Upgraded to mh-e version 6.1.1.
[bpt/emacs.git] / src / bytecode.c
1 /* Execution of byte code produced by bytecomp.el.
2 Copyright (C) 1985, 1986, 1987, 1988, 1993, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA.
21
22 hacked on by jwz@lucid.com 17-jun-91
23 o added a compile-time switch to turn on simple sanity checking;
24 o put back the obsolete byte-codes for error-detection;
25 o added a new instruction, unbind_all, which I will use for
26 tail-recursion elimination;
27 o made temp_output_buffer_show be called with the right number
28 of args;
29 o made the new bytecodes be called with args in the right order;
30 o added metering support.
31
32 by Hallvard:
33 o added relative jump instructions;
34 o all conditionals now only do QUIT if they jump.
35 */
36
37 #include <config.h>
38 #include "lisp.h"
39 #include "buffer.h"
40 #include "charset.h"
41 #include "syntax.h"
42
43 #ifdef CHECK_FRAME_FONT
44 #include "frame.h"
45 #include "xterm.h"
46 #endif
47
48 /*
49 * define BYTE_CODE_SAFE to enable some minor sanity checking (useful for
50 * debugging the byte compiler...)
51 *
52 * define BYTE_CODE_METER to enable generation of a byte-op usage histogram.
53 */
54 /* #define BYTE_CODE_SAFE */
55 /* #define BYTE_CODE_METER */
56
57 \f
58 #ifdef BYTE_CODE_METER
59
60 Lisp_Object Vbyte_code_meter, Qbyte_code_meter;
61 int byte_metering_on;
62
63 #define METER_2(code1, code2) \
64 XFASTINT (XVECTOR (XVECTOR (Vbyte_code_meter)->contents[(code1)]) \
65 ->contents[(code2)])
66
67 #define METER_1(code) METER_2 (0, (code))
68
69 #define METER_CODE(last_code, this_code) \
70 { \
71 if (byte_metering_on) \
72 { \
73 if (METER_1 (this_code) < MOST_POSITIVE_FIXNUM) \
74 METER_1 (this_code)++; \
75 if (last_code \
76 && METER_2 (last_code, this_code) < MOST_POSITIVE_FIXNUM) \
77 METER_2 (last_code, this_code)++; \
78 } \
79 }
80
81 #else /* no BYTE_CODE_METER */
82
83 #define METER_CODE(last_code, this_code)
84
85 #endif /* no BYTE_CODE_METER */
86 \f
87
88 Lisp_Object Qbytecode;
89
90 /* Byte codes: */
91
92 #define Bvarref 010
93 #define Bvarset 020
94 #define Bvarbind 030
95 #define Bcall 040
96 #define Bunbind 050
97
98 #define Bnth 070
99 #define Bsymbolp 071
100 #define Bconsp 072
101 #define Bstringp 073
102 #define Blistp 074
103 #define Beq 075
104 #define Bmemq 076
105 #define Bnot 077
106 #define Bcar 0100
107 #define Bcdr 0101
108 #define Bcons 0102
109 #define Blist1 0103
110 #define Blist2 0104
111 #define Blist3 0105
112 #define Blist4 0106
113 #define Blength 0107
114 #define Baref 0110
115 #define Baset 0111
116 #define Bsymbol_value 0112
117 #define Bsymbol_function 0113
118 #define Bset 0114
119 #define Bfset 0115
120 #define Bget 0116
121 #define Bsubstring 0117
122 #define Bconcat2 0120
123 #define Bconcat3 0121
124 #define Bconcat4 0122
125 #define Bsub1 0123
126 #define Badd1 0124
127 #define Beqlsign 0125
128 #define Bgtr 0126
129 #define Blss 0127
130 #define Bleq 0130
131 #define Bgeq 0131
132 #define Bdiff 0132
133 #define Bnegate 0133
134 #define Bplus 0134
135 #define Bmax 0135
136 #define Bmin 0136
137 #define Bmult 0137
138
139 #define Bpoint 0140
140 /* Was Bmark in v17. */
141 #define Bsave_current_buffer 0141
142 #define Bgoto_char 0142
143 #define Binsert 0143
144 #define Bpoint_max 0144
145 #define Bpoint_min 0145
146 #define Bchar_after 0146
147 #define Bfollowing_char 0147
148 #define Bpreceding_char 0150
149 #define Bcurrent_column 0151
150 #define Bindent_to 0152
151 #define Bscan_buffer 0153 /* No longer generated as of v18 */
152 #define Beolp 0154
153 #define Beobp 0155
154 #define Bbolp 0156
155 #define Bbobp 0157
156 #define Bcurrent_buffer 0160
157 #define Bset_buffer 0161
158 #define Bsave_current_buffer_1 0162 /* Replacing Bsave_current_buffer. */
159 #define Bread_char 0162 /* No longer generated as of v19 */
160 #define Bset_mark 0163 /* this loser is no longer generated as of v18 */
161 #define Binteractive_p 0164 /* Needed since interactive-p takes unevalled args */
162
163 #define Bforward_char 0165
164 #define Bforward_word 0166
165 #define Bskip_chars_forward 0167
166 #define Bskip_chars_backward 0170
167 #define Bforward_line 0171
168 #define Bchar_syntax 0172
169 #define Bbuffer_substring 0173
170 #define Bdelete_region 0174
171 #define Bnarrow_to_region 0175
172 #define Bwiden 0176
173 #define Bend_of_line 0177
174
175 #define Bconstant2 0201
176 #define Bgoto 0202
177 #define Bgotoifnil 0203
178 #define Bgotoifnonnil 0204
179 #define Bgotoifnilelsepop 0205
180 #define Bgotoifnonnilelsepop 0206
181 #define Breturn 0207
182 #define Bdiscard 0210
183 #define Bdup 0211
184
185 #define Bsave_excursion 0212
186 #define Bsave_window_excursion 0213
187 #define Bsave_restriction 0214
188 #define Bcatch 0215
189
190 #define Bunwind_protect 0216
191 #define Bcondition_case 0217
192 #define Btemp_output_buffer_setup 0220
193 #define Btemp_output_buffer_show 0221
194
195 #define Bunbind_all 0222
196
197 #define Bset_marker 0223
198 #define Bmatch_beginning 0224
199 #define Bmatch_end 0225
200 #define Bupcase 0226
201 #define Bdowncase 0227
202
203 #define Bstringeqlsign 0230
204 #define Bstringlss 0231
205 #define Bequal 0232
206 #define Bnthcdr 0233
207 #define Belt 0234
208 #define Bmember 0235
209 #define Bassq 0236
210 #define Bnreverse 0237
211 #define Bsetcar 0240
212 #define Bsetcdr 0241
213 #define Bcar_safe 0242
214 #define Bcdr_safe 0243
215 #define Bnconc 0244
216 #define Bquo 0245
217 #define Brem 0246
218 #define Bnumberp 0247
219 #define Bintegerp 0250
220
221 #define BRgoto 0252
222 #define BRgotoifnil 0253
223 #define BRgotoifnonnil 0254
224 #define BRgotoifnilelsepop 0255
225 #define BRgotoifnonnilelsepop 0256
226
227 #define BlistN 0257
228 #define BconcatN 0260
229 #define BinsertN 0261
230
231 #define Bconstant 0300
232 #define CONSTANTLIM 0100
233
234 \f
235 /* Structure describing a value stack used during byte-code execution
236 in Fbyte_code. */
237
238 struct byte_stack
239 {
240 /* Program counter. This points into the byte_string below
241 and is relocated when that string is relocated. */
242 const unsigned char *pc;
243
244 /* Top and bottom of stack. The bottom points to an area of memory
245 allocated with alloca in Fbyte_code. */
246 Lisp_Object *top, *bottom;
247
248 /* The string containing the byte-code, and its current address.
