Fix BLOCK_INPUT/UNBLOCK_INPUT mismatch in 2012-06-08T08:44:30Z!dmantipov@yandex.ru.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24 #include <setjmp.h>
25
26 #include <signal.h>
27
28 #ifdef HAVE_PTHREAD
29 #include <pthread.h>
30 #endif
31
32 /* This file is part of the core Lisp implementation, and thus must
33 deal with the real data structures. If the Lisp implementation is
34 replaced, this file likely will not be used. */
35
36 #undef HIDE_LISP_IMPLEMENTATION
37 #include "lisp.h"
38 #include "process.h"
39 #include "intervals.h"
40 #include "puresize.h"
41 #include "buffer.h"
42 #include "window.h"
43 #include "keyboard.h"
44 #include "frame.h"
45 #include "blockinput.h"
46 #include "character.h"
47 #include "syssignal.h"
48 #include "termhooks.h" /* For struct terminal. */
49 #include <setjmp.h>
50 #include <verify.h>
51
52 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
53 Doable only if GC_MARK_STACK. */
54 #if ! GC_MARK_STACK
55 # undef GC_CHECK_MARKED_OBJECTS
56 #endif
57
58 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
59 memory. Can do this only if using gmalloc.c and if not checking
60 marked objects. */
61
62 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
63 || defined GC_CHECK_MARKED_OBJECTS)
64 #undef GC_MALLOC_CHECK
65 #endif
66
67 #include <unistd.h>
68 #ifndef HAVE_UNISTD_H
69 extern void *sbrk ();
70 #endif
71
72 #include <fcntl.h>
73
74 #ifdef WINDOWSNT
75 #include "w32.h"
76 #endif
77
78 #ifdef DOUG_LEA_MALLOC
79
80 #include <malloc.h>
81
82 /* Specify maximum number of areas to mmap. It would be nice to use a
83 value that explicitly means "no limit". */
84
85 #define MMAP_MAX_AREAS 100000000
86
87 #else /* not DOUG_LEA_MALLOC */
88
89 /* The following come from gmalloc.c. */
90
91 extern size_t _bytes_used;
92 extern size_t __malloc_extra_blocks;
93 extern void *_malloc_internal (size_t);
94 extern void _free_internal (void *);
95
96 #endif /* not DOUG_LEA_MALLOC */
97
98 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
99 #ifdef HAVE_PTHREAD
100
101 /* When GTK uses the file chooser dialog, different backends can be loaded
102 dynamically. One such a backend is the Gnome VFS backend that gets loaded
103 if you run Gnome. That backend creates several threads and also allocates
104 memory with malloc.
105
106 Also, gconf and gsettings may create several threads.
107
108 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
109 functions below are called from malloc, there is a chance that one
110 of these threads preempts the Emacs main thread and the hook variables
111 end up in an inconsistent state. So we have a mutex to prevent that (note
112 that the backend handles concurrent access to malloc within its own threads
113 but Emacs code running in the main thread is not included in that control).
114
115 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
116 happens in one of the backend threads we will have two threads that tries
117 to run Emacs code at once, and the code is not prepared for that.
118 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
119
120 static pthread_mutex_t alloc_mutex;
121
122 #define BLOCK_INPUT_ALLOC \
123 do \
124 { \
125 if (pthread_equal (pthread_self (), main_thread)) \
126 BLOCK_INPUT; \
127 pthread_mutex_lock (&alloc_mutex); \
128 } \
129 while (0)
130 #define UNBLOCK_INPUT_ALLOC \
131 do \
132 { \
133 pthread_mutex_unlock (&alloc_mutex); \
134 if (pthread_equal (pthread_self (), main_thread)) \
135 UNBLOCK_INPUT; \
136 } \
137 while (0)
138
139 #else /* ! defined HAVE_PTHREAD */
140
141 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
142 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
143
144 #endif /* ! defined HAVE_PTHREAD */
145 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
146
147 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
148 to a struct Lisp_String. */
149
150 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
151 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
152 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
153
154 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
155 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
156 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
157
158 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
159 Be careful during GC, because S->size contains the mark bit for
160 strings. */
161
162 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
163
164 /* Global variables. */
165 struct emacs_globals globals;
166
167 /* Number of bytes of consing done since the last gc. */
168
169 EMACS_INT consing_since_gc;
170
171 /* Similar minimum, computed from Vgc_cons_percentage. */
172
173 EMACS_INT gc_relative_threshold;
174
175 /* Minimum number of bytes of consing since GC before next GC,
176 when memory is full. */
177
178 EMACS_INT memory_full_cons_threshold;
179
180 /* Nonzero during GC. */
181
182 int gc_in_progress;
183
184 /* Nonzero means abort if try to GC.
185 This is for code which is written on the assumption that
186 no GC will happen, so as to verify that assumption. */
187
188 int abort_on_gc;
189
190 /* Number of live and free conses etc. */
191
192 static EMACS_INT total_conses, total_markers, total_symbols, total_vector_size;
193 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
194 static EMACS_INT total_free_floats, total_floats;
195
196 /* Points to memory space allocated as "spare", to be freed if we run
197 out of memory. We keep one large block, four cons-blocks, and
198 two string blocks. */
199
200 static char *spare_memory[7];
201
202 /* Amount of spare memory to keep in large reserve block, or to see
203 whether this much is available when malloc fails on a larger request. */
204
205 #define SPARE_MEMORY (1 << 14)
206
207 /* Number of extra blocks malloc should get when it needs more core. */
208
209 static int malloc_hysteresis;
210
211 /* Initialize it to a nonzero value to force it into data space
212 (rather than bss space). That way unexec will remap it into text
213 space (pure), on some systems. We have not implemented the
214 remapping on more recent systems because this is less important
215 nowadays than in the days of small memories and timesharing. */
216
217 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
218 #define PUREBEG (char *) pure
219
220 /* Pointer to the pure area, and its size. */
221
222 static char *purebeg;
223 static ptrdiff_t pure_size;
224
225 /* Number of bytes of pure storage used before pure storage overflowed.
226 If this is non-zero, this implies that an overflow occurred. */
227
228 static ptrdiff_t pure_bytes_used_before_overflow;
229
230 /* Value is non-zero if P points into pure space. */
231
232 #define PURE_POINTER_P(P) \
233 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
234
235 /* Index in pure at which next pure Lisp object will be allocated.. */
236
237 static ptrdiff_t pure_bytes_used_lisp;
238
239 /* Number of bytes allocated for non-Lisp objects in pure storage. */
240
241 static ptrdiff_t pure_bytes_used_non_lisp;
242
243 /* If nonzero, this is a warning delivered by malloc and not yet
244 displayed. */
245
246 const char *pending_malloc_warning;
247
248 /* Maximum amount of C stack to save when a GC happens. */
249
250 #ifndef MAX_SAVE_STACK
251 #define MAX_SAVE_STACK 16000
252 #endif
253
254 /* Buffer in which we save a copy of the C stack at each GC. */
255
256 #if MAX_SAVE_STACK > 0
257 static char *stack_copy;
258 static ptrdiff_t stack_copy_size;
259 #endif
260
261 /* Non-zero means ignore malloc warnings. Set during initialization.
262 Currently not used. */
263
264 static int ignore_warnings;
265
266 static Lisp_Object Qgc_cons_threshold;
267 Lisp_Object Qchar_table_extra_slots;
268
269 /* Hook run after GC has finished. */
270
271 static Lisp_Object Qpost_gc_hook;
272
273 static void mark_buffer (Lisp_Object);
274 static void mark_terminals (void);
275 static void gc_sweep (void);
276 static Lisp_Object make_pure_vector (ptrdiff_t);
277 static void mark_glyph_matrix (struct glyph_matrix *);
278 static void mark_face_cache (struct face_cache *);
279
280 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
281 static void refill_memory_reserve (void);
282 #endif
283 static struct Lisp_String *allocate_string (void);
284 static void compact_small_strings (void);
285 static void free_large_strings (void);
286 static void sweep_strings (void);
287 static void free_misc (Lisp_Object);
288 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
289
290 /* When scanning the C stack for live Lisp objects, Emacs keeps track
291 of what memory allocated via lisp_malloc is intended for what
292 purpose. This enumeration specifies the type of memory. */
293
294 enum mem_type
295 {
296 MEM_TYPE_NON_LISP,
297 MEM_TYPE_BUFFER,
298 MEM_TYPE_CONS,
299 MEM_TYPE_STRING,
300 MEM_TYPE_MISC,
301 MEM_TYPE_SYMBOL,
302 MEM_TYPE_FLOAT,
303 /* We used to keep separate mem_types for subtypes of vectors such as
304 process, hash_table, frame, terminal, and window, but we never made
305 use of the distinction, so it only caused source-code complexity
306 and runtime slowdown. Minor but pointless. */
307 MEM_TYPE_VECTORLIKE,
308 /* Special type to denote vector blocks. */
309 MEM_TYPE_VECTOR_BLOCK
310 };
311
312 static void *lisp_malloc (size_t, enum mem_type);
313
314
315 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
316
317 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
318 #include <stdio.h> /* For fprintf. */
319 #endif
320
321 /* A unique object in pure space used to make some Lisp objects
322 on free lists recognizable in O(1). */
323
324 static Lisp_Object Vdead;
325 #define DEADP(x) EQ (x, Vdead)
326
327 #ifdef GC_MALLOC_CHECK
328
329 enum mem_type allocated_mem_type;
330
331 #endif /* GC_MALLOC_CHECK */
332
333 /* A node in the red-black tree describing allocated memory containing
334 Lisp data. Each such block is recorded with its start and end
335 address when it is allocated, and removed from the tree when it
336 is freed.
337
338 A red-black tree is a balanced binary tree with the following
339 properties:
340
341 1. Every node is either red or black.
342 2. Every leaf is black.
343 3. If a node is red, then both of its children are black.
344 4. Every simple path from a node to a descendant leaf contains
345 the same number of black nodes.
346 5. The root is always black.
347
348 When nodes are inserted into the tree, or deleted from the tree,
349 the tree is "fixed" so that these properties are always true.
350
351 A red-black tree with N internal nodes has height at most 2
352 log(N+1). Searches, insertions and deletions are done in O(log N).
353 Please see a text book about data structures for a detailed
354 description of red-black trees. Any book worth its salt should
355 describe them. */
356
357 struct mem_node
358 {
359 /* Children of this node. These pointers are never NULL. When there
360 is no child, the value is MEM_NIL, which points to a dummy node. */
361 struct mem_node *left, *right;
362
363 /* The parent of this node. In the root node, this is NULL. */
364 struct mem_node *parent;
365
366 /* Start and end of allocated region. */
367 void *start, *end;
368
369 /* Node color. */
370 enum {MEM_BLACK, MEM_RED} color;
371
372 /* Memory type. */
373 enum mem_type type;
374 };
375
376 /* Base address of stack. Set in main. */
377
378 Lisp_Object *stack_base;
379
380 /* Root of the tree describing allocated Lisp memory. */
381
382 static struct mem_node *mem_root;
383
384 /* Lowest and highest known address in the heap. */
385
386 static void *min_heap_address, *max_heap_address;
387
388 /* Sentinel node of the tree. */
389
390 static struct mem_node mem_z;
391 #define MEM_NIL &mem_z
392
393 static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
394 static void lisp_free (void *);
395 static void mark_stack (void);
396 static int live_vector_p (struct mem_node *, void *);
397 static int live_buffer_p (struct mem_node *, void *);
398 static int live_string_p (struct mem_node *, void *);
399 static int live_cons_p (struct mem_node *, void *);
400 static int live_symbol_p (struct mem_node *, void *);
401 static int live_float_p (struct mem_node *, void *);
402 static int live_misc_p (struct mem_node *, void *);
403 static void mark_maybe_object (Lisp_Object);
404 static void mark_memory (void *, void *);
405 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
406 static void mem_init (void);
407 static struct mem_node *mem_insert (void *, void *, enum mem_type);
408 static void mem_insert_fixup (struct mem_node *);
409 #endif
410 static void mem_rotate_left (struct mem_node *);
411 static void mem_rotate_right (struct mem_node *);
412 static void mem_delete (struct mem_node *);
413 static void mem_delete_fixup (struct mem_node *);
414 static inline struct mem_node *mem_find (void *);
415
416
417 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
418 static void check_gcpros (void);
419 #endif
420
421 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
422
423 #ifndef DEADP
424 # define DEADP(x) 0
425 #endif
426
427 /* Recording what needs to be marked for gc. */
428
429 struct gcpro *gcprolist;
430
431 /* Addresses of staticpro'd variables. Initialize it to a nonzero
432 value; otherwise some compilers put it into BSS. */
433
434 #define NSTATICS 0x640
435 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
436
437 /* Index of next unused slot in staticvec. */
438
439 static int staticidx = 0;
440
441 static void *pure_alloc (size_t, int);
442
443
444 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
445 ALIGNMENT must be a power of 2. */
446
447 #define ALIGN(ptr, ALIGNMENT) \
448 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
449 & ~ ((ALIGNMENT) - 1)))
450
451
452 \f
453 /************************************************************************
454 Malloc
455 ************************************************************************/
456
457 /* Function malloc calls this if it finds we are near exhausting storage. */
458
459 void
460 malloc_warning (const char *str)
461 {
462 pending_malloc_warning = str;
463 }
464
465
466 /* Display an already-pending malloc warning. */
467
468 void
469 display_malloc_warning (void)
470 {
471 call3 (intern ("display-warning"),
472 intern ("alloc"),
473 build_string (pending_malloc_warning),
474 intern ("emergency"));
475 pending_malloc_warning = 0;
476 }
477 \f
478 /* Called if we can't allocate relocatable space for a buffer. */
479
480 void
481 buffer_memory_full (ptrdiff_t nbytes)
482 {
483 /* If buffers use the relocating allocator, no need to free
484 spare_memory, because we may have plenty of malloc space left
485 that we could get, and if we don't, the malloc that fails will
486 itself cause spare_memory to be freed. If buffers don't use the
487 relocating allocator, treat this like any other failing
488 malloc. */
489
490 #ifndef REL_ALLOC
491 memory_full (nbytes);
492 #endif
493
494 /* This used to call error, but if we've run out of memory, we could
495 get infinite recursion trying to build the string. */
496 xsignal (Qnil, Vmemory_signal_data);
497 }
498
499 /* A common multiple of the positive integers A and B. Ideally this
500 would be the least common multiple, but there's no way to do that
501 as a constant expression in C, so do the best that we can easily do. */
502 #define COMMON_MULTIPLE(a, b) \
503 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
504
505 #ifndef XMALLOC_OVERRUN_CHECK
506 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
507 #else
508
509 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
510 around each block.
511
512 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
513 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
514 block size in little-endian order. The trailer consists of
515 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
516
517 The header is used to detect whether this block has been allocated
518 through these functions, as some low-level libc functions may
519 bypass the malloc hooks. */
520
521 #define XMALLOC_OVERRUN_CHECK_SIZE 16
522 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
523 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
524
525 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
526 hold a size_t value and (2) the header size is a multiple of the
527 alignment that Emacs needs for C types and for USE_LSB_TAG. */
528 #define XMALLOC_BASE_ALIGNMENT \
529 offsetof ( \
530 struct { \
531 union { long double d; intmax_t i; void *p; } u; \
532 char c; \
533 }, \
534 c)
535
536 #ifdef USE_LSB_TAG
537 # define XMALLOC_HEADER_ALIGNMENT \
538 COMMON_MULTIPLE (1 << GCTYPEBITS, XMALLOC_BASE_ALIGNMENT)
539 #else
540 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
541 #endif
542 #define XMALLOC_OVERRUN_SIZE_SIZE \
543 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
544 + XMALLOC_HEADER_ALIGNMENT - 1) \
545 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
546 - XMALLOC_OVERRUN_CHECK_SIZE)
547
548 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
549 { '\x9a', '\x9b', '\xae', '\xaf',
550 '\xbf', '\xbe', '\xce', '\xcf',
551 '\xea', '\xeb', '\xec', '\xed',
552 '\xdf', '\xde', '\x9c', '\x9d' };
553
554 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
555 { '\xaa', '\xab', '\xac', '\xad',
556 '\xba', '\xbb', '\xbc', '\xbd',
557 '\xca', '\xcb', '\xcc', '\xcd',
558 '\xda', '\xdb', '\xdc', '\xdd' };
559
560 /* Insert and extract the block size in the header. */
561
562 static void
563 xmalloc_put_size (unsigned char *ptr, size_t size)
564 {
565 int i;
566 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
567 {
568 *--ptr = size & ((1 << CHAR_BIT) - 1);
569 size >>= CHAR_BIT;
570 }
571 }
572
573 static size_t
574 xmalloc_get_size (unsigned char *ptr)
575 {
576 size_t size = 0;
577 int i;
578 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
579 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
580 {
581 size <<= CHAR_BIT;
582 size += *ptr++;
583 }
584 return size;
585 }
586
587
588 /* The call depth in overrun_check functions. For example, this might happen:
589 xmalloc()
590 overrun_check_malloc()
591 -> malloc -> (via hook)_-> emacs_blocked_malloc
592 -> overrun_check_malloc
593 call malloc (hooks are NULL, so real malloc is called).
594 malloc returns 10000.
595 add overhead, return 10016.
596 <- (back in overrun_check_malloc)
597 add overhead again, return 10032
598 xmalloc returns 10032.
599
600 (time passes).
601
602 xfree(10032)
603 overrun_check_free(10032)
604 decrease overhead
605 free(10016) <- crash, because 10000 is the original pointer. */
606
607 static ptrdiff_t check_depth;
608
609 /* Like malloc, but wraps allocated block with header and trailer. */
610
611 static void *
612 overrun_check_malloc (size_t size)
613 {
614 register unsigned char *val;
615 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
616 if (SIZE_MAX - overhead < size)
617 abort ();
618
619 val = (unsigned char *) malloc (size + overhead);
620 if (val && check_depth == 1)
621 {
622 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
623 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
624 xmalloc_put_size (val, size);
625 memcpy (val + size, xmalloc_overrun_check_trailer,
626 XMALLOC_OVERRUN_CHECK_SIZE);
627 }
628 --check_depth;
629 return val;
630 }
631
632
633 /* Like realloc, but checks old block for overrun, and wraps new block
634 with header and trailer. */
635
636 static void *
637 overrun_check_realloc (void *block, size_t size)
638 {
639 register unsigned char *val = (unsigned char *) block;
640 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
641 if (SIZE_MAX - overhead < size)
642 abort ();
643
644 if (val
645 && check_depth == 1
646 && memcmp (xmalloc_overrun_check_header,
647 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
648 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
649 {
650 size_t osize = xmalloc_get_size (val);
651 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
652 XMALLOC_OVERRUN_CHECK_SIZE))
653 abort ();
654 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
655 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
656 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
657 }
658
659 val = realloc (val, size + overhead);
660
661 if (val && check_depth == 1)
662 {
663 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
664 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
665 xmalloc_put_size (val, size);
666 memcpy (val + size, xmalloc_overrun_check_trailer,
667 XMALLOC_OVERRUN_CHECK_SIZE);
668 }
669 --check_depth;
670 return val;
671 }
672
673 /* Like free, but checks block for overrun. */
674
675 static void
676 overrun_check_free (void *block)
677 {
678 unsigned char *val = (unsigned char *) block;
679
680 ++check_depth;
681 if (val
682 && check_depth == 1
683 && memcmp (xmalloc_overrun_check_header,
684 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
685 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
686 {
687 size_t osize = xmalloc_get_size (val);
688 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
689 XMALLOC_OVERRUN_CHECK_SIZE))
690 abort ();
691 #ifdef XMALLOC_CLEAR_FREE_MEMORY
692 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
693 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
694 #else
695 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
696 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
697 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
698 #endif
699 }
700
701 free (val);
702 --check_depth;
703 }
704
705 #undef malloc
706 #undef realloc
707 #undef free
708 #define malloc overrun_check_malloc
709 #define realloc overrun_check_realloc
710 #define free overrun_check_free
711 #endif
712
713 #ifdef SYNC_INPUT
714 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
715 there's no need to block input around malloc. */
716 #define MALLOC_BLOCK_INPUT ((void)0)
717 #define MALLOC_UNBLOCK_INPUT ((void)0)
718 #else
719 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
720 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
721 #endif
722
723 /* Like malloc but check for no memory and block interrupt input.. */
724
725 void *
726 xmalloc (size_t size)
727 {
728 void *val;
729
730 MALLOC_BLOCK_INPUT;
731 val = malloc (size);
732 MALLOC_UNBLOCK_INPUT;
733
734 if (!val && size)
735 memory_full (size);
736 return val;
737 }
738
739
740 /* Like realloc but check for no memory and block interrupt input.. */
741
742 void *
743 xrealloc (void *block, size_t size)
744 {
745 void *val;
746
747 MALLOC_BLOCK_INPUT;
748 /* We must call malloc explicitly when BLOCK is 0, since some
749 reallocs don't do this. */
750 if (! block)
751 val = malloc (size);
752 else
753 val = realloc (block, size);
754 MALLOC_UNBLOCK_INPUT;
755
756 if (!val && size)
757 memory_full (size);
758 return val;
759 }
760
761
762 /* Like free but block interrupt input. */
763
764 void
765 xfree (void *block)
766 {
767 if (!block)
768 return;
769 MALLOC_BLOCK_INPUT;
770 free (block);
771 MALLOC_UNBLOCK_INPUT;
772 /* We don't call refill_memory_reserve here
773 because that duplicates doing so in emacs_blocked_free
774 and the criterion should go there. */
775 }
776
777
778 /* Other parts of Emacs pass large int values to allocator functions
779 expecting ptrdiff_t. This is portable in practice, but check it to
780 be safe. */
781 verify (INT_MAX <= PTRDIFF_MAX);
782
783
784 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
785 Signal an error on memory exhaustion, and block interrupt input. */
786
787 void *
788 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
789 {
790 xassert (0 <= nitems && 0 < item_size);
791 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
792 memory_full (SIZE_MAX);
793 return xmalloc (nitems * item_size);
794 }
795
796
797 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
798 Signal an error on memory exhaustion, and block interrupt input. */
799
800 void *
801 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
802 {
803 xassert (0 <= nitems && 0 < item_size);
804 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
805 memory_full (SIZE_MAX);
806 return xrealloc (pa, nitems * item_size);
807 }
808
809
810 /* Grow PA, which points to an array of *NITEMS items, and return the
811 location of the reallocated array, updating *NITEMS to reflect its
812 new size. The new array will contain at least NITEMS_INCR_MIN more
813 items, but will not contain more than NITEMS_MAX items total.
814 ITEM_SIZE is the size of each item, in bytes.
815
816 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
817 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
818 infinity.
819
820 If PA is null, then allocate a new array instead of reallocating
821 the old one. Thus, to grow an array A without saving its old
822 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
823 &NITEMS, ...).
824
825 Block interrupt input as needed. If memory exhaustion occurs, set
826 *NITEMS to zero if PA is null, and signal an error (i.e., do not
827 return). */
828
829 void *
830 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
831 ptrdiff_t nitems_max, ptrdiff_t item_size)
832 {
833 /* The approximate size to use for initial small allocation
834 requests. This is the largest "small" request for the GNU C
835 library malloc. */
836 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
837
838 /* If the array is tiny, grow it to about (but no greater than)
839 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
840 ptrdiff_t n = *nitems;
841 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
842 ptrdiff_t half_again = n >> 1;
843 ptrdiff_t incr_estimate = max (tiny_max, half_again);
844
845 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
846 NITEMS_MAX, and what the C language can represent safely. */
847 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
848 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
849 ? nitems_max : C_language_max);
850 ptrdiff_t nitems_incr_max = n_max - n;
851 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
852
853 xassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
854 if (! pa)
855 *nitems = 0;
856 if (nitems_incr_max < incr)
857 memory_full (SIZE_MAX);
858 n += incr;
859 pa = xrealloc (pa, n * item_size);
860 *nitems = n;
861 return pa;
862 }
863
864
865 /* Like strdup, but uses xmalloc. */
866
867 char *
868 xstrdup (const char *s)
869 {
870 size_t len = strlen (s) + 1;
871 char *p = (char *) xmalloc (len);
872 memcpy (p, s, len);
873 return p;
874 }
875
876
877 /* Unwind for SAFE_ALLOCA */
878
879 Lisp_Object
880 safe_alloca_unwind (Lisp_Object arg)
881 {
882 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
883
884 p->dogc = 0;
885 xfree (p->pointer);
886 p->pointer = 0;
887 free_misc (arg);
888 return Qnil;
889 }
890
891
892 /* Like malloc but used for allocating Lisp data. NBYTES is the
893 number of bytes to allocate, TYPE describes the intended use of the
894 allocated memory block (for strings, for conses, ...). */
895
896 #ifndef USE_LSB_TAG
897 static void *lisp_malloc_loser;
898 #endif
899
900 static void *
901 lisp_malloc (size_t nbytes, enum mem_type type)
902 {
903 register void *val;
904
905 MALLOC_BLOCK_INPUT;
906
907 #ifdef GC_MALLOC_CHECK
908 allocated_mem_type = type;
909 #endif
910
911 val = (void *) malloc (nbytes);
912
913 #ifndef USE_LSB_TAG
914 /* If the memory just allocated cannot be addressed thru a Lisp
915 object's pointer, and it needs to be,
916 that's equivalent to running out of memory. */
917 if (val && type != MEM_TYPE_NON_LISP)
918 {
919 Lisp_Object tem;
920 XSETCONS (tem, (char *) val + nbytes - 1);
921 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
922 {
923 lisp_malloc_loser = val;
924 free (val);
925 val = 0;
926 }
927 }
928 #endif
929
930 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
931 if (val && type != MEM_TYPE_NON_LISP)
932 mem_insert (val, (char *) val + nbytes, type);
933 #endif
934
935 MALLOC_UNBLOCK_INPUT;
936 if (!val && nbytes)
937 memory_full (nbytes);
938 return val;
939 }
940
941 /* Free BLOCK. This must be called to free memory allocated with a
942 call to lisp_malloc. */
943
944 static void
945 lisp_free (void *block)
946 {
947 MALLOC_BLOCK_INPUT;
948 free (block);
949 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
950 mem_delete (mem_find (block));
951 #endif
952 MALLOC_UNBLOCK_INPUT;
953 }
954
955 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
956
957 /* The entry point is lisp_align_malloc which returns blocks of at most
958 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
959
960 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
961 #define USE_POSIX_MEMALIGN 1
962 #endif
963
964 /* BLOCK_ALIGN has to be a power of 2. */
965 #define BLOCK_ALIGN (1 << 10)
966
967 /* Padding to leave at the end of a malloc'd block. This is to give
968 malloc a chance to minimize the amount of memory wasted to alignment.
