Merge from emacs-24; up to 2012-12-23T02:41:17Z!rgm@gnu.org
[bpt/emacs.git] / src / ralloc.c
1 /* Block-relocating memory allocator.
2 Copyright (C) 1993, 1995, 2000-2013 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* NOTES:
20
21 Only relocate the blocs necessary for SIZE in r_alloc_sbrk,
22 rather than all of them. This means allowing for a possible
23 hole between the first bloc and the end of malloc storage. */
24
25 #ifdef emacs
26
27 #include <config.h>
28
29 #include "lisp.h" /* Needed for VALBITS. */
30 #include "blockinput.h"
31
32 #include <unistd.h>
33
34 #ifdef DOUG_LEA_MALLOC
35 #define M_TOP_PAD -2
36 extern int mallopt (int, int);
37 #else /* not DOUG_LEA_MALLOC */
38 #ifndef SYSTEM_MALLOC
39 extern size_t __malloc_extra_blocks;
40 #endif /* SYSTEM_MALLOC */
41 #endif /* not DOUG_LEA_MALLOC */
42
43 #else /* not emacs */
44
45 #include <stddef.h>
46
47 #include <unistd.h>
48 #include <malloc.h>
49
50 #endif /* not emacs */
51
52
53 #include "getpagesize.h"
54
55 /* A flag to indicate whether we have initialized ralloc yet. For
56 Emacs's sake, please do not make this local to malloc_init; on some
57 machines, the dumping procedure makes all static variables
58 read-only. On these machines, the word static is #defined to be
59 the empty string, meaning that r_alloc_initialized becomes an
60 automatic variable, and loses its value each time Emacs is started
61 up. */
62
63 static int r_alloc_initialized = 0;
64
65 static void r_alloc_init (void);
66
67 \f
68 /* Declarations for working with the malloc, ralloc, and system breaks. */
69
70 /* Function to set the real break value. */
71 void *(*real_morecore) (ptrdiff_t);
72
73 /* The break value, as seen by malloc. */
74 static void *virtual_break_value;
75
76 /* The address of the end of the last data in use by ralloc,
77 including relocatable blocs as well as malloc data. */
78 static void *break_value;
79
80 /* This is the size of a page. We round memory requests to this boundary. */
81 static int page_size;
82
83 /* Whenever we get memory from the system, get this many extra bytes. This
84 must be a multiple of page_size. */
85 static int extra_bytes;
86
87 /* Macros for rounding. Note that rounding to any value is possible
88 by changing the definition of PAGE. */
89 #define PAGE (getpagesize ())
90 #define ROUNDUP(size) (((size_t) (size) + page_size - 1) \
91 & ~((size_t) (page_size - 1)))
92
93 #define MEM_ALIGN sizeof (double)
94 #define MEM_ROUNDUP(addr) (((size_t) (addr) + MEM_ALIGN - 1) \
95 & ~(MEM_ALIGN - 1))
96
97 /* The hook `malloc' uses for the function which gets more space
98 from the system. */
99
100 #ifndef SYSTEM_MALLOC
101 extern void *(*__morecore) (ptrdiff_t);
102 #endif
103
104
105 \f
106 /***********************************************************************
107 Implementation using sbrk
108 ***********************************************************************/
109
110 /* Data structures of heaps and blocs. */
111
112 /* The relocatable objects, or blocs, and the malloc data
113 both reside within one or more heaps.
114 Each heap contains malloc data, running from `start' to `bloc_start',
115 and relocatable objects, running from `bloc_start' to `free'.
116
117 Relocatable objects may relocate within the same heap
118 or may move into another heap; the heaps themselves may grow
119 but they never move.
120
121 We try to make just one heap and make it larger as necessary.
122 But sometimes we can't do that, because we can't get contiguous
123 space to add onto the heap. When that happens, we start a new heap. */
124
125 typedef struct heap
126 {
127 struct heap *next;
128 struct heap *prev;
129 /* Start of memory range of this heap. */
130 void *start;
131 /* End of memory range of this heap. */
132 void *end;
133 /* Start of relocatable data in this heap. */
134 void *bloc_start;
135 /* Start of unused space in this heap. */
136 void *free;
137 /* First bloc in this heap. */
138 struct bp *first_bloc;
139 /* Last bloc in this heap. */
140 struct bp *last_bloc;
141 } *heap_ptr;
142
143 #define NIL_HEAP ((heap_ptr) 0)
144
145 /* This is the first heap object.
146 If we need additional heap objects, each one resides at the beginning of
147 the space it covers. */
148 static struct heap heap_base;
149
150 /* Head and tail of the list of heaps. */
151 static heap_ptr first_heap, last_heap;
152
153 /* These structures are allocated in the malloc arena.
154 The linked list is kept in order of increasing '.data' members.
155 The data blocks abut each other; if b->next is non-nil, then
156 b->data + b->size == b->next->data.
