(line-number-display-limit): Doc fix.
[bpt/emacs.git] / src / intervals.c
1 /* Code for doing intervals.
2 Copyright (C) 1993, 1994, 1995, 1997, 1998 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* NOTES:
23
24 Have to ensure that we can't put symbol nil on a plist, or some
25 functions may work incorrectly.
26
27 An idea: Have the owner of the tree keep count of splits and/or
28 insertion lengths (in intervals), and balance after every N.
29
30 Need to call *_left_hook when buffer is killed.
31
32 Scan for zero-length, or 0-length to see notes about handling
33 zero length interval-markers.
34
35 There are comments around about freeing intervals. It might be
36 faster to explicitly free them (put them on the free list) than
37 to GC them.
38
39 */
40
41
42 #include <config.h>
43 #include "lisp.h"
44 #include "intervals.h"
45 #include "buffer.h"
46 #include "puresize.h"
47 #include "keyboard.h"
48
49 /* The rest of the file is within this conditional. */
50 #ifdef USE_TEXT_PROPERTIES
51
52 /* Test for membership, allowing for t (actually any non-cons) to mean the
53 universal set. */
54
55 #define TMEM(sym, set) (CONSP (set) ? ! NILP (Fmemq (sym, set)) : ! NILP (set))
56
57 #define min(x, y) ((x) < (y) ? (x) : (y))
58
59 Lisp_Object merge_properties_sticky ();
60 \f
61 /* Utility functions for intervals. */
62
63
64 /* Create the root interval of some object, a buffer or string. */
65
66 INTERVAL
67 create_root_interval (parent)
68 Lisp_Object parent;
69 {
70 INTERVAL new;
71
72 CHECK_IMPURE (parent);
73
74 new = make_interval ();
75
76 if (BUFFERP (parent))
77 {
78 new->total_length = (BUF_Z (XBUFFER (parent))
79 - BUF_BEG (XBUFFER (parent)));
80 BUF_INTERVALS (XBUFFER (parent)) = new;
81 new->position = 1;
82 }
83 else if (STRINGP (parent))
84 {
85 new->total_length = XSTRING (parent)->size;
86 XSTRING (parent)->intervals = new;
87 new->position = 0;
88 }
89
90 new->parent = (INTERVAL) XFASTINT (parent);
91
92 return new;
93 }
94
95 /* Make the interval TARGET have exactly the properties of SOURCE */
96
97 void
98 copy_properties (source, target)
99 register INTERVAL source, target;
100 {
101 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
102 return;
103
104 COPY_INTERVAL_CACHE (source, target);
105 target->plist = Fcopy_sequence (source->plist);
106 }
107
108 /* Merge the properties of interval SOURCE into the properties
109 of interval TARGET. That is to say, each property in SOURCE
110 is added to TARGET if TARGET has no such property as yet. */
111
112 static void
113 merge_properties (source, target)
114 register INTERVAL source, target;
115 {
116 register Lisp_Object o, sym, val;
117
118 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
119 return;
120
121 MERGE_INTERVAL_CACHE (source, target);
122
123 o = source->plist;
124 while (! EQ (o, Qnil))
125 {
126 sym = Fcar (o);
127 val = Fmemq (sym, target->plist);
128
129 if (NILP (val))
130 {
131 o = Fcdr (o);
132 val = Fcar (o);
133 target->plist = Fcons (sym, Fcons (val, target->plist));
134 o = Fcdr (o);
135 }
136 else
137 o = Fcdr (Fcdr (o));
138 }
139 }
140
141 /* Return 1 if the two intervals have the same properties,
142 0 otherwise. */
143
144 int
145 intervals_equal (i0, i1)
146 INTERVAL i0, i1;
147 {
148 register Lisp_Object i0_cdr, i0_sym, i1_val;
149 register int i1_len;
150
151 if (DEFAULT_INTERVAL_P (i0) && DEFAULT_INTERVAL_P (i1))
152 return 1;
153
154 if (DEFAULT_INTERVAL_P (i0) || DEFAULT_INTERVAL_P (i1))
155 return 0;
156
157 i1_len = XFASTINT (Flength (i1->plist));
158 if (i1_len & 0x1) /* Paranoia -- plists are always even */
159 abort ();
160 i1_len /= 2;
161 i0_cdr = i0->plist;
162 while (!NILP (i0_cdr))
163 {
164 /* Lengths of the two plists were unequal. */
165 if (i1_len == 0)
166 return 0;
167
168 i0_sym = Fcar (i0_cdr);
169 i1_val = Fmemq (i0_sym, i1->plist);
170
171 /* i0 has something i1 doesn't. */
172 if (EQ (i1_val, Qnil))
173 return 0;
174
175 /* i0 and i1 both have sym, but it has different values in each. */
176 i0_cdr = Fcdr (i0_cdr);
177 if (! EQ (Fcar (Fcdr (i1_val)), Fcar (i0_cdr)))
178 return 0;
179
180 i0_cdr = Fcdr (i0_cdr);
181 i1_len--;
182 }
183
184 /* Lengths of the two plists were unequal. */
185 if (i1_len > 0)
186 return 0;
187
188 return 1;
189 }
190 \f
191 static int icount;
192 static int idepth;
193 static int zero_length;
194
195 /* Traverse an interval tree TREE, performing FUNCTION on each node.
196 Pass FUNCTION two args: an interval, and ARG. */
197
198 void
199 traverse_intervals (tree, position, depth, function, arg)
200 INTERVAL tree;
201 int position, depth;
202 void (* function) P_ ((INTERVAL, Lisp_Object));
203 Lisp_Object arg;
204 {
205 if (NULL_INTERVAL_P (tree))
206 return;
207
208 traverse_intervals (tree->left, position, depth + 1, function, arg);
209 position += LEFT_TOTAL_LENGTH (tree);
210 tree->position = position;
211 (*function) (tree, arg);
212 position += LENGTH (tree);
213 traverse_intervals (tree->right, position, depth + 1, function, arg);
214 }
215 \f
216 #if 0
217 /* These functions are temporary, for debugging purposes only. */
218
219 INTERVAL search_interval, found_interval;
220
221 void
222 check_for_interval (i)
223 register INTERVAL i;
224 {
225 if (i == search_interval)
226 {
227 found_interval = i;
228 icount++;
229 }
230 }
231
232 INTERVAL
233 search_for_interval (i, tree)
234 register INTERVAL i, tree;
235 {
236 icount = 0;
237 search_interval = i;
238 found_interval = NULL_INTERVAL;
239 traverse_intervals (tree, 1, 0, &check_for_interval, Qnil);
240 return found_interval;
241 }
242
243 static void
244 inc_interval_count (i)
245 INTERVAL i;
246 {
247 icount++;
248 if (LENGTH (i) == 0)
249 zero_length++;
250 if (depth > idepth)
251 idepth = depth;
252 }
253
254 int
255 count_intervals (i)
256 register INTERVAL i;
257 {
258 icount = 0;
259 idepth = 0;
260 zero_length = 0;
261 traverse_intervals (i, 1, 0, &inc_interval_count, Qnil);
262
263 return icount;
264 }
265
266 static INTERVAL
267 root_interval (interval)
268 INTERVAL interval;
269 {
270 register INTERVAL i = interval;
271
272 while (! ROOT_INTERVAL_P (i))
273 i = i->parent;
274
275 return i;
276 }
277 #endif
278 \f
279 /* Assuming that a left child exists, perform the following operation:
280
281 A B
282 / \ / \
283 B => A
284 / \ / \
285 c c
286 */
287
288 static INTERVAL
289 rotate_right (interval)
290 INTERVAL interval;
291 {
292 INTERVAL i;
293 INTERVAL B = interval->left;
294 int old_total = interval->total_length;
295
296 /* Deal with any Parent of A; make it point to B. */
297 if (! ROOT_INTERVAL_P (interval))
298 if (AM_LEFT_CHILD (interval))
299 interval->parent->left = B;
300 else
301 interval->parent->right = B;
302 B->parent = interval->parent;
303
304 /* Make B the parent of A */
305 i = B->right;
306 B->right = interval;
307 interval->parent = B;
308
309 /* Make A point to c */
310 interval->left = i;
311 if (! NULL_INTERVAL_P (i))
312 i->parent = interval;
313
314 /* A's total length is decreased by the length of B and its left child. */
315 interval->total_length -= B->total_length - LEFT_TOTAL_LENGTH (interval);
316
317 /* B must have the same total length of A. */
318 B->total_length = old_total;
319
320 return B;
321 }
322
323 /* Assuming that a right child exists, perform the following operation:
324
325 A B
326 / \ / \
327 B => A
328 / \ / \
329 c c
330 */
331
332 static INTERVAL
333 rotate_left (interval)
334 INTERVAL interval;
335 {
336 INTERVAL i;
337 INTERVAL B = interval->right;
338 int old_total = interval->total_length;
339
340 /* Deal with any parent of A; make it point to B. */
341 if (! ROOT_INTERVAL_P (interval))
342 if (AM_LEFT_CHILD (interval))
343 interval->parent->left = B;
344 else
345 interval->parent->right = B;
346 B->parent = interval->parent;
347
348 /* Make B the parent of A */
349 i = B->left;
350 B->left = interval;
351 interval->parent = B;
352
353 /* Make A point to c */
354 interval->right = i;
355 if (! NULL_INTERVAL_P (i))
356 i->parent = interval;
357
358 /* A's total length is decreased by the length of B and its right child. */
359 interval->total_length -= B->total_length - RIGHT_TOTAL_LENGTH (interval);
360
361 /* B must have the same total length of A. */