249 Storing this here protects it from GC because mark_byte_stack
250 marks it. */
251 Lisp_Object byte_string;
252 const unsigned char *byte_string_start;
253
254 /* The vector of constants used during byte-code execution. Storing
255 this here protects it from GC because mark_byte_stack marks it. */
256 Lisp_Object constants;
257
258 /* Next entry in byte_stack_list. */
259 struct byte_stack *next;
260 };
261
262 /* A list of currently active byte-code execution value stacks.
263 Fbyte_code adds an entry to the head of this list before it starts
264 processing byte-code, and it removed the entry again when it is
265 done. Signalling an error truncates the list analoguous to
266 gcprolist. */
267
268 struct byte_stack *byte_stack_list;
269
270 \f
271 /* Mark objects on byte_stack_list. Called during GC. */
272
273 void
274 mark_byte_stack ()
275 {
276 struct byte_stack *stack;
277 Lisp_Object *obj;
278
279 for (stack = byte_stack_list; stack; stack = stack->next)
280 {
281 /* If STACK->top is null here, this means there's an opcode in
282 Fbyte_code that wasn't expected to GC, but did. To find out
283 which opcode this is, record the value of `stack', and walk
284 up the stack in a debugger, stopping in frames of Fbyte_code.
285 The culprit is found in the frame of Fbyte_code where the
286 address of its local variable `stack' is equal to the
287 recorded value of `stack' here. */
288 if (!stack->top)
289 abort ();
290
291 for (obj = stack->bottom; obj <= stack->top; ++obj)
292 if (!XMARKBIT (*obj))
293 {
294 mark_object (obj);
295 XMARK (*obj);
296 }
297
298 if (!XMARKBIT (stack->byte_string))
299 {
300 mark_object (&stack->byte_string);
301 XMARK (stack->byte_string);
302 }
303
304 if (!XMARKBIT (stack->constants))
305 {
306 mark_object (&stack->constants);
307 XMARK (stack->constants);
308 }
309 }
310 }
311
312
313 /* Unmark objects in the stacks on byte_stack_list. Relocate program
314 counters. Called when GC has completed. */
315
316 void
317 unmark_byte_stack ()
318 {
319 struct byte_stack *stack;
320 Lisp_Object *obj;
321
322 for (stack = byte_stack_list; stack; stack = stack->next)
323 {
324 for (obj = stack->bottom; obj <= stack->top; ++obj)
325 XUNMARK (*obj);
326
327 XUNMARK (stack->byte_string);
328 XUNMARK (stack->constants);
329
330 if (stack->byte_string_start != SDATA (stack->byte_string))
331 {
332 int offset = stack->pc - stack->byte_string_start;
333 stack->byte_string_start = SDATA (stack->byte_string);
334 stack->pc = stack->byte_string_start + offset;
335 }
336 }
337 }
338
339 \f
340 /* Fetch the next byte from the bytecode stream */
341
342 #define FETCH *stack.pc++
343
344 /* Fetch two bytes from the bytecode stream and make a 16-bit number
345 out of them */
346
347 #define FETCH2 (op = FETCH, op + (FETCH << 8))
348
349 /* Push x onto the execution stack. This used to be #define PUSH(x)
350 (*++stackp = (x)) This oddity is necessary because Alliant can't be
351 bothered to compile the preincrement operator properly, as of 4/91.
352 -JimB */
353
354 #define PUSH(x) (top++, *top = (x))
355
356 /* Pop a value off the execution stack. */
357
358 #define POP (*top--)
359
360 /* Discard n values from the execution stack. */
361
362 #define DISCARD(n) (top -= (n))
363
364 /* Get the value which is at the top of the execution stack, but don't
365 pop it. */
366
367 #define TOP (*top)
368
369 /* Actions that must be performed before and after calling a function
370 that might GC. */
371
372 #define BEFORE_POTENTIAL_GC() stack.top = top
373 #define AFTER_POTENTIAL_GC() stack.top = NULL
374
375 /* Garbage collect if we have consed enough since the last time.
376 We do this at every branch, to avoid loops that never GC. */
377
378 #define MAYBE_GC() \
379 if (consing_since_gc > gc_cons_threshold) \
380 { \
381 BEFORE_POTENTIAL_GC (); \
382 Fgarbage_collect (); \
383 AFTER_POTENTIAL_GC (); \
384 } \
385 else
386
387 /* Check for jumping out of range. */
388
389 #ifdef BYTE_CODE_SAFE
390
391 #define CHECK_RANGE(ARG) \
392 if (ARG >= bytestr_length) abort ()
393
394 #else /* not BYTE_CODE_SAFE */
395
396 #define CHECK_RANGE(ARG)
397
398 #endif /* not BYTE_CODE_SAFE */
399
400 /* A version of the QUIT macro which makes sure that the stack top is
401 set before signaling `quit'. */
402
403 #define BYTE_CODE_QUIT \
404 do { \
405 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
406 { \
407 Vquit_flag = Qnil; \
408 BEFORE_POTENTIAL_GC (); \
409 Fsignal (Qquit, Qnil); \
410 } \
411 } while (0)
412
413
414 DEFUN ("byte-code", Fbyte_code, Sbyte_code, 3, 3, 0,
415 doc: /* Function used internally in byte-compiled code.
416 The first argument, BYTESTR, is a string of byte code;
417 the second, VECTOR, a vector of constants;
418 the third, MAXDEPTH, the maximum stack depth used in this function.
