Reorder conditions that are written backwards
[bpt/emacs.git] / src / fns.c
1 /* Random utility Lisp functions.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2013 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21
22 #include <unistd.h>
23 #include <time.h>
24
25 #include <intprops.h>
26
27 #include "lisp.h"
28 #include "commands.h"
29 #include "character.h"
30 #include "coding.h"
31 #include "buffer.h"
32 #include "keyboard.h"
33 #include "keymap.h"
34 #include "intervals.h"
35 #include "frame.h"
36 #include "window.h"
37 #include "blockinput.h"
38 #ifdef HAVE_MENUS
39 #if defined (HAVE_X_WINDOWS)
40 #include "xterm.h"
41 #endif
42 #endif /* HAVE_MENUS */
43
44 Lisp_Object Qstring_lessp;
45 static Lisp_Object Qprovide, Qrequire;
46 static Lisp_Object Qyes_or_no_p_history;
47 Lisp_Object Qcursor_in_echo_area;
48 static Lisp_Object Qwidget_type;
49 static Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
50
51 static Lisp_Object Qmd5, Qsha1, Qsha224, Qsha256, Qsha384, Qsha512;
52
53 static bool internal_equal (Lisp_Object, Lisp_Object, int, bool);
54 \f
55 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
56 doc: /* Return the argument unchanged. */)
57 (Lisp_Object arg)
58 {
59 return arg;
60 }
61
62 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
63 doc: /* Return a pseudo-random number.
64 All integers representable in Lisp, i.e. between `most-negative-fixnum'
65 and `most-positive-fixnum', inclusive, are equally likely.
66
67 With positive integer LIMIT, return random number in interval [0,LIMIT).
68 With argument t, set the random number seed from the current time and pid.
69 With a string argument, set the seed based on the string's contents.
70 Other values of LIMIT are ignored.
71
72 See Info node `(elisp)Random Numbers' for more details. */)
73 (Lisp_Object limit)
74 {
75 EMACS_INT val;
76
77 if (EQ (limit, Qt))
78 init_random ();
79 else if (STRINGP (limit))
80 seed_random (SSDATA (limit), SBYTES (limit));
81
82 val = get_random ();
83 if (NATNUMP (limit) && XFASTINT (limit) != 0)
84 val %= XFASTINT (limit);
85 return make_number (val);
86 }
87 \f
88 /* Heuristic on how many iterations of a tight loop can be safely done
89 before it's time to do a QUIT. This must be a power of 2. */
90 enum { QUIT_COUNT_HEURISTIC = 1 << 16 };
91
92 /* Random data-structure functions. */
93
94 DEFUN ("length", Flength, Slength, 1, 1, 0,
95 doc: /* Return the length of vector, list or string SEQUENCE.
96 A byte-code function object is also allowed.
97 If the string contains multibyte characters, this is not necessarily
98 the number of bytes in the string; it is the number of characters.
99 To get the number of bytes, use `string-bytes'. */)
100 (register Lisp_Object sequence)
101 {
102 register Lisp_Object val;
103
104 if (STRINGP (sequence))
105 XSETFASTINT (val, SCHARS (sequence));
106 else if (VECTORP (sequence))
107 XSETFASTINT (val, ASIZE (sequence));
108 else if (CHAR_TABLE_P (sequence))
109 XSETFASTINT (val, MAX_CHAR);
110 else if (BOOL_VECTOR_P (sequence))
111 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
112 else if (COMPILEDP (sequence))
113 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
114 else if (CONSP (sequence))
115 {
116 EMACS_INT i = 0;
117
118 do
119 {
120 ++i;
121 if ((i & (QUIT_COUNT_HEURISTIC - 1)) == 0)
122 {
123 if (MOST_POSITIVE_FIXNUM < i)
124 error ("List too long");
125 QUIT;
126 }
127 sequence = XCDR (sequence);
128 }
129 while (CONSP (sequence));
130
131 CHECK_LIST_END (sequence, sequence);
132
133 val = make_number (i);
134 }
135 else if (NILP (sequence))
136 XSETFASTINT (val, 0);
137 else
138 wrong_type_argument (Qsequencep, sequence);
139
140 return val;
141 }
142
143 /* This does not check for quits. That is safe since it must terminate. */
144
145 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
146 doc: /* Return the length of a list, but avoid error or infinite loop.
147 This function never gets an error. If LIST is not really a list,
148 it returns 0. If LIST is circular, it returns a finite value
149 which is at least the number of distinct elements. */)
150 (Lisp_Object list)
151 {
152 Lisp_Object tail, halftail;
153 double hilen = 0;
154 uintmax_t lolen = 1;
155
156 if (! CONSP (list))
157 return make_number (0);
158
159 /* halftail is used to detect circular lists. */
160 for (tail = halftail = list; ; )
161 {
162 tail = XCDR (tail);
163 if (! CONSP (tail))
164 break;
165 if (EQ (tail, halftail))
166 break;
167 lolen++;
168 if ((lolen & 1) == 0)
169 {
170 halftail = XCDR (halftail);
171 if ((lolen & (QUIT_COUNT_HEURISTIC - 1)) == 0)
172 {
173 QUIT;
174 if (lolen == 0)
175 hilen += UINTMAX_MAX + 1.0;
176 }
177 }
178 }
179
180 /* If the length does not fit into a fixnum, return a float.
181 On all known practical machines this returns an upper bound on
182 the true length. */
183 return hilen ? make_float (hilen + lolen) : make_fixnum_or_float (lolen);
184 }
185
186 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
187 doc: /* Return the number of bytes in STRING.
188 If STRING is multibyte, this may be greater than the length of STRING. */)
189 (Lisp_Object string)
190 {
191 CHECK_STRING (string);
192 return make_number (SBYTES (string));
193 }
194
195 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
196 doc: /* Return t if two strings have identical contents.
197 Case is significant, but text properties are ignored.
198 Symbols are also allowed; their print names are used instead. */)
199 (register Lisp_Object s1, Lisp_Object s2)
200 {
201 if (SYMBOLP (s1))
202 s1 = SYMBOL_NAME (s1);
203 if (SYMBOLP (s2))
204 s2 = SYMBOL_NAME (s2);
205 CHECK_STRING (s1);
206 CHECK_STRING (s2);
207
208 if (SCHARS (s1) != SCHARS (s2)
209 || SBYTES (s1) != SBYTES (s2)
210 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
211 return Qnil;
212 return Qt;
213 }
214
215 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
216 doc: /* Compare the contents of two strings, converting to multibyte if needed.
217 The arguments START1, END1, START2, and END2, if non-nil, are
218 positions specifying which parts of STR1 or STR2 to compare. In
219 string STR1, compare the part between START1 (inclusive) and END1
220 \(exclusive). If START1 is nil, it defaults to 0, the beginning of
221 the string; if END1 is nil, it defaults to the length of the string.
222 Likewise, in string STR2, compare the part between START2 and END2.
223
224 The strings are compared by the numeric values of their characters.
225 For instance, STR1 is "less than" STR2 if its first differing
226 character has a smaller numeric value. If IGNORE-CASE is non-nil,
227 characters are converted to lower-case before comparing them. Unibyte
228 strings are converted to multibyte for comparison.
229
230 The value is t if the strings (or specified portions) match.
231 If string STR1 is less, the value is a negative number N;
232 - 1 - N is the number of characters that match at the beginning.
233 If string STR1 is greater, the value is a positive number N;
234 N - 1 is the number of characters that match at the beginning. */)
235 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
236 {
237 register ptrdiff_t end1_char, end2_char;
238 register ptrdiff_t i1, i1_byte, i2, i2_byte;
239
240 CHECK_STRING (str1);
241 CHECK_STRING (str2);
242 if (NILP (start1))
243 start1 = make_number (0);
244 if (NILP (start2))
245 start2 = make_number (0);
246 CHECK_NATNUM (start1);
247 CHECK_NATNUM (start2);
248 if (! NILP (end1))
249 CHECK_NATNUM (end1);
250 if (! NILP (end2))
251 CHECK_NATNUM (end2);
252
253 end1_char = SCHARS (str1);
254 if (! NILP (end1) && end1_char > XINT (end1))
255 end1_char = XINT (end1);
256 if (end1_char < XINT (start1))
257 args_out_of_range (str1, start1);
258
259 end2_char = SCHARS (str2);
260 if (! NILP (end2) && end2_char > XINT (end2))
261 end2_char = XINT (end2);
262 if (end2_char < XINT (start2))
263 args_out_of_range (str2, start2);
264
265 i1 = XINT (start1);
266 i2 = XINT (start2);
267
268 i1_byte = string_char_to_byte (str1, i1);
269 i2_byte = string_char_to_byte (str2, i2);
270
271 while (i1 < end1_char && i2 < end2_char)
272 {
273 /* When we find a mismatch, we must compare the
274 characters, not just the bytes. */
275 int c1, c2;
276
277 if (STRING_MULTIBYTE (str1))
278 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
279 else
280 {
281 c1 = SREF (str1, i1++);
282 MAKE_CHAR_MULTIBYTE (c1);
283 }
284
285 if (STRING_MULTIBYTE (str2))
286 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
287 else
288 {
289 c2 = SREF (str2, i2++);
290 MAKE_CHAR_MULTIBYTE (c2);
291 }
292
293 if (c1 == c2)
294 continue;
295
296 if (! NILP (ignore_case))
297 {
298 Lisp_Object tem;
299
300 tem = Fupcase (make_number (c1));
301 c1 = XINT (tem);
302 tem = Fupcase (make_number (c2));
303 c2 = XINT (tem);
304 }
305
306 if (c1 == c2)
307 continue;
308
309 /* Note that I1 has already been incremented
310 past the character that we are comparing;
311 hence we don't add or subtract 1 here. */
312 if (c1 < c2)
313 return make_number (- i1 + XINT (start1));
314 else
315 return make_number (i1 - XINT (start1));
316 }
317
318 if (i1 < end1_char)
319 return make_number (i1 - XINT (start1) + 1);
320 if (i2 < end2_char)
321 return make_number (- i1 + XINT (start1) - 1);
322
323 return Qt;
324 }
325
326 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
327 doc: /* Return t if first arg string is less than second in lexicographic order.
328 Case is significant.
329 Symbols are also allowed; their print names are used instead. */)
330 (register Lisp_Object s1, Lisp_Object s2)
331 {
332 register ptrdiff_t end;
333 register ptrdiff_t i1, i1_byte, i2, i2_byte;
334
335 if (SYMBOLP (s1))
336 s1 = SYMBOL_NAME (s1);
337 if (SYMBOLP (s2))
338 s2 = SYMBOL_NAME (s2);
339 CHECK_STRING (s1);
340 CHECK_STRING (s2);
341
342 i1 = i1_byte = i2 = i2_byte = 0;
343
344 end = SCHARS (s1);
345 if (end > SCHARS (s2))
346 end = SCHARS (s2);
347
348 while (i1 < end)
349 {
350 /* When we find a mismatch, we must compare the
351 characters, not just the bytes. */
352 int c1, c2;
353
354 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
355 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
356
357 if (c1 != c2)
358 return c1 < c2 ? Qt : Qnil;
359 }
360 return i1 < SCHARS (s2) ? Qt : Qnil;
361 }
362 \f
363 static Lisp_Object concat (ptrdiff_t nargs, Lisp_Object *args,
364 enum Lisp_Type target_type, bool last_special);
365
366 /* ARGSUSED */
367 Lisp_Object
368 concat2 (Lisp_Object s1, Lisp_Object s2)
369 {
370 Lisp_Object args[2];
371 args[0] = s1;
372 args[1] = s2;
373 return concat (2, args, Lisp_String, 0);
374 }
375
376 /* ARGSUSED */
377 Lisp_Object
378 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
379 {
380 Lisp_Object args[3];
381 args[0] = s1;
382 args[1] = s2;
383 args[2] = s3;
384 return concat (3, args, Lisp_String, 0);
385 }
386
387 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
388 doc: /* Concatenate all the arguments and make the result a list.
389 The result is a list whose elements are the elements of all the arguments.
390 Each argument may be a list, vector or string.
391 The last argument is not copied, just used as the tail of the new list.
392 usage: (append &rest SEQUENCES) */)
393 (ptrdiff_t nargs, Lisp_Object *args)
394 {
395 return concat (nargs, args, Lisp_Cons, 1);
396 }
397
398 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
399 doc: /* Concatenate all the arguments and make the result a string.
400 The result is a string whose elements are the elements of all the arguments.
401 Each argument may be a string or a list or vector of characters (integers).
402 usage: (concat &rest SEQUENCES) */)
403 (ptrdiff_t nargs, Lisp_Object *args)
404 {
405 return concat (nargs, args, Lisp_String, 0);
406 }
407
408 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
409 doc: /* Concatenate all the arguments and make the result a vector.
410 The result is a vector whose elements are the elements of all the arguments.
411 Each argument may be a list, vector or string.
412 usage: (vconcat &rest SEQUENCES) */)
413 (ptrdiff_t nargs, Lisp_Object *args)
414 {
415 return concat (nargs, args, Lisp_Vectorlike, 0);
416 }
417
418
419 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
420 doc: /* Return a copy of a list, vector, string or char-table.
421 The elements of a list or vector are not copied; they are shared
422 with the original. */)
423 (Lisp_Object arg)
424 {
425 if (NILP (arg)) return arg;
426
427 if (CHAR_TABLE_P (arg))
428 {
429 return copy_char_table (arg);
430 }
431
432 if (BOOL_VECTOR_P (arg))
433 {
434 Lisp_Object val;
435 ptrdiff_t size_in_chars
436 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
437 / BOOL_VECTOR_BITS_PER_CHAR);
438
439 val = Fmake_bool_vector (Flength (arg), Qnil);
440 memcpy (XBOOL_VECTOR (val)->data, XBOOL_VECTOR (arg)->data,
441 size_in_chars);
442 return val;
443 }
444
445 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
446 wrong_type_argument (Qsequencep, arg);
447
448 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
449 }
450
451 /* This structure holds information of an argument of `concat' that is
452 a string and has text properties to be copied. */
453 struct textprop_rec
454 {
455 ptrdiff_t argnum; /* refer to ARGS (arguments of `concat') */
456 ptrdiff_t from; /* refer to ARGS[argnum] (argument string) */
457 ptrdiff_t to; /* refer to VAL (the target string) */
458 };
459
460 static Lisp_Object
461 concat (ptrdiff_t nargs, Lisp_Object *args,
462 enum Lisp_Type target_type, bool last_special)
463 {
464 Lisp_Object val;
465 Lisp_Object tail;
466 Lisp_Object this;
467 ptrdiff_t toindex;
468 ptrdiff_t toindex_byte = 0;
469 EMACS_INT result_len;
470 EMACS_INT result_len_byte;
471 ptrdiff_t argnum;
472 Lisp_Object last_tail;
473 Lisp_Object prev;
474 bool some_multibyte;
475 /* When we make a multibyte string, we can't copy text properties
476 while concatenating each string because the length of resulting
477 string can't be decided until we finish the whole concatenation.
478 So, we record strings that have text properties to be copied
479 here, and copy the text properties after the concatenation. */
480 struct textprop_rec *textprops = NULL;
481 /* Number of elements in textprops. */
482 ptrdiff_t num_textprops = 0;
483 USE_SAFE_ALLOCA;
484
485 tail = Qnil;
486
487 /* In append, the last arg isn't treated like the others */
488 if (last_special && nargs > 0)
489 {
490 nargs--;
491 last_tail = args[nargs];
492 }
493 else
494 last_tail = Qnil;
495
496 /* Check each argument. */
497 for (argnum = 0; argnum < nargs; argnum++)
498 {
499 this = args[argnum];
500 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
501 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
502 wrong_type_argument (Qsequencep, this);
503 }
504
505 /* Compute total length in chars of arguments in RESULT_LEN.
