*** empty log message ***
[bpt/emacs.git] / lisp / emacs-lisp / cl-extra.el
1 ;;; cl-extra.el --- Common Lisp features, part 2 -*-byte-compile-dynamic: t;-*-
2
3 ;; Copyright (C) 1993, 2000, 2001, 2002, 2003, 2004,
4 ;; 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 ;; Author: Dave Gillespie <daveg@synaptics.com>
7 ;; Keywords: extensions
8
9 ;; This file is part of GNU Emacs.
10
11 ;; GNU Emacs is free software; you can redistribute it and/or modify
12 ;; it under the terms of the GNU General Public License as published by
13 ;; the Free Software Foundation; either version 2, or (at your option)
14 ;; any later version.
15
16 ;; GNU Emacs is distributed in the hope that it will be useful,
17 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
18 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 ;; GNU General Public License for more details.
20
21 ;; You should have received a copy of the GNU General Public License
22 ;; along with GNU Emacs; see the file COPYING. If not, write to the
23 ;; Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 ;; Boston, MA 02110-1301, USA.
25
26 ;;; Commentary:
27
28 ;; These are extensions to Emacs Lisp that provide a degree of
29 ;; Common Lisp compatibility, beyond what is already built-in
30 ;; in Emacs Lisp.
31 ;;
32 ;; This package was written by Dave Gillespie; it is a complete
33 ;; rewrite of Cesar Quiroz's original cl.el package of December 1986.
34 ;;
35 ;; Bug reports, comments, and suggestions are welcome!
36
37 ;; This file contains portions of the Common Lisp extensions
38 ;; package which are autoloaded since they are relatively obscure.
39
40 ;;; Code:
41
42 (require 'cl)
43
44 ;;; Type coercion.
45
46 ;;;###autoload
47 (defun coerce (x type)
48 "Coerce OBJECT to type TYPE.
49 TYPE is a Common Lisp type specifier.
50 \n(fn OBJECT TYPE)"
51 (cond ((eq type 'list) (if (listp x) x (append x nil)))
52 ((eq type 'vector) (if (vectorp x) x (vconcat x)))
53 ((eq type 'string) (if (stringp x) x (concat x)))
54 ((eq type 'array) (if (arrayp x) x (vconcat x)))
55 ((and (eq type 'character) (stringp x) (= (length x) 1)) (aref x 0))
56 ((and (eq type 'character) (symbolp x)) (coerce (symbol-name x) type))
57 ((eq type 'float) (float x))
58 ((typep x type) x)
59 (t (error "Can't coerce %s to type %s" x type))))
60
61
62 ;;; Predicates.
63
64 ;;;###autoload
65 (defun equalp (x y)
66 "Return t if two Lisp objects have similar structures and contents.
67 This is like `equal', except that it accepts numerically equal
68 numbers of different types (float vs. integer), and also compares
69 strings case-insensitively."
70 (cond ((eq x y) t)
71 ((stringp x)
72 (and (stringp y) (= (length x) (length y))
73 (or (string-equal x y)
74 (string-equal (downcase x) (downcase y))))) ; lazy but simple!
75 ((numberp x)
76 (and (numberp y) (= x y)))
77 ((consp x)
78 (while (and (consp x) (consp y) (equalp (car x) (car y)))
79 (setq x (cdr x) y (cdr y)))
80 (and (not (consp x)) (equalp x y)))
81 ((vectorp x)
82 (and (vectorp y) (= (length x) (length y))
83 (let ((i (length x)))
84 (while (and (>= (setq i (1- i)) 0)
85 (equalp (aref x i) (aref y i))))
86 (< i 0))))
87 (t (equal x y))))
88
89
90 ;;; Control structures.
91
92 ;;;###autoload
93 (defun cl-mapcar-many (cl-func cl-seqs)
94 (if (cdr (cdr cl-seqs))
95 (let* ((cl-res nil)
96 (cl-n (apply 'min (mapcar 'length cl-seqs)))
97 (cl-i 0)
98 (cl-args (copy-sequence cl-seqs))
99 cl-p1 cl-p2)
100 (setq cl-seqs (copy-sequence cl-seqs))
101 (while (< cl-i cl-n)
102 (setq cl-p1 cl-seqs cl-p2 cl-args)
103 (while cl-p1
104 (setcar cl-p2
105 (if (consp (car cl-p1))
106 (prog1 (car (car cl-p1))
107 (setcar cl-p1 (cdr (car cl-p1))))
108 (aref (car cl-p1) cl-i)))
109 (setq cl-p1 (cdr cl-p1) cl-p2 (cdr cl-p2)))
110 (push (apply cl-func cl-args) cl-res)
111 (setq cl-i (1+ cl-i)))
112 (nreverse cl-res))
113 (let ((cl-res nil)
114 (cl-x (car cl-seqs))
115 (cl-y (nth 1 cl-seqs)))
116 (let ((cl-n (min (length cl-x) (length cl-y)))
117 (cl-i -1))
118 (while (< (setq cl-i (1+ cl-i)) cl-n)
119 (push (funcall cl-func
120 (if (consp cl-x) (pop cl-x) (aref cl-x cl-i))
121 (if (consp cl-y) (pop cl-y) (aref cl-y cl-i)))
122 cl-res)))
123 (nreverse cl-res))))
124
125 ;;;###autoload
126 (defun map (cl-type cl-func cl-seq &rest cl-rest)
127 "Map a FUNCTION across one or more SEQUENCEs, returning a sequence.