419 If the third argument is incorrect, Emacs may crash. */)
420 (bytestr, vector, maxdepth)
421 Lisp_Object bytestr, vector, maxdepth;
422 {
423 int count = SPECPDL_INDEX ();
424 #ifdef BYTE_CODE_METER
425 int this_op = 0;
426 int prev_op;
427 #endif
428 int op;
429 /* Lisp_Object v1, v2; */
430 Lisp_Object *vectorp;
431 #ifdef BYTE_CODE_SAFE
432 int const_length = XVECTOR (vector)->size;
433 Lisp_Object *stacke;
434 #endif
435 int bytestr_length;
436 struct byte_stack stack;
437 Lisp_Object *top;
438 Lisp_Object result;
439
440 #ifdef CHECK_FRAME_FONT
441 {
442 struct frame *f = SELECTED_FRAME ();
443 if (FRAME_X_P (f)
444 && FRAME_FONT (f)->direction != 0
445 && FRAME_FONT (f)->direction != 1)
446 abort ();
447 }
448 #endif
449
450 CHECK_STRING (bytestr);
451 if (!VECTORP (vector))
452 vector = wrong_type_argument (Qvectorp, vector);
453 CHECK_NUMBER (maxdepth);
454
455 if (STRING_MULTIBYTE (bytestr))
456 /* BYTESTR must have been produced by Emacs 20.2 or the earlier
457 because they produced a raw 8-bit string for byte-code and now
458 such a byte-code string is loaded as multibyte while raw 8-bit
459 characters converted to multibyte form. Thus, now we must
460 convert them back to the originally intended unibyte form. */
461 bytestr = Fstring_as_unibyte (bytestr);
462
463 bytestr_length = SBYTES (bytestr);
464 vectorp = XVECTOR (vector)->contents;
465
466 stack.byte_string = bytestr;
467 stack.pc = stack.byte_string_start = SDATA (bytestr);
468 stack.constants = vector;
469 stack.bottom = (Lisp_Object *) alloca (XFASTINT (maxdepth)
470 * sizeof (Lisp_Object));
471 top = stack.bottom - 1;
472 stack.top = NULL;
473 stack.next = byte_stack_list;
474 byte_stack_list = &stack;
475
476 #ifdef BYTE_CODE_SAFE
477 stacke = stack.bottom - 1 + XFASTINT (maxdepth);
478 #endif
479
480 while (1)
481 {
482 #ifdef BYTE_CODE_SAFE
483 if (top > stacke)
484 abort ();
485 else if (top < stack.bottom - 1)
486 abort ();
487 #endif
488
489 #ifdef BYTE_CODE_METER
490 prev_op = this_op;
491 this_op = op = FETCH;
492 METER_CODE (prev_op, op);
493 #else
494 op = FETCH;
495 #endif
496
497 switch (op)
498 {
499 case Bvarref + 7:
500 op = FETCH2;
501 goto varref;
502
503 case Bvarref:
504 case Bvarref + 1:
505 case Bvarref + 2:
506 case Bvarref + 3:
507 case Bvarref + 4:
508 case Bvarref + 5:
509 op = op - Bvarref;
510 goto varref;
511
512 /* This seems to be the most frequently executed byte-code
513 among the Bvarref's, so avoid a goto here. */
514 case Bvarref+6:
515 op = FETCH;
516 varref:
517 {
518 Lisp_Object v1, v2;
519
520 v1 = vectorp[op];
521 if (SYMBOLP (v1))
522 {
523 v2 = SYMBOL_VALUE (v1);
524 if (MISCP (v2) || EQ (v2, Qunbound))
525 {
526 BEFORE_POTENTIAL_GC ();
527 v2 = Fsymbol_value (v1);
528 AFTER_POTENTIAL_GC ();
529 }
530 }
531 else
532 {
533 BEFORE_POTENTIAL_GC ();
534 v2 = Fsymbol_value (v1);
535 AFTER_POTENTIAL_GC ();
536 }
537 PUSH (v2);
538 break;
539 }
540
541 case Bgotoifnil:
542 MAYBE_GC ();
543 op = FETCH2;
544 if (NILP (POP))
545 {
546 BYTE_CODE_QUIT;
547 CHECK_RANGE (op);
548 stack.pc = stack.byte_string_start + op;
549 }
550 break;
551
552 case Bcar:
553 {
554 Lisp_Object v1;
555 v1 = TOP;
556 if (CONSP (v1))
557 TOP = XCAR (v1);
558 else if (NILP (v1))
559 TOP = Qnil;
560 else
561 {
562 BEFORE_POTENTIAL_GC ();
563 Fcar (wrong_type_argument (Qlistp, v1));
564 AFTER_POTENTIAL_GC ();
565 }
566 break;
567 }
568
569 case Beq:
570 {
571 Lisp_Object v1;
572 v1 = POP;
573 TOP = EQ (v1, TOP) ? Qt : Qnil;
574 break;
575 }
576
577 case Bmemq:
578 {
579 Lisp_Object v1;
580 BEFORE_POTENTIAL_GC ();
581 v1 = POP;
582 TOP = Fmemq (TOP, v1);
583 AFTER_POTENTIAL_GC ();
584 break;
585 }
586
587 case Bcdr:
588 {
589 Lisp_Object v1;
590 v1 = TOP;
591 if (CONSP (v1))
592 TOP = XCDR (v1);
593 else if (NILP (v1))
594 TOP = Qnil;
595 else
596 {
597 BEFORE_POTENTIAL_GC ();
598 Fcdr (wrong_type_argument (Qlistp, v1));
599 AFTER_POTENTIAL_GC ();
600 }
601 break;
602 }
603
604 case Bvarset:
605 case Bvarset+1:
606 case Bvarset+2:
607 case Bvarset+3:
608 case Bvarset+4:
609 case Bvarset+5:
610 op -= Bvarset;
611 goto varset;
612
613 case Bvarset+7:
614 op = FETCH2;
615 goto varset;
616
617 case Bvarset+6:
618 op = FETCH;
619 varset:
620 {
621 Lisp_Object sym, val;
622
623 sym = vectorp[op];
624 val = TOP;
625
626 /* Inline the most common case. */
627 if (SYMBOLP (sym)
628 && !EQ (val, Qunbound)
629 && !XSYMBOL (sym)->indirect_variable
630 && !XSYMBOL (sym)->constant