969 It should be tuned to the particular malloc library used.
970 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
971 posix_memalign on the other hand would ideally prefer a value of 4
972 because otherwise, there's 1020 bytes wasted between each ablocks.
973 In Emacs, testing shows that those 1020 can most of the time be
974 efficiently used by malloc to place other objects, so a value of 0 can
975 still preferable unless you have a lot of aligned blocks and virtually
976 nothing else. */
977 #define BLOCK_PADDING 0
978 #define BLOCK_BYTES \
979 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
980
981 /* Internal data structures and constants. */
982
983 #define ABLOCKS_SIZE 16
984
985 /* An aligned block of memory. */
986 struct ablock
987 {
988 union
989 {
990 char payload[BLOCK_BYTES];
991 struct ablock *next_free;
992 } x;
993 /* `abase' is the aligned base of the ablocks. */
994 /* It is overloaded to hold the virtual `busy' field that counts
995 the number of used ablock in the parent ablocks.
996 The first ablock has the `busy' field, the others have the `abase'
997 field. To tell the difference, we assume that pointers will have
998 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
999 is used to tell whether the real base of the parent ablocks is `abase'
1000 (if not, the word before the first ablock holds a pointer to the
1001 real base). */
1002 struct ablocks *abase;
1003 /* The padding of all but the last ablock is unused. The padding of
1004 the last ablock in an ablocks is not allocated. */
1005 #if BLOCK_PADDING
1006 char padding[BLOCK_PADDING];
1007 #endif
1008 };
1009
1010 /* A bunch of consecutive aligned blocks. */
1011 struct ablocks
1012 {
1013 struct ablock blocks[ABLOCKS_SIZE];
1014 };
1015
1016 /* Size of the block requested from malloc or posix_memalign. */
1017 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1018
1019 #define ABLOCK_ABASE(block) \
1020 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1021 ? (struct ablocks *)(block) \
1022 : (block)->abase)
1023
1024 /* Virtual `busy' field. */
1025 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1026
1027 /* Pointer to the (not necessarily aligned) malloc block. */
1028 #ifdef USE_POSIX_MEMALIGN
1029 #define ABLOCKS_BASE(abase) (abase)
1030 #else
1031 #define ABLOCKS_BASE(abase) \
1032 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
1033 #endif
1034
1035 /* The list of free ablock. */
1036 static struct ablock *free_ablock;
1037
1038 /* Allocate an aligned block of nbytes.
1039 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1040 smaller or equal to BLOCK_BYTES. */
1041 static void *
1042 lisp_align_malloc (size_t nbytes, enum mem_type type)
1043 {
1044 void *base, *val;
1045 struct ablocks *abase;
1046
1047 eassert (nbytes <= BLOCK_BYTES);
1048
1049 MALLOC_BLOCK_INPUT;
1050
1051 #ifdef GC_MALLOC_CHECK
1052 allocated_mem_type = type;
1053 #endif
1054
1055 if (!free_ablock)
1056 {
1057 int i;
1058 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1059
1060 #ifdef DOUG_LEA_MALLOC
1061 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1062 because mapped region contents are not preserved in
1063 a dumped Emacs. */
1064 mallopt (M_MMAP_MAX, 0);
1065 #endif
1066
1067 #ifdef USE_POSIX_MEMALIGN
1068 {
1069 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1070 if (err)
1071 base = NULL;
1072 abase = base;
1073 }
1074 #else
1075 base = malloc (ABLOCKS_BYTES);
1076 abase = ALIGN (base, BLOCK_ALIGN);
1077 #endif
1078
1079 if (base == 0)
1080 {
1081 MALLOC_UNBLOCK_INPUT;
1082 memory_full (ABLOCKS_BYTES);
1083 }
1084
1085 aligned = (base == abase);
1086 if (!aligned)
1087 ((void**)abase)[-1] = base;
1088
1089 #ifdef DOUG_LEA_MALLOC
1090 /* Back to a reasonable maximum of mmap'ed areas. */
1091 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1092 #endif
1093
1094 #ifndef USE_LSB_TAG
1095 /* If the memory just allocated cannot be addressed thru a Lisp
1096 object's pointer, and it needs to be, that's equivalent to
1097 running out of memory. */
1098 if (type != MEM_TYPE_NON_LISP)
1099 {
1100 Lisp_Object tem;
1101 char *end = (char *) base + ABLOCKS_BYTES - 1;
1102 XSETCONS (tem, end);
1103 if ((char *) XCONS (tem) != end)
1104 {
1105 lisp_malloc_loser = base;
1106 free (base);
1107 MALLOC_UNBLOCK_INPUT;
1108 memory_full (SIZE_MAX);
1109 }
1110 }
1111 #endif
1112
1113 /* Initialize the blocks and put them on the free list.
1114 If `base' was not properly aligned, we can't use the last block. */
1115 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1116 {
1117 abase->blocks[i].abase = abase;
1118 abase->blocks[i].x.next_free = free_ablock;
1119 free_ablock = &abase->blocks[i];
1120 }
1121 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1122
1123 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1124 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1125 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1126 eassert (ABLOCKS_BASE (abase) == base);
1127 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1128 }
1129
1130 abase = ABLOCK_ABASE (free_ablock);
1131 ABLOCKS_BUSY (abase) =
1132 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1133 val = free_ablock;
1134 free_ablock = free_ablock->x.next_free;
1135
1136 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1137 if (type != MEM_TYPE_NON_LISP)
1138 mem_insert (val, (char *) val + nbytes, type);
1139 #endif
1140
1141 MALLOC_UNBLOCK_INPUT;
1142
1143 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1144 return val;
1145 }
1146
1147 static void
1148 lisp_align_free (void *block)
1149 {
1150 struct ablock *ablock = block;
1151 struct ablocks *abase = ABLOCK_ABASE (ablock);
1152
1153 MALLOC_BLOCK_INPUT;
1154 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1155 mem_delete (mem_find (block));
1156 #endif
1157 /* Put on free list. */
1158 ablock->x.next_free = free_ablock;
1159 free_ablock = ablock;
1160 /* Update busy count. */
1161 ABLOCKS_BUSY (abase)
1162 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1163
1164 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1165 { /* All the blocks are free. */
1166 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1167 struct ablock **tem = &free_ablock;
1168 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1169
1170 while (*tem)
1171 {
1172 if (*tem >= (struct ablock *) abase && *tem < atop)
1173 {
1174 i++;
1175 *tem = (*tem)->x.next_free;
1176 }
1177 else
1178 tem = &(*tem)->x.next_free;
1179 }
1180 eassert ((aligned & 1) == aligned);
1181 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1182 #ifdef USE_POSIX_MEMALIGN
1183 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1184 #endif
1185 free (ABLOCKS_BASE (abase));
1186 }
1187 MALLOC_UNBLOCK_INPUT;
1188 }
1189
1190 /* Return a new buffer structure allocated from the heap with
1191 a call to lisp_malloc. */
1192
1193 struct buffer *
1194 allocate_buffer (void)
1195 {
1196 struct buffer *b
1197 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1198 MEM_TYPE_BUFFER);
1199 XSETPVECTYPESIZE (b, PVEC_BUFFER,
1200 ((sizeof (struct buffer) + sizeof (EMACS_INT) - 1)
1201 / sizeof (EMACS_INT)));
1202 return b;
1203 }
1204
1205 \f
1206 #ifndef SYSTEM_MALLOC
1207
1208 /* Arranging to disable input signals while we're in malloc.
1209
1210 This only works with GNU malloc. To help out systems which can't
1211 use GNU malloc, all the calls to malloc, realloc, and free
1212 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1213 pair; unfortunately, we have no idea what C library functions
1214 might call malloc, so we can't really protect them unless you're
1215 using GNU malloc. Fortunately, most of the major operating systems
1216 can use GNU malloc. */
1217
1218 #ifndef SYNC_INPUT
1219 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1220 there's no need to block input around malloc. */
1221
1222 #ifndef DOUG_LEA_MALLOC
1223 extern void * (*__malloc_hook) (size_t, const void *);
1224 extern void * (*__realloc_hook) (void *, size_t, const void *);
1225 extern void (*__free_hook) (void *, const void *);
1226 /* Else declared in malloc.h, perhaps with an extra arg. */
1227 #endif /* DOUG_LEA_MALLOC */
1228 static void * (*old_malloc_hook) (size_t, const void *);
1229 static void * (*old_realloc_hook) (void *, size_t, const void*);
1230 static void (*old_free_hook) (void*, const void*);
1231
1232 #ifdef DOUG_LEA_MALLOC
1233 # define BYTES_USED (mallinfo ().uordblks)
1234 #else
1235 # define BYTES_USED _bytes_used
1236 #endif
1237
1238 #ifdef GC_MALLOC_CHECK
1239 static int dont_register_blocks;
1240 #endif
1241
1242 static size_t bytes_used_when_reconsidered;
1243
1244 /* Value of _bytes_used, when spare_memory was freed. */
1245
1246 static size_t bytes_used_when_full;
1247
1248 /* This function is used as the hook for free to call. */
1249
1250 static void
1251 emacs_blocked_free (void *ptr, const void *ptr2)
1252 {
1253 BLOCK_INPUT_ALLOC;
1254
1255 #ifdef GC_MALLOC_CHECK
1256 if (ptr)
1257 {
1258 struct mem_node *m;
1259
1260 m = mem_find (ptr);
1261 if (m == MEM_NIL || m->start != ptr)
1262 {
1263 fprintf (stderr,
1264 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1265 abort ();
1266 }
1267 else
1268 {
1269 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1270 mem_delete (m);
1271 }
1272 }
1273 #endif /* GC_MALLOC_CHECK */
1274
1275 __free_hook = old_free_hook;
1276 free (ptr);
1277
1278 /* If we released our reserve (due to running out of memory),
1279 and we have a fair amount free once again,
1280 try to set aside another reserve in case we run out once more. */
1281 if (! NILP (Vmemory_full)
1282 /* Verify there is enough space that even with the malloc
1283 hysteresis this call won't run out again.
1284 The code here is correct as long as SPARE_MEMORY
1285 is substantially larger than the block size malloc uses. */
1286 && (bytes_used_when_full
1287 > ((bytes_used_when_reconsidered = BYTES_USED)
1288 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1289 refill_memory_reserve ();
1290
1291 __free_hook = emacs_blocked_free;
1292 UNBLOCK_INPUT_ALLOC;
1293 }
1294
1295
1296 /* This function is the malloc hook that Emacs uses. */
1297
1298 static void *
1299 emacs_blocked_malloc (size_t size, const void *ptr)
1300 {
1301 void *value;
1302
1303 BLOCK_INPUT_ALLOC;
1304 __malloc_hook = old_malloc_hook;
1305 #ifdef DOUG_LEA_MALLOC
1306 /* Segfaults on my system. --lorentey */
1307 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1308 #else
1309 __malloc_extra_blocks = malloc_hysteresis;
1310 #endif
1311
1312 value = (void *) malloc (size);
1313
1314 #ifdef GC_MALLOC_CHECK
1315 {
1316 struct mem_node *m = mem_find (value);
1317 if (m != MEM_NIL)
1318 {
1319 fprintf (stderr, "Malloc returned %p which is already in use\n",
1320 value);
1321 fprintf (stderr, "Region in use is %p...%p, %td bytes, type %d\n",
1322 m->start, m->end, (char *) m->end - (char *) m->start,
1323 m->type);
1324 abort ();
1325 }
1326
1327 if (!dont_register_blocks)
1328 {
1329 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1330 allocated_mem_type = MEM_TYPE_NON_LISP;
1331 }
1332 }
1333 #endif /* GC_MALLOC_CHECK */
1334
1335 __malloc_hook = emacs_blocked_malloc;
1336 UNBLOCK_INPUT_ALLOC;
1337
1338 /* fprintf (stderr, "%p malloc\n", value); */
1339 return value;
1340 }
1341
1342
1343 /* This function is the realloc hook that Emacs uses. */
1344
1345 static void *
1346 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1347 {
1348 void *value;
1349
1350 BLOCK_INPUT_ALLOC;
1351 __realloc_hook = old_realloc_hook;
1352
1353 #ifdef GC_MALLOC_CHECK
1354 if (ptr)
1355 {
1356 struct mem_node *m = mem_find (ptr);
1357 if (m == MEM_NIL || m->start != ptr)
1358 {
1359 fprintf (stderr,
1360 "Realloc of %p which wasn't allocated with malloc\n",
1361 ptr);
1362 abort ();
1363 }
1364
1365 mem_delete (m);
1366 }
1367
1368 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1369
1370 /* Prevent malloc from registering blocks. */
1371 dont_register_blocks = 1;
1372 #endif /* GC_MALLOC_CHECK */
1373
1374 value = (void *) realloc (ptr, size);
1375
1376 #ifdef GC_MALLOC_CHECK
1377 dont_register_blocks = 0;
1378
1379 {
1380 struct mem_node *m = mem_find (value);
1381 if (m != MEM_NIL)
1382 {
1383 fprintf (stderr, "Realloc returns memory that is already in use\n");
1384 abort ();
1385 }
1386
1387 /* Can't handle zero size regions in the red-black tree. */
1388 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1389 }
1390
1391 /* fprintf (stderr, "%p <- realloc\n", value); */
1392 #endif /* GC_MALLOC_CHECK */
1393
1394 __realloc_hook = emacs_blocked_realloc;
1395 UNBLOCK_INPUT_ALLOC;
1396
1397 return value;
1398 }
1399
1400
1401 #ifdef HAVE_PTHREAD
1402 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1403 normal malloc. Some thread implementations need this as they call
1404 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1405 calls malloc because it is the first call, and we have an endless loop. */
1406
1407 void
1408 reset_malloc_hooks (void)
1409 {
1410 __free_hook = old_free_hook;
1411 __malloc_hook = old_malloc_hook;
1412 __realloc_hook = old_realloc_hook;
1413 }
1414 #endif /* HAVE_PTHREAD */
1415
1416
1417 /* Called from main to set up malloc to use our hooks. */
1418
1419 void
1420 uninterrupt_malloc (void)
1421 {
1422 #ifdef HAVE_PTHREAD
1423 #ifdef DOUG_LEA_MALLOC
1424 pthread_mutexattr_t attr;
1425
1426 /* GLIBC has a faster way to do this, but let's keep it portable.
1427 This is according to the Single UNIX Specification. */
1428 pthread_mutexattr_init (&attr);
1429 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1430 pthread_mutex_init (&alloc_mutex, &attr);
1431 #else /* !DOUG_LEA_MALLOC */
1432 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1433 and the bundled gmalloc.c doesn't require it. */
1434 pthread_mutex_init (&alloc_mutex, NULL);
1435 #endif /* !DOUG_LEA_MALLOC */
1436 #endif /* HAVE_PTHREAD */
1437
1438 if (__free_hook != emacs_blocked_free)
1439 old_free_hook = __free_hook;
1440 __free_hook = emacs_blocked_free;
1441
1442 if (__malloc_hook != emacs_blocked_malloc)
1443 old_malloc_hook = __malloc_hook;
1444 __malloc_hook = emacs_blocked_malloc;
1445
1446 if (__realloc_hook != emacs_blocked_realloc)
1447 old_realloc_hook = __realloc_hook;
1448 __realloc_hook = emacs_blocked_realloc;
1449 }
1450
1451 #endif /* not SYNC_INPUT */
1452 #endif /* not SYSTEM_MALLOC */
1453
1454
1455 \f
1456 /***********************************************************************
1457 Interval Allocation
1458 ***********************************************************************/
1459
1460 /* Number of intervals allocated in an interval_block structure.
1461 The 1020 is 1024 minus malloc overhead. */
1462
1463 #define INTERVAL_BLOCK_SIZE \
1464 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1465
1466 /* Intervals are allocated in chunks in form of an interval_block
1467 structure. */
1468
1469 struct interval_block
1470 {
1471 /* Place `intervals' first, to preserve alignment. */
1472 struct interval intervals[INTERVAL_BLOCK_SIZE];
1473 struct interval_block *next;
1474 };
1475
1476 /* Current interval block. Its `next' pointer points to older
1477 blocks. */
1478
1479 static struct interval_block *interval_block;
1480
1481 /* Index in interval_block above of the next unused interval
1482 structure. */
1483
1484 static int interval_block_index;
1485
1486 /* Number of free and live intervals. */
1487
1488 static EMACS_INT total_free_intervals, total_intervals;
1489
1490 /* List of free intervals. */
1491
1492 static INTERVAL interval_free_list;
1493
1494
1495 /* Initialize interval allocation. */
1496
1497 static void
1498 init_intervals (void)
1499 {
1500 interval_block = NULL;
1501 interval_block_index = INTERVAL_BLOCK_SIZE;
1502 interval_free_list = 0;
1503 }
1504
1505
1506 /* Return a new interval. */
1507
1508 INTERVAL
1509 make_interval (void)
1510 {
1511 INTERVAL val;
1512
1513 /* eassert (!handling_signal); */
1514
1515 MALLOC_BLOCK_INPUT;
1516
1517 if (interval_free_list)
1518 {
1519 val = interval_free_list;
1520 interval_free_list = INTERVAL_PARENT (interval_free_list);
1521 }
1522 else
1523 {
1524 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1525 {
1526 register struct interval_block *newi;
1527
1528 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1529 MEM_TYPE_NON_LISP);
1530
1531 newi->next = interval_block;
1532 interval_block = newi;
1533 interval_block_index = 0;
1534 }
1535 val = &interval_block->intervals[interval_block_index++];
1536 }
1537
1538 MALLOC_UNBLOCK_INPUT;
1539
1540 consing_since_gc += sizeof (struct interval);
1541 intervals_consed++;
1542 RESET_INTERVAL (val);
1543 val->gcmarkbit = 0;
1544 return val;
1545 }
1546
1547
1548 /* Mark Lisp objects in interval I. */
1549
1550 static void
1551 mark_interval (register INTERVAL i, Lisp_Object dummy)
1552 {
1553 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1554 i->gcmarkbit = 1;
1555 mark_object (i->plist);
1556 }
1557
1558
1559 /* Mark the interval tree rooted in TREE. Don't call this directly;
1560 use the macro MARK_INTERVAL_TREE instead. */
1561
1562 static void
1563 mark_interval_tree (register INTERVAL tree)
1564 {
1565 /* No need to test if this tree has been marked already; this
1566 function is always called through the MARK_INTERVAL_TREE macro,
1567 which takes care of that. */
1568
1569 traverse_intervals_noorder (tree, mark_interval, Qnil);
1570 }
1571
1572
1573 /* Mark the interval tree rooted in I. */
1574
1575 #define MARK_INTERVAL_TREE(i) \
1576 do { \
1577 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1578 mark_interval_tree (i); \
1579 } while (0)
1580
1581
1582 #define UNMARK_BALANCE_INTERVALS(i) \
1583 do { \
1584 if (! NULL_INTERVAL_P (i)) \
1585 (i) = balance_intervals (i); \
1586 } while (0)
1587
1588 \f
1589 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1590 can't create number objects in macros. */
1591 #ifndef make_number
1592 Lisp_Object
1593 make_number (EMACS_INT n)
1594 {
1595 Lisp_Object obj;
1596 obj.s.val = n;
1597 obj.s.type = Lisp_Int;
1598 return obj;
1599 }
1600 #endif
1601 \f
1602 /* Convert the pointer-sized word P to EMACS_INT while preserving its
1603 type and ptr fields. */
1604 static Lisp_Object
1605 widen_to_Lisp_Object (void *p)
1606 {
1607 intptr_t i = (intptr_t) p;
1608 #ifdef USE_LISP_UNION_TYPE
1609 Lisp_Object obj;
1610 obj.i = i;
1611 return obj;
1612 #else
1613 return i;
1614 #endif
1615 }
1616 \f
1617 /***********************************************************************
1618 String Allocation
1619 ***********************************************************************/
1620
1621 /* Lisp_Strings are allocated in string_block structures. When a new
1622 string_block is allocated, all the Lisp_Strings it contains are
1623 added to a free-list string_free_list. When a new Lisp_String is
1624 needed, it is taken from that list. During the sweep phase of GC,
1625 string_blocks that are entirely free are freed, except two which
1626 we keep.
1627
1628 String data is allocated from sblock structures. Strings larger
1629 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1630 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1631
1632 Sblocks consist internally of sdata structures, one for each
1633 Lisp_String. The sdata structure points to the Lisp_String it
1634 belongs to. The Lisp_String points back to the `u.data' member of
1635 its sdata structure.
1636
1637 When a Lisp_String is freed during GC, it is put back on
1638 string_free_list, and its `data' member and its sdata's `string'
1639 pointer is set to null. The size of the string is recorded in the
1640 `u.nbytes' member of the sdata. So, sdata structures that are no
1641 longer used, can be easily recognized, and it's easy to compact the
1642 sblocks of small strings which we do in compact_small_strings. */
1643
1644 /* Size in bytes of an sblock structure used for small strings. This
1645 is 8192 minus malloc overhead. */
1646
1647 #define SBLOCK_SIZE 8188
1648
1649 /* Strings larger than this are considered large strings. String data
1650 for large strings is allocated from individual sblocks. */
1651
1652 #define LARGE_STRING_BYTES 1024
1653
1654 /* Structure describing string memory sub-allocated from an sblock.
1655 This is where the contents of Lisp strings are stored. */
1656
1657 struct sdata
1658 {
1659 /* Back-pointer to the string this sdata belongs to. If null, this
1660 structure is free, and the NBYTES member of the union below
1661 contains the string's byte size (the same value that STRING_BYTES
1662 would return if STRING were non-null). If non-null, STRING_BYTES
1663 (STRING) is the size of the data, and DATA contains the string's
1664 contents. */
1665 struct Lisp_String *string;
1666
1667 #ifdef GC_CHECK_STRING_BYTES
1668
1669 ptrdiff_t nbytes;
1670 unsigned char data[1];
1671
1672 #define SDATA_NBYTES(S) (S)->nbytes
1673 #define SDATA_DATA(S) (S)->data
1674 #define SDATA_SELECTOR(member) member
1675
1676 #else /* not GC_CHECK_STRING_BYTES */
1677
1678 union
1679 {
1680 /* When STRING is non-null. */
1681 unsigned char data[1];
1682
1683 /* When STRING is null. */
1684 ptrdiff_t nbytes;
1685 } u;
1686
1687 #define SDATA_NBYTES(S) (S)->u.nbytes
1688 #define SDATA_DATA(S) (S)->u.data
1689 #define SDATA_SELECTOR(member) u.member
1690
1691 #endif /* not GC_CHECK_STRING_BYTES */
1692
1693 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1694 };
1695
1696
1697 /* Structure describing a block of memory which is sub-allocated to
1698 obtain string data memory for strings. Blocks for small strings
1699 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1700 as large as needed. */
1701
1702 struct sblock
1703 {
1704 /* Next in list. */
1705 struct sblock *next;
1706
1707 /* Pointer to the next free sdata block. This points past the end
1708 of the sblock if there isn't any space left in this block. */
1709 struct sdata *next_free;
1710
1711 /* Start of data. */
1712 struct sdata first_data;
1713 };
1714
1715 /* Number of Lisp strings in a string_block structure. The 1020 is
1716 1024 minus malloc overhead. */
1717
1718 #define STRING_BLOCK_SIZE \
1719 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1720
1721 /* Structure describing a block from which Lisp_String structures
1722 are allocated. */
1723
1724 struct string_block
1725 {
1726 /* Place `strings' first, to preserve alignment. */
1727 struct Lisp_String strings[STRING_BLOCK_SIZE];
1728 struct string_block *next;
1729 };
1730
1731 /* Head and tail of the list of sblock structures holding Lisp string
1732 data. We always allocate from current_sblock. The NEXT pointers
1733 in the sblock structures go from oldest_sblock to current_sblock. */
1734
1735 static struct sblock *oldest_sblock, *current_sblock;
1736
1737 /* List of sblocks for large strings. */
1738
1739 static struct sblock *large_sblocks;
1740
1741 /* List of string_block structures. */
1742
1743 static struct string_block *string_blocks;
1744
1745 /* Free-list of Lisp_Strings. */
1746
1747 static struct Lisp_String *string_free_list;
1748
1749 /* Number of live and free Lisp_Strings. */
1750
1751 static EMACS_INT total_strings, total_free_strings;
1752
1753 /* Number of bytes used by live strings. */
1754
1755 static EMACS_INT total_string_size;
1756
1757 /* Given a pointer to a Lisp_String S which is on the free-list
1758 string_free_list, return a pointer to its successor in the
1759 free-list. */
1760
1761 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1762
1763 /* Return a pointer to the sdata structure belonging to Lisp string S.
