(detect_coding_utf_16): Fix the logic of rejecting
[bpt/emacs.git] / src / coding.c
1 /* Coding system handler (conversion, detection, etc).
2 Copyright (C) 2001, 2002, 2003, 2004, 2005,
3 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
5 2005, 2006, 2007, 2008, 2009
6 National Institute of Advanced Industrial Science and Technology (AIST)
7 Registration Number H14PRO021
8 Copyright (C) 2003
9 National Institute of Advanced Industrial Science and Technology (AIST)
10 Registration Number H13PRO009
11
12 This file is part of GNU Emacs.
13
14 GNU Emacs is free software: you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation, either version 3 of the License, or
17 (at your option) any later version.
18
19 GNU Emacs is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
26
27 /*** TABLE OF CONTENTS ***
28
29 0. General comments
30 1. Preamble
31 2. Emacs' internal format (emacs-utf-8) handlers
32 3. UTF-8 handlers
33 4. UTF-16 handlers
34 5. Charset-base coding systems handlers
35 6. emacs-mule (old Emacs' internal format) handlers
36 7. ISO2022 handlers
37 8. Shift-JIS and BIG5 handlers
38 9. CCL handlers
39 10. C library functions
40 11. Emacs Lisp library functions
41 12. Postamble
42
43 */
44
45 /*** 0. General comments ***
46
47
48 CODING SYSTEM
49
50 A coding system is an object for an encoding mechanism that contains
51 information about how to convert byte sequences to character
52 sequences and vice versa. When we say "decode", it means converting
53 a byte sequence of a specific coding system into a character
54 sequence that is represented by Emacs' internal coding system
55 `emacs-utf-8', and when we say "encode", it means converting a
56 character sequence of emacs-utf-8 to a byte sequence of a specific
57 coding system.
58
59 In Emacs Lisp, a coding system is represented by a Lisp symbol. In
60 C level, a coding system is represented by a vector of attributes
61 stored in the hash table Vcharset_hash_table. The conversion from
62 coding system symbol to attributes vector is done by looking up
63 Vcharset_hash_table by the symbol.
64
65 Coding systems are classified into the following types depending on
66 the encoding mechanism. Here's a brief description of the types.
67
68 o UTF-8
69
70 o UTF-16
71
72 o Charset-base coding system
73
74 A coding system defined by one or more (coded) character sets.
75 Decoding and encoding are done by a code converter defined for each
76 character set.
77
78 o Old Emacs internal format (emacs-mule)
79
80 The coding system adopted by old versions of Emacs (20 and 21).
81
82 o ISO2022-base coding system
83
84 The most famous coding system for multiple character sets. X's
85 Compound Text, various EUCs (Extended Unix Code), and coding systems
86 used in the Internet communication such as ISO-2022-JP are all
87 variants of ISO2022.
88
89 o SJIS (or Shift-JIS or MS-Kanji-Code)
90
91 A coding system to encode character sets: ASCII, JISX0201, and
92 JISX0208. Widely used for PC's in Japan. Details are described in
93 section 8.
94
95 o BIG5
96
97 A coding system to encode character sets: ASCII and Big5. Widely
98 used for Chinese (mainly in Taiwan and Hong Kong). Details are
99 described in section 8. In this file, when we write "big5" (all
100 lowercase), we mean the coding system, and when we write "Big5"
101 (capitalized), we mean the character set.
102
103 o CCL
104
105 If a user wants to decode/encode text encoded in a coding system
106 not listed above, he can supply a decoder and an encoder for it in
107 CCL (Code Conversion Language) programs. Emacs executes the CCL
108 program while decoding/encoding.
109
110 o Raw-text
111
112 A coding system for text containing raw eight-bit data. Emacs
113 treats each byte of source text as a character (except for
114 end-of-line conversion).
115
116 o No-conversion
117
118 Like raw text, but don't do end-of-line conversion.
119
120
121 END-OF-LINE FORMAT
122
123 How text end-of-line is encoded depends on operating system. For
124 instance, Unix's format is just one byte of LF (line-feed) code,
125 whereas DOS's format is two-byte sequence of `carriage-return' and
126 `line-feed' codes. MacOS's format is usually one byte of
127 `carriage-return'.
128
129 Since text character encoding and end-of-line encoding are
130 independent, any coding system described above can take any format
131 of end-of-line (except for no-conversion).
132
133 STRUCT CODING_SYSTEM
134
135 Before using a coding system for code conversion (i.e. decoding and
136 encoding), we setup a structure of type `struct coding_system'.
137 This structure keeps various information about a specific code
138 conversion (e.g. the location of source and destination data).
139
140 */
141
142 /* COMMON MACROS */
143
144
145 /*** GENERAL NOTES on `detect_coding_XXX ()' functions ***
146
147 These functions check if a byte sequence specified as a source in
148 CODING conforms to the format of XXX, and update the members of
149 DETECT_INFO.
150
151 Return 1 if the byte sequence conforms to XXX, otherwise return 0.
152
153 Below is the template of these functions. */
154
155 #if 0
156 static int
157 detect_coding_XXX (coding, detect_info)
158 struct coding_system *coding;
159 struct coding_detection_info *detect_info;
160 {
161 const unsigned char *src = coding->source;
162 const unsigned char *src_end = coding->source + coding->src_bytes;
163 int multibytep = coding->src_multibyte;
164 int consumed_chars = 0;
165 int found = 0;
166 ...;
167
168 while (1)
169 {
170 /* Get one byte from the source. If the souce is exausted, jump
171 to no_more_source:. */
172 ONE_MORE_BYTE (c);
173
174 if (! __C_conforms_to_XXX___ (c))
175 break;
176 if (! __C_strongly_suggests_XXX__ (c))
177 found = CATEGORY_MASK_XXX;
178 }
179 /* The byte sequence is invalid for XXX. */
180 detect_info->rejected |= CATEGORY_MASK_XXX;
181 return 0;
182
183 no_more_source:
184 /* The source exausted successfully. */
185 detect_info->found |= found;
186 return 1;
187 }
188 #endif
189
190 /*** GENERAL NOTES on `decode_coding_XXX ()' functions ***
191
192 These functions decode a byte sequence specified as a source by
193 CODING. The resulting multibyte text goes to a place pointed to by
194 CODING->charbuf, the length of which should not exceed
195 CODING->charbuf_size;
196
197 These functions set the information of original and decoded texts in
198 CODING->consumed, CODING->consumed_char, and CODING->charbuf_used.
199 They also set CODING->result to one of CODING_RESULT_XXX indicating
200 how the decoding is finished.
201
202 Below is the template of these functions. */
203
204 #if 0
205 static void
206 decode_coding_XXXX (coding)
207 struct coding_system *coding;
208 {
209 const unsigned char *src = coding->source + coding->consumed;
210 const unsigned char *src_end = coding->source + coding->src_bytes;
211 /* SRC_BASE remembers the start position in source in each loop.
212 The loop will be exited when there's not enough source code, or
213 when there's no room in CHARBUF for a decoded character. */
214 const unsigned char *src_base;
215 /* A buffer to produce decoded characters. */
216 int *charbuf = coding->charbuf + coding->charbuf_used;
217 int *charbuf_end = coding->charbuf + coding->charbuf_size;
218 int multibytep = coding->src_multibyte;
219
220 while (1)
221 {
222 src_base = src;
223 if (charbuf < charbuf_end)
224 /* No more room to produce a decoded character. */
225 break;
226 ONE_MORE_BYTE (c);
227 /* Decode it. */
228 }
229
230 no_more_source:
231 if (src_base < src_end
232 && coding->mode & CODING_MODE_LAST_BLOCK)
233 /* If the source ends by partial bytes to construct a character,
234 treat them as eight-bit raw data. */
235 while (src_base < src_end && charbuf < charbuf_end)
236 *charbuf++ = *src_base++;
237 /* Remember how many bytes and characters we consumed. If the
238 source is multibyte, the bytes and chars are not identical. */
239 coding->consumed = coding->consumed_char = src_base - coding->source;
240 /* Remember how many characters we produced. */
241 coding->charbuf_used = charbuf - coding->charbuf;
242 }
243 #endif
244
245 /*** GENERAL NOTES on `encode_coding_XXX ()' functions ***
246
247 These functions encode SRC_BYTES length text at SOURCE of Emacs'
248 internal multibyte format by CODING. The resulting byte sequence
249 goes to a place pointed to by DESTINATION, the length of which
250 should not exceed DST_BYTES.
251
252 These functions set the information of original and encoded texts in
253 the members produced, produced_char, consumed, and consumed_char of
254 the structure *CODING. They also set the member result to one of
255 CODING_RESULT_XXX indicating how the encoding finished.
256
257 DST_BYTES zero means that source area and destination area are
258 overlapped, which means that we can produce a encoded text until it
259 reaches at the head of not-yet-encoded source text.
260
261 Below is a template of these functions. */
262 #if 0
263 static void
264 encode_coding_XXX (coding)
265 struct coding_system *coding;
266 {
267 int multibytep = coding->dst_multibyte;
268 int *charbuf = coding->charbuf;
269 int *charbuf_end = charbuf->charbuf + coding->charbuf_used;
270 unsigned char *dst = coding->destination + coding->produced;
271 unsigned char *dst_end = coding->destination + coding->dst_bytes;
272 unsigned char *adjusted_dst_end = dst_end - _MAX_BYTES_PRODUCED_IN_LOOP_;
273 int produced_chars = 0;
274
275 for (; charbuf < charbuf_end && dst < adjusted_dst_end; charbuf++)
276 {
277 int c = *charbuf;
278 /* Encode C into DST, and increment DST. */
279 }
280 label_no_more_destination:
281 /* How many chars and bytes we produced. */
282 coding->produced_char += produced_chars;
283 coding->produced = dst - coding->destination;
284 }
285 #endif
286
287 \f
288 /*** 1. Preamble ***/
289
290 #include <config.h>
291 #include <stdio.h>
292
293 #include "lisp.h"
294 #include "buffer.h"
295 #include "character.h"
296 #include "charset.h"
297 #include "ccl.h"
298 #include "composite.h"
299 #include "coding.h"
300 #include "window.h"
301 #include "frame.h"
302 #include "termhooks.h"
303
304 Lisp_Object Vcoding_system_hash_table;
305
306 Lisp_Object Qcoding_system, Qcoding_aliases, Qeol_type;
307 Lisp_Object Qunix, Qdos;
308 extern Lisp_Object Qmac; /* frame.c */
309 Lisp_Object Qbuffer_file_coding_system;
310 Lisp_Object Qpost_read_conversion, Qpre_write_conversion;
311 Lisp_Object Qdefault_char;
312 Lisp_Object Qno_conversion, Qundecided;
313 Lisp_Object Qcharset, Qiso_2022, Qutf_8, Qutf_16, Qshift_jis, Qbig5;
314 Lisp_Object Qbig, Qlittle;
315 Lisp_Object Qcoding_system_history;
316 Lisp_Object Qvalid_codes;
317 Lisp_Object QCcategory, QCmnemonic, QCdefault_char;
318 Lisp_Object QCdecode_translation_table, QCencode_translation_table;
319 Lisp_Object QCpost_read_conversion, QCpre_write_conversion;
320 Lisp_Object QCascii_compatible_p;
321
322 extern Lisp_Object Qinsert_file_contents, Qwrite_region;
323 Lisp_Object Qcall_process, Qcall_process_region;
324 Lisp_Object Qstart_process, Qopen_network_stream;
325 Lisp_Object Qtarget_idx;
326
327 Lisp_Object Qinsufficient_source, Qinconsistent_eol, Qinvalid_source;
328 Lisp_Object Qinterrupted, Qinsufficient_memory;
329
330 extern Lisp_Object Qcompletion_ignore_case;
331
332 /* If a symbol has this property, evaluate the value to define the
333 symbol as a coding system. */
334 static Lisp_Object Qcoding_system_define_form;
335
336 int coding_system_require_warning;
337
338 Lisp_Object Vselect_safe_coding_system_function;
339
340 /* Mnemonic string for each format of end-of-line. */
341 Lisp_Object eol_mnemonic_unix, eol_mnemonic_dos, eol_mnemonic_mac;
342 /* Mnemonic string to indicate format of end-of-line is not yet
343 decided. */
344 Lisp_Object eol_mnemonic_undecided;
345
346 /* Format of end-of-line decided by system. This is Qunix on
347 Unix and Mac, Qdos on DOS/Windows.
348 This has an effect only for external encoding (i.e. for output to
349 file and process), not for in-buffer or Lisp string encoding. */
350 static Lisp_Object system_eol_type;
351
352 #ifdef emacs
353
354 Lisp_Object Vcoding_system_list, Vcoding_system_alist;
355
356 Lisp_Object Qcoding_system_p, Qcoding_system_error;
357
358 /* Coding system emacs-mule and raw-text are for converting only
359 end-of-line format. */
360 Lisp_Object Qemacs_mule, Qraw_text;
361 Lisp_Object Qutf_8_emacs;
362
363 /* Coding-systems are handed between Emacs Lisp programs and C internal
364 routines by the following three variables. */
365 /* Coding-system for reading files and receiving data from process. */
366 Lisp_Object Vcoding_system_for_read;
367 /* Coding-system for writing files and sending data to process. */
368 Lisp_Object Vcoding_system_for_write;
369 /* Coding-system actually used in the latest I/O. */
370 Lisp_Object Vlast_coding_system_used;
371 /* Set to non-nil when an error is detected while code conversion. */
372 Lisp_Object Vlast_code_conversion_error;
373 /* A vector of length 256 which contains information about special
374 Latin codes (especially for dealing with Microsoft codes). */
375 Lisp_Object Vlatin_extra_code_table;
376
377 /* Flag to inhibit code conversion of end-of-line format. */
378 int inhibit_eol_conversion;
379
380 /* Flag to inhibit ISO2022 escape sequence detection. */
381 int inhibit_iso_escape_detection;
382
383 /* Flag to inhibit detection of binary files through null bytes. */
384 int inhibit_null_byte_detection;
385
386 /* Flag to make buffer-file-coding-system inherit from process-coding. */
387 int inherit_process_coding_system;
388
389 /* Coding system to be used to encode text for terminal display when
390 terminal coding system is nil. */
391 struct coding_system safe_terminal_coding;
392
393 Lisp_Object Vfile_coding_system_alist;
394 Lisp_Object Vprocess_coding_system_alist;
395 Lisp_Object Vnetwork_coding_system_alist;
396
397 Lisp_Object Vlocale_coding_system;
398
399 #endif /* emacs */
400
401 /* Flag to tell if we look up translation table on character code
402 conversion. */
403 Lisp_Object Venable_character_translation;
404 /* Standard translation table to look up on decoding (reading). */
405 Lisp_Object Vstandard_translation_table_for_decode;
406 /* Standard translation table to look up on encoding (writing). */
407 Lisp_Object Vstandard_translation_table_for_encode;
408
409 Lisp_Object Qtranslation_table;
410 Lisp_Object Qtranslation_table_id;
411 Lisp_Object Qtranslation_table_for_decode;
412 Lisp_Object Qtranslation_table_for_encode;
413
414 /* Alist of charsets vs revision number. */
415 static Lisp_Object Vcharset_revision_table;
416
417 /* Default coding systems used for process I/O. */
418 Lisp_Object Vdefault_process_coding_system;
419
420 /* Char table for translating Quail and self-inserting input. */
421 Lisp_Object Vtranslation_table_for_input;
422
423 /* Two special coding systems. */
424 Lisp_Object Vsjis_coding_system;
425 Lisp_Object Vbig5_coding_system;
426
427 /* ISO2022 section */
428
429 #define CODING_ISO_INITIAL(coding, reg) \
430 (XINT (AREF (AREF (CODING_ID_ATTRS ((coding)->id), \
431 coding_attr_iso_initial), \
432 reg)))
433
434
435 #define CODING_ISO_REQUEST(coding, charset_id) \
436 (((charset_id) <= (coding)->max_charset_id \
437 ? ((coding)->safe_charsets[charset_id] != 255 \
438 ? (coding)->safe_charsets[charset_id] \
439 : -1) \
440 : -1))
441
442
443 #define CODING_ISO_FLAGS(coding) \
444 ((coding)->spec.iso_2022.flags)
445 #define CODING_ISO_DESIGNATION(coding, reg) \
446 ((coding)->spec.iso_2022.current_designation[reg])
447 #define CODING_ISO_INVOCATION(coding, plane) \
448 ((coding)->spec.iso_2022.current_invocation[plane])
449 #define CODING_ISO_SINGLE_SHIFTING(coding) \
450 ((coding)->spec.iso_2022.single_shifting)
451 #define CODING_ISO_BOL(coding) \
452 ((coding)->spec.iso_2022.bol)
453 #define CODING_ISO_INVOKED_CHARSET(coding, plane) \
454 CODING_ISO_DESIGNATION ((coding), CODING_ISO_INVOCATION ((coding), (plane)))
455 #define CODING_ISO_CMP_STATUS(coding) \
456 (&(coding)->spec.iso_2022.cmp_status)
457 #define CODING_ISO_EXTSEGMENT_LEN(coding) \
458 ((coding)->spec.iso_2022.ctext_extended_segment_len)
459 #define CODING_ISO_EMBEDDED_UTF_8(coding) \
460 ((coding)->spec.iso_2022.embedded_utf_8)
461
462 /* Control characters of ISO2022. */
463 /* code */ /* function */
464 #define ISO_CODE_LF 0x0A /* line-feed */
465 #define ISO_CODE_CR 0x0D /* carriage-return */
466 #define ISO_CODE_SO 0x0E /* shift-out */
467 #define ISO_CODE_SI 0x0F /* shift-in */
468 #define ISO_CODE_SS2_7 0x19 /* single-shift-2 for 7-bit code */
469 #define ISO_CODE_ESC 0x1B /* escape */
470 #define ISO_CODE_SS2 0x8E /* single-shift-2 */
471 #define ISO_CODE_SS3 0x8F /* single-shift-3 */
472 #define ISO_CODE_CSI 0x9B /* control-sequence-introducer */
473
474 /* All code (1-byte) of ISO2022 is classified into one of the
475 followings. */
476 enum iso_code_class_type
477 {
478 ISO_control_0, /* Control codes in the range
479 0x00..0x1F and 0x7F, except for the
480 following 5 codes. */
481 ISO_shift_out, /* ISO_CODE_SO (0x0E) */
482 ISO_shift_in, /* ISO_CODE_SI (0x0F) */
483 ISO_single_shift_2_7, /* ISO_CODE_SS2_7 (0x19) */
484 ISO_escape, /* ISO_CODE_SO (0x1B) */
485 ISO_control_1, /* Control codes in the range
486 0x80..0x9F, except for the
487 following 3 codes. */
488 ISO_single_shift_2, /* ISO_CODE_SS2 (0x8E) */
489 ISO_single_shift_3, /* ISO_CODE_SS3 (0x8F) */
490 ISO_control_sequence_introducer, /* ISO_CODE_CSI (0x9B) */
491 ISO_0x20_or_0x7F, /* Codes of the values 0x20 or 0x7F. */
492 ISO_graphic_plane_0, /* Graphic codes in the range 0x21..0x7E. */
493 ISO_0xA0_or_0xFF, /* Codes of the values 0xA0 or 0xFF. */
494 ISO_graphic_plane_1 /* Graphic codes in the range 0xA1..0xFE. */
495 };
496
497 /** The macros CODING_ISO_FLAG_XXX defines a flag bit of the
498 `iso-flags' attribute of an iso2022 coding system. */
499
500 /* If set, produce long-form designation sequence (e.g. ESC $ ( A)
501 instead of the correct short-form sequence (e.g. ESC $ A). */
502 #define CODING_ISO_FLAG_LONG_FORM 0x0001
503
504 /* If set, reset graphic planes and registers at end-of-line to the
505 initial state. */
506 #define CODING_ISO_FLAG_RESET_AT_EOL 0x0002
507
508 /* If set, reset graphic planes and registers before any control
509 characters to the initial state. */
510 #define CODING_ISO_FLAG_RESET_AT_CNTL 0x0004
511
512 /* If set, encode by 7-bit environment. */
513 #define CODING_ISO_FLAG_SEVEN_BITS 0x0008
514
515 /* If set, use locking-shift function. */
516 #define CODING_ISO_FLAG_LOCKING_SHIFT 0x0010
517
518 /* If set, use single-shift function. Overwrite
519 CODING_ISO_FLAG_LOCKING_SHIFT. */
520 #define CODING_ISO_FLAG_SINGLE_SHIFT 0x0020
521
522 /* If set, use designation escape sequence. */
523 #define CODING_ISO_FLAG_DESIGNATION 0x0040
524
525 /* If set, produce revision number sequence. */
526 #define CODING_ISO_FLAG_REVISION 0x0080
527
528 /* If set, produce ISO6429's direction specifying sequence. */
529 #define CODING_ISO_FLAG_DIRECTION 0x0100
530
531 /* If set, assume designation states are reset at beginning of line on
532 output. */
533 #define CODING_ISO_FLAG_INIT_AT_BOL 0x0200
534
535 /* If set, designation sequence should be placed at beginning of line
536 on output. */
537 #define CODING_ISO_FLAG_DESIGNATE_AT_BOL 0x0400
538
539 /* If set, do not encode unsafe charactes on output. */
540 #define CODING_ISO_FLAG_SAFE 0x0800
541
542 /* If set, extra latin codes (128..159) are accepted as a valid code
543 on input. */
544 #define CODING_ISO_FLAG_LATIN_EXTRA 0x1000
545
546 #define CODING_ISO_FLAG_COMPOSITION 0x2000
547
548 #define CODING_ISO_FLAG_EUC_TW_SHIFT 0x4000
549
550 #define CODING_ISO_FLAG_USE_ROMAN 0x8000
551
552 #define CODING_ISO_FLAG_USE_OLDJIS 0x10000
553
554 #define CODING_ISO_FLAG_FULL_SUPPORT 0x100000
555
556 /* A character to be produced on output if encoding of the original
557 character is prohibited by CODING_ISO_FLAG_SAFE. */
558 #define CODING_INHIBIT_CHARACTER_SUBSTITUTION '?'
559
560 /* UTF-8 section */
561 #define CODING_UTF_8_BOM(coding) \
562 ((coding)->spec.utf_8_bom)
563
564 /* UTF-16 section */
565 #define CODING_UTF_16_BOM(coding) \
566 ((coding)->spec.utf_16.bom)
567
568 #define CODING_UTF_16_ENDIAN(coding) \
569 ((coding)->spec.utf_16.endian)
570
571 #define CODING_UTF_16_SURROGATE(coding) \
572 ((coding)->spec.utf_16.surrogate)
573
574
575 /* CCL section */
576 #define CODING_CCL_DECODER(coding) \
577 AREF (CODING_ID_ATTRS ((coding)->id), coding_attr_ccl_decoder)
578 #define CODING_CCL_ENCODER(coding) \
579 AREF (CODING_ID_ATTRS ((coding)->id), coding_attr_ccl_encoder)
580 #define CODING_CCL_VALIDS(coding) \
581 (SDATA (AREF (CODING_ID_ATTRS ((coding)->id), coding_attr_ccl_valids)))
582
583 /* Index for each coding category in `coding_categories' */
584
585 enum coding_category
586 {
587 coding_category_iso_7,
588 coding_category_iso_7_tight,
589 coding_category_iso_8_1,
590 coding_category_iso_8_2,
591 coding_category_iso_7_else,
592 coding_category_iso_8_else,
593 coding_category_utf_8_auto,
594 coding_category_utf_8_nosig,
595 coding_category_utf_8_sig,
596 coding_category_utf_16_auto,
597 coding_category_utf_16_be,
598 coding_category_utf_16_le,
599 coding_category_utf_16_be_nosig,
600 coding_category_utf_16_le_nosig,
601 coding_category_charset,
602 coding_category_sjis,
603 coding_category_big5,
604 coding_category_ccl,
605 coding_category_emacs_mule,
606 /* All above are targets of code detection. */
607 coding_category_raw_text,
608 coding_category_undecided,
609 coding_category_max
610 };
611
612 /* Definitions of flag bits used in detect_coding_XXXX. */
613 #define CATEGORY_MASK_ISO_7 (1 << coding_category_iso_7)
614 #define CATEGORY_MASK_ISO_7_TIGHT (1 << coding_category_iso_7_tight)
615 #define CATEGORY_MASK_ISO_8_1 (1 << coding_category_iso_8_1)
616 #define CATEGORY_MASK_ISO_8_2 (1 << coding_category_iso_8_2)
617 #define CATEGORY_MASK_ISO_7_ELSE (1 << coding_category_iso_7_else)
618 #define CATEGORY_MASK_ISO_8_ELSE (1 << coding_category_iso_8_else)
619 #define CATEGORY_MASK_UTF_8_AUTO (1 << coding_category_utf_8_auto)
620 #define CATEGORY_MASK_UTF_8_NOSIG (1 << coding_category_utf_8_nosig)
621 #define CATEGORY_MASK_UTF_8_SIG (1 << coding_category_utf_8_sig)
622 #define CATEGORY_MASK_UTF_16_AUTO (1 << coding_category_utf_16_auto)
623 #define CATEGORY_MASK_UTF_16_BE (1 << coding_category_utf_16_be)
624 #define CATEGORY_MASK_UTF_16_LE (1 << coding_category_utf_16_le)
625 #define CATEGORY_MASK_UTF_16_BE_NOSIG (1 << coding_category_utf_16_be_nosig)
626 #define CATEGORY_MASK_UTF_16_LE_NOSIG (1 << coding_category_utf_16_le_nosig)
627 #define CATEGORY_MASK_CHARSET (1 << coding_category_charset)
628 #define CATEGORY_MASK_SJIS (1 << coding_category_sjis)
629 #define CATEGORY_MASK_BIG5 (1 << coding_category_big5)
630 #define CATEGORY_MASK_CCL (1 << coding_category_ccl)
631 #define CATEGORY_MASK_EMACS_MULE (1 << coding_category_emacs_mule)
632 #define CATEGORY_MASK_RAW_TEXT (1 << coding_category_raw_text)
633
634 /* This value is returned if detect_coding_mask () find nothing other
635 than ASCII characters. */
636 #define CATEGORY_MASK_ANY \
637 (CATEGORY_MASK_ISO_7 \
638 | CATEGORY_MASK_ISO_7_TIGHT \
639 | CATEGORY_MASK_ISO_8_1 \
640 | CATEGORY_MASK_ISO_8_2 \
641 | CATEGORY_MASK_ISO_7_ELSE \
642 | CATEGORY_MASK_ISO_8_ELSE \
643 | CATEGORY_MASK_UTF_8_AUTO \
644 | CATEGORY_MASK_UTF_8_NOSIG \
645 | CATEGORY_MASK_UTF_8_SIG \
646 | CATEGORY_MASK_UTF_16_AUTO \
647 | CATEGORY_MASK_UTF_16_BE \
648 | CATEGORY_MASK_UTF_16_LE \
649 | CATEGORY_MASK_UTF_16_BE_NOSIG \
650 | CATEGORY_MASK_UTF_16_LE_NOSIG \
651 | CATEGORY_MASK_CHARSET \
652 | CATEGORY_MASK_SJIS \
653 | CATEGORY_MASK_BIG5 \
654 | CATEGORY_MASK_CCL \
655 | CATEGORY_MASK_EMACS_MULE)
656
657
658 #define CATEGORY_MASK_ISO_7BIT \
659 (CATEGORY_MASK_ISO_7 | CATEGORY_MASK_ISO_7_TIGHT)
660
661 #define CATEGORY_MASK_ISO_8BIT \
662 (CATEGORY_MASK_ISO_8_1 | CATEGORY_MASK_ISO_8_2)
663
664 #define CATEGORY_MASK_ISO_ELSE \
665 (CATEGORY_MASK_ISO_7_ELSE | CATEGORY_MASK_ISO_8_ELSE)
666
667 #define CATEGORY_MASK_ISO_ESCAPE \
668 (CATEGORY_MASK_ISO_7 \
669 | CATEGORY_MASK_ISO_7_TIGHT \
670 | CATEGORY_MASK_ISO_7_ELSE \
671 | CATEGORY_MASK_ISO_8_ELSE)
672
673 #define CATEGORY_MASK_ISO \
674 ( CATEGORY_MASK_ISO_7BIT \
675 | CATEGORY_MASK_ISO_8BIT \
676 | CATEGORY_MASK_ISO_ELSE)
677
678 #define CATEGORY_MASK_UTF_16 \
679 (CATEGORY_MASK_UTF_16_AUTO \
680 | CATEGORY_MASK_UTF_16_BE \
681 | CATEGORY_MASK_UTF_16_LE \
682 | CATEGORY_MASK_UTF_16_BE_NOSIG \
683 | CATEGORY_MASK_UTF_16_LE_NOSIG)
684
685 #define CATEGORY_MASK_UTF_8 \
686 (CATEGORY_MASK_UTF_8_AUTO \
687 | CATEGORY_MASK_UTF_8_NOSIG \
688 | CATEGORY_MASK_UTF_8_SIG)
689
690 /* List of symbols `coding-category-xxx' ordered by priority. This
691 variable is exposed to Emacs Lisp. */
692 static Lisp_Object Vcoding_category_list;
693
694 /* Table of coding categories (Lisp symbols). This variable is for
695 internal use oly. */
696 static Lisp_Object Vcoding_category_table;
697
698 /* Table of coding-categories ordered by priority. */
699 static enum coding_category coding_priorities[coding_category_max];
700
701 /* Nth element is a coding context for the coding system bound to the
702 Nth coding category. */
703 static struct coding_system coding_categories[coding_category_max];
704
705 /*** Commonly used macros and functions ***/
706
707 #ifndef min
708 #define min(a, b) ((a) < (b) ? (a) : (b))
709 #endif
710 #ifndef max
711 #define max(a, b) ((a) > (b) ? (a) : (b))
712 #endif
713
714 #define CODING_GET_INFO(coding, attrs, charset_list) \
715 do { \
716 (attrs) = CODING_ID_ATTRS ((coding)->id); \
717 (charset_list) = CODING_ATTR_CHARSET_LIST (attrs); \
718 } while (0)
719
720
721 /* Safely get one byte from the source text pointed by SRC which ends
722 at SRC_END, and set C to that byte. If there are not enough bytes
723 in the source, it jumps to `no_more_source'. If multibytep is
724 nonzero, and a multibyte character is found at SRC, set C to the
725 negative value of the character code. The caller should declare
726 and set these variables appropriately in advance:
727 src, src_end, multibytep */
728
729 #define ONE_MORE_BYTE(c) \
730 do { \
731 if (src == src_end) \
732 { \
733 if (src_base < src) \
734 record_conversion_result \
735 (coding, CODING_RESULT_INSUFFICIENT_SRC); \
736 goto no_more_source; \
737 } \
738 c = *src++; \
739 if (multibytep && (c & 0x80)) \
740 { \
741 if ((c & 0xFE) == 0xC0) \
742 c = ((c & 1) << 6) | *src++; \
743 else \
744 { \
745 src--; \
746 c = - string_char (src, &src, NULL); \
747 record_conversion_result \
748 (coding, CODING_RESULT_INVALID_SRC); \
749 } \
750 } \
751 consumed_chars++; \
752 } while (0)
753
754 /* Safely get two bytes from the source text pointed by SRC which ends
755 at SRC_END, and set C1 and C2 to those bytes while skipping the
756 heading multibyte characters. If there are not enough bytes in the
757 source, it jumps to `no_more_source'. If multibytep is nonzero and
758 a multibyte character is found for C2, set C2 to the negative value
759 of the character code. The caller should declare and set these
760 variables appropriately in advance:
761 src, src_end, multibytep
762 It is intended that this macro is used in detect_coding_utf_16. */
763
764 #define TWO_MORE_BYTES(c1, c2) \
765 do { \
766 do { \
767 if (src == src_end) \
768 goto no_more_source; \
769 c1 = *src++; \
770 if (multibytep && (c1 & 0x80)) \
771 { \
772 if ((c1 & 0xFE) == 0xC0) \
773 c1 = ((c1 & 1) << 6) | *src++; \
774 else \
775 { \
776 src += BYTES_BY_CHAR_HEAD (c1) - 1; \
777 c1 = -1; \
778 } \
779 } \
780 } while (c1 < 0); \
781 if (src == src_end) \
782 goto no_more_source; \
783 c2 = *src++; \
784 if (multibytep && (c2 & 0x80)) \
785 { \
786 if ((c2 & 0xFE) == 0xC0) \
787 c2 = ((c2 & 1) << 6) | *src++; \
788 else \
789 c2 = -1; \
790 } \
791 } while (0)
792
793
794 #define ONE_MORE_BYTE_NO_CHECK(c) \
795 do { \
796 c = *src++; \
797 if (multibytep && (c & 0x80)) \
798 { \
799 if ((c & 0xFE) == 0xC0) \
800 c = ((c & 1) << 6) | *src++; \
801 else \
802 { \
803 src--; \
804 c = - string_char (src, &src, NULL); \
805 record_conversion_result \
806 (coding, CODING_RESULT_INVALID_SRC); \
807 } \
808 } \
809 consumed_chars++; \
810 } while (0)
811
812
813 /* Store a byte C in the place pointed by DST and increment DST to the
814 next free point, and increment PRODUCED_CHARS. The caller should
815 assure that C is 0..127, and declare and set the variable `dst'
816 appropriately in advance.
817 */
818
819
820 #define EMIT_ONE_ASCII_BYTE(c) \
821 do { \
822 produced_chars++; \
823 *dst++ = (c); \
824 } while (0)
825
826
827 /* Like EMIT_ONE_ASCII_BYTE byt store two bytes; C1 and C2. */
828
829 #define EMIT_TWO_ASCII_BYTES(c1, c2) \
830 do { \
831 produced_chars += 2; \
832 *dst++ = (c1), *dst++ = (c2); \
833 } while (0)
834
835
836 /* Store a byte C in the place pointed by DST and increment DST to the
837 next free point, and increment PRODUCED_CHARS. If MULTIBYTEP is
838 nonzero, store in an appropriate multibyte from. The caller should
839 declare and set the variables `dst' and `multibytep' appropriately
840 in advance. */
841
842 #define EMIT_ONE_BYTE(c) \
843 do { \
844 produced_chars++; \
845 if (multibytep) \
846 { \
847 int ch = (c); \
848 if (ch >= 0x80) \
849 ch = BYTE8_TO_CHAR (ch); \
850 CHAR_STRING_ADVANCE (ch, dst); \
851 } \
852 else \
853 *dst++ = (c); \
854 } while (0)
855
856
857 /* Like EMIT_ONE_BYTE, but emit two bytes; C1 and C2. */
858
859 #define EMIT_TWO_BYTES(c1, c2) \
860 do { \
861 produced_chars += 2; \
862 if (multibytep) \
863 { \
864 int ch; \
865 \
866 ch = (c1); \
867 if (ch >= 0x80) \
868 ch = BYTE8_TO_CHAR (ch); \
869 CHAR_STRING_ADVANCE (ch, dst); \
870 ch = (c2); \
871 if (ch >= 0x80) \
872 ch = BYTE8_TO_CHAR (ch); \
873 CHAR_STRING_ADVANCE (ch, dst); \
874 } \
875 else \
876 { \
877 *dst++ = (c1); \
878 *dst++ = (c2); \
879 } \
880 } while (0)
881
882
883 #define EMIT_THREE_BYTES(c1, c2, c3) \
884 do { \
885 EMIT_ONE_BYTE (c1); \
886 EMIT_TWO_BYTES (c2, c3); \
887 } while (0)
888
889
890 #define EMIT_FOUR_BYTES(c1, c2, c3, c4) \
891 do { \
892 EMIT_TWO_BYTES (c1, c2); \
893 EMIT_TWO_BYTES (c3, c4); \
894 } while (0)
895
896
897 /* Prototypes for static functions. */
898 static void record_conversion_result P_ ((struct coding_system *coding,
899 enum coding_result_code result));
900 static int detect_coding_utf_8 P_ ((struct coding_system *,
901 struct coding_detection_info *info));
902 static void decode_coding_utf_8 P_ ((struct coding_system *));
903 static int encode_coding_utf_8 P_ ((struct coding_system *));
904
905 static int detect_coding_utf_16 P_ ((struct coding_system *,
906 struct coding_detection_info *info));
907 static void decode_coding_utf_16 P_ ((struct coding_system *));
908 static int encode_coding_utf_16 P_ ((struct coding_system *));
909
910 static int detect_coding_iso_2022 P_ ((struct coding_system *,
911 struct coding_detection_info *info));
912 static void decode_coding_iso_2022 P_ ((struct coding_system *));
913 static int encode_coding_iso_2022 P_ ((struct coding_system *));
914
915 static int detect_coding_emacs_mule P_ ((struct coding_system *,
916 struct coding_detection_info *info));
917 static void decode_coding_emacs_mule P_ ((struct coding_system *));
918 static int encode_coding_emacs_mule P_ ((struct coding_system *));
919
920 static int detect_coding_sjis P_ ((struct coding_system *,
921 struct coding_detection_info *info));
922 static void decode_coding_sjis P_ ((struct coding_system *));
923 static int encode_coding_sjis P_ ((struct coding_system *));
924
925 static int detect_coding_big5 P_ ((struct coding_system *,
926 struct coding_detection_info *info));
927 static void decode_coding_big5 P_ ((struct coding_system *));
928 static int encode_coding_big5 P_ ((struct coding_system *));
929
930 static int detect_coding_ccl P_ ((struct coding_system *,
931 struct coding_detection_info *info));
932 static void decode_coding_ccl P_ ((struct coding_system *));
933 static int encode_coding_ccl P_ ((struct coding_system *));
934
935 static void decode_coding_raw_text P_ ((struct coding_system *));
936 static int encode_coding_raw_text P_ ((struct coding_system *));
937
938 static void coding_set_source P_ ((struct coding_system *));
939 static void coding_set_destination P_ ((struct coding_system *));
940 static void coding_alloc_by_realloc P_ ((struct coding_system *, EMACS_INT));
941 static void coding_alloc_by_making_gap P_ ((struct coding_system *,
942 EMACS_INT, EMACS_INT));
943 static unsigned char *alloc_destination P_ ((struct coding_system *,
944 EMACS_INT, unsigned char *));
945 static void setup_iso_safe_charsets P_ ((Lisp_Object));
946 static unsigned char *encode_designation_at_bol P_ ((struct coding_system *,
947 int *, int *,
948 unsigned char *));
949 static int detect_eol P_ ((const unsigned char *,
950 EMACS_INT, enum coding_category));
951 static Lisp_Object adjust_coding_eol_type P_ ((struct coding_system *, int));
952 static void decode_eol P_ ((struct coding_system *));
953 static Lisp_Object get_translation_table P_ ((Lisp_Object, int, int *));
954 static Lisp_Object get_translation P_ ((Lisp_Object, int *, int *));
955 static int produce_chars P_ ((struct coding_system *, Lisp_Object, int));
956 static INLINE void produce_charset P_ ((struct coding_system *, int *,
957 EMACS_INT));
958 static void produce_annotation P_ ((struct coding_system *, EMACS_INT));
959 static int decode_coding P_ ((struct coding_system *));
960 static INLINE int *handle_composition_annotation P_ ((EMACS_INT, EMACS_INT,
961 struct coding_system *,
962 int *, EMACS_INT *));
963 static INLINE int *handle_charset_annotation P_ ((EMACS_INT, EMACS_INT,
964 struct coding_system *,
965 int *, EMACS_INT *));
966 static void consume_chars P_ ((struct coding_system *, Lisp_Object, int));
967 static int encode_coding P_ ((struct coding_system *));
968 static Lisp_Object make_conversion_work_buffer P_ ((int));
969 static Lisp_Object code_conversion_restore P_ ((Lisp_Object));
970 static INLINE int char_encodable_p P_ ((int, Lisp_Object));
971 static Lisp_Object make_subsidiaries P_ ((Lisp_Object));
972
973 static void
974 record_conversion_result (struct coding_system *coding,
975 enum coding_result_code result)
976 {
977 coding->result = result;
978 switch (result)
979 {
980 case CODING_RESULT_INSUFFICIENT_SRC:
981 Vlast_code_conversion_error = Qinsufficient_source;
982 break;
983 case CODING_RESULT_INCONSISTENT_EOL:
984 Vlast_code_conversion_error = Qinconsistent_eol;
985 break;
986 case CODING_RESULT_INVALID_SRC:
987 Vlast_code_conversion_error = Qinvalid_source;
988 break;
989 case CODING_RESULT_INTERRUPT:
990 Vlast_code_conversion_error = Qinterrupted;
991 break;
992 case CODING_RESULT_INSUFFICIENT_MEM:
993 Vlast_code_conversion_error = Qinsufficient_memory;
994 break;
995 case CODING_RESULT_SUCCESS:
996 break;
997 default:
998 Vlast_code_conversion_error = intern ("Unknown error");
999 }
1000 }
1001
1002 #define CODING_DECODE_CHAR(coding, src, src_base, src_end, charset, code, c) \
1003 do { \
1004 charset_map_loaded = 0; \
1005 c = DECODE_CHAR (charset, code); \
1006 if (charset_map_loaded) \
1007 { \
1008 const unsigned char *orig = coding->source; \
1009 EMACS_INT offset; \
1010 \
1011 coding_set_source (coding); \
1012 offset = coding->source - orig; \
1013 src += offset; \
1014 src_base += offset; \
1015 src_end += offset; \
1016 } \
1017 } while (0)
1018
1019
1020 /* If there are at least BYTES length of room at dst, allocate memory
1021 for coding->destination and update dst and dst_end. We don't have
1022 to take care of coding->source which will be relocated. It is
1023 handled by calling coding_set_source in encode_coding. */
1024
1025 #define ASSURE_DESTINATION(bytes) \
1026 do { \
1027 if (dst + (bytes) >= dst_end) \
1028 { \
1029 int more_bytes = charbuf_end - charbuf + (bytes); \
1030 \
1031 dst = alloc_destination (coding, more_bytes, dst); \
1032 dst_end = coding->destination + coding->dst_bytes; \
1033 } \
1034 } while (0)
1035
1036
1037 /* Store multibyte form of the character C in P, and advance P to the
1038 end of the multibyte form. This is like CHAR_STRING_ADVANCE but it
1039 never calls MAYBE_UNIFY_CHAR. */
1040
1041 #define CHAR_STRING_ADVANCE_NO_UNIFY(c, p) \
1042 do { \
1043 if ((c) <= MAX_1_BYTE_CHAR) \
1044 *(p)++ = (c); \
1045 else if ((c) <= MAX_2_BYTE_CHAR) \
1046 *(p)++ = (0xC0 | ((c) >> 6)), \
1047 *(p)++ = (0x80 | ((c) & 0x3F)); \
1048 else if ((c) <= MAX_3_BYTE_CHAR) \
1049 *(p)++ = (0xE0 | ((c) >> 12)), \
1050 *(p)++ = (0x80 | (((c) >> 6) & 0x3F)), \
1051 *(p)++ = (0x80 | ((c) & 0x3F)); \
1052 else if ((c) <= MAX_4_BYTE_CHAR) \
1053 *(p)++ = (0xF0 | (c >> 18)), \
1054 *(p)++ = (0x80 | ((c >> 12) & 0x3F)), \
1055 *(p)++ = (0x80 | ((c >> 6) & 0x3F)), \
1056 *(p)++ = (0x80 | (c & 0x3F)); \
1057 else if ((c) <= MAX_5_BYTE_CHAR) \
1058 *(p)++ = 0xF8, \
1059 *(p)++ = (0x80 | ((c >> 18) & 0x0F)), \
1060 *(p)++ = (0x80 | ((c >> 12) & 0x3F)), \
1061 *(p)++ = (0x80 | ((c >> 6) & 0x3F)), \
1062 *(p)++ = (0x80 | (c & 0x3F)); \
1063 else \
1064 (p) += BYTE8_STRING ((c) - 0x3FFF80, p); \
1065 } while (0)
1066
1067
1068 /* Return the character code of character whose multibyte form is at
1069 P, and advance P to the end of the multibyte form. This is like
1070 STRING_CHAR_ADVANCE, but it never calls MAYBE_UNIFY_CHAR. */
1071
1072 #define STRING_CHAR_ADVANCE_NO_UNIFY(p) \
1073 (!((p)[0] & 0x80) \
1074 ? *(p)++ \
1075 : ! ((p)[0] & 0x20) \
1076 ? ((p) += 2, \
1077 ((((p)[-2] & 0x1F) << 6) \
1078 | ((p)[-1] & 0x3F) \
1079 | ((unsigned char) ((p)[-2]) < 0xC2 ? 0x3FFF80 : 0))) \
1080 : ! ((p)[0] & 0x10) \
1081 ? ((p) += 3, \
1082 ((((p)[-3] & 0x0F) << 12) \
1083 | (((p)[-2] & 0x3F) << 6) \
1084 | ((p)[-1] & 0x3F))) \
1085 : ! ((p)[0] & 0x08) \
1086 ? ((p) += 4, \
1087 ((((p)[-4] & 0xF) << 18) \
1088 | (((p)[-3] & 0x3F) << 12) \
1089 | (((p)[-2] & 0x3F) << 6) \
1090 | ((p)[-1] & 0x3F))) \
1091 : ((p) += 5, \
1092 ((((p)[-4] & 0x3F) << 18) \
1093 | (((p)[-3] & 0x3F) << 12) \
1094 | (((p)[-2] & 0x3F) << 6) \
1095 | ((p)[-1] & 0x3F))))
1096
1097
1098 static void
1099 coding_set_source (coding)
1100 struct coding_system *coding;
1101 {
1102 if (BUFFERP (coding->src_object))
1103 {
1104 struct buffer *buf = XBUFFER (coding->src_object);
1105
1106 if (coding->src_pos < 0)
1107 coding->source = BUF_GAP_END_ADDR (buf) + coding->src_pos_byte;
1108 else
1109 coding->source = BUF_BYTE_ADDRESS (buf, coding->src_pos_byte);
1110 }
1111 else if (STRINGP (coding->src_object))
1112 {
1113 coding->source = SDATA (coding->src_object) + coding->src_pos_byte;
1114 }
1115 else
1116 /* Otherwise, the source is C string and is never relocated
1117 automatically. Thus we don't have to update anything. */
1118 ;
1119 }
1120
1121 static void
1122 coding_set_destination (coding)
1123 struct coding_system *coding;
1124 {
1125 if (BUFFERP (coding->dst_object))
1126 {
1127 if (coding->src_pos < 0)
1128 {
1129 coding->destination = BEG_ADDR + coding->dst_pos_byte - BEG_BYTE;
1130 coding->dst_bytes = (GAP_END_ADDR
1131 - (coding->src_bytes - coding->consumed)
1132 - coding->destination);
1133 }
1134 else
1135 {
1136 /* We are sure that coding->dst_pos_byte is before the gap
1137 of the buffer. */
1138 coding->destination = (BUF_BEG_ADDR (XBUFFER (coding->dst_object))
1139 + coding->dst_pos_byte - BEG_BYTE);
1140 coding->dst_bytes = (BUF_GAP_END_ADDR (XBUFFER (coding->dst_object))
1141 - coding->destination);
1142 }
1143 }
1144 else
1145 /* Otherwise, the destination is C string and is never relocated
1146 automatically. Thus we don't have to update anything. */
1147 ;
1148 }
1149
1150
1151 static void
1152 coding_alloc_by_realloc (coding, bytes)
1153 struct coding_system *coding;
1154 EMACS_INT bytes;
1155 {
1156 coding->destination = (unsigned char *) xrealloc (coding->destination,
1157 coding->dst_bytes + bytes);
1158 coding->dst_bytes += bytes;
1159 }
1160
1161 static void
1162 coding_alloc_by_making_gap (coding, gap_head_used, bytes)
1163 struct coding_system *coding;
1164 EMACS_INT gap_head_used, bytes;
1165 {
1166 if (EQ (coding->src_object, coding->dst_object))
1167 {
1168 /* The gap may contain the produced data at the head and not-yet
1169 consumed data at the tail. To preserve those data, we at
1170 first make the gap size to zero, then increase the gap
1171 size. */
1172 EMACS_INT add = GAP_SIZE;
1173
1174 GPT += gap_head_used, GPT_BYTE += gap_head_used;
1175 GAP_SIZE = 0; ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
1176 make_gap (bytes);
1177 GAP_SIZE += add; ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
1178 GPT -= gap_head_used, GPT_BYTE -= gap_head_used;
1179 }
1180 else
1181 {
1182 Lisp_Object this_buffer;
1183
1184 this_buffer = Fcurrent_buffer ();
1185 set_buffer_internal (XBUFFER (coding->dst_object));
1186 make_gap (bytes);
1187 set_buffer_internal (XBUFFER (this_buffer));
1188 }
1189 }
1190
1191
1192 static unsigned char *
1193 alloc_destination (coding, nbytes, dst)
1194 struct coding_system *coding;
1195 EMACS_INT nbytes;
1196 unsigned char *dst;
1197 {
1198 EMACS_INT offset = dst - coding->destination;
1199
1200 if (BUFFERP (coding->dst_object))
1201 {
1202 struct buffer *buf = XBUFFER (coding->dst_object);
1203
1204 coding_alloc_by_making_gap (coding, dst - BUF_GPT_ADDR (buf), nbytes);
1205 }
1206 else
1207 coding_alloc_by_realloc (coding, nbytes);
1208 coding_set_destination (coding);
1209 dst = coding->destination + offset;
1210 return dst;
1211 }
1212
1213 /** Macros for annotations. */
1214
1215 /* An annotation data is stored in the array coding->charbuf in this
1216 format:
1217 [ -LENGTH ANNOTATION_MASK NCHARS ... ]
1218 LENGTH is the number of elements in the annotation.
1219 ANNOTATION_MASK is one of CODING_ANNOTATE_XXX_MASK.
1220 NCHARS is the number of characters in the text annotated.
1221
1222 The format of the following elements depend on ANNOTATION_MASK.
1223
1224 In the case of CODING_ANNOTATE_COMPOSITION_MASK, these elements
1225 follows:
1226 ... NBYTES METHOD [ COMPOSITION-COMPONENTS ... ]
1227
1228 NBYTES is the number of bytes specified in the header part of
1229 old-style emacs-mule encoding, or 0 for the other kind of
1230 composition.
1231
1232 METHOD is one of enum composition_method.
1233
1234 Optionnal COMPOSITION-COMPONENTS are characters and composition
1235 rules.
1236
1237 In the case of CODING_ANNOTATE_CHARSET_MASK, one element CHARSET-ID
1238 follows.