157
158 An element with variable==NULL denotes a freed block, which has not yet
159 been collected. They may only appear while r_alloc_freeze_level > 0,
160 and will be freed when the arena is thawed. Currently, these blocs are
161 not reusable, while the arena is frozen. Very inefficient. */
162
163 typedef struct bp
164 {
165 struct bp *next;
166 struct bp *prev;
167 void **variable;
168 void *data;
169 size_t size;
170 void *new_data; /* temporarily used for relocation */
171 struct heap *heap; /* Heap this bloc is in. */
172 } *bloc_ptr;
173
174 #define NIL_BLOC ((bloc_ptr) 0)
175 #define BLOC_PTR_SIZE (sizeof (struct bp))
176
177 /* Head and tail of the list of relocatable blocs. */
178 static bloc_ptr first_bloc, last_bloc;
179
180 static int use_relocatable_buffers;
181
182 /* If >0, no relocation whatsoever takes place. */
183 static int r_alloc_freeze_level;
184
185 \f
186 /* Functions to get and return memory from the system. */
187
188 /* Find the heap that ADDRESS falls within. */
189
190 static heap_ptr
191 find_heap (void *address)
192 {
193 heap_ptr heap;
194
195 for (heap = last_heap; heap; heap = heap->prev)
196 {
197 if (heap->start <= address && address <= heap->end)
198 return heap;
199 }
200
201 return NIL_HEAP;
202 }
203
204 /* Find SIZE bytes of space in a heap.
205 Try to get them at ADDRESS (which must fall within some heap's range)
206 if we can get that many within one heap.
207
208 If enough space is not presently available in our reserve, this means
209 getting more page-aligned space from the system. If the returned space
210 is not contiguous to the last heap, allocate a new heap, and append it
211 to the heap list.
212
213 obtain does not try to keep track of whether space is in use or not
214 in use. It just returns the address of SIZE bytes that fall within a
215 single heap. If you call obtain twice in a row with the same arguments,
216 you typically get the same value. It's the caller's responsibility to
217 keep track of what space is in use.
218
219 Return the address of the space if all went well, or zero if we couldn't
220 allocate the memory. */
221
222 static void *
223 obtain (void *address, size_t size)
224 {
225 heap_ptr heap;
226 size_t already_available;
227
228 /* Find the heap that ADDRESS falls within. */
229 for (heap = last_heap; heap; heap = heap->prev)
230 {
231 if (heap->start <= address && address <= heap->end)
232 break;
233 }
234
235 if (! heap)
236 emacs_abort ();
237
238 /* If we can't fit SIZE bytes in that heap,
239 try successive later heaps. */
240 while (heap && (char *) address + size > (char *) heap->end)
241 {
242 heap = heap->next;
243 if (heap == NIL_HEAP)
244 break;
245 address = heap->bloc_start;
246 }
247
248 /* If we can't fit them within any existing heap,
249 get more space. */
250 if (heap == NIL_HEAP)
251 {
252 void *new = real_morecore (0);
253 size_t get;
254
255 already_available = (char *) last_heap->end - (char *) address;
256
257 if (new != last_heap->end)
258 {
259 /* Someone else called sbrk. Make a new heap. */
260
261 heap_ptr new_heap = (heap_ptr) MEM_ROUNDUP (new);
262 void *bloc_start = (void *) MEM_ROUNDUP ((void *) (new_heap + 1));
263
264 if (real_morecore ((char *) bloc_start - (char *) new) != new)
265 return 0;
266
267 new_heap->start = new;
268 new_heap->end = bloc_start;
269 new_heap->bloc_start = bloc_start;
270 new_heap->free = bloc_start;
271 new_heap->next = NIL_HEAP;
272 new_heap->prev = last_heap;
273 new_heap->first_bloc = NIL_BLOC;
274 new_heap->last_bloc = NIL_BLOC;
275 last_heap->next = new_heap;
276 last_heap = new_heap;
277
278 address = bloc_start;
279 already_available = 0;
280 }
281
282 /* Add space to the last heap (which we may have just created).
283 Get some extra, so we can come here less often. */
284
285 get = size + extra_bytes - already_available;
286 get = (char *) ROUNDUP ((char *) last_heap->end + get)
287 - (char *) last_heap->end;
288
289 if (real_morecore (get) != last_heap->end)
290 return 0;
291
292 last_heap->end = (char *) last_heap->end + get;
293 }
294
295 return address;
296 }
297
298 /* Return unused heap space to the system
299 if there is a lot of unused space now.
300 This can make the last heap smaller;
301 it can also eliminate the last heap entirely. */
302
303 static void
304 relinquish (void)
305 {
306 register heap_ptr h;
307 ptrdiff_t excess = 0;
308
309 /* Add the amount of space beyond break_value
310 in all heaps which have extend beyond break_value at all. */
311
312 for (h = last_heap; h && break_value < h->end; h = h->prev)
313 {
314 excess += (char *) h->end - (char *) ((break_value < h->bloc_start)
315 ? h->bloc_start : break_value);
316 }
317
318 if (excess > extra_bytes * 2 && real_morecore (0) == last_heap->end)
319 {
320 /* Keep extra_bytes worth of empty space.