1764 S must be live, i.e. S->data must not be null. S->data is actually
1765 a pointer to the `u.data' member of its sdata structure; the
1766 structure starts at a constant offset in front of that. */
1767
1768 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1769
1770
1771 #ifdef GC_CHECK_STRING_OVERRUN
1772
1773 /* We check for overrun in string data blocks by appending a small
1774 "cookie" after each allocated string data block, and check for the
1775 presence of this cookie during GC. */
1776
1777 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1778 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1779 { '\xde', '\xad', '\xbe', '\xef' };
1780
1781 #else
1782 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1783 #endif
1784
1785 /* Value is the size of an sdata structure large enough to hold NBYTES
1786 bytes of string data. The value returned includes a terminating
1787 NUL byte, the size of the sdata structure, and padding. */
1788
1789 #ifdef GC_CHECK_STRING_BYTES
1790
1791 #define SDATA_SIZE(NBYTES) \
1792 ((SDATA_DATA_OFFSET \
1793 + (NBYTES) + 1 \
1794 + sizeof (ptrdiff_t) - 1) \
1795 & ~(sizeof (ptrdiff_t) - 1))
1796
1797 #else /* not GC_CHECK_STRING_BYTES */
1798
1799 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1800 less than the size of that member. The 'max' is not needed when
1801 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1802 alignment code reserves enough space. */
1803
1804 #define SDATA_SIZE(NBYTES) \
1805 ((SDATA_DATA_OFFSET \
1806 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1807 ? NBYTES \
1808 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1809 + 1 \
1810 + sizeof (ptrdiff_t) - 1) \
1811 & ~(sizeof (ptrdiff_t) - 1))
1812
1813 #endif /* not GC_CHECK_STRING_BYTES */
1814
1815 /* Extra bytes to allocate for each string. */
1816
1817 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1818
1819 /* Exact bound on the number of bytes in a string, not counting the
1820 terminating null. A string cannot contain more bytes than
1821 STRING_BYTES_BOUND, nor can it be so long that the size_t
1822 arithmetic in allocate_string_data would overflow while it is
1823 calculating a value to be passed to malloc. */
1824 #define STRING_BYTES_MAX \
1825 min (STRING_BYTES_BOUND, \
1826 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD \
1827 - GC_STRING_EXTRA \
1828 - offsetof (struct sblock, first_data) \
1829 - SDATA_DATA_OFFSET) \
1830 & ~(sizeof (EMACS_INT) - 1)))
1831
1832 /* Initialize string allocation. Called from init_alloc_once. */
1833
1834 static void
1835 init_strings (void)
1836 {
1837 total_strings = total_free_strings = total_string_size = 0;
1838 oldest_sblock = current_sblock = large_sblocks = NULL;
1839 string_blocks = NULL;
1840 string_free_list = NULL;
1841 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1842 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1843 }
1844
1845
1846 #ifdef GC_CHECK_STRING_BYTES
1847
1848 static int check_string_bytes_count;
1849
1850 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1851
1852
1853 /* Like GC_STRING_BYTES, but with debugging check. */
1854
1855 ptrdiff_t
1856 string_bytes (struct Lisp_String *s)
1857 {
1858 ptrdiff_t nbytes =
1859 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1860
1861 if (!PURE_POINTER_P (s)
1862 && s->data
1863 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1864 abort ();
1865 return nbytes;
1866 }
1867
1868 /* Check validity of Lisp strings' string_bytes member in B. */
1869
1870 static void
1871 check_sblock (struct sblock *b)
1872 {
1873 struct sdata *from, *end, *from_end;
1874
1875 end = b->next_free;
1876
1877 for (from = &b->first_data; from < end; from = from_end)
1878 {
1879 /* Compute the next FROM here because copying below may
1880 overwrite data we need to compute it. */
1881 ptrdiff_t nbytes;
1882
1883 /* Check that the string size recorded in the string is the
1884 same as the one recorded in the sdata structure. */
1885 if (from->string)
1886 CHECK_STRING_BYTES (from->string);
1887
1888 if (from->string)
1889 nbytes = GC_STRING_BYTES (from->string);
1890 else
1891 nbytes = SDATA_NBYTES (from);
1892
1893 nbytes = SDATA_SIZE (nbytes);
1894 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1895 }
1896 }
1897
1898
1899 /* Check validity of Lisp strings' string_bytes member. ALL_P
1900 non-zero means check all strings, otherwise check only most
1901 recently allocated strings. Used for hunting a bug. */
1902
1903 static void
1904 check_string_bytes (int all_p)
1905 {
1906 if (all_p)
1907 {
1908 struct sblock *b;
1909
1910 for (b = large_sblocks; b; b = b->next)
1911 {
1912 struct Lisp_String *s = b->first_data.string;
1913 if (s)
1914 CHECK_STRING_BYTES (s);
1915 }
1916
1917 for (b = oldest_sblock; b; b = b->next)
1918 check_sblock (b);
1919 }
1920 else
1921 check_sblock (current_sblock);
1922 }
1923
1924 #endif /* GC_CHECK_STRING_BYTES */
1925
1926 #ifdef GC_CHECK_STRING_FREE_LIST
1927
1928 /* Walk through the string free list looking for bogus next pointers.
1929 This may catch buffer overrun from a previous string. */
1930
1931 static void
1932 check_string_free_list (void)
1933 {
1934 struct Lisp_String *s;
1935
1936 /* Pop a Lisp_String off the free-list. */
1937 s = string_free_list;
1938 while (s != NULL)
1939 {
1940 if ((uintptr_t) s < 1024)
1941 abort ();
1942 s = NEXT_FREE_LISP_STRING (s);
1943 }
1944 }
1945 #else
1946 #define check_string_free_list()
1947 #endif
1948
1949 /* Return a new Lisp_String. */
1950
1951 static struct Lisp_String *
1952 allocate_string (void)
1953 {
1954 struct Lisp_String *s;
1955
1956 /* eassert (!handling_signal); */
1957
1958 MALLOC_BLOCK_INPUT;
1959
1960 /* If the free-list is empty, allocate a new string_block, and
1961 add all the Lisp_Strings in it to the free-list. */
1962 if (string_free_list == NULL)
1963 {
1964 struct string_block *b;
1965 int i;
1966
1967 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1968 memset (b, 0, sizeof *b);
1969 b->next = string_blocks;
1970 string_blocks = b;
1971
1972 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1973 {
1974 s = b->strings + i;
1975 NEXT_FREE_LISP_STRING (s) = string_free_list;
1976 string_free_list = s;
1977 }
1978
1979 total_free_strings += STRING_BLOCK_SIZE;
1980 }
1981
1982 check_string_free_list ();
1983
1984 /* Pop a Lisp_String off the free-list. */
1985 s = string_free_list;
1986 string_free_list = NEXT_FREE_LISP_STRING (s);
1987
1988 MALLOC_UNBLOCK_INPUT;
1989
1990 /* Probably not strictly necessary, but play it safe. */
1991 memset (s, 0, sizeof *s);
1992
1993 --total_free_strings;
1994 ++total_strings;
1995 ++strings_consed;
1996 consing_since_gc += sizeof *s;
1997
1998 #ifdef GC_CHECK_STRING_BYTES
1999 if (!noninteractive)
2000 {
2001 if (++check_string_bytes_count == 200)
2002 {
2003 check_string_bytes_count = 0;
2004 check_string_bytes (1);
2005 }
2006 else
2007 check_string_bytes (0);
2008 }
2009 #endif /* GC_CHECK_STRING_BYTES */
2010
2011 return s;
2012 }
2013
2014
2015 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
2016 plus a NUL byte at the end. Allocate an sdata structure for S, and
2017 set S->data to its `u.data' member. Store a NUL byte at the end of
2018 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
2019 S->data if it was initially non-null. */
2020
2021 void
2022 allocate_string_data (struct Lisp_String *s,
2023 EMACS_INT nchars, EMACS_INT nbytes)
2024 {
2025 struct sdata *data, *old_data;
2026 struct sblock *b;
2027 ptrdiff_t needed, old_nbytes;
2028
2029 if (STRING_BYTES_MAX < nbytes)
2030 string_overflow ();
2031
2032 /* Determine the number of bytes needed to store NBYTES bytes
2033 of string data. */
2034 needed = SDATA_SIZE (nbytes);
2035 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
2036 old_nbytes = GC_STRING_BYTES (s);
2037
2038 MALLOC_BLOCK_INPUT;
2039
2040 if (nbytes > LARGE_STRING_BYTES)
2041 {
2042 size_t size = offsetof (struct sblock, first_data) + needed;
2043
2044 #ifdef DOUG_LEA_MALLOC
2045 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2046 because mapped region contents are not preserved in
2047 a dumped Emacs.
2048
2049 In case you think of allowing it in a dumped Emacs at the
2050 cost of not being able to re-dump, there's another reason:
2051 mmap'ed data typically have an address towards the top of the
2052 address space, which won't fit into an EMACS_INT (at least on
2053 32-bit systems with the current tagging scheme). --fx */
2054 mallopt (M_MMAP_MAX, 0);
2055 #endif
2056
2057 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
2058
2059 #ifdef DOUG_LEA_MALLOC
2060 /* Back to a reasonable maximum of mmap'ed areas. */
2061 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2062 #endif
2063
2064 b->next_free = &b->first_data;
2065 b->first_data.string = NULL;
2066 b->next = large_sblocks;
2067 large_sblocks = b;
2068 }
2069 else if (current_sblock == NULL
2070 || (((char *) current_sblock + SBLOCK_SIZE
2071 - (char *) current_sblock->next_free)
2072 < (needed + GC_STRING_EXTRA)))
2073 {
2074 /* Not enough room in the current sblock. */
2075 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2076 b->next_free = &b->first_data;
2077 b->first_data.string = NULL;
2078 b->next = NULL;
2079
2080 if (current_sblock)
2081 current_sblock->next = b;
2082 else
2083 oldest_sblock = b;
2084 current_sblock = b;
2085 }
2086 else
2087 b = current_sblock;
2088
2089 data = b->next_free;
2090 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2091
2092 MALLOC_UNBLOCK_INPUT;
2093
2094 data->string = s;
2095 s->data = SDATA_DATA (data);
2096 #ifdef GC_CHECK_STRING_BYTES
2097 SDATA_NBYTES (data) = nbytes;
2098 #endif
2099 s->size = nchars;
2100 s->size_byte = nbytes;
2101 s->data[nbytes] = '\0';
2102 #ifdef GC_CHECK_STRING_OVERRUN
2103 memcpy ((char *) data + needed, string_overrun_cookie,
2104 GC_STRING_OVERRUN_COOKIE_SIZE);
2105 #endif
2106
2107 /* If S had already data assigned, mark that as free by setting its
2108 string back-pointer to null, and recording the size of the data
2109 in it. */
2110 if (old_data)
2111 {
2112 SDATA_NBYTES (old_data) = old_nbytes;
2113 old_data->string = NULL;
2114 }
2115
2116 consing_since_gc += needed;
2117 }
2118
2119
2120 /* Sweep and compact strings. */
2121
2122 static void
2123 sweep_strings (void)
2124 {
2125 struct string_block *b, *next;
2126 struct string_block *live_blocks = NULL;
2127
2128 string_free_list = NULL;
2129 total_strings = total_free_strings = 0;
2130 total_string_size = 0;
2131
2132 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2133 for (b = string_blocks; b; b = next)
2134 {
2135 int i, nfree = 0;
2136 struct Lisp_String *free_list_before = string_free_list;
2137
2138 next = b->next;
2139
2140 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2141 {
2142 struct Lisp_String *s = b->strings + i;
2143
2144 if (s->data)
2145 {
2146 /* String was not on free-list before. */
2147 if (STRING_MARKED_P (s))
2148 {
2149 /* String is live; unmark it and its intervals. */
2150 UNMARK_STRING (s);
2151
2152 if (!NULL_INTERVAL_P (s->intervals))
2153 UNMARK_BALANCE_INTERVALS (s->intervals);
2154
2155 ++total_strings;
2156 total_string_size += STRING_BYTES (s);
2157 }
2158 else
2159 {
2160 /* String is dead. Put it on the free-list. */
2161 struct sdata *data = SDATA_OF_STRING (s);
2162
2163 /* Save the size of S in its sdata so that we know
2164 how large that is. Reset the sdata's string
2165 back-pointer so that we know it's free. */
2166 #ifdef GC_CHECK_STRING_BYTES
2167 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2168 abort ();
2169 #else
2170 data->u.nbytes = GC_STRING_BYTES (s);
2171 #endif
2172 data->string = NULL;
2173
2174 /* Reset the strings's `data' member so that we
2175 know it's free. */
2176 s->data = NULL;
2177
2178 /* Put the string on the free-list. */
2179 NEXT_FREE_LISP_STRING (s) = string_free_list;
2180 string_free_list = s;
2181 ++nfree;
2182 }
2183 }
2184 else
2185 {
2186 /* S was on the free-list before. Put it there again. */
2187 NEXT_FREE_LISP_STRING (s) = string_free_list;
2188 string_free_list = s;
2189 ++nfree;
2190 }
2191 }
2192
2193 /* Free blocks that contain free Lisp_Strings only, except
2194 the first two of them. */
2195 if (nfree == STRING_BLOCK_SIZE
2196 && total_free_strings > STRING_BLOCK_SIZE)
2197 {
2198 lisp_free (b);
2199 string_free_list = free_list_before;
2200 }
2201 else
2202 {
2203 total_free_strings += nfree;
2204 b->next = live_blocks;
2205 live_blocks = b;
2206 }
2207 }
2208
2209 check_string_free_list ();
2210
2211 string_blocks = live_blocks;
2212 free_large_strings ();
2213 compact_small_strings ();
2214
2215 check_string_free_list ();
2216 }
2217
2218
2219 /* Free dead large strings. */
2220
2221 static void
2222 free_large_strings (void)
2223 {
2224 struct sblock *b, *next;
2225 struct sblock *live_blocks = NULL;
2226
2227 for (b = large_sblocks; b; b = next)
2228 {
2229 next = b->next;
2230
2231 if (b->first_data.string == NULL)
2232 lisp_free (b);
2233 else
2234 {
2235 b->next = live_blocks;
2236 live_blocks = b;
2237 }
2238 }
2239
2240 large_sblocks = live_blocks;
2241 }
2242
2243
2244 /* Compact data of small strings. Free sblocks that don't contain
2245 data of live strings after compaction. */
2246
2247 static void
2248 compact_small_strings (void)
2249 {
2250 struct sblock *b, *tb, *next;
2251 struct sdata *from, *to, *end, *tb_end;
2252 struct sdata *to_end, *from_end;
2253
2254 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2255 to, and TB_END is the end of TB. */
2256 tb = oldest_sblock;
2257 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2258 to = &tb->first_data;
2259
2260 /* Step through the blocks from the oldest to the youngest. We
2261 expect that old blocks will stabilize over time, so that less
2262 copying will happen this way. */
2263 for (b = oldest_sblock; b; b = b->next)
2264 {
2265 end = b->next_free;
2266 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2267
2268 for (from = &b->first_data; from < end; from = from_end)
2269 {
2270 /* Compute the next FROM here because copying below may
2271 overwrite data we need to compute it. */
2272 ptrdiff_t nbytes;
2273
2274 #ifdef GC_CHECK_STRING_BYTES
2275 /* Check that the string size recorded in the string is the
2276 same as the one recorded in the sdata structure. */
2277 if (from->string
2278 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2279 abort ();
2280 #endif /* GC_CHECK_STRING_BYTES */
2281
2282 if (from->string)
2283 nbytes = GC_STRING_BYTES (from->string);
2284 else
2285 nbytes = SDATA_NBYTES (from);
2286
2287 if (nbytes > LARGE_STRING_BYTES)
2288 abort ();
2289
2290 nbytes = SDATA_SIZE (nbytes);
2291 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2292
2293 #ifdef GC_CHECK_STRING_OVERRUN
2294 if (memcmp (string_overrun_cookie,
2295 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2296 GC_STRING_OVERRUN_COOKIE_SIZE))
2297 abort ();
2298 #endif
2299
2300 /* FROM->string non-null means it's alive. Copy its data. */
2301 if (from->string)
2302 {
2303 /* If TB is full, proceed with the next sblock. */
2304 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2305 if (to_end > tb_end)
2306 {
2307 tb->next_free = to;
2308 tb = tb->next;
2309 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2310 to = &tb->first_data;
2311 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2312 }
2313
2314 /* Copy, and update the string's `data' pointer. */
2315 if (from != to)
2316 {
2317 xassert (tb != b || to < from);
2318 memmove (to, from, nbytes + GC_STRING_EXTRA);
2319 to->string->data = SDATA_DATA (to);
2320 }
2321
2322 /* Advance past the sdata we copied to. */
2323 to = to_end;
2324 }
2325 }
2326 }
2327
2328 /* The rest of the sblocks following TB don't contain live data, so
2329 we can free them. */
2330 for (b = tb->next; b; b = next)
2331 {
2332 next = b->next;
2333 lisp_free (b);
2334 }
2335
2336 tb->next_free = to;
2337 tb->next = NULL;
2338 current_sblock = tb;
2339 }
2340
2341 void
2342 string_overflow (void)
2343 {
2344 error ("Maximum string size exceeded");
2345 }
2346
2347 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2348 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2349 LENGTH must be an integer.