128 TYPE is the sequence type to return.
129 \n(fn TYPE FUNCTION SEQUENCE...)"
130 (let ((cl-res (apply 'mapcar* cl-func cl-seq cl-rest)))
131 (and cl-type (coerce cl-res cl-type))))
132
133 ;;;###autoload
134 (defun maplist (cl-func cl-list &rest cl-rest)
135 "Map FUNCTION to each sublist of LIST or LISTs.
136 Like `mapcar', except applies to lists and their cdr's rather than to
137 the elements themselves.
138 \n(fn FUNCTION LIST...)"
139 (if cl-rest
140 (let ((cl-res nil)
141 (cl-args (cons cl-list (copy-sequence cl-rest)))
142 cl-p)
143 (while (not (memq nil cl-args))
144 (push (apply cl-func cl-args) cl-res)
145 (setq cl-p cl-args)
146 (while cl-p (setcar cl-p (cdr (pop cl-p)) )))
147 (nreverse cl-res))
148 (let ((cl-res nil))
149 (while cl-list
150 (push (funcall cl-func cl-list) cl-res)
151 (setq cl-list (cdr cl-list)))
152 (nreverse cl-res))))
153
154 (defun cl-mapc (cl-func cl-seq &rest cl-rest)
155 "Like `mapcar', but does not accumulate values returned by the function.
156 \n(fn FUNCTION SEQUENCE...)"
157 (if cl-rest
158 (progn (apply 'map nil cl-func cl-seq cl-rest)
159 cl-seq)
160 (mapc cl-func cl-seq)))
161
162 ;;;###autoload
163 (defun mapl (cl-func cl-list &rest cl-rest)
164 "Like `maplist', but does not accumulate values returned by the function.
165 \n(fn FUNCTION LIST...)"
166 (if cl-rest
167 (apply 'maplist cl-func cl-list cl-rest)
168 (let ((cl-p cl-list))
169 (while cl-p (funcall cl-func cl-p) (setq cl-p (cdr cl-p)))))
170 cl-list)
171
172 ;;;###autoload
173 (defun mapcan (cl-func cl-seq &rest cl-rest)
174 "Like `mapcar', but nconc's together the values returned by the function.
175 \n(fn FUNCTION SEQUENCE...)"
176 (apply 'nconc (apply 'mapcar* cl-func cl-seq cl-rest)))
177
178 ;;;###autoload
179 (defun mapcon (cl-func cl-list &rest cl-rest)
180 "Like `maplist', but nconc's together the values returned by the function.
181 \n(fn FUNCTION LIST...)"
182 (apply 'nconc (apply 'maplist cl-func cl-list cl-rest)))
183
184 ;;;###autoload
185 (defun some (cl-pred cl-seq &rest cl-rest)
186 "Return true if PREDICATE is true of any element of SEQ or SEQs.
187 If so, return the true (non-nil) value returned by PREDICATE.
188 \n(fn PREDICATE SEQ...)"
189 (if (or cl-rest (nlistp cl-seq))
190 (catch 'cl-some
191 (apply 'map nil
192 (function (lambda (&rest cl-x)
193 (let ((cl-res (apply cl-pred cl-x)))
194 (if cl-res (throw 'cl-some cl-res)))))
195 cl-seq cl-rest) nil)
196 (let ((cl-x nil))
197 (while (and cl-seq (not (setq cl-x (funcall cl-pred (pop cl-seq))))))
198 cl-x)))
199
200 ;;;###autoload
201 (defun every (cl-pred cl-seq &rest cl-rest)
202 "Return true if PREDICATE is true of every element of SEQ or SEQs.
203 \n(fn PREDICATE SEQ...)"
