(scan_lists): Follow coding convention.
[bpt/emacs.git] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985, 1986, 1987, 1993, 1994, 1995, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004,
4 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs; see the file COPYING. If not, write to
20 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include <config.h>
24
25 #ifdef HAVE_UNISTD_H
26 #include <unistd.h>
27 #endif
28 #include <time.h>
29
30 #ifndef MAC_OS
31 /* On Mac OS, defining this conflicts with precompiled headers. */
32
33 /* Note on some machines this defines `vector' as a typedef,
34 so make sure we don't use that name in this file. */
35 #undef vector
36 #define vector *****
37
38 #endif /* ! MAC_OSX */
39
40 #include "lisp.h"
41 #include "commands.h"
42 #include "character.h"
43 #include "coding.h"
44 #include "buffer.h"
45 #include "keyboard.h"
46 #include "keymap.h"
47 #include "intervals.h"
48 #include "frame.h"
49 #include "window.h"
50 #include "blockinput.h"
51 #ifdef HAVE_MENUS
52 #if defined (HAVE_X_WINDOWS)
53 #include "xterm.h"
54 #elif defined (MAC_OS)
55 #include "macterm.h"
56 #endif
57 #endif
58
59 #ifndef NULL
60 #define NULL ((POINTER_TYPE *)0)
61 #endif
62
63 /* Nonzero enables use of dialog boxes for questions
64 asked by mouse commands. */
65 int use_dialog_box;
66
67 /* Nonzero enables use of a file dialog for file name
68 questions asked by mouse commands. */
69 int use_file_dialog;
70
71 extern int minibuffer_auto_raise;
72 extern Lisp_Object minibuf_window;
73 extern Lisp_Object Vlocale_coding_system;
74 extern int load_in_progress;
75
76 Lisp_Object Qstring_lessp, Qprovide, Qrequire;
77 Lisp_Object Qyes_or_no_p_history;
78 Lisp_Object Qcursor_in_echo_area;
79 Lisp_Object Qwidget_type;
80 Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
81
82 extern Lisp_Object Qinput_method_function;
83
84 static int internal_equal P_ ((Lisp_Object , Lisp_Object, int, int));
85
86 extern long get_random ();
87 extern void seed_random P_ ((long));
88
89 #ifndef HAVE_UNISTD_H
90 extern long time ();
91 #endif
92 \f
93 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
94 doc: /* Return the argument unchanged. */)
95 (arg)
96 Lisp_Object arg;
97 {
98 return arg;
99 }
100
101 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
102 doc: /* Return a pseudo-random number.
103 All integers representable in Lisp are equally likely.
104 On most systems, this is 29 bits' worth.
105 With positive integer argument N, return random number in interval [0,N).
106 With argument t, set the random number seed from the current time and pid. */)
107 (n)
108 Lisp_Object n;
109 {
110 EMACS_INT val;
111 Lisp_Object lispy_val;
112 unsigned long denominator;
113
114 if (EQ (n, Qt))
115 seed_random (getpid () + time (NULL));
116 if (NATNUMP (n) && XFASTINT (n) != 0)
117 {
118 /* Try to take our random number from the higher bits of VAL,
119 not the lower, since (says Gentzel) the low bits of `random'
120 are less random than the higher ones. We do this by using the
121 quotient rather than the remainder. At the high end of the RNG
122 it's possible to get a quotient larger than n; discarding
123 these values eliminates the bias that would otherwise appear
124 when using a large n. */
125 denominator = ((unsigned long)1 << VALBITS) / XFASTINT (n);
126 do
127 val = get_random () / denominator;
128 while (val >= XFASTINT (n));
129 }
130 else
131 val = get_random ();
132 XSETINT (lispy_val, val);
133 return lispy_val;
134 }
135 \f
136 /* Random data-structure functions */
137
138 DEFUN ("length", Flength, Slength, 1, 1, 0,
139 doc: /* Return the length of vector, list or string SEQUENCE.
140 A byte-code function object is also allowed.
141 If the string contains multibyte characters, this is not necessarily
142 the number of bytes in the string; it is the number of characters.
143 To get the number of bytes, use `string-bytes'. */)
144 (sequence)
145 register Lisp_Object sequence;
146 {
147 register Lisp_Object val;
148 register int i;
149
150 if (STRINGP (sequence))
151 XSETFASTINT (val, SCHARS (sequence));
152 else if (VECTORP (sequence))
153 XSETFASTINT (val, ASIZE (sequence));
154 else if (CHAR_TABLE_P (sequence))
155 XSETFASTINT (val, MAX_CHAR);
156 else if (BOOL_VECTOR_P (sequence))
157 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
158 else if (COMPILEDP (sequence))
159 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
160 else if (CONSP (sequence))
161 {
162 i = 0;
163 while (CONSP (sequence))
164 {
165 sequence = XCDR (sequence);
166 ++i;
167
168 if (!CONSP (sequence))
169 break;
170
171 sequence = XCDR (sequence);
172 ++i;
173 QUIT;
174 }
175
176 CHECK_LIST_END (sequence, sequence);
177
178 val = make_number (i);
179 }
180 else if (NILP (sequence))
181 XSETFASTINT (val, 0);
182 else
183 wrong_type_argument (Qsequencep, sequence);
184
185 return val;
186 }
187
188 /* This does not check for quits. That is safe since it must terminate. */
189
190 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
191 doc: /* Return the length of a list, but avoid error or infinite loop.
192 This function never gets an error. If LIST is not really a list,
193 it returns 0. If LIST is circular, it returns a finite value
194 which is at least the number of distinct elements. */)
195 (list)
196 Lisp_Object list;
197 {
198 Lisp_Object tail, halftail, length;
199 int len = 0;
200
201 /* halftail is used to detect circular lists. */
202 halftail = list;
203 for (tail = list; CONSP (tail); tail = XCDR (tail))
204 {
205 if (EQ (tail, halftail) && len != 0)
206 break;
207 len++;
208 if ((len & 1) == 0)
209 halftail = XCDR (halftail);
210 }
211
212 XSETINT (length, len);
213 return length;
214 }
215
216 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
217 doc: /* Return the number of bytes in STRING.
218 If STRING is multibyte, this may be greater than the length of STRING. */)
219 (string)
220 Lisp_Object string;
221 {
222 CHECK_STRING (string);
223 return make_number (SBYTES (string));
224 }
225
226 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
227 doc: /* Return t if two strings have identical contents.
228 Case is significant, but text properties are ignored.
229 Symbols are also allowed; their print names are used instead. */)
230 (s1, s2)
231 register Lisp_Object s1, s2;
232 {
233 if (SYMBOLP (s1))
234 s1 = SYMBOL_NAME (s1);
235 if (SYMBOLP (s2))
236 s2 = SYMBOL_NAME (s2);
237 CHECK_STRING (s1);
238 CHECK_STRING (s2);
239
240 if (SCHARS (s1) != SCHARS (s2)
241 || SBYTES (s1) != SBYTES (s2)
242 || bcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
243 return Qnil;
244 return Qt;
245 }
246
247 DEFUN ("compare-strings", Fcompare_strings,
248 Scompare_strings, 6, 7, 0,
249 doc: /* Compare the contents of two strings, converting to multibyte if needed.
250 In string STR1, skip the first START1 characters and stop at END1.
251 In string STR2, skip the first START2 characters and stop at END2.
252 END1 and END2 default to the full lengths of the respective strings.
253
254 Case is significant in this comparison if IGNORE-CASE is nil.
255 Unibyte strings are converted to multibyte for comparison.
256
257 The value is t if the strings (or specified portions) match.
258 If string STR1 is less, the value is a negative number N;
259 - 1 - N is the number of characters that match at the beginning.
260 If string STR1 is greater, the value is a positive number N;
261 N - 1 is the number of characters that match at the beginning. */)
262 (str1, start1, end1, str2, start2, end2, ignore_case)
263 Lisp_Object str1, start1, end1, start2, str2, end2, ignore_case;
264 {
265 register int end1_char, end2_char;
266 register int i1, i1_byte, i2, i2_byte;
267
268 CHECK_STRING (str1);
269 CHECK_STRING (str2);
270 if (NILP (start1))
271 start1 = make_number (0);
272 if (NILP (start2))
273 start2 = make_number (0);
274 CHECK_NATNUM (start1);
275 CHECK_NATNUM (start2);
276 if (! NILP (end1))
277 CHECK_NATNUM (end1);
278 if (! NILP (end2))
279 CHECK_NATNUM (end2);
280
281 i1 = XINT (start1);
282 i2 = XINT (start2);
283
284 i1_byte = string_char_to_byte (str1, i1);
285 i2_byte = string_char_to_byte (str2, i2);
286
287 end1_char = SCHARS (str1);
288 if (! NILP (end1) && end1_char > XINT (end1))
289 end1_char = XINT (end1);
290
291 end2_char = SCHARS (str2);
292 if (! NILP (end2) && end2_char > XINT (end2))
293 end2_char = XINT (end2);
294
295 while (i1 < end1_char && i2 < end2_char)
296 {
297 /* When we find a mismatch, we must compare the
298 characters, not just the bytes. */
299 int c1, c2;
300
301 if (STRING_MULTIBYTE (str1))
302 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
303 else
304 {
305 c1 = SREF (str1, i1++);
306 c1 = unibyte_char_to_multibyte (c1);
307 }
308
309 if (STRING_MULTIBYTE (str2))
310 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
311 else
312 {
313 c2 = SREF (str2, i2++);
314 c2 = unibyte_char_to_multibyte (c2);
315 }
316
317 if (c1 == c2)
318 continue;
319
320 if (! NILP (ignore_case))
321 {
322 Lisp_Object tem;
323
324 tem = Fupcase (make_number (c1));
325 c1 = XINT (tem);
326 tem = Fupcase (make_number (c2));
327 c2 = XINT (tem);
328 }
329
330 if (c1 == c2)
331 continue;
332
333 /* Note that I1 has already been incremented
334 past the character that we are comparing;
335 hence we don't add or subtract 1 here. */
336 if (c1 < c2)
337 return make_number (- i1 + XINT (start1));
338 else
339 return make_number (i1 - XINT (start1));
340 }
341
342 if (i1 < end1_char)
343 return make_number (i1 - XINT (start1) + 1);
344 if (i2 < end2_char)
345 return make_number (- i1 + XINT (start1) - 1);
346
347 return Qt;
348 }
349
350 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
351 doc: /* Return t if first arg string is less than second in lexicographic order.
352 Case is significant.
353 Symbols are also allowed; their print names are used instead. */)
354 (s1, s2)
355 register Lisp_Object s1, s2;
356 {
357 register int end;
358 register int i1, i1_byte, i2, i2_byte;
359
360 if (SYMBOLP (s1))
361 s1 = SYMBOL_NAME (s1);
362 if (SYMBOLP (s2))
363 s2 = SYMBOL_NAME (s2);
364 CHECK_STRING (s1);
365 CHECK_STRING (s2);
366
367 i1 = i1_byte = i2 = i2_byte = 0;
368
369 end = SCHARS (s1);
370 if (end > SCHARS (s2))
371 end = SCHARS (s2);
372
373 while (i1 < end)
374 {
375 /* When we find a mismatch, we must compare the
376 characters, not just the bytes. */
377 int c1, c2;
378
379 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
380 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
381
382 if (c1 != c2)
383 return c1 < c2 ? Qt : Qnil;
384 }
385 return i1 < SCHARS (s2) ? Qt : Qnil;
386 }
387 \f
388 #if __GNUC__
389 /* "gcc -O3" enables automatic function inlining, which optimizes out
390 the arguments for the invocations of this function, whereas it
391 expects these values on the stack. */
392 static Lisp_Object concat P_ ((int nargs, Lisp_Object *args, enum Lisp_Type target_type, int last_special)) __attribute__((noinline));
393 #else /* !__GNUC__ */
394 static Lisp_Object concat P_ ((int nargs, Lisp_Object *args, enum Lisp_Type target_type, int last_special));
395 #endif
396
397 /* ARGSUSED */
398 Lisp_Object
399 concat2 (s1, s2)
400 Lisp_Object s1, s2;
401 {
402 #ifdef NO_ARG_ARRAY
403 Lisp_Object args[2];
404 args[0] = s1;
405 args[1] = s2;
406 return concat (2, args, Lisp_String, 0);
407 #else
408 return concat (2, &s1, Lisp_String, 0);
409 #endif /* NO_ARG_ARRAY */
410 }
411
412 /* ARGSUSED */
413 Lisp_Object
414 concat3 (s1, s2, s3)
415 Lisp_Object s1, s2, s3;
416 {
417 #ifdef NO_ARG_ARRAY
418 Lisp_Object args[3];
419 args[0] = s1;
420 args[1] = s2;
421 args[2] = s3;
422 return concat (3, args, Lisp_String, 0);
423 #else
424 return concat (3, &s1, Lisp_String, 0);
425 #endif /* NO_ARG_ARRAY */
426 }
427
428 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
429 doc: /* Concatenate all the arguments and make the result a list.
430 The result is a list whose elements are the elements of all the arguments.
431 Each argument may be a list, vector or string.
432 The last argument is not copied, just used as the tail of the new list.
433 usage: (append &rest SEQUENCES) */)
434 (nargs, args)
435 int nargs;
436 Lisp_Object *args;
437 {
438 return concat (nargs, args, Lisp_Cons, 1);
439 }
440
441 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
442 doc: /* Concatenate all the arguments and make the result a string.
443 The result is a string whose elements are the elements of all the arguments.
444 Each argument may be a string or a list or vector of characters (integers).
445 usage: (concat &rest SEQUENCES) */)
446 (nargs, args)
447 int nargs;
448 Lisp_Object *args;
449 {
450 return concat (nargs, args, Lisp_String, 0);
451 }
452
453 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
454 doc: /* Concatenate all the arguments and make the result a vector.
455 The result is a vector whose elements are the elements of all the arguments.
456 Each argument may be a list, vector or string.
457 usage: (vconcat &rest SEQUENCES) */)
458 (nargs, args)
459 int nargs;
460 Lisp_Object *args;
461 {
462 return concat (nargs, args, Lisp_Vectorlike, 0);
463 }
464
465
466 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
467 doc: /* Return a copy of a list, vector, string or char-table.