2350 INIT must be an integer that represents a character. */)
2351 (Lisp_Object length, Lisp_Object init)
2352 {
2353 register Lisp_Object val;
2354 register unsigned char *p, *end;
2355 int c;
2356 EMACS_INT nbytes;
2357
2358 CHECK_NATNUM (length);
2359 CHECK_CHARACTER (init);
2360
2361 c = XFASTINT (init);
2362 if (ASCII_CHAR_P (c))
2363 {
2364 nbytes = XINT (length);
2365 val = make_uninit_string (nbytes);
2366 p = SDATA (val);
2367 end = p + SCHARS (val);
2368 while (p != end)
2369 *p++ = c;
2370 }
2371 else
2372 {
2373 unsigned char str[MAX_MULTIBYTE_LENGTH];
2374 int len = CHAR_STRING (c, str);
2375 EMACS_INT string_len = XINT (length);
2376
2377 if (string_len > STRING_BYTES_MAX / len)
2378 string_overflow ();
2379 nbytes = len * string_len;
2380 val = make_uninit_multibyte_string (string_len, nbytes);
2381 p = SDATA (val);
2382 end = p + nbytes;
2383 while (p != end)
2384 {
2385 memcpy (p, str, len);
2386 p += len;
2387 }
2388 }
2389
2390 *p = 0;
2391 return val;
2392 }
2393
2394
2395 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2396 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2397 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2398 (Lisp_Object length, Lisp_Object init)
2399 {
2400 register Lisp_Object val;
2401 struct Lisp_Bool_Vector *p;
2402 ptrdiff_t length_in_chars;
2403 EMACS_INT length_in_elts;
2404 int bits_per_value;
2405
2406 CHECK_NATNUM (length);
2407
2408 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2409
2410 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2411
2412 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2413 slot `size' of the struct Lisp_Bool_Vector. */
2414 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2415
2416 /* No Lisp_Object to trace in there. */
2417 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2418
2419 p = XBOOL_VECTOR (val);
2420 p->size = XFASTINT (length);
2421
2422 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2423 / BOOL_VECTOR_BITS_PER_CHAR);
2424 if (length_in_chars)
2425 {
2426 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2427
2428 /* Clear any extraneous bits in the last byte. */
2429 p->data[length_in_chars - 1]
2430 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2431 }
2432
2433 return val;
2434 }
2435
2436
2437 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2438 of characters from the contents. This string may be unibyte or
2439 multibyte, depending on the contents. */
2440
2441 Lisp_Object
2442 make_string (const char *contents, ptrdiff_t nbytes)
2443 {
2444 register Lisp_Object val;
2445 ptrdiff_t nchars, multibyte_nbytes;
2446
2447 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2448 &nchars, &multibyte_nbytes);
2449 if (nbytes == nchars || nbytes != multibyte_nbytes)
2450 /* CONTENTS contains no multibyte sequences or contains an invalid
2451 multibyte sequence. We must make unibyte string. */
2452 val = make_unibyte_string (contents, nbytes);
2453 else
2454 val = make_multibyte_string (contents, nchars, nbytes);
2455 return val;
2456 }
2457
2458
2459 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2460
2461 Lisp_Object
2462 make_unibyte_string (const char *contents, ptrdiff_t length)
2463 {
2464 register Lisp_Object val;
2465 val = make_uninit_string (length);
2466 memcpy (SDATA (val), contents, length);
2467 return val;
2468 }
2469
2470
2471 /* Make a multibyte string from NCHARS characters occupying NBYTES
2472 bytes at CONTENTS. */
2473
2474 Lisp_Object
2475 make_multibyte_string (const char *contents,
2476 ptrdiff_t nchars, ptrdiff_t nbytes)
2477 {
2478 register Lisp_Object val;
2479 val = make_uninit_multibyte_string (nchars, nbytes);
2480 memcpy (SDATA (val), contents, nbytes);
2481 return val;
2482 }
2483
2484
2485 /* Make a string from NCHARS characters occupying NBYTES bytes at
2486 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2487
2488 Lisp_Object
2489 make_string_from_bytes (const char *contents,
2490 ptrdiff_t nchars, ptrdiff_t nbytes)
2491 {
2492 register Lisp_Object val;
2493 val = make_uninit_multibyte_string (nchars, nbytes);
2494 memcpy (SDATA (val), contents, nbytes);
2495 if (SBYTES (val) == SCHARS (val))
2496 STRING_SET_UNIBYTE (val);
2497 return val;
2498 }
2499
2500
2501 /* Make a string from NCHARS characters occupying NBYTES bytes at
2502 CONTENTS. The argument MULTIBYTE controls whether to label the
2503 string as multibyte. If NCHARS is negative, it counts the number of
2504 characters by itself. */
2505
2506 Lisp_Object
2507 make_specified_string (const char *contents,
2508 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
2509 {
2510 register Lisp_Object val;
2511
2512 if (nchars < 0)
2513 {
2514 if (multibyte)
2515 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2516 nbytes);
2517 else
2518 nchars = nbytes;
2519 }
2520 val = make_uninit_multibyte_string (nchars, nbytes);
2521 memcpy (SDATA (val), contents, nbytes);
2522 if (!multibyte)
2523 STRING_SET_UNIBYTE (val);
2524 return val;
2525 }
2526
2527
2528 /* Make a string from the data at STR, treating it as multibyte if the
2529 data warrants. */
2530
2531 Lisp_Object
2532 build_string (const char *str)
2533 {
2534 return make_string (str, strlen (str));
2535 }
2536
2537
2538 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2539 occupying LENGTH bytes. */
2540
2541 Lisp_Object
2542 make_uninit_string (EMACS_INT length)
2543 {
2544 Lisp_Object val;
2545
2546 if (!length)
2547 return empty_unibyte_string;
2548 val = make_uninit_multibyte_string (length, length);
2549 STRING_SET_UNIBYTE (val);
2550 return val;
2551 }
2552
2553
2554 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2555 which occupy NBYTES bytes. */
2556
2557 Lisp_Object
2558 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2559 {
2560 Lisp_Object string;
2561 struct Lisp_String *s;
2562
2563 if (nchars < 0)
2564 abort ();
2565 if (!nbytes)
2566 return empty_multibyte_string;
2567
2568 s = allocate_string ();
2569 allocate_string_data (s, nchars, nbytes);
2570 XSETSTRING (string, s);
2571 string_chars_consed += nbytes;
2572 return string;
2573 }
2574
2575
2576 \f
2577 /***********************************************************************
2578 Float Allocation
2579 ***********************************************************************/
2580
2581 /* We store float cells inside of float_blocks, allocating a new
2582 float_block with malloc whenever necessary. Float cells reclaimed
2583 by GC are put on a free list to be reallocated before allocating
2584 any new float cells from the latest float_block. */
2585
2586 #define FLOAT_BLOCK_SIZE \
2587 (((BLOCK_BYTES - sizeof (struct float_block *) \
2588 /* The compiler might add padding at the end. */ \
2589 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2590 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2591
2592 #define GETMARKBIT(block,n) \
2593 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2594 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2595 & 1)
2596
2597 #define SETMARKBIT(block,n) \
2598 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2599 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2600
2601 #define UNSETMARKBIT(block,n) \
2602 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2603 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2604
2605 #define FLOAT_BLOCK(fptr) \
2606 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2607
2608 #define FLOAT_INDEX(fptr) \
2609 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2610
2611 struct float_block
2612 {
2613 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2614 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2615 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2616 struct float_block *next;
2617 };
2618
2619 #define FLOAT_MARKED_P(fptr) \
2620 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2621
2622 #define FLOAT_MARK(fptr) \
2623 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2624
2625 #define FLOAT_UNMARK(fptr) \
2626 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2627
2628 /* Current float_block. */
2629
2630 static struct float_block *float_block;
2631
2632 /* Index of first unused Lisp_Float in the current float_block. */
2633
2634 static int float_block_index;
2635
2636 /* Free-list of Lisp_Floats. */
2637
2638 static struct Lisp_Float *float_free_list;
2639
2640
2641 /* Initialize float allocation. */
2642
2643 static void
2644 init_float (void)
2645 {
2646 float_block = NULL;
2647 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2648 float_free_list = 0;
2649 }
2650
2651
2652 /* Return a new float object with value FLOAT_VALUE. */
2653
2654 Lisp_Object
2655 make_float (double float_value)
2656 {
2657 register Lisp_Object val;
2658
2659 /* eassert (!handling_signal); */
2660
2661 MALLOC_BLOCK_INPUT;
2662
2663 if (float_free_list)
2664 {
2665 /* We use the data field for chaining the free list
2666 so that we won't use the same field that has the mark bit. */
2667 XSETFLOAT (val, float_free_list);
2668 float_free_list = float_free_list->u.chain;
2669 }
2670 else
2671 {
2672 if (float_block_index == FLOAT_BLOCK_SIZE)
2673 {
2674 register struct float_block *new;
2675
2676 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2677 MEM_TYPE_FLOAT);
2678 new->next = float_block;
2679 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2680 float_block = new;
2681 float_block_index = 0;
2682 }
2683 XSETFLOAT (val, &float_block->floats[float_block_index]);
2684 float_block_index++;
2685 }
2686
2687 MALLOC_UNBLOCK_INPUT;
2688
2689 XFLOAT_INIT (val, float_value);
2690 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2691 consing_since_gc += sizeof (struct Lisp_Float);
2692 floats_consed++;
2693 return val;
2694 }
2695
2696
2697 \f
2698 /***********************************************************************
2699 Cons Allocation
2700 ***********************************************************************/
2701
2702 /* We store cons cells inside of cons_blocks, allocating a new
2703 cons_block with malloc whenever necessary. Cons cells reclaimed by
2704 GC are put on a free list to be reallocated before allocating
2705 any new cons cells from the latest cons_block. */
2706
2707 #define CONS_BLOCK_SIZE \
2708 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2709 /* The compiler might add padding at the end. */ \
2710 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2711 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2712
2713 #define CONS_BLOCK(fptr) \
2714 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2715
2716 #define CONS_INDEX(fptr) \
2717 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2718
2719 struct cons_block
2720 {
2721 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2722 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2723 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2724 struct cons_block *next;
2725 };
2726
2727 #define CONS_MARKED_P(fptr) \
2728 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2729
2730 #define CONS_MARK(fptr) \
2731 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2732
2733 #define CONS_UNMARK(fptr) \
2734 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2735
2736 /* Current cons_block. */
2737
2738 static struct cons_block *cons_block;
2739
2740 /* Index of first unused Lisp_Cons in the current block. */
2741
2742 static int cons_block_index;
2743
2744 /* Free-list of Lisp_Cons structures. */
2745
2746 static struct Lisp_Cons *cons_free_list;
2747
2748
2749 /* Initialize cons allocation. */
2750
2751 static void
2752 init_cons (void)
2753 {
2754 cons_block = NULL;
2755 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2756 cons_free_list = 0;
2757 }
2758
2759
2760 /* Explicitly free a cons cell by putting it on the free-list. */
2761
2762 void
2763 free_cons (struct Lisp_Cons *ptr)
2764 {
2765 ptr->u.chain = cons_free_list;
2766 #if GC_MARK_STACK
2767 ptr->car = Vdead;
2768 #endif
2769 cons_free_list = ptr;
2770 }
2771
2772 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2773 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2774 (Lisp_Object car, Lisp_Object cdr)
2775 {
2776 register Lisp_Object val;
2777
2778 /* eassert (!handling_signal); */
2779
2780 MALLOC_BLOCK_INPUT;
2781
2782 if (cons_free_list)
2783 {
2784 /* We use the cdr for chaining the free list
2785 so that we won't use the same field that has the mark bit. */
2786 XSETCONS (val, cons_free_list);
2787 cons_free_list = cons_free_list->u.chain;
2788 }
2789 else
2790 {
2791 if (cons_block_index == CONS_BLOCK_SIZE)
2792 {
2793 register struct cons_block *new;
2794 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2795 MEM_TYPE_CONS);
2796 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2797 new->next = cons_block;
2798 cons_block = new;
2799 cons_block_index = 0;
2800 }
2801 XSETCONS (val, &cons_block->conses[cons_block_index]);
2802 cons_block_index++;
2803 }
2804
2805 MALLOC_UNBLOCK_INPUT;
2806
2807 XSETCAR (val, car);
2808 XSETCDR (val, cdr);
2809 eassert (!CONS_MARKED_P (XCONS (val)));
2810 consing_since_gc += sizeof (struct Lisp_Cons);
2811 cons_cells_consed++;
2812 return val;
2813 }
2814
2815 #ifdef GC_CHECK_CONS_LIST
2816 /* Get an error now if there's any junk in the cons free list. */
2817 void
2818 check_cons_list (void)
2819 {
2820 struct Lisp_Cons *tail = cons_free_list;
2821
2822 while (tail)
2823 tail = tail->u.chain;
2824 }
2825 #endif
2826
2827 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2828
2829 Lisp_Object
2830 list1 (Lisp_Object arg1)
2831 {
2832 return Fcons (arg1, Qnil);
2833 }
2834
2835 Lisp_Object
2836 list2 (Lisp_Object arg1, Lisp_Object arg2)
2837 {
2838 return Fcons (arg1, Fcons (arg2, Qnil));
2839 }
2840
2841
2842 Lisp_Object
2843 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2844 {
2845 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2846 }
2847
2848
2849 Lisp_Object
2850 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2851 {
2852 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2853 }
2854
2855
2856 Lisp_Object
2857 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2858 {
2859 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2860 Fcons (arg5, Qnil)))));
2861 }
2862
2863
2864 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2865 doc: /* Return a newly created list with specified arguments as elements.
2866 Any number of arguments, even zero arguments, are allowed.
2867 usage: (list &rest OBJECTS) */)
2868 (ptrdiff_t nargs, Lisp_Object *args)
2869 {
2870 register Lisp_Object val;
2871 val = Qnil;
2872
2873 while (nargs > 0)
2874 {
2875 nargs--;
2876 val = Fcons (args[nargs], val);
2877 }
2878 return val;
2879 }
2880
2881
2882 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2883 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2884 (register Lisp_Object length, Lisp_Object init)
2885 {
2886 register Lisp_Object val;
2887 register EMACS_INT size;
2888
2889 CHECK_NATNUM (length);
2890 size = XFASTINT (length);
2891
2892 val = Qnil;
2893 while (size > 0)
2894 {
2895 val = Fcons (init, val);
2896 --size;
2897
2898 if (size > 0)
2899 {
2900 val = Fcons (init, val);
2901 --size;
2902
2903 if (size > 0)
2904 {
2905 val = Fcons (init, val);
2906 --size;
2907
2908 if (size > 0)
2909 {
2910 val = Fcons (init, val);
2911 --size;
2912
2913 if (size > 0)
2914 {
2915 val = Fcons (init, val);
2916 --size;
2917 }
2918 }
2919 }
2920 }
2921
2922 QUIT;
2923 }
2924
2925 return val;
2926 }
2927
2928
2929 \f
2930 /***********************************************************************
2931 Vector Allocation
2932 ***********************************************************************/
2933
2934 /* This value is balanced well enough to avoid too much internal overhead
2935 for the most common cases; it's not required to be a power of two, but
2936 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2937
2938 #define VECTOR_BLOCK_SIZE 4096
2939
2940 /* Handy constants for vectorlike objects. */
2941 enum
2942 {
2943 header_size = offsetof (struct Lisp_Vector, contents),
2944 word_size = sizeof (Lisp_Object),
2945 roundup_size = COMMON_MULTIPLE (sizeof (Lisp_Object),
2946 #ifdef USE_LSB_TAG
2947 8 /* Helps to maintain alignment constraints imposed by
2948 assumption that least 3 bits of pointers are always 0. */
2949 #else
2950 1 /* If alignment doesn't matter, should round up
2951 to sizeof (Lisp_Object) at least. */
2952 #endif
2953 )
2954 };
2955
2956 /* Round up X to nearest mult-of-ROUNDUP_SIZE,
2957 assuming ROUNDUP_SIZE is a power of 2. */
2958
2959 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2960
2961 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2962
2963 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2964
2965 /* Size of the minimal vector allocated from block. */
2966
2967 #define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2968
2969 /* Size of the largest vector allocated from block. */
2970
2971 #define VBLOCK_BYTES_MAX \
2972 vroundup ((VECTOR_BLOCK_BYTES / 2) - sizeof (Lisp_Object))
2973
2974 /* We maintain one free list for each possible block-allocated
2975 vector size, and this is the number of free lists we have. */
2976
2977 #define VECTOR_MAX_FREE_LIST_INDEX \
2978 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2979
2980 /* When the vector is on a free list, vectorlike_header.SIZE is set to
2981 this special value ORed with vector's memory footprint size. */
2982
2983 #define VECTOR_FREE_LIST_FLAG (~(ARRAY_MARK_FLAG | PSEUDOVECTOR_FLAG \
2984 | (VECTOR_BLOCK_SIZE - 1)))
2985
2986 /* Common shortcut to advance vector pointer over a block data. */
2987
2988 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2989
2990 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2991
2992 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2993
2994 /* Common shortcut to setup vector on a free list. */
2995
2996 #define SETUP_ON_FREE_LIST(v, nbytes, index) \
2997 do { \
2998 (v)->header.size = VECTOR_FREE_LIST_FLAG | (nbytes); \
2999 eassert ((nbytes) % roundup_size == 0); \
3000 (index) = VINDEX (nbytes); \
3001 eassert ((index) < VECTOR_MAX_FREE_LIST_INDEX); \
3002 (v)->header.next.vector = vector_free_lists[index]; \
3003 vector_free_lists[index] = (v); \
3004 } while (0)
3005
3006 struct vector_block
3007 {
3008 char data[VECTOR_BLOCK_BYTES];
3009 struct vector_block *next;
3010 };
3011
3012 /* Chain of vector blocks. */
3013
3014 static struct vector_block *vector_blocks;
3015
3016 /* Vector free lists, where NTH item points to a chain of free
3017 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
3018
3019 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
3020
3021 /* Singly-linked list of large vectors. */
3022
3023 static struct Lisp_Vector *large_vectors;
3024
3025 /* The only vector with 0 slots, allocated from pure space. */
3026
3027 static struct Lisp_Vector *zero_vector;
3028
3029 /* Get a new vector block. */
3030
3031 static struct vector_block *
3032 allocate_vector_block (void)
3033 {
3034 struct vector_block *block;
3035
3036 #ifdef DOUG_LEA_MALLOC
3037 mallopt (M_MMAP_MAX, 0);
3038 #endif
3039
3040 block = xmalloc (sizeof (struct vector_block));
3041
3042 #ifdef DOUG_LEA_MALLOC
3043 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3044 #endif
3045
3046 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3047 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
3048 MEM_TYPE_VECTOR_BLOCK);
3049 #endif
3050
3051 block->next = vector_blocks;
3052 vector_blocks = block;
3053 return block;
3054 }
3055
3056 /* Called once to initialize vector allocation. */
3057
3058 static void
3059 init_vectors (void)
3060 {
3061 zero_vector = pure_alloc (header_size, Lisp_Vectorlike);
3062 zero_vector->header.size = 0;
3063 }
3064
3065 /* Allocate vector from a vector block. */
3066
3067 static struct Lisp_Vector *
3068 allocate_vector_from_block (size_t nbytes)
3069 {
3070 struct Lisp_Vector *vector, *rest;
3071 struct vector_block *block;
3072 size_t index, restbytes;
3073
3074 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3075 eassert (nbytes % roundup_size == 0);
3076
3077 /* First, try to allocate from a free list
3078 containing vectors of the requested size. */
3079 index = VINDEX (nbytes);
3080 if (vector_free_lists[index])
3081 {
3082 vector = vector_free_lists[index];
3083 vector_free_lists[index] = vector->header.next.vector;
3084 vector->header.next.nbytes = nbytes;
3085 return vector;
3086 }
3087
3088 /* Next, check free lists containing larger vectors. Since
3089 we will split the result, we should have remaining space
3090 large enough to use for one-slot vector at least. */
3091 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3092 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3093 if (vector_free_lists[index])
3094 {
3095 /* This vector is larger than requested. */
3096 vector = vector_free_lists[index];
3097 vector_free_lists[index] = vector->header.next.vector;
3098 vector->header.next.nbytes = nbytes;
3099
3100 /* Excess bytes are used for the smaller vector,
3101 which should be set on an appropriate free list. */
3102 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3103 eassert (restbytes % roundup_size == 0);
3104 rest = ADVANCE (vector, nbytes);
3105 SETUP_ON_FREE_LIST (rest, restbytes, index);
3106 return vector;
3107 }
3108
3109 /* Finally, need a new vector block. */
3110 block = allocate_vector_block ();
3111
3112 /* New vector will be at the beginning of this block. */
3113 vector = (struct Lisp_Vector *) block->data;
3114 vector->header.next.nbytes = nbytes;
3115
3116 /* If the rest of space from this block is large enough
3117 for one-slot vector at least, set up it on a free list. */
3118 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3119 if (restbytes >= VBLOCK_BYTES_MIN)
3120 {
3121 eassert (restbytes % roundup_size == 0);
3122 rest = ADVANCE (vector, nbytes);
3123 SETUP_ON_FREE_LIST (rest, restbytes, index);
3124 }
3125 return vector;
3126 }
3127
3128 /* Return how many Lisp_Objects can be stored in V. */
3129
3130 #define VECTOR_SIZE(v) ((v)->header.size & PSEUDOVECTOR_FLAG ? \
3131 (PSEUDOVECTOR_SIZE_MASK & (v)->header.size) : \
3132 (v)->header.size)
3133
3134 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3135
3136 #define VECTOR_IN_BLOCK(vector, block) \
3137 ((char *) (vector) <= (block)->data \
3138 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3139
3140 /* Reclaim space used by unmarked vectors. */
3141
3142 static void
3143 sweep_vectors (void)
3144 {
3145 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
3146 struct Lisp_Vector *vector, *next, **vprev = &large_vectors;
3147
3148 total_vector_size = 0;
3149 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3150
3151 /* Looking through vector blocks. */
3152
3153 for (block = vector_blocks; block; block = *bprev)
3154 {
3155 int free_this_block = 0;
3156
3157 for (vector = (struct Lisp_Vector *) block->data;
3158 VECTOR_IN_BLOCK (vector, block); vector = next)
3159 {
3160 if (VECTOR_MARKED_P (vector))
3161 {
3162 VECTOR_UNMARK (vector);
3163 total_vector_size += VECTOR_SIZE (vector);
3164 next = ADVANCE (vector, vector->header.next.nbytes);
3165 }
3166 else
3167 {
3168 ptrdiff_t nbytes;
3169
3170 if ((vector->header.size & VECTOR_FREE_LIST_FLAG)
3171 == VECTOR_FREE_LIST_FLAG)
3172 vector->header.next.nbytes =
3173 vector->header.size & (VECTOR_BLOCK_SIZE - 1);
3174
3175 next = ADVANCE (vector, vector->header.next.nbytes);
3176
3177 /* While NEXT is not marked, try to coalesce with VECTOR,
3178 thus making VECTOR of the largest possible size. */
3179
3180 while (VECTOR_IN_BLOCK (next, block))
3181 {
3182 if (VECTOR_MARKED_P (next))
3183 break;
3184 if ((next->header.size & VECTOR_FREE_LIST_FLAG)
3185 == VECTOR_FREE_LIST_FLAG)
3186 nbytes = next->header.size & (VECTOR_BLOCK_SIZE - 1);
3187 else
3188 nbytes = next->header.next.nbytes;
3189 vector->header.next.nbytes += nbytes;
3190 next = ADVANCE (next, nbytes);
3191 }
3192
3193 eassert (vector->header.next.nbytes % roundup_size == 0);
3194
3195 if (vector == (struct Lisp_Vector *) block->data
3196 && !VECTOR_IN_BLOCK (next, block))
3197 /* This block should be freed because all of it's
3198 space was coalesced into the only free vector. */
3199 free_this_block = 1;
3200 else
3201 SETUP_ON_FREE_LIST (vector, vector->header.next.nbytes, nbytes);
3202 }
3203 }
3204
3205 if (free_this_block)
3206 {
3207 *bprev = block->next;
3208 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3209 mem_delete (mem_find (block->data));
3210 #endif
3211 xfree (block);
3212 }
3213 else
3214 bprev = &block->next;
3215 }
3216
3217 /* Sweep large vectors. */
3218
3219 for (vector = large_vectors; vector; vector = *vprev)
3220 {
3221 if (VECTOR_MARKED_P (vector))
3222 {
3223 VECTOR_UNMARK (vector);
3224 total_vector_size += VECTOR_SIZE (vector);
3225 vprev = &vector->header.next.vector;
3226 }
3227 else
3228 {
3229 *vprev = vector->header.next.vector;
3230 lisp_free (vector);
3231 }
3232 }
3233 }
3234
3235 /* Value is a pointer to a newly allocated Lisp_Vector structure
3236 with room for LEN Lisp_Objects. */
3237
3238 static struct Lisp_Vector *
3239 allocate_vectorlike (ptrdiff_t len)
3240 {
3241 struct Lisp_Vector *p;
3242 size_t nbytes;
3243
3244 MALLOC_BLOCK_INPUT;
3245
3246 #ifdef DOUG_LEA_MALLOC
3247 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3248 because mapped region contents are not preserved in
3249 a dumped Emacs. */
3250 mallopt (M_MMAP_MAX, 0);
3251 #endif
3252
3253 /* This gets triggered by code which I haven't bothered to fix. --Stef */
3254 /* eassert (!handling_signal); */
3255
3256 if (len == 0)
3257 {
3258 MALLOC_UNBLOCK_INPUT;
3259 return zero_vector;
3260 }
3261
3262 nbytes = header_size + len * word_size;
3263
3264 if (nbytes <= VBLOCK_BYTES_MAX)
3265 p = allocate_vector_from_block (vroundup (nbytes));
3266 else
3267 {
3268 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
3269 p->header.next.vector = large_vectors;
3270 large_vectors = p;
3271 }
3272
3273 #ifdef DOUG_LEA_MALLOC
3274 /* Back to a reasonable maximum of mmap'ed areas. */
3275 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3276 #endif
3277
3278 consing_since_gc += nbytes;
3279 vector_cells_consed += len;
3280
3281 MALLOC_UNBLOCK_INPUT;
3282
3283 return p;
3284 }
3285
3286
3287 /* Allocate a vector with LEN slots. */
3288
3289 struct Lisp_Vector *
3290 allocate_vector (EMACS_INT len)
3291 {
3292 struct Lisp_Vector *v;
3293 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3294
3295 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3296 memory_full (SIZE_MAX);
3297 v = allocate_vectorlike (len);
3298 v->header.size = len;
3299 return v;
3300 }
3301
3302
3303 /* Allocate other vector-like structures. */
3304
3305 struct Lisp_Vector *
3306 allocate_pseudovector (int memlen, int lisplen, int tag)
3307 {
3308 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3309 int i;
3310
3311 /* Only the first lisplen slots will be traced normally by the GC. */
3312 for (i = 0; i < lisplen; ++i)
3313 v->contents[i] = Qnil;
3314
3315 XSETPVECTYPESIZE (v, tag, lisplen);
3316 return v;
3317 }
3318
3319 struct Lisp_Hash_Table *
3320 allocate_hash_table (void)
3321 {
3322 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3323 }
3324
3325
3326 struct window *
3327 allocate_window (void)
3328 {
3329 return ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3330 }
3331
3332
3333 struct terminal *
3334 allocate_terminal (void)
3335 {
3336 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
3337 next_terminal, PVEC_TERMINAL);
3338 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3339 memset (&t->next_terminal, 0,
3340 (char*) (t + 1) - (char*) &t->next_terminal);
3341
3342 return t;
3343 }
3344
3345 struct frame *
3346 allocate_frame (void)
3347 {
3348 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
3349 face_cache, PVEC_FRAME);
3350 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3351 memset (&f->face_cache, 0,
3352 (char *) (f + 1) - (char *) &f->face_cache);
3353 return f;
3354 }
3355
3356
3357 struct Lisp_Process *
3358 allocate_process (void)
3359 {
3360 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3361 }
3362
3363
3364 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3365 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3366 See also the function `vector'. */)
3367 (register Lisp_Object length, Lisp_Object init)
3368 {
3369 Lisp_Object vector;
3370 register ptrdiff_t sizei;
3371 register ptrdiff_t i;
3372 register struct Lisp_Vector *p;
3373
3374 CHECK_NATNUM (length);
3375
3376 p = allocate_vector (XFASTINT (length));
3377 sizei = XFASTINT (length);
3378 for (i = 0; i < sizei; i++)
3379 p->contents[i] = init;
3380
3381 XSETVECTOR (vector, p);
3382 return vector;
3383 }
3384
3385
3386 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3387 doc: /* Return a newly created vector with specified arguments as elements.
3388 Any number of arguments, even zero arguments, are allowed.
3389 usage: (vector &rest OBJECTS) */)
3390 (ptrdiff_t nargs, Lisp_Object *args)
3391 {
3392 register Lisp_Object len, val;
3393 ptrdiff_t i;
3394 register struct Lisp_Vector *p;
3395
3396 XSETFASTINT (len, nargs);
3397 val = Fmake_vector (len, Qnil);
3398 p = XVECTOR (val);
3399 for (i = 0; i < nargs; i++)
3400 p->contents[i] = args[i];
3401 return val;
3402 }
3403
3404
3405 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3406 doc: /* Create a byte-code object with specified arguments as elements.
3407 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3408 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3409 and (optional) INTERACTIVE-SPEC.
3410 The first four arguments are required; at most six have any
3411 significance.
3412 The ARGLIST can be either like the one of `lambda', in which case the arguments
3413 will be dynamically bound before executing the byte code, or it can be an
3414 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3415 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3416 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3417 argument to catch the left-over arguments. If such an integer is used, the
3418 arguments will not be dynamically bound but will be instead pushed on the
3419 stack before executing the byte-code.