362 B->total_length = old_total;
363
364 return B;
365 }
366 \f
367 /* Balance an interval tree with the assumption that the subtrees
368 themselves are already balanced. */
369
370 static INTERVAL
371 balance_an_interval (i)
372 INTERVAL i;
373 {
374 register int old_diff, new_diff;
375
376 while (1)
377 {
378 old_diff = LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i);
379 if (old_diff > 0)
380 {
381 new_diff = i->total_length - i->left->total_length
382 + RIGHT_TOTAL_LENGTH (i->left) - LEFT_TOTAL_LENGTH (i->left);
383 if (abs (new_diff) >= old_diff)
384 break;
385 i = rotate_right (i);
386 balance_an_interval (i->right);
387 }
388 else if (old_diff < 0)
389 {
390 new_diff = i->total_length - i->right->total_length
391 + LEFT_TOTAL_LENGTH (i->right) - RIGHT_TOTAL_LENGTH (i->right);
392 if (abs (new_diff) >= -old_diff)
393 break;
394 i = rotate_left (i);
395 balance_an_interval (i->left);
396 }
397 else
398 break;
399 }
400 return i;
401 }
402
403 /* Balance INTERVAL, potentially stuffing it back into its parent
404 Lisp Object. */
405
406 static INLINE INTERVAL
407 balance_possible_root_interval (interval)
408 register INTERVAL interval;
409 {
410 Lisp_Object parent;
411
412 if (interval->parent == NULL_INTERVAL)
413 return interval;
414
415 XSETFASTINT (parent, (EMACS_INT) interval->parent);
416 interval = balance_an_interval (interval);
417
418 if (BUFFERP (parent))
419 BUF_INTERVALS (XBUFFER (parent)) = interval;
420 else if (STRINGP (parent))
421 XSTRING (parent)->intervals = interval;
422
423 return interval;
424 }
425
426 /* Balance the interval tree TREE. Balancing is by weight
427 (the amount of text). */
428
429 static INTERVAL
430 balance_intervals_internal (tree)
431 register INTERVAL tree;
432 {
433 /* Balance within each side. */
434 if (tree->left)
435 balance_intervals_internal (tree->left);
436 if (tree->right)
437 balance_intervals_internal (tree->right);
438 return balance_an_interval (tree);
439 }
440
441 /* Advertised interface to balance intervals. */
442
443 INTERVAL
444 balance_intervals (tree)
445 INTERVAL tree;
446 {
447 if (tree == NULL_INTERVAL)
448 return NULL_INTERVAL;
449
450 return balance_intervals_internal (tree);
451 }
452 \f
453 /* Split INTERVAL into two pieces, starting the second piece at
454 character position OFFSET (counting from 0), relative to INTERVAL.
455 INTERVAL becomes the left-hand piece, and the right-hand piece
456 (second, lexicographically) is returned.
457
458 The size and position fields of the two intervals are set based upon
459 those of the original interval. The property list of the new interval
460 is reset, thus it is up to the caller to do the right thing with the
461 result.
462
463 Note that this does not change the position of INTERVAL; if it is a root,
464 it is still a root after this operation. */
465
466 INTERVAL
467 split_interval_right (interval, offset)
468 INTERVAL interval;
469 int offset;
470 {
471 INTERVAL new = make_interval ();
472 int position = interval->position;
473 int new_length = LENGTH (interval) - offset;
474
475 new->position = position + offset;
476 new->parent = interval;
477
478 if (NULL_RIGHT_CHILD (interval))
479 {
480 interval->right = new;
481 new->total_length = new_length;
482 }
483 else
484 {
485 /* Insert the new node between INTERVAL and its right child. */
486 new->right = interval->right;
487 interval->right->parent = new;
488 interval->right = new;
489 new->total_length = new_length + new->right->total_length;
490 balance_an_interval (new);
491 }
492
493 balance_possible_root_interval (interval);
494
495 return new;
496 }
497
498 /* Split INTERVAL into two pieces, starting the second piece at
499 character position OFFSET (counting from 0), relative to INTERVAL.
500 INTERVAL becomes the right-hand piece, and the left-hand piece
501 (first, lexicographically) is returned.
502
503 The size and position fields of the two intervals are set based upon
504 those of the original interval. The property list of the new interval
505 is reset, thus it is up to the caller to do the right thing with the
506 result.
507
508 Note that this does not change the position of INTERVAL; if it is a root,
509 it is still a root after this operation. */
510
511 INTERVAL
512 split_interval_left (interval, offset)
513 INTERVAL interval;
514 int offset;
515 {
516 INTERVAL new = make_interval ();
517 int position = interval->position;
518 int new_length = offset;
519
520 new->position = interval->position;
521 interval->position = interval->position + offset;
522 new->parent = interval;
523
524 if (NULL_LEFT_CHILD (interval))
525 {
526 interval->left = new;
527 new->total_length = new_length;
528 }
529 else
530 {
531 /* Insert the new node between INTERVAL and its left child. */
532 new->left = interval->left;
533 new->left->parent = new;
534 interval->left = new;
535 new->total_length = new_length + new->left->total_length;
536 balance_an_interval (new);
537 }
538
539 balance_possible_root_interval (interval);
540
541 return new;
542 }
543 \f
544 /* Return the proper position for the first character
545 described by the interval tree SOURCE.
546 This is 1 if the parent is a buffer,
547 0 if the parent is a string or if there is no parent.
548
549 Don't use this function on an interval which is the child
550 of another interval! */
551
552 int
553 interval_start_pos (source)
554 INTERVAL source;
555 {
556 Lisp_Object parent;
557
558 if (NULL_INTERVAL_P (source))
559 return 0;
560
561 XSETFASTINT (parent, (EMACS_INT) source->parent);
562 if (BUFFERP (parent))
563 return BUF_BEG (XBUFFER (parent));
564 return 0;
565 }
566
567 /* Find the interval containing text position POSITION in the text
568 represented by the interval tree TREE. POSITION is a buffer
569 position (starting from 1) or a string index (starting from 0).
570 If POSITION is at the end of the buffer or string,
571 return the interval containing the last character.
572
573 The `position' field, which is a cache of an interval's position,
574 is updated in the interval found. Other functions (e.g., next_interval)
575 will update this cache based on the result of find_interval. */
576
577 INTERVAL
578 find_interval (tree, position)
579 register INTERVAL tree;
580 register int position;
581 {
582 /* The distance from the left edge of the subtree at TREE
583 to POSITION. */
584 register int relative_position;
585 Lisp_Object parent;
586
587 if (NULL_INTERVAL_P (tree))
588 return NULL_INTERVAL;
589
590 XSETFASTINT (parent, (EMACS_INT) tree->parent);
591 relative_position = position;
592 if (BUFFERP (parent))
593 relative_position -= BUF_BEG (XBUFFER (parent));
594
595 if (relative_position > TOTAL_LENGTH (tree))
596 abort (); /* Paranoia */
597
598 tree = balance_possible_root_interval (tree);
599
600 while (1)
601 {
602 if (relative_position < LEFT_TOTAL_LENGTH (tree))
603 {
604 tree = tree->left;
605 }
606 else if (! NULL_RIGHT_CHILD (tree)
607 && relative_position >= (TOTAL_LENGTH (tree)
608 - RIGHT_TOTAL_LENGTH (tree)))
609 {
610 relative_position -= (TOTAL_LENGTH (tree)
611 - RIGHT_TOTAL_LENGTH (tree));
612 tree = tree->right;
613 }
614 else
615 {
616 tree->position
617 = (position - relative_position /* the left edge of *tree */
618 + LEFT_TOTAL_LENGTH (tree)); /* the left edge of this interval */
619
620 return tree;
621 }
622 }
623 }
624 \f
625 /* Find the succeeding interval (lexicographically) to INTERVAL.
626 Sets the `position' field based on that of INTERVAL (see
627 find_interval). */
628
629 INTERVAL
630 next_interval (interval)
631 register INTERVAL interval;
632 {
633 register INTERVAL i = interval;
634 register int next_position;
635
636 if (NULL_INTERVAL_P (i))
637 return NULL_INTERVAL;
638 next_position = interval->position + LENGTH (interval);
639
640 if (! NULL_RIGHT_CHILD (i))
641 {
642 i = i->right;
643 while (! NULL_LEFT_CHILD (i))
644 i = i->left;
645
646 i->position = next_position;
647 return i;
648 }
649
650 while (! NULL_PARENT (i))
651 {
652 if (AM_LEFT_CHILD (i))
653 {
654 i = i->parent;
655 i->position = next_position;
656 return i;
657 }
658
659 i = i->parent;
660 }
661
662 return NULL_INTERVAL;
663 }
664
665 /* Find the preceding interval (lexicographically) to INTERVAL.