204 (if (or cl-rest (nlistp cl-seq))
205 (catch 'cl-every
206 (apply 'map nil
207 (function (lambda (&rest cl-x)
208 (or (apply cl-pred cl-x) (throw 'cl-every nil))))
209 cl-seq cl-rest) t)
210 (while (and cl-seq (funcall cl-pred (car cl-seq)))
211 (setq cl-seq (cdr cl-seq)))
212 (null cl-seq)))
213
214 ;;;###autoload
215 (defun notany (cl-pred cl-seq &rest cl-rest)
216 "Return true if PREDICATE is false of every element of SEQ or SEQs.
217 \n(fn PREDICATE SEQ...)"
218 (not (apply 'some cl-pred cl-seq cl-rest)))
219
220 ;;;###autoload
221 (defun notevery (cl-pred cl-seq &rest cl-rest)
222 "Return true if PREDICATE is false of some element of SEQ or SEQs.
223 \n(fn PREDICATE SEQ...)"
224 (not (apply 'every cl-pred cl-seq cl-rest)))
225
226 ;;; Support for `loop'.
227 ;;;###autoload
228 (defalias 'cl-map-keymap 'map-keymap)
229
230 ;;;###autoload
231 (defun cl-map-keymap-recursively (cl-func-rec cl-map &optional cl-base)
232 (or cl-base
233 (setq cl-base (copy-sequence [0])))
234 (map-keymap
235 (function
236 (lambda (cl-key cl-bind)
237 (aset cl-base (1- (length cl-base)) cl-key)
238 (if (keymapp cl-bind)
239 (cl-map-keymap-recursively
240 cl-func-rec cl-bind
241 (vconcat cl-base (list 0)))
242 (funcall cl-func-rec cl-base cl-bind))))
243 cl-map))
244
245 ;;;###autoload
246 (defun cl-map-intervals (cl-func &optional cl-what cl-prop cl-start cl-end)
247 (or cl-what (setq cl-what (current-buffer)))
248 (if (bufferp cl-what)
249 (let (cl-mark cl-mark2 (cl-next t) cl-next2)
250 (with-current-buffer cl-what
251 (setq cl-mark (copy-marker (or cl-start (point-min))))
252 (setq cl-mark2 (and cl-end (copy-marker cl-end))))
253 (while (and cl-next (or (not cl-mark2) (< cl-mark cl-mark2)))
254 (setq cl-next (if cl-prop (next-single-property-change
255 cl-mark cl-prop cl-what)
256 (next-property-change cl-mark cl-what))
257 cl-next2 (or cl-next (with-current-buffer cl-what
258 (point-max))))
259 (funcall cl-func (prog1 (marker-position cl-mark)
260 (set-marker cl-mark cl-next2))
261 (if cl-mark2 (min cl-next2 cl-mark2) cl-next2)))
262 (set-marker cl-mark nil) (if cl-mark2 (set-marker cl-mark2 nil)))
263 (or cl-start (setq cl-start 0))
264 (or cl-end (setq cl-end (length cl-what)))
265 (while (< cl-start cl-end)
266 (let ((cl-next (or (if cl-prop (next-single-property-change
267 cl-start cl-prop cl-what)
268 (next-property-change cl-start cl-what))
269 cl-end)))
270 (funcall cl-func cl-start (min cl-next cl-end))
271 (setq cl-start cl-next)))))
272
273 ;;;###autoload
274 (defun cl-map-overlays (cl-func &optional cl-buffer cl-start cl-end cl-arg)
275 (or cl-buffer (setq cl-buffer (current-buffer)))
276 (if (fboundp 'overlay-lists)
277
278 ;; This is the preferred algorithm, though overlay-lists is undocumented.
279 (let (cl-ovl)
280 (with-current-buffer cl-buffer
281 (setq cl-ovl (overlay-lists))
282 (if cl-start (setq cl-start (copy-marker cl-start)))
283 (if cl-end (setq cl-end (copy-marker cl-end))))
284 (setq cl-ovl (nconc (car cl-ovl) (cdr cl-ovl)))
285 (while (and cl-ovl
286 (or (not (overlay-start (car cl-ovl)))
287 (and cl-end (>= (overlay-start (car cl-ovl)) cl-end))
288 (and cl-start (<= (overlay-end (car cl-ovl)) cl-start))
289 (not (funcall cl-func (car cl-ovl) cl-arg))))
290 (setq cl-ovl (cdr cl-ovl)))
291 (if cl-start (set-marker cl-start nil))
292 (if cl-end (set-marker cl-end nil)))
293
294 ;; This alternate algorithm fails to find zero-length overlays.