3420 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3421 (ptrdiff_t nargs, Lisp_Object *args)
3422 {
3423 register Lisp_Object len, val;
3424 ptrdiff_t i;
3425 register struct Lisp_Vector *p;
3426
3427 XSETFASTINT (len, nargs);
3428 if (!NILP (Vpurify_flag))
3429 val = make_pure_vector (nargs);
3430 else
3431 val = Fmake_vector (len, Qnil);
3432
3433 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3434 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3435 earlier because they produced a raw 8-bit string for byte-code
3436 and now such a byte-code string is loaded as multibyte while
3437 raw 8-bit characters converted to multibyte form. Thus, now we
3438 must convert them back to the original unibyte form. */
3439 args[1] = Fstring_as_unibyte (args[1]);
3440
3441 p = XVECTOR (val);
3442 for (i = 0; i < nargs; i++)
3443 {
3444 if (!NILP (Vpurify_flag))
3445 args[i] = Fpurecopy (args[i]);
3446 p->contents[i] = args[i];
3447 }
3448 XSETPVECTYPE (p, PVEC_COMPILED);
3449 XSETCOMPILED (val, p);
3450 return val;
3451 }
3452
3453
3454 \f
3455 /***********************************************************************
3456 Symbol Allocation
3457 ***********************************************************************/
3458
3459 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3460 of the required alignment if LSB tags are used. */
3461
3462 union aligned_Lisp_Symbol
3463 {
3464 struct Lisp_Symbol s;
3465 #ifdef USE_LSB_TAG
3466 unsigned char c[(sizeof (struct Lisp_Symbol) + (1 << GCTYPEBITS) - 1)
3467 & -(1 << GCTYPEBITS)];
3468 #endif
3469 };
3470
3471 /* Each symbol_block is just under 1020 bytes long, since malloc
3472 really allocates in units of powers of two and uses 4 bytes for its
3473 own overhead. */
3474
3475 #define SYMBOL_BLOCK_SIZE \
3476 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3477
3478 struct symbol_block
3479 {
3480 /* Place `symbols' first, to preserve alignment. */
3481 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3482 struct symbol_block *next;
3483 };
3484
3485 /* Current symbol block and index of first unused Lisp_Symbol
3486 structure in it. */
3487
3488 static struct symbol_block *symbol_block;
3489 static int symbol_block_index;
3490
3491 /* List of free symbols. */
3492
3493 static struct Lisp_Symbol *symbol_free_list;
3494
3495
3496 /* Initialize symbol allocation. */
3497
3498 static void
3499 init_symbol (void)
3500 {
3501 symbol_block = NULL;
3502 symbol_block_index = SYMBOL_BLOCK_SIZE;
3503 symbol_free_list = 0;
3504 }
3505
3506
3507 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3508 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3509 Its value and function definition are void, and its property list is nil. */)
3510 (Lisp_Object name)
3511 {
3512 register Lisp_Object val;
3513 register struct Lisp_Symbol *p;
3514
3515 CHECK_STRING (name);
3516
3517 /* eassert (!handling_signal); */
3518
3519 MALLOC_BLOCK_INPUT;
3520
3521 if (symbol_free_list)
3522 {
3523 XSETSYMBOL (val, symbol_free_list);
3524 symbol_free_list = symbol_free_list->next;
3525 }
3526 else
3527 {
3528 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3529 {
3530 struct symbol_block *new;
3531 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3532 MEM_TYPE_SYMBOL);
3533 new->next = symbol_block;
3534 symbol_block = new;
3535 symbol_block_index = 0;
3536 }
3537 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3538 symbol_block_index++;
3539 }
3540
3541 MALLOC_UNBLOCK_INPUT;
3542
3543 p = XSYMBOL (val);
3544 p->xname = name;
3545 p->plist = Qnil;
3546 p->redirect = SYMBOL_PLAINVAL;
3547 SET_SYMBOL_VAL (p, Qunbound);
3548 p->function = Qunbound;
3549 p->next = NULL;
3550 p->gcmarkbit = 0;
3551 p->interned = SYMBOL_UNINTERNED;
3552 p->constant = 0;
3553 p->declared_special = 0;
3554 consing_since_gc += sizeof (struct Lisp_Symbol);
3555 symbols_consed++;
3556 return val;
3557 }
3558
3559
3560 \f
3561 /***********************************************************************
3562 Marker (Misc) Allocation
3563 ***********************************************************************/
3564
3565 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3566 the required alignment when LSB tags are used. */
3567
3568 union aligned_Lisp_Misc
3569 {
3570 union Lisp_Misc m;
3571 #ifdef USE_LSB_TAG
3572 unsigned char c[(sizeof (union Lisp_Misc) + (1 << GCTYPEBITS) - 1)
3573 & -(1 << GCTYPEBITS)];
3574 #endif
3575 };
3576
3577 /* Allocation of markers and other objects that share that structure.
3578 Works like allocation of conses. */
3579
3580 #define MARKER_BLOCK_SIZE \
3581 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3582
3583 struct marker_block
3584 {
3585 /* Place `markers' first, to preserve alignment. */
3586 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3587 struct marker_block *next;
3588 };
3589
3590 static struct marker_block *marker_block;
3591 static int marker_block_index;
3592
3593 static union Lisp_Misc *marker_free_list;
3594
3595 static void
3596 init_marker (void)
3597 {
3598 marker_block = NULL;
3599 marker_block_index = MARKER_BLOCK_SIZE;
3600 marker_free_list = 0;
3601 }
3602
3603 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3604
3605 Lisp_Object
3606 allocate_misc (void)
3607 {
3608 Lisp_Object val;
3609
3610 /* eassert (!handling_signal); */
3611
3612 MALLOC_BLOCK_INPUT;
3613
3614 if (marker_free_list)
3615 {
3616 XSETMISC (val, marker_free_list);
3617 marker_free_list = marker_free_list->u_free.chain;
3618 }
3619 else
3620 {
3621 if (marker_block_index == MARKER_BLOCK_SIZE)
3622 {
3623 struct marker_block *new;
3624 new = (struct marker_block *) lisp_malloc (sizeof *new,
3625 MEM_TYPE_MISC);
3626 new->next = marker_block;
3627 marker_block = new;
3628 marker_block_index = 0;
3629 total_free_markers += MARKER_BLOCK_SIZE;
3630 }
3631 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3632 marker_block_index++;
3633 }
3634
3635 MALLOC_UNBLOCK_INPUT;
3636
3637 --total_free_markers;
3638 consing_since_gc += sizeof (union Lisp_Misc);
3639 misc_objects_consed++;
3640 XMISCANY (val)->gcmarkbit = 0;
3641 return val;
3642 }
3643
3644 /* Free a Lisp_Misc object */
3645
3646 static void
3647 free_misc (Lisp_Object misc)
3648 {
3649 XMISCTYPE (misc) = Lisp_Misc_Free;
3650 XMISC (misc)->u_free.chain = marker_free_list;
3651 marker_free_list = XMISC (misc);
3652
3653 total_free_markers++;
3654 }
3655
3656 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3657 INTEGER. This is used to package C values to call record_unwind_protect.
3658 The unwind function can get the C values back using XSAVE_VALUE. */
3659
3660 Lisp_Object
3661 make_save_value (void *pointer, ptrdiff_t integer)
3662 {
3663 register Lisp_Object val;
3664 register struct Lisp_Save_Value *p;
3665
3666 val = allocate_misc ();
3667 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3668 p = XSAVE_VALUE (val);
3669 p->pointer = pointer;
3670 p->integer = integer;
3671 p->dogc = 0;
3672 return val;
3673 }
3674
3675 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3676 doc: /* Return a newly allocated marker which does not point at any place. */)
3677 (void)
3678 {
3679 register Lisp_Object val;
3680 register struct Lisp_Marker *p;
3681
3682 val = allocate_misc ();
3683 XMISCTYPE (val) = Lisp_Misc_Marker;
3684 p = XMARKER (val);
3685 p->buffer = 0;
3686 p->bytepos = 0;
3687 p->charpos = 0;
3688 p->next = NULL;
3689 p->insertion_type = 0;
3690 return val;
3691 }
3692
3693 /* Put MARKER back on the free list after using it temporarily. */
3694
3695 void
3696 free_marker (Lisp_Object marker)
3697 {
3698 unchain_marker (XMARKER (marker));
3699 free_misc (marker);
3700 }
3701
3702 \f
3703 /* Return a newly created vector or string with specified arguments as
3704 elements. If all the arguments are characters that can fit
3705 in a string of events, make a string; otherwise, make a vector.
3706
3707 Any number of arguments, even zero arguments, are allowed. */
3708
3709 Lisp_Object
3710 make_event_array (register int nargs, Lisp_Object *args)
3711 {
3712 int i;
3713
3714 for (i = 0; i < nargs; i++)
3715 /* The things that fit in a string
3716 are characters that are in 0...127,
3717 after discarding the meta bit and all the bits above it. */
3718 if (!INTEGERP (args[i])
3719 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3720 return Fvector (nargs, args);
3721
3722 /* Since the loop exited, we know that all the things in it are
3723 characters, so we can make a string. */
3724 {
3725 Lisp_Object result;
3726
3727 result = Fmake_string (make_number (nargs), make_number (0));
3728 for (i = 0; i < nargs; i++)
3729 {
3730 SSET (result, i, XINT (args[i]));
3731 /* Move the meta bit to the right place for a string char. */
3732 if (XINT (args[i]) & CHAR_META)
3733 SSET (result, i, SREF (result, i) | 0x80);
3734 }
3735
3736 return result;
3737 }
3738 }
3739
3740
3741 \f
3742 /************************************************************************
3743 Memory Full Handling
3744 ************************************************************************/
3745
3746
3747 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3748 there may have been size_t overflow so that malloc was never
3749 called, or perhaps malloc was invoked successfully but the
3750 resulting pointer had problems fitting into a tagged EMACS_INT. In
3751 either case this counts as memory being full even though malloc did
3752 not fail. */
3753
3754 void
3755 memory_full (size_t nbytes)
3756 {
3757 /* Do not go into hysterics merely because a large request failed. */
3758 int enough_free_memory = 0;
3759 if (SPARE_MEMORY < nbytes)
3760 {
3761 void *p;
3762
3763 MALLOC_BLOCK_INPUT;
3764 p = malloc (SPARE_MEMORY);
3765 if (p)
3766 {
3767 free (p);
3768 enough_free_memory = 1;
3769 }
3770 MALLOC_UNBLOCK_INPUT;
3771 }
3772
3773 if (! enough_free_memory)
3774 {
3775 int i;
3776
3777 Vmemory_full = Qt;
3778
3779 memory_full_cons_threshold = sizeof (struct cons_block);
3780
3781 /* The first time we get here, free the spare memory. */
3782 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3783 if (spare_memory[i])
3784 {
3785 if (i == 0)
3786 free (spare_memory[i]);
3787 else if (i >= 1 && i <= 4)
3788 lisp_align_free (spare_memory[i]);
3789 else
3790 lisp_free (spare_memory[i]);
3791 spare_memory[i] = 0;
3792 }
3793
3794 /* Record the space now used. When it decreases substantially,
3795 we can refill the memory reserve. */
3796 #if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
3797 bytes_used_when_full = BYTES_USED;
3798 #endif
3799 }
3800
3801 /* This used to call error, but if we've run out of memory, we could
3802 get infinite recursion trying to build the string. */
3803 xsignal (Qnil, Vmemory_signal_data);
3804 }
3805
3806 /* If we released our reserve (due to running out of memory),
3807 and we have a fair amount free once again,
3808 try to set aside another reserve in case we run out once more.
3809
3810 This is called when a relocatable block is freed in ralloc.c,
3811 and also directly from this file, in case we're not using ralloc.c. */
3812
3813 void
3814 refill_memory_reserve (void)
3815 {
3816 #ifndef SYSTEM_MALLOC
3817 if (spare_memory[0] == 0)
3818 spare_memory[0] = (char *) malloc (SPARE_MEMORY);
3819 if (spare_memory[1] == 0)
3820 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3821 MEM_TYPE_CONS);
3822 if (spare_memory[2] == 0)
3823 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3824 MEM_TYPE_CONS);
3825 if (spare_memory[3] == 0)
3826 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3827 MEM_TYPE_CONS);
3828 if (spare_memory[4] == 0)
3829 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3830 MEM_TYPE_CONS);
3831 if (spare_memory[5] == 0)
3832 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3833 MEM_TYPE_STRING);
3834 if (spare_memory[6] == 0)
3835 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3836 MEM_TYPE_STRING);
3837 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3838 Vmemory_full = Qnil;
3839 #endif
3840 }
3841 \f
3842 /************************************************************************
3843 C Stack Marking
3844 ************************************************************************/
3845
3846 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3847
3848 /* Conservative C stack marking requires a method to identify possibly
3849 live Lisp objects given a pointer value. We do this by keeping
3850 track of blocks of Lisp data that are allocated in a red-black tree
3851 (see also the comment of mem_node which is the type of nodes in
3852 that tree). Function lisp_malloc adds information for an allocated
3853 block to the red-black tree with calls to mem_insert, and function
3854 lisp_free removes it with mem_delete. Functions live_string_p etc
3855 call mem_find to lookup information about a given pointer in the
3856 tree, and use that to determine if the pointer points to a Lisp
3857 object or not. */
3858
3859 /* Initialize this part of alloc.c. */
3860
3861 static void
3862 mem_init (void)
3863 {
3864 mem_z.left = mem_z.right = MEM_NIL;
3865 mem_z.parent = NULL;
3866 mem_z.color = MEM_BLACK;
3867 mem_z.start = mem_z.end = NULL;
3868 mem_root = MEM_NIL;
3869 }
3870
3871
3872 /* Value is a pointer to the mem_node containing START. Value is
3873 MEM_NIL if there is no node in the tree containing START. */
3874
3875 static inline struct mem_node *
3876 mem_find (void *start)
3877 {
3878 struct mem_node *p;
3879
3880 if (start < min_heap_address || start > max_heap_address)
3881 return MEM_NIL;
3882
3883 /* Make the search always successful to speed up the loop below. */
3884 mem_z.start = start;
3885 mem_z.end = (char *) start + 1;
3886
3887 p = mem_root;
3888 while (start < p->start || start >= p->end)
3889 p = start < p->start ? p->left : p->right;
3890 return p;
3891 }
3892
3893
3894 /* Insert a new node into the tree for a block of memory with start
3895 address START, end address END, and type TYPE. Value is a
3896 pointer to the node that was inserted. */
3897
3898 static struct mem_node *
3899 mem_insert (void *start, void *end, enum mem_type type)
3900 {
3901 struct mem_node *c, *parent, *x;
3902
3903 if (min_heap_address == NULL || start < min_heap_address)
3904 min_heap_address = start;
3905 if (max_heap_address == NULL || end > max_heap_address)
3906 max_heap_address = end;
3907
3908 /* See where in the tree a node for START belongs. In this
3909 particular application, it shouldn't happen that a node is already
3910 present. For debugging purposes, let's check that. */
3911 c = mem_root;
3912 parent = NULL;
3913
3914 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3915
3916 while (c != MEM_NIL)
3917 {
3918 if (start >= c->start && start < c->end)
3919 abort ();
3920 parent = c;
3921 c = start < c->start ? c->left : c->right;
3922 }
3923
3924 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3925
3926 while (c != MEM_NIL)
3927 {
3928 parent = c;
3929 c = start < c->start ? c->left : c->right;
3930 }
3931
3932 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3933
3934 /* Create a new node. */
3935 #ifdef GC_MALLOC_CHECK
3936 x = (struct mem_node *) _malloc_internal (sizeof *x);
3937 if (x == NULL)
3938 abort ();
3939 #else
3940 x = (struct mem_node *) xmalloc (sizeof *x);
3941 #endif
3942 x->start = start;
3943 x->end = end;
3944 x->type = type;
3945 x->parent = parent;
3946 x->left = x->right = MEM_NIL;
3947 x->color = MEM_RED;
3948
3949 /* Insert it as child of PARENT or install it as root. */
3950 if (parent)
3951 {
3952 if (start < parent->start)
3953 parent->left = x;
3954 else
3955 parent->right = x;
3956 }
3957 else
3958 mem_root = x;
3959
3960 /* Re-establish red-black tree properties. */
3961 mem_insert_fixup (x);
3962
3963 return x;
3964 }
3965
3966
3967 /* Re-establish the red-black properties of the tree, and thereby
3968 balance the tree, after node X has been inserted; X is always red. */
3969
3970 static void
3971 mem_insert_fixup (struct mem_node *x)
3972 {
3973 while (x != mem_root && x->parent->color == MEM_RED)
3974 {
3975 /* X is red and its parent is red. This is a violation of
3976 red-black tree property #3. */
3977
3978 if (x->parent == x->parent->parent->left)
3979 {
3980 /* We're on the left side of our grandparent, and Y is our
3981 "uncle". */
3982 struct mem_node *y = x->parent->parent->right;
3983
3984 if (y->color == MEM_RED)
3985 {
3986 /* Uncle and parent are red but should be black because
3987 X is red. Change the colors accordingly and proceed
3988 with the grandparent. */
3989 x->parent->color = MEM_BLACK;
3990 y->color = MEM_BLACK;
3991 x->parent->parent->color = MEM_RED;
3992 x = x->parent->parent;
3993 }
3994 else
3995 {
3996 /* Parent and uncle have different colors; parent is
3997 red, uncle is black. */
3998 if (x == x->parent->right)
3999 {
4000 x = x->parent;
4001 mem_rotate_left (x);
4002 }
4003
4004 x->parent->color = MEM_BLACK;
4005 x->parent->parent->color = MEM_RED;
4006 mem_rotate_right (x->parent->parent);
4007 }
4008 }
4009 else
4010 {
4011 /* This is the symmetrical case of above. */
4012 struct mem_node *y = x->parent->parent->left;
4013
4014 if (y->color == MEM_RED)
4015 {
4016 x->parent->color = MEM_BLACK;
4017 y->color = MEM_BLACK;
4018 x->parent->parent->color = MEM_RED;
4019 x = x->parent->parent;
4020 }
4021 else
4022 {
4023 if (x == x->parent->left)
4024 {
4025 x = x->parent;
4026 mem_rotate_right (x);
4027 }
4028
4029 x->parent->color = MEM_BLACK;
4030 x->parent->parent->color = MEM_RED;
4031 mem_rotate_left (x->parent->parent);
4032 }
4033 }
4034 }
4035
4036 /* The root may have been changed to red due to the algorithm. Set
4037 it to black so that property #5 is satisfied. */
4038 mem_root->color = MEM_BLACK;
4039 }
4040
4041
4042 /* (x) (y)
4043 / \ / \
4044 a (y) ===> (x) c
4045 / \ / \
4046 b c a b */
4047
4048 static void
4049 mem_rotate_left (struct mem_node *x)
4050 {
4051 struct mem_node *y;
4052
4053 /* Turn y's left sub-tree into x's right sub-tree. */
4054 y = x->right;
4055 x->right = y->left;
4056 if (y->left != MEM_NIL)
4057 y->left->parent = x;
4058
4059 /* Y's parent was x's parent. */
4060 if (y != MEM_NIL)
4061 y->parent = x->parent;
4062
4063 /* Get the parent to point to y instead of x. */
4064 if (x->parent)
4065 {
4066 if (x == x->parent->left)
4067 x->parent->left = y;
4068 else
4069 x->parent->right = y;
4070 }
4071 else
4072 mem_root = y;
4073
4074 /* Put x on y's left. */
4075 y->left = x;
4076 if (x != MEM_NIL)
4077 x->parent = y;
4078 }
4079
4080
4081 /* (x) (Y)
4082 / \ / \
4083 (y) c ===> a (x)
4084 / \ / \
4085 a b b c */
4086
4087 static void
4088 mem_rotate_right (struct mem_node *x)
4089 {
4090 struct mem_node *y = x->left;
4091
4092 x->left = y->right;
4093 if (y->right != MEM_NIL)
4094 y->right->parent = x;
4095
4096 if (y != MEM_NIL)
4097 y->parent = x->parent;
4098 if (x->parent)
4099 {
4100 if (x == x->parent->right)
4101 x->parent->right = y;
4102 else
4103 x->parent->left = y;
4104 }
4105 else
4106 mem_root = y;
4107
4108 y->right = x;
4109 if (x != MEM_NIL)
4110 x->parent = y;
4111 }
4112
4113
4114 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4115
4116 static void
4117 mem_delete (struct mem_node *z)
4118 {
4119 struct mem_node *x, *y;
4120
4121 if (!z || z == MEM_NIL)
4122 return;
4123
4124 if (z->left == MEM_NIL || z->right == MEM_NIL)
4125 y = z;
4126 else
4127 {
4128 y = z->right;
4129 while (y->left != MEM_NIL)
4130 y = y->left;
4131 }
4132
4133 if (y->left != MEM_NIL)
4134 x = y->left;
4135 else
4136 x = y->right;
4137
4138 x->parent = y->parent;
4139 if (y->parent)
4140 {
4141 if (y == y->parent->left)
4142 y->parent->left = x;
4143 else
4144 y->parent->right = x;
4145 }
4146 else
4147 mem_root = x;
4148
4149 if (y != z)
4150 {
4151 z->start = y->start;
4152 z->end = y->end;
4153 z->type = y->type;
4154 }
4155
4156 if (y->color == MEM_BLACK)
4157 mem_delete_fixup (x);
4158
4159 #ifdef GC_MALLOC_CHECK
4160 _free_internal (y);
4161 #else
4162 xfree (y);
4163 #endif
4164 }
4165
4166
4167 /* Re-establish the red-black properties of the tree, after a
4168 deletion. */
4169
4170 static void
4171 mem_delete_fixup (struct mem_node *x)
4172 {
4173 while (x != mem_root && x->color == MEM_BLACK)
4174 {
4175 if (x == x->parent->left)
4176 {
4177 struct mem_node *w = x->parent->right;
4178
4179 if (w->color == MEM_RED)
4180 {
4181 w->color = MEM_BLACK;
4182 x->parent->color = MEM_RED;
4183 mem_rotate_left (x->parent);
4184 w = x->parent->right;
4185 }
4186
4187 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4188 {
4189 w->color = MEM_RED;
4190 x = x->parent;
4191 }
4192 else
4193 {
4194 if (w->right->color == MEM_BLACK)
4195 {
4196 w->left->color = MEM_BLACK;
4197 w->color = MEM_RED;
4198 mem_rotate_right (w);
4199 w = x->parent->right;
4200 }
4201 w->color = x->parent->color;
4202 x->parent->color = MEM_BLACK;
4203 w->right->color = MEM_BLACK;
4204 mem_rotate_left (x->parent);
4205 x = mem_root;
4206 }
4207 }
4208 else
4209 {
4210 struct mem_node *w = x->parent->left;
4211
4212 if (w->color == MEM_RED)
4213 {
4214 w->color = MEM_BLACK;
4215 x->parent->color = MEM_RED;
4216 mem_rotate_right (x->parent);
4217 w = x->parent->left;
4218 }
4219
4220 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4221 {
4222 w->color = MEM_RED;
4223 x = x->parent;
4224 }
4225 else
4226 {
4227 if (w->left->color == MEM_BLACK)
4228 {
4229 w->right->color = MEM_BLACK;
4230 w->color = MEM_RED;
4231 mem_rotate_left (w);
4232 w = x->parent->left;
4233 }
4234
4235 w->color = x->parent->color;
4236 x->parent->color = MEM_BLACK;
4237 w->left->color = MEM_BLACK;
4238 mem_rotate_right (x->parent);
4239 x = mem_root;
4240 }
4241 }
4242 }
4243
4244 x->color = MEM_BLACK;
4245 }
4246
4247
4248 /* Value is non-zero if P is a pointer to a live Lisp string on
4249 the heap. M is a pointer to the mem_block for P. */
4250
4251 static inline int
4252 live_string_p (struct mem_node *m, void *p)
4253 {
4254 if (m->type == MEM_TYPE_STRING)
4255 {
4256 struct string_block *b = (struct string_block *) m->start;
4257 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4258
4259 /* P must point to the start of a Lisp_String structure, and it
4260 must not be on the free-list. */
4261 return (offset >= 0
4262 && offset % sizeof b->strings[0] == 0
4263 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4264 && ((struct Lisp_String *) p)->data != NULL);
4265 }
4266 else
4267 return 0;
4268 }
4269
4270
4271 /* Value is non-zero if P is a pointer to a live Lisp cons on
4272 the heap. M is a pointer to the mem_block for P. */
4273
4274 static inline int
4275 live_cons_p (struct mem_node *m, void *p)
4276 {
4277 if (m->type == MEM_TYPE_CONS)
4278 {
4279 struct cons_block *b = (struct cons_block *) m->start;
4280 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4281
4282 /* P must point to the start of a Lisp_Cons, not be
4283 one of the unused cells in the current cons block,
4284 and not be on the free-list. */
4285 return (offset >= 0
4286 && offset % sizeof b->conses[0] == 0
4287 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4288 && (b != cons_block
4289 || offset / sizeof b->conses[0] < cons_block_index)
4290 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4291 }
4292 else
4293 return 0;
4294 }
4295
4296
4297 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4298 the heap. M is a pointer to the mem_block for P. */
4299
4300 static inline int
4301 live_symbol_p (struct mem_node *m, void *p)
4302 {
4303 if (m->type == MEM_TYPE_SYMBOL)
4304 {
4305 struct symbol_block *b = (struct symbol_block *) m->start;
4306 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4307
4308 /* P must point to the start of a Lisp_Symbol, not be
4309 one of the unused cells in the current symbol block,
4310 and not be on the free-list. */
4311 return (offset >= 0
4312 && offset % sizeof b->symbols[0] == 0
4313 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4314 && (b != symbol_block
4315 || offset / sizeof b->symbols[0] < symbol_block_index)
4316 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4317 }
4318 else
4319 return 0;
4320 }
4321
4322
4323 /* Value is non-zero if P is a pointer to a live Lisp float on
4324 the heap. M is a pointer to the mem_block for P. */
4325
4326 static inline int
4327 live_float_p (struct mem_node *m, void *p)
4328 {
4329 if (m->type == MEM_TYPE_FLOAT)
4330 {
4331 struct float_block *b = (struct float_block *) m->start;
4332 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4333
4334 /* P must point to the start of a Lisp_Float and not be
4335 one of the unused cells in the current float block. */
4336 return (offset >= 0
4337 && offset % sizeof b->floats[0] == 0
4338 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4339 && (b != float_block
4340 || offset / sizeof b->floats[0] < float_block_index));
4341 }
4342 else
4343 return 0;
4344 }
4345
4346
4347 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4348 the heap. M is a pointer to the mem_block for P. */
4349
4350 static inline int
4351 live_misc_p (struct mem_node *m, void *p)
4352 {
4353 if (m->type == MEM_TYPE_MISC)
4354 {
4355 struct marker_block *b = (struct marker_block *) m->start;
4356 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4357
4358 /* P must point to the start of a Lisp_Misc, not be
4359 one of the unused cells in the current misc block,
4360 and not be on the free-list. */
4361 return (offset >= 0
4362 && offset % sizeof b->markers[0] == 0
4363 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4364 && (b != marker_block
4365 || offset / sizeof b->markers[0] < marker_block_index)
4366 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4367 }
4368 else
4369 return 0;
4370 }
4371
4372
4373 /* Value is non-zero if P is a pointer to a live vector-like object.