468 The elements of a list or vector are not copied; they are shared
469 with the original. */)
470 (arg)
471 Lisp_Object arg;
472 {
473 if (NILP (arg)) return arg;
474
475 if (CHAR_TABLE_P (arg))
476 {
477 return copy_char_table (arg);
478 }
479
480 if (BOOL_VECTOR_P (arg))
481 {
482 Lisp_Object val;
483 int size_in_chars
484 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
485 / BOOL_VECTOR_BITS_PER_CHAR);
486
487 val = Fmake_bool_vector (Flength (arg), Qnil);
488 bcopy (XBOOL_VECTOR (arg)->data, XBOOL_VECTOR (val)->data,
489 size_in_chars);
490 return val;
491 }
492
493 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
494 wrong_type_argument (Qsequencep, arg);
495
496 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
497 }
498
499 /* This structure holds information of an argument of `concat' that is
500 a string and has text properties to be copied. */
501 struct textprop_rec
502 {
503 int argnum; /* refer to ARGS (arguments of `concat') */
504 int from; /* refer to ARGS[argnum] (argument string) */
505 int to; /* refer to VAL (the target string) */
506 };
507
508 static Lisp_Object
509 concat (nargs, args, target_type, last_special)
510 int nargs;
511 Lisp_Object *args;
512 enum Lisp_Type target_type;
513 int last_special;
514 {
515 Lisp_Object val;
516 register Lisp_Object tail;
517 register Lisp_Object this;
518 int toindex;
519 int toindex_byte = 0;
520 register int result_len;
521 register int result_len_byte;
522 register int argnum;
523 Lisp_Object last_tail;
524 Lisp_Object prev;
525 int some_multibyte;
526 /* When we make a multibyte string, we can't copy text properties
527 while concatinating each string because the length of resulting
528 string can't be decided until we finish the whole concatination.
529 So, we record strings that have text properties to be copied
530 here, and copy the text properties after the concatination. */
531 struct textprop_rec *textprops = NULL;
532 /* Number of elments in textprops. */
533 int num_textprops = 0;
534 USE_SAFE_ALLOCA;
535
536 tail = Qnil;
537
538 /* In append, the last arg isn't treated like the others */
539 if (last_special && nargs > 0)
540 {
541 nargs--;
542 last_tail = args[nargs];
543 }
544 else
545 last_tail = Qnil;
546
547 /* Check each argument. */
548 for (argnum = 0; argnum < nargs; argnum++)
549 {
550 this = args[argnum];
551 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
552 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
553 wrong_type_argument (Qsequencep, this);
554 }
555
556 /* Compute total length in chars of arguments in RESULT_LEN.
557 If desired output is a string, also compute length in bytes
558 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
559 whether the result should be a multibyte string. */
560 result_len_byte = 0;
561 result_len = 0;
562 some_multibyte = 0;
563 for (argnum = 0; argnum < nargs; argnum++)
564 {
565 int len;
566 this = args[argnum];
567 len = XFASTINT (Flength (this));
568 if (target_type == Lisp_String)
569 {
570 /* We must count the number of bytes needed in the string
571 as well as the number of characters. */
572 int i;
573 Lisp_Object ch;
574 int this_len_byte;
575
576 if (VECTORP (this))
577 for (i = 0; i < len; i++)
578 {
579 ch = AREF (this, i);
580 CHECK_CHARACTER (ch);
581 this_len_byte = CHAR_BYTES (XINT (ch));
582 result_len_byte += this_len_byte;
583 if (! ASCII_CHAR_P (XINT (ch)) && ! CHAR_BYTE8_P (XINT (ch)))
584 some_multibyte = 1;
585 }
586 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
587 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
588 else if (CONSP (this))
589 for (; CONSP (this); this = XCDR (this))
590 {
591 ch = XCAR (this);
592 CHECK_CHARACTER (ch);
593 this_len_byte = CHAR_BYTES (XINT (ch));
594 result_len_byte += this_len_byte;
595 if (! ASCII_CHAR_P (XINT (ch)) && ! CHAR_BYTE8_P (XINT (ch)))
596 some_multibyte = 1;
597 }
598 else if (STRINGP (this))
599 {
600 if (STRING_MULTIBYTE (this))
601 {
602 some_multibyte = 1;
603 result_len_byte += SBYTES (this);
604 }
605 else
606 result_len_byte += count_size_as_multibyte (SDATA (this),
607 SCHARS (this));
608 }
609 }
610
611 result_len += len;
612 }
613
614 if (! some_multibyte)
615 result_len_byte = result_len;
616
617 /* Create the output object. */
618 if (target_type == Lisp_Cons)
619 val = Fmake_list (make_number (result_len), Qnil);
620 else if (target_type == Lisp_Vectorlike)
621 val = Fmake_vector (make_number (result_len), Qnil);
622 else if (some_multibyte)
623 val = make_uninit_multibyte_string (result_len, result_len_byte);
624 else
625 val = make_uninit_string (result_len);
626
627 /* In `append', if all but last arg are nil, return last arg. */
628 if (target_type == Lisp_Cons && EQ (val, Qnil))
629 return last_tail;
630
631 /* Copy the contents of the args into the result. */
632 if (CONSP (val))
633 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
634 else
635 toindex = 0, toindex_byte = 0;
636
637 prev = Qnil;
638 if (STRINGP (val))
639 SAFE_ALLOCA (textprops, struct textprop_rec *, sizeof (struct textprop_rec) * nargs);
640
641 for (argnum = 0; argnum < nargs; argnum++)
642 {
643 Lisp_Object thislen;
644 int thisleni = 0;
645 register unsigned int thisindex = 0;
646 register unsigned int thisindex_byte = 0;
647
648 this = args[argnum];
649 if (!CONSP (this))
650 thislen = Flength (this), thisleni = XINT (thislen);
651
652 /* Between strings of the same kind, copy fast. */
653 if (STRINGP (this) && STRINGP (val)
654 && STRING_MULTIBYTE (this) == some_multibyte)
655 {
656 int thislen_byte = SBYTES (this);
657
658 bcopy (SDATA (this), SDATA (val) + toindex_byte,
659 SBYTES (this));
660 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
661 {
662 textprops[num_textprops].argnum = argnum;
663 textprops[num_textprops].from = 0;
664 textprops[num_textprops++].to = toindex;
665 }
666 toindex_byte += thislen_byte;
667 toindex += thisleni;
668 STRING_SET_CHARS (val, SCHARS (val));
669 }
670 /* Copy a single-byte string to a multibyte string. */
671 else if (STRINGP (this) && STRINGP (val))
672 {
673 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
674 {
675 textprops[num_textprops].argnum = argnum;
676 textprops[num_textprops].from = 0;
677 textprops[num_textprops++].to = toindex;
678 }
679 toindex_byte += copy_text (SDATA (this),
680 SDATA (val) + toindex_byte,
681 SCHARS (this), 0, 1);
682 toindex += thisleni;
683 }
684 else
685 /* Copy element by element. */
686 while (1)
687 {
688 register Lisp_Object elt;
689
690 /* Fetch next element of `this' arg into `elt', or break if
691 `this' is exhausted. */
692 if (NILP (this)) break;
693 if (CONSP (this))
694 elt = XCAR (this), this = XCDR (this);
695 else if (thisindex >= thisleni)
696 break;
697 else if (STRINGP (this))
698 {
699 int c;
700 if (STRING_MULTIBYTE (this))
701 {
702 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
703 thisindex,
704 thisindex_byte);
705 XSETFASTINT (elt, c);
706 }
707 else
708 {
709 XSETFASTINT (elt, SREF (this, thisindex)); thisindex++;
710 if (some_multibyte
711 && XINT (elt) >= 0200
712 && XINT (elt) < 0400)
713 {
714 c = unibyte_char_to_multibyte (XINT (elt));
715 XSETINT (elt, c);
716 }
717 }
718 }
719 else if (BOOL_VECTOR_P (this))
720 {
721 int byte;
722 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
723 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
724 elt = Qt;
725 else
726 elt = Qnil;
727 thisindex++;
728 }
729 else
730 {
731 elt = AREF (this, thisindex);
732 thisindex++;
733 }
734
735 /* Store this element into the result. */
736 if (toindex < 0)
737 {
738 XSETCAR (tail, elt);
739 prev = tail;
740 tail = XCDR (tail);
741 }
742 else if (VECTORP (val))
743 {
744 ASET (val, toindex, elt);
745 toindex++;
746 }
747 else
748 {
749 CHECK_NUMBER (elt);
750 if (some_multibyte)
751 toindex_byte += CHAR_STRING (XINT (elt),
752 SDATA (val) + toindex_byte);
753 else
754 SSET (val, toindex_byte++, XINT (elt));
755 toindex++;
756 }
757 }
758 }
759 if (!NILP (prev))
760 XSETCDR (prev, last_tail);
761
762 if (num_textprops > 0)
763 {
764 Lisp_Object props;
765 int last_to_end = -1;
766
767 for (argnum = 0; argnum < num_textprops; argnum++)
768 {
769 this = args[textprops[argnum].argnum];
770 props = text_property_list (this,
771 make_number (0),
772 make_number (SCHARS (this)),
773 Qnil);
774 /* If successive arguments have properites, be sure that the
775 value of `composition' property be the copy. */
776 if (last_to_end == textprops[argnum].to)
777 make_composition_value_copy (props);
778 add_text_properties_from_list (val, props,
779 make_number (textprops[argnum].to));
780 last_to_end = textprops[argnum].to + SCHARS (this);
781 }
782 }
783
784 SAFE_FREE ();
785 return val;
786 }
787 \f
788 static Lisp_Object string_char_byte_cache_string;
789 static int string_char_byte_cache_charpos;
790 static int string_char_byte_cache_bytepos;
791
792 void
793 clear_string_char_byte_cache ()
794 {
795 string_char_byte_cache_string = Qnil;
796 }
797
798 /* Return the character index corresponding to CHAR_INDEX in STRING. */
799
800 int
801 string_char_to_byte (string, char_index)
802 Lisp_Object string;
803 int char_index;
804 {
805 int i_byte;
806 int best_below, best_below_byte;
807 int best_above, best_above_byte;
808
809 best_below = best_below_byte = 0;
810 best_above = SCHARS (string);
811 best_above_byte = SBYTES (string);
812 if (best_above == best_above_byte)
813 return char_index;
814
815 if (EQ (string, string_char_byte_cache_string))
816 {
817 if (string_char_byte_cache_charpos < char_index)
818 {
819 best_below = string_char_byte_cache_charpos;
820 best_below_byte = string_char_byte_cache_bytepos;
821 }
822 else
823 {
824 best_above = string_char_byte_cache_charpos;
825 best_above_byte = string_char_byte_cache_bytepos;
826 }
827 }
828
829 if (char_index - best_below < best_above - char_index)
830 {
831 unsigned char *p = SDATA (string) + best_below_byte;
832
833 while (best_below < char_index)
834 {
835 p += BYTES_BY_CHAR_HEAD (*p);
836 best_below++;
837 }
838 i_byte = p - SDATA (string);
839 }
840 else
841 {
842 unsigned char *p = SDATA (string) + best_above_byte;
843
844 while (best_above > char_index)
845 {
846 p--;
847 while (!CHAR_HEAD_P (*p)) p--;
848 best_above--;
849 }
850 i_byte = p - SDATA (string);
851 }
852
853 string_char_byte_cache_bytepos = i_byte;
854 string_char_byte_cache_charpos = char_index;
855 string_char_byte_cache_string = string;
856
857 return i_byte;
858 }
859 \f
860 /* Return the character index corresponding to BYTE_INDEX in STRING. */
861
862 int
863 string_byte_to_char (string, byte_index)
864 Lisp_Object string;
865 int byte_index;
866 {
867 int i, i_byte;
868 int best_below, best_below_byte;
869 int best_above, best_above_byte;
870
871 best_below = best_below_byte = 0;
872 best_above = SCHARS (string);
873 best_above_byte = SBYTES (string);
874 if (best_above == best_above_byte)
875 return byte_index;
876
877 if (EQ (string, string_char_byte_cache_string))
878 {
879 if (string_char_byte_cache_bytepos < byte_index)
880 {
881 best_below = string_char_byte_cache_charpos;
882 best_below_byte = string_char_byte_cache_bytepos;
883 }
884 else
885 {
886 best_above = string_char_byte_cache_charpos;
887 best_above_byte = string_char_byte_cache_bytepos;
888 }
889 }
890
891 if (byte_index - best_below_byte < best_above_byte - byte_index)
892 {
893 unsigned char *p = SDATA (string) + best_below_byte;
894 unsigned char *pend = SDATA (string) + byte_index;
895
896 while (p < pend)
897 {
898 p += BYTES_BY_CHAR_HEAD (*p);
899 best_below++;
900 }
901 i = best_below;
902 i_byte = p - SDATA (string);
903 }
904 else
905 {
906 unsigned char *p = SDATA (string) + best_above_byte;
907 unsigned char *pbeg = SDATA (string) + byte_index;
908
909 while (p > pbeg)
910 {
911 p--;
912 while (!CHAR_HEAD_P (*p)) p--;
913 best_above--;
914 }
915 i = best_above;
916 i_byte = p - SDATA (string);
917 }
918
919 string_char_byte_cache_bytepos = i_byte;
920 string_char_byte_cache_charpos = i;
921 string_char_byte_cache_string = string;
922
923 return i;
924 }
925 \f
926 /* Convert STRING to a multibyte string. */
927
928 Lisp_Object
929 string_make_multibyte (string)
930 Lisp_Object string;
931 {
932 unsigned char *buf;
933 int nbytes;
934 Lisp_Object ret;
935 USE_SAFE_ALLOCA;
936
937 if (STRING_MULTIBYTE (string))
938 return string;
939
940 nbytes = count_size_as_multibyte (SDATA (string),
941 SCHARS (string));
942 /* If all the chars are ASCII, they won't need any more bytes
943 once converted. In that case, we can return STRING itself. */
944 if (nbytes == SBYTES (string))
945 return string;
946
947 SAFE_ALLOCA (buf, unsigned char *, nbytes);
948 copy_text (SDATA (string), buf, SBYTES (string),
949 0, 1);
950
951 ret = make_multibyte_string (buf, SCHARS (string), nbytes);
952 SAFE_FREE ();
953
954 return ret;
955 }
956
957
958 /* Convert STRING (if unibyte) to a multibyte string without changing
959 the number of characters. Characters 0200 trough 0237 are
960 converted to eight-bit characters. */
961
962 Lisp_Object
963 string_to_multibyte (string)
964 Lisp_Object string;
965 {
966 unsigned char *buf;
967 int nbytes;
968 Lisp_Object ret;
969 USE_SAFE_ALLOCA;
970
971 if (STRING_MULTIBYTE (string))
972 return string;
973
974 nbytes = parse_str_to_multibyte (SDATA (string), SBYTES (string));
975 /* If all the chars are ASCII, they won't need any more bytes once
976 converted. */
977 if (nbytes == SBYTES (string))
978 return make_multibyte_string (SDATA (string), nbytes, nbytes);
979
980 SAFE_ALLOCA (buf, unsigned char *, nbytes);
981 bcopy (SDATA (string), buf, SBYTES (string));
982 str_to_multibyte (buf, nbytes, SBYTES (string));
983
984 ret = make_multibyte_string (buf, SCHARS (string), nbytes);
985 SAFE_FREE ();
986
987 return ret;
988 }
989
990
991 /* Convert STRING to a single-byte string. */
992
993 Lisp_Object
994 string_make_unibyte (string)
995 Lisp_Object string;
996 {
997 int nchars;
998 unsigned char *buf;
999 Lisp_Object ret;
1000 USE_SAFE_ALLOCA;
1001
1002 if (! STRING_MULTIBYTE (string))
1003 return string;
1004
1005 nchars = SCHARS (string);
1006
1007 SAFE_ALLOCA (buf, unsigned char *, nchars);
1008 copy_text (SDATA (string), buf, SBYTES (string),
1009 1, 0);
1010
1011 ret = make_unibyte_string (buf, nchars);
1012 SAFE_FREE ();
1013
1014 return ret;
1015 }
1016
1017 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
1018 1, 1, 0,
1019 doc: /* Return the multibyte equivalent of STRING.
