Revision: miles@gnu.org--gnu-2004/emacs--unicode--0--patch-40
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
29
30 /* Note that this declares bzero on OSF/1. How dumb. */
31
32 #include <signal.h>
33
34 /* This file is part of the core Lisp implementation, and thus must
35 deal with the real data structures. If the Lisp implementation is
36 replaced, this file likely will not be used. */
37
38 #undef HIDE_LISP_IMPLEMENTATION
39 #include "lisp.h"
40 #include "process.h"
41 #include "intervals.h"
42 #include "puresize.h"
43 #include "buffer.h"
44 #include "window.h"
45 #include "keyboard.h"
46 #include "frame.h"
47 #include "blockinput.h"
48 #include "character.h"
49 #include "syssignal.h"
50 #include <setjmp.h>
51
52 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
53 memory. Can do this only if using gmalloc.c. */
54
55 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
56 #undef GC_MALLOC_CHECK
57 #endif
58
59 #ifdef HAVE_UNISTD_H
60 #include <unistd.h>
61 #else
62 extern POINTER_TYPE *sbrk ();
63 #endif
64
65 #ifdef DOUG_LEA_MALLOC
66
67 #include <malloc.h>
68 /* malloc.h #defines this as size_t, at least in glibc2. */
69 #ifndef __malloc_size_t
70 #define __malloc_size_t int
71 #endif
72
73 /* Specify maximum number of areas to mmap. It would be nice to use a
74 value that explicitly means "no limit". */
75
76 #define MMAP_MAX_AREAS 100000000
77
78 #else /* not DOUG_LEA_MALLOC */
79
80 /* The following come from gmalloc.c. */
81
82 #define __malloc_size_t size_t
83 extern __malloc_size_t _bytes_used;
84 extern __malloc_size_t __malloc_extra_blocks;
85
86 #endif /* not DOUG_LEA_MALLOC */
87
88 /* Value of _bytes_used, when spare_memory was freed. */
89
90 static __malloc_size_t bytes_used_when_full;
91
92 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
93 to a struct Lisp_String. */
94
95 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
96 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
97 #define STRING_MARKED_P(S) ((S)->size & ARRAY_MARK_FLAG)
98
99 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
100 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
101 #define VECTOR_MARKED_P(V) ((V)->size & ARRAY_MARK_FLAG)
102
103 /* Value is the number of bytes/chars of S, a pointer to a struct
104 Lisp_String. This must be used instead of STRING_BYTES (S) or
105 S->size during GC, because S->size contains the mark bit for
106 strings. */
107
108 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
109 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
110
111 /* Number of bytes of consing done since the last gc. */
112
113 int consing_since_gc;
114
115 /* Count the amount of consing of various sorts of space. */
116
117 EMACS_INT cons_cells_consed;
118 EMACS_INT floats_consed;
119 EMACS_INT vector_cells_consed;
120 EMACS_INT symbols_consed;
121 EMACS_INT string_chars_consed;
122 EMACS_INT misc_objects_consed;
123 EMACS_INT intervals_consed;
124 EMACS_INT strings_consed;
125
126 /* Number of bytes of consing since GC before another GC should be done. */
127
128 EMACS_INT gc_cons_threshold;
129
130 /* Nonzero during GC. */
131
132 int gc_in_progress;
133
134 /* Nonzero means abort if try to GC.
135 This is for code which is written on the assumption that
136 no GC will happen, so as to verify that assumption. */
137
138 int abort_on_gc;
139
140 /* Nonzero means display messages at beginning and end of GC. */
141
142 int garbage_collection_messages;
143
144 #ifndef VIRT_ADDR_VARIES
145 extern
146 #endif /* VIRT_ADDR_VARIES */
147 int malloc_sbrk_used;
148
149 #ifndef VIRT_ADDR_VARIES
150 extern
151 #endif /* VIRT_ADDR_VARIES */
152 int malloc_sbrk_unused;
153
154 /* Two limits controlling how much undo information to keep. */
155
156 EMACS_INT undo_limit;
157 EMACS_INT undo_strong_limit;
158 EMACS_INT undo_outer_limit;
159
160 /* Number of live and free conses etc. */
161
162 static int total_conses, total_markers, total_symbols, total_vector_size;
163 static int total_free_conses, total_free_markers, total_free_symbols;
164 static int total_free_floats, total_floats;
165
166 /* Points to memory space allocated as "spare", to be freed if we run
167 out of memory. */
168
169 static char *spare_memory;
170
171 /* Amount of spare memory to keep in reserve. */
172
173 #define SPARE_MEMORY (1 << 14)
174
175 /* Number of extra blocks malloc should get when it needs more core. */
176
177 static int malloc_hysteresis;
178
179 /* Non-nil means defun should do purecopy on the function definition. */
180
181 Lisp_Object Vpurify_flag;
182
183 /* Non-nil means we are handling a memory-full error. */
184
185 Lisp_Object Vmemory_full;
186
187 #ifndef HAVE_SHM
188
189 /* Force it into data space! Initialize it to a nonzero value;
190 otherwise some compilers put it into BSS. */
191
192 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
193 #define PUREBEG (char *) pure
194
195 #else /* HAVE_SHM */
196
197 #define pure PURE_SEG_BITS /* Use shared memory segment */
198 #define PUREBEG (char *)PURE_SEG_BITS
199
200 #endif /* HAVE_SHM */
201
202 /* Pointer to the pure area, and its size. */
203
204 static char *purebeg;
205 static size_t pure_size;
206
207 /* Number of bytes of pure storage used before pure storage overflowed.
208 If this is non-zero, this implies that an overflow occurred. */
209
210 static size_t pure_bytes_used_before_overflow;
211
212 /* Value is non-zero if P points into pure space. */
213
214 #define PURE_POINTER_P(P) \
215 (((PNTR_COMPARISON_TYPE) (P) \
216 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
217 && ((PNTR_COMPARISON_TYPE) (P) \
218 >= (PNTR_COMPARISON_TYPE) purebeg))
219
220 /* Index in pure at which next pure object will be allocated.. */
221
222 EMACS_INT pure_bytes_used;
223
224 /* If nonzero, this is a warning delivered by malloc and not yet
225 displayed. */
226
227 char *pending_malloc_warning;
228
229 /* Pre-computed signal argument for use when memory is exhausted. */
230
231 Lisp_Object Vmemory_signal_data;
232
233 /* Maximum amount of C stack to save when a GC happens. */
234
235 #ifndef MAX_SAVE_STACK
236 #define MAX_SAVE_STACK 16000
237 #endif
238
239 /* Buffer in which we save a copy of the C stack at each GC. */
240
241 char *stack_copy;
242 int stack_copy_size;
243
244 /* Non-zero means ignore malloc warnings. Set during initialization.
245 Currently not used. */
246
247 int ignore_warnings;
248
249 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
250
251 /* Hook run after GC has finished. */
252
253 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
254
255 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
256 EMACS_INT gcs_done; /* accumulated GCs */
257
258 static void mark_buffer P_ ((Lisp_Object));
259 extern void mark_kboards P_ ((void));
260 extern void mark_backtrace P_ ((void));
261 static void gc_sweep P_ ((void));
262 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
263 static void mark_face_cache P_ ((struct face_cache *));
264
265 #ifdef HAVE_WINDOW_SYSTEM
266 static void mark_image P_ ((struct image *));
267 static void mark_image_cache P_ ((struct frame *));
268 #endif /* HAVE_WINDOW_SYSTEM */
269
270 static struct Lisp_String *allocate_string P_ ((void));
271 static void compact_small_strings P_ ((void));
272 static void free_large_strings P_ ((void));
273 static void sweep_strings P_ ((void));
274
275 extern int message_enable_multibyte;
276
277 /* When scanning the C stack for live Lisp objects, Emacs keeps track
278 of what memory allocated via lisp_malloc is intended for what
279 purpose. This enumeration specifies the type of memory. */
280
281 enum mem_type
282 {
283 MEM_TYPE_NON_LISP,
284 MEM_TYPE_BUFFER,
285 MEM_TYPE_CONS,
286 MEM_TYPE_STRING,
287 MEM_TYPE_MISC,
288 MEM_TYPE_SYMBOL,
289 MEM_TYPE_FLOAT,
290 /* Keep the following vector-like types together, with
291 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
292 first. Or change the code of live_vector_p, for instance. */
293 MEM_TYPE_VECTOR,
294 MEM_TYPE_PROCESS,
295 MEM_TYPE_HASH_TABLE,
296 MEM_TYPE_FRAME,
297 MEM_TYPE_WINDOW
298 };
299
300 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
301
302 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
303 #include <stdio.h> /* For fprintf. */
304 #endif
305
306 /* A unique object in pure space used to make some Lisp objects
307 on free lists recognizable in O(1). */
308
309 Lisp_Object Vdead;
310
311 #ifdef GC_MALLOC_CHECK
312
313 enum mem_type allocated_mem_type;
314 int dont_register_blocks;
315
316 #endif /* GC_MALLOC_CHECK */
317
318 /* A node in the red-black tree describing allocated memory containing
319 Lisp data. Each such block is recorded with its start and end
320 address when it is allocated, and removed from the tree when it
321 is freed.
322
323 A red-black tree is a balanced binary tree with the following
324 properties:
325
326 1. Every node is either red or black.
327 2. Every leaf is black.
328 3. If a node is red, then both of its children are black.
329 4. Every simple path from a node to a descendant leaf contains
330 the same number of black nodes.
331 5. The root is always black.
332
333 When nodes are inserted into the tree, or deleted from the tree,
334 the tree is "fixed" so that these properties are always true.
335
336 A red-black tree with N internal nodes has height at most 2
337 log(N+1). Searches, insertions and deletions are done in O(log N).
338 Please see a text book about data structures for a detailed
339 description of red-black trees. Any book worth its salt should
340 describe them. */
341
342 struct mem_node
343 {
344 /* Children of this node. These pointers are never NULL. When there
345 is no child, the value is MEM_NIL, which points to a dummy node. */
346 struct mem_node *left, *right;
347
348 /* The parent of this node. In the root node, this is NULL. */
349 struct mem_node *parent;
350
351 /* Start and end of allocated region. */
352 void *start, *end;
353
354 /* Node color. */
355 enum {MEM_BLACK, MEM_RED} color;
356
357 /* Memory type. */
358 enum mem_type type;
359 };
360
361 /* Base address of stack. Set in main. */
362
363 Lisp_Object *stack_base;
364
365 /* Root of the tree describing allocated Lisp memory. */
366
367 static struct mem_node *mem_root;
368
369 /* Lowest and highest known address in the heap. */
370
371 static void *min_heap_address, *max_heap_address;
372
373 /* Sentinel node of the tree. */
374
375 static struct mem_node mem_z;
376 #define MEM_NIL &mem_z
377
378 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
379 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
380 static void lisp_free P_ ((POINTER_TYPE *));
381 static void mark_stack P_ ((void));
382 static int live_vector_p P_ ((struct mem_node *, void *));
383 static int live_buffer_p P_ ((struct mem_node *, void *));
384 static int live_string_p P_ ((struct mem_node *, void *));
385 static int live_cons_p P_ ((struct mem_node *, void *));
386 static int live_symbol_p P_ ((struct mem_node *, void *));
387 static int live_float_p P_ ((struct mem_node *, void *));
388 static int live_misc_p P_ ((struct mem_node *, void *));
389 static void mark_maybe_object P_ ((Lisp_Object));
390 static void mark_memory P_ ((void *, void *));
391 static void mem_init P_ ((void));
392 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
393 static void mem_insert_fixup P_ ((struct mem_node *));
394 static void mem_rotate_left P_ ((struct mem_node *));
395 static void mem_rotate_right P_ ((struct mem_node *));
396 static void mem_delete P_ ((struct mem_node *));
397 static void mem_delete_fixup P_ ((struct mem_node *));
398 static INLINE struct mem_node *mem_find P_ ((void *));
399
400 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
401 static void check_gcpros P_ ((void));
402 #endif
403
404 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
405
406 /* Recording what needs to be marked for gc. */
407
408 struct gcpro *gcprolist;
409
410 /* Addresses of staticpro'd variables. Initialize it to a nonzero
411 value; otherwise some compilers put it into BSS. */
412
413 #define NSTATICS 1280
414 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
415
416 /* Index of next unused slot in staticvec. */
417
418 int staticidx = 0;
419
420 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
421
422
423 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
424 ALIGNMENT must be a power of 2. */
425
426 #define ALIGN(ptr, ALIGNMENT) \
427 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
428 & ~((ALIGNMENT) - 1)))
429
430
431 \f
432 /************************************************************************
433 Malloc
434 ************************************************************************/
435
436 /* Function malloc calls this if it finds we are near exhausting storage. */
437
438 void
439 malloc_warning (str)
440 char *str;
441 {
442 pending_malloc_warning = str;
443 }
444
445
446 /* Display an already-pending malloc warning. */
447
448 void
449 display_malloc_warning ()
450 {
451 call3 (intern ("display-warning"),
452 intern ("alloc"),
453 build_string (pending_malloc_warning),
454 intern ("emergency"));
455 pending_malloc_warning = 0;
456 }
457
458
459 #ifdef DOUG_LEA_MALLOC
460 # define BYTES_USED (mallinfo ().arena)
461 #else
462 # define BYTES_USED _bytes_used
463 #endif
464
465
466 /* Called if malloc returns zero. */
467
468 void
469 memory_full ()
470 {
471 Vmemory_full = Qt;
472
473 #ifndef SYSTEM_MALLOC
474 bytes_used_when_full = BYTES_USED;
475 #endif
476
477 /* The first time we get here, free the spare memory. */
478 if (spare_memory)
479 {
480 free (spare_memory);
481 spare_memory = 0;
482 }
483
484 /* This used to call error, but if we've run out of memory, we could
485 get infinite recursion trying to build the string. */
486 while (1)
487 Fsignal (Qnil, Vmemory_signal_data);
488 }
489
490
491 /* Called if we can't allocate relocatable space for a buffer. */
492
493 void
494 buffer_memory_full ()
495 {
496 /* If buffers use the relocating allocator, no need to free
497 spare_memory, because we may have plenty of malloc space left
498 that we could get, and if we don't, the malloc that fails will
499 itself cause spare_memory to be freed. If buffers don't use the
500 relocating allocator, treat this like any other failing
501 malloc. */
502
503 #ifndef REL_ALLOC
504 memory_full ();
505 #endif
506
507 Vmemory_full = Qt;
508
509 /* This used to call error, but if we've run out of memory, we could
510 get infinite recursion trying to build the string. */
511 while (1)
512 Fsignal (Qnil, Vmemory_signal_data);
513 }
514
515
516 /* Like malloc but check for no memory and block interrupt input.. */
517
518 POINTER_TYPE *
519 xmalloc (size)
520 size_t size;
521 {
522 register POINTER_TYPE *val;
523
524 BLOCK_INPUT;
525 val = (POINTER_TYPE *) malloc (size);
526 UNBLOCK_INPUT;
527
528 if (!val && size)
529 memory_full ();
530 return val;
531 }
532
533
534 /* Like realloc but check for no memory and block interrupt input.. */
535
536 POINTER_TYPE *
537 xrealloc (block, size)
538 POINTER_TYPE *block;
539 size_t size;
540 {
541 register POINTER_TYPE *val;
542
543 BLOCK_INPUT;
544 /* We must call malloc explicitly when BLOCK is 0, since some
545 reallocs don't do this. */
546 if (! block)
547 val = (POINTER_TYPE *) malloc (size);
548 else
549 val = (POINTER_TYPE *) realloc (block, size);
550 UNBLOCK_INPUT;
551
552 if (!val && size) memory_full ();
553 return val;
554 }
555
556
557 /* Like free but block interrupt input. */
558
559 void
560 xfree (block)
561 POINTER_TYPE *block;
562 {
563 BLOCK_INPUT;
564 free (block);
565 UNBLOCK_INPUT;
566 }
567
568
569 /* Like strdup, but uses xmalloc. */
570
571 char *
572 xstrdup (s)
573 const char *s;
574 {
575 size_t len = strlen (s) + 1;
576 char *p = (char *) xmalloc (len);
577 bcopy (s, p, len);
578 return p;
579 }
580
581
582 /* Unwind for SAFE_ALLOCA */
583
584 Lisp_Object
585 safe_alloca_unwind (arg)
586 Lisp_Object arg;
587 {
588 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
589
590 p->dogc = 0;
591 xfree (p->pointer);
592 p->pointer = 0;
593 free_misc (arg);
594 return Qnil;
595 }
596
597
598 /* Like malloc but used for allocating Lisp data. NBYTES is the
599 number of bytes to allocate, TYPE describes the intended use of the
600 allcated memory block (for strings, for conses, ...). */
601
602 static void *lisp_malloc_loser;
603
604 static POINTER_TYPE *
605 lisp_malloc (nbytes, type)
606 size_t nbytes;
607 enum mem_type type;
608 {
609 register void *val;
610
611 BLOCK_INPUT;
612
613 #ifdef GC_MALLOC_CHECK
614 allocated_mem_type = type;
615 #endif
616
617 val = (void *) malloc (nbytes);
618
619 #ifndef USE_LSB_TAG
620 /* If the memory just allocated cannot be addressed thru a Lisp
621 object's pointer, and it needs to be,
622 that's equivalent to running out of memory. */
623 if (val && type != MEM_TYPE_NON_LISP)
624 {
625 Lisp_Object tem;
626 XSETCONS (tem, (char *) val + nbytes - 1);
627 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
628 {
629 lisp_malloc_loser = val;
630 free (val);
631 val = 0;
632 }
633 }
634 #endif
635
636 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
637 if (val && type != MEM_TYPE_NON_LISP)
638 mem_insert (val, (char *) val + nbytes, type);
639 #endif
640
641 UNBLOCK_INPUT;
642 if (!val && nbytes)
643 memory_full ();
644 return val;
645 }
646
647 /* Free BLOCK. This must be called to free memory allocated with a
648 call to lisp_malloc. */
649
650 static void
651 lisp_free (block)
652 POINTER_TYPE *block;
653 {
654 BLOCK_INPUT;
655 free (block);
656 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
657 mem_delete (mem_find (block));
658 #endif
659 UNBLOCK_INPUT;
660 }
661
662 /* Allocation of aligned blocks of memory to store Lisp data. */
663 /* The entry point is lisp_align_malloc which returns blocks of at most */
664 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
665
666
667 /* BLOCK_ALIGN has to be a power of 2. */
668 #define BLOCK_ALIGN (1 << 10)
669
670 /* Padding to leave at the end of a malloc'd block. This is to give
671 malloc a chance to minimize the amount of memory wasted to alignment.
672 It should be tuned to the particular malloc library used.
673 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
674 posix_memalign on the other hand would ideally prefer a value of 4
675 because otherwise, there's 1020 bytes wasted between each ablocks.
676 But testing shows that those 1020 will most of the time be efficiently
677 used by malloc to place other objects, so a value of 0 is still preferable
678 unless you have a lot of cons&floats and virtually nothing else. */
679 #define BLOCK_PADDING 0
680 #define BLOCK_BYTES \
681 (BLOCK_ALIGN - sizeof (struct aligned_block *) - BLOCK_PADDING)
682
683 /* Internal data structures and constants. */
684
685 #define ABLOCKS_SIZE 16
686
687 /* An aligned block of memory. */
688 struct ablock
689 {
690 union
691 {
692 char payload[BLOCK_BYTES];
693 struct ablock *next_free;
694 } x;
695 /* `abase' is the aligned base of the ablocks. */
696 /* It is overloaded to hold the virtual `busy' field that counts
697 the number of used ablock in the parent ablocks.
698 The first ablock has the `busy' field, the others have the `abase'
699 field. To tell the difference, we assume that pointers will have
700 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
701 is used to tell whether the real base of the parent ablocks is `abase'
702 (if not, the word before the first ablock holds a pointer to the
703 real base). */
704 struct ablocks *abase;
705 /* The padding of all but the last ablock is unused. The padding of
706 the last ablock in an ablocks is not allocated. */
707 #if BLOCK_PADDING
708 char padding[BLOCK_PADDING];
709 #endif
710 };
711
712 /* A bunch of consecutive aligned blocks. */
713 struct ablocks
714 {
715 struct ablock blocks[ABLOCKS_SIZE];
716 };
717
718 /* Size of the block requested from malloc or memalign. */
719 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
720
721 #define ABLOCK_ABASE(block) \
722 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
723 ? (struct ablocks *)(block) \
724 : (block)->abase)
725
726 /* Virtual `busy' field. */
727 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
728
729 /* Pointer to the (not necessarily aligned) malloc block. */
730 #ifdef HAVE_POSIX_MEMALIGN
731 #define ABLOCKS_BASE(abase) (abase)
732 #else
733 #define ABLOCKS_BASE(abase) \
734 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
735 #endif
736
737 /* The list of free ablock. */
738 static struct ablock *free_ablock;
739
740 /* Allocate an aligned block of nbytes.