4374 M is a pointer to the mem_block for P. */
4375
4376 static inline int
4377 live_vector_p (struct mem_node *m, void *p)
4378 {
4379 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4380 {
4381 /* This memory node corresponds to a vector block. */
4382 struct vector_block *block = (struct vector_block *) m->start;
4383 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4384
4385 /* P is in the block's allocation range. Scan the block
4386 up to P and see whether P points to the start of some
4387 vector which is not on a free list. FIXME: check whether
4388 some allocation patterns (probably a lot of short vectors)
4389 may cause a substantial overhead of this loop. */
4390 while (VECTOR_IN_BLOCK (vector, block)
4391 && vector <= (struct Lisp_Vector *) p)
4392 {
4393 if ((vector->header.size & VECTOR_FREE_LIST_FLAG)
4394 == VECTOR_FREE_LIST_FLAG)
4395 vector = ADVANCE (vector, (vector->header.size
4396 & (VECTOR_BLOCK_SIZE - 1)));
4397 else if (vector == p)
4398 return 1;
4399 else
4400 vector = ADVANCE (vector, vector->header.next.nbytes);
4401 }
4402 }
4403 else if (m->type == MEM_TYPE_VECTORLIKE && p == m->start)
4404 /* This memory node corresponds to a large vector. */
4405 return 1;
4406 return 0;
4407 }
4408
4409
4410 /* Value is non-zero if P is a pointer to a live buffer. M is a
4411 pointer to the mem_block for P. */
4412
4413 static inline int
4414 live_buffer_p (struct mem_node *m, void *p)
4415 {
4416 /* P must point to the start of the block, and the buffer
4417 must not have been killed. */
4418 return (m->type == MEM_TYPE_BUFFER
4419 && p == m->start
4420 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
4421 }
4422
4423 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4424
4425 #if GC_MARK_STACK
4426
4427 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4428
4429 /* Array of objects that are kept alive because the C stack contains
4430 a pattern that looks like a reference to them . */
4431
4432 #define MAX_ZOMBIES 10
4433 static Lisp_Object zombies[MAX_ZOMBIES];
4434
4435 /* Number of zombie objects. */
4436
4437 static EMACS_INT nzombies;
4438
4439 /* Number of garbage collections. */
4440
4441 static EMACS_INT ngcs;
4442
4443 /* Average percentage of zombies per collection. */
4444
4445 static double avg_zombies;
4446
4447 /* Max. number of live and zombie objects. */
4448
4449 static EMACS_INT max_live, max_zombies;
4450
4451 /* Average number of live objects per GC. */
4452
4453 static double avg_live;
4454
4455 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4456 doc: /* Show information about live and zombie objects. */)
4457 (void)
4458 {
4459 Lisp_Object args[8], zombie_list = Qnil;
4460 EMACS_INT i;
4461 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4462 zombie_list = Fcons (zombies[i], zombie_list);
4463 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4464 args[1] = make_number (ngcs);
4465 args[2] = make_float (avg_live);
4466 args[3] = make_float (avg_zombies);
4467 args[4] = make_float (avg_zombies / avg_live / 100);
4468 args[5] = make_number (max_live);
4469 args[6] = make_number (max_zombies);
4470 args[7] = zombie_list;
4471 return Fmessage (8, args);
4472 }
4473
4474 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4475
4476
4477 /* Mark OBJ if we can prove it's a Lisp_Object. */
4478
4479 static inline void
4480 mark_maybe_object (Lisp_Object obj)
4481 {
4482 void *po;
4483 struct mem_node *m;
4484
4485 if (INTEGERP (obj))
4486 return;
4487
4488 po = (void *) XPNTR (obj);
4489 m = mem_find (po);
4490
4491 if (m != MEM_NIL)
4492 {
4493 int mark_p = 0;
4494
4495 switch (XTYPE (obj))
4496 {
4497 case Lisp_String:
4498 mark_p = (live_string_p (m, po)
4499 && !STRING_MARKED_P ((struct Lisp_String *) po));
4500 break;
4501
4502 case Lisp_Cons:
4503 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4504 break;
4505
4506 case Lisp_Symbol:
4507 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4508 break;
4509
4510 case Lisp_Float:
4511 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4512 break;
4513
4514 case Lisp_Vectorlike:
4515 /* Note: can't check BUFFERP before we know it's a
4516 buffer because checking that dereferences the pointer
4517 PO which might point anywhere. */
4518 if (live_vector_p (m, po))
4519 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4520 else if (live_buffer_p (m, po))
4521 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4522 break;
4523
4524 case Lisp_Misc:
4525 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4526 break;
4527
4528 default:
4529 break;
4530 }
4531
4532 if (mark_p)
4533 {
4534 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4535 if (nzombies < MAX_ZOMBIES)
4536 zombies[nzombies] = obj;
4537 ++nzombies;
4538 #endif
4539 mark_object (obj);
4540 }
4541 }
4542 }
4543
4544
4545 /* If P points to Lisp data, mark that as live if it isn't already
4546 marked. */
4547
4548 static inline void
4549 mark_maybe_pointer (void *p)
4550 {
4551 struct mem_node *m;
4552
4553 /* Quickly rule out some values which can't point to Lisp data. */
4554 if ((intptr_t) p %
4555 #ifdef USE_LSB_TAG
4556 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4557 #else
4558 2 /* We assume that Lisp data is aligned on even addresses. */
4559 #endif
4560 )
4561 return;
4562
4563 m = mem_find (p);
4564 if (m != MEM_NIL)
4565 {
4566 Lisp_Object obj = Qnil;
4567
4568 switch (m->type)
4569 {
4570 case MEM_TYPE_NON_LISP:
4571 /* Nothing to do; not a pointer to Lisp memory. */
4572 break;
4573
4574 case MEM_TYPE_BUFFER:
4575 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4576 XSETVECTOR (obj, p);
4577 break;
4578
4579 case MEM_TYPE_CONS:
4580 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4581 XSETCONS (obj, p);
4582 break;
4583
4584 case MEM_TYPE_STRING:
4585 if (live_string_p (m, p)
4586 && !STRING_MARKED_P ((struct Lisp_String *) p))
4587 XSETSTRING (obj, p);
4588 break;
4589
4590 case MEM_TYPE_MISC:
4591 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4592 XSETMISC (obj, p);
4593 break;
4594
4595 case MEM_TYPE_SYMBOL:
4596 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4597 XSETSYMBOL (obj, p);
4598 break;
4599
4600 case MEM_TYPE_FLOAT:
4601 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4602 XSETFLOAT (obj, p);
4603 break;
4604
4605 case MEM_TYPE_VECTORLIKE:
4606 case MEM_TYPE_VECTOR_BLOCK:
4607 if (live_vector_p (m, p))
4608 {
4609 Lisp_Object tem;
4610 XSETVECTOR (tem, p);
4611 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4612 obj = tem;
4613 }
4614 break;
4615
4616 default:
4617 abort ();
4618 }
4619
4620 if (!NILP (obj))
4621 mark_object (obj);
4622 }
4623 }
4624
4625
4626 /* Alignment of pointer values. Use offsetof, as it sometimes returns
4627 a smaller alignment than GCC's __alignof__ and mark_memory might
4628 miss objects if __alignof__ were used. */
4629 #define GC_POINTER_ALIGNMENT offsetof (struct {char a; void *b;}, b)
4630
4631 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4632 not suffice, which is the typical case. A host where a Lisp_Object is
4633 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4634 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4635 suffice to widen it to to a Lisp_Object and check it that way. */
4636 #if defined USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4637 # if !defined USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4638 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4639 nor mark_maybe_object can follow the pointers. This should not occur on
4640 any practical porting target. */
4641 # error "MSB type bits straddle pointer-word boundaries"
4642 # endif
4643 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4644 pointer words that hold pointers ORed with type bits. */
4645 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4646 #else
4647 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4648 words that hold unmodified pointers. */
4649 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4650 #endif
4651
4652 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4653 or END+OFFSET..START. */
4654
4655 static void
4656 mark_memory (void *start, void *end)
4657 {
4658 void **pp;
4659 int i;
4660
4661 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4662 nzombies = 0;
4663 #endif
4664
4665 /* Make START the pointer to the start of the memory region,
4666 if it isn't already. */
4667 if (end < start)
4668 {
4669 void *tem = start;
4670 start = end;
4671 end = tem;
4672 }
4673
4674 /* Mark Lisp data pointed to. This is necessary because, in some
4675 situations, the C compiler optimizes Lisp objects away, so that
4676 only a pointer to them remains. Example:
4677
4678 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4679 ()
4680 {
4681 Lisp_Object obj = build_string ("test");
4682 struct Lisp_String *s = XSTRING (obj);
4683 Fgarbage_collect ();
4684 fprintf (stderr, "test `%s'\n", s->data);
4685 return Qnil;
4686 }
4687
4688 Here, `obj' isn't really used, and the compiler optimizes it
4689 away. The only reference to the life string is through the
4690 pointer `s'. */
4691
4692 for (pp = start; (void *) pp < end; pp++)
4693 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4694 {
4695 void *p = *(void **) ((char *) pp + i);
4696 mark_maybe_pointer (p);
4697 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4698 mark_maybe_object (widen_to_Lisp_Object (p));
4699 }
4700 }
4701
4702 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4703 the GCC system configuration. In gcc 3.2, the only systems for
4704 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4705 by others?) and ns32k-pc532-min. */
4706
4707 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4708
4709 static int setjmp_tested_p, longjmps_done;
4710
4711 #define SETJMP_WILL_LIKELY_WORK "\
4712 \n\
4713 Emacs garbage collector has been changed to use conservative stack\n\
4714 marking. Emacs has determined that the method it uses to do the\n\
4715 marking will likely work on your system, but this isn't sure.\n\
4716 \n\
4717 If you are a system-programmer, or can get the help of a local wizard\n\
4718 who is, please take a look at the function mark_stack in alloc.c, and\n\
4719 verify that the methods used are appropriate for your system.\n\
4720 \n\
4721 Please mail the result to <emacs-devel@gnu.org>.\n\
4722 "
4723
4724 #define SETJMP_WILL_NOT_WORK "\
4725 \n\
4726 Emacs garbage collector has been changed to use conservative stack\n\
4727 marking. Emacs has determined that the default method it uses to do the\n\
4728 marking will not work on your system. We will need a system-dependent\n\
4729 solution for your system.\n\
4730 \n\
4731 Please take a look at the function mark_stack in alloc.c, and\n\
4732 try to find a way to make it work on your system.\n\
4733 \n\
4734 Note that you may get false negatives, depending on the compiler.\n\
4735 In particular, you need to use -O with GCC for this test.\n\
4736 \n\
4737 Please mail the result to <emacs-devel@gnu.org>.\n\
4738 "
4739
4740
4741 /* Perform a quick check if it looks like setjmp saves registers in a
4742 jmp_buf. Print a message to stderr saying so. When this test
4743 succeeds, this is _not_ a proof that setjmp is sufficient for
4744 conservative stack marking. Only the sources or a disassembly
4745 can prove that. */
4746
4747 static void
4748 test_setjmp (void)
4749 {
4750 char buf[10];
4751 register int x;
4752 jmp_buf jbuf;
4753 int result = 0;
4754
4755 /* Arrange for X to be put in a register. */
4756 sprintf (buf, "1");
4757 x = strlen (buf);
4758 x = 2 * x - 1;
4759
4760 setjmp (jbuf);
4761 if (longjmps_done == 1)
4762 {
4763 /* Came here after the longjmp at the end of the function.
4764
4765 If x == 1, the longjmp has restored the register to its
4766 value before the setjmp, and we can hope that setjmp
4767 saves all such registers in the jmp_buf, although that
4768 isn't sure.
4769
4770 For other values of X, either something really strange is
4771 taking place, or the setjmp just didn't save the register. */
4772
4773 if (x == 1)
4774 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4775 else
4776 {
4777 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4778 exit (1);
4779 }
4780 }
4781
4782 ++longjmps_done;
4783 x = 2;
4784 if (longjmps_done == 1)
4785 longjmp (jbuf, 1);
4786 }
4787
4788 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4789
4790
4791 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4792
4793 /* Abort if anything GCPRO'd doesn't survive the GC. */
4794
4795 static void
4796 check_gcpros (void)
4797 {
4798 struct gcpro *p;
4799 ptrdiff_t i;
4800
4801 for (p = gcprolist; p; p = p->next)
4802 for (i = 0; i < p->nvars; ++i)
4803 if (!survives_gc_p (p->var[i]))
4804 /* FIXME: It's not necessarily a bug. It might just be that the
4805 GCPRO is unnecessary or should release the object sooner. */
4806 abort ();
4807 }
4808
4809 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4810
4811 static void
4812 dump_zombies (void)
4813 {
4814 int i;
4815
4816 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4817 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4818 {
4819 fprintf (stderr, " %d = ", i);
4820 debug_print (zombies[i]);
4821 }
4822 }
4823
4824 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4825
4826
4827 /* Mark live Lisp objects on the C stack.
4828
4829 There are several system-dependent problems to consider when
4830 porting this to new architectures:
4831
4832 Processor Registers
4833
4834 We have to mark Lisp objects in CPU registers that can hold local
4835 variables or are used to pass parameters.
4836
4837 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4838 something that either saves relevant registers on the stack, or
4839 calls mark_maybe_object passing it each register's contents.
4840
4841 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4842 implementation assumes that calling setjmp saves registers we need
4843 to see in a jmp_buf which itself lies on the stack. This doesn't
4844 have to be true! It must be verified for each system, possibly
4845 by taking a look at the source code of setjmp.
4846
4847 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4848 can use it as a machine independent method to store all registers
4849 to the stack. In this case the macros described in the previous
4850 two paragraphs are not used.
4851
4852 Stack Layout
4853
4854 Architectures differ in the way their processor stack is organized.
4855 For example, the stack might look like this
4856
4857 +----------------+
4858 | Lisp_Object | size = 4
4859 +----------------+
4860 | something else | size = 2
4861 +----------------+
4862 | Lisp_Object | size = 4
4863 +----------------+
4864 | ... |
4865
4866 In such a case, not every Lisp_Object will be aligned equally. To
4867 find all Lisp_Object on the stack it won't be sufficient to walk
4868 the stack in steps of 4 bytes. Instead, two passes will be
4869 necessary, one starting at the start of the stack, and a second
4870 pass starting at the start of the stack + 2. Likewise, if the
4871 minimal alignment of Lisp_Objects on the stack is 1, four passes
4872 would be necessary, each one starting with one byte more offset
4873 from the stack start. */
4874
4875 static void
4876 mark_stack (void)
4877 {
4878 void *end;
4879
4880 #ifdef HAVE___BUILTIN_UNWIND_INIT
4881 /* Force callee-saved registers and register windows onto the stack.
4882 This is the preferred method if available, obviating the need for
4883 machine dependent methods. */
4884 __builtin_unwind_init ();
4885 end = &end;
4886 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4887 #ifndef GC_SAVE_REGISTERS_ON_STACK
4888 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4889 union aligned_jmpbuf {
4890 Lisp_Object o;
4891 jmp_buf j;
4892 } j;
4893 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4894 #endif
4895 /* This trick flushes the register windows so that all the state of
4896 the process is contained in the stack. */
4897 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4898 needed on ia64 too. See mach_dep.c, where it also says inline
4899 assembler doesn't work with relevant proprietary compilers. */
4900 #ifdef __sparc__
4901 #if defined (__sparc64__) && defined (__FreeBSD__)
4902 /* FreeBSD does not have a ta 3 handler. */
4903 asm ("flushw");
4904 #else
4905 asm ("ta 3");
4906 #endif
4907 #endif
4908
4909 /* Save registers that we need to see on the stack. We need to see
4910 registers used to hold register variables and registers used to
4911 pass parameters. */
4912 #ifdef GC_SAVE_REGISTERS_ON_STACK
4913 GC_SAVE_REGISTERS_ON_STACK (end);
4914 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4915
4916 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4917 setjmp will definitely work, test it
4918 and print a message with the result
4919 of the test. */
4920 if (!setjmp_tested_p)
4921 {
4922 setjmp_tested_p = 1;
4923 test_setjmp ();
4924 }
4925 #endif /* GC_SETJMP_WORKS */
4926
4927 setjmp (j.j);
4928 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4929 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4930 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4931
4932 /* This assumes that the stack is a contiguous region in memory. If
4933 that's not the case, something has to be done here to iterate
4934 over the stack segments. */
4935 mark_memory (stack_base, end);
4936
4937 /* Allow for marking a secondary stack, like the register stack on the
4938 ia64. */
4939 #ifdef GC_MARK_SECONDARY_STACK
4940 GC_MARK_SECONDARY_STACK ();
4941 #endif
4942
4943 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4944 check_gcpros ();
4945 #endif
4946 }
4947
4948 #endif /* GC_MARK_STACK != 0 */
4949
4950
4951 /* Determine whether it is safe to access memory at address P. */
4952 static int
4953 valid_pointer_p (void *p)
4954 {
4955 #ifdef WINDOWSNT
4956 return w32_valid_pointer_p (p, 16);
4957 #else
4958 int fd[2];
4959
4960 /* Obviously, we cannot just access it (we would SEGV trying), so we
4961 trick the o/s to tell us whether p is a valid pointer.
4962 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4963 not validate p in that case. */
4964
4965 if (pipe (fd) == 0)
4966 {
4967 int valid = (emacs_write (fd[1], (char *) p, 16) == 16);
4968 emacs_close (fd[1]);
4969 emacs_close (fd[0]);
4970 return valid;
4971 }
4972
4973 return -1;
4974 #endif
4975 }
4976
4977 /* Return 1 if OBJ is a valid lisp object.
4978 Return 0 if OBJ is NOT a valid lisp object.
4979 Return -1 if we cannot validate OBJ.
4980 This function can be quite slow,
4981 so it should only be used in code for manual debugging. */
4982
4983 int
4984 valid_lisp_object_p (Lisp_Object obj)
4985 {
4986 void *p;
4987 #if GC_MARK_STACK
4988 struct mem_node *m;
4989 #endif
4990
4991 if (INTEGERP (obj))
4992 return 1;
4993
4994 p = (void *) XPNTR (obj);
4995 if (PURE_POINTER_P (p))
4996 return 1;
4997
4998 #if !GC_MARK_STACK
4999 return valid_pointer_p (p);
5000 #else
5001
5002 m = mem_find (p);
5003
5004 if (m == MEM_NIL)
5005 {
5006 int valid = valid_pointer_p (p);
5007 if (valid <= 0)
5008 return valid;
5009
5010 if (SUBRP (obj))
5011 return 1;
5012
5013 return 0;
5014 }
5015
5016 switch (m->type)
5017 {
5018 case MEM_TYPE_NON_LISP:
5019 return 0;
5020
5021 case MEM_TYPE_BUFFER:
5022 return live_buffer_p (m, p);
5023
5024 case MEM_TYPE_CONS:
5025 return live_cons_p (m, p);
5026
5027 case MEM_TYPE_STRING:
5028 return live_string_p (m, p);
5029
5030 case MEM_TYPE_MISC:
5031 return live_misc_p (m, p);
5032
5033 case MEM_TYPE_SYMBOL:
5034 return live_symbol_p (m, p);
5035
5036 case MEM_TYPE_FLOAT:
5037 return live_float_p (m, p);
5038
5039 case MEM_TYPE_VECTORLIKE:
5040 case MEM_TYPE_VECTOR_BLOCK:
5041 return live_vector_p (m, p);
5042
5043 default:
5044 break;
5045 }
5046
5047 return 0;
5048 #endif
5049 }
5050
5051
5052
5053 \f
5054 /***********************************************************************
5055 Pure Storage Management
5056 ***********************************************************************/
5057
5058 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5059 pointer to it. TYPE is the Lisp type for which the memory is
5060 allocated. TYPE < 0 means it's not used for a Lisp object. */
5061
5062 static void *
5063 pure_alloc (size_t size, int type)
5064 {
5065 void *result;
5066 #ifdef USE_LSB_TAG
5067 size_t alignment = (1 << GCTYPEBITS);
5068 #else
5069 size_t alignment = sizeof (EMACS_INT);
5070
5071 /* Give Lisp_Floats an extra alignment. */
5072 if (type == Lisp_Float)
5073 {
5074 #if defined __GNUC__ && __GNUC__ >= 2
5075 alignment = __alignof (struct Lisp_Float);
5076 #else
5077 alignment = sizeof (struct Lisp_Float);
5078 #endif
5079 }
5080 #endif
5081
5082 again:
5083 if (type >= 0)
5084 {
5085 /* Allocate space for a Lisp object from the beginning of the free
5086 space with taking account of alignment. */
5087 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5088 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5089 }
5090 else
5091 {
5092 /* Allocate space for a non-Lisp object from the end of the free
5093 space. */
5094 pure_bytes_used_non_lisp += size;
5095 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5096 }
5097 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5098
5099 if (pure_bytes_used <= pure_size)
5100 return result;
5101
5102 /* Don't allocate a large amount here,
5103 because it might get mmap'd and then its address
5104 might not be usable. */
5105 purebeg = (char *) xmalloc (10000);
5106 pure_size = 10000;
5107 pure_bytes_used_before_overflow += pure_bytes_used - size;
5108 pure_bytes_used = 0;
5109 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5110 goto again;
5111 }
5112
5113
5114 /* Print a warning if PURESIZE is too small. */
5115
5116 void
5117 check_pure_size (void)
5118 {
5119 if (pure_bytes_used_before_overflow)
5120 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5121 " bytes needed)"),
5122 pure_bytes_used + pure_bytes_used_before_overflow);
5123 }
5124
5125
5126 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5127 the non-Lisp data pool of the pure storage, and return its start
5128 address. Return NULL if not found. */
5129
5130 static char *
5131 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5132 {
5133 int i;
5134 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5135 const unsigned char *p;
5136 char *non_lisp_beg;
5137
5138 if (pure_bytes_used_non_lisp <= nbytes)
5139 return NULL;
5140
5141 /* Set up the Boyer-Moore table. */
5142 skip = nbytes + 1;
5143 for (i = 0; i < 256; i++)
5144 bm_skip[i] = skip;
5145
5146 p = (const unsigned char *) data;
5147 while (--skip > 0)
5148 bm_skip[*p++] = skip;
5149
5150 last_char_skip = bm_skip['\0'];
5151
5152 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5153 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5154
5155 /* See the comments in the function `boyer_moore' (search.c) for the
5156 use of `infinity'. */
5157 infinity = pure_bytes_used_non_lisp + 1;
5158 bm_skip['\0'] = infinity;
5159
5160 p = (const unsigned char *) non_lisp_beg + nbytes;
5161 start = 0;
5162 do
5163 {
5164 /* Check the last character (== '\0'). */
5165 do
5166 {
5167 start += bm_skip[*(p + start)];
5168 }
5169 while (start <= start_max);
5170
5171 if (start < infinity)
5172 /* Couldn't find the last character. */
5173 return NULL;
5174
5175 /* No less than `infinity' means we could find the last
5176 character at `p[start - infinity]'. */
5177 start -= infinity;
5178
5179 /* Check the remaining characters. */
5180 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5181 /* Found. */
5182 return non_lisp_beg + start;
5183
5184 start += last_char_skip;
5185 }
5186 while (start <= start_max);
5187
5188 return NULL;
5189 }
5190
5191
5192 /* Return a string allocated in pure space. DATA is a buffer holding
5193 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5194 non-zero means make the result string multibyte.