631 && !MISCP (XSYMBOL (sym)->value))
632 XSYMBOL (sym)->value = val;
633 else
634 {
635 BEFORE_POTENTIAL_GC ();
636 set_internal (sym, val, current_buffer, 0);
637 AFTER_POTENTIAL_GC ();
638 }
639 }
640 POP;
641 break;
642
643 case Bdup:
644 {
645 Lisp_Object v1;
646 v1 = TOP;
647 PUSH (v1);
648 break;
649 }
650
651 /* ------------------ */
652
653 case Bvarbind+6:
654 op = FETCH;
655 goto varbind;
656
657 case Bvarbind+7:
658 op = FETCH2;
659 goto varbind;
660
661 case Bvarbind:
662 case Bvarbind+1:
663 case Bvarbind+2:
664 case Bvarbind+3:
665 case Bvarbind+4:
666 case Bvarbind+5:
667 op -= Bvarbind;
668 varbind:
669 /* Specbind can signal and thus GC. */
670 BEFORE_POTENTIAL_GC ();
671 specbind (vectorp[op], POP);
672 AFTER_POTENTIAL_GC ();
673 break;
674
675 case Bcall+6:
676 op = FETCH;
677 goto docall;
678
679 case Bcall+7:
680 op = FETCH2;
681 goto docall;
682
683 case Bcall:
684 case Bcall+1:
685 case Bcall+2:
686 case Bcall+3:
687 case Bcall+4:
688 case Bcall+5:
689 op -= Bcall;
690 docall:
691 {
692 BEFORE_POTENTIAL_GC ();
693 DISCARD (op);
694 #ifdef BYTE_CODE_METER
695 if (byte_metering_on && SYMBOLP (TOP))
696 {
697 Lisp_Object v1, v2;
698
699 v1 = TOP;
700 v2 = Fget (v1, Qbyte_code_meter);
701 if (INTEGERP (v2)
702 && XINT (v2) < MOST_POSITIVE_FIXNUM)
703 {
704 XSETINT (v2, XINT (v2) + 1);
705 Fput (v1, Qbyte_code_meter, v2);
706 }
707 }
708 #endif
709 TOP = Ffuncall (op + 1, &TOP);
710 AFTER_POTENTIAL_GC ();
711 break;
712 }
713
714 case Bunbind+6:
715 op = FETCH;
716 goto dounbind;
717
718 case Bunbind+7:
719 op = FETCH2;
720 goto dounbind;
721
722 case Bunbind:
723 case Bunbind+1:
724 case Bunbind+2:
725 case Bunbind+3:
726 case Bunbind+4:
727 case Bunbind+5:
728 op -= Bunbind;
729 dounbind:
730 BEFORE_POTENTIAL_GC ();
731 unbind_to (SPECPDL_INDEX () - op, Qnil);
732 AFTER_POTENTIAL_GC ();
733 break;
734
735 case Bunbind_all:
736 /* To unbind back to the beginning of this frame. Not used yet,
737 but will be needed for tail-recursion elimination. */
738 BEFORE_POTENTIAL_GC ();
739 unbind_to (count, Qnil);
740 AFTER_POTENTIAL_GC ();
741 break;
742
743 case Bgoto:
744 MAYBE_GC ();
745 BYTE_CODE_QUIT;
746 op = FETCH2; /* pc = FETCH2 loses since FETCH2 contains pc++ */
747 CHECK_RANGE (op);
748 stack.pc = stack.byte_string_start + op;
749 break;
750
751 case Bgotoifnonnil:
752 MAYBE_GC ();
753 op = FETCH2;
754 if (!NILP (POP))
755 {
756 BYTE_CODE_QUIT;
757 CHECK_RANGE (op);
758 stack.pc = stack.byte_string_start + op;
759 }
760 break;
761
762 case Bgotoifnilelsepop:
763 MAYBE_GC ();
764 op = FETCH2;
765 if (NILP (TOP))
766 {
767 BYTE_CODE_QUIT;
768 CHECK_RANGE (op);
769 stack.pc = stack.byte_string_start + op;
770 }
771 else DISCARD (1);
772 break;
773
774 case Bgotoifnonnilelsepop:
775 MAYBE_GC ();
776 op = FETCH2;
777 if (!NILP (TOP))
778 {
779 BYTE_CODE_QUIT;
780 CHECK_RANGE (op);
781 stack.pc = stack.byte_string_start + op;
782 }
783 else DISCARD (1);
784 break;
785
786 case BRgoto:
787 MAYBE_GC ();
788 BYTE_CODE_QUIT;
789 stack.pc += (int) *stack.pc - 127;
790 break;
791
792 case BRgotoifnil:
793 MAYBE_GC ();
794 if (NILP (POP))
795 {
796 BYTE_CODE_QUIT;
797 stack.pc += (int) *stack.pc - 128;
798 }
799 stack.pc++;
800 break;
801
802 case BRgotoifnonnil:
803 MAYBE_GC ();
804 if (!NILP (POP))
805 {
806 BYTE_CODE_QUIT;
807 stack.pc += (int) *stack.pc - 128;
808 }
809 stack.pc++;
810 break;
811
812 case BRgotoifnilelsepop:
813 MAYBE_GC ();
814 op = *stack.pc++;
815 if (NILP (TOP))
816 {
817 BYTE_CODE_QUIT;
818 stack.pc += op - 128;
819 }
820 else DISCARD (1);
821 break;
822
823 case BRgotoifnonnilelsepop:
824 MAYBE_GC ();
825 op = *stack.pc++;
826 if (!NILP (TOP))
827 {
828 BYTE_CODE_QUIT;
829 stack.pc += op - 128;
830 }
831 else DISCARD (1);
832 break;
833
834 case Breturn:
835 result = POP;
836 goto exit;
837
838 case Bdiscard:
839 DISCARD (1);
840 break;
841
842 case Bconstant2:
843 PUSH (vectorp[FETCH2]);
844 break;
845
846 case Bsave_excursion:
847 record_unwind_protect (save_excursion_restore,
848 save_excursion_save ());
849 break;
850
851 case Bsave_current_buffer:
852 case Bsave_current_buffer_1:
853 record_unwind_protect (set_buffer_if_live, Fcurrent_buffer ());
854 break;
855
856 case Bsave_window_excursion:
857 BEFORE_POTENTIAL_GC ();
858 TOP = Fsave_window_excursion (TOP);
859 AFTER_POTENTIAL_GC ();
860 break;
861
862 case Bsave_restriction:
863 record_unwind_protect (save_restriction_restore,
864 save_restriction_save ());