741 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
742 smaller or equal to BLOCK_BYTES. */
743 static POINTER_TYPE *
744 lisp_align_malloc (nbytes, type)
745 size_t nbytes;
746 enum mem_type type;
747 {
748 void *base, *val;
749 struct ablocks *abase;
750
751 eassert (nbytes <= BLOCK_BYTES);
752
753 BLOCK_INPUT;
754
755 #ifdef GC_MALLOC_CHECK
756 allocated_mem_type = type;
757 #endif
758
759 if (!free_ablock)
760 {
761 int i;
762 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
763
764 #ifdef DOUG_LEA_MALLOC
765 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
766 because mapped region contents are not preserved in
767 a dumped Emacs. */
768 mallopt (M_MMAP_MAX, 0);
769 #endif
770
771 #ifdef HAVE_POSIX_MEMALIGN
772 {
773 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
774 if (err)
775 base = NULL;
776 abase = base;
777 }
778 #else
779 base = malloc (ABLOCKS_BYTES);
780 abase = ALIGN (base, BLOCK_ALIGN);
781 #endif
782
783 if (base == 0)
784 {
785 UNBLOCK_INPUT;
786 memory_full ();
787 }
788
789 aligned = (base == abase);
790 if (!aligned)
791 ((void**)abase)[-1] = base;
792
793 #ifdef DOUG_LEA_MALLOC
794 /* Back to a reasonable maximum of mmap'ed areas. */
795 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
796 #endif
797
798 #ifndef USE_LSB_TAG
799 /* If the memory just allocated cannot be addressed thru a Lisp
800 object's pointer, and it needs to be, that's equivalent to
801 running out of memory. */
802 if (type != MEM_TYPE_NON_LISP)
803 {
804 Lisp_Object tem;
805 char *end = (char *) base + ABLOCKS_BYTES - 1;
806 XSETCONS (tem, end);
807 if ((char *) XCONS (tem) != end)
808 {
809 lisp_malloc_loser = base;
810 free (base);
811 UNBLOCK_INPUT;
812 memory_full ();
813 }
814 }
815 #endif
816
817 /* Initialize the blocks and put them on the free list.
818 Is `base' was not properly aligned, we can't use the last block. */
819 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
820 {
821 abase->blocks[i].abase = abase;
822 abase->blocks[i].x.next_free = free_ablock;
823 free_ablock = &abase->blocks[i];
824 }
825 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
826
827 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
828 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
829 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
830 eassert (ABLOCKS_BASE (abase) == base);
831 eassert (aligned == (long) ABLOCKS_BUSY (abase));
832 }
833
834 abase = ABLOCK_ABASE (free_ablock);
835 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
836 val = free_ablock;
837 free_ablock = free_ablock->x.next_free;
838
839 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
840 if (val && type != MEM_TYPE_NON_LISP)
841 mem_insert (val, (char *) val + nbytes, type);
842 #endif
843
844 UNBLOCK_INPUT;
845 if (!val && nbytes)
846 memory_full ();
847
848 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
849 return val;
850 }
851
852 static void
853 lisp_align_free (block)
854 POINTER_TYPE *block;
855 {
856 struct ablock *ablock = block;
857 struct ablocks *abase = ABLOCK_ABASE (ablock);
858
859 BLOCK_INPUT;
860 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
861 mem_delete (mem_find (block));
862 #endif
863 /* Put on free list. */
864 ablock->x.next_free = free_ablock;
865 free_ablock = ablock;
866 /* Update busy count. */
867 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
868
869 if (2 > (long) ABLOCKS_BUSY (abase))
870 { /* All the blocks are free. */
871 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
872 struct ablock **tem = &free_ablock;
873 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
874
875 while (*tem)
876 {
877 if (*tem >= (struct ablock *) abase && *tem < atop)
878 {
879 i++;
880 *tem = (*tem)->x.next_free;
881 }
882 else
883 tem = &(*tem)->x.next_free;
884 }
885 eassert ((aligned & 1) == aligned);
886 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
887 free (ABLOCKS_BASE (abase));
888 }
889 UNBLOCK_INPUT;
890 }
891
892 /* Return a new buffer structure allocated from the heap with
893 a call to lisp_malloc. */
894
895 struct buffer *
896 allocate_buffer ()
897 {
898 struct buffer *b
899 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
900 MEM_TYPE_BUFFER);
901 return b;
902 }
903
904 \f
905 /* Arranging to disable input signals while we're in malloc.
906
907 This only works with GNU malloc. To help out systems which can't
908 use GNU malloc, all the calls to malloc, realloc, and free
909 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
910 pairs; unfortunately, we have no idea what C library functions
911 might call malloc, so we can't really protect them unless you're
912 using GNU malloc. Fortunately, most of the major operating systems
913 can use GNU malloc. */
914
915 #ifndef SYSTEM_MALLOC
916 #ifndef DOUG_LEA_MALLOC
917 extern void * (*__malloc_hook) P_ ((size_t));
918 extern void * (*__realloc_hook) P_ ((void *, size_t));
919 extern void (*__free_hook) P_ ((void *));
920 /* Else declared in malloc.h, perhaps with an extra arg. */
921 #endif /* DOUG_LEA_MALLOC */
922 static void * (*old_malloc_hook) ();
923 static void * (*old_realloc_hook) ();
924 static void (*old_free_hook) ();
925
926 /* This function is used as the hook for free to call. */
927
928 static void
929 emacs_blocked_free (ptr)
930 void *ptr;
931 {
932 BLOCK_INPUT;
933
934 #ifdef GC_MALLOC_CHECK
935 if (ptr)
936 {
937 struct mem_node *m;
938
939 m = mem_find (ptr);
940 if (m == MEM_NIL || m->start != ptr)
941 {
942 fprintf (stderr,
943 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
944 abort ();
945 }
946 else
947 {
948 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
949 mem_delete (m);
950 }
951 }
952 #endif /* GC_MALLOC_CHECK */
953
954 __free_hook = old_free_hook;
955 free (ptr);
956
957 /* If we released our reserve (due to running out of memory),
958 and we have a fair amount free once again,
959 try to set aside another reserve in case we run out once more. */
960 if (spare_memory == 0
961 /* Verify there is enough space that even with the malloc
962 hysteresis this call won't run out again.
963 The code here is correct as long as SPARE_MEMORY
964 is substantially larger than the block size malloc uses. */
965 && (bytes_used_when_full
966 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
967 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
968
969 __free_hook = emacs_blocked_free;
970 UNBLOCK_INPUT;
971 }
972
973
974 /* If we released our reserve (due to running out of memory),
975 and we have a fair amount free once again,
976 try to set aside another reserve in case we run out once more.
977
978 This is called when a relocatable block is freed in ralloc.c. */
979
980 void
981 refill_memory_reserve ()
982 {
983 if (spare_memory == 0)
984 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
985 }
986
987
988 /* This function is the malloc hook that Emacs uses. */
989
990 static void *
991 emacs_blocked_malloc (size)
992 size_t size;
993 {
994 void *value;
995
996 BLOCK_INPUT;
997 __malloc_hook = old_malloc_hook;
998 #ifdef DOUG_LEA_MALLOC
999 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1000 #else
1001 __malloc_extra_blocks = malloc_hysteresis;
1002 #endif
1003
1004 value = (void *) malloc (size);
1005
1006 #ifdef GC_MALLOC_CHECK
1007 {
1008 struct mem_node *m = mem_find (value);
1009 if (m != MEM_NIL)
1010 {
1011 fprintf (stderr, "Malloc returned %p which is already in use\n",
1012 value);
1013 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1014 m->start, m->end, (char *) m->end - (char *) m->start,
1015 m->type);
1016 abort ();
1017 }
1018
1019 if (!dont_register_blocks)
1020 {
1021 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1022 allocated_mem_type = MEM_TYPE_NON_LISP;
1023 }
1024 }
1025 #endif /* GC_MALLOC_CHECK */
1026
1027 __malloc_hook = emacs_blocked_malloc;
1028 UNBLOCK_INPUT;
1029
1030 /* fprintf (stderr, "%p malloc\n", value); */
1031 return value;
1032 }
1033
1034
1035 /* This function is the realloc hook that Emacs uses. */
1036
1037 static void *
1038 emacs_blocked_realloc (ptr, size)
1039 void *ptr;
1040 size_t size;
1041 {
1042 void *value;
1043
1044 BLOCK_INPUT;
1045 __realloc_hook = old_realloc_hook;
1046
1047 #ifdef GC_MALLOC_CHECK
1048 if (ptr)
1049 {
1050 struct mem_node *m = mem_find (ptr);
1051 if (m == MEM_NIL || m->start != ptr)
1052 {
1053 fprintf (stderr,
1054 "Realloc of %p which wasn't allocated with malloc\n",
1055 ptr);
1056 abort ();
1057 }
1058
1059 mem_delete (m);
1060 }
1061
1062 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1063
1064 /* Prevent malloc from registering blocks. */
1065 dont_register_blocks = 1;
1066 #endif /* GC_MALLOC_CHECK */
1067
1068 value = (void *) realloc (ptr, size);
1069
1070 #ifdef GC_MALLOC_CHECK
1071 dont_register_blocks = 0;
1072
1073 {
1074 struct mem_node *m = mem_find (value);
1075 if (m != MEM_NIL)
1076 {
1077 fprintf (stderr, "Realloc returns memory that is already in use\n");
1078 abort ();
1079 }
1080
1081 /* Can't handle zero size regions in the red-black tree. */
1082 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1083 }
1084
1085 /* fprintf (stderr, "%p <- realloc\n", value); */
1086 #endif /* GC_MALLOC_CHECK */
1087
1088 __realloc_hook = emacs_blocked_realloc;
1089 UNBLOCK_INPUT;
1090
1091 return value;
1092 }
1093
1094
1095 /* Called from main to set up malloc to use our hooks. */
1096
1097 void
1098 uninterrupt_malloc ()
1099 {
1100 if (__free_hook != emacs_blocked_free)
1101 old_free_hook = __free_hook;
1102 __free_hook = emacs_blocked_free;
1103
1104 if (__malloc_hook != emacs_blocked_malloc)
1105 old_malloc_hook = __malloc_hook;
1106 __malloc_hook = emacs_blocked_malloc;
1107
1108 if (__realloc_hook != emacs_blocked_realloc)
1109 old_realloc_hook = __realloc_hook;
1110 __realloc_hook = emacs_blocked_realloc;
1111 }
1112
1113 #endif /* not SYSTEM_MALLOC */
1114
1115
1116 \f
1117 /***********************************************************************
1118 Interval Allocation
1119 ***********************************************************************/
1120
1121 /* Number of intervals allocated in an interval_block structure.
1122 The 1020 is 1024 minus malloc overhead. */
1123
1124 #define INTERVAL_BLOCK_SIZE \
1125 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1126
1127 /* Intervals are allocated in chunks in form of an interval_block
1128 structure. */
1129
1130 struct interval_block
1131 {
1132 /* Place `intervals' first, to preserve alignment. */
1133 struct interval intervals[INTERVAL_BLOCK_SIZE];
1134 struct interval_block *next;
1135 };
1136
1137 /* Current interval block. Its `next' pointer points to older
1138 blocks. */
1139
1140 struct interval_block *interval_block;
1141
1142 /* Index in interval_block above of the next unused interval
1143 structure. */
1144
1145 static int interval_block_index;
1146
1147 /* Number of free and live intervals. */
1148
1149 static int total_free_intervals, total_intervals;
1150
1151 /* List of free intervals. */
1152
1153 INTERVAL interval_free_list;
1154
1155 /* Total number of interval blocks now in use. */
1156
1157 int n_interval_blocks;
1158
1159
1160 /* Initialize interval allocation. */
1161
1162 static void
1163 init_intervals ()
1164 {
1165 interval_block = NULL;
1166 interval_block_index = INTERVAL_BLOCK_SIZE;
1167 interval_free_list = 0;
1168 n_interval_blocks = 0;
1169 }
1170
1171
1172 /* Return a new interval. */
1173
1174 INTERVAL
1175 make_interval ()
1176 {
1177 INTERVAL val;
1178
1179 if (interval_free_list)
1180 {
1181 val = interval_free_list;
1182 interval_free_list = INTERVAL_PARENT (interval_free_list);
1183 }
1184 else
1185 {
1186 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1187 {
1188 register struct interval_block *newi;
1189
1190 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1191 MEM_TYPE_NON_LISP);
1192
1193 newi->next = interval_block;
1194 interval_block = newi;
1195 interval_block_index = 0;
1196 n_interval_blocks++;
1197 }
1198 val = &interval_block->intervals[interval_block_index++];
1199 }
1200 consing_since_gc += sizeof (struct interval);
1201 intervals_consed++;
1202 RESET_INTERVAL (val);
1203 val->gcmarkbit = 0;
1204 return val;
1205 }
1206
1207
1208 /* Mark Lisp objects in interval I. */
1209
1210 static void
1211 mark_interval (i, dummy)
1212 register INTERVAL i;
1213 Lisp_Object dummy;
1214 {
1215 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1216 i->gcmarkbit = 1;
1217 mark_object (i->plist);
1218 }
1219
1220
1221 /* Mark the interval tree rooted in TREE. Don't call this directly;
1222 use the macro MARK_INTERVAL_TREE instead. */
1223
1224 static void
1225 mark_interval_tree (tree)
1226 register INTERVAL tree;
1227 {
1228 /* No need to test if this tree has been marked already; this
1229 function is always called through the MARK_INTERVAL_TREE macro,
1230 which takes care of that. */
1231
1232 traverse_intervals_noorder (tree, mark_interval, Qnil);
1233 }
1234
1235
1236 /* Mark the interval tree rooted in I. */
1237
1238 #define MARK_INTERVAL_TREE(i) \
1239 do { \
1240 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1241 mark_interval_tree (i); \
1242 } while (0)
1243
1244
1245 #define UNMARK_BALANCE_INTERVALS(i) \
1246 do { \
1247 if (! NULL_INTERVAL_P (i)) \
1248 (i) = balance_intervals (i); \
1249 } while (0)
1250
1251 \f
1252 /* Number support. If NO_UNION_TYPE isn't in effect, we
1253 can't create number objects in macros. */
1254 #ifndef make_number
1255 Lisp_Object
1256 make_number (n)
1257 int n;
1258 {
1259 Lisp_Object obj;
1260 obj.s.val = n;
1261 obj.s.type = Lisp_Int;
1262 return obj;
1263 }
1264 #endif
1265 \f
1266 /***********************************************************************
1267 String Allocation
1268 ***********************************************************************/
1269
1270 /* Lisp_Strings are allocated in string_block structures. When a new
1271 string_block is allocated, all the Lisp_Strings it contains are
1272 added to a free-list string_free_list. When a new Lisp_String is
1273 needed, it is taken from that list. During the sweep phase of GC,
1274 string_blocks that are entirely free are freed, except two which
1275 we keep.
1276
1277 String data is allocated from sblock structures. Strings larger
1278 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1279 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1280
1281 Sblocks consist internally of sdata structures, one for each
1282 Lisp_String. The sdata structure points to the Lisp_String it
1283 belongs to. The Lisp_String points back to the `u.data' member of
1284 its sdata structure.
1285
1286 When a Lisp_String is freed during GC, it is put back on
1287 string_free_list, and its `data' member and its sdata's `string'
1288 pointer is set to null. The size of the string is recorded in the
1289 `u.nbytes' member of the sdata. So, sdata structures that are no
1290 longer used, can be easily recognized, and it's easy to compact the
1291 sblocks of small strings which we do in compact_small_strings. */
1292
1293 /* Size in bytes of an sblock structure used for small strings. This
1294 is 8192 minus malloc overhead. */
1295
1296 #define SBLOCK_SIZE 8188
1297
1298 /* Strings larger than this are considered large strings. String data
1299 for large strings is allocated from individual sblocks. */
1300
1301 #define LARGE_STRING_BYTES 1024
1302
1303 /* Structure describing string memory sub-allocated from an sblock.
1304 This is where the contents of Lisp strings are stored. */
1305
1306 struct sdata
1307 {
1308 /* Back-pointer to the string this sdata belongs to. If null, this
1309 structure is free, and the NBYTES member of the union below
1310 contains the string's byte size (the same value that STRING_BYTES
1311 would return if STRING were non-null). If non-null, STRING_BYTES
1312 (STRING) is the size of the data, and DATA contains the string's
1313 contents. */
1314 struct Lisp_String *string;
1315
1316 #ifdef GC_CHECK_STRING_BYTES
1317
1318 EMACS_INT nbytes;
1319 unsigned char data[1];
1320
1321 #define SDATA_NBYTES(S) (S)->nbytes
1322 #define SDATA_DATA(S) (S)->data
1323
1324 #else /* not GC_CHECK_STRING_BYTES */
1325
1326 union
1327 {
1328 /* When STRING in non-null. */
1329 unsigned char data[1];
1330
1331 /* When STRING is null. */
1332 EMACS_INT nbytes;
1333 } u;
1334
1335
1336 #define SDATA_NBYTES(S) (S)->u.nbytes
1337 #define SDATA_DATA(S) (S)->u.data
1338
1339 #endif /* not GC_CHECK_STRING_BYTES */
1340 };
1341
1342
1343 /* Structure describing a block of memory which is sub-allocated to
1344 obtain string data memory for strings. Blocks for small strings
1345 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1346 as large as needed. */
1347
1348 struct sblock
1349 {
1350 /* Next in list. */
1351 struct sblock *next;
1352
1353 /* Pointer to the next free sdata block. This points past the end
1354 of the sblock if there isn't any space left in this block. */
1355 struct sdata *next_free;
1356
1357 /* Start of data. */
1358 struct sdata first_data;
1359 };
1360
1361 /* Number of Lisp strings in a string_block structure. The 1020 is
1362 1024 minus malloc overhead. */
1363
1364 #define STRING_BLOCK_SIZE \
1365 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1366
1367 /* Structure describing a block from which Lisp_String structures
1368 are allocated. */
1369
1370 struct string_block
1371 {
1372 /* Place `strings' first, to preserve alignment. */
1373 struct Lisp_String strings[STRING_BLOCK_SIZE];
1374 struct string_block *next;
1375 };
1376
1377 /* Head and tail of the list of sblock structures holding Lisp string
1378 data. We always allocate from current_sblock. The NEXT pointers
1379 in the sblock structures go from oldest_sblock to current_sblock. */
1380
1381 static struct sblock *oldest_sblock, *current_sblock;
1382
1383 /* List of sblocks for large strings. */
1384
1385 static struct sblock *large_sblocks;
1386
1387 /* List of string_block structures, and how many there are. */
1388
1389 static struct string_block *string_blocks;
1390 static int n_string_blocks;
1391
1392 /* Free-list of Lisp_Strings. */
1393
1394 static struct Lisp_String *string_free_list;
1395
1396 /* Number of live and free Lisp_Strings. */
1397
1398 static int total_strings, total_free_strings;
1399
1400 /* Number of bytes used by live strings. */
1401
1402 static int total_string_size;
1403
1404 /* Given a pointer to a Lisp_String S which is on the free-list
1405 string_free_list, return a pointer to its successor in the
1406 free-list. */
1407
1408 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1409
1410 /* Return a pointer to the sdata structure belonging to Lisp string S.