321 And don't free anything unless we can free at least extra_bytes. */
322 excess -= extra_bytes;
323
324 if ((char *) last_heap->end - (char *) last_heap->bloc_start <= excess)
325 {
326 heap_ptr lh_prev;
327
328 /* This heap should have no blocs in it. If it does, we
329 cannot return it to the system. */
330 if (last_heap->first_bloc != NIL_BLOC
331 || last_heap->last_bloc != NIL_BLOC)
332 return;
333
334 /* Return the last heap, with its header, to the system. */
335 excess = (char *) last_heap->end - (char *) last_heap->start;
336 lh_prev = last_heap->prev;
337 /* If the system doesn't want that much memory back, leave
338 last_heap unaltered to reflect that. This can occur if
339 break_value is still within the original data segment. */
340 if (real_morecore (- excess) != 0)
341 {
342 last_heap = lh_prev;
343 last_heap->next = NIL_HEAP;
344 }
345 }
346 else
347 {
348 excess = ((char *) last_heap->end
349 - (char *) ROUNDUP ((char *) last_heap->end - excess));
350 /* If the system doesn't want that much memory back, leave
351 the end of the last heap unchanged to reflect that. This
352 can occur if break_value is still within the original
353 data segment. */
354 if (real_morecore (- excess) != 0)
355 last_heap->end = (char *) last_heap->end - excess;
356 }
357 }
358 }
359 \f
360 /* The meat - allocating, freeing, and relocating blocs. */
361
362 /* Find the bloc referenced by the address in PTR. Returns a pointer
363 to that block. */
364
365 static bloc_ptr
366 find_bloc (void **ptr)
367 {
368 bloc_ptr p = first_bloc;
369
370 while (p != NIL_BLOC)
371 {
372 /* Consistency check. Don't return inconsistent blocs.
373 Don't abort here, as callers might be expecting this, but
374 callers that always expect a bloc to be returned should abort
375 if one isn't to avoid a memory corruption bug that is
376 difficult to track down. */
377 if (p->variable == ptr && p->data == *ptr)
378 return p;
379
380 p = p->next;
381 }
382
383 return p;
384 }
385
386 /* Allocate a bloc of SIZE bytes and append it to the chain of blocs.
387 Returns a pointer to the new bloc, or zero if we couldn't allocate
388 memory for the new block. */
389
390 static bloc_ptr
391 get_bloc (size_t size)
392 {
393 bloc_ptr new_bloc;
394 heap_ptr heap;
395
396 if (! (new_bloc = malloc (BLOC_PTR_SIZE))
397 || ! (new_bloc->data = obtain (break_value, size)))
398 {
399 free (new_bloc);
400
401 return 0;
402 }
403
404 break_value = (char *) new_bloc->data + size;
405
406 new_bloc->size = size;
407 new_bloc->next = NIL_BLOC;
408 new_bloc->variable = NULL;
409 new_bloc->new_data = 0;
410
411 /* Record in the heap that this space is in use. */
412 heap = find_heap (new_bloc->data);
413 heap->free = break_value;
414
415 /* Maintain the correspondence between heaps and blocs. */
416 new_bloc->heap = heap;
417 heap->last_bloc = new_bloc;
418 if (heap->first_bloc == NIL_BLOC)
419 heap->first_bloc = new_bloc;
420
421 /* Put this bloc on the doubly-linked list of blocs. */
422 if (first_bloc)
423 {
424 new_bloc->prev = last_bloc;
425 last_bloc->next = new_bloc;
426 last_bloc = new_bloc;
427 }
428 else
429 {
430 first_bloc = last_bloc = new_bloc;
431 new_bloc->prev = NIL_BLOC;
432 }
433
434 return new_bloc;
435 }
436 \f
437 /* Calculate new locations of blocs in the list beginning with BLOC,
438 relocating it to start at ADDRESS, in heap HEAP. If enough space is
439 not presently available in our reserve, call obtain for
440 more space.