1239
1240 If ANNOTATION_MASK is 0, this annotation is just a space holder to
1241 recover from an invalid annotation, and should be skipped by
1242 produce_annotation. */
1243
1244 /* Maximum length of the header of annotation data. */
1245 #define MAX_ANNOTATION_LENGTH 5
1246
1247 #define ADD_ANNOTATION_DATA(buf, len, mask, nchars) \
1248 do { \
1249 *(buf)++ = -(len); \
1250 *(buf)++ = (mask); \
1251 *(buf)++ = (nchars); \
1252 coding->annotated = 1; \
1253 } while (0);
1254
1255 #define ADD_COMPOSITION_DATA(buf, nchars, nbytes, method) \
1256 do { \
1257 ADD_ANNOTATION_DATA (buf, 5, CODING_ANNOTATE_COMPOSITION_MASK, nchars); \
1258 *buf++ = nbytes; \
1259 *buf++ = method; \
1260 } while (0)
1261
1262
1263 #define ADD_CHARSET_DATA(buf, nchars, id) \
1264 do { \
1265 ADD_ANNOTATION_DATA (buf, 4, CODING_ANNOTATE_CHARSET_MASK, nchars); \
1266 *buf++ = id; \
1267 } while (0)
1268
1269 \f
1270 /*** 2. Emacs' internal format (emacs-utf-8) ***/
1271
1272
1273
1274 \f
1275 /*** 3. UTF-8 ***/
1276
1277 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1278 Check if a text is encoded in UTF-8. If it is, return 1, else
1279 return 0. */
1280
1281 #define UTF_8_1_OCTET_P(c) ((c) < 0x80)
1282 #define UTF_8_EXTRA_OCTET_P(c) (((c) & 0xC0) == 0x80)
1283 #define UTF_8_2_OCTET_LEADING_P(c) (((c) & 0xE0) == 0xC0)
1284 #define UTF_8_3_OCTET_LEADING_P(c) (((c) & 0xF0) == 0xE0)
1285 #define UTF_8_4_OCTET_LEADING_P(c) (((c) & 0xF8) == 0xF0)
1286 #define UTF_8_5_OCTET_LEADING_P(c) (((c) & 0xFC) == 0xF8)
1287
1288 #define UTF_BOM 0xFEFF
1289 #define UTF_8_BOM_1 0xEF
1290 #define UTF_8_BOM_2 0xBB
1291 #define UTF_8_BOM_3 0xBF
1292
1293 static int
1294 detect_coding_utf_8 (coding, detect_info)
1295 struct coding_system *coding;
1296 struct coding_detection_info *detect_info;
1297 {
1298 const unsigned char *src = coding->source, *src_base;
1299 const unsigned char *src_end = coding->source + coding->src_bytes;
1300 int multibytep = coding->src_multibyte;
1301 int consumed_chars = 0;
1302 int bom_found = 0;
1303 int found = 0;
1304
1305 detect_info->checked |= CATEGORY_MASK_UTF_8;
1306 /* A coding system of this category is always ASCII compatible. */
1307 src += coding->head_ascii;
1308
1309 while (1)
1310 {
1311 int c, c1, c2, c3, c4;
1312
1313 src_base = src;
1314 ONE_MORE_BYTE (c);
1315 if (c < 0 || UTF_8_1_OCTET_P (c))
1316 continue;
1317 ONE_MORE_BYTE (c1);
1318 if (c1 < 0 || ! UTF_8_EXTRA_OCTET_P (c1))
1319 break;
1320 if (UTF_8_2_OCTET_LEADING_P (c))
1321 {
1322 found = 1;
1323 continue;
1324 }
1325 ONE_MORE_BYTE (c2);
1326 if (c2 < 0 || ! UTF_8_EXTRA_OCTET_P (c2))
1327 break;
1328 if (UTF_8_3_OCTET_LEADING_P (c))
1329 {
1330 found = 1;
1331 if (src_base == coding->source
1332 && c == UTF_8_BOM_1 && c1 == UTF_8_BOM_2 && c2 == UTF_8_BOM_3)
1333 bom_found = 1;
1334 continue;
1335 }
1336 ONE_MORE_BYTE (c3);
1337 if (c3 < 0 || ! UTF_8_EXTRA_OCTET_P (c3))
1338 break;
1339 if (UTF_8_4_OCTET_LEADING_P (c))
1340 {
1341 found = 1;
1342 continue;
1343 }
1344 ONE_MORE_BYTE (c4);
1345 if (c4 < 0 || ! UTF_8_EXTRA_OCTET_P (c4))
1346 break;
1347 if (UTF_8_5_OCTET_LEADING_P (c))
1348 {
1349 found = 1;
1350 continue;
1351 }
1352 break;
1353 }
1354 detect_info->rejected |= CATEGORY_MASK_UTF_8;
1355 return 0;
1356
1357 no_more_source:
1358 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
1359 {
1360 detect_info->rejected |= CATEGORY_MASK_UTF_8;
1361 return 0;
1362 }
1363 if (bom_found)
1364 {
1365 /* The first character 0xFFFE doesn't necessarily mean a BOM. */
1366 detect_info->found |= CATEGORY_MASK_UTF_8_SIG | CATEGORY_MASK_UTF_8_NOSIG;
1367 }
1368 else
1369 {
1370 detect_info->rejected |= CATEGORY_MASK_UTF_8_SIG;
1371 if (found)
1372 detect_info->found |= CATEGORY_MASK_UTF_8_NOSIG;
1373 }
1374 return 1;
1375 }
1376
1377
1378 static void
1379 decode_coding_utf_8 (coding)
1380 struct coding_system *coding;
1381 {
1382 const unsigned char *src = coding->source + coding->consumed;
1383 const unsigned char *src_end = coding->source + coding->src_bytes;
1384 const unsigned char *src_base;
1385 int *charbuf = coding->charbuf + coding->charbuf_used;
1386 int *charbuf_end = coding->charbuf + coding->charbuf_size;
1387 int consumed_chars = 0, consumed_chars_base = 0;
1388 int multibytep = coding->src_multibyte;
1389 enum utf_bom_type bom = CODING_UTF_8_BOM (coding);
1390 Lisp_Object attr, charset_list;
1391 int eol_crlf =
1392 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
1393 int byte_after_cr = -1;
1394
1395 CODING_GET_INFO (coding, attr, charset_list);
1396
1397 if (bom != utf_without_bom)
1398 {
1399 int c1, c2, c3;
1400
1401 src_base = src;
1402 ONE_MORE_BYTE (c1);
1403 if (! UTF_8_3_OCTET_LEADING_P (c1))
1404 src = src_base;
1405 else
1406 {
1407 ONE_MORE_BYTE (c2);
1408 if (! UTF_8_EXTRA_OCTET_P (c2))
1409 src = src_base;
1410 else
1411 {
1412 ONE_MORE_BYTE (c3);
1413 if (! UTF_8_EXTRA_OCTET_P (c3))
1414 src = src_base;
1415 else
1416 {
1417 if ((c1 != UTF_8_BOM_1)
1418 || (c2 != UTF_8_BOM_2) || (c3 != UTF_8_BOM_3))
1419 src = src_base;
1420 else
1421 CODING_UTF_8_BOM (coding) = utf_without_bom;
1422 }
1423 }
1424 }
1425 }
1426 CODING_UTF_8_BOM (coding) = utf_without_bom;
1427
1428
1429
1430 while (1)
1431 {
1432 int c, c1, c2, c3, c4, c5;
1433
1434 src_base = src;
1435 consumed_chars_base = consumed_chars;
1436
1437 if (charbuf >= charbuf_end)
1438 {
1439 if (byte_after_cr >= 0)
1440 src_base--;
1441 break;
1442 }
1443
1444 if (byte_after_cr >= 0)
1445 c1 = byte_after_cr, byte_after_cr = -1;
1446 else
1447 ONE_MORE_BYTE (c1);
1448 if (c1 < 0)
1449 {
1450 c = - c1;
1451 }
1452 else if (UTF_8_1_OCTET_P(c1))
1453 {
1454 if (eol_crlf && c1 == '\r')
1455 ONE_MORE_BYTE (byte_after_cr);
1456 c = c1;
1457 }
1458 else
1459 {
1460 ONE_MORE_BYTE (c2);
1461 if (c2 < 0 || ! UTF_8_EXTRA_OCTET_P (c2))
1462 goto invalid_code;
1463 if (UTF_8_2_OCTET_LEADING_P (c1))
1464 {
1465 c = ((c1 & 0x1F) << 6) | (c2 & 0x3F);
1466 /* Reject overlong sequences here and below. Encoders
1467 producing them are incorrect, they can be misleading,
1468 and they mess up read/write invariance. */
1469 if (c < 128)
1470 goto invalid_code;
1471 }
1472 else
1473 {
1474 ONE_MORE_BYTE (c3);
1475 if (c3 < 0 || ! UTF_8_EXTRA_OCTET_P (c3))
1476 goto invalid_code;
1477 if (UTF_8_3_OCTET_LEADING_P (c1))
1478 {
1479 c = (((c1 & 0xF) << 12)
1480 | ((c2 & 0x3F) << 6) | (c3 & 0x3F));
1481 if (c < 0x800
1482 || (c >= 0xd800 && c < 0xe000)) /* surrogates (invalid) */
1483 goto invalid_code;
1484 }
1485 else
1486 {
1487 ONE_MORE_BYTE (c4);
1488 if (c4 < 0 || ! UTF_8_EXTRA_OCTET_P (c4))
1489 goto invalid_code;
1490 if (UTF_8_4_OCTET_LEADING_P (c1))
1491 {
1492 c = (((c1 & 0x7) << 18) | ((c2 & 0x3F) << 12)
1493 | ((c3 & 0x3F) << 6) | (c4 & 0x3F));
1494 if (c < 0x10000)
1495 goto invalid_code;
1496 }
1497 else
1498 {
1499 ONE_MORE_BYTE (c5);
1500 if (c5 < 0 || ! UTF_8_EXTRA_OCTET_P (c5))
1501 goto invalid_code;
1502 if (UTF_8_5_OCTET_LEADING_P (c1))
1503 {
1504 c = (((c1 & 0x3) << 24) | ((c2 & 0x3F) << 18)
1505 | ((c3 & 0x3F) << 12) | ((c4 & 0x3F) << 6)
1506 | (c5 & 0x3F));
1507 if ((c > MAX_CHAR) || (c < 0x200000))
1508 goto invalid_code;
1509 }
1510 else
1511 goto invalid_code;
1512 }
1513 }
1514 }
1515 }
1516
1517 *charbuf++ = c;
1518 continue;
1519
1520 invalid_code:
1521 src = src_base;
1522 consumed_chars = consumed_chars_base;
1523 ONE_MORE_BYTE (c);
1524 *charbuf++ = ASCII_BYTE_P (c) ? c : BYTE8_TO_CHAR (c);
1525 coding->errors++;
1526 }
1527
1528 no_more_source:
1529 coding->consumed_char += consumed_chars_base;
1530 coding->consumed = src_base - coding->source;
1531 coding->charbuf_used = charbuf - coding->charbuf;
1532 }
1533
1534
1535 static int
1536 encode_coding_utf_8 (coding)
1537 struct coding_system *coding;
1538 {
1539 int multibytep = coding->dst_multibyte;
1540 int *charbuf = coding->charbuf;
1541 int *charbuf_end = charbuf + coding->charbuf_used;
1542 unsigned char *dst = coding->destination + coding->produced;
1543 unsigned char *dst_end = coding->destination + coding->dst_bytes;
1544 int produced_chars = 0;
1545 int c;
1546
1547 if (CODING_UTF_8_BOM (coding) == utf_with_bom)
1548 {
1549 ASSURE_DESTINATION (3);
1550 EMIT_THREE_BYTES (UTF_8_BOM_1, UTF_8_BOM_2, UTF_8_BOM_3);
1551 CODING_UTF_8_BOM (coding) = utf_without_bom;
1552 }
1553
1554 if (multibytep)
1555 {
1556 int safe_room = MAX_MULTIBYTE_LENGTH * 2;
1557
1558 while (charbuf < charbuf_end)
1559 {
1560 unsigned char str[MAX_MULTIBYTE_LENGTH], *p, *pend = str;
1561
1562 ASSURE_DESTINATION (safe_room);
1563 c = *charbuf++;
1564 if (CHAR_BYTE8_P (c))
1565 {
1566 c = CHAR_TO_BYTE8 (c);
1567 EMIT_ONE_BYTE (c);
1568 }
1569 else
1570 {
1571 CHAR_STRING_ADVANCE_NO_UNIFY (c, pend);
1572 for (p = str; p < pend; p++)
1573 EMIT_ONE_BYTE (*p);
1574 }
1575 }
1576 }
1577 else
1578 {
1579 int safe_room = MAX_MULTIBYTE_LENGTH;
1580
1581 while (charbuf < charbuf_end)
1582 {
1583 ASSURE_DESTINATION (safe_room);
1584 c = *charbuf++;
1585 if (CHAR_BYTE8_P (c))
1586 *dst++ = CHAR_TO_BYTE8 (c);
1587 else
1588 CHAR_STRING_ADVANCE_NO_UNIFY (c, dst);
1589 produced_chars++;
1590 }
1591 }
1592 record_conversion_result (coding, CODING_RESULT_SUCCESS);
1593 coding->produced_char += produced_chars;
1594 coding->produced = dst - coding->destination;
1595 return 0;
1596 }
1597
1598
1599 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1600 Check if a text is encoded in one of UTF-16 based coding systems.
1601 If it is, return 1, else return 0. */
1602
1603 #define UTF_16_HIGH_SURROGATE_P(val) \
1604 (((val) & 0xFC00) == 0xD800)
1605
1606 #define UTF_16_LOW_SURROGATE_P(val) \
1607 (((val) & 0xFC00) == 0xDC00)
1608
1609 #define UTF_16_INVALID_P(val) \
1610 (((val) == 0xFFFE) \
1611 || ((val) == 0xFFFF) \
1612 || UTF_16_LOW_SURROGATE_P (val))
1613
1614
1615 static int
1616 detect_coding_utf_16 (coding, detect_info)
1617 struct coding_system *coding;
1618 struct coding_detection_info *detect_info;
1619 {
1620 const unsigned char *src = coding->source, *src_base = src;
1621 const unsigned char *src_end = coding->source + coding->src_bytes;
1622 int multibytep = coding->src_multibyte;
1623 int consumed_chars = 0;
1624 int c1, c2;
1625
1626 detect_info->checked |= CATEGORY_MASK_UTF_16;
1627 if (coding->mode & CODING_MODE_LAST_BLOCK
1628 && (coding->src_chars & 1))
1629 {
1630 detect_info->rejected |= CATEGORY_MASK_UTF_16;
1631 return 0;
1632 }
1633
1634 TWO_MORE_BYTES (c1, c2);
1635 if ((c1 == 0xFF) && (c2 == 0xFE))
1636 {
1637 detect_info->found |= (CATEGORY_MASK_UTF_16_LE
1638 | CATEGORY_MASK_UTF_16_AUTO);
1639 detect_info->rejected |= (CATEGORY_MASK_UTF_16_BE
1640 | CATEGORY_MASK_UTF_16_BE_NOSIG
1641 | CATEGORY_MASK_UTF_16_LE_NOSIG);
1642 }
1643 else if ((c1 == 0xFE) && (c2 == 0xFF))
1644 {
1645 detect_info->found |= (CATEGORY_MASK_UTF_16_BE
1646 | CATEGORY_MASK_UTF_16_AUTO);
1647 detect_info->rejected |= (CATEGORY_MASK_UTF_16_LE
1648 | CATEGORY_MASK_UTF_16_BE_NOSIG
1649 | CATEGORY_MASK_UTF_16_LE_NOSIG);
1650 }
1651 else if (c2 < 0)
1652 {
1653 detect_info->rejected |= CATEGORY_MASK_UTF_16;
1654 return 0;
1655 }
1656 else
1657 {
1658 /* We check the dispersion of Eth and Oth bytes where E is even and
1659 O is odd. If both are high, we assume binary data.*/
1660 unsigned char e[256], o[256];
1661 unsigned e_num = 1, o_num = 1;
1662
1663 memset (e, 0, 256);
1664 memset (o, 0, 256);
1665 e[c1] = 1;
1666 o[c2] = 1;
1667
1668 detect_info->rejected
1669 |= (CATEGORY_MASK_UTF_16_BE | CATEGORY_MASK_UTF_16_LE);
1670
1671 while (1)
1672 {
1673 TWO_MORE_BYTES (c1, c2);
1674 if (c2 < 0)
1675 break;
1676 if (! e[c1])
1677 {
1678 e[c1] = 1;
1679 e_num++;
1680 if (e_num >= 128 && o_num >= 128)
1681 break;
1682 }
1683 if (! o[c2])
1684 {
1685 o[c2] = 1;
1686 o_num++;
1687 if (e_num >= 128 && o_num >= 128)
1688 break;
1689 }
1690 }
1691 detect_info->rejected |= CATEGORY_MASK_UTF_16;
1692 return 0;
1693 }
1694
1695 no_more_source:
1696 return 1;
1697 }
1698
1699 static void
1700 decode_coding_utf_16 (coding)
1701 struct coding_system *coding;
1702 {
1703 const unsigned char *src = coding->source + coding->consumed;
1704 const unsigned char *src_end = coding->source + coding->src_bytes;
1705 const unsigned char *src_base;
1706 int *charbuf = coding->charbuf + coding->charbuf_used;
1707 /* We may produces at most 3 chars in one loop. */
1708 int *charbuf_end = coding->charbuf + coding->charbuf_size - 2;
1709 int consumed_chars = 0, consumed_chars_base = 0;
1710 int multibytep = coding->src_multibyte;
1711 enum utf_bom_type bom = CODING_UTF_16_BOM (coding);
1712 enum utf_16_endian_type endian = CODING_UTF_16_ENDIAN (coding);
1713 int surrogate = CODING_UTF_16_SURROGATE (coding);
1714 Lisp_Object attr, charset_list;
1715 int eol_crlf =
1716 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
1717 int byte_after_cr1 = -1, byte_after_cr2 = -1;
1718
1719 CODING_GET_INFO (coding, attr, charset_list);
1720
1721 if (bom == utf_with_bom)
1722 {
1723 int c, c1, c2;
1724
1725 src_base = src;
1726 ONE_MORE_BYTE (c1);
1727 ONE_MORE_BYTE (c2);
1728 c = (c1 << 8) | c2;
1729
1730 if (endian == utf_16_big_endian
1731 ? c != 0xFEFF : c != 0xFFFE)
1732 {
1733 /* The first two bytes are not BOM. Treat them as bytes
1734 for a normal character. */
1735 src = src_base;
1736 coding->errors++;
1737 }
1738 CODING_UTF_16_BOM (coding) = utf_without_bom;
1739 }
1740 else if (bom == utf_detect_bom)
1741 {
1742 /* We have already tried to detect BOM and failed in
1743 detect_coding. */
1744 CODING_UTF_16_BOM (coding) = utf_without_bom;
1745 }
1746
1747 while (1)
1748 {
1749 int c, c1, c2;
1750
1751 src_base = src;
1752 consumed_chars_base = consumed_chars;
1753
1754 if (charbuf >= charbuf_end)
1755 {
1756 if (byte_after_cr1 >= 0)
1757 src_base -= 2;
1758 break;
1759 }
1760
1761 if (byte_after_cr1 >= 0)
1762 c1 = byte_after_cr1, byte_after_cr1 = -1;
1763 else
1764 ONE_MORE_BYTE (c1);
1765 if (c1 < 0)
1766 {
1767 *charbuf++ = -c1;
1768 continue;
1769 }
1770 if (byte_after_cr2 >= 0)
1771 c2 = byte_after_cr2, byte_after_cr2 = -1;
1772 else
1773 ONE_MORE_BYTE (c2);
1774 if (c2 < 0)
1775 {
1776 *charbuf++ = ASCII_BYTE_P (c1) ? c1 : BYTE8_TO_CHAR (c1);
1777 *charbuf++ = -c2;
1778 continue;
1779 }
1780 c = (endian == utf_16_big_endian
1781 ? ((c1 << 8) | c2) : ((c2 << 8) | c1));
1782
1783 if (surrogate)
1784 {
1785 if (! UTF_16_LOW_SURROGATE_P (c))
1786 {
1787 if (endian == utf_16_big_endian)
1788 c1 = surrogate >> 8, c2 = surrogate & 0xFF;
1789 else
1790 c1 = surrogate & 0xFF, c2 = surrogate >> 8;
1791 *charbuf++ = c1;
1792 *charbuf++ = c2;
1793 coding->errors++;
1794 if (UTF_16_HIGH_SURROGATE_P (c))
1795 CODING_UTF_16_SURROGATE (coding) = surrogate = c;
1796 else
1797 *charbuf++ = c;
1798 }
1799 else
1800 {
1801 c = ((surrogate - 0xD800) << 10) | (c - 0xDC00);
1802 CODING_UTF_16_SURROGATE (coding) = surrogate = 0;
1803 *charbuf++ = 0x10000 + c;
1804 }
1805 }
1806 else
1807 {
1808 if (UTF_16_HIGH_SURROGATE_P (c))
1809 CODING_UTF_16_SURROGATE (coding) = surrogate = c;
1810 else
1811 {
1812 if (eol_crlf && c == '\r')
1813 {
1814 ONE_MORE_BYTE (byte_after_cr1);
1815 ONE_MORE_BYTE (byte_after_cr2);
1816 }
1817 *charbuf++ = c;
1818 }
1819 }
1820 }
1821
1822 no_more_source:
1823 coding->consumed_char += consumed_chars_base;
1824 coding->consumed = src_base - coding->source;
1825 coding->charbuf_used = charbuf - coding->charbuf;
1826 }
1827
1828 static int
1829 encode_coding_utf_16 (coding)
1830 struct coding_system *coding;
1831 {
1832 int multibytep = coding->dst_multibyte;
1833 int *charbuf = coding->charbuf;
1834 int *charbuf_end = charbuf + coding->charbuf_used;
1835 unsigned char *dst = coding->destination + coding->produced;
1836 unsigned char *dst_end = coding->destination + coding->dst_bytes;
1837 int safe_room = 8;
1838 enum utf_bom_type bom = CODING_UTF_16_BOM (coding);
1839 int big_endian = CODING_UTF_16_ENDIAN (coding) == utf_16_big_endian;
1840 int produced_chars = 0;
1841 Lisp_Object attrs, charset_list;
1842 int c;
1843
1844 CODING_GET_INFO (coding, attrs, charset_list);
1845
1846 if (bom != utf_without_bom)
1847 {
1848 ASSURE_DESTINATION (safe_room);
1849 if (big_endian)
1850 EMIT_TWO_BYTES (0xFE, 0xFF);
1851 else
1852 EMIT_TWO_BYTES (0xFF, 0xFE);
1853 CODING_UTF_16_BOM (coding) = utf_without_bom;
1854 }
1855
1856 while (charbuf < charbuf_end)
1857 {
1858 ASSURE_DESTINATION (safe_room);
1859 c = *charbuf++;
1860 if (c >= MAX_UNICODE_CHAR)
1861 c = coding->default_char;
1862
1863 if (c < 0x10000)
1864 {
1865 if (big_endian)
1866 EMIT_TWO_BYTES (c >> 8, c & 0xFF);
1867 else
1868 EMIT_TWO_BYTES (c & 0xFF, c >> 8);
1869 }
1870 else
1871 {
1872 int c1, c2;
1873
1874 c -= 0x10000;
1875 c1 = (c >> 10) + 0xD800;
1876 c2 = (c & 0x3FF) + 0xDC00;
1877 if (big_endian)
1878 EMIT_FOUR_BYTES (c1 >> 8, c1 & 0xFF, c2 >> 8, c2 & 0xFF);
1879 else
1880 EMIT_FOUR_BYTES (c1 & 0xFF, c1 >> 8, c2 & 0xFF, c2 >> 8);
1881 }
1882 }
1883 record_conversion_result (coding, CODING_RESULT_SUCCESS);
1884 coding->produced = dst - coding->destination;
1885 coding->produced_char += produced_chars;
1886 return 0;
1887 }
1888
1889 \f
1890 /*** 6. Old Emacs' internal format (emacs-mule) ***/
1891
1892 /* Emacs' internal format for representation of multiple character
1893 sets is a kind of multi-byte encoding, i.e. characters are
1894 represented by variable-length sequences of one-byte codes.
1895
1896 ASCII characters and control characters (e.g. `tab', `newline') are
1897 represented by one-byte sequences which are their ASCII codes, in
1898 the range 0x00 through 0x7F.
1899
1900 8-bit characters of the range 0x80..0x9F are represented by
1901 two-byte sequences of LEADING_CODE_8_BIT_CONTROL and (their 8-bit
1902 code + 0x20).
1903
1904 8-bit characters of the range 0xA0..0xFF are represented by
1905 one-byte sequences which are their 8-bit code.
1906
1907 The other characters are represented by a sequence of `base
1908 leading-code', optional `extended leading-code', and one or two
1909 `position-code's. The length of the sequence is determined by the
1910 base leading-code. Leading-code takes the range 0x81 through 0x9D,
1911 whereas extended leading-code and position-code take the range 0xA0
1912 through 0xFF. See `charset.h' for more details about leading-code
1913 and position-code.
1914
1915 --- CODE RANGE of Emacs' internal format ---
1916 character set range
1917 ------------- -----
1918 ascii 0x00..0x7F
1919 eight-bit-control LEADING_CODE_8_BIT_CONTROL + 0xA0..0xBF
1920 eight-bit-graphic 0xA0..0xBF
1921 ELSE 0x81..0x9D + [0xA0..0xFF]+
1922 ---------------------------------------------
1923
1924 As this is the internal character representation, the format is
1925 usually not used externally (i.e. in a file or in a data sent to a
1926 process). But, it is possible to have a text externally in this
1927 format (i.e. by encoding by the coding system `emacs-mule').
1928
1929 In that case, a sequence of one-byte codes has a slightly different
1930 form.
1931
1932 At first, all characters in eight-bit-control are represented by
1933 one-byte sequences which are their 8-bit code.
1934
1935 Next, character composition data are represented by the byte
1936 sequence of the form: 0x80 METHOD BYTES CHARS COMPONENT ...,
1937 where,
1938 METHOD is 0xF2 plus one of composition method (enum
1939 composition_method),
1940
1941 BYTES is 0xA0 plus a byte length of this composition data,
1942
1943 CHARS is 0xA0 plus a number of characters composed by this
1944 data,
1945
1946 COMPONENTs are characters of multibye form or composition
1947 rules encoded by two-byte of ASCII codes.
1948
1949 In addition, for backward compatibility, the following formats are
1950 also recognized as composition data on decoding.
1951
1952 0x80 MSEQ ...
1953 0x80 0xFF MSEQ RULE MSEQ RULE ... MSEQ
1954
1955 Here,
1956 MSEQ is a multibyte form but in these special format:
1957 ASCII: 0xA0 ASCII_CODE+0x80,
1958 other: LEADING_CODE+0x20 FOLLOWING-BYTE ...,
1959 RULE is a one byte code of the range 0xA0..0xF0 that
1960 represents a composition rule.
1961 */
1962
1963 char emacs_mule_bytes[256];
1964
1965
1966 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1967 Check if a text is encoded in `emacs-mule'. If it is, return 1,
1968 else return 0. */
1969
1970 static int
1971 detect_coding_emacs_mule (coding, detect_info)
1972 struct coding_system *coding;
1973 struct coding_detection_info *detect_info;
1974 {
1975 const unsigned char *src = coding->source, *src_base;
1976 const unsigned char *src_end = coding->source + coding->src_bytes;
1977 int multibytep = coding->src_multibyte;
1978 int consumed_chars = 0;
1979 int c;
1980 int found = 0;
1981
1982 detect_info->checked |= CATEGORY_MASK_EMACS_MULE;
1983 /* A coding system of this category is always ASCII compatible. */
1984 src += coding->head_ascii;
1985
1986 while (1)
1987 {
1988 src_base = src;
1989 ONE_MORE_BYTE (c);
1990 if (c < 0)
1991 continue;
1992 if (c == 0x80)
1993 {
1994 /* Perhaps the start of composite character. We simply skip
1995 it because analyzing it is too heavy for detecting. But,
1996 at least, we check that the composite character
1997 constitutes of more than 4 bytes. */
1998 const unsigned char *src_base;
1999
2000 repeat:
2001 src_base = src;
2002 do
2003 {
2004 ONE_MORE_BYTE (c);
2005 }
2006 while (c >= 0xA0);
2007
2008 if (src - src_base <= 4)
2009 break;
2010 found = CATEGORY_MASK_EMACS_MULE;
2011 if (c == 0x80)
2012 goto repeat;
2013 }
2014
2015 if (c < 0x80)
2016 {
2017 if (c < 0x20
2018 && (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO))
2019 break;
2020 }
2021 else
2022 {
2023 int more_bytes = emacs_mule_bytes[*src_base] - 1;
2024
2025 while (more_bytes > 0)
2026 {
2027 ONE_MORE_BYTE (c);
2028 if (c < 0xA0)
2029 {
2030 src--; /* Unread the last byte. */
2031 break;
2032 }
2033 more_bytes--;
2034 }
2035 if (more_bytes != 0)
2036 break;
2037 found = CATEGORY_MASK_EMACS_MULE;
2038 }
2039 }
2040 detect_info->rejected |= CATEGORY_MASK_EMACS_MULE;
2041 return 0;
2042
2043 no_more_source:
2044 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
2045 {
2046 detect_info->rejected |= CATEGORY_MASK_EMACS_MULE;
2047 return 0;
2048 }
2049 detect_info->found |= found;
2050 return 1;
2051 }
2052
2053
2054 /* Parse emacs-mule multibyte sequence at SRC and return the decoded
2055 character. If CMP_STATUS indicates that we must expect MSEQ or
2056 RULE described above, decode it and return the negative value of
2057 the deocded character or rule. If an invalid byte is found, return
2058 -1. If SRC is too short, return -2. */
2059
2060 int
2061 emacs_mule_char (coding, src, nbytes, nchars, id, cmp_status)
2062 struct coding_system *coding;
2063 const unsigned char *src;
2064 int *nbytes, *nchars, *id;
2065 struct composition_status *cmp_status;
2066 {
2067 const unsigned char *src_end = coding->source + coding->src_bytes;
2068 const unsigned char *src_base = src;
2069 int multibytep = coding->src_multibyte;
2070 struct charset *charset;
2071 unsigned code;
2072 int c;
2073 int consumed_chars = 0;
2074 int mseq_found = 0;
2075
2076 ONE_MORE_BYTE (c);
2077 if (c < 0)
2078 {
2079 c = -c;
2080 charset = emacs_mule_charset[0];
2081 }
2082 else
2083 {
2084 if (c >= 0xA0)
2085 {
2086 if (cmp_status->state != COMPOSING_NO
2087 && cmp_status->old_form)
2088 {
2089 if (cmp_status->state == COMPOSING_CHAR)
2090 {
2091 if (c == 0xA0)
2092 {
2093 ONE_MORE_BYTE (c);
2094 c -= 0x80;
2095 if (c < 0)
2096 goto invalid_code;
2097 }
2098 else
2099 c -= 0x20;
2100 mseq_found = 1;
2101 }
2102 else
2103 {
2104 *nbytes = src - src_base;
2105 *nchars = consumed_chars;
2106 return -c;
2107 }
2108 }
2109 else
2110 goto invalid_code;
2111 }
2112
2113 switch (emacs_mule_bytes[c])
2114 {
2115 case 2:
2116 if (! (charset = emacs_mule_charset[c]))
2117 goto invalid_code;
2118 ONE_MORE_BYTE (c);
2119 if (c < 0xA0)
2120 goto invalid_code;
2121 code = c & 0x7F;
2122 break;
2123
2124 case 3:
2125 if (c == EMACS_MULE_LEADING_CODE_PRIVATE_11
2126 || c == EMACS_MULE_LEADING_CODE_PRIVATE_12)
2127 {
2128 ONE_MORE_BYTE (c);
2129 if (c < 0xA0 || ! (charset = emacs_mule_charset[c]))
2130 goto invalid_code;
2131 ONE_MORE_BYTE (c);
2132 if (c < 0xA0)
2133 goto invalid_code;
2134 code = c & 0x7F;
2135 }
2136 else
2137 {
2138 if (! (charset = emacs_mule_charset[c]))
2139 goto invalid_code;
2140 ONE_MORE_BYTE (c);
2141 if (c < 0xA0)
2142 goto invalid_code;
2143 code = (c & 0x7F) << 8;
2144 ONE_MORE_BYTE (c);
2145 if (c < 0xA0)
2146 goto invalid_code;
2147 code |= c & 0x7F;
2148 }
2149 break;
2150
2151 case 4:
2152 ONE_MORE_BYTE (c);
2153 if (c < 0 || ! (charset = emacs_mule_charset[c]))
2154 goto invalid_code;
2155 ONE_MORE_BYTE (c);
2156 if (c < 0xA0)
2157 goto invalid_code;
2158 code = (c & 0x7F) << 8;
2159 ONE_MORE_BYTE (c);
2160 if (c < 0xA0)
2161 goto invalid_code;
2162 code |= c & 0x7F;
2163 break;
2164
2165 case 1:
2166 code = c;
2167 charset = CHARSET_FROM_ID (ASCII_BYTE_P (code)
2168 ? charset_ascii : charset_eight_bit);
2169 break;
2170
2171 default:
2172 abort ();
2173 }
2174 c = DECODE_CHAR (charset, code);
2175 if (c < 0)
2176 goto invalid_code;
2177 }
2178 *nbytes = src - src_base;
2179 *nchars = consumed_chars;
2180 if (id)
2181 *id = charset->id;
2182 return (mseq_found ? -c : c);
2183
2184 no_more_source:
2185 return -2;
2186
2187 invalid_code:
2188 return -1;
2189 }
2190
2191
2192 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
2193
2194 /* Handle these composition sequence ('|': the end of header elements,
2195 BYTES and CHARS >= 0xA0):
2196
2197 (1) relative composition: 0x80 0xF2 BYTES CHARS | CHAR ...
2198 (2) altchar composition: 0x80 0xF4 BYTES CHARS | ALT ... ALT CHAR ...
2199 (3) alt&rule composition: 0x80 0xF5 BYTES CHARS | ALT RULE ... ALT CHAR ...
2200
2201 and these old form:
2202
2203 (4) relative composition: 0x80 | MSEQ ... MSEQ
2204 (5) rulebase composition: 0x80 0xFF | MSEQ MRULE ... MSEQ
2205
2206 When the starter 0x80 and the following header elements are found,
2207 this annotation header is produced.
2208
2209 [ -LENGTH(==-5) CODING_ANNOTATE_COMPOSITION_MASK NCHARS NBYTES METHOD ]
2210
2211 NCHARS is CHARS - 0xA0 for (1), (2), (3), and 0 for (4), (5).
2212 NBYTES is BYTES - 0xA0 for (1), (2), (3), and 0 for (4), (5).
2213
2214 Then, upon reading the following elements, these codes are produced
2215 until the composition end is found:
2216
2217 (1) CHAR ... CHAR
2218 (2) ALT ... ALT CHAR ... CHAR
2219 (3) ALT -2 DECODED-RULE ALT -2 DECODED-RULE ... ALT CHAR ... CHAR
2220 (4) CHAR ... CHAR
2221 (5) CHAR -2 DECODED-RULE CHAR -2 DECODED-RULE ... CHAR
2222
2223 When the composition end is found, LENGTH and NCHARS in the
2224 annotation header is updated as below:
2225
2226 (1) LENGTH: unchanged, NCHARS: unchanged
2227 (2) LENGTH: length of the whole sequence minus NCHARS, NCHARS: unchanged
2228 (3) LENGTH: length of the whole sequence minus NCHARS, NCHARS: unchanged
2229 (4) LENGTH: unchanged, NCHARS: number of CHARs
2230 (5) LENGTH: unchanged, NCHARS: number of CHARs
2231
2232 If an error is found while composing, the annotation header is
2233 changed to the original composition header (plus filler -1s) as
2234 below:
2235
2236 (1),(2),(3) [ 0x80 0xF2+METHOD BYTES CHARS -1 ]
2237 (5) [ 0x80 0xFF -1 -1- -1 ]
2238
2239 and the sequence [ -2 DECODED-RULE ] is changed to the original
2240 byte sequence as below:
2241 o the original byte sequence is B: [ B -1 ]
2242 o the original byte sequence is B1 B2: [ B1 B2 ]
2243
2244 Most of the routines are implemented by macros because many
2245 variables and labels in the caller decode_coding_emacs_mule must be
2246 accessible, and they are usually called just once (thus doesn't
2247 increase the size of compiled object). */
2248
2249 /* Decode a composition rule represented by C as a component of
2250 composition sequence of Emacs 20 style. Set RULE to the decoded
2251 rule. */
2252
2253 #define DECODE_EMACS_MULE_COMPOSITION_RULE_20(c, rule) \
2254 do { \
2255 int gref, nref; \
2256 \
2257 c -= 0xA0; \
2258 if (c < 0 || c >= 81) \
2259 goto invalid_code; \
2260 gref = c / 9, nref = c % 9; \
2261 if (gref == 4) gref = 10; \
2262 if (nref == 4) nref = 10; \
2263 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
2264 } while (0)
2265
2266
2267 /* Decode a composition rule represented by C and the following byte
2268 at SRC as a component of composition sequence of Emacs 21 style.
2269 Set RULE to the decoded rule. */
2270
2271 #define DECODE_EMACS_MULE_COMPOSITION_RULE_21(c, rule) \
2272 do { \
2273 int gref, nref; \
2274 \
2275 gref = c - 0x20; \
2276 if (gref < 0 || gref >= 81) \
2277 goto invalid_code; \
2278 ONE_MORE_BYTE (c); \
2279 nref = c - 0x20; \
2280 if (nref < 0 || nref >= 81) \
2281 goto invalid_code; \
2282 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
2283 } while (0)
2284
2285
2286 /* Start of Emacs 21 style format. The first three bytes at SRC are
2287 (METHOD - 0xF2), (BYTES - 0xA0), (CHARS - 0xA0), where BYTES is the
2288 byte length of this composition information, CHARS is the number of
2289 characters composed by this composition. */
2290
2291 #define DECODE_EMACS_MULE_21_COMPOSITION() \
2292 do { \
2293 enum composition_method method = c - 0xF2; \
2294 int *charbuf_base = charbuf; \
2295 int nbytes, nchars; \
2296 \
2297 ONE_MORE_BYTE (c); \
2298 if (c < 0) \
2299 goto invalid_code; \
2300 nbytes = c - 0xA0; \
2301 if (nbytes < 3 || (method == COMPOSITION_RELATIVE && nbytes != 4)) \
2302 goto invalid_code; \
2303 ONE_MORE_BYTE (c); \
2304 nchars = c - 0xA0; \
2305 if (nchars <= 0 || nchars >= MAX_COMPOSITION_COMPONENTS) \
2306 goto invalid_code; \
2307 cmp_status->old_form = 0; \
2308 cmp_status->method = method; \
2309 if (method == COMPOSITION_RELATIVE) \
2310 cmp_status->state = COMPOSING_CHAR; \
2311 else \
2312 cmp_status->state = COMPOSING_COMPONENT_CHAR; \
2313 cmp_status->length = MAX_ANNOTATION_LENGTH; \
2314 cmp_status->nchars = nchars; \
2315 cmp_status->ncomps = nbytes - 4; \
2316 ADD_COMPOSITION_DATA (charbuf, nchars, nbytes, method); \
2317 } while (0)
2318
2319
2320 /* Start of Emacs 20 style format for relative composition. */
2321
2322 #define DECODE_EMACS_MULE_20_RELATIVE_COMPOSITION() \
2323 do { \
2324 cmp_status->old_form = 1; \
2325 cmp_status->method = COMPOSITION_RELATIVE; \
2326 cmp_status->state = COMPOSING_CHAR; \
2327 cmp_status->length = MAX_ANNOTATION_LENGTH; \
2328 cmp_status->nchars = cmp_status->ncomps = 0; \
2329 ADD_COMPOSITION_DATA (charbuf, 0, 0, cmp_status->method); \
2330 } while (0)
2331
2332
2333 /* Start of Emacs 20 style format for rule-base composition. */
2334
2335 #define DECODE_EMACS_MULE_20_RULEBASE_COMPOSITION() \
2336 do { \
2337 cmp_status->old_form = 1; \
2338 cmp_status->method = COMPOSITION_WITH_RULE; \
2339 cmp_status->state = COMPOSING_CHAR; \
2340 cmp_status->length = MAX_ANNOTATION_LENGTH; \
2341 cmp_status->nchars = cmp_status->ncomps = 0; \
2342 ADD_COMPOSITION_DATA (charbuf, 0, 0, cmp_status->method); \
2343 } while (0)
2344
2345
2346 #define DECODE_EMACS_MULE_COMPOSITION_START() \
2347 do { \
2348 const unsigned char *current_src = src; \
2349 \
2350 ONE_MORE_BYTE (c); \
2351 if (c < 0) \
2352 goto invalid_code; \
2353 if (c - 0xF2 >= COMPOSITION_RELATIVE \
2354 && c - 0xF2 <= COMPOSITION_WITH_RULE_ALTCHARS) \
2355 DECODE_EMACS_MULE_21_COMPOSITION (); \
2356 else if (c < 0xA0) \
2357 goto invalid_code; \
2358 else if (c < 0xC0) \
2359 { \
2360 DECODE_EMACS_MULE_20_RELATIVE_COMPOSITION (); \
2361 /* Re-read C as a composition component. */ \
2362 src = current_src; \
2363 } \
2364 else if (c == 0xFF) \
2365 DECODE_EMACS_MULE_20_RULEBASE_COMPOSITION (); \
2366 else \
2367 goto invalid_code; \
2368 } while (0)
2369
2370 #define EMACS_MULE_COMPOSITION_END() \
2371 do { \
2372 int idx = - cmp_status->length; \
2373 \
2374 if (cmp_status->old_form) \
2375 charbuf[idx + 2] = cmp_status->nchars; \
2376 else if (cmp_status->method > COMPOSITION_RELATIVE) \
2377 charbuf[idx] = charbuf[idx + 2] - cmp_status->length; \
2378 cmp_status->state = COMPOSING_NO; \
2379 } while (0)
2380
2381
2382 static int
2383 emacs_mule_finish_composition (charbuf, cmp_status)
2384 int *charbuf;
2385 struct composition_status *cmp_status;
2386 {
2387 int idx = - cmp_status->length;
2388 int new_chars;
2389
2390 if (cmp_status->old_form && cmp_status->nchars > 0)
2391 {
2392 charbuf[idx + 2] = cmp_status->nchars;
2393 new_chars = 0;
2394 if (cmp_status->method == COMPOSITION_WITH_RULE
2395 && cmp_status->state == COMPOSING_CHAR)
2396 {
2397 /* The last rule was invalid. */
2398 int rule = charbuf[-1] + 0xA0;
2399
2400 charbuf[-2] = BYTE8_TO_CHAR (rule);
2401 charbuf[-1] = -1;
2402 new_chars = 1;
2403 }
2404 }
2405 else
2406 {
2407 charbuf[idx++] = BYTE8_TO_CHAR (0x80);
2408
2409 if (cmp_status->method == COMPOSITION_WITH_RULE)
2410 {
2411 charbuf[idx++] = BYTE8_TO_CHAR (0xFF);
2412 charbuf[idx++] = -3;
2413 charbuf[idx++] = 0;
2414 new_chars = 1;
2415 }
2416 else
2417 {
2418 int nchars = charbuf[idx + 1] + 0xA0;
2419 int nbytes = charbuf[idx + 2] + 0xA0;
2420
2421 charbuf[idx++] = BYTE8_TO_CHAR (0xF2 + cmp_status->method);
2422 charbuf[idx++] = BYTE8_TO_CHAR (nbytes);
2423 charbuf[idx++] = BYTE8_TO_CHAR (nchars);
2424 charbuf[idx++] = -1;
2425 new_chars = 4;
2426 }
2427 }
2428 cmp_status->state = COMPOSING_NO;
2429 return new_chars;
2430 }
2431
2432 #define EMACS_MULE_MAYBE_FINISH_COMPOSITION() \
2433 do { \
2434 if (cmp_status->state != COMPOSING_NO) \
2435 char_offset += emacs_mule_finish_composition (charbuf, cmp_status); \
2436 } while (0)
2437
2438
2439 static void
2440 decode_coding_emacs_mule (coding)
2441 struct coding_system *coding;
2442 {
2443 const unsigned char *src = coding->source + coding->consumed;
2444 const unsigned char *src_end = coding->source + coding->src_bytes;
2445 const unsigned char *src_base;
2446 int *charbuf = coding->charbuf + coding->charbuf_used;
2447 /* We may produce two annocations (charset and composition) in one
2448 loop and one more charset annocation at the end. */
2449 int *charbuf_end
2450 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 3);
2451 int consumed_chars = 0, consumed_chars_base;
2452 int multibytep = coding->src_multibyte;
2453 Lisp_Object attrs, charset_list;
2454 int char_offset = coding->produced_char;
2455 int last_offset = char_offset;
2456 int last_id = charset_ascii;
2457 int eol_crlf =
2458 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
2459 int byte_after_cr = -1;
2460 struct composition_status *cmp_status = &coding->spec.emacs_mule.cmp_status;
2461
2462 CODING_GET_INFO (coding, attrs, charset_list);
2463
2464 if (cmp_status->state != COMPOSING_NO)
2465 {
2466 int i;
2467
2468 for (i = 0; i < cmp_status->length; i++)
2469 *charbuf++ = cmp_status->carryover[i];
2470 coding->annotated = 1;
2471 }
2472
2473 while (1)
2474 {
2475 int c, id;
2476
2477 src_base = src;
2478 consumed_chars_base = consumed_chars;
2479
2480 if (charbuf >= charbuf_end)
2481 {
2482 if (byte_after_cr >= 0)
2483 src_base--;
2484 break;
2485 }
2486
2487 if (byte_after_cr >= 0)
2488 c = byte_after_cr, byte_after_cr = -1;
2489 else
2490 ONE_MORE_BYTE (c);
2491
2492 if (c < 0 || c == 0x80)
2493 {
2494 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2495 if (c < 0)
2496 {
2497 *charbuf++ = -c;
2498 char_offset++;
2499 }
2500 else
2501 DECODE_EMACS_MULE_COMPOSITION_START ();
2502 continue;
2503 }
2504
2505 if (c < 0x80)
2506 {
2507 if (eol_crlf && c == '\r')
2508 ONE_MORE_BYTE (byte_after_cr);
2509 id = charset_ascii;
2510 if (cmp_status->state != COMPOSING_NO)
2511 {
2512 if (cmp_status->old_form)
2513 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2514 else if (cmp_status->state >= COMPOSING_COMPONENT_CHAR)
2515 cmp_status->ncomps--;
2516 }
2517 }
2518 else
2519 {
2520 int nchars, nbytes;
2521
2522 c = emacs_mule_char (coding, src_base, &nbytes, &nchars, &id,
2523 cmp_status);
2524 if (c < 0)
2525 {
2526 if (c == -1)
2527 goto invalid_code;
2528 if (c == -2)
2529 break;
2530 }
2531 src = src_base + nbytes;
2532 consumed_chars = consumed_chars_base + nchars;
2533 if (cmp_status->state >= COMPOSING_COMPONENT_CHAR)
2534 cmp_status->ncomps -= nchars;
2535 }
2536
2537 /* Now if C >= 0, we found a normally encoded characer, if C <
2538 0, we found an old-style composition component character or
2539 rule. */
2540
2541 if (cmp_status->state == COMPOSING_NO)
2542 {
2543 if (last_id != id)
2544 {
2545 if (last_id != charset_ascii)
2546 ADD_CHARSET_DATA (charbuf, char_offset - last_offset,
2547 last_id);
2548 last_id = id;
2549 last_offset = char_offset;
2550 }
2551 *charbuf++ = c;
2552 char_offset++;
2553 }
2554 else if (cmp_status->state == COMPOSING_CHAR)
2555 {
2556 if (cmp_status->old_form)
2557 {
2558 if (c >= 0)
2559 {
2560 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2561 *charbuf++ = c;
2562 char_offset++;
2563 }
2564 else
2565 {
2566 *charbuf++ = -c;
2567 cmp_status->nchars++;
2568 cmp_status->length++;
2569 if (cmp_status->nchars == MAX_COMPOSITION_COMPONENTS)
2570 EMACS_MULE_COMPOSITION_END ();
2571 else if (cmp_status->method == COMPOSITION_WITH_RULE)
2572 cmp_status->state = COMPOSING_RULE;
2573 }
2574 }
2575 else
2576 {
2577 *charbuf++ = c;
2578 cmp_status->length++;
2579 cmp_status->nchars--;
2580 if (cmp_status->nchars == 0)
2581 EMACS_MULE_COMPOSITION_END ();
2582 }
2583 }
2584 else if (cmp_status->state == COMPOSING_RULE)
2585 {
2586 int rule;
2587
2588 if (c >= 0)
2589 {
2590 EMACS_MULE_COMPOSITION_END ();
2591 *charbuf++ = c;
2592 char_offset++;
2593 }
2594 else
2595 {
2596 c = -c;
2597 DECODE_EMACS_MULE_COMPOSITION_RULE_20 (c, rule);
2598 if (rule < 0)
2599 goto invalid_code;
2600 *charbuf++ = -2;
2601 *charbuf++ = rule;
2602 cmp_status->length += 2;
2603 cmp_status->state = COMPOSING_CHAR;
2604 }
2605 }
2606 else if (cmp_status->state == COMPOSING_COMPONENT_CHAR)
2607 {
2608 *charbuf++ = c;
2609 cmp_status->length++;
2610 if (cmp_status->ncomps == 0)
2611 cmp_status->state = COMPOSING_CHAR;
2612 else if (cmp_status->ncomps > 0)
2613 {
2614 if (cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS)
2615 cmp_status->state = COMPOSING_COMPONENT_RULE;
2616 }
2617 else
2618 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2619 }
2620 else /* COMPOSING_COMPONENT_RULE */
2621 {
2622 int rule;
2623
2624 DECODE_EMACS_MULE_COMPOSITION_RULE_21 (c, rule);
2625 if (rule < 0)
2626 goto invalid_code;
2627 *charbuf++ = -2;
2628 *charbuf++ = rule;
2629 cmp_status->length += 2;
2630 cmp_status->ncomps--;
2631 if (cmp_status->ncomps > 0)
2632 cmp_status->state = COMPOSING_COMPONENT_CHAR;
2633 else
2634 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2635 }
2636 continue;
2637
2638 retry:
2639 src = src_base;
2640 consumed_chars = consumed_chars_base;
2641 continue;
2642
2643 invalid_code:
2644 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2645 src = src_base;
2646 consumed_chars = consumed_chars_base;
2647 ONE_MORE_BYTE (c);
2648 *charbuf++ = ASCII_BYTE_P (c) ? c : BYTE8_TO_CHAR (c);
2649 char_offset++;
2650 coding->errors++;
2651 }
2652
2653 no_more_source:
2654 if (cmp_status->state != COMPOSING_NO)
2655 {
2656 if (coding->mode & CODING_MODE_LAST_BLOCK)
2657 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2658 else
2659 {
2660 int i;
2661
2662 charbuf -= cmp_status->length;
2663 for (i = 0; i < cmp_status->length; i++)
2664 cmp_status->carryover[i] = charbuf[i];
2665 }
2666 }
2667 if (last_id != charset_ascii)
2668 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
2669 coding->consumed_char += consumed_chars_base;
2670 coding->consumed = src_base - coding->source;
2671 coding->charbuf_used = charbuf - coding->charbuf;
2672 }
2673
2674
2675 #define EMACS_MULE_LEADING_CODES(id, codes) \
2676 do { \
2677 if (id < 0xA0) \
2678 codes[0] = id, codes[1] = 0; \
2679 else if (id < 0xE0) \
2680 codes[0] = 0x9A, codes[1] = id; \
2681 else if (id < 0xF0) \
2682 codes[0] = 0x9B, codes[1] = id; \
2683 else if (id < 0xF5) \
2684 codes[0] = 0x9C, codes[1] = id; \
2685 else \
2686 codes[0] = 0x9D, codes[1] = id; \
2687 } while (0);
2688
2689
2690 static int
2691 encode_coding_emacs_mule (coding)
2692 struct coding_system *coding;
2693 {
2694 int multibytep = coding->dst_multibyte;
2695 int *charbuf = coding->charbuf;
2696 int *charbuf_end = charbuf + coding->charbuf_used;
2697 unsigned char *dst = coding->destination + coding->produced;
2698 unsigned char *dst_end = coding->destination + coding->dst_bytes;
2699 int safe_room = 8;
2700 int produced_chars = 0;
2701 Lisp_Object attrs, charset_list;
2702 int c;
2703 int preferred_charset_id = -1;
2704
2705 CODING_GET_INFO (coding, attrs, charset_list);
2706 if (! EQ (charset_list, Vemacs_mule_charset_list))
2707 {
2708 CODING_ATTR_CHARSET_LIST (attrs)
2709 = charset_list = Vemacs_mule_charset_list;
2710 }
2711
2712 while (charbuf < charbuf_end)
2713 {
2714 ASSURE_DESTINATION (safe_room);
2715 c = *charbuf++;
2716
2717 if (c < 0)
2718 {
2719 /* Handle an annotation. */
2720 switch (*charbuf)
2721 {
2722 case CODING_ANNOTATE_COMPOSITION_MASK:
2723 /* Not yet implemented. */
2724 break;
2725 case CODING_ANNOTATE_CHARSET_MASK:
2726 preferred_charset_id = charbuf[3];
2727 if (preferred_charset_id >= 0
2728 && NILP (Fmemq (make_number (preferred_charset_id),
2729 charset_list)))
2730 preferred_charset_id = -1;
2731 break;
2732 default:
2733 abort ();
2734 }
2735 charbuf += -c - 1;
2736 continue;
2737 }
2738
2739 if (ASCII_CHAR_P (c))
2740 EMIT_ONE_ASCII_BYTE (c);
2741 else if (CHAR_BYTE8_P (c))
2742 {
2743 c = CHAR_TO_BYTE8 (c);
2744 EMIT_ONE_BYTE (c);
2745 }
2746 else
2747 {
2748 struct charset *charset;
2749 unsigned code;
2750 int dimension;
2751 int emacs_mule_id;
2752 unsigned char leading_codes[2];
2753
2754 if (preferred_charset_id >= 0)
2755 {
2756 charset = CHARSET_FROM_ID (preferred_charset_id);
2757 if (CHAR_CHARSET_P (c, charset))
2758 code = ENCODE_CHAR (charset, c);
2759 else
2760 charset = char_charset (c, charset_list, &code);
2761 }
2762 else
2763 charset = char_charset (c, charset_list, &code);
2764 if (! charset)
2765 {
2766 c = coding->default_char;
2767 if (ASCII_CHAR_P (c))
2768 {
2769 EMIT_ONE_ASCII_BYTE (c);
2770 continue;
2771 }
2772 charset = char_charset (c, charset_list, &code);
2773 }
2774 dimension = CHARSET_DIMENSION (charset);
2775 emacs_mule_id = CHARSET_EMACS_MULE_ID (charset);
2776 EMACS_MULE_LEADING_CODES (emacs_mule_id, leading_codes);
2777 EMIT_ONE_BYTE (leading_codes[0]);
2778 if (leading_codes[1])
2779 EMIT_ONE_BYTE (leading_codes[1]);
2780 if (dimension == 1)
2781 EMIT_ONE_BYTE (code | 0x80);
2782 else
2783 {
2784 code |= 0x8080;
2785 EMIT_ONE_BYTE (code >> 8);
2786 EMIT_ONE_BYTE (code & 0xFF);
2787 }
2788 }
2789 }
2790 record_conversion_result (coding, CODING_RESULT_SUCCESS);
2791 coding->produced_char += produced_chars;
2792 coding->produced = dst - coding->destination;
2793 return 0;
2794 }
2795
2796 \f
2797 /*** 7. ISO2022 handlers ***/
2798
2799 /* The following note describes the coding system ISO2022 briefly.