1020 If STRING is unibyte and contains non-ASCII characters, the function
1021 `unibyte-char-to-multibyte' is used to convert each unibyte character
1022 to a multibyte character. In this case, the returned string is a
1023 newly created string with no text properties. If STRING is multibyte
1024 or entirely ASCII, it is returned unchanged. In particular, when
1025 STRING is unibyte and entirely ASCII, the returned string is unibyte.
1026 \(When the characters are all ASCII, Emacs primitives will treat the
1027 string the same way whether it is unibyte or multibyte.) */)
1028 (string)
1029 Lisp_Object string;
1030 {
1031 CHECK_STRING (string);
1032
1033 return string_make_multibyte (string);
1034 }
1035
1036 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
1037 1, 1, 0,
1038 doc: /* Return the unibyte equivalent of STRING.
1039 Multibyte character codes are converted to unibyte according to
1040 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
1041 If the lookup in the translation table fails, this function takes just
1042 the low 8 bits of each character. */)
1043 (string)
1044 Lisp_Object string;
1045 {
1046 CHECK_STRING (string);
1047
1048 return string_make_unibyte (string);
1049 }
1050
1051 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
1052 1, 1, 0,
1053 doc: /* Return a unibyte string with the same individual bytes as STRING.
1054 If STRING is unibyte, the result is STRING itself.
1055 Otherwise it is a newly created string, with no text properties.
1056 If STRING is multibyte and contains a character of charset
1057 `eight-bit', it is converted to the corresponding single byte. */)
1058 (string)
1059 Lisp_Object string;
1060 {
1061 CHECK_STRING (string);
1062
1063 if (STRING_MULTIBYTE (string))
1064 {
1065 int bytes = SBYTES (string);
1066 unsigned char *str = (unsigned char *) xmalloc (bytes);
1067
1068 bcopy (SDATA (string), str, bytes);
1069 bytes = str_as_unibyte (str, bytes);
1070 string = make_unibyte_string (str, bytes);
1071 xfree (str);
1072 }
1073 return string;
1074 }
1075
1076 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1077 1, 1, 0,
1078 doc: /* Return a multibyte string with the same individual bytes as STRING.
1079 If STRING is multibyte, the result is STRING itself.
1080 Otherwise it is a newly created string, with no text properties.
1081
1082 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1083 part of a correct utf-8 sequence), it is converted to the corresponding
1084 multibyte character of charset `eight-bit'.
1085 See also `string-to-multibyte'.
1086
1087 Beware, this often doesn't really do what you think it does.
1088 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1089 If you're not sure, whether to use `string-as-multibyte' or
1090 `string-to-multibyte', use `string-to-multibyte'. */)
1091 (string)
1092 Lisp_Object string;
1093 {
1094 CHECK_STRING (string);
1095
1096 if (! STRING_MULTIBYTE (string))
1097 {
1098 Lisp_Object new_string;
1099 int nchars, nbytes;
1100
1101 parse_str_as_multibyte (SDATA (string),
1102 SBYTES (string),
1103 &nchars, &nbytes);
1104 new_string = make_uninit_multibyte_string (nchars, nbytes);
1105 bcopy (SDATA (string), SDATA (new_string),
1106 SBYTES (string));
1107 if (nbytes != SBYTES (string))
1108 str_as_multibyte (SDATA (new_string), nbytes,
1109 SBYTES (string), NULL);
1110 string = new_string;
1111 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1112 }
1113 return string;
1114 }
1115
1116 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1117 1, 1, 0,
1118 doc: /* Return a multibyte string with the same individual chars as STRING.
1119 If STRING is multibyte, the result is STRING itself.
1120 Otherwise it is a newly created string, with no text properties.
1121
1122 If STRING is unibyte and contains an 8-bit byte, it is converted to
1123 the corresponding multibyte character of charset `eight-bit'.
1124
1125 This differs from `string-as-multibyte' by converting each byte of a correct
1126 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1127 correct sequence. */)
1128 (string)
1129 Lisp_Object string;
1130 {
1131 CHECK_STRING (string);
1132
1133 return string_to_multibyte (string);
1134 }
1135
1136 \f
1137 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1138 doc: /* Return a copy of ALIST.
1139 This is an alist which represents the same mapping from objects to objects,
1140 but does not share the alist structure with ALIST.
1141 The objects mapped (cars and cdrs of elements of the alist)
1142 are shared, however.
1143 Elements of ALIST that are not conses are also shared. */)
1144 (alist)
1145 Lisp_Object alist;
1146 {
1147 register Lisp_Object tem;
1148
1149 CHECK_LIST (alist);
1150 if (NILP (alist))
1151 return alist;
1152 alist = concat (1, &alist, Lisp_Cons, 0);
1153 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1154 {
1155 register Lisp_Object car;
1156 car = XCAR (tem);
1157
1158 if (CONSP (car))
1159 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1160 }
1161 return alist;
1162 }
1163
1164 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1165 doc: /* Return a substring of STRING, starting at index FROM and ending before TO.
1166 TO may be nil or omitted; then the substring runs to the end of STRING.
1167 FROM and TO start at 0. If either is negative, it counts from the end.
1168
1169 This function allows vectors as well as strings. */)
1170 (string, from, to)
1171 Lisp_Object string;
1172 register Lisp_Object from, to;
1173 {
1174 Lisp_Object res;
1175 int size;
1176 int size_byte = 0;
1177 int from_char, to_char;
1178 int from_byte = 0, to_byte = 0;
1179
1180 CHECK_VECTOR_OR_STRING (string);
1181 CHECK_NUMBER (from);
1182
1183 if (STRINGP (string))
1184 {
1185 size = SCHARS (string);
1186 size_byte = SBYTES (string);
1187 }
1188 else
1189 size = ASIZE (string);
1190
1191 if (NILP (to))
1192 {
1193 to_char = size;
1194 to_byte = size_byte;
1195 }
1196 else
1197 {
1198 CHECK_NUMBER (to);
1199
1200 to_char = XINT (to);
1201 if (to_char < 0)
1202 to_char += size;
1203
1204 if (STRINGP (string))
1205 to_byte = string_char_to_byte (string, to_char);
1206 }
1207
1208 from_char = XINT (from);
1209 if (from_char < 0)
1210 from_char += size;
1211 if (STRINGP (string))
1212 from_byte = string_char_to_byte (string, from_char);
1213
1214 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1215 args_out_of_range_3 (string, make_number (from_char),
1216 make_number (to_char));
1217
1218 if (STRINGP (string))
1219 {
1220 res = make_specified_string (SDATA (string) + from_byte,
1221 to_char - from_char, to_byte - from_byte,
1222 STRING_MULTIBYTE (string));
1223 copy_text_properties (make_number (from_char), make_number (to_char),
1224 string, make_number (0), res, Qnil);
1225 }
1226 else
1227 res = Fvector (to_char - from_char, &AREF (string, from_char));
1228
1229 return res;
1230 }
1231
1232
1233 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1234 doc: /* Return a substring of STRING, without text properties.
1235 It starts at index FROM and ending before TO.
1236 TO may be nil or omitted; then the substring runs to the end of STRING.
1237 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1238 If FROM or TO is negative, it counts from the end.
1239
1240 With one argument, just copy STRING without its properties. */)
1241 (string, from, to)
1242 Lisp_Object string;
1243 register Lisp_Object from, to;
1244 {
1245 int size, size_byte;
1246 int from_char, to_char;
1247 int from_byte, to_byte;
1248
1249 CHECK_STRING (string);
1250
1251 size = SCHARS (string);
1252 size_byte = SBYTES (string);
1253
1254 if (NILP (from))
1255 from_char = from_byte = 0;
1256 else
1257 {
1258 CHECK_NUMBER (from);
1259 from_char = XINT (from);
1260 if (from_char < 0)
1261 from_char += size;
1262
1263 from_byte = string_char_to_byte (string, from_char);
1264 }
1265
1266 if (NILP (to))
1267 {
1268 to_char = size;
1269 to_byte = size_byte;
1270 }
1271 else
1272 {
1273 CHECK_NUMBER (to);
1274
1275 to_char = XINT (to);
1276 if (to_char < 0)
1277 to_char += size;
1278
1279 to_byte = string_char_to_byte (string, to_char);
1280 }
1281
1282 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1283 args_out_of_range_3 (string, make_number (from_char),
1284 make_number (to_char));
1285
1286 return make_specified_string (SDATA (string) + from_byte,
1287 to_char - from_char, to_byte - from_byte,
1288 STRING_MULTIBYTE (string));
1289 }
1290
1291 /* Extract a substring of STRING, giving start and end positions
1292 both in characters and in bytes. */
1293
1294 Lisp_Object
1295 substring_both (string, from, from_byte, to, to_byte)
1296 Lisp_Object string;
1297 int from, from_byte, to, to_byte;
1298 {
1299 Lisp_Object res;
1300 int size;
1301 int size_byte;
1302
1303 CHECK_VECTOR_OR_STRING (string);
1304
1305 if (STRINGP (string))
1306 {
1307 size = SCHARS (string);
1308 size_byte = SBYTES (string);
1309 }
1310 else
1311 size = ASIZE (string);
1312
1313 if (!(0 <= from && from <= to && to <= size))
1314 args_out_of_range_3 (string, make_number (from), make_number (to));
1315
1316 if (STRINGP (string))
1317 {
1318 res = make_specified_string (SDATA (string) + from_byte,
1319 to - from, to_byte - from_byte,
1320 STRING_MULTIBYTE (string));
1321 copy_text_properties (make_number (from), make_number (to),
1322 string, make_number (0), res, Qnil);
1323 }
1324 else
1325 res = Fvector (to - from, &AREF (string, from));
1326
1327 return res;
1328 }
1329 \f
1330 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1331 doc: /* Take cdr N times on LIST, returns the result. */)
1332 (n, list)
1333 Lisp_Object n;
1334 register Lisp_Object list;
1335 {
1336 register int i, num;
1337 CHECK_NUMBER (n);
1338 num = XINT (n);
1339 for (i = 0; i < num && !NILP (list); i++)
1340 {
1341 QUIT;
1342 CHECK_LIST_CONS (list, list);
1343 list = XCDR (list);
1344 }
1345 return list;
1346 }
1347
1348 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1349 doc: /* Return the Nth element of LIST.
1350 N counts from zero. If LIST is not that long, nil is returned. */)
1351 (n, list)
1352 Lisp_Object n, list;
1353 {
1354 return Fcar (Fnthcdr (n, list));
1355 }
1356
1357 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1358 doc: /* Return element of SEQUENCE at index N. */)
1359 (sequence, n)
1360 register Lisp_Object sequence, n;
1361 {
1362 CHECK_NUMBER (n);
1363 if (CONSP (sequence) || NILP (sequence))
1364 return Fcar (Fnthcdr (n, sequence));
1365
1366 /* Faref signals a "not array" error, so check here. */
1367 CHECK_ARRAY (sequence, Qsequencep);
1368 return Faref (sequence, n);
1369 }
1370
1371 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1372 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1373 The value is actually the tail of LIST whose car is ELT. */)
1374 (elt, list)
1375 register Lisp_Object elt;
1376 Lisp_Object list;
1377 {
1378 register Lisp_Object tail;
1379 for (tail = list; CONSP (tail); tail = XCDR (tail))
1380 {
1381 register Lisp_Object tem;
1382 CHECK_LIST_CONS (tail, list);
1383 tem = XCAR (tail);
1384 if (! NILP (Fequal (elt, tem)))
1385 return tail;
1386 QUIT;
1387 }
1388 return Qnil;
1389 }
1390
1391 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1392 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1393 The value is actually the tail of LIST whose car is ELT. */)
1394 (elt, list)
1395 register Lisp_Object elt, list;
1396 {
1397 while (1)
1398 {
1399 if (!CONSP (list) || EQ (XCAR (list), elt))
1400 break;
1401
1402 list = XCDR (list);
1403 if (!CONSP (list) || EQ (XCAR (list), elt))
1404 break;
1405
1406 list = XCDR (list);
1407 if (!CONSP (list) || EQ (XCAR (list), elt))
1408 break;
1409
1410 list = XCDR (list);
1411 QUIT;
1412 }
1413
1414 CHECK_LIST (list);
1415 return list;
1416 }
1417
1418 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1419 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1420 The value is actually the tail of LIST whose car is ELT. */)
1421 (elt, list)
1422 register Lisp_Object elt;
1423 Lisp_Object list;
1424 {
1425 register Lisp_Object tail;
1426
1427 if (!FLOATP (elt))
1428 return Fmemq (elt, list);
1429
1430 for (tail = list; CONSP (tail); tail = XCDR (tail))
1431 {
1432 register Lisp_Object tem;
1433 CHECK_LIST_CONS (tail, list);
1434 tem = XCAR (tail);
1435 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1436 return tail;
1437 QUIT;
1438 }
1439 return Qnil;
1440 }
1441
1442 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1443 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1444 The value is actually the first element of LIST whose car is KEY.