441
442 Store the new location of each bloc in its new_data field.
443 Do not touch the contents of blocs or break_value. */
444
445 static int
446 relocate_blocs (bloc_ptr bloc, heap_ptr heap, void *address)
447 {
448 bloc_ptr b = bloc;
449
450 /* No need to ever call this if arena is frozen, bug somewhere! */
451 if (r_alloc_freeze_level)
452 emacs_abort ();
453
454 while (b)
455 {
456 /* If bloc B won't fit within HEAP,
457 move to the next heap and try again. */
458 while (heap && (char *) address + b->size > (char *) heap->end)
459 {
460 heap = heap->next;
461 if (heap == NIL_HEAP)
462 break;
463 address = heap->bloc_start;
464 }
465
466 /* If BLOC won't fit in any heap,
467 get enough new space to hold BLOC and all following blocs. */
468 if (heap == NIL_HEAP)
469 {
470 bloc_ptr tb = b;
471 size_t s = 0;
472
473 /* Add up the size of all the following blocs. */
474 while (tb != NIL_BLOC)
475 {
476 if (tb->variable)
477 s += tb->size;
478
479 tb = tb->next;
480 }
481
482 /* Get that space. */
483 address = obtain (address, s);
484 if (address == 0)
485 return 0;
486
487 heap = last_heap;
488 }
489
490 /* Record the new address of this bloc
491 and update where the next bloc can start. */
492 b->new_data = address;
493 if (b->variable)
494 address = (char *) address + b->size;
495 b = b->next;
496 }
497
498 return 1;
499 }
500 \f
501 /* Update the records of which heaps contain which blocs, starting
502 with heap HEAP and bloc BLOC. */
503
504 static void
505 update_heap_bloc_correspondence (bloc_ptr bloc, heap_ptr heap)
506 {
507 register bloc_ptr b;
508
509 /* Initialize HEAP's status to reflect blocs before BLOC. */
510 if (bloc != NIL_BLOC && bloc->prev != NIL_BLOC && bloc->prev->heap == heap)
511 {
512 /* The previous bloc is in HEAP. */
513 heap->last_bloc = bloc->prev;
514 heap->free = (char *) bloc->prev->data + bloc->prev->size;
515 }
516 else
517 {
518 /* HEAP contains no blocs before BLOC. */
519 heap->first_bloc = NIL_BLOC;
520 heap->last_bloc = NIL_BLOC;
521 heap->free = heap->bloc_start;
522 }
523
524 /* Advance through blocs one by one. */
525 for (b = bloc; b != NIL_BLOC; b = b->next)
526 {
527 /* Advance through heaps, marking them empty,
528 till we get to the one that B is in. */
529 while (heap)
530 {
531 if (heap->bloc_start <= b->data && b->data <= heap->end)
532 break;
533 heap = heap->next;
534 /* We know HEAP is not null now,
535 because there has to be space for bloc B. */
536 heap->first_bloc = NIL_BLOC;
537 heap->last_bloc = NIL_BLOC;
538 heap->free = heap->bloc_start;
539 }
540
541 /* Update HEAP's status for bloc B. */
542 heap->free = (char *) b->data + b->size;
543 heap->last_bloc = b;
544 if (heap->first_bloc == NIL_BLOC)
545 heap->first_bloc = b;
546
547 /* Record that B is in HEAP. */
548 b->heap = heap;
549 }
550
551 /* If there are any remaining heaps and no blocs left,
552 mark those heaps as empty. */
553 heap = heap->next;
554 while (heap)
555 {
556 heap->first_bloc = NIL_BLOC;
557 heap->last_bloc = NIL_BLOC;
558 heap->free = heap->bloc_start;
559 heap = heap->next;
560 }
561 }
562 \f
563 /* Resize BLOC to SIZE bytes. This relocates the blocs
564 that come after BLOC in memory. */
565
566 static int
567 resize_bloc (bloc_ptr bloc, size_t size)
568 {
569 bloc_ptr b;
570 heap_ptr heap;
571 void *address;
572 size_t old_size;
573
574 /* No need to ever call this if arena is frozen, bug somewhere! */
575 if (r_alloc_freeze_level)
576 emacs_abort ();
577
578 if (bloc == NIL_BLOC || size == bloc->size)
579 return 1;
580
581 for (heap = first_heap; heap != NIL_HEAP; heap = heap->next)
582 {
583 if (heap->bloc_start <= bloc->data && bloc->data <= heap->end)
584 break;
585 }
586
587 if (heap == NIL_HEAP)
588 emacs_abort ();
589
590 old_size = bloc->size;
591 bloc->size = size;
592
593 /* Note that bloc could be moved into the previous heap. */
594 address = (bloc->prev ? (char *) bloc->prev->data + bloc->prev->size
595 : (char *) first_heap->bloc_start);
596 while (heap)
597 {
598 if (heap->bloc_start <= address && address <= heap->end)
599 break;
600 heap = heap->prev;
601 }
602
603 if (! relocate_blocs (bloc, heap, address))
604 {
605 bloc->size = old_size;
606 return 0;
607 }
608
609 if (size > old_size)
610 {
611 for (b = last_bloc; b != bloc; b = b->prev)
612 {
613 if (!b->variable)
614 {
615 b->size = 0;
616 b->data = b->new_data;
617 }
618 else
619 {
620 if (b->new_data != b->data)
621 memmove (b->new_data, b->data, b->size);
622 *b->variable = b->data = b->new_data;
623 }
624 }
625 if (!bloc->variable)
626 {
627 bloc->size = 0;
628 bloc->data = bloc->new_data;
629 }
630 else
631 {
632 if (bloc->new_data != bloc->data)
633 memmove (bloc->new_data, bloc->data, old_size);
634 memset ((char *) bloc->new_data + old_size, 0, size - old_size);
635 *bloc->variable = bloc->data = bloc->new_data;
636 }
637 }
638 else
639 {
640 for (b = bloc; b != NIL_BLOC; b = b->next)
641 {
642 if (!b->variable)
643 {
644 b->size = 0;
645 b->data = b->new_data;
646 }
647 else
648 {
649 if (b->new_data != b->data)
650 memmove (b->new_data, b->data, b->size);
651 *b->variable = b->data = b->new_data;
652 }
653 }
654 }
655
656 update_heap_bloc_correspondence (bloc, heap);
657
658 break_value = (last_bloc ? (char *) last_bloc->data + last_bloc->size
659 : (char *) first_heap->bloc_start);
660 return 1;
661 }
662 \f
663 /* Free BLOC from the chain of blocs, relocating any blocs above it.