2800 Since the intention of this note is to help understand the
2801 functions in this file, some parts are NOT ACCURATE or are OVERLY
2802 SIMPLIFIED. For thorough understanding, please refer to the
2803 original document of ISO2022. This is equivalent to the standard
2804 ECMA-35, obtainable from <URL:http://www.ecma.ch/> (*).
2805
2806 ISO2022 provides many mechanisms to encode several character sets
2807 in 7-bit and 8-bit environments. For 7-bit environments, all text
2808 is encoded using bytes less than 128. This may make the encoded
2809 text a little bit longer, but the text passes more easily through
2810 several types of gateway, some of which strip off the MSB (Most
2811 Significant Bit).
2812
2813 There are two kinds of character sets: control character sets and
2814 graphic character sets. The former contain control characters such
2815 as `newline' and `escape' to provide control functions (control
2816 functions are also provided by escape sequences). The latter
2817 contain graphic characters such as 'A' and '-'. Emacs recognizes
2818 two control character sets and many graphic character sets.
2819
2820 Graphic character sets are classified into one of the following
2821 four classes, according to the number of bytes (DIMENSION) and
2822 number of characters in one dimension (CHARS) of the set:
2823 - DIMENSION1_CHARS94
2824 - DIMENSION1_CHARS96
2825 - DIMENSION2_CHARS94
2826 - DIMENSION2_CHARS96
2827
2828 In addition, each character set is assigned an identification tag,
2829 unique for each set, called the "final character" (denoted as <F>
2830 hereafter). The <F> of each character set is decided by ECMA(*)
2831 when it is registered in ISO. The code range of <F> is 0x30..0x7F
2832 (0x30..0x3F are for private use only).
2833
2834 Note (*): ECMA = European Computer Manufacturers Association
2835
2836 Here are examples of graphic character sets [NAME(<F>)]:
2837 o DIMENSION1_CHARS94 -- ASCII('B'), right-half-of-JISX0201('I'), ...
2838 o DIMENSION1_CHARS96 -- right-half-of-ISO8859-1('A'), ...
2839 o DIMENSION2_CHARS94 -- GB2312('A'), JISX0208('B'), ...
2840 o DIMENSION2_CHARS96 -- none for the moment
2841
2842 A code area (1 byte=8 bits) is divided into 4 areas, C0, GL, C1, and GR.
2843 C0 [0x00..0x1F] -- control character plane 0
2844 GL [0x20..0x7F] -- graphic character plane 0
2845 C1 [0x80..0x9F] -- control character plane 1
2846 GR [0xA0..0xFF] -- graphic character plane 1
2847
2848 A control character set is directly designated and invoked to C0 or
2849 C1 by an escape sequence. The most common case is that:
2850 - ISO646's control character set is designated/invoked to C0, and
2851 - ISO6429's control character set is designated/invoked to C1,
2852 and usually these designations/invocations are omitted in encoded
2853 text. In a 7-bit environment, only C0 can be used, and a control
2854 character for C1 is encoded by an appropriate escape sequence to
2855 fit into the environment. All control characters for C1 are
2856 defined to have corresponding escape sequences.
2857
2858 A graphic character set is at first designated to one of four
2859 graphic registers (G0 through G3), then these graphic registers are
2860 invoked to GL or GR. These designations and invocations can be
2861 done independently. The most common case is that G0 is invoked to
2862 GL, G1 is invoked to GR, and ASCII is designated to G0. Usually
2863 these invocations and designations are omitted in encoded text.
2864 In a 7-bit environment, only GL can be used.
2865
2866 When a graphic character set of CHARS94 is invoked to GL, codes
2867 0x20 and 0x7F of the GL area work as control characters SPACE and
2868 DEL respectively, and codes 0xA0 and 0xFF of the GR area should not
2869 be used.
2870
2871 There are two ways of invocation: locking-shift and single-shift.
2872 With locking-shift, the invocation lasts until the next different
2873 invocation, whereas with single-shift, the invocation affects the
2874 following character only and doesn't affect the locking-shift
2875 state. Invocations are done by the following control characters or
2876 escape sequences:
2877
2878 ----------------------------------------------------------------------
2879 abbrev function cntrl escape seq description
2880 ----------------------------------------------------------------------
2881 SI/LS0 (shift-in) 0x0F none invoke G0 into GL
2882 SO/LS1 (shift-out) 0x0E none invoke G1 into GL
2883 LS2 (locking-shift-2) none ESC 'n' invoke G2 into GL
2884 LS3 (locking-shift-3) none ESC 'o' invoke G3 into GL
2885 LS1R (locking-shift-1 right) none ESC '~' invoke G1 into GR (*)
2886 LS2R (locking-shift-2 right) none ESC '}' invoke G2 into GR (*)
2887 LS3R (locking-shift 3 right) none ESC '|' invoke G3 into GR (*)
2888 SS2 (single-shift-2) 0x8E ESC 'N' invoke G2 for one char
2889 SS3 (single-shift-3) 0x8F ESC 'O' invoke G3 for one char
2890 ----------------------------------------------------------------------
2891 (*) These are not used by any known coding system.
2892
2893 Control characters for these functions are defined by macros
2894 ISO_CODE_XXX in `coding.h'.
2895
2896 Designations are done by the following escape sequences:
2897 ----------------------------------------------------------------------
2898 escape sequence description
2899 ----------------------------------------------------------------------
2900 ESC '(' <F> designate DIMENSION1_CHARS94<F> to G0
2901 ESC ')' <F> designate DIMENSION1_CHARS94<F> to G1
2902 ESC '*' <F> designate DIMENSION1_CHARS94<F> to G2
2903 ESC '+' <F> designate DIMENSION1_CHARS94<F> to G3
2904 ESC ',' <F> designate DIMENSION1_CHARS96<F> to G0 (*)
2905 ESC '-' <F> designate DIMENSION1_CHARS96<F> to G1
2906 ESC '.' <F> designate DIMENSION1_CHARS96<F> to G2
2907 ESC '/' <F> designate DIMENSION1_CHARS96<F> to G3
2908 ESC '$' '(' <F> designate DIMENSION2_CHARS94<F> to G0 (**)
2909 ESC '$' ')' <F> designate DIMENSION2_CHARS94<F> to G1
2910 ESC '$' '*' <F> designate DIMENSION2_CHARS94<F> to G2
2911 ESC '$' '+' <F> designate DIMENSION2_CHARS94<F> to G3
2912 ESC '$' ',' <F> designate DIMENSION2_CHARS96<F> to G0 (*)
2913 ESC '$' '-' <F> designate DIMENSION2_CHARS96<F> to G1
2914 ESC '$' '.' <F> designate DIMENSION2_CHARS96<F> to G2
2915 ESC '$' '/' <F> designate DIMENSION2_CHARS96<F> to G3
2916 ----------------------------------------------------------------------
2917
2918 In this list, "DIMENSION1_CHARS94<F>" means a graphic character set
2919 of dimension 1, chars 94, and final character <F>, etc...
2920
2921 Note (*): Although these designations are not allowed in ISO2022,
2922 Emacs accepts them on decoding, and produces them on encoding
2923 CHARS96 character sets in a coding system which is characterized as
2924 7-bit environment, non-locking-shift, and non-single-shift.
2925
2926 Note (**): If <F> is '@', 'A', or 'B', the intermediate character
2927 '(' must be omitted. We refer to this as "short-form" hereafter.
2928
2929 Now you may notice that there are a lot of ways of encoding the
2930 same multilingual text in ISO2022. Actually, there exist many
2931 coding systems such as Compound Text (used in X11's inter client
2932 communication, ISO-2022-JP (used in Japanese Internet), ISO-2022-KR
2933 (used in Korean Internet), EUC (Extended UNIX Code, used in Asian
2934 localized platforms), and all of these are variants of ISO2022.
2935
2936 In addition to the above, Emacs handles two more kinds of escape
2937 sequences: ISO6429's direction specification and Emacs' private
2938 sequence for specifying character composition.
2939
2940 ISO6429's direction specification takes the following form:
2941 o CSI ']' -- end of the current direction
2942 o CSI '0' ']' -- end of the current direction
2943 o CSI '1' ']' -- start of left-to-right text
2944 o CSI '2' ']' -- start of right-to-left text
2945 The control character CSI (0x9B: control sequence introducer) is
2946 abbreviated to the escape sequence ESC '[' in a 7-bit environment.
2947
2948 Character composition specification takes the following form:
2949 o ESC '0' -- start relative composition
2950 o ESC '1' -- end composition
2951 o ESC '2' -- start rule-base composition (*)
2952 o ESC '3' -- start relative composition with alternate chars (**)
2953 o ESC '4' -- start rule-base composition with alternate chars (**)
2954 Since these are not standard escape sequences of any ISO standard,
2955 the use of them with these meanings is restricted to Emacs only.
2956
2957 (*) This form is used only in Emacs 20.7 and older versions,
2958 but newer versions can safely decode it.
2959 (**) This form is used only in Emacs 21.1 and newer versions,
2960 and older versions can't decode it.
2961
2962 Here's a list of example usages of these composition escape
2963 sequences (categorized by `enum composition_method').
2964
2965 COMPOSITION_RELATIVE:
2966 ESC 0 CHAR [ CHAR ] ESC 1
2967 COMPOSITION_WITH_RULE:
2968 ESC 2 CHAR [ RULE CHAR ] ESC 1
2969 COMPOSITION_WITH_ALTCHARS:
2970 ESC 3 ALTCHAR [ ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1
2971 COMPOSITION_WITH_RULE_ALTCHARS:
2972 ESC 4 ALTCHAR [ RULE ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1 */
2973
2974 enum iso_code_class_type iso_code_class[256];
2975
2976 #define SAFE_CHARSET_P(coding, id) \
2977 ((id) <= (coding)->max_charset_id \
2978 && (coding)->safe_charsets[id] != 255)
2979
2980
2981 #define SHIFT_OUT_OK(category) \
2982 (CODING_ISO_INITIAL (&coding_categories[category], 1) >= 0)
2983
2984 static void
2985 setup_iso_safe_charsets (attrs)
2986 Lisp_Object attrs;
2987 {
2988 Lisp_Object charset_list, safe_charsets;
2989 Lisp_Object request;
2990 Lisp_Object reg_usage;
2991 Lisp_Object tail;
2992 int reg94, reg96;
2993 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
2994 int max_charset_id;
2995
2996 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
2997 if ((flags & CODING_ISO_FLAG_FULL_SUPPORT)
2998 && ! EQ (charset_list, Viso_2022_charset_list))
2999 {
3000 CODING_ATTR_CHARSET_LIST (attrs)
3001 = charset_list = Viso_2022_charset_list;
3002 ASET (attrs, coding_attr_safe_charsets, Qnil);
3003 }
3004
3005 if (STRINGP (AREF (attrs, coding_attr_safe_charsets)))
3006 return;
3007
3008 max_charset_id = 0;
3009 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
3010 {
3011 int id = XINT (XCAR (tail));
3012 if (max_charset_id < id)
3013 max_charset_id = id;
3014 }
3015
3016 safe_charsets = make_uninit_string (max_charset_id + 1);
3017 memset (SDATA (safe_charsets), 255, max_charset_id + 1);
3018 request = AREF (attrs, coding_attr_iso_request);
3019 reg_usage = AREF (attrs, coding_attr_iso_usage);
3020 reg94 = XINT (XCAR (reg_usage));
3021 reg96 = XINT (XCDR (reg_usage));
3022
3023 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
3024 {
3025 Lisp_Object id;
3026 Lisp_Object reg;
3027 struct charset *charset;
3028
3029 id = XCAR (tail);
3030 charset = CHARSET_FROM_ID (XINT (id));
3031 reg = Fcdr (Fassq (id, request));
3032 if (! NILP (reg))
3033 SSET (safe_charsets, XINT (id), XINT (reg));
3034 else if (charset->iso_chars_96)
3035 {
3036 if (reg96 < 4)
3037 SSET (safe_charsets, XINT (id), reg96);
3038 }
3039 else
3040 {
3041 if (reg94 < 4)
3042 SSET (safe_charsets, XINT (id), reg94);
3043 }
3044 }
3045 ASET (attrs, coding_attr_safe_charsets, safe_charsets);
3046 }
3047
3048
3049 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
3050 Check if a text is encoded in one of ISO-2022 based codig systems.
3051 If it is, return 1, else return 0. */
3052
3053 static int
3054 detect_coding_iso_2022 (coding, detect_info)
3055 struct coding_system *coding;
3056 struct coding_detection_info *detect_info;
3057 {
3058 const unsigned char *src = coding->source, *src_base = src;
3059 const unsigned char *src_end = coding->source + coding->src_bytes;
3060 int multibytep = coding->src_multibyte;
3061 int single_shifting = 0;
3062 int id;
3063 int c, c1;
3064 int consumed_chars = 0;
3065 int i;
3066 int rejected = 0;
3067 int found = 0;
3068 int composition_count = -1;
3069
3070 detect_info->checked |= CATEGORY_MASK_ISO;
3071
3072 for (i = coding_category_iso_7; i <= coding_category_iso_8_else; i++)
3073 {
3074 struct coding_system *this = &(coding_categories[i]);
3075 Lisp_Object attrs, val;
3076
3077 if (this->id < 0)
3078 continue;
3079 attrs = CODING_ID_ATTRS (this->id);
3080 if (CODING_ISO_FLAGS (this) & CODING_ISO_FLAG_FULL_SUPPORT
3081 && ! EQ (CODING_ATTR_CHARSET_LIST (attrs), Viso_2022_charset_list))
3082 setup_iso_safe_charsets (attrs);
3083 val = CODING_ATTR_SAFE_CHARSETS (attrs);
3084 this->max_charset_id = SCHARS (val) - 1;
3085 this->safe_charsets = SDATA (val);
3086 }
3087
3088 /* A coding system of this category is always ASCII compatible. */
3089 src += coding->head_ascii;
3090
3091 while (rejected != CATEGORY_MASK_ISO)
3092 {
3093 src_base = src;
3094 ONE_MORE_BYTE (c);
3095 switch (c)
3096 {
3097 case ISO_CODE_ESC:
3098 if (inhibit_iso_escape_detection)
3099 break;
3100 single_shifting = 0;
3101 ONE_MORE_BYTE (c);
3102 if (c >= '(' && c <= '/')
3103 {
3104 /* Designation sequence for a charset of dimension 1. */
3105 ONE_MORE_BYTE (c1);
3106 if (c1 < ' ' || c1 >= 0x80
3107 || (id = iso_charset_table[0][c >= ','][c1]) < 0)
3108 /* Invalid designation sequence. Just ignore. */
3109 break;
3110 }
3111 else if (c == '$')
3112 {
3113 /* Designation sequence for a charset of dimension 2. */
3114 ONE_MORE_BYTE (c);
3115 if (c >= '@' && c <= 'B')
3116 /* Designation for JISX0208.1978, GB2312, or JISX0208. */
3117 id = iso_charset_table[1][0][c];
3118 else if (c >= '(' && c <= '/')
3119 {
3120 ONE_MORE_BYTE (c1);
3121 if (c1 < ' ' || c1 >= 0x80
3122 || (id = iso_charset_table[1][c >= ','][c1]) < 0)
3123 /* Invalid designation sequence. Just ignore. */
3124 break;
3125 }
3126 else
3127 /* Invalid designation sequence. Just ignore it. */
3128 break;
3129 }
3130 else if (c == 'N' || c == 'O')
3131 {
3132 /* ESC <Fe> for SS2 or SS3. */
3133 single_shifting = 1;
3134 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_8BIT;
3135 break;
3136 }
3137 else if (c == '1')
3138 {
3139 /* End of composition. */
3140 if (composition_count < 0
3141 || composition_count > MAX_COMPOSITION_COMPONENTS)
3142 /* Invalid */
3143 break;
3144 composition_count = -1;
3145 found |= CATEGORY_MASK_ISO;
3146 }
3147 else if (c >= '0' && c <= '4')
3148 {
3149 /* ESC <Fp> for start/end composition. */
3150 composition_count = 0;
3151 break;
3152 }
3153 else
3154 {
3155 /* Invalid escape sequence. Just ignore it. */
3156 break;
3157 }
3158
3159 /* We found a valid designation sequence for CHARSET. */
3160 rejected |= CATEGORY_MASK_ISO_8BIT;
3161 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_7],
3162 id))
3163 found |= CATEGORY_MASK_ISO_7;
3164 else
3165 rejected |= CATEGORY_MASK_ISO_7;
3166 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_7_tight],
3167 id))
3168 found |= CATEGORY_MASK_ISO_7_TIGHT;
3169 else
3170 rejected |= CATEGORY_MASK_ISO_7_TIGHT;
3171 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_7_else],
3172 id))
3173 found |= CATEGORY_MASK_ISO_7_ELSE;
3174 else
3175 rejected |= CATEGORY_MASK_ISO_7_ELSE;
3176 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_8_else],
3177 id))
3178 found |= CATEGORY_MASK_ISO_8_ELSE;
3179 else
3180 rejected |= CATEGORY_MASK_ISO_8_ELSE;
3181 break;
3182
3183 case ISO_CODE_SO:
3184 case ISO_CODE_SI:
3185 /* Locking shift out/in. */
3186 if (inhibit_iso_escape_detection)
3187 break;
3188 single_shifting = 0;
3189 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_8BIT;
3190 break;
3191
3192 case ISO_CODE_CSI:
3193 /* Control sequence introducer. */
3194 single_shifting = 0;
3195 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_7_ELSE;
3196 found |= CATEGORY_MASK_ISO_8_ELSE;
3197 goto check_extra_latin;
3198
3199 case ISO_CODE_SS2:
3200 case ISO_CODE_SS3:
3201 /* Single shift. */
3202 if (inhibit_iso_escape_detection)
3203 break;
3204 single_shifting = 0;
3205 rejected |= CATEGORY_MASK_ISO_7BIT;
3206 if (CODING_ISO_FLAGS (&coding_categories[coding_category_iso_8_1])
3207 & CODING_ISO_FLAG_SINGLE_SHIFT)
3208 found |= CATEGORY_MASK_ISO_8_1, single_shifting = 1;
3209 if (CODING_ISO_FLAGS (&coding_categories[coding_category_iso_8_2])
3210 & CODING_ISO_FLAG_SINGLE_SHIFT)
3211 found |= CATEGORY_MASK_ISO_8_2, single_shifting = 1;
3212 if (single_shifting)
3213 break;
3214 goto check_extra_latin;
3215
3216 default:
3217 if (c < 0)
3218 continue;
3219 if (c < 0x80)
3220 {
3221 if (composition_count >= 0)
3222 composition_count++;
3223 single_shifting = 0;
3224 break;
3225 }
3226 if (c >= 0xA0)
3227 {
3228 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_7_ELSE;
3229 found |= CATEGORY_MASK_ISO_8_1;
3230 /* Check the length of succeeding codes of the range
3231 0xA0..0FF. If the byte length is even, we include
3232 CATEGORY_MASK_ISO_8_2 in `found'. We can check this
3233 only when we are not single shifting. */
3234 if (! single_shifting
3235 && ! (rejected & CATEGORY_MASK_ISO_8_2))
3236 {
3237 int i = 1;
3238 while (src < src_end)
3239 {
3240 ONE_MORE_BYTE (c);
3241 if (c < 0xA0)
3242 break;
3243 i++;
3244 }
3245
3246 if (i & 1 && src < src_end)
3247 {
3248 rejected |= CATEGORY_MASK_ISO_8_2;
3249 if (composition_count >= 0)
3250 composition_count += i;
3251 }
3252 else
3253 {
3254 found |= CATEGORY_MASK_ISO_8_2;
3255 if (composition_count >= 0)
3256 composition_count += i / 2;
3257 }
3258 }
3259 break;
3260 }
3261 check_extra_latin:
3262 single_shifting = 0;
3263 if (! VECTORP (Vlatin_extra_code_table)
3264 || NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
3265 {
3266 rejected = CATEGORY_MASK_ISO;
3267 break;
3268 }
3269 if (CODING_ISO_FLAGS (&coding_categories[coding_category_iso_8_1])
3270 & CODING_ISO_FLAG_LATIN_EXTRA)
3271 found |= CATEGORY_MASK_ISO_8_1;
3272 else
3273 rejected |= CATEGORY_MASK_ISO_8_1;
3274 rejected |= CATEGORY_MASK_ISO_8_2;
3275 }
3276 }
3277 detect_info->rejected |= CATEGORY_MASK_ISO;
3278 return 0;
3279
3280 no_more_source:
3281 detect_info->rejected |= rejected;
3282 detect_info->found |= (found & ~rejected);
3283 return 1;
3284 }
3285
3286
3287 /* Set designation state into CODING. Set CHARS_96 to -1 if the
3288 escape sequence should be kept. */
3289 #define DECODE_DESIGNATION(reg, dim, chars_96, final) \
3290 do { \
3291 int id, prev; \
3292 \
3293 if (final < '0' || final >= 128 \
3294 || ((id = ISO_CHARSET_TABLE (dim, chars_96, final)) < 0) \
3295 || !SAFE_CHARSET_P (coding, id)) \
3296 { \
3297 CODING_ISO_DESIGNATION (coding, reg) = -2; \
3298 chars_96 = -1; \
3299 break; \
3300 } \
3301 prev = CODING_ISO_DESIGNATION (coding, reg); \
3302 if (id == charset_jisx0201_roman) \
3303 { \
3304 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_ROMAN) \
3305 id = charset_ascii; \
3306 } \
3307 else if (id == charset_jisx0208_1978) \
3308 { \
3309 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_OLDJIS) \
3310 id = charset_jisx0208; \
3311 } \
3312 CODING_ISO_DESIGNATION (coding, reg) = id; \
3313 /* If there was an invalid designation to REG previously, and this \
3314 designation is ASCII to REG, we should keep this designation \
3315 sequence. */ \
3316 if (prev == -2 && id == charset_ascii) \
3317 chars_96 = -1; \
3318 } while (0)
3319
3320
3321 /* Handle these composition sequence (ALT: alternate char):
3322
3323 (1) relative composition: ESC 0 CHAR ... ESC 1
3324 (2) rulebase composition: ESC 2 CHAR RULE CHAR RULE ... CHAR ESC 1
3325 (3) altchar composition: ESC 3 ALT ... ALT ESC 0 CHAR ... ESC 1
3326 (4) alt&rule composition: ESC 4 ALT RULE ... ALT ESC 0 CHAR ... ESC 1
3327
3328 When the start sequence (ESC 0/2/3/4) is found, this annotation
3329 header is produced.
3330
3331 [ -LENGTH(==-5) CODING_ANNOTATE_COMPOSITION_MASK NCHARS(==0) 0 METHOD ]
3332
3333 Then, upon reading CHAR or RULE (one or two bytes), these codes are
3334 produced until the end sequence (ESC 1) is found:
3335
3336 (1) CHAR ... CHAR
3337 (2) CHAR -2 DECODED-RULE CHAR -2 DECODED-RULE ... CHAR
3338 (3) ALT ... ALT -1 -1 CHAR ... CHAR
3339 (4) ALT -2 DECODED-RULE ALT -2 DECODED-RULE ... ALT -1 -1 CHAR ... CHAR
3340
3341 When the end sequence (ESC 1) is found, LENGTH and NCHARS in the
3342 annotation header is updated as below:
3343
3344 (1) LENGTH: unchanged, NCHARS: number of CHARs
3345 (2) LENGTH: unchanged, NCHARS: number of CHARs
3346 (3) LENGTH: += number of ALTs + 2, NCHARS: number of CHARs
3347 (4) LENGTH: += number of ALTs * 3, NCHARS: number of CHARs
3348
3349 If an error is found while composing, the annotation header is
3350 changed to:
3351
3352 [ ESC '0'/'2'/'3'/'4' -2 0 ]
3353
3354 and the sequence [ -2 DECODED-RULE ] is changed to the original
3355 byte sequence as below:
3356 o the original byte sequence is B: [ B -1 ]
3357 o the original byte sequence is B1 B2: [ B1 B2 ]
3358 and the sequence [ -1 -1 ] is changed to the original byte
3359 sequence:
3360 [ ESC '0' ]
3361 */
3362
3363 /* Decode a composition rule C1 and maybe one more byte from the
3364 source, and set RULE to the encoded composition rule, NBYTES to the
3365 length of the composition rule. If the rule is invalid, set RULE
3366 to some negative value. */
3367
3368 #define DECODE_COMPOSITION_RULE(rule, nbytes) \
3369 do { \
3370 rule = c1 - 32; \
3371 if (rule < 0) \
3372 break; \
3373 if (rule < 81) /* old format (before ver.21) */ \
3374 { \
3375 int gref = (rule) / 9; \
3376 int nref = (rule) % 9; \
3377 if (gref == 4) gref = 10; \
3378 if (nref == 4) nref = 10; \
3379 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
3380 nbytes = 1; \
3381 } \
3382 else /* new format (after ver.21) */ \
3383 { \
3384 int c; \
3385 \
3386 ONE_MORE_BYTE (c); \
3387 rule = COMPOSITION_ENCODE_RULE (rule - 81, c - 32); \
3388 if (rule >= 0) \
3389 rule += 0x100; /* to destinguish it from the old format */ \
3390 nbytes = 2; \
3391 } \
3392 } while (0)
3393
3394 #define ENCODE_COMPOSITION_RULE(rule) \
3395 do { \
3396 int gref = (rule % 0x100) / 12, nref = (rule % 0x100) % 12; \
3397 \
3398 if (rule < 0x100) /* old format */ \
3399 { \
3400 if (gref == 10) gref = 4; \
3401 if (nref == 10) nref = 4; \
3402 charbuf[idx] = 32 + gref * 9 + nref; \
3403 charbuf[idx + 1] = -1; \
3404 new_chars++; \
3405 } \
3406 else /* new format */ \
3407 { \
3408 charbuf[idx] = 32 + 81 + gref; \
3409 charbuf[idx + 1] = 32 + nref; \
3410 new_chars += 2; \
3411 } \
3412 } while (0)
3413
3414 /* Finish the current composition as invalid. */
3415
3416 static int finish_composition P_ ((int *, struct composition_status *));
3417
3418 static int
3419 finish_composition (charbuf, cmp_status)
3420 int *charbuf;
3421 struct composition_status *cmp_status;
3422 {
3423 int idx = - cmp_status->length;
3424 int new_chars;
3425
3426 /* Recover the original ESC sequence */
3427 charbuf[idx++] = ISO_CODE_ESC;
3428 charbuf[idx++] = (cmp_status->method == COMPOSITION_RELATIVE ? '0'
3429 : cmp_status->method == COMPOSITION_WITH_RULE ? '2'
3430 : cmp_status->method == COMPOSITION_WITH_ALTCHARS ? '3'
3431 /* cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS */
3432 : '4');
3433 charbuf[idx++] = -2;
3434 charbuf[idx++] = 0;
3435 charbuf[idx++] = -1;
3436 new_chars = cmp_status->nchars;
3437 if (cmp_status->method >= COMPOSITION_WITH_RULE)
3438 for (; idx < 0; idx++)
3439 {
3440 int elt = charbuf[idx];
3441
3442 if (elt == -2)
3443 {
3444 ENCODE_COMPOSITION_RULE (charbuf[idx + 1]);
3445 idx++;
3446 }
3447 else if (elt == -1)
3448 {
3449 charbuf[idx++] = ISO_CODE_ESC;
3450 charbuf[idx] = '0';
3451 new_chars += 2;
3452 }
3453 }
3454 cmp_status->state = COMPOSING_NO;
3455 return new_chars;
3456 }
3457
3458 /* If characers are under composition, finish the composition. */
3459 #define MAYBE_FINISH_COMPOSITION() \
3460 do { \
3461 if (cmp_status->state != COMPOSING_NO) \
3462 char_offset += finish_composition (charbuf, cmp_status); \
3463 } while (0)
3464
3465 /* Handle composition start sequence ESC 0, ESC 2, ESC 3, or ESC 4.
3466
3467 ESC 0 : relative composition : ESC 0 CHAR ... ESC 1
3468 ESC 2 : rulebase composition : ESC 2 CHAR RULE CHAR RULE ... CHAR ESC 1
3469 ESC 3 : altchar composition : ESC 3 CHAR ... ESC 0 CHAR ... ESC 1
3470 ESC 4 : alt&rule composition : ESC 4 CHAR RULE ... CHAR ESC 0 CHAR ... ESC 1
3471
3472 Produce this annotation sequence now:
3473
3474 [ -LENGTH(==-4) CODING_ANNOTATE_COMPOSITION_MASK NCHARS(==0) METHOD ]
3475 */
3476
3477 #define DECODE_COMPOSITION_START(c1) \
3478 do { \
3479 if (c1 == '0' \
3480 && ((cmp_status->state == COMPOSING_COMPONENT_CHAR \
3481 && cmp_status->method == COMPOSITION_WITH_ALTCHARS) \
3482 || (cmp_status->state == COMPOSING_COMPONENT_RULE \
3483 && cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS))) \
3484 { \
3485 *charbuf++ = -1; \
3486 *charbuf++= -1; \
3487 cmp_status->state = COMPOSING_CHAR; \
3488 cmp_status->length += 2; \
3489 } \
3490 else \
3491 { \
3492 MAYBE_FINISH_COMPOSITION (); \
3493 cmp_status->method = (c1 == '0' ? COMPOSITION_RELATIVE \
3494 : c1 == '2' ? COMPOSITION_WITH_RULE \
3495 : c1 == '3' ? COMPOSITION_WITH_ALTCHARS \
3496 : COMPOSITION_WITH_RULE_ALTCHARS); \
3497 cmp_status->state \
3498 = (c1 <= '2' ? COMPOSING_CHAR : COMPOSING_COMPONENT_CHAR); \
3499 ADD_COMPOSITION_DATA (charbuf, 0, 0, cmp_status->method); \
3500 cmp_status->length = MAX_ANNOTATION_LENGTH; \
3501 cmp_status->nchars = cmp_status->ncomps = 0; \
3502 coding->annotated = 1; \
3503 } \
3504 } while (0)
3505
3506
3507 /* Handle composition end sequence ESC 1. */
3508
3509 #define DECODE_COMPOSITION_END() \
3510 do { \
3511 if (cmp_status->nchars == 0 \
3512 || ((cmp_status->state == COMPOSING_CHAR) \
3513 == (cmp_status->method == COMPOSITION_WITH_RULE))) \
3514 { \
3515 MAYBE_FINISH_COMPOSITION (); \
3516 goto invalid_code; \
3517 } \
3518 if (cmp_status->method == COMPOSITION_WITH_ALTCHARS) \
3519 charbuf[- cmp_status->length] -= cmp_status->ncomps + 2; \
3520 else if (cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS) \
3521 charbuf[- cmp_status->length] -= cmp_status->ncomps * 3; \
3522 charbuf[- cmp_status->length + 2] = cmp_status->nchars; \
3523 char_offset += cmp_status->nchars; \
3524 cmp_status->state = COMPOSING_NO; \
3525 } while (0)
3526
3527 /* Store a composition rule RULE in charbuf, and update cmp_status. */
3528
3529 #define STORE_COMPOSITION_RULE(rule) \
3530 do { \
3531 *charbuf++ = -2; \
3532 *charbuf++ = rule; \
3533 cmp_status->length += 2; \
3534 cmp_status->state--; \
3535 } while (0)
3536
3537 /* Store a composed char or a component char C in charbuf, and update
3538 cmp_status. */
3539
3540 #define STORE_COMPOSITION_CHAR(c) \
3541 do { \
3542 *charbuf++ = (c); \
3543 cmp_status->length++; \
3544 if (cmp_status->state == COMPOSING_CHAR) \
3545 cmp_status->nchars++; \
3546 else \
3547 cmp_status->ncomps++; \
3548 if (cmp_status->method == COMPOSITION_WITH_RULE \
3549 || (cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS \
3550 && cmp_status->state == COMPOSING_COMPONENT_CHAR)) \
3551 cmp_status->state++; \
3552 } while (0)
3553
3554
3555 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
3556
3557 static void
3558 decode_coding_iso_2022 (coding)
3559 struct coding_system *coding;
3560 {
3561 const unsigned char *src = coding->source + coding->consumed;
3562 const unsigned char *src_end = coding->source + coding->src_bytes;
3563 const unsigned char *src_base;
3564 int *charbuf = coding->charbuf + coding->charbuf_used;
3565 /* We may produce two annocations (charset and composition) in one
3566 loop and one more charset annocation at the end. */
3567 int *charbuf_end
3568 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 3);
3569 int consumed_chars = 0, consumed_chars_base;
3570 int multibytep = coding->src_multibyte;
3571 /* Charsets invoked to graphic plane 0 and 1 respectively. */
3572 int charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3573 int charset_id_1 = CODING_ISO_INVOKED_CHARSET (coding, 1);
3574 int charset_id_2, charset_id_3;
3575 struct charset *charset;
3576 int c;
3577 struct composition_status *cmp_status = CODING_ISO_CMP_STATUS (coding);
3578 Lisp_Object attrs, charset_list;
3579 int char_offset = coding->produced_char;
3580 int last_offset = char_offset;
3581 int last_id = charset_ascii;
3582 int eol_crlf =
3583 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
3584 int byte_after_cr = -1;
3585 int i;
3586
3587 CODING_GET_INFO (coding, attrs, charset_list);
3588 setup_iso_safe_charsets (attrs);
3589 /* Charset list may have been changed. */
3590 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
3591 coding->safe_charsets = SDATA (CODING_ATTR_SAFE_CHARSETS (attrs));
3592
3593 if (cmp_status->state != COMPOSING_NO)
3594 {
3595 for (i = 0; i < cmp_status->length; i++)
3596 *charbuf++ = cmp_status->carryover[i];
3597 coding->annotated = 1;
3598 }
3599
3600 while (1)
3601 {
3602 int c1, c2;
3603
3604 src_base = src;
3605 consumed_chars_base = consumed_chars;
3606
3607 if (charbuf >= charbuf_end)
3608 {
3609 if (byte_after_cr >= 0)
3610 src_base--;
3611 break;
3612 }
3613
3614 if (byte_after_cr >= 0)
3615 c1 = byte_after_cr, byte_after_cr = -1;
3616 else
3617 ONE_MORE_BYTE (c1);
3618 if (c1 < 0)
3619 goto invalid_code;
3620
3621 if (CODING_ISO_EXTSEGMENT_LEN (coding) > 0)
3622 {
3623 *charbuf++ = ASCII_BYTE_P (c1) ? c1 : BYTE8_TO_CHAR (c1);
3624 char_offset++;
3625 CODING_ISO_EXTSEGMENT_LEN (coding)--;
3626 continue;
3627 }
3628
3629 if (CODING_ISO_EMBEDDED_UTF_8 (coding))
3630 {
3631 if (c1 == ISO_CODE_ESC)
3632 {
3633 if (src + 1 >= src_end)
3634 goto no_more_source;
3635 *charbuf++ = ISO_CODE_ESC;
3636 char_offset++;
3637 if (src[0] == '%' && src[1] == '@')
3638 {
3639 src += 2;
3640 consumed_chars += 2;
3641 char_offset += 2;
3642 /* We are sure charbuf can contain two more chars. */
3643 *charbuf++ = '%';
3644 *charbuf++ = '@';
3645 CODING_ISO_EMBEDDED_UTF_8 (coding) = 0;
3646 }
3647 }
3648 else
3649 {
3650 *charbuf++ = ASCII_BYTE_P (c1) ? c1 : BYTE8_TO_CHAR (c1);
3651 char_offset++;
3652 }
3653 continue;
3654 }
3655
3656 if ((cmp_status->state == COMPOSING_RULE
3657 || cmp_status->state == COMPOSING_COMPONENT_RULE)
3658 && c1 != ISO_CODE_ESC)
3659 {
3660 int rule, nbytes;
3661
3662 DECODE_COMPOSITION_RULE (rule, nbytes);
3663 if (rule < 0)
3664 goto invalid_code;
3665 STORE_COMPOSITION_RULE (rule);
3666 continue;
3667 }
3668
3669 /* We produce at most one character. */
3670 switch (iso_code_class [c1])
3671 {
3672 case ISO_0x20_or_0x7F:
3673 if (charset_id_0 < 0
3674 || ! CHARSET_ISO_CHARS_96 (CHARSET_FROM_ID (charset_id_0)))
3675 /* This is SPACE or DEL. */
3676 charset = CHARSET_FROM_ID (charset_ascii);
3677 else
3678 charset = CHARSET_FROM_ID (charset_id_0);
3679 break;
3680
3681 case ISO_graphic_plane_0:
3682 if (charset_id_0 < 0)
3683 charset = CHARSET_FROM_ID (charset_ascii);
3684 else
3685 charset = CHARSET_FROM_ID (charset_id_0);
3686 break;
3687
3688 case ISO_0xA0_or_0xFF:
3689 if (charset_id_1 < 0
3690 || ! CHARSET_ISO_CHARS_96 (CHARSET_FROM_ID (charset_id_1))
3691 || CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS)
3692 goto invalid_code;
3693 /* This is a graphic character, we fall down ... */
3694
3695 case ISO_graphic_plane_1:
3696 if (charset_id_1 < 0)
3697 goto invalid_code;
3698 charset = CHARSET_FROM_ID (charset_id_1);
3699 break;
3700
3701 case ISO_control_0:
3702 if (eol_crlf && c1 == '\r')
3703 ONE_MORE_BYTE (byte_after_cr);
3704 MAYBE_FINISH_COMPOSITION ();
3705 charset = CHARSET_FROM_ID (charset_ascii);
3706 break;
3707
3708 case ISO_control_1:
3709 goto invalid_code;
3710
3711 case ISO_shift_out:
3712 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT)
3713 || CODING_ISO_DESIGNATION (coding, 1) < 0)
3714 goto invalid_code;
3715 CODING_ISO_INVOCATION (coding, 0) = 1;
3716 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3717 continue;
3718
3719 case ISO_shift_in:
3720 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT))
3721 goto invalid_code;
3722 CODING_ISO_INVOCATION (coding, 0) = 0;
3723 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3724 continue;
3725
3726 case ISO_single_shift_2_7:
3727 case ISO_single_shift_2:
3728 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT))
3729 goto invalid_code;
3730 /* SS2 is handled as an escape sequence of ESC 'N' */
3731 c1 = 'N';
3732 goto label_escape_sequence;
3733
3734 case ISO_single_shift_3:
3735 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT))
3736 goto invalid_code;
3737 /* SS2 is handled as an escape sequence of ESC 'O' */
3738 c1 = 'O';
3739 goto label_escape_sequence;
3740
3741 case ISO_control_sequence_introducer:
3742 /* CSI is handled as an escape sequence of ESC '[' ... */
3743 c1 = '[';
3744 goto label_escape_sequence;
3745
3746 case ISO_escape:
3747 ONE_MORE_BYTE (c1);
3748 label_escape_sequence:
3749 /* Escape sequences handled here are invocation,
3750 designation, direction specification, and character
3751 composition specification. */
3752 switch (c1)
3753 {
3754 case '&': /* revision of following character set */
3755 ONE_MORE_BYTE (c1);
3756 if (!(c1 >= '@' && c1 <= '~'))
3757 goto invalid_code;
3758 ONE_MORE_BYTE (c1);
3759 if (c1 != ISO_CODE_ESC)
3760 goto invalid_code;
3761 ONE_MORE_BYTE (c1);
3762 goto label_escape_sequence;
3763
3764 case '$': /* designation of 2-byte character set */
3765 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATION))
3766 goto invalid_code;
3767 {
3768 int reg, chars96;
3769
3770 ONE_MORE_BYTE (c1);
3771 if (c1 >= '@' && c1 <= 'B')
3772 { /* designation of JISX0208.1978, GB2312.1980,
3773 or JISX0208.1980 */
3774 reg = 0, chars96 = 0;
3775 }
3776 else if (c1 >= 0x28 && c1 <= 0x2B)
3777 { /* designation of DIMENSION2_CHARS94 character set */
3778 reg = c1 - 0x28, chars96 = 0;
3779 ONE_MORE_BYTE (c1);
3780 }
3781 else if (c1 >= 0x2C && c1 <= 0x2F)
3782 { /* designation of DIMENSION2_CHARS96 character set */
3783 reg = c1 - 0x2C, chars96 = 1;
3784 ONE_MORE_BYTE (c1);
3785 }
3786 else
3787 goto invalid_code;
3788 DECODE_DESIGNATION (reg, 2, chars96, c1);
3789 /* We must update these variables now. */
3790 if (reg == 0)
3791 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3792 else if (reg == 1)
3793 charset_id_1 = CODING_ISO_INVOKED_CHARSET (coding, 1);
3794 if (chars96 < 0)
3795 goto invalid_code;
3796 }
3797 continue;
3798
3799 case 'n': /* invocation of locking-shift-2 */
3800 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT)
3801 || CODING_ISO_DESIGNATION (coding, 2) < 0)
3802 goto invalid_code;
3803 CODING_ISO_INVOCATION (coding, 0) = 2;
3804 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3805 continue;
3806
3807 case 'o': /* invocation of locking-shift-3 */
3808 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT)
3809 || CODING_ISO_DESIGNATION (coding, 3) < 0)
3810 goto invalid_code;
3811 CODING_ISO_INVOCATION (coding, 0) = 3;
3812 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3813 continue;
3814
3815 case 'N': /* invocation of single-shift-2 */
3816 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
3817 || CODING_ISO_DESIGNATION (coding, 2) < 0)
3818 goto invalid_code;
3819 charset_id_2 = CODING_ISO_DESIGNATION (coding, 2);
3820 if (charset_id_2 < 0)
3821 charset = CHARSET_FROM_ID (charset_ascii);
3822 else
3823 charset = CHARSET_FROM_ID (charset_id_2);
3824 ONE_MORE_BYTE (c1);
3825 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
3826 goto invalid_code;
3827 break;
3828
3829 case 'O': /* invocation of single-shift-3 */
3830 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
3831 || CODING_ISO_DESIGNATION (coding, 3) < 0)
3832 goto invalid_code;
3833 charset_id_3 = CODING_ISO_DESIGNATION (coding, 3);
3834 if (charset_id_3 < 0)
3835 charset = CHARSET_FROM_ID (charset_ascii);
3836 else
3837 charset = CHARSET_FROM_ID (charset_id_3);
3838 ONE_MORE_BYTE (c1);
3839 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
3840 goto invalid_code;
3841 break;
3842
3843 case '0': case '2': case '3': case '4': /* start composition */
3844 if (! (coding->common_flags & CODING_ANNOTATE_COMPOSITION_MASK))
3845 goto invalid_code;
3846 if (last_id != charset_ascii)
3847 {
3848 ADD_CHARSET_DATA (charbuf, char_offset- last_offset, last_id);
3849 last_id = charset_ascii;
3850 last_offset = char_offset;
3851 }
3852 DECODE_COMPOSITION_START (c1);
3853 continue;
3854
3855 case '1': /* end composition */
3856 if (cmp_status->state == COMPOSING_NO)
3857 goto invalid_code;
3858 DECODE_COMPOSITION_END ();
3859 continue;
3860
3861 case '[': /* specification of direction */
3862 if (! CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DIRECTION)
3863 goto invalid_code;
3864 /* For the moment, nested direction is not supported.
3865 So, `coding->mode & CODING_MODE_DIRECTION' zero means
3866 left-to-right, and nozero means right-to-left. */
3867 ONE_MORE_BYTE (c1);
3868 switch (c1)
3869 {
3870 case ']': /* end of the current direction */
3871 coding->mode &= ~CODING_MODE_DIRECTION;
3872
3873 case '0': /* end of the current direction */
3874 case '1': /* start of left-to-right direction */
3875 ONE_MORE_BYTE (c1);
3876 if (c1 == ']')
3877 coding->mode &= ~CODING_MODE_DIRECTION;
3878 else
3879 goto invalid_code;
3880 break;
3881
3882 case '2': /* start of right-to-left direction */
3883 ONE_MORE_BYTE (c1);
3884 if (c1 == ']')
3885 coding->mode |= CODING_MODE_DIRECTION;
3886 else
3887 goto invalid_code;
3888 break;
3889
3890 default:
3891 goto invalid_code;
3892 }
3893 continue;
3894
3895 case '%':
3896 ONE_MORE_BYTE (c1);
3897 if (c1 == '/')
3898 {
3899 /* CTEXT extended segment:
3900 ESC % / [0-4] M L --ENCODING-NAME-- \002 --BYTES--
3901 We keep these bytes as is for the moment.
3902 They may be decoded by post-read-conversion. */
3903 int dim, M, L;
3904 int size;
3905
3906 ONE_MORE_BYTE (dim);
3907 if (dim < 0 || dim > 4)
3908 goto invalid_code;
3909 ONE_MORE_BYTE (M);
3910 if (M < 128)
3911 goto invalid_code;
3912 ONE_MORE_BYTE (L);
3913 if (L < 128)
3914 goto invalid_code;
3915 size = ((M - 128) * 128) + (L - 128);
3916 if (charbuf + 6 > charbuf_end)
3917 goto break_loop;
3918 *charbuf++ = ISO_CODE_ESC;
3919 *charbuf++ = '%';
3920 *charbuf++ = '/';
3921 *charbuf++ = dim;
3922 *charbuf++ = BYTE8_TO_CHAR (M);
3923 *charbuf++ = BYTE8_TO_CHAR (L);
3924 CODING_ISO_EXTSEGMENT_LEN (coding) = size;
3925 }
3926 else if (c1 == 'G')
3927 {
3928 /* XFree86 extension for embedding UTF-8 in CTEXT:
3929 ESC % G --UTF-8-BYTES-- ESC % @
3930 We keep these bytes as is for the moment.
3931 They may be decoded by post-read-conversion. */
3932 if (charbuf + 3 > charbuf_end)
3933 goto break_loop;
3934 *charbuf++ = ISO_CODE_ESC;
3935 *charbuf++ = '%';
3936 *charbuf++ = 'G';
3937 CODING_ISO_EMBEDDED_UTF_8 (coding) = 1;
3938 }
3939 else
3940 goto invalid_code;
3941 continue;
3942 break;
3943
3944 default:
3945 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATION))
3946 goto invalid_code;
3947 {
3948 int reg, chars96;
3949
3950 if (c1 >= 0x28 && c1 <= 0x2B)
3951 { /* designation of DIMENSION1_CHARS94 character set */
3952 reg = c1 - 0x28, chars96 = 0;
3953 ONE_MORE_BYTE (c1);
3954 }
3955 else if (c1 >= 0x2C && c1 <= 0x2F)
3956 { /* designation of DIMENSION1_CHARS96 character set */
3957 reg = c1 - 0x2C, chars96 = 1;
3958 ONE_MORE_BYTE (c1);
3959 }
3960 else
3961 goto invalid_code;
3962 DECODE_DESIGNATION (reg, 1, chars96, c1);
3963 /* We must update these variables now. */
3964 if (reg == 0)
3965 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3966 else if (reg == 1)
3967 charset_id_1 = CODING_ISO_INVOKED_CHARSET (coding, 1);
3968 if (chars96 < 0)
3969 goto invalid_code;
3970 }
3971 continue;
3972 }
3973 }
3974
3975 if (cmp_status->state == COMPOSING_NO
3976 && charset->id != charset_ascii
3977 && last_id != charset->id)
3978 {
3979 if (last_id != charset_ascii)
3980 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
3981 last_id = charset->id;
3982 last_offset = char_offset;
3983 }
3984
3985 /* Now we know CHARSET and 1st position code C1 of a character.
3986 Produce a decoded character while getting 2nd position code
3987 C2 if necessary. */
3988 c1 &= 0x7F;
3989 if (CHARSET_DIMENSION (charset) > 1)
3990 {
3991 ONE_MORE_BYTE (c2);
3992 if (c2 < 0x20 || (c2 >= 0x80 && c2 < 0xA0))
3993 /* C2 is not in a valid range. */
3994 goto invalid_code;
3995 c1 = (c1 << 8) | (c2 & 0x7F);
3996 if (CHARSET_DIMENSION (charset) > 2)
3997 {
3998 ONE_MORE_BYTE (c2);
3999 if (c2 < 0x20 || (c2 >= 0x80 && c2 < 0xA0))
4000 /* C2 is not in a valid range. */
4001 goto invalid_code;
4002 c1 = (c1 << 8) | (c2 & 0x7F);
4003 }
4004 }
4005
4006 CODING_DECODE_CHAR (coding, src, src_base, src_end, charset, c1, c);
4007 if (c < 0)
4008 {
4009 MAYBE_FINISH_COMPOSITION ();
4010 for (; src_base < src; src_base++, char_offset++)
4011 {
4012 if (ASCII_BYTE_P (*src_base))
4013 *charbuf++ = *src_base;
4014 else
4015 *charbuf++ = BYTE8_TO_CHAR (*src_base);
4016 }
4017 }
4018 else if (cmp_status->state == COMPOSING_NO)
4019 {
4020 *charbuf++ = c;
4021 char_offset++;
4022 }
4023 else if ((cmp_status->state == COMPOSING_CHAR
4024 ? cmp_status->nchars
4025 : cmp_status->ncomps)
4026 >= MAX_COMPOSITION_COMPONENTS)
4027 {
4028 /* Too long composition. */
4029 MAYBE_FINISH_COMPOSITION ();
4030 *charbuf++ = c;
4031 char_offset++;
4032 }
4033 else
4034 STORE_COMPOSITION_CHAR (c);
4035 continue;
4036
4037 invalid_code:
4038 MAYBE_FINISH_COMPOSITION ();
4039 src = src_base;
4040 consumed_chars = consumed_chars_base;
4041 ONE_MORE_BYTE (c);
4042 *charbuf++ = c < 0 ? -c : ASCII_BYTE_P (c) ? c : BYTE8_TO_CHAR (c);
4043 char_offset++;
4044 coding->errors++;
4045 continue;
4046
4047 break_loop:
4048 break;
4049 }
4050
4051 no_more_source:
4052 if (cmp_status->state != COMPOSING_NO)
4053 {
4054 if (coding->mode & CODING_MODE_LAST_BLOCK)
4055 MAYBE_FINISH_COMPOSITION ();
4056 else
4057 {
4058 charbuf -= cmp_status->length;
4059 for (i = 0; i < cmp_status->length; i++)
4060 cmp_status->carryover[i] = charbuf[i];
4061 }
4062 }
4063 else if (last_id != charset_ascii)
4064 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4065 coding->consumed_char += consumed_chars_base;
4066 coding->consumed = src_base - coding->source;
4067 coding->charbuf_used = charbuf - coding->charbuf;
4068 }
4069
4070
4071 /* ISO2022 encoding stuff. */
4072
4073 /*
4074 It is not enough to say just "ISO2022" on encoding, we have to
4075 specify more details. In Emacs, each coding system of ISO2022
4076 variant has the following specifications:
4077 1. Initial designation to G0 thru G3.