666 Sets the `position' field based on that of INTERVAL (see
667 find_interval). */
668
669 INTERVAL
670 previous_interval (interval)
671 register INTERVAL interval;
672 {
673 register INTERVAL i;
674 register int position_of_previous;
675
676 if (NULL_INTERVAL_P (interval))
677 return NULL_INTERVAL;
678
679 if (! NULL_LEFT_CHILD (interval))
680 {
681 i = interval->left;
682 while (! NULL_RIGHT_CHILD (i))
683 i = i->right;
684
685 i->position = interval->position - LENGTH (i);
686 return i;
687 }
688
689 i = interval;
690 while (! NULL_PARENT (i))
691 {
692 if (AM_RIGHT_CHILD (i))
693 {
694 i = i->parent;
695
696 i->position = interval->position - LENGTH (i);
697 return i;
698 }
699 i = i->parent;
700 }
701
702 return NULL_INTERVAL;
703 }
704
705 /* Find the interval containing POS given some non-NULL INTERVAL
706 in the same tree. Note that we need to update interval->position
707 if we go down the tree. */
708 INTERVAL
709 update_interval (i, pos)
710 register INTERVAL i;
711 int pos;
712 {
713 if (NULL_INTERVAL_P (i))
714 return NULL_INTERVAL;
715
716 while (1)
717 {
718 if (pos < i->position)
719 {
720 /* Move left. */
721 if (pos >= i->position - TOTAL_LENGTH (i->left))
722 {
723 i->left->position = i->position - TOTAL_LENGTH (i->left)
724 + LEFT_TOTAL_LENGTH (i->left);
725 i = i->left; /* Move to the left child */
726 }
727 else if (NULL_PARENT (i))
728 error ("Point before start of properties");
729 else
730 i = i->parent;
731 continue;
732 }
733 else if (pos >= INTERVAL_LAST_POS (i))
734 {
735 /* Move right. */
736 if (pos < INTERVAL_LAST_POS (i) + TOTAL_LENGTH (i->right))
737 {
738 i->right->position = INTERVAL_LAST_POS (i) +
739 LEFT_TOTAL_LENGTH (i->right);
740 i = i->right; /* Move to the right child */
741 }
742 else if (NULL_PARENT (i))
743 error ("Point after end of properties");
744 else
745 i = i->parent;
746 continue;
747 }
748 else
749 return i;
750 }
751 }
752
753 \f
754 #if 0
755 /* Traverse a path down the interval tree TREE to the interval
756 containing POSITION, adjusting all nodes on the path for
757 an addition of LENGTH characters. Insertion between two intervals
758 (i.e., point == i->position, where i is second interval) means
759 text goes into second interval.
760
761 Modifications are needed to handle the hungry bits -- after simply
762 finding the interval at position (don't add length going down),
763 if it's the beginning of the interval, get the previous interval
764 and check the hungry bits of both. Then add the length going back up
765 to the root. */
766
767 static INTERVAL
768 adjust_intervals_for_insertion (tree, position, length)
769 INTERVAL tree;
770 int position, length;
771 {
772 register int relative_position;
773 register INTERVAL this;
774
775 if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
776 abort ();
777
778 /* If inserting at point-max of a buffer, that position
779 will be out of range */
780 if (position > TOTAL_LENGTH (tree))
781 position = TOTAL_LENGTH (tree);
782 relative_position = position;
783 this = tree;
784
785 while (1)
786 {
787 if (relative_position <= LEFT_TOTAL_LENGTH (this))
788 {
789 this->total_length += length;
790 this = this->left;
791 }
792 else if (relative_position > (TOTAL_LENGTH (this)
793 - RIGHT_TOTAL_LENGTH (this)))
794 {
795 relative_position -= (TOTAL_LENGTH (this)
796 - RIGHT_TOTAL_LENGTH (this));
797 this->total_length += length;
798 this = this->right;
799 }
800 else
801 {
802 /* If we are to use zero-length intervals as buffer pointers,
803 then this code will have to change. */
804 this->total_length += length;
805 this->position = LEFT_TOTAL_LENGTH (this)
806 + position - relative_position + 1;
807 return tree;
808 }
809 }
810 }
811 #endif
812
813 /* Effect an adjustment corresponding to the addition of LENGTH characters
814 of text. Do this by finding the interval containing POSITION in the
815 interval tree TREE, and then adjusting all of its ancestors by adding
816 LENGTH to them.
817
818 If POSITION is the first character of an interval, meaning that point
819 is actually between the two intervals, make the new text belong to
820 the interval which is "sticky".
821
822 If both intervals are "sticky", then make them belong to the left-most
823 interval. Another possibility would be to create a new interval for
824 this text, and make it have the merged properties of both ends. */
825
826 static INTERVAL
827 adjust_intervals_for_insertion (tree, position, length)
828 INTERVAL tree;
829 int position, length;
830 {
831 register INTERVAL i;
832 register INTERVAL temp;
833 int eobp = 0;
834 Lisp_Object parent;
835 int offset;
836
837 if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
838 abort ();
839
840 XSETFASTINT (parent, (EMACS_INT) tree->parent);
841 offset = (BUFFERP (parent) ? BUF_BEG (XBUFFER (parent)) : 0);
842
843 /* If inserting at point-max of a buffer, that position will be out
844 of range. Remember that buffer positions are 1-based. */
845 if (position >= TOTAL_LENGTH (tree) + offset)
846 {
847 position = TOTAL_LENGTH (tree) + offset;
848 eobp = 1;
849 }
850
851 i = find_interval (tree, position);
852
853 /* If in middle of an interval which is not sticky either way,
854 we must not just give its properties to the insertion.
855 So split this interval at the insertion point. */
856 if (! (position == i->position || eobp)
857 && END_NONSTICKY_P (i)
858 && FRONT_NONSTICKY_P (i))
859 {
860 Lisp_Object tail;
861 Lisp_Object front, rear;
862
863 front = textget (i->plist, Qfront_sticky);
864 rear = textget (i->plist, Qrear_nonsticky);
865
866 /* Does any actual property pose an actual problem? */
867 for (tail = i->plist; ! NILP (tail); tail = Fcdr (Fcdr (tail)))
868 {
869 Lisp_Object prop;
870 prop = XCONS (tail)->car;
871
872 /* Is this particular property rear-sticky?
873 Note, if REAR isn't a cons, it must be non-nil,
874 which means that all properties are rear-nonsticky. */
875 if (CONSP (rear) && NILP (Fmemq (prop, rear)))
876 continue;
877
878 /* Is this particular property front-sticky?
879 Note, if FRONT isn't a cons, it must be nil,
880 which means that all properties are front-nonsticky. */
881 if (CONSP (front) && ! NILP (Fmemq (prop, front)))
882 continue;
883
884 /* PROP isn't sticky on either side => it is a real problem. */
885 break;
886 }
887
888 /* If any property is a real problem, split the interval. */
889 if (! NILP (tail))
890 {
891 temp = split_interval_right (i, position - i->position);
892 copy_properties (i, temp);
893 i = temp;
894 }
895 }
896
897 /* If we are positioned between intervals, check the stickiness of
898 both of them. We have to do this too, if we are at BEG or Z. */
899 if (position == i->position || eobp)
900 {
901 register INTERVAL prev;
902
903 if (position == BEG)
904 prev = 0;
905 else if (eobp)
906 {
907 prev = i;
908 i = 0;
909 }
910 else
911 prev = previous_interval (i);
912
913 /* Even if we are positioned between intervals, we default
914 to the left one if it exists. We extend it now and split
915 off a part later, if stickiness demands it. */
916 for (temp = prev ? prev : i;! NULL_INTERVAL_P (temp); temp = temp->parent)
917 {
918 temp->total_length += length;
919 temp = balance_possible_root_interval (temp);
920 }
921
922 /* If at least one interval has sticky properties,
923 we check the stickiness property by property. */
924 if (END_NONSTICKY_P (prev) || FRONT_STICKY_P (i))
925 {
926 Lisp_Object pleft, pright;
927 struct interval newi;
928
929 pleft = NULL_INTERVAL_P (prev) ? Qnil : prev->plist;
930 pright = NULL_INTERVAL_P (i) ? Qnil : i->plist;
931 newi.plist = merge_properties_sticky (pleft, pright);
932
933 if (! prev) /* i.e. position == BEG */
934 {
935 if (! intervals_equal (i, &newi))
936 {
937 i = split_interval_left (i, length);
938 i->plist = newi.plist;
939 }
940 }
941 else if (! intervals_equal (prev, &newi))
942 {
943 prev = split_interval_right (prev,
944 position - prev->position);
945 prev->plist = newi.plist;
946 if (! NULL_INTERVAL_P (i)
947 && intervals_equal (prev, i))
948 merge_interval_right (prev);
949 }
950
951 /* We will need to update the cache here later. */
952 }
953 else if (! prev && ! NILP (i->plist))
954 {
955 /* Just split off a new interval at the left.