1411 S must be live, i.e. S->data must not be null. S->data is actually
1412 a pointer to the `u.data' member of its sdata structure; the
1413 structure starts at a constant offset in front of that. */
1414
1415 #ifdef GC_CHECK_STRING_BYTES
1416
1417 #define SDATA_OF_STRING(S) \
1418 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1419 - sizeof (EMACS_INT)))
1420
1421 #else /* not GC_CHECK_STRING_BYTES */
1422
1423 #define SDATA_OF_STRING(S) \
1424 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1425
1426 #endif /* not GC_CHECK_STRING_BYTES */
1427
1428 /* Value is the size of an sdata structure large enough to hold NBYTES
1429 bytes of string data. The value returned includes a terminating
1430 NUL byte, the size of the sdata structure, and padding. */
1431
1432 #ifdef GC_CHECK_STRING_BYTES
1433
1434 #define SDATA_SIZE(NBYTES) \
1435 ((sizeof (struct Lisp_String *) \
1436 + (NBYTES) + 1 \
1437 + sizeof (EMACS_INT) \
1438 + sizeof (EMACS_INT) - 1) \
1439 & ~(sizeof (EMACS_INT) - 1))
1440
1441 #else /* not GC_CHECK_STRING_BYTES */
1442
1443 #define SDATA_SIZE(NBYTES) \
1444 ((sizeof (struct Lisp_String *) \
1445 + (NBYTES) + 1 \
1446 + sizeof (EMACS_INT) - 1) \
1447 & ~(sizeof (EMACS_INT) - 1))
1448
1449 #endif /* not GC_CHECK_STRING_BYTES */
1450
1451 /* Initialize string allocation. Called from init_alloc_once. */
1452
1453 void
1454 init_strings ()
1455 {
1456 total_strings = total_free_strings = total_string_size = 0;
1457 oldest_sblock = current_sblock = large_sblocks = NULL;
1458 string_blocks = NULL;
1459 n_string_blocks = 0;
1460 string_free_list = NULL;
1461 }
1462
1463
1464 #ifdef GC_CHECK_STRING_BYTES
1465
1466 static int check_string_bytes_count;
1467
1468 void check_string_bytes P_ ((int));
1469 void check_sblock P_ ((struct sblock *));
1470
1471 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1472
1473
1474 /* Like GC_STRING_BYTES, but with debugging check. */
1475
1476 int
1477 string_bytes (s)
1478 struct Lisp_String *s;
1479 {
1480 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1481 if (!PURE_POINTER_P (s)
1482 && s->data
1483 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1484 abort ();
1485 return nbytes;
1486 }
1487
1488 /* Check validity of Lisp strings' string_bytes member in B. */
1489
1490 void
1491 check_sblock (b)
1492 struct sblock *b;
1493 {
1494 struct sdata *from, *end, *from_end;
1495
1496 end = b->next_free;
1497
1498 for (from = &b->first_data; from < end; from = from_end)
1499 {
1500 /* Compute the next FROM here because copying below may
1501 overwrite data we need to compute it. */
1502 int nbytes;
1503
1504 /* Check that the string size recorded in the string is the
1505 same as the one recorded in the sdata structure. */
1506 if (from->string)
1507 CHECK_STRING_BYTES (from->string);
1508
1509 if (from->string)
1510 nbytes = GC_STRING_BYTES (from->string);
1511 else
1512 nbytes = SDATA_NBYTES (from);
1513
1514 nbytes = SDATA_SIZE (nbytes);
1515 from_end = (struct sdata *) ((char *) from + nbytes);
1516 }
1517 }
1518
1519
1520 /* Check validity of Lisp strings' string_bytes member. ALL_P
1521 non-zero means check all strings, otherwise check only most
1522 recently allocated strings. Used for hunting a bug. */
1523
1524 void
1525 check_string_bytes (all_p)
1526 int all_p;
1527 {
1528 if (all_p)
1529 {
1530 struct sblock *b;
1531
1532 for (b = large_sblocks; b; b = b->next)
1533 {
1534 struct Lisp_String *s = b->first_data.string;
1535 if (s)
1536 CHECK_STRING_BYTES (s);
1537 }
1538
1539 for (b = oldest_sblock; b; b = b->next)
1540 check_sblock (b);
1541 }
1542 else
1543 check_sblock (current_sblock);
1544 }
1545
1546 #endif /* GC_CHECK_STRING_BYTES */
1547
1548
1549 /* Return a new Lisp_String. */
1550
1551 static struct Lisp_String *
1552 allocate_string ()
1553 {
1554 struct Lisp_String *s;
1555
1556 /* If the free-list is empty, allocate a new string_block, and
1557 add all the Lisp_Strings in it to the free-list. */
1558 if (string_free_list == NULL)
1559 {
1560 struct string_block *b;
1561 int i;
1562
1563 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1564 bzero (b, sizeof *b);
1565 b->next = string_blocks;
1566 string_blocks = b;
1567 ++n_string_blocks;
1568
1569 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1570 {
1571 s = b->strings + i;
1572 NEXT_FREE_LISP_STRING (s) = string_free_list;
1573 string_free_list = s;
1574 }
1575
1576 total_free_strings += STRING_BLOCK_SIZE;
1577 }
1578
1579 /* Pop a Lisp_String off the free-list. */
1580 s = string_free_list;
1581 string_free_list = NEXT_FREE_LISP_STRING (s);
1582
1583 /* Probably not strictly necessary, but play it safe. */
1584 bzero (s, sizeof *s);
1585
1586 --total_free_strings;
1587 ++total_strings;
1588 ++strings_consed;
1589 consing_since_gc += sizeof *s;
1590
1591 #ifdef GC_CHECK_STRING_BYTES
1592 if (!noninteractive
1593 #ifdef MAC_OS8
1594 && current_sblock
1595 #endif
1596 )
1597 {
1598 if (++check_string_bytes_count == 200)
1599 {
1600 check_string_bytes_count = 0;
1601 check_string_bytes (1);
1602 }
1603 else
1604 check_string_bytes (0);
1605 }
1606 #endif /* GC_CHECK_STRING_BYTES */
1607
1608 return s;
1609 }
1610
1611
1612 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1613 plus a NUL byte at the end. Allocate an sdata structure for S, and
1614 set S->data to its `u.data' member. Store a NUL byte at the end of
1615 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1616 S->data if it was initially non-null. */
1617
1618 void
1619 allocate_string_data (s, nchars, nbytes)
1620 struct Lisp_String *s;
1621 int nchars, nbytes;
1622 {
1623 struct sdata *data, *old_data;
1624 struct sblock *b;
1625 int needed, old_nbytes;
1626
1627 /* Determine the number of bytes needed to store NBYTES bytes
1628 of string data. */
1629 needed = SDATA_SIZE (nbytes);
1630
1631 if (nbytes > LARGE_STRING_BYTES)
1632 {
1633 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1634
1635 #ifdef DOUG_LEA_MALLOC
1636 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1637 because mapped region contents are not preserved in
1638 a dumped Emacs.
1639
1640 In case you think of allowing it in a dumped Emacs at the
1641 cost of not being able to re-dump, there's another reason:
1642 mmap'ed data typically have an address towards the top of the
1643 address space, which won't fit into an EMACS_INT (at least on
1644 32-bit systems with the current tagging scheme). --fx */
1645 mallopt (M_MMAP_MAX, 0);
1646 #endif
1647
1648 b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
1649
1650 #ifdef DOUG_LEA_MALLOC
1651 /* Back to a reasonable maximum of mmap'ed areas. */
1652 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1653 #endif
1654
1655 b->next_free = &b->first_data;
1656 b->first_data.string = NULL;
1657 b->next = large_sblocks;
1658 large_sblocks = b;
1659 }
1660 else if (current_sblock == NULL
1661 || (((char *) current_sblock + SBLOCK_SIZE
1662 - (char *) current_sblock->next_free)
1663 < needed))
1664 {
1665 /* Not enough room in the current sblock. */
1666 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1667 b->next_free = &b->first_data;
1668 b->first_data.string = NULL;
1669 b->next = NULL;
1670
1671 if (current_sblock)
1672 current_sblock->next = b;
1673 else
1674 oldest_sblock = b;
1675 current_sblock = b;
1676 }
1677 else
1678 b = current_sblock;
1679
1680 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1681 old_nbytes = GC_STRING_BYTES (s);
1682
1683 data = b->next_free;
1684 data->string = s;
1685 s->data = SDATA_DATA (data);
1686 #ifdef GC_CHECK_STRING_BYTES
1687 SDATA_NBYTES (data) = nbytes;
1688 #endif
1689 s->size = nchars;
1690 s->size_byte = nbytes;
1691 s->data[nbytes] = '\0';
1692 b->next_free = (struct sdata *) ((char *) data + needed);
1693
1694 /* If S had already data assigned, mark that as free by setting its
1695 string back-pointer to null, and recording the size of the data
1696 in it. */
1697 if (old_data)
1698 {
1699 SDATA_NBYTES (old_data) = old_nbytes;
1700 old_data->string = NULL;
1701 }
1702
1703 consing_since_gc += needed;
1704 }
1705
1706
1707 /* Sweep and compact strings. */
1708
1709 static void
1710 sweep_strings ()
1711 {
1712 struct string_block *b, *next;
1713 struct string_block *live_blocks = NULL;
1714
1715 string_free_list = NULL;
1716 total_strings = total_free_strings = 0;
1717 total_string_size = 0;
1718
1719 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1720 for (b = string_blocks; b; b = next)
1721 {
1722 int i, nfree = 0;
1723 struct Lisp_String *free_list_before = string_free_list;
1724
1725 next = b->next;
1726
1727 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1728 {
1729 struct Lisp_String *s = b->strings + i;
1730
1731 if (s->data)
1732 {
1733 /* String was not on free-list before. */
1734 if (STRING_MARKED_P (s))
1735 {
1736 /* String is live; unmark it and its intervals. */
1737 UNMARK_STRING (s);
1738
1739 if (!NULL_INTERVAL_P (s->intervals))
1740 UNMARK_BALANCE_INTERVALS (s->intervals);
1741
1742 ++total_strings;
1743 total_string_size += STRING_BYTES (s);
1744 }
1745 else
1746 {
1747 /* String is dead. Put it on the free-list. */
1748 struct sdata *data = SDATA_OF_STRING (s);
1749
1750 /* Save the size of S in its sdata so that we know
1751 how large that is. Reset the sdata's string
1752 back-pointer so that we know it's free. */
1753 #ifdef GC_CHECK_STRING_BYTES
1754 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
1755 abort ();
1756 #else
1757 data->u.nbytes = GC_STRING_BYTES (s);
1758 #endif
1759 data->string = NULL;
1760
1761 /* Reset the strings's `data' member so that we
1762 know it's free. */
1763 s->data = NULL;
1764
1765 /* Put the string on the free-list. */
1766 NEXT_FREE_LISP_STRING (s) = string_free_list;
1767 string_free_list = s;
1768 ++nfree;
1769 }
1770 }
1771 else
1772 {
1773 /* S was on the free-list before. Put it there again. */
1774 NEXT_FREE_LISP_STRING (s) = string_free_list;
1775 string_free_list = s;
1776 ++nfree;
1777 }
1778 }
1779
1780 /* Free blocks that contain free Lisp_Strings only, except
1781 the first two of them. */
1782 if (nfree == STRING_BLOCK_SIZE
1783 && total_free_strings > STRING_BLOCK_SIZE)
1784 {
1785 lisp_free (b);
1786 --n_string_blocks;
1787 string_free_list = free_list_before;
1788 }
1789 else
1790 {
1791 total_free_strings += nfree;
1792 b->next = live_blocks;
1793 live_blocks = b;
1794 }
1795 }
1796
1797 string_blocks = live_blocks;
1798 free_large_strings ();
1799 compact_small_strings ();
1800 }
1801
1802
1803 /* Free dead large strings. */
1804
1805 static void
1806 free_large_strings ()
1807 {
1808 struct sblock *b, *next;
1809 struct sblock *live_blocks = NULL;
1810
1811 for (b = large_sblocks; b; b = next)
1812 {
1813 next = b->next;
1814
1815 if (b->first_data.string == NULL)
1816 lisp_free (b);
1817 else
1818 {
1819 b->next = live_blocks;
1820 live_blocks = b;
1821 }
1822 }
1823
1824 large_sblocks = live_blocks;
1825 }
1826
1827
1828 /* Compact data of small strings. Free sblocks that don't contain
1829 data of live strings after compaction. */
1830
1831 static void
1832 compact_small_strings ()
1833 {
1834 struct sblock *b, *tb, *next;
1835 struct sdata *from, *to, *end, *tb_end;
1836 struct sdata *to_end, *from_end;
1837
1838 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1839 to, and TB_END is the end of TB. */
1840 tb = oldest_sblock;
1841 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1842 to = &tb->first_data;
1843
1844 /* Step through the blocks from the oldest to the youngest. We
1845 expect that old blocks will stabilize over time, so that less
1846 copying will happen this way. */
1847 for (b = oldest_sblock; b; b = b->next)
1848 {
1849 end = b->next_free;
1850 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1851
1852 for (from = &b->first_data; from < end; from = from_end)
1853 {
1854 /* Compute the next FROM here because copying below may
1855 overwrite data we need to compute it. */
1856 int nbytes;
1857
1858 #ifdef GC_CHECK_STRING_BYTES
1859 /* Check that the string size recorded in the string is the
1860 same as the one recorded in the sdata structure. */
1861 if (from->string
1862 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
1863 abort ();
1864 #endif /* GC_CHECK_STRING_BYTES */
1865
1866 if (from->string)
1867 nbytes = GC_STRING_BYTES (from->string);
1868 else
1869 nbytes = SDATA_NBYTES (from);
1870
1871 nbytes = SDATA_SIZE (nbytes);
1872 from_end = (struct sdata *) ((char *) from + nbytes);
1873
1874 /* FROM->string non-null means it's alive. Copy its data. */
1875 if (from->string)
1876 {
1877 /* If TB is full, proceed with the next sblock. */
1878 to_end = (struct sdata *) ((char *) to + nbytes);
1879 if (to_end > tb_end)
1880 {
1881 tb->next_free = to;
1882 tb = tb->next;
1883 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1884 to = &tb->first_data;
1885 to_end = (struct sdata *) ((char *) to + nbytes);
1886 }
1887
1888 /* Copy, and update the string's `data' pointer. */
1889 if (from != to)
1890 {
1891 xassert (tb != b || to <= from);
1892 safe_bcopy ((char *) from, (char *) to, nbytes);
1893 to->string->data = SDATA_DATA (to);
1894 }
1895
1896 /* Advance past the sdata we copied to. */
1897 to = to_end;
1898 }
1899 }
1900 }
1901
1902 /* The rest of the sblocks following TB don't contain live data, so
1903 we can free them. */
1904 for (b = tb->next; b; b = next)
1905 {
1906 next = b->next;
1907 lisp_free (b);
1908 }
1909
1910 tb->next_free = to;
1911 tb->next = NULL;
1912 current_sblock = tb;
1913 }
1914
1915
1916 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1917 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1918 LENGTH must be an integer.
1919 INIT must be an integer that represents a character. */)
1920 (length, init)
1921 Lisp_Object length, init;
1922 {
1923 register Lisp_Object val;
1924 register unsigned char *p, *end;
1925 int c, nbytes;
1926
1927 CHECK_NATNUM (length);
1928 CHECK_NUMBER (init);
1929
1930 c = XINT (init);
1931 if (ASCII_CHAR_P (c))
1932 {
1933 nbytes = XINT (length);
1934 val = make_uninit_string (nbytes);
1935 p = SDATA (val);
1936 end = p + SCHARS (val);
1937 while (p != end)
1938 *p++ = c;
1939 }
1940 else
1941 {
1942 unsigned char str[MAX_MULTIBYTE_LENGTH];
1943 int len = CHAR_STRING (c, str);
1944
1945 nbytes = len * XINT (length);
1946 val = make_uninit_multibyte_string (XINT (length), nbytes);
1947 p = SDATA (val);
1948 end = p + nbytes;
1949 while (p != end)
1950 {
1951 bcopy (str, p, len);
1952 p += len;
1953 }
1954 }
1955
1956 *p = 0;
1957 return val;
1958 }
1959
1960
1961 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
1962 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
1963 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
1964 (length, init)
1965 Lisp_Object length, init;
1966 {
1967 register Lisp_Object val;
1968 struct Lisp_Bool_Vector *p;
1969 int real_init, i;
1970 int length_in_chars, length_in_elts, bits_per_value;
1971
1972 CHECK_NATNUM (length);
1973
1974 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
1975
1976 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
1977 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
1978 / BOOL_VECTOR_BITS_PER_CHAR);
1979
1980 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1981 slot `size' of the struct Lisp_Bool_Vector. */
1982 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1983 p = XBOOL_VECTOR (val);
1984
1985 /* Get rid of any bits that would cause confusion. */
1986 p->vector_size = 0;
1987 XSETBOOL_VECTOR (val, p);
1988 p->size = XFASTINT (length);
1989
1990 real_init = (NILP (init) ? 0 : -1);
1991 for (i = 0; i < length_in_chars ; i++)
1992 p->data[i] = real_init;
1993
1994 /* Clear the extraneous bits in the last byte. */
1995 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
1996 XBOOL_VECTOR (val)->data[length_in_chars - 1]
1997 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
1998
1999 return val;
2000 }
2001
2002
2003 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2004 of characters from the contents. This string may be unibyte or
2005 multibyte, depending on the contents. */
2006
2007 Lisp_Object
2008 make_string (contents, nbytes)
2009 const char *contents;
2010 int nbytes;
2011 {
2012 register Lisp_Object val;
2013 int nchars, multibyte_nbytes;
2014
2015 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2016 if (nbytes == nchars || nbytes != multibyte_nbytes)
2017 /* CONTENTS contains no multibyte sequences or contains an invalid
2018 multibyte sequence. We must make unibyte string. */
2019 val = make_unibyte_string (contents, nbytes);
2020 else
2021 val = make_multibyte_string (contents, nchars, nbytes);
2022 return val;
2023 }
2024
2025
2026 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2027
2028 Lisp_Object
2029 make_unibyte_string (contents, length)
2030 const char *contents;
2031 int length;
2032 {
2033 register Lisp_Object val;
2034 val = make_uninit_string (length);
2035 bcopy (contents, SDATA (val), length);
2036 STRING_SET_UNIBYTE (val);
2037 return val;
2038 }
2039
2040
2041 /* Make a multibyte string from NCHARS characters occupying NBYTES
2042 bytes at CONTENTS. */
2043
2044 Lisp_Object
2045 make_multibyte_string (contents, nchars, nbytes)
2046 const char *contents;
2047 int nchars, nbytes;
2048 {
2049 register Lisp_Object val;
2050 val = make_uninit_multibyte_string (nchars, nbytes);
2051 bcopy (contents, SDATA (val), nbytes);
2052 return val;
2053 }
2054
2055
2056 /* Make a string from NCHARS characters occupying NBYTES bytes at
2057 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2058
2059 Lisp_Object
2060 make_string_from_bytes (contents, nchars, nbytes)
2061 const char *contents;
2062 int nchars, nbytes;
2063 {
2064 register Lisp_Object val;
2065 val = make_uninit_multibyte_string (nchars, nbytes);
2066 bcopy (contents, SDATA (val), nbytes);
2067 if (SBYTES (val) == SCHARS (val))
2068 STRING_SET_UNIBYTE (val);
2069 return val;
2070 }
2071
2072
2073 /* Make a string from NCHARS characters occupying NBYTES bytes at
2074 CONTENTS. The argument MULTIBYTE controls whether to label the
2075 string as multibyte. If NCHARS is negative, it counts the number of
2076 characters by itself. */
2077
2078 Lisp_Object
2079 make_specified_string (contents, nchars, nbytes, multibyte)
2080 const char *contents;
2081 int nchars, nbytes;
2082 int multibyte;
2083 {
2084 register Lisp_Object val;
2085
2086 if (nchars < 0)
2087 {
2088 if (multibyte)
2089 nchars = multibyte_chars_in_text (contents, nbytes);
2090 else
2091 nchars = nbytes;
2092 }
2093 val = make_uninit_multibyte_string (nchars, nbytes);
2094 bcopy (contents, SDATA (val), nbytes);
2095 if (!multibyte)
2096 STRING_SET_UNIBYTE (val);
2097 return val;
2098 }
2099
2100
2101 /* Make a string from the data at STR, treating it as multibyte if the
2102 data warrants. */
2103
2104 Lisp_Object
2105 build_string (str)
2106 const char *str;
2107 {
2108 return make_string (str, strlen (str));
2109 }
2110
2111
2112 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2113 occupying LENGTH bytes. */
2114
2115 Lisp_Object
2116 make_uninit_string (length)
2117 int length;
2118 {
2119 Lisp_Object val;
2120 val = make_uninit_multibyte_string (length, length);
2121 STRING_SET_UNIBYTE (val);
2122 return val;
2123 }
2124
2125
2126 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2127 which occupy NBYTES bytes. */
2128
2129 Lisp_Object
2130 make_uninit_multibyte_string (nchars, nbytes)
2131 int nchars, nbytes;
2132 {
2133 Lisp_Object string;
2134 struct Lisp_String *s;
2135
2136 if (nchars < 0)
2137 abort ();
2138
2139 s = allocate_string ();
2140 allocate_string_data (s, nchars, nbytes);
2141 XSETSTRING (string, s);
2142 string_chars_consed += nbytes;
2143 return string;
2144 }
2145
2146
2147 \f
2148 /***********************************************************************
2149 Float Allocation
2150 ***********************************************************************/
2151
2152 /* We store float cells inside of float_blocks, allocating a new
2153 float_block with malloc whenever necessary. Float cells reclaimed
2154 by GC are put on a free list to be reallocated before allocating
2155 any new float cells from the latest float_block. */
2156
2157 #define FLOAT_BLOCK_SIZE \
2158 (((BLOCK_BYTES - sizeof (struct float_block *) \
2159 /* The compiler might add padding at the end. */ \
2160 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2161 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2162
2163 #define GETMARKBIT(block,n) \
2164 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2165 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2166 & 1)
2167
2168 #define SETMARKBIT(block,n) \
2169 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2170 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2171