295 (let ((cl-mark (with-current-buffer cl-buffer
296 (copy-marker (or cl-start (point-min)))))
297 (cl-mark2 (and cl-end (with-current-buffer cl-buffer
298 (copy-marker cl-end))))
299 cl-pos cl-ovl)
300 (while (save-excursion
301 (and (setq cl-pos (marker-position cl-mark))
302 (< cl-pos (or cl-mark2 (point-max)))
303 (progn
304 (set-buffer cl-buffer)
305 (setq cl-ovl (overlays-at cl-pos))
306 (set-marker cl-mark (next-overlay-change cl-pos)))))
307 (while (and cl-ovl
308 (or (/= (overlay-start (car cl-ovl)) cl-pos)
309 (not (and (funcall cl-func (car cl-ovl) cl-arg)
310 (set-marker cl-mark nil)))))
311 (setq cl-ovl (cdr cl-ovl))))
312 (set-marker cl-mark nil) (if cl-mark2 (set-marker cl-mark2 nil)))))
313
314 ;;; Support for `setf'.
315 ;;;###autoload
316 (defun cl-set-frame-visible-p (frame val)
317 (cond ((null val) (make-frame-invisible frame))
318 ((eq val 'icon) (iconify-frame frame))
319 (t (make-frame-visible frame)))
320 val)
321
322 ;;; Support for `progv'.
323 (defvar cl-progv-save)
324 ;;;###autoload
325 (defun cl-progv-before (syms values)
326 (while syms
327 (push (if (boundp (car syms))
328 (cons (car syms) (symbol-value (car syms)))
329 (car syms)) cl-progv-save)
330 (if values
331 (set (pop syms) (pop values))
332 (makunbound (pop syms)))))
333
334 (defun cl-progv-after ()
335 (while cl-progv-save
336 (if (consp (car cl-progv-save))
337 (set (car (car cl-progv-save)) (cdr (car cl-progv-save)))
338 (makunbound (car cl-progv-save)))
339 (pop cl-progv-save)))
340
341
342 ;;; Numbers.
343
344 ;;;###autoload
345 (defun gcd (&rest args)
346 "Return the greatest common divisor of the arguments."
347 (let ((a (abs (or (pop args) 0))))
348 (while args
349 (let ((b (abs (pop args))))
350 (while (> b 0) (setq b (% a (setq a b))))))
351 a))
352
353 ;;;###autoload
354 (defun lcm (&rest args)
355 "Return the least common multiple of the arguments."
356 (if (memq 0 args)
357 0
358 (let ((a (abs (or (pop args) 1))))
359 (while args
360 (let ((b (abs (pop args))))
361 (setq a (* (/ a (gcd a b)) b))))
362 a)))
363
364 ;;;###autoload
365 (defun isqrt (x)
366 "Return the integer square root of the argument."
367 (if (and (integerp x) (> x 0))
368 (let ((g (cond ((<= x 100) 10) ((<= x 10000) 100)
369 ((<= x 1000000) 1000) (t x)))
370 g2)
371 (while (< (setq g2 (/ (+ g (/ x g)) 2)) g)
372 (setq g g2))
373 g)
374 (if (eq x 0) 0 (signal 'arith-error nil))))
375
376 ;;;###autoload
377 (defun floor* (x &optional y)
378 "Return a list of the floor of X and the fractional part of X.
379 With two arguments, return floor and remainder of their quotient."
380 (let ((q (floor x y)))
381 (list q (- x (if y (* y q) q)))))
382
383 ;;;###autoload
384 (defun ceiling* (x &optional y)
385 "Return a list of the ceiling of X and the fractional part of X.
386 With two arguments, return ceiling and remainder of their quotient."
387 (let ((res (floor* x y)))
388 (if (= (car (cdr res)) 0) res
389 (list (1+ (car res)) (- (car (cdr res)) (or y 1))))))
390
391 ;;;###autoload
392 (defun truncate* (x &optional y)
393 "Return a list of the integer part of X and the fractional part of X.
394 With two arguments, return truncation and remainder of their quotient."
395 (if (eq (>= x 0) (or (null y) (>= y 0)))
396 (floor* x y) (ceiling* x y)))
397
398 ;;;###autoload
399 (defun round* (x &optional y)
400 "Return a list of X rounded to the nearest integer and the remainder.
401 With two arguments, return rounding and remainder of their quotient."
402 (if y
403 (if (and (integerp x) (integerp y))
404 (let* ((hy (/ y 2))
405 (res (floor* (+ x hy) y)))
406 (if (and (= (car (cdr res)) 0)
407 (= (+ hy hy) y)
408 (/= (% (car res) 2) 0))
409 (list (1- (car res)) hy)
410 (list (car res) (- (car (cdr res)) hy))))
411 (let ((q (round (/ x y))))
412 (list q (- x (* q y)))))
413 (if (integerp x) (list x 0)
414 (let ((q (round x)))
415 (list q (- x q))))))
416
417 ;;;###autoload
418 (defun mod* (x y)
419 "The remainder of X divided by Y, with the same sign as Y."