956 Since I wasn't front-sticky, the empty plist is ok. */
957 i = split_interval_left (i, length);
958 }
959 }
960
961 /* Otherwise just extend the interval. */
962 else
963 {
964 for (temp = i; ! NULL_INTERVAL_P (temp); temp = temp->parent)
965 {
966 temp->total_length += length;
967 temp = balance_possible_root_interval (temp);
968 }
969 }
970
971 return tree;
972 }
973
974 /* Any property might be front-sticky on the left, rear-sticky on the left,
975 front-sticky on the right, or rear-sticky on the right; the 16 combinations
976 can be arranged in a matrix with rows denoting the left conditions and
977 columns denoting the right conditions:
978 _ __ _
979 _ FR FR FR FR
980 FR__ 0 1 2 3
981 _FR 4 5 6 7
982 FR 8 9 A B
983 FR C D E F
984
985 left-props = '(front-sticky (p8 p9 pa pb pc pd pe pf)
986 rear-nonsticky (p4 p5 p6 p7 p8 p9 pa pb)
987 p0 L p1 L p2 L p3 L p4 L p5 L p6 L p7 L
988 p8 L p9 L pa L pb L pc L pd L pe L pf L)
989 right-props = '(front-sticky (p2 p3 p6 p7 pa pb pe pf)
990 rear-nonsticky (p1 p2 p5 p6 p9 pa pd pe)
991 p0 R p1 R p2 R p3 R p4 R p5 R p6 R p7 R
992 p8 R p9 R pa R pb R pc R pd R pe R pf R)
993
994 We inherit from whoever has a sticky side facing us. If both sides
995 do (cases 2, 3, E, and F), then we inherit from whichever side has a
996 non-nil value for the current property. If both sides do, then we take
997 from the left.
998
999 When we inherit a property, we get its stickiness as well as its value.
1000 So, when we merge the above two lists, we expect to get this:
1001
1002 result = '(front-sticky (p6 p7 pa pb pc pd pe pf)
1003 rear-nonsticky (p6 pa)
1004 p0 L p1 L p2 L p3 L p6 R p7 R
1005 pa R pb R pc L pd L pe L pf L)
1006
1007 The optimizable special cases are:
1008 left rear-nonsticky = nil, right front-sticky = nil (inherit left)
1009 left rear-nonsticky = t, right front-sticky = t (inherit right)
1010 left rear-nonsticky = t, right front-sticky = nil (inherit none)
1011 */
1012
1013 Lisp_Object
1014 merge_properties_sticky (pleft, pright)
1015 Lisp_Object pleft, pright;
1016 {
1017 register Lisp_Object props, front, rear;
1018 Lisp_Object lfront, lrear, rfront, rrear;
1019 register Lisp_Object tail1, tail2, sym, lval, rval, cat;
1020 int use_left, use_right;
1021 int lpresent;
1022
1023 props = Qnil;
1024 front = Qnil;
1025 rear = Qnil;
1026 lfront = textget (pleft, Qfront_sticky);
1027 lrear = textget (pleft, Qrear_nonsticky);
1028 rfront = textget (pright, Qfront_sticky);
1029 rrear = textget (pright, Qrear_nonsticky);
1030
1031 /* Go through each element of PRIGHT. */
1032 for (tail1 = pright; ! NILP (tail1); tail1 = Fcdr (Fcdr (tail1)))
1033 {
1034 sym = Fcar (tail1);
1035
1036 /* Sticky properties get special treatment. */
1037 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
1038 continue;
1039
1040 rval = Fcar (Fcdr (tail1));
1041 for (tail2 = pleft; ! NILP (tail2); tail2 = Fcdr (Fcdr (tail2)))
1042 if (EQ (sym, Fcar (tail2)))
1043 break;
1044
1045 /* Indicate whether the property is explicitly defined on the left.
1046 (We know it is defined explicitly on the right
1047 because otherwise we don't get here.) */
1048 lpresent = ! NILP (tail2);
1049 lval = (NILP (tail2) ? Qnil : Fcar (Fcdr (tail2)));
1050
1051 use_left = ! TMEM (sym, lrear) && lpresent;
1052 use_right = TMEM (sym, rfront);
1053 if (use_left && use_right)
1054 {
1055 if (NILP (lval))
1056 use_left = 0;
1057 else if (NILP (rval))
1058 use_right = 0;
1059 }
1060 if (use_left)
1061 {
1062 /* We build props as (value sym ...) rather than (sym value ...)
1063 because we plan to nreverse it when we're done. */
1064 props = Fcons (lval, Fcons (sym, props));
1065 if (TMEM (sym, lfront))
1066 front = Fcons (sym, front);
1067 if (TMEM (sym, lrear))
1068 rear = Fcons (sym, rear);
1069 }
1070 else if (use_right)
1071 {
1072 props = Fcons (rval, Fcons (sym, props));
1073 if (TMEM (sym, rfront))
1074 front = Fcons (sym, front);
1075 if (TMEM (sym, rrear))
1076 rear = Fcons (sym, rear);
1077 }
1078 }
1079
1080 /* Now go through each element of PLEFT. */
1081 for (tail2 = pleft; ! NILP (tail2); tail2 = Fcdr (Fcdr (tail2)))
1082 {
1083 sym = Fcar (tail2);
1084
1085 /* Sticky properties get special treatment. */
1086 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
1087 continue;
1088
1089 /* If sym is in PRIGHT, we've already considered it. */
1090 for (tail1 = pright; ! NILP (tail1); tail1 = Fcdr (Fcdr (tail1)))
1091 if (EQ (sym, Fcar (tail1)))
1092 break;
1093 if (! NILP (tail1))
1094 continue;
1095
1096 lval = Fcar (Fcdr (tail2));
1097
1098 /* Since rval is known to be nil in this loop, the test simplifies. */
1099 if (! TMEM (sym, lrear))
1100 {
1101 props = Fcons (lval, Fcons (sym, props));
1102 if (TMEM (sym, lfront))
1103 front = Fcons (sym, front);
1104 }
1105 else if (TMEM (sym, rfront))
1106 {
1107 /* The value is nil, but we still inherit the stickiness
1108 from the right. */
1109 front = Fcons (sym, front);
1110 if (TMEM (sym, rrear))
1111 rear = Fcons (sym, rear);
1112 }
1113 }
1114 props = Fnreverse (props);
1115 if (! NILP (rear))
1116 props = Fcons (Qrear_nonsticky, Fcons (Fnreverse (rear), props));
1117
1118 cat = textget (props, Qcategory);
1119 if (! NILP (front)
1120 &&
1121 /* If we have inherited a front-stick category property that is t,
1122 we don't need to set up a detailed one. */
1123 ! (! NILP (cat) && SYMBOLP (cat)
1124 && EQ (Fget (cat, Qfront_sticky), Qt)))
1125 props = Fcons (Qfront_sticky, Fcons (Fnreverse (front), props));
1126 return props;
1127 }
1128
1129 \f
1130 /* Delete an node I from its interval tree by merging its subtrees
1131 into one subtree which is then returned. Caller is responsible for
1132 storing the resulting subtree into its parent. */
1133
1134 static INTERVAL
1135 delete_node (i)
1136 register INTERVAL i;
1137 {
1138 register INTERVAL migrate, this;
1139 register int migrate_amt;
1140
1141 if (NULL_INTERVAL_P (i->left))
1142 return i->right;
1143 if (NULL_INTERVAL_P (i->right))
1144 return i->left;
1145
1146 migrate = i->left;
1147 migrate_amt = i->left->total_length;
1148 this = i->right;
1149 this->total_length += migrate_amt;
1150 while (! NULL_INTERVAL_P (this->left))
1151 {
1152 this = this->left;
1153 this->total_length += migrate_amt;
1154 }
1155 this->left = migrate;
1156 migrate->parent = this;
1157
1158 return i->right;
1159 }
1160
1161 /* Delete interval I from its tree by calling `delete_node'
1162 and properly connecting the resultant subtree.
1163
1164 I is presumed to be empty; that is, no adjustments are made
1165 for the length of I. */
1166
1167 void
1168 delete_interval (i)
1169 register INTERVAL i;
1170 {
1171 register INTERVAL parent;
1172 int amt = LENGTH (i);
1173
1174 if (amt > 0) /* Only used on zero-length intervals now. */
1175 abort ();
1176
1177 if (ROOT_INTERVAL_P (i))
1178 {
1179 Lisp_Object owner;
1180 XSETFASTINT (owner, (EMACS_INT) i->parent);
1181 parent = delete_node (i);
1182 if (! NULL_INTERVAL_P (parent))
1183 parent->parent = (INTERVAL) XFASTINT (owner);
1184
1185 if (BUFFERP (owner))
1186 BUF_INTERVALS (XBUFFER (owner)) = parent;
1187 else if (STRINGP (owner))
1188 XSTRING (owner)->intervals = parent;
1189 else
1190 abort ();
1191
1192 return;
1193 }
1194
1195 parent = i->parent;
1196 if (AM_LEFT_CHILD (i))
1197 {
1198 parent->left = delete_node (i);
1199 if (! NULL_INTERVAL_P (parent->left))
1200 parent->left->parent = parent;
1201 }
1202 else
1203 {
1204 parent->right = delete_node (i);
1205 if (! NULL_INTERVAL_P (parent->right))
1206 parent->right->parent = parent;
1207 }
1208 }
1209 \f
1210 /* Find the interval in TREE corresponding to the relative position
1211 FROM and delete as much as possible of AMOUNT from that interval.
1212 Return the amount actually deleted, and if the interval was
1213 zeroed-out, delete that interval node from the tree.