865 break;
866
867 case Bcatch:
868 {
869 Lisp_Object v1;
870 BEFORE_POTENTIAL_GC ();
871 v1 = POP;
872 TOP = internal_catch (TOP, Feval, v1);
873 AFTER_POTENTIAL_GC ();
874 break;
875 }
876
877 case Bunwind_protect:
878 /* The function record_unwind_protect can GC. */
879 BEFORE_POTENTIAL_GC ();
880 record_unwind_protect (0, POP);
881 AFTER_POTENTIAL_GC ();
882 (specpdl_ptr - 1)->symbol = Qnil;
883 break;
884
885 case Bcondition_case:
886 {
887 Lisp_Object v1;
888 v1 = POP;
889 v1 = Fcons (POP, v1);
890 BEFORE_POTENTIAL_GC ();
891 TOP = Fcondition_case (Fcons (TOP, v1));
892 AFTER_POTENTIAL_GC ();
893 break;
894 }
895
896 case Btemp_output_buffer_setup:
897 BEFORE_POTENTIAL_GC ();
898 CHECK_STRING (TOP);
899 temp_output_buffer_setup (SDATA (TOP));
900 AFTER_POTENTIAL_GC ();
901 TOP = Vstandard_output;
902 break;
903
904 case Btemp_output_buffer_show:
905 {
906 Lisp_Object v1;
907 BEFORE_POTENTIAL_GC ();
908 v1 = POP;
909 temp_output_buffer_show (TOP);
910 TOP = v1;
911 /* pop binding of standard-output */
912 unbind_to (SPECPDL_INDEX () - 1, Qnil);
913 AFTER_POTENTIAL_GC ();
914 break;
915 }
916
917 case Bnth:
918 {
919 Lisp_Object v1, v2;
920 BEFORE_POTENTIAL_GC ();
921 v1 = POP;
922 v2 = TOP;
923 CHECK_NUMBER (v2);
924 AFTER_POTENTIAL_GC ();
925 op = XINT (v2);
926 immediate_quit = 1;
927 while (--op >= 0)
928 {
929 if (CONSP (v1))
930 v1 = XCDR (v1);
931 else if (!NILP (v1))
932 {
933 immediate_quit = 0;
934 BEFORE_POTENTIAL_GC ();
935 v1 = wrong_type_argument (Qlistp, v1);
936 AFTER_POTENTIAL_GC ();
937 immediate_quit = 1;
938 op++;
939 }
940 }
941 immediate_quit = 0;
942 if (CONSP (v1))
943 TOP = XCAR (v1);
944 else if (NILP (v1))
945 TOP = Qnil;
946 else
947 {
948 BEFORE_POTENTIAL_GC ();
949 Fcar (wrong_type_argument (Qlistp, v1));
950 AFTER_POTENTIAL_GC ();
951 }
952 break;
953 }
954
955 case Bsymbolp:
956 TOP = SYMBOLP (TOP) ? Qt : Qnil;
957 break;
958
959 case Bconsp:
960 TOP = CONSP (TOP) ? Qt : Qnil;
961 break;
962
963 case Bstringp:
964 TOP = STRINGP (TOP) ? Qt : Qnil;
965 break;
966
967 case Blistp:
968 TOP = CONSP (TOP) || NILP (TOP) ? Qt : Qnil;
969 break;
970
971 case Bnot:
972 TOP = NILP (TOP) ? Qt : Qnil;
973 break;
974
975 case Bcons:
976 {
977 Lisp_Object v1;
978 v1 = POP;
979 TOP = Fcons (TOP, v1);
980 break;
981 }
982
983 case Blist1:
984 TOP = Fcons (TOP, Qnil);
985 break;
986
987 case Blist2:
988 {
989 Lisp_Object v1;
990 v1 = POP;
991 TOP = Fcons (TOP, Fcons (v1, Qnil));
992 break;
993 }
994
995 case Blist3:
996 DISCARD (2);
997 TOP = Flist (3, &TOP);
998 break;
999
1000 case Blist4:
1001 DISCARD (3);
1002 TOP = Flist (4, &TOP);
1003 break;
1004
1005 case BlistN:
1006 op = FETCH;
1007 DISCARD (op - 1);
1008 TOP = Flist (op, &TOP);
1009 break;
1010
1011 case Blength:
1012 BEFORE_POTENTIAL_GC ();
1013 TOP = Flength (TOP);
1014 AFTER_POTENTIAL_GC ();
1015 break;
1016
1017 case Baref:
1018 {
1019 Lisp_Object v1;
1020 BEFORE_POTENTIAL_GC ();
1021 v1 = POP;
1022 TOP = Faref (TOP, v1);
1023 AFTER_POTENTIAL_GC ();
1024 break;
1025 }
1026
1027 case Baset:
1028 {
1029 Lisp_Object v1, v2;
1030 BEFORE_POTENTIAL_GC ();
1031 v2 = POP; v1 = POP;
1032 TOP = Faset (TOP, v1, v2);
1033 AFTER_POTENTIAL_GC ();
1034 break;
1035 }
1036
1037 case Bsymbol_value:
1038 BEFORE_POTENTIAL_GC ();
1039 TOP = Fsymbol_value (TOP);
1040 AFTER_POTENTIAL_GC ();
1041 break;
1042
1043 case Bsymbol_function:
1044 BEFORE_POTENTIAL_GC ();
1045 TOP = Fsymbol_function (TOP);
1046 AFTER_POTENTIAL_GC ();
1047 break;
1048
1049 case Bset:
1050 {
1051 Lisp_Object v1;
1052 BEFORE_POTENTIAL_GC ();
1053 v1 = POP;
1054 TOP = Fset (TOP, v1);
1055 AFTER_POTENTIAL_GC ();
1056 break;
1057 }
1058
1059 case Bfset:
1060 {
1061 Lisp_Object v1;
1062 BEFORE_POTENTIAL_GC ();
1063 v1 = POP;
1064 TOP = Ffset (TOP, v1);
1065 AFTER_POTENTIAL_GC ();
1066 break;
1067 }
1068
1069 case Bget:
1070 {
1071 Lisp_Object v1;
1072 BEFORE_POTENTIAL_GC ();
1073 v1 = POP;
1074 TOP = Fget (TOP, v1);
1075 AFTER_POTENTIAL_GC ();
1076 break;
1077 }
1078
1079 case Bsubstring:
1080 {
1081 Lisp_Object v1, v2;
1082 BEFORE_POTENTIAL_GC ();
1083 v2 = POP; v1 = POP;
1084 TOP = Fsubstring (TOP, v1, v2);
1085 AFTER_POTENTIAL_GC ();
1086 break;
1087 }
1088
1089 case Bconcat2:
1090 BEFORE_POTENTIAL_GC ();
1091 DISCARD (1);
1092 TOP = Fconcat (2, &TOP);
1093 AFTER_POTENTIAL_GC ();
1094 break;
1095
1096 case Bconcat3:
1097 BEFORE_POTENTIAL_GC ();
1098 DISCARD (2);
1099 TOP = Fconcat (3, &TOP);
1100 AFTER_POTENTIAL_GC ();