1445 Elements of LIST that are not conses are ignored. */)
1446 (key, list)
1447 Lisp_Object key, list;
1448 {
1449 while (1)
1450 {
1451 if (!CONSP (list)
1452 || (CONSP (XCAR (list))
1453 && EQ (XCAR (XCAR (list)), key)))
1454 break;
1455
1456 list = XCDR (list);
1457 if (!CONSP (list)
1458 || (CONSP (XCAR (list))
1459 && EQ (XCAR (XCAR (list)), key)))
1460 break;
1461
1462 list = XCDR (list);
1463 if (!CONSP (list)
1464 || (CONSP (XCAR (list))
1465 && EQ (XCAR (XCAR (list)), key)))
1466 break;
1467
1468 list = XCDR (list);
1469 QUIT;
1470 }
1471
1472 return CAR (list);
1473 }
1474
1475 /* Like Fassq but never report an error and do not allow quits.
1476 Use only on lists known never to be circular. */
1477
1478 Lisp_Object
1479 assq_no_quit (key, list)
1480 Lisp_Object key, list;
1481 {
1482 while (CONSP (list)
1483 && (!CONSP (XCAR (list))
1484 || !EQ (XCAR (XCAR (list)), key)))
1485 list = XCDR (list);
1486
1487 return CAR_SAFE (list);
1488 }
1489
1490 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1491 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1492 The value is actually the first element of LIST whose car equals KEY. */)
1493 (key, list)
1494 Lisp_Object key, list;
1495 {
1496 Lisp_Object car;
1497
1498 while (1)
1499 {
1500 if (!CONSP (list)
1501 || (CONSP (XCAR (list))
1502 && (car = XCAR (XCAR (list)),
1503 EQ (car, key) || !NILP (Fequal (car, key)))))
1504 break;
1505
1506 list = XCDR (list);
1507 if (!CONSP (list)
1508 || (CONSP (XCAR (list))
1509 && (car = XCAR (XCAR (list)),
1510 EQ (car, key) || !NILP (Fequal (car, key)))))
1511 break;
1512
1513 list = XCDR (list);
1514 if (!CONSP (list)
1515 || (CONSP (XCAR (list))
1516 && (car = XCAR (XCAR (list)),
1517 EQ (car, key) || !NILP (Fequal (car, key)))))
1518 break;
1519
1520 list = XCDR (list);
1521 QUIT;
1522 }
1523
1524 return CAR (list);
1525 }
1526
1527 /* Like Fassoc but never report an error and do not allow quits.
1528 Use only on lists known never to be circular. */
1529
1530 Lisp_Object
1531 assoc_no_quit (key, list)
1532 Lisp_Object key, list;
1533 {
1534 while (CONSP (list)
1535 && (!CONSP (XCAR (list))
1536 || (!EQ (XCAR (XCAR (list)), key)
1537 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1538 list = XCDR (list);
1539
1540 return CONSP (list) ? XCAR (list) : Qnil;
1541 }
1542
1543 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1544 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1545 The value is actually the first element of LIST whose cdr is KEY. */)
1546 (key, list)
1547 register Lisp_Object key;
1548 Lisp_Object list;
1549 {
1550 while (1)
1551 {
1552 if (!CONSP (list)
1553 || (CONSP (XCAR (list))
1554 && EQ (XCDR (XCAR (list)), key)))
1555 break;
1556
1557 list = XCDR (list);
1558 if (!CONSP (list)
1559 || (CONSP (XCAR (list))
1560 && EQ (XCDR (XCAR (list)), key)))
1561 break;
1562
1563 list = XCDR (list);
1564 if (!CONSP (list)
1565 || (CONSP (XCAR (list))
1566 && EQ (XCDR (XCAR (list)), key)))
1567 break;
1568
1569 list = XCDR (list);
1570 QUIT;
1571 }
1572
1573 return CAR (list);
1574 }
1575
1576 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1577 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1578 The value is actually the first element of LIST whose cdr equals KEY. */)
1579 (key, list)
1580 Lisp_Object key, list;
1581 {
1582 Lisp_Object cdr;
1583
1584 while (1)
1585 {
1586 if (!CONSP (list)
1587 || (CONSP (XCAR (list))
1588 && (cdr = XCDR (XCAR (list)),
1589 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1590 break;
1591
1592 list = XCDR (list);
1593 if (!CONSP (list)
1594 || (CONSP (XCAR (list))
1595 && (cdr = XCDR (XCAR (list)),
1596 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1597 break;
1598
1599 list = XCDR (list);
1600 if (!CONSP (list)
1601 || (CONSP (XCAR (list))
1602 && (cdr = XCDR (XCAR (list)),
1603 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1604 break;
1605
1606 list = XCDR (list);
1607 QUIT;
1608 }
1609
1610 return CAR (list);
1611 }
1612 \f
1613 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1614 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1615 The modified LIST is returned. Comparison is done with `eq'.
1616 If the first member of LIST is ELT, there is no way to remove it by side effect;
1617 therefore, write `(setq foo (delq element foo))'
1618 to be sure of changing the value of `foo'. */)
1619 (elt, list)
1620 register Lisp_Object elt;
1621 Lisp_Object list;
1622 {
1623 register Lisp_Object tail, prev;
1624 register Lisp_Object tem;
1625
1626 tail = list;
1627 prev = Qnil;
1628 while (!NILP (tail))
1629 {
1630 CHECK_LIST_CONS (tail, list);
1631 tem = XCAR (tail);
1632 if (EQ (elt, tem))
1633 {
1634 if (NILP (prev))
1635 list = XCDR (tail);
1636 else
1637 Fsetcdr (prev, XCDR (tail));
1638 }
1639 else
1640 prev = tail;
1641 tail = XCDR (tail);
1642 QUIT;
1643 }
1644 return list;
1645 }
1646
1647 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1648 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1649 SEQ must be a list, a vector, or a string.
1650 The modified SEQ is returned. Comparison is done with `equal'.
1651 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1652 is not a side effect; it is simply using a different sequence.
1653 Therefore, write `(setq foo (delete element foo))'
1654 to be sure of changing the value of `foo'. */)
1655 (elt, seq)
1656 Lisp_Object elt, seq;
1657 {
1658 if (VECTORP (seq))
1659 {
1660 EMACS_INT i, n;
1661
1662 for (i = n = 0; i < ASIZE (seq); ++i)
1663 if (NILP (Fequal (AREF (seq, i), elt)))
1664 ++n;
1665
1666 if (n != ASIZE (seq))
1667 {
1668 struct Lisp_Vector *p = allocate_vector (n);
1669
1670 for (i = n = 0; i < ASIZE (seq); ++i)
1671 if (NILP (Fequal (AREF (seq, i), elt)))
1672 p->contents[n++] = AREF (seq, i);
1673
1674 XSETVECTOR (seq, p);
1675 }
1676 }
1677 else if (STRINGP (seq))
1678 {
1679 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1680 int c;
1681
1682 for (i = nchars = nbytes = ibyte = 0;
1683 i < SCHARS (seq);
1684 ++i, ibyte += cbytes)
1685 {
1686 if (STRING_MULTIBYTE (seq))
1687 {
1688 c = STRING_CHAR (SDATA (seq) + ibyte,
1689 SBYTES (seq) - ibyte);
1690 cbytes = CHAR_BYTES (c);
1691 }
1692 else
1693 {
1694 c = SREF (seq, i);
1695 cbytes = 1;
1696 }
1697
1698 if (!INTEGERP (elt) || c != XINT (elt))
1699 {
1700 ++nchars;
1701 nbytes += cbytes;
1702 }
1703 }
1704
1705 if (nchars != SCHARS (seq))
1706 {
1707 Lisp_Object tem;
1708
1709 tem = make_uninit_multibyte_string (nchars, nbytes);
1710 if (!STRING_MULTIBYTE (seq))
1711 STRING_SET_UNIBYTE (tem);
1712
1713 for (i = nchars = nbytes = ibyte = 0;
1714 i < SCHARS (seq);
1715 ++i, ibyte += cbytes)
1716 {
1717 if (STRING_MULTIBYTE (seq))
1718 {
1719 c = STRING_CHAR (SDATA (seq) + ibyte,
1720 SBYTES (seq) - ibyte);
1721 cbytes = CHAR_BYTES (c);
1722 }
1723 else
1724 {
1725 c = SREF (seq, i);
1726 cbytes = 1;
1727 }
1728
1729 if (!INTEGERP (elt) || c != XINT (elt))
1730 {
1731 unsigned char *from = SDATA (seq) + ibyte;
1732 unsigned char *to = SDATA (tem) + nbytes;
1733 EMACS_INT n;
1734
1735 ++nchars;
1736 nbytes += cbytes;
1737
1738 for (n = cbytes; n--; )
1739 *to++ = *from++;
1740 }
1741 }
1742
1743 seq = tem;
1744 }
1745 }
1746 else
1747 {
1748 Lisp_Object tail, prev;
1749
1750 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1751 {
1752 CHECK_LIST_CONS (tail, seq);
1753
1754 if (!NILP (Fequal (elt, XCAR (tail))))
1755 {
1756 if (NILP (prev))
1757 seq = XCDR (tail);
1758 else
1759 Fsetcdr (prev, XCDR (tail));
1760 }
1761 else
1762 prev = tail;
1763 QUIT;
1764 }
1765 }
1766
1767 return seq;
1768 }
1769
1770 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1771 doc: /* Reverse LIST by modifying cdr pointers.
1772 Return the reversed list. */)
1773 (list)
1774 Lisp_Object list;
1775 {
1776 register Lisp_Object prev, tail, next;
1777
1778 if (NILP (list)) return list;
1779 prev = Qnil;
1780 tail = list;
1781 while (!NILP (tail))
1782 {
1783 QUIT;
1784 CHECK_LIST_CONS (tail, list);
1785 next = XCDR (tail);
1786 Fsetcdr (tail, prev);
1787 prev = tail;
1788 tail = next;
1789 }
1790 return prev;
1791 }
1792
1793 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1794 doc: /* Reverse LIST, copying. Return the reversed list.
1795 See also the function `nreverse', which is used more often. */)
1796 (list)
1797 Lisp_Object list;
1798 {
1799 Lisp_Object new;
1800
1801 for (new = Qnil; CONSP (list); list = XCDR (list))
1802 {
1803 QUIT;
1804 new = Fcons (XCAR (list), new);
1805 }
1806 CHECK_LIST_END (list, list);
1807 return new;
1808 }
1809 \f
1810 Lisp_Object merge ();
1811
1812 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1813 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1814 Returns the sorted list. LIST is modified by side effects.
1815 PREDICATE is called with two elements of LIST, and should return non-nil
1816 if the first element should sort before the second. */)
1817 (list, predicate)
1818 Lisp_Object list, predicate;
1819 {
1820 Lisp_Object front, back;
1821 register Lisp_Object len, tem;
1822 struct gcpro gcpro1, gcpro2;
1823 register int length;
1824
1825 front = list;
1826 len = Flength (list);
1827 length = XINT (len);
1828 if (length < 2)
1829 return list;
1830
1831 XSETINT (len, (length / 2) - 1);
1832 tem = Fnthcdr (len, list);
1833 back = Fcdr (tem);
1834 Fsetcdr (tem, Qnil);
1835
1836 GCPRO2 (front, back);
1837 front = Fsort (front, predicate);
1838 back = Fsort (back, predicate);
1839 UNGCPRO;
1840 return merge (front, back, predicate);
1841 }
1842
1843 Lisp_Object
1844 merge (org_l1, org_l2, pred)
1845 Lisp_Object org_l1, org_l2;
1846 Lisp_Object pred;
1847 {
1848 Lisp_Object value;
1849 register Lisp_Object tail;
1850 Lisp_Object tem;
1851 register Lisp_Object l1, l2;
1852 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1853
1854 l1 = org_l1;
1855 l2 = org_l2;
1856 tail = Qnil;
1857 value = Qnil;
1858
1859 /* It is sufficient to protect org_l1 and org_l2.
1860 When l1 and l2 are updated, we copy the new values
1861 back into the org_ vars. */
1862 GCPRO4 (org_l1, org_l2, pred, value);
1863
1864 while (1)
1865 {
1866 if (NILP (l1))
1867 {
1868 UNGCPRO;
1869 if (NILP (tail))
1870 return l2;
1871 Fsetcdr (tail, l2);
1872 return value;
1873 }
1874 if (NILP (l2))
1875 {
1876 UNGCPRO;
1877 if (NILP (tail))
1878 return l1;
1879 Fsetcdr (tail, l1);
1880 return value;
1881 }
1882 tem = call2 (pred, Fcar (l2), Fcar (l1));
1883 if (NILP (tem))
1884 {
1885 tem = l1;
1886 l1 = Fcdr (l1);
1887 org_l1 = l1;
1888 }
1889 else
1890 {
1891 tem = l2;
1892 l2 = Fcdr (l2);
1893 org_l2 = l2;
1894 }
1895 if (NILP (tail))
1896 value = tem;
1897 else
1898 Fsetcdr (tail, tem);
1899 tail = tem;
1900 }
1901 }
1902
1903 \f
1904 #if 0 /* Unsafe version. */
1905 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1906 doc: /* Extract a value from a property list.