2172 #define UNSETMARKBIT(block,n) \
2173 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2174 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2175
2176 #define FLOAT_BLOCK(fptr) \
2177 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2178
2179 #define FLOAT_INDEX(fptr) \
2180 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2181
2182 struct float_block
2183 {
2184 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2185 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2186 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2187 struct float_block *next;
2188 };
2189
2190 #define FLOAT_MARKED_P(fptr) \
2191 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2192
2193 #define FLOAT_MARK(fptr) \
2194 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2195
2196 #define FLOAT_UNMARK(fptr) \
2197 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2198
2199 /* Current float_block. */
2200
2201 struct float_block *float_block;
2202
2203 /* Index of first unused Lisp_Float in the current float_block. */
2204
2205 int float_block_index;
2206
2207 /* Total number of float blocks now in use. */
2208
2209 int n_float_blocks;
2210
2211 /* Free-list of Lisp_Floats. */
2212
2213 struct Lisp_Float *float_free_list;
2214
2215
2216 /* Initialize float allocation. */
2217
2218 void
2219 init_float ()
2220 {
2221 float_block = NULL;
2222 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2223 float_free_list = 0;
2224 n_float_blocks = 0;
2225 }
2226
2227
2228 /* Explicitly free a float cell by putting it on the free-list. */
2229
2230 void
2231 free_float (ptr)
2232 struct Lisp_Float *ptr;
2233 {
2234 *(struct Lisp_Float **)&ptr->data = float_free_list;
2235 float_free_list = ptr;
2236 }
2237
2238
2239 /* Return a new float object with value FLOAT_VALUE. */
2240
2241 Lisp_Object
2242 make_float (float_value)
2243 double float_value;
2244 {
2245 register Lisp_Object val;
2246
2247 if (float_free_list)
2248 {
2249 /* We use the data field for chaining the free list
2250 so that we won't use the same field that has the mark bit. */
2251 XSETFLOAT (val, float_free_list);
2252 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2253 }
2254 else
2255 {
2256 if (float_block_index == FLOAT_BLOCK_SIZE)
2257 {
2258 register struct float_block *new;
2259
2260 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2261 MEM_TYPE_FLOAT);
2262 new->next = float_block;
2263 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2264 float_block = new;
2265 float_block_index = 0;
2266 n_float_blocks++;
2267 }
2268 XSETFLOAT (val, &float_block->floats[float_block_index]);
2269 float_block_index++;
2270 }
2271
2272 XFLOAT_DATA (val) = float_value;
2273 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2274 consing_since_gc += sizeof (struct Lisp_Float);
2275 floats_consed++;
2276 return val;
2277 }
2278
2279
2280 \f
2281 /***********************************************************************
2282 Cons Allocation
2283 ***********************************************************************/
2284
2285 /* We store cons cells inside of cons_blocks, allocating a new
2286 cons_block with malloc whenever necessary. Cons cells reclaimed by
2287 GC are put on a free list to be reallocated before allocating
2288 any new cons cells from the latest cons_block. */
2289
2290 #define CONS_BLOCK_SIZE \
2291 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2292 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2293
2294 #define CONS_BLOCK(fptr) \
2295 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2296
2297 #define CONS_INDEX(fptr) \
2298 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2299
2300 struct cons_block
2301 {
2302 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2303 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2304 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2305 struct cons_block *next;
2306 };
2307
2308 #define CONS_MARKED_P(fptr) \
2309 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2310
2311 #define CONS_MARK(fptr) \
2312 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2313
2314 #define CONS_UNMARK(fptr) \
2315 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2316
2317 /* Current cons_block. */
2318
2319 struct cons_block *cons_block;
2320
2321 /* Index of first unused Lisp_Cons in the current block. */
2322
2323 int cons_block_index;
2324
2325 /* Free-list of Lisp_Cons structures. */
2326
2327 struct Lisp_Cons *cons_free_list;
2328
2329 /* Total number of cons blocks now in use. */
2330
2331 int n_cons_blocks;
2332
2333
2334 /* Initialize cons allocation. */
2335
2336 void
2337 init_cons ()
2338 {
2339 cons_block = NULL;
2340 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2341 cons_free_list = 0;
2342 n_cons_blocks = 0;
2343 }
2344
2345
2346 /* Explicitly free a cons cell by putting it on the free-list. */
2347
2348 void
2349 free_cons (ptr)
2350 struct Lisp_Cons *ptr;
2351 {
2352 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2353 #if GC_MARK_STACK
2354 ptr->car = Vdead;
2355 #endif
2356 cons_free_list = ptr;
2357 }
2358
2359 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2360 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2361 (car, cdr)
2362 Lisp_Object car, cdr;
2363 {
2364 register Lisp_Object val;
2365
2366 if (cons_free_list)
2367 {
2368 /* We use the cdr for chaining the free list
2369 so that we won't use the same field that has the mark bit. */
2370 XSETCONS (val, cons_free_list);
2371 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2372 }
2373 else
2374 {
2375 if (cons_block_index == CONS_BLOCK_SIZE)
2376 {
2377 register struct cons_block *new;
2378 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2379 MEM_TYPE_CONS);
2380 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2381 new->next = cons_block;
2382 cons_block = new;
2383 cons_block_index = 0;
2384 n_cons_blocks++;
2385 }
2386 XSETCONS (val, &cons_block->conses[cons_block_index]);
2387 cons_block_index++;
2388 }
2389
2390 XSETCAR (val, car);
2391 XSETCDR (val, cdr);
2392 eassert (!CONS_MARKED_P (XCONS (val)));
2393 consing_since_gc += sizeof (struct Lisp_Cons);
2394 cons_cells_consed++;
2395 return val;
2396 }
2397
2398 /* Get an error now if there's any junk in the cons free list. */
2399 void
2400 check_cons_list ()
2401 {
2402 struct Lisp_Cons *tail = cons_free_list;
2403
2404 #if 0
2405 while (tail)
2406 tail = *(struct Lisp_Cons **)&tail->cdr;
2407 #endif
2408 }
2409
2410 /* Make a list of 2, 3, 4 or 5 specified objects. */
2411
2412 Lisp_Object
2413 list2 (arg1, arg2)
2414 Lisp_Object arg1, arg2;
2415 {
2416 return Fcons (arg1, Fcons (arg2, Qnil));
2417 }
2418
2419
2420 Lisp_Object
2421 list3 (arg1, arg2, arg3)
2422 Lisp_Object arg1, arg2, arg3;
2423 {
2424 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2425 }
2426
2427
2428 Lisp_Object
2429 list4 (arg1, arg2, arg3, arg4)
2430 Lisp_Object arg1, arg2, arg3, arg4;
2431 {
2432 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2433 }
2434
2435
2436 Lisp_Object
2437 list5 (arg1, arg2, arg3, arg4, arg5)
2438 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2439 {
2440 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2441 Fcons (arg5, Qnil)))));
2442 }
2443
2444
2445 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2446 doc: /* Return a newly created list with specified arguments as elements.
2447 Any number of arguments, even zero arguments, are allowed.
2448 usage: (list &rest OBJECTS) */)
2449 (nargs, args)
2450 int nargs;
2451 register Lisp_Object *args;
2452 {
2453 register Lisp_Object val;
2454 val = Qnil;
2455
2456 while (nargs > 0)
2457 {
2458 nargs--;
2459 val = Fcons (args[nargs], val);
2460 }
2461 return val;
2462 }
2463
2464
2465 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2466 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2467 (length, init)
2468 register Lisp_Object length, init;
2469 {
2470 register Lisp_Object val;
2471 register int size;
2472
2473 CHECK_NATNUM (length);
2474 size = XFASTINT (length);
2475
2476 val = Qnil;
2477 while (size > 0)
2478 {
2479 val = Fcons (init, val);
2480 --size;
2481
2482 if (size > 0)
2483 {
2484 val = Fcons (init, val);
2485 --size;
2486
2487 if (size > 0)
2488 {
2489 val = Fcons (init, val);
2490 --size;
2491
2492 if (size > 0)
2493 {
2494 val = Fcons (init, val);
2495 --size;
2496
2497 if (size > 0)
2498 {
2499 val = Fcons (init, val);
2500 --size;
2501 }
2502 }
2503 }
2504 }
2505
2506 QUIT;
2507 }
2508
2509 return val;
2510 }
2511
2512
2513 \f
2514 /***********************************************************************
2515 Vector Allocation
2516 ***********************************************************************/
2517
2518 /* Singly-linked list of all vectors. */
2519
2520 struct Lisp_Vector *all_vectors;
2521
2522 /* Total number of vector-like objects now in use. */
2523
2524 int n_vectors;
2525
2526
2527 /* Value is a pointer to a newly allocated Lisp_Vector structure
2528 with room for LEN Lisp_Objects. */
2529
2530 static struct Lisp_Vector *
2531 allocate_vectorlike (len, type)
2532 EMACS_INT len;
2533 enum mem_type type;
2534 {
2535 struct Lisp_Vector *p;
2536 size_t nbytes;
2537
2538 #ifdef DOUG_LEA_MALLOC
2539 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2540 because mapped region contents are not preserved in
2541 a dumped Emacs. */
2542 BLOCK_INPUT;
2543 mallopt (M_MMAP_MAX, 0);
2544 UNBLOCK_INPUT;
2545 #endif
2546
2547 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2548 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2549
2550 #ifdef DOUG_LEA_MALLOC
2551 /* Back to a reasonable maximum of mmap'ed areas. */
2552 BLOCK_INPUT;
2553 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2554 UNBLOCK_INPUT;
2555 #endif
2556
2557 consing_since_gc += nbytes;
2558 vector_cells_consed += len;
2559
2560 p->next = all_vectors;
2561 all_vectors = p;
2562 ++n_vectors;
2563 return p;
2564 }
2565
2566
2567 /* Allocate a vector with NSLOTS slots. */
2568
2569 struct Lisp_Vector *
2570 allocate_vector (nslots)
2571 EMACS_INT nslots;
2572 {
2573 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2574 v->size = nslots;
2575 return v;
2576 }
2577
2578
2579 /* Allocate other vector-like structures. */
2580
2581 struct Lisp_Hash_Table *
2582 allocate_hash_table ()
2583 {
2584 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2585 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2586 EMACS_INT i;
2587
2588 v->size = len;
2589 for (i = 0; i < len; ++i)
2590 v->contents[i] = Qnil;
2591
2592 return (struct Lisp_Hash_Table *) v;
2593 }
2594
2595
2596 struct window *
2597 allocate_window ()
2598 {
2599 EMACS_INT len = VECSIZE (struct window);
2600 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2601 EMACS_INT i;
2602
2603 for (i = 0; i < len; ++i)
2604 v->contents[i] = Qnil;
2605 v->size = len;
2606
2607 return (struct window *) v;
2608 }
2609
2610
2611 struct frame *
2612 allocate_frame ()
2613 {
2614 EMACS_INT len = VECSIZE (struct frame);
2615 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2616 EMACS_INT i;
2617
2618 for (i = 0; i < len; ++i)
2619 v->contents[i] = make_number (0);
2620 v->size = len;
2621 return (struct frame *) v;
2622 }
2623
2624
2625 struct Lisp_Process *
2626 allocate_process ()
2627 {
2628 EMACS_INT len = VECSIZE (struct Lisp_Process);
2629 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2630 EMACS_INT i;
2631
2632 for (i = 0; i < len; ++i)
2633 v->contents[i] = Qnil;
2634 v->size = len;
2635
2636 return (struct Lisp_Process *) v;
2637 }
2638
2639
2640 struct Lisp_Vector *
2641 allocate_other_vector (len)
2642 EMACS_INT len;
2643 {
2644 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2645 EMACS_INT i;
2646
2647 for (i = 0; i < len; ++i)
2648 v->contents[i] = Qnil;
2649 v->size = len;
2650
2651 return v;
2652 }
2653
2654
2655 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2656 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2657 See also the function `vector'. */)
2658 (length, init)
2659 register Lisp_Object length, init;
2660 {
2661 Lisp_Object vector;
2662 register EMACS_INT sizei;
2663 register int index;
2664 register struct Lisp_Vector *p;
2665
2666 CHECK_NATNUM (length);
2667 sizei = XFASTINT (length);
2668
2669 p = allocate_vector (sizei);
2670 for (index = 0; index < sizei; index++)
2671 p->contents[index] = init;
2672
2673 XSETVECTOR (vector, p);
2674 return vector;
2675 }
2676
2677
2678 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2679 doc: /* Return a newly created vector with specified arguments as elements.
2680 Any number of arguments, even zero arguments, are allowed.
2681 usage: (vector &rest OBJECTS) */)
2682 (nargs, args)
2683 register int nargs;
2684 Lisp_Object *args;
2685 {
2686 register Lisp_Object len, val;
2687 register int index;
2688 register struct Lisp_Vector *p;
2689
2690 XSETFASTINT (len, nargs);
2691 val = Fmake_vector (len, Qnil);
2692 p = XVECTOR (val);
2693 for (index = 0; index < nargs; index++)
2694 p->contents[index] = args[index];
2695 return val;
2696 }
2697
2698
2699 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2700 doc: /* Create a byte-code object with specified arguments as elements.
2701 The arguments should be the arglist, bytecode-string, constant vector,
2702 stack size, (optional) doc string, and (optional) interactive spec.
2703 The first four arguments are required; at most six have any
2704 significance.
2705 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2706 (nargs, args)
2707 register int nargs;
2708 Lisp_Object *args;
2709 {
2710 register Lisp_Object len, val;
2711 register int index;
2712 register struct Lisp_Vector *p;
2713
2714 XSETFASTINT (len, nargs);
2715 if (!NILP (Vpurify_flag))
2716 val = make_pure_vector ((EMACS_INT) nargs);
2717 else
2718 val = Fmake_vector (len, Qnil);
2719
2720 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2721 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2722 earlier because they produced a raw 8-bit string for byte-code
2723 and now such a byte-code string is loaded as multibyte while
2724 raw 8-bit characters converted to multibyte form. Thus, now we
2725 must convert them back to the original unibyte form. */
2726 args[1] = Fstring_as_unibyte (args[1]);
2727
2728 p = XVECTOR (val);
2729 for (index = 0; index < nargs; index++)
2730 {
2731 if (!NILP (Vpurify_flag))
2732 args[index] = Fpurecopy (args[index]);
2733 p->contents[index] = args[index];
2734 }
2735 XSETCOMPILED (val, p);
2736 return val;
2737 }
2738
2739
2740 \f
2741 /***********************************************************************
2742 Symbol Allocation
2743 ***********************************************************************/
2744
2745 /* Each symbol_block is just under 1020 bytes long, since malloc
2746 really allocates in units of powers of two and uses 4 bytes for its
2747 own overhead. */
2748
2749 #define SYMBOL_BLOCK_SIZE \
2750 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2751
2752 struct symbol_block
2753 {
2754 /* Place `symbols' first, to preserve alignment. */
2755 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
2756 struct symbol_block *next;
2757 };
2758
2759 /* Current symbol block and index of first unused Lisp_Symbol
2760 structure in it. */
2761
2762 struct symbol_block *symbol_block;
2763 int symbol_block_index;
2764
2765 /* List of free symbols. */
2766
2767 struct Lisp_Symbol *symbol_free_list;
2768
2769 /* Total number of symbol blocks now in use. */
2770
2771 int n_symbol_blocks;
2772
2773
2774 /* Initialize symbol allocation. */
2775
2776 void
2777 init_symbol ()
2778 {
2779 symbol_block = NULL;
2780 symbol_block_index = SYMBOL_BLOCK_SIZE;
2781 symbol_free_list = 0;
2782 n_symbol_blocks = 0;
2783 }
2784
2785
2786 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
2787 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
2788 Its value and function definition are void, and its property list is nil. */)
2789 (name)
2790 Lisp_Object name;
2791 {
2792 register Lisp_Object val;
2793 register struct Lisp_Symbol *p;
2794
2795 CHECK_STRING (name);
2796
2797 if (symbol_free_list)
2798 {
2799 XSETSYMBOL (val, symbol_free_list);
2800 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
2801 }
2802 else
2803 {
2804 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
2805 {
2806 struct symbol_block *new;
2807 new = (struct symbol_block *) lisp_malloc (sizeof *new,
2808 MEM_TYPE_SYMBOL);
2809 new->next = symbol_block;
2810 symbol_block = new;
2811 symbol_block_index = 0;
2812 n_symbol_blocks++;
2813 }
2814 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
2815 symbol_block_index++;
2816 }
2817
2818 p = XSYMBOL (val);
2819 p->xname = name;
2820 p->plist = Qnil;
2821 p->value = Qunbound;
2822 p->function = Qunbound;
2823 p->next = NULL;
2824 p->gcmarkbit = 0;
2825 p->interned = SYMBOL_UNINTERNED;
2826 p->constant = 0;
2827 p->indirect_variable = 0;
2828 consing_since_gc += sizeof (struct Lisp_Symbol);
2829 symbols_consed++;
2830 return val;
2831 }
2832
2833
2834 \f
2835 /***********************************************************************
2836 Marker (Misc) Allocation
2837 ***********************************************************************/
2838
2839 /* Allocation of markers and other objects that share that structure.
2840 Works like allocation of conses. */
2841
2842 #define MARKER_BLOCK_SIZE \
2843 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2844
2845 struct marker_block
2846 {
2847 /* Place `markers' first, to preserve alignment. */
2848 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
2849 struct marker_block *next;
2850 };
2851
2852 struct marker_block *marker_block;
2853 int marker_block_index;
2854
2855 union Lisp_Misc *marker_free_list;
2856
2857 /* Total number of marker blocks now in use. */
2858
2859 int n_marker_blocks;
2860
2861 void
2862 init_marker ()
2863 {
2864 marker_block = NULL;
2865 marker_block_index = MARKER_BLOCK_SIZE;
2866 marker_free_list = 0;
2867 n_marker_blocks = 0;
2868 }
2869
2870 /* Return a newly allocated Lisp_Misc object, with no substructure. */
2871
2872 Lisp_Object
2873 allocate_misc ()
2874 {
2875 Lisp_Object val;
2876
2877 if (marker_free_list)
2878 {
2879 XSETMISC (val, marker_free_list);
2880 marker_free_list = marker_free_list->u_free.chain;
2881 }
2882 else
2883 {
2884 if (marker_block_index == MARKER_BLOCK_SIZE)
2885 {
2886 struct marker_block *new;
2887 new = (struct marker_block *) lisp_malloc (sizeof *new,
2888 MEM_TYPE_MISC);
2889 new->next = marker_block;
2890 marker_block = new;
2891 marker_block_index = 0;
2892 n_marker_blocks++;
2893 total_free_markers += MARKER_BLOCK_SIZE;
2894 }
2895 XSETMISC (val, &marker_block->markers[marker_block_index]);
2896 marker_block_index++;
2897 }
2898
2899 --total_free_markers;
2900 consing_since_gc += sizeof (union Lisp_Misc);
2901 misc_objects_consed++;
2902 XMARKER (val)->gcmarkbit = 0;
2903 return val;
2904 }
2905
2906 /* Free a Lisp_Misc object */
2907
2908 void
2909 free_misc (misc)
2910 Lisp_Object misc;
2911 {
2912 XMISC (misc)->u_marker.type = Lisp_Misc_Free;
2913 XMISC (misc)->u_free.chain = marker_free_list;
2914 marker_free_list = XMISC (misc);
2915
2916 total_free_markers++;
2917 }
2918
2919 /* Return a Lisp_Misc_Save_Value object containing POINTER and
2920 INTEGER. This is used to package C values to call record_unwind_protect.
2921 The unwind function can get the C values back using XSAVE_VALUE. */
2922
2923 Lisp_Object
2924 make_save_value (pointer, integer)
2925 void *pointer;
2926 int integer;
2927 {
2928 register Lisp_Object val;
2929 register struct Lisp_Save_Value *p;
2930
2931 val = allocate_misc ();
2932 XMISCTYPE (val) = Lisp_Misc_Save_Value;
2933 p = XSAVE_VALUE (val);
2934 p->pointer = pointer;
2935 p->integer = integer;
2936 p->dogc = 0;
2937 return val;
2938 }
2939
2940 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
2941 doc: /* Return a newly allocated marker which does not point at any place. */)
2942 ()
2943 {
2944 register Lisp_Object val;
2945 register struct Lisp_Marker *p;
2946
2947 val = allocate_misc ();
2948 XMISCTYPE (val) = Lisp_Misc_Marker;
2949 p = XMARKER (val);
2950 p->buffer = 0;
2951 p->bytepos = 0;
2952 p->charpos = 0;
2953 p->next = NULL;
2954 p->insertion_type = 0;
2955 return val;
2956 }
2957
2958 /* Put MARKER back on the free list after using it temporarily. */
2959
2960 void
2961 free_marker (marker)
2962 Lisp_Object marker;
2963 {
2964 unchain_marker (XMARKER (marker));
2965 free_misc (marker);
2966 }
2967
2968 \f
2969 /* Return a newly created vector or string with specified arguments as
2970 elements. If all the arguments are characters that can fit
2971 in a string of events, make a string; otherwise, make a vector.