1214
1215 Note that FROM is actually origin zero, aka relative to the
1216 leftmost edge of tree. This is appropriate since we call ourselves
1217 recursively on subtrees.
1218
1219 Do this by recursing down TREE to the interval in question, and
1220 deleting the appropriate amount of text. */
1221
1222 static int
1223 interval_deletion_adjustment (tree, from, amount)
1224 register INTERVAL tree;
1225 register int from, amount;
1226 {
1227 register int relative_position = from;
1228
1229 if (NULL_INTERVAL_P (tree))
1230 return 0;
1231
1232 /* Left branch */
1233 if (relative_position < LEFT_TOTAL_LENGTH (tree))
1234 {
1235 int subtract = interval_deletion_adjustment (tree->left,
1236 relative_position,
1237 amount);
1238 tree->total_length -= subtract;
1239 return subtract;
1240 }
1241 /* Right branch */
1242 else if (relative_position >= (TOTAL_LENGTH (tree)
1243 - RIGHT_TOTAL_LENGTH (tree)))
1244 {
1245 int subtract;
1246
1247 relative_position -= (tree->total_length
1248 - RIGHT_TOTAL_LENGTH (tree));
1249 subtract = interval_deletion_adjustment (tree->right,
1250 relative_position,
1251 amount);
1252 tree->total_length -= subtract;
1253 return subtract;
1254 }
1255 /* Here -- this node. */
1256 else
1257 {
1258 /* How much can we delete from this interval? */
1259 int my_amount = ((tree->total_length
1260 - RIGHT_TOTAL_LENGTH (tree))
1261 - relative_position);
1262
1263 if (amount > my_amount)
1264 amount = my_amount;
1265
1266 tree->total_length -= amount;
1267 if (LENGTH (tree) == 0)
1268 delete_interval (tree);
1269
1270 return amount;
1271 }
1272
1273 /* Never reach here. */
1274 }
1275
1276 /* Effect the adjustments necessary to the interval tree of BUFFER to
1277 correspond to the deletion of LENGTH characters from that buffer
1278 text. The deletion is effected at position START (which is a
1279 buffer position, i.e. origin 1). */
1280
1281 static void
1282 adjust_intervals_for_deletion (buffer, start, length)
1283 struct buffer *buffer;
1284 int start, length;
1285 {
1286 register int left_to_delete = length;
1287 register INTERVAL tree = BUF_INTERVALS (buffer);
1288 register int deleted;
1289 Lisp_Object parent;
1290 int offset;
1291
1292 XSETFASTINT (parent, (EMACS_INT) tree->parent);
1293 offset = (BUFFERP (parent) ? BUF_BEG (XBUFFER (parent)) : 0);
1294
1295 if (NULL_INTERVAL_P (tree))
1296 return;
1297
1298 if (start > offset + TOTAL_LENGTH (tree)
1299 || start + length > offset + TOTAL_LENGTH (tree))
1300 abort ();
1301
1302 if (length == TOTAL_LENGTH (tree))
1303 {
1304 BUF_INTERVALS (buffer) = NULL_INTERVAL;
1305 return;
1306 }
1307
1308 if (ONLY_INTERVAL_P (tree))
1309 {
1310 tree->total_length -= length;
1311 return;
1312 }
1313
1314 if (start > offset + TOTAL_LENGTH (tree))
1315 start = offset + TOTAL_LENGTH (tree);
1316 while (left_to_delete > 0)
1317 {
1318 left_to_delete -= interval_deletion_adjustment (tree, start - offset,
1319 left_to_delete);
1320 tree = BUF_INTERVALS (buffer);
1321 if (left_to_delete == tree->total_length)
1322 {
1323 BUF_INTERVALS (buffer) = NULL_INTERVAL;
1324 return;
1325 }
1326 }
1327 }
1328 \f
1329 /* Make the adjustments necessary to the interval tree of BUFFER to
1330 represent an addition or deletion of LENGTH characters starting
1331 at position START. Addition or deletion is indicated by the sign
1332 of LENGTH. */
1333
1334 INLINE void
1335 offset_intervals (buffer, start, length)
1336 struct buffer *buffer;
1337 int start, length;
1338 {
1339 if (NULL_INTERVAL_P (BUF_INTERVALS (buffer)) || length == 0)
1340 return;
1341
1342 if (length > 0)
1343 adjust_intervals_for_insertion (BUF_INTERVALS (buffer), start, length);
1344 else
1345 adjust_intervals_for_deletion (buffer, start, -length);
1346 }
1347 \f
1348 /* Merge interval I with its lexicographic successor. The resulting
1349 interval is returned, and has the properties of the original
1350 successor. The properties of I are lost. I is removed from the
1351 interval tree.
1352
1353 IMPORTANT:
1354 The caller must verify that this is not the last (rightmost)
1355 interval. */
1356
1357 INTERVAL
1358 merge_interval_right (i)
1359 register INTERVAL i;
1360 {
1361 register int absorb = LENGTH (i);
1362 register INTERVAL successor;
1363
1364 /* Zero out this interval. */
1365 i->total_length -= absorb;
1366
1367 /* Find the succeeding interval. */
1368 if (! NULL_RIGHT_CHILD (i)) /* It's below us. Add absorb
1369 as we descend. */
1370 {
1371 successor = i->right;
1372 while (! NULL_LEFT_CHILD (successor))
1373 {
1374 successor->total_length += absorb;
1375 successor = successor->left;
1376 }
1377
1378 successor->total_length += absorb;
1379 delete_interval (i);
1380 return successor;
1381 }
1382
1383 successor = i;
1384 while (! NULL_PARENT (successor)) /* It's above us. Subtract as
1385 we ascend. */
1386 {
1387 if (AM_LEFT_CHILD (successor))
1388 {
1389 successor = successor->parent;
1390 delete_interval (i);
1391 return successor;
1392 }
1393
1394 successor = successor->parent;
1395 successor->total_length -= absorb;
1396 }
1397
1398 /* This must be the rightmost or last interval and cannot
1399 be merged right. The caller should have known. */
1400 abort ();
1401 }
1402 \f
1403 /* Merge interval I with its lexicographic predecessor. The resulting
1404 interval is returned, and has the properties of the original predecessor.
1405 The properties of I are lost. Interval node I is removed from the tree.
1406
1407 IMPORTANT:
1408 The caller must verify that this is not the first (leftmost) interval. */
1409
1410 INTERVAL
1411 merge_interval_left (i)
1412 register INTERVAL i;
1413 {
1414 register int absorb = LENGTH (i);
1415 register INTERVAL predecessor;
1416
1417 /* Zero out this interval. */
1418 i->total_length -= absorb;
1419
1420 /* Find the preceding interval. */
1421 if (! NULL_LEFT_CHILD (i)) /* It's below us. Go down,
1422 adding ABSORB as we go. */
1423 {
1424 predecessor = i->left;
1425 while (! NULL_RIGHT_CHILD (predecessor))
1426 {
1427 predecessor->total_length += absorb;
1428 predecessor = predecessor->right;
1429 }
1430
1431 predecessor->total_length += absorb;
1432 delete_interval (i);
1433 return predecessor;
1434 }
1435
1436 predecessor = i;
1437 while (! NULL_PARENT (predecessor)) /* It's above us. Go up,
1438 subtracting ABSORB. */
1439 {
1440 if (AM_RIGHT_CHILD (predecessor))
1441 {
1442 predecessor = predecessor->parent;
1443 delete_interval (i);
1444 return predecessor;
1445 }
1446
1447 predecessor = predecessor->parent;
1448 predecessor->total_length -= absorb;
1449 }
1450
1451 /* This must be the leftmost or first interval and cannot
1452 be merged left. The caller should have known. */
1453 abort ();
1454 }
1455 \f
1456 /* Make an exact copy of interval tree SOURCE which descends from
1457 PARENT. This is done by recursing through SOURCE, copying
1458 the current interval and its properties, and then adjusting
1459 the pointers of the copy. */
1460
1461 static INTERVAL
1462 reproduce_tree (source, parent)
1463 INTERVAL source, parent;
1464 {
1465 register INTERVAL t = make_interval ();
1466
1467 bcopy (source, t, INTERVAL_SIZE);
1468 copy_properties (source, t);
1469 t->parent = parent;
1470 if (! NULL_LEFT_CHILD (source))
1471 t->left = reproduce_tree (source->left, t);
1472 if (! NULL_RIGHT_CHILD (source))
1473 t->right = reproduce_tree (source->right, t);
1474
1475 return t;
1476 }
1477
1478 #if 0
1479 /* Nobody calls this. Perhaps it's a vestige of an earlier design. */
1480
1481 /* Make a new interval of length LENGTH starting at START in the
1482 group of intervals INTERVALS, which is actually an interval tree.