4078 2. Allows short-form designation?
4079 3. ASCII should be designated to G0 before control characters?
4080 4. ASCII should be designated to G0 at end of line?
4081 5. 7-bit environment or 8-bit environment?
4082 6. Use locking-shift?
4083 7. Use Single-shift?
4084 And the following two are only for Japanese:
4085 8. Use ASCII in place of JIS0201-1976-Roman?
4086 9. Use JISX0208-1983 in place of JISX0208-1978?
4087 These specifications are encoded in CODING_ISO_FLAGS (coding) as flag bits
4088 defined by macros CODING_ISO_FLAG_XXX. See `coding.h' for more
4089 details.
4090 */
4091
4092 /* Produce codes (escape sequence) for designating CHARSET to graphic
4093 register REG at DST, and increment DST. If <final-char> of CHARSET is
4094 '@', 'A', or 'B' and the coding system CODING allows, produce
4095 designation sequence of short-form. */
4096
4097 #define ENCODE_DESIGNATION(charset, reg, coding) \
4098 do { \
4099 unsigned char final_char = CHARSET_ISO_FINAL (charset); \
4100 char *intermediate_char_94 = "()*+"; \
4101 char *intermediate_char_96 = ",-./"; \
4102 int revision = -1; \
4103 int c; \
4104 \
4105 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_REVISION) \
4106 revision = CHARSET_ISO_REVISION (charset); \
4107 \
4108 if (revision >= 0) \
4109 { \
4110 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, '&'); \
4111 EMIT_ONE_BYTE ('@' + revision); \
4112 } \
4113 EMIT_ONE_ASCII_BYTE (ISO_CODE_ESC); \
4114 if (CHARSET_DIMENSION (charset) == 1) \
4115 { \
4116 if (! CHARSET_ISO_CHARS_96 (charset)) \
4117 c = intermediate_char_94[reg]; \
4118 else \
4119 c = intermediate_char_96[reg]; \
4120 EMIT_ONE_ASCII_BYTE (c); \
4121 } \
4122 else \
4123 { \
4124 EMIT_ONE_ASCII_BYTE ('$'); \
4125 if (! CHARSET_ISO_CHARS_96 (charset)) \
4126 { \
4127 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LONG_FORM \
4128 || reg != 0 \
4129 || final_char < '@' || final_char > 'B') \
4130 EMIT_ONE_ASCII_BYTE (intermediate_char_94[reg]); \
4131 } \
4132 else \
4133 EMIT_ONE_ASCII_BYTE (intermediate_char_96[reg]); \
4134 } \
4135 EMIT_ONE_ASCII_BYTE (final_char); \
4136 \
4137 CODING_ISO_DESIGNATION (coding, reg) = CHARSET_ID (charset); \
4138 } while (0)
4139
4140
4141 /* The following two macros produce codes (control character or escape
4142 sequence) for ISO2022 single-shift functions (single-shift-2 and
4143 single-shift-3). */
4144
4145 #define ENCODE_SINGLE_SHIFT_2 \
4146 do { \
4147 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4148 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'N'); \
4149 else \
4150 EMIT_ONE_BYTE (ISO_CODE_SS2); \
4151 CODING_ISO_SINGLE_SHIFTING (coding) = 1; \
4152 } while (0)
4153
4154
4155 #define ENCODE_SINGLE_SHIFT_3 \
4156 do { \
4157 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4158 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'O'); \
4159 else \
4160 EMIT_ONE_BYTE (ISO_CODE_SS3); \
4161 CODING_ISO_SINGLE_SHIFTING (coding) = 1; \
4162 } while (0)
4163
4164
4165 /* The following four macros produce codes (control character or
4166 escape sequence) for ISO2022 locking-shift functions (shift-in,
4167 shift-out, locking-shift-2, and locking-shift-3). */
4168
4169 #define ENCODE_SHIFT_IN \
4170 do { \
4171 EMIT_ONE_ASCII_BYTE (ISO_CODE_SI); \
4172 CODING_ISO_INVOCATION (coding, 0) = 0; \
4173 } while (0)
4174
4175
4176 #define ENCODE_SHIFT_OUT \
4177 do { \
4178 EMIT_ONE_ASCII_BYTE (ISO_CODE_SO); \
4179 CODING_ISO_INVOCATION (coding, 0) = 1; \
4180 } while (0)
4181
4182
4183 #define ENCODE_LOCKING_SHIFT_2 \
4184 do { \
4185 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'n'); \
4186 CODING_ISO_INVOCATION (coding, 0) = 2; \
4187 } while (0)
4188
4189
4190 #define ENCODE_LOCKING_SHIFT_3 \
4191 do { \
4192 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'n'); \
4193 CODING_ISO_INVOCATION (coding, 0) = 3; \
4194 } while (0)
4195
4196
4197 /* Produce codes for a DIMENSION1 character whose character set is
4198 CHARSET and whose position-code is C1. Designation and invocation
4199 sequences are also produced in advance if necessary. */
4200
4201 #define ENCODE_ISO_CHARACTER_DIMENSION1(charset, c1) \
4202 do { \
4203 int id = CHARSET_ID (charset); \
4204 \
4205 if ((CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_ROMAN) \
4206 && id == charset_ascii) \
4207 { \
4208 id = charset_jisx0201_roman; \
4209 charset = CHARSET_FROM_ID (id); \
4210 } \
4211 \
4212 if (CODING_ISO_SINGLE_SHIFTING (coding)) \
4213 { \
4214 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4215 EMIT_ONE_ASCII_BYTE (c1 & 0x7F); \
4216 else \
4217 EMIT_ONE_BYTE (c1 | 0x80); \
4218 CODING_ISO_SINGLE_SHIFTING (coding) = 0; \
4219 break; \
4220 } \
4221 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 0)) \
4222 { \
4223 EMIT_ONE_ASCII_BYTE (c1 & 0x7F); \
4224 break; \
4225 } \
4226 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 1)) \
4227 { \
4228 EMIT_ONE_BYTE (c1 | 0x80); \
4229 break; \
4230 } \
4231 else \
4232 /* Since CHARSET is not yet invoked to any graphic planes, we \
4233 must invoke it, or, at first, designate it to some graphic \
4234 register. Then repeat the loop to actually produce the \
4235 character. */ \
4236 dst = encode_invocation_designation (charset, coding, dst, \
4237 &produced_chars); \
4238 } while (1)
4239
4240
4241 /* Produce codes for a DIMENSION2 character whose character set is
4242 CHARSET and whose position-codes are C1 and C2. Designation and
4243 invocation codes are also produced in advance if necessary. */
4244
4245 #define ENCODE_ISO_CHARACTER_DIMENSION2(charset, c1, c2) \
4246 do { \
4247 int id = CHARSET_ID (charset); \
4248 \
4249 if ((CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_OLDJIS) \
4250 && id == charset_jisx0208) \
4251 { \
4252 id = charset_jisx0208_1978; \
4253 charset = CHARSET_FROM_ID (id); \
4254 } \
4255 \
4256 if (CODING_ISO_SINGLE_SHIFTING (coding)) \
4257 { \
4258 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4259 EMIT_TWO_ASCII_BYTES ((c1) & 0x7F, (c2) & 0x7F); \
4260 else \
4261 EMIT_TWO_BYTES ((c1) | 0x80, (c2) | 0x80); \
4262 CODING_ISO_SINGLE_SHIFTING (coding) = 0; \
4263 break; \
4264 } \
4265 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 0)) \
4266 { \
4267 EMIT_TWO_ASCII_BYTES ((c1) & 0x7F, (c2) & 0x7F); \
4268 break; \
4269 } \
4270 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 1)) \
4271 { \
4272 EMIT_TWO_BYTES ((c1) | 0x80, (c2) | 0x80); \
4273 break; \
4274 } \
4275 else \
4276 /* Since CHARSET is not yet invoked to any graphic planes, we \
4277 must invoke it, or, at first, designate it to some graphic \
4278 register. Then repeat the loop to actually produce the \
4279 character. */ \
4280 dst = encode_invocation_designation (charset, coding, dst, \
4281 &produced_chars); \
4282 } while (1)
4283
4284
4285 #define ENCODE_ISO_CHARACTER(charset, c) \
4286 do { \
4287 int code = ENCODE_CHAR ((charset),(c)); \
4288 \
4289 if (CHARSET_DIMENSION (charset) == 1) \
4290 ENCODE_ISO_CHARACTER_DIMENSION1 ((charset), code); \
4291 else \
4292 ENCODE_ISO_CHARACTER_DIMENSION2 ((charset), code >> 8, code & 0xFF); \
4293 } while (0)
4294
4295
4296 /* Produce designation and invocation codes at a place pointed by DST
4297 to use CHARSET. The element `spec.iso_2022' of *CODING is updated.
4298 Return new DST. */
4299
4300 unsigned char *
4301 encode_invocation_designation (charset, coding, dst, p_nchars)
4302 struct charset *charset;
4303 struct coding_system *coding;
4304 unsigned char *dst;
4305 int *p_nchars;
4306 {
4307 int multibytep = coding->dst_multibyte;
4308 int produced_chars = *p_nchars;
4309 int reg; /* graphic register number */
4310 int id = CHARSET_ID (charset);
4311
4312 /* At first, check designations. */
4313 for (reg = 0; reg < 4; reg++)
4314 if (id == CODING_ISO_DESIGNATION (coding, reg))
4315 break;
4316
4317 if (reg >= 4)
4318 {
4319 /* CHARSET is not yet designated to any graphic registers. */
4320 /* At first check the requested designation. */
4321 reg = CODING_ISO_REQUEST (coding, id);
4322 if (reg < 0)
4323 /* Since CHARSET requests no special designation, designate it
4324 to graphic register 0. */
4325 reg = 0;
4326
4327 ENCODE_DESIGNATION (charset, reg, coding);
4328 }
4329
4330 if (CODING_ISO_INVOCATION (coding, 0) != reg
4331 && CODING_ISO_INVOCATION (coding, 1) != reg)
4332 {
4333 /* Since the graphic register REG is not invoked to any graphic
4334 planes, invoke it to graphic plane 0. */
4335 switch (reg)
4336 {
4337 case 0: /* graphic register 0 */
4338 ENCODE_SHIFT_IN;
4339 break;
4340
4341 case 1: /* graphic register 1 */
4342 ENCODE_SHIFT_OUT;
4343 break;
4344
4345 case 2: /* graphic register 2 */
4346 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
4347 ENCODE_SINGLE_SHIFT_2;
4348 else
4349 ENCODE_LOCKING_SHIFT_2;
4350 break;
4351
4352 case 3: /* graphic register 3 */
4353 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
4354 ENCODE_SINGLE_SHIFT_3;
4355 else
4356 ENCODE_LOCKING_SHIFT_3;
4357 break;
4358 }
4359 }
4360
4361 *p_nchars = produced_chars;
4362 return dst;
4363 }
4364
4365 /* The following three macros produce codes for indicating direction
4366 of text. */
4367 #define ENCODE_CONTROL_SEQUENCE_INTRODUCER \
4368 do { \
4369 if (CODING_ISO_FLAGS (coding) == CODING_ISO_FLAG_SEVEN_BITS) \
4370 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, '['); \
4371 else \
4372 EMIT_ONE_BYTE (ISO_CODE_CSI); \
4373 } while (0)
4374
4375
4376 #define ENCODE_DIRECTION_R2L() \
4377 do { \
4378 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst); \
4379 EMIT_TWO_ASCII_BYTES ('2', ']'); \
4380 } while (0)
4381
4382
4383 #define ENCODE_DIRECTION_L2R() \
4384 do { \
4385 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst); \
4386 EMIT_TWO_ASCII_BYTES ('0', ']'); \
4387 } while (0)
4388
4389
4390 /* Produce codes for designation and invocation to reset the graphic
4391 planes and registers to initial state. */
4392 #define ENCODE_RESET_PLANE_AND_REGISTER() \
4393 do { \
4394 int reg; \
4395 struct charset *charset; \
4396 \
4397 if (CODING_ISO_INVOCATION (coding, 0) != 0) \
4398 ENCODE_SHIFT_IN; \
4399 for (reg = 0; reg < 4; reg++) \
4400 if (CODING_ISO_INITIAL (coding, reg) >= 0 \
4401 && (CODING_ISO_DESIGNATION (coding, reg) \
4402 != CODING_ISO_INITIAL (coding, reg))) \
4403 { \
4404 charset = CHARSET_FROM_ID (CODING_ISO_INITIAL (coding, reg)); \
4405 ENCODE_DESIGNATION (charset, reg, coding); \
4406 } \
4407 } while (0)
4408
4409
4410 /* Produce designation sequences of charsets in the line started from
4411 SRC to a place pointed by DST, and return updated DST.
4412
4413 If the current block ends before any end-of-line, we may fail to
4414 find all the necessary designations. */
4415
4416 static unsigned char *
4417 encode_designation_at_bol (coding, charbuf, charbuf_end, dst)
4418 struct coding_system *coding;
4419 int *charbuf, *charbuf_end;
4420 unsigned char *dst;
4421 {
4422 struct charset *charset;
4423 /* Table of charsets to be designated to each graphic register. */
4424 int r[4];
4425 int c, found = 0, reg;
4426 int produced_chars = 0;
4427 int multibytep = coding->dst_multibyte;
4428 Lisp_Object attrs;
4429 Lisp_Object charset_list;
4430
4431 attrs = CODING_ID_ATTRS (coding->id);
4432 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
4433 if (EQ (charset_list, Qiso_2022))
4434 charset_list = Viso_2022_charset_list;
4435
4436 for (reg = 0; reg < 4; reg++)
4437 r[reg] = -1;
4438
4439 while (found < 4)
4440 {
4441 int id;
4442
4443 c = *charbuf++;
4444 if (c == '\n')
4445 break;
4446 charset = char_charset (c, charset_list, NULL);
4447 id = CHARSET_ID (charset);
4448 reg = CODING_ISO_REQUEST (coding, id);
4449 if (reg >= 0 && r[reg] < 0)
4450 {
4451 found++;
4452 r[reg] = id;
4453 }
4454 }
4455
4456 if (found)
4457 {
4458 for (reg = 0; reg < 4; reg++)
4459 if (r[reg] >= 0
4460 && CODING_ISO_DESIGNATION (coding, reg) != r[reg])
4461 ENCODE_DESIGNATION (CHARSET_FROM_ID (r[reg]), reg, coding);
4462 }
4463
4464 return dst;
4465 }
4466
4467 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions". */
4468
4469 static int
4470 encode_coding_iso_2022 (coding)
4471 struct coding_system *coding;
4472 {
4473 int multibytep = coding->dst_multibyte;
4474 int *charbuf = coding->charbuf;
4475 int *charbuf_end = charbuf + coding->charbuf_used;
4476 unsigned char *dst = coding->destination + coding->produced;
4477 unsigned char *dst_end = coding->destination + coding->dst_bytes;
4478 int safe_room = 16;
4479 int bol_designation
4480 = (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATE_AT_BOL
4481 && CODING_ISO_BOL (coding));
4482 int produced_chars = 0;
4483 Lisp_Object attrs, eol_type, charset_list;
4484 int ascii_compatible;
4485 int c;
4486 int preferred_charset_id = -1;
4487
4488 CODING_GET_INFO (coding, attrs, charset_list);
4489 eol_type = inhibit_eol_conversion ? Qunix : CODING_ID_EOL_TYPE (coding->id);
4490 if (VECTORP (eol_type))
4491 eol_type = Qunix;
4492
4493 setup_iso_safe_charsets (attrs);
4494 /* Charset list may have been changed. */
4495 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
4496 coding->safe_charsets = SDATA (CODING_ATTR_SAFE_CHARSETS (attrs));
4497
4498 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
4499
4500 while (charbuf < charbuf_end)
4501 {
4502 ASSURE_DESTINATION (safe_room);
4503
4504 if (bol_designation)
4505 {
4506 unsigned char *dst_prev = dst;
4507
4508 /* We have to produce designation sequences if any now. */
4509 dst = encode_designation_at_bol (coding, charbuf, charbuf_end, dst);
4510 bol_designation = 0;
4511 /* We are sure that designation sequences are all ASCII bytes. */
4512 produced_chars += dst - dst_prev;
4513 }
4514
4515 c = *charbuf++;
4516
4517 if (c < 0)
4518 {
4519 /* Handle an annotation. */
4520 switch (*charbuf)
4521 {
4522 case CODING_ANNOTATE_COMPOSITION_MASK:
4523 /* Not yet implemented. */
4524 break;
4525 case CODING_ANNOTATE_CHARSET_MASK:
4526 preferred_charset_id = charbuf[2];
4527 if (preferred_charset_id >= 0
4528 && NILP (Fmemq (make_number (preferred_charset_id),
4529 charset_list)))
4530 preferred_charset_id = -1;
4531 break;
4532 default:
4533 abort ();
4534 }
4535 charbuf += -c - 1;
4536 continue;
4537 }
4538
4539 /* Now encode the character C. */
4540 if (c < 0x20 || c == 0x7F)
4541 {
4542 if (c == '\n'
4543 || (c == '\r' && EQ (eol_type, Qmac)))
4544 {
4545 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_RESET_AT_EOL)
4546 ENCODE_RESET_PLANE_AND_REGISTER ();
4547 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_INIT_AT_BOL)
4548 {
4549 int i;
4550
4551 for (i = 0; i < 4; i++)
4552 CODING_ISO_DESIGNATION (coding, i)
4553 = CODING_ISO_INITIAL (coding, i);
4554 }
4555 bol_designation
4556 = CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATE_AT_BOL;
4557 }
4558 else if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_RESET_AT_CNTL)
4559 ENCODE_RESET_PLANE_AND_REGISTER ();
4560 EMIT_ONE_ASCII_BYTE (c);
4561 }
4562 else if (ASCII_CHAR_P (c))
4563 {
4564 if (ascii_compatible)
4565 EMIT_ONE_ASCII_BYTE (c);
4566 else
4567 {
4568 struct charset *charset = CHARSET_FROM_ID (charset_ascii);
4569 ENCODE_ISO_CHARACTER (charset, c);
4570 }
4571 }
4572 else if (CHAR_BYTE8_P (c))
4573 {
4574 c = CHAR_TO_BYTE8 (c);
4575 EMIT_ONE_BYTE (c);
4576 }
4577 else
4578 {
4579 struct charset *charset;
4580
4581 if (preferred_charset_id >= 0)
4582 {
4583 charset = CHARSET_FROM_ID (preferred_charset_id);
4584 if (! CHAR_CHARSET_P (c, charset))
4585 charset = char_charset (c, charset_list, NULL);
4586 }
4587 else
4588 charset = char_charset (c, charset_list, NULL);
4589 if (!charset)
4590 {
4591 if (coding->mode & CODING_MODE_SAFE_ENCODING)
4592 {
4593 c = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
4594 charset = CHARSET_FROM_ID (charset_ascii);
4595 }
4596 else
4597 {
4598 c = coding->default_char;
4599 charset = char_charset (c, charset_list, NULL);
4600 }
4601 }
4602 ENCODE_ISO_CHARACTER (charset, c);
4603 }
4604 }
4605
4606 if (coding->mode & CODING_MODE_LAST_BLOCK
4607 && CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_RESET_AT_EOL)
4608 {
4609 ASSURE_DESTINATION (safe_room);
4610 ENCODE_RESET_PLANE_AND_REGISTER ();
4611 }
4612 record_conversion_result (coding, CODING_RESULT_SUCCESS);
4613 CODING_ISO_BOL (coding) = bol_designation;
4614 coding->produced_char += produced_chars;
4615 coding->produced = dst - coding->destination;
4616 return 0;
4617 }
4618
4619 \f
4620 /*** 8,9. SJIS and BIG5 handlers ***/
4621
4622 /* Although SJIS and BIG5 are not ISO's coding system, they are used
4623 quite widely. So, for the moment, Emacs supports them in the bare
4624 C code. But, in the future, they may be supported only by CCL. */
4625
4626 /* SJIS is a coding system encoding three character sets: ASCII, right
4627 half of JISX0201-Kana, and JISX0208. An ASCII character is encoded
4628 as is. A character of charset katakana-jisx0201 is encoded by
4629 "position-code + 0x80". A character of charset japanese-jisx0208
4630 is encoded in 2-byte but two position-codes are divided and shifted
4631 so that it fit in the range below.
4632
4633 --- CODE RANGE of SJIS ---
4634 (character set) (range)
4635 ASCII 0x00 .. 0x7F
4636 KATAKANA-JISX0201 0xA0 .. 0xDF
4637 JISX0208 (1st byte) 0x81 .. 0x9F and 0xE0 .. 0xEF
4638 (2nd byte) 0x40 .. 0x7E and 0x80 .. 0xFC
4639 -------------------------------
4640
4641 */
4642
4643 /* BIG5 is a coding system encoding two character sets: ASCII and
4644 Big5. An ASCII character is encoded as is. Big5 is a two-byte
4645 character set and is encoded in two-byte.
4646
4647 --- CODE RANGE of BIG5 ---
4648 (character set) (range)
4649 ASCII 0x00 .. 0x7F
4650 Big5 (1st byte) 0xA1 .. 0xFE
4651 (2nd byte) 0x40 .. 0x7E and 0xA1 .. 0xFE
4652 --------------------------
4653
4654 */
4655
4656 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
4657 Check if a text is encoded in SJIS. If it is, return
4658 CATEGORY_MASK_SJIS, else return 0. */
4659
4660 static int
4661 detect_coding_sjis (coding, detect_info)
4662 struct coding_system *coding;
4663 struct coding_detection_info *detect_info;
4664 {
4665 const unsigned char *src = coding->source, *src_base;
4666 const unsigned char *src_end = coding->source + coding->src_bytes;
4667 int multibytep = coding->src_multibyte;
4668 int consumed_chars = 0;
4669 int found = 0;
4670 int c;
4671
4672 detect_info->checked |= CATEGORY_MASK_SJIS;
4673 /* A coding system of this category is always ASCII compatible. */
4674 src += coding->head_ascii;
4675
4676 while (1)
4677 {
4678 src_base = src;
4679 ONE_MORE_BYTE (c);
4680 if (c < 0x80)
4681 continue;
4682 if ((c >= 0x81 && c <= 0x9F) || (c >= 0xE0 && c <= 0xEF))
4683 {
4684 ONE_MORE_BYTE (c);
4685 if (c < 0x40 || c == 0x7F || c > 0xFC)
4686 break;
4687 found = CATEGORY_MASK_SJIS;
4688 }
4689 else if (c >= 0xA0 && c < 0xE0)
4690 found = CATEGORY_MASK_SJIS;
4691 else
4692 break;
4693 }
4694 detect_info->rejected |= CATEGORY_MASK_SJIS;
4695 return 0;
4696
4697 no_more_source:
4698 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
4699 {
4700 detect_info->rejected |= CATEGORY_MASK_SJIS;
4701 return 0;
4702 }
4703 detect_info->found |= found;
4704 return 1;
4705 }
4706
4707 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
4708 Check if a text is encoded in BIG5. If it is, return
4709 CATEGORY_MASK_BIG5, else return 0. */
4710
4711 static int
4712 detect_coding_big5 (coding, detect_info)
4713 struct coding_system *coding;
4714 struct coding_detection_info *detect_info;
4715 {
4716 const unsigned char *src = coding->source, *src_base;
4717 const unsigned char *src_end = coding->source + coding->src_bytes;
4718 int multibytep = coding->src_multibyte;
4719 int consumed_chars = 0;
4720 int found = 0;
4721 int c;
4722
4723 detect_info->checked |= CATEGORY_MASK_BIG5;
4724 /* A coding system of this category is always ASCII compatible. */
4725 src += coding->head_ascii;
4726
4727 while (1)
4728 {
4729 src_base = src;
4730 ONE_MORE_BYTE (c);
4731 if (c < 0x80)
4732 continue;
4733 if (c >= 0xA1)
4734 {
4735 ONE_MORE_BYTE (c);
4736 if (c < 0x40 || (c >= 0x7F && c <= 0xA0))
4737 return 0;
4738 found = CATEGORY_MASK_BIG5;
4739 }
4740 else
4741 break;
4742 }
4743 detect_info->rejected |= CATEGORY_MASK_BIG5;
4744 return 0;
4745
4746 no_more_source:
4747 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
4748 {
4749 detect_info->rejected |= CATEGORY_MASK_BIG5;
4750 return 0;
4751 }
4752 detect_info->found |= found;
4753 return 1;
4754 }
4755
4756 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".
4757 If SJIS_P is 1, decode SJIS text, else decode BIG5 test. */
4758
4759 static void
4760 decode_coding_sjis (coding)
4761 struct coding_system *coding;
4762 {
4763 const unsigned char *src = coding->source + coding->consumed;
4764 const unsigned char *src_end = coding->source + coding->src_bytes;
4765 const unsigned char *src_base;
4766 int *charbuf = coding->charbuf + coding->charbuf_used;
4767 /* We may produce one charset annocation in one loop and one more at
4768 the end. */
4769 int *charbuf_end
4770 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 2);
4771 int consumed_chars = 0, consumed_chars_base;
4772 int multibytep = coding->src_multibyte;
4773 struct charset *charset_roman, *charset_kanji, *charset_kana;
4774 struct charset *charset_kanji2;
4775 Lisp_Object attrs, charset_list, val;
4776 int char_offset = coding->produced_char;
4777 int last_offset = char_offset;
4778 int last_id = charset_ascii;
4779 int eol_crlf =
4780 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
4781 int byte_after_cr = -1;
4782
4783 CODING_GET_INFO (coding, attrs, charset_list);
4784
4785 val = charset_list;
4786 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4787 charset_kana = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4788 charset_kanji = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4789 charset_kanji2 = NILP (val) ? NULL : CHARSET_FROM_ID (XINT (XCAR (val)));
4790
4791 while (1)
4792 {
4793 int c, c1;
4794 struct charset *charset;
4795
4796 src_base = src;
4797 consumed_chars_base = consumed_chars;
4798
4799 if (charbuf >= charbuf_end)
4800 {
4801 if (byte_after_cr >= 0)
4802 src_base--;
4803 break;
4804 }
4805
4806 if (byte_after_cr >= 0)
4807 c = byte_after_cr, byte_after_cr = -1;
4808 else
4809 ONE_MORE_BYTE (c);
4810 if (c < 0)
4811 goto invalid_code;
4812 if (c < 0x80)
4813 {
4814 if (eol_crlf && c == '\r')
4815 ONE_MORE_BYTE (byte_after_cr);
4816 charset = charset_roman;
4817 }
4818 else if (c == 0x80 || c == 0xA0)
4819 goto invalid_code;
4820 else if (c >= 0xA1 && c <= 0xDF)
4821 {
4822 /* SJIS -> JISX0201-Kana */
4823 c &= 0x7F;
4824 charset = charset_kana;
4825 }
4826 else if (c <= 0xEF)
4827 {
4828 /* SJIS -> JISX0208 */
4829 ONE_MORE_BYTE (c1);
4830 if (c1 < 0x40 || c1 == 0x7F || c1 > 0xFC)
4831 goto invalid_code;
4832 c = (c << 8) | c1;
4833 SJIS_TO_JIS (c);
4834 charset = charset_kanji;
4835 }
4836 else if (c <= 0xFC && charset_kanji2)
4837 {
4838 /* SJIS -> JISX0213-2 */
4839 ONE_MORE_BYTE (c1);
4840 if (c1 < 0x40 || c1 == 0x7F || c1 > 0xFC)
4841 goto invalid_code;
4842 c = (c << 8) | c1;
4843 SJIS_TO_JIS2 (c);
4844 charset = charset_kanji2;
4845 }
4846 else
4847 goto invalid_code;
4848 if (charset->id != charset_ascii
4849 && last_id != charset->id)
4850 {
4851 if (last_id != charset_ascii)
4852 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4853 last_id = charset->id;
4854 last_offset = char_offset;
4855 }
4856 CODING_DECODE_CHAR (coding, src, src_base, src_end, charset, c, c);
4857 *charbuf++ = c;
4858 char_offset++;
4859 continue;
4860
4861 invalid_code:
4862 src = src_base;
4863 consumed_chars = consumed_chars_base;
4864 ONE_MORE_BYTE (c);
4865 *charbuf++ = c < 0 ? -c : BYTE8_TO_CHAR (c);
4866 char_offset++;
4867 coding->errors++;
4868 }
4869
4870 no_more_source:
4871 if (last_id != charset_ascii)
4872 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4873 coding->consumed_char += consumed_chars_base;
4874 coding->consumed = src_base - coding->source;
4875 coding->charbuf_used = charbuf - coding->charbuf;
4876 }
4877
4878 static void
4879 decode_coding_big5 (coding)
4880 struct coding_system *coding;
4881 {
4882 const unsigned char *src = coding->source + coding->consumed;
4883 const unsigned char *src_end = coding->source + coding->src_bytes;
4884 const unsigned char *src_base;
4885 int *charbuf = coding->charbuf + coding->charbuf_used;
4886 /* We may produce one charset annocation in one loop and one more at
4887 the end. */
4888 int *charbuf_end
4889 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 2);
4890 int consumed_chars = 0, consumed_chars_base;
4891 int multibytep = coding->src_multibyte;
4892 struct charset *charset_roman, *charset_big5;
4893 Lisp_Object attrs, charset_list, val;
4894 int char_offset = coding->produced_char;
4895 int last_offset = char_offset;
4896 int last_id = charset_ascii;
4897 int eol_crlf =
4898 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
4899 int byte_after_cr = -1;
4900
4901 CODING_GET_INFO (coding, attrs, charset_list);
4902 val = charset_list;
4903 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4904 charset_big5 = CHARSET_FROM_ID (XINT (XCAR (val)));
4905
4906 while (1)
4907 {
4908 int c, c1;
4909 struct charset *charset;
4910
4911 src_base = src;
4912 consumed_chars_base = consumed_chars;
4913
4914 if (charbuf >= charbuf_end)
4915 {
4916 if (byte_after_cr >= 0)
4917 src_base--;
4918 break;
4919 }
4920
4921 if (byte_after_cr >= 0)
4922 c = byte_after_cr, byte_after_cr = -1;
4923 else
4924 ONE_MORE_BYTE (c);
4925
4926 if (c < 0)
4927 goto invalid_code;
4928 if (c < 0x80)
4929 {
4930 if (eol_crlf && c == '\r')
4931 ONE_MORE_BYTE (byte_after_cr);
4932 charset = charset_roman;
4933 }
4934 else
4935 {
4936 /* BIG5 -> Big5 */
4937 if (c < 0xA1 || c > 0xFE)
4938 goto invalid_code;
4939 ONE_MORE_BYTE (c1);
4940 if (c1 < 0x40 || (c1 > 0x7E && c1 < 0xA1) || c1 > 0xFE)
4941 goto invalid_code;
4942 c = c << 8 | c1;
4943 charset = charset_big5;
4944 }
4945 if (charset->id != charset_ascii
4946 && last_id != charset->id)
4947 {
4948 if (last_id != charset_ascii)
4949 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4950 last_id = charset->id;
4951 last_offset = char_offset;
4952 }
4953 CODING_DECODE_CHAR (coding, src, src_base, src_end, charset, c, c);
4954 *charbuf++ = c;
4955 char_offset++;
4956 continue;
4957
4958 invalid_code:
4959 src = src_base;
4960 consumed_chars = consumed_chars_base;
4961 ONE_MORE_BYTE (c);
4962 *charbuf++ = c < 0 ? -c : BYTE8_TO_CHAR (c);
4963 char_offset++;
4964 coding->errors++;
4965 }
4966
4967 no_more_source:
4968 if (last_id != charset_ascii)
4969 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4970 coding->consumed_char += consumed_chars_base;
4971 coding->consumed = src_base - coding->source;
4972 coding->charbuf_used = charbuf - coding->charbuf;
4973 }
4974
4975 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions".
4976 This function can encode charsets `ascii', `katakana-jisx0201',
4977 `japanese-jisx0208', `chinese-big5-1', and `chinese-big5-2'. We
4978 are sure that all these charsets are registered as official charset
4979 (i.e. do not have extended leading-codes). Characters of other
4980 charsets are produced without any encoding. If SJIS_P is 1, encode
4981 SJIS text, else encode BIG5 text. */
4982
4983 static int
4984 encode_coding_sjis (coding)
4985 struct coding_system *coding;
4986 {
4987 int multibytep = coding->dst_multibyte;
4988 int *charbuf = coding->charbuf;
4989 int *charbuf_end = charbuf + coding->charbuf_used;
4990 unsigned char *dst = coding->destination + coding->produced;
4991 unsigned char *dst_end = coding->destination + coding->dst_bytes;
4992 int safe_room = 4;
4993 int produced_chars = 0;
4994 Lisp_Object attrs, charset_list, val;
4995 int ascii_compatible;
4996 struct charset *charset_roman, *charset_kanji, *charset_kana;
4997 struct charset *charset_kanji2;
4998 int c;
4999
5000 CODING_GET_INFO (coding, attrs, charset_list);
5001 val = charset_list;
5002 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
5003 charset_kana = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
5004 charset_kanji = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
5005 charset_kanji2 = NILP (val) ? NULL : CHARSET_FROM_ID (XINT (XCAR (val)));
5006
5007 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
5008
5009 while (charbuf < charbuf_end)
5010 {
5011 ASSURE_DESTINATION (safe_room);
5012 c = *charbuf++;
5013 /* Now encode the character C. */
5014 if (ASCII_CHAR_P (c) && ascii_compatible)
5015 EMIT_ONE_ASCII_BYTE (c);
5016 else if (CHAR_BYTE8_P (c))
5017 {
5018 c = CHAR_TO_BYTE8 (c);
5019 EMIT_ONE_BYTE (c);
5020 }
5021 else
5022 {
5023 unsigned code;
5024 struct charset *charset = char_charset (c, charset_list, &code);
5025
5026 if (!charset)
5027 {
5028 if (coding->mode & CODING_MODE_SAFE_ENCODING)
5029 {
5030 code = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
5031 charset = CHARSET_FROM_ID (charset_ascii);
5032 }
5033 else
5034 {
5035 c = coding->default_char;
5036 charset = char_charset (c, charset_list, &code);
5037 }
5038 }
5039 if (code == CHARSET_INVALID_CODE (charset))
5040 abort ();
5041 if (charset == charset_kanji)
5042 {
5043 int c1, c2;
5044 JIS_TO_SJIS (code);
5045 c1 = code >> 8, c2 = code & 0xFF;
5046 EMIT_TWO_BYTES (c1, c2);
5047 }
5048 else if (charset == charset_kana)
5049 EMIT_ONE_BYTE (code | 0x80);
5050 else if (charset_kanji2 && charset == charset_kanji2)
5051 {
5052 int c1, c2;
5053
5054 c1 = code >> 8;
5055 if (c1 == 0x21 || (c1 >= 0x23 && c1 < 0x25)
5056 || (c1 >= 0x2C && c1 <= 0x2F) || c1 >= 0x6E)
5057 {
5058 JIS_TO_SJIS2 (code);
5059 c1 = code >> 8, c2 = code & 0xFF;
5060 EMIT_TWO_BYTES (c1, c2);
5061 }
5062 else
5063 EMIT_ONE_ASCII_BYTE (code & 0x7F);
5064 }
5065 else
5066 EMIT_ONE_ASCII_BYTE (code & 0x7F);
5067 }
5068 }
5069 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5070 coding->produced_char += produced_chars;
5071 coding->produced = dst - coding->destination;
5072 return 0;
5073 }
5074
5075 static int
5076 encode_coding_big5 (coding)
5077 struct coding_system *coding;
5078 {
5079 int multibytep = coding->dst_multibyte;
5080 int *charbuf = coding->charbuf;
5081 int *charbuf_end = charbuf + coding->charbuf_used;
5082 unsigned char *dst = coding->destination + coding->produced;
5083 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5084 int safe_room = 4;
5085 int produced_chars = 0;
5086 Lisp_Object attrs, charset_list, val;
5087 int ascii_compatible;
5088 struct charset *charset_roman, *charset_big5;
5089 int c;
5090
5091 CODING_GET_INFO (coding, attrs, charset_list);
5092 val = charset_list;
5093 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
5094 charset_big5 = CHARSET_FROM_ID (XINT (XCAR (val)));
5095 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
5096
5097 while (charbuf < charbuf_end)
5098 {
5099 ASSURE_DESTINATION (safe_room);
5100 c = *charbuf++;
5101 /* Now encode the character C. */
5102 if (ASCII_CHAR_P (c) && ascii_compatible)
5103 EMIT_ONE_ASCII_BYTE (c);
5104 else if (CHAR_BYTE8_P (c))
5105 {
5106 c = CHAR_TO_BYTE8 (c);
5107 EMIT_ONE_BYTE (c);
5108 }
5109 else
5110 {
5111 unsigned code;
5112 struct charset *charset = char_charset (c, charset_list, &code);
5113
5114 if (! charset)
5115 {
5116 if (coding->mode & CODING_MODE_SAFE_ENCODING)
5117 {
5118 code = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
5119 charset = CHARSET_FROM_ID (charset_ascii);
5120 }
5121 else
5122 {
5123 c = coding->default_char;
5124 charset = char_charset (c, charset_list, &code);
5125 }
5126 }
5127 if (code == CHARSET_INVALID_CODE (charset))
5128 abort ();
5129 if (charset == charset_big5)
5130 {
5131 int c1, c2;
5132
5133 c1 = code >> 8, c2 = code & 0xFF;
5134 EMIT_TWO_BYTES (c1, c2);
5135 }
5136 else
5137 EMIT_ONE_ASCII_BYTE (code & 0x7F);
5138 }
5139 }
5140 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5141 coding->produced_char += produced_chars;
5142 coding->produced = dst - coding->destination;
5143 return 0;
5144 }
5145
5146 \f
5147 /*** 10. CCL handlers ***/
5148
5149 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
5150 Check if a text is encoded in a coding system of which
5151 encoder/decoder are written in CCL program. If it is, return
5152 CATEGORY_MASK_CCL, else return 0. */
5153
5154 static int
5155 detect_coding_ccl (coding, detect_info)
5156 struct coding_system *coding;
5157 struct coding_detection_info *detect_info;
5158 {
5159 const unsigned char *src = coding->source, *src_base;
5160 const unsigned char *src_end = coding->source + coding->src_bytes;
5161 int multibytep = coding->src_multibyte;
5162 int consumed_chars = 0;
5163 int found = 0;
5164 unsigned char *valids;
5165 int head_ascii = coding->head_ascii;
5166 Lisp_Object attrs;
5167
5168 detect_info->checked |= CATEGORY_MASK_CCL;
5169
5170 coding = &coding_categories[coding_category_ccl];
5171 valids = CODING_CCL_VALIDS (coding);
5172 attrs = CODING_ID_ATTRS (coding->id);
5173 if (! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
5174 src += head_ascii;
5175
5176 while (1)
5177 {
5178 int c;
5179
5180 src_base = src;
5181 ONE_MORE_BYTE (c);
5182 if (c < 0 || ! valids[c])
5183 break;
5184 if ((valids[c] > 1))
5185 found = CATEGORY_MASK_CCL;
5186 }
5187 detect_info->rejected |= CATEGORY_MASK_CCL;
5188 return 0;
5189
5190 no_more_source:
5191 detect_info->found |= found;
5192 return 1;
5193 }
5194
5195 static void
5196 decode_coding_ccl (coding)
5197 struct coding_system *coding;
5198 {
5199 const unsigned char *src = coding->source + coding->consumed;
5200 const unsigned char *src_end = coding->source + coding->src_bytes;
5201 int *charbuf = coding->charbuf + coding->charbuf_used;
5202 int *charbuf_end = coding->charbuf + coding->charbuf_size;
5203 int consumed_chars = 0;
5204 int multibytep = coding->src_multibyte;
5205 struct ccl_program ccl;
5206 int source_charbuf[1024];
5207 int source_byteidx[1024];
5208 Lisp_Object attrs, charset_list;
5209
5210 CODING_GET_INFO (coding, attrs, charset_list);
5211 setup_ccl_program (&ccl, CODING_CCL_DECODER (coding));
5212
5213 while (src < src_end)
5214 {
5215 const unsigned char *p = src;
5216 int *source, *source_end;
5217 int i = 0;
5218
5219 if (multibytep)
5220 while (i < 1024 && p < src_end)
5221 {
5222 source_byteidx[i] = p - src;
5223 source_charbuf[i++] = STRING_CHAR_ADVANCE (p);
5224 }
5225 else
5226 while (i < 1024 && p < src_end)
5227 source_charbuf[i++] = *p++;
5228
5229 if (p == src_end && coding->mode & CODING_MODE_LAST_BLOCK)
5230 ccl.last_block = 1;
5231
5232 source = source_charbuf;
5233 source_end = source + i;
5234 while (source < source_end)
5235 {
5236 ccl_driver (&ccl, source, charbuf,
5237 source_end - source, charbuf_end - charbuf,
5238 charset_list);
5239 source += ccl.consumed;
5240 charbuf += ccl.produced;
5241 if (ccl.status != CCL_STAT_SUSPEND_BY_DST)
5242 break;
5243 }
5244 if (source < source_end)
5245 src += source_byteidx[source - source_charbuf];
5246 else
5247 src = p;
5248 consumed_chars += source - source_charbuf;
5249
5250 if (ccl.status != CCL_STAT_SUSPEND_BY_SRC
5251 && ccl.status != CODING_RESULT_INSUFFICIENT_SRC)
5252 break;
5253 }
5254
5255 switch (ccl.status)
5256 {
5257 case CCL_STAT_SUSPEND_BY_SRC:
5258 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_SRC);
5259 break;
5260 case CCL_STAT_SUSPEND_BY_DST:
5261 break;
5262 case CCL_STAT_QUIT:
5263 case CCL_STAT_INVALID_CMD:
5264 record_conversion_result (coding, CODING_RESULT_INTERRUPT);
5265 break;
5266 default:
5267 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5268 break;
5269 }
5270 coding->consumed_char += consumed_chars;
5271 coding->consumed = src - coding->source;
5272 coding->charbuf_used = charbuf - coding->charbuf;
5273 }
5274
5275 static int
5276 encode_coding_ccl (coding)
5277 struct coding_system *coding;
5278 {
5279 struct ccl_program ccl;
5280 int multibytep = coding->dst_multibyte;
5281 int *charbuf = coding->charbuf;
5282 int *charbuf_end = charbuf + coding->charbuf_used;
5283 unsigned char *dst = coding->destination + coding->produced;
5284 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5285 int destination_charbuf[1024];
5286 int i, produced_chars = 0;
5287 Lisp_Object attrs, charset_list;
5288
5289 CODING_GET_INFO (coding, attrs, charset_list);
5290 setup_ccl_program (&ccl, CODING_CCL_ENCODER (coding));
5291
5292 ccl.last_block = coding->mode & CODING_MODE_LAST_BLOCK;
5293 ccl.dst_multibyte = coding->dst_multibyte;
5294
5295 while (charbuf < charbuf_end)
5296 {
5297 ccl_driver (&ccl, charbuf, destination_charbuf,
5298 charbuf_end - charbuf, 1024, charset_list);
5299 if (multibytep)
5300 {
5301 ASSURE_DESTINATION (ccl.produced * 2);
5302 for (i = 0; i < ccl.produced; i++)
5303 EMIT_ONE_BYTE (destination_charbuf[i] & 0xFF);
5304 }
5305 else
5306 {
5307 ASSURE_DESTINATION (ccl.produced);
5308 for (i = 0; i < ccl.produced; i++)
5309 *dst++ = destination_charbuf[i] & 0xFF;
5310 produced_chars += ccl.produced;
5311 }
5312 charbuf += ccl.consumed;
5313 if (ccl.status == CCL_STAT_QUIT
5314 || ccl.status == CCL_STAT_INVALID_CMD)
5315 break;
5316 }
5317
5318 switch (ccl.status)
5319 {
5320 case CCL_STAT_SUSPEND_BY_SRC:
5321 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_SRC);
5322 break;
5323 case CCL_STAT_SUSPEND_BY_DST:
5324 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_DST);
5325 break;
5326 case CCL_STAT_QUIT:
5327 case CCL_STAT_INVALID_CMD:
5328 record_conversion_result (coding, CODING_RESULT_INTERRUPT);
5329 break;
5330 default:
5331 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5332 break;
5333 }
5334
5335 coding->produced_char += produced_chars;
5336 coding->produced = dst - coding->destination;
5337 return 0;
5338 }
5339
5340
5341 \f
5342 /*** 10, 11. no-conversion handlers ***/
5343
5344 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
5345
5346 static void
5347 decode_coding_raw_text (coding)
5348 struct coding_system *coding;
5349 {
5350 int eol_crlf =
5351 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
5352
5353 coding->chars_at_source = 1;
5354 coding->consumed_char = coding->src_chars;
5355 coding->consumed = coding->src_bytes;
5356 if (eol_crlf && coding->source[coding->src_bytes - 1] == '\r')
5357 {
5358 coding->consumed_char--;
5359 coding->consumed--;
5360 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_SRC);
5361 }
5362 else
5363 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5364 }
5365
5366 static int
5367 encode_coding_raw_text (coding)
5368 struct coding_system *coding;
5369 {
5370 int multibytep = coding->dst_multibyte;
5371 int *charbuf = coding->charbuf;
5372 int *charbuf_end = coding->charbuf + coding->charbuf_used;
5373 unsigned char *dst = coding->destination + coding->produced;
5374 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5375 int produced_chars = 0;
5376 int c;
5377
5378 if (multibytep)
5379 {
5380 int safe_room = MAX_MULTIBYTE_LENGTH * 2;
5381
5382 if (coding->src_multibyte)
5383 while (charbuf < charbuf_end)
5384 {
5385 ASSURE_DESTINATION (safe_room);
5386 c = *charbuf++;
5387 if (ASCII_CHAR_P (c))
5388 EMIT_ONE_ASCII_BYTE (c);
5389 else if (CHAR_BYTE8_P (c))
5390 {
5391 c = CHAR_TO_BYTE8 (c);
5392 EMIT_ONE_BYTE (c);
5393 }
5394 else
5395 {
5396 unsigned char str[MAX_MULTIBYTE_LENGTH], *p0 = str, *p1 = str;
5397
5398 CHAR_STRING_ADVANCE (c, p1);
5399 while (p0 < p1)
5400 {
5401 EMIT_ONE_BYTE (*p0);
5402 p0++;
5403 }
5404 }
5405 }
5406 else
5407 while (charbuf < charbuf_end)
5408 {
5409 ASSURE_DESTINATION (safe_room);
5410 c = *charbuf++;
5411 EMIT_ONE_BYTE (c);
5412 }
5413 }
5414 else
5415 {
5416 if (coding->src_multibyte)
5417 {
5418 int safe_room = MAX_MULTIBYTE_LENGTH;
5419
5420 while (charbuf < charbuf_end)
5421 {
5422 ASSURE_DESTINATION (safe_room);
5423 c = *charbuf++;
5424 if (ASCII_CHAR_P (c))
5425 *dst++ = c;
5426 else if (CHAR_BYTE8_P (c))
5427 *dst++ = CHAR_TO_BYTE8 (c);
5428 else
5429 CHAR_STRING_ADVANCE (c, dst);
5430 }
5431 }
5432 else
5433 {
5434 ASSURE_DESTINATION (charbuf_end - charbuf);
5435 while (charbuf < charbuf_end && dst < dst_end)
5436 *dst++ = *charbuf++;
5437 }
5438 produced_chars = dst - (coding->destination + coding->produced);
5439 }
5440 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5441 coding->produced_char += produced_chars;
5442 coding->produced = dst - coding->destination;
5443 return 0;
5444 }
5445
5446 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
5447 Check if a text is encoded in a charset-based coding system. If it
5448 is, return 1, else return 0. */
5449
5450 static int
5451 detect_coding_charset (coding, detect_info)
5452 struct coding_system *coding;
5453 struct coding_detection_info *detect_info;
5454 {
5455 const unsigned char *src = coding->source, *src_base;
5456 const unsigned char *src_end = coding->source + coding->src_bytes;
5457 int multibytep = coding->src_multibyte;
5458 int consumed_chars = 0;
5459 Lisp_Object attrs, valids, name;
5460 int found = 0;
5461 int head_ascii = coding->head_ascii;
5462 int check_latin_extra = 0;
5463
5464 detect_info->checked |= CATEGORY_MASK_CHARSET;
5465
5466 coding = &coding_categories[coding_category_charset];
5467 attrs = CODING_ID_ATTRS (coding->id);
5468 valids = AREF (attrs, coding_attr_charset_valids);
5469 name = CODING_ID_NAME (coding->id);
5470 if (strncmp ((char *) SDATA (SYMBOL_NAME (name)),
5471 "iso-8859-", sizeof ("iso-8859-") - 1) == 0
5472 || strncmp ((char *) SDATA (SYMBOL_NAME (name)),
5473 "iso-latin-", sizeof ("iso-latin-") - 1) == 0)
5474 check_latin_extra = 1;
5475
5476 if (! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
5477 src += head_ascii;
5478
5479 while (1)
5480 {
5481 int c;
5482 Lisp_Object val;
5483 struct charset *charset;
5484 int dim, idx;
5485
5486 src_base = src;
5487 ONE_MORE_BYTE (c);
5488 if (c < 0)
5489 continue;
5490 val = AREF (valids, c);
5491 if (NILP (val))
5492 break;
5493 if (c >= 0x80)
5494 {
5495 if (c < 0xA0
5496 && check_latin_extra
5497 && (!VECTORP (Vlatin_extra_code_table)
5498 || NILP (XVECTOR (Vlatin_extra_code_table)->contents[c])))
5499 break;
5500 found = CATEGORY_MASK_CHARSET;
5501 }
5502 if (INTEGERP (val))
5503 {
5504 charset = CHARSET_FROM_ID (XFASTINT (val));
5505 dim = CHARSET_DIMENSION (charset);
5506 for (idx = 1; idx < dim; idx++)
5507 {
5508 if (src == src_end)
5509 goto too_short;
5510 ONE_MORE_BYTE (c);
5511 if (c < charset->code_space[(dim - 1 - idx) * 2]
5512 || c > charset->code_space[(dim - 1 - idx) * 2 + 1])
5513 break;
5514 }
5515 if (idx < dim)
5516 break;
5517 }
5518 else
5519 {
5520 idx = 1;
5521 for (; CONSP (val); val = XCDR (val))
5522 {
5523 charset = CHARSET_FROM_ID (XFASTINT (XCAR (val)));
5524 dim = CHARSET_DIMENSION (charset);
5525 while (idx < dim)
5526 {
5527 if (src == src_end)
5528 goto too_short;
5529 ONE_MORE_BYTE (c);
5530 if (c < charset->code_space[(dim - 1 - idx) * 4]
5531 || c > charset->code_space[(dim - 1 - idx) * 4 + 1])
5532 break;
5533 idx++;
5534 }
5535 if (idx == dim)
5536 {
5537 val = Qnil;
5538 break;
5539 }
5540 }
5541 if (CONSP (val))
5542 break;
5543 }
5544 }
5545 too_short:
5546 detect_info->rejected |= CATEGORY_MASK_CHARSET;
5547 return 0;
5548
5549 no_more_source:
5550 detect_info->found |= found;
5551 return 1;
5552 }
5553
5554 static void
5555 decode_coding_charset (coding)
5556 struct coding_system *coding;
5557 {
5558 const unsigned char *src = coding->source + coding->consumed;
5559 const unsigned char *src_end = coding->source + coding->src_bytes;
5560 const unsigned char *src_base;
5561 int *charbuf = coding->charbuf + coding->charbuf_used;
5562 /* We may produce one charset annocation in one loop and one more at
5563 the end. */
5564 int *charbuf_end
5565 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 2);
5566 int consumed_chars = 0, consumed_chars_base;
5567 int multibytep = coding->src_multibyte;
5568 Lisp_Object attrs, charset_list, valids;
5569 int char_offset = coding->produced_char;
5570 int last_offset = char_offset;
5571 int last_id = charset_ascii;
5572 int eol_crlf =
5573 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
5574 int byte_after_cr = -1;
5575
5576 CODING_GET_INFO (coding, attrs, charset_list);
5577 valids = AREF (attrs, coding_attr_charset_valids);
5578
5579 while (1)
5580 {
5581 int c;
5582 Lisp_Object val;
5583 struct charset *charset;
5584 int dim;
5585 int len = 1;
5586 unsigned code;
5587
5588 src_base = src;
5589 consumed_chars_base = consumed_chars;
5590
5591 if (charbuf >= charbuf_end)
5592 {
5593 if (byte_after_cr >= 0)
5594 src_base--;
5595 break;
5596 }
5597
5598 if (byte_after_cr >= 0)
5599 {
5600 c = byte_after_cr;
5601 byte_after_cr = -1;
5602 }
5603 else
5604 {
5605 ONE_MORE_BYTE (c);
5606 if (eol_crlf && c == '\r')
5607 ONE_MORE_BYTE (byte_after_cr);
5608 }
5609 if (c < 0)
5610 goto invalid_code;
5611 code = c;
5612
5613 val = AREF (valids, c);
5614 if (! INTEGERP (val) && ! CONSP (val))
5615 goto invalid_code;
5616 if (INTEGERP (val))
5617 {
5618 charset = CHARSET_FROM_ID (XFASTINT (val));
5619 dim = CHARSET_DIMENSION (charset);
5620 while (len < dim)
5621 {
5622 ONE_MORE_BYTE (c);
5623 code = (code << 8) | c;
5624 len++;
5625 }
5626 CODING_DECODE_CHAR (coding, src, src_base, src_end,
5627 charset, code, c);
5628 }
5629 else
5630 {
5631 /* VAL is a list of charset IDs. It is assured that the
5632 list is sorted by charset dimensions (smaller one
5633 comes first). */
5634 while (CONSP (val))
5635 {
5636 charset = CHARSET_FROM_ID (XFASTINT (XCAR (val)));
5637 dim = CHARSET_DIMENSION (charset);
5638 while (len < dim)
5639 {
5640 ONE_MORE_BYTE (c);
5641 code = (code << 8) | c;
5642 len++;
5643 }
5644 CODING_DECODE_CHAR (coding, src, src_base,
5645 src_end, charset, code, c);
5646 if (c >= 0)
5647 break;
5648 val = XCDR (val);
5649 }
5650 }
5651 if (c < 0)
5652 goto invalid_code;
5653 if (charset->id != charset_ascii
5654 && last_id != charset->id)
5655 {
5656 if (last_id != charset_ascii)
5657 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
5658 last_id = charset->id;
5659 last_offset = char_offset;
5660 }
5661
5662 *charbuf++ = c;
5663 char_offset++;
5664 continue;
5665
5666 invalid_code:
5667 src = src_base;
5668 consumed_chars = consumed_chars_base;
5669 ONE_MORE_BYTE (c);
5670 *charbuf++ = c < 0 ? -c : ASCII_BYTE_P (c) ? c : BYTE8_TO_CHAR (c);
5671 char_offset++;
5672 coding->errors++;
5673 }
5674
5675 no_more_source:
5676 if (last_id != charset_ascii)
5677 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
5678 coding->consumed_char += consumed_chars_base;
5679 coding->consumed = src_base - coding->source;
5680 coding->charbuf_used = charbuf - coding->charbuf;
5681 }
5682
5683 static int
5684 encode_coding_charset (coding)
5685 struct coding_system *coding;
5686 {
5687 int multibytep = coding->dst_multibyte;
5688 int *charbuf = coding->charbuf;
5689 int *charbuf_end = charbuf + coding->charbuf_used;
5690 unsigned char *dst = coding->destination + coding->produced;
5691 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5692 int safe_room = MAX_MULTIBYTE_LENGTH;
5693 int produced_chars = 0;
5694 Lisp_Object attrs, charset_list;
5695 int ascii_compatible;
5696 int c;
5697
5698 CODING_GET_INFO (coding, attrs, charset_list);
5699 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
5700
5701 while (charbuf < charbuf_end)
5702 {
5703 struct charset *charset;
5704 unsigned code;
5705
5706 ASSURE_DESTINATION (safe_room);
5707 c = *charbuf++;
5708 if (ascii_compatible && ASCII_CHAR_P (c))
5709 EMIT_ONE_ASCII_BYTE (c);
5710 else if (CHAR_BYTE8_P (c))
5711 {
5712 c = CHAR_TO_BYTE8 (c);
5713 EMIT_ONE_BYTE (c);
5714 }
5715 else
5716 {
5717 charset = char_charset (c, charset_list, &code);
5718 if (charset)
5719 {
5720 if (CHARSET_DIMENSION (charset) == 1)
5721 EMIT_ONE_BYTE (code);
5722 else if (CHARSET_DIMENSION (charset) == 2)
5723 EMIT_TWO_BYTES (code >> 8, code & 0xFF);
5724 else if (CHARSET_DIMENSION (charset) == 3)
5725 EMIT_THREE_BYTES (code >> 16, (code >> 8) & 0xFF, code & 0xFF);
5726 else
5727 EMIT_FOUR_BYTES (code >> 24, (code >> 16) & 0xFF,
5728 (code >> 8) & 0xFF, code & 0xFF);
5729 }
5730 else
5731 {
5732 if (coding->mode & CODING_MODE_SAFE_ENCODING)
5733 c = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
5734 else
5735 c = coding->default_char;
5736 EMIT_ONE_BYTE (c);
5737 }
5738 }
5739 }
5740
5741 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5742 coding->produced_char += produced_chars;
5743 coding->produced = dst - coding->destination;
5744 return 0;
5745 }
5746
5747 \f
5748 /*** 7. C library functions ***/
5749
5750 /* Setup coding context CODING from information about CODING_SYSTEM.