1907 PLIST is a property list, which is a list of the form
1908 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1909 corresponding to the given PROP, or nil if PROP is not
1910 one of the properties on the list. */)
1911 (plist, prop)
1912 Lisp_Object plist;
1913 Lisp_Object prop;
1914 {
1915 Lisp_Object tail;
1916
1917 for (tail = plist;
1918 CONSP (tail) && CONSP (XCDR (tail));
1919 tail = XCDR (XCDR (tail)))
1920 {
1921 if (EQ (prop, XCAR (tail)))
1922 return XCAR (XCDR (tail));
1923
1924 /* This function can be called asynchronously
1925 (setup_coding_system). Don't QUIT in that case. */
1926 if (!interrupt_input_blocked)
1927 QUIT;
1928 }
1929
1930 CHECK_LIST_END (tail, prop);
1931
1932 return Qnil;
1933 }
1934 #endif
1935
1936 /* This does not check for quits. That is safe since it must terminate. */
1937
1938 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1939 doc: /* Extract a value from a property list.
1940 PLIST is a property list, which is a list of the form
1941 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1942 corresponding to the given PROP, or nil if PROP is not one of the
1943 properties on the list. This function never signals an error. */)
1944 (plist, prop)
1945 Lisp_Object plist;
1946 Lisp_Object prop;
1947 {
1948 Lisp_Object tail, halftail;
1949
1950 /* halftail is used to detect circular lists. */
1951 tail = halftail = plist;
1952 while (CONSP (tail) && CONSP (XCDR (tail)))
1953 {
1954 if (EQ (prop, XCAR (tail)))
1955 return XCAR (XCDR (tail));
1956
1957 tail = XCDR (XCDR (tail));
1958 halftail = XCDR (halftail);
1959 if (EQ (tail, halftail))
1960 break;
1961 }
1962
1963 return Qnil;
1964 }
1965
1966 DEFUN ("get", Fget, Sget, 2, 2, 0,
1967 doc: /* Return the value of SYMBOL's PROPNAME property.
1968 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1969 (symbol, propname)
1970 Lisp_Object symbol, propname;
1971 {
1972 CHECK_SYMBOL (symbol);
1973 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1974 }
1975
1976 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1977 doc: /* Change value in PLIST of PROP to VAL.
1978 PLIST is a property list, which is a list of the form
1979 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1980 If PROP is already a property on the list, its value is set to VAL,
1981 otherwise the new PROP VAL pair is added. The new plist is returned;
1982 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1983 The PLIST is modified by side effects. */)
1984 (plist, prop, val)
1985 Lisp_Object plist;
1986 register Lisp_Object prop;
1987 Lisp_Object val;
1988 {
1989 register Lisp_Object tail, prev;
1990 Lisp_Object newcell;
1991 prev = Qnil;
1992 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1993 tail = XCDR (XCDR (tail)))
1994 {
1995 if (EQ (prop, XCAR (tail)))
1996 {
1997 Fsetcar (XCDR (tail), val);
1998 return plist;
1999 }
2000
2001 prev = tail;
2002 QUIT;
2003 }
2004 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
2005 if (NILP (prev))
2006 return newcell;
2007 else
2008 Fsetcdr (XCDR (prev), newcell);
2009 return plist;
2010 }
2011
2012 DEFUN ("put", Fput, Sput, 3, 3, 0,
2013 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
2014 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
2015 (symbol, propname, value)
2016 Lisp_Object symbol, propname, value;
2017 {
2018 CHECK_SYMBOL (symbol);
2019 XSYMBOL (symbol)->plist
2020 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
2021 return value;
2022 }
2023 \f
2024 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
2025 doc: /* Extract a value from a property list, comparing with `equal'.
2026 PLIST is a property list, which is a list of the form
2027 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
2028 corresponding to the given PROP, or nil if PROP is not
2029 one of the properties on the list. */)
2030 (plist, prop)
2031 Lisp_Object plist;
2032 Lisp_Object prop;
2033 {
2034 Lisp_Object tail;
2035
2036 for (tail = plist;
2037 CONSP (tail) && CONSP (XCDR (tail));
2038 tail = XCDR (XCDR (tail)))
2039 {
2040 if (! NILP (Fequal (prop, XCAR (tail))))
2041 return XCAR (XCDR (tail));
2042
2043 QUIT;
2044 }
2045
2046 CHECK_LIST_END (tail, prop);
2047
2048 return Qnil;
2049 }
2050
2051 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
2052 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
2053 PLIST is a property list, which is a list of the form
2054 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
2055 If PROP is already a property on the list, its value is set to VAL,
2056 otherwise the new PROP VAL pair is added. The new plist is returned;
2057 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
2058 The PLIST is modified by side effects. */)
2059 (plist, prop, val)
2060 Lisp_Object plist;
2061 register Lisp_Object prop;
2062 Lisp_Object val;
2063 {
2064 register Lisp_Object tail, prev;
2065 Lisp_Object newcell;
2066 prev = Qnil;
2067 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2068 tail = XCDR (XCDR (tail)))
2069 {
2070 if (! NILP (Fequal (prop, XCAR (tail))))
2071 {
2072 Fsetcar (XCDR (tail), val);
2073 return plist;
2074 }
2075
2076 prev = tail;
2077 QUIT;
2078 }
2079 newcell = Fcons (prop, Fcons (val, Qnil));
2080 if (NILP (prev))
2081 return newcell;
2082 else
2083 Fsetcdr (XCDR (prev), newcell);
2084 return plist;
2085 }
2086 \f
2087 DEFUN ("eql", Feql, Seql, 2, 2, 0,
2088 doc: /* Return t if the two args are the same Lisp object.
2089 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
2090 (obj1, obj2)
2091 Lisp_Object obj1, obj2;
2092 {
2093 if (FLOATP (obj1))
2094 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
2095 else
2096 return EQ (obj1, obj2) ? Qt : Qnil;
2097 }
2098
2099 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
2100 doc: /* Return t if two Lisp objects have similar structure and contents.
2101 They must have the same data type.
2102 Conses are compared by comparing the cars and the cdrs.
2103 Vectors and strings are compared element by element.
2104 Numbers are compared by value, but integers cannot equal floats.
2105 (Use `=' if you want integers and floats to be able to be equal.)
2106 Symbols must match exactly. */)
2107 (o1, o2)
2108 register Lisp_Object o1, o2;
2109 {
2110 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
2111 }
2112
2113 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2114 doc: /* Return t if two Lisp objects have similar structure and contents.
2115 This is like `equal' except that it compares the text properties
2116 of strings. (`equal' ignores text properties.) */)
2117 (o1, o2)
2118 register Lisp_Object o1, o2;
2119 {
2120 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
2121 }
2122
2123 /* DEPTH is current depth of recursion. Signal an error if it
2124 gets too deep.
2125 PROPS, if non-nil, means compare string text properties too. */
2126
2127 static int
2128 internal_equal (o1, o2, depth, props)
2129 register Lisp_Object o1, o2;
2130 int depth, props;
2131 {
2132 if (depth > 200)
2133 error ("Stack overflow in equal");
2134
2135 tail_recurse:
2136 QUIT;
2137 if (EQ (o1, o2))
2138 return 1;
2139 if (XTYPE (o1) != XTYPE (o2))
2140 return 0;
2141
2142 switch (XTYPE (o1))
2143 {
2144 case Lisp_Float:
2145 {
2146 double d1, d2;
2147
2148 d1 = extract_float (o1);
2149 d2 = extract_float (o2);
2150 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2151 though they are not =. */
2152 return d1 == d2 || (d1 != d1 && d2 != d2);
2153 }
2154
2155 case Lisp_Cons:
2156 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2157 return 0;
2158 o1 = XCDR (o1);
2159 o2 = XCDR (o2);
2160 goto tail_recurse;
2161
2162 case Lisp_Misc:
2163 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2164 return 0;
2165 if (OVERLAYP (o1))
2166 {
2167 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2168 depth + 1, props)
2169 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2170 depth + 1, props))
2171 return 0;
2172 o1 = XOVERLAY (o1)->plist;
2173 o2 = XOVERLAY (o2)->plist;
2174 goto tail_recurse;
2175 }
2176 if (MARKERP (o1))
2177 {
2178 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2179 && (XMARKER (o1)->buffer == 0
2180 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2181 }
2182 break;
2183
2184 case Lisp_Vectorlike:
2185 {
2186 register int i;
2187 EMACS_INT size = ASIZE (o1);
2188 /* Pseudovectors have the type encoded in the size field, so this test
2189 actually checks that the objects have the same type as well as the
2190 same size. */
2191 if (ASIZE (o2) != size)
2192 return 0;
2193 /* Boolvectors are compared much like strings. */
2194 if (BOOL_VECTOR_P (o1))
2195 {
2196 int size_in_chars
2197 = ((XBOOL_VECTOR (o1)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2198 / BOOL_VECTOR_BITS_PER_CHAR);
2199
2200 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2201 return 0;
2202 if (bcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2203 size_in_chars))
2204 return 0;
2205 return 1;
2206 }
2207 if (WINDOW_CONFIGURATIONP (o1))
2208 return compare_window_configurations (o1, o2, 0);
2209
2210 /* Aside from them, only true vectors, char-tables, and compiled
2211 functions are sensible to compare, so eliminate the others now. */
2212 if (size & PSEUDOVECTOR_FLAG)
2213 {
2214 if (!(size & (PVEC_COMPILED
2215 | PVEC_CHAR_TABLE | PVEC_SUB_CHAR_TABLE)))
2216 return 0;
2217 size &= PSEUDOVECTOR_SIZE_MASK;
2218 }
2219 for (i = 0; i < size; i++)
2220 {
2221 Lisp_Object v1, v2;
2222 v1 = AREF (o1, i);
2223 v2 = AREF (o2, i);
2224 if (!internal_equal (v1, v2, depth + 1, props))
2225 return 0;
2226 }
2227 return 1;
2228 }
2229 break;
2230
2231 case Lisp_String:
2232 if (SCHARS (o1) != SCHARS (o2))
2233 return 0;
2234 if (SBYTES (o1) != SBYTES (o2))
2235 return 0;
2236 if (bcmp (SDATA (o1), SDATA (o2),
2237 SBYTES (o1)))
2238 return 0;
2239 if (props && !compare_string_intervals (o1, o2))
2240 return 0;
2241 return 1;
2242
2243 case Lisp_Int:
2244 case Lisp_Symbol:
2245 case Lisp_Type_Limit:
2246 break;
2247 }
2248
2249 return 0;
2250 }
2251 \f
2252 extern Lisp_Object Fmake_char_internal ();
2253
2254 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2255 doc: /* Store each element of ARRAY with ITEM.
2256 ARRAY is a vector, string, char-table, or bool-vector. */)
2257 (array, item)
2258 Lisp_Object array, item;
2259 {
2260 register int size, index, charval;
2261 if (VECTORP (array))
2262 {
2263 register Lisp_Object *p = XVECTOR (array)->contents;
2264 size = ASIZE (array);
2265 for (index = 0; index < size; index++)
2266 p[index] = item;
2267 }
2268 else if (CHAR_TABLE_P (array))
2269 {
2270 int i;
2271
2272 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2273 XCHAR_TABLE (array)->contents[i] = item;
2274 XCHAR_TABLE (array)->defalt = item;
2275 }
2276 else if (STRINGP (array))
2277 {
2278 register unsigned char *p = SDATA (array);
2279 CHECK_NUMBER (item);
2280 charval = XINT (item);
2281 size = SCHARS (array);
2282 if (STRING_MULTIBYTE (array))
2283 {
2284 unsigned char str[MAX_MULTIBYTE_LENGTH];
2285 int len = CHAR_STRING (charval, str);
2286 int size_byte = SBYTES (array);
2287 unsigned char *p1 = p, *endp = p + size_byte;
2288 int i;
2289
2290 if (size != size_byte)
2291 while (p1 < endp)
2292 {
2293 int this_len = MULTIBYTE_FORM_LENGTH (p1, endp - p1);
2294 if (len != this_len)
2295 error ("Attempt to change byte length of a string");
2296 p1 += this_len;
2297 }
2298 for (i = 0; i < size_byte; i++)
2299 *p++ = str[i % len];
2300 }
2301 else
2302 for (index = 0; index < size; index++)
2303 p[index] = charval;
2304 }
2305 else if (BOOL_VECTOR_P (array))
2306 {
2307 register unsigned char *p = XBOOL_VECTOR (array)->data;
2308 int size_in_chars
2309 = ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2310 / BOOL_VECTOR_BITS_PER_CHAR);
2311
2312 charval = (! NILP (item) ? -1 : 0);
2313 for (index = 0; index < size_in_chars - 1; index++)
2314 p[index] = charval;
2315 if (index < size_in_chars)
2316 {
2317 /* Mask out bits beyond the vector size. */
2318 if (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)
2319 charval &= (1 << (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2320 p[index] = charval;
2321 }
2322 }
2323 else
2324 wrong_type_argument (Qarrayp, array);
2325 return array;
2326 }
2327
2328 DEFUN ("clear-string", Fclear_string, Sclear_string,
2329 1, 1, 0,
2330 doc: /* Clear the contents of STRING.
2331 This makes STRING unibyte and may change its length. */)
2332 (string)
2333 Lisp_Object string;
2334 {
2335 int len;
2336 CHECK_STRING (string);
2337 len = SBYTES (string);
2338 bzero (SDATA (string), len);
2339 STRING_SET_CHARS (string, len);
2340 STRING_SET_UNIBYTE (string);
2341 return Qnil;
2342 }
2343 \f
2344 /* ARGSUSED */
2345 Lisp_Object
2346 nconc2 (s1, s2)
2347 Lisp_Object s1, s2;
2348 {
2349 #ifdef NO_ARG_ARRAY
2350 Lisp_Object args[2];
2351 args[0] = s1;
2352 args[1] = s2;
2353 return Fnconc (2, args);
2354 #else
2355 return Fnconc (2, &s1);
2356 #endif /* NO_ARG_ARRAY */
2357 }
2358
2359 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2360 doc: /* Concatenate any number of lists by altering them.