506 If desired output is a string, also compute length in bytes
507 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
508 whether the result should be a multibyte string. */
509 result_len_byte = 0;
510 result_len = 0;
511 some_multibyte = 0;
512 for (argnum = 0; argnum < nargs; argnum++)
513 {
514 EMACS_INT len;
515 this = args[argnum];
516 len = XFASTINT (Flength (this));
517 if (target_type == Lisp_String)
518 {
519 /* We must count the number of bytes needed in the string
520 as well as the number of characters. */
521 ptrdiff_t i;
522 Lisp_Object ch;
523 int c;
524 ptrdiff_t this_len_byte;
525
526 if (VECTORP (this) || COMPILEDP (this))
527 for (i = 0; i < len; i++)
528 {
529 ch = AREF (this, i);
530 CHECK_CHARACTER (ch);
531 c = XFASTINT (ch);
532 this_len_byte = CHAR_BYTES (c);
533 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
534 string_overflow ();
535 result_len_byte += this_len_byte;
536 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
537 some_multibyte = 1;
538 }
539 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
540 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
541 else if (CONSP (this))
542 for (; CONSP (this); this = XCDR (this))
543 {
544 ch = XCAR (this);
545 CHECK_CHARACTER (ch);
546 c = XFASTINT (ch);
547 this_len_byte = CHAR_BYTES (c);
548 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
549 string_overflow ();
550 result_len_byte += this_len_byte;
551 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
552 some_multibyte = 1;
553 }
554 else if (STRINGP (this))
555 {
556 if (STRING_MULTIBYTE (this))
557 {
558 some_multibyte = 1;
559 this_len_byte = SBYTES (this);
560 }
561 else
562 this_len_byte = count_size_as_multibyte (SDATA (this),
563 SCHARS (this));
564 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
565 string_overflow ();
566 result_len_byte += this_len_byte;
567 }
568 }
569
570 result_len += len;
571 if (MOST_POSITIVE_FIXNUM < result_len)
572 memory_full (SIZE_MAX);
573 }
574
575 if (! some_multibyte)
576 result_len_byte = result_len;
577
578 /* Create the output object. */
579 if (target_type == Lisp_Cons)
580 val = Fmake_list (make_number (result_len), Qnil);
581 else if (target_type == Lisp_Vectorlike)
582 val = Fmake_vector (make_number (result_len), Qnil);
583 else if (some_multibyte)
584 val = make_uninit_multibyte_string (result_len, result_len_byte);
585 else
586 val = make_uninit_string (result_len);
587
588 /* In `append', if all but last arg are nil, return last arg. */
589 if (target_type == Lisp_Cons && EQ (val, Qnil))
590 return last_tail;
591
592 /* Copy the contents of the args into the result. */
593 if (CONSP (val))
594 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
595 else
596 toindex = 0, toindex_byte = 0;
597
598 prev = Qnil;
599 if (STRINGP (val))
600 SAFE_NALLOCA (textprops, 1, nargs);
601
602 for (argnum = 0; argnum < nargs; argnum++)
603 {
604 Lisp_Object thislen;
605 ptrdiff_t thisleni = 0;
606 register ptrdiff_t thisindex = 0;
607 register ptrdiff_t thisindex_byte = 0;
608
609 this = args[argnum];
610 if (!CONSP (this))
611 thislen = Flength (this), thisleni = XINT (thislen);
612
613 /* Between strings of the same kind, copy fast. */
614 if (STRINGP (this) && STRINGP (val)
615 && STRING_MULTIBYTE (this) == some_multibyte)
616 {
617 ptrdiff_t thislen_byte = SBYTES (this);
618
619 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
620 if (string_intervals (this))
621 {
622 textprops[num_textprops].argnum = argnum;
623 textprops[num_textprops].from = 0;
624 textprops[num_textprops++].to = toindex;
625 }
626 toindex_byte += thislen_byte;
627 toindex += thisleni;
628 }
629 /* Copy a single-byte string to a multibyte string. */
630 else if (STRINGP (this) && STRINGP (val))
631 {
632 if (string_intervals (this))
633 {
634 textprops[num_textprops].argnum = argnum;
635 textprops[num_textprops].from = 0;
636 textprops[num_textprops++].to = toindex;
637 }
638 toindex_byte += copy_text (SDATA (this),
639 SDATA (val) + toindex_byte,
640 SCHARS (this), 0, 1);
641 toindex += thisleni;
642 }
643 else
644 /* Copy element by element. */
645 while (1)
646 {
647 register Lisp_Object elt;
648
649 /* Fetch next element of `this' arg into `elt', or break if
650 `this' is exhausted. */
651 if (NILP (this)) break;
652 if (CONSP (this))
653 elt = XCAR (this), this = XCDR (this);
654 else if (thisindex >= thisleni)
655 break;
656 else if (STRINGP (this))
657 {
658 int c;
659 if (STRING_MULTIBYTE (this))
660 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
661 thisindex,
662 thisindex_byte);
663 else
664 {
665 c = SREF (this, thisindex); thisindex++;
666 if (some_multibyte && !ASCII_CHAR_P (c))
667 c = BYTE8_TO_CHAR (c);
668 }
669 XSETFASTINT (elt, c);
670 }
671 else if (BOOL_VECTOR_P (this))
672 {
673 int byte;
674 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
675 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
676 elt = Qt;
677 else
678 elt = Qnil;
679 thisindex++;
680 }
681 else
682 {
683 elt = AREF (this, thisindex);
684 thisindex++;
685 }
686
687 /* Store this element into the result. */
688 if (toindex < 0)
689 {
690 XSETCAR (tail, elt);
691 prev = tail;
692 tail = XCDR (tail);
693 }
694 else if (VECTORP (val))
695 {
696 ASET (val, toindex, elt);
697 toindex++;
698 }
699 else
700 {
701 int c;
702 CHECK_CHARACTER (elt);
703 c = XFASTINT (elt);
704 if (some_multibyte)
705 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
706 else
707 SSET (val, toindex_byte++, c);
708 toindex++;
709 }
710 }
711 }
712 if (!NILP (prev))
713 XSETCDR (prev, last_tail);
714
715 if (num_textprops > 0)
716 {
717 Lisp_Object props;
718 ptrdiff_t last_to_end = -1;
719
720 for (argnum = 0; argnum < num_textprops; argnum++)
721 {
722 this = args[textprops[argnum].argnum];
723 props = text_property_list (this,
724 make_number (0),
725 make_number (SCHARS (this)),
726 Qnil);
727 /* If successive arguments have properties, be sure that the
728 value of `composition' property be the copy. */
729 if (last_to_end == textprops[argnum].to)
730 make_composition_value_copy (props);
731 add_text_properties_from_list (val, props,
732 make_number (textprops[argnum].to));
733 last_to_end = textprops[argnum].to + SCHARS (this);
734 }
735 }
736
737 SAFE_FREE ();
738 return val;
739 }
740 \f
741 static Lisp_Object string_char_byte_cache_string;
742 static ptrdiff_t string_char_byte_cache_charpos;
743 static ptrdiff_t string_char_byte_cache_bytepos;
744
745 void
746 clear_string_char_byte_cache (void)
747 {
748 string_char_byte_cache_string = Qnil;
749 }
750
751 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
752
753 ptrdiff_t
754 string_char_to_byte (Lisp_Object string, ptrdiff_t char_index)
755 {
756 ptrdiff_t i_byte;
757 ptrdiff_t best_below, best_below_byte;
758 ptrdiff_t best_above, best_above_byte;
759
760 best_below = best_below_byte = 0;
761 best_above = SCHARS (string);
762 best_above_byte = SBYTES (string);
763 if (best_above == best_above_byte)
764 return char_index;
765
766 if (EQ (string, string_char_byte_cache_string))
767 {
768 if (string_char_byte_cache_charpos < char_index)
769 {
770 best_below = string_char_byte_cache_charpos;
771 best_below_byte = string_char_byte_cache_bytepos;
772 }
773 else
774 {
775 best_above = string_char_byte_cache_charpos;
776 best_above_byte = string_char_byte_cache_bytepos;
777 }
778 }
779
780 if (char_index - best_below < best_above - char_index)
781 {
782 unsigned char *p = SDATA (string) + best_below_byte;
783
784 while (best_below < char_index)
785 {
786 p += BYTES_BY_CHAR_HEAD (*p);
787 best_below++;
788 }
789 i_byte = p - SDATA (string);
790 }
791 else
792 {
793 unsigned char *p = SDATA (string) + best_above_byte;
794
795 while (best_above > char_index)
796 {
797 p--;
798 while (!CHAR_HEAD_P (*p)) p--;
799 best_above--;
800 }
801 i_byte = p - SDATA (string);
802 }
803
804 string_char_byte_cache_bytepos = i_byte;
805 string_char_byte_cache_charpos = char_index;
806 string_char_byte_cache_string = string;
807
808 return i_byte;
809 }
810 \f
811 /* Return the character index corresponding to BYTE_INDEX in STRING. */
812
813 ptrdiff_t
814 string_byte_to_char (Lisp_Object string, ptrdiff_t byte_index)
815 {
816 ptrdiff_t i, i_byte;
817 ptrdiff_t best_below, best_below_byte;
818 ptrdiff_t best_above, best_above_byte;
819
820 best_below = best_below_byte = 0;
821 best_above = SCHARS (string);
822 best_above_byte = SBYTES (string);
823 if (best_above == best_above_byte)
824 return byte_index;
825
826 if (EQ (string, string_char_byte_cache_string))
827 {
828 if (string_char_byte_cache_bytepos < byte_index)
829 {
830 best_below = string_char_byte_cache_charpos;
831 best_below_byte = string_char_byte_cache_bytepos;
832 }
833 else
834 {
835 best_above = string_char_byte_cache_charpos;
836 best_above_byte = string_char_byte_cache_bytepos;
837 }
838 }
839
840 if (byte_index - best_below_byte < best_above_byte - byte_index)
841 {
842 unsigned char *p = SDATA (string) + best_below_byte;
843 unsigned char *pend = SDATA (string) + byte_index;
844
845 while (p < pend)
846 {
847 p += BYTES_BY_CHAR_HEAD (*p);
848 best_below++;
849 }
850 i = best_below;
851 i_byte = p - SDATA (string);
852 }
853 else
854 {
855 unsigned char *p = SDATA (string) + best_above_byte;
856 unsigned char *pbeg = SDATA (string) + byte_index;
857
858 while (p > pbeg)
859 {
860 p--;
861 while (!CHAR_HEAD_P (*p)) p--;
862 best_above--;
863 }
864 i = best_above;
865 i_byte = p - SDATA (string);
866 }
867
868 string_char_byte_cache_bytepos = i_byte;
869 string_char_byte_cache_charpos = i;
870 string_char_byte_cache_string = string;
871
872 return i;
873 }
874 \f
875 /* Convert STRING to a multibyte string. */
876
877 static Lisp_Object
878 string_make_multibyte (Lisp_Object string)
879 {
880 unsigned char *buf;
881 ptrdiff_t nbytes;
882 Lisp_Object ret;
883 USE_SAFE_ALLOCA;
884
885 if (STRING_MULTIBYTE (string))
886 return string;
887
888 nbytes = count_size_as_multibyte (SDATA (string),
889 SCHARS (string));
890 /* If all the chars are ASCII, they won't need any more bytes
891 once converted. In that case, we can return STRING itself. */
892 if (nbytes == SBYTES (string))
893 return string;
894
895 buf = SAFE_ALLOCA (nbytes);
896 copy_text (SDATA (string), buf, SBYTES (string),
897 0, 1);
898
899 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
900 SAFE_FREE ();
901
902 return ret;
903 }
904
905
906 /* Convert STRING (if unibyte) to a multibyte string without changing
907 the number of characters. Characters 0200 trough 0237 are
908 converted to eight-bit characters. */
909
910 Lisp_Object
911 string_to_multibyte (Lisp_Object string)
912 {
913 unsigned char *buf;
914 ptrdiff_t nbytes;
915 Lisp_Object ret;
916 USE_SAFE_ALLOCA;
917
918 if (STRING_MULTIBYTE (string))
919 return string;
920
921 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
922 /* If all the chars are ASCII, they won't need any more bytes once
923 converted. */
924 if (nbytes == SBYTES (string))
925 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
926
927 buf = SAFE_ALLOCA (nbytes);
928 memcpy (buf, SDATA (string), SBYTES (string));
929 str_to_multibyte (buf, nbytes, SBYTES (string));
930
931 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
932 SAFE_FREE ();
933
934 return ret;
935 }
936
937
938 /* Convert STRING to a single-byte string. */
939
940 Lisp_Object
941 string_make_unibyte (Lisp_Object string)
942 {
943 ptrdiff_t nchars;
944 unsigned char *buf;
945 Lisp_Object ret;
946 USE_SAFE_ALLOCA;
947
948 if (! STRING_MULTIBYTE (string))
949 return string;
950
951 nchars = SCHARS (string);
952
953 buf = SAFE_ALLOCA (nchars);
954 copy_text (SDATA (string), buf, SBYTES (string),
955 1, 0);
956
957 ret = make_unibyte_string ((char *) buf, nchars);
958 SAFE_FREE ();
959
960 return ret;
961 }
962
963 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
964 1, 1, 0,
965 doc: /* Return the multibyte equivalent of STRING.
966 If STRING is unibyte and contains non-ASCII characters, the function
967 `unibyte-char-to-multibyte' is used to convert each unibyte character
968 to a multibyte character. In this case, the returned string is a
969 newly created string with no text properties. If STRING is multibyte
970 or entirely ASCII, it is returned unchanged. In particular, when
971 STRING is unibyte and entirely ASCII, the returned string is unibyte.
972 \(When the characters are all ASCII, Emacs primitives will treat the
973 string the same way whether it is unibyte or multibyte.) */)
974 (Lisp_Object string)
975 {
976 CHECK_STRING (string);
977
978 return string_make_multibyte (string);
979 }
980
981 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
982 1, 1, 0,
983 doc: /* Return the unibyte equivalent of STRING.
984 Multibyte character codes are converted to unibyte according to
985 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
986 If the lookup in the translation table fails, this function takes just
987 the low 8 bits of each character. */)
988 (Lisp_Object string)
989 {
990 CHECK_STRING (string);
991
992 return string_make_unibyte (string);
993 }
994
995 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
996 1, 1, 0,
997 doc: /* Return a unibyte string with the same individual bytes as STRING.
998 If STRING is unibyte, the result is STRING itself.
999 Otherwise it is a newly created string, with no text properties.
1000 If STRING is multibyte and contains a character of charset
1001 `eight-bit', it is converted to the corresponding single byte. */)
1002 (Lisp_Object string)
1003 {
1004 CHECK_STRING (string);
1005
1006 if (STRING_MULTIBYTE (string))
1007 {
1008 ptrdiff_t bytes = SBYTES (string);
1009 unsigned char *str = xmalloc (bytes);
1010
1011 memcpy (str, SDATA (string), bytes);
1012 bytes = str_as_unibyte (str, bytes);
1013 string = make_unibyte_string ((char *) str, bytes);
1014 xfree (str);
1015 }
1016 return string;
1017 }
1018
1019 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1020 1, 1, 0,
1021 doc: /* Return a multibyte string with the same individual bytes as STRING.
1022 If STRING is multibyte, the result is STRING itself.
1023 Otherwise it is a newly created string, with no text properties.
1024
1025 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1026 part of a correct utf-8 sequence), it is converted to the corresponding
1027 multibyte character of charset `eight-bit'.
1028 See also `string-to-multibyte'.
1029
1030 Beware, this often doesn't really do what you think it does.
1031 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1032 If you're not sure, whether to use `string-as-multibyte' or
1033 `string-to-multibyte', use `string-to-multibyte'. */)
1034 (Lisp_Object string)
1035 {
1036 CHECK_STRING (string);
1037
1038 if (! STRING_MULTIBYTE (string))
1039 {
1040 Lisp_Object new_string;
1041 ptrdiff_t nchars, nbytes;
1042
1043 parse_str_as_multibyte (SDATA (string),
1044 SBYTES (string),
1045 &nchars, &nbytes);
1046 new_string = make_uninit_multibyte_string (nchars, nbytes);
1047 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1048 if (nbytes != SBYTES (string))
1049 str_as_multibyte (SDATA (new_string), nbytes,
1050 SBYTES (string), NULL);
1051 string = new_string;
1052 set_string_intervals (string, NULL);
1053 }
1054 return string;
1055 }
1056
1057 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1058 1, 1, 0,
1059 doc: /* Return a multibyte string with the same individual chars as STRING.
1060 If STRING is multibyte, the result is STRING itself.
1061 Otherwise it is a newly created string, with no text properties.
1062
1063 If STRING is unibyte and contains an 8-bit byte, it is converted to
1064 the corresponding multibyte character of charset `eight-bit'.
1065
1066 This differs from `string-as-multibyte' by converting each byte of a correct
1067 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1068 correct sequence. */)
1069 (Lisp_Object string)
1070 {
1071 CHECK_STRING (string);
1072
1073 return string_to_multibyte (string);
1074 }
1075
1076 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1077 1, 1, 0,
1078 doc: /* Return a unibyte string with the same individual chars as STRING.
1079 If STRING is unibyte, the result is STRING itself.
1080 Otherwise it is a newly created string, with no text properties,
1081 where each `eight-bit' character is converted to the corresponding byte.
1082 If STRING contains a non-ASCII, non-`eight-bit' character,
1083 an error is signaled. */)
1084 (Lisp_Object string)
1085 {
1086 CHECK_STRING (string);
1087
1088 if (STRING_MULTIBYTE (string))
1089 {
1090 ptrdiff_t chars = SCHARS (string);
1091 unsigned char *str = xmalloc (chars);
1092 ptrdiff_t converted = str_to_unibyte (SDATA (string), str, chars);
1093
1094 if (converted < chars)
1095 error ("Can't convert the %"pD"dth character to unibyte", converted);
1096 string = make_unibyte_string ((char *) str, chars);
1097 xfree (str);
1098 }
1099 return string;
1100 }
1101
1102 \f
1103 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1104 doc: /* Return a copy of ALIST.
1105 This is an alist which represents the same mapping from objects to objects,
1106 but does not share the alist structure with ALIST.
1107 The objects mapped (cars and cdrs of elements of the alist)
1108 are shared, however.
1109 Elements of ALIST that are not conses are also shared. */)
1110 (Lisp_Object alist)
1111 {
1112 register Lisp_Object tem;
1113
1114 CHECK_LIST (alist);
1115 if (NILP (alist))
1116 return alist;
1117 alist = concat (1, &alist, Lisp_Cons, 0);
1118 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1119 {
1120 register Lisp_Object car;
1121 car = XCAR (tem);
1122
1123 if (CONSP (car))
1124 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1125 }
1126 return alist;
1127 }
1128
1129 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1130 doc: /* Return a new string whose contents are a substring of STRING.
1131 The returned string consists of the characters between index FROM
1132 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1133 zero-indexed: 0 means the first character of STRING. Negative values
1134 are counted from the end of STRING. If TO is nil, the substring runs
1135 to the end of STRING.
1136
1137 The STRING argument may also be a vector. In that case, the return
1138 value is a new vector that contains the elements between index FROM
1139 \(inclusive) and index TO (exclusive) of that vector argument. */)
1140 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1141 {
1142 Lisp_Object res;
1143 ptrdiff_t size;
1144 EMACS_INT from_char, to_char;
1145
1146 CHECK_VECTOR_OR_STRING (string);
1147 CHECK_NUMBER (from);
1148
1149 if (STRINGP (string))
1150 size = SCHARS (string);
1151 else
1152 size = ASIZE (string);
1153
1154 if (NILP (to))
1155 to_char = size;
1156 else
1157 {
1158 CHECK_NUMBER (to);
1159
1160 to_char = XINT (to);
1161 if (to_char < 0)
1162 to_char += size;
1163 }
1164
1165 from_char = XINT (from);
1166 if (from_char < 0)
1167 from_char += size;
1168 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1169 args_out_of_range_3 (string, make_number (from_char),
1170 make_number (to_char));
1171
1172 if (STRINGP (string))
1173 {
1174 ptrdiff_t to_byte =
1175 (NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char));
1176 ptrdiff_t from_byte = string_char_to_byte (string, from_char);
1177 res = make_specified_string (SSDATA (string) + from_byte,
1178 to_char - from_char, to_byte - from_byte,
1179 STRING_MULTIBYTE (string));
1180 copy_text_properties (make_number (from_char), make_number (to_char),
1181 string, make_number (0), res, Qnil);
1182 }
1183 else
1184 res = Fvector (to_char - from_char, aref_addr (string, from_char));
1185
1186 return res;
1187 }
1188
1189
1190 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1191 doc: /* Return a substring of STRING, without text properties.
1192 It starts at index FROM and ends before TO.
1193 TO may be nil or omitted; then the substring runs to the end of STRING.
1194 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1195 If FROM or TO is negative, it counts from the end.
1196
1197 With one argument, just copy STRING without its properties. */)
1198 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1199 {
1200 ptrdiff_t size;
1201 EMACS_INT from_char, to_char;
1202 ptrdiff_t from_byte, to_byte;
1203
1204 CHECK_STRING (string);
1205
1206 size = SCHARS (string);
1207
1208 if (NILP (from))
1209 from_char = 0;
1210 else
1211 {
1212 CHECK_NUMBER (from);
1213 from_char = XINT (from);
1214 if (from_char < 0)
1215 from_char += size;
1216 }
1217
1218 if (NILP (to))
1219 to_char = size;
1220 else
1221 {
1222 CHECK_NUMBER (to);
1223 to_char = XINT (to);
1224 if (to_char < 0)
1225 to_char += size;
1226 }
1227
1228 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1229 args_out_of_range_3 (string, make_number (from_char),
1230 make_number (to_char));
1231
1232 from_byte = NILP (from) ? 0 : string_char_to_byte (string, from_char);
1233 to_byte =
1234 NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char);
1235 return make_specified_string (SSDATA (string) + from_byte,
1236 to_char - from_char, to_byte - from_byte,
1237 STRING_MULTIBYTE (string));
1238 }
1239
1240 /* Extract a substring of STRING, giving start and end positions
1241 both in characters and in bytes. */
1242
1243 Lisp_Object
1244 substring_both (Lisp_Object string, ptrdiff_t from, ptrdiff_t from_byte,
1245 ptrdiff_t to, ptrdiff_t to_byte)
1246 {
1247 Lisp_Object res;
1248 ptrdiff_t size;
1249
1250 CHECK_VECTOR_OR_STRING (string);
1251
1252 size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
1253
1254 if (!(0 <= from && from <= to && to <= size))
1255 args_out_of_range_3 (string, make_number (from), make_number (to));
1256
1257 if (STRINGP (string))
1258 {
1259 res = make_specified_string (SSDATA (string) + from_byte,
1260 to - from, to_byte - from_byte,
1261 STRING_MULTIBYTE (string));
1262 copy_text_properties (make_number (from), make_number (to),
1263 string, make_number (0), res, Qnil);
1264 }
1265 else
1266 res = Fvector (to - from, aref_addr (string, from));
1267
1268 return res;
1269 }
1270 \f
1271 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1272 doc: /* Take cdr N times on LIST, return the result. */)
1273 (Lisp_Object n, Lisp_Object list)
1274 {
1275 EMACS_INT i, num;
1276 CHECK_NUMBER (n);
1277 num = XINT (n);
1278 for (i = 0; i < num && !NILP (list); i++)
1279 {
1280 QUIT;
1281 CHECK_LIST_CONS (list, list);
1282 list = XCDR (list);
1283 }
1284 return list;
1285 }
1286
1287 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1288 doc: /* Return the Nth element of LIST.