5751 If CODING_SYSTEM is nil, `no-conversion' is assumed. If
5752 CODING_SYSTEM is invalid, signal an error. */
5753
5754 void
5755 setup_coding_system (coding_system, coding)
5756 Lisp_Object coding_system;
5757 struct coding_system *coding;
5758 {
5759 Lisp_Object attrs;
5760 Lisp_Object eol_type;
5761 Lisp_Object coding_type;
5762 Lisp_Object val;
5763
5764 if (NILP (coding_system))
5765 coding_system = Qundecided;
5766
5767 CHECK_CODING_SYSTEM_GET_ID (coding_system, coding->id);
5768
5769 attrs = CODING_ID_ATTRS (coding->id);
5770 eol_type = inhibit_eol_conversion ? Qunix : CODING_ID_EOL_TYPE (coding->id);
5771
5772 coding->mode = 0;
5773 coding->head_ascii = -1;
5774 if (VECTORP (eol_type))
5775 coding->common_flags = (CODING_REQUIRE_DECODING_MASK
5776 | CODING_REQUIRE_DETECTION_MASK);
5777 else if (! EQ (eol_type, Qunix))
5778 coding->common_flags = (CODING_REQUIRE_DECODING_MASK
5779 | CODING_REQUIRE_ENCODING_MASK);
5780 else
5781 coding->common_flags = 0;
5782 if (! NILP (CODING_ATTR_POST_READ (attrs)))
5783 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
5784 if (! NILP (CODING_ATTR_PRE_WRITE (attrs)))
5785 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
5786 if (! NILP (CODING_ATTR_FOR_UNIBYTE (attrs)))
5787 coding->common_flags |= CODING_FOR_UNIBYTE_MASK;
5788
5789 val = CODING_ATTR_SAFE_CHARSETS (attrs);
5790 coding->max_charset_id = SCHARS (val) - 1;
5791 coding->safe_charsets = SDATA (val);
5792 coding->default_char = XINT (CODING_ATTR_DEFAULT_CHAR (attrs));
5793
5794 coding_type = CODING_ATTR_TYPE (attrs);
5795 if (EQ (coding_type, Qundecided))
5796 {
5797 coding->detector = NULL;
5798 coding->decoder = decode_coding_raw_text;
5799 coding->encoder = encode_coding_raw_text;
5800 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
5801 }
5802 else if (EQ (coding_type, Qiso_2022))
5803 {
5804 int i;
5805 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
5806
5807 /* Invoke graphic register 0 to plane 0. */
5808 CODING_ISO_INVOCATION (coding, 0) = 0;
5809 /* Invoke graphic register 1 to plane 1 if we can use 8-bit. */
5810 CODING_ISO_INVOCATION (coding, 1)
5811 = (flags & CODING_ISO_FLAG_SEVEN_BITS ? -1 : 1);
5812 /* Setup the initial status of designation. */
5813 for (i = 0; i < 4; i++)
5814 CODING_ISO_DESIGNATION (coding, i) = CODING_ISO_INITIAL (coding, i);
5815 /* Not single shifting initially. */
5816 CODING_ISO_SINGLE_SHIFTING (coding) = 0;
5817 /* Beginning of buffer should also be regarded as bol. */
5818 CODING_ISO_BOL (coding) = 1;
5819 coding->detector = detect_coding_iso_2022;
5820 coding->decoder = decode_coding_iso_2022;
5821 coding->encoder = encode_coding_iso_2022;
5822 if (flags & CODING_ISO_FLAG_SAFE)
5823 coding->mode |= CODING_MODE_SAFE_ENCODING;
5824 coding->common_flags
5825 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK
5826 | CODING_REQUIRE_FLUSHING_MASK);
5827 if (flags & CODING_ISO_FLAG_COMPOSITION)
5828 coding->common_flags |= CODING_ANNOTATE_COMPOSITION_MASK;
5829 if (flags & CODING_ISO_FLAG_DESIGNATION)
5830 coding->common_flags |= CODING_ANNOTATE_CHARSET_MASK;
5831 if (flags & CODING_ISO_FLAG_FULL_SUPPORT)
5832 {
5833 setup_iso_safe_charsets (attrs);
5834 val = CODING_ATTR_SAFE_CHARSETS (attrs);
5835 coding->max_charset_id = SCHARS (val) - 1;
5836 coding->safe_charsets = SDATA (val);
5837 }
5838 CODING_ISO_FLAGS (coding) = flags;
5839 CODING_ISO_CMP_STATUS (coding)->state = COMPOSING_NO;
5840 CODING_ISO_CMP_STATUS (coding)->method = COMPOSITION_NO;
5841 CODING_ISO_EXTSEGMENT_LEN (coding) = 0;
5842 CODING_ISO_EMBEDDED_UTF_8 (coding) = 0;
5843 }
5844 else if (EQ (coding_type, Qcharset))
5845 {
5846 coding->detector = detect_coding_charset;
5847 coding->decoder = decode_coding_charset;
5848 coding->encoder = encode_coding_charset;
5849 coding->common_flags
5850 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5851 }
5852 else if (EQ (coding_type, Qutf_8))
5853 {
5854 val = AREF (attrs, coding_attr_utf_bom);
5855 CODING_UTF_8_BOM (coding) = (CONSP (val) ? utf_detect_bom
5856 : EQ (val, Qt) ? utf_with_bom
5857 : utf_without_bom);
5858 coding->detector = detect_coding_utf_8;
5859 coding->decoder = decode_coding_utf_8;
5860 coding->encoder = encode_coding_utf_8;
5861 coding->common_flags
5862 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5863 if (CODING_UTF_8_BOM (coding) == utf_detect_bom)
5864 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
5865 }
5866 else if (EQ (coding_type, Qutf_16))
5867 {
5868 val = AREF (attrs, coding_attr_utf_bom);
5869 CODING_UTF_16_BOM (coding) = (CONSP (val) ? utf_detect_bom
5870 : EQ (val, Qt) ? utf_with_bom
5871 : utf_without_bom);
5872 val = AREF (attrs, coding_attr_utf_16_endian);
5873 CODING_UTF_16_ENDIAN (coding) = (EQ (val, Qbig) ? utf_16_big_endian
5874 : utf_16_little_endian);
5875 CODING_UTF_16_SURROGATE (coding) = 0;
5876 coding->detector = detect_coding_utf_16;
5877 coding->decoder = decode_coding_utf_16;
5878 coding->encoder = encode_coding_utf_16;
5879 coding->common_flags
5880 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5881 if (CODING_UTF_16_BOM (coding) == utf_detect_bom)
5882 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
5883 }
5884 else if (EQ (coding_type, Qccl))
5885 {
5886 coding->detector = detect_coding_ccl;
5887 coding->decoder = decode_coding_ccl;
5888 coding->encoder = encode_coding_ccl;
5889 coding->common_flags
5890 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK
5891 | CODING_REQUIRE_FLUSHING_MASK);
5892 }
5893 else if (EQ (coding_type, Qemacs_mule))
5894 {
5895 coding->detector = detect_coding_emacs_mule;
5896 coding->decoder = decode_coding_emacs_mule;
5897 coding->encoder = encode_coding_emacs_mule;
5898 coding->common_flags
5899 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5900 coding->spec.emacs_mule.full_support = 1;
5901 if (! NILP (AREF (attrs, coding_attr_emacs_mule_full))
5902 && ! EQ (CODING_ATTR_CHARSET_LIST (attrs), Vemacs_mule_charset_list))
5903 {
5904 Lisp_Object tail, safe_charsets;
5905 int max_charset_id = 0;
5906
5907 for (tail = Vemacs_mule_charset_list; CONSP (tail);
5908 tail = XCDR (tail))
5909 if (max_charset_id < XFASTINT (XCAR (tail)))
5910 max_charset_id = XFASTINT (XCAR (tail));
5911 safe_charsets = make_uninit_string (max_charset_id + 1);
5912 memset (SDATA (safe_charsets), 255, max_charset_id + 1);
5913 for (tail = Vemacs_mule_charset_list; CONSP (tail);
5914 tail = XCDR (tail))
5915 SSET (safe_charsets, XFASTINT (XCAR (tail)), 0);
5916 coding->max_charset_id = max_charset_id;
5917 coding->safe_charsets = SDATA (safe_charsets);
5918 coding->spec.emacs_mule.full_support = 1;
5919 }
5920 coding->spec.emacs_mule.cmp_status.state = COMPOSING_NO;
5921 coding->spec.emacs_mule.cmp_status.method = COMPOSITION_NO;
5922 }
5923 else if (EQ (coding_type, Qshift_jis))
5924 {
5925 coding->detector = detect_coding_sjis;
5926 coding->decoder = decode_coding_sjis;
5927 coding->encoder = encode_coding_sjis;
5928 coding->common_flags
5929 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5930 }
5931 else if (EQ (coding_type, Qbig5))
5932 {
5933 coding->detector = detect_coding_big5;
5934 coding->decoder = decode_coding_big5;
5935 coding->encoder = encode_coding_big5;
5936 coding->common_flags
5937 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5938 }
5939 else /* EQ (coding_type, Qraw_text) */
5940 {
5941 coding->detector = NULL;
5942 coding->decoder = decode_coding_raw_text;
5943 coding->encoder = encode_coding_raw_text;
5944 if (! EQ (eol_type, Qunix))
5945 {
5946 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
5947 if (! VECTORP (eol_type))
5948 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
5949 }
5950
5951 }
5952
5953 return;
5954 }
5955
5956 /* Return a list of charsets supported by CODING. */
5957
5958 Lisp_Object
5959 coding_charset_list (coding)
5960 struct coding_system *coding;
5961 {
5962 Lisp_Object attrs, charset_list;
5963
5964 CODING_GET_INFO (coding, attrs, charset_list);
5965 if (EQ (CODING_ATTR_TYPE (attrs), Qiso_2022))
5966 {
5967 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
5968
5969 if (flags & CODING_ISO_FLAG_FULL_SUPPORT)
5970 charset_list = Viso_2022_charset_list;
5971 }
5972 else if (EQ (CODING_ATTR_TYPE (attrs), Qemacs_mule))
5973 {
5974 charset_list = Vemacs_mule_charset_list;
5975 }
5976 return charset_list;
5977 }
5978
5979
5980 /* Return a list of charsets supported by CODING-SYSTEM. */
5981
5982 Lisp_Object
5983 coding_system_charset_list (coding_system)
5984 Lisp_Object coding_system;
5985 {
5986 int id;
5987 Lisp_Object attrs, charset_list;
5988
5989 CHECK_CODING_SYSTEM_GET_ID (coding_system, id);
5990 attrs = CODING_ID_ATTRS (id);
5991
5992 if (EQ (CODING_ATTR_TYPE (attrs), Qiso_2022))
5993 {
5994 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
5995
5996 if (flags & CODING_ISO_FLAG_FULL_SUPPORT)
5997 charset_list = Viso_2022_charset_list;
5998 else
5999 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
6000 }
6001 else if (EQ (CODING_ATTR_TYPE (attrs), Qemacs_mule))
6002 {
6003 charset_list = Vemacs_mule_charset_list;
6004 }
6005 else
6006 {
6007 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
6008 }
6009 return charset_list;
6010 }
6011
6012
6013 /* Return raw-text or one of its subsidiaries that has the same
6014 eol_type as CODING-SYSTEM. */
6015
6016 Lisp_Object
6017 raw_text_coding_system (coding_system)
6018 Lisp_Object coding_system;
6019 {
6020 Lisp_Object spec, attrs;
6021 Lisp_Object eol_type, raw_text_eol_type;
6022
6023 if (NILP (coding_system))
6024 return Qraw_text;
6025 spec = CODING_SYSTEM_SPEC (coding_system);
6026 attrs = AREF (spec, 0);
6027
6028 if (EQ (CODING_ATTR_TYPE (attrs), Qraw_text))
6029 return coding_system;
6030
6031 eol_type = AREF (spec, 2);
6032 if (VECTORP (eol_type))
6033 return Qraw_text;
6034 spec = CODING_SYSTEM_SPEC (Qraw_text);
6035 raw_text_eol_type = AREF (spec, 2);
6036 return (EQ (eol_type, Qunix) ? AREF (raw_text_eol_type, 0)
6037 : EQ (eol_type, Qdos) ? AREF (raw_text_eol_type, 1)
6038 : AREF (raw_text_eol_type, 2));
6039 }
6040
6041
6042 /* If CODING_SYSTEM doesn't specify end-of-line format but PARENT
6043 does, return one of the subsidiary that has the same eol-spec as
6044 PARENT. Otherwise, return CODING_SYSTEM. If PARENT is nil,
6045 inherit end-of-line format from the system's setting
6046 (system_eol_type). */
6047
6048 Lisp_Object
6049 coding_inherit_eol_type (coding_system, parent)
6050 Lisp_Object coding_system, parent;
6051 {
6052 Lisp_Object spec, eol_type;
6053
6054 if (NILP (coding_system))
6055 coding_system = Qraw_text;
6056 spec = CODING_SYSTEM_SPEC (coding_system);
6057 eol_type = AREF (spec, 2);
6058 if (VECTORP (eol_type))
6059 {
6060 Lisp_Object parent_eol_type;
6061
6062 if (! NILP (parent))
6063 {
6064 Lisp_Object parent_spec;
6065
6066 parent_spec = CODING_SYSTEM_SPEC (parent);
6067 parent_eol_type = AREF (parent_spec, 2);
6068 }
6069 else
6070 parent_eol_type = system_eol_type;
6071 if (EQ (parent_eol_type, Qunix))
6072 coding_system = AREF (eol_type, 0);
6073 else if (EQ (parent_eol_type, Qdos))
6074 coding_system = AREF (eol_type, 1);
6075 else if (EQ (parent_eol_type, Qmac))
6076 coding_system = AREF (eol_type, 2);
6077 }
6078 return coding_system;
6079 }
6080
6081 /* Emacs has a mechanism to automatically detect a coding system if it
6082 is one of Emacs' internal format, ISO2022, SJIS, and BIG5. But,
6083 it's impossible to distinguish some coding systems accurately
6084 because they use the same range of codes. So, at first, coding
6085 systems are categorized into 7, those are:
6086
6087 o coding-category-emacs-mule
6088
6089 The category for a coding system which has the same code range
6090 as Emacs' internal format. Assigned the coding-system (Lisp
6091 symbol) `emacs-mule' by default.
6092
6093 o coding-category-sjis
6094
6095 The category for a coding system which has the same code range
6096 as SJIS. Assigned the coding-system (Lisp
6097 symbol) `japanese-shift-jis' by default.
6098
6099 o coding-category-iso-7
6100
6101 The category for a coding system which has the same code range
6102 as ISO2022 of 7-bit environment. This doesn't use any locking
6103 shift and single shift functions. This can encode/decode all
6104 charsets. Assigned the coding-system (Lisp symbol)
6105 `iso-2022-7bit' by default.
6106
6107 o coding-category-iso-7-tight
6108
6109 Same as coding-category-iso-7 except that this can
6110 encode/decode only the specified charsets.
6111
6112 o coding-category-iso-8-1
6113
6114 The category for a coding system which has the same code range
6115 as ISO2022 of 8-bit environment and graphic plane 1 used only
6116 for DIMENSION1 charset. This doesn't use any locking shift
6117 and single shift functions. Assigned the coding-system (Lisp
6118 symbol) `iso-latin-1' by default.
6119
6120 o coding-category-iso-8-2
6121
6122 The category for a coding system which has the same code range
6123 as ISO2022 of 8-bit environment and graphic plane 1 used only
6124 for DIMENSION2 charset. This doesn't use any locking shift
6125 and single shift functions. Assigned the coding-system (Lisp
6126 symbol) `japanese-iso-8bit' by default.
6127
6128 o coding-category-iso-7-else
6129
6130 The category for a coding system which has the same code range
6131 as ISO2022 of 7-bit environemnt but uses locking shift or
6132 single shift functions. Assigned the coding-system (Lisp
6133 symbol) `iso-2022-7bit-lock' by default.
6134
6135 o coding-category-iso-8-else
6136
6137 The category for a coding system which has the same code range
6138 as ISO2022 of 8-bit environemnt but uses locking shift or
6139 single shift functions. Assigned the coding-system (Lisp
6140 symbol) `iso-2022-8bit-ss2' by default.
6141
6142 o coding-category-big5
6143
6144 The category for a coding system which has the same code range
6145 as BIG5. Assigned the coding-system (Lisp symbol)
6146 `cn-big5' by default.
6147
6148 o coding-category-utf-8
6149
6150 The category for a coding system which has the same code range
6151 as UTF-8 (cf. RFC3629). Assigned the coding-system (Lisp
6152 symbol) `utf-8' by default.
6153
6154 o coding-category-utf-16-be
6155
6156 The category for a coding system in which a text has an
6157 Unicode signature (cf. Unicode Standard) in the order of BIG
6158 endian at the head. Assigned the coding-system (Lisp symbol)
6159 `utf-16-be' by default.
6160
6161 o coding-category-utf-16-le
6162
6163 The category for a coding system in which a text has an
6164 Unicode signature (cf. Unicode Standard) in the order of
6165 LITTLE endian at the head. Assigned the coding-system (Lisp
6166 symbol) `utf-16-le' by default.
6167
6168 o coding-category-ccl
6169
6170 The category for a coding system of which encoder/decoder is
6171 written in CCL programs. The default value is nil, i.e., no
6172 coding system is assigned.
6173
6174 o coding-category-binary
6175
6176 The category for a coding system not categorized in any of the
6177 above. Assigned the coding-system (Lisp symbol)
6178 `no-conversion' by default.
6179
6180 Each of them is a Lisp symbol and the value is an actual
6181 `coding-system's (this is also a Lisp symbol) assigned by a user.
6182 What Emacs does actually is to detect a category of coding system.
6183 Then, it uses a `coding-system' assigned to it. If Emacs can't
6184 decide only one possible category, it selects a category of the
6185 highest priority. Priorities of categories are also specified by a
6186 user in a Lisp variable `coding-category-list'.
6187
6188 */
6189
6190 #define EOL_SEEN_NONE 0
6191 #define EOL_SEEN_LF 1
6192 #define EOL_SEEN_CR 2
6193 #define EOL_SEEN_CRLF 4
6194
6195 /* Detect how end-of-line of a text of length SRC_BYTES pointed by
6196 SOURCE is encoded. If CATEGORY is one of
6197 coding_category_utf_16_XXXX, assume that CR and LF are encoded by
6198 two-byte, else they are encoded by one-byte.
6199
6200 Return one of EOL_SEEN_XXX. */
6201
6202 #define MAX_EOL_CHECK_COUNT 3
6203
6204 static int
6205 detect_eol (source, src_bytes, category)
6206 const unsigned char *source;
6207 EMACS_INT src_bytes;
6208 enum coding_category category;
6209 {
6210 const unsigned char *src = source, *src_end = src + src_bytes;
6211 unsigned char c;
6212 int total = 0;
6213 int eol_seen = EOL_SEEN_NONE;
6214
6215 if ((1 << category) & CATEGORY_MASK_UTF_16)
6216 {
6217 int msb, lsb;
6218
6219 msb = category == (coding_category_utf_16_le
6220 | coding_category_utf_16_le_nosig);
6221 lsb = 1 - msb;
6222
6223 while (src + 1 < src_end)
6224 {
6225 c = src[lsb];
6226 if (src[msb] == 0 && (c == '\n' || c == '\r'))
6227 {
6228 int this_eol;
6229
6230 if (c == '\n')
6231 this_eol = EOL_SEEN_LF;
6232 else if (src + 3 >= src_end
6233 || src[msb + 2] != 0
6234 || src[lsb + 2] != '\n')
6235 this_eol = EOL_SEEN_CR;
6236 else
6237 {
6238 this_eol = EOL_SEEN_CRLF;
6239 src += 2;
6240 }
6241
6242 if (eol_seen == EOL_SEEN_NONE)
6243 /* This is the first end-of-line. */
6244 eol_seen = this_eol;
6245 else if (eol_seen != this_eol)
6246 {
6247 /* The found type is different from what found before.
6248 Allow for stray ^M characters in DOS EOL files. */
6249 if (eol_seen == EOL_SEEN_CR && this_eol == EOL_SEEN_CRLF
6250 || eol_seen == EOL_SEEN_CRLF && this_eol == EOL_SEEN_CR)
6251 eol_seen = EOL_SEEN_CRLF;
6252 else
6253 {
6254 eol_seen = EOL_SEEN_LF;
6255 break;
6256 }
6257 }
6258 if (++total == MAX_EOL_CHECK_COUNT)
6259 break;
6260 }
6261 src += 2;
6262 }
6263 }
6264 else
6265 {
6266 while (src < src_end)
6267 {
6268 c = *src++;
6269 if (c == '\n' || c == '\r')
6270 {
6271 int this_eol;
6272
6273 if (c == '\n')
6274 this_eol = EOL_SEEN_LF;
6275 else if (src >= src_end || *src != '\n')
6276 this_eol = EOL_SEEN_CR;
6277 else
6278 this_eol = EOL_SEEN_CRLF, src++;
6279
6280 if (eol_seen == EOL_SEEN_NONE)
6281 /* This is the first end-of-line. */
6282 eol_seen = this_eol;
6283 else if (eol_seen != this_eol)
6284 {
6285 /* The found type is different from what found before.
6286 Allow for stray ^M characters in DOS EOL files. */
6287 if (eol_seen == EOL_SEEN_CR && this_eol == EOL_SEEN_CRLF
6288 || eol_seen == EOL_SEEN_CRLF && this_eol == EOL_SEEN_CR)
6289 eol_seen = EOL_SEEN_CRLF;
6290 else
6291 {
6292 eol_seen = EOL_SEEN_LF;
6293 break;
6294 }
6295 }
6296 if (++total == MAX_EOL_CHECK_COUNT)
6297 break;
6298 }
6299 }
6300 }
6301 return eol_seen;
6302 }
6303
6304
6305 static Lisp_Object
6306 adjust_coding_eol_type (coding, eol_seen)
6307 struct coding_system *coding;
6308 int eol_seen;
6309 {
6310 Lisp_Object eol_type;
6311
6312 eol_type = CODING_ID_EOL_TYPE (coding->id);
6313 if (eol_seen & EOL_SEEN_LF)
6314 {
6315 coding->id = CODING_SYSTEM_ID (AREF (eol_type, 0));
6316 eol_type = Qunix;
6317 }
6318 else if (eol_seen & EOL_SEEN_CRLF)
6319 {
6320 coding->id = CODING_SYSTEM_ID (AREF (eol_type, 1));
6321 eol_type = Qdos;
6322 }
6323 else if (eol_seen & EOL_SEEN_CR)
6324 {
6325 coding->id = CODING_SYSTEM_ID (AREF (eol_type, 2));
6326 eol_type = Qmac;
6327 }
6328 return eol_type;
6329 }
6330
6331 /* Detect how a text specified in CODING is encoded. If a coding
6332 system is detected, update fields of CODING by the detected coding
6333 system. */
6334
6335 void
6336 detect_coding (coding)
6337 struct coding_system *coding;
6338 {
6339 const unsigned char *src, *src_end;
6340 int saved_mode = coding->mode;
6341
6342 coding->consumed = coding->consumed_char = 0;
6343 coding->produced = coding->produced_char = 0;
6344 coding_set_source (coding);
6345
6346 src_end = coding->source + coding->src_bytes;
6347 coding->head_ascii = 0;
6348
6349 /* If we have not yet decided the text encoding type, detect it
6350 now. */
6351 if (EQ (CODING_ATTR_TYPE (CODING_ID_ATTRS (coding->id)), Qundecided))
6352 {
6353 int c, i;
6354 struct coding_detection_info detect_info;
6355 int null_byte_found = 0, eight_bit_found = 0;
6356
6357 detect_info.checked = detect_info.found = detect_info.rejected = 0;
6358 for (src = coding->source; src < src_end; src++)
6359 {
6360 c = *src;
6361 if (c & 0x80)
6362 {
6363 eight_bit_found = 1;
6364 if (null_byte_found)
6365 break;
6366 }
6367 else if (c < 0x20)
6368 {
6369 if ((c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
6370 && ! inhibit_iso_escape_detection
6371 && ! detect_info.checked)
6372 {
6373 if (detect_coding_iso_2022 (coding, &detect_info))
6374 {
6375 /* We have scanned the whole data. */
6376 if (! (detect_info.rejected & CATEGORY_MASK_ISO_7_ELSE))
6377 {
6378 /* We didn't find an 8-bit code. We may
6379 have found a null-byte, but it's very
6380 rare that a binary file confirm to
6381 ISO-2022. */
6382 src = src_end;
6383 coding->head_ascii = src - coding->source;
6384 }
6385 detect_info.rejected |= ~CATEGORY_MASK_ISO_ESCAPE;
6386 break;
6387 }
6388 }
6389 else if (! c && !inhibit_null_byte_detection)
6390 {
6391 null_byte_found = 1;
6392 if (eight_bit_found)
6393 break;
6394 }
6395 if (! eight_bit_found)
6396 coding->head_ascii++;
6397 }
6398 else if (! eight_bit_found)
6399 coding->head_ascii++;
6400 }
6401
6402 if (null_byte_found || eight_bit_found
6403 || coding->head_ascii < coding->src_bytes
6404 || detect_info.found)
6405 {
6406 enum coding_category category;
6407 struct coding_system *this;
6408
6409 if (coding->head_ascii == coding->src_bytes)
6410 /* As all bytes are 7-bit, we can ignore non-ISO-2022 codings. */
6411 for (i = 0; i < coding_category_raw_text; i++)
6412 {
6413 category = coding_priorities[i];
6414 this = coding_categories + category;
6415 if (detect_info.found & (1 << category))
6416 break;
6417 }
6418 else
6419 {
6420 if (null_byte_found)
6421 {
6422 detect_info.checked |= ~CATEGORY_MASK_UTF_16;
6423 detect_info.rejected |= ~CATEGORY_MASK_UTF_16;
6424 }
6425 for (i = 0; i < coding_category_raw_text; i++)
6426 {
6427 category = coding_priorities[i];
6428 this = coding_categories + category;
6429 if (this->id < 0)
6430 {
6431 /* No coding system of this category is defined. */
6432 detect_info.rejected |= (1 << category);
6433 }
6434 else if (category >= coding_category_raw_text)
6435 continue;
6436 else if (detect_info.checked & (1 << category))
6437 {
6438 if (detect_info.found & (1 << category))
6439 break;
6440 }
6441 else if ((*(this->detector)) (coding, &detect_info)
6442 && detect_info.found & (1 << category))
6443 {
6444 if (category == coding_category_utf_16_auto)
6445 {
6446 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
6447 category = coding_category_utf_16_le;
6448 else
6449 category = coding_category_utf_16_be;
6450 }
6451 break;
6452 }
6453 }
6454 }
6455
6456 if (i < coding_category_raw_text)
6457 setup_coding_system (CODING_ID_NAME (this->id), coding);
6458 else if (null_byte_found)
6459 setup_coding_system (Qno_conversion, coding);
6460 else if ((detect_info.rejected & CATEGORY_MASK_ANY)
6461 == CATEGORY_MASK_ANY)
6462 setup_coding_system (Qraw_text, coding);
6463 else if (detect_info.rejected)
6464 for (i = 0; i < coding_category_raw_text; i++)
6465 if (! (detect_info.rejected & (1 << coding_priorities[i])))
6466 {
6467 this = coding_categories + coding_priorities[i];
6468 setup_coding_system (CODING_ID_NAME (this->id), coding);
6469 break;
6470 }
6471 }
6472 }
6473 else if (XINT (CODING_ATTR_CATEGORY (CODING_ID_ATTRS (coding->id)))
6474 == coding_category_utf_8_auto)
6475 {
6476 Lisp_Object coding_systems;
6477 struct coding_detection_info detect_info;
6478
6479 coding_systems
6480 = AREF (CODING_ID_ATTRS (coding->id), coding_attr_utf_bom);
6481 detect_info.found = detect_info.rejected = 0;
6482 coding->head_ascii = 0;
6483 if (CONSP (coding_systems)
6484 && detect_coding_utf_8 (coding, &detect_info))
6485 {
6486 if (detect_info.found & CATEGORY_MASK_UTF_8_SIG)
6487 setup_coding_system (XCAR (coding_systems), coding);
6488 else
6489 setup_coding_system (XCDR (coding_systems), coding);
6490 }
6491 }
6492 else if (XINT (CODING_ATTR_CATEGORY (CODING_ID_ATTRS (coding->id)))
6493 == coding_category_utf_16_auto)
6494 {
6495 Lisp_Object coding_systems;
6496 struct coding_detection_info detect_info;
6497
6498 coding_systems
6499 = AREF (CODING_ID_ATTRS (coding->id), coding_attr_utf_bom);
6500 detect_info.found = detect_info.rejected = 0;
6501 coding->head_ascii = 0;
6502 if (CONSP (coding_systems)
6503 && detect_coding_utf_16 (coding, &detect_info))
6504 {
6505 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
6506 setup_coding_system (XCAR (coding_systems), coding);
6507 else if (detect_info.found & CATEGORY_MASK_UTF_16_BE)
6508 setup_coding_system (XCDR (coding_systems), coding);
6509 }
6510 }
6511 coding->mode = saved_mode;
6512 }
6513
6514
6515 static void
6516 decode_eol (coding)
6517 struct coding_system *coding;
6518 {
6519 Lisp_Object eol_type;
6520 unsigned char *p, *pbeg, *pend;
6521
6522 eol_type = CODING_ID_EOL_TYPE (coding->id);
6523 if (EQ (eol_type, Qunix) || inhibit_eol_conversion)
6524 return;
6525
6526 if (NILP (coding->dst_object))
6527 pbeg = coding->destination;
6528 else
6529 pbeg = BYTE_POS_ADDR (coding->dst_pos_byte);
6530 pend = pbeg + coding->produced;
6531
6532 if (VECTORP (eol_type))
6533 {
6534 int eol_seen = EOL_SEEN_NONE;
6535
6536 for (p = pbeg; p < pend; p++)
6537 {
6538 if (*p == '\n')
6539 eol_seen |= EOL_SEEN_LF;
6540 else if (*p == '\r')
6541 {
6542 if (p + 1 < pend && *(p + 1) == '\n')
6543 {
6544 eol_seen |= EOL_SEEN_CRLF;
6545 p++;
6546 }
6547 else
6548 eol_seen |= EOL_SEEN_CR;
6549 }
6550 }
6551 /* Handle DOS-style EOLs in a file with stray ^M characters. */
6552 if ((eol_seen & EOL_SEEN_CRLF) != 0
6553 && (eol_seen & EOL_SEEN_CR) != 0
6554 && (eol_seen & EOL_SEEN_LF) == 0)
6555 eol_seen = EOL_SEEN_CRLF;
6556 else if (eol_seen != EOL_SEEN_NONE
6557 && eol_seen != EOL_SEEN_LF
6558 && eol_seen != EOL_SEEN_CRLF
6559 && eol_seen != EOL_SEEN_CR)
6560 eol_seen = EOL_SEEN_LF;
6561 if (eol_seen != EOL_SEEN_NONE)
6562 eol_type = adjust_coding_eol_type (coding, eol_seen);
6563 }
6564
6565 if (EQ (eol_type, Qmac))
6566 {
6567 for (p = pbeg; p < pend; p++)
6568 if (*p == '\r')
6569 *p = '\n';
6570 }
6571 else if (EQ (eol_type, Qdos))
6572 {
6573 int n = 0;
6574
6575 if (NILP (coding->dst_object))
6576 {
6577 /* Start deleting '\r' from the tail to minimize the memory
6578 movement. */
6579 for (p = pend - 2; p >= pbeg; p--)
6580 if (*p == '\r')
6581 {
6582 safe_bcopy ((char *) (p + 1), (char *) p, pend-- - p - 1);
6583 n++;
6584 }
6585 }
6586 else
6587 {
6588 int pos_byte = coding->dst_pos_byte;
6589 int pos = coding->dst_pos;
6590 int pos_end = pos + coding->produced_char - 1;
6591
6592 while (pos < pos_end)
6593 {
6594 p = BYTE_POS_ADDR (pos_byte);
6595 if (*p == '\r' && p[1] == '\n')
6596 {
6597 del_range_2 (pos, pos_byte, pos + 1, pos_byte + 1, 0);
6598 n++;
6599 pos_end--;
6600 }
6601 pos++;
6602 if (coding->dst_multibyte)
6603 pos_byte += BYTES_BY_CHAR_HEAD (*p);
6604 else
6605 pos_byte++;
6606 }
6607 }
6608 coding->produced -= n;
6609 coding->produced_char -= n;
6610 }
6611 }
6612
6613
6614 /* Return a translation table (or list of them) from coding system
6615 attribute vector ATTRS for encoding (ENCODEP is nonzero) or
6616 decoding (ENCODEP is zero). */
6617
6618 static Lisp_Object
6619 get_translation_table (attrs, encodep, max_lookup)
6620 Lisp_Object attrs;
6621 int encodep, *max_lookup;
6622 {
6623 Lisp_Object standard, translation_table;
6624 Lisp_Object val;
6625
6626 if (NILP (Venable_character_translation))
6627 {
6628 if (max_lookup)
6629 *max_lookup = 0;
6630 return Qnil;
6631 }
6632 if (encodep)
6633 translation_table = CODING_ATTR_ENCODE_TBL (attrs),
6634 standard = Vstandard_translation_table_for_encode;
6635 else
6636 translation_table = CODING_ATTR_DECODE_TBL (attrs),
6637 standard = Vstandard_translation_table_for_decode;
6638 if (NILP (translation_table))
6639 translation_table = standard;
6640 else
6641 {
6642 if (SYMBOLP (translation_table))
6643 translation_table = Fget (translation_table, Qtranslation_table);
6644 else if (CONSP (translation_table))
6645 {
6646 translation_table = Fcopy_sequence (translation_table);
6647 for (val = translation_table; CONSP (val); val = XCDR (val))
6648 if (SYMBOLP (XCAR (val)))
6649 XSETCAR (val, Fget (XCAR (val), Qtranslation_table));
6650 }
6651 if (CHAR_TABLE_P (standard))
6652 {
6653 if (CONSP (translation_table))
6654 translation_table = nconc2 (translation_table,
6655 Fcons (standard, Qnil));
6656 else
6657 translation_table = Fcons (translation_table,
6658 Fcons (standard, Qnil));
6659 }
6660 }
6661
6662 if (max_lookup)
6663 {
6664 *max_lookup = 1;
6665 if (CHAR_TABLE_P (translation_table)
6666 && CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (translation_table)) > 1)
6667 {
6668 val = XCHAR_TABLE (translation_table)->extras[1];
6669 if (NATNUMP (val) && *max_lookup < XFASTINT (val))
6670 *max_lookup = XFASTINT (val);
6671 }
6672 else if (CONSP (translation_table))
6673 {
6674 Lisp_Object tail, val;
6675
6676 for (tail = translation_table; CONSP (tail); tail = XCDR (tail))
6677 if (CHAR_TABLE_P (XCAR (tail))
6678 && CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (XCAR (tail))) > 1)
6679 {
6680 val = XCHAR_TABLE (XCAR (tail))->extras[1];
6681 if (NATNUMP (val) && *max_lookup < XFASTINT (val))
6682 *max_lookup = XFASTINT (val);
6683 }
6684 }
6685 }
6686 return translation_table;
6687 }
6688
6689 #define LOOKUP_TRANSLATION_TABLE(table, c, trans) \
6690 do { \
6691 trans = Qnil; \
6692 if (CHAR_TABLE_P (table)) \
6693 { \
6694 trans = CHAR_TABLE_REF (table, c); \
6695 if (CHARACTERP (trans)) \
6696 c = XFASTINT (trans), trans = Qnil; \
6697 } \
6698 else if (CONSP (table)) \
6699 { \
6700 Lisp_Object tail; \
6701 \
6702 for (tail = table; CONSP (tail); tail = XCDR (tail)) \
6703 if (CHAR_TABLE_P (XCAR (tail))) \
6704 { \
6705 trans = CHAR_TABLE_REF (XCAR (tail), c); \
6706 if (CHARACTERP (trans)) \
6707 c = XFASTINT (trans), trans = Qnil; \
6708 else if (! NILP (trans)) \
6709 break; \
6710 } \
6711 } \
6712 } while (0)
6713
6714
6715 /* Return a translation of character(s) at BUF according to TRANS.
6716 TRANS is TO-CHAR or ((FROM . TO) ...) where
6717 FROM = [FROM-CHAR ...], TO is TO-CHAR or [TO-CHAR ...].
6718 The return value is TO-CHAR or ([FROM-CHAR ...] . TO) if a
6719 translation is found, and Qnil if not found..
6720 If BUF is too short to lookup characters in FROM, return Qt. */
6721
6722 static Lisp_Object
6723 get_translation (trans, buf, buf_end)
6724 Lisp_Object trans;
6725 int *buf, *buf_end;
6726 {
6727
6728 if (INTEGERP (trans))
6729 return trans;
6730 for (; CONSP (trans); trans = XCDR (trans))
6731 {
6732 Lisp_Object val = XCAR (trans);
6733 Lisp_Object from = XCAR (val);
6734 int len = ASIZE (from);
6735 int i;
6736
6737 for (i = 0; i < len; i++)
6738 {
6739 if (buf + i == buf_end)
6740 return Qt;
6741 if (XINT (AREF (from, i)) != buf[i])
6742 break;
6743 }
6744 if (i == len)
6745 return val;
6746 }
6747 return Qnil;
6748 }
6749
6750
6751 static int
6752 produce_chars (coding, translation_table, last_block)
6753 struct coding_system *coding;
6754 Lisp_Object translation_table;
6755 int last_block;
6756 {
6757 unsigned char *dst = coding->destination + coding->produced;
6758 unsigned char *dst_end = coding->destination + coding->dst_bytes;
6759 EMACS_INT produced;
6760 EMACS_INT produced_chars = 0;
6761 int carryover = 0;
6762
6763 if (! coding->chars_at_source)
6764 {
6765 /* Source characters are in coding->charbuf. */
6766 int *buf = coding->charbuf;
6767 int *buf_end = buf + coding->charbuf_used;
6768
6769 if (EQ (coding->src_object, coding->dst_object))
6770 {
6771 coding_set_source (coding);
6772 dst_end = ((unsigned char *) coding->source) + coding->consumed;
6773 }
6774
6775 while (buf < buf_end)
6776 {
6777 int c = *buf, i;
6778
6779 if (c >= 0)
6780 {
6781 int from_nchars = 1, to_nchars = 1;
6782 Lisp_Object trans = Qnil;
6783
6784 LOOKUP_TRANSLATION_TABLE (translation_table, c, trans);
6785 if (! NILP (trans))
6786 {
6787 trans = get_translation (trans, buf, buf_end);
6788 if (INTEGERP (trans))
6789 c = XINT (trans);
6790 else if (CONSP (trans))
6791 {
6792 from_nchars = ASIZE (XCAR (trans));
6793 trans = XCDR (trans);
6794 if (INTEGERP (trans))
6795 c = XINT (trans);
6796 else
6797 {
6798 to_nchars = ASIZE (trans);
6799 c = XINT (AREF (trans, 0));
6800 }
6801 }
6802 else if (EQ (trans, Qt) && ! last_block)
6803 break;
6804 }
6805
6806 if (dst + MAX_MULTIBYTE_LENGTH * to_nchars > dst_end)
6807 {
6808 dst = alloc_destination (coding,
6809 buf_end - buf
6810 + MAX_MULTIBYTE_LENGTH * to_nchars,
6811 dst);
6812 if (EQ (coding->src_object, coding->dst_object))
6813 {
6814 coding_set_source (coding);
6815 dst_end = (((unsigned char *) coding->source)
6816 + coding->consumed);
6817 }
6818 else
6819 dst_end = coding->destination + coding->dst_bytes;
6820 }
6821
6822 for (i = 0; i < to_nchars; i++)
6823 {
6824 if (i > 0)
6825 c = XINT (AREF (trans, i));
6826 if (coding->dst_multibyte
6827 || ! CHAR_BYTE8_P (c))
6828 CHAR_STRING_ADVANCE_NO_UNIFY (c, dst);
6829 else
6830 *dst++ = CHAR_TO_BYTE8 (c);
6831 }
6832 produced_chars += to_nchars;
6833 buf += from_nchars;
6834 }
6835 else
6836 /* This is an annotation datum. (-C) is the length. */
6837 buf += -c;
6838 }
6839 carryover = buf_end - buf;
6840 }
6841 else
6842 {
6843 /* Source characters are at coding->source. */
6844 const unsigned char *src = coding->source;
6845 const unsigned char *src_end = src + coding->consumed;
6846
6847 if (EQ (coding->dst_object, coding->src_object))
6848 dst_end = (unsigned char *) src;
6849 if (coding->src_multibyte != coding->dst_multibyte)
6850 {
6851 if (coding->src_multibyte)
6852 {
6853 int multibytep = 1;
6854 EMACS_INT consumed_chars = 0;
6855
6856 while (1)
6857 {
6858 const unsigned char *src_base = src;
6859 int c;
6860
6861 ONE_MORE_BYTE (c);
6862 if (dst == dst_end)
6863 {
6864 if (EQ (coding->src_object, coding->dst_object))
6865 dst_end = (unsigned char *) src;
6866 if (dst == dst_end)
6867 {
6868 EMACS_INT offset = src - coding->source;
6869
6870 dst = alloc_destination (coding, src_end - src + 1,
6871 dst);
6872 dst_end = coding->destination + coding->dst_bytes;
6873 coding_set_source (coding);
6874 src = coding->source + offset;
6875 src_end = coding->source + coding->src_bytes;
6876 if (EQ (coding->src_object, coding->dst_object))
6877 dst_end = (unsigned char *) src;
6878 }
6879 }
6880 *dst++ = c;
6881 produced_chars++;
6882 }
6883 no_more_source:
6884 ;
6885 }
6886 else
6887 while (src < src_end)
6888 {
6889 int multibytep = 1;
6890 int c = *src++;
6891
6892 if (dst >= dst_end - 1)
6893 {
6894 if (EQ (coding->src_object, coding->dst_object))
6895 dst_end = (unsigned char *) src;
6896 if (dst >= dst_end - 1)
6897 {
6898 EMACS_INT offset = src - coding->source;
6899 EMACS_INT more_bytes;
6900
6901 if (EQ (coding->src_object, coding->dst_object))
6902 more_bytes = ((src_end - src) / 2) + 2;
6903 else
6904 more_bytes = src_end - src + 2;
6905 dst = alloc_destination (coding, more_bytes, dst);
6906 dst_end = coding->destination + coding->dst_bytes;
6907 coding_set_source (coding);
6908 src = coding->source + offset;
6909 src_end = coding->source + coding->src_bytes;
6910 if (EQ (coding->src_object, coding->dst_object))
6911 dst_end = (unsigned char *) src;
6912 }
6913 }
6914 EMIT_ONE_BYTE (c);
6915 }
6916 }
6917 else
6918 {
6919 if (!EQ (coding->src_object, coding->dst_object))
6920 {
6921 EMACS_INT require = coding->src_bytes - coding->dst_bytes;
6922
6923 if (require > 0)
6924 {
6925 EMACS_INT offset = src - coding->source;
6926
6927 dst = alloc_destination (coding, require, dst);
6928 coding_set_source (coding);
6929 src = coding->source + offset;
6930 src_end = coding->source + coding->src_bytes;
6931 }
6932 }
6933 produced_chars = coding->consumed_char;
6934 while (src < src_end)
6935 *dst++ = *src++;
6936 }
6937 }
6938
6939 produced = dst - (coding->destination + coding->produced);
6940 if (BUFFERP (coding->dst_object) && produced_chars > 0)
6941 insert_from_gap (produced_chars, produced);
6942 coding->produced += produced;
6943 coding->produced_char += produced_chars;
6944 return carryover;
6945 }
6946
6947 /* Compose text in CODING->object according to the annotation data at
6948 CHARBUF. CHARBUF is an array:
6949 [ -LENGTH ANNOTATION_MASK NCHARS NBYTES METHOD [ COMPONENTS... ] ]
6950 */
6951
6952 static INLINE void
6953 produce_composition (coding, charbuf, pos)
6954 struct coding_system *coding;
6955 int *charbuf;
6956 EMACS_INT pos;
6957 {
6958 int len;
6959 EMACS_INT to;
6960 enum composition_method method;
6961 Lisp_Object components;
6962
6963 len = -charbuf[0] - MAX_ANNOTATION_LENGTH;
6964 to = pos + charbuf[2];
6965 method = (enum composition_method) (charbuf[4]);
6966
6967 if (method == COMPOSITION_RELATIVE)
6968 components = Qnil;
6969 else
6970 {
6971 Lisp_Object args[MAX_COMPOSITION_COMPONENTS * 2 - 1];
6972 int i, j;
6973
6974 if (method == COMPOSITION_WITH_RULE)
6975 len = charbuf[2] * 3 - 2;
6976 charbuf += MAX_ANNOTATION_LENGTH;
6977 /* charbuf = [ CHRA ... CHAR] or [ CHAR -2 RULE ... CHAR ] */
6978 for (i = j = 0; i < len && charbuf[i] != -1; i++, j++)
6979 {
6980 if (charbuf[i] >= 0)
6981 args[j] = make_number (charbuf[i]);
6982 else
6983 {
6984 i++;
6985 args[j] = make_number (charbuf[i] % 0x100);
6986 }
6987 }
6988 components = (i == j ? Fstring (j, args) : Fvector (j, args));
6989 }
6990 compose_text (pos, to, components, Qnil, coding->dst_object);
6991 }
6992
6993
6994 /* Put `charset' property on text in CODING->object according to
6995 the annotation data at CHARBUF. CHARBUF is an array:
6996 [ -LENGTH ANNOTATION_MASK NCHARS CHARSET-ID ]
6997 */
6998
6999 static INLINE void
7000 produce_charset (coding, charbuf, pos)
7001 struct coding_system *coding;
7002 int *charbuf;
7003 EMACS_INT pos;
7004 {
7005 EMACS_INT from = pos - charbuf[2];
7006 struct charset *charset = CHARSET_FROM_ID (charbuf[3]);
7007
7008 Fput_text_property (make_number (from), make_number (pos),
7009 Qcharset, CHARSET_NAME (charset),
7010 coding->dst_object);
7011 }
7012
7013
7014 #define CHARBUF_SIZE 0x4000
7015
7016 #define ALLOC_CONVERSION_WORK_AREA(coding) \
7017 do { \
7018 int size = CHARBUF_SIZE; \
7019 \
7020 coding->charbuf = NULL; \
7021 while (size > 1024) \
7022 { \
7023 coding->charbuf = (int *) alloca (sizeof (int) * size); \
7024 if (coding->charbuf) \
7025 break; \
7026 size >>= 1; \
7027 } \
7028 if (! coding->charbuf) \
7029 { \
7030 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_MEM); \
7031 return coding->result; \
7032 } \
7033 coding->charbuf_size = size; \
7034 } while (0)
7035
7036
7037 static void
7038 produce_annotation (coding, pos)
7039 struct coding_system *coding;
7040 EMACS_INT pos;
7041 {
7042 int *charbuf = coding->charbuf;
7043 int *charbuf_end = charbuf + coding->charbuf_used;
7044
7045 if (NILP (coding->dst_object))
7046 return;
7047
7048 while (charbuf < charbuf_end)
7049 {
7050 if (*charbuf >= 0)
7051 pos++, charbuf++;
7052 else
7053 {
7054 int len = -*charbuf;
7055
7056 if (len > 2)
7057 switch (charbuf[1])
7058 {
7059 case CODING_ANNOTATE_COMPOSITION_MASK:
7060 produce_composition (coding, charbuf, pos);
7061 break;
7062 case CODING_ANNOTATE_CHARSET_MASK:
7063 produce_charset (coding, charbuf, pos);
7064 break;
7065 }
7066 charbuf += len;
7067 }
7068 }
7069 }
7070
7071 /* Decode the data at CODING->src_object into CODING->dst_object.