2361 Only the last argument is not altered, and need not be a list.
2362 usage: (nconc &rest LISTS) */)
2363 (nargs, args)
2364 int nargs;
2365 Lisp_Object *args;
2366 {
2367 register int argnum;
2368 register Lisp_Object tail, tem, val;
2369
2370 val = tail = Qnil;
2371
2372 for (argnum = 0; argnum < nargs; argnum++)
2373 {
2374 tem = args[argnum];
2375 if (NILP (tem)) continue;
2376
2377 if (NILP (val))
2378 val = tem;
2379
2380 if (argnum + 1 == nargs) break;
2381
2382 CHECK_LIST_CONS (tem, tem);
2383
2384 while (CONSP (tem))
2385 {
2386 tail = tem;
2387 tem = XCDR (tail);
2388 QUIT;
2389 }
2390
2391 tem = args[argnum + 1];
2392 Fsetcdr (tail, tem);
2393 if (NILP (tem))
2394 args[argnum + 1] = tail;
2395 }
2396
2397 return val;
2398 }
2399 \f
2400 /* This is the guts of all mapping functions.
2401 Apply FN to each element of SEQ, one by one,
2402 storing the results into elements of VALS, a C vector of Lisp_Objects.
2403 LENI is the length of VALS, which should also be the length of SEQ. */
2404
2405 static void
2406 mapcar1 (leni, vals, fn, seq)
2407 int leni;
2408 Lisp_Object *vals;
2409 Lisp_Object fn, seq;
2410 {
2411 register Lisp_Object tail;
2412 Lisp_Object dummy;
2413 register int i;
2414 struct gcpro gcpro1, gcpro2, gcpro3;
2415
2416 if (vals)
2417 {
2418 /* Don't let vals contain any garbage when GC happens. */
2419 for (i = 0; i < leni; i++)
2420 vals[i] = Qnil;
2421
2422 GCPRO3 (dummy, fn, seq);
2423 gcpro1.var = vals;
2424 gcpro1.nvars = leni;
2425 }
2426 else
2427 GCPRO2 (fn, seq);
2428 /* We need not explicitly protect `tail' because it is used only on lists, and
2429 1) lists are not relocated and 2) the list is marked via `seq' so will not
2430 be freed */
2431
2432 if (VECTORP (seq))
2433 {
2434 for (i = 0; i < leni; i++)
2435 {
2436 dummy = call1 (fn, AREF (seq, i));
2437 if (vals)
2438 vals[i] = dummy;
2439 }
2440 }
2441 else if (BOOL_VECTOR_P (seq))
2442 {
2443 for (i = 0; i < leni; i++)
2444 {
2445 int byte;
2446 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2447 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2448 dummy = call1 (fn, dummy);
2449 if (vals)
2450 vals[i] = dummy;
2451 }
2452 }
2453 else if (STRINGP (seq))
2454 {
2455 int i_byte;
2456
2457 for (i = 0, i_byte = 0; i < leni;)
2458 {
2459 int c;
2460 int i_before = i;
2461
2462 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2463 XSETFASTINT (dummy, c);
2464 dummy = call1 (fn, dummy);
2465 if (vals)
2466 vals[i_before] = dummy;
2467 }
2468 }
2469 else /* Must be a list, since Flength did not get an error */
2470 {
2471 tail = seq;
2472 for (i = 0; i < leni && CONSP (tail); i++)
2473 {
2474 dummy = call1 (fn, XCAR (tail));
2475 if (vals)
2476 vals[i] = dummy;
2477 tail = XCDR (tail);
2478 }
2479 }
2480
2481 UNGCPRO;
2482 }
2483
2484 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2485 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2486 In between each pair of results, stick in SEPARATOR. Thus, " " as
2487 SEPARATOR results in spaces between the values returned by FUNCTION.
2488 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2489 (function, sequence, separator)
2490 Lisp_Object function, sequence, separator;
2491 {
2492 Lisp_Object len;
2493 register int leni;
2494 int nargs;
2495 register Lisp_Object *args;
2496 register int i;
2497 struct gcpro gcpro1;
2498 Lisp_Object ret;
2499 USE_SAFE_ALLOCA;
2500
2501 len = Flength (sequence);
2502 if (CHAR_TABLE_P (sequence))
2503 wrong_type_argument (Qlistp, sequence);
2504 leni = XINT (len);
2505 nargs = leni + leni - 1;
2506 if (nargs < 0) return empty_unibyte_string;
2507
2508 SAFE_ALLOCA_LISP (args, nargs);
2509
2510 GCPRO1 (separator);
2511 mapcar1 (leni, args, function, sequence);
2512 UNGCPRO;
2513
2514 for (i = leni - 1; i > 0; i--)
2515 args[i + i] = args[i];
2516
2517 for (i = 1; i < nargs; i += 2)
2518 args[i] = separator;
2519
2520 ret = Fconcat (nargs, args);
2521 SAFE_FREE ();
2522
2523 return ret;
2524 }
2525
2526 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2527 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2528 The result is a list just as long as SEQUENCE.
2529 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2530 (function, sequence)
2531 Lisp_Object function, sequence;
2532 {
2533 register Lisp_Object len;
2534 register int leni;
2535 register Lisp_Object *args;
2536 Lisp_Object ret;
2537 USE_SAFE_ALLOCA;
2538
2539 len = Flength (sequence);
2540 if (CHAR_TABLE_P (sequence))
2541 wrong_type_argument (Qlistp, sequence);
2542 leni = XFASTINT (len);
2543
2544 SAFE_ALLOCA_LISP (args, leni);
2545
2546 mapcar1 (leni, args, function, sequence);
2547
2548 ret = Flist (leni, args);
2549 SAFE_FREE ();
2550
2551 return ret;
2552 }
2553
2554 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2555 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2556 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2557 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2558 (function, sequence)
2559 Lisp_Object function, sequence;
2560 {
2561 register int leni;
2562
2563 leni = XFASTINT (Flength (sequence));
2564 if (CHAR_TABLE_P (sequence))
2565 wrong_type_argument (Qlistp, sequence);
2566 mapcar1 (leni, 0, function, sequence);
2567
2568 return sequence;
2569 }
2570 \f
2571 /* Anything that calls this function must protect from GC! */
2572
2573 DEFUN ("y-or-n-p", Fy_or_n_p, Sy_or_n_p, 1, 1, 0,
2574 doc: /* Ask user a "y or n" question. Return t if answer is "y".
2575 Takes one argument, which is the string to display to ask the question.
2576 It should end in a space; `y-or-n-p' adds `(y or n) ' to it.
2577 No confirmation of the answer is requested; a single character is enough.
2578 Also accepts Space to mean yes, or Delete to mean no. \(Actually, it uses
2579 the bindings in `query-replace-map'; see the documentation of that variable
2580 for more information. In this case, the useful bindings are `act', `skip',
2581 `recenter', and `quit'.\)
2582
2583 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2584 is nil and `use-dialog-box' is non-nil. */)
2585 (prompt)
2586 Lisp_Object prompt;
2587 {
2588 register Lisp_Object obj, key, def, map;
2589 register int answer;
2590 Lisp_Object xprompt;
2591 Lisp_Object args[2];
2592 struct gcpro gcpro1, gcpro2;
2593 int count = SPECPDL_INDEX ();
2594
2595 specbind (Qcursor_in_echo_area, Qt);
2596
2597 map = Fsymbol_value (intern ("query-replace-map"));
2598
2599 CHECK_STRING (prompt);
2600 xprompt = prompt;
2601 GCPRO2 (prompt, xprompt);
2602
2603 #ifdef HAVE_X_WINDOWS
2604 if (display_hourglass_p)
2605 cancel_hourglass ();
2606 #endif
2607
2608 while (1)
2609 {
2610
2611 #ifdef HAVE_MENUS
2612 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2613 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2614 && use_dialog_box
2615 && have_menus_p ())
2616 {
2617 Lisp_Object pane, menu;
2618 redisplay_preserve_echo_area (3);
2619 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2620 Fcons (Fcons (build_string ("No"), Qnil),
2621 Qnil));
2622 menu = Fcons (prompt, pane);
2623 obj = Fx_popup_dialog (Qt, menu, Qnil);
2624 answer = !NILP (obj);
2625 break;
2626 }
2627 #endif /* HAVE_MENUS */
2628 cursor_in_echo_area = 1;
2629 choose_minibuf_frame ();
2630
2631 {
2632 Lisp_Object pargs[3];
2633
2634 /* Colorize prompt according to `minibuffer-prompt' face. */
2635 pargs[0] = build_string ("%s(y or n) ");
2636 pargs[1] = intern ("face");
2637 pargs[2] = intern ("minibuffer-prompt");
2638 args[0] = Fpropertize (3, pargs);
2639 args[1] = xprompt;
2640 Fmessage (2, args);
2641 }
2642
2643 if (minibuffer_auto_raise)
2644 {
2645 Lisp_Object mini_frame;
2646
2647 mini_frame = WINDOW_FRAME (XWINDOW (minibuf_window));
2648
2649 Fraise_frame (mini_frame);
2650 }
2651
2652 temporarily_switch_to_single_kboard (SELECTED_FRAME ());
2653 obj = read_filtered_event (1, 0, 0, 0, Qnil);
2654 cursor_in_echo_area = 0;
2655 /* If we need to quit, quit with cursor_in_echo_area = 0. */
2656 QUIT;
2657
2658 key = Fmake_vector (make_number (1), obj);
2659 def = Flookup_key (map, key, Qt);
2660
2661 if (EQ (def, intern ("skip")))
2662 {
2663 answer = 0;
2664 break;
2665 }
2666 else if (EQ (def, intern ("act")))
2667 {
2668 answer = 1;
2669 break;
2670 }
2671 else if (EQ (def, intern ("recenter")))
2672 {
2673 Frecenter (Qnil);
2674 xprompt = prompt;
2675 continue;
2676 }
2677 else if (EQ (def, intern ("quit")))
2678 Vquit_flag = Qt;
2679 /* We want to exit this command for exit-prefix,
2680 and this is the only way to do it. */
2681 else if (EQ (def, intern ("exit-prefix")))
2682 Vquit_flag = Qt;
2683
2684 QUIT;
2685
2686 /* If we don't clear this, then the next call to read_char will
2687 return quit_char again, and we'll enter an infinite loop. */
2688 Vquit_flag = Qnil;
2689
2690 Fding (Qnil);
2691 Fdiscard_input ();
2692 if (EQ (xprompt, prompt))
2693 {
2694 args[0] = build_string ("Please answer y or n. ");
2695 args[1] = prompt;
2696 xprompt = Fconcat (2, args);
2697 }
2698 }
2699 UNGCPRO;
2700
2701 if (! noninteractive)
2702 {
2703 cursor_in_echo_area = -1;
2704 message_with_string (answer ? "%s(y or n) y" : "%s(y or n) n",
2705 xprompt, 0);
2706 }
2707
2708 unbind_to (count, Qnil);
2709 return answer ? Qt : Qnil;
2710 }
2711 \f
2712 /* This is how C code calls `yes-or-no-p' and allows the user
2713 to redefined it.
2714
2715 Anything that calls this function must protect from GC! */
2716
2717 Lisp_Object
2718 do_yes_or_no_p (prompt)
2719 Lisp_Object prompt;
2720 {
2721 return call1 (intern ("yes-or-no-p"), prompt);
2722 }
2723
2724 /* Anything that calls this function must protect from GC! */
2725
2726 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2727 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2728 Takes one argument, which is the string to display to ask the question.
2729 It should end in a space; `yes-or-no-p' adds `(yes or no) ' to it.
2730 The user must confirm the answer with RET,
2731 and can edit it until it has been confirmed.
2732
2733 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2734 is nil, and `use-dialog-box' is non-nil. */)
2735 (prompt)
2736 Lisp_Object prompt;
2737 {
2738 register Lisp_Object ans;
2739 Lisp_Object args[2];
2740 struct gcpro gcpro1;
2741
2742 CHECK_STRING (prompt);
2743
2744 #ifdef HAVE_MENUS
2745 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2746 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2747 && use_dialog_box
2748 && have_menus_p ())
2749 {
2750 Lisp_Object pane, menu, obj;
2751 redisplay_preserve_echo_area (4);
2752 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2753 Fcons (Fcons (build_string ("No"), Qnil),
2754 Qnil));
2755 GCPRO1 (pane);
2756 menu = Fcons (prompt, pane);
2757 obj = Fx_popup_dialog (Qt, menu, Qnil);
2758 UNGCPRO;
2759 return obj;
2760 }
2761 #endif /* HAVE_MENUS */
2762
2763 args[0] = prompt;
2764 args[1] = build_string ("(yes or no) ");
2765 prompt = Fconcat (2, args);
2766
2767 GCPRO1 (prompt);
2768
2769 while (1)
2770 {
2771 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2772 Qyes_or_no_p_history, Qnil,
2773 Qnil));
2774 if (SCHARS (ans) == 3 && !strcmp (SDATA (ans), "yes"))
2775 {
2776 UNGCPRO;
2777 return Qt;
2778 }
2779 if (SCHARS (ans) == 2 && !strcmp (SDATA (ans), "no"))
2780 {
2781 UNGCPRO;
2782 return Qnil;
2783 }
2784
2785 Fding (Qnil);
2786 Fdiscard_input ();
2787 message ("Please answer yes or no.");
2788 Fsleep_for (make_number (2), Qnil);
2789 }
2790 }
2791 \f
2792 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2793 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2794
2795 Each of the three load averages is multiplied by 100, then converted
2796 to integer.
2797
2798 When USE-FLOATS is non-nil, floats will be used instead of integers.
2799 These floats are not multiplied by 100.
2800
2801 If the 5-minute or 15-minute load averages are not available, return a
2802 shortened list, containing only those averages which are available.
