3935 They may be decoded by post-read-conversion. */
3936 if (charbuf + 3 > charbuf_end)
3937 goto break_loop;
3938 *charbuf++ = ISO_CODE_ESC;
3939 *charbuf++ = '%';
3940 *charbuf++ = 'G';
3941 CODING_ISO_EMBEDDED_UTF_8 (coding) = 1;
3942 }
3943 else
3944 goto invalid_code;
3945 continue;
3946 break;
3947
3948 default:
3949 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATION))
3950 goto invalid_code;
3951 {
3952 int reg, chars96;
3953
3954 if (c1 >= 0x28 && c1 <= 0x2B)
3955 { /* designation of DIMENSION1_CHARS94 character set */
3956 reg = c1 - 0x28, chars96 = 0;
3957 ONE_MORE_BYTE (c1);
3958 }
3959 else if (c1 >= 0x2C && c1 <= 0x2F)
3960 { /* designation of DIMENSION1_CHARS96 character set */
3961 reg = c1 - 0x2C, chars96 = 1;
3962 ONE_MORE_BYTE (c1);
3963 }
3964 else
3965 goto invalid_code;
3966 DECODE_DESIGNATION (reg, 1, chars96, c1);
3967 /* We must update these variables now. */
3968 if (reg == 0)
3969 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3970 else if (reg == 1)
3971 charset_id_1 = CODING_ISO_INVOKED_CHARSET (coding, 1);
3972 if (chars96 < 0)
3973 goto invalid_code;
3974 }
3975 continue;
3976 }
3977 }
3978
3979 if (cmp_status->state == COMPOSING_NO
3980 && charset->id != charset_ascii
3981 && last_id != charset->id)
3982 {
3983 if (last_id != charset_ascii)
3984 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
3985 last_id = charset->id;
3986 last_offset = char_offset;
3987 }
3988
3989 /* Now we know CHARSET and 1st position code C1 of a character.
3990 Produce a decoded character while getting 2nd and 3rd
3991 position codes C2, C3 if necessary. */
3992 if (CHARSET_DIMENSION (charset) > 1)
3993 {
3994 ONE_MORE_BYTE (c2);
3995 if (c2 < 0x20 || (c2 >= 0x80 && c2 < 0xA0)
3996 || ((c1 & 0x80) != (c2 & 0x80)))
3997 /* C2 is not in a valid range. */
3998 goto invalid_code;
3999 if (CHARSET_DIMENSION (charset) == 2)
4000 c1 = (c1 << 8) | c2;
4001 else
4002 {
4003 ONE_MORE_BYTE (c3);
4004 if (c3 < 0x20 || (c3 >= 0x80 && c3 < 0xA0)
4005 || ((c1 & 0x80) != (c3 & 0x80)))
4006 /* C3 is not in a valid range. */
4007 goto invalid_code;
4008 c1 = (c1 << 16) | (c2 << 8) | c2;
4009 }
4010 }
4011 c1 &= 0x7F7F7F;
4012 CODING_DECODE_CHAR (coding, src, src_base, src_end, charset, c1, c);
4013 if (c < 0)
4014 {
4015 MAYBE_FINISH_COMPOSITION ();
4016 for (; src_base < src; src_base++, char_offset++)
4017 {
4018 if (ASCII_BYTE_P (*src_base))
4019 *charbuf++ = *src_base;
4020 else
4021 *charbuf++ = BYTE8_TO_CHAR (*src_base);
4022 }
4023 }
4024 else if (cmp_status->state == COMPOSING_NO)
4025 {
4026 *charbuf++ = c;
4027 char_offset++;
4028 }
4029 else if ((cmp_status->state == COMPOSING_CHAR
4030 ? cmp_status->nchars
4031 : cmp_status->ncomps)
4032 >= MAX_COMPOSITION_COMPONENTS)
4033 {
4034 /* Too long composition. */
4035 MAYBE_FINISH_COMPOSITION ();
4036 *charbuf++ = c;
4037 char_offset++;
4038 }
4039 else
4040 STORE_COMPOSITION_CHAR (c);
4041 continue;
4042
4043 invalid_code:
4044 MAYBE_FINISH_COMPOSITION ();
4045 src = src_base;
4046 consumed_chars = consumed_chars_base;
4047 ONE_MORE_BYTE (c);
4048 *charbuf++ = c < 0 ? -c : ASCII_BYTE_P (c) ? c : BYTE8_TO_CHAR (c);
4049 char_offset++;
4050 coding->errors++;
4051 continue;
4052
4053 break_loop:
4054 break;
4055 }
4056
4057 no_more_source:
4058 if (cmp_status->state != COMPOSING_NO)
4059 {
4060 if (coding->mode & CODING_MODE_LAST_BLOCK)
4061 MAYBE_FINISH_COMPOSITION ();
4062 else
4063 {
4064 charbuf -= cmp_status->length;
4065 for (i = 0; i < cmp_status->length; i++)
4066 cmp_status->carryover[i] = charbuf[i];
4067 }
4068 }
4069 else if (last_id != charset_ascii)
4070 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4071 coding->consumed_char += consumed_chars_base;
4072 coding->consumed = src_base - coding->source;
4073 coding->charbuf_used = charbuf - coding->charbuf;
4074 }
4075
4076
4077 /* ISO2022 encoding stuff. */
4078
4079 /*
4080 It is not enough to say just "ISO2022" on encoding, we have to
4081 specify more details. In Emacs, each coding system of ISO2022
4082 variant has the following specifications:
4083 1. Initial designation to G0 thru G3.
4084 2. Allows short-form designation?
4085 3. ASCII should be designated to G0 before control characters?
4086 4. ASCII should be designated to G0 at end of line?
4087 5. 7-bit environment or 8-bit environment?
4088 6. Use locking-shift?
4089 7. Use Single-shift?
4090 And the following two are only for Japanese:
4091 8. Use ASCII in place of JIS0201-1976-Roman?
4092 9. Use JISX0208-1983 in place of JISX0208-1978?
4093 These specifications are encoded in CODING_ISO_FLAGS (coding) as flag bits
4094 defined by macros CODING_ISO_FLAG_XXX. See `coding.h' for more
4095 details.
4096 */
4097
4098 /* Produce codes (escape sequence) for designating CHARSET to graphic
4099 register REG at DST, and increment DST. If <final-char> of CHARSET is
4100 '@', 'A', or 'B' and the coding system CODING allows, produce
4101 designation sequence of short-form. */
4102
4103 #define ENCODE_DESIGNATION(charset, reg, coding) \
4104 do { \
4105 unsigned char final_char = CHARSET_ISO_FINAL (charset); \
4106 char *intermediate_char_94 = "()*+"; \
4107 char *intermediate_char_96 = ",-./"; \
4108 int revision = -1; \
4109 int c; \
4110 \
4111 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_REVISION) \
4112 revision = CHARSET_ISO_REVISION (charset); \
4113 \
4114 if (revision >= 0) \
4115 { \
4116 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, '&'); \
4117 EMIT_ONE_BYTE ('@' + revision); \
4118 } \
4119 EMIT_ONE_ASCII_BYTE (ISO_CODE_ESC); \
4120 if (CHARSET_DIMENSION (charset) == 1) \
4121 { \
4122 if (! CHARSET_ISO_CHARS_96 (charset)) \
4123 c = intermediate_char_94[reg]; \
4124 else \
4125 c = intermediate_char_96[reg]; \
4126 EMIT_ONE_ASCII_BYTE (c); \
4127 } \
4128 else \
4129 { \
4130 EMIT_ONE_ASCII_BYTE ('$'); \
4131 if (! CHARSET_ISO_CHARS_96 (charset)) \
4132 { \
4133 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LONG_FORM \
4134 || reg != 0 \
4135 || final_char < '@' || final_char > 'B') \
4136 EMIT_ONE_ASCII_BYTE (intermediate_char_94[reg]); \
4137 } \
4138 else \
4139 EMIT_ONE_ASCII_BYTE (intermediate_char_96[reg]); \
4140 } \
4141 EMIT_ONE_ASCII_BYTE (final_char); \
4142 \
4143 CODING_ISO_DESIGNATION (coding, reg) = CHARSET_ID (charset); \
4144 } while (0)
4145
4146
4147 /* The following two macros produce codes (control character or escape
4148 sequence) for ISO2022 single-shift functions (single-shift-2 and
4149 single-shift-3). */
4150
4151 #define ENCODE_SINGLE_SHIFT_2 \
4152 do { \
4153 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4154 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'N'); \
4155 else \
4156 EMIT_ONE_BYTE (ISO_CODE_SS2); \
4157 CODING_ISO_SINGLE_SHIFTING (coding) = 1; \
4158 } while (0)
4159
4160
4161 #define ENCODE_SINGLE_SHIFT_3 \
4162 do { \
4163 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4164 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'O'); \
4165 else \
4166 EMIT_ONE_BYTE (ISO_CODE_SS3); \
4167 CODING_ISO_SINGLE_SHIFTING (coding) = 1; \
4168 } while (0)
4169
4170
4171 /* The following four macros produce codes (control character or
4172 escape sequence) for ISO2022 locking-shift functions (shift-in,
4173 shift-out, locking-shift-2, and locking-shift-3). */
4174
4175 #define ENCODE_SHIFT_IN \
4176 do { \
4177 EMIT_ONE_ASCII_BYTE (ISO_CODE_SI); \
4178 CODING_ISO_INVOCATION (coding, 0) = 0; \
4179 } while (0)
4180
4181
4182 #define ENCODE_SHIFT_OUT \
4183 do { \
4184 EMIT_ONE_ASCII_BYTE (ISO_CODE_SO); \
4185 CODING_ISO_INVOCATION (coding, 0) = 1; \
4186 } while (0)
4187
4188
4189 #define ENCODE_LOCKING_SHIFT_2 \
4190 do { \
4191 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'n'); \
4192 CODING_ISO_INVOCATION (coding, 0) = 2; \
4193 } while (0)
4194
4195
4196 #define ENCODE_LOCKING_SHIFT_3 \
4197 do { \
4198 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'n'); \
4199 CODING_ISO_INVOCATION (coding, 0) = 3; \
4200 } while (0)
4201
4202
4203 /* Produce codes for a DIMENSION1 character whose character set is
4204 CHARSET and whose position-code is C1. Designation and invocation
4205 sequences are also produced in advance if necessary. */
4206
4207 #define ENCODE_ISO_CHARACTER_DIMENSION1(charset, c1) \
4208 do { \
4209 int id = CHARSET_ID (charset); \
4210 \
4211 if ((CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_ROMAN) \
4212 && id == charset_ascii) \
4213 { \
4214 id = charset_jisx0201_roman; \
4215 charset = CHARSET_FROM_ID (id); \
4216 } \
4217 \
4218 if (CODING_ISO_SINGLE_SHIFTING (coding)) \
4219 { \
4220 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4221 EMIT_ONE_ASCII_BYTE (c1 & 0x7F); \
4222 else \
4223 EMIT_ONE_BYTE (c1 | 0x80); \
4224 CODING_ISO_SINGLE_SHIFTING (coding) = 0; \
4225 break; \
4226 } \
4227 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 0)) \
4228 { \
4229 EMIT_ONE_ASCII_BYTE (c1 & 0x7F); \
4230 break; \
4231 } \
4232 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 1)) \
4233 { \
4234 EMIT_ONE_BYTE (c1 | 0x80); \
4235 break; \
4236 } \
4237 else \
4238 /* Since CHARSET is not yet invoked to any graphic planes, we \
4239 must invoke it, or, at first, designate it to some graphic \
4240 register. Then repeat the loop to actually produce the \
4241 character. */ \
4242 dst = encode_invocation_designation (charset, coding, dst, \
4243 &produced_chars); \
4244 } while (1)
4245
4246
4247 /* Produce codes for a DIMENSION2 character whose character set is
4248 CHARSET and whose position-codes are C1 and C2. Designation and
4249 invocation codes are also produced in advance if necessary. */
4250
4251 #define ENCODE_ISO_CHARACTER_DIMENSION2(charset, c1, c2) \
4252 do { \
4253 int id = CHARSET_ID (charset); \
4254 \
4255 if ((CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_OLDJIS) \
4256 && id == charset_jisx0208) \
4257 { \
4258 id = charset_jisx0208_1978; \
4259 charset = CHARSET_FROM_ID (id); \
4260 } \
4261 \
4262 if (CODING_ISO_SINGLE_SHIFTING (coding)) \
4263 { \
4264 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4265 EMIT_TWO_ASCII_BYTES ((c1) & 0x7F, (c2) & 0x7F); \
4266 else \
4267 EMIT_TWO_BYTES ((c1) | 0x80, (c2) | 0x80); \
4268 CODING_ISO_SINGLE_SHIFTING (coding) = 0; \
4269 break; \
4270 } \
4271 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 0)) \
4272 { \
4273 EMIT_TWO_ASCII_BYTES ((c1) & 0x7F, (c2) & 0x7F); \
4274 break; \
4275 } \
4276 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 1)) \
4277 { \
4278 EMIT_TWO_BYTES ((c1) | 0x80, (c2) | 0x80); \
4279 break; \
4280 } \
4281 else \
4282 /* Since CHARSET is not yet invoked to any graphic planes, we \
4283 must invoke it, or, at first, designate it to some graphic \
4284 register. Then repeat the loop to actually produce the \
4285 character. */ \
4286 dst = encode_invocation_designation (charset, coding, dst, \
4287 &produced_chars); \
4288 } while (1)
4289
4290
4291 #define ENCODE_ISO_CHARACTER(charset, c) \
4292 do { \
4293 int code = ENCODE_CHAR ((charset),(c)); \
4294 \
4295 if (CHARSET_DIMENSION (charset) == 1) \
4296 ENCODE_ISO_CHARACTER_DIMENSION1 ((charset), code); \
4297 else \
4298 ENCODE_ISO_CHARACTER_DIMENSION2 ((charset), code >> 8, code & 0xFF); \
4299 } while (0)
4300
4301
4302 /* Produce designation and invocation codes at a place pointed by DST
4303 to use CHARSET. The element `spec.iso_2022' of *CODING is updated.
4304 Return new DST. */
4305
4306 unsigned char *
4307 encode_invocation_designation (charset, coding, dst, p_nchars)
4308 struct charset *charset;
4309 struct coding_system *coding;
4310 unsigned char *dst;
4311 int *p_nchars;
4312 {
4313 int multibytep = coding->dst_multibyte;
4314 int produced_chars = *p_nchars;
4315 int reg; /* graphic register number */
4316 int id = CHARSET_ID (charset);
4317
4318 /* At first, check designations. */
4319 for (reg = 0; reg < 4; reg++)
4320 if (id == CODING_ISO_DESIGNATION (coding, reg))
4321 break;
4322
4323 if (reg >= 4)
4324 {
4325 /* CHARSET is not yet designated to any graphic registers. */
4326 /* At first check the requested designation. */
4327 reg = CODING_ISO_REQUEST (coding, id);
4328 if (reg < 0)
4329 /* Since CHARSET requests no special designation, designate it
4330 to graphic register 0. */
4331 reg = 0;
4332
4333 ENCODE_DESIGNATION (charset, reg, coding);
4334 }
4335
4336 if (CODING_ISO_INVOCATION (coding, 0) != reg
4337 && CODING_ISO_INVOCATION (coding, 1) != reg)
4338 {
4339 /* Since the graphic register REG is not invoked to any graphic
4340 planes, invoke it to graphic plane 0. */
4341 switch (reg)
4342 {
4343 case 0: /* graphic register 0 */
4344 ENCODE_SHIFT_IN;
4345 break;
4346
4347 case 1: /* graphic register 1 */
4348 ENCODE_SHIFT_OUT;
4349 break;
4350
4351 case 2: /* graphic register 2 */
4352 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
4353 ENCODE_SINGLE_SHIFT_2;
4354 else
4355 ENCODE_LOCKING_SHIFT_2;
4356 break;
4357
4358 case 3: /* graphic register 3 */
4359 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
4360 ENCODE_SINGLE_SHIFT_3;
4361 else
4362 ENCODE_LOCKING_SHIFT_3;
4363 break;
4364 }
4365 }
4366
4367 *p_nchars = produced_chars;
4368 return dst;
4369 }
4370
4371 /* The following three macros produce codes for indicating direction
4372 of text. */
4373 #define ENCODE_CONTROL_SEQUENCE_INTRODUCER \
4374 do { \
4375 if (CODING_ISO_FLAGS (coding) == CODING_ISO_FLAG_SEVEN_BITS) \
4376 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, '['); \
4377 else \
4378 EMIT_ONE_BYTE (ISO_CODE_CSI); \
4379 } while (0)
4380
4381
4382 #define ENCODE_DIRECTION_R2L() \
4383 do { \
4384 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst); \
4385 EMIT_TWO_ASCII_BYTES ('2', ']'); \
4386 } while (0)
4387
4388
4389 #define ENCODE_DIRECTION_L2R() \
4390 do { \
4391 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst); \
4392 EMIT_TWO_ASCII_BYTES ('0', ']'); \
4393 } while (0)
4394
4395
4396 /* Produce codes for designation and invocation to reset the graphic
4397 planes and registers to initial state. */
4398 #define ENCODE_RESET_PLANE_AND_REGISTER() \
4399 do { \
4400 int reg; \
4401 struct charset *charset; \
4402 \
4403 if (CODING_ISO_INVOCATION (coding, 0) != 0) \
4404 ENCODE_SHIFT_IN; \
4405 for (reg = 0; reg < 4; reg++) \
4406 if (CODING_ISO_INITIAL (coding, reg) >= 0 \
4407 && (CODING_ISO_DESIGNATION (coding, reg) \
4408 != CODING_ISO_INITIAL (coding, reg))) \
4409 { \
4410 charset = CHARSET_FROM_ID (CODING_ISO_INITIAL (coding, reg)); \
4411 ENCODE_DESIGNATION (charset, reg, coding); \
4412 } \
4413 } while (0)
4414
4415
4416 /* Produce designation sequences of charsets in the line started from
4417 SRC to a place pointed by DST, and return updated DST.
4418
4419 If the current block ends before any end-of-line, we may fail to
4420 find all the necessary designations. */
4421
4422 static unsigned char *
4423 encode_designation_at_bol (coding, charbuf, charbuf_end, dst)
4424 struct coding_system *coding;
4425 int *charbuf, *charbuf_end;
4426 unsigned char *dst;
4427 {
4428 struct charset *charset;
4429 /* Table of charsets to be designated to each graphic register. */
4430 int r[4];
4431 int c, found = 0, reg;
4432 int produced_chars = 0;
4433 int multibytep = coding->dst_multibyte;
4434 Lisp_Object attrs;
4435 Lisp_Object charset_list;
4436
4437 attrs = CODING_ID_ATTRS (coding->id);
4438 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
4439 if (EQ (charset_list, Qiso_2022))
4440 charset_list = Viso_2022_charset_list;
4441
4442 for (reg = 0; reg < 4; reg++)
4443 r[reg] = -1;
4444
4445 while (found < 4)
4446 {
4447 int id;
4448
4449 c = *charbuf++;
4450 if (c == '\n')
4451 break;
4452 charset = char_charset (c, charset_list, NULL);
4453 id = CHARSET_ID (charset);
4454 reg = CODING_ISO_REQUEST (coding, id);
4455 if (reg >= 0 && r[reg] < 0)
4456 {
4457 found++;
4458 r[reg] = id;
4459 }
4460 }
4461
4462 if (found)
4463 {
4464 for (reg = 0; reg < 4; reg++)
4465 if (r[reg] >= 0
4466 && CODING_ISO_DESIGNATION (coding, reg) != r[reg])
4467 ENCODE_DESIGNATION (CHARSET_FROM_ID (r[reg]), reg, coding);
4468 }
4469
4470 return dst;
4471 }
4472
4473 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions". */
4474
4475 static int
4476 encode_coding_iso_2022 (coding)
4477 struct coding_system *coding;
4478 {
4479 int multibytep = coding->dst_multibyte;
4480 int *charbuf = coding->charbuf;
4481 int *charbuf_end = charbuf + coding->charbuf_used;
4482 unsigned char *dst = coding->destination + coding->produced;
4483 unsigned char *dst_end = coding->destination + coding->dst_bytes;
4484 int safe_room = 16;
4485 int bol_designation
4486 = (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATE_AT_BOL
4487 && CODING_ISO_BOL (coding));
4488 int produced_chars = 0;
4489 Lisp_Object attrs, eol_type, charset_list;
4490 int ascii_compatible;
4491 int c;
4492 int preferred_charset_id = -1;
4493
4494 CODING_GET_INFO (coding, attrs, charset_list);
4495 eol_type = inhibit_eol_conversion ? Qunix : CODING_ID_EOL_TYPE (coding->id);
4496 if (VECTORP (eol_type))
4497 eol_type = Qunix;
4498
4499 setup_iso_safe_charsets (attrs);
4500 /* Charset list may have been changed. */
4501 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
4502 coding->safe_charsets = SDATA (CODING_ATTR_SAFE_CHARSETS (attrs));
4503
4504 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
4505
4506 while (charbuf < charbuf_end)
4507 {
4508 ASSURE_DESTINATION (safe_room);
4509
4510 if (bol_designation)
4511 {
4512 unsigned char *dst_prev = dst;
4513
4514 /* We have to produce designation sequences if any now. */
4515 dst = encode_designation_at_bol (coding, charbuf, charbuf_end, dst);
4516 bol_designation = 0;
4517 /* We are sure that designation sequences are all ASCII bytes. */
4518 produced_chars += dst - dst_prev;
4519 }
4520
4521 c = *charbuf++;
4522
4523 if (c < 0)
4524 {
4525 /* Handle an annotation. */
4526 switch (*charbuf)
4527 {
4528 case CODING_ANNOTATE_COMPOSITION_MASK:
4529 /* Not yet implemented. */
4530 break;
4531 case CODING_ANNOTATE_CHARSET_MASK:
4532 preferred_charset_id = charbuf[2];
4533 if (preferred_charset_id >= 0
4534 && NILP (Fmemq (make_number (preferred_charset_id),
4535 charset_list)))
4536 preferred_charset_id = -1;
4537 break;
4538 default:
4539 abort ();
4540 }
4541 charbuf += -c - 1;
4542 continue;
4543 }
4544
4545 /* Now encode the character C. */
4546 if (c < 0x20 || c == 0x7F)
4547 {
4548 if (c == '\n'
4549 || (c == '\r' && EQ (eol_type, Qmac)))
4550 {
4551 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_RESET_AT_EOL)
4552 ENCODE_RESET_PLANE_AND_REGISTER ();
4553 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_INIT_AT_BOL)
4554 {
4555 int i;
4556
4557 for (i = 0; i < 4; i++)
4558 CODING_ISO_DESIGNATION (coding, i)
4559 = CODING_ISO_INITIAL (coding, i);
4560 }
4561 bol_designation
4562 = CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATE_AT_BOL;
4563 }
4564 else if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_RESET_AT_CNTL)
4565 ENCODE_RESET_PLANE_AND_REGISTER ();
4566 EMIT_ONE_ASCII_BYTE (c);
4567 }
4568 else if (ASCII_CHAR_P (c))
4569 {
4570 if (ascii_compatible)
4571 EMIT_ONE_ASCII_BYTE (c);
4572 else
4573 {
4574 struct charset *charset = CHARSET_FROM_ID (charset_ascii);
4575 ENCODE_ISO_CHARACTER (charset, c);
4576 }
4577 }
4578 else if (CHAR_BYTE8_P (c))
4579 {
4580 c = CHAR_TO_BYTE8 (c);
4581 EMIT_ONE_BYTE (c);
4582 }
4583 else
4584 {
4585 struct charset *charset;
4586
4587 if (preferred_charset_id >= 0)
4588 {
4589 charset = CHARSET_FROM_ID (preferred_charset_id);
4590 if (! CHAR_CHARSET_P (c, charset))
4591 charset = char_charset (c, charset_list, NULL);
4592 }
4593 else
4594 charset = char_charset (c, charset_list, NULL);
4595 if (!charset)
4596 {
4597 if (coding->mode & CODING_MODE_SAFE_ENCODING)
4598 {
4599 c = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
4600 charset = CHARSET_FROM_ID (charset_ascii);
4601 }
4602 else
4603 {
4604 c = coding->default_char;
4605 charset = char_charset (c, charset_list, NULL);
4606 }
4607 }
4608 ENCODE_ISO_CHARACTER (charset, c);
4609 }
4610 }
4611
4612 if (coding->mode & CODING_MODE_LAST_BLOCK
4613 && CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_RESET_AT_EOL)
4614 {
4615 ASSURE_DESTINATION (safe_room);
4616 ENCODE_RESET_PLANE_AND_REGISTER ();
4617 }
4618 record_conversion_result (coding, CODING_RESULT_SUCCESS);
4619 CODING_ISO_BOL (coding) = bol_designation;
4620 coding->produced_char += produced_chars;
4621 coding->produced = dst - coding->destination;
4622 return 0;
4623 }
4624
4625 \f
4626 /*** 8,9. SJIS and BIG5 handlers ***/
4627
4628 /* Although SJIS and BIG5 are not ISO's coding system, they are used
4629 quite widely. So, for the moment, Emacs supports them in the bare
4630 C code. But, in the future, they may be supported only by CCL. */
4631
4632 /* SJIS is a coding system encoding three character sets: ASCII, right
4633 half of JISX0201-Kana, and JISX0208. An ASCII character is encoded
4634 as is. A character of charset katakana-jisx0201 is encoded by
4635 "position-code + 0x80". A character of charset japanese-jisx0208
4636 is encoded in 2-byte but two position-codes are divided and shifted
4637 so that it fit in the range below.
4638
4639 --- CODE RANGE of SJIS ---
4640 (character set) (range)
4641 ASCII 0x00 .. 0x7F
4642 KATAKANA-JISX0201 0xA0 .. 0xDF
4643 JISX0208 (1st byte) 0x81 .. 0x9F and 0xE0 .. 0xEF
4644 (2nd byte) 0x40 .. 0x7E and 0x80 .. 0xFC
4645 -------------------------------
4646
4647 */
4648
4649 /* BIG5 is a coding system encoding two character sets: ASCII and
4650 Big5. An ASCII character is encoded as is. Big5 is a two-byte
4651 character set and is encoded in two-byte.
4652
4653 --- CODE RANGE of BIG5 ---
4654 (character set) (range)
4655 ASCII 0x00 .. 0x7F
4656 Big5 (1st byte) 0xA1 .. 0xFE
4657 (2nd byte) 0x40 .. 0x7E and 0xA1 .. 0xFE
4658 --------------------------
4659
4660 */
4661
4662 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
4663 Check if a text is encoded in SJIS. If it is, return
4664 CATEGORY_MASK_SJIS, else return 0. */
4665
4666 static int
4667 detect_coding_sjis (coding, detect_info)
4668 struct coding_system *coding;
4669 struct coding_detection_info *detect_info;
4670 {
4671 const unsigned char *src = coding->source, *src_base;
4672 const unsigned char *src_end = coding->source + coding->src_bytes;
4673 int multibytep = coding->src_multibyte;
4674 int consumed_chars = 0;
4675 int found = 0;
4676 int c;
4677 Lisp_Object attrs, charset_list;
4678 int max_first_byte_of_2_byte_code;
4679
4680 CODING_GET_INFO (coding, attrs, charset_list);
4681 max_first_byte_of_2_byte_code
4682 = (XINT (Flength (charset_list)) > 3 ? 0xFC : 0xEF);
4683
4684 detect_info->checked |= CATEGORY_MASK_SJIS;
4685 /* A coding system of this category is always ASCII compatible. */
4686 src += coding->head_ascii;
4687
4688 while (1)
4689 {
4690 src_base = src;
4691 ONE_MORE_BYTE (c);
4692 if (c < 0x80)
4693 continue;
4694 if ((c >= 0x81 && c <= 0x9F)
4695 || (c >= 0xE0 && c <= max_first_byte_of_2_byte_code))
4696 {
4697 ONE_MORE_BYTE (c);
4698 if (c < 0x40 || c == 0x7F || c > 0xFC)
4699 break;
4700 found = CATEGORY_MASK_SJIS;
4701 }
4702 else if (c >= 0xA0 && c < 0xE0)
4703 found = CATEGORY_MASK_SJIS;
4704 else
4705 break;
4706 }
4707 detect_info->rejected |= CATEGORY_MASK_SJIS;
4708 return 0;
4709
4710 no_more_source:
4711 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
4712 {
4713 detect_info->rejected |= CATEGORY_MASK_SJIS;
4714 return 0;
4715 }
4716 detect_info->found |= found;
4717 return 1;
4718 }
4719
4720 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
4721 Check if a text is encoded in BIG5. If it is, return
4722 CATEGORY_MASK_BIG5, else return 0. */
4723
4724 static int
4725 detect_coding_big5 (coding, detect_info)
4726 struct coding_system *coding;
4727 struct coding_detection_info *detect_info;
4728 {
4729 const unsigned char *src = coding->source, *src_base;
4730 const unsigned char *src_end = coding->source + coding->src_bytes;
4731 int multibytep = coding->src_multibyte;
4732 int consumed_chars = 0;
4733 int found = 0;
4734 int c;
4735
4736 detect_info->checked |= CATEGORY_MASK_BIG5;
4737 /* A coding system of this category is always ASCII compatible. */
4738 src += coding->head_ascii;
4739
4740 while (1)
4741 {
4742 src_base = src;
4743 ONE_MORE_BYTE (c);
4744 if (c < 0x80)
4745 continue;
4746 if (c >= 0xA1)
4747 {
4748 ONE_MORE_BYTE (c);
4749 if (c < 0x40 || (c >= 0x7F && c <= 0xA0))
4750 return 0;
4751 found = CATEGORY_MASK_BIG5;
4752 }
4753 else
4754 break;
4755 }
4756 detect_info->rejected |= CATEGORY_MASK_BIG5;
4757 return 0;
4758
4759 no_more_source:
4760 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
4761 {
4762 detect_info->rejected |= CATEGORY_MASK_BIG5;
4763 return 0;
4764 }
4765 detect_info->found |= found;
4766 return 1;
4767 }
4768
4769 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".