664 This may return space to the system. */
665
666 static void
667 free_bloc (bloc_ptr bloc)
668 {
669 heap_ptr heap = bloc->heap;
670 heap_ptr h;
671
672 if (r_alloc_freeze_level)
673 {
674 bloc->variable = NULL;
675 return;
676 }
677
678 resize_bloc (bloc, 0);
679
680 if (bloc == first_bloc && bloc == last_bloc)
681 {
682 first_bloc = last_bloc = NIL_BLOC;
683 }
684 else if (bloc == last_bloc)
685 {
686 last_bloc = bloc->prev;
687 last_bloc->next = NIL_BLOC;
688 }
689 else if (bloc == first_bloc)
690 {
691 first_bloc = bloc->next;
692 first_bloc->prev = NIL_BLOC;
693 }
694 else
695 {
696 bloc->next->prev = bloc->prev;
697 bloc->prev->next = bloc->next;
698 }
699
700 /* Sometimes, 'heap' obtained from bloc->heap above is not really a
701 'heap' structure. It can even be beyond the current break point,
702 which will cause crashes when we dereference it below (see
703 bug#12242). Evidently, the reason is bloc allocations done while
704 use_relocatable_buffers was non-positive, because additional
705 memory we get then is not recorded in the heaps we manage. If
706 bloc->heap records such a "heap", we cannot (and don't need to)
707 update its records. So we validate the 'heap' value by making
708 sure it is one of the heaps we manage via the heaps linked list,
709 and don't touch a 'heap' that isn't found there. This avoids
710 accessing memory we know nothing about. */
711 for (h = first_heap; h != NIL_HEAP; h = h->next)
712 if (heap == h)
713 break;
714
715 if (h)
716 {
717 /* Update the records of which blocs are in HEAP. */
718 if (heap->first_bloc == bloc)
719 {
720 if (bloc->next != 0 && bloc->next->heap == heap)
721 heap->first_bloc = bloc->next;
722 else
723 heap->first_bloc = heap->last_bloc = NIL_BLOC;
724 }
725 if (heap->last_bloc == bloc)
726 {
727 if (bloc->prev != 0 && bloc->prev->heap == heap)
728 heap->last_bloc = bloc->prev;
729 else
730 heap->first_bloc = heap->last_bloc = NIL_BLOC;
731 }
732 }
733
734 relinquish ();
735 free (bloc);
736 }
737 \f
738 /* Interface routines. */
739
740 /* Obtain SIZE bytes of storage from the free pool, or the system, as
741 necessary. If relocatable blocs are in use, this means relocating
742 them. This function gets plugged into the GNU malloc's __morecore
743 hook.
744
745 We provide hysteresis, never relocating by less than extra_bytes.
746
747 If we're out of memory, we should return zero, to imitate the other
748 __morecore hook values - in particular, __default_morecore in the
749 GNU malloc package. */
750
751 static void *
752 r_alloc_sbrk (ptrdiff_t size)
753 {
754 bloc_ptr b;
755 void *address;
756
757 if (! r_alloc_initialized)
758 r_alloc_init ();
759
760 if (use_relocatable_buffers <= 0)
761 return real_morecore (size);
762
763 if (size == 0)
764 return virtual_break_value;
765
766 if (size > 0)
767 {
768 /* Allocate a page-aligned space. GNU malloc would reclaim an
769 extra space if we passed an unaligned one. But we could
770 not always find a space which is contiguous to the previous. */
771 void *new_bloc_start;
772 heap_ptr h = first_heap;
773 size_t get = ROUNDUP (size);
774
775 address = (void *) ROUNDUP (virtual_break_value);
776
777 /* Search the list upward for a heap which is large enough. */
778 while ((char *) h->end < (char *) MEM_ROUNDUP ((char *) address + get))
779 {
780 h = h->next;
781 if (h == NIL_HEAP)
782 break;
783 address = (void *) ROUNDUP (h->start);
784 }
785
786 /* If not found, obtain more space. */
787 if (h == NIL_HEAP)
788 {
789 get += extra_bytes + page_size;
790
791 if (! obtain (address, get))
792 return 0;
793
794 if (first_heap == last_heap)
795 address = (void *) ROUNDUP (virtual_break_value);
796 else
797 address = (void *) ROUNDUP (last_heap->start);
798 h = last_heap;
799 }
800
801 new_bloc_start = (void *) MEM_ROUNDUP ((char *) address + get);
802
803 if (first_heap->bloc_start < new_bloc_start)
804 {
805 /* This is no clean solution - no idea how to do it better. */
806 if (r_alloc_freeze_level)