1101 break;
1102
1103 case Bconcat4:
1104 BEFORE_POTENTIAL_GC ();
1105 DISCARD (3);
1106 TOP = Fconcat (4, &TOP);
1107 AFTER_POTENTIAL_GC ();
1108 break;
1109
1110 case BconcatN:
1111 op = FETCH;
1112 BEFORE_POTENTIAL_GC ();
1113 DISCARD (op - 1);
1114 TOP = Fconcat (op, &TOP);
1115 AFTER_POTENTIAL_GC ();
1116 break;
1117
1118 case Bsub1:
1119 {
1120 Lisp_Object v1;
1121 v1 = TOP;
1122 if (INTEGERP (v1))
1123 {
1124 XSETINT (v1, XINT (v1) - 1);
1125 TOP = v1;
1126 }
1127 else
1128 {
1129 BEFORE_POTENTIAL_GC ();
1130 TOP = Fsub1 (v1);
1131 AFTER_POTENTIAL_GC ();
1132 }
1133 break;
1134 }
1135
1136 case Badd1:
1137 {
1138 Lisp_Object v1;
1139 v1 = TOP;
1140 if (INTEGERP (v1))
1141 {
1142 XSETINT (v1, XINT (v1) + 1);
1143 TOP = v1;
1144 }
1145 else
1146 {
1147 BEFORE_POTENTIAL_GC ();
1148 TOP = Fadd1 (v1);
1149 AFTER_POTENTIAL_GC ();
1150 }
1151 break;
1152 }
1153
1154 case Beqlsign:
1155 {
1156 Lisp_Object v1, v2;
1157 BEFORE_POTENTIAL_GC ();
1158 v2 = POP; v1 = TOP;
1159 CHECK_NUMBER_OR_FLOAT_COERCE_MARKER (v1);
1160 CHECK_NUMBER_OR_FLOAT_COERCE_MARKER (v2);
1161 AFTER_POTENTIAL_GC ();
1162 if (FLOATP (v1) || FLOATP (v2))
1163 {
1164 double f1, f2;
1165
1166 f1 = (FLOATP (v1) ? XFLOAT_DATA (v1) : XINT (v1));
1167 f2 = (FLOATP (v2) ? XFLOAT_DATA (v2) : XINT (v2));
1168 TOP = (f1 == f2 ? Qt : Qnil);
1169 }
1170 else
1171 TOP = (XINT (v1) == XINT (v2) ? Qt : Qnil);
1172 break;
1173 }
1174
1175 case Bgtr:
1176 {
1177 Lisp_Object v1;
1178 BEFORE_POTENTIAL_GC ();
1179 v1 = POP;
1180 TOP = Fgtr (TOP, v1);
1181 AFTER_POTENTIAL_GC ();
1182 break;
1183 }
1184
1185 case Blss:
1186 {
1187 Lisp_Object v1;
1188 BEFORE_POTENTIAL_GC ();
1189 v1 = POP;
1190 TOP = Flss (TOP, v1);
1191 AFTER_POTENTIAL_GC ();
1192 break;
1193 }
1194
1195 case Bleq:
1196 {
1197 Lisp_Object v1;
1198 BEFORE_POTENTIAL_GC ();
1199 v1 = POP;
1200 TOP = Fleq (TOP, v1);
1201 AFTER_POTENTIAL_GC ();
1202 break;
1203 }
1204
1205 case Bgeq:
1206 {
1207 Lisp_Object v1;
1208 BEFORE_POTENTIAL_GC ();
1209 v1 = POP;
1210 TOP = Fgeq (TOP, v1);
1211 AFTER_POTENTIAL_GC ();
1212 break;
1213 }
1214
1215 case Bdiff:
1216 BEFORE_POTENTIAL_GC ();
1217 DISCARD (1);
1218 TOP = Fminus (2, &TOP);
1219 AFTER_POTENTIAL_GC ();
1220 break;
1221
1222 case Bnegate:
1223 {
1224 Lisp_Object v1;
1225 v1 = TOP;
1226 if (INTEGERP (v1))
1227 {
1228 XSETINT (v1, - XINT (v1));
1229 TOP = v1;
1230 }
1231 else
1232 {
1233 BEFORE_POTENTIAL_GC ();
1234 TOP = Fminus (1, &TOP);
1235 AFTER_POTENTIAL_GC ();
1236 }
1237 break;
1238 }
1239
1240 case Bplus:
1241 BEFORE_POTENTIAL_GC ();
1242 DISCARD (1);
1243 TOP = Fplus (2, &TOP);
1244 AFTER_POTENTIAL_GC ();
1245 break;
1246
1247 case Bmax:
1248 BEFORE_POTENTIAL_GC ();
1249 DISCARD (1);
1250 TOP = Fmax (2, &TOP);
1251 AFTER_POTENTIAL_GC ();
1252 break;
1253
1254 case Bmin:
1255 BEFORE_POTENTIAL_GC ();
1256 DISCARD (1);
1257 TOP = Fmin (2, &TOP);
1258 AFTER_POTENTIAL_GC ();
1259 break;
1260
1261 case Bmult:
1262 BEFORE_POTENTIAL_GC ();
1263 DISCARD (1);
1264 TOP = Ftimes (2, &TOP);
1265 AFTER_POTENTIAL_GC ();
1266 break;
1267
1268 case Bquo:
1269 BEFORE_POTENTIAL_GC ();
1270 DISCARD (1);
1271 TOP = Fquo (2, &TOP);
1272 AFTER_POTENTIAL_GC ();
1273 break;
1274
1275 case Brem:
1276 {
1277 Lisp_Object v1;
1278 BEFORE_POTENTIAL_GC ();
1279 v1 = POP;
1280 TOP = Frem (TOP, v1);
1281 AFTER_POTENTIAL_GC ();
1282 break;
1283 }
1284
1285 case Bpoint:
1286 {
1287 Lisp_Object v1;
1288 XSETFASTINT (v1, PT);
1289 PUSH (v1);
1290 break;
1291 }
1292
1293 case Bgoto_char:
1294 BEFORE_POTENTIAL_GC ();
1295 TOP = Fgoto_char (TOP);
1296 AFTER_POTENTIAL_GC ();
1297 break;
1298
1299 case Binsert:
1300 BEFORE_POTENTIAL_GC ();
1301 TOP = Finsert (1, &TOP);
1302 AFTER_POTENTIAL_GC ();
1303 break;
1304
1305 case BinsertN:
1306 op = FETCH;
1307 BEFORE_POTENTIAL_GC ();
1308 DISCARD (op - 1);
1309 TOP = Finsert (op, &TOP);
1310 AFTER_POTENTIAL_GC ();
1311 break;
1312
1313 case Bpoint_max:
1314 {
1315 Lisp_Object v1;
1316 XSETFASTINT (v1, ZV);
1317 PUSH (v1);
1318 break;
1319 }
1320
1321 case Bpoint_min:
1322 {
1323 Lisp_Object v1;
1324 XSETFASTINT (v1, BEGV);
1325 PUSH (v1);
1326 break;
1327 }
1328
1329 case Bchar_after:
1330 BEFORE_POTENTIAL_GC ();
1331 TOP = Fchar_after (TOP);
1332 AFTER_POTENTIAL_GC ();
1333 break;
1334
1335 case Bfollowing_char:
1336 {
1337 Lisp_Object v1;
1338 BEFORE_POTENTIAL_GC ();
1339 v1 = Ffollowing_char ();
1340 AFTER_POTENTIAL_GC ();
1341 PUSH (v1);
1342 break;
1343 }
1344
1345 case Bpreceding_char:
1346 {
1347 Lisp_Object v1;
1348 BEFORE_POTENTIAL_GC ();
1349 v1 = Fprevious_char ();
1350 AFTER_POTENTIAL_GC ();
1351 PUSH (v1);
1352 break;
1353 }
1354
1355 case Bcurrent_column:
1356 {
1357 Lisp_Object v1;
1358 BEFORE_POTENTIAL_GC ();
1359 XSETFASTINT (v1, (int) current_column ()); /* iftc */
1360 AFTER_POTENTIAL_GC ();
1361 PUSH (v1);
1362 break;
1363 }
1364
1365 case Bindent_to:
1366 BEFORE_POTENTIAL_GC ();
1367 TOP = Findent_to (TOP, Qnil);
1368 AFTER_POTENTIAL_GC ();
1369 break;
1370
1371 case Beolp:
1372 PUSH (Feolp ());
1373 break;
1374
1375 case Beobp:
1376 PUSH (Feobp ());
1377 break;
1378
1379 case Bbolp:
1380 PUSH (Fbolp ());
1381 break;
1382
1383 case Bbobp:
1384 PUSH (Fbobp ());
1385 break;
1386
1387 case Bcurrent_buffer:
1388 PUSH (Fcurrent_buffer ());
1389 break;
1390
1391 case Bset_buffer:
1392 BEFORE_POTENTIAL_GC ();
1393 TOP = Fset_buffer (TOP);
1394 AFTER_POTENTIAL_GC ();
1395 break;
1396
1397 case Binteractive_p:
1398 PUSH (Finteractive_p ());
1399 break;
1400
1401 case Bforward_char:
1402 BEFORE_POTENTIAL_GC ();
1403 TOP = Fforward_char (TOP);
1404 AFTER_POTENTIAL_GC ();
1405 break;
1406
1407 case Bforward_word:
1408 BEFORE_POTENTIAL_GC ();
1409 TOP = Fforward_word (TOP);
1410 AFTER_POTENTIAL_GC ();
1411 break;
1412
1413 case Bskip_chars_forward:
1414 {
1415 Lisp_Object v1;
1416 BEFORE_POTENTIAL_GC ();
1417 v1 = POP;
1418 TOP = Fskip_chars_forward (TOP, v1);
1419 AFTER_POTENTIAL_GC ();
1420 break;
1421 }
1422
1423 case Bskip_chars_backward:
1424 {
1425 Lisp_Object v1;
1426 BEFORE_POTENTIAL_GC ();
1427 v1 = POP;
1428 TOP = Fskip_chars_backward (TOP, v1);
1429 AFTER_POTENTIAL_GC ();
1430 break;
1431 }
1432
1433 case Bforward_line:
1434 BEFORE_POTENTIAL_GC ();
1435 TOP = Fforward_line (TOP);
1436 AFTER_POTENTIAL_GC ();
1437 break;
1438
1439 case Bchar_syntax:
1440 BEFORE_POTENTIAL_GC ();
1441 CHECK_NUMBER (TOP);
1442 AFTER_POTENTIAL_GC ();
1443 XSETFASTINT (TOP, syntax_code_spec[(int) SYNTAX (XINT (TOP))]);
1444 break;
1445
1446 case Bbuffer_substring:
1447 {
1448 Lisp_Object v1;
1449 BEFORE_POTENTIAL_GC ();
1450 v1 = POP;
1451 TOP = Fbuffer_substring (TOP, v1);
1452 AFTER_POTENTIAL_GC ();
1453 break;
1454 }
1455
1456 case Bdelete_region:
1457 {
1458 Lisp_Object v1;
1459 BEFORE_POTENTIAL_GC ();
1460 v1 = POP;
1461 TOP = Fdelete_region (TOP, v1);
1462 AFTER_POTENTIAL_GC ();
1463 break;
1464 }
1465
1466 case Bnarrow_to_region:
1467 {
1468 Lisp_Object v1;
1469 BEFORE_POTENTIAL_GC ();
1470 v1 = POP;
1471 TOP = Fnarrow_to_region (TOP, v1);
1472 AFTER_POTENTIAL_GC ();
1473 break;
1474 }
1475
1476 case Bwiden:
1477 BEFORE_POTENTIAL_GC ();
1478 PUSH (Fwiden ());
1479 AFTER_POTENTIAL_GC ();
1480 break;
1481
1482 case Bend_of_line:
1483 BEFORE_POTENTIAL_GC ();
1484 TOP = Fend_of_line (TOP);
1485 AFTER_POTENTIAL_GC ();
1486 break;
1487
1488 case Bset_marker:
1489 {
1490 Lisp_Object v1, v2;
1491 BEFORE_POTENTIAL_GC ();
1492 v1 = POP;
1493 v2 = POP;
1494 TOP = Fset_marker (TOP, v2, v1);
1495 AFTER_POTENTIAL_GC ();
1496 break;
1497 }
1498
1499 case Bmatch_beginning:
1500 BEFORE_POTENTIAL_GC ();
1501 TOP = Fmatch_beginning (TOP);
1502 AFTER_POTENTIAL_GC ();
1503 break;
1504
1505 case Bmatch_end:
1506 BEFORE_POTENTIAL_GC ();
1507 TOP = Fmatch_end (TOP);
1508 AFTER_POTENTIAL_GC ();
1509 break;
1510
1511 case Bupcase:
1512 BEFORE_POTENTIAL_GC ();
1513 TOP = Fupcase (TOP);
1514 AFTER_POTENTIAL_GC ();
1515 break;
1516
1517 case Bdowncase:
1518 BEFORE_POTENTIAL_GC ();
1519 TOP = Fdowncase (TOP);
1520 AFTER_POTENTIAL_GC ();
1521 break;
1522
1523 case Bstringeqlsign:
1524 {
1525 Lisp_Object v1;
1526 BEFORE_POTENTIAL_GC ();
1527 v1 = POP;
1528 TOP = Fstring_equal (TOP, v1);
1529 AFTER_POTENTIAL_GC ();
1530 break;
1531 }
1532
1533 case Bstringlss:
1534 {
1535 Lisp_Object v1;
1536 BEFORE_POTENTIAL_GC ();
1537 v1 = POP;
1538 TOP = Fstring_lessp (TOP, v1);
1539 AFTER_POTENTIAL_GC ();
1540 break;
1541 }
1542
1543 case Bequal:
1544 {
1545 Lisp_Object v1;
1546 v1 = POP;
1547 TOP = Fequal (TOP, v1);
1548 break;
1549 }
1550
1551 case Bnthcdr:
1552 {
1553 Lisp_Object v1;
1554 BEFORE_POTENTIAL_GC ();
1555 v1 = POP;
1556 TOP = Fnthcdr (TOP, v1);
1557 AFTER_POTENTIAL_GC ();
1558 break;
1559 }
1560
1561 case Belt:
1562 {
1563 Lisp_Object v1, v2;
1564 if (CONSP (TOP))
1565 {
1566 /* Exchange args and then do nth. */
1567 BEFORE_POTENTIAL_GC ();
1568 v2 = POP;
1569 v1 = TOP;
1570 CHECK_NUMBER (v2);
1571 AFTER_POTENTIAL_GC ();
1572 op = XINT (v2);
1573 immediate_quit = 1;