1289 N counts from zero. If LIST is not that long, nil is returned. */)
1290 (Lisp_Object n, Lisp_Object list)
1291 {
1292 return Fcar (Fnthcdr (n, list));
1293 }
1294
1295 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1296 doc: /* Return element of SEQUENCE at index N. */)
1297 (register Lisp_Object sequence, Lisp_Object n)
1298 {
1299 CHECK_NUMBER (n);
1300 if (CONSP (sequence) || NILP (sequence))
1301 return Fcar (Fnthcdr (n, sequence));
1302
1303 /* Faref signals a "not array" error, so check here. */
1304 CHECK_ARRAY (sequence, Qsequencep);
1305 return Faref (sequence, n);
1306 }
1307
1308 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1309 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1310 The value is actually the tail of LIST whose car is ELT. */)
1311 (register Lisp_Object elt, Lisp_Object list)
1312 {
1313 register Lisp_Object tail;
1314 for (tail = list; CONSP (tail); tail = XCDR (tail))
1315 {
1316 register Lisp_Object tem;
1317 CHECK_LIST_CONS (tail, list);
1318 tem = XCAR (tail);
1319 if (! NILP (Fequal (elt, tem)))
1320 return tail;
1321 QUIT;
1322 }
1323 return Qnil;
1324 }
1325
1326 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1327 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1328 The value is actually the tail of LIST whose car is ELT. */)
1329 (register Lisp_Object elt, Lisp_Object list)
1330 {
1331 while (1)
1332 {
1333 if (!CONSP (list) || EQ (XCAR (list), elt))
1334 break;
1335
1336 list = XCDR (list);
1337 if (!CONSP (list) || EQ (XCAR (list), elt))
1338 break;
1339
1340 list = XCDR (list);
1341 if (!CONSP (list) || EQ (XCAR (list), elt))
1342 break;
1343
1344 list = XCDR (list);
1345 QUIT;
1346 }
1347
1348 CHECK_LIST (list);
1349 return list;
1350 }
1351
1352 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1353 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1354 The value is actually the tail of LIST whose car is ELT. */)
1355 (register Lisp_Object elt, Lisp_Object list)
1356 {
1357 register Lisp_Object tail;
1358
1359 if (!FLOATP (elt))
1360 return Fmemq (elt, list);
1361
1362 for (tail = list; CONSP (tail); tail = XCDR (tail))
1363 {
1364 register Lisp_Object tem;
1365 CHECK_LIST_CONS (tail, list);
1366 tem = XCAR (tail);
1367 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1368 return tail;
1369 QUIT;
1370 }
1371 return Qnil;
1372 }
1373
1374 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1375 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1376 The value is actually the first element of LIST whose car is KEY.
1377 Elements of LIST that are not conses are ignored. */)
1378 (Lisp_Object key, Lisp_Object list)
1379 {
1380 while (1)
1381 {
1382 if (!CONSP (list)
1383 || (CONSP (XCAR (list))
1384 && EQ (XCAR (XCAR (list)), key)))
1385 break;
1386
1387 list = XCDR (list);
1388 if (!CONSP (list)
1389 || (CONSP (XCAR (list))
1390 && EQ (XCAR (XCAR (list)), key)))
1391 break;
1392
1393 list = XCDR (list);
1394 if (!CONSP (list)
1395 || (CONSP (XCAR (list))
1396 && EQ (XCAR (XCAR (list)), key)))
1397 break;
1398
1399 list = XCDR (list);
1400 QUIT;
1401 }
1402
1403 return CAR (list);
1404 }
1405
1406 /* Like Fassq but never report an error and do not allow quits.
1407 Use only on lists known never to be circular. */
1408
1409 Lisp_Object
1410 assq_no_quit (Lisp_Object key, Lisp_Object list)
1411 {
1412 while (CONSP (list)
1413 && (!CONSP (XCAR (list))
1414 || !EQ (XCAR (XCAR (list)), key)))
1415 list = XCDR (list);
1416
1417 return CAR_SAFE (list);
1418 }
1419
1420 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1421 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1422 The value is actually the first element of LIST whose car equals KEY. */)
1423 (Lisp_Object key, Lisp_Object list)
1424 {
1425 Lisp_Object car;
1426
1427 while (1)
1428 {
1429 if (!CONSP (list)
1430 || (CONSP (XCAR (list))
1431 && (car = XCAR (XCAR (list)),
1432 EQ (car, key) || !NILP (Fequal (car, key)))))
1433 break;
1434
1435 list = XCDR (list);
1436 if (!CONSP (list)
1437 || (CONSP (XCAR (list))
1438 && (car = XCAR (XCAR (list)),
1439 EQ (car, key) || !NILP (Fequal (car, key)))))
1440 break;
1441
1442 list = XCDR (list);
1443 if (!CONSP (list)
1444 || (CONSP (XCAR (list))
1445 && (car = XCAR (XCAR (list)),
1446 EQ (car, key) || !NILP (Fequal (car, key)))))
1447 break;
1448
1449 list = XCDR (list);
1450 QUIT;
1451 }
1452
1453 return CAR (list);
1454 }
1455
1456 /* Like Fassoc but never report an error and do not allow quits.
1457 Use only on lists known never to be circular. */
1458
1459 Lisp_Object
1460 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1461 {
1462 while (CONSP (list)
1463 && (!CONSP (XCAR (list))
1464 || (!EQ (XCAR (XCAR (list)), key)
1465 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1466 list = XCDR (list);
1467
1468 return CONSP (list) ? XCAR (list) : Qnil;
1469 }
1470
1471 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1472 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1473 The value is actually the first element of LIST whose cdr is KEY. */)
1474 (register Lisp_Object key, Lisp_Object list)
1475 {
1476 while (1)
1477 {
1478 if (!CONSP (list)
1479 || (CONSP (XCAR (list))
1480 && EQ (XCDR (XCAR (list)), key)))
1481 break;
1482
1483 list = XCDR (list);
1484 if (!CONSP (list)
1485 || (CONSP (XCAR (list))
1486 && EQ (XCDR (XCAR (list)), key)))
1487 break;
1488
1489 list = XCDR (list);
1490 if (!CONSP (list)
1491 || (CONSP (XCAR (list))
1492 && EQ (XCDR (XCAR (list)), key)))
1493 break;
1494
1495 list = XCDR (list);
1496 QUIT;
1497 }
1498
1499 return CAR (list);
1500 }
1501
1502 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1503 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1504 The value is actually the first element of LIST whose cdr equals KEY. */)
1505 (Lisp_Object key, Lisp_Object list)
1506 {
1507 Lisp_Object cdr;
1508
1509 while (1)
1510 {
1511 if (!CONSP (list)
1512 || (CONSP (XCAR (list))
1513 && (cdr = XCDR (XCAR (list)),
1514 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1515 break;
1516
1517 list = XCDR (list);
1518 if (!CONSP (list)
1519 || (CONSP (XCAR (list))
1520 && (cdr = XCDR (XCAR (list)),
1521 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1522 break;
1523
1524 list = XCDR (list);
1525 if (!CONSP (list)
1526 || (CONSP (XCAR (list))
1527 && (cdr = XCDR (XCAR (list)),
1528 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1529 break;
1530
1531 list = XCDR (list);
1532 QUIT;
1533 }
1534
1535 return CAR (list);
1536 }
1537 \f
1538 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1539 doc: /* Delete members of LIST which are `eq' to ELT, and return the result.
1540 More precisely, this function skips any members `eq' to ELT at the
1541 front of LIST, then removes members `eq' to ELT from the remaining
1542 sublist by modifying its list structure, then returns the resulting
1543 list.
1544
1545 Write `(setq foo (delq element foo))' to be sure of correctly changing
1546 the value of a list `foo'. */)
1547 (register Lisp_Object elt, Lisp_Object list)
1548 {
1549 register Lisp_Object tail, prev;
1550 register Lisp_Object tem;
1551
1552 tail = list;
1553 prev = Qnil;
1554 while (!NILP (tail))
1555 {
1556 CHECK_LIST_CONS (tail, list);
1557 tem = XCAR (tail);
1558 if (EQ (elt, tem))
1559 {
1560 if (NILP (prev))
1561 list = XCDR (tail);
1562 else
1563 Fsetcdr (prev, XCDR (tail));
1564 }
1565 else
1566 prev = tail;
1567 tail = XCDR (tail);
1568 QUIT;
1569 }
1570 return list;
1571 }
1572
1573 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1574 doc: /* Delete members of SEQ which are `equal' to ELT, and return the result.
1575 SEQ must be a sequence (i.e. a list, a vector, or a string).
1576 The return value is a sequence of the same type.
1577
1578 If SEQ is a list, this behaves like `delq', except that it compares
1579 with `equal' instead of `eq'. In particular, it may remove elements
1580 by altering the list structure.
1581
1582 If SEQ is not a list, deletion is never performed destructively;
1583 instead this function creates and returns a new vector or string.
1584
1585 Write `(setq foo (delete element foo))' to be sure of correctly
1586 changing the value of a sequence `foo'. */)
1587 (Lisp_Object elt, Lisp_Object seq)
1588 {
1589 if (VECTORP (seq))
1590 {
1591 ptrdiff_t i, n;
1592
1593 for (i = n = 0; i < ASIZE (seq); ++i)
1594 if (NILP (Fequal (AREF (seq, i), elt)))
1595 ++n;
1596
1597 if (n != ASIZE (seq))
1598 {
1599 struct Lisp_Vector *p = allocate_vector (n);
1600
1601 for (i = n = 0; i < ASIZE (seq); ++i)
1602 if (NILP (Fequal (AREF (seq, i), elt)))
1603 p->contents[n++] = AREF (seq, i);
1604
1605 XSETVECTOR (seq, p);
1606 }
1607 }
1608 else if (STRINGP (seq))
1609 {
1610 ptrdiff_t i, ibyte, nchars, nbytes, cbytes;
1611 int c;
1612
1613 for (i = nchars = nbytes = ibyte = 0;
1614 i < SCHARS (seq);
1615 ++i, ibyte += cbytes)
1616 {
1617 if (STRING_MULTIBYTE (seq))
1618 {
1619 c = STRING_CHAR (SDATA (seq) + ibyte);
1620 cbytes = CHAR_BYTES (c);
1621 }
1622 else
1623 {
1624 c = SREF (seq, i);
1625 cbytes = 1;
1626 }
1627
1628 if (!INTEGERP (elt) || c != XINT (elt))
1629 {
1630 ++nchars;
1631 nbytes += cbytes;
1632 }
1633 }
1634
1635 if (nchars != SCHARS (seq))
1636 {
1637 Lisp_Object tem;
1638
1639 tem = make_uninit_multibyte_string (nchars, nbytes);
1640 if (!STRING_MULTIBYTE (seq))
1641 STRING_SET_UNIBYTE (tem);
1642
1643 for (i = nchars = nbytes = ibyte = 0;
1644 i < SCHARS (seq);
1645 ++i, ibyte += cbytes)
1646 {
1647 if (STRING_MULTIBYTE (seq))
1648 {
1649 c = STRING_CHAR (SDATA (seq) + ibyte);
1650 cbytes = CHAR_BYTES (c);
1651 }
1652 else
1653 {
1654 c = SREF (seq, i);
1655 cbytes = 1;
1656 }
1657
1658 if (!INTEGERP (elt) || c != XINT (elt))
1659 {
1660 unsigned char *from = SDATA (seq) + ibyte;
1661 unsigned char *to = SDATA (tem) + nbytes;
1662 ptrdiff_t n;
1663
1664 ++nchars;
1665 nbytes += cbytes;
1666
1667 for (n = cbytes; n--; )
1668 *to++ = *from++;
1669 }
1670 }
1671
1672 seq = tem;
1673 }
1674 }
1675 else
1676 {
1677 Lisp_Object tail, prev;
1678
1679 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1680 {
1681 CHECK_LIST_CONS (tail, seq);
1682
1683 if (!NILP (Fequal (elt, XCAR (tail))))
1684 {
1685 if (NILP (prev))
1686 seq = XCDR (tail);
1687 else
1688 Fsetcdr (prev, XCDR (tail));
1689 }
1690 else
1691 prev = tail;
1692 QUIT;
1693 }
1694 }
1695
1696 return seq;
1697 }
1698
1699 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1700 doc: /* Reverse LIST by modifying cdr pointers.
1701 Return the reversed list. Expects a properly nil-terminated list. */)
1702 (Lisp_Object list)
1703 {
1704 register Lisp_Object prev, tail, next;
1705
1706 if (NILP (list)) return list;
1707 prev = Qnil;
1708 tail = list;
1709 while (!NILP (tail))
1710 {
1711 QUIT;
1712 CHECK_LIST_CONS (tail, tail);
1713 next = XCDR (tail);
1714 Fsetcdr (tail, prev);
1715 prev = tail;
1716 tail = next;
1717 }
1718 return prev;
1719 }
1720
1721 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1722 doc: /* Reverse LIST, copying. Return the reversed list.
1723 See also the function `nreverse', which is used more often. */)
1724 (Lisp_Object list)
1725 {
1726 Lisp_Object new;
1727
1728 for (new = Qnil; CONSP (list); list = XCDR (list))
1729 {
1730 QUIT;
1731 new = Fcons (XCAR (list), new);
1732 }
1733 CHECK_LIST_END (list, list);
1734 return new;
1735 }
1736 \f
1737 Lisp_Object merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred);
1738
1739 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1740 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1741 Returns the sorted list. LIST is modified by side effects.
1742 PREDICATE is called with two elements of LIST, and should return non-nil
1743 if the first element should sort before the second. */)
1744 (Lisp_Object list, Lisp_Object predicate)
1745 {
1746 Lisp_Object front, back;
1747 register Lisp_Object len, tem;
1748 struct gcpro gcpro1, gcpro2;
1749 EMACS_INT length;
1750
1751 front = list;
1752 len = Flength (list);
1753 length = XINT (len);
1754 if (length < 2)
1755 return list;
1756
1757 XSETINT (len, (length / 2) - 1);
1758 tem = Fnthcdr (len, list);
1759 back = Fcdr (tem);
1760 Fsetcdr (tem, Qnil);
1761
1762 GCPRO2 (front, back);
1763 front = Fsort (front, predicate);
1764 back = Fsort (back, predicate);
1765 UNGCPRO;
1766 return merge (front, back, predicate);
1767 }
1768
1769 Lisp_Object
1770 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1771 {
1772 Lisp_Object value;
1773 register Lisp_Object tail;
1774 Lisp_Object tem;
1775 register Lisp_Object l1, l2;
1776 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1777
1778 l1 = org_l1;
1779 l2 = org_l2;
1780 tail = Qnil;
1781 value = Qnil;
1782
1783 /* It is sufficient to protect org_l1 and org_l2.
1784 When l1 and l2 are updated, we copy the new values
1785 back into the org_ vars. */
1786 GCPRO4 (org_l1, org_l2, pred, value);
1787
1788 while (1)
1789 {
1790 if (NILP (l1))
1791 {
1792 UNGCPRO;
1793 if (NILP (tail))
1794 return l2;
1795 Fsetcdr (tail, l2);
1796 return value;
1797 }
1798 if (NILP (l2))
1799 {
1800 UNGCPRO;
1801 if (NILP (tail))
1802 return l1;
1803 Fsetcdr (tail, l1);
1804 return value;
1805 }
1806 tem = call2 (pred, Fcar (l2), Fcar (l1));
1807 if (NILP (tem))
1808 {
1809 tem = l1;
1810 l1 = Fcdr (l1);
1811 org_l1 = l1;
1812 }
1813 else
1814 {
1815 tem = l2;
1816 l2 = Fcdr (l2);
1817 org_l2 = l2;
1818 }
1819 if (NILP (tail))
1820 value = tem;
1821 else
1822 Fsetcdr (tail, tem);
1823 tail = tem;
1824 }
1825 }
1826
1827 \f
1828 /* This does not check for quits. That is safe since it must terminate. */
1829
1830 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1831 doc: /* Extract a value from a property list.
1832 PLIST is a property list, which is a list of the form
1833 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1834 corresponding to the given PROP, or nil if PROP is not one of the
1835 properties on the list. This function never signals an error. */)
1836 (Lisp_Object plist, Lisp_Object prop)
1837 {
1838 Lisp_Object tail, halftail;
1839
1840 /* halftail is used to detect circular lists. */
1841 tail = halftail = plist;
1842 while (CONSP (tail) && CONSP (XCDR (tail)))
1843 {
1844 if (EQ (prop, XCAR (tail)))
1845 return XCAR (XCDR (tail));
1846
1847 tail = XCDR (XCDR (tail));
1848 halftail = XCDR (halftail);
1849 if (EQ (tail, halftail))
1850 break;
1851 }
1852
1853 return Qnil;
1854 }
1855
1856 DEFUN ("get", Fget, Sget, 2, 2, 0,
1857 doc: /* Return the value of SYMBOL's PROPNAME property.
1858 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1859 (Lisp_Object symbol, Lisp_Object propname)
1860 {
1861 CHECK_SYMBOL (symbol);
1862 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1863 }
1864
1865 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1866 doc: /* Change value in PLIST of PROP to VAL.
1867 PLIST is a property list, which is a list of the form
1868 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1869 If PROP is already a property on the list, its value is set to VAL,
1870 otherwise the new PROP VAL pair is added. The new plist is returned;
1871 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1872 The PLIST is modified by side effects. */)
1873 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1874 {
1875 register Lisp_Object tail, prev;
1876 Lisp_Object newcell;
1877 prev = Qnil;
1878 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1879 tail = XCDR (XCDR (tail)))
1880 {
1881 if (EQ (prop, XCAR (tail)))
1882 {
1883 Fsetcar (XCDR (tail), val);
1884 return plist;
1885 }
1886
1887 prev = tail;
1888 QUIT;
1889 }
1890 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1891 if (NILP (prev))
1892 return newcell;
1893 else
1894 Fsetcdr (XCDR (prev), newcell);
1895 return plist;
1896 }
1897
1898 DEFUN ("put", Fput, Sput, 3, 3, 0,
1899 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1900 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1901 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1902 {
1903 CHECK_SYMBOL (symbol);
1904 set_symbol_plist
1905 (symbol, Fplist_put (XSYMBOL (symbol)->plist, propname, value));
1906 return value;
1907 }
1908 \f
1909 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1910 doc: /* Extract a value from a property list, comparing with `equal'.