1483 Returns the new interval.
1484
1485 Generate an error if the new positions would overlap an existing
1486 interval. */
1487
1488 static INTERVAL
1489 make_new_interval (intervals, start, length)
1490 INTERVAL intervals;
1491 int start, length;
1492 {
1493 INTERVAL slot;
1494
1495 slot = find_interval (intervals, start);
1496 if (start + length > slot->position + LENGTH (slot))
1497 error ("Interval would overlap");
1498
1499 if (start == slot->position && length == LENGTH (slot))
1500 return slot;
1501
1502 if (slot->position == start)
1503 {
1504 /* New right node. */
1505 split_interval_right (slot, length);
1506 return slot;
1507 }
1508
1509 if (slot->position + LENGTH (slot) == start + length)
1510 {
1511 /* New left node. */
1512 split_interval_left (slot, LENGTH (slot) - length);
1513 return slot;
1514 }
1515
1516 /* Convert interval SLOT into three intervals. */
1517 split_interval_left (slot, start - slot->position);
1518 split_interval_right (slot, length);
1519 return slot;
1520 }
1521 #endif
1522 \f
1523 /* Insert the intervals of SOURCE into BUFFER at POSITION.
1524 LENGTH is the length of the text in SOURCE.
1525
1526 The `position' field of the SOURCE intervals is assumed to be
1527 consistent with its parent; therefore, SOURCE must be an
1528 interval tree made with copy_interval or must be the whole
1529 tree of a buffer or a string.
1530
1531 This is used in insdel.c when inserting Lisp_Strings into the
1532 buffer. The text corresponding to SOURCE is already in the buffer
1533 when this is called. The intervals of new tree are a copy of those
1534 belonging to the string being inserted; intervals are never
1535 shared.
1536
1537 If the inserted text had no intervals associated, and we don't
1538 want to inherit the surrounding text's properties, this function
1539 simply returns -- offset_intervals should handle placing the
1540 text in the correct interval, depending on the sticky bits.
1541
1542 If the inserted text had properties (intervals), then there are two
1543 cases -- either insertion happened in the middle of some interval,
1544 or between two intervals.
1545
1546 If the text goes into the middle of an interval, then new
1547 intervals are created in the middle with only the properties of
1548 the new text, *unless* the macro MERGE_INSERTIONS is true, in
1549 which case the new text has the union of its properties and those
1550 of the text into which it was inserted.
1551
1552 If the text goes between two intervals, then if neither interval
1553 had its appropriate sticky property set (front_sticky, rear_sticky),
1554 the new text has only its properties. If one of the sticky properties
1555 is set, then the new text "sticks" to that region and its properties
1556 depend on merging as above. If both the preceding and succeeding
1557 intervals to the new text are "sticky", then the new text retains
1558 only its properties, as if neither sticky property were set. Perhaps
1559 we should consider merging all three sets of properties onto the new
1560 text... */
1561
1562 void
1563 graft_intervals_into_buffer (source, position, length, buffer, inherit)
1564 INTERVAL source;
1565 int position, length;
1566 struct buffer *buffer;
1567 int inherit;
1568 {
1569 register INTERVAL under, over, this, prev;
1570 register INTERVAL tree;
1571 int middle;
1572
1573 tree = BUF_INTERVALS (buffer);
1574
1575 /* If the new text has no properties, it becomes part of whatever
1576 interval it was inserted into. */
1577 if (NULL_INTERVAL_P (source))
1578 {
1579 Lisp_Object buf;
1580 if (!inherit && ! NULL_INTERVAL_P (tree))
1581 {
1582 int saved_inhibit_modification_hooks = inhibit_modification_hooks;
1583 XSETBUFFER (buf, buffer);
1584 inhibit_modification_hooks = 1;
1585 Fset_text_properties (make_number (position),
1586 make_number (position + length),
1587 Qnil, buf);
1588 inhibit_modification_hooks = saved_inhibit_modification_hooks;
1589 }
1590 if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer)))
1591 BUF_INTERVALS (buffer) = balance_an_interval (BUF_INTERVALS (buffer));
1592 return;
1593 }
1594
1595 if (NULL_INTERVAL_P (tree))
1596 {
1597 /* The inserted text constitutes the whole buffer, so
1598 simply copy over the interval structure. */
1599 if ((BUF_Z (buffer) - BUF_BEG (buffer)) == TOTAL_LENGTH (source))
1600 {
1601 Lisp_Object buf;
1602 XSETBUFFER (buf, buffer);
1603 BUF_INTERVALS (buffer) = reproduce_tree (source, buf);
1604 BUF_INTERVALS (buffer)->position = 1;
1605
1606 /* Explicitly free the old tree here? */
1607
1608 return;
1609 }
1610
1611 /* Create an interval tree in which to place a copy
1612 of the intervals of the inserted string. */
1613 {
1614 Lisp_Object buf;
1615 XSETBUFFER (buf, buffer);
1616 tree = create_root_interval (buf);
1617 }
1618 }
1619 else if (TOTAL_LENGTH (tree) == TOTAL_LENGTH (source))
1620 /* If the buffer contains only the new string, but
1621 there was already some interval tree there, then it may be
1622 some zero length intervals. Eventually, do something clever
1623 about inserting properly. For now, just waste the old intervals. */
1624 {
1625 BUF_INTERVALS (buffer) = reproduce_tree (source, tree->parent);
1626 BUF_INTERVALS (buffer)->position = 1;
1627 /* Explicitly free the old tree here. */
1628
1629 return;
1630 }
1631 /* Paranoia -- the text has already been added, so this buffer
1632 should be of non-zero length. */
1633 else if (TOTAL_LENGTH (tree) == 0)
1634 abort ();
1635
1636 this = under = find_interval (tree, position);
1637 if (NULL_INTERVAL_P (under)) /* Paranoia */
1638 abort ();
1639 over = find_interval (source, interval_start_pos (source));
1640
1641 /* Here for insertion in the middle of an interval.
1642 Split off an equivalent interval to the right,
1643 then don't bother with it any more. */
1644
1645 if (position > under->position)
1646 {
1647 INTERVAL end_unchanged
1648 = split_interval_left (this, position - under->position);
1649 copy_properties (under, end_unchanged);
1650 under->position = position;
1651 prev = 0;
1652 middle = 1;
1653 }
1654 else
1655 {
1656 prev = previous_interval (under);
1657 if (prev && !END_NONSTICKY_P (prev))
1658 prev = 0;
1659 }
1660
1661 /* Insertion is now at beginning of UNDER. */
1662
1663 /* The inserted text "sticks" to the interval `under',
1664 which means it gets those properties.
1665 The properties of under are the result of
1666 adjust_intervals_for_insertion, so stickiness has
1667 already been taken care of. */
1668
1669 while (! NULL_INTERVAL_P (over))
1670 {
1671 if (LENGTH (over) < LENGTH (under))
1672 {
1673 this = split_interval_left (under, LENGTH (over));
1674 copy_properties (under, this);
1675 }
1676 else
1677 this = under;
1678 copy_properties (over, this);
1679 if (inherit)
1680 merge_properties (over, this);
1681 else
1682 copy_properties (over, this);
1683 over = next_interval (over);
1684 }
1685
1686 if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer)))
1687 BUF_INTERVALS (buffer) = balance_an_interval (BUF_INTERVALS (buffer));
1688 return;
1689 }
1690
1691 /* Get the value of property PROP from PLIST,
1692 which is the plist of an interval.
1693 We check for direct properties, for categories with property PROP,
1694 and for PROP appearing on the default-text-properties list. */
1695
1696 Lisp_Object
1697 textget (plist, prop)
1698 Lisp_Object plist;
1699 register Lisp_Object prop;
1700 {
1701 register Lisp_Object tail, fallback;
1702 fallback = Qnil;
1703
1704 for (tail = plist; !NILP (tail); tail = Fcdr (Fcdr (tail)))
1705 {
1706 register Lisp_Object tem;
1707 tem = Fcar (tail);
1708 if (EQ (prop, tem))
1709 return Fcar (Fcdr (tail));
1710 if (EQ (tem, Qcategory))
1711 {
1712 tem = Fcar (Fcdr (tail));
1713 if (SYMBOLP (tem))
1714 fallback = Fget (tem, prop);
1715 }
1716 }
1717
1718 if (! NILP (fallback))
1719 return fallback;
1720 if (CONSP (Vdefault_text_properties))
1721 return Fplist_get (Vdefault_text_properties, prop);
1722 return Qnil;
1723 }
1724
1725 \f
1726 /* Set point "temporarily", without checking any text properties. */
1727
1728 INLINE void
1729 temp_set_point (buffer, charpos)
1730 struct buffer *buffer;
1731 int charpos;
1732 {
1733 temp_set_point_both (buffer, charpos,
1734 buf_charpos_to_bytepos (buffer, charpos));
1735 }
1736
1737 /* Set point in BUFFER "temporarily" to CHARPOS, which corresponds to
1738 byte position BYTEPOS. */
1739
1740 INLINE void
1741 temp_set_point_both (buffer, charpos, bytepos)
1742 int charpos, bytepos;
1743 struct buffer *buffer;
1744 {
1745 /* In a single-byte buffer, the two positions must be equal. */
1746 if (BUF_ZV (buffer) == BUF_ZV_BYTE (buffer)
1747 && charpos != bytepos)
1748 abort ();
1749
1750 if (charpos > bytepos)
1751 abort ();
1752
1753 if (charpos > BUF_ZV (buffer) || charpos < BUF_BEGV (buffer))
1754 abort ();
1755
1756 BUF_PT_BYTE (buffer) = bytepos;
1757 BUF_PT (buffer) = charpos;
1758 }
1759
1760 /* Set point in BUFFER to CHARPOS. If the target position is
1761 before an intangible character, move to an ok place. */
1762
1763 void
1764 set_point (buffer, charpos)
1765 register struct buffer *buffer;
1766 register int charpos;
1767 {
1768 set_point_both (buffer, charpos, buf_charpos_to_bytepos (buffer, charpos));
1769 }
1770
1771 /* Set point in BUFFER to CHARPOS, which corresponds to byte
1772 position BYTEPOS. If the target position is
1773 before an intangible character, move to an ok place. */
1774
1775 void
1776 set_point_both (buffer, charpos, bytepos)
1777 register struct buffer *buffer;
1778 register int charpos, bytepos;
1779 {
1780 register INTERVAL to, from, toprev, fromprev, target;
1781 int buffer_point;
1782 register Lisp_Object obj;
1783 int old_position = BUF_PT (buffer);
1784 int backwards = (charpos < old_position ? 1 : 0);
1785 int have_overlays;
1786 int original_position;
1787
1788 buffer->point_before_scroll = Qnil;
1789
1790 if (charpos == BUF_PT (buffer))
1791 return;
1792
1793 /* In a single-byte buffer, the two positions must be equal. */
1794 if (BUF_ZV (buffer) == BUF_ZV_BYTE (buffer)
1795 && charpos != bytepos)
1796 abort ();
1797
1798 /* Check this now, before checking if the buffer has any intervals.