1574 while (--op >= 0)
1575 {
1576 if (CONSP (v1))
1577 v1 = XCDR (v1);
1578 else if (!NILP (v1))
1579 {
1580 immediate_quit = 0;
1581 BEFORE_POTENTIAL_GC ();
1582 v1 = wrong_type_argument (Qlistp, v1);
1583 AFTER_POTENTIAL_GC ();
1584 immediate_quit = 1;
1585 op++;
1586 }
1587 }
1588 immediate_quit = 0;
1589 if (CONSP (v1))
1590 TOP = XCAR (v1);
1591 else if (NILP (v1))
1592 TOP = Qnil;
1593 else
1594 {
1595 BEFORE_POTENTIAL_GC ();
1596 Fcar (wrong_type_argument (Qlistp, v1));
1597 AFTER_POTENTIAL_GC ();
1598 }
1599 }
1600 else
1601 {
1602 BEFORE_POTENTIAL_GC ();
1603 v1 = POP;
1604 TOP = Felt (TOP, v1);
1605 AFTER_POTENTIAL_GC ();
1606 }
1607 break;
1608 }
1609
1610 case Bmember:
1611 {
1612 Lisp_Object v1;
1613 BEFORE_POTENTIAL_GC ();
1614 v1 = POP;
1615 TOP = Fmember (TOP, v1);
1616 AFTER_POTENTIAL_GC ();
1617 break;
1618 }
1619
1620 case Bassq:
1621 {
1622 Lisp_Object v1;
1623 BEFORE_POTENTIAL_GC ();
1624 v1 = POP;
1625 TOP = Fassq (TOP, v1);
1626 AFTER_POTENTIAL_GC ();
1627 break;
1628 }
1629
1630 case Bnreverse:
1631 BEFORE_POTENTIAL_GC ();
1632 TOP = Fnreverse (TOP);
1633 AFTER_POTENTIAL_GC ();
1634 break;
1635
1636 case Bsetcar:
1637 {
1638 Lisp_Object v1;
1639 BEFORE_POTENTIAL_GC ();
1640 v1 = POP;
1641 TOP = Fsetcar (TOP, v1);
1642 AFTER_POTENTIAL_GC ();
1643 break;
1644 }
1645
1646 case Bsetcdr:
1647 {
1648 Lisp_Object v1;
1649 BEFORE_POTENTIAL_GC ();
1650 v1 = POP;
1651 TOP = Fsetcdr (TOP, v1);
1652 AFTER_POTENTIAL_GC ();
1653 break;
1654 }
1655
1656 case Bcar_safe:
1657 {
1658 Lisp_Object v1;
1659 v1 = TOP;
1660 if (CONSP (v1))
1661 TOP = XCAR (v1);
1662 else
1663 TOP = Qnil;
1664 break;
1665 }
1666
1667 case Bcdr_safe:
1668 {
1669 Lisp_Object v1;
1670 v1 = TOP;
1671 if (CONSP (v1))
1672 TOP = XCDR (v1);
1673 else
1674 TOP = Qnil;
1675 break;
1676 }
1677
1678 case Bnconc:
1679 BEFORE_POTENTIAL_GC ();
1680 DISCARD (1);
1681 TOP = Fnconc (2, &TOP);
1682 AFTER_POTENTIAL_GC ();
1683 break;
1684
1685 case Bnumberp:
1686 TOP = (NUMBERP (TOP) ? Qt : Qnil);
1687 break;
1688
1689 case Bintegerp:
1690 TOP = INTEGERP (TOP) ? Qt : Qnil;
1691 break;
1692
1693 #ifdef BYTE_CODE_SAFE
1694 case Bset_mark:
1695 BEFORE_POTENTIAL_GC ();
1696 error ("set-mark is an obsolete bytecode");
1697 AFTER_POTENTIAL_GC ();
1698 break;
1699 case Bscan_buffer:
1700 BEFORE_POTENTIAL_GC ();
1701 error ("scan-buffer is an obsolete bytecode");
1702 AFTER_POTENTIAL_GC ();
1703 break;
1704 #endif
1705
1706 case 0:
1707 abort ();
1708
1709 case 255:
1710 default:
1711 #ifdef BYTE_CODE_SAFE
1712 if (op < Bconstant)
1713 {
1714 abort ();
1715 }
1716 if ((op -= Bconstant) >= const_length)
1717 {
1718 abort ();
1719 }
1720 PUSH (vectorp[op]);
1721 #else
1722 PUSH (vectorp[op - Bconstant]);
1723 #endif
1724 }
1725 }
1726
1727 exit:
1728
1729 byte_stack_list = byte_stack_list->next;
1730
1731 /* Binds and unbinds are supposed to be compiled balanced. */
1732 if (SPECPDL_INDEX () != count)
1733 #ifdef BYTE_CODE_SAFE
1734 error ("binding stack not balanced (serious byte compiler bug)");
1735 #else
1736 abort ();
1737 #endif
1738
1739 return result;
1740 }
1741
1742 void
1743 syms_of_bytecode ()
1744 {
1745 Qbytecode = intern ("byte-code");
1746 staticpro (&Qbytecode);
1747
1748 defsubr (&Sbyte_code);
1749
1750 #ifdef BYTE_CODE_METER
1751
1752 DEFVAR_LISP ("byte-code-meter", &Vbyte_code_meter,
1753 doc: /* A vector of vectors which holds a histogram of byte-code usage.
1754 \(aref (aref byte-code-meter 0) CODE) indicates how many times the byte
1755 opcode CODE has been executed.
1756 \(aref (aref byte-code-meter CODE1) CODE2), where CODE1 is not 0,
1757 indicates how many times the byte opcodes CODE1 and CODE2 have been
1758 executed in succession. */);
1759
1760 DEFVAR_BOOL ("byte-metering-on", &byte_metering_on,
1761 doc: /* If non-nil, keep profiling information on byte code usage.
1762 The variable byte-code-meter indicates how often each byte opcode is used.
1763 If a symbol has a property named `byte-code-meter' whose value is an
1764 integer, it is incremented each time that symbol's function is called. */);
1765
1766 byte_metering_on = 0;
1767 Vbyte_code_meter = Fmake_vector (make_number (256), make_number (0));
1768 Qbyte_code_meter = intern ("byte-code-meter");
1769 staticpro (&Qbyte_code_meter);
1770 {
1771 int i = 256;
1772 while (i--)
1773 XVECTOR (Vbyte_code_meter)->contents[i] =
1774 Fmake_vector (make_number (256), make_number (0));
1775 }
1776 #endif
1777 }