807 return NULL;
808
809 /* There is a bug here: if the above obtain call succeeded, but the
810 relocate_blocs call below does not succeed, we need to free
811 the memory that we got with obtain. */
812
813 /* Move all blocs upward. */
814 if (! relocate_blocs (first_bloc, h, new_bloc_start))
815 return 0;
816
817 /* Note that (char *) (h + 1) <= (char *) new_bloc_start since
818 get >= page_size, so the following does not destroy the heap
819 header. */
820 for (b = last_bloc; b != NIL_BLOC; b = b->prev)
821 {
822 if (b->new_data != b->data)
823 memmove (b->new_data, b->data, b->size);
824 *b->variable = b->data = b->new_data;
825 }
826
827 h->bloc_start = new_bloc_start;
828
829 update_heap_bloc_correspondence (first_bloc, h);
830 }
831 if (h != first_heap)
832 {
833 /* Give up managing heaps below the one the new
834 virtual_break_value points to. */
835 first_heap->prev = NIL_HEAP;
836 first_heap->next = h->next;
837 first_heap->start = h->start;
838 first_heap->end = h->end;
839 first_heap->free = h->free;
840 first_heap->first_bloc = h->first_bloc;
841 first_heap->last_bloc = h->last_bloc;
842 first_heap->bloc_start = h->bloc_start;
843
844 if (first_heap->next)
845 first_heap->next->prev = first_heap;
846 else
847 last_heap = first_heap;
848 }
849
850 memset (address, 0, size);
851 }
852 else /* size < 0 */
853 {
854 size_t excess = ((char *) first_heap->bloc_start
855 - ((char *) virtual_break_value + size));
856
857 address = virtual_break_value;
858
859 if (r_alloc_freeze_level == 0 && excess > 2 * extra_bytes)
860 {
861 excess -= extra_bytes;
862 first_heap->bloc_start
863 = (void *) MEM_ROUNDUP ((char *) first_heap->bloc_start - excess);
864
865 relocate_blocs (first_bloc, first_heap, first_heap->bloc_start);
866
867 for (b = first_bloc; b != NIL_BLOC; b = b->next)
868 {
869 if (b->new_data != b->data)
870 memmove (b->new_data, b->data, b->size);
871 *b->variable = b->data = b->new_data;
872 }
873 }
874
875 if ((char *) virtual_break_value + size < (char *) first_heap->start)
876 {
877 /* We found an additional space below the first heap */
878 first_heap->start = (void *) ((char *) virtual_break_value + size);
879 }
880 }
881
882 virtual_break_value = (void *) ((char *) address + size);
883 break_value = (last_bloc
884 ? (char *) last_bloc->data + last_bloc->size
885 : (char *) first_heap->bloc_start);
886 if (size < 0)
887 relinquish ();
888
889 return address;
890 }
891
892
893 /* Allocate a relocatable bloc of storage of size SIZE. A pointer to
894 the data is returned in *PTR. PTR is thus the address of some variable
895 which will use the data area.
896
897 The allocation of 0 bytes is valid.
898 In case r_alloc_freeze_level is set, a best fit of unused blocs could be
899 done before allocating a new area. Not yet done.
900
901 If we can't allocate the necessary memory, set *PTR to zero, and
902 return zero. */
903
904 void *
905 r_alloc (void **ptr, size_t size)
906 {
907 bloc_ptr new_bloc;
908
909 if (! r_alloc_initialized)
910 r_alloc_init ();
911
912 new_bloc = get_bloc (MEM_ROUNDUP (size));
913 if (new_bloc)
914 {
915 new_bloc->variable = ptr;
916 *ptr = new_bloc->data;
917 }
918 else
919 *ptr = 0;
920
921 return *ptr;
922 }
923
924 /* Free a bloc of relocatable storage whose data is pointed to by PTR.
925 Store 0 in *PTR to show there's no block allocated. */
926
927 void
928 r_alloc_free (void **ptr)
929 {
930 bloc_ptr dead_bloc;
931
932 if (! r_alloc_initialized)
933 r_alloc_init ();
934
935 dead_bloc = find_bloc (ptr);
936 if (dead_bloc == NIL_BLOC)
937 emacs_abort (); /* Double free? PTR not originally used to allocate? */
938
939 free_bloc (dead_bloc);
940 *ptr = 0;
941
942 #ifdef emacs
943 refill_memory_reserve ();
944 #endif
945 }
946
947 /* Given a pointer at address PTR to relocatable data, resize it to SIZE.
948 Do this by shifting all blocks above this one up in memory, unless
949 SIZE is less than or equal to the current bloc size, in which case
950 do nothing.