5195
5196 Must get an error if pure storage is full, since if it cannot hold
5197 a large string it may be able to hold conses that point to that
5198 string; then the string is not protected from gc. */
5199
5200 Lisp_Object
5201 make_pure_string (const char *data,
5202 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
5203 {
5204 Lisp_Object string;
5205 struct Lisp_String *s;
5206
5207 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5208 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5209 if (s->data == NULL)
5210 {
5211 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
5212 memcpy (s->data, data, nbytes);
5213 s->data[nbytes] = '\0';
5214 }
5215 s->size = nchars;
5216 s->size_byte = multibyte ? nbytes : -1;
5217 s->intervals = NULL_INTERVAL;
5218 XSETSTRING (string, s);
5219 return string;
5220 }
5221
5222 /* Return a string a string allocated in pure space. Do not allocate
5223 the string data, just point to DATA. */
5224
5225 Lisp_Object
5226 make_pure_c_string (const char *data)
5227 {
5228 Lisp_Object string;
5229 struct Lisp_String *s;
5230 ptrdiff_t nchars = strlen (data);
5231
5232 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5233 s->size = nchars;
5234 s->size_byte = -1;
5235 s->data = (unsigned char *) data;
5236 s->intervals = NULL_INTERVAL;
5237 XSETSTRING (string, s);
5238 return string;
5239 }
5240
5241 /* Return a cons allocated from pure space. Give it pure copies
5242 of CAR as car and CDR as cdr. */
5243
5244 Lisp_Object
5245 pure_cons (Lisp_Object car, Lisp_Object cdr)
5246 {
5247 register Lisp_Object new;
5248 struct Lisp_Cons *p;
5249
5250 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
5251 XSETCONS (new, p);
5252 XSETCAR (new, Fpurecopy (car));
5253 XSETCDR (new, Fpurecopy (cdr));
5254 return new;
5255 }
5256
5257
5258 /* Value is a float object with value NUM allocated from pure space. */
5259
5260 static Lisp_Object
5261 make_pure_float (double num)
5262 {
5263 register Lisp_Object new;
5264 struct Lisp_Float *p;
5265
5266 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
5267 XSETFLOAT (new, p);
5268 XFLOAT_INIT (new, num);
5269 return new;
5270 }
5271
5272
5273 /* Return a vector with room for LEN Lisp_Objects allocated from
5274 pure space. */
5275
5276 static Lisp_Object
5277 make_pure_vector (ptrdiff_t len)
5278 {
5279 Lisp_Object new;
5280 struct Lisp_Vector *p;
5281 size_t size = (offsetof (struct Lisp_Vector, contents)
5282 + len * sizeof (Lisp_Object));
5283
5284 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
5285 XSETVECTOR (new, p);
5286 XVECTOR (new)->header.size = len;
5287 return new;
5288 }
5289
5290
5291 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5292 doc: /* Make a copy of object OBJ in pure storage.
5293 Recursively copies contents of vectors and cons cells.
5294 Does not copy symbols. Copies strings without text properties. */)
5295 (register Lisp_Object obj)
5296 {
5297 if (NILP (Vpurify_flag))
5298 return obj;
5299
5300 if (PURE_POINTER_P (XPNTR (obj)))
5301 return obj;
5302
5303 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5304 {
5305 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5306 if (!NILP (tmp))
5307 return tmp;
5308 }
5309
5310 if (CONSP (obj))
5311 obj = pure_cons (XCAR (obj), XCDR (obj));
5312 else if (FLOATP (obj))
5313 obj = make_pure_float (XFLOAT_DATA (obj));
5314 else if (STRINGP (obj))
5315 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5316 SBYTES (obj),
5317 STRING_MULTIBYTE (obj));
5318 else if (COMPILEDP (obj) || VECTORP (obj))
5319 {
5320 register struct Lisp_Vector *vec;
5321 register ptrdiff_t i;
5322 ptrdiff_t size;
5323
5324 size = ASIZE (obj);
5325 if (size & PSEUDOVECTOR_FLAG)
5326 size &= PSEUDOVECTOR_SIZE_MASK;
5327 vec = XVECTOR (make_pure_vector (size));
5328 for (i = 0; i < size; i++)
5329 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
5330 if (COMPILEDP (obj))
5331 {
5332 XSETPVECTYPE (vec, PVEC_COMPILED);
5333 XSETCOMPILED (obj, vec);
5334 }
5335 else
5336 XSETVECTOR (obj, vec);
5337 }
5338 else if (MARKERP (obj))
5339 error ("Attempt to copy a marker to pure storage");
5340 else
5341 /* Not purified, don't hash-cons. */
5342 return obj;
5343
5344 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5345 Fputhash (obj, obj, Vpurify_flag);
5346
5347 return obj;
5348 }
5349
5350
5351 \f
5352 /***********************************************************************
5353 Protection from GC
5354 ***********************************************************************/
5355
5356 /* Put an entry in staticvec, pointing at the variable with address
5357 VARADDRESS. */
5358
5359 void
5360 staticpro (Lisp_Object *varaddress)
5361 {
5362 staticvec[staticidx++] = varaddress;
5363 if (staticidx >= NSTATICS)
5364 abort ();
5365 }
5366
5367 \f
5368 /***********************************************************************
5369 Protection from GC
5370 ***********************************************************************/
5371
5372 /* Temporarily prevent garbage collection. */
5373
5374 ptrdiff_t
5375 inhibit_garbage_collection (void)
5376 {
5377 ptrdiff_t count = SPECPDL_INDEX ();
5378
5379 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5380 return count;
5381 }
5382
5383
5384 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5385 doc: /* Reclaim storage for Lisp objects no longer needed.
5386 Garbage collection happens automatically if you cons more than
5387 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5388 `garbage-collect' normally returns a list with info on amount of space in use:
5389 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
5390 (USED-MISCS . FREE-MISCS) USED-STRING-CHARS USED-VECTOR-SLOTS
5391 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
5392 (USED-STRINGS . FREE-STRINGS))
5393 However, if there was overflow in pure space, `garbage-collect'
5394 returns nil, because real GC can't be done.
5395 See Info node `(elisp)Garbage Collection'. */)
5396 (void)
5397 {
5398 register struct specbinding *bind;
5399 char stack_top_variable;
5400 ptrdiff_t i;
5401 int message_p;
5402 Lisp_Object total[8];
5403 ptrdiff_t count = SPECPDL_INDEX ();
5404 EMACS_TIME t1, t2, t3;
5405
5406 if (abort_on_gc)
5407 abort ();
5408
5409 /* Can't GC if pure storage overflowed because we can't determine
5410 if something is a pure object or not. */
5411 if (pure_bytes_used_before_overflow)
5412 return Qnil;
5413
5414 CHECK_CONS_LIST ();
5415
5416 /* Don't keep undo information around forever.
5417 Do this early on, so it is no problem if the user quits. */
5418 {
5419 register struct buffer *nextb = all_buffers;
5420
5421 while (nextb)
5422 {
5423 /* If a buffer's undo list is Qt, that means that undo is
5424 turned off in that buffer. Calling truncate_undo_list on
5425 Qt tends to return NULL, which effectively turns undo back on.
5426 So don't call truncate_undo_list if undo_list is Qt. */
5427 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5428 truncate_undo_list (nextb);
5429
5430 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5431 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
5432 && ! nextb->text->inhibit_shrinking)
5433 {
5434 /* If a buffer's gap size is more than 10% of the buffer
5435 size, or larger than 2000 bytes, then shrink it
5436 accordingly. Keep a minimum size of 20 bytes. */
5437 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5438
5439 if (nextb->text->gap_size > size)
5440 {
5441 struct buffer *save_current = current_buffer;
5442 current_buffer = nextb;
5443 make_gap (-(nextb->text->gap_size - size));
5444 current_buffer = save_current;
5445 }
5446 }
5447
5448 nextb = nextb->header.next.buffer;
5449 }
5450 }
5451
5452 EMACS_GET_TIME (t1);
5453
5454 /* In case user calls debug_print during GC,
5455 don't let that cause a recursive GC. */
5456 consing_since_gc = 0;
5457
5458 /* Save what's currently displayed in the echo area. */
5459 message_p = push_message ();
5460 record_unwind_protect (pop_message_unwind, Qnil);
5461
5462 /* Save a copy of the contents of the stack, for debugging. */
5463 #if MAX_SAVE_STACK > 0
5464 if (NILP (Vpurify_flag))
5465 {
5466 char *stack;
5467 ptrdiff_t stack_size;
5468 if (&stack_top_variable < stack_bottom)
5469 {
5470 stack = &stack_top_variable;
5471 stack_size = stack_bottom - &stack_top_variable;
5472 }
5473 else
5474 {
5475 stack = stack_bottom;
5476 stack_size = &stack_top_variable - stack_bottom;
5477 }
5478 if (stack_size <= MAX_SAVE_STACK)
5479 {
5480 if (stack_copy_size < stack_size)
5481 {
5482 stack_copy = (char *) xrealloc (stack_copy, stack_size);
5483 stack_copy_size = stack_size;
5484 }
5485 memcpy (stack_copy, stack, stack_size);
5486 }
5487 }
5488 #endif /* MAX_SAVE_STACK > 0 */
5489
5490 if (garbage_collection_messages)
5491 message1_nolog ("Garbage collecting...");
5492
5493 BLOCK_INPUT;
5494
5495 shrink_regexp_cache ();
5496
5497 gc_in_progress = 1;
5498
5499 /* clear_marks (); */
5500
5501 /* Mark all the special slots that serve as the roots of accessibility. */
5502
5503 for (i = 0; i < staticidx; i++)
5504 mark_object (*staticvec[i]);
5505
5506 for (bind = specpdl; bind != specpdl_ptr; bind++)
5507 {
5508 mark_object (bind->symbol);
5509 mark_object (bind->old_value);
5510 }
5511 mark_terminals ();
5512 mark_kboards ();
5513 mark_ttys ();
5514
5515 #ifdef USE_GTK
5516 {
5517 extern void xg_mark_data (void);
5518 xg_mark_data ();
5519 }
5520 #endif
5521
5522 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5523 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5524 mark_stack ();
5525 #else
5526 {
5527 register struct gcpro *tail;
5528 for (tail = gcprolist; tail; tail = tail->next)
5529 for (i = 0; i < tail->nvars; i++)
5530 mark_object (tail->var[i]);
5531 }
5532 mark_byte_stack ();
5533 {
5534 struct catchtag *catch;
5535 struct handler *handler;
5536
5537 for (catch = catchlist; catch; catch = catch->next)
5538 {
5539 mark_object (catch->tag);
5540 mark_object (catch->val);
5541 }
5542 for (handler = handlerlist; handler; handler = handler->next)
5543 {
5544 mark_object (handler->handler);
5545 mark_object (handler->var);
5546 }
5547 }
5548 mark_backtrace ();
5549 #endif
5550
5551 #ifdef HAVE_WINDOW_SYSTEM
5552 mark_fringe_data ();
5553 #endif
5554
5555 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5556 mark_stack ();
5557 #endif
5558
5559 /* Everything is now marked, except for the things that require special
5560 finalization, i.e. the undo_list.
5561 Look thru every buffer's undo list
5562 for elements that update markers that were not marked,
5563 and delete them. */
5564 {
5565 register struct buffer *nextb = all_buffers;
5566
5567 while (nextb)
5568 {
5569 /* If a buffer's undo list is Qt, that means that undo is
5570 turned off in that buffer. Calling truncate_undo_list on
5571 Qt tends to return NULL, which effectively turns undo back on.
5572 So don't call truncate_undo_list if undo_list is Qt. */
5573 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5574 {
5575 Lisp_Object tail, prev;
5576 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5577 prev = Qnil;
5578 while (CONSP (tail))
5579 {
5580 if (CONSP (XCAR (tail))
5581 && MARKERP (XCAR (XCAR (tail)))
5582 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5583 {
5584 if (NILP (prev))
5585 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5586 else
5587 {
5588 tail = XCDR (tail);
5589 XSETCDR (prev, tail);
5590 }
5591 }
5592 else
5593 {
5594 prev = tail;
5595 tail = XCDR (tail);
5596 }
5597 }
5598 }
5599 /* Now that we have stripped the elements that need not be in the
5600 undo_list any more, we can finally mark the list. */
5601 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5602
5603 nextb = nextb->header.next.buffer;
5604 }
5605 }
5606
5607 gc_sweep ();
5608
5609 /* Clear the mark bits that we set in certain root slots. */
5610
5611 unmark_byte_stack ();
5612 VECTOR_UNMARK (&buffer_defaults);
5613 VECTOR_UNMARK (&buffer_local_symbols);
5614
5615 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5616 dump_zombies ();
5617 #endif
5618
5619 UNBLOCK_INPUT;
5620
5621 CHECK_CONS_LIST ();
5622
5623 /* clear_marks (); */
5624 gc_in_progress = 0;
5625
5626 consing_since_gc = 0;
5627 if (gc_cons_threshold < 10000)
5628 gc_cons_threshold = 10000;
5629
5630 gc_relative_threshold = 0;
5631 if (FLOATP (Vgc_cons_percentage))
5632 { /* Set gc_cons_combined_threshold. */
5633 double tot = 0;
5634
5635 tot += total_conses * sizeof (struct Lisp_Cons);
5636 tot += total_symbols * sizeof (struct Lisp_Symbol);
5637 tot += total_markers * sizeof (union Lisp_Misc);
5638 tot += total_string_size;
5639 tot += total_vector_size * sizeof (Lisp_Object);
5640 tot += total_floats * sizeof (struct Lisp_Float);
5641 tot += total_intervals * sizeof (struct interval);
5642 tot += total_strings * sizeof (struct Lisp_String);
5643
5644 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5645 if (0 < tot)
5646 {
5647 if (tot < TYPE_MAXIMUM (EMACS_INT))
5648 gc_relative_threshold = tot;
5649 else
5650 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5651 }
5652 }
5653
5654 if (garbage_collection_messages)
5655 {
5656 if (message_p || minibuf_level > 0)
5657 restore_message ();
5658 else
5659 message1_nolog ("Garbage collecting...done");
5660 }
5661
5662 unbind_to (count, Qnil);
5663
5664 total[0] = Fcons (make_number (total_conses),
5665 make_number (total_free_conses));
5666 total[1] = Fcons (make_number (total_symbols),
5667 make_number (total_free_symbols));
5668 total[2] = Fcons (make_number (total_markers),
5669 make_number (total_free_markers));
5670 total[3] = make_number (total_string_size);
5671 total[4] = make_number (total_vector_size);
5672 total[5] = Fcons (make_number (total_floats),
5673 make_number (total_free_floats));
5674 total[6] = Fcons (make_number (total_intervals),
5675 make_number (total_free_intervals));
5676 total[7] = Fcons (make_number (total_strings),
5677 make_number (total_free_strings));
5678
5679 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5680 {
5681 /* Compute average percentage of zombies. */
5682 double nlive = 0;
5683
5684 for (i = 0; i < 7; ++i)
5685 if (CONSP (total[i]))
5686 nlive += XFASTINT (XCAR (total[i]));
5687
5688 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5689 max_live = max (nlive, max_live);
5690 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5691 max_zombies = max (nzombies, max_zombies);
5692 ++ngcs;
5693 }
5694 #endif
5695
5696 if (!NILP (Vpost_gc_hook))
5697 {
5698 ptrdiff_t gc_count = inhibit_garbage_collection ();
5699 safe_run_hooks (Qpost_gc_hook);
5700 unbind_to (gc_count, Qnil);
5701 }
5702
5703 /* Accumulate statistics. */
5704 EMACS_GET_TIME (t2);
5705 EMACS_SUB_TIME (t3, t2, t1);
5706 if (FLOATP (Vgc_elapsed))
5707 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5708 EMACS_SECS (t3) +
5709 EMACS_USECS (t3) * 1.0e-6);
5710 gcs_done++;
5711
5712 return Flist (sizeof total / sizeof *total, total);
5713 }
5714
5715
5716 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5717 only interesting objects referenced from glyphs are strings. */
5718
5719 static void
5720 mark_glyph_matrix (struct glyph_matrix *matrix)
5721 {
5722 struct glyph_row *row = matrix->rows;
5723 struct glyph_row *end = row + matrix->nrows;
5724
5725 for (; row < end; ++row)
5726 if (row->enabled_p)
5727 {
5728 int area;
5729 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5730 {
5731 struct glyph *glyph = row->glyphs[area];
5732 struct glyph *end_glyph = glyph + row->used[area];
5733
5734 for (; glyph < end_glyph; ++glyph)
5735 if (STRINGP (glyph->object)
5736 && !STRING_MARKED_P (XSTRING (glyph->object)))
5737 mark_object (glyph->object);
5738 }
5739 }
5740 }
5741
5742
5743 /* Mark Lisp faces in the face cache C. */
5744
5745 static void
5746 mark_face_cache (struct face_cache *c)
5747 {
5748 if (c)
5749 {
5750 int i, j;
5751 for (i = 0; i < c->used; ++i)
5752 {
5753 struct face *face = FACE_FROM_ID (c->f, i);
5754
5755 if (face)
5756 {
5757 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5758 mark_object (face->lface[j]);
5759 }
5760 }
5761 }
5762 }
5763
5764
5765 \f
5766 /* Mark reference to a Lisp_Object.
5767 If the object referred to has not been seen yet, recursively mark
5768 all the references contained in it. */
5769
5770 #define LAST_MARKED_SIZE 500
5771 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5772 static int last_marked_index;
5773
5774 /* For debugging--call abort when we cdr down this many
5775 links of a list, in mark_object. In debugging,
5776 the call to abort will hit a breakpoint.
5777 Normally this is zero and the check never goes off. */
5778 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5779
5780 static void
5781 mark_vectorlike (struct Lisp_Vector *ptr)
5782 {
5783 ptrdiff_t size = ptr->header.size;
5784 ptrdiff_t i;
5785
5786 eassert (!VECTOR_MARKED_P (ptr));
5787 VECTOR_MARK (ptr); /* Else mark it */
5788 if (size & PSEUDOVECTOR_FLAG)
5789 size &= PSEUDOVECTOR_SIZE_MASK;
5790
5791 /* Note that this size is not the memory-footprint size, but only
5792 the number of Lisp_Object fields that we should trace.
5793 The distinction is used e.g. by Lisp_Process which places extra
5794 non-Lisp_Object fields at the end of the structure. */
5795 for (i = 0; i < size; i++) /* and then mark its elements */
5796 mark_object (ptr->contents[i]);
5797 }
5798
5799 /* Like mark_vectorlike but optimized for char-tables (and
5800 sub-char-tables) assuming that the contents are mostly integers or
5801 symbols. */
5802
5803 static void
5804 mark_char_table (struct Lisp_Vector *ptr)
5805 {
5806 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5807 int i;
5808
5809 eassert (!VECTOR_MARKED_P (ptr));
5810 VECTOR_MARK (ptr);
5811 for (i = 0; i < size; i++)
5812 {
5813 Lisp_Object val = ptr->contents[i];
5814
5815 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5816 continue;
5817 if (SUB_CHAR_TABLE_P (val))
5818 {
5819 if (! VECTOR_MARKED_P (XVECTOR (val)))
5820 mark_char_table (XVECTOR (val));
5821 }
5822 else
5823 mark_object (val);
5824 }
5825 }
5826
5827 void
5828 mark_object (Lisp_Object arg)
5829 {
5830 register Lisp_Object obj = arg;
5831 #ifdef GC_CHECK_MARKED_OBJECTS
5832 void *po;
5833 struct mem_node *m;
5834 #endif
5835 ptrdiff_t cdr_count = 0;
5836
5837 loop:
5838
5839 if (PURE_POINTER_P (XPNTR (obj)))
5840 return;
5841
5842 last_marked[last_marked_index++] = obj;
5843 if (last_marked_index == LAST_MARKED_SIZE)
5844 last_marked_index = 0;
5845
5846 /* Perform some sanity checks on the objects marked here. Abort if
5847 we encounter an object we know is bogus. This increases GC time
5848 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5849 #ifdef GC_CHECK_MARKED_OBJECTS
5850
5851 po = (void *) XPNTR (obj);
5852
5853 /* Check that the object pointed to by PO is known to be a Lisp
5854 structure allocated from the heap. */
5855 #define CHECK_ALLOCATED() \
5856 do { \
5857 m = mem_find (po); \
5858 if (m == MEM_NIL) \
5859 abort (); \
5860 } while (0)
5861
5862 /* Check that the object pointed to by PO is live, using predicate
5863 function LIVEP. */
5864 #define CHECK_LIVE(LIVEP) \
5865 do { \
5866 if (!LIVEP (m, po)) \
5867 abort (); \
5868 } while (0)
5869
5870 /* Check both of the above conditions. */
5871 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5872 do { \
5873 CHECK_ALLOCATED (); \
5874 CHECK_LIVE (LIVEP); \
5875 } while (0) \
5876
5877 #else /* not GC_CHECK_MARKED_OBJECTS */
5878
5879 #define CHECK_LIVE(LIVEP) (void) 0
5880 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5881
5882 #endif /* not GC_CHECK_MARKED_OBJECTS */
5883
5884 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5885 {
5886 case Lisp_String:
5887 {
5888 register struct Lisp_String *ptr = XSTRING (obj);
5889 if (STRING_MARKED_P (ptr))
5890 break;
5891 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5892 MARK_INTERVAL_TREE (ptr->intervals);
5893 MARK_STRING (ptr);
5894 #ifdef GC_CHECK_STRING_BYTES
5895 /* Check that the string size recorded in the string is the
5896 same as the one recorded in the sdata structure. */
5897 CHECK_STRING_BYTES (ptr);
5898 #endif /* GC_CHECK_STRING_BYTES */
5899 }
5900 break;
5901
5902 case Lisp_Vectorlike:
5903 if (VECTOR_MARKED_P (XVECTOR (obj)))
5904 break;
5905 #ifdef GC_CHECK_MARKED_OBJECTS
5906 m = mem_find (po);
5907 if (m == MEM_NIL && !SUBRP (obj)
5908 && po != &buffer_defaults
5909 && po != &buffer_local_symbols)
5910 abort ();
5911 #endif /* GC_CHECK_MARKED_OBJECTS */
5912
5913 if (BUFFERP (obj))
5914 {
5915 #ifdef GC_CHECK_MARKED_OBJECTS
5916 if (po != &buffer_defaults && po != &buffer_local_symbols)
5917 {
5918 struct buffer *b;
5919 for (b = all_buffers; b && b != po; b = b->header.next.buffer)
5920 ;
5921 if (b == NULL)
5922 abort ();
5923 }
5924 #endif /* GC_CHECK_MARKED_OBJECTS */
5925 mark_buffer (obj);
5926 }
5927 else if (SUBRP (obj))
5928 break;
5929 else if (COMPILEDP (obj))
5930 /* We could treat this just like a vector, but it is better to
5931 save the COMPILED_CONSTANTS element for last and avoid
5932 recursion there. */
5933 {
5934 register struct Lisp_Vector *ptr = XVECTOR (obj);
5935 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5936 int i;
5937
5938 CHECK_LIVE (live_vector_p);
5939 VECTOR_MARK (ptr); /* Else mark it */
5940 for (i = 0; i < size; i++) /* and then mark its elements */
5941 {
5942 if (i != COMPILED_CONSTANTS)
5943 mark_object (ptr->contents[i]);
5944 }
5945 obj = ptr->contents[COMPILED_CONSTANTS];
5946 goto loop;
5947 }
5948 else if (FRAMEP (obj))
5949 {
5950 register struct frame *ptr = XFRAME (obj);
5951 mark_vectorlike (XVECTOR (obj));
5952 mark_face_cache (ptr->face_cache);
5953 }
5954 else if (WINDOWP (obj))
5955 {
5956 register struct Lisp_Vector *ptr = XVECTOR (obj);
5957 struct window *w = XWINDOW (obj);
5958 mark_vectorlike (ptr);
5959 /* Mark glyphs for leaf windows. Marking window matrices is
5960 sufficient because frame matrices use the same glyph
5961 memory. */
5962 if (NILP (w->hchild)
5963 && NILP (w->vchild)
5964 && w->current_matrix)
5965 {
5966 mark_glyph_matrix (w->current_matrix);
5967 mark_glyph_matrix (w->desired_matrix);
5968 }
5969 }
5970 else if (HASH_TABLE_P (obj))
5971 {
5972 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5973 mark_vectorlike ((struct Lisp_Vector *)h);
5974 /* If hash table is not weak, mark all keys and values.
5975 For weak tables, mark only the vector. */
5976 if (NILP (h->weak))
5977 mark_object (h->key_and_value);
5978 else
5979 VECTOR_MARK (XVECTOR (h->key_and_value));
5980 }
5981 else if (CHAR_TABLE_P (obj))
5982 mark_char_table (XVECTOR (obj));
5983 else
5984 mark_vectorlike (XVECTOR (obj));
5985 break;
5986
5987 case Lisp_Symbol:
5988 {
5989 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5990 struct Lisp_Symbol *ptrx;
5991
5992 if (ptr->gcmarkbit)
5993 break;
5994 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5995 ptr->gcmarkbit = 1;
5996 mark_object (ptr->function);
5997 mark_object (ptr->plist);
5998 switch (ptr->redirect)
5999 {
6000 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6001 case SYMBOL_VARALIAS:
6002 {
6003 Lisp_Object tem;
6004 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6005 mark_object (tem);
6006 break;
6007 }
6008 case SYMBOL_LOCALIZED:
6009 {
6010 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6011 /* If the value is forwarded to a buffer or keyboard field,
6012 these are marked when we see the corresponding object.