1911 PLIST is a property list, which is a list of the form
1912 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1913 corresponding to the given PROP, or nil if PROP is not
1914 one of the properties on the list. */)
1915 (Lisp_Object plist, Lisp_Object prop)
1916 {
1917 Lisp_Object tail;
1918
1919 for (tail = plist;
1920 CONSP (tail) && CONSP (XCDR (tail));
1921 tail = XCDR (XCDR (tail)))
1922 {
1923 if (! NILP (Fequal (prop, XCAR (tail))))
1924 return XCAR (XCDR (tail));
1925
1926 QUIT;
1927 }
1928
1929 CHECK_LIST_END (tail, prop);
1930
1931 return Qnil;
1932 }
1933
1934 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1935 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1936 PLIST is a property list, which is a list of the form
1937 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1938 If PROP is already a property on the list, its value is set to VAL,
1939 otherwise the new PROP VAL pair is added. The new plist is returned;
1940 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1941 The PLIST is modified by side effects. */)
1942 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1943 {
1944 register Lisp_Object tail, prev;
1945 Lisp_Object newcell;
1946 prev = Qnil;
1947 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1948 tail = XCDR (XCDR (tail)))
1949 {
1950 if (! NILP (Fequal (prop, XCAR (tail))))
1951 {
1952 Fsetcar (XCDR (tail), val);
1953 return plist;
1954 }
1955
1956 prev = tail;
1957 QUIT;
1958 }
1959 newcell = Fcons (prop, Fcons (val, Qnil));
1960 if (NILP (prev))
1961 return newcell;
1962 else
1963 Fsetcdr (XCDR (prev), newcell);
1964 return plist;
1965 }
1966 \f
1967 DEFUN ("eql", Feql, Seql, 2, 2, 0,
1968 doc: /* Return t if the two args are the same Lisp object.
1969 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1970 (Lisp_Object obj1, Lisp_Object obj2)
1971 {
1972 if (FLOATP (obj1))
1973 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
1974 else
1975 return EQ (obj1, obj2) ? Qt : Qnil;
1976 }
1977
1978 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1979 doc: /* Return t if two Lisp objects have similar structure and contents.
1980 They must have the same data type.
1981 Conses are compared by comparing the cars and the cdrs.
1982 Vectors and strings are compared element by element.
1983 Numbers are compared by value, but integers cannot equal floats.
1984 (Use `=' if you want integers and floats to be able to be equal.)
1985 Symbols must match exactly. */)
1986 (register Lisp_Object o1, Lisp_Object o2)
1987 {
1988 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
1989 }
1990
1991 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
1992 doc: /* Return t if two Lisp objects have similar structure and contents.
1993 This is like `equal' except that it compares the text properties
1994 of strings. (`equal' ignores text properties.) */)
1995 (register Lisp_Object o1, Lisp_Object o2)
1996 {
1997 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
1998 }
1999
2000 /* DEPTH is current depth of recursion. Signal an error if it
2001 gets too deep.
2002 PROPS means compare string text properties too. */
2003
2004 static bool
2005 internal_equal (Lisp_Object o1, Lisp_Object o2, int depth, bool props)
2006 {
2007 if (depth > 200)
2008 error ("Stack overflow in equal");
2009
2010 tail_recurse:
2011 QUIT;
2012 if (EQ (o1, o2))
2013 return 1;
2014 if (XTYPE (o1) != XTYPE (o2))
2015 return 0;
2016
2017 switch (XTYPE (o1))
2018 {
2019 case Lisp_Float:
2020 {
2021 double d1, d2;
2022
2023 d1 = extract_float (o1);
2024 d2 = extract_float (o2);
2025 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2026 though they are not =. */
2027 return d1 == d2 || (d1 != d1 && d2 != d2);
2028 }
2029
2030 case Lisp_Cons:
2031 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2032 return 0;
2033 o1 = XCDR (o1);
2034 o2 = XCDR (o2);
2035 goto tail_recurse;
2036
2037 case Lisp_Misc:
2038 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2039 return 0;
2040 if (OVERLAYP (o1))
2041 {
2042 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2043 depth + 1, props)
2044 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2045 depth + 1, props))
2046 return 0;
2047 o1 = XOVERLAY (o1)->plist;
2048 o2 = XOVERLAY (o2)->plist;
2049 goto tail_recurse;
2050 }
2051 if (MARKERP (o1))
2052 {
2053 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2054 && (XMARKER (o1)->buffer == 0
2055 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2056 }
2057 break;
2058
2059 case Lisp_Vectorlike:
2060 {
2061 register int i;
2062 ptrdiff_t size = ASIZE (o1);
2063 /* Pseudovectors have the type encoded in the size field, so this test
2064 actually checks that the objects have the same type as well as the
2065 same size. */
2066 if (ASIZE (o2) != size)
2067 return 0;
2068 /* Boolvectors are compared much like strings. */
2069 if (BOOL_VECTOR_P (o1))
2070 {
2071 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2072 return 0;
2073 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2074 ((XBOOL_VECTOR (o1)->size
2075 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2076 / BOOL_VECTOR_BITS_PER_CHAR)))
2077 return 0;
2078 return 1;
2079 }
2080 if (WINDOW_CONFIGURATIONP (o1))
2081 return compare_window_configurations (o1, o2, 0);
2082
2083 /* Aside from them, only true vectors, char-tables, compiled
2084 functions, and fonts (font-spec, font-entity, font-object)
2085 are sensible to compare, so eliminate the others now. */
2086 if (size & PSEUDOVECTOR_FLAG)
2087 {
2088 if (((size & PVEC_TYPE_MASK) >> PSEUDOVECTOR_AREA_BITS)
2089 < PVEC_COMPILED)
2090 return 0;
2091 size &= PSEUDOVECTOR_SIZE_MASK;
2092 }
2093 for (i = 0; i < size; i++)
2094 {
2095 Lisp_Object v1, v2;
2096 v1 = AREF (o1, i);
2097 v2 = AREF (o2, i);
2098 if (!internal_equal (v1, v2, depth + 1, props))
2099 return 0;
2100 }
2101 return 1;
2102 }
2103 break;
2104
2105 case Lisp_String:
2106 if (SCHARS (o1) != SCHARS (o2))
2107 return 0;
2108 if (SBYTES (o1) != SBYTES (o2))
2109 return 0;
2110 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2111 return 0;
2112 if (props && !compare_string_intervals (o1, o2))
2113 return 0;
2114 return 1;
2115
2116 default:
2117 break;
2118 }
2119
2120 return 0;
2121 }
2122 \f
2123
2124 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2125 doc: /* Store each element of ARRAY with ITEM.
2126 ARRAY is a vector, string, char-table, or bool-vector. */)
2127 (Lisp_Object array, Lisp_Object item)
2128 {
2129 register ptrdiff_t size, idx;
2130
2131 if (VECTORP (array))
2132 for (idx = 0, size = ASIZE (array); idx < size; idx++)
2133 ASET (array, idx, item);
2134 else if (CHAR_TABLE_P (array))
2135 {
2136 int i;
2137
2138 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2139 set_char_table_contents (array, i, item);
2140 set_char_table_defalt (array, item);
2141 }
2142 else if (STRINGP (array))
2143 {
2144 register unsigned char *p = SDATA (array);
2145 int charval;
2146 CHECK_CHARACTER (item);
2147 charval = XFASTINT (item);
2148 size = SCHARS (array);
2149 if (STRING_MULTIBYTE (array))
2150 {
2151 unsigned char str[MAX_MULTIBYTE_LENGTH];
2152 int len = CHAR_STRING (charval, str);
2153 ptrdiff_t size_byte = SBYTES (array);
2154
2155 if (INT_MULTIPLY_OVERFLOW (SCHARS (array), len)
2156 || SCHARS (array) * len != size_byte)
2157 error ("Attempt to change byte length of a string");
2158 for (idx = 0; idx < size_byte; idx++)
2159 *p++ = str[idx % len];
2160 }
2161 else
2162 for (idx = 0; idx < size; idx++)
2163 p[idx] = charval;
2164 }
2165 else if (BOOL_VECTOR_P (array))
2166 {
2167 register unsigned char *p = XBOOL_VECTOR (array)->data;
2168 size =
2169 ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2170 / BOOL_VECTOR_BITS_PER_CHAR);
2171
2172 if (size)
2173 {
2174 memset (p, ! NILP (item) ? -1 : 0, size);
2175
2176 /* Clear any extraneous bits in the last byte. */
2177 p[size - 1] &= (1 << (size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2178 }
2179 }
2180 else
2181 wrong_type_argument (Qarrayp, array);
2182 return array;
2183 }
2184
2185 DEFUN ("clear-string", Fclear_string, Sclear_string,
2186 1, 1, 0,
2187 doc: /* Clear the contents of STRING.
2188 This makes STRING unibyte and may change its length. */)
2189 (Lisp_Object string)
2190 {
2191 ptrdiff_t len;
2192 CHECK_STRING (string);
2193 len = SBYTES (string);
2194 memset (SDATA (string), 0, len);
2195 STRING_SET_CHARS (string, len);
2196 STRING_SET_UNIBYTE (string);
2197 return Qnil;
2198 }
2199 \f
2200 /* ARGSUSED */
2201 Lisp_Object
2202 nconc2 (Lisp_Object s1, Lisp_Object s2)
2203 {
2204 Lisp_Object args[2];
2205 args[0] = s1;
2206 args[1] = s2;
2207 return Fnconc (2, args);
2208 }
2209
2210 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2211 doc: /* Concatenate any number of lists by altering them.
2212 Only the last argument is not altered, and need not be a list.
2213 usage: (nconc &rest LISTS) */)
2214 (ptrdiff_t nargs, Lisp_Object *args)
2215 {
2216 ptrdiff_t argnum;
2217 register Lisp_Object tail, tem, val;
2218
2219 val = tail = Qnil;
2220
2221 for (argnum = 0; argnum < nargs; argnum++)
2222 {
2223 tem = args[argnum];
2224 if (NILP (tem)) continue;
2225
2226 if (NILP (val))
2227 val = tem;
2228
2229 if (argnum + 1 == nargs) break;
2230
2231 CHECK_LIST_CONS (tem, tem);
2232
2233 while (CONSP (tem))
2234 {
2235 tail = tem;
2236 tem = XCDR (tail);
2237 QUIT;
2238 }
2239
2240 tem = args[argnum + 1];
2241 Fsetcdr (tail, tem);
2242 if (NILP (tem))
2243 args[argnum + 1] = tail;
2244 }
2245
2246 return val;
2247 }
2248 \f
2249 /* This is the guts of all mapping functions.
2250 Apply FN to each element of SEQ, one by one,
2251 storing the results into elements of VALS, a C vector of Lisp_Objects.
2252 LENI is the length of VALS, which should also be the length of SEQ. */
2253
2254 static void
2255 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2256 {
2257 register Lisp_Object tail;
2258 Lisp_Object dummy;
2259 register EMACS_INT i;
2260 struct gcpro gcpro1, gcpro2, gcpro3;
2261
2262 if (vals)
2263 {
2264 /* Don't let vals contain any garbage when GC happens. */
2265 for (i = 0; i < leni; i++)
2266 vals[i] = Qnil;
2267
2268 GCPRO3 (dummy, fn, seq);
2269 gcpro1.var = vals;
2270 gcpro1.nvars = leni;
2271 }
2272 else
2273 GCPRO2 (fn, seq);
2274 /* We need not explicitly protect `tail' because it is used only on lists, and
2275 1) lists are not relocated and 2) the list is marked via `seq' so will not
2276 be freed */
2277
2278 if (VECTORP (seq) || COMPILEDP (seq))
2279 {
2280 for (i = 0; i < leni; i++)
2281 {
2282 dummy = call1 (fn, AREF (seq, i));
2283 if (vals)
2284 vals[i] = dummy;
2285 }
2286 }
2287 else if (BOOL_VECTOR_P (seq))
2288 {
2289 for (i = 0; i < leni; i++)
2290 {
2291 unsigned char byte;
2292 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2293 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2294 dummy = call1 (fn, dummy);
2295 if (vals)
2296 vals[i] = dummy;
2297 }
2298 }
2299 else if (STRINGP (seq))
2300 {
2301 ptrdiff_t i_byte;
2302
2303 for (i = 0, i_byte = 0; i < leni;)
2304 {
2305 int c;
2306 ptrdiff_t i_before = i;
2307
2308 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2309 XSETFASTINT (dummy, c);
2310 dummy = call1 (fn, dummy);
2311 if (vals)
2312 vals[i_before] = dummy;
2313 }
2314 }
2315 else /* Must be a list, since Flength did not get an error */
2316 {
2317 tail = seq;
2318 for (i = 0; i < leni && CONSP (tail); i++)
2319 {
2320 dummy = call1 (fn, XCAR (tail));
2321 if (vals)
2322 vals[i] = dummy;
2323 tail = XCDR (tail);
2324 }
2325 }
2326
2327 UNGCPRO;
2328 }
2329
2330 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2331 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2332 In between each pair of results, stick in SEPARATOR. Thus, " " as
2333 SEPARATOR results in spaces between the values returned by FUNCTION.
2334 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2335 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2336 {
2337 Lisp_Object len;
2338 register EMACS_INT leni;
2339 EMACS_INT nargs;
2340 ptrdiff_t i;
2341 register Lisp_Object *args;
2342 struct gcpro gcpro1;
2343 Lisp_Object ret;
2344 USE_SAFE_ALLOCA;
2345
2346 len = Flength (sequence);
2347 if (CHAR_TABLE_P (sequence))
2348 wrong_type_argument (Qlistp, sequence);
2349 leni = XINT (len);
2350 nargs = leni + leni - 1;
2351 if (nargs < 0) return empty_unibyte_string;
2352
2353 SAFE_ALLOCA_LISP (args, nargs);
2354
2355 GCPRO1 (separator);
2356 mapcar1 (leni, args, function, sequence);
2357 UNGCPRO;
2358
2359 for (i = leni - 1; i > 0; i--)
2360 args[i + i] = args[i];
2361
2362 for (i = 1; i < nargs; i += 2)
2363 args[i] = separator;
2364
2365 ret = Fconcat (nargs, args);
2366 SAFE_FREE ();
2367
2368 return ret;
2369 }
2370
2371 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2372 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2373 The result is a list just as long as SEQUENCE.
2374 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2375 (Lisp_Object function, Lisp_Object sequence)
2376 {
2377 register Lisp_Object len;
2378 register EMACS_INT leni;
2379 register Lisp_Object *args;
2380 Lisp_Object ret;
2381 USE_SAFE_ALLOCA;
2382
2383 len = Flength (sequence);
2384 if (CHAR_TABLE_P (sequence))
2385 wrong_type_argument (Qlistp, sequence);
2386 leni = XFASTINT (len);
2387
2388 SAFE_ALLOCA_LISP (args, leni);
2389
2390 mapcar1 (leni, args, function, sequence);
2391
2392 ret = Flist (leni, args);
2393 SAFE_FREE ();
2394
2395 return ret;
2396 }
2397
2398 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2399 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2400 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2401 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2402 (Lisp_Object function, Lisp_Object sequence)
2403 {
2404 register EMACS_INT leni;
2405
2406 leni = XFASTINT (Flength (sequence));
2407 if (CHAR_TABLE_P (sequence))
2408 wrong_type_argument (Qlistp, sequence);
2409 mapcar1 (leni, 0, function, sequence);
2410
2411 return sequence;
2412 }
2413 \f
2414 /* This is how C code calls `yes-or-no-p' and allows the user
2415 to redefined it.
2416
2417 Anything that calls this function must protect from GC! */
2418
2419 Lisp_Object
2420 do_yes_or_no_p (Lisp_Object prompt)
2421 {
2422 return call1 (intern ("yes-or-no-p"), prompt);
2423 }
2424
2425 /* Anything that calls this function must protect from GC! */
2426
2427 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2428 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2429 PROMPT is the string to display to ask the question. It should end in
2430 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2431
2432 The user must confirm the answer with RET, and can edit it until it
2433 has been confirmed.
2434
2435 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2436 is nil, and `use-dialog-box' is non-nil. */)
2437 (Lisp_Object prompt)
2438 {
2439 register Lisp_Object ans;
2440 Lisp_Object args[2];
2441 struct gcpro gcpro1;
2442
2443 CHECK_STRING (prompt);
2444
2445 #ifdef HAVE_MENUS
2446 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2447 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2448 && use_dialog_box
2449 && have_menus_p ())
2450 {
2451 Lisp_Object pane, menu, obj;
2452 redisplay_preserve_echo_area (4);
2453 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2454 Fcons (Fcons (build_string ("No"), Qnil),
2455 Qnil));
2456 GCPRO1 (pane);
2457 menu = Fcons (prompt, pane);
2458 obj = Fx_popup_dialog (Qt, menu, Qnil);
2459 UNGCPRO;
2460 return obj;
2461 }
2462 #endif /* HAVE_MENUS */
2463
2464 args[0] = prompt;
2465 args[1] = build_string ("(yes or no) ");
2466 prompt = Fconcat (2, args);
2467
2468 GCPRO1 (prompt);
2469
2470 while (1)
2471 {
2472 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2473 Qyes_or_no_p_history, Qnil,
2474 Qnil));
2475 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2476 {
2477 UNGCPRO;
2478 return Qt;
2479 }
2480 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2481 {
2482 UNGCPRO;
2483 return Qnil;
2484 }
2485
2486 Fding (Qnil);
2487 Fdiscard_input ();
2488 message1 ("Please answer yes or no.");
2489 Fsleep_for (make_number (2), Qnil);
2490 }
2491 }
2492 \f
2493 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2494 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2495
2496 Each of the three load averages is multiplied by 100, then converted
2497 to integer.
2498
2499 When USE-FLOATS is non-nil, floats will be used instead of integers.
2500 These floats are not multiplied by 100.
2501
2502 If the 5-minute or 15-minute load averages are not available, return a
2503 shortened list, containing only those averages which are available.
2504
2505 An error is thrown if the load average can't be obtained. In some
2506 cases making it work would require Emacs being installed setuid or
2507 setgid so that it can read kernel information, and that usually isn't
2508 advisable. */)
2509 (Lisp_Object use_floats)
2510 {
2511 double load_ave[3];
2512 int loads = getloadavg (load_ave, 3);
2513 Lisp_Object ret = Qnil;
2514
2515 if (loads < 0)
2516 error ("load-average not implemented for this operating system");
2517
2518 while (loads-- > 0)
2519 {
2520 Lisp_Object load = (NILP (use_floats)
2521 ? make_number (100.0 * load_ave[loads])
2522 : make_float (load_ave[loads]));
2523 ret = Fcons (load, ret);
2524 }
2525
2526 return ret;
2527 }
2528 \f
2529 static Lisp_Object Qsubfeatures;
2530
2531 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2532 doc: /* Return t if FEATURE is present in this Emacs.
2533
2534 Use this to conditionalize execution of lisp code based on the
2535 presence or absence of Emacs or environment extensions.
2536 Use `provide' to declare that a feature is available. This function
2537 looks at the value of the variable `features'. The optional argument
2538 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2539 (Lisp_Object feature, Lisp_Object subfeature)
2540 {
2541 register Lisp_Object tem;
2542 CHECK_SYMBOL (feature);
2543 tem = Fmemq (feature, Vfeatures);
2544 if (!NILP (tem) && !NILP (subfeature))
2545 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2546 return (NILP (tem)) ? Qnil : Qt;
2547 }
2548
2549 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2550 doc: /* Announce that FEATURE is a feature of the current Emacs.
2551 The optional argument SUBFEATURES should be a list of symbols listing
2552 particular subfeatures supported in this version of FEATURE. */)
2553 (Lisp_Object feature, Lisp_Object subfeatures)
2554 {
2555 register Lisp_Object tem;
2556 CHECK_SYMBOL (feature);
2557 CHECK_LIST (subfeatures);
2558 if (!NILP (Vautoload_queue))
2559 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2560 Vautoload_queue);
2561 tem = Fmemq (feature, Vfeatures);
2562 if (NILP (tem))
2563 Vfeatures = Fcons (feature, Vfeatures);
2564 if (!NILP (subfeatures))
2565 Fput (feature, Qsubfeatures, subfeatures);
2566 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2567
2568 /* Run any load-hooks for this file. */
2569 tem = Fassq (feature, Vafter_load_alist);
2570 if (CONSP (tem))
2571 Fprogn (XCDR (tem));
2572
2573 return feature;
2574 }
2575 \f
2576 /* `require' and its subroutines. */
2577
2578 /* List of features currently being require'd, innermost first. */
2579
2580 static Lisp_Object require_nesting_list;
2581
2582 static Lisp_Object
2583 require_unwind (Lisp_Object old_value)
2584 {
2585 return require_nesting_list = old_value;
2586 }
2587
2588 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2589 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2590 If FEATURE is not a member of the list `features', then the feature
2591 is not loaded; so load the file FILENAME.