4770 If SJIS_P is 1, decode SJIS text, else decode BIG5 test. */
4771
4772 static void
4773 decode_coding_sjis (coding)
4774 struct coding_system *coding;
4775 {
4776 const unsigned char *src = coding->source + coding->consumed;
4777 const unsigned char *src_end = coding->source + coding->src_bytes;
4778 const unsigned char *src_base;
4779 int *charbuf = coding->charbuf + coding->charbuf_used;
4780 /* We may produce one charset annocation in one loop and one more at
4781 the end. */
4782 int *charbuf_end
4783 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 2);
4784 int consumed_chars = 0, consumed_chars_base;
4785 int multibytep = coding->src_multibyte;
4786 struct charset *charset_roman, *charset_kanji, *charset_kana;
4787 struct charset *charset_kanji2;
4788 Lisp_Object attrs, charset_list, val;
4789 int char_offset = coding->produced_char;
4790 int last_offset = char_offset;
4791 int last_id = charset_ascii;
4792 int eol_crlf =
4793 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
4794 int byte_after_cr = -1;
4795
4796 CODING_GET_INFO (coding, attrs, charset_list);
4797
4798 val = charset_list;
4799 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4800 charset_kana = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4801 charset_kanji = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4802 charset_kanji2 = NILP (val) ? NULL : CHARSET_FROM_ID (XINT (XCAR (val)));
4803
4804 while (1)
4805 {
4806 int c, c1;
4807 struct charset *charset;
4808
4809 src_base = src;
4810 consumed_chars_base = consumed_chars;
4811
4812 if (charbuf >= charbuf_end)
4813 {
4814 if (byte_after_cr >= 0)
4815 src_base--;
4816 break;
4817 }
4818
4819 if (byte_after_cr >= 0)
4820 c = byte_after_cr, byte_after_cr = -1;
4821 else
4822 ONE_MORE_BYTE (c);
4823 if (c < 0)
4824 goto invalid_code;
4825 if (c < 0x80)
4826 {
4827 if (eol_crlf && c == '\r')
4828 ONE_MORE_BYTE (byte_after_cr);
4829 charset = charset_roman;
4830 }
4831 else if (c == 0x80 || c == 0xA0)
4832 goto invalid_code;
4833 else if (c >= 0xA1 && c <= 0xDF)
4834 {
4835 /* SJIS -> JISX0201-Kana */
4836 c &= 0x7F;
4837 charset = charset_kana;
4838 }
4839 else if (c <= 0xEF)
4840 {
4841 /* SJIS -> JISX0208 */
4842 ONE_MORE_BYTE (c1);
4843 if (c1 < 0x40 || c1 == 0x7F || c1 > 0xFC)
4844 goto invalid_code;
4845 c = (c << 8) | c1;
4846 SJIS_TO_JIS (c);
4847 charset = charset_kanji;
4848 }
4849 else if (c <= 0xFC && charset_kanji2)
4850 {
4851 /* SJIS -> JISX0213-2 */
4852 ONE_MORE_BYTE (c1);
4853 if (c1 < 0x40 || c1 == 0x7F || c1 > 0xFC)
4854 goto invalid_code;
4855 c = (c << 8) | c1;
4856 SJIS_TO_JIS2 (c);
4857 charset = charset_kanji2;
4858 }
4859 else
4860 goto invalid_code;
4861 if (charset->id != charset_ascii
4862 && last_id != charset->id)
4863 {
4864 if (last_id != charset_ascii)
4865 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4866 last_id = charset->id;
4867 last_offset = char_offset;
4868 }
4869 CODING_DECODE_CHAR (coding, src, src_base, src_end, charset, c, c);
4870 *charbuf++ = c;
4871 char_offset++;
4872 continue;
4873
4874 invalid_code:
4875 src = src_base;
4876 consumed_chars = consumed_chars_base;
4877 ONE_MORE_BYTE (c);
4878 *charbuf++ = c < 0 ? -c : BYTE8_TO_CHAR (c);
4879 char_offset++;
4880 coding->errors++;
4881 }
4882
4883 no_more_source:
4884 if (last_id != charset_ascii)
4885 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4886 coding->consumed_char += consumed_chars_base;
4887 coding->consumed = src_base - coding->source;
4888 coding->charbuf_used = charbuf - coding->charbuf;
4889 }
4890
4891 static void
4892 decode_coding_big5 (coding)
4893 struct coding_system *coding;
4894 {
4895 const unsigned char *src = coding->source + coding->consumed;
4896 const unsigned char *src_end = coding->source + coding->src_bytes;
4897 const unsigned char *src_base;
4898 int *charbuf = coding->charbuf + coding->charbuf_used;
4899 /* We may produce one charset annocation in one loop and one more at
4900 the end. */
4901 int *charbuf_end
4902 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 2);
4903 int consumed_chars = 0, consumed_chars_base;
4904 int multibytep = coding->src_multibyte;
4905 struct charset *charset_roman, *charset_big5;
4906 Lisp_Object attrs, charset_list, val;
4907 int char_offset = coding->produced_char;
4908 int last_offset = char_offset;
4909 int last_id = charset_ascii;
4910 int eol_crlf =
4911 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
4912 int byte_after_cr = -1;
4913
4914 CODING_GET_INFO (coding, attrs, charset_list);
4915 val = charset_list;
4916 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4917 charset_big5 = CHARSET_FROM_ID (XINT (XCAR (val)));
4918
4919 while (1)
4920 {
4921 int c, c1;
4922 struct charset *charset;
4923
4924 src_base = src;
4925 consumed_chars_base = consumed_chars;
4926
4927 if (charbuf >= charbuf_end)
4928 {
4929 if (byte_after_cr >= 0)
4930 src_base--;
4931 break;
4932 }
4933
4934 if (byte_after_cr >= 0)
4935 c = byte_after_cr, byte_after_cr = -1;
4936 else
4937 ONE_MORE_BYTE (c);
4938
4939 if (c < 0)
4940 goto invalid_code;
4941 if (c < 0x80)
4942 {
4943 if (eol_crlf && c == '\r')
4944 ONE_MORE_BYTE (byte_after_cr);
4945 charset = charset_roman;
4946 }
4947 else
4948 {
4949 /* BIG5 -> Big5 */
4950 if (c < 0xA1 || c > 0xFE)
4951 goto invalid_code;
4952 ONE_MORE_BYTE (c1);
4953 if (c1 < 0x40 || (c1 > 0x7E && c1 < 0xA1) || c1 > 0xFE)
4954 goto invalid_code;
4955 c = c << 8 | c1;
4956 charset = charset_big5;
4957 }
4958 if (charset->id != charset_ascii
4959 && last_id != charset->id)
4960 {
4961 if (last_id != charset_ascii)
4962 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4963 last_id = charset->id;
4964 last_offset = char_offset;
4965 }
4966 CODING_DECODE_CHAR (coding, src, src_base, src_end, charset, c, c);
4967 *charbuf++ = c;
4968 char_offset++;
4969 continue;
4970
4971 invalid_code:
4972 src = src_base;
4973 consumed_chars = consumed_chars_base;
4974 ONE_MORE_BYTE (c);
4975 *charbuf++ = c < 0 ? -c : BYTE8_TO_CHAR (c);
4976 char_offset++;
4977 coding->errors++;
4978 }
4979
4980 no_more_source:
4981 if (last_id != charset_ascii)
4982 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4983 coding->consumed_char += consumed_chars_base;
4984 coding->consumed = src_base - coding->source;
4985 coding->charbuf_used = charbuf - coding->charbuf;
4986 }
4987
4988 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions".
4989 This function can encode charsets `ascii', `katakana-jisx0201',
4990 `japanese-jisx0208', `chinese-big5-1', and `chinese-big5-2'. We
4991 are sure that all these charsets are registered as official charset
4992 (i.e. do not have extended leading-codes). Characters of other
4993 charsets are produced without any encoding. If SJIS_P is 1, encode
4994 SJIS text, else encode BIG5 text. */
4995
4996 static int
4997 encode_coding_sjis (coding)
4998 struct coding_system *coding;
4999 {
5000 int multibytep = coding->dst_multibyte;
5001 int *charbuf = coding->charbuf;
5002 int *charbuf_end = charbuf + coding->charbuf_used;
5003 unsigned char *dst = coding->destination + coding->produced;
5004 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5005 int safe_room = 4;
5006 int produced_chars = 0;
5007 Lisp_Object attrs, charset_list, val;
5008 int ascii_compatible;
5009 struct charset *charset_roman, *charset_kanji, *charset_kana;
5010 struct charset *charset_kanji2;
5011 int c;
5012
5013 CODING_GET_INFO (coding, attrs, charset_list);
5014 val = charset_list;
5015 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
5016 charset_kana = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
5017 charset_kanji = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
5018 charset_kanji2 = NILP (val) ? NULL : CHARSET_FROM_ID (XINT (XCAR (val)));
5019
5020 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
5021
5022 while (charbuf < charbuf_end)
5023 {
5024 ASSURE_DESTINATION (safe_room);
5025 c = *charbuf++;
5026 /* Now encode the character C. */
5027 if (ASCII_CHAR_P (c) && ascii_compatible)
5028 EMIT_ONE_ASCII_BYTE (c);
5029 else if (CHAR_BYTE8_P (c))
5030 {
5031 c = CHAR_TO_BYTE8 (c);
5032 EMIT_ONE_BYTE (c);
5033 }
5034 else
5035 {
5036 unsigned code;
5037 struct charset *charset = char_charset (c, charset_list, &code);
5038
5039 if (!charset)
5040 {
5041 if (coding->mode & CODING_MODE_SAFE_ENCODING)
5042 {
5043 code = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
5044 charset = CHARSET_FROM_ID (charset_ascii);
5045 }
5046 else
5047 {
5048 c = coding->default_char;
5049 charset = char_charset (c, charset_list, &code);
5050 }
5051 }
5052 if (code == CHARSET_INVALID_CODE (charset))
5053 abort ();
5054 if (charset == charset_kanji)
5055 {
5056 int c1, c2;
5057 JIS_TO_SJIS (code);
5058 c1 = code >> 8, c2 = code & 0xFF;
5059 EMIT_TWO_BYTES (c1, c2);
5060 }
5061 else if (charset == charset_kana)
5062 EMIT_ONE_BYTE (code | 0x80);
5063 else if (charset_kanji2 && charset == charset_kanji2)
5064 {
5065 int c1, c2;
5066
5067 c1 = code >> 8;
5068 if (c1 == 0x21 || (c1 >= 0x23 && c1 <= 0x25)
5069 || c1 == 0x28
5070 || (c1 >= 0x2C && c1 <= 0x2F) || c1 >= 0x6E)
5071 {
5072 JIS_TO_SJIS2 (code);
5073 c1 = code >> 8, c2 = code & 0xFF;
5074 EMIT_TWO_BYTES (c1, c2);
5075 }
5076 else
5077 EMIT_ONE_ASCII_BYTE (code & 0x7F);
5078 }
5079 else
5080 EMIT_ONE_ASCII_BYTE (code & 0x7F);
5081 }
5082 }
5083 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5084 coding->produced_char += produced_chars;
5085 coding->produced = dst - coding->destination;
5086 return 0;
5087 }
5088
5089 static int
5090 encode_coding_big5 (coding)
5091 struct coding_system *coding;
5092 {
5093 int multibytep = coding->dst_multibyte;
5094 int *charbuf = coding->charbuf;
5095 int *charbuf_end = charbuf + coding->charbuf_used;
5096 unsigned char *dst = coding->destination + coding->produced;
5097 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5098 int safe_room = 4;
5099 int produced_chars = 0;
5100 Lisp_Object attrs, charset_list, val;
5101 int ascii_compatible;
5102 struct charset *charset_roman, *charset_big5;
5103 int c;
5104
5105 CODING_GET_INFO (coding, attrs, charset_list);
5106 val = charset_list;
5107 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
5108 charset_big5 = CHARSET_FROM_ID (XINT (XCAR (val)));
5109 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
5110
5111 while (charbuf < charbuf_end)
5112 {
5113 ASSURE_DESTINATION (safe_room);
5114 c = *charbuf++;
5115 /* Now encode the character C. */
5116 if (ASCII_CHAR_P (c) && ascii_compatible)
5117 EMIT_ONE_ASCII_BYTE (c);
5118 else if (CHAR_BYTE8_P (c))
5119 {
5120 c = CHAR_TO_BYTE8 (c);
5121 EMIT_ONE_BYTE (c);
5122 }
5123 else
5124 {
5125 unsigned code;
5126 struct charset *charset = char_charset (c, charset_list, &code);
5127
5128 if (! charset)
5129 {
5130 if (coding->mode & CODING_MODE_SAFE_ENCODING)
5131 {
5132 code = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
5133 charset = CHARSET_FROM_ID (charset_ascii);
5134 }
5135 else
5136 {
5137 c = coding->default_char;
5138 charset = char_charset (c, charset_list, &code);
5139 }
5140 }
5141 if (code == CHARSET_INVALID_CODE (charset))
5142 abort ();
5143 if (charset == charset_big5)
5144 {
5145 int c1, c2;
5146
5147 c1 = code >> 8, c2 = code & 0xFF;
5148 EMIT_TWO_BYTES (c1, c2);
5149 }
5150 else
5151 EMIT_ONE_ASCII_BYTE (code & 0x7F);
5152 }
5153 }
5154 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5155 coding->produced_char += produced_chars;
5156 coding->produced = dst - coding->destination;
5157 return 0;
5158 }
5159
5160 \f
5161 /*** 10. CCL handlers ***/
5162
5163 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
5164 Check if a text is encoded in a coding system of which
5165 encoder/decoder are written in CCL program. If it is, return
5166 CATEGORY_MASK_CCL, else return 0. */
5167
5168 static int
5169 detect_coding_ccl (coding, detect_info)
5170 struct coding_system *coding;
5171 struct coding_detection_info *detect_info;
5172 {
5173 const unsigned char *src = coding->source, *src_base;
5174 const unsigned char *src_end = coding->source + coding->src_bytes;
5175 int multibytep = coding->src_multibyte;
5176 int consumed_chars = 0;
5177 int found = 0;
5178 unsigned char *valids;
5179 int head_ascii = coding->head_ascii;
5180 Lisp_Object attrs;
5181
5182 detect_info->checked |= CATEGORY_MASK_CCL;
5183
5184 coding = &coding_categories[coding_category_ccl];
5185 valids = CODING_CCL_VALIDS (coding);
5186 attrs = CODING_ID_ATTRS (coding->id);
5187 if (! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
5188 src += head_ascii;
5189
5190 while (1)
5191 {
5192 int c;
5193
5194 src_base = src;
5195 ONE_MORE_BYTE (c);
5196 if (c < 0 || ! valids[c])
5197 break;
5198 if ((valids[c] > 1))
5199 found = CATEGORY_MASK_CCL;
5200 }
5201 detect_info->rejected |= CATEGORY_MASK_CCL;
5202 return 0;
5203
5204 no_more_source:
5205 detect_info->found |= found;
5206 return 1;
5207 }
5208
5209 static void
5210 decode_coding_ccl (coding)
5211 struct coding_system *coding;
5212 {
5213 const unsigned char *src = coding->source + coding->consumed;
5214 const unsigned char *src_end = coding->source + coding->src_bytes;
5215 int *charbuf = coding->charbuf + coding->charbuf_used;
5216 int *charbuf_end = coding->charbuf + coding->charbuf_size;
5217 int consumed_chars = 0;
5218 int multibytep = coding->src_multibyte;
5219 struct ccl_program ccl;
5220 int source_charbuf[1024];
5221 int source_byteidx[1024];
5222 Lisp_Object attrs, charset_list;
5223
5224 CODING_GET_INFO (coding, attrs, charset_list);
5225 setup_ccl_program (&ccl, CODING_CCL_DECODER (coding));
5226
5227 while (src < src_end)
5228 {
5229 const unsigned char *p = src;
5230 int *source, *source_end;
5231 int i = 0;
5232
5233 if (multibytep)
5234 while (i < 1024 && p < src_end)
5235 {
5236 source_byteidx[i] = p - src;
5237 source_charbuf[i++] = STRING_CHAR_ADVANCE (p);
5238 }
5239 else
5240 while (i < 1024 && p < src_end)
5241 source_charbuf[i++] = *p++;
5242
5243 if (p == src_end && coding->mode & CODING_MODE_LAST_BLOCK)
5244 ccl.last_block = 1;
5245
5246 source = source_charbuf;
5247 source_end = source + i;
5248 while (source < source_end)
5249 {
5250 ccl_driver (&ccl, source, charbuf,
5251 source_end - source, charbuf_end - charbuf,
5252 charset_list);
5253 source += ccl.consumed;
5254 charbuf += ccl.produced;
5255 if (ccl.status != CCL_STAT_SUSPEND_BY_DST)
5256 break;
5257 }
5258 if (source < source_end)
5259 src += source_byteidx[source - source_charbuf];
5260 else
5261 src = p;
5262 consumed_chars += source - source_charbuf;
5263
5264 if (ccl.status != CCL_STAT_SUSPEND_BY_SRC
5265 && ccl.status != CODING_RESULT_INSUFFICIENT_SRC)
5266 break;
5267 }
5268
5269 switch (ccl.status)
5270 {
5271 case CCL_STAT_SUSPEND_BY_SRC:
5272 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_SRC);
5273 break;
5274 case CCL_STAT_SUSPEND_BY_DST:
5275 break;
5276 case CCL_STAT_QUIT:
5277 case CCL_STAT_INVALID_CMD:
5278 record_conversion_result (coding, CODING_RESULT_INTERRUPT);
5279 break;
5280 default:
5281 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5282 break;
5283 }
5284 coding->consumed_char += consumed_chars;
5285 coding->consumed = src - coding->source;
5286 coding->charbuf_used = charbuf - coding->charbuf;
5287 }
5288
5289 static int
5290 encode_coding_ccl (coding)
5291 struct coding_system *coding;
5292 {
5293 struct ccl_program ccl;
5294 int multibytep = coding->dst_multibyte;
5295 int *charbuf = coding->charbuf;
5296 int *charbuf_end = charbuf + coding->charbuf_used;
5297 unsigned char *dst = coding->destination + coding->produced;
5298 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5299 int destination_charbuf[1024];
5300 int i, produced_chars = 0;
5301 Lisp_Object attrs, charset_list;
5302
5303 CODING_GET_INFO (coding, attrs, charset_list);
5304 setup_ccl_program (&ccl, CODING_CCL_ENCODER (coding));
5305
5306 ccl.last_block = coding->mode & CODING_MODE_LAST_BLOCK;
5307 ccl.dst_multibyte = coding->dst_multibyte;
5308
5309 while (charbuf < charbuf_end)
5310 {
5311 ccl_driver (&ccl, charbuf, destination_charbuf,
5312 charbuf_end - charbuf, 1024, charset_list);
5313 if (multibytep)
5314 {
5315 ASSURE_DESTINATION (ccl.produced * 2);
5316 for (i = 0; i < ccl.produced; i++)
5317 EMIT_ONE_BYTE (destination_charbuf[i] & 0xFF);
5318 }
5319 else
5320 {
5321 ASSURE_DESTINATION (ccl.produced);
5322 for (i = 0; i < ccl.produced; i++)
5323 *dst++ = destination_charbuf[i] & 0xFF;
5324 produced_chars += ccl.produced;
5325 }
5326 charbuf += ccl.consumed;
5327 if (ccl.status == CCL_STAT_QUIT
5328 || ccl.status == CCL_STAT_INVALID_CMD)
5329 break;
5330 }
5331
5332 switch (ccl.status)
5333 {
5334 case CCL_STAT_SUSPEND_BY_SRC:
5335 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_SRC);
5336 break;
5337 case CCL_STAT_SUSPEND_BY_DST:
5338 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_DST);
5339 break;
5340 case CCL_STAT_QUIT:
5341 case CCL_STAT_INVALID_CMD:
5342 record_conversion_result (coding, CODING_RESULT_INTERRUPT);
5343 break;
5344 default:
5345 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5346 break;
5347 }
5348
5349 coding->produced_char += produced_chars;
5350 coding->produced = dst - coding->destination;
5351 return 0;
5352 }
5353
5354
5355 \f
5356 /*** 10, 11. no-conversion handlers ***/
5357
5358 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
5359
5360 static void
5361 decode_coding_raw_text (coding)
5362 struct coding_system *coding;
5363 {
5364 int eol_crlf =
5365 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
5366
5367 coding->chars_at_source = 1;
5368 coding->consumed_char = coding->src_chars;
5369 coding->consumed = coding->src_bytes;
5370 if (eol_crlf && coding->source[coding->src_bytes - 1] == '\r')
5371 {
5372 coding->consumed_char--;
5373 coding->consumed--;
5374 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_SRC);
5375 }
5376 else
5377 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5378 }
5379
5380 static int
5381 encode_coding_raw_text (coding)
5382 struct coding_system *coding;
5383 {
5384 int multibytep = coding->dst_multibyte;
5385 int *charbuf = coding->charbuf;
5386 int *charbuf_end = coding->charbuf + coding->charbuf_used;
5387 unsigned char *dst = coding->destination + coding->produced;
5388 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5389 int produced_chars = 0;
5390 int c;
5391
5392 if (multibytep)
5393 {
5394 int safe_room = MAX_MULTIBYTE_LENGTH * 2;
5395
5396 if (coding->src_multibyte)
5397 while (charbuf < charbuf_end)
5398 {
5399 ASSURE_DESTINATION (safe_room);
5400 c = *charbuf++;
5401 if (ASCII_CHAR_P (c))
5402 EMIT_ONE_ASCII_BYTE (c);
5403 else if (CHAR_BYTE8_P (c))
5404 {
5405 c = CHAR_TO_BYTE8 (c);
5406 EMIT_ONE_BYTE (c);
5407 }
5408 else
5409 {
5410 unsigned char str[MAX_MULTIBYTE_LENGTH], *p0 = str, *p1 = str;
5411
5412 CHAR_STRING_ADVANCE (c, p1);
5413 while (p0 < p1)
5414 {
5415 EMIT_ONE_BYTE (*p0);
5416 p0++;
5417 }
5418 }
5419 }
5420 else
5421 while (charbuf < charbuf_end)
5422 {
5423 ASSURE_DESTINATION (safe_room);
5424 c = *charbuf++;
5425 EMIT_ONE_BYTE (c);
5426 }
5427 }
5428 else
5429 {
5430 if (coding->src_multibyte)
5431 {
5432 int safe_room = MAX_MULTIBYTE_LENGTH;
5433
5434 while (charbuf < charbuf_end)
5435 {
5436 ASSURE_DESTINATION (safe_room);
5437 c = *charbuf++;
5438 if (ASCII_CHAR_P (c))
5439 *dst++ = c;
5440 else if (CHAR_BYTE8_P (c))
5441 *dst++ = CHAR_TO_BYTE8 (c);
5442 else
5443 CHAR_STRING_ADVANCE (c, dst);
5444 }
5445 }
5446 else
5447 {
5448 ASSURE_DESTINATION (charbuf_end - charbuf);
5449 while (charbuf < charbuf_end && dst < dst_end)
5450 *dst++ = *charbuf++;
5451 }
5452 produced_chars = dst - (coding->destination + coding->produced);
5453 }
5454 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5455 coding->produced_char += produced_chars;
5456 coding->produced = dst - coding->destination;
5457 return 0;
5458 }
5459
5460 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
5461 Check if a text is encoded in a charset-based coding system. If it
5462 is, return 1, else return 0. */
5463
5464 static int
5465 detect_coding_charset (coding, detect_info)
5466 struct coding_system *coding;
5467 struct coding_detection_info *detect_info;
5468 {
5469 const unsigned char *src = coding->source, *src_base;
5470 const unsigned char *src_end = coding->source + coding->src_bytes;
5471 int multibytep = coding->src_multibyte;
5472 int consumed_chars = 0;
5473 Lisp_Object attrs, valids, name;
5474 int found = 0;
5475 int head_ascii = coding->head_ascii;
5476 int check_latin_extra = 0;
5477
5478 detect_info->checked |= CATEGORY_MASK_CHARSET;
5479
5480 coding = &coding_categories[coding_category_charset];
5481 attrs = CODING_ID_ATTRS (coding->id);
5482 valids = AREF (attrs, coding_attr_charset_valids);
5483 name = CODING_ID_NAME (coding->id);
5484 if (strncmp ((char *) SDATA (SYMBOL_NAME (name)),
5485 "iso-8859-", sizeof ("iso-8859-") - 1) == 0
5486 || strncmp ((char *) SDATA (SYMBOL_NAME (name)),
5487 "iso-latin-", sizeof ("iso-latin-") - 1) == 0)
5488 check_latin_extra = 1;
5489
5490 if (! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
5491 src += head_ascii;
5492
5493 while (1)
5494 {
5495 int c;
5496 Lisp_Object val;
5497 struct charset *charset;
5498 int dim, idx;
5499
5500 src_base = src;
5501 ONE_MORE_BYTE (c);
5502 if (c < 0)
5503 continue;
5504 val = AREF (valids, c);
5505 if (NILP (val))
5506 break;
5507 if (c >= 0x80)
5508 {
5509 if (c < 0xA0
5510 && check_latin_extra
5511 && (!VECTORP (Vlatin_extra_code_table)
5512 || NILP (XVECTOR (Vlatin_extra_code_table)->contents[c])))
5513 break;
5514 found = CATEGORY_MASK_CHARSET;
5515 }
5516 if (INTEGERP (val))
5517 {
5518 charset = CHARSET_FROM_ID (XFASTINT (val));
5519 dim = CHARSET_DIMENSION (charset);
5520 for (idx = 1; idx < dim; idx++)
5521 {
5522 if (src == src_end)
5523 goto too_short;
5524 ONE_MORE_BYTE (c);
5525 if (c < charset->code_space[(dim - 1 - idx) * 2]
5526 || c > charset->code_space[(dim - 1 - idx) * 2 + 1])
5527 break;
5528 }
5529 if (idx < dim)
5530 break;
5531 }
5532 else
5533 {
5534 idx = 1;
5535 for (; CONSP (val); val = XCDR (val))
5536 {
5537 charset = CHARSET_FROM_ID (XFASTINT (XCAR (val)));
5538 dim = CHARSET_DIMENSION (charset);
5539 while (idx < dim)
5540 {
5541 if (src == src_end)
5542 goto too_short;
5543 ONE_MORE_BYTE (c);
5544 if (c < charset->code_space[(dim - 1 - idx) * 4]
5545 || c > charset->code_space[(dim - 1 - idx) * 4 + 1])
5546 break;
5547 idx++;
5548 }
5549 if (idx == dim)
5550 {
5551 val = Qnil;
5552 break;
5553 }
5554 }
5555 if (CONSP (val))
5556 break;
5557 }
5558 }
5559 too_short:
5560 detect_info->rejected |= CATEGORY_MASK_CHARSET;
5561 return 0;
5562
5563 no_more_source:
5564 detect_info->found |= found;
5565 return 1;
5566 }
5567
5568 static void
5569 decode_coding_charset (coding)
5570 struct coding_system *coding;
5571 {
5572 const unsigned char *src = coding->source + coding->consumed;
5573 const unsigned char *src_end = coding->source + coding->src_bytes;
5574 const unsigned char *src_base;
5575 int *charbuf = coding->charbuf + coding->charbuf_used;
5576 /* We may produce one charset annocation in one loop and one more at
5577 the end. */
5578 int *charbuf_end
5579 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 2);
5580 int consumed_chars = 0, consumed_chars_base;
5581 int multibytep = coding->src_multibyte;
5582 Lisp_Object attrs, charset_list, valids;
5583 int char_offset = coding->produced_char;
5584 int last_offset = char_offset;
5585 int last_id = charset_ascii;
5586 int eol_crlf =
5587 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
5588 int byte_after_cr = -1;
5589
5590 CODING_GET_INFO (coding, attrs, charset_list);
5591 valids = AREF (attrs, coding_attr_charset_valids);
5592
5593 while (1)
5594 {
5595 int c;
5596 Lisp_Object val;
5597 struct charset *charset;
5598 int dim;
5599 int len = 1;
5600 unsigned code;
5601
5602 src_base = src;
5603 consumed_chars_base = consumed_chars;
5604
5605 if (charbuf >= charbuf_end)
5606 {
5607 if (byte_after_cr >= 0)
5608 src_base--;
5609 break;
5610 }
5611
5612 if (byte_after_cr >= 0)
5613 {
5614 c = byte_after_cr;
5615 byte_after_cr = -1;
5616 }
5617 else
5618 {
5619 ONE_MORE_BYTE (c);
5620 if (eol_crlf && c == '\r')
5621 ONE_MORE_BYTE (byte_after_cr);
5622 }
5623 if (c < 0)
5624 goto invalid_code;
5625 code = c;
5626
5627 val = AREF (valids, c);
5628 if (! INTEGERP (val) && ! CONSP (val))
5629 goto invalid_code;
5630 if (INTEGERP (val))
5631 {
5632 charset = CHARSET_FROM_ID (XFASTINT (val));
5633 dim = CHARSET_DIMENSION (charset);
5634 while (len < dim)
5635 {
5636 ONE_MORE_BYTE (c);
5637 code = (code << 8) | c;
5638 len++;
5639 }
5640 CODING_DECODE_CHAR (coding, src, src_base, src_end,
5641 charset, code, c);
5642 }
5643 else
5644 {
5645 /* VAL is a list of charset IDs. It is assured that the
5646 list is sorted by charset dimensions (smaller one
5647 comes first). */
5648 while (CONSP (val))
5649 {
5650 charset = CHARSET_FROM_ID (XFASTINT (XCAR (val)));
5651 dim = CHARSET_DIMENSION (charset);
5652 while (len < dim)
5653 {
5654 ONE_MORE_BYTE (c);
5655 code = (code << 8) | c;
5656 len++;
5657 }
5658 CODING_DECODE_CHAR (coding, src, src_base,
5659 src_end, charset, code, c);
5660 if (c >= 0)
5661 break;
5662 val = XCDR (val);
5663 }
5664 }
5665 if (c < 0)
5666 goto invalid_code;
5667 if (charset->id != charset_ascii
5668 && last_id != charset->id)
5669 {
5670 if (last_id != charset_ascii)
5671 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
5672 last_id = charset->id;
5673 last_offset = char_offset;
5674 }
5675
5676 *charbuf++ = c;
5677 char_offset++;
5678 continue;
5679
5680 invalid_code:
5681 src = src_base;
5682 consumed_chars = consumed_chars_base;
5683 ONE_MORE_BYTE (c);
5684 *charbuf++ = c < 0 ? -c : ASCII_BYTE_P (c) ? c : BYTE8_TO_CHAR (c);
5685 char_offset++;
5686 coding->errors++;
5687 }
5688
5689 no_more_source:
5690 if (last_id != charset_ascii)
5691 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
5692 coding->consumed_char += consumed_chars_base;
5693 coding->consumed = src_base - coding->source;
5694 coding->charbuf_used = charbuf - coding->charbuf;
5695 }
5696
5697 static int
5698 encode_coding_charset (coding)
5699 struct coding_system *coding;
5700 {
5701 int multibytep = coding->dst_multibyte;
5702 int *charbuf = coding->charbuf;
5703 int *charbuf_end = charbuf + coding->charbuf_used;
5704 unsigned char *dst = coding->destination + coding->produced;
5705 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5706 int safe_room = MAX_MULTIBYTE_LENGTH;
5707 int produced_chars = 0;
5708 Lisp_Object attrs, charset_list;
5709 int ascii_compatible;
5710 int c;
5711
5712 CODING_GET_INFO (coding, attrs, charset_list);
5713 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
5714
5715 while (charbuf < charbuf_end)
5716 {
5717 struct charset *charset;
5718 unsigned code;
5719
5720 ASSURE_DESTINATION (safe_room);
5721 c = *charbuf++;
5722 if (ascii_compatible && ASCII_CHAR_P (c))
5723 EMIT_ONE_ASCII_BYTE (c);
5724 else if (CHAR_BYTE8_P (c))
5725 {
5726 c = CHAR_TO_BYTE8 (c);
5727 EMIT_ONE_BYTE (c);
5728 }
5729 else
5730 {
5731 charset = char_charset (c, charset_list, &code);
5732 if (charset)
5733 {
5734 if (CHARSET_DIMENSION (charset) == 1)
5735 EMIT_ONE_BYTE (code);
5736 else if (CHARSET_DIMENSION (charset) == 2)
5737 EMIT_TWO_BYTES (code >> 8, code & 0xFF);
5738 else if (CHARSET_DIMENSION (charset) == 3)
5739 EMIT_THREE_BYTES (code >> 16, (code >> 8) & 0xFF, code & 0xFF);
5740 else
5741 EMIT_FOUR_BYTES (code >> 24, (code >> 16) & 0xFF,
5742 (code >> 8) & 0xFF, code & 0xFF);
5743 }
5744 else
5745 {
5746 if (coding->mode & CODING_MODE_SAFE_ENCODING)
5747 c = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
5748 else
5749 c = coding->default_char;
5750 EMIT_ONE_BYTE (c);
5751 }
5752 }
5753 }
5754
5755 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5756 coding->produced_char += produced_chars;
5757 coding->produced = dst - coding->destination;
5758 return 0;
5759 }
5760
5761 \f
5762 /*** 7. C library functions ***/
5763
5764 /* Setup coding context CODING from information about CODING_SYSTEM.