420 (nth 1 (floor* x y)))
421
422 ;;;###autoload
423 (defun rem* (x y)
424 "The remainder of X divided by Y, with the same sign as X."
425 (nth 1 (truncate* x y)))
426
427 ;;;###autoload
428 (defun signum (x)
429 "Return 1 if X is positive, -1 if negative, 0 if zero."
430 (cond ((> x 0) 1) ((< x 0) -1) (t 0)))
431
432
433 ;; Random numbers.
434
435 (defvar *random-state*)
436 ;;;###autoload
437 (defun random* (lim &optional state)
438 "Return a random nonnegative number less than LIM, an integer or float.
439 Optional second arg STATE is a random-state object."
440 (or state (setq state *random-state*))
441 ;; Inspired by "ran3" from Numerical Recipes. Additive congruential method.
442 (let ((vec (aref state 3)))
443 (if (integerp vec)
444 (let ((i 0) (j (- 1357335 (% (abs vec) 1357333))) (k 1))
445 (aset state 3 (setq vec (make-vector 55 nil)))
446 (aset vec 0 j)
447 (while (> (setq i (% (+ i 21) 55)) 0)
448 (aset vec i (setq j (prog1 k (setq k (- j k))))))
449 (while (< (setq i (1+ i)) 200) (random* 2 state))))
450 (let* ((i (aset state 1 (% (1+ (aref state 1)) 55)))
451 (j (aset state 2 (% (1+ (aref state 2)) 55)))
452 (n (logand 8388607 (aset vec i (- (aref vec i) (aref vec j))))))
453 (if (integerp lim)
454 (if (<= lim 512) (% n lim)
455 (if (> lim 8388607) (setq n (+ (lsh n 9) (random* 512 state))))
456 (let ((mask 1023))
457 (while (< mask (1- lim)) (setq mask (1+ (+ mask mask))))
458 (if (< (setq n (logand n mask)) lim) n (random* lim state))))
459 (* (/ n '8388608e0) lim)))))
460
461 ;;;###autoload
462 (defun make-random-state (&optional state)
463 "Return a copy of random-state STATE, or of `*random-state*' if omitted.
464 If STATE is t, return a new state object seeded from the time of day."
465 (cond ((null state) (make-random-state *random-state*))
466 ((vectorp state) (cl-copy-tree state t))
467 ((integerp state) (vector 'cl-random-state-tag -1 30 state))
468 (t (make-random-state (cl-random-time)))))
469
470 ;;;###autoload
471 (defun random-state-p (object)
472 "Return t if OBJECT is a random-state object."
473 (and (vectorp object) (= (length object) 4)
474 (eq (aref object 0) 'cl-random-state-tag)))
475
476
477 ;; Implementation limits.
478
479 (defun cl-finite-do (func a b)
480 (condition-case err
481 (let ((res (funcall func a b))) ; check for IEEE infinity
482 (and (numberp res) (/= res (/ res 2)) res))
483 (arith-error nil)))
484
485 (defvar most-positive-float)
486 (defvar most-negative-float)
487 (defvar least-positive-float)
488 (defvar least-negative-float)
489 (defvar least-positive-normalized-float)
490 (defvar least-negative-normalized-float)
491 (defvar float-epsilon)
492 (defvar float-negative-epsilon)
493
494 ;;;###autoload
495 (defun cl-float-limits ()
496 (or most-positive-float (not (numberp '2e1))
497 (let ((x '2e0) y z)
498 ;; Find maximum exponent (first two loops are optimizations)
499 (while (cl-finite-do '* x x) (setq x (* x x)))
500 (while (cl-finite-do '* x (/ x 2)) (setq x (* x (/ x 2))))
501 (while (cl-finite-do '+ x x) (setq x (+ x x)))
502 (setq z x y (/ x 2))
503 ;; Now fill in 1's in the mantissa.
504 (while (and (cl-finite-do '+ x y) (/= (+ x y) x))
505 (setq x (+ x y) y (/ y 2)))
506 (setq most-positive-float x
507 most-negative-float (- x))
508 ;; Divide down until mantissa starts rounding.
509 (setq x (/ x z) y (/ 16 z) x (* x y))
510 (while (condition-case err (and (= x (* (/ x 2) 2)) (> (/ y 2) 0))
511 (arith-error nil))
512 (setq x (/ x 2) y (/ y 2)))
513 (setq least-positive-normalized-float y
514 least-negative-normalized-float (- y))
515 ;; Divide down until value underflows to zero.