2592 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2593 and `load' will try to load this name appended with the suffix `.elc' or
2594 `.el', in that order. The name without appended suffix will not be used.
2595 See `get-load-suffixes' for the complete list of suffixes.
2596 If the optional third argument NOERROR is non-nil,
2597 then return nil if the file is not found instead of signaling an error.
2598 Normally the return value is FEATURE.
2599 The normal messages at start and end of loading FILENAME are suppressed. */)
2600 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2601 {
2602 Lisp_Object tem;
2603 struct gcpro gcpro1, gcpro2;
2604 bool from_file = load_in_progress;
2605
2606 CHECK_SYMBOL (feature);
2607
2608 /* Record the presence of `require' in this file
2609 even if the feature specified is already loaded.
2610 But not more than once in any file,
2611 and not when we aren't loading or reading from a file. */
2612 if (!from_file)
2613 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2614 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2615 from_file = 1;
2616
2617 if (from_file)
2618 {
2619 tem = Fcons (Qrequire, feature);
2620 if (NILP (Fmember (tem, Vcurrent_load_list)))
2621 LOADHIST_ATTACH (tem);
2622 }
2623 tem = Fmemq (feature, Vfeatures);
2624
2625 if (NILP (tem))
2626 {
2627 ptrdiff_t count = SPECPDL_INDEX ();
2628 int nesting = 0;
2629
2630 /* This is to make sure that loadup.el gives a clear picture
2631 of what files are preloaded and when. */
2632 if (! NILP (Vpurify_flag))
2633 error ("(require %s) while preparing to dump",
2634 SDATA (SYMBOL_NAME (feature)));
2635
2636 /* A certain amount of recursive `require' is legitimate,
2637 but if we require the same feature recursively 3 times,
2638 signal an error. */
2639 tem = require_nesting_list;
2640 while (! NILP (tem))
2641 {
2642 if (! NILP (Fequal (feature, XCAR (tem))))
2643 nesting++;
2644 tem = XCDR (tem);
2645 }
2646 if (nesting > 3)
2647 error ("Recursive `require' for feature `%s'",
2648 SDATA (SYMBOL_NAME (feature)));
2649
2650 /* Update the list for any nested `require's that occur. */
2651 record_unwind_protect (require_unwind, require_nesting_list);
2652 require_nesting_list = Fcons (feature, require_nesting_list);
2653
2654 /* Value saved here is to be restored into Vautoload_queue */
2655 record_unwind_protect (un_autoload, Vautoload_queue);
2656 Vautoload_queue = Qt;
2657
2658 /* Load the file. */
2659 GCPRO2 (feature, filename);
2660 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2661 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2662 UNGCPRO;
2663
2664 /* If load failed entirely, return nil. */
2665 if (NILP (tem))
2666 return unbind_to (count, Qnil);
2667
2668 tem = Fmemq (feature, Vfeatures);
2669 if (NILP (tem))
2670 error ("Required feature `%s' was not provided",
2671 SDATA (SYMBOL_NAME (feature)));
2672
2673 /* Once loading finishes, don't undo it. */
2674 Vautoload_queue = Qt;
2675 feature = unbind_to (count, feature);
2676 }
2677
2678 return feature;
2679 }
2680 \f
2681 /* Primitives for work of the "widget" library.
2682 In an ideal world, this section would not have been necessary.
2683 However, lisp function calls being as slow as they are, it turns
2684 out that some functions in the widget library (wid-edit.el) are the
2685 bottleneck of Widget operation. Here is their translation to C,
2686 for the sole reason of efficiency. */
2687
2688 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2689 doc: /* Return non-nil if PLIST has the property PROP.
2690 PLIST is a property list, which is a list of the form
2691 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2692 Unlike `plist-get', this allows you to distinguish between a missing
2693 property and a property with the value nil.
2694 The value is actually the tail of PLIST whose car is PROP. */)
2695 (Lisp_Object plist, Lisp_Object prop)
2696 {
2697 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2698 {
2699 QUIT;
2700 plist = XCDR (plist);
2701 plist = CDR (plist);
2702 }
2703 return plist;
2704 }
2705
2706 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2707 doc: /* In WIDGET, set PROPERTY to VALUE.
2708 The value can later be retrieved with `widget-get'. */)
2709 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2710 {
2711 CHECK_CONS (widget);
2712 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2713 return value;
2714 }
2715
2716 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2717 doc: /* In WIDGET, get the value of PROPERTY.
2718 The value could either be specified when the widget was created, or
2719 later with `widget-put'. */)
2720 (Lisp_Object widget, Lisp_Object property)
2721 {
2722 Lisp_Object tmp;
2723
2724 while (1)
2725 {
2726 if (NILP (widget))
2727 return Qnil;
2728 CHECK_CONS (widget);
2729 tmp = Fplist_member (XCDR (widget), property);
2730 if (CONSP (tmp))
2731 {
2732 tmp = XCDR (tmp);
2733 return CAR (tmp);
2734 }
2735 tmp = XCAR (widget);
2736 if (NILP (tmp))
2737 return Qnil;
2738 widget = Fget (tmp, Qwidget_type);
2739 }
2740 }
2741
2742 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2743 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2744 ARGS are passed as extra arguments to the function.
2745 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2746 (ptrdiff_t nargs, Lisp_Object *args)
2747 {
2748 /* This function can GC. */
2749 Lisp_Object newargs[3];
2750 struct gcpro gcpro1, gcpro2;
2751 Lisp_Object result;
2752
2753 newargs[0] = Fwidget_get (args[0], args[1]);
2754 newargs[1] = args[0];
2755 newargs[2] = Flist (nargs - 2, args + 2);
2756 GCPRO2 (newargs[0], newargs[2]);
2757 result = Fapply (3, newargs);
2758 UNGCPRO;
2759 return result;
2760 }
2761
2762 #ifdef HAVE_LANGINFO_CODESET
2763 #include <langinfo.h>
2764 #endif
2765
2766 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2767 doc: /* Access locale data ITEM for the current C locale, if available.
2768 ITEM should be one of the following:
2769
2770 `codeset', returning the character set as a string (locale item CODESET);
2771
2772 `days', returning a 7-element vector of day names (locale items DAY_n);
2773
2774 `months', returning a 12-element vector of month names (locale items MON_n);
2775
2776 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2777 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2778
2779 If the system can't provide such information through a call to
2780 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2781
2782 See also Info node `(libc)Locales'.
2783
2784 The data read from the system are decoded using `locale-coding-system'. */)
2785 (Lisp_Object item)
2786 {
2787 char *str = NULL;
2788 #ifdef HAVE_LANGINFO_CODESET
2789 Lisp_Object val;
2790 if (EQ (item, Qcodeset))
2791 {
2792 str = nl_langinfo (CODESET);
2793 return build_string (str);
2794 }
2795 #ifdef DAY_1
2796 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2797 {
2798 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2799 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2800 int i;
2801 struct gcpro gcpro1;
2802 GCPRO1 (v);
2803 synchronize_system_time_locale ();
2804 for (i = 0; i < 7; i++)
2805 {
2806 str = nl_langinfo (days[i]);
2807 val = build_unibyte_string (str);
2808 /* Fixme: Is this coding system necessarily right, even if
2809 it is consistent with CODESET? If not, what to do? */
2810 ASET (v, i, code_convert_string_norecord (val, Vlocale_coding_system,
2811 0));
2812 }
2813 UNGCPRO;
2814 return v;
2815 }
2816 #endif /* DAY_1 */
2817 #ifdef MON_1
2818 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2819 {
2820 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2821 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2822 MON_8, MON_9, MON_10, MON_11, MON_12};
2823 int i;
2824 struct gcpro gcpro1;
2825 GCPRO1 (v);
2826 synchronize_system_time_locale ();
2827 for (i = 0; i < 12; i++)
2828 {
2829 str = nl_langinfo (months[i]);
2830 val = build_unibyte_string (str);
2831 ASET (v, i, code_convert_string_norecord (val, Vlocale_coding_system,
2832 0));
2833 }
2834 UNGCPRO;
2835 return v;
2836 }
2837 #endif /* MON_1 */
2838 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2839 but is in the locale files. This could be used by ps-print. */
2840 #ifdef PAPER_WIDTH
2841 else if (EQ (item, Qpaper))
2842 return list2i (nl_langinfo (PAPER_WIDTH), nl_langinfo (PAPER_HEIGHT));
2843 #endif /* PAPER_WIDTH */
2844 #endif /* HAVE_LANGINFO_CODESET*/
2845 return Qnil;
2846 }
2847 \f
2848 /* base64 encode/decode functions (RFC 2045).
2849 Based on code from GNU recode. */
2850
2851 #define MIME_LINE_LENGTH 76
2852
2853 #define IS_ASCII(Character) \
2854 ((Character) < 128)
2855 #define IS_BASE64(Character) \
2856 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2857 #define IS_BASE64_IGNORABLE(Character) \
2858 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2859 || (Character) == '\f' || (Character) == '\r')
2860
2861 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2862 character or return retval if there are no characters left to
2863 process. */
2864 #define READ_QUADRUPLET_BYTE(retval) \
2865 do \
2866 { \
2867 if (i == length) \
2868 { \
2869 if (nchars_return) \
2870 *nchars_return = nchars; \
2871 return (retval); \
2872 } \
2873 c = from[i++]; \
2874 } \
2875 while (IS_BASE64_IGNORABLE (c))
2876
2877 /* Table of characters coding the 64 values. */
2878 static const char base64_value_to_char[64] =
2879 {
2880 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2881 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2882 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2883 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2884 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2885 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2886 '8', '9', '+', '/' /* 60-63 */
2887 };
2888
2889 /* Table of base64 values for first 128 characters. */
2890 static const short base64_char_to_value[128] =
2891 {
2892 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2893 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2894 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2895 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2896 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2897 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2898 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2899 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2900 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2901 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2902 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2903 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2904 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2905 };
2906
2907 /* The following diagram shows the logical steps by which three octets
2908 get transformed into four base64 characters.
2909
2910 .--------. .--------. .--------.
2911 |aaaaaabb| |bbbbcccc| |ccdddddd|
2912 `--------' `--------' `--------'
2913 6 2 4 4 2 6
2914 .--------+--------+--------+--------.
2915 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2916 `--------+--------+--------+--------'
2917
2918 .--------+--------+--------+--------.
2919 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2920 `--------+--------+--------+--------'
2921
2922 The octets are divided into 6 bit chunks, which are then encoded into
2923 base64 characters. */
2924
2925
2926 static ptrdiff_t base64_encode_1 (const char *, char *, ptrdiff_t, bool, bool);
2927 static ptrdiff_t base64_decode_1 (const char *, char *, ptrdiff_t, bool,
2928 ptrdiff_t *);
2929
2930 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2931 2, 3, "r",
2932 doc: /* Base64-encode the region between BEG and END.
2933 Return the length of the encoded text.
2934 Optional third argument NO-LINE-BREAK means do not break long lines
2935 into shorter lines. */)
2936 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2937 {
2938 char *encoded;
2939 ptrdiff_t allength, length;
2940 ptrdiff_t ibeg, iend, encoded_length;
2941 ptrdiff_t old_pos = PT;
2942 USE_SAFE_ALLOCA;
2943
2944 validate_region (&beg, &end);
2945
2946 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2947 iend = CHAR_TO_BYTE (XFASTINT (end));
2948 move_gap_both (XFASTINT (beg), ibeg);
2949
2950 /* We need to allocate enough room for encoding the text.
2951 We need 33 1/3% more space, plus a newline every 76
2952 characters, and then we round up. */
2953 length = iend - ibeg;
2954 allength = length + length/3 + 1;
2955 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2956
2957 encoded = SAFE_ALLOCA (allength);
2958 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
2959 encoded, length, NILP (no_line_break),
2960 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
2961 if (encoded_length > allength)
2962 emacs_abort ();
2963
2964 if (encoded_length < 0)
2965 {
2966 /* The encoding wasn't possible. */
2967 SAFE_FREE ();
2968 error ("Multibyte character in data for base64 encoding");
2969 }
2970
2971 /* Now we have encoded the region, so we insert the new contents
2972 and delete the old. (Insert first in order to preserve markers.) */
2973 SET_PT_BOTH (XFASTINT (beg), ibeg);
2974 insert (encoded, encoded_length);
2975 SAFE_FREE ();
2976 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
2977
2978 /* If point was outside of the region, restore it exactly; else just
2979 move to the beginning of the region. */
2980 if (old_pos >= XFASTINT (end))
2981 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
2982 else if (old_pos > XFASTINT (beg))
2983 old_pos = XFASTINT (beg);
2984 SET_PT (old_pos);
2985
2986 /* We return the length of the encoded text. */
2987 return make_number (encoded_length);
2988 }
2989
2990 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
2991 1, 2, 0,
2992 doc: /* Base64-encode STRING and return the result.
2993 Optional second argument NO-LINE-BREAK means do not break long lines
2994 into shorter lines. */)
2995 (Lisp_Object string, Lisp_Object no_line_break)
2996 {
2997 ptrdiff_t allength, length, encoded_length;
2998 char *encoded;
2999 Lisp_Object encoded_string;
3000 USE_SAFE_ALLOCA;
3001
3002 CHECK_STRING (string);
3003
3004 /* We need to allocate enough room for encoding the text.
3005 We need 33 1/3% more space, plus a newline every 76
3006 characters, and then we round up. */
3007 length = SBYTES (string);
3008 allength = length + length/3 + 1;
3009 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3010
3011 /* We need to allocate enough room for decoding the text. */
3012 encoded = SAFE_ALLOCA (allength);
3013
3014 encoded_length = base64_encode_1 (SSDATA (string),
3015 encoded, length, NILP (no_line_break),
3016 STRING_MULTIBYTE (string));
3017 if (encoded_length > allength)
3018 emacs_abort ();
3019
3020 if (encoded_length < 0)
3021 {
3022 /* The encoding wasn't possible. */
3023 SAFE_FREE ();
3024 error ("Multibyte character in data for base64 encoding");
3025 }
3026
3027 encoded_string = make_unibyte_string (encoded, encoded_length);
3028 SAFE_FREE ();
3029
3030 return encoded_string;
3031 }
3032
3033 static ptrdiff_t
3034 base64_encode_1 (const char *from, char *to, ptrdiff_t length,
3035 bool line_break, bool multibyte)
3036 {
3037 int counter = 0;
3038 ptrdiff_t i = 0;
3039 char *e = to;
3040 int c;
3041 unsigned int value;
3042 int bytes;
3043
3044 while (i < length)
3045 {
3046 if (multibyte)
3047 {
3048 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3049 if (CHAR_BYTE8_P (c))
3050 c = CHAR_TO_BYTE8 (c);
3051 else if (c >= 256)
3052 return -1;
3053 i += bytes;
3054 }
3055 else
3056 c = from[i++];
3057
3058 /* Wrap line every 76 characters. */
3059
3060 if (line_break)
3061 {
3062 if (counter < MIME_LINE_LENGTH / 4)
3063 counter++;
3064 else
3065 {
3066 *e++ = '\n';
3067 counter = 1;
3068 }
3069 }
3070
3071 /* Process first byte of a triplet. */
3072
3073 *e++ = base64_value_to_char[0x3f & c >> 2];
3074 value = (0x03 & c) << 4;
3075
3076 /* Process second byte of a triplet. */
3077
3078 if (i == length)
3079 {
3080 *e++ = base64_value_to_char[value];
3081 *e++ = '=';
3082 *e++ = '=';
3083 break;
3084 }
3085
3086 if (multibyte)
3087 {
3088 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3089 if (CHAR_BYTE8_P (c))
3090 c = CHAR_TO_BYTE8 (c);
3091 else if (c >= 256)
3092 return -1;
3093 i += bytes;
3094 }
3095 else
3096 c = from[i++];
3097
3098 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3099 value = (0x0f & c) << 2;
3100
3101 /* Process third byte of a triplet. */
3102
3103 if (i == length)
3104 {
3105 *e++ = base64_value_to_char[value];
3106 *e++ = '=';
3107 break;
3108 }
3109
3110 if (multibyte)
3111 {
3112 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3113 if (CHAR_BYTE8_P (c))
3114 c = CHAR_TO_BYTE8 (c);
3115 else if (c >= 256)
3116 return -1;
3117 i += bytes;
3118 }
3119 else
3120 c = from[i++];
3121
3122 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3123 *e++ = base64_value_to_char[0x3f & c];
3124 }
3125
3126 return e - to;
3127 }
3128
3129
3130 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3131 2, 2, "r",
3132 doc: /* Base64-decode the region between BEG and END.