5765 If CODING_SYSTEM is nil, `no-conversion' is assumed. If
5766 CODING_SYSTEM is invalid, signal an error. */
5767
5768 void
5769 setup_coding_system (coding_system, coding)
5770 Lisp_Object coding_system;
5771 struct coding_system *coding;
5772 {
5773 Lisp_Object attrs;
5774 Lisp_Object eol_type;
5775 Lisp_Object coding_type;
5776 Lisp_Object val;
5777
5778 if (NILP (coding_system))
5779 coding_system = Qundecided;
5780
5781 CHECK_CODING_SYSTEM_GET_ID (coding_system, coding->id);
5782
5783 attrs = CODING_ID_ATTRS (coding->id);
5784 eol_type = inhibit_eol_conversion ? Qunix : CODING_ID_EOL_TYPE (coding->id);
5785
5786 coding->mode = 0;
5787 coding->head_ascii = -1;
5788 if (VECTORP (eol_type))
5789 coding->common_flags = (CODING_REQUIRE_DECODING_MASK
5790 | CODING_REQUIRE_DETECTION_MASK);
5791 else if (! EQ (eol_type, Qunix))
5792 coding->common_flags = (CODING_REQUIRE_DECODING_MASK
5793 | CODING_REQUIRE_ENCODING_MASK);
5794 else
5795 coding->common_flags = 0;
5796 if (! NILP (CODING_ATTR_POST_READ (attrs)))
5797 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
5798 if (! NILP (CODING_ATTR_PRE_WRITE (attrs)))
5799 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
5800 if (! NILP (CODING_ATTR_FOR_UNIBYTE (attrs)))
5801 coding->common_flags |= CODING_FOR_UNIBYTE_MASK;
5802
5803 val = CODING_ATTR_SAFE_CHARSETS (attrs);
5804 coding->max_charset_id = SCHARS (val) - 1;
5805 coding->safe_charsets = SDATA (val);
5806 coding->default_char = XINT (CODING_ATTR_DEFAULT_CHAR (attrs));
5807 coding->carryover_bytes = 0;
5808
5809 coding_type = CODING_ATTR_TYPE (attrs);
5810 if (EQ (coding_type, Qundecided))
5811 {
5812 coding->detector = NULL;
5813 coding->decoder = decode_coding_raw_text;
5814 coding->encoder = encode_coding_raw_text;
5815 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
5816 }
5817 else if (EQ (coding_type, Qiso_2022))
5818 {
5819 int i;
5820 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
5821
5822 /* Invoke graphic register 0 to plane 0. */
5823 CODING_ISO_INVOCATION (coding, 0) = 0;
5824 /* Invoke graphic register 1 to plane 1 if we can use 8-bit. */
5825 CODING_ISO_INVOCATION (coding, 1)
5826 = (flags & CODING_ISO_FLAG_SEVEN_BITS ? -1 : 1);
5827 /* Setup the initial status of designation. */
5828 for (i = 0; i < 4; i++)
5829 CODING_ISO_DESIGNATION (coding, i) = CODING_ISO_INITIAL (coding, i);
5830 /* Not single shifting initially. */
5831 CODING_ISO_SINGLE_SHIFTING (coding) = 0;
5832 /* Beginning of buffer should also be regarded as bol. */
5833 CODING_ISO_BOL (coding) = 1;
5834 coding->detector = detect_coding_iso_2022;
5835 coding->decoder = decode_coding_iso_2022;
5836 coding->encoder = encode_coding_iso_2022;
5837 if (flags & CODING_ISO_FLAG_SAFE)
5838 coding->mode |= CODING_MODE_SAFE_ENCODING;
5839 coding->common_flags
5840 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK
5841 | CODING_REQUIRE_FLUSHING_MASK);
5842 if (flags & CODING_ISO_FLAG_COMPOSITION)
5843 coding->common_flags |= CODING_ANNOTATE_COMPOSITION_MASK;
5844 if (flags & CODING_ISO_FLAG_DESIGNATION)
5845 coding->common_flags |= CODING_ANNOTATE_CHARSET_MASK;
5846 if (flags & CODING_ISO_FLAG_FULL_SUPPORT)
5847 {
5848 setup_iso_safe_charsets (attrs);
5849 val = CODING_ATTR_SAFE_CHARSETS (attrs);
5850 coding->max_charset_id = SCHARS (val) - 1;
5851 coding->safe_charsets = SDATA (val);
5852 }
5853 CODING_ISO_FLAGS (coding) = flags;
5854 CODING_ISO_CMP_STATUS (coding)->state = COMPOSING_NO;
5855 CODING_ISO_CMP_STATUS (coding)->method = COMPOSITION_NO;
5856 CODING_ISO_EXTSEGMENT_LEN (coding) = 0;
5857 CODING_ISO_EMBEDDED_UTF_8 (coding) = 0;
5858 }
5859 else if (EQ (coding_type, Qcharset))
5860 {
5861 coding->detector = detect_coding_charset;
5862 coding->decoder = decode_coding_charset;
5863 coding->encoder = encode_coding_charset;
5864 coding->common_flags
5865 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5866 }
5867 else if (EQ (coding_type, Qutf_8))
5868 {
5869 val = AREF (attrs, coding_attr_utf_bom);
5870 CODING_UTF_8_BOM (coding) = (CONSP (val) ? utf_detect_bom
5871 : EQ (val, Qt) ? utf_with_bom
5872 : utf_without_bom);
5873 coding->detector = detect_coding_utf_8;
5874 coding->decoder = decode_coding_utf_8;
5875 coding->encoder = encode_coding_utf_8;
5876 coding->common_flags
5877 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5878 if (CODING_UTF_8_BOM (coding) == utf_detect_bom)
5879 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
5880 }
5881 else if (EQ (coding_type, Qutf_16))
5882 {
5883 val = AREF (attrs, coding_attr_utf_bom);
5884 CODING_UTF_16_BOM (coding) = (CONSP (val) ? utf_detect_bom
5885 : EQ (val, Qt) ? utf_with_bom
5886 : utf_without_bom);
5887 val = AREF (attrs, coding_attr_utf_16_endian);
5888 CODING_UTF_16_ENDIAN (coding) = (EQ (val, Qbig) ? utf_16_big_endian
5889 : utf_16_little_endian);
5890 CODING_UTF_16_SURROGATE (coding) = 0;
5891 coding->detector = detect_coding_utf_16;
5892 coding->decoder = decode_coding_utf_16;
5893 coding->encoder = encode_coding_utf_16;
5894 coding->common_flags
5895 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5896 if (CODING_UTF_16_BOM (coding) == utf_detect_bom)
5897 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
5898 }
5899 else if (EQ (coding_type, Qccl))
5900 {
5901 coding->detector = detect_coding_ccl;
5902 coding->decoder = decode_coding_ccl;
5903 coding->encoder = encode_coding_ccl;
5904 coding->common_flags
5905 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK
5906 | CODING_REQUIRE_FLUSHING_MASK);
5907 }
5908 else if (EQ (coding_type, Qemacs_mule))
5909 {
5910 coding->detector = detect_coding_emacs_mule;
5911 coding->decoder = decode_coding_emacs_mule;
5912 coding->encoder = encode_coding_emacs_mule;
5913 coding->common_flags
5914 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5915 coding->spec.emacs_mule.full_support = 1;
5916 if (! NILP (AREF (attrs, coding_attr_emacs_mule_full))
5917 && ! EQ (CODING_ATTR_CHARSET_LIST (attrs), Vemacs_mule_charset_list))
5918 {
5919 Lisp_Object tail, safe_charsets;
5920 int max_charset_id = 0;
5921
5922 for (tail = Vemacs_mule_charset_list; CONSP (tail);
5923 tail = XCDR (tail))
5924 if (max_charset_id < XFASTINT (XCAR (tail)))
5925 max_charset_id = XFASTINT (XCAR (tail));
5926 safe_charsets = make_uninit_string (max_charset_id + 1);
5927 memset (SDATA (safe_charsets), 255, max_charset_id + 1);
5928 for (tail = Vemacs_mule_charset_list; CONSP (tail);
5929 tail = XCDR (tail))
5930 SSET (safe_charsets, XFASTINT (XCAR (tail)), 0);
5931 coding->max_charset_id = max_charset_id;
5932 coding->safe_charsets = SDATA (safe_charsets);
5933 coding->spec.emacs_mule.full_support = 1;
5934 }
5935 coding->spec.emacs_mule.cmp_status.state = COMPOSING_NO;
5936 coding->spec.emacs_mule.cmp_status.method = COMPOSITION_NO;
5937 }
5938 else if (EQ (coding_type, Qshift_jis))
5939 {
5940 coding->detector = detect_coding_sjis;
5941 coding->decoder = decode_coding_sjis;
5942 coding->encoder = encode_coding_sjis;
5943 coding->common_flags
5944 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5945 }
5946 else if (EQ (coding_type, Qbig5))
5947 {
5948 coding->detector = detect_coding_big5;
5949 coding->decoder = decode_coding_big5;
5950 coding->encoder = encode_coding_big5;
5951 coding->common_flags
5952 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5953 }
5954 else /* EQ (coding_type, Qraw_text) */
5955 {
5956 coding->detector = NULL;
5957 coding->decoder = decode_coding_raw_text;
5958 coding->encoder = encode_coding_raw_text;
5959 if (! EQ (eol_type, Qunix))
5960 {
5961 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
5962 if (! VECTORP (eol_type))
5963 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
5964 }
5965
5966 }
5967
5968 return;
5969 }
5970
5971 /* Return a list of charsets supported by CODING. */
5972
5973 Lisp_Object
5974 coding_charset_list (coding)
5975 struct coding_system *coding;
5976 {
5977 Lisp_Object attrs, charset_list;
5978
5979 CODING_GET_INFO (coding, attrs, charset_list);
5980 if (EQ (CODING_ATTR_TYPE (attrs), Qiso_2022))
5981 {
5982 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
5983
5984 if (flags & CODING_ISO_FLAG_FULL_SUPPORT)
5985 charset_list = Viso_2022_charset_list;
5986 }
5987 else if (EQ (CODING_ATTR_TYPE (attrs), Qemacs_mule))
5988 {
5989 charset_list = Vemacs_mule_charset_list;
5990 }
5991 return charset_list;
5992 }
5993
5994
5995 /* Return a list of charsets supported by CODING-SYSTEM. */
5996
5997 Lisp_Object
5998 coding_system_charset_list (coding_system)
5999 Lisp_Object coding_system;
6000 {
6001 int id;
6002 Lisp_Object attrs, charset_list;
6003
6004 CHECK_CODING_SYSTEM_GET_ID (coding_system, id);
6005 attrs = CODING_ID_ATTRS (id);
6006
6007 if (EQ (CODING_ATTR_TYPE (attrs), Qiso_2022))
6008 {
6009 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
6010
6011 if (flags & CODING_ISO_FLAG_FULL_SUPPORT)
6012 charset_list = Viso_2022_charset_list;
6013 else
6014 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
6015 }
6016 else if (EQ (CODING_ATTR_TYPE (attrs), Qemacs_mule))
6017 {
6018 charset_list = Vemacs_mule_charset_list;
6019 }
6020 else
6021 {
6022 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
6023 }
6024 return charset_list;
6025 }
6026
6027
6028 /* Return raw-text or one of its subsidiaries that has the same
6029 eol_type as CODING-SYSTEM. */
6030
6031 Lisp_Object
6032 raw_text_coding_system (coding_system)
6033 Lisp_Object coding_system;
6034 {
6035 Lisp_Object spec, attrs;
6036 Lisp_Object eol_type, raw_text_eol_type;
6037
6038 if (NILP (coding_system))
6039 return Qraw_text;
6040 spec = CODING_SYSTEM_SPEC (coding_system);
6041 attrs = AREF (spec, 0);
6042
6043 if (EQ (CODING_ATTR_TYPE (attrs), Qraw_text))
6044 return coding_system;
6045
6046 eol_type = AREF (spec, 2);
6047 if (VECTORP (eol_type))
6048 return Qraw_text;
6049 spec = CODING_SYSTEM_SPEC (Qraw_text);
6050 raw_text_eol_type = AREF (spec, 2);
6051 return (EQ (eol_type, Qunix) ? AREF (raw_text_eol_type, 0)
6052 : EQ (eol_type, Qdos) ? AREF (raw_text_eol_type, 1)
6053 : AREF (raw_text_eol_type, 2));
6054 }
6055
6056
6057 /* If CODING_SYSTEM doesn't specify end-of-line format but PARENT
6058 does, return one of the subsidiary that has the same eol-spec as
6059 PARENT. Otherwise, return CODING_SYSTEM. If PARENT is nil,
6060 inherit end-of-line format from the system's setting
6061 (system_eol_type). */
6062
6063 Lisp_Object
6064 coding_inherit_eol_type (coding_system, parent)
6065 Lisp_Object coding_system, parent;
6066 {
6067 Lisp_Object spec, eol_type;
6068
6069 if (NILP (coding_system))
6070 coding_system = Qraw_text;
6071 spec = CODING_SYSTEM_SPEC (coding_system);
6072 eol_type = AREF (spec, 2);
6073 if (VECTORP (eol_type))
6074 {
6075 Lisp_Object parent_eol_type;
6076
6077 if (! NILP (parent))
6078 {
6079 Lisp_Object parent_spec;
6080
6081 parent_spec = CODING_SYSTEM_SPEC (parent);
6082 parent_eol_type = AREF (parent_spec, 2);
6083 }
6084 else
6085 parent_eol_type = system_eol_type;
6086 if (EQ (parent_eol_type, Qunix))
6087 coding_system = AREF (eol_type, 0);
6088 else if (EQ (parent_eol_type, Qdos))
6089 coding_system = AREF (eol_type, 1);
6090 else if (EQ (parent_eol_type, Qmac))
6091 coding_system = AREF (eol_type, 2);
6092 }
6093 return coding_system;
6094 }
6095
6096 /* Emacs has a mechanism to automatically detect a coding system if it
6097 is one of Emacs' internal format, ISO2022, SJIS, and BIG5. But,
6098 it's impossible to distinguish some coding systems accurately
6099 because they use the same range of codes. So, at first, coding
6100 systems are categorized into 7, those are:
6101
6102 o coding-category-emacs-mule
6103
6104 The category for a coding system which has the same code range
6105 as Emacs' internal format. Assigned the coding-system (Lisp
6106 symbol) `emacs-mule' by default.
6107
6108 o coding-category-sjis
6109
6110 The category for a coding system which has the same code range
6111 as SJIS. Assigned the coding-system (Lisp
6112 symbol) `japanese-shift-jis' by default.
6113
6114 o coding-category-iso-7
6115
6116 The category for a coding system which has the same code range
6117 as ISO2022 of 7-bit environment. This doesn't use any locking
6118 shift and single shift functions. This can encode/decode all
6119 charsets. Assigned the coding-system (Lisp symbol)
6120 `iso-2022-7bit' by default.
6121
6122 o coding-category-iso-7-tight
6123
6124 Same as coding-category-iso-7 except that this can
6125 encode/decode only the specified charsets.
6126
6127 o coding-category-iso-8-1
6128
6129 The category for a coding system which has the same code range
6130 as ISO2022 of 8-bit environment and graphic plane 1 used only
6131 for DIMENSION1 charset. This doesn't use any locking shift
6132 and single shift functions. Assigned the coding-system (Lisp
6133 symbol) `iso-latin-1' by default.
6134
6135 o coding-category-iso-8-2
6136
6137 The category for a coding system which has the same code range
6138 as ISO2022 of 8-bit environment and graphic plane 1 used only
6139 for DIMENSION2 charset. This doesn't use any locking shift
6140 and single shift functions. Assigned the coding-system (Lisp
6141 symbol) `japanese-iso-8bit' by default.
6142
6143 o coding-category-iso-7-else
6144
6145 The category for a coding system which has the same code range
6146 as ISO2022 of 7-bit environemnt but uses locking shift or
6147 single shift functions. Assigned the coding-system (Lisp
6148 symbol) `iso-2022-7bit-lock' by default.
6149
6150 o coding-category-iso-8-else
6151
6152 The category for a coding system which has the same code range
6153 as ISO2022 of 8-bit environemnt but uses locking shift or
6154 single shift functions. Assigned the coding-system (Lisp
6155 symbol) `iso-2022-8bit-ss2' by default.
6156
6157 o coding-category-big5
6158
6159 The category for a coding system which has the same code range
6160 as BIG5. Assigned the coding-system (Lisp symbol)
6161 `cn-big5' by default.
6162
6163 o coding-category-utf-8
6164
6165 The category for a coding system which has the same code range
6166 as UTF-8 (cf. RFC3629). Assigned the coding-system (Lisp
6167 symbol) `utf-8' by default.
6168
6169 o coding-category-utf-16-be
6170
6171 The category for a coding system in which a text has an
6172 Unicode signature (cf. Unicode Standard) in the order of BIG
6173 endian at the head. Assigned the coding-system (Lisp symbol)
6174 `utf-16-be' by default.
6175
6176 o coding-category-utf-16-le
6177
6178 The category for a coding system in which a text has an
6179 Unicode signature (cf. Unicode Standard) in the order of
6180 LITTLE endian at the head. Assigned the coding-system (Lisp
6181 symbol) `utf-16-le' by default.
6182
6183 o coding-category-ccl
6184
6185 The category for a coding system of which encoder/decoder is
6186 written in CCL programs. The default value is nil, i.e., no
6187 coding system is assigned.
6188
6189 o coding-category-binary
6190
6191 The category for a coding system not categorized in any of the
6192 above. Assigned the coding-system (Lisp symbol)
6193 `no-conversion' by default.
6194
6195 Each of them is a Lisp symbol and the value is an actual
6196 `coding-system's (this is also a Lisp symbol) assigned by a user.
6197 What Emacs does actually is to detect a category of coding system.
6198 Then, it uses a `coding-system' assigned to it. If Emacs can't
6199 decide only one possible category, it selects a category of the
6200 highest priority. Priorities of categories are also specified by a
6201 user in a Lisp variable `coding-category-list'.
6202
6203 */
6204
6205 #define EOL_SEEN_NONE 0
6206 #define EOL_SEEN_LF 1
6207 #define EOL_SEEN_CR 2
6208 #define EOL_SEEN_CRLF 4
6209
6210 /* Detect how end-of-line of a text of length SRC_BYTES pointed by
6211 SOURCE is encoded. If CATEGORY is one of
6212 coding_category_utf_16_XXXX, assume that CR and LF are encoded by
6213 two-byte, else they are encoded by one-byte.
6214
6215 Return one of EOL_SEEN_XXX. */
6216
6217 #define MAX_EOL_CHECK_COUNT 3
6218
6219 static int
6220 detect_eol (source, src_bytes, category)
6221 const unsigned char *source;
6222 EMACS_INT src_bytes;
6223 enum coding_category category;
6224 {
6225 const unsigned char *src = source, *src_end = src + src_bytes;
6226 unsigned char c;
6227 int total = 0;
6228 int eol_seen = EOL_SEEN_NONE;
6229
6230 if ((1 << category) & CATEGORY_MASK_UTF_16)
6231 {
6232 int msb, lsb;
6233
6234 msb = category == (coding_category_utf_16_le
6235 | coding_category_utf_16_le_nosig);
6236 lsb = 1 - msb;
6237
6238 while (src + 1 < src_end)
6239 {
6240 c = src[lsb];
6241 if (src[msb] == 0 && (c == '\n' || c == '\r'))
6242 {
6243 int this_eol;
6244
6245 if (c == '\n')
6246 this_eol = EOL_SEEN_LF;
6247 else if (src + 3 >= src_end
6248 || src[msb + 2] != 0
6249 || src[lsb + 2] != '\n')
6250 this_eol = EOL_SEEN_CR;
6251 else
6252 {
6253 this_eol = EOL_SEEN_CRLF;
6254 src += 2;
6255 }
6256
6257 if (eol_seen == EOL_SEEN_NONE)
6258 /* This is the first end-of-line. */
6259 eol_seen = this_eol;
6260 else if (eol_seen != this_eol)
6261 {
6262 /* The found type is different from what found before.
6263 Allow for stray ^M characters in DOS EOL files. */
6264 if (eol_seen == EOL_SEEN_CR && this_eol == EOL_SEEN_CRLF
6265 || eol_seen == EOL_SEEN_CRLF && this_eol == EOL_SEEN_CR)
6266 eol_seen = EOL_SEEN_CRLF;
6267 else
6268 {
6269 eol_seen = EOL_SEEN_LF;
6270 break;
6271 }
6272 }
6273 if (++total == MAX_EOL_CHECK_COUNT)
6274 break;
6275 }
6276 src += 2;
6277 }
6278 }
6279 else
6280 {
6281 while (src < src_end)
6282 {
6283 c = *src++;
6284 if (c == '\n' || c == '\r')
6285 {
6286 int this_eol;
6287
6288 if (c == '\n')
6289 this_eol = EOL_SEEN_LF;
6290 else if (src >= src_end || *src != '\n')
6291 this_eol = EOL_SEEN_CR;
6292 else
6293 this_eol = EOL_SEEN_CRLF, src++;
6294
6295 if (eol_seen == EOL_SEEN_NONE)
6296 /* This is the first end-of-line. */
6297 eol_seen = this_eol;
6298 else if (eol_seen != this_eol)
6299 {
6300 /* The found type is different from what found before.
6301 Allow for stray ^M characters in DOS EOL files. */
6302 if (eol_seen == EOL_SEEN_CR && this_eol == EOL_SEEN_CRLF
6303 || eol_seen == EOL_SEEN_CRLF && this_eol == EOL_SEEN_CR)
6304 eol_seen = EOL_SEEN_CRLF;
6305 else
6306 {
6307 eol_seen = EOL_SEEN_LF;
6308 break;
6309 }
6310 }
6311 if (++total == MAX_EOL_CHECK_COUNT)
6312 break;
6313 }
6314 }
6315 }
6316 return eol_seen;
6317 }
6318
6319
6320 static Lisp_Object
6321 adjust_coding_eol_type (coding, eol_seen)
6322 struct coding_system *coding;
6323 int eol_seen;
6324 {
6325 Lisp_Object eol_type;
6326
6327 eol_type = CODING_ID_EOL_TYPE (coding->id);
6328 if (eol_seen & EOL_SEEN_LF)
6329 {
6330 coding->id = CODING_SYSTEM_ID (AREF (eol_type, 0));
6331 eol_type = Qunix;
6332 }
6333 else if (eol_seen & EOL_SEEN_CRLF)
6334 {
6335 coding->id = CODING_SYSTEM_ID (AREF (eol_type, 1));
6336 eol_type = Qdos;
6337 }
6338 else if (eol_seen & EOL_SEEN_CR)
6339 {
6340 coding->id = CODING_SYSTEM_ID (AREF (eol_type, 2));
6341 eol_type = Qmac;
6342 }
6343 return eol_type;
6344 }
6345
6346 /* Detect how a text specified in CODING is encoded. If a coding
6347 system is detected, update fields of CODING by the detected coding
6348 system. */
6349
6350 void
6351 detect_coding (coding)
6352 struct coding_system *coding;
6353 {
6354 const unsigned char *src, *src_end;
6355 int saved_mode = coding->mode;
6356
6357 coding->consumed = coding->consumed_char = 0;
6358 coding->produced = coding->produced_char = 0;
6359 coding_set_source (coding);
6360
6361 src_end = coding->source + coding->src_bytes;
6362 coding->head_ascii = 0;
6363
6364 /* If we have not yet decided the text encoding type, detect it
6365 now. */
6366 if (EQ (CODING_ATTR_TYPE (CODING_ID_ATTRS (coding->id)), Qundecided))
6367 {
6368 int c, i;
6369 struct coding_detection_info detect_info;
6370 int null_byte_found = 0, eight_bit_found = 0;
6371
6372 detect_info.checked = detect_info.found = detect_info.rejected = 0;
6373 for (src = coding->source; src < src_end; src++)
6374 {
6375 c = *src;
6376 if (c & 0x80)
6377 {
6378 eight_bit_found = 1;
6379 if (null_byte_found)
6380 break;
6381 }
6382 else if (c < 0x20)
6383 {
6384 if ((c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
6385 && ! inhibit_iso_escape_detection
6386 && ! detect_info.checked)
6387 {
6388 if (detect_coding_iso_2022 (coding, &detect_info))
6389 {
6390 /* We have scanned the whole data. */
6391 if (! (detect_info.rejected & CATEGORY_MASK_ISO_7_ELSE))
6392 {
6393 /* We didn't find an 8-bit code. We may
6394 have found a null-byte, but it's very
6395 rare that a binary file confirm to
6396 ISO-2022. */
6397 src = src_end;
6398 coding->head_ascii = src - coding->source;
6399 }
6400 detect_info.rejected |= ~CATEGORY_MASK_ISO_ESCAPE;
6401 break;
6402 }
6403 }
6404 else if (! c && !inhibit_null_byte_detection)
6405 {
6406 null_byte_found = 1;
6407 if (eight_bit_found)
6408 break;
6409 }
6410 if (! eight_bit_found)
6411 coding->head_ascii++;
6412 }
6413 else if (! eight_bit_found)
6414 coding->head_ascii++;
6415 }
6416
6417 if (null_byte_found || eight_bit_found
6418 || coding->head_ascii < coding->src_bytes
6419 || detect_info.found)
6420 {
6421 enum coding_category category;
6422 struct coding_system *this;
6423
6424 if (coding->head_ascii == coding->src_bytes)
6425 /* As all bytes are 7-bit, we can ignore non-ISO-2022 codings. */
6426 for (i = 0; i < coding_category_raw_text; i++)
6427 {
6428 category = coding_priorities[i];
6429 this = coding_categories + category;
6430 if (detect_info.found & (1 << category))
6431 break;
6432 }
6433 else
6434 {
6435 if (null_byte_found)
6436 {
6437 detect_info.checked |= ~CATEGORY_MASK_UTF_16;
6438 detect_info.rejected |= ~CATEGORY_MASK_UTF_16;
6439 }
6440 for (i = 0; i < coding_category_raw_text; i++)
6441 {
6442 category = coding_priorities[i];
6443 this = coding_categories + category;
6444 if (this->id < 0)
6445 {
6446 /* No coding system of this category is defined. */
6447 detect_info.rejected |= (1 << category);
6448 }
6449 else if (category >= coding_category_raw_text)
6450 continue;
6451 else if (detect_info.checked & (1 << category))
6452 {
6453 if (detect_info.found & (1 << category))
6454 break;
6455 }
6456 else if ((*(this->detector)) (coding, &detect_info)
6457 && detect_info.found & (1 << category))
6458 {
6459 if (category == coding_category_utf_16_auto)
6460 {
6461 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
6462 category = coding_category_utf_16_le;
6463 else
6464 category = coding_category_utf_16_be;
6465 }
6466 break;
6467 }
6468 }
6469 }
6470
6471 if (i < coding_category_raw_text)
6472 setup_coding_system (CODING_ID_NAME (this->id), coding);
6473 else if (null_byte_found)
6474 setup_coding_system (Qno_conversion, coding);
6475 else if ((detect_info.rejected & CATEGORY_MASK_ANY)
6476 == CATEGORY_MASK_ANY)
6477 setup_coding_system (Qraw_text, coding);
6478 else if (detect_info.rejected)
6479 for (i = 0; i < coding_category_raw_text; i++)
6480 if (! (detect_info.rejected & (1 << coding_priorities[i])))
6481 {
6482 this = coding_categories + coding_priorities[i];
6483 setup_coding_system (CODING_ID_NAME (this->id), coding);
6484 break;
6485 }
6486 }
6487 }
6488 else if (XINT (CODING_ATTR_CATEGORY (CODING_ID_ATTRS (coding->id)))
6489 == coding_category_utf_8_auto)
6490 {
6491 Lisp_Object coding_systems;
6492 struct coding_detection_info detect_info;
6493
6494 coding_systems
6495 = AREF (CODING_ID_ATTRS (coding->id), coding_attr_utf_bom);
6496 detect_info.found = detect_info.rejected = 0;
6497 coding->head_ascii = 0;
6498 if (CONSP (coding_systems)
6499 && detect_coding_utf_8 (coding, &detect_info))
6500 {
6501 if (detect_info.found & CATEGORY_MASK_UTF_8_SIG)
6502 setup_coding_system (XCAR (coding_systems), coding);
6503 else
6504 setup_coding_system (XCDR (coding_systems), coding);
6505 }
6506 }
6507 else if (XINT (CODING_ATTR_CATEGORY (CODING_ID_ATTRS (coding->id)))
6508 == coding_category_utf_16_auto)
6509 {
6510 Lisp_Object coding_systems;
6511 struct coding_detection_info detect_info;
6512
6513 coding_systems
6514 = AREF (CODING_ID_ATTRS (coding->id), coding_attr_utf_bom);
6515 detect_info.found = detect_info.rejected = 0;
6516 coding->head_ascii = 0;
6517 if (CONSP (coding_systems)
6518 && detect_coding_utf_16 (coding, &detect_info))
6519 {
6520 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
6521 setup_coding_system (XCAR (coding_systems), coding);
6522 else if (detect_info.found & CATEGORY_MASK_UTF_16_BE)
6523 setup_coding_system (XCDR (coding_systems), coding);
6524 }
6525 }
6526 coding->mode = saved_mode;
6527 }
6528
6529
6530 static void
6531 decode_eol (coding)
6532 struct coding_system *coding;
6533 {
6534 Lisp_Object eol_type;
6535 unsigned char *p, *pbeg, *pend;
6536
6537 eol_type = CODING_ID_EOL_TYPE (coding->id);
6538 if (EQ (eol_type, Qunix) || inhibit_eol_conversion)
6539 return;
6540
6541 if (NILP (coding->dst_object))
6542 pbeg = coding->destination;
6543 else
6544 pbeg = BYTE_POS_ADDR (coding->dst_pos_byte);
6545 pend = pbeg + coding->produced;
6546
6547 if (VECTORP (eol_type))
6548 {
6549 int eol_seen = EOL_SEEN_NONE;
6550
6551 for (p = pbeg; p < pend; p++)
6552 {
6553 if (*p == '\n')
6554 eol_seen |= EOL_SEEN_LF;
6555 else if (*p == '\r')
6556 {
6557 if (p + 1 < pend && *(p + 1) == '\n')
6558 {
6559 eol_seen |= EOL_SEEN_CRLF;
6560 p++;
6561 }
6562 else
6563 eol_seen |= EOL_SEEN_CR;
6564 }
6565 }
6566 /* Handle DOS-style EOLs in a file with stray ^M characters. */
6567 if ((eol_seen & EOL_SEEN_CRLF) != 0
6568 && (eol_seen & EOL_SEEN_CR) != 0
6569 && (eol_seen & EOL_SEEN_LF) == 0)
6570 eol_seen = EOL_SEEN_CRLF;
6571 else if (eol_seen != EOL_SEEN_NONE
6572 && eol_seen != EOL_SEEN_LF
6573 && eol_seen != EOL_SEEN_CRLF
6574 && eol_seen != EOL_SEEN_CR)
6575 eol_seen = EOL_SEEN_LF;
6576 if (eol_seen != EOL_SEEN_NONE)
6577 eol_type = adjust_coding_eol_type (coding, eol_seen);
6578 }
6579
6580 if (EQ (eol_type, Qmac))
6581 {
6582 for (p = pbeg; p < pend; p++)
6583 if (*p == '\r')
6584 *p = '\n';
6585 }
6586 else if (EQ (eol_type, Qdos))
6587 {
6588 int n = 0;
6589
6590 if (NILP (coding->dst_object))
6591 {
6592 /* Start deleting '\r' from the tail to minimize the memory
6593 movement. */
6594 for (p = pend - 2; p >= pbeg; p--)
6595 if (*p == '\r')
6596 {
6597 safe_bcopy ((char *) (p + 1), (char *) p, pend-- - p - 1);
6598 n++;
6599 }
6600 }
6601 else
6602 {
6603 int pos_byte = coding->dst_pos_byte;
6604 int pos = coding->dst_pos;
6605 int pos_end = pos + coding->produced_char - 1;
6606
6607 while (pos < pos_end)
6608 {
6609 p = BYTE_POS_ADDR (pos_byte);
6610 if (*p == '\r' && p[1] == '\n')
6611 {
6612 del_range_2 (pos, pos_byte, pos + 1, pos_byte + 1, 0);
6613 n++;
6614 pos_end--;
6615 }
6616 pos++;
6617 if (coding->dst_multibyte)
6618 pos_byte += BYTES_BY_CHAR_HEAD (*p);
6619 else
6620 pos_byte++;
6621 }
6622 }
6623 coding->produced -= n;
6624 coding->produced_char -= n;
6625 }
6626 }
6627
6628
6629 /* Return a translation table (or list of them) from coding system
6630 attribute vector ATTRS for encoding (ENCODEP is nonzero) or
6631 decoding (ENCODEP is zero). */
6632
6633 static Lisp_Object
6634 get_translation_table (attrs, encodep, max_lookup)
6635 Lisp_Object attrs;
6636 int encodep, *max_lookup;
6637 {
6638 Lisp_Object standard, translation_table;
6639 Lisp_Object val;
6640
6641 if (NILP (Venable_character_translation))
6642 {
6643 if (max_lookup)
6644 *max_lookup = 0;
6645 return Qnil;
6646 }
6647 if (encodep)
6648 translation_table = CODING_ATTR_ENCODE_TBL (attrs),
6649 standard = Vstandard_translation_table_for_encode;
6650 else
6651 translation_table = CODING_ATTR_DECODE_TBL (attrs),
6652 standard = Vstandard_translation_table_for_decode;
6653 if (NILP (translation_table))
6654 translation_table = standard;
6655 else
6656 {
6657 if (SYMBOLP (translation_table))
6658 translation_table = Fget (translation_table, Qtranslation_table);
6659 else if (CONSP (translation_table))
6660 {
6661 translation_table = Fcopy_sequence (translation_table);
6662 for (val = translation_table; CONSP (val); val = XCDR (val))
6663 if (SYMBOLP (XCAR (val)))
6664 XSETCAR (val, Fget (XCAR (val), Qtranslation_table));
6665 }
6666 if (CHAR_TABLE_P (standard))
6667 {
6668 if (CONSP (translation_table))
6669 translation_table = nconc2 (translation_table,
6670 Fcons (standard, Qnil));
6671 else
6672 translation_table = Fcons (translation_table,
6673 Fcons (standard, Qnil));
6674 }
6675 }
6676
6677 if (max_lookup)
6678 {
6679 *max_lookup = 1;
6680 if (CHAR_TABLE_P (translation_table)
6681 && CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (translation_table)) > 1)
6682 {
6683 val = XCHAR_TABLE (translation_table)->extras[1];
6684 if (NATNUMP (val) && *max_lookup < XFASTINT (val))
6685 *max_lookup = XFASTINT (val);
6686 }
6687 else if (CONSP (translation_table))
6688 {
6689 Lisp_Object tail, val;
6690
6691 for (tail = translation_table; CONSP (tail); tail = XCDR (tail))
6692 if (CHAR_TABLE_P (XCAR (tail))
6693 && CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (XCAR (tail))) > 1)
6694 {
6695 val = XCHAR_TABLE (XCAR (tail))->extras[1];
6696 if (NATNUMP (val) && *max_lookup < XFASTINT (val))
6697 *max_lookup = XFASTINT (val);
6698 }
6699 }
6700 }
6701 return translation_table;
6702 }
6703
6704 #define LOOKUP_TRANSLATION_TABLE(table, c, trans) \
6705 do { \
6706 trans = Qnil; \
6707 if (CHAR_TABLE_P (table)) \
6708 { \
6709 trans = CHAR_TABLE_REF (table, c); \
6710 if (CHARACTERP (trans)) \
6711 c = XFASTINT (trans), trans = Qnil; \
6712 } \
6713 else if (CONSP (table)) \
6714 { \
6715 Lisp_Object tail; \
6716 \
6717 for (tail = table; CONSP (tail); tail = XCDR (tail)) \
6718 if (CHAR_TABLE_P (XCAR (tail))) \
6719 { \
6720 trans = CHAR_TABLE_REF (XCAR (tail), c); \
6721 if (CHARACTERP (trans)) \
6722 c = XFASTINT (trans), trans = Qnil; \
6723 else if (! NILP (trans)) \
6724 break; \
6725 } \
6726 } \
6727 } while (0)
6728
6729
6730 /* Return a translation of character(s) at BUF according to TRANS.