951
952 In case r_alloc_freeze_level is set, a new bloc is allocated, and the
953 memory copied to it. Not very efficient. We could traverse the
954 bloc_list for a best fit of free blocs first.
955
956 Change *PTR to reflect the new bloc, and return this value.
957
958 If more memory cannot be allocated, then leave *PTR unchanged, and
959 return zero. */
960
961 void *
962 r_re_alloc (void **ptr, size_t size)
963 {
964 bloc_ptr bloc;
965
966 if (! r_alloc_initialized)
967 r_alloc_init ();
968
969 if (!*ptr)
970 return r_alloc (ptr, size);
971 if (!size)
972 {
973 r_alloc_free (ptr);
974 return r_alloc (ptr, 0);
975 }
976
977 bloc = find_bloc (ptr);
978 if (bloc == NIL_BLOC)
979 emacs_abort (); /* Already freed? PTR not originally used to allocate? */
980
981 if (size < bloc->size)
982 {
983 /* Wouldn't it be useful to actually resize the bloc here? */
984 /* I think so too, but not if it's too expensive... */
985 if ((bloc->size - MEM_ROUNDUP (size) >= page_size)
986 && r_alloc_freeze_level == 0)
987 {
988 resize_bloc (bloc, MEM_ROUNDUP (size));
989 /* Never mind if this fails, just do nothing... */
990 /* It *should* be infallible! */
991 }
992 }
993 else if (size > bloc->size)
994 {
995 if (r_alloc_freeze_level)
996 {
997 bloc_ptr new_bloc;
998 new_bloc = get_bloc (MEM_ROUNDUP (size));
999 if (new_bloc)
1000 {
1001 new_bloc->variable = ptr;
1002 *ptr = new_bloc->data;
1003 bloc->variable = NULL;
1004 }
1005 else
1006 return NULL;
1007 }
1008 else
1009 {
1010 if (! resize_bloc (bloc, MEM_ROUNDUP (size)))
1011 return NULL;
1012 }
1013 }
1014 return *ptr;
1015 }
1016
1017
1018 #if defined (emacs) && defined (DOUG_LEA_MALLOC)
1019
1020 /* Reinitialize the morecore hook variables after restarting a dumped
1021 Emacs. This is needed when using Doug Lea's malloc from GNU libc. */
1022 void
1023 r_alloc_reinit (void)
1024 {
1025 /* Only do this if the hook has been reset, so that we don't get an
1026 infinite loop, in case Emacs was linked statically. */
1027 if (__morecore != r_alloc_sbrk)
1028 {
1029 real_morecore = __morecore;
1030 __morecore = r_alloc_sbrk;
1031 }
1032 }
1033
1034 #endif /* emacs && DOUG_LEA_MALLOC */
1035
1036 #ifdef DEBUG
1037
1038 #include <assert.h>
1039
1040 void
1041 r_alloc_check (void)
1042 {
1043 int found = 0;
1044 heap_ptr h, ph = 0;
1045 bloc_ptr b, pb = 0;
1046
1047 if (!r_alloc_initialized)
1048 return;
1049
1050 assert (first_heap);
1051 assert (last_heap->end <= (void *) sbrk (0));
1052 assert ((void *) first_heap < first_heap->start);
1053 assert (first_heap->start <= virtual_break_value);
1054 assert (virtual_break_value <= first_heap->end);
1055
1056 for (h = first_heap; h; h = h->next)
1057 {
1058 assert (h->prev == ph);
1059 assert ((void *) ROUNDUP (h->end) == h->end);
1060 #if 0 /* ??? The code in ralloc.c does not really try to ensure
1061 the heap start has any sort of alignment.
1062 Perhaps it should. */
1063 assert ((void *) MEM_ROUNDUP (h->start) == h->start);
1064 #endif
1065 assert ((void *) MEM_ROUNDUP (h->bloc_start) == h->bloc_start);
1066 assert (h->start <= h->bloc_start && h->bloc_start <= h->end);
1067
1068 if (ph)
1069 {
1070 assert (ph->end < h->start);
1071 assert (h->start <= (void *) h && (void *) (h + 1) <= h->bloc_start);
1072 }
1073
1074 if (h->bloc_start <= break_value && break_value <= h->end)
1075 found = 1;
1076
1077 ph = h;
1078 }
1079
1080 assert (found);
1081 assert (last_heap == ph);
1082
1083 for (b = first_bloc; b; b = b->next)
1084 {
1085 assert (b->prev == pb);
1086 assert ((void *) MEM_ROUNDUP (b->data) == b->data);
1087 assert ((size_t) MEM_ROUNDUP (b->size) == b->size);
1088
1089 ph = 0;
1090 for (h = first_heap; h; h = h->next)
1091 {
1092 if (h->bloc_start <= b->data && b->data + b->size <= h->end)
1093 break;
1094 ph = h;
1095 }
1096
1097 assert (h);
1098
1099 if (pb && pb->data + pb->size != b->data)
1100 {
1101 assert (ph && b->data == h->bloc_start);
1102 while (ph)
1103 {
1104 if (ph->bloc_start <= pb->data
1105 && pb->data + pb->size <= ph->end)
1106 {
1107 assert (pb->data + pb->size + b->size > ph->end);
1108 break;
1109 }
1110 else
1111 {
1112 assert (ph->bloc_start + b->size > ph->end);
1113 }
1114 ph = ph->prev;
1115 }
1116 }
1117 pb = b;
1118 }
1119
1120 assert (last_bloc == pb);
1121
1122 if (last_bloc)
1123 assert (last_bloc->data + last_bloc->size == break_value);
1124 else
1125 assert (first_heap->bloc_start == break_value);
1126 }
1127
1128 #endif /* DEBUG */
1129
1130 /* Update the internal record of which variable points to some data to NEW.