3133 Return the length of the decoded text.
3134 If the region can't be decoded, signal an error and don't modify the buffer. */)
3135 (Lisp_Object beg, Lisp_Object end)
3136 {
3137 ptrdiff_t ibeg, iend, length, allength;
3138 char *decoded;
3139 ptrdiff_t old_pos = PT;
3140 ptrdiff_t decoded_length;
3141 ptrdiff_t inserted_chars;
3142 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3143 USE_SAFE_ALLOCA;
3144
3145 validate_region (&beg, &end);
3146
3147 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3148 iend = CHAR_TO_BYTE (XFASTINT (end));
3149
3150 length = iend - ibeg;
3151
3152 /* We need to allocate enough room for decoding the text. If we are
3153 working on a multibyte buffer, each decoded code may occupy at
3154 most two bytes. */
3155 allength = multibyte ? length * 2 : length;
3156 decoded = SAFE_ALLOCA (allength);
3157
3158 move_gap_both (XFASTINT (beg), ibeg);
3159 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3160 decoded, length,
3161 multibyte, &inserted_chars);
3162 if (decoded_length > allength)
3163 emacs_abort ();
3164
3165 if (decoded_length < 0)
3166 {
3167 /* The decoding wasn't possible. */
3168 SAFE_FREE ();
3169 error ("Invalid base64 data");
3170 }
3171
3172 /* Now we have decoded the region, so we insert the new contents
3173 and delete the old. (Insert first in order to preserve markers.) */
3174 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3175 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3176 SAFE_FREE ();
3177
3178 /* Delete the original text. */
3179 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3180 iend + decoded_length, 1);
3181
3182 /* If point was outside of the region, restore it exactly; else just
3183 move to the beginning of the region. */
3184 if (old_pos >= XFASTINT (end))
3185 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3186 else if (old_pos > XFASTINT (beg))
3187 old_pos = XFASTINT (beg);
3188 SET_PT (old_pos > ZV ? ZV : old_pos);
3189
3190 return make_number (inserted_chars);
3191 }
3192
3193 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3194 1, 1, 0,
3195 doc: /* Base64-decode STRING and return the result. */)
3196 (Lisp_Object string)
3197 {
3198 char *decoded;
3199 ptrdiff_t length, decoded_length;
3200 Lisp_Object decoded_string;
3201 USE_SAFE_ALLOCA;
3202
3203 CHECK_STRING (string);
3204
3205 length = SBYTES (string);
3206 /* We need to allocate enough room for decoding the text. */
3207 decoded = SAFE_ALLOCA (length);
3208
3209 /* The decoded result should be unibyte. */
3210 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3211 0, NULL);
3212 if (decoded_length > length)
3213 emacs_abort ();
3214 else if (decoded_length >= 0)
3215 decoded_string = make_unibyte_string (decoded, decoded_length);
3216 else
3217 decoded_string = Qnil;
3218
3219 SAFE_FREE ();
3220 if (!STRINGP (decoded_string))
3221 error ("Invalid base64 data");
3222
3223 return decoded_string;
3224 }
3225
3226 /* Base64-decode the data at FROM of LENGTH bytes into TO. If
3227 MULTIBYTE, the decoded result should be in multibyte
3228 form. If NCHARS_RETURN is not NULL, store the number of produced
3229 characters in *NCHARS_RETURN. */
3230
3231 static ptrdiff_t
3232 base64_decode_1 (const char *from, char *to, ptrdiff_t length,
3233 bool multibyte, ptrdiff_t *nchars_return)
3234 {
3235 ptrdiff_t i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3236 char *e = to;
3237 unsigned char c;
3238 unsigned long value;
3239 ptrdiff_t nchars = 0;
3240
3241 while (1)
3242 {
3243 /* Process first byte of a quadruplet. */
3244
3245 READ_QUADRUPLET_BYTE (e-to);
3246
3247 if (!IS_BASE64 (c))
3248 return -1;
3249 value = base64_char_to_value[c] << 18;
3250
3251 /* Process second byte of a quadruplet. */
3252
3253 READ_QUADRUPLET_BYTE (-1);
3254
3255 if (!IS_BASE64 (c))
3256 return -1;
3257 value |= base64_char_to_value[c] << 12;
3258
3259 c = (unsigned char) (value >> 16);
3260 if (multibyte && c >= 128)
3261 e += BYTE8_STRING (c, e);
3262 else
3263 *e++ = c;
3264 nchars++;
3265
3266 /* Process third byte of a quadruplet. */
3267
3268 READ_QUADRUPLET_BYTE (-1);
3269
3270 if (c == '=')
3271 {
3272 READ_QUADRUPLET_BYTE (-1);
3273
3274 if (c != '=')
3275 return -1;
3276 continue;
3277 }
3278
3279 if (!IS_BASE64 (c))
3280 return -1;
3281 value |= base64_char_to_value[c] << 6;
3282
3283 c = (unsigned char) (0xff & value >> 8);
3284 if (multibyte && c >= 128)
3285 e += BYTE8_STRING (c, e);
3286 else
3287 *e++ = c;
3288 nchars++;
3289
3290 /* Process fourth byte of a quadruplet. */
3291
3292 READ_QUADRUPLET_BYTE (-1);
3293
3294 if (c == '=')
3295 continue;
3296
3297 if (!IS_BASE64 (c))
3298 return -1;
3299 value |= base64_char_to_value[c];
3300
3301 c = (unsigned char) (0xff & value);
3302 if (multibyte && c >= 128)
3303 e += BYTE8_STRING (c, e);
3304 else
3305 *e++ = c;
3306 nchars++;
3307 }
3308 }
3309
3310
3311 \f
3312 /***********************************************************************
3313 ***** *****
3314 ***** Hash Tables *****
3315 ***** *****
3316 ***********************************************************************/
3317
3318 /* Implemented by gerd@gnu.org. This hash table implementation was
3319 inspired by CMUCL hash tables. */
3320
3321 /* Ideas:
3322
3323 1. For small tables, association lists are probably faster than
3324 hash tables because they have lower overhead.
3325
3326 For uses of hash tables where the O(1) behavior of table
3327 operations is not a requirement, it might therefore be a good idea
3328 not to hash. Instead, we could just do a linear search in the
3329 key_and_value vector of the hash table. This could be done
3330 if a `:linear-search t' argument is given to make-hash-table. */
3331
3332
3333 /* The list of all weak hash tables. Don't staticpro this one. */
3334
3335 static struct Lisp_Hash_Table *weak_hash_tables;
3336
3337 /* Various symbols. */
3338
3339 static Lisp_Object Qhash_table_p, Qkey, Qvalue, Qeql;
3340 Lisp_Object Qeq, Qequal;
3341 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3342 static Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3343
3344 \f
3345 /***********************************************************************
3346 Utilities
3347 ***********************************************************************/
3348
3349 /* If OBJ is a Lisp hash table, return a pointer to its struct
3350 Lisp_Hash_Table. Otherwise, signal an error. */
3351
3352 static struct Lisp_Hash_Table *
3353 check_hash_table (Lisp_Object obj)
3354 {
3355 CHECK_HASH_TABLE (obj);
3356 return XHASH_TABLE (obj);
3357 }
3358
3359
3360 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3361 number. A number is "almost" a prime number if it is not divisible
3362 by any integer in the range 2 .. (NEXT_ALMOST_PRIME_LIMIT - 1). */
3363
3364 EMACS_INT
3365 next_almost_prime (EMACS_INT n)
3366 {
3367 verify (NEXT_ALMOST_PRIME_LIMIT == 11);
3368 for (n |= 1; ; n += 2)
3369 if (n % 3 != 0 && n % 5 != 0 && n % 7 != 0)
3370 return n;
3371 }
3372
3373
3374 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3375 which USED[I] is non-zero. If found at index I in ARGS, set
3376 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3377 0. This function is used to extract a keyword/argument pair from
3378 a DEFUN parameter list. */
3379
3380 static ptrdiff_t
3381 get_key_arg (Lisp_Object key, ptrdiff_t nargs, Lisp_Object *args, char *used)
3382 {
3383 ptrdiff_t i;
3384
3385 for (i = 1; i < nargs; i++)
3386 if (!used[i - 1] && EQ (args[i - 1], key))
3387 {
3388 used[i - 1] = 1;
3389 used[i] = 1;
3390 return i;
3391 }
3392
3393 return 0;
3394 }
3395
3396
3397 /* Return a Lisp vector which has the same contents as VEC but has
3398 at least INCR_MIN more entries, where INCR_MIN is positive.
3399 If NITEMS_MAX is not -1, do not grow the vector to be any larger
3400 than NITEMS_MAX. Entries in the resulting
3401 vector that are not copied from VEC are set to nil. */
3402
3403 Lisp_Object
3404 larger_vector (Lisp_Object vec, ptrdiff_t incr_min, ptrdiff_t nitems_max)
3405 {
3406 struct Lisp_Vector *v;
3407 ptrdiff_t i, incr, incr_max, old_size, new_size;
3408 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / sizeof *v->contents;
3409 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
3410 ? nitems_max : C_language_max);
3411 eassert (VECTORP (vec));
3412 eassert (incr_min > 0 && nitems_max >= -1);
3413 old_size = ASIZE (vec);
3414 incr_max = n_max - old_size;
3415 incr = max (incr_min, min (old_size >> 1, incr_max));
3416 if (incr_max < incr)
3417 memory_full (SIZE_MAX);
3418 new_size = old_size + incr;
3419 v = allocate_vector (new_size);
3420 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3421 for (i = old_size; i < new_size; ++i)
3422 v->contents[i] = Qnil;
3423 XSETVECTOR (vec, v);
3424 return vec;
3425 }
3426
3427
3428 /***********************************************************************
3429 Low-level Functions
3430 ***********************************************************************/
3431
3432 static struct hash_table_test hashtest_eq;
3433 struct hash_table_test hashtest_eql, hashtest_equal;
3434
3435 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3436 HASH2 in hash table H using `eql'. Value is true if KEY1 and
3437 KEY2 are the same. */
3438
3439 static bool
3440 cmpfn_eql (struct hash_table_test *ht,
3441 Lisp_Object key1,
3442 Lisp_Object key2)
3443 {
3444 return (FLOATP (key1)
3445 && FLOATP (key2)
3446 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3447 }
3448
3449
3450 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3451 HASH2 in hash table H using `equal'. Value is true if KEY1 and
3452 KEY2 are the same. */
3453
3454 static bool
3455 cmpfn_equal (struct hash_table_test *ht,
3456 Lisp_Object key1,
3457 Lisp_Object key2)
3458 {
3459 return !NILP (Fequal (key1, key2));
3460 }
3461
3462
3463 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3464 HASH2 in hash table H using H->user_cmp_function. Value is true
3465 if KEY1 and KEY2 are the same. */
3466
3467 static bool
3468 cmpfn_user_defined (struct hash_table_test *ht,
3469 Lisp_Object key1,
3470 Lisp_Object key2)
3471 {
3472 Lisp_Object args[3];
3473
3474 args[0] = ht->user_cmp_function;
3475 args[1] = key1;
3476 args[2] = key2;
3477 return !NILP (Ffuncall (3, args));
3478 }
3479
3480
3481 /* Value is a hash code for KEY for use in hash table H which uses
3482 `eq' to compare keys. The hash code returned is guaranteed to fit
3483 in a Lisp integer. */
3484
3485 static EMACS_UINT
3486 hashfn_eq (struct hash_table_test *ht, Lisp_Object key)
3487 {
3488 EMACS_UINT hash = XHASH (key) ^ XTYPE (key);
3489 return hash;
3490 }
3491
3492 /* Value is a hash code for KEY for use in hash table H which uses
3493 `eql' to compare keys. The hash code returned is guaranteed to fit
3494 in a Lisp integer. */
3495
3496 static EMACS_UINT
3497 hashfn_eql (struct hash_table_test *ht, Lisp_Object key)
3498 {
3499 EMACS_UINT hash;
3500 if (FLOATP (key))
3501 hash = sxhash (key, 0);
3502 else
3503 hash = XHASH (key) ^ XTYPE (key);
3504 return hash;
3505 }
3506
3507 /* Value is a hash code for KEY for use in hash table H which uses
3508 `equal' to compare keys. The hash code returned is guaranteed to fit
3509 in a Lisp integer. */
3510
3511 static EMACS_UINT
3512 hashfn_equal (struct hash_table_test *ht, Lisp_Object key)
3513 {
3514 EMACS_UINT hash = sxhash (key, 0);
3515 return hash;
3516 }
3517
3518 /* Value is a hash code for KEY for use in hash table H which uses as
3519 user-defined function to compare keys. The hash code returned is
3520 guaranteed to fit in a Lisp integer. */
3521
3522 static EMACS_UINT
3523 hashfn_user_defined (struct hash_table_test *ht, Lisp_Object key)
3524 {
3525 Lisp_Object args[2], hash;
3526
3527 args[0] = ht->user_hash_function;
3528 args[1] = key;
3529 hash = Ffuncall (2, args);
3530 if (!INTEGERP (hash))
3531 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3532 return XUINT (hash);
3533 }
3534
3535 /* An upper bound on the size of a hash table index. It must fit in
3536 ptrdiff_t and be a valid Emacs fixnum. */
3537 #define INDEX_SIZE_BOUND \
3538 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, PTRDIFF_MAX / word_size))
3539
3540 /* Create and initialize a new hash table.
3541
3542 TEST specifies the test the hash table will use to compare keys.
3543 It must be either one of the predefined tests `eq', `eql' or
3544 `equal' or a symbol denoting a user-defined test named TEST with
3545 test and hash functions USER_TEST and USER_HASH.
3546
3547 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3548
3549 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3550 new size when it becomes full is computed by adding REHASH_SIZE to
3551 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3552 table's new size is computed by multiplying its old size with
3553 REHASH_SIZE.
3554
3555 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3556 be resized when the ratio of (number of entries in the table) /
3557 (table size) is >= REHASH_THRESHOLD.
3558
3559 WEAK specifies the weakness of the table. If non-nil, it must be
3560 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3561
3562 Lisp_Object
3563 make_hash_table (struct hash_table_test test,
3564 Lisp_Object size, Lisp_Object rehash_size,
3565 Lisp_Object rehash_threshold, Lisp_Object weak)
3566 {
3567 struct Lisp_Hash_Table *h;
3568 Lisp_Object table;
3569 EMACS_INT index_size, sz;
3570 ptrdiff_t i;
3571 double index_float;
3572
3573 /* Preconditions. */
3574 eassert (SYMBOLP (test.name));
3575 eassert (INTEGERP (size) && XINT (size) >= 0);
3576 eassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3577 || (FLOATP (rehash_size) && XFLOAT_DATA (rehash_size) > 1));
3578 eassert (FLOATP (rehash_threshold)
3579 && XFLOAT_DATA (rehash_threshold) > 0
3580 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3581
3582 if (XFASTINT (size) == 0)
3583 size = make_number (1);
3584
3585 sz = XFASTINT (size);
3586 index_float = sz / XFLOAT_DATA (rehash_threshold);
3587 index_size = (index_float < INDEX_SIZE_BOUND + 1
3588 ? next_almost_prime (index_float)
3589 : INDEX_SIZE_BOUND + 1);
3590 if (INDEX_SIZE_BOUND < max (index_size, 2 * sz))
3591 error ("Hash table too large");
3592
3593 /* Allocate a table and initialize it. */
3594 h = allocate_hash_table ();
3595
3596 /* Initialize hash table slots. */
3597 h->test = test;
3598 h->weak = weak;
3599 h->rehash_threshold = rehash_threshold;
3600 h->rehash_size = rehash_size;
3601 h->count = 0;
3602 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3603 h->hash = Fmake_vector (size, Qnil);
3604 h->next = Fmake_vector (size, Qnil);
3605 h->index = Fmake_vector (make_number (index_size), Qnil);
3606
3607 /* Set up the free list. */
3608 for (i = 0; i < sz - 1; ++i)
3609 set_hash_next_slot (h, i, make_number (i + 1));
3610 h->next_free = make_number (0);
3611
3612 XSET_HASH_TABLE (table, h);
3613 eassert (HASH_TABLE_P (table));
3614 eassert (XHASH_TABLE (table) == h);
3615
3616 /* Maybe add this hash table to the list of all weak hash tables. */
3617 if (NILP (h->weak))
3618 h->next_weak = NULL;
3619 else
3620 {
3621 h->next_weak = weak_hash_tables;
3622 weak_hash_tables = h;
3623 }
3624
3625 return table;
3626 }
3627
3628
3629 /* Return a copy of hash table H1. Keys and values are not copied,
3630 only the table itself is. */
3631
3632 static Lisp_Object
3633 copy_hash_table (struct Lisp_Hash_Table *h1)
3634 {
3635 Lisp_Object table;
3636 struct Lisp_Hash_Table *h2;
3637
3638 h2 = allocate_hash_table ();
3639 *h2 = *h1;
3640 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3641 h2->hash = Fcopy_sequence (h1->hash);
3642 h2->next = Fcopy_sequence (h1->next);
3643 h2->index = Fcopy_sequence (h1->index);
3644 XSET_HASH_TABLE (table, h2);
3645
3646 /* Maybe add this hash table to the list of all weak hash tables. */
3647 if (!NILP (h2->weak))
3648 {
3649 h2->next_weak = weak_hash_tables;
3650 weak_hash_tables = h2;
3651 }
3652
3653 return table;
3654 }
3655
3656
3657 /* Resize hash table H if it's too full. If H cannot be resized
3658 because it's already too large, throw an error. */
3659
3660 static void
3661 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3662 {
3663 if (NILP (h->next_free))
3664 {
3665 ptrdiff_t old_size = HASH_TABLE_SIZE (h);
3666 EMACS_INT new_size, index_size, nsize;
3667 ptrdiff_t i;
3668 double index_float;
3669
3670 if (INTEGERP (h->rehash_size))
3671 new_size = old_size + XFASTINT (h->rehash_size);
3672 else
3673 {
3674 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3675 if (float_new_size < INDEX_SIZE_BOUND + 1)
3676 {
3677 new_size = float_new_size;
3678 if (new_size <= old_size)
3679 new_size = old_size + 1;
3680 }
3681 else
3682 new_size = INDEX_SIZE_BOUND + 1;
3683 }
3684 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3685 index_size = (index_float < INDEX_SIZE_BOUND + 1
3686 ? next_almost_prime (index_float)
3687 : INDEX_SIZE_BOUND + 1);
3688 nsize = max (index_size, 2 * new_size);
3689 if (INDEX_SIZE_BOUND < nsize)
3690 error ("Hash table too large to resize");
3691
3692 #ifdef ENABLE_CHECKING
3693 if (HASH_TABLE_P (Vpurify_flag)
3694 && XHASH_TABLE (Vpurify_flag) == h)
3695 {
3696 Lisp_Object args[2];
3697 args[0] = build_string ("Growing hash table to: %d");
3698 args[1] = make_number (new_size);
3699 Fmessage (2, args);
3700 }
3701 #endif
3702
3703 set_hash_key_and_value (h, larger_vector (h->key_and_value,
3704 2 * (new_size - old_size), -1));
3705 set_hash_next (h, larger_vector (h->next, new_size - old_size, -1));
3706 set_hash_hash (h, larger_vector (h->hash, new_size - old_size, -1));
3707 set_hash_index (h, Fmake_vector (make_number (index_size), Qnil));
3708
3709 /* Update the free list. Do it so that new entries are added at
3710 the end of the free list. This makes some operations like
3711 maphash faster. */
3712 for (i = old_size; i < new_size - 1; ++i)
3713 set_hash_next_slot (h, i, make_number (i + 1));
3714
3715 if (!NILP (h->next_free))
3716 {
3717 Lisp_Object last, next;
3718
3719 last = h->next_free;
3720 while (next = HASH_NEXT (h, XFASTINT (last)),
3721 !NILP (next))
3722 last = next;
3723
3724 set_hash_next_slot (h, XFASTINT (last), make_number (old_size));
3725 }
3726 else
3727 XSETFASTINT (h->next_free, old_size);
3728
3729 /* Rehash. */
3730 for (i = 0; i < old_size; ++i)
3731 if (!NILP (HASH_HASH (h, i)))
3732 {
3733 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3734 ptrdiff_t start_of_bucket = hash_code % ASIZE (h->index);
3735 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3736 set_hash_index_slot (h, start_of_bucket, make_number (i));
3737 }
3738 }
3739 }
3740
3741
3742 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3743 the hash code of KEY. Value is the index of the entry in H
3744 matching KEY, or -1 if not found. */
3745
3746 ptrdiff_t
3747 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3748 {
3749 EMACS_UINT hash_code;
3750 ptrdiff_t start_of_bucket;
3751 Lisp_Object idx;
3752
3753 hash_code = h->test.hashfn (&h->test, key);
3754 eassert ((hash_code & ~INTMASK) == 0);
3755 if (hash)
3756 *hash = hash_code;
3757
3758 start_of_bucket = hash_code % ASIZE (h->index);
3759 idx = HASH_INDEX (h, start_of_bucket);
3760
3761 /* We need not gcpro idx since it's either an integer or nil. */
3762 while (!NILP (idx))
3763 {
3764 ptrdiff_t i = XFASTINT (idx);
3765 if (EQ (key, HASH_KEY (h, i))
3766 || (h->test.cmpfn
3767 && hash_code == XUINT (HASH_HASH (h, i))
3768 && h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
3769 break;
3770 idx = HASH_NEXT (h, i);
3771 }
3772
3773 return NILP (idx) ? -1 : XFASTINT (idx);
3774 }
3775
3776
3777 /* Put an entry into hash table H that associates KEY with VALUE.