6731 TRANS is TO-CHAR or ((FROM . TO) ...) where
6732 FROM = [FROM-CHAR ...], TO is TO-CHAR or [TO-CHAR ...].
6733 The return value is TO-CHAR or ([FROM-CHAR ...] . TO) if a
6734 translation is found, and Qnil if not found..
6735 If BUF is too short to lookup characters in FROM, return Qt. */
6736
6737 static Lisp_Object
6738 get_translation (trans, buf, buf_end)
6739 Lisp_Object trans;
6740 int *buf, *buf_end;
6741 {
6742
6743 if (INTEGERP (trans))
6744 return trans;
6745 for (; CONSP (trans); trans = XCDR (trans))
6746 {
6747 Lisp_Object val = XCAR (trans);
6748 Lisp_Object from = XCAR (val);
6749 int len = ASIZE (from);
6750 int i;
6751
6752 for (i = 0; i < len; i++)
6753 {
6754 if (buf + i == buf_end)
6755 return Qt;
6756 if (XINT (AREF (from, i)) != buf[i])
6757 break;
6758 }
6759 if (i == len)
6760 return val;
6761 }
6762 return Qnil;
6763 }
6764
6765
6766 static int
6767 produce_chars (coding, translation_table, last_block)
6768 struct coding_system *coding;
6769 Lisp_Object translation_table;
6770 int last_block;
6771 {
6772 unsigned char *dst = coding->destination + coding->produced;
6773 unsigned char *dst_end = coding->destination + coding->dst_bytes;
6774 EMACS_INT produced;
6775 EMACS_INT produced_chars = 0;
6776 int carryover = 0;
6777
6778 if (! coding->chars_at_source)
6779 {
6780 /* Source characters are in coding->charbuf. */
6781 int *buf = coding->charbuf;
6782 int *buf_end = buf + coding->charbuf_used;
6783
6784 if (EQ (coding->src_object, coding->dst_object))
6785 {
6786 coding_set_source (coding);
6787 dst_end = ((unsigned char *) coding->source) + coding->consumed;
6788 }
6789
6790 while (buf < buf_end)
6791 {
6792 int c = *buf, i;
6793
6794 if (c >= 0)
6795 {
6796 int from_nchars = 1, to_nchars = 1;
6797 Lisp_Object trans = Qnil;
6798
6799 LOOKUP_TRANSLATION_TABLE (translation_table, c, trans);
6800 if (! NILP (trans))
6801 {
6802 trans = get_translation (trans, buf, buf_end);
6803 if (INTEGERP (trans))
6804 c = XINT (trans);
6805 else if (CONSP (trans))
6806 {
6807 from_nchars = ASIZE (XCAR (trans));
6808 trans = XCDR (trans);
6809 if (INTEGERP (trans))
6810 c = XINT (trans);
6811 else
6812 {
6813 to_nchars = ASIZE (trans);
6814 c = XINT (AREF (trans, 0));
6815 }
6816 }
6817 else if (EQ (trans, Qt) && ! last_block)
6818 break;
6819 }
6820
6821 if (dst + MAX_MULTIBYTE_LENGTH * to_nchars > dst_end)
6822 {
6823 dst = alloc_destination (coding,
6824 buf_end - buf
6825 + MAX_MULTIBYTE_LENGTH * to_nchars,
6826 dst);
6827 if (EQ (coding->src_object, coding->dst_object))
6828 {
6829 coding_set_source (coding);
6830 dst_end = (((unsigned char *) coding->source)
6831 + coding->consumed);
6832 }
6833 else
6834 dst_end = coding->destination + coding->dst_bytes;
6835 }
6836
6837 for (i = 0; i < to_nchars; i++)
6838 {
6839 if (i > 0)
6840 c = XINT (AREF (trans, i));
6841 if (coding->dst_multibyte
6842 || ! CHAR_BYTE8_P (c))
6843 CHAR_STRING_ADVANCE_NO_UNIFY (c, dst);
6844 else
6845 *dst++ = CHAR_TO_BYTE8 (c);
6846 }
6847 produced_chars += to_nchars;
6848 buf += from_nchars;
6849 }
6850 else
6851 /* This is an annotation datum. (-C) is the length. */
6852 buf += -c;
6853 }
6854 carryover = buf_end - buf;
6855 }
6856 else
6857 {
6858 /* Source characters are at coding->source. */
6859 const unsigned char *src = coding->source;
6860 const unsigned char *src_end = src + coding->consumed;
6861
6862 if (EQ (coding->dst_object, coding->src_object))
6863 dst_end = (unsigned char *) src;
6864 if (coding->src_multibyte != coding->dst_multibyte)
6865 {
6866 if (coding->src_multibyte)
6867 {
6868 int multibytep = 1;
6869 EMACS_INT consumed_chars = 0;
6870
6871 while (1)
6872 {
6873 const unsigned char *src_base = src;
6874 int c;
6875
6876 ONE_MORE_BYTE (c);
6877 if (dst == dst_end)
6878 {
6879 if (EQ (coding->src_object, coding->dst_object))
6880 dst_end = (unsigned char *) src;
6881 if (dst == dst_end)
6882 {
6883 EMACS_INT offset = src - coding->source;
6884
6885 dst = alloc_destination (coding, src_end - src + 1,
6886 dst);
6887 dst_end = coding->destination + coding->dst_bytes;
6888 coding_set_source (coding);
6889 src = coding->source + offset;
6890 src_end = coding->source + coding->src_bytes;
6891 if (EQ (coding->src_object, coding->dst_object))
6892 dst_end = (unsigned char *) src;
6893 }
6894 }
6895 *dst++ = c;
6896 produced_chars++;
6897 }
6898 no_more_source:
6899 ;
6900 }
6901 else
6902 while (src < src_end)
6903 {
6904 int multibytep = 1;
6905 int c = *src++;
6906
6907 if (dst >= dst_end - 1)
6908 {
6909 if (EQ (coding->src_object, coding->dst_object))
6910 dst_end = (unsigned char *) src;
6911 if (dst >= dst_end - 1)
6912 {
6913 EMACS_INT offset = src - coding->source;
6914 EMACS_INT more_bytes;
6915
6916 if (EQ (coding->src_object, coding->dst_object))
6917 more_bytes = ((src_end - src) / 2) + 2;
6918 else
6919 more_bytes = src_end - src + 2;
6920 dst = alloc_destination (coding, more_bytes, dst);
6921 dst_end = coding->destination + coding->dst_bytes;
6922 coding_set_source (coding);
6923 src = coding->source + offset;
6924 src_end = coding->source + coding->src_bytes;
6925 if (EQ (coding->src_object, coding->dst_object))
6926 dst_end = (unsigned char *) src;
6927 }
6928 }
6929 EMIT_ONE_BYTE (c);
6930 }
6931 }
6932 else
6933 {
6934 if (!EQ (coding->src_object, coding->dst_object))
6935 {
6936 EMACS_INT require = coding->src_bytes - coding->dst_bytes;
6937
6938 if (require > 0)
6939 {
6940 EMACS_INT offset = src - coding->source;
6941
6942 dst = alloc_destination (coding, require, dst);
6943 coding_set_source (coding);
6944 src = coding->source + offset;
6945 src_end = coding->source + coding->src_bytes;
6946 }
6947 }
6948 produced_chars = coding->consumed_char;
6949 while (src < src_end)
6950 *dst++ = *src++;
6951 }
6952 }
6953
6954 produced = dst - (coding->destination + coding->produced);
6955 if (BUFFERP (coding->dst_object) && produced_chars > 0)
6956 insert_from_gap (produced_chars, produced);
6957 coding->produced += produced;
6958 coding->produced_char += produced_chars;
6959 return carryover;
6960 }
6961
6962 /* Compose text in CODING->object according to the annotation data at
6963 CHARBUF. CHARBUF is an array:
6964 [ -LENGTH ANNOTATION_MASK NCHARS NBYTES METHOD [ COMPONENTS... ] ]
6965 */
6966
6967 static INLINE void
6968 produce_composition (coding, charbuf, pos)
6969 struct coding_system *coding;
6970 int *charbuf;
6971 EMACS_INT pos;
6972 {
6973 int len;
6974 EMACS_INT to;
6975 enum composition_method method;
6976 Lisp_Object components;
6977
6978 len = -charbuf[0] - MAX_ANNOTATION_LENGTH;
6979 to = pos + charbuf[2];
6980 method = (enum composition_method) (charbuf[4]);
6981
6982 if (method == COMPOSITION_RELATIVE)
6983 components = Qnil;
6984 else
6985 {
6986 Lisp_Object args[MAX_COMPOSITION_COMPONENTS * 2 - 1];
6987 int i, j;
6988
6989 if (method == COMPOSITION_WITH_RULE)
6990 len = charbuf[2] * 3 - 2;
6991 charbuf += MAX_ANNOTATION_LENGTH;
6992 /* charbuf = [ CHRA ... CHAR] or [ CHAR -2 RULE ... CHAR ] */
6993 for (i = j = 0; i < len && charbuf[i] != -1; i++, j++)
6994 {
6995 if (charbuf[i] >= 0)
6996 args[j] = make_number (charbuf[i]);
6997 else
6998 {
6999 i++;
7000 args[j] = make_number (charbuf[i] % 0x100);
7001 }
7002 }
7003 components = (i == j ? Fstring (j, args) : Fvector (j, args));
7004 }
7005 compose_text (pos, to, components, Qnil, coding->dst_object);
7006 }
7007
7008
7009 /* Put `charset' property on text in CODING->object according to
7010 the annotation data at CHARBUF. CHARBUF is an array:
7011 [ -LENGTH ANNOTATION_MASK NCHARS CHARSET-ID ]
7012 */
7013
7014 static INLINE void
7015 produce_charset (coding, charbuf, pos)
7016 struct coding_system *coding;
7017 int *charbuf;
7018 EMACS_INT pos;
7019 {
7020 EMACS_INT from = pos - charbuf[2];
7021 struct charset *charset = CHARSET_FROM_ID (charbuf[3]);
7022
7023 Fput_text_property (make_number (from), make_number (pos),
7024 Qcharset, CHARSET_NAME (charset),
7025 coding->dst_object);
7026 }
7027
7028
7029 #define CHARBUF_SIZE 0x4000
7030
7031 #define ALLOC_CONVERSION_WORK_AREA(coding) \
7032 do { \
7033 int size = CHARBUF_SIZE; \
7034 \
7035 coding->charbuf = NULL; \
7036 while (size > 1024) \
7037 { \
7038 coding->charbuf = (int *) alloca (sizeof (int) * size); \
7039 if (coding->charbuf) \
7040 break; \
7041 size >>= 1; \
7042 } \
7043 if (! coding->charbuf) \
7044 { \
7045 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_MEM); \
7046 return coding->result; \
7047 } \
7048 coding->charbuf_size = size; \
7049 } while (0)
7050
7051
7052 static void
7053 produce_annotation (coding, pos)
7054 struct coding_system *coding;
7055 EMACS_INT pos;
7056 {
7057 int *charbuf = coding->charbuf;
7058 int *charbuf_end = charbuf + coding->charbuf_used;
7059
7060 if (NILP (coding->dst_object))
7061 return;
7062
7063 while (charbuf < charbuf_end)
7064 {
7065 if (*charbuf >= 0)
7066 pos++, charbuf++;
7067 else
7068 {
7069 int len = -*charbuf;
7070
7071 if (len > 2)
7072 switch (charbuf[1])
7073 {
7074 case CODING_ANNOTATE_COMPOSITION_MASK:
7075 produce_composition (coding, charbuf, pos);
7076 break;
7077 case CODING_ANNOTATE_CHARSET_MASK:
7078 produce_charset (coding, charbuf, pos);
7079 break;
7080 }
7081 charbuf += len;
7082 }
7083 }
7084 }
7085
7086 /* Decode the data at CODING->src_object into CODING->dst_object.
7087 CODING->src_object is a buffer, a string, or nil.
7088 CODING->dst_object is a buffer.
7089
7090 If CODING->src_object is a buffer, it must be the current buffer.
7091 In this case, if CODING->src_pos is positive, it is a position of
7092 the source text in the buffer, otherwise, the source text is in the
7093 gap area of the buffer, and CODING->src_pos specifies the offset of
7094 the text from GPT (which must be the same as PT). If this is the
7095 same buffer as CODING->dst_object, CODING->src_pos must be
7096 negative.
7097
7098 If CODING->src_object is a string, CODING->src_pos is an index to
7099 that string.
7100
7101 If CODING->src_object is nil, CODING->source must already point to
7102 the non-relocatable memory area. In this case, CODING->src_pos is
7103 an offset from CODING->source.
7104
7105 The decoded data is inserted at the current point of the buffer
7106 CODING->dst_object.
7107 */
7108
7109 static int
7110 decode_coding (coding)
7111 struct coding_system *coding;
7112 {
7113 Lisp_Object attrs;
7114 Lisp_Object undo_list;
7115 Lisp_Object translation_table;
7116 int carryover;
7117 int i;
7118
7119 if (BUFFERP (coding->src_object)
7120 && coding->src_pos > 0
7121 && coding->src_pos < GPT
7122 && coding->src_pos + coding->src_chars > GPT)
7123 move_gap_both (coding->src_pos, coding->src_pos_byte);
7124
7125 undo_list = Qt;
7126 if (BUFFERP (coding->dst_object))
7127 {
7128 if (current_buffer != XBUFFER (coding->dst_object))
7129 set_buffer_internal (XBUFFER (coding->dst_object));
7130 if (GPT != PT)
7131 move_gap_both (PT, PT_BYTE);
7132 undo_list = current_buffer->undo_list;
7133 current_buffer->undo_list = Qt;
7134 }
7135
7136 coding->consumed = coding->consumed_char = 0;
7137 coding->produced = coding->produced_char = 0;
7138 coding->chars_at_source = 0;
7139 record_conversion_result (coding, CODING_RESULT_SUCCESS);
7140 coding->errors = 0;
7141
7142 ALLOC_CONVERSION_WORK_AREA (coding);
7143
7144 attrs = CODING_ID_ATTRS (coding->id);
7145 translation_table = get_translation_table (attrs, 0, NULL);
7146
7147 carryover = 0;
7148 do
7149 {
7150 EMACS_INT pos = coding->dst_pos + coding->produced_char;
7151
7152 coding_set_source (coding);
7153 coding->annotated = 0;
7154 coding->charbuf_used = carryover;
7155 (*(coding->decoder)) (coding);
7156 coding_set_destination (coding);
7157 carryover = produce_chars (coding, translation_table, 0);
7158 if (coding->annotated)
7159 produce_annotation (coding, pos);
7160 for (i = 0; i < carryover; i++)
7161 coding->charbuf[i]
7162 = coding->charbuf[coding->charbuf_used - carryover + i];
7163 }
7164 while (coding->consumed < coding->src_bytes
7165 && (coding->result == CODING_RESULT_SUCCESS
7166 || coding->result == CODING_RESULT_INVALID_SRC));
7167
7168 if (carryover > 0)
7169 {
7170 coding_set_destination (coding);
7171 coding->charbuf_used = carryover;
7172 produce_chars (coding, translation_table, 1);
7173 }
7174
7175 coding->carryover_bytes = 0;
7176 if (coding->consumed < coding->src_bytes)
7177 {
7178 int nbytes = coding->src_bytes - coding->consumed;
7179 const unsigned char *src;
7180
7181 coding_set_source (coding);
7182 coding_set_destination (coding);
7183 src = coding->source + coding->consumed;
7184
7185 if (coding->mode & CODING_MODE_LAST_BLOCK)
7186 {
7187 /* Flush out unprocessed data as binary chars. We are sure
7188 that the number of data is less than the size of
7189 coding->charbuf. */
7190 coding->charbuf_used = 0;
7191 coding->chars_at_source = 0;
7192
7193 while (nbytes-- > 0)
7194 {
7195 int c = *src++;
7196
7197 if (c & 0x80)
7198 c = BYTE8_TO_CHAR (c);
7199 coding->charbuf[coding->charbuf_used++] = c;
7200 }
7201 produce_chars (coding, Qnil, 1);
7202 }
7203 else
7204 {
7205 /* Record unprocessed bytes in coding->carryover. We are
7206 sure that the number of data is less than the size of
7207 coding->carryover. */
7208 unsigned char *p = coding->carryover;
7209
7210 if (nbytes > sizeof coding->carryover)
7211 nbytes = sizeof coding->carryover;
7212 coding->carryover_bytes = nbytes;
7213 while (nbytes-- > 0)
7214 *p++ = *src++;
7215 }
7216 coding->consumed = coding->src_bytes;
7217 }
7218
7219 if (! EQ (CODING_ID_EOL_TYPE (coding->id), Qunix)
7220 && !inhibit_eol_conversion)
7221 decode_eol (coding);
7222 if (BUFFERP (coding->dst_object))
7223 {
7224 current_buffer->undo_list = undo_list;
7225 record_insert (coding->dst_pos, coding->produced_char);
7226 }
7227 return coding->result;
7228 }
7229
7230
7231 /* Extract an annotation datum from a composition starting at POS and
7232 ending before LIMIT of CODING->src_object (buffer or string), store
7233 the data in BUF, set *STOP to a starting position of the next
7234 composition (if any) or to LIMIT, and return the address of the
7235 next element of BUF.
7236
7237 If such an annotation is not found, set *STOP to a starting
7238 position of a composition after POS (if any) or to LIMIT, and
7239 return BUF. */
7240
7241 static INLINE int *
7242 handle_composition_annotation (pos, limit, coding, buf, stop)
7243 EMACS_INT pos, limit;
7244 struct coding_system *coding;
7245 int *buf;
7246 EMACS_INT *stop;
7247 {
7248 EMACS_INT start, end;
7249 Lisp_Object prop;
7250
7251 if (! find_composition (pos, limit, &start, &end, &prop, coding->src_object)
7252 || end > limit)
7253 *stop = limit;
7254 else if (start > pos)
7255 *stop = start;
7256 else
7257 {
7258 if (start == pos)
7259 {
7260 /* We found a composition. Store the corresponding
7261 annotation data in BUF. */
7262 int *head = buf;
7263 enum composition_method method = COMPOSITION_METHOD (prop);
7264 int nchars = COMPOSITION_LENGTH (prop);
7265
7266 ADD_COMPOSITION_DATA (buf, nchars, 0, method);
7267 if (method != COMPOSITION_RELATIVE)
7268 {
7269 Lisp_Object components;
7270 int len, i, i_byte;
7271
7272 components = COMPOSITION_COMPONENTS (prop);
7273 if (VECTORP (components))
7274 {
7275 len = XVECTOR (components)->size;
7276 for (i = 0; i < len; i++)
7277 *buf++ = XINT (AREF (components, i));
7278 }
7279 else if (STRINGP (components))
7280 {
7281 len = SCHARS (components);
7282 i = i_byte = 0;
7283 while (i < len)
7284 {
7285 FETCH_STRING_CHAR_ADVANCE (*buf, components, i, i_byte);
7286 buf++;
7287 }
7288 }
7289 else if (INTEGERP (components))
7290 {
7291 len = 1;
7292 *buf++ = XINT (components);
7293 }
7294 else if (CONSP (components))
7295 {
7296 for (len = 0; CONSP (components);
7297 len++, components = XCDR (components))
7298 *buf++ = XINT (XCAR (components));
7299 }
7300 else
7301 abort ();
7302 *head -= len;
7303 }
7304 }
7305
7306 if (find_composition (end, limit, &start, &end, &prop,
7307 coding->src_object)
7308 && end <= limit)
7309 *stop = start;
7310 else
7311 *stop = limit;
7312 }
7313 return buf;
7314 }
7315
7316
7317 /* Extract an annotation datum from a text property `charset' at POS of
7318 CODING->src_object (buffer of string), store the data in BUF, set
7319 *STOP to the position where the value of `charset' property changes
7320 (limiting by LIMIT), and return the address of the next element of
7321 BUF.
7322
7323 If the property value is nil, set *STOP to the position where the
7324 property value is non-nil (limiting by LIMIT), and return BUF. */
7325
7326 static INLINE int *
7327 handle_charset_annotation (pos, limit, coding, buf, stop)
7328 EMACS_INT pos, limit;
7329 struct coding_system *coding;
7330 int *buf;
7331 EMACS_INT *stop;
7332 {
7333 Lisp_Object val, next;
7334 int id;
7335
7336 val = Fget_text_property (make_number (pos), Qcharset, coding->src_object);
7337 if (! NILP (val) && CHARSETP (val))
7338 id = XINT (CHARSET_SYMBOL_ID (val));
7339 else
7340 id = -1;
7341 ADD_CHARSET_DATA (buf, 0, id);
7342 next = Fnext_single_property_change (make_number (pos), Qcharset,
7343 coding->src_object,
7344 make_number (limit));
7345 *stop = XINT (next);
7346 return buf;
7347 }
7348
7349
7350 static void
7351 consume_chars (coding, translation_table, max_lookup)
7352 struct coding_system *coding;
7353 Lisp_Object translation_table;
7354 int max_lookup;
7355 {
7356 int *buf = coding->charbuf;
7357 int *buf_end = coding->charbuf + coding->charbuf_size;
7358 const unsigned char *src = coding->source + coding->consumed;
7359 const unsigned char *src_end = coding->source + coding->src_bytes;
7360 EMACS_INT pos = coding->src_pos + coding->consumed_char;
7361 EMACS_INT end_pos = coding->src_pos + coding->src_chars;
7362 int multibytep = coding->src_multibyte;
7363 Lisp_Object eol_type;
7364 int c;
7365 EMACS_INT stop, stop_composition, stop_charset;
7366 int *lookup_buf = NULL;
7367
7368 if (! NILP (translation_table))
7369 lookup_buf = alloca (sizeof (int) * max_lookup);
7370
7371 eol_type = inhibit_eol_conversion ? Qunix : CODING_ID_EOL_TYPE (coding->id);
7372 if (VECTORP (eol_type))
7373 eol_type = Qunix;
7374
7375 /* Note: composition handling is not yet implemented. */
7376 coding->common_flags &= ~CODING_ANNOTATE_COMPOSITION_MASK;
7377
7378 if (NILP (coding->src_object))
7379 stop = stop_composition = stop_charset = end_pos;
7380 else
7381 {
7382 if (coding->common_flags & CODING_ANNOTATE_COMPOSITION_MASK)
7383 stop = stop_composition = pos;
7384 else
7385 stop = stop_composition = end_pos;
7386 if (coding->common_flags & CODING_ANNOTATE_CHARSET_MASK)
7387 stop = stop_charset = pos;
7388 else
7389 stop_charset = end_pos;
7390 }
7391
7392 /* Compensate for CRLF and conversion. */
7393 buf_end -= 1 + MAX_ANNOTATION_LENGTH;
7394 while (buf < buf_end)
7395 {
7396 Lisp_Object trans;
7397
7398 if (pos == stop)
7399 {
7400 if (pos == end_pos)
7401 break;
7402 if (pos == stop_composition)
7403 buf = handle_composition_annotation (pos, end_pos, coding,
7404 buf, &stop_composition);
7405 if (pos == stop_charset)
7406 buf = handle_charset_annotation (pos, end_pos, coding,
7407 buf, &stop_charset);
7408 stop = (stop_composition < stop_charset
7409 ? stop_composition : stop_charset);
7410 }
7411
7412 if (! multibytep)
7413 {
7414 EMACS_INT bytes;
7415
7416 if (coding->encoder == encode_coding_raw_text)
7417 c = *src++, pos++;
7418 else if ((bytes = MULTIBYTE_LENGTH (src, src_end)) > 0)
7419 c = STRING_CHAR_ADVANCE_NO_UNIFY (src), pos += bytes;
7420 else
7421 c = BYTE8_TO_CHAR (*src), src++, pos++;
7422 }
7423 else
7424 c = STRING_CHAR_ADVANCE_NO_UNIFY (src), pos++;
7425 if ((c == '\r') && (coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
7426 c = '\n';
7427 if (! EQ (eol_type, Qunix))
7428 {
7429 if (c == '\n')
7430 {
7431 if (EQ (eol_type, Qdos))
7432 *buf++ = '\r';
7433 else
7434 c = '\r';
7435 }
7436 }
7437
7438 trans = Qnil;
7439 LOOKUP_TRANSLATION_TABLE (translation_table, c, trans);
7440 if (NILP (trans))
7441 *buf++ = c;
7442 else
7443 {
7444 int from_nchars = 1, to_nchars = 1;
7445 int *lookup_buf_end;
7446 const unsigned char *p = src;
7447 int i;
7448
7449 lookup_buf[0] = c;
7450 for (i = 1; i < max_lookup && p < src_end; i++)
7451 lookup_buf[i] = STRING_CHAR_ADVANCE (p);
7452 lookup_buf_end = lookup_buf + i;
7453 trans = get_translation (trans, lookup_buf, lookup_buf_end);
7454 if (INTEGERP (trans))
7455 c = XINT (trans);
7456 else if (CONSP (trans))
7457 {
7458 from_nchars = ASIZE (XCAR (trans));
7459 trans = XCDR (trans);
7460 if (INTEGERP (trans))
7461 c = XINT (trans);
7462 else
7463 {
7464 to_nchars = ASIZE (trans);
7465 if (buf + to_nchars > buf_end)
7466 break;
7467 c = XINT (AREF (trans, 0));
7468 }
7469 }
7470 else
7471 break;
7472 *buf++ = c;
7473 for (i = 1; i < to_nchars; i++)
7474 *buf++ = XINT (AREF (trans, i));
7475 for (i = 1; i < from_nchars; i++, pos++)
7476 src += MULTIBYTE_LENGTH_NO_CHECK (src);
7477 }
7478 }
7479
7480 coding->consumed = src - coding->source;
7481 coding->consumed_char = pos - coding->src_pos;
7482 coding->charbuf_used = buf - coding->charbuf;
7483 coding->chars_at_source = 0;
7484 }
7485
7486
7487 /* Encode the text at CODING->src_object into CODING->dst_object.
7488 CODING->src_object is a buffer or a string.
7489 CODING->dst_object is a buffer or nil.
7490
7491 If CODING->src_object is a buffer, it must be the current buffer.
7492 In this case, if CODING->src_pos is positive, it is a position of
7493 the source text in the buffer, otherwise. the source text is in the
7494 gap area of the buffer, and coding->src_pos specifies the offset of
7495 the text from GPT (which must be the same as PT). If this is the
7496 same buffer as CODING->dst_object, CODING->src_pos must be
7497 negative and CODING should not have `pre-write-conversion'.
7498
7499 If CODING->src_object is a string, CODING should not have
7500 `pre-write-conversion'.
7501
7502 If CODING->dst_object is a buffer, the encoded data is inserted at
7503 the current point of that buffer.
7504
7505 If CODING->dst_object is nil, the encoded data is placed at the
7506 memory area specified by CODING->destination. */
7507
7508 static int
7509 encode_coding (coding)
7510 struct coding_system *coding;
7511 {
7512 Lisp_Object attrs;
7513 Lisp_Object translation_table;
7514 int max_lookup;
7515
7516 attrs = CODING_ID_ATTRS (coding->id);
7517 if (coding->encoder == encode_coding_raw_text)
7518 translation_table = Qnil, max_lookup = 0;
7519 else
7520 translation_table = get_translation_table (attrs, 1, &max_lookup);
7521
7522 if (BUFFERP (coding->dst_object))
7523 {
7524 set_buffer_internal (XBUFFER (coding->dst_object));
7525 coding->dst_multibyte
7526 = ! NILP (current_buffer->enable_multibyte_characters);
7527 }
7528
7529 coding->consumed = coding->consumed_char = 0;
7530 coding->produced = coding->produced_char = 0;
7531 record_conversion_result (coding, CODING_RESULT_SUCCESS);
7532 coding->errors = 0;
7533
7534 ALLOC_CONVERSION_WORK_AREA (coding);
7535
7536 do {
7537 coding_set_source (coding);
7538 consume_chars (coding, translation_table, max_lookup);
7539 coding_set_destination (coding);
7540 (*(coding->encoder)) (coding);
7541 } while (coding->consumed_char < coding->src_chars);
7542
7543 if (BUFFERP (coding->dst_object) && coding->produced_char > 0)
7544 insert_from_gap (coding->produced_char, coding->produced);
7545
7546 return (coding->result);
7547 }
7548
7549
7550 /* Name (or base name) of work buffer for code conversion. */
7551 static Lisp_Object Vcode_conversion_workbuf_name;
7552
7553 /* A working buffer used by the top level conversion. Once it is
7554 created, it is never destroyed. It has the name
7555 Vcode_conversion_workbuf_name. The other working buffers are
7556 destroyed after the use is finished, and their names are modified
7557 versions of Vcode_conversion_workbuf_name. */
7558 static Lisp_Object Vcode_conversion_reused_workbuf;
7559
7560 /* 1 iff Vcode_conversion_reused_workbuf is already in use. */
7561 static int reused_workbuf_in_use;
7562
7563
7564 /* Return a working buffer of code convesion. MULTIBYTE specifies the
7565 multibyteness of returning buffer. */
7566
7567 static Lisp_Object
7568 make_conversion_work_buffer (multibyte)
7569 int multibyte;
7570 {
7571 Lisp_Object name, workbuf;
7572 struct buffer *current;
7573
7574 if (reused_workbuf_in_use++)
7575 {
7576 name = Fgenerate_new_buffer_name (Vcode_conversion_workbuf_name, Qnil);
7577 workbuf = Fget_buffer_create (name);
7578 }
7579 else
7580 {
7581 if (NILP (Fbuffer_live_p (Vcode_conversion_reused_workbuf)))
7582 Vcode_conversion_reused_workbuf
7583 = Fget_buffer_create (Vcode_conversion_workbuf_name);
7584 workbuf = Vcode_conversion_reused_workbuf;
7585 }
7586 current = current_buffer;
7587 set_buffer_internal (XBUFFER (workbuf));
7588 /* We can't allow modification hooks to run in the work buffer. For
7589 instance, directory_files_internal assumes that file decoding
7590 doesn't compile new regexps. */
7591 Fset (Fmake_local_variable (Qinhibit_modification_hooks), Qt);
7592 Ferase_buffer ();
7593 current_buffer->undo_list = Qt;
7594 current_buffer->enable_multibyte_characters = multibyte ? Qt : Qnil;
7595 set_buffer_internal (current);
7596 return workbuf;
7597 }
7598
7599
7600 static Lisp_Object
7601 code_conversion_restore (arg)
7602 Lisp_Object arg;
7603 {
7604 Lisp_Object current, workbuf;
7605 struct gcpro gcpro1;
7606
7607 GCPRO1 (arg);
7608 current = XCAR (arg);
7609 workbuf = XCDR (arg);
7610 if (! NILP (workbuf))
7611 {
7612 if (EQ (workbuf, Vcode_conversion_reused_workbuf))
7613 reused_workbuf_in_use = 0;
7614 else if (! NILP (Fbuffer_live_p (workbuf)))
7615 Fkill_buffer (workbuf);
7616 }
7617 set_buffer_internal (XBUFFER (current));
7618 UNGCPRO;
7619 return Qnil;
7620 }
7621
7622 Lisp_Object
7623 code_conversion_save (with_work_buf, multibyte)
7624 int with_work_buf, multibyte;
7625 {
7626 Lisp_Object workbuf = Qnil;
7627
7628 if (with_work_buf)
7629 workbuf = make_conversion_work_buffer (multibyte);
7630 record_unwind_protect (code_conversion_restore,
7631 Fcons (Fcurrent_buffer (), workbuf));
7632 return workbuf;
7633 }
7634
7635 int
7636 decode_coding_gap (coding, chars, bytes)
7637 struct coding_system *coding;
7638 EMACS_INT chars, bytes;
7639 {
7640 int count = specpdl_ptr - specpdl;
7641 Lisp_Object attrs;
7642
7643 code_conversion_save (0, 0);
7644
7645 coding->src_object = Fcurrent_buffer ();
7646 coding->src_chars = chars;
7647 coding->src_bytes = bytes;
7648 coding->src_pos = -chars;
7649 coding->src_pos_byte = -bytes;
7650 coding->src_multibyte = chars < bytes;
7651 coding->dst_object = coding->src_object;
7652 coding->dst_pos = PT;
7653 coding->dst_pos_byte = PT_BYTE;
7654 coding->dst_multibyte = ! NILP (current_buffer->enable_multibyte_characters);
7655
7656 if (CODING_REQUIRE_DETECTION (coding))
7657 detect_coding (coding);
7658
7659 coding->mode |= CODING_MODE_LAST_BLOCK;
7660 current_buffer->text->inhibit_shrinking = 1;
7661 decode_coding (coding);
7662 current_buffer->text->inhibit_shrinking = 0;
7663
7664 attrs = CODING_ID_ATTRS (coding->id);
7665 if (! NILP (CODING_ATTR_POST_READ (attrs)))
7666 {
7667 EMACS_INT prev_Z = Z, prev_Z_BYTE = Z_BYTE;
7668 Lisp_Object val;
7669
7670 TEMP_SET_PT_BOTH (coding->dst_pos, coding->dst_pos_byte);
7671 val = call1 (CODING_ATTR_POST_READ (attrs),
7672 make_number (coding->produced_char));
7673 CHECK_NATNUM (val);
7674 coding->produced_char += Z - prev_Z;
7675 coding->produced += Z_BYTE - prev_Z_BYTE;
7676 }
7677
7678 unbind_to (count, Qnil);
7679 return coding->result;
7680 }
7681
7682 int
7683 encode_coding_gap (coding, chars, bytes)
7684 struct coding_system *coding;
7685 EMACS_INT chars, bytes;
7686 {
7687 int count = specpdl_ptr - specpdl;
7688
7689 code_conversion_save (0, 0);
7690
7691 coding->src_object = Fcurrent_buffer ();
7692 coding->src_chars = chars;
7693 coding->src_bytes = bytes;
7694 coding->src_pos = -chars;
7695 coding->src_pos_byte = -bytes;
7696 coding->src_multibyte = chars < bytes;
7697 coding->dst_object = coding->src_object;
7698 coding->dst_pos = PT;
7699 coding->dst_pos_byte = PT_BYTE;
7700
7701 encode_coding (coding);
7702
7703 unbind_to (count, Qnil);
7704 return coding->result;
7705 }
7706
7707
7708 /* Decode the text in the range FROM/FROM_BYTE and TO/TO_BYTE in
7709 SRC_OBJECT into DST_OBJECT by coding context CODING.
7710
7711 SRC_OBJECT is a buffer, a string, or Qnil.
7712
7713 If it is a buffer, the text is at point of the buffer. FROM and TO
7714 are positions in the buffer.