7072 CODING->src_object is a buffer, a string, or nil.
7073 CODING->dst_object is a buffer.
7074
7075 If CODING->src_object is a buffer, it must be the current buffer.
7076 In this case, if CODING->src_pos is positive, it is a position of
7077 the source text in the buffer, otherwise, the source text is in the
7078 gap area of the buffer, and CODING->src_pos specifies the offset of
7079 the text from GPT (which must be the same as PT). If this is the
7080 same buffer as CODING->dst_object, CODING->src_pos must be
7081 negative.
7082
7083 If CODING->src_object is a string, CODING->src_pos is an index to
7084 that string.
7085
7086 If CODING->src_object is nil, CODING->source must already point to
7087 the non-relocatable memory area. In this case, CODING->src_pos is
7088 an offset from CODING->source.
7089
7090 The decoded data is inserted at the current point of the buffer
7091 CODING->dst_object.
7092 */
7093
7094 static int
7095 decode_coding (coding)
7096 struct coding_system *coding;
7097 {
7098 Lisp_Object attrs;
7099 Lisp_Object undo_list;
7100 Lisp_Object translation_table;
7101 int carryover;
7102 int i;
7103
7104 if (BUFFERP (coding->src_object)
7105 && coding->src_pos > 0
7106 && coding->src_pos < GPT
7107 && coding->src_pos + coding->src_chars > GPT)
7108 move_gap_both (coding->src_pos, coding->src_pos_byte);
7109
7110 undo_list = Qt;
7111 if (BUFFERP (coding->dst_object))
7112 {
7113 if (current_buffer != XBUFFER (coding->dst_object))
7114 set_buffer_internal (XBUFFER (coding->dst_object));
7115 if (GPT != PT)
7116 move_gap_both (PT, PT_BYTE);
7117 undo_list = current_buffer->undo_list;
7118 current_buffer->undo_list = Qt;
7119 }
7120
7121 coding->consumed = coding->consumed_char = 0;
7122 coding->produced = coding->produced_char = 0;
7123 coding->chars_at_source = 0;
7124 record_conversion_result (coding, CODING_RESULT_SUCCESS);
7125 coding->errors = 0;
7126
7127 ALLOC_CONVERSION_WORK_AREA (coding);
7128
7129 attrs = CODING_ID_ATTRS (coding->id);
7130 translation_table = get_translation_table (attrs, 0, NULL);
7131
7132 carryover = 0;
7133 do
7134 {
7135 EMACS_INT pos = coding->dst_pos + coding->produced_char;
7136
7137 coding_set_source (coding);
7138 coding->annotated = 0;
7139 coding->charbuf_used = carryover;
7140 (*(coding->decoder)) (coding);
7141 coding_set_destination (coding);
7142 carryover = produce_chars (coding, translation_table, 0);
7143 if (coding->annotated)
7144 produce_annotation (coding, pos);
7145 for (i = 0; i < carryover; i++)
7146 coding->charbuf[i]
7147 = coding->charbuf[coding->charbuf_used - carryover + i];
7148 }
7149 while (coding->consumed < coding->src_bytes
7150 && (coding->result == CODING_RESULT_SUCCESS
7151 || coding->result == CODING_RESULT_INVALID_SRC));
7152
7153 if (carryover > 0)
7154 {
7155 coding_set_destination (coding);
7156 coding->charbuf_used = carryover;
7157 produce_chars (coding, translation_table, 1);
7158 }
7159
7160 coding->carryover_bytes = 0;
7161 if (coding->consumed < coding->src_bytes)
7162 {
7163 int nbytes = coding->src_bytes - coding->consumed;
7164 const unsigned char *src;
7165
7166 coding_set_source (coding);
7167 coding_set_destination (coding);
7168 src = coding->source + coding->consumed;
7169
7170 if (coding->mode & CODING_MODE_LAST_BLOCK)
7171 {
7172 /* Flush out unprocessed data as binary chars. We are sure
7173 that the number of data is less than the size of
7174 coding->charbuf. */
7175 coding->charbuf_used = 0;
7176 coding->chars_at_source = 0;
7177
7178 while (nbytes-- > 0)
7179 {
7180 int c = *src++;
7181
7182 if (c & 0x80)
7183 c = BYTE8_TO_CHAR (c);
7184 coding->charbuf[coding->charbuf_used++] = c;
7185 }
7186 produce_chars (coding, Qnil, 1);
7187 }
7188 else
7189 {
7190 /* Record unprocessed bytes in coding->carryover. We are
7191 sure that the number of data is less than the size of
7192 coding->carryover. */
7193 unsigned char *p = coding->carryover;
7194
7195 if (nbytes > sizeof coding->carryover)
7196 nbytes = sizeof coding->carryover;
7197 coding->carryover_bytes = nbytes;
7198 while (nbytes-- > 0)
7199 *p++ = *src++;
7200 }
7201 coding->consumed = coding->src_bytes;
7202 }
7203
7204 if (! EQ (CODING_ID_EOL_TYPE (coding->id), Qunix)
7205 && !inhibit_eol_conversion)
7206 decode_eol (coding);
7207 if (BUFFERP (coding->dst_object))
7208 {
7209 current_buffer->undo_list = undo_list;
7210 record_insert (coding->dst_pos, coding->produced_char);
7211 }
7212 return coding->result;
7213 }
7214
7215
7216 /* Extract an annotation datum from a composition starting at POS and
7217 ending before LIMIT of CODING->src_object (buffer or string), store
7218 the data in BUF, set *STOP to a starting position of the next
7219 composition (if any) or to LIMIT, and return the address of the
7220 next element of BUF.
7221
7222 If such an annotation is not found, set *STOP to a starting
7223 position of a composition after POS (if any) or to LIMIT, and
7224 return BUF. */
7225
7226 static INLINE int *
7227 handle_composition_annotation (pos, limit, coding, buf, stop)
7228 EMACS_INT pos, limit;
7229 struct coding_system *coding;
7230 int *buf;
7231 EMACS_INT *stop;
7232 {
7233 EMACS_INT start, end;
7234 Lisp_Object prop;
7235
7236 if (! find_composition (pos, limit, &start, &end, &prop, coding->src_object)
7237 || end > limit)
7238 *stop = limit;
7239 else if (start > pos)
7240 *stop = start;
7241 else
7242 {
7243 if (start == pos)
7244 {
7245 /* We found a composition. Store the corresponding
7246 annotation data in BUF. */
7247 int *head = buf;
7248 enum composition_method method = COMPOSITION_METHOD (prop);
7249 int nchars = COMPOSITION_LENGTH (prop);
7250
7251 ADD_COMPOSITION_DATA (buf, nchars, 0, method);
7252 if (method != COMPOSITION_RELATIVE)
7253 {
7254 Lisp_Object components;
7255 int len, i, i_byte;
7256
7257 components = COMPOSITION_COMPONENTS (prop);
7258 if (VECTORP (components))
7259 {
7260 len = XVECTOR (components)->size;
7261 for (i = 0; i < len; i++)
7262 *buf++ = XINT (AREF (components, i));
7263 }
7264 else if (STRINGP (components))
7265 {
7266 len = SCHARS (components);
7267 i = i_byte = 0;
7268 while (i < len)
7269 {
7270 FETCH_STRING_CHAR_ADVANCE (*buf, components, i, i_byte);
7271 buf++;
7272 }
7273 }
7274 else if (INTEGERP (components))
7275 {
7276 len = 1;
7277 *buf++ = XINT (components);
7278 }
7279 else if (CONSP (components))
7280 {
7281 for (len = 0; CONSP (components);
7282 len++, components = XCDR (components))
7283 *buf++ = XINT (XCAR (components));
7284 }
7285 else
7286 abort ();
7287 *head -= len;
7288 }
7289 }
7290
7291 if (find_composition (end, limit, &start, &end, &prop,
7292 coding->src_object)
7293 && end <= limit)
7294 *stop = start;
7295 else
7296 *stop = limit;
7297 }
7298 return buf;
7299 }
7300
7301
7302 /* Extract an annotation datum from a text property `charset' at POS of
7303 CODING->src_object (buffer of string), store the data in BUF, set
7304 *STOP to the position where the value of `charset' property changes
7305 (limiting by LIMIT), and return the address of the next element of
7306 BUF.
7307
7308 If the property value is nil, set *STOP to the position where the
7309 property value is non-nil (limiting by LIMIT), and return BUF. */
7310
7311 static INLINE int *
7312 handle_charset_annotation (pos, limit, coding, buf, stop)
7313 EMACS_INT pos, limit;
7314 struct coding_system *coding;
7315 int *buf;
7316 EMACS_INT *stop;
7317 {
7318 Lisp_Object val, next;
7319 int id;
7320
7321 val = Fget_text_property (make_number (pos), Qcharset, coding->src_object);
7322 if (! NILP (val) && CHARSETP (val))
7323 id = XINT (CHARSET_SYMBOL_ID (val));
7324 else
7325 id = -1;
7326 ADD_CHARSET_DATA (buf, 0, id);
7327 next = Fnext_single_property_change (make_number (pos), Qcharset,
7328 coding->src_object,
7329 make_number (limit));
7330 *stop = XINT (next);
7331 return buf;
7332 }
7333
7334
7335 static void
7336 consume_chars (coding, translation_table, max_lookup)
7337 struct coding_system *coding;
7338 Lisp_Object translation_table;
7339 int max_lookup;
7340 {
7341 int *buf = coding->charbuf;
7342 int *buf_end = coding->charbuf + coding->charbuf_size;
7343 const unsigned char *src = coding->source + coding->consumed;
7344 const unsigned char *src_end = coding->source + coding->src_bytes;
7345 EMACS_INT pos = coding->src_pos + coding->consumed_char;
7346 EMACS_INT end_pos = coding->src_pos + coding->src_chars;
7347 int multibytep = coding->src_multibyte;
7348 Lisp_Object eol_type;
7349 int c;
7350 EMACS_INT stop, stop_composition, stop_charset;
7351 int *lookup_buf = NULL;
7352
7353 if (! NILP (translation_table))
7354 lookup_buf = alloca (sizeof (int) * max_lookup);
7355
7356 eol_type = inhibit_eol_conversion ? Qunix : CODING_ID_EOL_TYPE (coding->id);
7357 if (VECTORP (eol_type))
7358 eol_type = Qunix;
7359
7360 /* Note: composition handling is not yet implemented. */
7361 coding->common_flags &= ~CODING_ANNOTATE_COMPOSITION_MASK;
7362
7363 if (NILP (coding->src_object))
7364 stop = stop_composition = stop_charset = end_pos;
7365 else
7366 {
7367 if (coding->common_flags & CODING_ANNOTATE_COMPOSITION_MASK)
7368 stop = stop_composition = pos;
7369 else
7370 stop = stop_composition = end_pos;
7371 if (coding->common_flags & CODING_ANNOTATE_CHARSET_MASK)
7372 stop = stop_charset = pos;
7373 else
7374 stop_charset = end_pos;
7375 }
7376
7377 /* Compensate for CRLF and conversion. */
7378 buf_end -= 1 + MAX_ANNOTATION_LENGTH;
7379 while (buf < buf_end)
7380 {
7381 Lisp_Object trans;
7382
7383 if (pos == stop)
7384 {
7385 if (pos == end_pos)
7386 break;
7387 if (pos == stop_composition)
7388 buf = handle_composition_annotation (pos, end_pos, coding,
7389 buf, &stop_composition);
7390 if (pos == stop_charset)
7391 buf = handle_charset_annotation (pos, end_pos, coding,
7392 buf, &stop_charset);
7393 stop = (stop_composition < stop_charset
7394 ? stop_composition : stop_charset);
7395 }
7396
7397 if (! multibytep)
7398 {
7399 EMACS_INT bytes;
7400
7401 if (coding->encoder == encode_coding_raw_text)
7402 c = *src++, pos++;
7403 else if ((bytes = MULTIBYTE_LENGTH (src, src_end)) > 0)
7404 c = STRING_CHAR_ADVANCE_NO_UNIFY (src), pos += bytes;
7405 else
7406 c = BYTE8_TO_CHAR (*src), src++, pos++;
7407 }
7408 else
7409 c = STRING_CHAR_ADVANCE_NO_UNIFY (src), pos++;
7410 if ((c == '\r') && (coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
7411 c = '\n';
7412 if (! EQ (eol_type, Qunix))
7413 {
7414 if (c == '\n')
7415 {
7416 if (EQ (eol_type, Qdos))
7417 *buf++ = '\r';
7418 else
7419 c = '\r';
7420 }
7421 }
7422
7423 trans = Qnil;
7424 LOOKUP_TRANSLATION_TABLE (translation_table, c, trans);
7425 if (NILP (trans))
7426 *buf++ = c;
7427 else
7428 {
7429 int from_nchars = 1, to_nchars = 1;
7430 int *lookup_buf_end;
7431 const unsigned char *p = src;
7432 int i;
7433
7434 lookup_buf[0] = c;
7435 for (i = 1; i < max_lookup && p < src_end; i++)
7436 lookup_buf[i] = STRING_CHAR_ADVANCE (p);
7437 lookup_buf_end = lookup_buf + i;
7438 trans = get_translation (trans, lookup_buf, lookup_buf_end);
7439 if (INTEGERP (trans))
7440 c = XINT (trans);
7441 else if (CONSP (trans))
7442 {
7443 from_nchars = ASIZE (XCAR (trans));
7444 trans = XCDR (trans);
7445 if (INTEGERP (trans))
7446 c = XINT (trans);
7447 else
7448 {
7449 to_nchars = ASIZE (trans);
7450 if (buf + to_nchars > buf_end)
7451 break;
7452 c = XINT (AREF (trans, 0));
7453 }
7454 }
7455 else
7456 break;
7457 *buf++ = c;
7458 for (i = 1; i < to_nchars; i++)
7459 *buf++ = XINT (AREF (trans, i));
7460 for (i = 1; i < from_nchars; i++, pos++)
7461 src += MULTIBYTE_LENGTH_NO_CHECK (src);
7462 }
7463 }
7464
7465 coding->consumed = src - coding->source;
7466 coding->consumed_char = pos - coding->src_pos;
7467 coding->charbuf_used = buf - coding->charbuf;
7468 coding->chars_at_source = 0;
7469 }
7470
7471
7472 /* Encode the text at CODING->src_object into CODING->dst_object.
7473 CODING->src_object is a buffer or a string.
7474 CODING->dst_object is a buffer or nil.
7475
7476 If CODING->src_object is a buffer, it must be the current buffer.
7477 In this case, if CODING->src_pos is positive, it is a position of
7478 the source text in the buffer, otherwise. the source text is in the
7479 gap area of the buffer, and coding->src_pos specifies the offset of
7480 the text from GPT (which must be the same as PT). If this is the
7481 same buffer as CODING->dst_object, CODING->src_pos must be
7482 negative and CODING should not have `pre-write-conversion'.
7483
7484 If CODING->src_object is a string, CODING should not have
7485 `pre-write-conversion'.
7486
7487 If CODING->dst_object is a buffer, the encoded data is inserted at
7488 the current point of that buffer.
7489
7490 If CODING->dst_object is nil, the encoded data is placed at the
7491 memory area specified by CODING->destination. */
7492
7493 static int
7494 encode_coding (coding)
7495 struct coding_system *coding;
7496 {
7497 Lisp_Object attrs;
7498 Lisp_Object translation_table;
7499 int max_lookup;
7500
7501 attrs = CODING_ID_ATTRS (coding->id);
7502 if (coding->encoder == encode_coding_raw_text)
7503 translation_table = Qnil, max_lookup = 0;
7504 else
7505 translation_table = get_translation_table (attrs, 1, &max_lookup);
7506
7507 if (BUFFERP (coding->dst_object))
7508 {
7509 set_buffer_internal (XBUFFER (coding->dst_object));
7510 coding->dst_multibyte
7511 = ! NILP (current_buffer->enable_multibyte_characters);
7512 }
7513
7514 coding->consumed = coding->consumed_char = 0;
7515 coding->produced = coding->produced_char = 0;
7516 record_conversion_result (coding, CODING_RESULT_SUCCESS);
7517 coding->errors = 0;
7518
7519 ALLOC_CONVERSION_WORK_AREA (coding);
7520
7521 do {
7522 coding_set_source (coding);
7523 consume_chars (coding, translation_table, max_lookup);
7524 coding_set_destination (coding);
7525 (*(coding->encoder)) (coding);
7526 } while (coding->consumed_char < coding->src_chars);
7527
7528 if (BUFFERP (coding->dst_object) && coding->produced_char > 0)
7529 insert_from_gap (coding->produced_char, coding->produced);
7530
7531 return (coding->result);
7532 }
7533
7534
7535 /* Name (or base name) of work buffer for code conversion. */
7536 static Lisp_Object Vcode_conversion_workbuf_name;
7537
7538 /* A working buffer used by the top level conversion. Once it is
7539 created, it is never destroyed. It has the name
7540 Vcode_conversion_workbuf_name. The other working buffers are
7541 destroyed after the use is finished, and their names are modified
7542 versions of Vcode_conversion_workbuf_name. */
7543 static Lisp_Object Vcode_conversion_reused_workbuf;
7544
7545 /* 1 iff Vcode_conversion_reused_workbuf is already in use. */
7546 static int reused_workbuf_in_use;
7547
7548
7549 /* Return a working buffer of code convesion. MULTIBYTE specifies the
7550 multibyteness of returning buffer. */
7551
7552 static Lisp_Object
7553 make_conversion_work_buffer (multibyte)
7554 int multibyte;
7555 {
7556 Lisp_Object name, workbuf;
7557 struct buffer *current;
7558
7559 if (reused_workbuf_in_use++)
7560 {
7561 name = Fgenerate_new_buffer_name (Vcode_conversion_workbuf_name, Qnil);
7562 workbuf = Fget_buffer_create (name);
7563 }
7564 else
7565 {
7566 if (NILP (Fbuffer_live_p (Vcode_conversion_reused_workbuf)))
7567 Vcode_conversion_reused_workbuf
7568 = Fget_buffer_create (Vcode_conversion_workbuf_name);
7569 workbuf = Vcode_conversion_reused_workbuf;
7570 }
7571 current = current_buffer;
7572 set_buffer_internal (XBUFFER (workbuf));
7573 /* We can't allow modification hooks to run in the work buffer. For
7574 instance, directory_files_internal assumes that file decoding
7575 doesn't compile new regexps. */
7576 Fset (Fmake_local_variable (Qinhibit_modification_hooks), Qt);
7577 Ferase_buffer ();
7578 current_buffer->undo_list = Qt;
7579 current_buffer->enable_multibyte_characters = multibyte ? Qt : Qnil;
7580 set_buffer_internal (current);
7581 return workbuf;
7582 }
7583
7584
7585 static Lisp_Object
7586 code_conversion_restore (arg)
7587 Lisp_Object arg;
7588 {
7589 Lisp_Object current, workbuf;
7590 struct gcpro gcpro1;
7591
7592 GCPRO1 (arg);
7593 current = XCAR (arg);
7594 workbuf = XCDR (arg);
7595 if (! NILP (workbuf))
7596 {
7597 if (EQ (workbuf, Vcode_conversion_reused_workbuf))
7598 reused_workbuf_in_use = 0;
7599 else if (! NILP (Fbuffer_live_p (workbuf)))
7600 Fkill_buffer (workbuf);
7601 }
7602 set_buffer_internal (XBUFFER (current));
7603 UNGCPRO;
7604 return Qnil;
7605 }
7606
7607 Lisp_Object
7608 code_conversion_save (with_work_buf, multibyte)
7609 int with_work_buf, multibyte;
7610 {
7611 Lisp_Object workbuf = Qnil;
7612
7613 if (with_work_buf)
7614 workbuf = make_conversion_work_buffer (multibyte);
7615 record_unwind_protect (code_conversion_restore,
7616 Fcons (Fcurrent_buffer (), workbuf));
7617 return workbuf;
7618 }
7619
7620 int
7621 decode_coding_gap (coding, chars, bytes)
7622 struct coding_system *coding;
7623 EMACS_INT chars, bytes;
7624 {
7625 int count = specpdl_ptr - specpdl;
7626 Lisp_Object attrs;
7627
7628 code_conversion_save (0, 0);
7629
7630 coding->src_object = Fcurrent_buffer ();
7631 coding->src_chars = chars;
7632 coding->src_bytes = bytes;
7633 coding->src_pos = -chars;
7634 coding->src_pos_byte = -bytes;
7635 coding->src_multibyte = chars < bytes;
7636 coding->dst_object = coding->src_object;
7637 coding->dst_pos = PT;
7638 coding->dst_pos_byte = PT_BYTE;
7639 coding->dst_multibyte = ! NILP (current_buffer->enable_multibyte_characters);
7640
7641 if (CODING_REQUIRE_DETECTION (coding))
7642 detect_coding (coding);
7643
7644 coding->mode |= CODING_MODE_LAST_BLOCK;
7645 current_buffer->text->inhibit_shrinking = 1;
7646 decode_coding (coding);
7647 current_buffer->text->inhibit_shrinking = 0;
7648
7649 attrs = CODING_ID_ATTRS (coding->id);
7650 if (! NILP (CODING_ATTR_POST_READ (attrs)))
7651 {
7652 EMACS_INT prev_Z = Z, prev_Z_BYTE = Z_BYTE;
7653 Lisp_Object val;
7654
7655 TEMP_SET_PT_BOTH (coding->dst_pos, coding->dst_pos_byte);
7656 val = call1 (CODING_ATTR_POST_READ (attrs),
7657 make_number (coding->produced_char));
7658 CHECK_NATNUM (val);
7659 coding->produced_char += Z - prev_Z;
7660 coding->produced += Z_BYTE - prev_Z_BYTE;
7661 }
7662
7663 unbind_to (count, Qnil);
7664 return coding->result;
7665 }
7666
7667 int
7668 encode_coding_gap (coding, chars, bytes)
7669 struct coding_system *coding;
7670 EMACS_INT chars, bytes;
7671 {
7672 int count = specpdl_ptr - specpdl;
7673
7674 code_conversion_save (0, 0);
7675
7676 coding->src_object = Fcurrent_buffer ();
7677 coding->src_chars = chars;
7678 coding->src_bytes = bytes;
7679 coding->src_pos = -chars;
7680 coding->src_pos_byte = -bytes;
7681 coding->src_multibyte = chars < bytes;
7682 coding->dst_object = coding->src_object;
7683 coding->dst_pos = PT;
7684 coding->dst_pos_byte = PT_BYTE;
7685
7686 encode_coding (coding);
7687
7688 unbind_to (count, Qnil);
7689 return coding->result;
7690 }
7691
7692
7693 /* Decode the text in the range FROM/FROM_BYTE and TO/TO_BYTE in
7694 SRC_OBJECT into DST_OBJECT by coding context CODING.
7695
7696 SRC_OBJECT is a buffer, a string, or Qnil.
7697
7698 If it is a buffer, the text is at point of the buffer. FROM and TO
7699 are positions in the buffer.
7700
7701 If it is a string, the text is at the beginning of the string.
7702 FROM and TO are indices to the string.
7703
7704 If it is nil, the text is at coding->source. FROM and TO are
7705 indices to coding->source.
7706
7707 DST_OBJECT is a buffer, Qt, or Qnil.
7708
7709 If it is a buffer, the decoded text is inserted at point of the
7710 buffer. If the buffer is the same as SRC_OBJECT, the source text
7711 is deleted.
7712
7713 If it is Qt, a string is made from the decoded text, and
7714 set in CODING->dst_object.
7715
7716 If it is Qnil, the decoded text is stored at CODING->destination.
7717 The caller must allocate CODING->dst_bytes bytes at
7718 CODING->destination by xmalloc. If the decoded text is longer than
7719 CODING->dst_bytes, CODING->destination is relocated by xrealloc.
7720 */
7721
7722 void
7723 decode_coding_object (coding, src_object, from, from_byte, to, to_byte,
7724 dst_object)
7725 struct coding_system *coding;
7726 Lisp_Object src_object;
7727 EMACS_INT from, from_byte, to, to_byte;
7728 Lisp_Object dst_object;
7729 {
7730 int count = specpdl_ptr - specpdl;
7731 unsigned char *destination;
7732 EMACS_INT dst_bytes;
7733 EMACS_INT chars = to - from;
7734 EMACS_INT bytes = to_byte - from_byte;
7735 Lisp_Object attrs;
7736 int saved_pt = -1, saved_pt_byte;
7737 int need_marker_adjustment = 0;
7738 Lisp_Object old_deactivate_mark;
7739
7740 old_deactivate_mark = Vdeactivate_mark;
7741
7742 if (NILP (dst_object))
7743 {
7744 destination = coding->destination;
7745 dst_bytes = coding->dst_bytes;
7746 }
7747
7748 coding->src_object = src_object;
7749 coding->src_chars = chars;
7750 coding->src_bytes = bytes;
7751 coding->src_multibyte = chars < bytes;
7752
7753 if (STRINGP (src_object))
7754 {
7755 coding->src_pos = from;
7756 coding->src_pos_byte = from_byte;
7757 }
7758 else if (BUFFERP (src_object))
7759 {
7760 set_buffer_internal (XBUFFER (src_object));
7761 if (from != GPT)
7762 move_gap_both (from, from_byte);
7763 if (EQ (src_object, dst_object))
7764 {
7765 struct Lisp_Marker *tail;
7766
7767 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
7768 {
7769 tail->need_adjustment
7770 = tail->charpos == (tail->insertion_type ? from : to);
7771 need_marker_adjustment |= tail->need_adjustment;
7772 }
7773 saved_pt = PT, saved_pt_byte = PT_BYTE;
7774 TEMP_SET_PT_BOTH (from, from_byte);
7775 current_buffer->text->inhibit_shrinking = 1;
7776 del_range_both (from, from_byte, to, to_byte, 1);
7777 coding->src_pos = -chars;
7778 coding->src_pos_byte = -bytes;
7779 }
7780 else
7781 {
7782 coding->src_pos = from;
7783 coding->src_pos_byte = from_byte;
7784 }
7785 }
7786
7787 if (CODING_REQUIRE_DETECTION (coding))
7788 detect_coding (coding);
7789 attrs = CODING_ID_ATTRS (coding->id);
7790
7791 if (EQ (dst_object, Qt)
7792 || (! NILP (CODING_ATTR_POST_READ (attrs))
7793 && NILP (dst_object)))
7794 {
7795 coding->dst_multibyte = !CODING_FOR_UNIBYTE (coding);
7796 coding->dst_object = code_conversion_save (1, coding->dst_multibyte);
7797 coding->dst_pos = BEG;
7798 coding->dst_pos_byte = BEG_BYTE;
7799 }
7800 else if (BUFFERP (dst_object))
7801 {
7802 code_conversion_save (0, 0);
7803 coding->dst_object = dst_object;
7804 coding->dst_pos = BUF_PT (XBUFFER (dst_object));
7805 coding->dst_pos_byte = BUF_PT_BYTE (XBUFFER (dst_object));
7806 coding->dst_multibyte
7807 = ! NILP (XBUFFER (dst_object)->enable_multibyte_characters);
7808 }
7809 else
7810 {
7811 code_conversion_save (0, 0);
7812 coding->dst_object = Qnil;
7813 /* Most callers presume this will return a multibyte result, and they
7814 won't use `binary' or `raw-text' anyway, so let's not worry about
7815 CODING_FOR_UNIBYTE. */
7816 coding->dst_multibyte = 1;
7817 }
7818
7819 decode_coding (coding);
7820
7821 if (BUFFERP (coding->dst_object))
7822 set_buffer_internal (XBUFFER (coding->dst_object));
7823
7824 if (! NILP (CODING_ATTR_POST_READ (attrs)))
7825 {
7826 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
7827 EMACS_INT prev_Z = Z, prev_Z_BYTE = Z_BYTE;
7828 Lisp_Object val;
7829
7830 TEMP_SET_PT_BOTH (coding->dst_pos, coding->dst_pos_byte);
7831 GCPRO5 (coding->src_object, coding->dst_object, src_object, dst_object,
7832 old_deactivate_mark);
7833 val = safe_call1 (CODING_ATTR_POST_READ (attrs),
7834 make_number (coding->produced_char));
7835 UNGCPRO;
7836 CHECK_NATNUM (val);
7837 coding->produced_char += Z - prev_Z;
7838 coding->produced += Z_BYTE - prev_Z_BYTE;
7839 }
7840
7841 if (EQ (dst_object, Qt))
7842 {
7843 coding->dst_object = Fbuffer_string ();
7844 }
7845 else if (NILP (dst_object) && BUFFERP (coding->dst_object))
7846 {
7847 set_buffer_internal (XBUFFER (coding->dst_object));
7848 if (dst_bytes < coding->produced)
7849 {
7850 destination = xrealloc (destination, coding->produced);
7851 if (! destination)
7852 {
7853 record_conversion_result (coding,
7854 CODING_RESULT_INSUFFICIENT_DST);
7855 unbind_to (count, Qnil);
7856 return;
7857 }
7858 if (BEGV < GPT && GPT < BEGV + coding->produced_char)
7859 move_gap_both (BEGV, BEGV_BYTE);
7860 bcopy (BEGV_ADDR, destination, coding->produced);
7861 coding->destination = destination;
7862 }
7863 }
7864
7865 if (saved_pt >= 0)
7866 {
7867 /* This is the case of:
7868 (BUFFERP (src_object) && EQ (src_object, dst_object))
7869 As we have moved PT while replacing the original buffer
7870 contents, we must recover it now. */
7871 set_buffer_internal (XBUFFER (src_object));
7872 current_buffer->text->inhibit_shrinking = 0;
7873 if (saved_pt < from)
7874 TEMP_SET_PT_BOTH (saved_pt, saved_pt_byte);
7875 else if (saved_pt < from + chars)
7876 TEMP_SET_PT_BOTH (from, from_byte);
7877 else if (! NILP (current_buffer->enable_multibyte_characters))
7878 TEMP_SET_PT_BOTH (saved_pt + (coding->produced_char - chars),
7879 saved_pt_byte + (coding->produced - bytes));
7880 else
7881 TEMP_SET_PT_BOTH (saved_pt + (coding->produced - bytes),
7882 saved_pt_byte + (coding->produced - bytes));
7883
7884 if (need_marker_adjustment)
7885 {
7886 struct Lisp_Marker *tail;
7887
7888 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
7889 if (tail->need_adjustment)
7890 {
7891 tail->need_adjustment = 0;
7892 if (tail->insertion_type)
7893 {
7894 tail->bytepos = from_byte;
7895 tail->charpos = from;
7896 }
7897 else
7898 {
7899 tail->bytepos = from_byte + coding->produced;
7900 tail->charpos
7901 = (NILP (current_buffer->enable_multibyte_characters)
7902 ? tail->bytepos : from + coding->produced_char);
7903 }
7904 }
7905 }
7906 }
7907
7908 Vdeactivate_mark = old_deactivate_mark;
7909 unbind_to (count, coding->dst_object);
7910 }
7911
7912
7913 void
7914 encode_coding_object (coding, src_object, from, from_byte, to, to_byte,
7915 dst_object)
7916 struct coding_system *coding;
7917 Lisp_Object src_object;
7918 EMACS_INT from, from_byte, to, to_byte;
7919 Lisp_Object dst_object;
7920 {
7921 int count = specpdl_ptr - specpdl;
7922 EMACS_INT chars = to - from;
7923 EMACS_INT bytes = to_byte - from_byte;
7924 Lisp_Object attrs;
7925 int saved_pt = -1, saved_pt_byte;
7926 int need_marker_adjustment = 0;
7927 int kill_src_buffer = 0;
7928 Lisp_Object old_deactivate_mark;
7929
7930 old_deactivate_mark = Vdeactivate_mark;
7931
7932 coding->src_object = src_object;
7933 coding->src_chars = chars;
7934 coding->src_bytes = bytes;
7935 coding->src_multibyte = chars < bytes;
7936
7937 attrs = CODING_ID_ATTRS (coding->id);
7938
7939 if (EQ (src_object, dst_object))
7940 {
7941 struct Lisp_Marker *tail;
7942
7943 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
7944 {
7945 tail->need_adjustment
7946 = tail->charpos == (tail->insertion_type ? from : to);
7947 need_marker_adjustment |= tail->need_adjustment;
7948 }
7949 }
7950
7951 if (! NILP (CODING_ATTR_PRE_WRITE (attrs)))
7952 {
7953 coding->src_object = code_conversion_save (1, coding->src_multibyte);
7954 set_buffer_internal (XBUFFER (coding->src_object));
7955 if (STRINGP (src_object))
7956 insert_from_string (src_object, from, from_byte, chars, bytes, 0);
7957 else if (BUFFERP (src_object))
7958 insert_from_buffer (XBUFFER (src_object), from, chars, 0);
7959 else
7960 insert_1_both (coding->source + from, chars, bytes, 0, 0, 0);
7961
7962 if (EQ (src_object, dst_object))
7963 {
7964 set_buffer_internal (XBUFFER (src_object));
7965 saved_pt = PT, saved_pt_byte = PT_BYTE;
7966 del_range_both (from, from_byte, to, to_byte, 1);
7967 set_buffer_internal (XBUFFER (coding->src_object));
7968 }
7969
7970 {
7971 Lisp_Object args[3];
7972 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
7973
7974 GCPRO5 (coding->src_object, coding->dst_object, src_object, dst_object,
7975 old_deactivate_mark);
7976 args[0] = CODING_ATTR_PRE_WRITE (attrs);
7977 args[1] = make_number (BEG);
7978 args[2] = make_number (Z);
7979 safe_call (3, args);
7980 UNGCPRO;
7981 }
7982 if (XBUFFER (coding->src_object) != current_buffer)
7983 kill_src_buffer = 1;
7984 coding->src_object = Fcurrent_buffer ();
7985 if (BEG != GPT)
7986 move_gap_both (BEG, BEG_BYTE);
7987 coding->src_chars = Z - BEG;
7988 coding->src_bytes = Z_BYTE - BEG_BYTE;
7989 coding->src_pos = BEG;
7990 coding->src_pos_byte = BEG_BYTE;
7991 coding->src_multibyte = Z < Z_BYTE;
7992 }
7993 else if (STRINGP (src_object))
7994 {
7995 code_conversion_save (0, 0);
7996 coding->src_pos = from;
7997 coding->src_pos_byte = from_byte;
7998 }
7999 else if (BUFFERP (src_object))
8000 {
8001 code_conversion_save (0, 0);
8002 set_buffer_internal (XBUFFER (src_object));
8003 if (EQ (src_object, dst_object))
8004 {
8005 saved_pt = PT, saved_pt_byte = PT_BYTE;
8006 coding->src_object = del_range_1 (from, to, 1, 1);
8007 coding->src_pos = 0;
8008 coding->src_pos_byte = 0;
8009 }
8010 else
8011 {
8012 if (from < GPT && to >= GPT)
8013 move_gap_both (from, from_byte);
8014 coding->src_pos = from;
8015 coding->src_pos_byte = from_byte;
8016 }
8017 }
8018 else
8019 code_conversion_save (0, 0);
8020
8021 if (BUFFERP (dst_object))
8022 {
8023 coding->dst_object = dst_object;
8024 if (EQ (src_object, dst_object))
8025 {
8026 coding->dst_pos = from;
8027 coding->dst_pos_byte = from_byte;
8028 }
8029 else
8030 {
8031 struct buffer *current = current_buffer;
8032
8033 set_buffer_temp (XBUFFER (dst_object));
8034 coding->dst_pos = PT;
8035 coding->dst_pos_byte = PT_BYTE;
8036 move_gap_both (coding->dst_pos, coding->dst_pos_byte);
8037 set_buffer_temp (current);
8038 }
8039 coding->dst_multibyte
8040 = ! NILP (XBUFFER (dst_object)->enable_multibyte_characters);
8041 }
8042 else if (EQ (dst_object, Qt))
8043 {
8044 coding->dst_object = Qnil;
8045 coding->dst_bytes = coding->src_chars;
8046 if (coding->dst_bytes == 0)
8047 coding->dst_bytes = 1;
8048 coding->destination = (unsigned char *) xmalloc (coding->dst_bytes);
8049 coding->dst_multibyte = 0;
8050 }
8051 else
8052 {
8053 coding->dst_object = Qnil;
8054 coding->dst_multibyte = 0;
8055 }
8056
8057 encode_coding (coding);
8058
8059 if (EQ (dst_object, Qt))
8060 {
8061 if (BUFFERP (coding->dst_object))
8062 coding->dst_object = Fbuffer_string ();
8063 else
8064 {
8065 coding->dst_object
8066 = make_unibyte_string ((char *) coding->destination,
8067 coding->produced);
8068 xfree (coding->destination);
8069 }
8070 }
8071
8072 if (saved_pt >= 0)
8073 {
8074 /* This is the case of:
8075 (BUFFERP (src_object) && EQ (src_object, dst_object))
8076 As we have moved PT while replacing the original buffer
8077 contents, we must recover it now. */
8078 set_buffer_internal (XBUFFER (src_object));
8079 if (saved_pt < from)
8080 TEMP_SET_PT_BOTH (saved_pt, saved_pt_byte);
8081 else if (saved_pt < from + chars)
8082 TEMP_SET_PT_BOTH (from, from_byte);
8083 else if (! NILP (current_buffer->enable_multibyte_characters))
8084 TEMP_SET_PT_BOTH (saved_pt + (coding->produced_char - chars),
8085 saved_pt_byte + (coding->produced - bytes));
8086 else
8087 TEMP_SET_PT_BOTH (saved_pt + (coding->produced - bytes),
8088 saved_pt_byte + (coding->produced - bytes));
8089
8090 if (need_marker_adjustment)
8091 {
8092 struct Lisp_Marker *tail;
8093
8094 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
8095 if (tail->need_adjustment)
8096 {
8097 tail->need_adjustment = 0;
8098 if (tail->insertion_type)
8099 {
8100 tail->bytepos = from_byte;
8101 tail->charpos = from;
8102 }
8103 else
8104 {
8105 tail->bytepos = from_byte + coding->produced;
8106 tail->charpos
8107 = (NILP (current_buffer->enable_multibyte_characters)
8108 ? tail->bytepos : from + coding->produced_char);
8109 }
8110 }
8111 }
8112 }
8113
8114 if (kill_src_buffer)
8115 Fkill_buffer (coding->src_object);
8116
8117 Vdeactivate_mark = old_deactivate_mark;
8118 unbind_to (count, Qnil);
8119 }
8120
8121
8122 Lisp_Object
8123 preferred_coding_system ()
8124 {
8125 int id = coding_categories[coding_priorities[0]].id;
8126
8127 return CODING_ID_NAME (id);
8128 }
8129
8130 \f
8131 #ifdef emacs
8132 /*** 8. Emacs Lisp library functions ***/
8133
8134 DEFUN ("coding-system-p", Fcoding_system_p, Scoding_system_p, 1, 1, 0,
8135 doc: /* Return t if OBJECT is nil or a coding-system.
8136 See the documentation of `define-coding-system' for information
8137 about coding-system objects. */)
8138 (object)
8139 Lisp_Object object;
8140 {
8141 if (NILP (object)
8142 || CODING_SYSTEM_ID (object) >= 0)
8143 return Qt;
8144 if (! SYMBOLP (object)
8145 || NILP (Fget (object, Qcoding_system_define_form)))
8146 return Qnil;
8147 return Qt;
8148 }
8149
8150 DEFUN ("read-non-nil-coding-system", Fread_non_nil_coding_system,
8151 Sread_non_nil_coding_system, 1, 1, 0,
8152 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT. */)
8153 (prompt)
8154 Lisp_Object prompt;
8155 {
8156 Lisp_Object val;
8157 do
8158 {
8159 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
8160 Qt, Qnil, Qcoding_system_history, Qnil, Qnil);
8161 }
8162 while (SCHARS (val) == 0);
8163 return (Fintern (val, Qnil));
8164 }
8165
8166 DEFUN ("read-coding-system", Fread_coding_system, Sread_coding_system, 1, 2, 0,
8167 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT.
8168 If the user enters null input, return second argument DEFAULT-CODING-SYSTEM.
8169 Ignores case when completing coding systems (all Emacs coding systems
8170 are lower-case). */)
8171 (prompt, default_coding_system)
8172 Lisp_Object prompt, default_coding_system;
8173 {
8174 Lisp_Object val;
8175 int count = SPECPDL_INDEX ();
8176
8177 if (SYMBOLP (default_coding_system))
8178 default_coding_system = SYMBOL_NAME (default_coding_system);
8179 specbind (Qcompletion_ignore_case, Qt);
8180 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
8181 Qt, Qnil, Qcoding_system_history,
8182 default_coding_system, Qnil);
8183 unbind_to (count, Qnil);
8184 return (SCHARS (val) == 0 ? Qnil : Fintern (val, Qnil));
8185 }
8186
8187 DEFUN ("check-coding-system", Fcheck_coding_system, Scheck_coding_system,
8188 1, 1, 0,
8189 doc: /* Check validity of CODING-SYSTEM.
8190 If valid, return CODING-SYSTEM, else signal a `coding-system-error' error.
8191 It is valid if it is nil or a symbol defined as a coding system by the
8192 function `define-coding-system'. */)
8193 (coding_system)
8194 Lisp_Object coding_system;
8195 {
8196 Lisp_Object define_form;
8197
8198 define_form = Fget (coding_system, Qcoding_system_define_form);
8199 if (! NILP (define_form))
8200 {
8201 Fput (coding_system, Qcoding_system_define_form, Qnil);
8202 safe_eval (define_form);
8203 }
8204 if (!NILP (Fcoding_system_p (coding_system)))
8205 return coding_system;
8206 xsignal1 (Qcoding_system_error, coding_system);
8207 }
8208
8209 \f
8210 /* Detect how the bytes at SRC of length SRC_BYTES are encoded. If
8211 HIGHEST is nonzero, return the coding system of the highest
8212 priority among the detected coding systems. Otherwize return a
8213 list of detected coding systems sorted by their priorities. If
8214 MULTIBYTEP is nonzero, it is assumed that the bytes are in correct
8215 multibyte form but contains only ASCII and eight-bit chars.
8216 Otherwise, the bytes are raw bytes.
8217
8218 CODING-SYSTEM controls the detection as below:
8219
8220 If it is nil, detect both text-format and eol-format. If the
8221 text-format part of CODING-SYSTEM is already specified
8222 (e.g. `iso-latin-1'), detect only eol-format. If the eol-format
8223 part of CODING-SYSTEM is already specified (e.g. `undecided-unix'),
8224 detect only text-format. */
8225
8226 Lisp_Object
8227 detect_coding_system (src, src_chars, src_bytes, highest, multibytep,
8228 coding_system)
8229 const unsigned char *src;
8230 EMACS_INT src_chars, src_bytes;
8231 int highest;
8232 int multibytep;
8233 Lisp_Object coding_system;
8234 {
8235 const unsigned char *src_end = src + src_bytes;
8236 Lisp_Object attrs, eol_type;
8237 Lisp_Object val = Qnil;
8238 struct coding_system coding;
8239 int id;
8240 struct coding_detection_info detect_info;
8241 enum coding_category base_category;
8242 int null_byte_found = 0, eight_bit_found = 0;
8243
8244 if (NILP (coding_system))
8245 coding_system = Qundecided;
8246 setup_coding_system (coding_system, &coding);
8247 attrs = CODING_ID_ATTRS (coding.id);
8248 eol_type = CODING_ID_EOL_TYPE (coding.id);
8249 coding_system = CODING_ATTR_BASE_NAME (attrs);
8250
8251 coding.source = src;
8252 coding.src_chars = src_chars;
8253 coding.src_bytes = src_bytes;
8254 coding.src_multibyte = multibytep;
8255 coding.consumed = 0;
8256 coding.mode |= CODING_MODE_LAST_BLOCK;
8257 coding.head_ascii = 0;
8258
8259 detect_info.checked = detect_info.found = detect_info.rejected = 0;
8260
8261 /* At first, detect text-format if necessary. */
8262 base_category = XINT (CODING_ATTR_CATEGORY (attrs));
8263 if (base_category == coding_category_undecided)
8264 {
8265 enum coding_category category;
8266 struct coding_system *this;
8267 int c, i;
8268
8269 /* Skip all ASCII bytes except for a few ISO2022 controls. */
8270 for (; src < src_end; src++)
8271 {
8272 c = *src;
8273 if (c & 0x80)
8274 {
8275 eight_bit_found = 1;
8276 if (null_byte_found)
8277 break;
8278 }
8279 else if (c < 0x20)
8280 {
8281 if ((c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
8282 && ! inhibit_iso_escape_detection
8283 && ! detect_info.checked)
8284 {
8285 if (detect_coding_iso_2022 (&coding, &detect_info))
8286 {
8287 /* We have scanned the whole data. */
8288 if (! (detect_info.rejected & CATEGORY_MASK_ISO_7_ELSE))
8289 {
8290 /* We didn't find an 8-bit code. We may
8291 have found a null-byte, but it's very
8292 rare that a binary file confirm to
8293 ISO-2022. */
8294 src = src_end;
8295 coding.head_ascii = src - coding.source;
8296 }
8297 detect_info.rejected |= ~CATEGORY_MASK_ISO_ESCAPE;
8298 break;
8299 }
8300 }
8301 else if (! c && !inhibit_null_byte_detection)
8302 {
8303 null_byte_found = 1;
8304 if (eight_bit_found)
8305 break;
8306 }
8307 if (! eight_bit_found)
8308 coding.head_ascii++;
8309 }
8310 else if (! eight_bit_found)
8311 coding.head_ascii++;
8312 }
8313
8314 if (null_byte_found || eight_bit_found
8315 || coding.head_ascii < coding.src_bytes
8316 || detect_info.found)
8317 {
8318 if (coding.head_ascii == coding.src_bytes)
8319 /* As all bytes are 7-bit, we can ignore non-ISO-2022 codings. */
8320 for (i = 0; i < coding_category_raw_text; i++)
8321 {
8322 category = coding_priorities[i];
8323 this = coding_categories + category;
8324 if (detect_info.found & (1 << category))
8325 break;
8326 }
8327 else
8328 {
8329 if (null_byte_found)
8330 {
8331 detect_info.checked |= ~CATEGORY_MASK_UTF_16;
8332 detect_info.rejected |= ~CATEGORY_MASK_UTF_16;
8333 }
8334 for (i = 0; i < coding_category_raw_text; i++)
8335 {
8336 category = coding_priorities[i];
8337 this = coding_categories + category;
8338
8339 if (this->id < 0)
8340 {
8341 /* No coding system of this category is defined. */
8342 detect_info.rejected |= (1 << category);
8343 }
8344 else if (category >= coding_category_raw_text)
8345 continue;
8346 else if (detect_info.checked & (1 << category))
8347 {
8348 if (highest
8349 && (detect_info.found & (1 << category)))
8350 break;
8351 }
8352 else if ((*(this->detector)) (&coding, &detect_info)
8353 && highest
8354 && (detect_info.found & (1 << category)))
8355 {
8356 if (category == coding_category_utf_16_auto)
8357 {
8358 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
8359 category = coding_category_utf_16_le;
8360 else
8361 category = coding_category_utf_16_be;
8362 }
8363 break;
8364 }
8365 }
8366 }
8367 }
8368
8369 if ((detect_info.rejected & CATEGORY_MASK_ANY) == CATEGORY_MASK_ANY
8370 || null_byte_found)
8371 {
8372 detect_info.found = CATEGORY_MASK_RAW_TEXT;
8373 id = CODING_SYSTEM_ID (Qno_conversion);
8374 val = Fcons (make_number (id), Qnil);
8375 }
8376 else if (! detect_info.rejected && ! detect_info.found)
8377 {
8378 detect_info.found = CATEGORY_MASK_ANY;
8379 id = coding_categories[coding_category_undecided].id;
8380 val = Fcons (make_number (id), Qnil);
8381 }
8382 else if (highest)
8383 {
8384 if (detect_info.found)
8385 {
8386 detect_info.found = 1 << category;
8387 val = Fcons (make_number (this->id), Qnil);
8388 }
8389 else
8390 for (i = 0; i < coding_category_raw_text; i++)
8391 if (! (detect_info.rejected & (1 << coding_priorities[i])))
8392 {
8393 detect_info.found = 1 << coding_priorities[i];
8394 id = coding_categories[coding_priorities[i]].id;
8395 val = Fcons (make_number (id), Qnil);
8396 break;
8397 }
8398 }
8399 else
8400 {
8401 int mask = detect_info.rejected | detect_info.found;
8402 int found = 0;
8403
8404 for (i = coding_category_raw_text - 1; i >= 0; i--)
8405 {
8406 category = coding_priorities[i];
8407 if (! (mask & (1 << category)))
8408 {
8409 found |= 1 << category;
8410 id = coding_categories[category].id;
8411 if (id >= 0)
8412 val = Fcons (make_number (id), val);
8413 }
8414 }
8415 for (i = coding_category_raw_text - 1; i >= 0; i--)
8416 {
8417 category = coding_priorities[i];
8418 if (detect_info.found & (1 << category))
8419 {
8420 id = coding_categories[category].id;
8421 val = Fcons (make_number (id), val);
8422 }
8423 }
8424 detect_info.found |= found;
8425 }
8426 }
8427 else if (base_category == coding_category_utf_8_auto)
8428 {
8429 if (detect_coding_utf_8 (&coding, &detect_info))
8430 {
8431 struct coding_system *this;
8432
8433 if (detect_info.found & CATEGORY_MASK_UTF_8_SIG)
8434 this = coding_categories + coding_category_utf_8_sig;
8435 else
8436 this = coding_categories + coding_category_utf_8_nosig;
8437 val = Fcons (make_number (this->id), Qnil);
8438 }
8439 }
8440 else if (base_category == coding_category_utf_16_auto)
8441 {
8442 if (detect_coding_utf_16 (&coding, &detect_info))
8443 {
8444 struct coding_system *this;
8445
8446 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
8447 this = coding_categories + coding_category_utf_16_le;
8448 else if (detect_info.found & CATEGORY_MASK_UTF_16_BE)
8449 this = coding_categories + coding_category_utf_16_be;
8450 else if (detect_info.rejected & CATEGORY_MASK_UTF_16_LE_NOSIG)
8451 this = coding_categories + coding_category_utf_16_be_nosig;
8452 else
8453 this = coding_categories + coding_category_utf_16_le_nosig;
8454 val = Fcons (make_number (this->id), Qnil);
8455 }
8456 }
8457 else
8458 {
8459 detect_info.found = 1 << XINT (CODING_ATTR_CATEGORY (attrs));
8460 val = Fcons (make_number (coding.id), Qnil);
8461 }
8462
8463 /* Then, detect eol-format if necessary. */
8464 {
8465 int normal_eol = -1, utf_16_be_eol = -1, utf_16_le_eol = -1;
8466 Lisp_Object tail;
8467
8468 if (VECTORP (eol_type))
8469 {
8470 if (detect_info.found & ~CATEGORY_MASK_UTF_16)
8471 {
8472 if (null_byte_found)
8473 normal_eol = EOL_SEEN_LF;
8474 else
8475 normal_eol = detect_eol (coding.source, src_bytes,
8476 coding_category_raw_text);
8477 }
8478 if (detect_info.found & (CATEGORY_MASK_UTF_16_BE
8479 | CATEGORY_MASK_UTF_16_BE_NOSIG))
8480 utf_16_be_eol = detect_eol (coding.source, src_bytes,
8481 coding_category_utf_16_be);
8482 if (detect_info.found & (CATEGORY_MASK_UTF_16_LE
8483 | CATEGORY_MASK_UTF_16_LE_NOSIG))
8484 utf_16_le_eol = detect_eol (coding.source, src_bytes,
8485 coding_category_utf_16_le);
8486 }
8487 else
8488 {
8489 if (EQ (eol_type, Qunix))
8490 normal_eol = utf_16_be_eol = utf_16_le_eol = EOL_SEEN_LF;
8491 else if (EQ (eol_type, Qdos))
8492 normal_eol = utf_16_be_eol = utf_16_le_eol = EOL_SEEN_CRLF;
8493 else
8494 normal_eol = utf_16_be_eol = utf_16_le_eol = EOL_SEEN_CR;
8495 }
8496
8497 for (tail = val; CONSP (tail); tail = XCDR (tail))
8498 {
8499 enum coding_category category;
8500 int this_eol;
8501
8502 id = XINT (XCAR (tail));
8503 attrs = CODING_ID_ATTRS (id);
8504 category = XINT (CODING_ATTR_CATEGORY (attrs));
8505 eol_type = CODING_ID_EOL_TYPE (id);
8506 if (VECTORP (eol_type))
8507 {
8508 if (category == coding_category_utf_16_be
8509 || category == coding_category_utf_16_be_nosig)
8510 this_eol = utf_16_be_eol;
8511 else if (category == coding_category_utf_16_le
8512 || category == coding_category_utf_16_le_nosig)
8513 this_eol = utf_16_le_eol;
8514 else
8515 this_eol = normal_eol;
8516
8517 if (this_eol == EOL_SEEN_LF)
8518 XSETCAR (tail, AREF (eol_type, 0));
8519 else if (this_eol == EOL_SEEN_CRLF)
8520 XSETCAR (tail, AREF (eol_type, 1));
8521 else if (this_eol == EOL_SEEN_CR)
8522 XSETCAR (tail, AREF (eol_type, 2));
8523 else
8524 XSETCAR (tail, CODING_ID_NAME (id));
8525 }
8526 else
8527 XSETCAR (tail, CODING_ID_NAME (id));
8528 }
8529 }
8530
8531 return (highest ? (CONSP (val) ? XCAR (val) : Qnil) : val);
8532 }
8533
8534
8535 DEFUN ("detect-coding-region", Fdetect_coding_region, Sdetect_coding_region,
8536 2, 3, 0,
8537 doc: /* Detect coding system of the text in the region between START and END.