2972
2973 Any number of arguments, even zero arguments, are allowed. */
2974
2975 Lisp_Object
2976 make_event_array (nargs, args)
2977 register int nargs;
2978 Lisp_Object *args;
2979 {
2980 int i;
2981
2982 for (i = 0; i < nargs; i++)
2983 /* The things that fit in a string
2984 are characters that are in 0...127,
2985 after discarding the meta bit and all the bits above it. */
2986 if (!INTEGERP (args[i])
2987 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
2988 return Fvector (nargs, args);
2989
2990 /* Since the loop exited, we know that all the things in it are
2991 characters, so we can make a string. */
2992 {
2993 Lisp_Object result;
2994
2995 result = Fmake_string (make_number (nargs), make_number (0));
2996 for (i = 0; i < nargs; i++)
2997 {
2998 SSET (result, i, XINT (args[i]));
2999 /* Move the meta bit to the right place for a string char. */
3000 if (XINT (args[i]) & CHAR_META)
3001 SSET (result, i, SREF (result, i) | 0x80);
3002 }
3003
3004 return result;
3005 }
3006 }
3007
3008
3009 \f
3010 /************************************************************************
3011 C Stack Marking
3012 ************************************************************************/
3013
3014 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3015
3016 /* Conservative C stack marking requires a method to identify possibly
3017 live Lisp objects given a pointer value. We do this by keeping
3018 track of blocks of Lisp data that are allocated in a red-black tree
3019 (see also the comment of mem_node which is the type of nodes in
3020 that tree). Function lisp_malloc adds information for an allocated
3021 block to the red-black tree with calls to mem_insert, and function
3022 lisp_free removes it with mem_delete. Functions live_string_p etc
3023 call mem_find to lookup information about a given pointer in the
3024 tree, and use that to determine if the pointer points to a Lisp
3025 object or not. */
3026
3027 /* Initialize this part of alloc.c. */
3028
3029 static void
3030 mem_init ()
3031 {
3032 mem_z.left = mem_z.right = MEM_NIL;
3033 mem_z.parent = NULL;
3034 mem_z.color = MEM_BLACK;
3035 mem_z.start = mem_z.end = NULL;
3036 mem_root = MEM_NIL;
3037 }
3038
3039
3040 /* Value is a pointer to the mem_node containing START. Value is
3041 MEM_NIL if there is no node in the tree containing START. */
3042
3043 static INLINE struct mem_node *
3044 mem_find (start)
3045 void *start;
3046 {
3047 struct mem_node *p;
3048
3049 if (start < min_heap_address || start > max_heap_address)
3050 return MEM_NIL;
3051
3052 /* Make the search always successful to speed up the loop below. */
3053 mem_z.start = start;
3054 mem_z.end = (char *) start + 1;
3055
3056 p = mem_root;
3057 while (start < p->start || start >= p->end)
3058 p = start < p->start ? p->left : p->right;
3059 return p;
3060 }
3061
3062
3063 /* Insert a new node into the tree for a block of memory with start
3064 address START, end address END, and type TYPE. Value is a
3065 pointer to the node that was inserted. */
3066
3067 static struct mem_node *
3068 mem_insert (start, end, type)
3069 void *start, *end;
3070 enum mem_type type;
3071 {
3072 struct mem_node *c, *parent, *x;
3073
3074 if (start < min_heap_address)
3075 min_heap_address = start;
3076 if (end > max_heap_address)
3077 max_heap_address = end;
3078
3079 /* See where in the tree a node for START belongs. In this
3080 particular application, it shouldn't happen that a node is already
3081 present. For debugging purposes, let's check that. */
3082 c = mem_root;
3083 parent = NULL;
3084
3085 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3086
3087 while (c != MEM_NIL)
3088 {
3089 if (start >= c->start && start < c->end)
3090 abort ();
3091 parent = c;
3092 c = start < c->start ? c->left : c->right;
3093 }
3094
3095 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3096
3097 while (c != MEM_NIL)
3098 {
3099 parent = c;
3100 c = start < c->start ? c->left : c->right;
3101 }
3102
3103 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3104
3105 /* Create a new node. */
3106 #ifdef GC_MALLOC_CHECK
3107 x = (struct mem_node *) _malloc_internal (sizeof *x);
3108 if (x == NULL)
3109 abort ();
3110 #else
3111 x = (struct mem_node *) xmalloc (sizeof *x);
3112 #endif
3113 x->start = start;
3114 x->end = end;
3115 x->type = type;
3116 x->parent = parent;
3117 x->left = x->right = MEM_NIL;
3118 x->color = MEM_RED;
3119
3120 /* Insert it as child of PARENT or install it as root. */
3121 if (parent)
3122 {
3123 if (start < parent->start)
3124 parent->left = x;
3125 else
3126 parent->right = x;
3127 }
3128 else
3129 mem_root = x;
3130
3131 /* Re-establish red-black tree properties. */
3132 mem_insert_fixup (x);
3133
3134 return x;
3135 }
3136
3137
3138 /* Re-establish the red-black properties of the tree, and thereby
3139 balance the tree, after node X has been inserted; X is always red. */
3140
3141 static void
3142 mem_insert_fixup (x)
3143 struct mem_node *x;
3144 {
3145 while (x != mem_root && x->parent->color == MEM_RED)
3146 {
3147 /* X is red and its parent is red. This is a violation of
3148 red-black tree property #3. */
3149
3150 if (x->parent == x->parent->parent->left)
3151 {
3152 /* We're on the left side of our grandparent, and Y is our
3153 "uncle". */
3154 struct mem_node *y = x->parent->parent->right;
3155
3156 if (y->color == MEM_RED)
3157 {
3158 /* Uncle and parent are red but should be black because
3159 X is red. Change the colors accordingly and proceed
3160 with the grandparent. */
3161 x->parent->color = MEM_BLACK;
3162 y->color = MEM_BLACK;
3163 x->parent->parent->color = MEM_RED;
3164 x = x->parent->parent;
3165 }
3166 else
3167 {
3168 /* Parent and uncle have different colors; parent is
3169 red, uncle is black. */
3170 if (x == x->parent->right)
3171 {
3172 x = x->parent;
3173 mem_rotate_left (x);
3174 }
3175
3176 x->parent->color = MEM_BLACK;
3177 x->parent->parent->color = MEM_RED;
3178 mem_rotate_right (x->parent->parent);
3179 }
3180 }
3181 else
3182 {
3183 /* This is the symmetrical case of above. */
3184 struct mem_node *y = x->parent->parent->left;
3185
3186 if (y->color == MEM_RED)
3187 {
3188 x->parent->color = MEM_BLACK;
3189 y->color = MEM_BLACK;
3190 x->parent->parent->color = MEM_RED;
3191 x = x->parent->parent;
3192 }
3193 else
3194 {
3195 if (x == x->parent->left)
3196 {
3197 x = x->parent;
3198 mem_rotate_right (x);
3199 }
3200
3201 x->parent->color = MEM_BLACK;
3202 x->parent->parent->color = MEM_RED;
3203 mem_rotate_left (x->parent->parent);
3204 }
3205 }
3206 }
3207
3208 /* The root may have been changed to red due to the algorithm. Set
3209 it to black so that property #5 is satisfied. */
3210 mem_root->color = MEM_BLACK;
3211 }
3212
3213
3214 /* (x) (y)
3215 / \ / \
3216 a (y) ===> (x) c
3217 / \ / \
3218 b c a b */
3219
3220 static void
3221 mem_rotate_left (x)
3222 struct mem_node *x;
3223 {
3224 struct mem_node *y;
3225
3226 /* Turn y's left sub-tree into x's right sub-tree. */
3227 y = x->right;
3228 x->right = y->left;
3229 if (y->left != MEM_NIL)
3230 y->left->parent = x;
3231
3232 /* Y's parent was x's parent. */
3233 if (y != MEM_NIL)
3234 y->parent = x->parent;
3235
3236 /* Get the parent to point to y instead of x. */
3237 if (x->parent)
3238 {
3239 if (x == x->parent->left)
3240 x->parent->left = y;
3241 else
3242 x->parent->right = y;
3243 }
3244 else
3245 mem_root = y;
3246
3247 /* Put x on y's left. */
3248 y->left = x;
3249 if (x != MEM_NIL)
3250 x->parent = y;
3251 }
3252
3253
3254 /* (x) (Y)
3255 / \ / \
3256 (y) c ===> a (x)
3257 / \ / \
3258 a b b c */
3259
3260 static void
3261 mem_rotate_right (x)
3262 struct mem_node *x;
3263 {
3264 struct mem_node *y = x->left;
3265
3266 x->left = y->right;
3267 if (y->right != MEM_NIL)
3268 y->right->parent = x;
3269
3270 if (y != MEM_NIL)
3271 y->parent = x->parent;
3272 if (x->parent)
3273 {
3274 if (x == x->parent->right)
3275 x->parent->right = y;
3276 else
3277 x->parent->left = y;
3278 }
3279 else
3280 mem_root = y;
3281
3282 y->right = x;
3283 if (x != MEM_NIL)
3284 x->parent = y;
3285 }
3286
3287
3288 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3289
3290 static void
3291 mem_delete (z)
3292 struct mem_node *z;
3293 {
3294 struct mem_node *x, *y;
3295
3296 if (!z || z == MEM_NIL)
3297 return;
3298
3299 if (z->left == MEM_NIL || z->right == MEM_NIL)
3300 y = z;
3301 else
3302 {
3303 y = z->right;
3304 while (y->left != MEM_NIL)
3305 y = y->left;
3306 }
3307
3308 if (y->left != MEM_NIL)
3309 x = y->left;
3310 else
3311 x = y->right;
3312
3313 x->parent = y->parent;
3314 if (y->parent)
3315 {
3316 if (y == y->parent->left)
3317 y->parent->left = x;
3318 else
3319 y->parent->right = x;
3320 }
3321 else
3322 mem_root = x;
3323
3324 if (y != z)
3325 {
3326 z->start = y->start;
3327 z->end = y->end;
3328 z->type = y->type;
3329 }
3330
3331 if (y->color == MEM_BLACK)
3332 mem_delete_fixup (x);
3333
3334 #ifdef GC_MALLOC_CHECK
3335 _free_internal (y);
3336 #else
3337 xfree (y);
3338 #endif
3339 }
3340
3341
3342 /* Re-establish the red-black properties of the tree, after a
3343 deletion. */
3344
3345 static void
3346 mem_delete_fixup (x)
3347 struct mem_node *x;
3348 {
3349 while (x != mem_root && x->color == MEM_BLACK)
3350 {
3351 if (x == x->parent->left)
3352 {
3353 struct mem_node *w = x->parent->right;
3354
3355 if (w->color == MEM_RED)
3356 {
3357 w->color = MEM_BLACK;
3358 x->parent->color = MEM_RED;
3359 mem_rotate_left (x->parent);
3360 w = x->parent->right;
3361 }
3362
3363 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3364 {
3365 w->color = MEM_RED;
3366 x = x->parent;
3367 }
3368 else
3369 {
3370 if (w->right->color == MEM_BLACK)
3371 {
3372 w->left->color = MEM_BLACK;
3373 w->color = MEM_RED;
3374 mem_rotate_right (w);
3375 w = x->parent->right;
3376 }
3377 w->color = x->parent->color;
3378 x->parent->color = MEM_BLACK;
3379 w->right->color = MEM_BLACK;
3380 mem_rotate_left (x->parent);
3381 x = mem_root;
3382 }
3383 }
3384 else
3385 {
3386 struct mem_node *w = x->parent->left;
3387
3388 if (w->color == MEM_RED)
3389 {
3390 w->color = MEM_BLACK;
3391 x->parent->color = MEM_RED;
3392 mem_rotate_right (x->parent);
3393 w = x->parent->left;
3394 }
3395
3396 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3397 {
3398 w->color = MEM_RED;
3399 x = x->parent;
3400 }
3401 else
3402 {
3403 if (w->left->color == MEM_BLACK)
3404 {
3405 w->right->color = MEM_BLACK;
3406 w->color = MEM_RED;
3407 mem_rotate_left (w);
3408 w = x->parent->left;
3409 }
3410
3411 w->color = x->parent->color;
3412 x->parent->color = MEM_BLACK;
3413 w->left->color = MEM_BLACK;
3414 mem_rotate_right (x->parent);
3415 x = mem_root;
3416 }
3417 }
3418 }
3419
3420 x->color = MEM_BLACK;
3421 }
3422
3423
3424 /* Value is non-zero if P is a pointer to a live Lisp string on
3425 the heap. M is a pointer to the mem_block for P. */
3426
3427 static INLINE int
3428 live_string_p (m, p)
3429 struct mem_node *m;
3430 void *p;
3431 {
3432 if (m->type == MEM_TYPE_STRING)
3433 {
3434 struct string_block *b = (struct string_block *) m->start;
3435 int offset = (char *) p - (char *) &b->strings[0];
3436
3437 /* P must point to the start of a Lisp_String structure, and it
3438 must not be on the free-list. */
3439 return (offset >= 0
3440 && offset % sizeof b->strings[0] == 0
3441 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3442 && ((struct Lisp_String *) p)->data != NULL);
3443 }
3444 else
3445 return 0;
3446 }
3447
3448
3449 /* Value is non-zero if P is a pointer to a live Lisp cons on
3450 the heap. M is a pointer to the mem_block for P. */
3451
3452 static INLINE int
3453 live_cons_p (m, p)
3454 struct mem_node *m;
3455 void *p;
3456 {
3457 if (m->type == MEM_TYPE_CONS)
3458 {
3459 struct cons_block *b = (struct cons_block *) m->start;
3460 int offset = (char *) p - (char *) &b->conses[0];
3461
3462 /* P must point to the start of a Lisp_Cons, not be
3463 one of the unused cells in the current cons block,
3464 and not be on the free-list. */
3465 return (offset >= 0
3466 && offset % sizeof b->conses[0] == 0
3467 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3468 && (b != cons_block
3469 || offset / sizeof b->conses[0] < cons_block_index)
3470 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3471 }
3472 else
3473 return 0;
3474 }
3475
3476
3477 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3478 the heap. M is a pointer to the mem_block for P. */
3479
3480 static INLINE int
3481 live_symbol_p (m, p)
3482 struct mem_node *m;
3483 void *p;
3484 {
3485 if (m->type == MEM_TYPE_SYMBOL)
3486 {
3487 struct symbol_block *b = (struct symbol_block *) m->start;
3488 int offset = (char *) p - (char *) &b->symbols[0];
3489
3490 /* P must point to the start of a Lisp_Symbol, not be
3491 one of the unused cells in the current symbol block,
3492 and not be on the free-list. */
3493 return (offset >= 0
3494 && offset % sizeof b->symbols[0] == 0
3495 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3496 && (b != symbol_block
3497 || offset / sizeof b->symbols[0] < symbol_block_index)
3498 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3499 }
3500 else
3501 return 0;
3502 }
3503
3504
3505 /* Value is non-zero if P is a pointer to a live Lisp float on
3506 the heap. M is a pointer to the mem_block for P. */
3507
3508 static INLINE int
3509 live_float_p (m, p)
3510 struct mem_node *m;
3511 void *p;
3512 {
3513 if (m->type == MEM_TYPE_FLOAT)
3514 {
3515 struct float_block *b = (struct float_block *) m->start;
3516 int offset = (char *) p - (char *) &b->floats[0];
3517
3518 /* P must point to the start of a Lisp_Float and not be
3519 one of the unused cells in the current float block. */
3520 return (offset >= 0
3521 && offset % sizeof b->floats[0] == 0
3522 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3523 && (b != float_block
3524 || offset / sizeof b->floats[0] < float_block_index));
3525 }
3526 else
3527 return 0;
3528 }
3529
3530
3531 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3532 the heap. M is a pointer to the mem_block for P. */
3533
3534 static INLINE int
3535 live_misc_p (m, p)
3536 struct mem_node *m;
3537 void *p;
3538 {
3539 if (m->type == MEM_TYPE_MISC)
3540 {
3541 struct marker_block *b = (struct marker_block *) m->start;
3542 int offset = (char *) p - (char *) &b->markers[0];
3543
3544 /* P must point to the start of a Lisp_Misc, not be
3545 one of the unused cells in the current misc block,
3546 and not be on the free-list. */
3547 return (offset >= 0
3548 && offset % sizeof b->markers[0] == 0
3549 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3550 && (b != marker_block
3551 || offset / sizeof b->markers[0] < marker_block_index)
3552 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3553 }
3554 else
3555 return 0;
3556 }
3557
3558
3559 /* Value is non-zero if P is a pointer to a live vector-like object.