7715
7716 If it is a string, the text is at the beginning of the string.
7717 FROM and TO are indices to the string.
7718
7719 If it is nil, the text is at coding->source. FROM and TO are
7720 indices to coding->source.
7721
7722 DST_OBJECT is a buffer, Qt, or Qnil.
7723
7724 If it is a buffer, the decoded text is inserted at point of the
7725 buffer. If the buffer is the same as SRC_OBJECT, the source text
7726 is deleted.
7727
7728 If it is Qt, a string is made from the decoded text, and
7729 set in CODING->dst_object.
7730
7731 If it is Qnil, the decoded text is stored at CODING->destination.
7732 The caller must allocate CODING->dst_bytes bytes at
7733 CODING->destination by xmalloc. If the decoded text is longer than
7734 CODING->dst_bytes, CODING->destination is relocated by xrealloc.
7735 */
7736
7737 void
7738 decode_coding_object (coding, src_object, from, from_byte, to, to_byte,
7739 dst_object)
7740 struct coding_system *coding;
7741 Lisp_Object src_object;
7742 EMACS_INT from, from_byte, to, to_byte;
7743 Lisp_Object dst_object;
7744 {
7745 int count = specpdl_ptr - specpdl;
7746 unsigned char *destination;
7747 EMACS_INT dst_bytes;
7748 EMACS_INT chars = to - from;
7749 EMACS_INT bytes = to_byte - from_byte;
7750 Lisp_Object attrs;
7751 int saved_pt = -1, saved_pt_byte;
7752 int need_marker_adjustment = 0;
7753 Lisp_Object old_deactivate_mark;
7754
7755 old_deactivate_mark = Vdeactivate_mark;
7756
7757 if (NILP (dst_object))
7758 {
7759 destination = coding->destination;
7760 dst_bytes = coding->dst_bytes;
7761 }
7762
7763 coding->src_object = src_object;
7764 coding->src_chars = chars;
7765 coding->src_bytes = bytes;
7766 coding->src_multibyte = chars < bytes;
7767
7768 if (STRINGP (src_object))
7769 {
7770 coding->src_pos = from;
7771 coding->src_pos_byte = from_byte;
7772 }
7773 else if (BUFFERP (src_object))
7774 {
7775 set_buffer_internal (XBUFFER (src_object));
7776 if (from != GPT)
7777 move_gap_both (from, from_byte);
7778 if (EQ (src_object, dst_object))
7779 {
7780 struct Lisp_Marker *tail;
7781
7782 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
7783 {
7784 tail->need_adjustment
7785 = tail->charpos == (tail->insertion_type ? from : to);
7786 need_marker_adjustment |= tail->need_adjustment;
7787 }
7788 saved_pt = PT, saved_pt_byte = PT_BYTE;
7789 TEMP_SET_PT_BOTH (from, from_byte);
7790 current_buffer->text->inhibit_shrinking = 1;
7791 del_range_both (from, from_byte, to, to_byte, 1);
7792 coding->src_pos = -chars;
7793 coding->src_pos_byte = -bytes;
7794 }
7795 else
7796 {
7797 coding->src_pos = from;
7798 coding->src_pos_byte = from_byte;
7799 }
7800 }
7801
7802 if (CODING_REQUIRE_DETECTION (coding))
7803 detect_coding (coding);
7804 attrs = CODING_ID_ATTRS (coding->id);
7805
7806 if (EQ (dst_object, Qt)
7807 || (! NILP (CODING_ATTR_POST_READ (attrs))
7808 && NILP (dst_object)))
7809 {
7810 coding->dst_multibyte = !CODING_FOR_UNIBYTE (coding);
7811 coding->dst_object = code_conversion_save (1, coding->dst_multibyte);
7812 coding->dst_pos = BEG;
7813 coding->dst_pos_byte = BEG_BYTE;
7814 }
7815 else if (BUFFERP (dst_object))
7816 {
7817 code_conversion_save (0, 0);
7818 coding->dst_object = dst_object;
7819 coding->dst_pos = BUF_PT (XBUFFER (dst_object));
7820 coding->dst_pos_byte = BUF_PT_BYTE (XBUFFER (dst_object));
7821 coding->dst_multibyte
7822 = ! NILP (XBUFFER (dst_object)->enable_multibyte_characters);
7823 }
7824 else
7825 {
7826 code_conversion_save (0, 0);
7827 coding->dst_object = Qnil;
7828 /* Most callers presume this will return a multibyte result, and they
7829 won't use `binary' or `raw-text' anyway, so let's not worry about
7830 CODING_FOR_UNIBYTE. */
7831 coding->dst_multibyte = 1;
7832 }
7833
7834 decode_coding (coding);
7835
7836 if (BUFFERP (coding->dst_object))
7837 set_buffer_internal (XBUFFER (coding->dst_object));
7838
7839 if (! NILP (CODING_ATTR_POST_READ (attrs)))
7840 {
7841 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
7842 EMACS_INT prev_Z = Z, prev_Z_BYTE = Z_BYTE;
7843 Lisp_Object val;
7844
7845 TEMP_SET_PT_BOTH (coding->dst_pos, coding->dst_pos_byte);
7846 GCPRO5 (coding->src_object, coding->dst_object, src_object, dst_object,
7847 old_deactivate_mark);
7848 val = safe_call1 (CODING_ATTR_POST_READ (attrs),
7849 make_number (coding->produced_char));
7850 UNGCPRO;
7851 CHECK_NATNUM (val);
7852 coding->produced_char += Z - prev_Z;
7853 coding->produced += Z_BYTE - prev_Z_BYTE;
7854 }
7855
7856 if (EQ (dst_object, Qt))
7857 {
7858 coding->dst_object = Fbuffer_string ();
7859 }
7860 else if (NILP (dst_object) && BUFFERP (coding->dst_object))
7861 {
7862 set_buffer_internal (XBUFFER (coding->dst_object));
7863 if (dst_bytes < coding->produced)
7864 {
7865 destination = xrealloc (destination, coding->produced);
7866 if (! destination)
7867 {
7868 record_conversion_result (coding,
7869 CODING_RESULT_INSUFFICIENT_DST);
7870 unbind_to (count, Qnil);
7871 return;
7872 }
7873 if (BEGV < GPT && GPT < BEGV + coding->produced_char)
7874 move_gap_both (BEGV, BEGV_BYTE);
7875 bcopy (BEGV_ADDR, destination, coding->produced);
7876 coding->destination = destination;
7877 }
7878 }
7879
7880 if (saved_pt >= 0)
7881 {
7882 /* This is the case of:
7883 (BUFFERP (src_object) && EQ (src_object, dst_object))
7884 As we have moved PT while replacing the original buffer
7885 contents, we must recover it now. */
7886 set_buffer_internal (XBUFFER (src_object));
7887 current_buffer->text->inhibit_shrinking = 0;
7888 if (saved_pt < from)
7889 TEMP_SET_PT_BOTH (saved_pt, saved_pt_byte);
7890 else if (saved_pt < from + chars)
7891 TEMP_SET_PT_BOTH (from, from_byte);
7892 else if (! NILP (current_buffer->enable_multibyte_characters))
7893 TEMP_SET_PT_BOTH (saved_pt + (coding->produced_char - chars),
7894 saved_pt_byte + (coding->produced - bytes));
7895 else
7896 TEMP_SET_PT_BOTH (saved_pt + (coding->produced - bytes),
7897 saved_pt_byte + (coding->produced - bytes));
7898
7899 if (need_marker_adjustment)
7900 {
7901 struct Lisp_Marker *tail;
7902
7903 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
7904 if (tail->need_adjustment)
7905 {
7906 tail->need_adjustment = 0;
7907 if (tail->insertion_type)
7908 {
7909 tail->bytepos = from_byte;
7910 tail->charpos = from;
7911 }
7912 else
7913 {
7914 tail->bytepos = from_byte + coding->produced;
7915 tail->charpos
7916 = (NILP (current_buffer->enable_multibyte_characters)
7917 ? tail->bytepos : from + coding->produced_char);
7918 }
7919 }
7920 }
7921 }
7922
7923 Vdeactivate_mark = old_deactivate_mark;
7924 unbind_to (count, coding->dst_object);
7925 }
7926
7927
7928 void
7929 encode_coding_object (coding, src_object, from, from_byte, to, to_byte,
7930 dst_object)
7931 struct coding_system *coding;
7932 Lisp_Object src_object;
7933 EMACS_INT from, from_byte, to, to_byte;
7934 Lisp_Object dst_object;
7935 {
7936 int count = specpdl_ptr - specpdl;
7937 EMACS_INT chars = to - from;
7938 EMACS_INT bytes = to_byte - from_byte;
7939 Lisp_Object attrs;
7940 int saved_pt = -1, saved_pt_byte;
7941 int need_marker_adjustment = 0;
7942 int kill_src_buffer = 0;
7943 Lisp_Object old_deactivate_mark;
7944
7945 old_deactivate_mark = Vdeactivate_mark;
7946
7947 coding->src_object = src_object;
7948 coding->src_chars = chars;
7949 coding->src_bytes = bytes;
7950 coding->src_multibyte = chars < bytes;
7951
7952 attrs = CODING_ID_ATTRS (coding->id);
7953
7954 if (EQ (src_object, dst_object))
7955 {
7956 struct Lisp_Marker *tail;
7957
7958 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
7959 {
7960 tail->need_adjustment
7961 = tail->charpos == (tail->insertion_type ? from : to);
7962 need_marker_adjustment |= tail->need_adjustment;
7963 }
7964 }
7965
7966 if (! NILP (CODING_ATTR_PRE_WRITE (attrs)))
7967 {
7968 coding->src_object = code_conversion_save (1, coding->src_multibyte);
7969 set_buffer_internal (XBUFFER (coding->src_object));
7970 if (STRINGP (src_object))
7971 insert_from_string (src_object, from, from_byte, chars, bytes, 0);
7972 else if (BUFFERP (src_object))
7973 insert_from_buffer (XBUFFER (src_object), from, chars, 0);
7974 else
7975 insert_1_both (coding->source + from, chars, bytes, 0, 0, 0);
7976
7977 if (EQ (src_object, dst_object))
7978 {
7979 set_buffer_internal (XBUFFER (src_object));
7980 saved_pt = PT, saved_pt_byte = PT_BYTE;
7981 del_range_both (from, from_byte, to, to_byte, 1);
7982 set_buffer_internal (XBUFFER (coding->src_object));
7983 }
7984
7985 {
7986 Lisp_Object args[3];
7987 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
7988
7989 GCPRO5 (coding->src_object, coding->dst_object, src_object, dst_object,
7990 old_deactivate_mark);
7991 args[0] = CODING_ATTR_PRE_WRITE (attrs);
7992 args[1] = make_number (BEG);
7993 args[2] = make_number (Z);
7994 safe_call (3, args);
7995 UNGCPRO;
7996 }
7997 if (XBUFFER (coding->src_object) != current_buffer)
7998 kill_src_buffer = 1;
7999 coding->src_object = Fcurrent_buffer ();
8000 if (BEG != GPT)
8001 move_gap_both (BEG, BEG_BYTE);
8002 coding->src_chars = Z - BEG;
8003 coding->src_bytes = Z_BYTE - BEG_BYTE;
8004 coding->src_pos = BEG;
8005 coding->src_pos_byte = BEG_BYTE;
8006 coding->src_multibyte = Z < Z_BYTE;
8007 }
8008 else if (STRINGP (src_object))
8009 {
8010 code_conversion_save (0, 0);
8011 coding->src_pos = from;
8012 coding->src_pos_byte = from_byte;
8013 }
8014 else if (BUFFERP (src_object))
8015 {
8016 code_conversion_save (0, 0);
8017 set_buffer_internal (XBUFFER (src_object));
8018 if (EQ (src_object, dst_object))
8019 {
8020 saved_pt = PT, saved_pt_byte = PT_BYTE;
8021 coding->src_object = del_range_1 (from, to, 1, 1);
8022 coding->src_pos = 0;
8023 coding->src_pos_byte = 0;
8024 }
8025 else
8026 {
8027 if (from < GPT && to >= GPT)
8028 move_gap_both (from, from_byte);
8029 coding->src_pos = from;
8030 coding->src_pos_byte = from_byte;
8031 }
8032 }
8033 else
8034 code_conversion_save (0, 0);
8035
8036 if (BUFFERP (dst_object))
8037 {
8038 coding->dst_object = dst_object;
8039 if (EQ (src_object, dst_object))
8040 {
8041 coding->dst_pos = from;
8042 coding->dst_pos_byte = from_byte;
8043 }
8044 else
8045 {
8046 struct buffer *current = current_buffer;
8047
8048 set_buffer_temp (XBUFFER (dst_object));
8049 coding->dst_pos = PT;
8050 coding->dst_pos_byte = PT_BYTE;
8051 move_gap_both (coding->dst_pos, coding->dst_pos_byte);
8052 set_buffer_temp (current);
8053 }
8054 coding->dst_multibyte
8055 = ! NILP (XBUFFER (dst_object)->enable_multibyte_characters);
8056 }
8057 else if (EQ (dst_object, Qt))
8058 {
8059 coding->dst_object = Qnil;
8060 coding->dst_bytes = coding->src_chars;
8061 if (coding->dst_bytes == 0)
8062 coding->dst_bytes = 1;
8063 coding->destination = (unsigned char *) xmalloc (coding->dst_bytes);
8064 coding->dst_multibyte = 0;
8065 }
8066 else
8067 {
8068 coding->dst_object = Qnil;
8069 coding->dst_multibyte = 0;
8070 }
8071
8072 encode_coding (coding);
8073
8074 if (EQ (dst_object, Qt))
8075 {
8076 if (BUFFERP (coding->dst_object))
8077 coding->dst_object = Fbuffer_string ();
8078 else
8079 {
8080 coding->dst_object
8081 = make_unibyte_string ((char *) coding->destination,
8082 coding->produced);
8083 xfree (coding->destination);
8084 }
8085 }
8086
8087 if (saved_pt >= 0)
8088 {
8089 /* This is the case of:
8090 (BUFFERP (src_object) && EQ (src_object, dst_object))
8091 As we have moved PT while replacing the original buffer
8092 contents, we must recover it now. */
8093 set_buffer_internal (XBUFFER (src_object));
8094 if (saved_pt < from)
8095 TEMP_SET_PT_BOTH (saved_pt, saved_pt_byte);
8096 else if (saved_pt < from + chars)
8097 TEMP_SET_PT_BOTH (from, from_byte);
8098 else if (! NILP (current_buffer->enable_multibyte_characters))
8099 TEMP_SET_PT_BOTH (saved_pt + (coding->produced_char - chars),
8100 saved_pt_byte + (coding->produced - bytes));
8101 else
8102 TEMP_SET_PT_BOTH (saved_pt + (coding->produced - bytes),
8103 saved_pt_byte + (coding->produced - bytes));
8104
8105 if (need_marker_adjustment)
8106 {
8107 struct Lisp_Marker *tail;
8108
8109 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
8110 if (tail->need_adjustment)
8111 {
8112 tail->need_adjustment = 0;
8113 if (tail->insertion_type)
8114 {
8115 tail->bytepos = from_byte;
8116 tail->charpos = from;
8117 }
8118 else
8119 {
8120 tail->bytepos = from_byte + coding->produced;
8121 tail->charpos
8122 = (NILP (current_buffer->enable_multibyte_characters)
8123 ? tail->bytepos : from + coding->produced_char);
8124 }
8125 }
8126 }
8127 }
8128
8129 if (kill_src_buffer)
8130 Fkill_buffer (coding->src_object);
8131
8132 Vdeactivate_mark = old_deactivate_mark;
8133 unbind_to (count, Qnil);
8134 }
8135
8136
8137 Lisp_Object
8138 preferred_coding_system ()
8139 {
8140 int id = coding_categories[coding_priorities[0]].id;
8141
8142 return CODING_ID_NAME (id);
8143 }
8144
8145 \f
8146 #ifdef emacs
8147 /*** 8. Emacs Lisp library functions ***/
8148
8149 DEFUN ("coding-system-p", Fcoding_system_p, Scoding_system_p, 1, 1, 0,
8150 doc: /* Return t if OBJECT is nil or a coding-system.
8151 See the documentation of `define-coding-system' for information
8152 about coding-system objects. */)
8153 (object)
8154 Lisp_Object object;
8155 {
8156 if (NILP (object)
8157 || CODING_SYSTEM_ID (object) >= 0)
8158 return Qt;
8159 if (! SYMBOLP (object)
8160 || NILP (Fget (object, Qcoding_system_define_form)))
8161 return Qnil;
8162 return Qt;
8163 }
8164
8165 DEFUN ("read-non-nil-coding-system", Fread_non_nil_coding_system,
8166 Sread_non_nil_coding_system, 1, 1, 0,
8167 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT. */)
8168 (prompt)
8169 Lisp_Object prompt;
8170 {
8171 Lisp_Object val;
8172 do
8173 {
8174 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
8175 Qt, Qnil, Qcoding_system_history, Qnil, Qnil);
8176 }
8177 while (SCHARS (val) == 0);
8178 return (Fintern (val, Qnil));
8179 }
8180
8181 DEFUN ("read-coding-system", Fread_coding_system, Sread_coding_system, 1, 2, 0,
8182 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT.
8183 If the user enters null input, return second argument DEFAULT-CODING-SYSTEM.
8184 Ignores case when completing coding systems (all Emacs coding systems
8185 are lower-case). */)
8186 (prompt, default_coding_system)
8187 Lisp_Object prompt, default_coding_system;
8188 {
8189 Lisp_Object val;
8190 int count = SPECPDL_INDEX ();
8191
8192 if (SYMBOLP (default_coding_system))
8193 default_coding_system = SYMBOL_NAME (default_coding_system);
8194 specbind (Qcompletion_ignore_case, Qt);
8195 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
8196 Qt, Qnil, Qcoding_system_history,
8197 default_coding_system, Qnil);
8198 unbind_to (count, Qnil);
8199 return (SCHARS (val) == 0 ? Qnil : Fintern (val, Qnil));
8200 }
8201
8202 DEFUN ("check-coding-system", Fcheck_coding_system, Scheck_coding_system,
8203 1, 1, 0,
8204 doc: /* Check validity of CODING-SYSTEM.
8205 If valid, return CODING-SYSTEM, else signal a `coding-system-error' error.
8206 It is valid if it is nil or a symbol defined as a coding system by the
8207 function `define-coding-system'. */)
8208 (coding_system)
8209 Lisp_Object coding_system;
8210 {
8211 Lisp_Object define_form;
8212
8213 define_form = Fget (coding_system, Qcoding_system_define_form);
8214 if (! NILP (define_form))
8215 {
8216 Fput (coding_system, Qcoding_system_define_form, Qnil);
8217 safe_eval (define_form);
8218 }
8219 if (!NILP (Fcoding_system_p (coding_system)))
8220 return coding_system;
8221 xsignal1 (Qcoding_system_error, coding_system);
8222 }
8223
8224 \f
8225 /* Detect how the bytes at SRC of length SRC_BYTES are encoded. If
8226 HIGHEST is nonzero, return the coding system of the highest
8227 priority among the detected coding systems. Otherwize return a
8228 list of detected coding systems sorted by their priorities. If
8229 MULTIBYTEP is nonzero, it is assumed that the bytes are in correct
8230 multibyte form but contains only ASCII and eight-bit chars.
8231 Otherwise, the bytes are raw bytes.
8232
8233 CODING-SYSTEM controls the detection as below:
8234
8235 If it is nil, detect both text-format and eol-format. If the
8236 text-format part of CODING-SYSTEM is already specified
8237 (e.g. `iso-latin-1'), detect only eol-format. If the eol-format
8238 part of CODING-SYSTEM is already specified (e.g. `undecided-unix'),
8239 detect only text-format. */
8240
8241 Lisp_Object
8242 detect_coding_system (src, src_chars, src_bytes, highest, multibytep,
8243 coding_system)
8244 const unsigned char *src;
8245 EMACS_INT src_chars, src_bytes;
8246 int highest;
8247 int multibytep;
8248 Lisp_Object coding_system;
8249 {
8250 const unsigned char *src_end = src + src_bytes;
8251 Lisp_Object attrs, eol_type;
8252 Lisp_Object val = Qnil;
8253 struct coding_system coding;
8254 int id;
8255 struct coding_detection_info detect_info;
8256 enum coding_category base_category;
8257 int null_byte_found = 0, eight_bit_found = 0;
8258
8259 if (NILP (coding_system))
8260 coding_system = Qundecided;
8261 setup_coding_system (coding_system, &coding);
8262 attrs = CODING_ID_ATTRS (coding.id);
8263 eol_type = CODING_ID_EOL_TYPE (coding.id);
8264 coding_system = CODING_ATTR_BASE_NAME (attrs);
8265
8266 coding.source = src;
8267 coding.src_chars = src_chars;
8268 coding.src_bytes = src_bytes;
8269 coding.src_multibyte = multibytep;
8270 coding.consumed = 0;
8271 coding.mode |= CODING_MODE_LAST_BLOCK;
8272 coding.head_ascii = 0;
8273
8274 detect_info.checked = detect_info.found = detect_info.rejected = 0;
8275
8276 /* At first, detect text-format if necessary. */
8277 base_category = XINT (CODING_ATTR_CATEGORY (attrs));
8278 if (base_category == coding_category_undecided)
8279 {
8280 enum coding_category category;
8281 struct coding_system *this;
8282 int c, i;
8283
8284 /* Skip all ASCII bytes except for a few ISO2022 controls. */
8285 for (; src < src_end; src++)
8286 {
8287 c = *src;
8288 if (c & 0x80)
8289 {
8290 eight_bit_found = 1;
8291 if (null_byte_found)
8292 break;
8293 }
8294 else if (c < 0x20)
8295 {
8296 if ((c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
8297 && ! inhibit_iso_escape_detection
8298 && ! detect_info.checked)
8299 {
8300 if (detect_coding_iso_2022 (&coding, &detect_info))
8301 {
8302 /* We have scanned the whole data. */
8303 if (! (detect_info.rejected & CATEGORY_MASK_ISO_7_ELSE))
8304 {
8305 /* We didn't find an 8-bit code. We may
8306 have found a null-byte, but it's very
8307 rare that a binary file confirm to
8308 ISO-2022. */
8309 src = src_end;
8310 coding.head_ascii = src - coding.source;
8311 }
8312 detect_info.rejected |= ~CATEGORY_MASK_ISO_ESCAPE;
8313 break;
8314 }
8315 }
8316 else if (! c && !inhibit_null_byte_detection)
8317 {
8318 null_byte_found = 1;
8319 if (eight_bit_found)
8320 break;
8321 }
8322 if (! eight_bit_found)
8323 coding.head_ascii++;
8324 }
8325 else if (! eight_bit_found)
8326 coding.head_ascii++;
8327 }
8328
8329 if (null_byte_found || eight_bit_found
8330 || coding.head_ascii < coding.src_bytes
8331 || detect_info.found)
8332 {
8333 if (coding.head_ascii == coding.src_bytes)
8334 /* As all bytes are 7-bit, we can ignore non-ISO-2022 codings. */
8335 for (i = 0; i < coding_category_raw_text; i++)
8336 {
8337 category = coding_priorities[i];
8338 this = coding_categories + category;
8339 if (detect_info.found & (1 << category))
8340 break;
8341 }
8342 else
8343 {
8344 if (null_byte_found)
8345 {
8346 detect_info.checked |= ~CATEGORY_MASK_UTF_16;
8347 detect_info.rejected |= ~CATEGORY_MASK_UTF_16;
8348 }
8349 for (i = 0; i < coding_category_raw_text; i++)
8350 {
8351 category = coding_priorities[i];
8352 this = coding_categories + category;
8353
8354 if (this->id < 0)
8355 {
8356 /* No coding system of this category is defined. */
8357 detect_info.rejected |= (1 << category);
8358 }
8359 else if (category >= coding_category_raw_text)
8360 continue;
8361 else if (detect_info.checked & (1 << category))
8362 {
8363 if (highest
8364 && (detect_info.found & (1 << category)))
8365 break;
8366 }
8367 else if ((*(this->detector)) (&coding, &detect_info)
8368 && highest
8369 && (detect_info.found & (1 << category)))
8370 {
8371 if (category == coding_category_utf_16_auto)
8372 {
8373 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
8374 category = coding_category_utf_16_le;
8375 else
8376 category = coding_category_utf_16_be;
8377 }
8378 break;
8379 }
8380 }
8381 }
8382 }
8383
8384 if ((detect_info.rejected & CATEGORY_MASK_ANY) == CATEGORY_MASK_ANY
8385 || null_byte_found)
8386 {
8387 detect_info.found = CATEGORY_MASK_RAW_TEXT;
8388 id = CODING_SYSTEM_ID (Qno_conversion);
8389 val = Fcons (make_number (id), Qnil);
8390 }
8391 else if (! detect_info.rejected && ! detect_info.found)
8392 {
8393 detect_info.found = CATEGORY_MASK_ANY;
8394 id = coding_categories[coding_category_undecided].id;
8395 val = Fcons (make_number (id), Qnil);
8396 }
8397 else if (highest)
8398 {
8399 if (detect_info.found)
8400 {
8401 detect_info.found = 1 << category;
8402 val = Fcons (make_number (this->id), Qnil);
8403 }
8404 else
8405 for (i = 0; i < coding_category_raw_text; i++)
8406 if (! (detect_info.rejected & (1 << coding_priorities[i])))
8407 {
8408 detect_info.found = 1 << coding_priorities[i];
8409 id = coding_categories[coding_priorities[i]].id;
8410 val = Fcons (make_number (id), Qnil);
8411 break;
8412 }
8413 }
8414 else
8415 {
8416 int mask = detect_info.rejected | detect_info.found;
8417 int found = 0;
8418
8419 for (i = coding_category_raw_text - 1; i >= 0; i--)
8420 {
8421 category = coding_priorities[i];
8422 if (! (mask & (1 << category)))
8423 {
8424 found |= 1 << category;
8425 id = coding_categories[category].id;
8426 if (id >= 0)
8427 val = Fcons (make_number (id), val);
8428 }
8429 }
8430 for (i = coding_category_raw_text - 1; i >= 0; i--)
8431 {
8432 category = coding_priorities[i];
8433 if (detect_info.found & (1 << category))
8434 {
8435 id = coding_categories[category].id;
8436 val = Fcons (make_number (id), val);
8437 }
8438 }
8439 detect_info.found |= found;
8440 }
8441 }
8442 else if (base_category == coding_category_utf_8_auto)
8443 {
8444 if (detect_coding_utf_8 (&coding, &detect_info))
8445 {
8446 struct coding_system *this;
8447
8448 if (detect_info.found & CATEGORY_MASK_UTF_8_SIG)
8449 this = coding_categories + coding_category_utf_8_sig;
8450 else
8451 this = coding_categories + coding_category_utf_8_nosig;
8452 val = Fcons (make_number (this->id), Qnil);
8453 }
8454 }
8455 else if (base_category == coding_category_utf_16_auto)
8456 {
8457 if (detect_coding_utf_16 (&coding, &detect_info))
8458 {
8459 struct coding_system *this;
8460
8461 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
8462 this = coding_categories + coding_category_utf_16_le;
8463 else if (detect_info.found & CATEGORY_MASK_UTF_16_BE)
8464 this = coding_categories + coding_category_utf_16_be;
8465 else if (detect_info.rejected & CATEGORY_MASK_UTF_16_LE_NOSIG)
8466 this = coding_categories + coding_category_utf_16_be_nosig;
8467 else
8468 this = coding_categories + coding_category_utf_16_le_nosig;
8469 val = Fcons (make_number (this->id), Qnil);
8470 }
8471 }
8472 else
8473 {
8474 detect_info.found = 1 << XINT (CODING_ATTR_CATEGORY (attrs));
8475 val = Fcons (make_number (coding.id), Qnil);
8476 }
8477
8478 /* Then, detect eol-format if necessary. */
8479 {
8480 int normal_eol = -1, utf_16_be_eol = -1, utf_16_le_eol = -1;
8481 Lisp_Object tail;
8482
8483 if (VECTORP (eol_type))
8484 {
8485 if (detect_info.found & ~CATEGORY_MASK_UTF_16)
8486 {
8487 if (null_byte_found)
8488 normal_eol = EOL_SEEN_LF;
8489 else
8490 normal_eol = detect_eol (coding.source, src_bytes,
8491 coding_category_raw_text);
8492 }
8493 if (detect_info.found & (CATEGORY_MASK_UTF_16_BE
8494 | CATEGORY_MASK_UTF_16_BE_NOSIG))
8495 utf_16_be_eol = detect_eol (coding.source, src_bytes,
8496 coding_category_utf_16_be);
8497 if (detect_info.found & (CATEGORY_MASK_UTF_16_LE
8498 | CATEGORY_MASK_UTF_16_LE_NOSIG))
8499 utf_16_le_eol = detect_eol (coding.source, src_bytes,
8500 coding_category_utf_16_le);
8501 }
8502 else
8503 {
8504 if (EQ (eol_type, Qunix))
8505 normal_eol = utf_16_be_eol = utf_16_le_eol = EOL_SEEN_LF;
8506 else if (EQ (eol_type, Qdos))
8507 normal_eol = utf_16_be_eol = utf_16_le_eol = EOL_SEEN_CRLF;
8508 else
8509 normal_eol = utf_16_be_eol = utf_16_le_eol = EOL_SEEN_CR;
8510 }
8511
8512 for (tail = val; CONSP (tail); tail = XCDR (tail))
8513 {
8514 enum coding_category category;
8515 int this_eol;
8516
8517 id = XINT (XCAR (tail));
8518 attrs = CODING_ID_ATTRS (id);
8519 category = XINT (CODING_ATTR_CATEGORY (attrs));
8520 eol_type = CODING_ID_EOL_TYPE (id);
8521 if (VECTORP (eol_type))
8522 {
8523 if (category == coding_category_utf_16_be
8524 || category == coding_category_utf_16_be_nosig)
8525 this_eol = utf_16_be_eol;
8526 else if (category == coding_category_utf_16_le
8527 || category == coding_category_utf_16_le_nosig)
8528 this_eol = utf_16_le_eol;
8529 else
8530 this_eol = normal_eol;
8531
8532 if (this_eol == EOL_SEEN_LF)
8533 XSETCAR (tail, AREF (eol_type, 0));
8534 else if (this_eol == EOL_SEEN_CRLF)
8535 XSETCAR (tail, AREF (eol_type, 1));
8536 else if (this_eol == EOL_SEEN_CR)
8537 XSETCAR (tail, AREF (eol_type, 2));
8538 else
8539 XSETCAR (tail, CODING_ID_NAME (id));
8540 }
8541 else
8542 XSETCAR (tail, CODING_ID_NAME (id));
8543 }
8544 }
8545
8546 return (highest ? (CONSP (val) ? XCAR (val) : Qnil) : val);
8547 }
8548
8549
8550 DEFUN ("detect-coding-region", Fdetect_coding_region, Sdetect_coding_region,
8551 2, 3, 0,
8552 doc: /* Detect coding system of the text in the region between START and END.
8553 Return a list of possible coding systems ordered by priority.
8554 The coding systems to try and their priorities follows what
8555 the function `coding-system-priority-list' (which see) returns.
8556
8557 If only ASCII characters are found (except for such ISO-2022 control
8558 characters as ESC), it returns a list of single element `undecided'
8559 or its subsidiary coding system according to a detected end-of-line
8560 format.