8538 Return a list of possible coding systems ordered by priority.
8539 The coding systems to try and their priorities follows what
8540 the function `coding-system-priority-list' (which see) returns.
8541
8542 If only ASCII characters are found (except for such ISO-2022 control
8543 characters as ESC), it returns a list of single element `undecided'
8544 or its subsidiary coding system according to a detected end-of-line
8545 format.
8546
8547 If optional argument HIGHEST is non-nil, return the coding system of
8548 highest priority. */)
8549 (start, end, highest)
8550 Lisp_Object start, end, highest;
8551 {
8552 int from, to;
8553 int from_byte, to_byte;
8554
8555 CHECK_NUMBER_COERCE_MARKER (start);
8556 CHECK_NUMBER_COERCE_MARKER (end);
8557
8558 validate_region (&start, &end);
8559 from = XINT (start), to = XINT (end);
8560 from_byte = CHAR_TO_BYTE (from);
8561 to_byte = CHAR_TO_BYTE (to);
8562
8563 if (from < GPT && to >= GPT)
8564 move_gap_both (to, to_byte);
8565
8566 return detect_coding_system (BYTE_POS_ADDR (from_byte),
8567 to - from, to_byte - from_byte,
8568 !NILP (highest),
8569 !NILP (current_buffer
8570 ->enable_multibyte_characters),
8571 Qnil);
8572 }
8573
8574 DEFUN ("detect-coding-string", Fdetect_coding_string, Sdetect_coding_string,
8575 1, 2, 0,
8576 doc: /* Detect coding system of the text in STRING.
8577 Return a list of possible coding systems ordered by priority.
8578 The coding systems to try and their priorities follows what
8579 the function `coding-system-priority-list' (which see) returns.
8580
8581 If only ASCII characters are found (except for such ISO-2022 control
8582 characters as ESC), it returns a list of single element `undecided'
8583 or its subsidiary coding system according to a detected end-of-line
8584 format.
8585
8586 If optional argument HIGHEST is non-nil, return the coding system of
8587 highest priority. */)
8588 (string, highest)
8589 Lisp_Object string, highest;
8590 {
8591 CHECK_STRING (string);
8592
8593 return detect_coding_system (SDATA (string),
8594 SCHARS (string), SBYTES (string),
8595 !NILP (highest), STRING_MULTIBYTE (string),
8596 Qnil);
8597 }
8598
8599
8600 static INLINE int
8601 char_encodable_p (c, attrs)
8602 int c;
8603 Lisp_Object attrs;
8604 {
8605 Lisp_Object tail;
8606 struct charset *charset;
8607 Lisp_Object translation_table;
8608
8609 translation_table = CODING_ATTR_TRANS_TBL (attrs);
8610 if (! NILP (translation_table))
8611 c = translate_char (translation_table, c);
8612 for (tail = CODING_ATTR_CHARSET_LIST (attrs);
8613 CONSP (tail); tail = XCDR (tail))
8614 {
8615 charset = CHARSET_FROM_ID (XINT (XCAR (tail)));
8616 if (CHAR_CHARSET_P (c, charset))
8617 break;
8618 }
8619 return (! NILP (tail));
8620 }
8621
8622
8623 /* Return a list of coding systems that safely encode the text between
8624 START and END. If EXCLUDE is non-nil, it is a list of coding
8625 systems not to check. The returned list doesn't contain any such
8626 coding systems. In any case, if the text contains only ASCII or is
8627 unibyte, return t. */
8628
8629 DEFUN ("find-coding-systems-region-internal",
8630 Ffind_coding_systems_region_internal,
8631 Sfind_coding_systems_region_internal, 2, 3, 0,
8632 doc: /* Internal use only. */)
8633 (start, end, exclude)
8634 Lisp_Object start, end, exclude;
8635 {
8636 Lisp_Object coding_attrs_list, safe_codings;
8637 EMACS_INT start_byte, end_byte;
8638 const unsigned char *p, *pbeg, *pend;
8639 int c;
8640 Lisp_Object tail, elt;
8641
8642 if (STRINGP (start))
8643 {
8644 if (!STRING_MULTIBYTE (start)
8645 || SCHARS (start) == SBYTES (start))
8646 return Qt;
8647 start_byte = 0;
8648 end_byte = SBYTES (start);
8649 }
8650 else
8651 {
8652 CHECK_NUMBER_COERCE_MARKER (start);
8653 CHECK_NUMBER_COERCE_MARKER (end);
8654 if (XINT (start) < BEG || XINT (end) > Z || XINT (start) > XINT (end))
8655 args_out_of_range (start, end);
8656 if (NILP (current_buffer->enable_multibyte_characters))
8657 return Qt;
8658 start_byte = CHAR_TO_BYTE (XINT (start));
8659 end_byte = CHAR_TO_BYTE (XINT (end));
8660 if (XINT (end) - XINT (start) == end_byte - start_byte)
8661 return Qt;
8662
8663 if (XINT (start) < GPT && XINT (end) > GPT)
8664 {
8665 if ((GPT - XINT (start)) < (XINT (end) - GPT))
8666 move_gap_both (XINT (start), start_byte);
8667 else
8668 move_gap_both (XINT (end), end_byte);
8669 }
8670 }
8671
8672 coding_attrs_list = Qnil;
8673 for (tail = Vcoding_system_list; CONSP (tail); tail = XCDR (tail))
8674 if (NILP (exclude)
8675 || NILP (Fmemq (XCAR (tail), exclude)))
8676 {
8677 Lisp_Object attrs;
8678
8679 attrs = AREF (CODING_SYSTEM_SPEC (XCAR (tail)), 0);
8680 if (EQ (XCAR (tail), CODING_ATTR_BASE_NAME (attrs))
8681 && ! EQ (CODING_ATTR_TYPE (attrs), Qundecided))
8682 {
8683 ASET (attrs, coding_attr_trans_tbl,
8684 get_translation_table (attrs, 1, NULL));
8685 coding_attrs_list = Fcons (attrs, coding_attrs_list);
8686 }
8687 }
8688
8689 if (STRINGP (start))
8690 p = pbeg = SDATA (start);
8691 else
8692 p = pbeg = BYTE_POS_ADDR (start_byte);
8693 pend = p + (end_byte - start_byte);
8694
8695 while (p < pend && ASCII_BYTE_P (*p)) p++;
8696 while (p < pend && ASCII_BYTE_P (*(pend - 1))) pend--;
8697
8698 while (p < pend)
8699 {
8700 if (ASCII_BYTE_P (*p))
8701 p++;
8702 else
8703 {
8704 c = STRING_CHAR_ADVANCE (p);
8705
8706 charset_map_loaded = 0;
8707 for (tail = coding_attrs_list; CONSP (tail);)
8708 {
8709 elt = XCAR (tail);
8710 if (NILP (elt))
8711 tail = XCDR (tail);
8712 else if (char_encodable_p (c, elt))
8713 tail = XCDR (tail);
8714 else if (CONSP (XCDR (tail)))
8715 {
8716 XSETCAR (tail, XCAR (XCDR (tail)));
8717 XSETCDR (tail, XCDR (XCDR (tail)));
8718 }
8719 else
8720 {
8721 XSETCAR (tail, Qnil);
8722 tail = XCDR (tail);
8723 }
8724 }
8725 if (charset_map_loaded)
8726 {
8727 EMACS_INT p_offset = p - pbeg, pend_offset = pend - pbeg;
8728
8729 if (STRINGP (start))
8730 pbeg = SDATA (start);
8731 else
8732 pbeg = BYTE_POS_ADDR (start_byte);
8733 p = pbeg + p_offset;
8734 pend = pbeg + pend_offset;
8735 }
8736 }
8737 }
8738
8739 safe_codings = list2 (Qraw_text, Qno_conversion);
8740 for (tail = coding_attrs_list; CONSP (tail); tail = XCDR (tail))
8741 if (! NILP (XCAR (tail)))
8742 safe_codings = Fcons (CODING_ATTR_BASE_NAME (XCAR (tail)), safe_codings);
8743
8744 return safe_codings;
8745 }
8746
8747
8748 DEFUN ("unencodable-char-position", Funencodable_char_position,
8749 Sunencodable_char_position, 3, 5, 0,
8750 doc: /*
8751 Return position of first un-encodable character in a region.
8752 START and END specify the region and CODING-SYSTEM specifies the
8753 encoding to check. Return nil if CODING-SYSTEM does encode the region.
8754
8755 If optional 4th argument COUNT is non-nil, it specifies at most how
8756 many un-encodable characters to search. In this case, the value is a
8757 list of positions.
8758
8759 If optional 5th argument STRING is non-nil, it is a string to search
8760 for un-encodable characters. In that case, START and END are indexes
8761 to the string. */)
8762 (start, end, coding_system, count, string)
8763 Lisp_Object start, end, coding_system, count, string;
8764 {
8765 int n;
8766 struct coding_system coding;
8767 Lisp_Object attrs, charset_list, translation_table;
8768 Lisp_Object positions;
8769 int from, to;
8770 const unsigned char *p, *stop, *pend;
8771 int ascii_compatible;
8772
8773 setup_coding_system (Fcheck_coding_system (coding_system), &coding);
8774 attrs = CODING_ID_ATTRS (coding.id);
8775 if (EQ (CODING_ATTR_TYPE (attrs), Qraw_text))
8776 return Qnil;
8777 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
8778 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
8779 translation_table = get_translation_table (attrs, 1, NULL);
8780
8781 if (NILP (string))
8782 {
8783 validate_region (&start, &end);
8784 from = XINT (start);
8785 to = XINT (end);
8786 if (NILP (current_buffer->enable_multibyte_characters)
8787 || (ascii_compatible
8788 && (to - from) == (CHAR_TO_BYTE (to) - (CHAR_TO_BYTE (from)))))
8789 return Qnil;
8790 p = CHAR_POS_ADDR (from);
8791 pend = CHAR_POS_ADDR (to);
8792 if (from < GPT && to >= GPT)
8793 stop = GPT_ADDR;
8794 else
8795 stop = pend;
8796 }
8797 else
8798 {
8799 CHECK_STRING (string);
8800 CHECK_NATNUM (start);
8801 CHECK_NATNUM (end);
8802 from = XINT (start);
8803 to = XINT (end);
8804 if (from > to
8805 || to > SCHARS (string))
8806 args_out_of_range_3 (string, start, end);
8807 if (! STRING_MULTIBYTE (string))
8808 return Qnil;
8809 p = SDATA (string) + string_char_to_byte (string, from);
8810 stop = pend = SDATA (string) + string_char_to_byte (string, to);
8811 if (ascii_compatible && (to - from) == (pend - p))
8812 return Qnil;
8813 }
8814
8815 if (NILP (count))
8816 n = 1;
8817 else
8818 {
8819 CHECK_NATNUM (count);
8820 n = XINT (count);
8821 }
8822
8823 positions = Qnil;
8824 while (1)
8825 {
8826 int c;
8827
8828 if (ascii_compatible)
8829 while (p < stop && ASCII_BYTE_P (*p))
8830 p++, from++;
8831 if (p >= stop)
8832 {
8833 if (p >= pend)
8834 break;
8835 stop = pend;
8836 p = GAP_END_ADDR;
8837 }
8838
8839 c = STRING_CHAR_ADVANCE (p);
8840 if (! (ASCII_CHAR_P (c) && ascii_compatible)
8841 && ! char_charset (translate_char (translation_table, c),
8842 charset_list, NULL))
8843 {
8844 positions = Fcons (make_number (from), positions);
8845 n--;
8846 if (n == 0)
8847 break;
8848 }
8849
8850 from++;
8851 }
8852
8853 return (NILP (count) ? Fcar (positions) : Fnreverse (positions));
8854 }
8855
8856
8857 DEFUN ("check-coding-systems-region", Fcheck_coding_systems_region,
8858 Scheck_coding_systems_region, 3, 3, 0,
8859 doc: /* Check if the region is encodable by coding systems.
8860
8861 START and END are buffer positions specifying the region.
8862 CODING-SYSTEM-LIST is a list of coding systems to check.
8863
8864 The value is an alist ((CODING-SYSTEM POS0 POS1 ...) ...), where
8865 CODING-SYSTEM is a member of CODING-SYSTEM-LIST and can't encode the
8866 whole region, POS0, POS1, ... are buffer positions where non-encodable
8867 characters are found.
8868
8869 If all coding systems in CODING-SYSTEM-LIST can encode the region, the
8870 value is nil.
8871
8872 START may be a string. In that case, check if the string is
8873 encodable, and the value contains indices to the string instead of
8874 buffer positions. END is ignored.
8875
8876 If the current buffer (or START if it is a string) is unibyte, the value
8877 is nil. */)
8878 (start, end, coding_system_list)
8879 Lisp_Object start, end, coding_system_list;
8880 {
8881 Lisp_Object list;
8882 EMACS_INT start_byte, end_byte;
8883 int pos;
8884 const unsigned char *p, *pbeg, *pend;
8885 int c;
8886 Lisp_Object tail, elt, attrs;
8887
8888 if (STRINGP (start))
8889 {
8890 if (!STRING_MULTIBYTE (start)
8891 || SCHARS (start) == SBYTES (start))
8892 return Qnil;
8893 start_byte = 0;
8894 end_byte = SBYTES (start);
8895 pos = 0;
8896 }
8897 else
8898 {
8899 CHECK_NUMBER_COERCE_MARKER (start);
8900 CHECK_NUMBER_COERCE_MARKER (end);
8901 if (XINT (start) < BEG || XINT (end) > Z || XINT (start) > XINT (end))
8902 args_out_of_range (start, end);
8903 if (NILP (current_buffer->enable_multibyte_characters))
8904 return Qnil;
8905 start_byte = CHAR_TO_BYTE (XINT (start));
8906 end_byte = CHAR_TO_BYTE (XINT (end));
8907 if (XINT (end) - XINT (start) == end_byte - start_byte)
8908 return Qnil;
8909
8910 if (XINT (start) < GPT && XINT (end) > GPT)
8911 {
8912 if ((GPT - XINT (start)) < (XINT (end) - GPT))
8913 move_gap_both (XINT (start), start_byte);
8914 else
8915 move_gap_both (XINT (end), end_byte);
8916 }
8917 pos = XINT (start);
8918 }
8919
8920 list = Qnil;
8921 for (tail = coding_system_list; CONSP (tail); tail = XCDR (tail))
8922 {
8923 elt = XCAR (tail);
8924 attrs = AREF (CODING_SYSTEM_SPEC (elt), 0);
8925 ASET (attrs, coding_attr_trans_tbl,
8926 get_translation_table (attrs, 1, NULL));
8927 list = Fcons (Fcons (elt, Fcons (attrs, Qnil)), list);
8928 }
8929
8930 if (STRINGP (start))
8931 p = pbeg = SDATA (start);
8932 else
8933 p = pbeg = BYTE_POS_ADDR (start_byte);
8934 pend = p + (end_byte - start_byte);
8935
8936 while (p < pend && ASCII_BYTE_P (*p)) p++, pos++;
8937 while (p < pend && ASCII_BYTE_P (*(pend - 1))) pend--;
8938
8939 while (p < pend)
8940 {
8941 if (ASCII_BYTE_P (*p))
8942 p++;
8943 else
8944 {
8945 c = STRING_CHAR_ADVANCE (p);
8946
8947 charset_map_loaded = 0;
8948 for (tail = list; CONSP (tail); tail = XCDR (tail))
8949 {
8950 elt = XCDR (XCAR (tail));
8951 if (! char_encodable_p (c, XCAR (elt)))
8952 XSETCDR (elt, Fcons (make_number (pos), XCDR (elt)));
8953 }
8954 if (charset_map_loaded)
8955 {
8956 EMACS_INT p_offset = p - pbeg, pend_offset = pend - pbeg;
8957
8958 if (STRINGP (start))
8959 pbeg = SDATA (start);
8960 else
8961 pbeg = BYTE_POS_ADDR (start_byte);
8962 p = pbeg + p_offset;
8963 pend = pbeg + pend_offset;
8964 }
8965 }
8966 pos++;
8967 }
8968
8969 tail = list;
8970 list = Qnil;
8971 for (; CONSP (tail); tail = XCDR (tail))
8972 {
8973 elt = XCAR (tail);
8974 if (CONSP (XCDR (XCDR (elt))))
8975 list = Fcons (Fcons (XCAR (elt), Fnreverse (XCDR (XCDR (elt)))),
8976 list);
8977 }
8978
8979 return list;
8980 }
8981
8982
8983 Lisp_Object
8984 code_convert_region (start, end, coding_system, dst_object, encodep, norecord)
8985 Lisp_Object start, end, coding_system, dst_object;
8986 int encodep, norecord;
8987 {
8988 struct coding_system coding;
8989 EMACS_INT from, from_byte, to, to_byte;
8990 Lisp_Object src_object;
8991
8992 CHECK_NUMBER_COERCE_MARKER (start);
8993 CHECK_NUMBER_COERCE_MARKER (end);
8994 if (NILP (coding_system))
8995 coding_system = Qno_conversion;
8996 else
8997 CHECK_CODING_SYSTEM (coding_system);
8998 src_object = Fcurrent_buffer ();
8999 if (NILP (dst_object))
9000 dst_object = src_object;
9001 else if (! EQ (dst_object, Qt))
9002 CHECK_BUFFER (dst_object);
9003
9004 validate_region (&start, &end);
9005 from = XFASTINT (start);
9006 from_byte = CHAR_TO_BYTE (from);
9007 to = XFASTINT (end);
9008 to_byte = CHAR_TO_BYTE (to);
9009
9010 setup_coding_system (coding_system, &coding);
9011 coding.mode |= CODING_MODE_LAST_BLOCK;
9012
9013 if (encodep)
9014 encode_coding_object (&coding, src_object, from, from_byte, to, to_byte,
9015 dst_object);
9016 else
9017 decode_coding_object (&coding, src_object, from, from_byte, to, to_byte,
9018 dst_object);
9019 if (! norecord)
9020 Vlast_coding_system_used = CODING_ID_NAME (coding.id);
9021
9022 return (BUFFERP (dst_object)
9023 ? make_number (coding.produced_char)
9024 : coding.dst_object);
9025 }
9026
9027
9028 DEFUN ("decode-coding-region", Fdecode_coding_region, Sdecode_coding_region,
9029 3, 4, "r\nzCoding system: ",
9030 doc: /* Decode the current region from the specified coding system.
9031 When called from a program, takes four arguments:
9032 START, END, CODING-SYSTEM, and DESTINATION.
9033 START and END are buffer positions.
9034
9035 Optional 4th arguments DESTINATION specifies where the decoded text goes.
9036 If nil, the region between START and END is replaced by the decoded text.
9037 If buffer, the decoded text is inserted in that buffer after point (point
9038 does not move).
9039 In those cases, the length of the decoded text is returned.
9040 If DESTINATION is t, the decoded text is returned.
9041
9042 This function sets `last-coding-system-used' to the precise coding system
9043 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
9044 not fully specified.) */)
9045 (start, end, coding_system, destination)
9046 Lisp_Object start, end, coding_system, destination;
9047 {
9048 return code_convert_region (start, end, coding_system, destination, 0, 0);
9049 }
9050
9051 DEFUN ("encode-coding-region", Fencode_coding_region, Sencode_coding_region,
9052 3, 4, "r\nzCoding system: ",
9053 doc: /* Encode the current region by specified coding system.
9054 When called from a program, takes four arguments:
9055 START, END, CODING-SYSTEM and DESTINATION.
9056 START and END are buffer positions.
9057
9058 Optional 4th arguments DESTINATION specifies where the encoded text goes.
9059 If nil, the region between START and END is replace by the encoded text.
9060 If buffer, the encoded text is inserted in that buffer after point (point
9061 does not move).
9062 In those cases, the length of the encoded text is returned.
9063 If DESTINATION is t, the encoded text is returned.
9064
9065 This function sets `last-coding-system-used' to the precise coding system
9066 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
9067 not fully specified.) */)
9068 (start, end, coding_system, destination)
9069 Lisp_Object start, end, coding_system, destination;
9070 {
9071 return code_convert_region (start, end, coding_system, destination, 1, 0);
9072 }
9073
9074 Lisp_Object
9075 code_convert_string (string, coding_system, dst_object,
9076 encodep, nocopy, norecord)
9077 Lisp_Object string, coding_system, dst_object;
9078 int encodep, nocopy, norecord;
9079 {
9080 struct coding_system coding;
9081 EMACS_INT chars, bytes;
9082
9083 CHECK_STRING (string);
9084 if (NILP (coding_system))
9085 {
9086 if (! norecord)
9087 Vlast_coding_system_used = Qno_conversion;
9088 if (NILP (dst_object))
9089 return (nocopy ? Fcopy_sequence (string) : string);
9090 }
9091
9092 if (NILP (coding_system))
9093 coding_system = Qno_conversion;
9094 else
9095 CHECK_CODING_SYSTEM (coding_system);
9096 if (NILP (dst_object))
9097 dst_object = Qt;
9098 else if (! EQ (dst_object, Qt))
9099 CHECK_BUFFER (dst_object);
9100
9101 setup_coding_system (coding_system, &coding);
9102 coding.mode |= CODING_MODE_LAST_BLOCK;
9103 chars = SCHARS (string);
9104 bytes = SBYTES (string);
9105 if (encodep)
9106 encode_coding_object (&coding, string, 0, 0, chars, bytes, dst_object);
9107 else
9108 decode_coding_object (&coding, string, 0, 0, chars, bytes, dst_object);
9109 if (! norecord)
9110 Vlast_coding_system_used = CODING_ID_NAME (coding.id);
9111
9112 return (BUFFERP (dst_object)
9113 ? make_number (coding.produced_char)
9114 : coding.dst_object);
9115 }
9116
9117
9118 /* Encode or decode STRING according to CODING_SYSTEM.
9119 Do not set Vlast_coding_system_used.
9120
9121 This function is called only from macros DECODE_FILE and
9122 ENCODE_FILE, thus we ignore character composition. */
9123
9124 Lisp_Object
9125 code_convert_string_norecord (string, coding_system, encodep)
9126 Lisp_Object string, coding_system;
9127 int encodep;
9128 {
9129 return code_convert_string (string, coding_system, Qt, encodep, 0, 1);
9130 }
9131
9132
9133 DEFUN ("decode-coding-string", Fdecode_coding_string, Sdecode_coding_string,
9134 2, 4, 0,
9135 doc: /* Decode STRING which is encoded in CODING-SYSTEM, and return the result.
9136
9137 Optional third arg NOCOPY non-nil means it is OK to return STRING itself
9138 if the decoding operation is trivial.
9139
9140 Optional fourth arg BUFFER non-nil means that the decoded text is
9141 inserted in that buffer after point (point does not move). In this
9142 case, the return value is the length of the decoded text.
9143
9144 This function sets `last-coding-system-used' to the precise coding system
9145 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
9146 not fully specified.) */)
9147 (string, coding_system, nocopy, buffer)
9148 Lisp_Object string, coding_system, nocopy, buffer;
9149 {
9150 return code_convert_string (string, coding_system, buffer,
9151 0, ! NILP (nocopy), 0);
9152 }
9153
9154 DEFUN ("encode-coding-string", Fencode_coding_string, Sencode_coding_string,
9155 2, 4, 0,
9156 doc: /* Encode STRING to CODING-SYSTEM, and return the result.
9157
9158 Optional third arg NOCOPY non-nil means it is OK to return STRING
9159 itself if the encoding operation is trivial.
9160
9161 Optional fourth arg BUFFER non-nil means that the encoded text is
9162 inserted in that buffer after point (point does not move). In this
9163 case, the return value is the length of the encoded text.
9164
9165 This function sets `last-coding-system-used' to the precise coding system
9166 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
9167 not fully specified.) */)
9168 (string, coding_system, nocopy, buffer)
9169 Lisp_Object string, coding_system, nocopy, buffer;
9170 {
9171 return code_convert_string (string, coding_system, buffer,
9172 1, ! NILP (nocopy), 1);
9173 }
9174
9175 \f
9176 DEFUN ("decode-sjis-char", Fdecode_sjis_char, Sdecode_sjis_char, 1, 1, 0,
9177 doc: /* Decode a Japanese character which has CODE in shift_jis encoding.
9178 Return the corresponding character. */)
9179 (code)
9180 Lisp_Object code;
9181 {
9182 Lisp_Object spec, attrs, val;
9183 struct charset *charset_roman, *charset_kanji, *charset_kana, *charset;
9184 int c;
9185
9186 CHECK_NATNUM (code);
9187 c = XFASTINT (code);
9188 CHECK_CODING_SYSTEM_GET_SPEC (Vsjis_coding_system, spec);
9189 attrs = AREF (spec, 0);
9190
9191 if (ASCII_BYTE_P (c)
9192 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9193 return code;
9194
9195 val = CODING_ATTR_CHARSET_LIST (attrs);
9196 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
9197 charset_kana = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
9198 charset_kanji = CHARSET_FROM_ID (XINT (XCAR (val)));
9199
9200 if (c <= 0x7F)
9201 charset = charset_roman;
9202 else if (c >= 0xA0 && c < 0xDF)
9203 {
9204 charset = charset_kana;
9205 c -= 0x80;
9206 }
9207 else
9208 {
9209 int s1 = c >> 8, s2 = c & 0xFF;
9210
9211 if (s1 < 0x81 || (s1 > 0x9F && s1 < 0xE0) || s1 > 0xEF
9212 || s2 < 0x40 || s2 == 0x7F || s2 > 0xFC)
9213 error ("Invalid code: %d", code);
9214 SJIS_TO_JIS (c);
9215 charset = charset_kanji;
9216 }
9217 c = DECODE_CHAR (charset, c);
9218 if (c < 0)
9219 error ("Invalid code: %d", code);
9220 return make_number (c);
9221 }
9222
9223
9224 DEFUN ("encode-sjis-char", Fencode_sjis_char, Sencode_sjis_char, 1, 1, 0,
9225 doc: /* Encode a Japanese character CH to shift_jis encoding.
9226 Return the corresponding code in SJIS. */)
9227 (ch)
9228 Lisp_Object ch;
9229 {
9230 Lisp_Object spec, attrs, charset_list;
9231 int c;
9232 struct charset *charset;
9233 unsigned code;
9234
9235 CHECK_CHARACTER (ch);
9236 c = XFASTINT (ch);
9237 CHECK_CODING_SYSTEM_GET_SPEC (Vsjis_coding_system, spec);
9238 attrs = AREF (spec, 0);
9239
9240 if (ASCII_CHAR_P (c)
9241 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9242 return ch;
9243
9244 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
9245 charset = char_charset (c, charset_list, &code);
9246 if (code == CHARSET_INVALID_CODE (charset))
9247 error ("Can't encode by shift_jis encoding: %d", c);
9248 JIS_TO_SJIS (code);
9249
9250 return make_number (code);
9251 }
9252
9253 DEFUN ("decode-big5-char", Fdecode_big5_char, Sdecode_big5_char, 1, 1, 0,
9254 doc: /* Decode a Big5 character which has CODE in BIG5 coding system.
9255 Return the corresponding character. */)
9256 (code)
9257 Lisp_Object code;
9258 {
9259 Lisp_Object spec, attrs, val;
9260 struct charset *charset_roman, *charset_big5, *charset;
9261 int c;
9262
9263 CHECK_NATNUM (code);
9264 c = XFASTINT (code);
9265 CHECK_CODING_SYSTEM_GET_SPEC (Vbig5_coding_system, spec);
9266 attrs = AREF (spec, 0);
9267
9268 if (ASCII_BYTE_P (c)
9269 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9270 return code;
9271
9272 val = CODING_ATTR_CHARSET_LIST (attrs);
9273 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
9274 charset_big5 = CHARSET_FROM_ID (XINT (XCAR (val)));
9275
9276 if (c <= 0x7F)
9277 charset = charset_roman;
9278 else
9279 {
9280 int b1 = c >> 8, b2 = c & 0x7F;
9281 if (b1 < 0xA1 || b1 > 0xFE
9282 || b2 < 0x40 || (b2 > 0x7E && b2 < 0xA1) || b2 > 0xFE)
9283 error ("Invalid code: %d", code);
9284 charset = charset_big5;
9285 }
9286 c = DECODE_CHAR (charset, (unsigned )c);
9287 if (c < 0)
9288 error ("Invalid code: %d", code);
9289 return make_number (c);
9290 }
9291
9292 DEFUN ("encode-big5-char", Fencode_big5_char, Sencode_big5_char, 1, 1, 0,
9293 doc: /* Encode the Big5 character CH to BIG5 coding system.
9294 Return the corresponding character code in Big5. */)
9295 (ch)
9296 Lisp_Object ch;
9297 {
9298 Lisp_Object spec, attrs, charset_list;
9299 struct charset *charset;
9300 int c;
9301 unsigned code;
9302
9303 CHECK_CHARACTER (ch);
9304 c = XFASTINT (ch);
9305 CHECK_CODING_SYSTEM_GET_SPEC (Vbig5_coding_system, spec);
9306 attrs = AREF (spec, 0);
9307 if (ASCII_CHAR_P (c)
9308 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9309 return ch;
9310
9311 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
9312 charset = char_charset (c, charset_list, &code);
9313 if (code == CHARSET_INVALID_CODE (charset))
9314 error ("Can't encode by Big5 encoding: %d", c);
9315
9316 return make_number (code);
9317 }
9318
9319 \f
9320 DEFUN ("set-terminal-coding-system-internal", Fset_terminal_coding_system_internal,
9321 Sset_terminal_coding_system_internal, 1, 2, 0,
9322 doc: /* Internal use only. */)
9323 (coding_system, terminal)
9324 Lisp_Object coding_system;
9325 Lisp_Object terminal;
9326 {
9327 struct coding_system *terminal_coding = TERMINAL_TERMINAL_CODING (get_terminal (terminal, 1));
9328 CHECK_SYMBOL (coding_system);
9329 setup_coding_system (Fcheck_coding_system (coding_system), terminal_coding);
9330 /* We had better not send unsafe characters to terminal. */
9331 terminal_coding->mode |= CODING_MODE_SAFE_ENCODING;
9332 /* Characer composition should be disabled. */
9333 terminal_coding->common_flags &= ~CODING_ANNOTATE_COMPOSITION_MASK;
9334 terminal_coding->src_multibyte = 1;
9335 terminal_coding->dst_multibyte = 0;
9336 return Qnil;
9337 }
9338
9339 DEFUN ("set-safe-terminal-coding-system-internal",
9340 Fset_safe_terminal_coding_system_internal,
9341 Sset_safe_terminal_coding_system_internal, 1, 1, 0,
9342 doc: /* Internal use only. */)
9343 (coding_system)
9344 Lisp_Object coding_system;
9345 {
9346 CHECK_SYMBOL (coding_system);
9347 setup_coding_system (Fcheck_coding_system (coding_system),
9348 &safe_terminal_coding);
9349 /* Characer composition should be disabled. */
9350 safe_terminal_coding.common_flags &= ~CODING_ANNOTATE_COMPOSITION_MASK;
9351 safe_terminal_coding.src_multibyte = 1;
9352 safe_terminal_coding.dst_multibyte = 0;
9353 return Qnil;
9354 }
9355
9356 DEFUN ("terminal-coding-system", Fterminal_coding_system,
9357 Sterminal_coding_system, 0, 1, 0,
9358 doc: /* Return coding system specified for terminal output on the given terminal.
9359 TERMINAL may be a terminal object, a frame, or nil for the selected
9360 frame's terminal device. */)
9361 (terminal)
9362 Lisp_Object terminal;
9363 {
9364 struct coding_system *terminal_coding
9365 = TERMINAL_TERMINAL_CODING (get_terminal (terminal, 1));
9366 Lisp_Object coding_system = CODING_ID_NAME (terminal_coding->id);
9367
9368 /* For backward compatibility, return nil if it is `undecided'. */
9369 return (! EQ (coding_system, Qundecided) ? coding_system : Qnil);
9370 }
9371
9372 DEFUN ("set-keyboard-coding-system-internal", Fset_keyboard_coding_system_internal,
9373 Sset_keyboard_coding_system_internal, 1, 2, 0,
9374 doc: /* Internal use only. */)
9375 (coding_system, terminal)
9376 Lisp_Object coding_system;
9377 Lisp_Object terminal;
9378 {
9379 struct terminal *t = get_terminal (terminal, 1);
9380 CHECK_SYMBOL (coding_system);
9381 setup_coding_system (Fcheck_coding_system (coding_system),
9382 TERMINAL_KEYBOARD_CODING (t));
9383 /* Characer composition should be disabled. */
9384 TERMINAL_KEYBOARD_CODING (t)->common_flags
9385 &= ~CODING_ANNOTATE_COMPOSITION_MASK;
9386 return Qnil;
9387 }
9388
9389 DEFUN ("keyboard-coding-system",
9390 Fkeyboard_coding_system, Skeyboard_coding_system, 0, 1, 0,
9391 doc: /* Return coding system specified for decoding keyboard input. */)
9392 (terminal)
9393 Lisp_Object terminal;
9394 {
9395 return CODING_ID_NAME (TERMINAL_KEYBOARD_CODING
9396 (get_terminal (terminal, 1))->id);
9397 }
9398
9399 \f
9400 DEFUN ("find-operation-coding-system", Ffind_operation_coding_system,
9401 Sfind_operation_coding_system, 1, MANY, 0,
9402 doc: /* Choose a coding system for an operation based on the target name.
9403 The value names a pair of coding systems: (DECODING-SYSTEM . ENCODING-SYSTEM).
9404 DECODING-SYSTEM is the coding system to use for decoding
9405 \(in case OPERATION does decoding), and ENCODING-SYSTEM is the coding system
9406 for encoding (in case OPERATION does encoding).
9407
9408 The first argument OPERATION specifies an I/O primitive:
9409 For file I/O, `insert-file-contents' or `write-region'.
9410 For process I/O, `call-process', `call-process-region', or `start-process'.
9411 For network I/O, `open-network-stream'.
9412
9413 The remaining arguments should be the same arguments that were passed
9414 to the primitive. Depending on which primitive, one of those arguments
9415 is selected as the TARGET. For example, if OPERATION does file I/O,
9416 whichever argument specifies the file name is TARGET.
9417
9418 TARGET has a meaning which depends on OPERATION:
9419 For file I/O, TARGET is a file name (except for the special case below).
9420 For process I/O, TARGET is a process name.
9421 For network I/O, TARGET is a service name or a port number.
9422
9423 This function looks up what is specified for TARGET in
9424 `file-coding-system-alist', `process-coding-system-alist',
9425 or `network-coding-system-alist' depending on OPERATION.
9426 They may specify a coding system, a cons of coding systems,
9427 or a function symbol to call.
9428 In the last case, we call the function with one argument,
9429 which is a list of all the arguments given to this function.
9430 If the function can't decide a coding system, it can return
9431 `undecided' so that the normal code-detection is performed.
9432
9433 If OPERATION is `insert-file-contents', the argument corresponding to
9434 TARGET may be a cons (FILENAME . BUFFER). In that case, FILENAME is a
9435 file name to look up, and BUFFER is a buffer that contains the file's
9436 contents (not yet decoded). If `file-coding-system-alist' specifies a
9437 function to call for FILENAME, that function should examine the
9438 contents of BUFFER instead of reading the file.
9439
9440 usage: (find-operation-coding-system OPERATION ARGUMENTS...) */)
9441 (nargs, args)
9442 int nargs;
9443 Lisp_Object *args;
9444 {
9445 Lisp_Object operation, target_idx, target, val;
9446 register Lisp_Object chain;
9447
9448 if (nargs < 2)
9449 error ("Too few arguments");
9450 operation = args[0];
9451 if (!SYMBOLP (operation)
9452 || !INTEGERP (target_idx = Fget (operation, Qtarget_idx)))
9453 error ("Invalid first argument");
9454 if (nargs < 1 + XINT (target_idx))
9455 error ("Too few arguments for operation: %s",
9456 SDATA (SYMBOL_NAME (operation)));
9457 target = args[XINT (target_idx) + 1];
9458 if (!(STRINGP (target)
9459 || (EQ (operation, Qinsert_file_contents) && CONSP (target)
9460 && STRINGP (XCAR (target)) && BUFFERP (XCDR (target)))
9461 || (EQ (operation, Qopen_network_stream) && INTEGERP (target))))
9462 error ("Invalid %dth argument", XINT (target_idx) + 1);
9463 if (CONSP (target))
9464 target = XCAR (target);
9465
9466 chain = ((EQ (operation, Qinsert_file_contents)
9467 || EQ (operation, Qwrite_region))
9468 ? Vfile_coding_system_alist
9469 : (EQ (operation, Qopen_network_stream)
9470 ? Vnetwork_coding_system_alist
9471 : Vprocess_coding_system_alist));
9472 if (NILP (chain))
9473 return Qnil;
9474
9475 for (; CONSP (chain); chain = XCDR (chain))
9476 {
9477 Lisp_Object elt;
9478
9479 elt = XCAR (chain);
9480 if (CONSP (elt)
9481 && ((STRINGP (target)
9482 && STRINGP (XCAR (elt))
9483 && fast_string_match (XCAR (elt), target) >= 0)
9484 || (INTEGERP (target) && EQ (target, XCAR (elt)))))
9485 {
9486 val = XCDR (elt);
9487 /* Here, if VAL is both a valid coding system and a valid
9488 function symbol, we return VAL as a coding system. */
9489 if (CONSP (val))
9490 return val;
9491 if (! SYMBOLP (val))
9492 return Qnil;
9493 if (! NILP (Fcoding_system_p (val)))
9494 return Fcons (val, val);
9495 if (! NILP (Ffboundp (val)))
9496 {
9497 /* We use call1 rather than safe_call1
9498 so as to get bug reports about functions called here
9499 which don't handle the current interface. */
9500 val = call1 (val, Flist (nargs, args));
9501 if (CONSP (val))
9502 return val;
9503 if (SYMBOLP (val) && ! NILP (Fcoding_system_p (val)))
9504 return Fcons (val, val);
9505 }
9506 return Qnil;
9507 }
9508 }
9509 return Qnil;
9510 }
9511
9512 DEFUN ("set-coding-system-priority", Fset_coding_system_priority,
9513 Sset_coding_system_priority, 0, MANY, 0,
9514 doc: /* Assign higher priority to the coding systems given as arguments.
9515 If multiple coding systems belong to the same category,
9516 all but the first one are ignored.
9517
9518 usage: (set-coding-system-priority &rest coding-systems) */)
9519 (nargs, args)
9520 int nargs;
9521 Lisp_Object *args;
9522 {
9523 int i, j;
9524 int changed[coding_category_max];
9525 enum coding_category priorities[coding_category_max];
9526
9527 bzero (changed, sizeof changed);
9528
9529 for (i = j = 0; i < nargs; i++)
9530 {
9531 enum coding_category category;
9532 Lisp_Object spec, attrs;
9533
9534 CHECK_CODING_SYSTEM_GET_SPEC (args[i], spec);
9535 attrs = AREF (spec, 0);
9536 category = XINT (CODING_ATTR_CATEGORY (attrs));
9537 if (changed[category])
9538 /* Ignore this coding system because a coding system of the
9539 same category already had a higher priority. */
9540 continue;
9541 changed[category] = 1;
9542 priorities[j++] = category;
9543 if (coding_categories[category].id >= 0
9544 && ! EQ (args[i], CODING_ID_NAME (coding_categories[category].id)))
9545 setup_coding_system (args[i], &coding_categories[category]);
9546 Fset (AREF (Vcoding_category_table, category), args[i]);
9547 }
9548
9549 /* Now we have decided top J priorities. Reflect the order of the
9550 original priorities to the remaining priorities. */
9551
9552 for (i = j, j = 0; i < coding_category_max; i++, j++)
9553 {
9554 while (j < coding_category_max
9555 && changed[coding_priorities[j]])
9556 j++;
9557 if (j == coding_category_max)
9558 abort ();
9559 priorities[i] = coding_priorities[j];
9560 }
9561
9562 bcopy (priorities, coding_priorities, sizeof priorities);
9563
9564 /* Update `coding-category-list'. */
9565 Vcoding_category_list = Qnil;
9566 for (i = coding_category_max - 1; i >= 0; i--)
9567 Vcoding_category_list
9568 = Fcons (AREF (Vcoding_category_table, priorities[i]),
9569 Vcoding_category_list);
9570
9571 return Qnil;
9572 }
9573
9574 DEFUN ("coding-system-priority-list", Fcoding_system_priority_list,
9575 Scoding_system_priority_list, 0, 1, 0,
9576 doc: /* Return a list of coding systems ordered by their priorities.
9577 The list contains a subset of coding systems; i.e. coding systems
9578 assigned to each coding category (see `coding-category-list').
9579
9580 HIGHESTP non-nil means just return the highest priority one. */)
9581 (highestp)
9582 Lisp_Object highestp;
9583 {
9584 int i;
9585 Lisp_Object val;
9586
9587 for (i = 0, val = Qnil; i < coding_category_max; i++)
9588 {
9589 enum coding_category category = coding_priorities[i];
9590 int id = coding_categories[category].id;
9591 Lisp_Object attrs;
9592
9593 if (id < 0)
9594 continue;
9595 attrs = CODING_ID_ATTRS (id);
9596 if (! NILP (highestp))
9597 return CODING_ATTR_BASE_NAME (attrs);
9598 val = Fcons (CODING_ATTR_BASE_NAME (attrs), val);
9599 }
9600 return Fnreverse (val);
9601 }
9602
9603 static char *suffixes[] = { "-unix", "-dos", "-mac" };
9604
9605 static Lisp_Object
9606 make_subsidiaries (base)
9607 Lisp_Object base;
9608 {
9609 Lisp_Object subsidiaries;
9610 int base_name_len = SBYTES (SYMBOL_NAME (base));
9611 char *buf = (char *) alloca (base_name_len + 6);
9612 int i;
9613
9614 bcopy (SDATA (SYMBOL_NAME (base)), buf, base_name_len);
9615 subsidiaries = Fmake_vector (make_number (3), Qnil);
9616 for (i = 0; i < 3; i++)
9617 {
9618 bcopy (suffixes[i], buf + base_name_len, strlen (suffixes[i]) + 1);
9619 ASET (subsidiaries, i, intern (buf));
9620 }
9621 return subsidiaries;
9622 }
9623
9624
9625 DEFUN ("define-coding-system-internal", Fdefine_coding_system_internal,
9626 Sdefine_coding_system_internal, coding_arg_max, MANY, 0,
9627 doc: /* For internal use only.
9628 usage: (define-coding-system-internal ...) */)
9629 (nargs, args)
9630 int nargs;
9631 Lisp_Object *args;
9632 {
9633 Lisp_Object name;
9634 Lisp_Object spec_vec; /* [ ATTRS ALIASE EOL_TYPE ] */
9635 Lisp_Object attrs; /* Vector of attributes. */
9636 Lisp_Object eol_type;
9637 Lisp_Object aliases;
9638 Lisp_Object coding_type, charset_list, safe_charsets;
9639 enum coding_category category;
9640 Lisp_Object tail, val;
9641 int max_charset_id = 0;
9642 int i;
9643
9644 if (nargs < coding_arg_max)
9645 goto short_args;
9646
9647 attrs = Fmake_vector (make_number (coding_attr_last_index), Qnil);
9648
9649 name = args[coding_arg_name];
9650 CHECK_SYMBOL (name);
9651 CODING_ATTR_BASE_NAME (attrs) = name;
9652
9653 val = args[coding_arg_mnemonic];
9654 if (! STRINGP (val))
9655 CHECK_CHARACTER (val);
9656 CODING_ATTR_MNEMONIC (attrs) = val;
9657
9658 coding_type = args[coding_arg_coding_type];
9659 CHECK_SYMBOL (coding_type);
9660 CODING_ATTR_TYPE (attrs) = coding_type;
9661
9662 charset_list = args[coding_arg_charset_list];
9663 if (SYMBOLP (charset_list))
9664 {
9665 if (EQ (charset_list, Qiso_2022))
9666 {
9667 if (! EQ (coding_type, Qiso_2022))
9668 error ("Invalid charset-list");
9669 charset_list = Viso_2022_charset_list;
9670 }
9671 else if (EQ (charset_list, Qemacs_mule))
9672 {
9673 if (! EQ (coding_type, Qemacs_mule))
9674 error ("Invalid charset-list");
9675 charset_list = Vemacs_mule_charset_list;
9676 }
9677 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
9678 if (max_charset_id < XFASTINT (XCAR (tail)))
9679 max_charset_id = XFASTINT (XCAR (tail));
9680 }
9681 else
9682 {
9683 charset_list = Fcopy_sequence (charset_list);
9684 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
9685 {
9686 struct charset *charset;
9687
9688 val = XCAR (tail);
9689 CHECK_CHARSET_GET_CHARSET (val, charset);
9690 if (EQ (coding_type, Qiso_2022)
9691 ? CHARSET_ISO_FINAL (charset) < 0
9692 : EQ (coding_type, Qemacs_mule)
9693 ? CHARSET_EMACS_MULE_ID (charset) < 0
9694 : 0)
9695 error ("Can't handle charset `%s'",
9696 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9697
9698 XSETCAR (tail, make_number (charset->id));
9699 if (max_charset_id < charset->id)
9700 max_charset_id = charset->id;
9701 }
9702 }
9703 CODING_ATTR_CHARSET_LIST (attrs) = charset_list;
9704
9705 safe_charsets = make_uninit_string (max_charset_id + 1);
9706 memset (SDATA (safe_charsets), 255, max_charset_id + 1);
9707 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
9708 SSET (safe_charsets, XFASTINT (XCAR (tail)), 0);
9709 CODING_ATTR_SAFE_CHARSETS (attrs) = safe_charsets;
9710
9711 CODING_ATTR_ASCII_COMPAT (attrs) = args[coding_arg_ascii_compatible_p];
9712
9713 val = args[coding_arg_decode_translation_table];
9714 if (! CHAR_TABLE_P (val) && ! CONSP (val))
9715 CHECK_SYMBOL (val);
9716 CODING_ATTR_DECODE_TBL (attrs) = val;
9717
9718 val = args[coding_arg_encode_translation_table];
9719 if (! CHAR_TABLE_P (val) && ! CONSP (val))
9720 CHECK_SYMBOL (val);
9721 CODING_ATTR_ENCODE_TBL (attrs) = val;
9722
9723 val = args[coding_arg_post_read_conversion];
9724 CHECK_SYMBOL (val);
9725 CODING_ATTR_POST_READ (attrs) = val;
9726
9727 val = args[coding_arg_pre_write_conversion];
9728 CHECK_SYMBOL (val);
9729 CODING_ATTR_PRE_WRITE (attrs) = val;
9730
9731 val = args[coding_arg_default_char];
9732 if (NILP (val))
9733 CODING_ATTR_DEFAULT_CHAR (attrs) = make_number (' ');
9734 else
9735 {
9736 CHECK_CHARACTER (val);
9737 CODING_ATTR_DEFAULT_CHAR (attrs) = val;
9738 }
9739
9740 val = args[coding_arg_for_unibyte];
9741 CODING_ATTR_FOR_UNIBYTE (attrs) = NILP (val) ? Qnil : Qt;
9742
9743 val = args[coding_arg_plist];
9744 CHECK_LIST (val);
9745 CODING_ATTR_PLIST (attrs) = val;
9746
9747 if (EQ (coding_type, Qcharset))
9748 {
9749 /* Generate a lisp vector of 256 elements. Each element is nil,
9750 integer, or a list of charset IDs.