3560 M is a pointer to the mem_block for P. */
3561
3562 static INLINE int
3563 live_vector_p (m, p)
3564 struct mem_node *m;
3565 void *p;
3566 {
3567 return (p == m->start
3568 && m->type >= MEM_TYPE_VECTOR
3569 && m->type <= MEM_TYPE_WINDOW);
3570 }
3571
3572
3573 /* Value is non-zero if P is a pointer to a live buffer. M is a
3574 pointer to the mem_block for P. */
3575
3576 static INLINE int
3577 live_buffer_p (m, p)
3578 struct mem_node *m;
3579 void *p;
3580 {
3581 /* P must point to the start of the block, and the buffer
3582 must not have been killed. */
3583 return (m->type == MEM_TYPE_BUFFER
3584 && p == m->start
3585 && !NILP (((struct buffer *) p)->name));
3586 }
3587
3588 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3589
3590 #if GC_MARK_STACK
3591
3592 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3593
3594 /* Array of objects that are kept alive because the C stack contains
3595 a pattern that looks like a reference to them . */
3596
3597 #define MAX_ZOMBIES 10
3598 static Lisp_Object zombies[MAX_ZOMBIES];
3599
3600 /* Number of zombie objects. */
3601
3602 static int nzombies;
3603
3604 /* Number of garbage collections. */
3605
3606 static int ngcs;
3607
3608 /* Average percentage of zombies per collection. */
3609
3610 static double avg_zombies;
3611
3612 /* Max. number of live and zombie objects. */
3613
3614 static int max_live, max_zombies;
3615
3616 /* Average number of live objects per GC. */
3617
3618 static double avg_live;
3619
3620 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3621 doc: /* Show information about live and zombie objects. */)
3622 ()
3623 {
3624 Lisp_Object args[8], zombie_list = Qnil;
3625 int i;
3626 for (i = 0; i < nzombies; i++)
3627 zombie_list = Fcons (zombies[i], zombie_list);
3628 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3629 args[1] = make_number (ngcs);
3630 args[2] = make_float (avg_live);
3631 args[3] = make_float (avg_zombies);
3632 args[4] = make_float (avg_zombies / avg_live / 100);
3633 args[5] = make_number (max_live);
3634 args[6] = make_number (max_zombies);
3635 args[7] = zombie_list;
3636 return Fmessage (8, args);
3637 }
3638
3639 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3640
3641
3642 /* Mark OBJ if we can prove it's a Lisp_Object. */
3643
3644 static INLINE void
3645 mark_maybe_object (obj)
3646 Lisp_Object obj;
3647 {
3648 void *po = (void *) XPNTR (obj);
3649 struct mem_node *m = mem_find (po);
3650
3651 if (m != MEM_NIL)
3652 {
3653 int mark_p = 0;
3654
3655 switch (XGCTYPE (obj))
3656 {
3657 case Lisp_String:
3658 mark_p = (live_string_p (m, po)
3659 && !STRING_MARKED_P ((struct Lisp_String *) po));
3660 break;
3661
3662 case Lisp_Cons:
3663 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3664 break;
3665
3666 case Lisp_Symbol:
3667 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3668 break;
3669
3670 case Lisp_Float:
3671 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3672 break;
3673
3674 case Lisp_Vectorlike:
3675 /* Note: can't check GC_BUFFERP before we know it's a
3676 buffer because checking that dereferences the pointer
3677 PO which might point anywhere. */
3678 if (live_vector_p (m, po))
3679 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3680 else if (live_buffer_p (m, po))
3681 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3682 break;
3683
3684 case Lisp_Misc:
3685 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
3686 break;
3687
3688 case Lisp_Int:
3689 case Lisp_Type_Limit:
3690 break;
3691 }
3692
3693 if (mark_p)
3694 {
3695 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3696 if (nzombies < MAX_ZOMBIES)
3697 zombies[nzombies] = obj;
3698 ++nzombies;
3699 #endif
3700 mark_object (obj);
3701 }
3702 }
3703 }
3704
3705
3706 /* If P points to Lisp data, mark that as live if it isn't already
3707 marked. */
3708
3709 static INLINE void
3710 mark_maybe_pointer (p)
3711 void *p;
3712 {
3713 struct mem_node *m;
3714
3715 /* Quickly rule out some values which can't point to Lisp data. We
3716 assume that Lisp data is aligned on even addresses. */
3717 if ((EMACS_INT) p & 1)
3718 return;
3719
3720 m = mem_find (p);
3721 if (m != MEM_NIL)
3722 {
3723 Lisp_Object obj = Qnil;
3724
3725 switch (m->type)
3726 {
3727 case MEM_TYPE_NON_LISP:
3728 /* Nothing to do; not a pointer to Lisp memory. */
3729 break;
3730
3731 case MEM_TYPE_BUFFER:
3732 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
3733 XSETVECTOR (obj, p);
3734 break;
3735
3736 case MEM_TYPE_CONS:
3737 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
3738 XSETCONS (obj, p);
3739 break;
3740
3741 case MEM_TYPE_STRING:
3742 if (live_string_p (m, p)
3743 && !STRING_MARKED_P ((struct Lisp_String *) p))
3744 XSETSTRING (obj, p);
3745 break;
3746
3747 case MEM_TYPE_MISC:
3748 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
3749 XSETMISC (obj, p);
3750 break;
3751
3752 case MEM_TYPE_SYMBOL:
3753 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
3754 XSETSYMBOL (obj, p);
3755 break;
3756
3757 case MEM_TYPE_FLOAT:
3758 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
3759 XSETFLOAT (obj, p);
3760 break;
3761
3762 case MEM_TYPE_VECTOR:
3763 case MEM_TYPE_PROCESS:
3764 case MEM_TYPE_HASH_TABLE:
3765 case MEM_TYPE_FRAME:
3766 case MEM_TYPE_WINDOW:
3767 if (live_vector_p (m, p))
3768 {
3769 Lisp_Object tem;
3770 XSETVECTOR (tem, p);
3771 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
3772 obj = tem;
3773 }
3774 break;
3775
3776 default:
3777 abort ();
3778 }
3779
3780 if (!GC_NILP (obj))
3781 mark_object (obj);
3782 }
3783 }
3784
3785
3786 /* Mark Lisp objects referenced from the address range START..END. */
3787
3788 static void
3789 mark_memory (start, end)
3790 void *start, *end;
3791 {
3792 Lisp_Object *p;
3793 void **pp;
3794
3795 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3796 nzombies = 0;
3797 #endif
3798
3799 /* Make START the pointer to the start of the memory region,
3800 if it isn't already. */
3801 if (end < start)
3802 {
3803 void *tem = start;
3804 start = end;
3805 end = tem;
3806 }
3807
3808 /* Mark Lisp_Objects. */
3809 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
3810 mark_maybe_object (*p);
3811
3812 /* Mark Lisp data pointed to. This is necessary because, in some
3813 situations, the C compiler optimizes Lisp objects away, so that
3814 only a pointer to them remains. Example:
3815
3816 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
3817 ()
3818 {
3819 Lisp_Object obj = build_string ("test");
3820 struct Lisp_String *s = XSTRING (obj);
3821 Fgarbage_collect ();
3822 fprintf (stderr, "test `%s'\n", s->data);
3823 return Qnil;
3824 }
3825
3826 Here, `obj' isn't really used, and the compiler optimizes it
3827 away. The only reference to the life string is through the
3828 pointer `s'. */
3829
3830 for (pp = (void **) start; (void *) pp < end; ++pp)
3831 mark_maybe_pointer (*pp);
3832 }
3833
3834 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
3835 the GCC system configuration. In gcc 3.2, the only systems for
3836 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
3837 by others?) and ns32k-pc532-min. */
3838
3839 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3840
3841 static int setjmp_tested_p, longjmps_done;
3842
3843 #define SETJMP_WILL_LIKELY_WORK "\
3844 \n\
3845 Emacs garbage collector has been changed to use conservative stack\n\
3846 marking. Emacs has determined that the method it uses to do the\n\
3847 marking will likely work on your system, but this isn't sure.\n\
3848 \n\
3849 If you are a system-programmer, or can get the help of a local wizard\n\
3850 who is, please take a look at the function mark_stack in alloc.c, and\n\
3851 verify that the methods used are appropriate for your system.\n\
3852 \n\
3853 Please mail the result to <emacs-devel@gnu.org>.\n\
3854 "
3855
3856 #define SETJMP_WILL_NOT_WORK "\
3857 \n\
3858 Emacs garbage collector has been changed to use conservative stack\n\
3859 marking. Emacs has determined that the default method it uses to do the\n\
3860 marking will not work on your system. We will need a system-dependent\n\
3861 solution for your system.\n\
3862 \n\
3863 Please take a look at the function mark_stack in alloc.c, and\n\
3864 try to find a way to make it work on your system.\n\
3865 \n\
3866 Note that you may get false negatives, depending on the compiler.\n\
3867 In particular, you need to use -O with GCC for this test.\n\
3868 \n\
3869 Please mail the result to <emacs-devel@gnu.org>.\n\
3870 "
3871
3872
3873 /* Perform a quick check if it looks like setjmp saves registers in a
3874 jmp_buf. Print a message to stderr saying so. When this test
3875 succeeds, this is _not_ a proof that setjmp is sufficient for
3876 conservative stack marking. Only the sources or a disassembly
3877 can prove that. */
3878
3879 static void
3880 test_setjmp ()
3881 {
3882 char buf[10];
3883 register int x;
3884 jmp_buf jbuf;
3885 int result = 0;
3886
3887 /* Arrange for X to be put in a register. */
3888 sprintf (buf, "1");
3889 x = strlen (buf);
3890 x = 2 * x - 1;
3891
3892 setjmp (jbuf);
3893 if (longjmps_done == 1)
3894 {
3895 /* Came here after the longjmp at the end of the function.
3896
3897 If x == 1, the longjmp has restored the register to its
3898 value before the setjmp, and we can hope that setjmp
3899 saves all such registers in the jmp_buf, although that
3900 isn't sure.
3901
3902 For other values of X, either something really strange is
3903 taking place, or the setjmp just didn't save the register. */
3904
3905 if (x == 1)
3906 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
3907 else
3908 {
3909 fprintf (stderr, SETJMP_WILL_NOT_WORK);
3910 exit (1);
3911 }
3912 }
3913
3914 ++longjmps_done;
3915 x = 2;
3916 if (longjmps_done == 1)
3917 longjmp (jbuf, 1);
3918 }
3919
3920 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3921
3922
3923 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3924
3925 /* Abort if anything GCPRO'd doesn't survive the GC. */
3926
3927 static void
3928 check_gcpros ()
3929 {
3930 struct gcpro *p;
3931 int i;
3932
3933 for (p = gcprolist; p; p = p->next)
3934 for (i = 0; i < p->nvars; ++i)
3935 if (!survives_gc_p (p->var[i]))
3936 /* FIXME: It's not necessarily a bug. It might just be that the
3937 GCPRO is unnecessary or should release the object sooner. */
3938 abort ();
3939 }
3940
3941 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3942
3943 static void
3944 dump_zombies ()
3945 {
3946 int i;
3947
3948 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
3949 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
3950 {
3951 fprintf (stderr, " %d = ", i);
3952 debug_print (zombies[i]);
3953 }
3954 }
3955
3956 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3957
3958
3959 /* Mark live Lisp objects on the C stack.
3960
3961 There are several system-dependent problems to consider when
3962 porting this to new architectures:
3963
3964 Processor Registers
3965
3966 We have to mark Lisp objects in CPU registers that can hold local
3967 variables or are used to pass parameters.
3968
3969 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
3970 something that either saves relevant registers on the stack, or
3971 calls mark_maybe_object passing it each register's contents.
3972
3973 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
3974 implementation assumes that calling setjmp saves registers we need
3975 to see in a jmp_buf which itself lies on the stack. This doesn't
3976 have to be true! It must be verified for each system, possibly
3977 by taking a look at the source code of setjmp.
3978
3979 Stack Layout
3980
3981 Architectures differ in the way their processor stack is organized.
3982 For example, the stack might look like this
3983
3984 +----------------+
3985 | Lisp_Object | size = 4
3986 +----------------+
3987 | something else | size = 2
3988 +----------------+
3989 | Lisp_Object | size = 4
3990 +----------------+
3991 | ... |
3992
3993 In such a case, not every Lisp_Object will be aligned equally. To
3994 find all Lisp_Object on the stack it won't be sufficient to walk
3995 the stack in steps of 4 bytes. Instead, two passes will be
3996 necessary, one starting at the start of the stack, and a second
3997 pass starting at the start of the stack + 2. Likewise, if the
3998 minimal alignment of Lisp_Objects on the stack is 1, four passes
3999 would be necessary, each one starting with one byte more offset
4000 from the stack start.
4001
4002 The current code assumes by default that Lisp_Objects are aligned
4003 equally on the stack. */
4004
4005 static void
4006 mark_stack ()
4007 {
4008 int i;
4009 jmp_buf j;
4010 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4011 void *end;
4012
4013 /* This trick flushes the register windows so that all the state of
4014 the process is contained in the stack. */
4015 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4016 needed on ia64 too. See mach_dep.c, where it also says inline
4017 assembler doesn't work with relevant proprietary compilers. */
4018 #ifdef sparc
4019 asm ("ta 3");
4020 #endif
4021
4022 /* Save registers that we need to see on the stack. We need to see
4023 registers used to hold register variables and registers used to
4024 pass parameters. */
4025 #ifdef GC_SAVE_REGISTERS_ON_STACK
4026 GC_SAVE_REGISTERS_ON_STACK (end);
4027 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4028
4029 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4030 setjmp will definitely work, test it
4031 and print a message with the result
4032 of the test. */
4033 if (!setjmp_tested_p)
4034 {
4035 setjmp_tested_p = 1;
4036 test_setjmp ();
4037 }
4038 #endif /* GC_SETJMP_WORKS */
4039
4040 setjmp (j);
4041 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4042 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4043
4044 /* This assumes that the stack is a contiguous region in memory. If
4045 that's not the case, something has to be done here to iterate
4046 over the stack segments. */
4047 #ifndef GC_LISP_OBJECT_ALIGNMENT
4048 #ifdef __GNUC__
4049 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4050 #else
4051 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4052 #endif
4053 #endif
4054 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4055 mark_memory ((char *) stack_base + i, end);
4056
4057 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4058 check_gcpros ();
4059 #endif
4060 }
4061
4062
4063 #endif /* GC_MARK_STACK != 0 */
4064
4065
4066 \f
4067 /***********************************************************************
4068 Pure Storage Management
4069 ***********************************************************************/
4070
4071 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4072 pointer to it. TYPE is the Lisp type for which the memory is
4073 allocated. TYPE < 0 means it's not used for a Lisp object.
4074
4075 If store_pure_type_info is set and TYPE is >= 0, the type of
4076 the allocated object is recorded in pure_types. */
4077
4078 static POINTER_TYPE *
4079 pure_alloc (size, type)
4080 size_t size;
4081 int type;
4082 {
4083 POINTER_TYPE *result;
4084 #ifdef USE_LSB_TAG
4085 size_t alignment = (1 << GCTYPEBITS);
4086 #else
4087 size_t alignment = sizeof (EMACS_INT);
4088
4089 /* Give Lisp_Floats an extra alignment. */
4090 if (type == Lisp_Float)
4091 {
4092 #if defined __GNUC__ && __GNUC__ >= 2
4093 alignment = __alignof (struct Lisp_Float);
4094 #else
4095 alignment = sizeof (struct Lisp_Float);
4096 #endif
4097 }
4098 #endif
4099
4100 again:
4101 result = ALIGN (purebeg + pure_bytes_used, alignment);
4102 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4103
4104 if (pure_bytes_used <= pure_size)
4105 return result;
4106
4107 /* Don't allocate a large amount here,
4108 because it might get mmap'd and then its address
4109 might not be usable. */
4110 purebeg = (char *) xmalloc (10000);
4111 pure_size = 10000;
4112 pure_bytes_used_before_overflow += pure_bytes_used - size;
4113 pure_bytes_used = 0;
4114 goto again;
4115 }
4116
4117
4118 /* Print a warning if PURESIZE is too small. */
4119
4120 void
4121 check_pure_size ()
4122 {
4123 if (pure_bytes_used_before_overflow)
4124 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4125 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4126 }
4127
4128
4129 /* Return a string allocated in pure space. DATA is a buffer holding
4130 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4131 non-zero means make the result string multibyte.
4132
4133 Must get an error if pure storage is full, since if it cannot hold
4134 a large string it may be able to hold conses that point to that
4135 string; then the string is not protected from gc. */
4136
4137 Lisp_Object
4138 make_pure_string (data, nchars, nbytes, multibyte)
4139 char *data;
4140 int nchars, nbytes;
4141 int multibyte;
4142 {
4143 Lisp_Object string;
4144 struct Lisp_String *s;
4145
4146 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4147 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4148 s->size = nchars;
4149 s->size_byte = multibyte ? nbytes : -1;
4150 bcopy (data, s->data, nbytes);
4151 s->data[nbytes] = '\0';
4152 s->intervals = NULL_INTERVAL;
4153 XSETSTRING (string, s);
4154 return string;
4155 }
4156
4157
4158 /* Return a cons allocated from pure space. Give it pure copies
4159 of CAR as car and CDR as cdr. */
4160
4161 Lisp_Object
4162 pure_cons (car, cdr)
4163 Lisp_Object car, cdr;
4164 {
4165 register Lisp_Object new;
4166 struct Lisp_Cons *p;
4167
4168 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4169 XSETCONS (new, p);
4170 XSETCAR (new, Fpurecopy (car));
4171 XSETCDR (new, Fpurecopy (cdr));
4172 return new;
4173 }
4174
4175
4176 /* Value is a float object with value NUM allocated from pure space. */
4177
4178 Lisp_Object
4179 make_pure_float (num)
4180 double num;
4181 {
4182 register Lisp_Object new;
4183 struct Lisp_Float *p;
4184
4185 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4186 XSETFLOAT (new, p);
4187 XFLOAT_DATA (new) = num;
4188 return new;
4189 }
4190
4191
4192 /* Return a vector with room for LEN Lisp_Objects allocated from
4193 pure space. */
4194
4195 Lisp_Object
4196 make_pure_vector (len)
4197 EMACS_INT len;
4198 {
4199 Lisp_Object new;
4200 struct Lisp_Vector *p;
4201 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4202
4203 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4204 XSETVECTOR (new, p);
4205 XVECTOR (new)->size = len;
4206 return new;
4207 }
4208
4209
4210 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4211 doc: /* Make a copy of OBJECT in pure storage.
4212 Recursively copies contents of vectors and cons cells.
4213 Does not copy symbols. Copies strings without text properties. */)
4214 (obj)
4215 register Lisp_Object obj;
4216 {
4217 if (NILP (Vpurify_flag))
4218 return obj;
4219
4220 if (PURE_POINTER_P (XPNTR (obj)))
4221 return obj;
4222
4223 if (CONSP (obj))
4224 return pure_cons (XCAR (obj), XCDR (obj));
4225 else if (FLOATP (obj))
4226 return make_pure_float (XFLOAT_DATA (obj));
4227 else if (STRINGP (obj))
4228 return make_pure_string (SDATA (obj), SCHARS (obj),
4229 SBYTES (obj),
4230 STRING_MULTIBYTE (obj));
4231 else if (COMPILEDP (obj) || VECTORP (obj))
4232 {
4233 register struct Lisp_Vector *vec;
4234 register int i;
4235 EMACS_INT size;
4236
4237 size = XVECTOR (obj)->size;
4238 if (size & PSEUDOVECTOR_FLAG)
4239 size &= PSEUDOVECTOR_SIZE_MASK;
4240 vec = XVECTOR (make_pure_vector (size));
4241 for (i = 0; i < size; i++)
4242 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4243 if (COMPILEDP (obj))
4244 XSETCOMPILED (obj, vec);
4245 else
4246 XSETVECTOR (obj, vec);
4247 return obj;
4248 }
4249 else if (MARKERP (obj))
4250 error ("Attempt to copy a marker to pure storage");
4251
4252 return obj;
4253 }
4254
4255
4256 \f
4257 /***********************************************************************
4258 Protection from GC
4259 ***********************************************************************/
4260
4261 /* Put an entry in staticvec, pointing at the variable with address
4262 VARADDRESS. */
4263
4264 void
4265 staticpro (varaddress)
4266 Lisp_Object *varaddress;
4267 {
4268 staticvec[staticidx++] = varaddress;
4269 if (staticidx >= NSTATICS)
4270 abort ();
4271 }
4272
4273 struct catchtag
4274 {
4275 Lisp_Object tag;
4276 Lisp_Object val;
4277 struct catchtag *next;
4278 };
4279
4280 \f
4281 /***********************************************************************
4282 Protection from GC
4283 ***********************************************************************/
4284
4285 /* Temporarily prevent garbage collection. */
4286
4287 int
4288 inhibit_garbage_collection ()
4289 {
4290 int count = SPECPDL_INDEX ();
4291 int nbits = min (VALBITS, BITS_PER_INT);
4292
4293 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4294 return count;
4295 }
4296
4297
4298 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4299 doc: /* Reclaim storage for Lisp objects no longer needed.
4300 Garbage collection happens automatically if you cons more than
4301 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4302 `garbage-collect' normally returns a list with info on amount of space in use:
4303 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4304 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4305 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4306 (USED-STRINGS . FREE-STRINGS))
4307 However, if there was overflow in pure space, `garbage-collect'
4308 returns nil, because real GC can't be done. */)
4309 ()
4310 {
4311 register struct specbinding *bind;
4312 struct catchtag *catch;
4313 struct handler *handler;
4314 char stack_top_variable;
4315 register int i;
4316 int message_p;
4317 Lisp_Object total[8];
4318 int count = SPECPDL_INDEX ();
4319 EMACS_TIME t1, t2, t3;
4320
4321 if (abort_on_gc)
4322 abort ();
4323
4324 EMACS_GET_TIME (t1);
4325
4326 /* Can't GC if pure storage overflowed because we can't determine
4327 if something is a pure object or not. */
4328 if (pure_bytes_used_before_overflow)
4329 return Qnil;
4330
4331 /* In case user calls debug_print during GC,
4332 don't let that cause a recursive GC. */
4333 consing_since_gc = 0;
4334
4335 /* Save what's currently displayed in the echo area. */
4336 message_p = push_message ();
4337 record_unwind_protect (pop_message_unwind, Qnil);
4338
4339 /* Save a copy of the contents of the stack, for debugging. */
4340 #if MAX_SAVE_STACK > 0
4341 if (NILP (Vpurify_flag))
4342 {
4343 i = &stack_top_variable - stack_bottom;
4344 if (i < 0) i = -i;
4345 if (i < MAX_SAVE_STACK)
4346 {
4347 if (stack_copy == 0)
4348 stack_copy = (char *) xmalloc (stack_copy_size = i);
4349 else if (stack_copy_size < i)
4350 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4351 if (stack_copy)
4352 {
4353 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4354 bcopy (stack_bottom, stack_copy, i);
4355 else
4356 bcopy (&stack_top_variable, stack_copy, i);
4357 }
4358 }
4359 }
4360 #endif /* MAX_SAVE_STACK > 0 */
4361
4362 if (garbage_collection_messages)
4363 message1_nolog ("Garbage collecting...");
4364
4365 BLOCK_INPUT;
4366
4367 shrink_regexp_cache ();
4368
4369 /* Don't keep undo information around forever. */
4370 {
4371 register struct buffer *nextb = all_buffers;
4372
4373 while (nextb)
4374 {
4375 /* If a buffer's undo list is Qt, that means that undo is
4376 turned off in that buffer. Calling truncate_undo_list on
4377 Qt tends to return NULL, which effectively turns undo back on.
4378 So don't call truncate_undo_list if undo_list is Qt. */
4379 if (! EQ (nextb->undo_list, Qt))
4380 nextb->undo_list
4381 = truncate_undo_list (nextb->undo_list, undo_limit,
4382 undo_strong_limit, undo_outer_limit);
4383
4384 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4385 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4386 {
4387 /* If a buffer's gap size is more than 10% of the buffer
4388 size, or larger than 2000 bytes, then shrink it
4389 accordingly. Keep a minimum size of 20 bytes. */
4390 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4391
4392 if (nextb->text->gap_size > size)
4393 {
4394 struct buffer *save_current = current_buffer;
4395 current_buffer = nextb;
4396 make_gap (-(nextb->text->gap_size - size));
4397 current_buffer = save_current;
4398 }
4399 }
4400
4401 nextb = nextb->next;
4402 }
4403 }
4404
4405 gc_in_progress = 1;
4406
4407 /* clear_marks (); */
4408
4409 /* Mark all the special slots that serve as the roots of accessibility. */
4410
4411 for (i = 0; i < staticidx; i++)
4412 mark_object (*staticvec[i]);
4413
4414 for (bind = specpdl; bind != specpdl_ptr; bind++)
4415 {
4416 mark_object (bind->symbol);
4417 mark_object (bind->old_value);
4418 }
4419 mark_kboards ();
4420
4421 #ifdef USE_GTK
4422 {
4423 extern void xg_mark_data ();
4424 xg_mark_data ();
4425 }
4426 #endif
4427
4428 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4429 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4430 mark_stack ();
4431 #else
4432 {
4433 register struct gcpro *tail;
4434 for (tail = gcprolist; tail; tail = tail->next)
4435 for (i = 0; i < tail->nvars; i++)
4436 mark_object (tail->var[i]);
4437 }
4438 #endif
4439
4440 mark_byte_stack ();
4441 for (catch = catchlist; catch; catch = catch->next)
4442 {
4443 mark_object (catch->tag);
4444 mark_object (catch->val);
4445 }
4446 for (handler = handlerlist; handler; handler = handler->next)
4447 {
4448 mark_object (handler->handler);
4449 mark_object (handler->var);
4450 }
4451 mark_backtrace ();
4452
4453 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4454 mark_stack ();
4455 #endif
4456
4457 /* Everything is now marked, except for the things that require special
4458 finalization, i.e. the undo_list.