8561
8562 If optional argument HIGHEST is non-nil, return the coding system of
8563 highest priority. */)
8564 (start, end, highest)
8565 Lisp_Object start, end, highest;
8566 {
8567 int from, to;
8568 int from_byte, to_byte;
8569
8570 CHECK_NUMBER_COERCE_MARKER (start);
8571 CHECK_NUMBER_COERCE_MARKER (end);
8572
8573 validate_region (&start, &end);
8574 from = XINT (start), to = XINT (end);
8575 from_byte = CHAR_TO_BYTE (from);
8576 to_byte = CHAR_TO_BYTE (to);
8577
8578 if (from < GPT && to >= GPT)
8579 move_gap_both (to, to_byte);
8580
8581 return detect_coding_system (BYTE_POS_ADDR (from_byte),
8582 to - from, to_byte - from_byte,
8583 !NILP (highest),
8584 !NILP (current_buffer
8585 ->enable_multibyte_characters),
8586 Qnil);
8587 }
8588
8589 DEFUN ("detect-coding-string", Fdetect_coding_string, Sdetect_coding_string,
8590 1, 2, 0,
8591 doc: /* Detect coding system of the text in STRING.
8592 Return a list of possible coding systems ordered by priority.
8593 The coding systems to try and their priorities follows what
8594 the function `coding-system-priority-list' (which see) returns.
8595
8596 If only ASCII characters are found (except for such ISO-2022 control
8597 characters as ESC), it returns a list of single element `undecided'
8598 or its subsidiary coding system according to a detected end-of-line
8599 format.
8600
8601 If optional argument HIGHEST is non-nil, return the coding system of
8602 highest priority. */)
8603 (string, highest)
8604 Lisp_Object string, highest;
8605 {
8606 CHECK_STRING (string);
8607
8608 return detect_coding_system (SDATA (string),
8609 SCHARS (string), SBYTES (string),
8610 !NILP (highest), STRING_MULTIBYTE (string),
8611 Qnil);
8612 }
8613
8614
8615 static INLINE int
8616 char_encodable_p (c, attrs)
8617 int c;
8618 Lisp_Object attrs;
8619 {
8620 Lisp_Object tail;
8621 struct charset *charset;
8622 Lisp_Object translation_table;
8623
8624 translation_table = CODING_ATTR_TRANS_TBL (attrs);
8625 if (! NILP (translation_table))
8626 c = translate_char (translation_table, c);
8627 for (tail = CODING_ATTR_CHARSET_LIST (attrs);
8628 CONSP (tail); tail = XCDR (tail))
8629 {
8630 charset = CHARSET_FROM_ID (XINT (XCAR (tail)));
8631 if (CHAR_CHARSET_P (c, charset))
8632 break;
8633 }
8634 return (! NILP (tail));
8635 }
8636
8637
8638 /* Return a list of coding systems that safely encode the text between
8639 START and END. If EXCLUDE is non-nil, it is a list of coding
8640 systems not to check. The returned list doesn't contain any such
8641 coding systems. In any case, if the text contains only ASCII or is
8642 unibyte, return t. */
8643
8644 DEFUN ("find-coding-systems-region-internal",
8645 Ffind_coding_systems_region_internal,
8646 Sfind_coding_systems_region_internal, 2, 3, 0,
8647 doc: /* Internal use only. */)
8648 (start, end, exclude)
8649 Lisp_Object start, end, exclude;
8650 {
8651 Lisp_Object coding_attrs_list, safe_codings;
8652 EMACS_INT start_byte, end_byte;
8653 const unsigned char *p, *pbeg, *pend;
8654 int c;
8655 Lisp_Object tail, elt, work_table;
8656
8657 if (STRINGP (start))
8658 {
8659 if (!STRING_MULTIBYTE (start)
8660 || SCHARS (start) == SBYTES (start))
8661 return Qt;
8662 start_byte = 0;
8663 end_byte = SBYTES (start);
8664 }
8665 else
8666 {
8667 CHECK_NUMBER_COERCE_MARKER (start);
8668 CHECK_NUMBER_COERCE_MARKER (end);
8669 if (XINT (start) < BEG || XINT (end) > Z || XINT (start) > XINT (end))
8670 args_out_of_range (start, end);
8671 if (NILP (current_buffer->enable_multibyte_characters))
8672 return Qt;
8673 start_byte = CHAR_TO_BYTE (XINT (start));
8674 end_byte = CHAR_TO_BYTE (XINT (end));
8675 if (XINT (end) - XINT (start) == end_byte - start_byte)
8676 return Qt;
8677
8678 if (XINT (start) < GPT && XINT (end) > GPT)
8679 {
8680 if ((GPT - XINT (start)) < (XINT (end) - GPT))
8681 move_gap_both (XINT (start), start_byte);
8682 else
8683 move_gap_both (XINT (end), end_byte);
8684 }
8685 }
8686
8687 coding_attrs_list = Qnil;
8688 for (tail = Vcoding_system_list; CONSP (tail); tail = XCDR (tail))
8689 if (NILP (exclude)
8690 || NILP (Fmemq (XCAR (tail), exclude)))
8691 {
8692 Lisp_Object attrs;
8693
8694 attrs = AREF (CODING_SYSTEM_SPEC (XCAR (tail)), 0);
8695 if (EQ (XCAR (tail), CODING_ATTR_BASE_NAME (attrs))
8696 && ! EQ (CODING_ATTR_TYPE (attrs), Qundecided))
8697 {
8698 ASET (attrs, coding_attr_trans_tbl,
8699 get_translation_table (attrs, 1, NULL));
8700 coding_attrs_list = Fcons (attrs, coding_attrs_list);
8701 }
8702 }
8703
8704 if (STRINGP (start))
8705 p = pbeg = SDATA (start);
8706 else
8707 p = pbeg = BYTE_POS_ADDR (start_byte);
8708 pend = p + (end_byte - start_byte);
8709
8710 while (p < pend && ASCII_BYTE_P (*p)) p++;
8711 while (p < pend && ASCII_BYTE_P (*(pend - 1))) pend--;
8712
8713 work_table = Fmake_char_table (Qnil, Qnil);
8714 while (p < pend)
8715 {
8716 if (ASCII_BYTE_P (*p))
8717 p++;
8718 else
8719 {
8720 c = STRING_CHAR_ADVANCE (p);
8721 if (!NILP (char_table_ref (work_table, c)))
8722 /* This character was already checked. Ignore it. */
8723 continue;
8724
8725 charset_map_loaded = 0;
8726 for (tail = coding_attrs_list; CONSP (tail);)
8727 {
8728 elt = XCAR (tail);
8729 if (NILP (elt))
8730 tail = XCDR (tail);
8731 else if (char_encodable_p (c, elt))
8732 tail = XCDR (tail);
8733 else if (CONSP (XCDR (tail)))
8734 {
8735 XSETCAR (tail, XCAR (XCDR (tail)));
8736 XSETCDR (tail, XCDR (XCDR (tail)));
8737 }
8738 else
8739 {
8740 XSETCAR (tail, Qnil);
8741 tail = XCDR (tail);
8742 }
8743 }
8744 if (charset_map_loaded)
8745 {
8746 EMACS_INT p_offset = p - pbeg, pend_offset = pend - pbeg;
8747
8748 if (STRINGP (start))
8749 pbeg = SDATA (start);
8750 else
8751 pbeg = BYTE_POS_ADDR (start_byte);
8752 p = pbeg + p_offset;
8753 pend = pbeg + pend_offset;
8754 }
8755 char_table_set (work_table, c, Qt);
8756 }
8757 }
8758
8759 safe_codings = list2 (Qraw_text, Qno_conversion);
8760 for (tail = coding_attrs_list; CONSP (tail); tail = XCDR (tail))
8761 if (! NILP (XCAR (tail)))
8762 safe_codings = Fcons (CODING_ATTR_BASE_NAME (XCAR (tail)), safe_codings);
8763
8764 return safe_codings;
8765 }
8766
8767
8768 DEFUN ("unencodable-char-position", Funencodable_char_position,
8769 Sunencodable_char_position, 3, 5, 0,
8770 doc: /*
8771 Return position of first un-encodable character in a region.
8772 START and END specify the region and CODING-SYSTEM specifies the
8773 encoding to check. Return nil if CODING-SYSTEM does encode the region.
8774
8775 If optional 4th argument COUNT is non-nil, it specifies at most how
8776 many un-encodable characters to search. In this case, the value is a
8777 list of positions.
8778
8779 If optional 5th argument STRING is non-nil, it is a string to search
8780 for un-encodable characters. In that case, START and END are indexes
8781 to the string. */)
8782 (start, end, coding_system, count, string)
8783 Lisp_Object start, end, coding_system, count, string;
8784 {
8785 int n;
8786 struct coding_system coding;
8787 Lisp_Object attrs, charset_list, translation_table;
8788 Lisp_Object positions;
8789 int from, to;
8790 const unsigned char *p, *stop, *pend;
8791 int ascii_compatible;
8792
8793 setup_coding_system (Fcheck_coding_system (coding_system), &coding);
8794 attrs = CODING_ID_ATTRS (coding.id);
8795 if (EQ (CODING_ATTR_TYPE (attrs), Qraw_text))
8796 return Qnil;
8797 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
8798 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
8799 translation_table = get_translation_table (attrs, 1, NULL);
8800
8801 if (NILP (string))
8802 {
8803 validate_region (&start, &end);
8804 from = XINT (start);
8805 to = XINT (end);
8806 if (NILP (current_buffer->enable_multibyte_characters)
8807 || (ascii_compatible
8808 && (to - from) == (CHAR_TO_BYTE (to) - (CHAR_TO_BYTE (from)))))
8809 return Qnil;
8810 p = CHAR_POS_ADDR (from);
8811 pend = CHAR_POS_ADDR (to);
8812 if (from < GPT && to >= GPT)
8813 stop = GPT_ADDR;
8814 else
8815 stop = pend;
8816 }
8817 else
8818 {
8819 CHECK_STRING (string);
8820 CHECK_NATNUM (start);
8821 CHECK_NATNUM (end);
8822 from = XINT (start);
8823 to = XINT (end);
8824 if (from > to
8825 || to > SCHARS (string))
8826 args_out_of_range_3 (string, start, end);
8827 if (! STRING_MULTIBYTE (string))
8828 return Qnil;
8829 p = SDATA (string) + string_char_to_byte (string, from);
8830 stop = pend = SDATA (string) + string_char_to_byte (string, to);
8831 if (ascii_compatible && (to - from) == (pend - p))
8832 return Qnil;
8833 }
8834
8835 if (NILP (count))
8836 n = 1;
8837 else
8838 {
8839 CHECK_NATNUM (count);
8840 n = XINT (count);
8841 }
8842
8843 positions = Qnil;
8844 while (1)
8845 {
8846 int c;
8847
8848 if (ascii_compatible)
8849 while (p < stop && ASCII_BYTE_P (*p))
8850 p++, from++;
8851 if (p >= stop)
8852 {
8853 if (p >= pend)
8854 break;
8855 stop = pend;
8856 p = GAP_END_ADDR;
8857 }
8858
8859 c = STRING_CHAR_ADVANCE (p);
8860 if (! (ASCII_CHAR_P (c) && ascii_compatible)
8861 && ! char_charset (translate_char (translation_table, c),
8862 charset_list, NULL))
8863 {
8864 positions = Fcons (make_number (from), positions);
8865 n--;
8866 if (n == 0)
8867 break;
8868 }
8869
8870 from++;
8871 }
8872
8873 return (NILP (count) ? Fcar (positions) : Fnreverse (positions));
8874 }
8875
8876
8877 DEFUN ("check-coding-systems-region", Fcheck_coding_systems_region,
8878 Scheck_coding_systems_region, 3, 3, 0,
8879 doc: /* Check if the region is encodable by coding systems.
8880
8881 START and END are buffer positions specifying the region.
8882 CODING-SYSTEM-LIST is a list of coding systems to check.
8883
8884 The value is an alist ((CODING-SYSTEM POS0 POS1 ...) ...), where
8885 CODING-SYSTEM is a member of CODING-SYSTEM-LIST and can't encode the
8886 whole region, POS0, POS1, ... are buffer positions where non-encodable
8887 characters are found.
8888
8889 If all coding systems in CODING-SYSTEM-LIST can encode the region, the
8890 value is nil.
8891
8892 START may be a string. In that case, check if the string is
8893 encodable, and the value contains indices to the string instead of
8894 buffer positions. END is ignored.
8895
8896 If the current buffer (or START if it is a string) is unibyte, the value
8897 is nil. */)
8898 (start, end, coding_system_list)
8899 Lisp_Object start, end, coding_system_list;
8900 {
8901 Lisp_Object list;
8902 EMACS_INT start_byte, end_byte;
8903 int pos;
8904 const unsigned char *p, *pbeg, *pend;
8905 int c;
8906 Lisp_Object tail, elt, attrs;
8907
8908 if (STRINGP (start))
8909 {
8910 if (!STRING_MULTIBYTE (start)
8911 || SCHARS (start) == SBYTES (start))
8912 return Qnil;
8913 start_byte = 0;
8914 end_byte = SBYTES (start);
8915 pos = 0;
8916 }
8917 else
8918 {
8919 CHECK_NUMBER_COERCE_MARKER (start);
8920 CHECK_NUMBER_COERCE_MARKER (end);
8921 if (XINT (start) < BEG || XINT (end) > Z || XINT (start) > XINT (end))
8922 args_out_of_range (start, end);
8923 if (NILP (current_buffer->enable_multibyte_characters))
8924 return Qnil;
8925 start_byte = CHAR_TO_BYTE (XINT (start));
8926 end_byte = CHAR_TO_BYTE (XINT (end));
8927 if (XINT (end) - XINT (start) == end_byte - start_byte)
8928 return Qnil;
8929
8930 if (XINT (start) < GPT && XINT (end) > GPT)
8931 {
8932 if ((GPT - XINT (start)) < (XINT (end) - GPT))
8933 move_gap_both (XINT (start), start_byte);
8934 else
8935 move_gap_both (XINT (end), end_byte);
8936 }
8937 pos = XINT (start);
8938 }
8939
8940 list = Qnil;
8941 for (tail = coding_system_list; CONSP (tail); tail = XCDR (tail))
8942 {
8943 elt = XCAR (tail);
8944 attrs = AREF (CODING_SYSTEM_SPEC (elt), 0);
8945 ASET (attrs, coding_attr_trans_tbl,
8946 get_translation_table (attrs, 1, NULL));
8947 list = Fcons (Fcons (elt, Fcons (attrs, Qnil)), list);
8948 }
8949
8950 if (STRINGP (start))
8951 p = pbeg = SDATA (start);
8952 else
8953 p = pbeg = BYTE_POS_ADDR (start_byte);
8954 pend = p + (end_byte - start_byte);
8955
8956 while (p < pend && ASCII_BYTE_P (*p)) p++, pos++;
8957 while (p < pend && ASCII_BYTE_P (*(pend - 1))) pend--;
8958
8959 while (p < pend)
8960 {
8961 if (ASCII_BYTE_P (*p))
8962 p++;
8963 else
8964 {
8965 c = STRING_CHAR_ADVANCE (p);
8966
8967 charset_map_loaded = 0;
8968 for (tail = list; CONSP (tail); tail = XCDR (tail))
8969 {
8970 elt = XCDR (XCAR (tail));
8971 if (! char_encodable_p (c, XCAR (elt)))
8972 XSETCDR (elt, Fcons (make_number (pos), XCDR (elt)));
8973 }
8974 if (charset_map_loaded)
8975 {
8976 EMACS_INT p_offset = p - pbeg, pend_offset = pend - pbeg;
8977
8978 if (STRINGP (start))
8979 pbeg = SDATA (start);
8980 else
8981 pbeg = BYTE_POS_ADDR (start_byte);
8982 p = pbeg + p_offset;
8983 pend = pbeg + pend_offset;
8984 }
8985 }
8986 pos++;
8987 }
8988
8989 tail = list;
8990 list = Qnil;
8991 for (; CONSP (tail); tail = XCDR (tail))
8992 {
8993 elt = XCAR (tail);
8994 if (CONSP (XCDR (XCDR (elt))))
8995 list = Fcons (Fcons (XCAR (elt), Fnreverse (XCDR (XCDR (elt)))),
8996 list);
8997 }
8998
8999 return list;
9000 }
9001
9002
9003 Lisp_Object
9004 code_convert_region (start, end, coding_system, dst_object, encodep, norecord)
9005 Lisp_Object start, end, coding_system, dst_object;
9006 int encodep, norecord;
9007 {
9008 struct coding_system coding;
9009 EMACS_INT from, from_byte, to, to_byte;
9010 Lisp_Object src_object;
9011
9012 CHECK_NUMBER_COERCE_MARKER (start);
9013 CHECK_NUMBER_COERCE_MARKER (end);
9014 if (NILP (coding_system))
9015 coding_system = Qno_conversion;
9016 else
9017 CHECK_CODING_SYSTEM (coding_system);
9018 src_object = Fcurrent_buffer ();
9019 if (NILP (dst_object))
9020 dst_object = src_object;
9021 else if (! EQ (dst_object, Qt))
9022 CHECK_BUFFER (dst_object);
9023
9024 validate_region (&start, &end);
9025 from = XFASTINT (start);
9026 from_byte = CHAR_TO_BYTE (from);
9027 to = XFASTINT (end);
9028 to_byte = CHAR_TO_BYTE (to);
9029
9030 setup_coding_system (coding_system, &coding);
9031 coding.mode |= CODING_MODE_LAST_BLOCK;
9032
9033 if (encodep)
9034 encode_coding_object (&coding, src_object, from, from_byte, to, to_byte,
9035 dst_object);
9036 else
9037 decode_coding_object (&coding, src_object, from, from_byte, to, to_byte,
9038 dst_object);
9039 if (! norecord)
9040 Vlast_coding_system_used = CODING_ID_NAME (coding.id);
9041
9042 return (BUFFERP (dst_object)
9043 ? make_number (coding.produced_char)
9044 : coding.dst_object);
9045 }
9046
9047
9048 DEFUN ("decode-coding-region", Fdecode_coding_region, Sdecode_coding_region,
9049 3, 4, "r\nzCoding system: ",
9050 doc: /* Decode the current region from the specified coding system.
9051 When called from a program, takes four arguments:
9052 START, END, CODING-SYSTEM, and DESTINATION.
9053 START and END are buffer positions.
9054
9055 Optional 4th arguments DESTINATION specifies where the decoded text goes.
9056 If nil, the region between START and END is replaced by the decoded text.
9057 If buffer, the decoded text is inserted in that buffer after point (point
9058 does not move).
9059 In those cases, the length of the decoded text is returned.
9060 If DESTINATION is t, the decoded text is returned.
9061
9062 This function sets `last-coding-system-used' to the precise coding system
9063 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
9064 not fully specified.) */)
9065 (start, end, coding_system, destination)
9066 Lisp_Object start, end, coding_system, destination;
9067 {
9068 return code_convert_region (start, end, coding_system, destination, 0, 0);
9069 }
9070
9071 DEFUN ("encode-coding-region", Fencode_coding_region, Sencode_coding_region,
9072 3, 4, "r\nzCoding system: ",
9073 doc: /* Encode the current region by specified coding system.
9074 When called from a program, takes four arguments:
9075 START, END, CODING-SYSTEM and DESTINATION.
9076 START and END are buffer positions.
9077
9078 Optional 4th arguments DESTINATION specifies where the encoded text goes.
9079 If nil, the region between START and END is replace by the encoded text.
9080 If buffer, the encoded text is inserted in that buffer after point (point
9081 does not move).
9082 In those cases, the length of the encoded text is returned.
9083 If DESTINATION is t, the encoded text is returned.
9084
9085 This function sets `last-coding-system-used' to the precise coding system
9086 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
9087 not fully specified.) */)
9088 (start, end, coding_system, destination)
9089 Lisp_Object start, end, coding_system, destination;
9090 {
9091 return code_convert_region (start, end, coding_system, destination, 1, 0);
9092 }
9093
9094 Lisp_Object
9095 code_convert_string (string, coding_system, dst_object,
9096 encodep, nocopy, norecord)
9097 Lisp_Object string, coding_system, dst_object;
9098 int encodep, nocopy, norecord;
9099 {
9100 struct coding_system coding;
9101 EMACS_INT chars, bytes;
9102
9103 CHECK_STRING (string);
9104 if (NILP (coding_system))
9105 {
9106 if (! norecord)
9107 Vlast_coding_system_used = Qno_conversion;
9108 if (NILP (dst_object))
9109 return (nocopy ? Fcopy_sequence (string) : string);
9110 }
9111
9112 if (NILP (coding_system))
9113 coding_system = Qno_conversion;
9114 else
9115 CHECK_CODING_SYSTEM (coding_system);
9116 if (NILP (dst_object))
9117 dst_object = Qt;
9118 else if (! EQ (dst_object, Qt))
9119 CHECK_BUFFER (dst_object);
9120
9121 setup_coding_system (coding_system, &coding);
9122 coding.mode |= CODING_MODE_LAST_BLOCK;
9123 chars = SCHARS (string);
9124 bytes = SBYTES (string);
9125 if (encodep)
9126 encode_coding_object (&coding, string, 0, 0, chars, bytes, dst_object);
9127 else
9128 decode_coding_object (&coding, string, 0, 0, chars, bytes, dst_object);
9129 if (! norecord)
9130 Vlast_coding_system_used = CODING_ID_NAME (coding.id);
9131
9132 return (BUFFERP (dst_object)
9133 ? make_number (coding.produced_char)
9134 : coding.dst_object);
9135 }
9136
9137
9138 /* Encode or decode STRING according to CODING_SYSTEM.
9139 Do not set Vlast_coding_system_used.
9140
9141 This function is called only from macros DECODE_FILE and
9142 ENCODE_FILE, thus we ignore character composition. */
9143
9144 Lisp_Object
9145 code_convert_string_norecord (string, coding_system, encodep)
9146 Lisp_Object string, coding_system;
9147 int encodep;
9148 {
9149 return code_convert_string (string, coding_system, Qt, encodep, 0, 1);
9150 }
9151
9152
9153 DEFUN ("decode-coding-string", Fdecode_coding_string, Sdecode_coding_string,
9154 2, 4, 0,
9155 doc: /* Decode STRING which is encoded in CODING-SYSTEM, and return the result.
9156
9157 Optional third arg NOCOPY non-nil means it is OK to return STRING itself
9158 if the decoding operation is trivial.
9159
9160 Optional fourth arg BUFFER non-nil means that the decoded text is
9161 inserted in that buffer after point (point does not move). In this
9162 case, the return value is the length of the decoded text.
9163
9164 This function sets `last-coding-system-used' to the precise coding system
9165 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
9166 not fully specified.) */)
9167 (string, coding_system, nocopy, buffer)
9168 Lisp_Object string, coding_system, nocopy, buffer;
9169 {
9170 return code_convert_string (string, coding_system, buffer,
9171 0, ! NILP (nocopy), 0);
9172 }
9173
9174 DEFUN ("encode-coding-string", Fencode_coding_string, Sencode_coding_string,
9175 2, 4, 0,
9176 doc: /* Encode STRING to CODING-SYSTEM, and return the result.
9177
9178 Optional third arg NOCOPY non-nil means it is OK to return STRING
9179 itself if the encoding operation is trivial.
9180
9181 Optional fourth arg BUFFER non-nil means that the encoded text is
9182 inserted in that buffer after point (point does not move). In this
9183 case, the return value is the length of the encoded text.
9184
9185 This function sets `last-coding-system-used' to the precise coding system
9186 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
9187 not fully specified.) */)
9188 (string, coding_system, nocopy, buffer)
9189 Lisp_Object string, coding_system, nocopy, buffer;
9190 {
9191 return code_convert_string (string, coding_system, buffer,
9192 1, ! NILP (nocopy), 1);
9193 }
9194
9195 \f
9196 DEFUN ("decode-sjis-char", Fdecode_sjis_char, Sdecode_sjis_char, 1, 1, 0,
9197 doc: /* Decode a Japanese character which has CODE in shift_jis encoding.
9198 Return the corresponding character. */)
9199 (code)
9200 Lisp_Object code;
9201 {
9202 Lisp_Object spec, attrs, val;
9203 struct charset *charset_roman, *charset_kanji, *charset_kana, *charset;
9204 int c;
9205
9206 CHECK_NATNUM (code);
9207 c = XFASTINT (code);
9208 CHECK_CODING_SYSTEM_GET_SPEC (Vsjis_coding_system, spec);
9209 attrs = AREF (spec, 0);
9210
9211 if (ASCII_BYTE_P (c)
9212 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9213 return code;
9214
9215 val = CODING_ATTR_CHARSET_LIST (attrs);
9216 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
9217 charset_kana = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
9218 charset_kanji = CHARSET_FROM_ID (XINT (XCAR (val)));
9219
9220 if (c <= 0x7F)
9221 charset = charset_roman;
9222 else if (c >= 0xA0 && c < 0xDF)
9223 {
9224 charset = charset_kana;
9225 c -= 0x80;
9226 }
9227 else
9228 {
9229 int s1 = c >> 8, s2 = c & 0xFF;
9230
9231 if (s1 < 0x81 || (s1 > 0x9F && s1 < 0xE0) || s1 > 0xEF
9232 || s2 < 0x40 || s2 == 0x7F || s2 > 0xFC)
9233 error ("Invalid code: %d", code);
9234 SJIS_TO_JIS (c);
9235 charset = charset_kanji;
9236 }
9237 c = DECODE_CHAR (charset, c);
9238 if (c < 0)
9239 error ("Invalid code: %d", code);
9240 return make_number (c);
9241 }
9242
9243
9244 DEFUN ("encode-sjis-char", Fencode_sjis_char, Sencode_sjis_char, 1, 1, 0,
9245 doc: /* Encode a Japanese character CH to shift_jis encoding.
9246 Return the corresponding code in SJIS. */)
9247 (ch)
9248 Lisp_Object ch;
9249 {
9250 Lisp_Object spec, attrs, charset_list;
9251 int c;
9252 struct charset *charset;
9253 unsigned code;
9254
9255 CHECK_CHARACTER (ch);
9256 c = XFASTINT (ch);
9257 CHECK_CODING_SYSTEM_GET_SPEC (Vsjis_coding_system, spec);
9258 attrs = AREF (spec, 0);
9259
9260 if (ASCII_CHAR_P (c)
9261 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9262 return ch;
9263
9264 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
9265 charset = char_charset (c, charset_list, &code);
9266 if (code == CHARSET_INVALID_CODE (charset))
9267 error ("Can't encode by shift_jis encoding: %d", c);
9268 JIS_TO_SJIS (code);
9269
9270 return make_number (code);
9271 }
9272
9273 DEFUN ("decode-big5-char", Fdecode_big5_char, Sdecode_big5_char, 1, 1, 0,
9274 doc: /* Decode a Big5 character which has CODE in BIG5 coding system.
9275 Return the corresponding character. */)
9276 (code)
9277 Lisp_Object code;
9278 {
9279 Lisp_Object spec, attrs, val;
9280 struct charset *charset_roman, *charset_big5, *charset;
9281 int c;
9282
9283 CHECK_NATNUM (code);
9284 c = XFASTINT (code);
9285 CHECK_CODING_SYSTEM_GET_SPEC (Vbig5_coding_system, spec);
9286 attrs = AREF (spec, 0);
9287
9288 if (ASCII_BYTE_P (c)
9289 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9290 return code;
9291
9292 val = CODING_ATTR_CHARSET_LIST (attrs);
9293 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
9294 charset_big5 = CHARSET_FROM_ID (XINT (XCAR (val)));
9295
9296 if (c <= 0x7F)
9297 charset = charset_roman;
9298 else
9299 {
9300 int b1 = c >> 8, b2 = c & 0x7F;
9301 if (b1 < 0xA1 || b1 > 0xFE
9302 || b2 < 0x40 || (b2 > 0x7E && b2 < 0xA1) || b2 > 0xFE)
9303 error ("Invalid code: %d", code);
9304 charset = charset_big5;
9305 }
9306 c = DECODE_CHAR (charset, (unsigned )c);
9307 if (c < 0)
9308 error ("Invalid code: %d", code);
9309 return make_number (c);
9310 }
9311
9312 DEFUN ("encode-big5-char", Fencode_big5_char, Sencode_big5_char, 1, 1, 0,
9313 doc: /* Encode the Big5 character CH to BIG5 coding system.
9314 Return the corresponding character code in Big5. */)
9315 (ch)
9316 Lisp_Object ch;
9317 {
9318 Lisp_Object spec, attrs, charset_list;
9319 struct charset *charset;
9320 int c;
9321 unsigned code;
9322
9323 CHECK_CHARACTER (ch);
9324 c = XFASTINT (ch);
9325 CHECK_CODING_SYSTEM_GET_SPEC (Vbig5_coding_system, spec);
9326 attrs = AREF (spec, 0);
9327 if (ASCII_CHAR_P (c)
9328 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9329 return ch;
9330
9331 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
9332 charset = char_charset (c, charset_list, &code);
9333 if (code == CHARSET_INVALID_CODE (charset))
9334 error ("Can't encode by Big5 encoding: %d", c);
9335
9336 return make_number (code);
9337 }
9338
9339 \f
9340 DEFUN ("set-terminal-coding-system-internal", Fset_terminal_coding_system_internal,
9341 Sset_terminal_coding_system_internal, 1, 2, 0,
9342 doc: /* Internal use only. */)
9343 (coding_system, terminal)
9344 Lisp_Object coding_system;
9345 Lisp_Object terminal;
9346 {
9347 struct coding_system *terminal_coding = TERMINAL_TERMINAL_CODING (get_terminal (terminal, 1));
9348 CHECK_SYMBOL (coding_system);
9349 setup_coding_system (Fcheck_coding_system (coding_system), terminal_coding);
9350 /* We had better not send unsafe characters to terminal. */
9351 terminal_coding->mode |= CODING_MODE_SAFE_ENCODING;
9352 /* Characer composition should be disabled. */
9353 terminal_coding->common_flags &= ~CODING_ANNOTATE_COMPOSITION_MASK;
9354 terminal_coding->src_multibyte = 1;
9355 terminal_coding->dst_multibyte = 0;
9356 return Qnil;
9357 }
9358
9359 DEFUN ("set-safe-terminal-coding-system-internal",
9360 Fset_safe_terminal_coding_system_internal,
9361 Sset_safe_terminal_coding_system_internal, 1, 1, 0,
9362 doc: /* Internal use only. */)
9363 (coding_system)
9364 Lisp_Object coding_system;
9365 {
9366 CHECK_SYMBOL (coding_system);
9367 setup_coding_system (Fcheck_coding_system (coding_system),
9368 &safe_terminal_coding);
9369 /* Characer composition should be disabled. */
9370 safe_terminal_coding.common_flags &= ~CODING_ANNOTATE_COMPOSITION_MASK;
9371 safe_terminal_coding.src_multibyte = 1;
9372 safe_terminal_coding.dst_multibyte = 0;
9373 return Qnil;
9374 }
9375
9376 DEFUN ("terminal-coding-system", Fterminal_coding_system,
9377 Sterminal_coding_system, 0, 1, 0,
9378 doc: /* Return coding system specified for terminal output on the given terminal.
9379 TERMINAL may be a terminal object, a frame, or nil for the selected
9380 frame's terminal device. */)
9381 (terminal)
9382 Lisp_Object terminal;
9383 {
9384 struct coding_system *terminal_coding
9385 = TERMINAL_TERMINAL_CODING (get_terminal (terminal, 1));
9386 Lisp_Object coding_system = CODING_ID_NAME (terminal_coding->id);
9387
9388 /* For backward compatibility, return nil if it is `undecided'. */
9389 return (! EQ (coding_system, Qundecided) ? coding_system : Qnil);
9390 }
9391
9392 DEFUN ("set-keyboard-coding-system-internal", Fset_keyboard_coding_system_internal,
9393 Sset_keyboard_coding_system_internal, 1, 2, 0,
9394 doc: /* Internal use only. */)
9395 (coding_system, terminal)
9396 Lisp_Object coding_system;
9397 Lisp_Object terminal;
9398 {
9399 struct terminal *t = get_terminal (terminal, 1);
9400 CHECK_SYMBOL (coding_system);
9401 if (NILP (coding_system))
9402 coding_system = Qno_conversion;
9403 else
9404 Fcheck_coding_system (coding_system);
9405 setup_coding_system (coding_system, TERMINAL_KEYBOARD_CODING (t));
9406 /* Characer composition should be disabled. */
9407 TERMINAL_KEYBOARD_CODING (t)->common_flags
9408 &= ~CODING_ANNOTATE_COMPOSITION_MASK;
9409 return Qnil;
9410 }
9411
9412 DEFUN ("keyboard-coding-system",
9413 Fkeyboard_coding_system, Skeyboard_coding_system, 0, 1, 0,
9414 doc: /* Return coding system specified for decoding keyboard input. */)
9415 (terminal)
9416 Lisp_Object terminal;
9417 {
9418 return CODING_ID_NAME (TERMINAL_KEYBOARD_CODING
9419 (get_terminal (terminal, 1))->id);
9420 }
9421
9422 \f
9423 DEFUN ("find-operation-coding-system", Ffind_operation_coding_system,
9424 Sfind_operation_coding_system, 1, MANY, 0,
9425 doc: /* Choose a coding system for an operation based on the target name.