1799 That way, we can catch conditions which break this sanity check
1800 whether or not there are intervals in the buffer. */
1801 if (charpos > BUF_ZV (buffer) || charpos < BUF_BEGV (buffer))
1802 abort ();
1803
1804 have_overlays = (! NILP (buffer->overlays_before)
1805 || ! NILP (buffer->overlays_after));
1806
1807 /* If we have no text properties and overlays,
1808 then we can do it quickly. */
1809 if (NULL_INTERVAL_P (BUF_INTERVALS (buffer)) && ! have_overlays)
1810 {
1811 temp_set_point_both (buffer, charpos, bytepos);
1812 return;
1813 }
1814
1815 /* Set TO to the interval containing the char after CHARPOS,
1816 and TOPREV to the interval containing the char before CHARPOS.
1817 Either one may be null. They may be equal. */
1818 to = find_interval (BUF_INTERVALS (buffer), charpos);
1819 if (charpos == BUF_BEGV (buffer))
1820 toprev = 0;
1821 else if (to && to->position == charpos)
1822 toprev = previous_interval (to);
1823 else
1824 toprev = to;
1825
1826 buffer_point = (BUF_PT (buffer) == BUF_ZV (buffer)
1827 ? BUF_ZV (buffer) - 1
1828 : BUF_PT (buffer));
1829
1830 /* Set FROM to the interval containing the char after PT,
1831 and FROMPREV to the interval containing the char before PT.
1832 Either one may be null. They may be equal. */
1833 /* We could cache this and save time. */
1834 from = find_interval (BUF_INTERVALS (buffer), buffer_point);
1835 if (buffer_point == BUF_BEGV (buffer))
1836 fromprev = 0;
1837 else if (from && from->position == BUF_PT (buffer))
1838 fromprev = previous_interval (from);
1839 else if (buffer_point != BUF_PT (buffer))
1840 fromprev = from, from = 0;
1841 else
1842 fromprev = from;
1843
1844 /* Moving within an interval. */
1845 if (to == from && toprev == fromprev && INTERVAL_VISIBLE_P (to)
1846 && ! have_overlays)
1847 {
1848 temp_set_point_both (buffer, charpos, bytepos);
1849 return;
1850 }
1851
1852 original_position = charpos;
1853
1854 /* If the new position is between two intangible characters
1855 with the same intangible property value,
1856 move forward or backward until a change in that property. */
1857 if (NILP (Vinhibit_point_motion_hooks)
1858 && ((! NULL_INTERVAL_P (to) && ! NULL_INTERVAL_P (toprev))
1859 || have_overlays)
1860 /* Intangibility never stops us from positioning at the beginning
1861 or end of the buffer, so don't bother checking in that case. */
1862 && charpos != BEGV && charpos != ZV)
1863 {
1864 Lisp_Object intangible_propval;
1865 Lisp_Object pos;
1866
1867 XSETINT (pos, charpos);
1868
1869 if (backwards)
1870 {
1871 intangible_propval = Fget_char_property (make_number (charpos),
1872 Qintangible, Qnil);
1873
1874 /* If following char is intangible,
1875 skip back over all chars with matching intangible property. */
1876 if (! NILP (intangible_propval))
1877 while (XINT (pos) > BUF_BEGV (buffer)
1878 && EQ (Fget_char_property (make_number (XINT (pos) - 1),
1879 Qintangible, Qnil),
1880 intangible_propval))
1881 pos = Fprevious_char_property_change (pos, Qnil);
1882 }
1883 else
1884 {
1885 intangible_propval = Fget_char_property (make_number (charpos - 1),
1886 Qintangible, Qnil);
1887
1888 /* If following char is intangible,
1889 skip forward over all chars with matching intangible property. */
1890 if (! NILP (intangible_propval))
1891 while (XINT (pos) < BUF_ZV (buffer)
1892 && EQ (Fget_char_property (pos, Qintangible, Qnil),
1893 intangible_propval))
1894 pos = Fnext_char_property_change (pos, Qnil);
1895
1896 }
1897
1898 charpos = XINT (pos);
1899 bytepos = buf_charpos_to_bytepos (buffer, charpos);
1900 }
1901
1902 if (charpos != original_position)
1903 {
1904 /* Set TO to the interval containing the char after CHARPOS,
1905 and TOPREV to the interval containing the char before CHARPOS.
1906 Either one may be null. They may be equal. */
1907 to = find_interval (BUF_INTERVALS (buffer), charpos);
1908 if (charpos == BUF_BEGV (buffer))
1909 toprev = 0;
1910 else if (to && to->position == charpos)
1911 toprev = previous_interval (to);
1912 else
1913 toprev = to;
1914 }
1915
1916 /* Here TO is the interval after the stopping point
1917 and TOPREV is the interval before the stopping point.
1918 One or the other may be null. */
1919
1920 temp_set_point_both (buffer, charpos, bytepos);
1921
1922 /* We run point-left and point-entered hooks here, iff the
1923 two intervals are not equivalent. These hooks take
1924 (old_point, new_point) as arguments. */
1925 if (NILP (Vinhibit_point_motion_hooks)
1926 && (! intervals_equal (from, to)
1927 || ! intervals_equal (fromprev, toprev)))
1928 {
1929 Lisp_Object leave_after, leave_before, enter_after, enter_before;
1930
1931 if (fromprev)
1932 leave_after = textget (fromprev->plist, Qpoint_left);
1933 else
1934 leave_after = Qnil;
1935 if (from)
1936 leave_before = textget (from->plist, Qpoint_left);
1937 else
1938 leave_before = Qnil;
1939
1940 if (toprev)
1941 enter_after = textget (toprev->plist, Qpoint_entered);
1942 else
1943 enter_after = Qnil;
1944 if (to)
1945 enter_before = textget (to->plist, Qpoint_entered);
1946 else
1947 enter_before = Qnil;
1948
1949 if (! EQ (leave_before, enter_before) && !NILP (leave_before))
1950 call2 (leave_before, make_number (old_position),
1951 make_number (charpos));
1952 if (! EQ (leave_after, enter_after) && !NILP (leave_after))
1953 call2 (leave_after, make_number (old_position),
1954 make_number (charpos));
1955
1956 if (! EQ (enter_before, leave_before) && !NILP (enter_before))
1957 call2 (enter_before, make_number (old_position),
1958 make_number (charpos));
1959 if (! EQ (enter_after, leave_after) && !NILP (enter_after))
1960 call2 (enter_after, make_number (old_position),
1961 make_number (charpos));
1962 }
1963 }
1964 \f
1965 /* Move point to POSITION, unless POSITION is inside an intangible
1966 segment that reaches all the way to point. */
1967
1968 void
1969 move_if_not_intangible (position)
1970 int position;
1971 {
1972 Lisp_Object pos;
1973 Lisp_Object intangible_propval;
1974
1975 XSETINT (pos, position);
1976
1977 if (! NILP (Vinhibit_point_motion_hooks))
1978 /* If intangible is inhibited, always move point to POSITION. */
1979 ;
1980 else if (PT < position && XINT (pos) < ZV)
1981 {
1982 /* We want to move forward, so check the text before POSITION. */
1983
1984 intangible_propval = Fget_char_property (pos,
1985 Qintangible, Qnil);
1986
1987 /* If following char is intangible,
1988 skip back over all chars with matching intangible property. */
1989 if (! NILP (intangible_propval))
1990 while (XINT (pos) > BEGV
1991 && EQ (Fget_char_property (make_number (XINT (pos) - 1),
1992 Qintangible, Qnil),
1993 intangible_propval))
1994 pos = Fprevious_char_property_change (pos, Qnil);
1995 }
1996 else if (XINT (pos) > BEGV)
1997 {
1998 /* We want to move backward, so check the text after POSITION. */
1999
2000 intangible_propval = Fget_char_property (make_number (XINT (pos) - 1),
2001 Qintangible, Qnil);
2002
2003 /* If following char is intangible,
2004 skip forward over all chars with matching intangible property. */
2005 if (! NILP (intangible_propval))
2006 while (XINT (pos) < ZV
2007 && EQ (Fget_char_property (pos, Qintangible, Qnil),
2008 intangible_propval))
2009 pos = Fnext_char_property_change (pos, Qnil);
2010
2011 }
2012
2013 /* If the whole stretch between PT and POSITION isn't intangible,
2014 try moving to POSITION (which means we actually move farther
2015 if POSITION is inside of intangible text). */
2016
2017 if (XINT (pos) != PT)
2018 SET_PT (position);
2019 }
2020 \f
2021 /* Return the proper local map for position POSITION in BUFFER.