9751
9752 If Nth element is nil, the byte code N is invalid in this
9753 coding system.
9754
9755 If Nth element is a number NUM, N is the first byte of a
9756 charset whose ID is NUM.
9757
9758 If Nth element is a list of charset IDs, N is the first byte
9759 of one of them. The list is sorted by dimensions of the
9760 charsets. A charset of smaller dimension comes firtst. */
9761 val = Fmake_vector (make_number (256), Qnil);
9762
9763 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
9764 {
9765 struct charset *charset = CHARSET_FROM_ID (XFASTINT (XCAR (tail)));
9766 int dim = CHARSET_DIMENSION (charset);
9767 int idx = (dim - 1) * 4;
9768
9769 if (CHARSET_ASCII_COMPATIBLE_P (charset))
9770 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9771
9772 for (i = charset->code_space[idx];
9773 i <= charset->code_space[idx + 1]; i++)
9774 {
9775 Lisp_Object tmp, tmp2;
9776 int dim2;
9777
9778 tmp = AREF (val, i);
9779 if (NILP (tmp))
9780 tmp = XCAR (tail);
9781 else if (NUMBERP (tmp))
9782 {
9783 dim2 = CHARSET_DIMENSION (CHARSET_FROM_ID (XFASTINT (tmp)));
9784 if (dim < dim2)
9785 tmp = Fcons (XCAR (tail), Fcons (tmp, Qnil));
9786 else
9787 tmp = Fcons (tmp, Fcons (XCAR (tail), Qnil));
9788 }
9789 else
9790 {
9791 for (tmp2 = tmp; CONSP (tmp2); tmp2 = XCDR (tmp2))
9792 {
9793 dim2 = CHARSET_DIMENSION (CHARSET_FROM_ID (XFASTINT (XCAR (tmp2))));
9794 if (dim < dim2)
9795 break;
9796 }
9797 if (NILP (tmp2))
9798 tmp = nconc2 (tmp, Fcons (XCAR (tail), Qnil));
9799 else
9800 {
9801 XSETCDR (tmp2, Fcons (XCAR (tmp2), XCDR (tmp2)));
9802 XSETCAR (tmp2, XCAR (tail));
9803 }
9804 }
9805 ASET (val, i, tmp);
9806 }
9807 }
9808 ASET (attrs, coding_attr_charset_valids, val);
9809 category = coding_category_charset;
9810 }
9811 else if (EQ (coding_type, Qccl))
9812 {
9813 Lisp_Object valids;
9814
9815 if (nargs < coding_arg_ccl_max)
9816 goto short_args;
9817
9818 val = args[coding_arg_ccl_decoder];
9819 CHECK_CCL_PROGRAM (val);
9820 if (VECTORP (val))
9821 val = Fcopy_sequence (val);
9822 ASET (attrs, coding_attr_ccl_decoder, val);
9823
9824 val = args[coding_arg_ccl_encoder];
9825 CHECK_CCL_PROGRAM (val);
9826 if (VECTORP (val))
9827 val = Fcopy_sequence (val);
9828 ASET (attrs, coding_attr_ccl_encoder, val);
9829
9830 val = args[coding_arg_ccl_valids];
9831 valids = Fmake_string (make_number (256), make_number (0));
9832 for (tail = val; !NILP (tail); tail = Fcdr (tail))
9833 {
9834 int from, to;
9835
9836 val = Fcar (tail);
9837 if (INTEGERP (val))
9838 {
9839 from = to = XINT (val);
9840 if (from < 0 || from > 255)
9841 args_out_of_range_3 (val, make_number (0), make_number (255));
9842 }
9843 else
9844 {
9845 CHECK_CONS (val);
9846 CHECK_NATNUM_CAR (val);
9847 CHECK_NATNUM_CDR (val);
9848 from = XINT (XCAR (val));
9849 if (from > 255)
9850 args_out_of_range_3 (XCAR (val),
9851 make_number (0), make_number (255));
9852 to = XINT (XCDR (val));
9853 if (to < from || to > 255)
9854 args_out_of_range_3 (XCDR (val),
9855 XCAR (val), make_number (255));
9856 }
9857 for (i = from; i <= to; i++)
9858 SSET (valids, i, 1);
9859 }
9860 ASET (attrs, coding_attr_ccl_valids, valids);
9861
9862 category = coding_category_ccl;
9863 }
9864 else if (EQ (coding_type, Qutf_16))
9865 {
9866 Lisp_Object bom, endian;
9867
9868 CODING_ATTR_ASCII_COMPAT (attrs) = Qnil;
9869
9870 if (nargs < coding_arg_utf16_max)
9871 goto short_args;
9872
9873 bom = args[coding_arg_utf16_bom];
9874 if (! NILP (bom) && ! EQ (bom, Qt))
9875 {
9876 CHECK_CONS (bom);
9877 val = XCAR (bom);
9878 CHECK_CODING_SYSTEM (val);
9879 val = XCDR (bom);
9880 CHECK_CODING_SYSTEM (val);
9881 }
9882 ASET (attrs, coding_attr_utf_bom, bom);
9883
9884 endian = args[coding_arg_utf16_endian];
9885 CHECK_SYMBOL (endian);
9886 if (NILP (endian))
9887 endian = Qbig;
9888 else if (! EQ (endian, Qbig) && ! EQ (endian, Qlittle))
9889 error ("Invalid endian: %s", SDATA (SYMBOL_NAME (endian)));
9890 ASET (attrs, coding_attr_utf_16_endian, endian);
9891
9892 category = (CONSP (bom)
9893 ? coding_category_utf_16_auto
9894 : NILP (bom)
9895 ? (EQ (endian, Qbig)
9896 ? coding_category_utf_16_be_nosig
9897 : coding_category_utf_16_le_nosig)
9898 : (EQ (endian, Qbig)
9899 ? coding_category_utf_16_be
9900 : coding_category_utf_16_le));
9901 }
9902 else if (EQ (coding_type, Qiso_2022))
9903 {
9904 Lisp_Object initial, reg_usage, request, flags;
9905 int i;
9906
9907 if (nargs < coding_arg_iso2022_max)
9908 goto short_args;
9909
9910 initial = Fcopy_sequence (args[coding_arg_iso2022_initial]);
9911 CHECK_VECTOR (initial);
9912 for (i = 0; i < 4; i++)
9913 {
9914 val = Faref (initial, make_number (i));
9915 if (! NILP (val))
9916 {
9917 struct charset *charset;
9918
9919 CHECK_CHARSET_GET_CHARSET (val, charset);
9920 ASET (initial, i, make_number (CHARSET_ID (charset)));
9921 if (i == 0 && CHARSET_ASCII_COMPATIBLE_P (charset))
9922 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9923 }
9924 else
9925 ASET (initial, i, make_number (-1));
9926 }
9927
9928 reg_usage = args[coding_arg_iso2022_reg_usage];
9929 CHECK_CONS (reg_usage);
9930 CHECK_NUMBER_CAR (reg_usage);
9931 CHECK_NUMBER_CDR (reg_usage);
9932
9933 request = Fcopy_sequence (args[coding_arg_iso2022_request]);
9934 for (tail = request; ! NILP (tail); tail = Fcdr (tail))
9935 {
9936 int id;
9937 Lisp_Object tmp;
9938
9939 val = Fcar (tail);
9940 CHECK_CONS (val);
9941 tmp = XCAR (val);
9942 CHECK_CHARSET_GET_ID (tmp, id);
9943 CHECK_NATNUM_CDR (val);
9944 if (XINT (XCDR (val)) >= 4)
9945 error ("Invalid graphic register number: %d", XINT (XCDR (val)));
9946 XSETCAR (val, make_number (id));
9947 }
9948
9949 flags = args[coding_arg_iso2022_flags];
9950 CHECK_NATNUM (flags);
9951 i = XINT (flags);
9952 if (EQ (args[coding_arg_charset_list], Qiso_2022))
9953 flags = make_number (i | CODING_ISO_FLAG_FULL_SUPPORT);
9954
9955 ASET (attrs, coding_attr_iso_initial, initial);
9956 ASET (attrs, coding_attr_iso_usage, reg_usage);
9957 ASET (attrs, coding_attr_iso_request, request);
9958 ASET (attrs, coding_attr_iso_flags, flags);
9959 setup_iso_safe_charsets (attrs);
9960
9961 if (i & CODING_ISO_FLAG_SEVEN_BITS)
9962 category = ((i & (CODING_ISO_FLAG_LOCKING_SHIFT
9963 | CODING_ISO_FLAG_SINGLE_SHIFT))
9964 ? coding_category_iso_7_else
9965 : EQ (args[coding_arg_charset_list], Qiso_2022)
9966 ? coding_category_iso_7
9967 : coding_category_iso_7_tight);
9968 else
9969 {
9970 int id = XINT (AREF (initial, 1));
9971
9972 category = (((i & CODING_ISO_FLAG_LOCKING_SHIFT)
9973 || EQ (args[coding_arg_charset_list], Qiso_2022)
9974 || id < 0)
9975 ? coding_category_iso_8_else
9976 : (CHARSET_DIMENSION (CHARSET_FROM_ID (id)) == 1)
9977 ? coding_category_iso_8_1
9978 : coding_category_iso_8_2);
9979 }
9980 if (category != coding_category_iso_8_1
9981 && category != coding_category_iso_8_2)
9982 CODING_ATTR_ASCII_COMPAT (attrs) = Qnil;
9983 }
9984 else if (EQ (coding_type, Qemacs_mule))
9985 {
9986 if (EQ (args[coding_arg_charset_list], Qemacs_mule))
9987 ASET (attrs, coding_attr_emacs_mule_full, Qt);
9988 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9989 category = coding_category_emacs_mule;
9990 }
9991 else if (EQ (coding_type, Qshift_jis))
9992 {
9993
9994 struct charset *charset;
9995
9996 if (XINT (Flength (charset_list)) != 3
9997 && XINT (Flength (charset_list)) != 4)
9998 error ("There should be three or four charsets");
9999
10000 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
10001 if (CHARSET_DIMENSION (charset) != 1)
10002 error ("Dimension of charset %s is not one",
10003 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
10004 if (CHARSET_ASCII_COMPATIBLE_P (charset))
10005 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
10006
10007 charset_list = XCDR (charset_list);
10008 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
10009 if (CHARSET_DIMENSION (charset) != 1)
10010 error ("Dimension of charset %s is not one",
10011 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
10012
10013 charset_list = XCDR (charset_list);
10014 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
10015 if (CHARSET_DIMENSION (charset) != 2)
10016 error ("Dimension of charset %s is not two",
10017 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
10018
10019 charset_list = XCDR (charset_list);
10020 if (! NILP (charset_list))
10021 {
10022 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
10023 if (CHARSET_DIMENSION (charset) != 2)
10024 error ("Dimension of charset %s is not two",
10025 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
10026 }
10027
10028 category = coding_category_sjis;
10029 Vsjis_coding_system = name;
10030 }
10031 else if (EQ (coding_type, Qbig5))
10032 {
10033 struct charset *charset;
10034
10035 if (XINT (Flength (charset_list)) != 2)
10036 error ("There should be just two charsets");
10037
10038 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
10039 if (CHARSET_DIMENSION (charset) != 1)
10040 error ("Dimension of charset %s is not one",
10041 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
10042 if (CHARSET_ASCII_COMPATIBLE_P (charset))
10043 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
10044
10045 charset_list = XCDR (charset_list);
10046 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
10047 if (CHARSET_DIMENSION (charset) != 2)
10048 error ("Dimension of charset %s is not two",
10049 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
10050
10051 category = coding_category_big5;
10052 Vbig5_coding_system = name;
10053 }
10054 else if (EQ (coding_type, Qraw_text))
10055 {
10056 category = coding_category_raw_text;
10057 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
10058 }
10059 else if (EQ (coding_type, Qutf_8))
10060 {
10061 Lisp_Object bom;
10062
10063 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
10064
10065 if (nargs < coding_arg_utf8_max)
10066 goto short_args;
10067
10068 bom = args[coding_arg_utf8_bom];
10069 if (! NILP (bom) && ! EQ (bom, Qt))
10070 {
10071 CHECK_CONS (bom);
10072 val = XCAR (bom);
10073 CHECK_CODING_SYSTEM (val);
10074 val = XCDR (bom);
10075 CHECK_CODING_SYSTEM (val);
10076 }
10077 ASET (attrs, coding_attr_utf_bom, bom);
10078
10079 category = (CONSP (bom) ? coding_category_utf_8_auto
10080 : NILP (bom) ? coding_category_utf_8_nosig
10081 : coding_category_utf_8_sig);
10082 }
10083 else if (EQ (coding_type, Qundecided))
10084 category = coding_category_undecided;
10085 else
10086 error ("Invalid coding system type: %s",
10087 SDATA (SYMBOL_NAME (coding_type)));
10088
10089 CODING_ATTR_CATEGORY (attrs) = make_number (category);
10090 CODING_ATTR_PLIST (attrs)
10091 = Fcons (QCcategory, Fcons (AREF (Vcoding_category_table, category),
10092 CODING_ATTR_PLIST (attrs)));
10093 CODING_ATTR_PLIST (attrs)
10094 = Fcons (QCascii_compatible_p,
10095 Fcons (CODING_ATTR_ASCII_COMPAT (attrs),
10096 CODING_ATTR_PLIST (attrs)));
10097
10098 eol_type = args[coding_arg_eol_type];
10099 if (! NILP (eol_type)
10100 && ! EQ (eol_type, Qunix)
10101 && ! EQ (eol_type, Qdos)
10102 && ! EQ (eol_type, Qmac))
10103 error ("Invalid eol-type");
10104
10105 aliases = Fcons (name, Qnil);
10106
10107 if (NILP (eol_type))
10108 {
10109 eol_type = make_subsidiaries (name);
10110 for (i = 0; i < 3; i++)
10111 {
10112 Lisp_Object this_spec, this_name, this_aliases, this_eol_type;
10113
10114 this_name = AREF (eol_type, i);
10115 this_aliases = Fcons (this_name, Qnil);
10116 this_eol_type = (i == 0 ? Qunix : i == 1 ? Qdos : Qmac);
10117 this_spec = Fmake_vector (make_number (3), attrs);
10118 ASET (this_spec, 1, this_aliases);
10119 ASET (this_spec, 2, this_eol_type);
10120 Fputhash (this_name, this_spec, Vcoding_system_hash_table);
10121 Vcoding_system_list = Fcons (this_name, Vcoding_system_list);
10122 val = Fassoc (Fsymbol_name (this_name), Vcoding_system_alist);
10123 if (NILP (val))
10124 Vcoding_system_alist
10125 = Fcons (Fcons (Fsymbol_name (this_name), Qnil),
10126 Vcoding_system_alist);
10127 }
10128 }
10129
10130 spec_vec = Fmake_vector (make_number (3), attrs);
10131 ASET (spec_vec, 1, aliases);
10132 ASET (spec_vec, 2, eol_type);
10133
10134 Fputhash (name, spec_vec, Vcoding_system_hash_table);
10135 Vcoding_system_list = Fcons (name, Vcoding_system_list);
10136 val = Fassoc (Fsymbol_name (name), Vcoding_system_alist);
10137 if (NILP (val))
10138 Vcoding_system_alist = Fcons (Fcons (Fsymbol_name (name), Qnil),
10139 Vcoding_system_alist);
10140
10141 {
10142 int id = coding_categories[category].id;
10143
10144 if (id < 0 || EQ (name, CODING_ID_NAME (id)))
10145 setup_coding_system (name, &coding_categories[category]);
10146 }
10147
10148 return Qnil;
10149
10150 short_args:
10151 return Fsignal (Qwrong_number_of_arguments,
10152 Fcons (intern ("define-coding-system-internal"),
10153 make_number (nargs)));
10154 }
10155
10156
10157 DEFUN ("coding-system-put", Fcoding_system_put, Scoding_system_put,
10158 3, 3, 0,
10159 doc: /* Change value in CODING-SYSTEM's property list PROP to VAL. */)
10160 (coding_system, prop, val)
10161 Lisp_Object coding_system, prop, val;
10162 {
10163 Lisp_Object spec, attrs;
10164
10165 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10166 attrs = AREF (spec, 0);
10167 if (EQ (prop, QCmnemonic))
10168 {
10169 if (! STRINGP (val))
10170 CHECK_CHARACTER (val);
10171 CODING_ATTR_MNEMONIC (attrs) = val;
10172 }
10173 else if (EQ (prop, QCdefault_char))
10174 {
10175 if (NILP (val))
10176 val = make_number (' ');
10177 else
10178 CHECK_CHARACTER (val);
10179 CODING_ATTR_DEFAULT_CHAR (attrs) = val;
10180 }
10181 else if (EQ (prop, QCdecode_translation_table))
10182 {
10183 if (! CHAR_TABLE_P (val) && ! CONSP (val))
10184 CHECK_SYMBOL (val);
10185 CODING_ATTR_DECODE_TBL (attrs) = val;
10186 }
10187 else if (EQ (prop, QCencode_translation_table))
10188 {
10189 if (! CHAR_TABLE_P (val) && ! CONSP (val))
10190 CHECK_SYMBOL (val);
10191 CODING_ATTR_ENCODE_TBL (attrs) = val;
10192 }
10193 else if (EQ (prop, QCpost_read_conversion))
10194 {
10195 CHECK_SYMBOL (val);
10196 CODING_ATTR_POST_READ (attrs) = val;
10197 }
10198 else if (EQ (prop, QCpre_write_conversion))
10199 {
10200 CHECK_SYMBOL (val);
10201 CODING_ATTR_PRE_WRITE (attrs) = val;
10202 }
10203 else if (EQ (prop, QCascii_compatible_p))
10204 {
10205 CODING_ATTR_ASCII_COMPAT (attrs) = val;
10206 }
10207
10208 CODING_ATTR_PLIST (attrs)
10209 = Fplist_put (CODING_ATTR_PLIST (attrs), prop, val);
10210 return val;
10211 }
10212
10213
10214 DEFUN ("define-coding-system-alias", Fdefine_coding_system_alias,
10215 Sdefine_coding_system_alias, 2, 2, 0,
10216 doc: /* Define ALIAS as an alias for CODING-SYSTEM. */)
10217 (alias, coding_system)
10218 Lisp_Object alias, coding_system;
10219 {
10220 Lisp_Object spec, aliases, eol_type, val;
10221
10222 CHECK_SYMBOL (alias);
10223 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10224 aliases = AREF (spec, 1);
10225 /* ALIASES should be a list of length more than zero, and the first
10226 element is a base coding system. Append ALIAS at the tail of the
10227 list. */
10228 while (!NILP (XCDR (aliases)))
10229 aliases = XCDR (aliases);
10230 XSETCDR (aliases, Fcons (alias, Qnil));
10231
10232 eol_type = AREF (spec, 2);
10233 if (VECTORP (eol_type))
10234 {
10235 Lisp_Object subsidiaries;
10236 int i;
10237
10238 subsidiaries = make_subsidiaries (alias);
10239 for (i = 0; i < 3; i++)
10240 Fdefine_coding_system_alias (AREF (subsidiaries, i),
10241 AREF (eol_type, i));
10242 }
10243
10244 Fputhash (alias, spec, Vcoding_system_hash_table);
10245 Vcoding_system_list = Fcons (alias, Vcoding_system_list);
10246 val = Fassoc (Fsymbol_name (alias), Vcoding_system_alist);
10247 if (NILP (val))
10248 Vcoding_system_alist = Fcons (Fcons (Fsymbol_name (alias), Qnil),
10249 Vcoding_system_alist);
10250
10251 return Qnil;
10252 }
10253
10254 DEFUN ("coding-system-base", Fcoding_system_base, Scoding_system_base,
10255 1, 1, 0,
10256 doc: /* Return the base of CODING-SYSTEM.
10257 Any alias or subsidiary coding system is not a base coding system. */)
10258 (coding_system)
10259 Lisp_Object coding_system;
10260 {
10261 Lisp_Object spec, attrs;
10262
10263 if (NILP (coding_system))
10264 return (Qno_conversion);
10265 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10266 attrs = AREF (spec, 0);
10267 return CODING_ATTR_BASE_NAME (attrs);
10268 }
10269
10270 DEFUN ("coding-system-plist", Fcoding_system_plist, Scoding_system_plist,
10271 1, 1, 0,
10272 doc: "Return the property list of CODING-SYSTEM.")
10273 (coding_system)
10274 Lisp_Object coding_system;
10275 {
10276 Lisp_Object spec, attrs;
10277
10278 if (NILP (coding_system))
10279 coding_system = Qno_conversion;
10280 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10281 attrs = AREF (spec, 0);
10282 return CODING_ATTR_PLIST (attrs);
10283 }
10284
10285
10286 DEFUN ("coding-system-aliases", Fcoding_system_aliases, Scoding_system_aliases,
10287 1, 1, 0,
10288 doc: /* Return the list of aliases of CODING-SYSTEM. */)
10289 (coding_system)
10290 Lisp_Object coding_system;
10291 {
10292 Lisp_Object spec;
10293
10294 if (NILP (coding_system))
10295 coding_system = Qno_conversion;
10296 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10297 return AREF (spec, 1);
10298 }
10299
10300 DEFUN ("coding-system-eol-type", Fcoding_system_eol_type,
10301 Scoding_system_eol_type, 1, 1, 0,
10302 doc: /* Return eol-type of CODING-SYSTEM.
10303 An eol-type is an integer 0, 1, 2, or a vector of coding systems.
10304
10305 Integer values 0, 1, and 2 indicate a format of end-of-line; LF, CRLF,
10306 and CR respectively.
10307
10308 A vector value indicates that a format of end-of-line should be
10309 detected automatically. Nth element of the vector is the subsidiary
10310 coding system whose eol-type is N. */)
10311 (coding_system)
10312 Lisp_Object coding_system;
10313 {
10314 Lisp_Object spec, eol_type;
10315 int n;
10316
10317 if (NILP (coding_system))
10318 coding_system = Qno_conversion;
10319 if (! CODING_SYSTEM_P (coding_system))
10320 return Qnil;
10321 spec = CODING_SYSTEM_SPEC (coding_system);
10322 eol_type = AREF (spec, 2);
10323 if (VECTORP (eol_type))
10324 return Fcopy_sequence (eol_type);
10325 n = EQ (eol_type, Qunix) ? 0 : EQ (eol_type, Qdos) ? 1 : 2;
10326 return make_number (n);
10327 }
10328
10329 #endif /* emacs */
10330
10331 \f
10332 /*** 9. Post-amble ***/
10333
10334 void
10335 init_coding_once ()
10336 {
10337 int i;
10338
10339 for (i = 0; i < coding_category_max; i++)
10340 {
10341 coding_categories[i].id = -1;
10342 coding_priorities[i] = i;
10343 }
10344
10345 /* ISO2022 specific initialize routine. */
10346 for (i = 0; i < 0x20; i++)
10347 iso_code_class[i] = ISO_control_0;
10348 for (i = 0x21; i < 0x7F; i++)
10349 iso_code_class[i] = ISO_graphic_plane_0;
10350 for (i = 0x80; i < 0xA0; i++)
10351 iso_code_class[i] = ISO_control_1;
10352 for (i = 0xA1; i < 0xFF; i++)
10353 iso_code_class[i] = ISO_graphic_plane_1;
10354 iso_code_class[0x20] = iso_code_class[0x7F] = ISO_0x20_or_0x7F;
10355 iso_code_class[0xA0] = iso_code_class[0xFF] = ISO_0xA0_or_0xFF;
10356 iso_code_class[ISO_CODE_SO] = ISO_shift_out;
10357 iso_code_class[ISO_CODE_SI] = ISO_shift_in;
10358 iso_code_class[ISO_CODE_SS2_7] = ISO_single_shift_2_7;
10359 iso_code_class[ISO_CODE_ESC] = ISO_escape;
10360 iso_code_class[ISO_CODE_SS2] = ISO_single_shift_2;
10361 iso_code_class[ISO_CODE_SS3] = ISO_single_shift_3;
10362 iso_code_class[ISO_CODE_CSI] = ISO_control_sequence_introducer;
10363
10364 for (i = 0; i < 256; i++)
10365 {
10366 emacs_mule_bytes[i] = 1;
10367 }
10368 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_11] = 3;
10369 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_12] = 3;
10370 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_21] = 4;
10371 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_22] = 4;
10372 }
10373
10374 #ifdef emacs
10375
10376 void
10377 syms_of_coding ()
10378 {
10379 staticpro (&Vcoding_system_hash_table);
10380 {
10381 Lisp_Object args[2];
10382 args[0] = QCtest;
10383 args[1] = Qeq;
10384 Vcoding_system_hash_table = Fmake_hash_table (2, args);
10385 }
10386
10387 staticpro (&Vsjis_coding_system);
10388 Vsjis_coding_system = Qnil;
10389
10390 staticpro (&Vbig5_coding_system);
10391 Vbig5_coding_system = Qnil;
10392
10393 staticpro (&Vcode_conversion_reused_workbuf);
10394 Vcode_conversion_reused_workbuf = Qnil;
10395
10396 staticpro (&Vcode_conversion_workbuf_name);
10397 Vcode_conversion_workbuf_name = build_string (" *code-conversion-work*");
10398
10399 reused_workbuf_in_use = 0;
10400
10401 DEFSYM (Qcharset, "charset");
10402 DEFSYM (Qtarget_idx, "target-idx");
10403 DEFSYM (Qcoding_system_history, "coding-system-history");
10404 Fset (Qcoding_system_history, Qnil);
10405
10406 /* Target FILENAME is the first argument. */
10407 Fput (Qinsert_file_contents, Qtarget_idx, make_number (0));
10408 /* Target FILENAME is the third argument. */
10409 Fput (Qwrite_region, Qtarget_idx, make_number (2));
10410
10411 DEFSYM (Qcall_process, "call-process");
10412 /* Target PROGRAM is the first argument. */
10413 Fput (Qcall_process, Qtarget_idx, make_number (0));
10414
10415 DEFSYM (Qcall_process_region, "call-process-region");
10416 /* Target PROGRAM is the third argument. */
10417 Fput (Qcall_process_region, Qtarget_idx, make_number (2));
10418
10419 DEFSYM (Qstart_process, "start-process");
10420 /* Target PROGRAM is the third argument. */
10421 Fput (Qstart_process, Qtarget_idx, make_number (2));
10422
10423 DEFSYM (Qopen_network_stream, "open-network-stream");
10424 /* Target SERVICE is the fourth argument. */
10425 Fput (Qopen_network_stream, Qtarget_idx, make_number (3));
10426
10427 DEFSYM (Qcoding_system, "coding-system");
10428 DEFSYM (Qcoding_aliases, "coding-aliases");
10429
10430 DEFSYM (Qeol_type, "eol-type");
10431 DEFSYM (Qunix, "unix");
10432 DEFSYM (Qdos, "dos");
10433
10434 DEFSYM (Qbuffer_file_coding_system, "buffer-file-coding-system");
10435 DEFSYM (Qpost_read_conversion, "post-read-conversion");
10436 DEFSYM (Qpre_write_conversion, "pre-write-conversion");
10437 DEFSYM (Qdefault_char, "default-char");
10438 DEFSYM (Qundecided, "undecided");
10439 DEFSYM (Qno_conversion, "no-conversion");
10440 DEFSYM (Qraw_text, "raw-text");
10441
10442 DEFSYM (Qiso_2022, "iso-2022");
10443
10444 DEFSYM (Qutf_8, "utf-8");
10445 DEFSYM (Qutf_8_emacs, "utf-8-emacs");
10446
10447 DEFSYM (Qutf_16, "utf-16");
10448 DEFSYM (Qbig, "big");
10449 DEFSYM (Qlittle, "little");
10450
10451 DEFSYM (Qshift_jis, "shift-jis");
10452 DEFSYM (Qbig5, "big5");
10453
10454 DEFSYM (Qcoding_system_p, "coding-system-p");
10455
10456 DEFSYM (Qcoding_system_error, "coding-system-error");
10457 Fput (Qcoding_system_error, Qerror_conditions,
10458 Fcons (Qcoding_system_error, Fcons (Qerror, Qnil)));
10459 Fput (Qcoding_system_error, Qerror_message,
10460 build_string ("Invalid coding system"));
10461
10462 /* Intern this now in case it isn't already done.
10463 Setting this variable twice is harmless.
10464 But don't staticpro it here--that is done in alloc.c. */
10465 Qchar_table_extra_slots = intern ("char-table-extra-slots");
10466
10467 DEFSYM (Qtranslation_table, "translation-table");
10468 Fput (Qtranslation_table, Qchar_table_extra_slots, make_number (2));
10469 DEFSYM (Qtranslation_table_id, "translation-table-id");
10470 DEFSYM (Qtranslation_table_for_decode, "translation-table-for-decode");
10471 DEFSYM (Qtranslation_table_for_encode, "translation-table-for-encode");
10472
10473 DEFSYM (Qvalid_codes, "valid-codes");
10474
10475 DEFSYM (Qemacs_mule, "emacs-mule");
10476
10477 DEFSYM (QCcategory, ":category");
10478 DEFSYM (QCmnemonic, ":mnemonic");
10479 DEFSYM (QCdefault_char, ":default-char");
10480 DEFSYM (QCdecode_translation_table, ":decode-translation-table");
10481 DEFSYM (QCencode_translation_table, ":encode-translation-table");
10482 DEFSYM (QCpost_read_conversion, ":post-read-conversion");
10483 DEFSYM (QCpre_write_conversion, ":pre-write-conversion");
10484 DEFSYM (QCascii_compatible_p, ":ascii-compatible-p");
10485
10486 Vcoding_category_table
10487 = Fmake_vector (make_number (coding_category_max), Qnil);
10488 staticpro (&Vcoding_category_table);
10489 /* Followings are target of code detection. */
10490 ASET (Vcoding_category_table, coding_category_iso_7,
10491 intern ("coding-category-iso-7"));
10492 ASET (Vcoding_category_table, coding_category_iso_7_tight,
10493 intern ("coding-category-iso-7-tight"));
10494 ASET (Vcoding_category_table, coding_category_iso_8_1,
10495 intern ("coding-category-iso-8-1"));
10496 ASET (Vcoding_category_table, coding_category_iso_8_2,
10497 intern ("coding-category-iso-8-2"));
10498 ASET (Vcoding_category_table, coding_category_iso_7_else,
10499 intern ("coding-category-iso-7-else"));
10500 ASET (Vcoding_category_table, coding_category_iso_8_else,
10501 intern ("coding-category-iso-8-else"));
10502 ASET (Vcoding_category_table, coding_category_utf_8_auto,
10503 intern ("coding-category-utf-8-auto"));
10504 ASET (Vcoding_category_table, coding_category_utf_8_nosig,
10505 intern ("coding-category-utf-8"));
10506 ASET (Vcoding_category_table, coding_category_utf_8_sig,
10507 intern ("coding-category-utf-8-sig"));
10508 ASET (Vcoding_category_table, coding_category_utf_16_be,
10509 intern ("coding-category-utf-16-be"));
10510 ASET (Vcoding_category_table, coding_category_utf_16_auto,
10511 intern ("coding-category-utf-16-auto"));
10512 ASET (Vcoding_category_table, coding_category_utf_16_le,
10513 intern ("coding-category-utf-16-le"));
10514 ASET (Vcoding_category_table, coding_category_utf_16_be_nosig,
10515 intern ("coding-category-utf-16-be-nosig"));
10516 ASET (Vcoding_category_table, coding_category_utf_16_le_nosig,
10517 intern ("coding-category-utf-16-le-nosig"));
10518 ASET (Vcoding_category_table, coding_category_charset,
10519 intern ("coding-category-charset"));
10520 ASET (Vcoding_category_table, coding_category_sjis,
10521 intern ("coding-category-sjis"));
10522 ASET (Vcoding_category_table, coding_category_big5,
10523 intern ("coding-category-big5"));
10524 ASET (Vcoding_category_table, coding_category_ccl,
10525 intern ("coding-category-ccl"));
10526 ASET (Vcoding_category_table, coding_category_emacs_mule,
10527 intern ("coding-category-emacs-mule"));
10528 /* Followings are NOT target of code detection. */
10529 ASET (Vcoding_category_table, coding_category_raw_text,
10530 intern ("coding-category-raw-text"));
10531 ASET (Vcoding_category_table, coding_category_undecided,
10532 intern ("coding-category-undecided"));
10533
10534 DEFSYM (Qinsufficient_source, "insufficient-source");
10535 DEFSYM (Qinconsistent_eol, "inconsistent-eol");
10536 DEFSYM (Qinvalid_source, "invalid-source");
10537 DEFSYM (Qinterrupted, "interrupted");
10538 DEFSYM (Qinsufficient_memory, "insufficient-memory");
10539 DEFSYM (Qcoding_system_define_form, "coding-system-define-form");
10540
10541 defsubr (&Scoding_system_p);
10542 defsubr (&Sread_coding_system);
10543 defsubr (&Sread_non_nil_coding_system);
10544 defsubr (&Scheck_coding_system);
10545 defsubr (&Sdetect_coding_region);
10546 defsubr (&Sdetect_coding_string);
10547 defsubr (&Sfind_coding_systems_region_internal);
10548 defsubr (&Sunencodable_char_position);
10549 defsubr (&Scheck_coding_systems_region);
10550 defsubr (&Sdecode_coding_region);
10551 defsubr (&Sencode_coding_region);
10552 defsubr (&Sdecode_coding_string);
10553 defsubr (&Sencode_coding_string);
10554 defsubr (&Sdecode_sjis_char);
10555 defsubr (&Sencode_sjis_char);
10556 defsubr (&Sdecode_big5_char);
10557 defsubr (&Sencode_big5_char);
10558 defsubr (&Sset_terminal_coding_system_internal);
10559 defsubr (&Sset_safe_terminal_coding_system_internal);
10560 defsubr (&Sterminal_coding_system);
10561 defsubr (&Sset_keyboard_coding_system_internal);
10562 defsubr (&Skeyboard_coding_system);
10563 defsubr (&Sfind_operation_coding_system);
10564 defsubr (&Sset_coding_system_priority);
10565 defsubr (&Sdefine_coding_system_internal);
10566 defsubr (&Sdefine_coding_system_alias);
10567 defsubr (&Scoding_system_put);
10568 defsubr (&Scoding_system_base);
10569 defsubr (&Scoding_system_plist);
10570 defsubr (&Scoding_system_aliases);
10571 defsubr (&Scoding_system_eol_type);
10572 defsubr (&Scoding_system_priority_list);
10573
10574 DEFVAR_LISP ("coding-system-list", &Vcoding_system_list,
10575 doc: /* List of coding systems.
10576
10577 Do not alter the value of this variable manually. This variable should be
10578 updated by the functions `define-coding-system' and
10579 `define-coding-system-alias'. */);
10580 Vcoding_system_list = Qnil;
10581
10582 DEFVAR_LISP ("coding-system-alist", &Vcoding_system_alist,
10583 doc: /* Alist of coding system names.
10584 Each element is one element list of coding system name.
10585 This variable is given to `completing-read' as COLLECTION argument.
10586
10587 Do not alter the value of this variable manually. This variable should be
10588 updated by the functions `make-coding-system' and
10589 `define-coding-system-alias'. */);
10590 Vcoding_system_alist = Qnil;
10591
10592 DEFVAR_LISP ("coding-category-list", &Vcoding_category_list,
10593 doc: /* List of coding-categories (symbols) ordered by priority.
10594
10595 On detecting a coding system, Emacs tries code detection algorithms
10596 associated with each coding-category one by one in this order. When
10597 one algorithm agrees with a byte sequence of source text, the coding
10598 system bound to the corresponding coding-category is selected.
10599
10600 Don't modify this variable directly, but use `set-coding-priority'. */);
10601 {
10602 int i;
10603
10604 Vcoding_category_list = Qnil;
10605 for (i = coding_category_max - 1; i >= 0; i--)
10606 Vcoding_category_list
10607 = Fcons (XVECTOR (Vcoding_category_table)->contents[i],
10608 Vcoding_category_list);
10609 }
10610
10611 DEFVAR_LISP ("coding-system-for-read", &Vcoding_system_for_read,
10612 doc: /* Specify the coding system for read operations.
10613 It is useful to bind this variable with `let', but do not set it globally.
10614 If the value is a coding system, it is used for decoding on read operation.
10615 If not, an appropriate element is used from one of the coding system alists.
10616 There are three such tables: `file-coding-system-alist',
10617 `process-coding-system-alist', and `network-coding-system-alist'. */);
10618 Vcoding_system_for_read = Qnil;
10619
10620 DEFVAR_LISP ("coding-system-for-write", &Vcoding_system_for_write,
10621 doc: /* Specify the coding system for write operations.
10622 Programs bind this variable with `let', but you should not set it globally.
10623 If the value is a coding system, it is used for encoding of output,
10624 when writing it to a file and when sending it to a file or subprocess.
10625
10626 If this does not specify a coding system, an appropriate element
10627 is used from one of the coding system alists.
10628 There are three such tables: `file-coding-system-alist',
10629 `process-coding-system-alist', and `network-coding-system-alist'.
10630 For output to files, if the above procedure does not specify a coding system,
10631 the value of `buffer-file-coding-system' is used. */);
10632 Vcoding_system_for_write = Qnil;
10633
10634 DEFVAR_LISP ("last-coding-system-used", &Vlast_coding_system_used,
10635 doc: /*
10636 Coding system used in the latest file or process I/O. */);
10637 Vlast_coding_system_used = Qnil;
10638
10639 DEFVAR_LISP ("last-code-conversion-error", &Vlast_code_conversion_error,
10640 doc: /*
10641 Error status of the last code conversion.
10642
10643 When an error was detected in the last code conversion, this variable
10644 is set to one of the following symbols.
10645 `insufficient-source'
10646 `inconsistent-eol'
10647 `invalid-source'
10648 `interrupted'
10649 `insufficient-memory'
10650 When no error was detected, the value doesn't change. So, to check
10651 the error status of a code conversion by this variable, you must
10652 explicitly set this variable to nil before performing code
10653 conversion. */);
10654 Vlast_code_conversion_error = Qnil;
10655
10656 DEFVAR_BOOL ("inhibit-eol-conversion", &inhibit_eol_conversion,
10657 doc: /*
10658 *Non-nil means always inhibit code conversion of end-of-line format.
10659 See info node `Coding Systems' and info node `Text and Binary' concerning
10660 such conversion. */);
10661 inhibit_eol_conversion = 0;
10662
10663 DEFVAR_BOOL ("inherit-process-coding-system", &inherit_process_coding_system,
10664 doc: /*
10665 Non-nil means process buffer inherits coding system of process output.
10666 Bind it to t if the process output is to be treated as if it were a file
10667 read from some filesystem. */);
10668 inherit_process_coding_system = 0;
10669
10670 DEFVAR_LISP ("file-coding-system-alist", &Vfile_coding_system_alist,
10671 doc: /*
10672 Alist to decide a coding system to use for a file I/O operation.
10673 The format is ((PATTERN . VAL) ...),
10674 where PATTERN is a regular expression matching a file name,
10675 VAL is a coding system, a cons of coding systems, or a function symbol.
10676 If VAL is a coding system, it is used for both decoding and encoding
10677 the file contents.
10678 If VAL is a cons of coding systems, the car part is used for decoding,
10679 and the cdr part is used for encoding.
10680 If VAL is a function symbol, the function must return a coding system
10681 or a cons of coding systems which are used as above. The function is
10682 called with an argument that is a list of the arguments with which
10683 `find-operation-coding-system' was called. If the function can't decide
10684 a coding system, it can return `undecided' so that the normal
10685 code-detection is performed.
10686
10687 See also the function `find-operation-coding-system'
10688 and the variable `auto-coding-alist'. */);
10689 Vfile_coding_system_alist = Qnil;
10690
10691 DEFVAR_LISP ("process-coding-system-alist", &Vprocess_coding_system_alist,
10692 doc: /*
10693 Alist to decide a coding system to use for a process I/O operation.
10694 The format is ((PATTERN . VAL) ...),
10695 where PATTERN is a regular expression matching a program name,
10696 VAL is a coding system, a cons of coding systems, or a function symbol.
10697 If VAL is a coding system, it is used for both decoding what received
10698 from the program and encoding what sent to the program.
10699 If VAL is a cons of coding systems, the car part is used for decoding,
10700 and the cdr part is used for encoding.
10701 If VAL is a function symbol, the function must return a coding system
10702 or a cons of coding systems which are used as above.
10703
10704 See also the function `find-operation-coding-system'. */);
10705 Vprocess_coding_system_alist = Qnil;
10706
10707 DEFVAR_LISP ("network-coding-system-alist", &Vnetwork_coding_system_alist,
10708 doc: /*
10709 Alist to decide a coding system to use for a network I/O operation.
10710 The format is ((PATTERN . VAL) ...),
10711 where PATTERN is a regular expression matching a network service name
10712 or is a port number to connect to,
10713 VAL is a coding system, a cons of coding systems, or a function symbol.
10714 If VAL is a coding system, it is used for both decoding what received
10715 from the network stream and encoding what sent to the network stream.
10716 If VAL is a cons of coding systems, the car part is used for decoding,
10717 and the cdr part is used for encoding.
10718 If VAL is a function symbol, the function must return a coding system
10719 or a cons of coding systems which are used as above.
10720
10721 See also the function `find-operation-coding-system'. */);
10722 Vnetwork_coding_system_alist = Qnil;
10723
10724 DEFVAR_LISP ("locale-coding-system", &Vlocale_coding_system,
10725 doc: /* Coding system to use with system messages.
10726 Also used for decoding keyboard input on X Window system. */);
10727 Vlocale_coding_system = Qnil;
10728
10729 /* The eol mnemonics are reset in startup.el system-dependently. */
10730 DEFVAR_LISP ("eol-mnemonic-unix", &eol_mnemonic_unix,
10731 doc: /*
10732 *String displayed in mode line for UNIX-like (LF) end-of-line format. */);
10733 eol_mnemonic_unix = build_string (":");
10734
10735 DEFVAR_LISP ("eol-mnemonic-dos", &eol_mnemonic_dos,
10736 doc: /*
10737 *String displayed in mode line for DOS-like (CRLF) end-of-line format. */);
10738 eol_mnemonic_dos = build_string ("\\");
10739
10740 DEFVAR_LISP ("eol-mnemonic-mac", &eol_mnemonic_mac,
10741 doc: /*
10742 *String displayed in mode line for MAC-like (CR) end-of-line format. */);
10743 eol_mnemonic_mac = build_string ("/");
10744
10745 DEFVAR_LISP ("eol-mnemonic-undecided", &eol_mnemonic_undecided,
10746 doc: /*
10747 *String displayed in mode line when end-of-line format is not yet determined. */);
10748 eol_mnemonic_undecided = build_string (":");
10749
10750 DEFVAR_LISP ("enable-character-translation", &Venable_character_translation,
10751 doc: /*
10752 *Non-nil enables character translation while encoding and decoding. */);
10753 Venable_character_translation = Qt;
10754
10755 DEFVAR_LISP ("standard-translation-table-for-decode",
10756 &Vstandard_translation_table_for_decode,
10757 doc: /* Table for translating characters while decoding. */);
10758 Vstandard_translation_table_for_decode = Qnil;
10759
10760 DEFVAR_LISP ("standard-translation-table-for-encode",
10761 &Vstandard_translation_table_for_encode,
10762 doc: /* Table for translating characters while encoding. */);
10763 Vstandard_translation_table_for_encode = Qnil;
10764
10765 DEFVAR_LISP ("charset-revision-table", &Vcharset_revision_table,
10766 doc: /* Alist of charsets vs revision numbers.
10767 While encoding, if a charset (car part of an element) is found,
10768 designate it with the escape sequence identifying revision (cdr part
10769 of the element). */);
10770 Vcharset_revision_table = Qnil;
10771
10772 DEFVAR_LISP ("default-process-coding-system",
10773 &Vdefault_process_coding_system,
10774 doc: /* Cons of coding systems used for process I/O by default.
10775 The car part is used for decoding a process output,
10776 the cdr part is used for encoding a text to be sent to a process. */);
10777 Vdefault_process_coding_system = Qnil;
10778
10779 DEFVAR_LISP ("latin-extra-code-table", &Vlatin_extra_code_table,
10780 doc: /*
10781 Table of extra Latin codes in the range 128..159 (inclusive).
10782 This is a vector of length 256.
10783 If Nth element is non-nil, the existence of code N in a file
10784 \(or output of subprocess) doesn't prevent it to be detected as
10785 a coding system of ISO 2022 variant which has a flag
10786 `accept-latin-extra-code' t (e.g. iso-latin-1) on reading a file
10787 or reading output of a subprocess.
10788 Only 128th through 159th elements have a meaning. */);
10789 Vlatin_extra_code_table = Fmake_vector (make_number (256), Qnil);
10790
10791 DEFVAR_LISP ("select-safe-coding-system-function",
10792 &Vselect_safe_coding_system_function,
10793 doc: /*
10794 Function to call to select safe coding system for encoding a text.
10795
10796 If set, this function is called to force a user to select a proper
10797 coding system which can encode the text in the case that a default
10798 coding system used in each operation can't encode the text. The
10799 function should take care that the buffer is not modified while
10800 the coding system is being selected.
10801
10802 The default value is `select-safe-coding-system' (which see). */);
10803 Vselect_safe_coding_system_function = Qnil;
10804
10805 DEFVAR_BOOL ("coding-system-require-warning",
10806 &coding_system_require_warning,
10807 doc: /* Internal use only.
10808 If non-nil, on writing a file, `select-safe-coding-system-function' is
10809 called even if `coding-system-for-write' is non-nil. The command
10810 `universal-coding-system-argument' binds this variable to t temporarily. */);
10811 coding_system_require_warning = 0;
10812
10813
10814 DEFVAR_BOOL ("inhibit-iso-escape-detection",
10815 &inhibit_iso_escape_detection,
10816 doc: /*
10817 If non-nil, Emacs ignores ISO-2022 escape sequences during code detection.
10818
10819 When Emacs reads text, it tries to detect how the text is encoded.
10820 This code detection is sensitive to escape sequences. If Emacs sees
10821 a valid ISO-2022 escape sequence, it assumes the text is encoded in one
10822 of the ISO2022 encodings, and decodes text by the corresponding coding
10823 system (e.g. `iso-2022-7bit').
10824
10825 However, there may be a case that you want to read escape sequences in
10826 a file as is. In such a case, you can set this variable to non-nil.
10827 Then the code detection will ignore any escape sequences, and no text is
10828 detected as encoded in some ISO-2022 encoding. The result is that all
10829 escape sequences become visible in a buffer.
10830
10831 The default value is nil, and it is strongly recommended not to change
10832 it. That is because many Emacs Lisp source files that contain
10833 non-ASCII characters are encoded by the coding system `iso-2022-7bit'
10834 in Emacs's distribution, and they won't be decoded correctly on
10835 reading if you suppress escape sequence detection.
10836
10837 The other way to read escape sequences in a file without decoding is
10838 to explicitly specify some coding system that doesn't use ISO-2022
10839 escape sequence (e.g `latin-1') on reading by \\[universal-coding-system-argument]. */);
10840 inhibit_iso_escape_detection = 0;
10841
10842 DEFVAR_BOOL ("inhibit-null-byte-detection",
10843 &inhibit_null_byte_detection,
10844 doc: /* If non-nil, Emacs ignores null bytes on code detection.
10845 By default, Emacs treats it as binary data, and does not attempt to
10846 decode it. The effect is as if you specified `no-conversion' for
10847 reading that text.
10848
10849 Set this to non-nil when a regular text happens to include null bytes.
10850 Examples are Index nodes of Info files and null-byte delimited output
10851 from GNU Find and GNU Grep. Emacs will then ignore the null bytes and
10852 decode text as usual. */);
10853 inhibit_null_byte_detection = 0;
10854
10855 DEFVAR_LISP ("translation-table-for-input", &Vtranslation_table_for_input,
10856 doc: /* Char table for translating self-inserting characters.
10857 This is applied to the result of input methods, not their input.
10858 See also `keyboard-translate-table'.
10859
10860 Use of this variable for character code unification was rendered
10861 obsolete in Emacs 23.1 and later, since Unicode is now the basis of
10862 internal character representation. */);
10863 Vtranslation_table_for_input = Qnil;
10864
10865 {
10866 Lisp_Object args[coding_arg_max];
10867 Lisp_Object plist[16];
10868 int i;
10869
10870 for (i = 0; i < coding_arg_max; i++)
10871 args[i] = Qnil;
10872
10873 plist[0] = intern (":name");
10874 plist[1] = args[coding_arg_name] = Qno_conversion;
10875 plist[2] = intern (":mnemonic");
10876 plist[3] = args[coding_arg_mnemonic] = make_number ('=');
10877 plist[4] = intern (":coding-type");
10878 plist[5] = args[coding_arg_coding_type] = Qraw_text;
10879 plist[6] = intern (":ascii-compatible-p");
10880 plist[7] = args[coding_arg_ascii_compatible_p] = Qt;
10881 plist[8] = intern (":default-char");
10882 plist[9] = args[coding_arg_default_char] = make_number (0);
10883 plist[10] = intern (":for-unibyte");
10884 plist[11] = args[coding_arg_for_unibyte] = Qt;
10885 plist[12] = intern (":docstring");
10886 plist[13] = build_string ("Do no conversion.\n\
10887 \n\
10888 When you visit a file with this coding, the file is read into a\n\
10889 unibyte buffer as is, thus each byte of a file is treated as a\n\
10890 character.");
10891 plist[14] = intern (":eol-type");
10892 plist[15] = args[coding_arg_eol_type] = Qunix;
10893 args[coding_arg_plist] = Flist (16, plist);
10894 Fdefine_coding_system_internal (coding_arg_max, args);
10895
10896 plist[1] = args[coding_arg_name] = Qundecided;
10897 plist[3] = args[coding_arg_mnemonic] = make_number ('-');
10898 plist[5] = args[coding_arg_coding_type] = Qundecided;
10899 /* This is already set.
10900 plist[7] = args[coding_arg_ascii_compatible_p] = Qt; */
10901 plist[8] = intern (":charset-list");
10902 plist[9] = args[coding_arg_charset_list] = Fcons (Qascii, Qnil);
10903 plist[11] = args[coding_arg_for_unibyte] = Qnil;
10904 plist[13] = build_string ("No conversion on encoding, automatic conversion on decoding.");
10905 plist[15] = args[coding_arg_eol_type] = Qnil;
10906 args[coding_arg_plist] = Flist (16, plist);
10907 Fdefine_coding_system_internal (coding_arg_max, args);
10908 }
10909
10910 setup_coding_system (Qno_conversion, &safe_terminal_coding);
10911
10912 {
10913 int i;
10914
10915 for (i = 0; i < coding_category_max; i++)
10916 Fset (AREF (Vcoding_category_table, i), Qno_conversion);
10917 }
10918 #if defined (MSDOS) || defined (WINDOWSNT)
10919 system_eol_type = Qdos;
10920 #else
10921 system_eol_type = Qunix;
10922 #endif
10923 staticpro (&system_eol_type);
10924 }
10925
10926 char *
10927 emacs_strerror (error_number)
10928 int error_number;
10929 {
10930 char *str;
10931
10932 synchronize_system_messages_locale ();
10933 str = strerror (error_number);
10934
10935 if (! NILP (Vlocale_coding_system))
10936 {
10937 Lisp_Object dec = code_convert_string_norecord (build_string (str),
10938 Vlocale_coding_system,
10939 0);
10940 str = (char *) SDATA (dec);
10941 }
10942
10943 return str;
10944 }
10945
10946 #endif /* emacs */
10947
10948 /* arch-tag: 3a3a2b01-5ff6-4071-9afe-f5b808d9229d
10949 (do not change this comment) */