1131 Used by buffer-swap-text in Emacs to restore consistency after it
1132 swaps the buffer text between two buffer objects. The OLD pointer
1133 is checked to ensure that memory corruption does not occur due to
1134 misuse. */
1135 void
1136 r_alloc_reset_variable (void **old, void **new)
1137 {
1138 bloc_ptr bloc = first_bloc;
1139
1140 /* Find the bloc that corresponds to the data pointed to by pointer.
1141 find_bloc cannot be used, as it has internal consistency checks
1142 which fail when the variable needs resetting. */
1143 while (bloc != NIL_BLOC)
1144 {
1145 if (bloc->data == *new)
1146 break;
1147
1148 bloc = bloc->next;
1149 }
1150
1151 if (bloc == NIL_BLOC || bloc->variable != old)
1152 emacs_abort (); /* Already freed? OLD not originally used to allocate? */
1153
1154 /* Update variable to point to the new location. */
1155 bloc->variable = new;
1156 }
1157
1158 void
1159 r_alloc_inhibit_buffer_relocation (int inhibit)
1160 {
1161 if (use_relocatable_buffers > 1)
1162 use_relocatable_buffers = 1;
1163 if (inhibit)
1164 use_relocatable_buffers--;
1165 else if (use_relocatable_buffers < 1)
1166 use_relocatable_buffers++;
1167 }
1168
1169 \f
1170 /***********************************************************************
1171 Initialization
1172 ***********************************************************************/
1173
1174 /* Initialize various things for memory allocation. */
1175
1176 static void
1177 r_alloc_init (void)
1178 {
1179 if (r_alloc_initialized)
1180 return;
1181 r_alloc_initialized = 1;
1182
1183 page_size = PAGE;
1184 #ifndef SYSTEM_MALLOC
1185 real_morecore = __morecore;
1186 __morecore = r_alloc_sbrk;
1187
1188 first_heap = last_heap = &heap_base;
1189 first_heap->next = first_heap->prev = NIL_HEAP;
1190 first_heap->start = first_heap->bloc_start
1191 = virtual_break_value = break_value = real_morecore (0);
1192 if (break_value == NULL)
1193 emacs_abort ();
1194
1195 extra_bytes = ROUNDUP (50000);
1196 #endif
1197
1198 #ifdef DOUG_LEA_MALLOC
1199 block_input ();
1200 mallopt (M_TOP_PAD, 64 * 4096);
1201 unblock_input ();
1202 #else
1203 #ifndef SYSTEM_MALLOC
1204 /* Give GNU malloc's morecore some hysteresis so that we move all
1205 the relocatable blocks much less often. The number used to be
1206 64, but alloc.c would override that with 32 in code that was
1207 removed when SYNC_INPUT became the only input handling mode.
1208 That code was conditioned on !DOUG_LEA_MALLOC, so the call to
1209 mallopt above is left unchanged. (Actually, I think there's no
1210 system nowadays that uses DOUG_LEA_MALLOC and also uses
1211 REL_ALLOC.) */
1212 __malloc_extra_blocks = 32;
1213 #endif
1214 #endif
1215
1216 #ifndef SYSTEM_MALLOC
1217 first_heap->end = (void *) ROUNDUP (first_heap->start);
1218
1219 /* The extra call to real_morecore guarantees that the end of the
1220 address space is a multiple of page_size, even if page_size is
1221 not really the page size of the system running the binary in
1222 which page_size is stored. This allows a binary to be built on a
1223 system with one page size and run on a system with a smaller page
1224 size. */
1225 real_morecore ((char *) first_heap->end - (char *) first_heap->start);
1226
1227 /* Clear the rest of the last page; this memory is in our address space
1228 even though it is after the sbrk value. */
1229 /* Doubly true, with the additional call that explicitly adds the
1230 rest of that page to the address space. */
1231 memset (first_heap->start, 0,
1232 (char *) first_heap->end - (char *) first_heap->start);
1233 virtual_break_value = break_value = first_heap->bloc_start = first_heap->end;
1234 #endif
1235
1236 use_relocatable_buffers = 1;
1237 }