516 (setq x (/ 1 z) y x)
517 (while (condition-case err (> (/ x 2) 0) (arith-error nil))
518 (setq x (/ x 2)))
519 (setq least-positive-float x
520 least-negative-float (- x))
521 (setq x '1e0)
522 (while (/= (+ '1e0 x) '1e0) (setq x (/ x 2)))
523 (setq float-epsilon (* x 2))
524 (setq x '1e0)
525 (while (/= (- '1e0 x) '1e0) (setq x (/ x 2)))
526 (setq float-negative-epsilon (* x 2))))
527 nil)
528
529
530 ;;; Sequence functions.
531
532 ;;;###autoload
533 (defun subseq (seq start &optional end)
534 "Return the subsequence of SEQ from START to END.
535 If END is omitted, it defaults to the length of the sequence.
536 If START or END is negative, it counts from the end."
537 (if (stringp seq) (substring seq start end)
538 (let (len)
539 (and end (< end 0) (setq end (+ end (setq len (length seq)))))
540 (if (< start 0) (setq start (+ start (or len (setq len (length seq))))))
541 (cond ((listp seq)
542 (if (> start 0) (setq seq (nthcdr start seq)))
543 (if end
544 (let ((res nil))
545 (while (>= (setq end (1- end)) start)
546 (push (pop seq) res))
547 (nreverse res))
548 (copy-sequence seq)))
549 (t
550 (or end (setq end (or len (length seq))))
551 (let ((res (make-vector (max (- end start) 0) nil))
552 (i 0))
553 (while (< start end)
554 (aset res i (aref seq start))
555 (setq i (1+ i) start (1+ start)))
556 res))))))
557
558 ;;;###autoload
559 (defun concatenate (type &rest seqs)
560 "Concatenate, into a sequence of type TYPE, the argument SEQUENCEs.
561 \n(fn TYPE SEQUENCE...)"
562 (cond ((eq type 'vector) (apply 'vconcat seqs))
563 ((eq type 'string) (apply 'concat seqs))
564 ((eq type 'list) (apply 'append (append seqs '(nil))))
565 (t (error "Not a sequence type name: %s" type))))
566
567
568 ;;; List functions.
569
570 ;;;###autoload
571 (defun revappend (x y)
572 "Equivalent to (append (reverse X) Y)."
573 (nconc (reverse x) y))
574
575 ;;;###autoload
576 (defun nreconc (x y)
577 "Equivalent to (nconc (nreverse X) Y)."
578 (nconc (nreverse x) y))
579
580 ;;;###autoload
581 (defun list-length (x)
582 "Return the length of list X. Return nil if list is circular."
583 (let ((n 0) (fast x) (slow x))
584 (while (and (cdr fast) (not (and (eq fast slow) (> n 0))))
585 (setq n (+ n 2) fast (cdr (cdr fast)) slow (cdr slow)))
586 (if fast (if (cdr fast) nil (1+ n)) n)))
587
588 ;;;###autoload
589 (defun tailp (sublist list)
590 "Return true if SUBLIST is a tail of LIST."
591 (while (and (consp list) (not (eq sublist list)))
592 (setq list (cdr list)))
593 (if (numberp sublist) (equal sublist list) (eq sublist list)))
594
595 (defalias 'cl-copy-tree 'copy-tree)
596
597
598 ;;; Property lists.
599
600 ;;;###autoload
601 (defun get* (sym tag &optional def) ; See compiler macro in cl-macs.el
602 "Return the value of SYMBOL's PROPNAME property, or DEFAULT if none.
603 \n(fn SYMBOL PROPNAME &optional DEFAULT)"
604 (or (get sym tag)
605 (and def
606 (let ((plist (symbol-plist sym)))
607 (while (and plist (not (eq (car plist) tag)))
608 (setq plist (cdr (cdr plist))))
609 (if plist (car (cdr plist)) def)))))
610
611 ;;;###autoload
612 (defun getf (plist tag &optional def)
613 "Search PROPLIST for property PROPNAME; return its value or DEFAULT.
614 PROPLIST is a list of the sort returned by `symbol-plist'.
615 \n(fn PROPLIST PROPNAME &optional DEFAULT)"
616 (setplist '--cl-getf-symbol-- plist)
617 (or (get '--cl-getf-symbol-- tag)
618 ;; Originally we called get* here,
619 ;; but that fails, because get* has a compiler macro
620 ;; definition that uses getf!