2803
2804 An error is thrown if the load average can't be obtained. In some
2805 cases making it work would require Emacs being installed setuid or
2806 setgid so that it can read kernel information, and that usually isn't
2807 advisable. */)
2808 (use_floats)
2809 Lisp_Object use_floats;
2810 {
2811 double load_ave[3];
2812 int loads = getloadavg (load_ave, 3);
2813 Lisp_Object ret = Qnil;
2814
2815 if (loads < 0)
2816 error ("load-average not implemented for this operating system");
2817
2818 while (loads-- > 0)
2819 {
2820 Lisp_Object load = (NILP (use_floats) ?
2821 make_number ((int) (100.0 * load_ave[loads]))
2822 : make_float (load_ave[loads]));
2823 ret = Fcons (load, ret);
2824 }
2825
2826 return ret;
2827 }
2828 \f
2829 Lisp_Object Vfeatures, Qsubfeatures;
2830 extern Lisp_Object Vafter_load_alist;
2831
2832 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2833 doc: /* Returns t if FEATURE is present in this Emacs.
2834
2835 Use this to conditionalize execution of lisp code based on the
2836 presence or absence of Emacs or environment extensions.
2837 Use `provide' to declare that a feature is available. This function
2838 looks at the value of the variable `features'. The optional argument
2839 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2840 (feature, subfeature)
2841 Lisp_Object feature, subfeature;
2842 {
2843 register Lisp_Object tem;
2844 CHECK_SYMBOL (feature);
2845 tem = Fmemq (feature, Vfeatures);
2846 if (!NILP (tem) && !NILP (subfeature))
2847 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2848 return (NILP (tem)) ? Qnil : Qt;
2849 }
2850
2851 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2852 doc: /* Announce that FEATURE is a feature of the current Emacs.
2853 The optional argument SUBFEATURES should be a list of symbols listing
2854 particular subfeatures supported in this version of FEATURE. */)
2855 (feature, subfeatures)
2856 Lisp_Object feature, subfeatures;
2857 {
2858 register Lisp_Object tem;
2859 CHECK_SYMBOL (feature);
2860 CHECK_LIST (subfeatures);
2861 if (!NILP (Vautoload_queue))
2862 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2863 Vautoload_queue);
2864 tem = Fmemq (feature, Vfeatures);
2865 if (NILP (tem))
2866 Vfeatures = Fcons (feature, Vfeatures);
2867 if (!NILP (subfeatures))
2868 Fput (feature, Qsubfeatures, subfeatures);
2869 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2870
2871 /* Run any load-hooks for this file. */
2872 tem = Fassq (feature, Vafter_load_alist);
2873 if (CONSP (tem))
2874 Fprogn (XCDR (tem));
2875
2876 return feature;
2877 }
2878 \f
2879 /* `require' and its subroutines. */
2880
2881 /* List of features currently being require'd, innermost first. */
2882
2883 Lisp_Object require_nesting_list;
2884
2885 Lisp_Object
2886 require_unwind (old_value)
2887 Lisp_Object old_value;
2888 {
2889 return require_nesting_list = old_value;
2890 }
2891
2892 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2893 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2894 If FEATURE is not a member of the list `features', then the feature
2895 is not loaded; so load the file FILENAME.
2896 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2897 and `load' will try to load this name appended with the suffix `.elc' or
2898 `.el', in that order. The name without appended suffix will not be used.
2899 If the optional third argument NOERROR is non-nil,
2900 then return nil if the file is not found instead of signaling an error.
2901 Normally the return value is FEATURE.
2902 The normal messages at start and end of loading FILENAME are suppressed. */)
2903 (feature, filename, noerror)
2904 Lisp_Object feature, filename, noerror;
2905 {
2906 register Lisp_Object tem;
2907 struct gcpro gcpro1, gcpro2;
2908 int from_file = load_in_progress;
2909
2910 CHECK_SYMBOL (feature);
2911
2912 /* Record the presence of `require' in this file
2913 even if the feature specified is already loaded.
2914 But not more than once in any file,
2915 and not when we aren't loading or reading from a file. */
2916 if (!from_file)
2917 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2918 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2919 from_file = 1;
2920
2921 if (from_file)
2922 {
2923 tem = Fcons (Qrequire, feature);
2924 if (NILP (Fmember (tem, Vcurrent_load_list)))
2925 LOADHIST_ATTACH (tem);
2926 }
2927 tem = Fmemq (feature, Vfeatures);
2928
2929 if (NILP (tem))
2930 {
2931 int count = SPECPDL_INDEX ();
2932 int nesting = 0;
2933
2934 /* This is to make sure that loadup.el gives a clear picture
2935 of what files are preloaded and when. */
2936 if (! NILP (Vpurify_flag))
2937 error ("(require %s) while preparing to dump",
2938 SDATA (SYMBOL_NAME (feature)));
2939
2940 /* A certain amount of recursive `require' is legitimate,
2941 but if we require the same feature recursively 3 times,
2942 signal an error. */
2943 tem = require_nesting_list;
2944 while (! NILP (tem))
2945 {
2946 if (! NILP (Fequal (feature, XCAR (tem))))
2947 nesting++;
2948 tem = XCDR (tem);
2949 }
2950 if (nesting > 3)
2951 error ("Recursive `require' for feature `%s'",
2952 SDATA (SYMBOL_NAME (feature)));
2953
2954 /* Update the list for any nested `require's that occur. */
2955 record_unwind_protect (require_unwind, require_nesting_list);
2956 require_nesting_list = Fcons (feature, require_nesting_list);
2957
2958 /* Value saved here is to be restored into Vautoload_queue */
2959 record_unwind_protect (un_autoload, Vautoload_queue);
2960 Vautoload_queue = Qt;
2961
2962 /* Load the file. */
2963 GCPRO2 (feature, filename);
2964 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2965 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2966 UNGCPRO;
2967
2968 /* If load failed entirely, return nil. */
2969 if (NILP (tem))
2970 return unbind_to (count, Qnil);
2971
2972 tem = Fmemq (feature, Vfeatures);
2973 if (NILP (tem))
2974 error ("Required feature `%s' was not provided",
2975 SDATA (SYMBOL_NAME (feature)));
2976
2977 /* Once loading finishes, don't undo it. */
2978 Vautoload_queue = Qt;
2979 feature = unbind_to (count, feature);
2980 }
2981
2982 return feature;
2983 }
2984 \f
2985 /* Primitives for work of the "widget" library.
2986 In an ideal world, this section would not have been necessary.
2987 However, lisp function calls being as slow as they are, it turns
2988 out that some functions in the widget library (wid-edit.el) are the
2989 bottleneck of Widget operation. Here is their translation to C,
2990 for the sole reason of efficiency. */
2991
2992 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2993 doc: /* Return non-nil if PLIST has the property PROP.
2994 PLIST is a property list, which is a list of the form
2995 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2996 Unlike `plist-get', this allows you to distinguish between a missing
2997 property and a property with the value nil.
2998 The value is actually the tail of PLIST whose car is PROP. */)
2999 (plist, prop)
3000 Lisp_Object plist, prop;
3001 {
3002 while (CONSP (plist) && !EQ (XCAR (plist), prop))
3003 {
3004 QUIT;
3005 plist = XCDR (plist);
3006 plist = CDR (plist);
3007 }
3008 return plist;
3009 }
3010
3011 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
3012 doc: /* In WIDGET, set PROPERTY to VALUE.
3013 The value can later be retrieved with `widget-get'. */)
3014 (widget, property, value)
3015 Lisp_Object widget, property, value;
3016 {
3017 CHECK_CONS (widget);
3018 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
3019 return value;
3020 }
3021
3022 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
3023 doc: /* In WIDGET, get the value of PROPERTY.
3024 The value could either be specified when the widget was created, or
3025 later with `widget-put'. */)
3026 (widget, property)
3027 Lisp_Object widget, property;
3028 {
3029 Lisp_Object tmp;
3030
3031 while (1)
3032 {
3033 if (NILP (widget))
3034 return Qnil;
3035 CHECK_CONS (widget);
3036 tmp = Fplist_member (XCDR (widget), property);
3037 if (CONSP (tmp))
3038 {
3039 tmp = XCDR (tmp);
3040 return CAR (tmp);
3041 }
3042 tmp = XCAR (widget);
3043 if (NILP (tmp))
3044 return Qnil;
3045 widget = Fget (tmp, Qwidget_type);
3046 }
3047 }
3048
3049 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
3050 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
3051 ARGS are passed as extra arguments to the function.
3052 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
3053 (nargs, args)
3054 int nargs;
3055 Lisp_Object *args;
3056 {
3057 /* This function can GC. */
3058 Lisp_Object newargs[3];
3059 struct gcpro gcpro1, gcpro2;
3060 Lisp_Object result;
3061
3062 newargs[0] = Fwidget_get (args[0], args[1]);
3063 newargs[1] = args[0];
3064 newargs[2] = Flist (nargs - 2, args + 2);
3065 GCPRO2 (newargs[0], newargs[2]);
3066 result = Fapply (3, newargs);
3067 UNGCPRO;
3068 return result;
3069 }
3070
3071 #ifdef HAVE_LANGINFO_CODESET
3072 #include <langinfo.h>
3073 #endif
3074
3075 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
3076 doc: /* Access locale data ITEM for the current C locale, if available.
3077 ITEM should be one of the following:
3078
3079 `codeset', returning the character set as a string (locale item CODESET);
3080
3081 `days', returning a 7-element vector of day names (locale items DAY_n);
3082
3083 `months', returning a 12-element vector of month names (locale items MON_n);
3084
3085 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
3086 both measured in milimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
3087
3088 If the system can't provide such information through a call to
3089 `nl_langinfo', or if ITEM isn't from the list above, return nil.
3090
3091 See also Info node `(libc)Locales'.
3092
3093 The data read from the system are decoded using `locale-coding-system'. */)
3094 (item)
3095 Lisp_Object item;
3096 {
3097 char *str = NULL;
3098 #ifdef HAVE_LANGINFO_CODESET
3099 Lisp_Object val;
3100 if (EQ (item, Qcodeset))
3101 {
3102 str = nl_langinfo (CODESET);
3103 return build_string (str);
3104 }
3105 #ifdef DAY_1
3106 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
3107 {
3108 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
3109 int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
3110 int i;
3111 synchronize_system_time_locale ();
3112 for (i = 0; i < 7; i++)
3113 {
3114 str = nl_langinfo (days[i]);
3115 val = make_unibyte_string (str, strlen (str));
3116 /* Fixme: Is this coding system necessarily right, even if
3117 it is consistent with CODESET? If not, what to do? */
3118 Faset (v, make_number (i),
3119 code_convert_string_norecord (val, Vlocale_coding_system,
3120 0));
3121 }
3122 return v;
3123 }
3124 #endif /* DAY_1 */
3125 #ifdef MON_1
3126 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
3127 {
3128 struct Lisp_Vector *p = allocate_vector (12);
3129 int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
3130 MON_8, MON_9, MON_10, MON_11, MON_12};
3131 int i;
3132 synchronize_system_time_locale ();
3133 for (i = 0; i < 12; i++)
3134 {
3135 str = nl_langinfo (months[i]);
3136 val = make_unibyte_string (str, strlen (str));
3137 p->contents[i] =
3138 code_convert_string_norecord (val, Vlocale_coding_system, 0);
3139 }
3140 XSETVECTOR (val, p);
3141 return val;
3142 }
3143 #endif /* MON_1 */
3144 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
3145 but is in the locale files. This could be used by ps-print. */
3146 #ifdef PAPER_WIDTH
3147 else if (EQ (item, Qpaper))
3148 {
3149 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
3150 make_number (nl_langinfo (PAPER_HEIGHT)));
3151 }
3152 #endif /* PAPER_WIDTH */
3153 #endif /* HAVE_LANGINFO_CODESET*/
3154 return Qnil;
3155 }
3156 \f
3157 /* base64 encode/decode functions (RFC 2045).
3158 Based on code from GNU recode. */
3159
3160 #define MIME_LINE_LENGTH 76
3161
3162 #define IS_ASCII(Character) \
3163 ((Character) < 128)
3164 #define IS_BASE64(Character) \
3165 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
3166 #define IS_BASE64_IGNORABLE(Character) \
3167 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
3168 || (Character) == '\f' || (Character) == '\r')
3169
3170 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
3171 character or return retval if there are no characters left to
3172 process. */
3173 #define READ_QUADRUPLET_BYTE(retval) \
3174 do \
3175 { \
3176 if (i == length) \
3177 { \
3178 if (nchars_return) \
3179 *nchars_return = nchars; \
3180 return (retval); \
3181 } \
3182 c = from[i++]; \
3183 } \
3184 while (IS_BASE64_IGNORABLE (c))
3185
3186 /* Table of characters coding the 64 values. */
3187 static char base64_value_to_char[64] =
3188 {
3189 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
3190 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
3191 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
3192 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
3193 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
3194 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
3195 '8', '9', '+', '/' /* 60-63 */
3196 };
3197
3198 /* Table of base64 values for first 128 characters. */
3199 static short base64_char_to_value[128] =
3200 {
3201 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
3202 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
3203 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
3204 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
3205 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
3206 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
3207 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
3208 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
3209 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
3210 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
3211 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
3212 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
3213 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
3214 };
3215
3216 /* The following diagram shows the logical steps by which three octets
3217 get transformed into four base64 characters.
3218
3219 .--------. .--------. .--------.
3220 |aaaaaabb| |bbbbcccc| |ccdddddd|
3221 `--------' `--------' `--------'
3222 6 2 4 4 2 6
3223 .--------+--------+--------+--------.
3224 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
3225 `--------+--------+--------+--------'
3226
3227 .--------+--------+--------+--------.
3228 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
3229 `--------+--------+--------+--------'
3230
3231 The octets are divided into 6 bit chunks, which are then encoded into
3232 base64 characters. */
3233
3234
3235 static int base64_encode_1 P_ ((const char *, char *, int, int, int));
3236 static int base64_decode_1 P_ ((const char *, char *, int, int, int *));
3237
3238 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
3239 2, 3, "r",
3240 doc: /* Base64-encode the region between BEG and END.