9426 The value names a pair of coding systems: (DECODING-SYSTEM . ENCODING-SYSTEM).
9427 DECODING-SYSTEM is the coding system to use for decoding
9428 \(in case OPERATION does decoding), and ENCODING-SYSTEM is the coding system
9429 for encoding (in case OPERATION does encoding).
9430
9431 The first argument OPERATION specifies an I/O primitive:
9432 For file I/O, `insert-file-contents' or `write-region'.
9433 For process I/O, `call-process', `call-process-region', or `start-process'.
9434 For network I/O, `open-network-stream'.
9435
9436 The remaining arguments should be the same arguments that were passed
9437 to the primitive. Depending on which primitive, one of those arguments
9438 is selected as the TARGET. For example, if OPERATION does file I/O,
9439 whichever argument specifies the file name is TARGET.
9440
9441 TARGET has a meaning which depends on OPERATION:
9442 For file I/O, TARGET is a file name (except for the special case below).
9443 For process I/O, TARGET is a process name.
9444 For network I/O, TARGET is a service name or a port number.
9445
9446 This function looks up what is specified for TARGET in
9447 `file-coding-system-alist', `process-coding-system-alist',
9448 or `network-coding-system-alist' depending on OPERATION.
9449 They may specify a coding system, a cons of coding systems,
9450 or a function symbol to call.
9451 In the last case, we call the function with one argument,
9452 which is a list of all the arguments given to this function.
9453 If the function can't decide a coding system, it can return
9454 `undecided' so that the normal code-detection is performed.
9455
9456 If OPERATION is `insert-file-contents', the argument corresponding to
9457 TARGET may be a cons (FILENAME . BUFFER). In that case, FILENAME is a
9458 file name to look up, and BUFFER is a buffer that contains the file's
9459 contents (not yet decoded). If `file-coding-system-alist' specifies a
9460 function to call for FILENAME, that function should examine the
9461 contents of BUFFER instead of reading the file.
9462
9463 usage: (find-operation-coding-system OPERATION ARGUMENTS...) */)
9464 (nargs, args)
9465 int nargs;
9466 Lisp_Object *args;
9467 {
9468 Lisp_Object operation, target_idx, target, val;
9469 register Lisp_Object chain;
9470
9471 if (nargs < 2)
9472 error ("Too few arguments");
9473 operation = args[0];
9474 if (!SYMBOLP (operation)
9475 || !INTEGERP (target_idx = Fget (operation, Qtarget_idx)))
9476 error ("Invalid first argument");
9477 if (nargs < 1 + XINT (target_idx))
9478 error ("Too few arguments for operation: %s",
9479 SDATA (SYMBOL_NAME (operation)));
9480 target = args[XINT (target_idx) + 1];
9481 if (!(STRINGP (target)
9482 || (EQ (operation, Qinsert_file_contents) && CONSP (target)
9483 && STRINGP (XCAR (target)) && BUFFERP (XCDR (target)))
9484 || (EQ (operation, Qopen_network_stream) && INTEGERP (target))))
9485 error ("Invalid %dth argument", XINT (target_idx) + 1);
9486 if (CONSP (target))
9487 target = XCAR (target);
9488
9489 chain = ((EQ (operation, Qinsert_file_contents)
9490 || EQ (operation, Qwrite_region))
9491 ? Vfile_coding_system_alist
9492 : (EQ (operation, Qopen_network_stream)
9493 ? Vnetwork_coding_system_alist
9494 : Vprocess_coding_system_alist));
9495 if (NILP (chain))
9496 return Qnil;
9497
9498 for (; CONSP (chain); chain = XCDR (chain))
9499 {
9500 Lisp_Object elt;
9501
9502 elt = XCAR (chain);
9503 if (CONSP (elt)
9504 && ((STRINGP (target)
9505 && STRINGP (XCAR (elt))
9506 && fast_string_match (XCAR (elt), target) >= 0)
9507 || (INTEGERP (target) && EQ (target, XCAR (elt)))))
9508 {
9509 val = XCDR (elt);
9510 /* Here, if VAL is both a valid coding system and a valid
9511 function symbol, we return VAL as a coding system. */
9512 if (CONSP (val))
9513 return val;
9514 if (! SYMBOLP (val))
9515 return Qnil;
9516 if (! NILP (Fcoding_system_p (val)))
9517 return Fcons (val, val);
9518 if (! NILP (Ffboundp (val)))
9519 {
9520 /* We use call1 rather than safe_call1
9521 so as to get bug reports about functions called here
9522 which don't handle the current interface. */
9523 val = call1 (val, Flist (nargs, args));
9524 if (CONSP (val))
9525 return val;
9526 if (SYMBOLP (val) && ! NILP (Fcoding_system_p (val)))
9527 return Fcons (val, val);
9528 }
9529 return Qnil;
9530 }
9531 }
9532 return Qnil;
9533 }
9534
9535 DEFUN ("set-coding-system-priority", Fset_coding_system_priority,
9536 Sset_coding_system_priority, 0, MANY, 0,
9537 doc: /* Assign higher priority to the coding systems given as arguments.
9538 If multiple coding systems belong to the same category,
9539 all but the first one are ignored.
9540
9541 usage: (set-coding-system-priority &rest coding-systems) */)
9542 (nargs, args)
9543 int nargs;
9544 Lisp_Object *args;
9545 {
9546 int i, j;
9547 int changed[coding_category_max];
9548 enum coding_category priorities[coding_category_max];
9549
9550 bzero (changed, sizeof changed);
9551
9552 for (i = j = 0; i < nargs; i++)
9553 {
9554 enum coding_category category;
9555 Lisp_Object spec, attrs;
9556
9557 CHECK_CODING_SYSTEM_GET_SPEC (args[i], spec);
9558 attrs = AREF (spec, 0);
9559 category = XINT (CODING_ATTR_CATEGORY (attrs));
9560 if (changed[category])
9561 /* Ignore this coding system because a coding system of the
9562 same category already had a higher priority. */
9563 continue;
9564 changed[category] = 1;
9565 priorities[j++] = category;
9566 if (coding_categories[category].id >= 0
9567 && ! EQ (args[i], CODING_ID_NAME (coding_categories[category].id)))
9568 setup_coding_system (args[i], &coding_categories[category]);
9569 Fset (AREF (Vcoding_category_table, category), args[i]);
9570 }
9571
9572 /* Now we have decided top J priorities. Reflect the order of the
9573 original priorities to the remaining priorities. */
9574
9575 for (i = j, j = 0; i < coding_category_max; i++, j++)
9576 {
9577 while (j < coding_category_max
9578 && changed[coding_priorities[j]])
9579 j++;
9580 if (j == coding_category_max)
9581 abort ();
9582 priorities[i] = coding_priorities[j];
9583 }
9584
9585 bcopy (priorities, coding_priorities, sizeof priorities);
9586
9587 /* Update `coding-category-list'. */
9588 Vcoding_category_list = Qnil;
9589 for (i = coding_category_max - 1; i >= 0; i--)
9590 Vcoding_category_list
9591 = Fcons (AREF (Vcoding_category_table, priorities[i]),
9592 Vcoding_category_list);
9593
9594 return Qnil;
9595 }
9596
9597 DEFUN ("coding-system-priority-list", Fcoding_system_priority_list,
9598 Scoding_system_priority_list, 0, 1, 0,
9599 doc: /* Return a list of coding systems ordered by their priorities.
9600 The list contains a subset of coding systems; i.e. coding systems
9601 assigned to each coding category (see `coding-category-list').
9602
9603 HIGHESTP non-nil means just return the highest priority one. */)
9604 (highestp)
9605 Lisp_Object highestp;
9606 {
9607 int i;
9608 Lisp_Object val;
9609
9610 for (i = 0, val = Qnil; i < coding_category_max; i++)
9611 {
9612 enum coding_category category = coding_priorities[i];
9613 int id = coding_categories[category].id;
9614 Lisp_Object attrs;
9615
9616 if (id < 0)
9617 continue;
9618 attrs = CODING_ID_ATTRS (id);
9619 if (! NILP (highestp))
9620 return CODING_ATTR_BASE_NAME (attrs);
9621 val = Fcons (CODING_ATTR_BASE_NAME (attrs), val);
9622 }
9623 return Fnreverse (val);
9624 }
9625
9626 static const char *const suffixes[] = { "-unix", "-dos", "-mac" };
9627
9628 static Lisp_Object
9629 make_subsidiaries (base)
9630 Lisp_Object base;
9631 {
9632 Lisp_Object subsidiaries;
9633 int base_name_len = SBYTES (SYMBOL_NAME (base));
9634 char *buf = (char *) alloca (base_name_len + 6);
9635 int i;
9636
9637 bcopy (SDATA (SYMBOL_NAME (base)), buf, base_name_len);
9638 subsidiaries = Fmake_vector (make_number (3), Qnil);
9639 for (i = 0; i < 3; i++)
9640 {
9641 bcopy (suffixes[i], buf + base_name_len, strlen (suffixes[i]) + 1);
9642 ASET (subsidiaries, i, intern (buf));
9643 }
9644 return subsidiaries;
9645 }
9646
9647
9648 DEFUN ("define-coding-system-internal", Fdefine_coding_system_internal,
9649 Sdefine_coding_system_internal, coding_arg_max, MANY, 0,
9650 doc: /* For internal use only.
9651 usage: (define-coding-system-internal ...) */)
9652 (nargs, args)
9653 int nargs;
9654 Lisp_Object *args;
9655 {
9656 Lisp_Object name;
9657 Lisp_Object spec_vec; /* [ ATTRS ALIASE EOL_TYPE ] */
9658 Lisp_Object attrs; /* Vector of attributes. */
9659 Lisp_Object eol_type;
9660 Lisp_Object aliases;
9661 Lisp_Object coding_type, charset_list, safe_charsets;
9662 enum coding_category category;
9663 Lisp_Object tail, val;
9664 int max_charset_id = 0;
9665 int i;
9666
9667 if (nargs < coding_arg_max)
9668 goto short_args;
9669
9670 attrs = Fmake_vector (make_number (coding_attr_last_index), Qnil);
9671
9672 name = args[coding_arg_name];
9673 CHECK_SYMBOL (name);
9674 CODING_ATTR_BASE_NAME (attrs) = name;
9675
9676 val = args[coding_arg_mnemonic];
9677 if (! STRINGP (val))
9678 CHECK_CHARACTER (val);
9679 CODING_ATTR_MNEMONIC (attrs) = val;
9680
9681 coding_type = args[coding_arg_coding_type];
9682 CHECK_SYMBOL (coding_type);
9683 CODING_ATTR_TYPE (attrs) = coding_type;
9684
9685 charset_list = args[coding_arg_charset_list];
9686 if (SYMBOLP (charset_list))
9687 {
9688 if (EQ (charset_list, Qiso_2022))
9689 {
9690 if (! EQ (coding_type, Qiso_2022))
9691 error ("Invalid charset-list");
9692 charset_list = Viso_2022_charset_list;
9693 }
9694 else if (EQ (charset_list, Qemacs_mule))
9695 {
9696 if (! EQ (coding_type, Qemacs_mule))
9697 error ("Invalid charset-list");
9698 charset_list = Vemacs_mule_charset_list;
9699 }
9700 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
9701 if (max_charset_id < XFASTINT (XCAR (tail)))
9702 max_charset_id = XFASTINT (XCAR (tail));
9703 }
9704 else
9705 {
9706 charset_list = Fcopy_sequence (charset_list);
9707 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
9708 {
9709 struct charset *charset;
9710
9711 val = XCAR (tail);
9712 CHECK_CHARSET_GET_CHARSET (val, charset);
9713 if (EQ (coding_type, Qiso_2022)
9714 ? CHARSET_ISO_FINAL (charset) < 0
9715 : EQ (coding_type, Qemacs_mule)
9716 ? CHARSET_EMACS_MULE_ID (charset) < 0
9717 : 0)
9718 error ("Can't handle charset `%s'",
9719 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9720
9721 XSETCAR (tail, make_number (charset->id));
9722 if (max_charset_id < charset->id)
9723 max_charset_id = charset->id;
9724 }
9725 }
9726 CODING_ATTR_CHARSET_LIST (attrs) = charset_list;
9727
9728 safe_charsets = make_uninit_string (max_charset_id + 1);
9729 memset (SDATA (safe_charsets), 255, max_charset_id + 1);
9730 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
9731 SSET (safe_charsets, XFASTINT (XCAR (tail)), 0);
9732 CODING_ATTR_SAFE_CHARSETS (attrs) = safe_charsets;
9733
9734 CODING_ATTR_ASCII_COMPAT (attrs) = args[coding_arg_ascii_compatible_p];
9735
9736 val = args[coding_arg_decode_translation_table];
9737 if (! CHAR_TABLE_P (val) && ! CONSP (val))
9738 CHECK_SYMBOL (val);
9739 CODING_ATTR_DECODE_TBL (attrs) = val;
9740
9741 val = args[coding_arg_encode_translation_table];
9742 if (! CHAR_TABLE_P (val) && ! CONSP (val))
9743 CHECK_SYMBOL (val);
9744 CODING_ATTR_ENCODE_TBL (attrs) = val;
9745
9746 val = args[coding_arg_post_read_conversion];
9747 CHECK_SYMBOL (val);
9748 CODING_ATTR_POST_READ (attrs) = val;
9749
9750 val = args[coding_arg_pre_write_conversion];
9751 CHECK_SYMBOL (val);
9752 CODING_ATTR_PRE_WRITE (attrs) = val;
9753
9754 val = args[coding_arg_default_char];
9755 if (NILP (val))
9756 CODING_ATTR_DEFAULT_CHAR (attrs) = make_number (' ');
9757 else
9758 {
9759 CHECK_CHARACTER (val);
9760 CODING_ATTR_DEFAULT_CHAR (attrs) = val;
9761 }
9762
9763 val = args[coding_arg_for_unibyte];
9764 CODING_ATTR_FOR_UNIBYTE (attrs) = NILP (val) ? Qnil : Qt;
9765
9766 val = args[coding_arg_plist];
9767 CHECK_LIST (val);
9768 CODING_ATTR_PLIST (attrs) = val;
9769
9770 if (EQ (coding_type, Qcharset))
9771 {
9772 /* Generate a lisp vector of 256 elements. Each element is nil,
9773 integer, or a list of charset IDs.
9774
9775 If Nth element is nil, the byte code N is invalid in this
9776 coding system.
9777
9778 If Nth element is a number NUM, N is the first byte of a
9779 charset whose ID is NUM.
9780
9781 If Nth element is a list of charset IDs, N is the first byte
9782 of one of them. The list is sorted by dimensions of the
9783 charsets. A charset of smaller dimension comes firtst. */
9784 val = Fmake_vector (make_number (256), Qnil);
9785
9786 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
9787 {
9788 struct charset *charset = CHARSET_FROM_ID (XFASTINT (XCAR (tail)));
9789 int dim = CHARSET_DIMENSION (charset);
9790 int idx = (dim - 1) * 4;
9791
9792 if (CHARSET_ASCII_COMPATIBLE_P (charset))
9793 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9794
9795 for (i = charset->code_space[idx];
9796 i <= charset->code_space[idx + 1]; i++)
9797 {
9798 Lisp_Object tmp, tmp2;
9799 int dim2;
9800
9801 tmp = AREF (val, i);
9802 if (NILP (tmp))
9803 tmp = XCAR (tail);
9804 else if (NUMBERP (tmp))
9805 {
9806 dim2 = CHARSET_DIMENSION (CHARSET_FROM_ID (XFASTINT (tmp)));
9807 if (dim < dim2)
9808 tmp = Fcons (XCAR (tail), Fcons (tmp, Qnil));
9809 else
9810 tmp = Fcons (tmp, Fcons (XCAR (tail), Qnil));
9811 }
9812 else
9813 {
9814 for (tmp2 = tmp; CONSP (tmp2); tmp2 = XCDR (tmp2))
9815 {
9816 dim2 = CHARSET_DIMENSION (CHARSET_FROM_ID (XFASTINT (XCAR (tmp2))));
9817 if (dim < dim2)
9818 break;
9819 }
9820 if (NILP (tmp2))
9821 tmp = nconc2 (tmp, Fcons (XCAR (tail), Qnil));
9822 else
9823 {
9824 XSETCDR (tmp2, Fcons (XCAR (tmp2), XCDR (tmp2)));
9825 XSETCAR (tmp2, XCAR (tail));
9826 }
9827 }
9828 ASET (val, i, tmp);
9829 }
9830 }
9831 ASET (attrs, coding_attr_charset_valids, val);
9832 category = coding_category_charset;
9833 }
9834 else if (EQ (coding_type, Qccl))
9835 {
9836 Lisp_Object valids;
9837
9838 if (nargs < coding_arg_ccl_max)
9839 goto short_args;
9840
9841 val = args[coding_arg_ccl_decoder];
9842 CHECK_CCL_PROGRAM (val);
9843 if (VECTORP (val))
9844 val = Fcopy_sequence (val);
9845 ASET (attrs, coding_attr_ccl_decoder, val);
9846
9847 val = args[coding_arg_ccl_encoder];
9848 CHECK_CCL_PROGRAM (val);
9849 if (VECTORP (val))
9850 val = Fcopy_sequence (val);
9851 ASET (attrs, coding_attr_ccl_encoder, val);
9852
9853 val = args[coding_arg_ccl_valids];
9854 valids = Fmake_string (make_number (256), make_number (0));
9855 for (tail = val; !NILP (tail); tail = Fcdr (tail))
9856 {
9857 int from, to;
9858
9859 val = Fcar (tail);
9860 if (INTEGERP (val))
9861 {
9862 from = to = XINT (val);
9863 if (from < 0 || from > 255)
9864 args_out_of_range_3 (val, make_number (0), make_number (255));
9865 }
9866 else
9867 {
9868 CHECK_CONS (val);
9869 CHECK_NATNUM_CAR (val);
9870 CHECK_NATNUM_CDR (val);
9871 from = XINT (XCAR (val));
9872 if (from > 255)
9873 args_out_of_range_3 (XCAR (val),
9874 make_number (0), make_number (255));
9875 to = XINT (XCDR (val));
9876 if (to < from || to > 255)
9877 args_out_of_range_3 (XCDR (val),
9878 XCAR (val), make_number (255));
9879 }
9880 for (i = from; i <= to; i++)
9881 SSET (valids, i, 1);
9882 }
9883 ASET (attrs, coding_attr_ccl_valids, valids);
9884
9885 category = coding_category_ccl;
9886 }
9887 else if (EQ (coding_type, Qutf_16))
9888 {
9889 Lisp_Object bom, endian;
9890
9891 CODING_ATTR_ASCII_COMPAT (attrs) = Qnil;
9892
9893 if (nargs < coding_arg_utf16_max)
9894 goto short_args;
9895
9896 bom = args[coding_arg_utf16_bom];
9897 if (! NILP (bom) && ! EQ (bom, Qt))
9898 {
9899 CHECK_CONS (bom);
9900 val = XCAR (bom);
9901 CHECK_CODING_SYSTEM (val);
9902 val = XCDR (bom);
9903 CHECK_CODING_SYSTEM (val);
9904 }
9905 ASET (attrs, coding_attr_utf_bom, bom);
9906
9907 endian = args[coding_arg_utf16_endian];
9908 CHECK_SYMBOL (endian);
9909 if (NILP (endian))
9910 endian = Qbig;
9911 else if (! EQ (endian, Qbig) && ! EQ (endian, Qlittle))
9912 error ("Invalid endian: %s", SDATA (SYMBOL_NAME (endian)));
9913 ASET (attrs, coding_attr_utf_16_endian, endian);
9914
9915 category = (CONSP (bom)
9916 ? coding_category_utf_16_auto
9917 : NILP (bom)
9918 ? (EQ (endian, Qbig)
9919 ? coding_category_utf_16_be_nosig
9920 : coding_category_utf_16_le_nosig)
9921 : (EQ (endian, Qbig)
9922 ? coding_category_utf_16_be
9923 : coding_category_utf_16_le));
9924 }
9925 else if (EQ (coding_type, Qiso_2022))
9926 {
9927 Lisp_Object initial, reg_usage, request, flags;
9928 int i;
9929
9930 if (nargs < coding_arg_iso2022_max)
9931 goto short_args;
9932
9933 initial = Fcopy_sequence (args[coding_arg_iso2022_initial]);
9934 CHECK_VECTOR (initial);
9935 for (i = 0; i < 4; i++)
9936 {
9937 val = Faref (initial, make_number (i));
9938 if (! NILP (val))
9939 {
9940 struct charset *charset;
9941
9942 CHECK_CHARSET_GET_CHARSET (val, charset);
9943 ASET (initial, i, make_number (CHARSET_ID (charset)));
9944 if (i == 0 && CHARSET_ASCII_COMPATIBLE_P (charset))
9945 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9946 }
9947 else
9948 ASET (initial, i, make_number (-1));
9949 }
9950
9951 reg_usage = args[coding_arg_iso2022_reg_usage];
9952 CHECK_CONS (reg_usage);
9953 CHECK_NUMBER_CAR (reg_usage);
9954 CHECK_NUMBER_CDR (reg_usage);
9955
9956 request = Fcopy_sequence (args[coding_arg_iso2022_request]);
9957 for (tail = request; ! NILP (tail); tail = Fcdr (tail))
9958 {
9959 int id;
9960 Lisp_Object tmp;
9961
9962 val = Fcar (tail);
9963 CHECK_CONS (val);
9964 tmp = XCAR (val);
9965 CHECK_CHARSET_GET_ID (tmp, id);
9966 CHECK_NATNUM_CDR (val);
9967 if (XINT (XCDR (val)) >= 4)
9968 error ("Invalid graphic register number: %d", XINT (XCDR (val)));
9969 XSETCAR (val, make_number (id));
9970 }
9971
9972 flags = args[coding_arg_iso2022_flags];
9973 CHECK_NATNUM (flags);
9974 i = XINT (flags);
9975 if (EQ (args[coding_arg_charset_list], Qiso_2022))
9976 flags = make_number (i | CODING_ISO_FLAG_FULL_SUPPORT);
9977
9978 ASET (attrs, coding_attr_iso_initial, initial);
9979 ASET (attrs, coding_attr_iso_usage, reg_usage);
9980 ASET (attrs, coding_attr_iso_request, request);
9981 ASET (attrs, coding_attr_iso_flags, flags);
9982 setup_iso_safe_charsets (attrs);
9983
9984 if (i & CODING_ISO_FLAG_SEVEN_BITS)
9985 category = ((i & (CODING_ISO_FLAG_LOCKING_SHIFT
9986 | CODING_ISO_FLAG_SINGLE_SHIFT))
9987 ? coding_category_iso_7_else
9988 : EQ (args[coding_arg_charset_list], Qiso_2022)
9989 ? coding_category_iso_7
9990 : coding_category_iso_7_tight);
9991 else
9992 {
9993 int id = XINT (AREF (initial, 1));
9994
9995 category = (((i & CODING_ISO_FLAG_LOCKING_SHIFT)
9996 || EQ (args[coding_arg_charset_list], Qiso_2022)
9997 || id < 0)
9998 ? coding_category_iso_8_else
9999 : (CHARSET_DIMENSION (CHARSET_FROM_ID (id)) == 1)
10000 ? coding_category_iso_8_1
10001 : coding_category_iso_8_2);
10002 }
10003 if (category != coding_category_iso_8_1
10004 && category != coding_category_iso_8_2)
10005 CODING_ATTR_ASCII_COMPAT (attrs) = Qnil;
10006 }
10007 else if (EQ (coding_type, Qemacs_mule))
10008 {
10009 if (EQ (args[coding_arg_charset_list], Qemacs_mule))
10010 ASET (attrs, coding_attr_emacs_mule_full, Qt);
10011 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
10012 category = coding_category_emacs_mule;
10013 }
10014 else if (EQ (coding_type, Qshift_jis))
10015 {
10016
10017 struct charset *charset;
10018
10019 if (XINT (Flength (charset_list)) != 3
10020 && XINT (Flength (charset_list)) != 4)
10021 error ("There should be three or four charsets");
10022
10023 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
10024 if (CHARSET_DIMENSION (charset) != 1)
10025 error ("Dimension of charset %s is not one",
10026 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
10027 if (CHARSET_ASCII_COMPATIBLE_P (charset))
10028 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
10029
10030 charset_list = XCDR (charset_list);
10031 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
10032 if (CHARSET_DIMENSION (charset) != 1)
10033 error ("Dimension of charset %s is not one",
10034 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
10035
10036 charset_list = XCDR (charset_list);
10037 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
10038 if (CHARSET_DIMENSION (charset) != 2)
10039 error ("Dimension of charset %s is not two",
10040 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
10041
10042 charset_list = XCDR (charset_list);
10043 if (! NILP (charset_list))
10044 {
10045 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
10046 if (CHARSET_DIMENSION (charset) != 2)
10047 error ("Dimension of charset %s is not two",
10048 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
10049 }
10050
10051 category = coding_category_sjis;
10052 Vsjis_coding_system = name;
10053 }
10054 else if (EQ (coding_type, Qbig5))
10055 {
10056 struct charset *charset;
10057
10058 if (XINT (Flength (charset_list)) != 2)
10059 error ("There should be just two charsets");
10060
10061 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
10062 if (CHARSET_DIMENSION (charset) != 1)
10063 error ("Dimension of charset %s is not one",
10064 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
10065 if (CHARSET_ASCII_COMPATIBLE_P (charset))
10066 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
10067
10068 charset_list = XCDR (charset_list);
10069 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
10070 if (CHARSET_DIMENSION (charset) != 2)
10071 error ("Dimension of charset %s is not two",
10072 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
10073
10074 category = coding_category_big5;
10075 Vbig5_coding_system = name;
10076 }
10077 else if (EQ (coding_type, Qraw_text))
10078 {
10079 category = coding_category_raw_text;
10080 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
10081 }
10082 else if (EQ (coding_type, Qutf_8))
10083 {
10084 Lisp_Object bom;
10085
10086 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
10087
10088 if (nargs < coding_arg_utf8_max)
10089 goto short_args;
10090
10091 bom = args[coding_arg_utf8_bom];
10092 if (! NILP (bom) && ! EQ (bom, Qt))
10093 {
10094 CHECK_CONS (bom);
10095 val = XCAR (bom);
10096 CHECK_CODING_SYSTEM (val);
10097 val = XCDR (bom);
10098 CHECK_CODING_SYSTEM (val);
10099 }
10100 ASET (attrs, coding_attr_utf_bom, bom);
10101
10102 category = (CONSP (bom) ? coding_category_utf_8_auto
10103 : NILP (bom) ? coding_category_utf_8_nosig
10104 : coding_category_utf_8_sig);
10105 }
10106 else if (EQ (coding_type, Qundecided))
10107 category = coding_category_undecided;
10108 else
10109 error ("Invalid coding system type: %s",
10110 SDATA (SYMBOL_NAME (coding_type)));
10111
10112 CODING_ATTR_CATEGORY (attrs) = make_number (category);
10113 CODING_ATTR_PLIST (attrs)
10114 = Fcons (QCcategory, Fcons (AREF (Vcoding_category_table, category),
10115 CODING_ATTR_PLIST (attrs)));
10116 CODING_ATTR_PLIST (attrs)
10117 = Fcons (QCascii_compatible_p,
10118 Fcons (CODING_ATTR_ASCII_COMPAT (attrs),
10119 CODING_ATTR_PLIST (attrs)));
10120
10121 eol_type = args[coding_arg_eol_type];
10122 if (! NILP (eol_type)
10123 && ! EQ (eol_type, Qunix)
10124 && ! EQ (eol_type, Qdos)
10125 && ! EQ (eol_type, Qmac))
10126 error ("Invalid eol-type");
10127
10128 aliases = Fcons (name, Qnil);
10129
10130 if (NILP (eol_type))
10131 {
10132 eol_type = make_subsidiaries (name);
10133 for (i = 0; i < 3; i++)
10134 {
10135 Lisp_Object this_spec, this_name, this_aliases, this_eol_type;
10136
10137 this_name = AREF (eol_type, i);
10138 this_aliases = Fcons (this_name, Qnil);
10139 this_eol_type = (i == 0 ? Qunix : i == 1 ? Qdos : Qmac);
10140 this_spec = Fmake_vector (make_number (3), attrs);
10141 ASET (this_spec, 1, this_aliases);
10142 ASET (this_spec, 2, this_eol_type);
10143 Fputhash (this_name, this_spec, Vcoding_system_hash_table);
10144 Vcoding_system_list = Fcons (this_name, Vcoding_system_list);
10145 val = Fassoc (Fsymbol_name (this_name), Vcoding_system_alist);
10146 if (NILP (val))
10147 Vcoding_system_alist
10148 = Fcons (Fcons (Fsymbol_name (this_name), Qnil),
10149 Vcoding_system_alist);
10150 }
10151 }
10152
10153 spec_vec = Fmake_vector (make_number (3), attrs);
10154 ASET (spec_vec, 1, aliases);
10155 ASET (spec_vec, 2, eol_type);
10156
10157 Fputhash (name, spec_vec, Vcoding_system_hash_table);
10158 Vcoding_system_list = Fcons (name, Vcoding_system_list);
10159 val = Fassoc (Fsymbol_name (name), Vcoding_system_alist);
10160 if (NILP (val))
10161 Vcoding_system_alist = Fcons (Fcons (Fsymbol_name (name), Qnil),
10162 Vcoding_system_alist);
10163
10164 {
10165 int id = coding_categories[category].id;
10166
10167 if (id < 0 || EQ (name, CODING_ID_NAME (id)))
10168 setup_coding_system (name, &coding_categories[category]);
10169 }
10170
10171 return Qnil;
10172
10173 short_args:
10174 return Fsignal (Qwrong_number_of_arguments,
10175 Fcons (intern ("define-coding-system-internal"),
10176 make_number (nargs)));
10177 }
10178
10179
10180 DEFUN ("coding-system-put", Fcoding_system_put, Scoding_system_put,
10181 3, 3, 0,
10182 doc: /* Change value in CODING-SYSTEM's property list PROP to VAL. */)
10183 (coding_system, prop, val)
10184 Lisp_Object coding_system, prop, val;
10185 {
10186 Lisp_Object spec, attrs;
10187
10188 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10189 attrs = AREF (spec, 0);
10190 if (EQ (prop, QCmnemonic))
10191 {
10192 if (! STRINGP (val))
10193 CHECK_CHARACTER (val);
10194 CODING_ATTR_MNEMONIC (attrs) = val;
10195 }
10196 else if (EQ (prop, QCdefault_char))
10197 {
10198 if (NILP (val))
10199 val = make_number (' ');
10200 else
10201 CHECK_CHARACTER (val);
10202 CODING_ATTR_DEFAULT_CHAR (attrs) = val;
10203 }
10204 else if (EQ (prop, QCdecode_translation_table))
10205 {
10206 if (! CHAR_TABLE_P (val) && ! CONSP (val))
10207 CHECK_SYMBOL (val);
10208 CODING_ATTR_DECODE_TBL (attrs) = val;
10209 }
10210 else if (EQ (prop, QCencode_translation_table))
10211 {
10212 if (! CHAR_TABLE_P (val) && ! CONSP (val))
10213 CHECK_SYMBOL (val);
10214 CODING_ATTR_ENCODE_TBL (attrs) = val;
10215 }
10216 else if (EQ (prop, QCpost_read_conversion))
10217 {
10218 CHECK_SYMBOL (val);
10219 CODING_ATTR_POST_READ (attrs) = val;
10220 }
10221 else if (EQ (prop, QCpre_write_conversion))
10222 {
10223 CHECK_SYMBOL (val);
10224 CODING_ATTR_PRE_WRITE (attrs) = val;
10225 }
10226 else if (EQ (prop, QCascii_compatible_p))
10227 {
10228 CODING_ATTR_ASCII_COMPAT (attrs) = val;
10229 }
10230
10231 CODING_ATTR_PLIST (attrs)
10232 = Fplist_put (CODING_ATTR_PLIST (attrs), prop, val);
10233 return val;
10234 }
10235
10236
10237 DEFUN ("define-coding-system-alias", Fdefine_coding_system_alias,
10238 Sdefine_coding_system_alias, 2, 2, 0,
10239 doc: /* Define ALIAS as an alias for CODING-SYSTEM. */)
10240 (alias, coding_system)
10241 Lisp_Object alias, coding_system;
10242 {
10243 Lisp_Object spec, aliases, eol_type, val;
10244
10245 CHECK_SYMBOL (alias);
10246 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10247 aliases = AREF (spec, 1);
10248 /* ALIASES should be a list of length more than zero, and the first
10249 element is a base coding system. Append ALIAS at the tail of the
10250 list. */
10251 while (!NILP (XCDR (aliases)))
10252 aliases = XCDR (aliases);
10253 XSETCDR (aliases, Fcons (alias, Qnil));
10254
10255 eol_type = AREF (spec, 2);
10256 if (VECTORP (eol_type))
10257 {
10258 Lisp_Object subsidiaries;
10259 int i;
10260
10261 subsidiaries = make_subsidiaries (alias);
10262 for (i = 0; i < 3; i++)
10263 Fdefine_coding_system_alias (AREF (subsidiaries, i),
10264 AREF (eol_type, i));
10265 }
10266
10267 Fputhash (alias, spec, Vcoding_system_hash_table);
10268 Vcoding_system_list = Fcons (alias, Vcoding_system_list);
10269 val = Fassoc (Fsymbol_name (alias), Vcoding_system_alist);
10270 if (NILP (val))
10271 Vcoding_system_alist = Fcons (Fcons (Fsymbol_name (alias), Qnil),
10272 Vcoding_system_alist);
10273
10274 return Qnil;
10275 }
10276
10277 DEFUN ("coding-system-base", Fcoding_system_base, Scoding_system_base,
10278 1, 1, 0,
10279 doc: /* Return the base of CODING-SYSTEM.