4459 Look thru every buffer's undo list
4460 for elements that update markers that were not marked,
4461 and delete them. */
4462 {
4463 register struct buffer *nextb = all_buffers;
4464
4465 while (nextb)
4466 {
4467 /* If a buffer's undo list is Qt, that means that undo is
4468 turned off in that buffer. Calling truncate_undo_list on
4469 Qt tends to return NULL, which effectively turns undo back on.
4470 So don't call truncate_undo_list if undo_list is Qt. */
4471 if (! EQ (nextb->undo_list, Qt))
4472 {
4473 Lisp_Object tail, prev;
4474 tail = nextb->undo_list;
4475 prev = Qnil;
4476 while (CONSP (tail))
4477 {
4478 if (GC_CONSP (XCAR (tail))
4479 && GC_MARKERP (XCAR (XCAR (tail)))
4480 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4481 {
4482 if (NILP (prev))
4483 nextb->undo_list = tail = XCDR (tail);
4484 else
4485 {
4486 tail = XCDR (tail);
4487 XSETCDR (prev, tail);
4488 }
4489 }
4490 else
4491 {
4492 prev = tail;
4493 tail = XCDR (tail);
4494 }
4495 }
4496 }
4497 /* Now that we have stripped the elements that need not be in the
4498 undo_list any more, we can finally mark the list. */
4499 mark_object (nextb->undo_list);
4500
4501 nextb = nextb->next;
4502 }
4503 }
4504
4505 gc_sweep ();
4506
4507 /* Clear the mark bits that we set in certain root slots. */
4508
4509 unmark_byte_stack ();
4510 VECTOR_UNMARK (&buffer_defaults);
4511 VECTOR_UNMARK (&buffer_local_symbols);
4512
4513 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4514 dump_zombies ();
4515 #endif
4516
4517 UNBLOCK_INPUT;
4518
4519 /* clear_marks (); */
4520 gc_in_progress = 0;
4521
4522 consing_since_gc = 0;
4523 if (gc_cons_threshold < 10000)
4524 gc_cons_threshold = 10000;
4525
4526 if (garbage_collection_messages)
4527 {
4528 if (message_p || minibuf_level > 0)
4529 restore_message ();
4530 else
4531 message1_nolog ("Garbage collecting...done");
4532 }
4533
4534 unbind_to (count, Qnil);
4535
4536 total[0] = Fcons (make_number (total_conses),
4537 make_number (total_free_conses));
4538 total[1] = Fcons (make_number (total_symbols),
4539 make_number (total_free_symbols));
4540 total[2] = Fcons (make_number (total_markers),
4541 make_number (total_free_markers));
4542 total[3] = make_number (total_string_size);
4543 total[4] = make_number (total_vector_size);
4544 total[5] = Fcons (make_number (total_floats),
4545 make_number (total_free_floats));
4546 total[6] = Fcons (make_number (total_intervals),
4547 make_number (total_free_intervals));
4548 total[7] = Fcons (make_number (total_strings),
4549 make_number (total_free_strings));
4550
4551 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4552 {
4553 /* Compute average percentage of zombies. */
4554 double nlive = 0;
4555
4556 for (i = 0; i < 7; ++i)
4557 if (CONSP (total[i]))
4558 nlive += XFASTINT (XCAR (total[i]));
4559
4560 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4561 max_live = max (nlive, max_live);
4562 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4563 max_zombies = max (nzombies, max_zombies);
4564 ++ngcs;
4565 }
4566 #endif
4567
4568 if (!NILP (Vpost_gc_hook))
4569 {
4570 int count = inhibit_garbage_collection ();
4571 safe_run_hooks (Qpost_gc_hook);
4572 unbind_to (count, Qnil);
4573 }
4574
4575 /* Accumulate statistics. */
4576 EMACS_GET_TIME (t2);
4577 EMACS_SUB_TIME (t3, t2, t1);
4578 if (FLOATP (Vgc_elapsed))
4579 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4580 EMACS_SECS (t3) +
4581 EMACS_USECS (t3) * 1.0e-6);
4582 gcs_done++;
4583
4584 return Flist (sizeof total / sizeof *total, total);
4585 }
4586
4587
4588 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4589 only interesting objects referenced from glyphs are strings. */
4590
4591 static void
4592 mark_glyph_matrix (matrix)
4593 struct glyph_matrix *matrix;
4594 {
4595 struct glyph_row *row = matrix->rows;
4596 struct glyph_row *end = row + matrix->nrows;
4597
4598 for (; row < end; ++row)
4599 if (row->enabled_p)
4600 {
4601 int area;
4602 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4603 {
4604 struct glyph *glyph = row->glyphs[area];
4605 struct glyph *end_glyph = glyph + row->used[area];
4606
4607 for (; glyph < end_glyph; ++glyph)
4608 if (GC_STRINGP (glyph->object)
4609 && !STRING_MARKED_P (XSTRING (glyph->object)))
4610 mark_object (glyph->object);
4611 }
4612 }
4613 }
4614
4615
4616 /* Mark Lisp faces in the face cache C. */
4617
4618 static void
4619 mark_face_cache (c)
4620 struct face_cache *c;
4621 {
4622 if (c)
4623 {
4624 int i, j;
4625 for (i = 0; i < c->used; ++i)
4626 {
4627 struct face *face = FACE_FROM_ID (c->f, i);
4628
4629 if (face)
4630 {
4631 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
4632 mark_object (face->lface[j]);
4633 }
4634 }
4635 }
4636 }
4637
4638
4639 #ifdef HAVE_WINDOW_SYSTEM
4640
4641 /* Mark Lisp objects in image IMG. */
4642
4643 static void
4644 mark_image (img)
4645 struct image *img;
4646 {
4647 mark_object (img->spec);
4648
4649 if (!NILP (img->data.lisp_val))
4650 mark_object (img->data.lisp_val);
4651 }
4652
4653
4654 /* Mark Lisp objects in image cache of frame F. It's done this way so
4655 that we don't have to include xterm.h here. */
4656
4657 static void
4658 mark_image_cache (f)
4659 struct frame *f;
4660 {
4661 forall_images_in_image_cache (f, mark_image);
4662 }
4663
4664 #endif /* HAVE_X_WINDOWS */
4665
4666
4667 \f
4668 /* Mark reference to a Lisp_Object.
4669 If the object referred to has not been seen yet, recursively mark
4670 all the references contained in it. */
4671
4672 #define LAST_MARKED_SIZE 500
4673 Lisp_Object last_marked[LAST_MARKED_SIZE];
4674 int last_marked_index;
4675
4676 /* For debugging--call abort when we cdr down this many
4677 links of a list, in mark_object. In debugging,
4678 the call to abort will hit a breakpoint.
4679 Normally this is zero and the check never goes off. */
4680 int mark_object_loop_halt;
4681
4682 void
4683 mark_object (arg)
4684 Lisp_Object arg;
4685 {
4686 register Lisp_Object obj = arg;
4687 #ifdef GC_CHECK_MARKED_OBJECTS
4688 void *po;
4689 struct mem_node *m;
4690 #endif
4691 int cdr_count = 0;
4692
4693 loop:
4694
4695 if (PURE_POINTER_P (XPNTR (obj)))
4696 return;
4697
4698 last_marked[last_marked_index++] = obj;
4699 if (last_marked_index == LAST_MARKED_SIZE)
4700 last_marked_index = 0;
4701
4702 /* Perform some sanity checks on the objects marked here. Abort if
4703 we encounter an object we know is bogus. This increases GC time
4704 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4705 #ifdef GC_CHECK_MARKED_OBJECTS
4706
4707 po = (void *) XPNTR (obj);
4708
4709 /* Check that the object pointed to by PO is known to be a Lisp
4710 structure allocated from the heap. */
4711 #define CHECK_ALLOCATED() \
4712 do { \
4713 m = mem_find (po); \
4714 if (m == MEM_NIL) \
4715 abort (); \
4716 } while (0)
4717
4718 /* Check that the object pointed to by PO is live, using predicate
4719 function LIVEP. */
4720 #define CHECK_LIVE(LIVEP) \
4721 do { \
4722 if (!LIVEP (m, po)) \
4723 abort (); \
4724 } while (0)
4725
4726 /* Check both of the above conditions. */
4727 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4728 do { \
4729 CHECK_ALLOCATED (); \
4730 CHECK_LIVE (LIVEP); \
4731 } while (0) \
4732
4733 #else /* not GC_CHECK_MARKED_OBJECTS */
4734
4735 #define CHECK_ALLOCATED() (void) 0
4736 #define CHECK_LIVE(LIVEP) (void) 0
4737 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
4738
4739 #endif /* not GC_CHECK_MARKED_OBJECTS */
4740
4741 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
4742 {
4743 case Lisp_String:
4744 {
4745 register struct Lisp_String *ptr = XSTRING (obj);
4746 CHECK_ALLOCATED_AND_LIVE (live_string_p);
4747 MARK_INTERVAL_TREE (ptr->intervals);
4748 MARK_STRING (ptr);
4749 #ifdef GC_CHECK_STRING_BYTES
4750 /* Check that the string size recorded in the string is the
4751 same as the one recorded in the sdata structure. */
4752 CHECK_STRING_BYTES (ptr);
4753 #endif /* GC_CHECK_STRING_BYTES */
4754 }
4755 break;
4756
4757 case Lisp_Vectorlike:
4758 #ifdef GC_CHECK_MARKED_OBJECTS
4759 m = mem_find (po);
4760 if (m == MEM_NIL && !GC_SUBRP (obj)
4761 && po != &buffer_defaults
4762 && po != &buffer_local_symbols)
4763 abort ();
4764 #endif /* GC_CHECK_MARKED_OBJECTS */
4765
4766 if (GC_BUFFERP (obj))
4767 {
4768 if (!VECTOR_MARKED_P (XBUFFER (obj)))
4769 {
4770 #ifdef GC_CHECK_MARKED_OBJECTS
4771 if (po != &buffer_defaults && po != &buffer_local_symbols)
4772 {
4773 struct buffer *b;
4774 for (b = all_buffers; b && b != po; b = b->next)
4775 ;
4776 if (b == NULL)
4777 abort ();
4778 }
4779 #endif /* GC_CHECK_MARKED_OBJECTS */
4780 mark_buffer (obj);
4781 }
4782 }
4783 else if (GC_SUBRP (obj))
4784 break;
4785 else if (GC_COMPILEDP (obj))
4786 /* We could treat this just like a vector, but it is better to
4787 save the COMPILED_CONSTANTS element for last and avoid
4788 recursion there. */
4789 {
4790 register struct Lisp_Vector *ptr = XVECTOR (obj);
4791 register EMACS_INT size = ptr->size;
4792 register int i;
4793
4794 if (VECTOR_MARKED_P (ptr))
4795 break; /* Already marked */
4796
4797 CHECK_LIVE (live_vector_p);
4798 VECTOR_MARK (ptr); /* Else mark it */
4799 size &= PSEUDOVECTOR_SIZE_MASK;
4800 for (i = 0; i < size; i++) /* and then mark its elements */
4801 {
4802 if (i != COMPILED_CONSTANTS)
4803 mark_object (ptr->contents[i]);
4804 }
4805 obj = ptr->contents[COMPILED_CONSTANTS];
4806 goto loop;
4807 }
4808 else if (GC_FRAMEP (obj))
4809 {
4810 register struct frame *ptr = XFRAME (obj);
4811
4812 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4813 VECTOR_MARK (ptr); /* Else mark it */
4814
4815 CHECK_LIVE (live_vector_p);
4816 mark_object (ptr->name);
4817 mark_object (ptr->icon_name);
4818 mark_object (ptr->title);
4819 mark_object (ptr->focus_frame);
4820 mark_object (ptr->selected_window);
4821 mark_object (ptr->minibuffer_window);
4822 mark_object (ptr->param_alist);
4823 mark_object (ptr->scroll_bars);
4824 mark_object (ptr->condemned_scroll_bars);
4825 mark_object (ptr->menu_bar_items);
4826 mark_object (ptr->face_alist);
4827 mark_object (ptr->menu_bar_vector);
4828 mark_object (ptr->buffer_predicate);
4829 mark_object (ptr->buffer_list);
4830 mark_object (ptr->menu_bar_window);
4831 mark_object (ptr->tool_bar_window);
4832 mark_face_cache (ptr->face_cache);
4833 #ifdef HAVE_WINDOW_SYSTEM
4834 mark_image_cache (ptr);
4835 mark_object (ptr->tool_bar_items);
4836 mark_object (ptr->desired_tool_bar_string);
4837 mark_object (ptr->current_tool_bar_string);
4838 #endif /* HAVE_WINDOW_SYSTEM */
4839 }
4840 else if (GC_BOOL_VECTOR_P (obj))
4841 {
4842 register struct Lisp_Vector *ptr = XVECTOR (obj);
4843
4844 if (VECTOR_MARKED_P (ptr))
4845 break; /* Already marked */
4846 CHECK_LIVE (live_vector_p);
4847 VECTOR_MARK (ptr); /* Else mark it */
4848 }
4849 else if (GC_WINDOWP (obj))
4850 {
4851 register struct Lisp_Vector *ptr = XVECTOR (obj);
4852 struct window *w = XWINDOW (obj);
4853 register int i;
4854
4855 /* Stop if already marked. */
4856 if (VECTOR_MARKED_P (ptr))
4857 break;
4858
4859 /* Mark it. */
4860 CHECK_LIVE (live_vector_p);
4861 VECTOR_MARK (ptr);
4862
4863 /* There is no Lisp data above The member CURRENT_MATRIX in
4864 struct WINDOW. Stop marking when that slot is reached. */
4865 for (i = 0;
4866 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
4867 i++)
4868 mark_object (ptr->contents[i]);
4869
4870 /* Mark glyphs for leaf windows. Marking window matrices is
4871 sufficient because frame matrices use the same glyph
4872 memory. */
4873 if (NILP (w->hchild)
4874 && NILP (w->vchild)
4875 && w->current_matrix)
4876 {
4877 mark_glyph_matrix (w->current_matrix);
4878 mark_glyph_matrix (w->desired_matrix);
4879 }
4880 }
4881 else if (GC_HASH_TABLE_P (obj))
4882 {
4883 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
4884
4885 /* Stop if already marked. */
4886 if (VECTOR_MARKED_P (h))
4887 break;
4888
4889 /* Mark it. */
4890 CHECK_LIVE (live_vector_p);
4891 VECTOR_MARK (h);
4892
4893 /* Mark contents. */
4894 /* Do not mark next_free or next_weak.
4895 Being in the next_weak chain
4896 should not keep the hash table alive.
4897 No need to mark `count' since it is an integer. */
4898 mark_object (h->test);
4899 mark_object (h->weak);
4900 mark_object (h->rehash_size);
4901 mark_object (h->rehash_threshold);
4902 mark_object (h->hash);
4903 mark_object (h->next);
4904 mark_object (h->index);
4905 mark_object (h->user_hash_function);
4906 mark_object (h->user_cmp_function);
4907
4908 /* If hash table is not weak, mark all keys and values.
4909 For weak tables, mark only the vector. */
4910 if (GC_NILP (h->weak))
4911 mark_object (h->key_and_value);
4912 else
4913 VECTOR_MARK (XVECTOR (h->key_and_value));
4914 }
4915 else
4916 {
4917 register struct Lisp_Vector *ptr = XVECTOR (obj);
4918 register EMACS_INT size = ptr->size;
4919 register int i;
4920
4921 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4922 CHECK_LIVE (live_vector_p);
4923 VECTOR_MARK (ptr); /* Else mark it */
4924 if (size & PSEUDOVECTOR_FLAG)
4925 size &= PSEUDOVECTOR_SIZE_MASK;
4926
4927 for (i = 0; i < size; i++) /* and then mark its elements */
4928 mark_object (ptr->contents[i]);
4929 }
4930 break;
4931
4932 case Lisp_Symbol:
4933 {
4934 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
4935 struct Lisp_Symbol *ptrx;
4936
4937 if (ptr->gcmarkbit) break;
4938 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
4939 ptr->gcmarkbit = 1;
4940 mark_object (ptr->value);
4941 mark_object (ptr->function);
4942 mark_object (ptr->plist);
4943
4944 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
4945 MARK_STRING (XSTRING (ptr->xname));
4946 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
4947
4948 /* Note that we do not mark the obarray of the symbol.
4949 It is safe not to do so because nothing accesses that
4950 slot except to check whether it is nil. */
4951 ptr = ptr->next;
4952 if (ptr)
4953 {
4954 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
4955 XSETSYMBOL (obj, ptrx);
4956 goto loop;
4957 }
4958 }
4959 break;
4960
4961 case Lisp_Misc:
4962 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
4963 if (XMARKER (obj)->gcmarkbit)
4964 break;
4965 XMARKER (obj)->gcmarkbit = 1;
4966
4967 switch (XMISCTYPE (obj))
4968 {
4969 case Lisp_Misc_Buffer_Local_Value:
4970 case Lisp_Misc_Some_Buffer_Local_Value:
4971 {
4972 register struct Lisp_Buffer_Local_Value *ptr
4973 = XBUFFER_LOCAL_VALUE (obj);
4974 /* If the cdr is nil, avoid recursion for the car. */
4975 if (EQ (ptr->cdr, Qnil))
4976 {
4977 obj = ptr->realvalue;
4978 goto loop;
4979 }
4980 mark_object (ptr->realvalue);
4981 mark_object (ptr->buffer);
4982 mark_object (ptr->frame);
4983 obj = ptr->cdr;
4984 goto loop;
4985 }
4986
4987 case Lisp_Misc_Marker:
4988 /* DO NOT mark thru the marker's chain.