3778 HASH is a previously computed hash code of KEY.
3779 Value is the index of the entry in H matching KEY. */
3780
3781 ptrdiff_t
3782 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
3783 EMACS_UINT hash)
3784 {
3785 ptrdiff_t start_of_bucket, i;
3786
3787 eassert ((hash & ~INTMASK) == 0);
3788
3789 /* Increment count after resizing because resizing may fail. */
3790 maybe_resize_hash_table (h);
3791 h->count++;
3792
3793 /* Store key/value in the key_and_value vector. */
3794 i = XFASTINT (h->next_free);
3795 h->next_free = HASH_NEXT (h, i);
3796 set_hash_key_slot (h, i, key);
3797 set_hash_value_slot (h, i, value);
3798
3799 /* Remember its hash code. */
3800 set_hash_hash_slot (h, i, make_number (hash));
3801
3802 /* Add new entry to its collision chain. */
3803 start_of_bucket = hash % ASIZE (h->index);
3804 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3805 set_hash_index_slot (h, start_of_bucket, make_number (i));
3806 return i;
3807 }
3808
3809
3810 /* Remove the entry matching KEY from hash table H, if there is one. */
3811
3812 static void
3813 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3814 {
3815 EMACS_UINT hash_code;
3816 ptrdiff_t start_of_bucket;
3817 Lisp_Object idx, prev;
3818
3819 hash_code = h->test.hashfn (&h->test, key);
3820 eassert ((hash_code & ~INTMASK) == 0);
3821 start_of_bucket = hash_code % ASIZE (h->index);
3822 idx = HASH_INDEX (h, start_of_bucket);
3823 prev = Qnil;
3824
3825 /* We need not gcpro idx, prev since they're either integers or nil. */
3826 while (!NILP (idx))
3827 {
3828 ptrdiff_t i = XFASTINT (idx);
3829
3830 if (EQ (key, HASH_KEY (h, i))
3831 || (h->test.cmpfn
3832 && hash_code == XUINT (HASH_HASH (h, i))
3833 && h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
3834 {
3835 /* Take entry out of collision chain. */
3836 if (NILP (prev))
3837 set_hash_index_slot (h, start_of_bucket, HASH_NEXT (h, i));
3838 else
3839 set_hash_next_slot (h, XFASTINT (prev), HASH_NEXT (h, i));
3840
3841 /* Clear slots in key_and_value and add the slots to
3842 the free list. */
3843 set_hash_key_slot (h, i, Qnil);
3844 set_hash_value_slot (h, i, Qnil);
3845 set_hash_hash_slot (h, i, Qnil);
3846 set_hash_next_slot (h, i, h->next_free);
3847 h->next_free = make_number (i);
3848 h->count--;
3849 eassert (h->count >= 0);
3850 break;
3851 }
3852 else
3853 {
3854 prev = idx;
3855 idx = HASH_NEXT (h, i);
3856 }
3857 }
3858 }
3859
3860
3861 /* Clear hash table H. */
3862
3863 static void
3864 hash_clear (struct Lisp_Hash_Table *h)
3865 {
3866 if (h->count > 0)
3867 {
3868 ptrdiff_t i, size = HASH_TABLE_SIZE (h);
3869
3870 for (i = 0; i < size; ++i)
3871 {
3872 set_hash_next_slot (h, i, i < size - 1 ? make_number (i + 1) : Qnil);
3873 set_hash_key_slot (h, i, Qnil);
3874 set_hash_value_slot (h, i, Qnil);
3875 set_hash_hash_slot (h, i, Qnil);
3876 }
3877
3878 for (i = 0; i < ASIZE (h->index); ++i)
3879 ASET (h->index, i, Qnil);
3880
3881 h->next_free = make_number (0);
3882 h->count = 0;
3883 }
3884 }
3885
3886
3887 \f
3888 /************************************************************************
3889 Weak Hash Tables
3890 ************************************************************************/
3891
3892 /* Sweep weak hash table H. REMOVE_ENTRIES_P means remove
3893 entries from the table that don't survive the current GC.
3894 !REMOVE_ENTRIES_P means mark entries that are in use. Value is
3895 true if anything was marked. */
3896
3897 static bool
3898 sweep_weak_table (struct Lisp_Hash_Table *h, bool remove_entries_p)
3899 {
3900 ptrdiff_t bucket, n;
3901 bool marked;
3902
3903 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3904 marked = 0;
3905
3906 for (bucket = 0; bucket < n; ++bucket)
3907 {
3908 Lisp_Object idx, next, prev;
3909
3910 /* Follow collision chain, removing entries that
3911 don't survive this garbage collection. */
3912 prev = Qnil;
3913 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3914 {
3915 ptrdiff_t i = XFASTINT (idx);
3916 bool key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3917 bool value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3918 bool remove_p;
3919
3920 if (EQ (h->weak, Qkey))
3921 remove_p = !key_known_to_survive_p;
3922 else if (EQ (h->weak, Qvalue))
3923 remove_p = !value_known_to_survive_p;
3924 else if (EQ (h->weak, Qkey_or_value))
3925 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3926 else if (EQ (h->weak, Qkey_and_value))
3927 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3928 else
3929 emacs_abort ();
3930
3931 next = HASH_NEXT (h, i);
3932
3933 if (remove_entries_p)
3934 {
3935 if (remove_p)
3936 {
3937 /* Take out of collision chain. */
3938 if (NILP (prev))
3939 set_hash_index_slot (h, bucket, next);
3940 else
3941 set_hash_next_slot (h, XFASTINT (prev), next);
3942
3943 /* Add to free list. */
3944 set_hash_next_slot (h, i, h->next_free);
3945 h->next_free = idx;
3946
3947 /* Clear key, value, and hash. */
3948 set_hash_key_slot (h, i, Qnil);
3949 set_hash_value_slot (h, i, Qnil);
3950 set_hash_hash_slot (h, i, Qnil);
3951
3952 h->count--;
3953 }
3954 else
3955 {
3956 prev = idx;
3957 }
3958 }
3959 else
3960 {
3961 if (!remove_p)
3962 {
3963 /* Make sure key and value survive. */
3964 if (!key_known_to_survive_p)
3965 {
3966 mark_object (HASH_KEY (h, i));
3967 marked = 1;
3968 }
3969
3970 if (!value_known_to_survive_p)
3971 {
3972 mark_object (HASH_VALUE (h, i));
3973 marked = 1;
3974 }
3975 }
3976 }
3977 }
3978 }
3979
3980 return marked;
3981 }
3982
3983 /* Remove elements from weak hash tables that don't survive the
3984 current garbage collection. Remove weak tables that don't survive
3985 from Vweak_hash_tables. Called from gc_sweep. */
3986
3987 void
3988 sweep_weak_hash_tables (void)
3989 {
3990 struct Lisp_Hash_Table *h, *used, *next;
3991 bool marked;
3992
3993 /* Mark all keys and values that are in use. Keep on marking until
3994 there is no more change. This is necessary for cases like
3995 value-weak table A containing an entry X -> Y, where Y is used in a
3996 key-weak table B, Z -> Y. If B comes after A in the list of weak
3997 tables, X -> Y might be removed from A, although when looking at B
3998 one finds that it shouldn't. */
3999 do
4000 {
4001 marked = 0;
4002 for (h = weak_hash_tables; h; h = h->next_weak)
4003 {
4004 if (h->header.size & ARRAY_MARK_FLAG)
4005 marked |= sweep_weak_table (h, 0);
4006 }
4007 }
4008 while (marked);
4009
4010 /* Remove tables and entries that aren't used. */
4011 for (h = weak_hash_tables, used = NULL; h; h = next)
4012 {
4013 next = h->next_weak;
4014
4015 if (h->header.size & ARRAY_MARK_FLAG)
4016 {
4017 /* TABLE is marked as used. Sweep its contents. */
4018 if (h->count > 0)
4019 sweep_weak_table (h, 1);
4020
4021 /* Add table to the list of used weak hash tables. */
4022 h->next_weak = used;
4023 used = h;
4024 }
4025 }
4026
4027 weak_hash_tables = used;
4028 }
4029
4030
4031 \f
4032 /***********************************************************************
4033 Hash Code Computation
4034 ***********************************************************************/
4035
4036 /* Maximum depth up to which to dive into Lisp structures. */
4037
4038 #define SXHASH_MAX_DEPTH 3
4039
4040 /* Maximum length up to which to take list and vector elements into
4041 account. */
4042
4043 #define SXHASH_MAX_LEN 7
4044
4045 /* Return a hash for string PTR which has length LEN. The hash value
4046 can be any EMACS_UINT value. */
4047
4048 EMACS_UINT
4049 hash_string (char const *ptr, ptrdiff_t len)
4050 {
4051 char const *p = ptr;
4052 char const *end = p + len;
4053 unsigned char c;
4054 EMACS_UINT hash = 0;
4055
4056 while (p != end)
4057 {
4058 c = *p++;
4059 hash = sxhash_combine (hash, c);
4060 }
4061
4062 return hash;
4063 }
4064
4065 /* Return a hash for string PTR which has length LEN. The hash
4066 code returned is guaranteed to fit in a Lisp integer. */
4067
4068 static EMACS_UINT
4069 sxhash_string (char const *ptr, ptrdiff_t len)
4070 {
4071 EMACS_UINT hash = hash_string (ptr, len);
4072 return SXHASH_REDUCE (hash);
4073 }
4074
4075 /* Return a hash for the floating point value VAL. */
4076
4077 static EMACS_UINT
4078 sxhash_float (double val)
4079 {
4080 EMACS_UINT hash = 0;
4081 enum {
4082 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
4083 + (sizeof val % sizeof hash != 0))
4084 };
4085 union {
4086 double val;
4087 EMACS_UINT word[WORDS_PER_DOUBLE];
4088 } u;
4089 int i;
4090 u.val = val;
4091 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
4092 for (i = 0; i < WORDS_PER_DOUBLE; i++)
4093 hash = sxhash_combine (hash, u.word[i]);
4094 return SXHASH_REDUCE (hash);
4095 }
4096
4097 /* Return a hash for list LIST. DEPTH is the current depth in the
4098 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4099
4100 static EMACS_UINT
4101 sxhash_list (Lisp_Object list, int depth)
4102 {
4103 EMACS_UINT hash = 0;
4104 int i;
4105
4106 if (depth < SXHASH_MAX_DEPTH)
4107 for (i = 0;
4108 CONSP (list) && i < SXHASH_MAX_LEN;
4109 list = XCDR (list), ++i)
4110 {
4111 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
4112 hash = sxhash_combine (hash, hash2);
4113 }
4114
4115 if (!NILP (list))
4116 {
4117 EMACS_UINT hash2 = sxhash (list, depth + 1);
4118 hash = sxhash_combine (hash, hash2);
4119 }
4120
4121 return SXHASH_REDUCE (hash);
4122 }
4123
4124
4125 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4126 the Lisp structure. */
4127
4128 static EMACS_UINT
4129 sxhash_vector (Lisp_Object vec, int depth)
4130 {
4131 EMACS_UINT hash = ASIZE (vec);
4132 int i, n;
4133
4134 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4135 for (i = 0; i < n; ++i)
4136 {
4137 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4138 hash = sxhash_combine (hash, hash2);
4139 }
4140
4141 return SXHASH_REDUCE (hash);
4142 }
4143
4144 /* Return a hash for bool-vector VECTOR. */
4145
4146 static EMACS_UINT
4147 sxhash_bool_vector (Lisp_Object vec)
4148 {
4149 EMACS_UINT hash = XBOOL_VECTOR (vec)->size;
4150 int i, n;
4151
4152 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->header.size);
4153 for (i = 0; i < n; ++i)
4154 hash = sxhash_combine (hash, XBOOL_VECTOR (vec)->data[i]);
4155
4156 return SXHASH_REDUCE (hash);
4157 }
4158
4159
4160 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4161 structure. Value is an unsigned integer clipped to INTMASK. */
4162
4163 EMACS_UINT
4164 sxhash (Lisp_Object obj, int depth)
4165 {
4166 EMACS_UINT hash;
4167
4168 if (depth > SXHASH_MAX_DEPTH)
4169 return 0;
4170
4171 switch (XTYPE (obj))
4172 {
4173 case_Lisp_Int:
4174 hash = XUINT (obj);
4175 break;
4176
4177 case Lisp_Misc:
4178 hash = XHASH (obj);
4179 break;
4180
4181 case Lisp_Symbol:
4182 obj = SYMBOL_NAME (obj);
4183 /* Fall through. */
4184
4185 case Lisp_String:
4186 hash = sxhash_string (SSDATA (obj), SBYTES (obj));
4187 break;
4188
4189 /* This can be everything from a vector to an overlay. */
4190 case Lisp_Vectorlike:
4191 if (VECTORP (obj))
4192 /* According to the CL HyperSpec, two arrays are equal only if
4193 they are `eq', except for strings and bit-vectors. In
4194 Emacs, this works differently. We have to compare element
4195 by element. */
4196 hash = sxhash_vector (obj, depth);
4197 else if (BOOL_VECTOR_P (obj))
4198 hash = sxhash_bool_vector (obj);
4199 else
4200 /* Others are `equal' if they are `eq', so let's take their
4201 address as hash. */
4202 hash = XHASH (obj);
4203 break;
4204
4205 case Lisp_Cons:
4206 hash = sxhash_list (obj, depth);
4207 break;
4208
4209 case Lisp_Float:
4210 hash = sxhash_float (XFLOAT_DATA (obj));
4211 break;
4212
4213 default:
4214 emacs_abort ();
4215 }
4216
4217 return hash;
4218 }
4219
4220
4221 \f
4222 /***********************************************************************
4223 Lisp Interface
4224 ***********************************************************************/
4225
4226
4227 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4228 doc: /* Compute a hash code for OBJ and return it as integer. */)
4229 (Lisp_Object obj)
4230 {
4231 EMACS_UINT hash = sxhash (obj, 0);
4232 return make_number (hash);
4233 }
4234
4235
4236 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4237 doc: /* Create and return a new hash table.
4238
4239 Arguments are specified as keyword/argument pairs. The following
4240 arguments are defined:
4241
4242 :test TEST -- TEST must be a symbol that specifies how to compare
4243 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4244 `equal'. User-supplied test and hash functions can be specified via
4245 `define-hash-table-test'.
4246
4247 :size SIZE -- A hint as to how many elements will be put in the table.
4248 Default is 65.
4249
4250 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4251 fills up. If REHASH-SIZE is an integer, increase the size by that
4252 amount. If it is a float, it must be > 1.0, and the new size is the
4253 old size multiplied by that factor. Default is 1.5.
4254
4255 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4256 Resize the hash table when the ratio (number of entries / table size)
4257 is greater than or equal to THRESHOLD. Default is 0.8.
4258
4259 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4260 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4261 returned is a weak table. Key/value pairs are removed from a weak
4262 hash table when there are no non-weak references pointing to their
4263 key, value, one of key or value, or both key and value, depending on
4264 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4265 is nil.
4266
4267 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4268 (ptrdiff_t nargs, Lisp_Object *args)
4269 {
4270 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4271 struct hash_table_test testdesc;
4272 char *used;
4273 ptrdiff_t i;
4274
4275 /* The vector `used' is used to keep track of arguments that
4276 have been consumed. */
4277 used = alloca (nargs * sizeof *used);
4278 memset (used, 0, nargs * sizeof *used);
4279
4280 /* See if there's a `:test TEST' among the arguments. */
4281 i = get_key_arg (QCtest, nargs, args, used);
4282 test = i ? args[i] : Qeql;
4283 if (EQ (test, Qeq))
4284 testdesc = hashtest_eq;
4285 else if (EQ (test, Qeql))
4286 testdesc = hashtest_eql;
4287 else if (EQ (test, Qequal))
4288 testdesc = hashtest_equal;
4289 else
4290 {
4291 /* See if it is a user-defined test. */
4292 Lisp_Object prop;
4293
4294 prop = Fget (test, Qhash_table_test);
4295 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4296 signal_error ("Invalid hash table test", test);
4297 testdesc.name = test;
4298 testdesc.user_cmp_function = XCAR (prop);
4299 testdesc.user_hash_function = XCAR (XCDR (prop));
4300 testdesc.hashfn = hashfn_user_defined;
4301 testdesc.cmpfn = cmpfn_user_defined;
4302 }
4303
4304 /* See if there's a `:size SIZE' argument. */
4305 i = get_key_arg (QCsize, nargs, args, used);
4306 size = i ? args[i] : Qnil;
4307 if (NILP (size))
4308 size = make_number (DEFAULT_HASH_SIZE);
4309 else if (!INTEGERP (size) || XINT (size) < 0)
4310 signal_error ("Invalid hash table size", size);
4311
4312 /* Look for `:rehash-size SIZE'. */
4313 i = get_key_arg (QCrehash_size, nargs, args, used);
4314 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4315 if (! ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
4316 || (FLOATP (rehash_size) && XFLOAT_DATA (rehash_size) > 1)))
4317 signal_error ("Invalid hash table rehash size", rehash_size);
4318
4319 /* Look for `:rehash-threshold THRESHOLD'. */
4320 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4321 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4322 if (! (FLOATP (rehash_threshold)
4323 && XFLOAT_DATA (rehash_threshold) > 0
4324 && XFLOAT_DATA (rehash_threshold) <= 1))
4325 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4326
4327 /* Look for `:weakness WEAK'. */
4328 i = get_key_arg (QCweakness, nargs, args, used);
4329 weak = i ? args[i] : Qnil;
4330 if (EQ (weak, Qt))
4331 weak = Qkey_and_value;
4332 if (!NILP (weak)
4333 && !EQ (weak, Qkey)
4334 && !EQ (weak, Qvalue)
4335 && !EQ (weak, Qkey_or_value)
4336 && !EQ (weak, Qkey_and_value))
4337 signal_error ("Invalid hash table weakness", weak);
4338
4339 /* Now, all args should have been used up, or there's a problem. */
4340 for (i = 0; i < nargs; ++i)
4341 if (!used[i])
4342 signal_error ("Invalid argument list", args[i]);
4343
4344 return make_hash_table (testdesc, size, rehash_size, rehash_threshold, weak);
4345 }
4346
4347
4348 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4349 doc: /* Return a copy of hash table TABLE. */)
4350 (Lisp_Object table)
4351 {
4352 return copy_hash_table (check_hash_table (table));
4353 }
4354
4355
4356 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4357 doc: /* Return the number of elements in TABLE. */)
4358 (Lisp_Object table)
4359 {
4360 return make_number (check_hash_table (table)->count);
4361 }
4362
4363
4364 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4365 Shash_table_rehash_size, 1, 1, 0,
4366 doc: /* Return the current rehash size of TABLE. */)
4367 (Lisp_Object table)
4368 {
4369 return check_hash_table (table)->rehash_size;
4370 }
4371
4372
4373 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4374 Shash_table_rehash_threshold, 1, 1, 0,
4375 doc: /* Return the current rehash threshold of TABLE. */)
4376 (Lisp_Object table)
4377 {
4378 return check_hash_table (table)->rehash_threshold;
4379 }
4380
4381
4382 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4383 doc: /* Return the size of TABLE.
4384 The size can be used as an argument to `make-hash-table' to create
4385 a hash table than can hold as many elements as TABLE holds
4386 without need for resizing. */)
4387 (Lisp_Object table)
4388 {
4389 struct Lisp_Hash_Table *h = check_hash_table (table);
4390 return make_number (HASH_TABLE_SIZE (h));
4391 }
4392
4393
4394 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4395 doc: /* Return the test TABLE uses. */)
4396 (Lisp_Object table)
4397 {
4398 return check_hash_table (table)->test.name;
4399 }
4400
4401
4402 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4403 1, 1, 0,
4404 doc: /* Return the weakness of TABLE. */)
4405 (Lisp_Object table)
4406 {
4407 return check_hash_table (table)->weak;
4408 }
4409
4410
4411 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4412 doc: /* Return t if OBJ is a Lisp hash table object. */)
4413 (Lisp_Object obj)
4414 {
4415 return HASH_TABLE_P (obj) ? Qt : Qnil;
4416 }
4417
4418
4419 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4420 doc: /* Clear hash table TABLE and return it. */)
4421 (Lisp_Object table)
4422 {
4423 hash_clear (check_hash_table (table));
4424 /* Be compatible with XEmacs. */
4425 return table;
4426 }
4427
4428
4429 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4430 doc: /* Look up KEY in TABLE and return its associated value.