621 (when def
622 (while (and plist (not (eq (car plist) tag)))
623 (setq plist (cdr (cdr plist))))
624 (if plist (car (cdr plist)) def))))
625
626 ;;;###autoload
627 (defun cl-set-getf (plist tag val)
628 (let ((p plist))
629 (while (and p (not (eq (car p) tag))) (setq p (cdr (cdr p))))
630 (if p (progn (setcar (cdr p) val) plist) (list* tag val plist))))
631
632 ;;;###autoload
633 (defun cl-do-remf (plist tag)
634 (let ((p (cdr plist)))
635 (while (and (cdr p) (not (eq (car (cdr p)) tag))) (setq p (cdr (cdr p))))
636 (and (cdr p) (progn (setcdr p (cdr (cdr (cdr p)))) t))))
637
638 ;;;###autoload
639 (defun cl-remprop (sym tag)
640 "Remove from SYMBOL's plist the property PROPNAME and its value.
641 \n(fn SYMBOL PROPNAME)"
642 (let ((plist (symbol-plist sym)))
643 (if (and plist (eq tag (car plist)))
644 (progn (setplist sym (cdr (cdr plist))) t)
645 (cl-do-remf plist tag))))
646 ;;;###autoload
647 (defalias 'remprop 'cl-remprop)
648
649
650
651 ;;; Hash tables.
652 ;; This is just kept for compatibility with code byte-compiled by Emacs-20.
653
654 ;; No idea if this might still be needed.
655 (defun cl-not-hash-table (x &optional y &rest z)
656 (signal 'wrong-type-argument (list 'cl-hash-table-p (or y x))))
657
658 (defvar cl-builtin-gethash (symbol-function 'gethash))
659 (defvar cl-builtin-remhash (symbol-function 'remhash))
660 (defvar cl-builtin-clrhash (symbol-function 'clrhash))
661 (defvar cl-builtin-maphash (symbol-function 'maphash))
662
663 ;;;###autoload
664 (defalias 'cl-gethash 'gethash)
665 ;;;###autoload
666 (defalias 'cl-puthash 'puthash)
667 ;;;###autoload
668 (defalias 'cl-remhash 'remhash)
669 ;;;###autoload
670 (defalias 'cl-clrhash 'clrhash)
671 ;;;###autoload
672 (defalias 'cl-maphash 'maphash)
673 ;; These three actually didn't exist in Emacs-20.
674 ;;;###autoload
675 (defalias 'cl-make-hash-table 'make-hash-table)
676 ;;;###autoload
677 (defalias 'cl-hash-table-p 'hash-table-p)
678 ;;;###autoload
679 (defalias 'cl-hash-table-count 'hash-table-count)
680
681 ;;; Some debugging aids.
682
683 (defun cl-prettyprint (form)
684 "Insert a pretty-printed rendition of a Lisp FORM in current buffer."
685 (let ((pt (point)) last)
686 (insert "\n" (prin1-to-string form) "\n")
687 (setq last (point))
688 (goto-char (1+ pt))
689 (while (search-forward "(quote " last t)
690 (delete-backward-char 7)
691 (insert "'")
692 (forward-sexp)
693 (delete-char 1))
694 (goto-char (1+ pt))
695 (cl-do-prettyprint)))
696
697 (defun cl-do-prettyprint ()
698 (skip-chars-forward " ")
699 (if (looking-at "(")
700 (let ((skip (or (looking-at "((") (looking-at "(prog")
701 (looking-at "(unwind-protect ")
702 (looking-at "(function (")
703 (looking-at "(cl-block-wrapper ")))
704 (two (or (looking-at "(defun ") (looking-at "(defmacro ")))
705 (let (or (looking-at "(let\\*? ") (looking-at "(while ")))
706 (set (looking-at "(p?set[qf] ")))
707 (if (or skip let
708 (progn
709 (forward-sexp)
710 (and (>= (current-column) 78) (progn (backward-sexp) t))))
711 (let ((nl t))
712 (forward-char 1)
713 (cl-do-prettyprint)
714 (or skip (looking-at ")") (cl-do-prettyprint))
715 (or (not two) (looking-at ")") (cl-do-prettyprint))
716 (while (not (looking-at ")"))
717 (if set (setq nl (not nl)))
718 (if nl (insert "\n"))
719 (lisp-indent-line)
720 (cl-do-prettyprint))
721 (forward-char 1))))
722 (forward-sexp)))
723
724 (defvar cl-macroexpand-cmacs nil)
725 (defvar cl-closure-vars nil)
726
727 ;;;###autoload
728 (defun cl-macroexpand-all (form &optional env)
729 "Expand all macro calls through a Lisp FORM.