2022 Use the map specified by the local-map property, if any.
2023 Otherwise, use BUFFER's local map. */
2024
2025 Lisp_Object
2026 get_local_map (position, buffer)
2027 register int position;
2028 register struct buffer *buffer;
2029 {
2030 Lisp_Object prop, tem, lispy_position, lispy_buffer;
2031 int old_begv, old_zv, old_begv_byte, old_zv_byte;
2032
2033 /* Perhaps we should just change `position' to the limit. */
2034 if (position > BUF_Z (buffer) || position < BUF_BEG (buffer))
2035 abort ();
2036
2037 /* Ignore narrowing, so that a local map continues to be valid even if
2038 the visible region contains no characters and hence no properties. */
2039 old_begv = BUF_BEGV (buffer);
2040 old_zv = BUF_ZV (buffer);
2041 old_begv_byte = BUF_BEGV_BYTE (buffer);
2042 old_zv_byte = BUF_ZV_BYTE (buffer);
2043 BUF_BEGV (buffer) = BUF_BEG (buffer);
2044 BUF_ZV (buffer) = BUF_Z (buffer);
2045 BUF_BEGV_BYTE (buffer) = BUF_BEG_BYTE (buffer);
2046 BUF_ZV_BYTE (buffer) = BUF_Z_BYTE (buffer);
2047
2048 /* There are no properties at the end of the buffer, so in that case
2049 check for a local map on the last character of the buffer instead. */
2050 if (position == BUF_Z (buffer) && BUF_Z (buffer) > BUF_BEG (buffer))
2051 --position;
2052 XSETFASTINT (lispy_position, position);
2053 XSETBUFFER (lispy_buffer, buffer);
2054 prop = Fget_char_property (lispy_position, Qlocal_map, lispy_buffer);
2055
2056 BUF_BEGV (buffer) = old_begv;
2057 BUF_ZV (buffer) = old_zv;
2058 BUF_BEGV_BYTE (buffer) = old_begv_byte;
2059 BUF_ZV_BYTE (buffer) = old_zv_byte;
2060
2061 /* Use the local map only if it is valid. */
2062 /* Do allow symbols that are defined as keymaps. */
2063 if (SYMBOLP (prop) && !NILP (prop))
2064 prop = Findirect_function (prop);
2065 if (!NILP (prop)
2066 && (tem = Fkeymapp (prop), !NILP (tem)))
2067 return prop;
2068
2069 return buffer->keymap;
2070 }
2071 \f
2072 /* Produce an interval tree reflecting the intervals in
2073 TREE from START to START + LENGTH.
2074 The new interval tree has no parent and has a starting-position of 0. */
2075
2076 INTERVAL
2077 copy_intervals (tree, start, length)
2078 INTERVAL tree;
2079 int start, length;
2080 {
2081 register INTERVAL i, new, t;
2082 register int got, prevlen;
2083
2084 if (NULL_INTERVAL_P (tree) || length <= 0)
2085 return NULL_INTERVAL;
2086
2087 i = find_interval (tree, start);
2088 if (NULL_INTERVAL_P (i) || LENGTH (i) == 0)
2089 abort ();
2090
2091 /* If there is only one interval and it's the default, return nil. */
2092 if ((start - i->position + 1 + length) < LENGTH (i)
2093 && DEFAULT_INTERVAL_P (i))
2094 return NULL_INTERVAL;
2095
2096 new = make_interval ();
2097 new->position = 0;
2098 got = (LENGTH (i) - (start - i->position));
2099 new->total_length = length;
2100 copy_properties (i, new);
2101
2102 t = new;
2103 prevlen = got;
2104 while (got < length)
2105 {
2106 i = next_interval (i);
2107 t = split_interval_right (t, prevlen);
2108 copy_properties (i, t);
2109 prevlen = LENGTH (i);
2110 got += prevlen;
2111 }
2112
2113 return balance_an_interval (new);
2114 }
2115
2116 /* Give STRING the properties of BUFFER from POSITION to LENGTH. */
2117
2118 INLINE void
2119 copy_intervals_to_string (string, buffer, position, length)
2120 Lisp_Object string;
2121 struct buffer *buffer;
2122 int position, length;
2123 {
2124 INTERVAL interval_copy = copy_intervals (BUF_INTERVALS (buffer),
2125 position, length);
2126 if (NULL_INTERVAL_P (interval_copy))
2127 return;
2128
2129 interval_copy->parent = (INTERVAL) XFASTINT (string);
2130 XSTRING (string)->intervals = interval_copy;
2131 }
2132 \f
2133 /* Return 1 if strings S1 and S2 have identical properties; 0 otherwise.
2134 Assume they have identical characters. */
2135
2136 int
2137 compare_string_intervals (s1, s2)
2138 Lisp_Object s1, s2;
2139 {
2140 INTERVAL i1, i2;
2141 int pos = 0;
2142 int end = XSTRING (s1)->size;
2143
2144 i1 = find_interval (XSTRING (s1)->intervals, 0);
2145 i2 = find_interval (XSTRING (s2)->intervals, 0);
2146
2147 while (pos < end)
2148 {
2149 /* Determine how far we can go before we reach the end of I1 or I2. */
2150 int len1 = (i1 != 0 ? INTERVAL_LAST_POS (i1) : end) - pos;
2151 int len2 = (i2 != 0 ? INTERVAL_LAST_POS (i2) : end) - pos;
2152 int distance = min (len1, len2);
2153
2154 /* If we ever find a mismatch between the strings,
2155 they differ. */
2156 if (! intervals_equal (i1, i2))
2157 return 0;
2158
2159 /* Advance POS till the end of the shorter interval,
2160 and advance one or both interval pointers for the new position. */
2161 pos += distance;
2162 if (len1 == distance)
2163 i1 = next_interval (i1);
2164 if (len2 == distance)
2165 i2 = next_interval (i2);
2166 }
2167 return 1;
2168 }
2169 \f
2170 /* Recursively adjust interval I in the current buffer
2171 for setting enable_multibyte_characters to MULTI_FLAG.
2172 The range of interval I is START ... END in characters,
2173 START_BYTE ... END_BYTE in bytes. */
2174
2175 static void
2176 set_intervals_multibyte_1 (i, multi_flag, start, start_byte, end, end_byte)
2177 INTERVAL i;
2178 int multi_flag;
2179 int start, start_byte, end, end_byte;
2180 {
2181 INTERVAL left, right;
2182
2183 /* Fix the length of this interval. */
2184 if (multi_flag)
2185 i->total_length = end - start;
2186 else
2187 i->total_length = end_byte - start_byte;
2188
2189 /* Recursively fix the length of the subintervals. */
2190 if (i->left)
2191 {
2192 int left_end, left_end_byte;
2193
2194 if (multi_flag)
2195 {
2196 left_end_byte = start_byte + LEFT_TOTAL_LENGTH (i);
2197 left_end = BYTE_TO_CHAR (left_end_byte);
2198 }
2199 else
2200 {
2201 left_end = start + LEFT_TOTAL_LENGTH (i);
2202 left_end_byte = CHAR_TO_BYTE (left_end);
2203 }
2204
2205 set_intervals_multibyte_1 (i->left, multi_flag, start, start_byte,
2206 left_end, left_end_byte);
2207 }
2208 if (i->right)
2209 {
2210 int right_start_byte, right_start;
2211
2212 if (multi_flag)
2213 {
2214 right_start_byte = end_byte - RIGHT_TOTAL_LENGTH (i);
2215 right_start = BYTE_TO_CHAR (right_start_byte);
2216 }
2217 else
2218 {
2219 right_start = end - RIGHT_TOTAL_LENGTH (i);
2220 right_start_byte = CHAR_TO_BYTE (right_start);
2221 }
2222
2223 set_intervals_multibyte_1 (i->right, multi_flag,
2224 right_start, right_start_byte,
2225 end, end_byte);
2226 }
2227 }
2228
2229 /* Update the intervals of the current buffer
2230 to fit the contents as multibyte (if MULTI_FLAG is 1)
2231 or to fit them as non-multibyte (if MULTI_FLAG is 0). */
2232
2233 void
2234 set_intervals_multibyte (multi_flag)
2235 int multi_flag;
2236 {
2237 if (BUF_INTERVALS (current_buffer))
2238 set_intervals_multibyte_1 (BUF_INTERVALS (current_buffer), multi_flag,
2239 BEG, BEG_BYTE, Z, Z_BYTE);
2240 }
2241
2242 #endif /* USE_TEXT_PROPERTIES */