6013 And if it's forwarded to a C variable, either it's not
6014 a Lisp_Object var, or it's staticpro'd already. */
6015 mark_object (blv->where);
6016 mark_object (blv->valcell);
6017 mark_object (blv->defcell);
6018 break;
6019 }
6020 case SYMBOL_FORWARDED:
6021 /* If the value is forwarded to a buffer or keyboard field,
6022 these are marked when we see the corresponding object.
6023 And if it's forwarded to a C variable, either it's not
6024 a Lisp_Object var, or it's staticpro'd already. */
6025 break;
6026 default: abort ();
6027 }
6028 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
6029 MARK_STRING (XSTRING (ptr->xname));
6030 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
6031
6032 ptr = ptr->next;
6033 if (ptr)
6034 {
6035 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
6036 XSETSYMBOL (obj, ptrx);
6037 goto loop;
6038 }
6039 }
6040 break;
6041
6042 case Lisp_Misc:
6043 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6044 if (XMISCANY (obj)->gcmarkbit)
6045 break;
6046 XMISCANY (obj)->gcmarkbit = 1;
6047
6048 switch (XMISCTYPE (obj))
6049 {
6050
6051 case Lisp_Misc_Marker:
6052 /* DO NOT mark thru the marker's chain.
6053 The buffer's markers chain does not preserve markers from gc;
6054 instead, markers are removed from the chain when freed by gc. */
6055 break;
6056
6057 case Lisp_Misc_Save_Value:
6058 #if GC_MARK_STACK
6059 {
6060 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6061 /* If DOGC is set, POINTER is the address of a memory
6062 area containing INTEGER potential Lisp_Objects. */
6063 if (ptr->dogc)
6064 {
6065 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
6066 ptrdiff_t nelt;
6067 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
6068 mark_maybe_object (*p);
6069 }
6070 }
6071 #endif
6072 break;
6073
6074 case Lisp_Misc_Overlay:
6075 {
6076 struct Lisp_Overlay *ptr = XOVERLAY (obj);
6077 mark_object (ptr->start);
6078 mark_object (ptr->end);
6079 mark_object (ptr->plist);
6080 if (ptr->next)
6081 {
6082 XSETMISC (obj, ptr->next);
6083 goto loop;
6084 }
6085 }
6086 break;
6087
6088 default:
6089 abort ();
6090 }
6091 break;
6092
6093 case Lisp_Cons:
6094 {
6095 register struct Lisp_Cons *ptr = XCONS (obj);
6096 if (CONS_MARKED_P (ptr))
6097 break;
6098 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6099 CONS_MARK (ptr);
6100 /* If the cdr is nil, avoid recursion for the car. */
6101 if (EQ (ptr->u.cdr, Qnil))
6102 {
6103 obj = ptr->car;
6104 cdr_count = 0;
6105 goto loop;
6106 }
6107 mark_object (ptr->car);
6108 obj = ptr->u.cdr;
6109 cdr_count++;
6110 if (cdr_count == mark_object_loop_halt)
6111 abort ();
6112 goto loop;
6113 }
6114
6115 case Lisp_Float:
6116 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6117 FLOAT_MARK (XFLOAT (obj));
6118 break;
6119
6120 case_Lisp_Int:
6121 break;
6122
6123 default:
6124 abort ();
6125 }
6126
6127 #undef CHECK_LIVE
6128 #undef CHECK_ALLOCATED
6129 #undef CHECK_ALLOCATED_AND_LIVE
6130 }
6131
6132 /* Mark the pointers in a buffer structure. */
6133
6134 static void
6135 mark_buffer (Lisp_Object buf)
6136 {
6137 register struct buffer *buffer = XBUFFER (buf);
6138 register Lisp_Object *ptr, tmp;
6139 Lisp_Object base_buffer;
6140
6141 eassert (!VECTOR_MARKED_P (buffer));
6142 VECTOR_MARK (buffer);
6143
6144 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
6145
6146 /* For now, we just don't mark the undo_list. It's done later in
6147 a special way just before the sweep phase, and after stripping
6148 some of its elements that are not needed any more. */
6149
6150 if (buffer->overlays_before)
6151 {
6152 XSETMISC (tmp, buffer->overlays_before);
6153 mark_object (tmp);
6154 }
6155 if (buffer->overlays_after)
6156 {
6157 XSETMISC (tmp, buffer->overlays_after);
6158 mark_object (tmp);
6159 }
6160
6161 /* buffer-local Lisp variables start at `undo_list',
6162 tho only the ones from `name' on are GC'd normally. */
6163 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
6164 ptr <= &PER_BUFFER_VALUE (buffer,
6165 PER_BUFFER_VAR_OFFSET (LAST_FIELD_PER_BUFFER));
6166 ptr++)
6167 mark_object (*ptr);
6168
6169 /* If this is an indirect buffer, mark its base buffer. */
6170 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6171 {
6172 XSETBUFFER (base_buffer, buffer->base_buffer);
6173 mark_buffer (base_buffer);
6174 }
6175 }
6176
6177 /* Mark the Lisp pointers in the terminal objects.
6178 Called by Fgarbage_collect. */
6179
6180 static void
6181 mark_terminals (void)
6182 {
6183 struct terminal *t;
6184 for (t = terminal_list; t; t = t->next_terminal)
6185 {
6186 eassert (t->name != NULL);
6187 #ifdef HAVE_WINDOW_SYSTEM
6188 /* If a terminal object is reachable from a stacpro'ed object,
6189 it might have been marked already. Make sure the image cache
6190 gets marked. */
6191 mark_image_cache (t->image_cache);
6192 #endif /* HAVE_WINDOW_SYSTEM */
6193 if (!VECTOR_MARKED_P (t))
6194 mark_vectorlike ((struct Lisp_Vector *)t);
6195 }
6196 }
6197
6198
6199
6200 /* Value is non-zero if OBJ will survive the current GC because it's
6201 either marked or does not need to be marked to survive. */
6202
6203 int
6204 survives_gc_p (Lisp_Object obj)
6205 {
6206 int survives_p;
6207
6208 switch (XTYPE (obj))
6209 {
6210 case_Lisp_Int:
6211 survives_p = 1;
6212 break;
6213
6214 case Lisp_Symbol:
6215 survives_p = XSYMBOL (obj)->gcmarkbit;
6216 break;
6217
6218 case Lisp_Misc:
6219 survives_p = XMISCANY (obj)->gcmarkbit;
6220 break;
6221
6222 case Lisp_String:
6223 survives_p = STRING_MARKED_P (XSTRING (obj));
6224 break;
6225
6226 case Lisp_Vectorlike:
6227 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6228 break;
6229
6230 case Lisp_Cons:
6231 survives_p = CONS_MARKED_P (XCONS (obj));
6232 break;
6233
6234 case Lisp_Float:
6235 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6236 break;
6237
6238 default:
6239 abort ();
6240 }
6241
6242 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6243 }
6244
6245
6246 \f
6247 /* Sweep: find all structures not marked, and free them. */
6248
6249 static void
6250 gc_sweep (void)
6251 {
6252 /* Remove or mark entries in weak hash tables.
6253 This must be done before any object is unmarked. */
6254 sweep_weak_hash_tables ();
6255
6256 sweep_strings ();
6257 #ifdef GC_CHECK_STRING_BYTES
6258 if (!noninteractive)
6259 check_string_bytes (1);
6260 #endif
6261
6262 /* Put all unmarked conses on free list */
6263 {
6264 register struct cons_block *cblk;
6265 struct cons_block **cprev = &cons_block;
6266 register int lim = cons_block_index;
6267 EMACS_INT num_free = 0, num_used = 0;
6268
6269 cons_free_list = 0;
6270
6271 for (cblk = cons_block; cblk; cblk = *cprev)
6272 {
6273 register int i = 0;
6274 int this_free = 0;
6275 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6276
6277 /* Scan the mark bits an int at a time. */
6278 for (i = 0; i < ilim; i++)
6279 {
6280 if (cblk->gcmarkbits[i] == -1)
6281 {
6282 /* Fast path - all cons cells for this int are marked. */
6283 cblk->gcmarkbits[i] = 0;
6284 num_used += BITS_PER_INT;
6285 }
6286 else
6287 {
6288 /* Some cons cells for this int are not marked.
6289 Find which ones, and free them. */
6290 int start, pos, stop;
6291
6292 start = i * BITS_PER_INT;
6293 stop = lim - start;
6294 if (stop > BITS_PER_INT)
6295 stop = BITS_PER_INT;
6296 stop += start;
6297
6298 for (pos = start; pos < stop; pos++)
6299 {
6300 if (!CONS_MARKED_P (&cblk->conses[pos]))
6301 {
6302 this_free++;
6303 cblk->conses[pos].u.chain = cons_free_list;
6304 cons_free_list = &cblk->conses[pos];
6305 #if GC_MARK_STACK
6306 cons_free_list->car = Vdead;
6307 #endif
6308 }
6309 else
6310 {
6311 num_used++;
6312 CONS_UNMARK (&cblk->conses[pos]);
6313 }
6314 }
6315 }
6316 }
6317
6318 lim = CONS_BLOCK_SIZE;
6319 /* If this block contains only free conses and we have already
6320 seen more than two blocks worth of free conses then deallocate
6321 this block. */
6322 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6323 {
6324 *cprev = cblk->next;
6325 /* Unhook from the free list. */
6326 cons_free_list = cblk->conses[0].u.chain;
6327 lisp_align_free (cblk);
6328 }
6329 else
6330 {
6331 num_free += this_free;
6332 cprev = &cblk->next;
6333 }
6334 }
6335 total_conses = num_used;
6336 total_free_conses = num_free;
6337 }
6338
6339 /* Put all unmarked floats on free list */
6340 {
6341 register struct float_block *fblk;
6342 struct float_block **fprev = &float_block;
6343 register int lim = float_block_index;
6344 EMACS_INT num_free = 0, num_used = 0;
6345
6346 float_free_list = 0;
6347
6348 for (fblk = float_block; fblk; fblk = *fprev)
6349 {
6350 register int i;
6351 int this_free = 0;
6352 for (i = 0; i < lim; i++)
6353 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6354 {
6355 this_free++;
6356 fblk->floats[i].u.chain = float_free_list;
6357 float_free_list = &fblk->floats[i];
6358 }
6359 else
6360 {
6361 num_used++;
6362 FLOAT_UNMARK (&fblk->floats[i]);
6363 }
6364 lim = FLOAT_BLOCK_SIZE;
6365 /* If this block contains only free floats and we have already
6366 seen more than two blocks worth of free floats then deallocate
6367 this block. */
6368 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6369 {
6370 *fprev = fblk->next;
6371 /* Unhook from the free list. */
6372 float_free_list = fblk->floats[0].u.chain;
6373 lisp_align_free (fblk);
6374 }
6375 else
6376 {
6377 num_free += this_free;
6378 fprev = &fblk->next;
6379 }
6380 }
6381 total_floats = num_used;
6382 total_free_floats = num_free;
6383 }
6384
6385 /* Put all unmarked intervals on free list */
6386 {
6387 register struct interval_block *iblk;
6388 struct interval_block **iprev = &interval_block;
6389 register int lim = interval_block_index;
6390 EMACS_INT num_free = 0, num_used = 0;
6391
6392 interval_free_list = 0;
6393
6394 for (iblk = interval_block; iblk; iblk = *iprev)
6395 {
6396 register int i;
6397 int this_free = 0;
6398
6399 for (i = 0; i < lim; i++)
6400 {
6401 if (!iblk->intervals[i].gcmarkbit)
6402 {
6403 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
6404 interval_free_list = &iblk->intervals[i];
6405 this_free++;
6406 }
6407 else
6408 {
6409 num_used++;
6410 iblk->intervals[i].gcmarkbit = 0;
6411 }
6412 }
6413 lim = INTERVAL_BLOCK_SIZE;
6414 /* If this block contains only free intervals and we have already
6415 seen more than two blocks worth of free intervals then
6416 deallocate this block. */
6417 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6418 {
6419 *iprev = iblk->next;
6420 /* Unhook from the free list. */
6421 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6422 lisp_free (iblk);
6423 }
6424 else
6425 {
6426 num_free += this_free;
6427 iprev = &iblk->next;
6428 }
6429 }
6430 total_intervals = num_used;
6431 total_free_intervals = num_free;
6432 }
6433
6434 /* Put all unmarked symbols on free list */
6435 {
6436 register struct symbol_block *sblk;
6437 struct symbol_block **sprev = &symbol_block;
6438 register int lim = symbol_block_index;
6439 EMACS_INT num_free = 0, num_used = 0;
6440
6441 symbol_free_list = NULL;
6442
6443 for (sblk = symbol_block; sblk; sblk = *sprev)
6444 {
6445 int this_free = 0;
6446 union aligned_Lisp_Symbol *sym = sblk->symbols;
6447 union aligned_Lisp_Symbol *end = sym + lim;
6448
6449 for (; sym < end; ++sym)
6450 {
6451 /* Check if the symbol was created during loadup. In such a case
6452 it might be pointed to by pure bytecode which we don't trace,
6453 so we conservatively assume that it is live. */
6454 int pure_p = PURE_POINTER_P (XSTRING (sym->s.xname));
6455
6456 if (!sym->s.gcmarkbit && !pure_p)
6457 {
6458 if (sym->s.redirect == SYMBOL_LOCALIZED)
6459 xfree (SYMBOL_BLV (&sym->s));
6460 sym->s.next = symbol_free_list;
6461 symbol_free_list = &sym->s;
6462 #if GC_MARK_STACK
6463 symbol_free_list->function = Vdead;
6464 #endif
6465 ++this_free;
6466 }
6467 else
6468 {
6469 ++num_used;
6470 if (!pure_p)
6471 UNMARK_STRING (XSTRING (sym->s.xname));
6472 sym->s.gcmarkbit = 0;
6473 }
6474 }
6475
6476 lim = SYMBOL_BLOCK_SIZE;
6477 /* If this block contains only free symbols and we have already
6478 seen more than two blocks worth of free symbols then deallocate
6479 this block. */
6480 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6481 {
6482 *sprev = sblk->next;
6483 /* Unhook from the free list. */
6484 symbol_free_list = sblk->symbols[0].s.next;
6485 lisp_free (sblk);
6486 }
6487 else
6488 {
6489 num_free += this_free;
6490 sprev = &sblk->next;
6491 }
6492 }
6493 total_symbols = num_used;
6494 total_free_symbols = num_free;
6495 }
6496
6497 /* Put all unmarked misc's on free list.
6498 For a marker, first unchain it from the buffer it points into. */
6499 {
6500 register struct marker_block *mblk;
6501 struct marker_block **mprev = &marker_block;
6502 register int lim = marker_block_index;
6503 EMACS_INT num_free = 0, num_used = 0;
6504
6505 marker_free_list = 0;
6506
6507 for (mblk = marker_block; mblk; mblk = *mprev)
6508 {
6509 register int i;
6510 int this_free = 0;
6511
6512 for (i = 0; i < lim; i++)
6513 {
6514 if (!mblk->markers[i].m.u_any.gcmarkbit)
6515 {
6516 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6517 unchain_marker (&mblk->markers[i].m.u_marker);
6518 /* Set the type of the freed object to Lisp_Misc_Free.
6519 We could leave the type alone, since nobody checks it,
6520 but this might catch bugs faster. */
6521 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6522 mblk->markers[i].m.u_free.chain = marker_free_list;
6523 marker_free_list = &mblk->markers[i].m;
6524 this_free++;
6525 }
6526 else
6527 {
6528 num_used++;
6529 mblk->markers[i].m.u_any.gcmarkbit = 0;
6530 }
6531 }
6532 lim = MARKER_BLOCK_SIZE;
6533 /* If this block contains only free markers and we have already
6534 seen more than two blocks worth of free markers then deallocate
6535 this block. */
6536 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6537 {
6538 *mprev = mblk->next;
6539 /* Unhook from the free list. */
6540 marker_free_list = mblk->markers[0].m.u_free.chain;
6541 lisp_free (mblk);
6542 }
6543 else
6544 {
6545 num_free += this_free;
6546 mprev = &mblk->next;
6547 }
6548 }
6549
6550 total_markers = num_used;
6551 total_free_markers = num_free;
6552 }
6553
6554 /* Free all unmarked buffers */
6555 {
6556 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6557
6558 while (buffer)
6559 if (!VECTOR_MARKED_P (buffer))
6560 {
6561 if (prev)
6562 prev->header.next = buffer->header.next;
6563 else
6564 all_buffers = buffer->header.next.buffer;
6565 next = buffer->header.next.buffer;
6566 lisp_free (buffer);
6567 buffer = next;
6568 }
6569 else
6570 {
6571 VECTOR_UNMARK (buffer);
6572 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6573 prev = buffer, buffer = buffer->header.next.buffer;
6574 }
6575 }
6576
6577 sweep_vectors ();
6578
6579 #ifdef GC_CHECK_STRING_BYTES
6580 if (!noninteractive)
6581 check_string_bytes (1);
6582 #endif
6583 }
6584
6585
6586
6587 \f
6588 /* Debugging aids. */
6589
6590 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6591 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6592 This may be helpful in debugging Emacs's memory usage.
6593 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6594 (void)
6595 {
6596 Lisp_Object end;
6597
6598 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6599
6600 return end;
6601 }
6602
6603 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6604 doc: /* Return a list of counters that measure how much consing there has been.
6605 Each of these counters increments for a certain kind of object.
6606 The counters wrap around from the largest positive integer to zero.
6607 Garbage collection does not decrease them.
6608 The elements of the value are as follows:
6609 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6610 All are in units of 1 = one object consed
6611 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6612 objects consed.
6613 MISCS include overlays, markers, and some internal types.
6614 Frames, windows, buffers, and subprocesses count as vectors
6615 (but the contents of a buffer's text do not count here). */)
6616 (void)
6617 {
6618 Lisp_Object consed[8];
6619
6620 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6621 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6622 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6623 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6624 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6625 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6626 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6627 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6628
6629 return Flist (8, consed);
6630 }
6631
6632 /* Find at most FIND_MAX symbols which have OBJ as their value or
6633 function. This is used in gdbinit's `xwhichsymbols' command. */
6634
6635 Lisp_Object
6636 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6637 {
6638 struct symbol_block *sblk;
6639 ptrdiff_t gc_count = inhibit_garbage_collection ();
6640 Lisp_Object found = Qnil;
6641
6642 if (! DEADP (obj))
6643 {
6644 for (sblk = symbol_block; sblk; sblk = sblk->next)
6645 {
6646 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6647 int bn;
6648
6649 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6650 {
6651 struct Lisp_Symbol *sym = &aligned_sym->s;
6652 Lisp_Object val;
6653 Lisp_Object tem;
6654
6655 if (sblk == symbol_block && bn >= symbol_block_index)
6656 break;
6657
6658 XSETSYMBOL (tem, sym);
6659 val = find_symbol_value (tem);
6660 if (EQ (val, obj)
6661 || EQ (sym->function, obj)
6662 || (!NILP (sym->function)
6663 && COMPILEDP (sym->function)
6664 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6665 || (!NILP (val)
6666 && COMPILEDP (val)
6667 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6668 {
6669 found = Fcons (tem, found);
6670 if (--find_max == 0)
6671 goto out;
6672 }
6673 }
6674 }
6675 }
6676
6677 out:
6678 unbind_to (gc_count, Qnil);
6679 return found;
6680 }
6681
6682 #ifdef ENABLE_CHECKING
6683 int suppress_checking;
6684
6685 void
6686 die (const char *msg, const char *file, int line)
6687 {
6688 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6689 file, line, msg);
6690 abort ();
6691 }
6692 #endif
6693 \f
6694 /* Initialization */
6695
6696 void
6697 init_alloc_once (void)
6698 {
6699 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6700 purebeg = PUREBEG;
6701 pure_size = PURESIZE;
6702 pure_bytes_used = 0;
6703 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6704 pure_bytes_used_before_overflow = 0;
6705
6706 /* Initialize the list of free aligned blocks. */
6707 free_ablock = NULL;
6708
6709 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6710 mem_init ();
6711 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6712 #endif
6713
6714 ignore_warnings = 1;
6715 #ifdef DOUG_LEA_MALLOC
6716 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6717 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6718 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6719 #endif
6720 init_strings ();
6721 init_cons ();
6722 init_symbol ();
6723 init_marker ();
6724 init_float ();
6725 init_intervals ();
6726 init_vectors ();
6727 init_weak_hash_tables ();
6728
6729 #ifdef REL_ALLOC
6730 malloc_hysteresis = 32;
6731 #else
6732 malloc_hysteresis = 0;
6733 #endif
6734
6735 refill_memory_reserve ();
6736
6737 ignore_warnings = 0;
6738 gcprolist = 0;
6739 byte_stack_list = 0;
6740 staticidx = 0;
6741 consing_since_gc = 0;
6742 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6743 gc_relative_threshold = 0;
6744 }
6745
6746 void
6747 init_alloc (void)
6748 {
6749 gcprolist = 0;
6750 byte_stack_list = 0;
6751 #if GC_MARK_STACK
6752 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6753 setjmp_tested_p = longjmps_done = 0;
6754 #endif
6755 #endif
6756 Vgc_elapsed = make_float (0.0);
6757 gcs_done = 0;
6758 }
6759
6760 void
6761 syms_of_alloc (void)
6762 {
6763 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6764 doc: /* Number of bytes of consing between garbage collections.
6765 Garbage collection can happen automatically once this many bytes have been
6766 allocated since the last garbage collection. All data types count.
6767
6768 Garbage collection happens automatically only when `eval' is called.
6769
6770 By binding this temporarily to a large number, you can effectively
6771 prevent garbage collection during a part of the program.
6772 See also `gc-cons-percentage'. */);
6773
6774 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6775 doc: /* Portion of the heap used for allocation.
6776 Garbage collection can happen automatically once this portion of the heap
6777 has been allocated since the last garbage collection.
6778 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6779 Vgc_cons_percentage = make_float (0.1);
6780
6781 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6782 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6783
6784 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6785 doc: /* Number of cons cells that have been consed so far. */);
6786
6787 DEFVAR_INT ("floats-consed", floats_consed,
6788 doc: /* Number of floats that have been consed so far. */);
6789
6790 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6791 doc: /* Number of vector cells that have been consed so far. */);
6792
6793 DEFVAR_INT ("symbols-consed", symbols_consed,
6794 doc: /* Number of symbols that have been consed so far. */);
6795
6796 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6797 doc: /* Number of string characters that have been consed so far. */);
6798
6799 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6800 doc: /* Number of miscellaneous objects that have been consed so far.
6801 These include markers and overlays, plus certain objects not visible
6802 to users. */);
6803
6804 DEFVAR_INT ("intervals-consed", intervals_consed,
6805 doc: /* Number of intervals that have been consed so far. */);
6806
6807 DEFVAR_INT ("strings-consed", strings_consed,
6808 doc: /* Number of strings that have been consed so far. */);
6809
6810 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6811 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6812 This means that certain objects should be allocated in shared (pure) space.
6813 It can also be set to a hash-table, in which case this table is used to
6814 do hash-consing of the objects allocated to pure space. */);
6815
6816 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6817 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6818 garbage_collection_messages = 0;
6819
6820 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6821 doc: /* Hook run after garbage collection has finished. */);
6822 Vpost_gc_hook = Qnil;
6823 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6824
6825 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6826 doc: /* Precomputed `signal' argument for memory-full error. */);
6827 /* We build this in advance because if we wait until we need it, we might
6828 not be able to allocate the memory to hold it. */
6829 Vmemory_signal_data
6830 = pure_cons (Qerror,
6831 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6832
6833 DEFVAR_LISP ("memory-full", Vmemory_full,
6834 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6835 Vmemory_full = Qnil;
6836
6837 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6838 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6839
6840 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6841 doc: /* Accumulated time elapsed in garbage collections.
6842 The time is in seconds as a floating point value. */);
6843 DEFVAR_INT ("gcs-done", gcs_done,
6844 doc: /* Accumulated number of garbage collections done. */);
6845
6846 defsubr (&Scons);
6847 defsubr (&Slist);
6848 defsubr (&Svector);
6849 defsubr (&Smake_byte_code);
6850 defsubr (&Smake_list);
6851 defsubr (&Smake_vector);
6852 defsubr (&Smake_string);
6853 defsubr (&Smake_bool_vector);
6854 defsubr (&Smake_symbol);
6855 defsubr (&Smake_marker);
6856 defsubr (&Spurecopy);
6857 defsubr (&Sgarbage_collect);
6858 defsubr (&Smemory_limit);
6859 defsubr (&Smemory_use_counts);
6860
6861 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6862 defsubr (&Sgc_status);
6863 #endif
6864 }