4431 If KEY is not found, return DFLT which defaults to nil. */)
4432 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4433 {
4434 struct Lisp_Hash_Table *h = check_hash_table (table);
4435 ptrdiff_t i = hash_lookup (h, key, NULL);
4436 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4437 }
4438
4439
4440 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4441 doc: /* Associate KEY with VALUE in hash table TABLE.
4442 If KEY is already present in table, replace its current value with
4443 VALUE. In any case, return VALUE. */)
4444 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4445 {
4446 struct Lisp_Hash_Table *h = check_hash_table (table);
4447 ptrdiff_t i;
4448 EMACS_UINT hash;
4449
4450 i = hash_lookup (h, key, &hash);
4451 if (i >= 0)
4452 set_hash_value_slot (h, i, value);
4453 else
4454 hash_put (h, key, value, hash);
4455
4456 return value;
4457 }
4458
4459
4460 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4461 doc: /* Remove KEY from TABLE. */)
4462 (Lisp_Object key, Lisp_Object table)
4463 {
4464 struct Lisp_Hash_Table *h = check_hash_table (table);
4465 hash_remove_from_table (h, key);
4466 return Qnil;
4467 }
4468
4469
4470 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4471 doc: /* Call FUNCTION for all entries in hash table TABLE.
4472 FUNCTION is called with two arguments, KEY and VALUE. */)
4473 (Lisp_Object function, Lisp_Object table)
4474 {
4475 struct Lisp_Hash_Table *h = check_hash_table (table);
4476 Lisp_Object args[3];
4477 ptrdiff_t i;
4478
4479 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4480 if (!NILP (HASH_HASH (h, i)))
4481 {
4482 args[0] = function;
4483 args[1] = HASH_KEY (h, i);
4484 args[2] = HASH_VALUE (h, i);
4485 Ffuncall (3, args);
4486 }
4487
4488 return Qnil;
4489 }
4490
4491
4492 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4493 Sdefine_hash_table_test, 3, 3, 0,
4494 doc: /* Define a new hash table test with name NAME, a symbol.
4495
4496 In hash tables created with NAME specified as test, use TEST to
4497 compare keys, and HASH for computing hash codes of keys.
4498
4499 TEST must be a function taking two arguments and returning non-nil if
4500 both arguments are the same. HASH must be a function taking one
4501 argument and return an integer that is the hash code of the argument.
4502 Hash code computation should use the whole value range of integers,
4503 including negative integers. */)
4504 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4505 {
4506 return Fput (name, Qhash_table_test, list2 (test, hash));
4507 }
4508
4509
4510 \f
4511 /************************************************************************
4512 MD5, SHA-1, and SHA-2
4513 ************************************************************************/
4514
4515 #include "md5.h"
4516 #include "sha1.h"
4517 #include "sha256.h"
4518 #include "sha512.h"
4519
4520 /* ALGORITHM is a symbol: md5, sha1, sha224 and so on. */
4521
4522 static Lisp_Object
4523 secure_hash (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror, Lisp_Object binary)
4524 {
4525 int i;
4526 ptrdiff_t size;
4527 EMACS_INT start_char = 0, end_char = 0;
4528 ptrdiff_t start_byte, end_byte;
4529 register EMACS_INT b, e;
4530 register struct buffer *bp;
4531 EMACS_INT temp;
4532 int digest_size;
4533 void *(*hash_func) (const char *, size_t, void *);
4534 Lisp_Object digest;
4535
4536 CHECK_SYMBOL (algorithm);
4537
4538 if (STRINGP (object))
4539 {
4540 if (NILP (coding_system))
4541 {
4542 /* Decide the coding-system to encode the data with. */
4543
4544 if (STRING_MULTIBYTE (object))
4545 /* use default, we can't guess correct value */
4546 coding_system = preferred_coding_system ();
4547 else
4548 coding_system = Qraw_text;
4549 }
4550
4551 if (NILP (Fcoding_system_p (coding_system)))
4552 {
4553 /* Invalid coding system. */
4554
4555 if (!NILP (noerror))
4556 coding_system = Qraw_text;
4557 else
4558 xsignal1 (Qcoding_system_error, coding_system);
4559 }
4560
4561 if (STRING_MULTIBYTE (object))
4562 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4563
4564 size = SCHARS (object);
4565
4566 if (!NILP (start))
4567 {
4568 CHECK_NUMBER (start);
4569
4570 start_char = XINT (start);
4571
4572 if (start_char < 0)
4573 start_char += size;
4574 }
4575
4576 if (NILP (end))
4577 end_char = size;
4578 else
4579 {
4580 CHECK_NUMBER (end);
4581
4582 end_char = XINT (end);
4583
4584 if (end_char < 0)
4585 end_char += size;
4586 }
4587
4588 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4589 args_out_of_range_3 (object, make_number (start_char),
4590 make_number (end_char));
4591
4592 start_byte = NILP (start) ? 0 : string_char_to_byte (object, start_char);
4593 end_byte =
4594 NILP (end) ? SBYTES (object) : string_char_to_byte (object, end_char);
4595 }
4596 else
4597 {
4598 struct buffer *prev = current_buffer;
4599
4600 record_unwind_current_buffer ();
4601
4602 CHECK_BUFFER (object);
4603
4604 bp = XBUFFER (object);
4605 set_buffer_internal (bp);
4606
4607 if (NILP (start))
4608 b = BEGV;
4609 else
4610 {
4611 CHECK_NUMBER_COERCE_MARKER (start);
4612 b = XINT (start);
4613 }
4614
4615 if (NILP (end))
4616 e = ZV;
4617 else
4618 {
4619 CHECK_NUMBER_COERCE_MARKER (end);
4620 e = XINT (end);
4621 }
4622
4623 if (b > e)
4624 temp = b, b = e, e = temp;
4625
4626 if (!(BEGV <= b && e <= ZV))
4627 args_out_of_range (start, end);
4628
4629 if (NILP (coding_system))
4630 {
4631 /* Decide the coding-system to encode the data with.
4632 See fileio.c:Fwrite-region */
4633
4634 if (!NILP (Vcoding_system_for_write))
4635 coding_system = Vcoding_system_for_write;
4636 else
4637 {
4638 bool force_raw_text = 0;
4639
4640 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4641 if (NILP (coding_system)
4642 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4643 {
4644 coding_system = Qnil;
4645 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4646 force_raw_text = 1;
4647 }
4648
4649 if (NILP (coding_system) && !NILP (Fbuffer_file_name (object)))
4650 {
4651 /* Check file-coding-system-alist. */
4652 Lisp_Object args[4], val;
4653
4654 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4655 args[3] = Fbuffer_file_name (object);
4656 val = Ffind_operation_coding_system (4, args);
4657 if (CONSP (val) && !NILP (XCDR (val)))
4658 coding_system = XCDR (val);
4659 }
4660
4661 if (NILP (coding_system)
4662 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4663 {
4664 /* If we still have not decided a coding system, use the
4665 default value of buffer-file-coding-system. */
4666 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4667 }
4668
4669 if (!force_raw_text
4670 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4671 /* Confirm that VAL can surely encode the current region. */
4672 coding_system = call4 (Vselect_safe_coding_system_function,
4673 make_number (b), make_number (e),
4674 coding_system, Qnil);
4675
4676 if (force_raw_text)
4677 coding_system = Qraw_text;
4678 }
4679
4680 if (NILP (Fcoding_system_p (coding_system)))
4681 {
4682 /* Invalid coding system. */
4683
4684 if (!NILP (noerror))
4685 coding_system = Qraw_text;
4686 else
4687 xsignal1 (Qcoding_system_error, coding_system);
4688 }
4689 }
4690
4691 object = make_buffer_string (b, e, 0);
4692 set_buffer_internal (prev);
4693 /* Discard the unwind protect for recovering the current
4694 buffer. */
4695 specpdl_ptr--;
4696
4697 if (STRING_MULTIBYTE (object))
4698 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4699 start_byte = 0;
4700 end_byte = SBYTES (object);
4701 }
4702
4703 if (EQ (algorithm, Qmd5))
4704 {
4705 digest_size = MD5_DIGEST_SIZE;
4706 hash_func = md5_buffer;
4707 }
4708 else if (EQ (algorithm, Qsha1))
4709 {
4710 digest_size = SHA1_DIGEST_SIZE;
4711 hash_func = sha1_buffer;
4712 }
4713 else if (EQ (algorithm, Qsha224))
4714 {
4715 digest_size = SHA224_DIGEST_SIZE;
4716 hash_func = sha224_buffer;
4717 }
4718 else if (EQ (algorithm, Qsha256))
4719 {
4720 digest_size = SHA256_DIGEST_SIZE;
4721 hash_func = sha256_buffer;
4722 }
4723 else if (EQ (algorithm, Qsha384))
4724 {
4725 digest_size = SHA384_DIGEST_SIZE;
4726 hash_func = sha384_buffer;
4727 }
4728 else if (EQ (algorithm, Qsha512))
4729 {
4730 digest_size = SHA512_DIGEST_SIZE;
4731 hash_func = sha512_buffer;
4732 }
4733 else
4734 error ("Invalid algorithm arg: %s", SDATA (Fsymbol_name (algorithm)));
4735
4736 /* allocate 2 x digest_size so that it can be re-used to hold the
4737 hexified value */
4738 digest = make_uninit_string (digest_size * 2);
4739
4740 hash_func (SSDATA (object) + start_byte,
4741 end_byte - start_byte,
4742 SSDATA (digest));
4743
4744 if (NILP (binary))
4745 {
4746 unsigned char *p = SDATA (digest);
4747 for (i = digest_size - 1; i >= 0; i--)
4748 {
4749 static char const hexdigit[16] = "0123456789abcdef";
4750 int p_i = p[i];
4751 p[2 * i] = hexdigit[p_i >> 4];
4752 p[2 * i + 1] = hexdigit[p_i & 0xf];
4753 }
4754 return digest;
4755 }
4756 else
4757 return make_unibyte_string (SSDATA (digest), digest_size);
4758 }
4759
4760 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4761 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4762
4763 A message digest is a cryptographic checksum of a document, and the
4764 algorithm to calculate it is defined in RFC 1321.
4765
4766 The two optional arguments START and END are character positions
4767 specifying for which part of OBJECT the message digest should be
4768 computed. If nil or omitted, the digest is computed for the whole
4769 OBJECT.
4770
4771 The MD5 message digest is computed from the result of encoding the
4772 text in a coding system, not directly from the internal Emacs form of
4773 the text. The optional fourth argument CODING-SYSTEM specifies which
4774 coding system to encode the text with. It should be the same coding
4775 system that you used or will use when actually writing the text into a
4776 file.
4777
4778 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4779 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4780 system would be chosen by default for writing this text into a file.
4781
4782 If OBJECT is a string, the most preferred coding system (see the
4783 command `prefer-coding-system') is used.
4784
4785 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4786 guesswork fails. Normally, an error is signaled in such case. */)
4787 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4788 {
4789 return secure_hash (Qmd5, object, start, end, coding_system, noerror, Qnil);
4790 }
4791
4792 DEFUN ("secure-hash", Fsecure_hash, Ssecure_hash, 2, 5, 0,
4793 doc: /* Return the secure hash of OBJECT, a buffer or string.
4794 ALGORITHM is a symbol specifying the hash to use:
4795 md5, sha1, sha224, sha256, sha384 or sha512.
4796
4797 The two optional arguments START and END are positions specifying for
4798 which part of OBJECT to compute the hash. If nil or omitted, uses the
4799 whole OBJECT.
4800
4801 If BINARY is non-nil, returns a string in binary form. */)
4802 (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
4803 {
4804 return secure_hash (algorithm, object, start, end, Qnil, Qnil, binary);
4805 }
4806 \f
4807 void
4808 syms_of_fns (void)
4809 {
4810 DEFSYM (Qmd5, "md5");
4811 DEFSYM (Qsha1, "sha1");
4812 DEFSYM (Qsha224, "sha224");
4813 DEFSYM (Qsha256, "sha256");
4814 DEFSYM (Qsha384, "sha384");
4815 DEFSYM (Qsha512, "sha512");
4816
4817 /* Hash table stuff. */
4818 DEFSYM (Qhash_table_p, "hash-table-p");
4819 DEFSYM (Qeq, "eq");
4820 DEFSYM (Qeql, "eql");
4821 DEFSYM (Qequal, "equal");
4822 DEFSYM (QCtest, ":test");
4823 DEFSYM (QCsize, ":size");
4824 DEFSYM (QCrehash_size, ":rehash-size");
4825 DEFSYM (QCrehash_threshold, ":rehash-threshold");
4826 DEFSYM (QCweakness, ":weakness");
4827 DEFSYM (Qkey, "key");
4828 DEFSYM (Qvalue, "value");
4829 DEFSYM (Qhash_table_test, "hash-table-test");
4830 DEFSYM (Qkey_or_value, "key-or-value");
4831 DEFSYM (Qkey_and_value, "key-and-value");
4832
4833 defsubr (&Ssxhash);
4834 defsubr (&Smake_hash_table);
4835 defsubr (&Scopy_hash_table);
4836 defsubr (&Shash_table_count);
4837 defsubr (&Shash_table_rehash_size);
4838 defsubr (&Shash_table_rehash_threshold);
4839 defsubr (&Shash_table_size);
4840 defsubr (&Shash_table_test);
4841 defsubr (&Shash_table_weakness);
4842 defsubr (&Shash_table_p);
4843 defsubr (&Sclrhash);
4844 defsubr (&Sgethash);
4845 defsubr (&Sputhash);
4846 defsubr (&Sremhash);
4847 defsubr (&Smaphash);
4848 defsubr (&Sdefine_hash_table_test);
4849
4850 DEFSYM (Qstring_lessp, "string-lessp");
4851 DEFSYM (Qprovide, "provide");
4852 DEFSYM (Qrequire, "require");
4853 DEFSYM (Qyes_or_no_p_history, "yes-or-no-p-history");
4854 DEFSYM (Qcursor_in_echo_area, "cursor-in-echo-area");
4855 DEFSYM (Qwidget_type, "widget-type");
4856
4857 staticpro (&string_char_byte_cache_string);
4858 string_char_byte_cache_string = Qnil;
4859
4860 require_nesting_list = Qnil;
4861 staticpro (&require_nesting_list);
4862
4863 Fset (Qyes_or_no_p_history, Qnil);
4864
4865 DEFVAR_LISP ("features", Vfeatures,
4866 doc: /* A list of symbols which are the features of the executing Emacs.
4867 Used by `featurep' and `require', and altered by `provide'. */);
4868 Vfeatures = Fcons (intern_c_string ("emacs"), Qnil);
4869 DEFSYM (Qsubfeatures, "subfeatures");
4870
4871 #ifdef HAVE_LANGINFO_CODESET
4872 DEFSYM (Qcodeset, "codeset");
4873 DEFSYM (Qdays, "days");
4874 DEFSYM (Qmonths, "months");
4875 DEFSYM (Qpaper, "paper");
4876 #endif /* HAVE_LANGINFO_CODESET */
4877
4878 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4879 doc: /* Non-nil means mouse commands use dialog boxes to ask questions.
4880 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4881 invoked by mouse clicks and mouse menu items.
4882
4883 On some platforms, file selection dialogs are also enabled if this is
4884 non-nil. */);
4885 use_dialog_box = 1;
4886
4887 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4888 doc: /* Non-nil means mouse commands use a file dialog to ask for files.
4889 This applies to commands from menus and tool bar buttons even when
4890 they are initiated from the keyboard. If `use-dialog-box' is nil,
4891 that disables the use of a file dialog, regardless of the value of
4892 this variable. */);
4893 use_file_dialog = 1;
4894
4895 defsubr (&Sidentity);
4896 defsubr (&Srandom);
4897 defsubr (&Slength);
4898 defsubr (&Ssafe_length);
4899 defsubr (&Sstring_bytes);
4900 defsubr (&Sstring_equal);
4901 defsubr (&Scompare_strings);
4902 defsubr (&Sstring_lessp);
4903 defsubr (&Sappend);
4904 defsubr (&Sconcat);
4905 defsubr (&Svconcat);
4906 defsubr (&Scopy_sequence);
4907 defsubr (&Sstring_make_multibyte);
4908 defsubr (&Sstring_make_unibyte);
4909 defsubr (&Sstring_as_multibyte);
4910 defsubr (&Sstring_as_unibyte);
4911 defsubr (&Sstring_to_multibyte);
4912 defsubr (&Sstring_to_unibyte);
4913 defsubr (&Scopy_alist);
4914 defsubr (&Ssubstring);
4915 defsubr (&Ssubstring_no_properties);
4916 defsubr (&Snthcdr);
4917 defsubr (&Snth);
4918 defsubr (&Selt);
4919 defsubr (&Smember);
4920 defsubr (&Smemq);
4921 defsubr (&Smemql);
4922 defsubr (&Sassq);
4923 defsubr (&Sassoc);
4924 defsubr (&Srassq);
4925 defsubr (&Srassoc);
4926 defsubr (&Sdelq);
4927 defsubr (&Sdelete);
4928 defsubr (&Snreverse);
4929 defsubr (&Sreverse);
4930 defsubr (&Ssort);
4931 defsubr (&Splist_get);
4932 defsubr (&Sget);
4933 defsubr (&Splist_put);
4934 defsubr (&Sput);
4935 defsubr (&Slax_plist_get);
4936 defsubr (&Slax_plist_put);
4937 defsubr (&Seql);
4938 defsubr (&Sequal);
4939 defsubr (&Sequal_including_properties);
4940 defsubr (&Sfillarray);
4941 defsubr (&Sclear_string);
4942 defsubr (&Snconc);
4943 defsubr (&Smapcar);
4944 defsubr (&Smapc);
4945 defsubr (&Smapconcat);
4946 defsubr (&Syes_or_no_p);
4947 defsubr (&Sload_average);
4948 defsubr (&Sfeaturep);
4949 defsubr (&Srequire);
4950 defsubr (&Sprovide);
4951 defsubr (&Splist_member);
4952 defsubr (&Swidget_put);
4953 defsubr (&Swidget_get);
4954 defsubr (&Swidget_apply);
4955 defsubr (&Sbase64_encode_region);
4956 defsubr (&Sbase64_decode_region);
4957 defsubr (&Sbase64_encode_string);
4958 defsubr (&Sbase64_decode_string);
4959 defsubr (&Smd5);
4960 defsubr (&Ssecure_hash);
4961 defsubr (&Slocale_info);
4962
4963 {
4964 struct hash_table_test
4965 eq = { Qeq, Qnil, Qnil, NULL, hashfn_eq },
4966 eql = { Qeql, Qnil, Qnil, cmpfn_eql, hashfn_eql },
4967 equal = { Qequal, Qnil, Qnil, cmpfn_equal, hashfn_equal };
4968 hashtest_eq = eq;
4969 hashtest_eql = eql;
4970 hashtest_equal = equal;
4971 }
4972 }