10280 Any alias or subsidiary coding system is not a base coding system. */)
10281 (coding_system)
10282 Lisp_Object coding_system;
10283 {
10284 Lisp_Object spec, attrs;
10285
10286 if (NILP (coding_system))
10287 return (Qno_conversion);
10288 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10289 attrs = AREF (spec, 0);
10290 return CODING_ATTR_BASE_NAME (attrs);
10291 }
10292
10293 DEFUN ("coding-system-plist", Fcoding_system_plist, Scoding_system_plist,
10294 1, 1, 0,
10295 doc: "Return the property list of CODING-SYSTEM.")
10296 (coding_system)
10297 Lisp_Object coding_system;
10298 {
10299 Lisp_Object spec, attrs;
10300
10301 if (NILP (coding_system))
10302 coding_system = Qno_conversion;
10303 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10304 attrs = AREF (spec, 0);
10305 return CODING_ATTR_PLIST (attrs);
10306 }
10307
10308
10309 DEFUN ("coding-system-aliases", Fcoding_system_aliases, Scoding_system_aliases,
10310 1, 1, 0,
10311 doc: /* Return the list of aliases of CODING-SYSTEM. */)
10312 (coding_system)
10313 Lisp_Object coding_system;
10314 {
10315 Lisp_Object spec;
10316
10317 if (NILP (coding_system))
10318 coding_system = Qno_conversion;
10319 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10320 return AREF (spec, 1);
10321 }
10322
10323 DEFUN ("coding-system-eol-type", Fcoding_system_eol_type,
10324 Scoding_system_eol_type, 1, 1, 0,
10325 doc: /* Return eol-type of CODING-SYSTEM.
10326 An eol-type is an integer 0, 1, 2, or a vector of coding systems.
10327
10328 Integer values 0, 1, and 2 indicate a format of end-of-line; LF, CRLF,
10329 and CR respectively.
10330
10331 A vector value indicates that a format of end-of-line should be
10332 detected automatically. Nth element of the vector is the subsidiary
10333 coding system whose eol-type is N. */)
10334 (coding_system)
10335 Lisp_Object coding_system;
10336 {
10337 Lisp_Object spec, eol_type;
10338 int n;
10339
10340 if (NILP (coding_system))
10341 coding_system = Qno_conversion;
10342 if (! CODING_SYSTEM_P (coding_system))
10343 return Qnil;
10344 spec = CODING_SYSTEM_SPEC (coding_system);
10345 eol_type = AREF (spec, 2);
10346 if (VECTORP (eol_type))
10347 return Fcopy_sequence (eol_type);
10348 n = EQ (eol_type, Qunix) ? 0 : EQ (eol_type, Qdos) ? 1 : 2;
10349 return make_number (n);
10350 }
10351
10352 #endif /* emacs */
10353
10354 \f
10355 /*** 9. Post-amble ***/
10356
10357 void
10358 init_coding_once ()
10359 {
10360 int i;
10361
10362 for (i = 0; i < coding_category_max; i++)
10363 {
10364 coding_categories[i].id = -1;
10365 coding_priorities[i] = i;
10366 }
10367
10368 /* ISO2022 specific initialize routine. */
10369 for (i = 0; i < 0x20; i++)
10370 iso_code_class[i] = ISO_control_0;
10371 for (i = 0x21; i < 0x7F; i++)
10372 iso_code_class[i] = ISO_graphic_plane_0;
10373 for (i = 0x80; i < 0xA0; i++)
10374 iso_code_class[i] = ISO_control_1;
10375 for (i = 0xA1; i < 0xFF; i++)
10376 iso_code_class[i] = ISO_graphic_plane_1;
10377 iso_code_class[0x20] = iso_code_class[0x7F] = ISO_0x20_or_0x7F;
10378 iso_code_class[0xA0] = iso_code_class[0xFF] = ISO_0xA0_or_0xFF;
10379 iso_code_class[ISO_CODE_SO] = ISO_shift_out;
10380 iso_code_class[ISO_CODE_SI] = ISO_shift_in;
10381 iso_code_class[ISO_CODE_SS2_7] = ISO_single_shift_2_7;
10382 iso_code_class[ISO_CODE_ESC] = ISO_escape;
10383 iso_code_class[ISO_CODE_SS2] = ISO_single_shift_2;
10384 iso_code_class[ISO_CODE_SS3] = ISO_single_shift_3;
10385 iso_code_class[ISO_CODE_CSI] = ISO_control_sequence_introducer;
10386
10387 for (i = 0; i < 256; i++)
10388 {
10389 emacs_mule_bytes[i] = 1;
10390 }
10391 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_11] = 3;
10392 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_12] = 3;
10393 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_21] = 4;
10394 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_22] = 4;
10395 }
10396
10397 #ifdef emacs
10398
10399 void
10400 syms_of_coding ()
10401 {
10402 staticpro (&Vcoding_system_hash_table);
10403 {
10404 Lisp_Object args[2];
10405 args[0] = QCtest;
10406 args[1] = Qeq;
10407 Vcoding_system_hash_table = Fmake_hash_table (2, args);
10408 }
10409
10410 staticpro (&Vsjis_coding_system);
10411 Vsjis_coding_system = Qnil;
10412
10413 staticpro (&Vbig5_coding_system);
10414 Vbig5_coding_system = Qnil;
10415
10416 staticpro (&Vcode_conversion_reused_workbuf);
10417 Vcode_conversion_reused_workbuf = Qnil;
10418
10419 staticpro (&Vcode_conversion_workbuf_name);
10420 Vcode_conversion_workbuf_name = make_pure_c_string (" *code-conversion-work*");
10421
10422 reused_workbuf_in_use = 0;
10423
10424 DEFSYM (Qcharset, "charset");
10425 DEFSYM (Qtarget_idx, "target-idx");
10426 DEFSYM (Qcoding_system_history, "coding-system-history");
10427 Fset (Qcoding_system_history, Qnil);
10428
10429 /* Target FILENAME is the first argument. */
10430 Fput (Qinsert_file_contents, Qtarget_idx, make_number (0));
10431 /* Target FILENAME is the third argument. */
10432 Fput (Qwrite_region, Qtarget_idx, make_number (2));
10433
10434 DEFSYM (Qcall_process, "call-process");
10435 /* Target PROGRAM is the first argument. */
10436 Fput (Qcall_process, Qtarget_idx, make_number (0));
10437
10438 DEFSYM (Qcall_process_region, "call-process-region");
10439 /* Target PROGRAM is the third argument. */
10440 Fput (Qcall_process_region, Qtarget_idx, make_number (2));
10441
10442 DEFSYM (Qstart_process, "start-process");
10443 /* Target PROGRAM is the third argument. */
10444 Fput (Qstart_process, Qtarget_idx, make_number (2));
10445
10446 DEFSYM (Qopen_network_stream, "open-network-stream");
10447 /* Target SERVICE is the fourth argument. */
10448 Fput (Qopen_network_stream, Qtarget_idx, make_number (3));
10449
10450 DEFSYM (Qcoding_system, "coding-system");
10451 DEFSYM (Qcoding_aliases, "coding-aliases");
10452
10453 DEFSYM (Qeol_type, "eol-type");
10454 DEFSYM (Qunix, "unix");
10455 DEFSYM (Qdos, "dos");
10456
10457 DEFSYM (Qbuffer_file_coding_system, "buffer-file-coding-system");
10458 DEFSYM (Qpost_read_conversion, "post-read-conversion");
10459 DEFSYM (Qpre_write_conversion, "pre-write-conversion");
10460 DEFSYM (Qdefault_char, "default-char");
10461 DEFSYM (Qundecided, "undecided");
10462 DEFSYM (Qno_conversion, "no-conversion");
10463 DEFSYM (Qraw_text, "raw-text");
10464
10465 DEFSYM (Qiso_2022, "iso-2022");
10466
10467 DEFSYM (Qutf_8, "utf-8");
10468 DEFSYM (Qutf_8_emacs, "utf-8-emacs");
10469
10470 DEFSYM (Qutf_16, "utf-16");
10471 DEFSYM (Qbig, "big");
10472 DEFSYM (Qlittle, "little");
10473
10474 DEFSYM (Qshift_jis, "shift-jis");
10475 DEFSYM (Qbig5, "big5");
10476
10477 DEFSYM (Qcoding_system_p, "coding-system-p");
10478
10479 DEFSYM (Qcoding_system_error, "coding-system-error");
10480 Fput (Qcoding_system_error, Qerror_conditions,
10481 pure_cons (Qcoding_system_error, pure_cons (Qerror, Qnil)));
10482 Fput (Qcoding_system_error, Qerror_message,
10483 make_pure_c_string ("Invalid coding system"));
10484
10485 /* Intern this now in case it isn't already done.
10486 Setting this variable twice is harmless.
10487 But don't staticpro it here--that is done in alloc.c. */
10488 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
10489
10490 DEFSYM (Qtranslation_table, "translation-table");
10491 Fput (Qtranslation_table, Qchar_table_extra_slots, make_number (2));
10492 DEFSYM (Qtranslation_table_id, "translation-table-id");
10493 DEFSYM (Qtranslation_table_for_decode, "translation-table-for-decode");
10494 DEFSYM (Qtranslation_table_for_encode, "translation-table-for-encode");
10495
10496 DEFSYM (Qvalid_codes, "valid-codes");
10497
10498 DEFSYM (Qemacs_mule, "emacs-mule");
10499
10500 DEFSYM (QCcategory, ":category");
10501 DEFSYM (QCmnemonic, ":mnemonic");
10502 DEFSYM (QCdefault_char, ":default-char");
10503 DEFSYM (QCdecode_translation_table, ":decode-translation-table");
10504 DEFSYM (QCencode_translation_table, ":encode-translation-table");
10505 DEFSYM (QCpost_read_conversion, ":post-read-conversion");
10506 DEFSYM (QCpre_write_conversion, ":pre-write-conversion");
10507 DEFSYM (QCascii_compatible_p, ":ascii-compatible-p");
10508
10509 Vcoding_category_table
10510 = Fmake_vector (make_number (coding_category_max), Qnil);
10511 staticpro (&Vcoding_category_table);
10512 /* Followings are target of code detection. */
10513 ASET (Vcoding_category_table, coding_category_iso_7,
10514 intern_c_string ("coding-category-iso-7"));
10515 ASET (Vcoding_category_table, coding_category_iso_7_tight,
10516 intern_c_string ("coding-category-iso-7-tight"));
10517 ASET (Vcoding_category_table, coding_category_iso_8_1,
10518 intern_c_string ("coding-category-iso-8-1"));
10519 ASET (Vcoding_category_table, coding_category_iso_8_2,
10520 intern_c_string ("coding-category-iso-8-2"));
10521 ASET (Vcoding_category_table, coding_category_iso_7_else,
10522 intern_c_string ("coding-category-iso-7-else"));
10523 ASET (Vcoding_category_table, coding_category_iso_8_else,
10524 intern_c_string ("coding-category-iso-8-else"));
10525 ASET (Vcoding_category_table, coding_category_utf_8_auto,
10526 intern_c_string ("coding-category-utf-8-auto"));
10527 ASET (Vcoding_category_table, coding_category_utf_8_nosig,
10528 intern_c_string ("coding-category-utf-8"));
10529 ASET (Vcoding_category_table, coding_category_utf_8_sig,
10530 intern_c_string ("coding-category-utf-8-sig"));
10531 ASET (Vcoding_category_table, coding_category_utf_16_be,
10532 intern_c_string ("coding-category-utf-16-be"));
10533 ASET (Vcoding_category_table, coding_category_utf_16_auto,
10534 intern_c_string ("coding-category-utf-16-auto"));
10535 ASET (Vcoding_category_table, coding_category_utf_16_le,
10536 intern_c_string ("coding-category-utf-16-le"));
10537 ASET (Vcoding_category_table, coding_category_utf_16_be_nosig,
10538 intern_c_string ("coding-category-utf-16-be-nosig"));
10539 ASET (Vcoding_category_table, coding_category_utf_16_le_nosig,
10540 intern_c_string ("coding-category-utf-16-le-nosig"));
10541 ASET (Vcoding_category_table, coding_category_charset,
10542 intern_c_string ("coding-category-charset"));
10543 ASET (Vcoding_category_table, coding_category_sjis,
10544 intern_c_string ("coding-category-sjis"));
10545 ASET (Vcoding_category_table, coding_category_big5,
10546 intern_c_string ("coding-category-big5"));
10547 ASET (Vcoding_category_table, coding_category_ccl,
10548 intern_c_string ("coding-category-ccl"));
10549 ASET (Vcoding_category_table, coding_category_emacs_mule,
10550 intern_c_string ("coding-category-emacs-mule"));
10551 /* Followings are NOT target of code detection. */
10552 ASET (Vcoding_category_table, coding_category_raw_text,
10553 intern_c_string ("coding-category-raw-text"));
10554 ASET (Vcoding_category_table, coding_category_undecided,
10555 intern_c_string ("coding-category-undecided"));
10556
10557 DEFSYM (Qinsufficient_source, "insufficient-source");
10558 DEFSYM (Qinconsistent_eol, "inconsistent-eol");
10559 DEFSYM (Qinvalid_source, "invalid-source");
10560 DEFSYM (Qinterrupted, "interrupted");
10561 DEFSYM (Qinsufficient_memory, "insufficient-memory");
10562 DEFSYM (Qcoding_system_define_form, "coding-system-define-form");
10563
10564 defsubr (&Scoding_system_p);
10565 defsubr (&Sread_coding_system);
10566 defsubr (&Sread_non_nil_coding_system);
10567 defsubr (&Scheck_coding_system);
10568 defsubr (&Sdetect_coding_region);
10569 defsubr (&Sdetect_coding_string);
10570 defsubr (&Sfind_coding_systems_region_internal);
10571 defsubr (&Sunencodable_char_position);
10572 defsubr (&Scheck_coding_systems_region);
10573 defsubr (&Sdecode_coding_region);
10574 defsubr (&Sencode_coding_region);
10575 defsubr (&Sdecode_coding_string);
10576 defsubr (&Sencode_coding_string);
10577 defsubr (&Sdecode_sjis_char);
10578 defsubr (&Sencode_sjis_char);
10579 defsubr (&Sdecode_big5_char);
10580 defsubr (&Sencode_big5_char);
10581 defsubr (&Sset_terminal_coding_system_internal);
10582 defsubr (&Sset_safe_terminal_coding_system_internal);
10583 defsubr (&Sterminal_coding_system);
10584 defsubr (&Sset_keyboard_coding_system_internal);
10585 defsubr (&Skeyboard_coding_system);
10586 defsubr (&Sfind_operation_coding_system);
10587 defsubr (&Sset_coding_system_priority);
10588 defsubr (&Sdefine_coding_system_internal);
10589 defsubr (&Sdefine_coding_system_alias);
10590 defsubr (&Scoding_system_put);
10591 defsubr (&Scoding_system_base);
10592 defsubr (&Scoding_system_plist);
10593 defsubr (&Scoding_system_aliases);
10594 defsubr (&Scoding_system_eol_type);
10595 defsubr (&Scoding_system_priority_list);
10596
10597 DEFVAR_LISP ("coding-system-list", &Vcoding_system_list,
10598 doc: /* List of coding systems.
10599
10600 Do not alter the value of this variable manually. This variable should be
10601 updated by the functions `define-coding-system' and
10602 `define-coding-system-alias'. */);
10603 Vcoding_system_list = Qnil;
10604
10605 DEFVAR_LISP ("coding-system-alist", &Vcoding_system_alist,
10606 doc: /* Alist of coding system names.
10607 Each element is one element list of coding system name.
10608 This variable is given to `completing-read' as COLLECTION argument.
10609
10610 Do not alter the value of this variable manually. This variable should be
10611 updated by the functions `make-coding-system' and
10612 `define-coding-system-alias'. */);
10613 Vcoding_system_alist = Qnil;
10614
10615 DEFVAR_LISP ("coding-category-list", &Vcoding_category_list,
10616 doc: /* List of coding-categories (symbols) ordered by priority.
10617
10618 On detecting a coding system, Emacs tries code detection algorithms
10619 associated with each coding-category one by one in this order. When
10620 one algorithm agrees with a byte sequence of source text, the coding
10621 system bound to the corresponding coding-category is selected.
10622
10623 Don't modify this variable directly, but use `set-coding-priority'. */);
10624 {
10625 int i;
10626
10627 Vcoding_category_list = Qnil;
10628 for (i = coding_category_max - 1; i >= 0; i--)
10629 Vcoding_category_list
10630 = Fcons (XVECTOR (Vcoding_category_table)->contents[i],
10631 Vcoding_category_list);
10632 }
10633
10634 DEFVAR_LISP ("coding-system-for-read", &Vcoding_system_for_read,
10635 doc: /* Specify the coding system for read operations.
10636 It is useful to bind this variable with `let', but do not set it globally.
10637 If the value is a coding system, it is used for decoding on read operation.
10638 If not, an appropriate element is used from one of the coding system alists.
10639 There are three such tables: `file-coding-system-alist',
10640 `process-coding-system-alist', and `network-coding-system-alist'. */);
10641 Vcoding_system_for_read = Qnil;
10642
10643 DEFVAR_LISP ("coding-system-for-write", &Vcoding_system_for_write,
10644 doc: /* Specify the coding system for write operations.
10645 Programs bind this variable with `let', but you should not set it globally.
10646 If the value is a coding system, it is used for encoding of output,
10647 when writing it to a file and when sending it to a file or subprocess.
10648
10649 If this does not specify a coding system, an appropriate element
10650 is used from one of the coding system alists.
10651 There are three such tables: `file-coding-system-alist',
10652 `process-coding-system-alist', and `network-coding-system-alist'.
10653 For output to files, if the above procedure does not specify a coding system,
10654 the value of `buffer-file-coding-system' is used. */);
10655 Vcoding_system_for_write = Qnil;
10656
10657 DEFVAR_LISP ("last-coding-system-used", &Vlast_coding_system_used,
10658 doc: /*
10659 Coding system used in the latest file or process I/O. */);
10660 Vlast_coding_system_used = Qnil;
10661
10662 DEFVAR_LISP ("last-code-conversion-error", &Vlast_code_conversion_error,
10663 doc: /*
10664 Error status of the last code conversion.
10665
10666 When an error was detected in the last code conversion, this variable
10667 is set to one of the following symbols.
10668 `insufficient-source'
10669 `inconsistent-eol'
10670 `invalid-source'
10671 `interrupted'
10672 `insufficient-memory'
10673 When no error was detected, the value doesn't change. So, to check
10674 the error status of a code conversion by this variable, you must
10675 explicitly set this variable to nil before performing code
10676 conversion. */);
10677 Vlast_code_conversion_error = Qnil;
10678
10679 DEFVAR_BOOL ("inhibit-eol-conversion", &inhibit_eol_conversion,
10680 doc: /*
10681 *Non-nil means always inhibit code conversion of end-of-line format.
10682 See info node `Coding Systems' and info node `Text and Binary' concerning
10683 such conversion. */);
10684 inhibit_eol_conversion = 0;
10685
10686 DEFVAR_BOOL ("inherit-process-coding-system", &inherit_process_coding_system,
10687 doc: /*
10688 Non-nil means process buffer inherits coding system of process output.
10689 Bind it to t if the process output is to be treated as if it were a file
10690 read from some filesystem. */);
10691 inherit_process_coding_system = 0;
10692
10693 DEFVAR_LISP ("file-coding-system-alist", &Vfile_coding_system_alist,
10694 doc: /*
10695 Alist to decide a coding system to use for a file I/O operation.
10696 The format is ((PATTERN . VAL) ...),
10697 where PATTERN is a regular expression matching a file name,
10698 VAL is a coding system, a cons of coding systems, or a function symbol.
10699 If VAL is a coding system, it is used for both decoding and encoding
10700 the file contents.
10701 If VAL is a cons of coding systems, the car part is used for decoding,
10702 and the cdr part is used for encoding.
10703 If VAL is a function symbol, the function must return a coding system
10704 or a cons of coding systems which are used as above. The function is
10705 called with an argument that is a list of the arguments with which
10706 `find-operation-coding-system' was called. If the function can't decide
10707 a coding system, it can return `undecided' so that the normal
10708 code-detection is performed.
10709
10710 See also the function `find-operation-coding-system'
10711 and the variable `auto-coding-alist'. */);
10712 Vfile_coding_system_alist = Qnil;
10713
10714 DEFVAR_LISP ("process-coding-system-alist", &Vprocess_coding_system_alist,
10715 doc: /*
10716 Alist to decide a coding system to use for a process I/O operation.
10717 The format is ((PATTERN . VAL) ...),
10718 where PATTERN is a regular expression matching a program name,
10719 VAL is a coding system, a cons of coding systems, or a function symbol.
10720 If VAL is a coding system, it is used for both decoding what received
10721 from the program and encoding what sent to the program.
10722 If VAL is a cons of coding systems, the car part is used for decoding,
10723 and the cdr part is used for encoding.
10724 If VAL is a function symbol, the function must return a coding system
10725 or a cons of coding systems which are used as above.
10726
10727 See also the function `find-operation-coding-system'. */);
10728 Vprocess_coding_system_alist = Qnil;
10729
10730 DEFVAR_LISP ("network-coding-system-alist", &Vnetwork_coding_system_alist,
10731 doc: /*
10732 Alist to decide a coding system to use for a network I/O operation.
10733 The format is ((PATTERN . VAL) ...),
10734 where PATTERN is a regular expression matching a network service name
10735 or is a port number to connect to,
10736 VAL is a coding system, a cons of coding systems, or a function symbol.
10737 If VAL is a coding system, it is used for both decoding what received
10738 from the network stream and encoding what sent to the network stream.
10739 If VAL is a cons of coding systems, the car part is used for decoding,
10740 and the cdr part is used for encoding.
10741 If VAL is a function symbol, the function must return a coding system
10742 or a cons of coding systems which are used as above.
10743
10744 See also the function `find-operation-coding-system'. */);
10745 Vnetwork_coding_system_alist = Qnil;
10746
10747 DEFVAR_LISP ("locale-coding-system", &Vlocale_coding_system,
10748 doc: /* Coding system to use with system messages.
10749 Also used for decoding keyboard input on X Window system. */);
10750 Vlocale_coding_system = Qnil;
10751
10752 /* The eol mnemonics are reset in startup.el system-dependently. */
10753 DEFVAR_LISP ("eol-mnemonic-unix", &eol_mnemonic_unix,
10754 doc: /*
10755 *String displayed in mode line for UNIX-like (LF) end-of-line format. */);
10756 eol_mnemonic_unix = make_pure_c_string (":");
10757
10758 DEFVAR_LISP ("eol-mnemonic-dos", &eol_mnemonic_dos,
10759 doc: /*
10760 *String displayed in mode line for DOS-like (CRLF) end-of-line format. */);
10761 eol_mnemonic_dos = make_pure_c_string ("\\");
10762
10763 DEFVAR_LISP ("eol-mnemonic-mac", &eol_mnemonic_mac,
10764 doc: /*
10765 *String displayed in mode line for MAC-like (CR) end-of-line format. */);
10766 eol_mnemonic_mac = make_pure_c_string ("/");
10767
10768 DEFVAR_LISP ("eol-mnemonic-undecided", &eol_mnemonic_undecided,
10769 doc: /*
10770 *String displayed in mode line when end-of-line format is not yet determined. */);
10771 eol_mnemonic_undecided = make_pure_c_string (":");
10772
10773 DEFVAR_LISP ("enable-character-translation", &Venable_character_translation,
10774 doc: /*
10775 *Non-nil enables character translation while encoding and decoding. */);
10776 Venable_character_translation = Qt;
10777
10778 DEFVAR_LISP ("standard-translation-table-for-decode",
10779 &Vstandard_translation_table_for_decode,
10780 doc: /* Table for translating characters while decoding. */);
10781 Vstandard_translation_table_for_decode = Qnil;
10782
10783 DEFVAR_LISP ("standard-translation-table-for-encode",
10784 &Vstandard_translation_table_for_encode,
10785 doc: /* Table for translating characters while encoding. */);
10786 Vstandard_translation_table_for_encode = Qnil;
10787
10788 DEFVAR_LISP ("charset-revision-table", &Vcharset_revision_table,
10789 doc: /* Alist of charsets vs revision numbers.
10790 While encoding, if a charset (car part of an element) is found,
10791 designate it with the escape sequence identifying revision (cdr part
10792 of the element). */);
10793 Vcharset_revision_table = Qnil;
10794
10795 DEFVAR_LISP ("default-process-coding-system",
10796 &Vdefault_process_coding_system,
10797 doc: /* Cons of coding systems used for process I/O by default.
10798 The car part is used for decoding a process output,
10799 the cdr part is used for encoding a text to be sent to a process. */);
10800 Vdefault_process_coding_system = Qnil;
10801
10802 DEFVAR_LISP ("latin-extra-code-table", &Vlatin_extra_code_table,
10803 doc: /*
10804 Table of extra Latin codes in the range 128..159 (inclusive).
10805 This is a vector of length 256.
10806 If Nth element is non-nil, the existence of code N in a file
10807 \(or output of subprocess) doesn't prevent it to be detected as
10808 a coding system of ISO 2022 variant which has a flag
10809 `accept-latin-extra-code' t (e.g. iso-latin-1) on reading a file
10810 or reading output of a subprocess.
10811 Only 128th through 159th elements have a meaning. */);
10812 Vlatin_extra_code_table = Fmake_vector (make_number (256), Qnil);
10813
10814 DEFVAR_LISP ("select-safe-coding-system-function",
10815 &Vselect_safe_coding_system_function,
10816 doc: /*
10817 Function to call to select safe coding system for encoding a text.
10818
10819 If set, this function is called to force a user to select a proper
10820 coding system which can encode the text in the case that a default
10821 coding system used in each operation can't encode the text. The
10822 function should take care that the buffer is not modified while
10823 the coding system is being selected.
10824
10825 The default value is `select-safe-coding-system' (which see). */);
10826 Vselect_safe_coding_system_function = Qnil;
10827
10828 DEFVAR_BOOL ("coding-system-require-warning",
10829 &coding_system_require_warning,
10830 doc: /* Internal use only.
10831 If non-nil, on writing a file, `select-safe-coding-system-function' is
10832 called even if `coding-system-for-write' is non-nil. The command
10833 `universal-coding-system-argument' binds this variable to t temporarily. */);
10834 coding_system_require_warning = 0;
10835
10836
10837 DEFVAR_BOOL ("inhibit-iso-escape-detection",
10838 &inhibit_iso_escape_detection,
10839 doc: /*
10840 If non-nil, Emacs ignores ISO-2022 escape sequences during code detection.
10841
10842 When Emacs reads text, it tries to detect how the text is encoded.
10843 This code detection is sensitive to escape sequences. If Emacs sees
10844 a valid ISO-2022 escape sequence, it assumes the text is encoded in one
10845 of the ISO2022 encodings, and decodes text by the corresponding coding
10846 system (e.g. `iso-2022-7bit').
10847
10848 However, there may be a case that you want to read escape sequences in
10849 a file as is. In such a case, you can set this variable to non-nil.
10850 Then the code detection will ignore any escape sequences, and no text is
10851 detected as encoded in some ISO-2022 encoding. The result is that all
10852 escape sequences become visible in a buffer.
10853
10854 The default value is nil, and it is strongly recommended not to change
10855 it. That is because many Emacs Lisp source files that contain
10856 non-ASCII characters are encoded by the coding system `iso-2022-7bit'
10857 in Emacs's distribution, and they won't be decoded correctly on
10858 reading if you suppress escape sequence detection.
10859
10860 The other way to read escape sequences in a file without decoding is
10861 to explicitly specify some coding system that doesn't use ISO-2022
10862 escape sequence (e.g `latin-1') on reading by \\[universal-coding-system-argument]. */);
10863 inhibit_iso_escape_detection = 0;
10864
10865 DEFVAR_BOOL ("inhibit-null-byte-detection",
10866 &inhibit_null_byte_detection,
10867 doc: /* If non-nil, Emacs ignores null bytes on code detection.
10868 By default, Emacs treats it as binary data, and does not attempt to
10869 decode it. The effect is as if you specified `no-conversion' for
10870 reading that text.
10871
10872 Set this to non-nil when a regular text happens to include null bytes.
10873 Examples are Index nodes of Info files and null-byte delimited output
10874 from GNU Find and GNU Grep. Emacs will then ignore the null bytes and
10875 decode text as usual. */);
10876 inhibit_null_byte_detection = 0;
10877
10878 DEFVAR_LISP ("translation-table-for-input", &Vtranslation_table_for_input,
10879 doc: /* Char table for translating self-inserting characters.
10880 This is applied to the result of input methods, not their input.
10881 See also `keyboard-translate-table'.
10882
10883 Use of this variable for character code unification was rendered
10884 obsolete in Emacs 23.1 and later, since Unicode is now the basis of
10885 internal character representation. */);
10886 Vtranslation_table_for_input = Qnil;
10887
10888 {
10889 Lisp_Object args[coding_arg_max];
10890 Lisp_Object plist[16];
10891 int i;
10892
10893 for (i = 0; i < coding_arg_max; i++)
10894 args[i] = Qnil;
10895
10896 plist[0] = intern_c_string (":name");
10897 plist[1] = args[coding_arg_name] = Qno_conversion;
10898 plist[2] = intern_c_string (":mnemonic");
10899 plist[3] = args[coding_arg_mnemonic] = make_number ('=');
10900 plist[4] = intern_c_string (":coding-type");
10901 plist[5] = args[coding_arg_coding_type] = Qraw_text;
10902 plist[6] = intern_c_string (":ascii-compatible-p");
10903 plist[7] = args[coding_arg_ascii_compatible_p] = Qt;
10904 plist[8] = intern_c_string (":default-char");
10905 plist[9] = args[coding_arg_default_char] = make_number (0);
10906 plist[10] = intern_c_string (":for-unibyte");
10907 plist[11] = args[coding_arg_for_unibyte] = Qt;
10908 plist[12] = intern_c_string (":docstring");
10909 plist[13] = make_pure_c_string ("Do no conversion.\n\
10910 \n\
10911 When you visit a file with this coding, the file is read into a\n\
10912 unibyte buffer as is, thus each byte of a file is treated as a\n\
10913 character.");
10914 plist[14] = intern_c_string (":eol-type");
10915 plist[15] = args[coding_arg_eol_type] = Qunix;
10916 args[coding_arg_plist] = Flist (16, plist);
10917 Fdefine_coding_system_internal (coding_arg_max, args);
10918
10919 plist[1] = args[coding_arg_name] = Qundecided;
10920 plist[3] = args[coding_arg_mnemonic] = make_number ('-');
10921 plist[5] = args[coding_arg_coding_type] = Qundecided;
10922 /* This is already set.
10923 plist[7] = args[coding_arg_ascii_compatible_p] = Qt; */
10924 plist[8] = intern_c_string (":charset-list");
10925 plist[9] = args[coding_arg_charset_list] = Fcons (Qascii, Qnil);
10926 plist[11] = args[coding_arg_for_unibyte] = Qnil;
10927 plist[13] = make_pure_c_string ("No conversion on encoding, automatic conversion on decoding.");
10928 plist[15] = args[coding_arg_eol_type] = Qnil;
10929 args[coding_arg_plist] = Flist (16, plist);
10930 Fdefine_coding_system_internal (coding_arg_max, args);
10931 }
10932
10933 setup_coding_system (Qno_conversion, &safe_terminal_coding);
10934
10935 {
10936 int i;
10937
10938 for (i = 0; i < coding_category_max; i++)
10939 Fset (AREF (Vcoding_category_table, i), Qno_conversion);
10940 }
10941 #if defined (MSDOS) || defined (WINDOWSNT)
10942 system_eol_type = Qdos;
10943 #else
10944 system_eol_type = Qunix;
10945 #endif
10946 staticpro (&system_eol_type);
10947 }
10948
10949 char *
10950 emacs_strerror (error_number)
10951 int error_number;
10952 {
10953 char *str;
10954
10955 synchronize_system_messages_locale ();
10956 str = strerror (error_number);
10957
10958 if (! NILP (Vlocale_coding_system))
10959 {
10960 Lisp_Object dec = code_convert_string_norecord (build_string (str),
10961 Vlocale_coding_system,
10962 0);
10963 str = (char *) SDATA (dec);
10964 }
10965
10966 return str;
10967 }
10968
10969 #endif /* emacs */
10970
10971 /* arch-tag: 3a3a2b01-5ff6-4071-9afe-f5b808d9229d
10972 (do not change this comment) */