4989 The buffer's markers chain does not preserve markers from gc;
4990 instead, markers are removed from the chain when freed by gc. */
4991 break;
4992
4993 case Lisp_Misc_Intfwd:
4994 case Lisp_Misc_Boolfwd:
4995 case Lisp_Misc_Objfwd:
4996 case Lisp_Misc_Buffer_Objfwd:
4997 case Lisp_Misc_Kboard_Objfwd:
4998 /* Don't bother with Lisp_Buffer_Objfwd,
4999 since all markable slots in current buffer marked anyway. */
5000 /* Don't need to do Lisp_Objfwd, since the places they point
5001 are protected with staticpro. */
5002 break;
5003
5004 case Lisp_Misc_Save_Value:
5005 #if GC_MARK_STACK
5006 {
5007 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5008 /* If DOGC is set, POINTER is the address of a memory
5009 area containing INTEGER potential Lisp_Objects. */
5010 if (ptr->dogc)
5011 {
5012 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5013 int nelt;
5014 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5015 mark_maybe_object (*p);
5016 }
5017 }
5018 #endif
5019 break;
5020
5021 case Lisp_Misc_Overlay:
5022 {
5023 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5024 mark_object (ptr->start);
5025 mark_object (ptr->end);
5026 mark_object (ptr->plist);
5027 if (ptr->next)
5028 {
5029 XSETMISC (obj, ptr->next);
5030 goto loop;
5031 }
5032 }
5033 break;
5034
5035 default:
5036 abort ();
5037 }
5038 break;
5039
5040 case Lisp_Cons:
5041 {
5042 register struct Lisp_Cons *ptr = XCONS (obj);
5043 if (CONS_MARKED_P (ptr)) break;
5044 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5045 CONS_MARK (ptr);
5046 /* If the cdr is nil, avoid recursion for the car. */
5047 if (EQ (ptr->cdr, Qnil))
5048 {
5049 obj = ptr->car;
5050 cdr_count = 0;
5051 goto loop;
5052 }
5053 mark_object (ptr->car);
5054 obj = ptr->cdr;
5055 cdr_count++;
5056 if (cdr_count == mark_object_loop_halt)
5057 abort ();
5058 goto loop;
5059 }
5060
5061 case Lisp_Float:
5062 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5063 FLOAT_MARK (XFLOAT (obj));
5064 break;
5065
5066 case Lisp_Int:
5067 break;
5068
5069 default:
5070 abort ();
5071 }
5072
5073 #undef CHECK_LIVE
5074 #undef CHECK_ALLOCATED
5075 #undef CHECK_ALLOCATED_AND_LIVE
5076 }
5077
5078 /* Mark the pointers in a buffer structure. */
5079
5080 static void
5081 mark_buffer (buf)
5082 Lisp_Object buf;
5083 {
5084 register struct buffer *buffer = XBUFFER (buf);
5085 register Lisp_Object *ptr, tmp;
5086 Lisp_Object base_buffer;
5087
5088 VECTOR_MARK (buffer);
5089
5090 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5091
5092 /* For now, we just don't mark the undo_list. It's done later in
5093 a special way just before the sweep phase, and after stripping
5094 some of its elements that are not needed any more. */
5095
5096 if (buffer->overlays_before)
5097 {
5098 XSETMISC (tmp, buffer->overlays_before);
5099 mark_object (tmp);
5100 }
5101 if (buffer->overlays_after)
5102 {
5103 XSETMISC (tmp, buffer->overlays_after);
5104 mark_object (tmp);
5105 }
5106
5107 for (ptr = &buffer->name;
5108 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5109 ptr++)
5110 mark_object (*ptr);
5111
5112 /* If this is an indirect buffer, mark its base buffer. */
5113 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5114 {
5115 XSETBUFFER (base_buffer, buffer->base_buffer);
5116 mark_buffer (base_buffer);
5117 }
5118 }
5119
5120
5121 /* Value is non-zero if OBJ will survive the current GC because it's
5122 either marked or does not need to be marked to survive. */
5123
5124 int
5125 survives_gc_p (obj)
5126 Lisp_Object obj;
5127 {
5128 int survives_p;
5129
5130 switch (XGCTYPE (obj))
5131 {
5132 case Lisp_Int:
5133 survives_p = 1;
5134 break;
5135
5136 case Lisp_Symbol:
5137 survives_p = XSYMBOL (obj)->gcmarkbit;
5138 break;
5139
5140 case Lisp_Misc:
5141 survives_p = XMARKER (obj)->gcmarkbit;
5142 break;
5143
5144 case Lisp_String:
5145 survives_p = STRING_MARKED_P (XSTRING (obj));
5146 break;
5147
5148 case Lisp_Vectorlike:
5149 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5150 break;
5151
5152 case Lisp_Cons:
5153 survives_p = CONS_MARKED_P (XCONS (obj));
5154 break;
5155
5156 case Lisp_Float:
5157 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5158 break;
5159
5160 default:
5161 abort ();
5162 }
5163
5164 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5165 }
5166
5167
5168 \f
5169 /* Sweep: find all structures not marked, and free them. */
5170
5171 static void
5172 gc_sweep ()
5173 {
5174 /* Remove or mark entries in weak hash tables.
5175 This must be done before any object is unmarked. */
5176 sweep_weak_hash_tables ();
5177
5178 sweep_strings ();
5179 #ifdef GC_CHECK_STRING_BYTES
5180 if (!noninteractive)
5181 check_string_bytes (1);
5182 #endif
5183
5184 /* Put all unmarked conses on free list */
5185 {
5186 register struct cons_block *cblk;
5187 struct cons_block **cprev = &cons_block;
5188 register int lim = cons_block_index;
5189 register int num_free = 0, num_used = 0;
5190
5191 cons_free_list = 0;
5192
5193 for (cblk = cons_block; cblk; cblk = *cprev)
5194 {
5195 register int i;
5196 int this_free = 0;
5197 for (i = 0; i < lim; i++)
5198 if (!CONS_MARKED_P (&cblk->conses[i]))
5199 {
5200 this_free++;
5201 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
5202 cons_free_list = &cblk->conses[i];
5203 #if GC_MARK_STACK
5204 cons_free_list->car = Vdead;
5205 #endif
5206 }
5207 else
5208 {
5209 num_used++;
5210 CONS_UNMARK (&cblk->conses[i]);
5211 }
5212 lim = CONS_BLOCK_SIZE;
5213 /* If this block contains only free conses and we have already
5214 seen more than two blocks worth of free conses then deallocate
5215 this block. */
5216 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5217 {
5218 *cprev = cblk->next;
5219 /* Unhook from the free list. */
5220 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5221 lisp_align_free (cblk);
5222 n_cons_blocks--;
5223 }
5224 else
5225 {
5226 num_free += this_free;
5227 cprev = &cblk->next;
5228 }
5229 }
5230 total_conses = num_used;
5231 total_free_conses = num_free;
5232 }
5233
5234 /* Put all unmarked floats on free list */
5235 {
5236 register struct float_block *fblk;
5237 struct float_block **fprev = &float_block;
5238 register int lim = float_block_index;
5239 register int num_free = 0, num_used = 0;
5240
5241 float_free_list = 0;
5242
5243 for (fblk = float_block; fblk; fblk = *fprev)
5244 {
5245 register int i;
5246 int this_free = 0;
5247 for (i = 0; i < lim; i++)
5248 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5249 {
5250 this_free++;
5251 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5252 float_free_list = &fblk->floats[i];
5253 }
5254 else
5255 {
5256 num_used++;
5257 FLOAT_UNMARK (&fblk->floats[i]);
5258 }
5259 lim = FLOAT_BLOCK_SIZE;
5260 /* If this block contains only free floats and we have already
5261 seen more than two blocks worth of free floats then deallocate
5262 this block. */
5263 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5264 {
5265 *fprev = fblk->next;
5266 /* Unhook from the free list. */
5267 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5268 lisp_align_free (fblk);
5269 n_float_blocks--;
5270 }
5271 else
5272 {
5273 num_free += this_free;
5274 fprev = &fblk->next;
5275 }
5276 }
5277 total_floats = num_used;
5278 total_free_floats = num_free;
5279 }
5280
5281 /* Put all unmarked intervals on free list */
5282 {
5283 register struct interval_block *iblk;
5284 struct interval_block **iprev = &interval_block;
5285 register int lim = interval_block_index;
5286 register int num_free = 0, num_used = 0;
5287
5288 interval_free_list = 0;
5289
5290 for (iblk = interval_block; iblk; iblk = *iprev)
5291 {
5292 register int i;
5293 int this_free = 0;
5294
5295 for (i = 0; i < lim; i++)
5296 {
5297 if (!iblk->intervals[i].gcmarkbit)
5298 {
5299 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5300 interval_free_list = &iblk->intervals[i];
5301 this_free++;
5302 }
5303 else
5304 {
5305 num_used++;
5306 iblk->intervals[i].gcmarkbit = 0;
5307 }
5308 }
5309 lim = INTERVAL_BLOCK_SIZE;
5310 /* If this block contains only free intervals and we have already
5311 seen more than two blocks worth of free intervals then
5312 deallocate this block. */
5313 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5314 {
5315 *iprev = iblk->next;
5316 /* Unhook from the free list. */
5317 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5318 lisp_free (iblk);
5319 n_interval_blocks--;
5320 }
5321 else
5322 {
5323 num_free += this_free;
5324 iprev = &iblk->next;
5325 }
5326 }
5327 total_intervals = num_used;
5328 total_free_intervals = num_free;
5329 }
5330
5331 /* Put all unmarked symbols on free list */
5332 {
5333 register struct symbol_block *sblk;
5334 struct symbol_block **sprev = &symbol_block;
5335 register int lim = symbol_block_index;
5336 register int num_free = 0, num_used = 0;
5337
5338 symbol_free_list = NULL;
5339
5340 for (sblk = symbol_block; sblk; sblk = *sprev)
5341 {
5342 int this_free = 0;
5343 struct Lisp_Symbol *sym = sblk->symbols;
5344 struct Lisp_Symbol *end = sym + lim;
5345
5346 for (; sym < end; ++sym)
5347 {
5348 /* Check if the symbol was created during loadup. In such a case
5349 it might be pointed to by pure bytecode which we don't trace,
5350 so we conservatively assume that it is live. */
5351 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5352
5353 if (!sym->gcmarkbit && !pure_p)
5354 {
5355 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5356 symbol_free_list = sym;
5357 #if GC_MARK_STACK
5358 symbol_free_list->function = Vdead;
5359 #endif
5360 ++this_free;
5361 }
5362 else
5363 {
5364 ++num_used;
5365 if (!pure_p)
5366 UNMARK_STRING (XSTRING (sym->xname));
5367 sym->gcmarkbit = 0;
5368 }
5369 }
5370
5371 lim = SYMBOL_BLOCK_SIZE;
5372 /* If this block contains only free symbols and we have already
5373 seen more than two blocks worth of free symbols then deallocate
5374 this block. */
5375 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5376 {
5377 *sprev = sblk->next;
5378 /* Unhook from the free list. */
5379 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5380 lisp_free (sblk);
5381 n_symbol_blocks--;
5382 }
5383 else
5384 {
5385 num_free += this_free;
5386 sprev = &sblk->next;
5387 }
5388 }
5389 total_symbols = num_used;
5390 total_free_symbols = num_free;
5391 }
5392
5393 /* Put all unmarked misc's on free list.
5394 For a marker, first unchain it from the buffer it points into. */
5395 {
5396 register struct marker_block *mblk;
5397 struct marker_block **mprev = &marker_block;
5398 register int lim = marker_block_index;
5399 register int num_free = 0, num_used = 0;
5400
5401 marker_free_list = 0;
5402
5403 for (mblk = marker_block; mblk; mblk = *mprev)
5404 {
5405 register int i;
5406 int this_free = 0;
5407
5408 for (i = 0; i < lim; i++)
5409 {
5410 if (!mblk->markers[i].u_marker.gcmarkbit)
5411 {
5412 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5413 unchain_marker (&mblk->markers[i].u_marker);
5414 /* Set the type of the freed object to Lisp_Misc_Free.
5415 We could leave the type alone, since nobody checks it,
5416 but this might catch bugs faster. */
5417 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5418 mblk->markers[i].u_free.chain = marker_free_list;
5419 marker_free_list = &mblk->markers[i];
5420 this_free++;
5421 }
5422 else
5423 {
5424 num_used++;
5425 mblk->markers[i].u_marker.gcmarkbit = 0;
5426 }
5427 }
5428 lim = MARKER_BLOCK_SIZE;
5429 /* If this block contains only free markers and we have already
5430 seen more than two blocks worth of free markers then deallocate
5431 this block. */
5432 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5433 {
5434 *mprev = mblk->next;
5435 /* Unhook from the free list. */
5436 marker_free_list = mblk->markers[0].u_free.chain;
5437 lisp_free (mblk);
5438 n_marker_blocks--;
5439 }
5440 else
5441 {
5442 num_free += this_free;
5443 mprev = &mblk->next;
5444 }
5445 }
5446
5447 total_markers = num_used;
5448 total_free_markers = num_free;
5449 }
5450
5451 /* Free all unmarked buffers */
5452 {
5453 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5454
5455 while (buffer)
5456 if (!VECTOR_MARKED_P (buffer))
5457 {
5458 if (prev)
5459 prev->next = buffer->next;
5460 else
5461 all_buffers = buffer->next;
5462 next = buffer->next;
5463 lisp_free (buffer);
5464 buffer = next;
5465 }
5466 else
5467 {
5468 VECTOR_UNMARK (buffer);
5469 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5470 prev = buffer, buffer = buffer->next;
5471 }
5472 }
5473
5474 /* Free all unmarked vectors */
5475 {
5476 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5477 total_vector_size = 0;
5478
5479 while (vector)
5480 if (!VECTOR_MARKED_P (vector))
5481 {
5482 if (prev)
5483 prev->next = vector->next;
5484 else
5485 all_vectors = vector->next;
5486 next = vector->next;
5487 lisp_free (vector);
5488 n_vectors--;
5489 vector = next;
5490
5491 }
5492 else
5493 {
5494 VECTOR_UNMARK (vector);
5495 if (vector->size & PSEUDOVECTOR_FLAG)
5496 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5497 else
5498 total_vector_size += vector->size;
5499 prev = vector, vector = vector->next;
5500 }
5501 }
5502
5503 #ifdef GC_CHECK_STRING_BYTES
5504 if (!noninteractive)
5505 check_string_bytes (1);
5506 #endif
5507 }
5508
5509
5510
5511 \f
5512 /* Debugging aids. */
5513
5514 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5515 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5516 This may be helpful in debugging Emacs's memory usage.
5517 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5518 ()
5519 {
5520 Lisp_Object end;
5521
5522 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5523
5524 return end;
5525 }
5526
5527 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5528 doc: /* Return a list of counters that measure how much consing there has been.
5529 Each of these counters increments for a certain kind of object.
5530 The counters wrap around from the largest positive integer to zero.
5531 Garbage collection does not decrease them.
5532 The elements of the value are as follows:
5533 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5534 All are in units of 1 = one object consed
5535 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5536 objects consed.
5537 MISCS include overlays, markers, and some internal types.
5538 Frames, windows, buffers, and subprocesses count as vectors
5539 (but the contents of a buffer's text do not count here). */)
5540 ()
5541 {
5542 Lisp_Object consed[8];
5543
5544 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5545 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5546 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5547 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5548 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5549 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5550 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5551 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5552
5553 return Flist (8, consed);
5554 }
5555
5556 int suppress_checking;
5557 void
5558 die (msg, file, line)
5559 const char *msg;
5560 const char *file;
5561 int line;
5562 {
5563 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5564 file, line, msg);
5565 abort ();
5566 }
5567 \f
5568 /* Initialization */
5569
5570 void
5571 init_alloc_once ()
5572 {
5573 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5574 purebeg = PUREBEG;
5575 pure_size = PURESIZE;
5576 pure_bytes_used = 0;
5577 pure_bytes_used_before_overflow = 0;
5578
5579 /* Initialize the list of free aligned blocks. */
5580 free_ablock = NULL;
5581
5582 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5583 mem_init ();
5584 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5585 #endif
5586
5587 all_vectors = 0;
5588 ignore_warnings = 1;
5589 #ifdef DOUG_LEA_MALLOC
5590 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5591 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5592 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5593 #endif
5594 init_strings ();
5595 init_cons ();
5596 init_symbol ();
5597 init_marker ();
5598 init_float ();
5599 init_intervals ();
5600
5601 #ifdef REL_ALLOC
5602 malloc_hysteresis = 32;
5603 #else
5604 malloc_hysteresis = 0;
5605 #endif
5606
5607 spare_memory = (char *) malloc (SPARE_MEMORY);
5608
5609 ignore_warnings = 0;
5610 gcprolist = 0;
5611 byte_stack_list = 0;
5612 staticidx = 0;
5613 consing_since_gc = 0;
5614 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
5615 #ifdef VIRT_ADDR_VARIES
5616 malloc_sbrk_unused = 1<<22; /* A large number */
5617 malloc_sbrk_used = 100000; /* as reasonable as any number */
5618 #endif /* VIRT_ADDR_VARIES */
5619 }
5620
5621 void
5622 init_alloc ()
5623 {
5624 gcprolist = 0;
5625 byte_stack_list = 0;
5626 #if GC_MARK_STACK
5627 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5628 setjmp_tested_p = longjmps_done = 0;
5629 #endif
5630 #endif
5631 Vgc_elapsed = make_float (0.0);
5632 gcs_done = 0;
5633 }
5634
5635 void
5636 syms_of_alloc ()
5637 {
5638 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
5639 doc: /* *Number of bytes of consing between garbage collections.
5640 Garbage collection can happen automatically once this many bytes have been
5641 allocated since the last garbage collection. All data types count.
5642
5643 Garbage collection happens automatically only when `eval' is called.
5644
5645 By binding this temporarily to a large number, you can effectively
5646 prevent garbage collection during a part of the program. */);
5647
5648 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
5649 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
5650
5651 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
5652 doc: /* Number of cons cells that have been consed so far. */);
5653
5654 DEFVAR_INT ("floats-consed", &floats_consed,
5655 doc: /* Number of floats that have been consed so far. */);
5656
5657 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
5658 doc: /* Number of vector cells that have been consed so far. */);
5659
5660 DEFVAR_INT ("symbols-consed", &symbols_consed,
5661 doc: /* Number of symbols that have been consed so far. */);
5662
5663 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
5664 doc: /* Number of string characters that have been consed so far. */);
5665
5666 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
5667 doc: /* Number of miscellaneous objects that have been consed so far. */);
5668
5669 DEFVAR_INT ("intervals-consed", &intervals_consed,
5670 doc: /* Number of intervals that have been consed so far. */);
5671
5672 DEFVAR_INT ("strings-consed", &strings_consed,
5673 doc: /* Number of strings that have been consed so far. */);
5674
5675 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
5676 doc: /* Non-nil means loading Lisp code in order to dump an executable.
5677 This means that certain objects should be allocated in shared (pure) space. */);
5678
5679 DEFVAR_INT ("undo-limit", &undo_limit,
5680 doc: /* Keep no more undo information once it exceeds this size.
5681 This limit is applied when garbage collection happens.
5682 The size is counted as the number of bytes occupied,
5683 which includes both saved text and other data. */);
5684 undo_limit = 20000;
5685
5686 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
5687 doc: /* Don't keep more than this much size of undo information.
5688 A previous command which pushes the undo list past this size
5689 is entirely forgotten when GC happens.
5690 The size is counted as the number of bytes occupied,
5691 which includes both saved text and other data. */);
5692 undo_strong_limit = 30000;
5693
5694 DEFVAR_INT ("undo-outer-limit", &undo_outer_limit,
5695 doc: /* Don't keep more than this much size of undo information.
5696 If the current command has produced more than this much undo information,
5697 GC discards it. This is a last-ditch limit to prevent memory overflow.
5698 The size is counted as the number of bytes occupied,
5699 which includes both saved text and other data. */);
5700 undo_outer_limit = 300000;
5701
5702 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
5703 doc: /* Non-nil means display messages at start and end of garbage collection. */);
5704 garbage_collection_messages = 0;
5705
5706 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
5707 doc: /* Hook run after garbage collection has finished. */);
5708 Vpost_gc_hook = Qnil;
5709 Qpost_gc_hook = intern ("post-gc-hook");
5710 staticpro (&Qpost_gc_hook);
5711
5712 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
5713 doc: /* Precomputed `signal' argument for memory-full error. */);
5714 /* We build this in advance because if we wait until we need it, we might
5715 not be able to allocate the memory to hold it. */
5716 Vmemory_signal_data
5717 = list2 (Qerror,
5718 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
5719
5720 DEFVAR_LISP ("memory-full", &Vmemory_full,
5721 doc: /* Non-nil means we are handling a memory-full error. */);
5722 Vmemory_full = Qnil;
5723
5724 staticpro (&Qgc_cons_threshold);
5725 Qgc_cons_threshold = intern ("gc-cons-threshold");
5726
5727 staticpro (&Qchar_table_extra_slots);
5728 Qchar_table_extra_slots = intern ("char-table-extra-slots");
5729
5730 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
5731 doc: /* Accumulated time elapsed in garbage collections.
5732 The time is in seconds as a floating point value. */);
5733 DEFVAR_INT ("gcs-done", &gcs_done,
5734 doc: /* Accumulated number of garbage collections done. */);
5735
5736 defsubr (&Scons);
5737 defsubr (&Slist);
5738 defsubr (&Svector);
5739 defsubr (&Smake_byte_code);
5740 defsubr (&Smake_list);
5741 defsubr (&Smake_vector);
5742 defsubr (&Smake_string);
5743 defsubr (&Smake_bool_vector);
5744 defsubr (&Smake_symbol);
5745 defsubr (&Smake_marker);
5746 defsubr (&Spurecopy);
5747 defsubr (&Sgarbage_collect);
5748 defsubr (&Smemory_limit);
5749 defsubr (&Smemory_use_counts);
5750
5751 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5752 defsubr (&Sgc_status);
5753 #endif
5754 }
5755
5756 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
5757 (do not change this comment) */