730 This also does some trivial optimizations to make the form prettier."
731 (while (or (not (eq form (setq form (macroexpand form env))))
732 (and cl-macroexpand-cmacs
733 (not (eq form (setq form (compiler-macroexpand form)))))))
734 (cond ((not (consp form)) form)
735 ((memq (car form) '(let let*))
736 (if (null (nth 1 form))
737 (cl-macroexpand-all (cons 'progn (cddr form)) env)
738 (let ((letf nil) (res nil) (lets (cadr form)))
739 (while lets
740 (push (if (consp (car lets))
741 (let ((exp (cl-macroexpand-all (caar lets) env)))
742 (or (symbolp exp) (setq letf t))
743 (cons exp (cl-macroexpand-body (cdar lets) env)))
744 (let ((exp (cl-macroexpand-all (car lets) env)))
745 (if (symbolp exp) exp
746 (setq letf t) (list exp nil)))) res)
747 (setq lets (cdr lets)))
748 (list* (if letf (if (eq (car form) 'let) 'letf 'letf*) (car form))
749 (nreverse res) (cl-macroexpand-body (cddr form) env)))))
750 ((eq (car form) 'cond)
751 (cons (car form)
752 (mapcar (function (lambda (x) (cl-macroexpand-body x env)))
753 (cdr form))))
754 ((eq (car form) 'condition-case)
755 (list* (car form) (nth 1 form) (cl-macroexpand-all (nth 2 form) env)
756 (mapcar (function
757 (lambda (x)
758 (cons (car x) (cl-macroexpand-body (cdr x) env))))
759 (cdddr form))))
760 ((memq (car form) '(quote function))
761 (if (eq (car-safe (nth 1 form)) 'lambda)
762 (let ((body (cl-macroexpand-body (cddadr form) env)))
763 (if (and cl-closure-vars (eq (car form) 'function)
764 (cl-expr-contains-any body cl-closure-vars))
765 (let* ((new (mapcar 'gensym cl-closure-vars))
766 (sub (pairlis cl-closure-vars new)) (decls nil))
767 (while (or (stringp (car body))
768 (eq (car-safe (car body)) 'interactive))
769 (push (list 'quote (pop body)) decls))
770 (put (car (last cl-closure-vars)) 'used t)
771 (append
772 (list 'list '(quote lambda) '(quote (&rest --cl-rest--)))
773 (sublis sub (nreverse decls))
774 (list
775 (list* 'list '(quote apply)
776 (list 'function
777 (list* 'lambda
778 (append new (cadadr form))
779 (sublis sub body)))
780 (nconc (mapcar (function
781 (lambda (x)
782 (list 'list '(quote quote) x)))
783 cl-closure-vars)
784 '((quote --cl-rest--)))))))
785 (list (car form) (list* 'lambda (cadadr form) body))))
786 (let ((found (assq (cadr form) env)))
787 (if (and found (ignore-errors
788 (eq (cadr (caddr found)) 'cl-labels-args)))
789 (cl-macroexpand-all (cadr (caddr (cadddr found))) env)
790 form))))
791 ((memq (car form) '(defun defmacro))
792 (list* (car form) (nth 1 form) (cl-macroexpand-body (cddr form) env)))
793 ((and (eq (car form) 'progn) (not (cddr form)))
794 (cl-macroexpand-all (nth 1 form) env))
795 ((eq (car form) 'setq)
796 (let* ((args (cl-macroexpand-body (cdr form) env)) (p args))
797 (while (and p (symbolp (car p))) (setq p (cddr p)))
798 (if p (cl-macroexpand-all (cons 'setf args)) (cons 'setq args))))
799 ((consp (car form))
800 (cl-macroexpand-all (list* 'funcall
801 (list 'function (car form))
802 (cdr form))
803 env))
804 (t (cons (car form) (cl-macroexpand-body (cdr form) env)))))
805
806 (defun cl-macroexpand-body (body &optional env)
807 (mapcar (function (lambda (x) (cl-macroexpand-all x env))) body))
808
809 ;;;###autoload
810 (defun cl-prettyexpand (form &optional full)
811 (message "Expanding...")
812 (let ((cl-macroexpand-cmacs full) (cl-compiling-file full)
813 (byte-compile-macro-environment nil))
814 (setq form (cl-macroexpand-all form
815 (and (not full) '((block) (eval-when)))))
816 (message "Formatting...")
817 (prog1 (cl-prettyprint form)
818 (message ""))))
819
820
821
822 (run-hooks 'cl-extra-load-hook)
823
824 ;; Local variables:
825 ;; generated-autoload-file: "cl-loaddefs.el"
826 ;; End:
827
828 ;; arch-tag: bcd03437-0871-43fb-a8f1-ad0e0b5427ed
829 ;;; cl-extra.el ends here