3241 Return the length of the encoded text.
3242 Optional third argument NO-LINE-BREAK means do not break long lines
3243 into shorter lines. */)
3244 (beg, end, no_line_break)
3245 Lisp_Object beg, end, no_line_break;
3246 {
3247 char *encoded;
3248 int allength, length;
3249 int ibeg, iend, encoded_length;
3250 int old_pos = PT;
3251 USE_SAFE_ALLOCA;
3252
3253 validate_region (&beg, &end);
3254
3255 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3256 iend = CHAR_TO_BYTE (XFASTINT (end));
3257 move_gap_both (XFASTINT (beg), ibeg);
3258
3259 /* We need to allocate enough room for encoding the text.
3260 We need 33 1/3% more space, plus a newline every 76
3261 characters, and then we round up. */
3262 length = iend - ibeg;
3263 allength = length + length/3 + 1;
3264 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3265
3266 SAFE_ALLOCA (encoded, char *, allength);
3267 encoded_length = base64_encode_1 (BYTE_POS_ADDR (ibeg), encoded, length,
3268 NILP (no_line_break),
3269 !NILP (current_buffer->enable_multibyte_characters));
3270 if (encoded_length > allength)
3271 abort ();
3272
3273 if (encoded_length < 0)
3274 {
3275 /* The encoding wasn't possible. */
3276 SAFE_FREE ();
3277 error ("Multibyte character in data for base64 encoding");
3278 }
3279
3280 /* Now we have encoded the region, so we insert the new contents
3281 and delete the old. (Insert first in order to preserve markers.) */
3282 SET_PT_BOTH (XFASTINT (beg), ibeg);
3283 insert (encoded, encoded_length);
3284 SAFE_FREE ();
3285 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
3286
3287 /* If point was outside of the region, restore it exactly; else just
3288 move to the beginning of the region. */
3289 if (old_pos >= XFASTINT (end))
3290 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3291 else if (old_pos > XFASTINT (beg))
3292 old_pos = XFASTINT (beg);
3293 SET_PT (old_pos);
3294
3295 /* We return the length of the encoded text. */
3296 return make_number (encoded_length);
3297 }
3298
3299 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3300 1, 2, 0,
3301 doc: /* Base64-encode STRING and return the result.
3302 Optional second argument NO-LINE-BREAK means do not break long lines
3303 into shorter lines. */)
3304 (string, no_line_break)
3305 Lisp_Object string, no_line_break;
3306 {
3307 int allength, length, encoded_length;
3308 char *encoded;
3309 Lisp_Object encoded_string;
3310 USE_SAFE_ALLOCA;
3311
3312 CHECK_STRING (string);
3313
3314 /* We need to allocate enough room for encoding the text.
3315 We need 33 1/3% more space, plus a newline every 76
3316 characters, and then we round up. */
3317 length = SBYTES (string);
3318 allength = length + length/3 + 1;
3319 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3320
3321 /* We need to allocate enough room for decoding the text. */
3322 SAFE_ALLOCA (encoded, char *, allength);
3323
3324 encoded_length = base64_encode_1 (SDATA (string),
3325 encoded, length, NILP (no_line_break),
3326 STRING_MULTIBYTE (string));
3327 if (encoded_length > allength)
3328 abort ();
3329
3330 if (encoded_length < 0)
3331 {
3332 /* The encoding wasn't possible. */
3333 SAFE_FREE ();
3334 error ("Multibyte character in data for base64 encoding");
3335 }
3336
3337 encoded_string = make_unibyte_string (encoded, encoded_length);
3338 SAFE_FREE ();
3339
3340 return encoded_string;
3341 }
3342
3343 static int
3344 base64_encode_1 (from, to, length, line_break, multibyte)
3345 const char *from;
3346 char *to;
3347 int length;
3348 int line_break;
3349 int multibyte;
3350 {
3351 int counter = 0, i = 0;
3352 char *e = to;
3353 int c;
3354 unsigned int value;
3355 int bytes;
3356
3357 while (i < length)
3358 {
3359 if (multibyte)
3360 {
3361 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3362 if (CHAR_BYTE8_P (c))
3363 c = CHAR_TO_BYTE8 (c);
3364 else if (c >= 256)
3365 return -1;
3366 i += bytes;
3367 }
3368 else
3369 c = from[i++];
3370
3371 /* Wrap line every 76 characters. */
3372
3373 if (line_break)
3374 {
3375 if (counter < MIME_LINE_LENGTH / 4)
3376 counter++;
3377 else
3378 {
3379 *e++ = '\n';
3380 counter = 1;
3381 }
3382 }
3383
3384 /* Process first byte of a triplet. */
3385
3386 *e++ = base64_value_to_char[0x3f & c >> 2];
3387 value = (0x03 & c) << 4;
3388
3389 /* Process second byte of a triplet. */
3390
3391 if (i == length)
3392 {
3393 *e++ = base64_value_to_char[value];
3394 *e++ = '=';
3395 *e++ = '=';
3396 break;
3397 }
3398
3399 if (multibyte)
3400 {
3401 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3402 if (CHAR_BYTE8_P (c))
3403 c = CHAR_TO_BYTE8 (c);
3404 else if (c >= 256)
3405 return -1;
3406 i += bytes;
3407 }
3408 else
3409 c = from[i++];
3410
3411 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3412 value = (0x0f & c) << 2;
3413
3414 /* Process third byte of a triplet. */
3415
3416 if (i == length)
3417 {
3418 *e++ = base64_value_to_char[value];
3419 *e++ = '=';
3420 break;
3421 }
3422
3423 if (multibyte)
3424 {
3425 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3426 if (CHAR_BYTE8_P (c))
3427 c = CHAR_TO_BYTE8 (c);
3428 else if (c >= 256)
3429 return -1;
3430 i += bytes;
3431 }
3432 else
3433 c = from[i++];
3434
3435 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3436 *e++ = base64_value_to_char[0x3f & c];
3437 }
3438
3439 return e - to;
3440 }
3441
3442
3443 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3444 2, 2, "r",
3445 doc: /* Base64-decode the region between BEG and END.
3446 Return the length of the decoded text.
3447 If the region can't be decoded, signal an error and don't modify the buffer. */)
3448 (beg, end)
3449 Lisp_Object beg, end;
3450 {
3451 int ibeg, iend, length, allength;
3452 char *decoded;
3453 int old_pos = PT;
3454 int decoded_length;
3455 int inserted_chars;
3456 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
3457 USE_SAFE_ALLOCA;
3458
3459 validate_region (&beg, &end);
3460
3461 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3462 iend = CHAR_TO_BYTE (XFASTINT (end));
3463
3464 length = iend - ibeg;
3465
3466 /* We need to allocate enough room for decoding the text. If we are
3467 working on a multibyte buffer, each decoded code may occupy at
3468 most two bytes. */
3469 allength = multibyte ? length * 2 : length;
3470 SAFE_ALLOCA (decoded, char *, allength);
3471
3472 move_gap_both (XFASTINT (beg), ibeg);
3473 decoded_length = base64_decode_1 (BYTE_POS_ADDR (ibeg), decoded, length,
3474 multibyte, &inserted_chars);
3475 if (decoded_length > allength)
3476 abort ();
3477
3478 if (decoded_length < 0)
3479 {
3480 /* The decoding wasn't possible. */
3481 SAFE_FREE ();
3482 error ("Invalid base64 data");
3483 }
3484
3485 /* Now we have decoded the region, so we insert the new contents
3486 and delete the old. (Insert first in order to preserve markers.) */
3487 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3488 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3489 SAFE_FREE ();
3490
3491 /* Delete the original text. */
3492 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3493 iend + decoded_length, 1);
3494
3495 /* If point was outside of the region, restore it exactly; else just
3496 move to the beginning of the region. */
3497 if (old_pos >= XFASTINT (end))
3498 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3499 else if (old_pos > XFASTINT (beg))
3500 old_pos = XFASTINT (beg);
3501 SET_PT (old_pos > ZV ? ZV : old_pos);
3502
3503 return make_number (inserted_chars);
3504 }
3505
3506 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3507 1, 1, 0,
3508 doc: /* Base64-decode STRING and return the result. */)
3509 (string)
3510 Lisp_Object string;
3511 {
3512 char *decoded;
3513 int length, decoded_length;
3514 Lisp_Object decoded_string;
3515 USE_SAFE_ALLOCA;
3516
3517 CHECK_STRING (string);
3518
3519 length = SBYTES (string);
3520 /* We need to allocate enough room for decoding the text. */
3521 SAFE_ALLOCA (decoded, char *, length);
3522
3523 /* The decoded result should be unibyte. */
3524 decoded_length = base64_decode_1 (SDATA (string), decoded, length,
3525 0, NULL);
3526 if (decoded_length > length)
3527 abort ();
3528 else if (decoded_length >= 0)
3529 decoded_string = make_unibyte_string (decoded, decoded_length);
3530 else
3531 decoded_string = Qnil;
3532
3533 SAFE_FREE ();
3534 if (!STRINGP (decoded_string))
3535 error ("Invalid base64 data");
3536
3537 return decoded_string;
3538 }
3539
3540 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
3541 MULTIBYTE is nonzero, the decoded result should be in multibyte
3542 form. If NCHARS_RETRUN is not NULL, store the number of produced
3543 characters in *NCHARS_RETURN. */
3544
3545 static int
3546 base64_decode_1 (from, to, length, multibyte, nchars_return)
3547 const char *from;
3548 char *to;
3549 int length;
3550 int multibyte;
3551 int *nchars_return;
3552 {
3553 int i = 0;
3554 char *e = to;
3555 unsigned char c;
3556 unsigned long value;
3557 int nchars = 0;
3558
3559 while (1)
3560 {
3561 /* Process first byte of a quadruplet. */
3562
3563 READ_QUADRUPLET_BYTE (e-to);
3564
3565 if (!IS_BASE64 (c))
3566 return -1;
3567 value = base64_char_to_value[c] << 18;
3568
3569 /* Process second byte of a quadruplet. */
3570
3571 READ_QUADRUPLET_BYTE (-1);
3572
3573 if (!IS_BASE64 (c))
3574 return -1;
3575 value |= base64_char_to_value[c] << 12;
3576
3577 c = (unsigned char) (value >> 16);
3578 if (multibyte && c >= 128)
3579 e += BYTE8_STRING (c, e);
3580 else
3581 *e++ = c;
3582 nchars++;
3583
3584 /* Process third byte of a quadruplet. */
3585
3586 READ_QUADRUPLET_BYTE (-1);
3587
3588 if (c == '=')
3589 {
3590 READ_QUADRUPLET_BYTE (-1);
3591
3592 if (c != '=')
3593 return -1;
3594 continue;
3595 }
3596
3597 if (!IS_BASE64 (c))
3598 return -1;
3599 value |= base64_char_to_value[c] << 6;
3600
3601 c = (unsigned char) (0xff & value >> 8);
3602 if (multibyte && c >= 128)
3603 e += BYTE8_STRING (c, e);
3604 else
3605 *e++ = c;
3606 nchars++;
3607
3608 /* Process fourth byte of a quadruplet. */
3609
3610 READ_QUADRUPLET_BYTE (-1);
3611
3612 if (c == '=')
3613 continue;
3614
3615 if (!IS_BASE64 (c))
3616 return -1;
3617 value |= base64_char_to_value[c];
3618
3619 c = (unsigned char) (0xff & value);
3620 if (multibyte && c >= 128)
3621 e += BYTE8_STRING (c, e);
3622 else
3623 *e++ = c;
3624 nchars++;
3625 }
3626 }
3627
3628
3629 \f
3630 /***********************************************************************
3631 ***** *****
3632 ***** Hash Tables *****
3633 ***** *****
3634 ***********************************************************************/
3635
3636 /* Implemented by gerd@gnu.org. This hash table implementation was
3637 inspired by CMUCL hash tables. */
3638
3639 /* Ideas:
3640
3641 1. For small tables, association lists are probably faster than
3642 hash tables because they have lower overhead.
3643
3644 For uses of hash tables where the O(1) behavior of table
3645 operations is not a requirement, it might therefore be a good idea
3646 not to hash. Instead, we could just do a linear search in the
3647 key_and_value vector of the hash table. This could be done
3648 if a `:linear-search t' argument is given to make-hash-table. */
3649
3650
3651 /* The list of all weak hash tables. Don't staticpro this one. */
3652
3653 struct Lisp_Hash_Table *weak_hash_tables;
3654
3655 /* Various symbols. */
3656
3657 Lisp_Object Qhash_table_p, Qeq, Qeql, Qequal, Qkey, Qvalue;
3658 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3659 Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3660
3661 /* Function prototypes. */
3662
3663 static struct Lisp_Hash_Table *check_hash_table P_ ((Lisp_Object));
3664 static int get_key_arg P_ ((Lisp_Object, int, Lisp_Object *, char *));
3665 static void maybe_resize_hash_table P_ ((struct Lisp_Hash_Table *));
3666 static int cmpfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
3667 Lisp_Object, unsigned));
3668 static int cmpfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
3669 Lisp_Object, unsigned));
3670 static int cmpfn_user_defined P_ ((struct Lisp_Hash_Table *, Lisp_Object,
3671 unsigned, Lisp_Object, unsigned));
3672 static unsigned hashfn_eq P_ ((struct Lisp_Hash_Table *, Lisp_Object));
3673 static unsigned hashfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object));
3674 static unsigned hashfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object));
3675 static unsigned hashfn_user_defined P_ ((struct Lisp_Hash_Table *,
3676 Lisp_Object));
3677 static unsigned sxhash_string P_ ((unsigned char *, int));
3678 static unsigned sxhash_list P_ ((Lisp_Object, int));
3679 static unsigned sxhash_vector P_ ((Lisp_Object, int));
3680 static unsigned sxhash_bool_vector P_ ((Lisp_Object));
3681 static int sweep_weak_table P_ ((struct Lisp_Hash_Table *, int));
3682
3683
3684 \f
3685 /***********************************************************************
3686 Utilities
3687 ***********************************************************************/
3688
3689 /* If OBJ is a Lisp hash table, return a pointer to its struct
3690 Lisp_Hash_Table. Otherwise, signal an error. */
3691
3692 static struct Lisp_Hash_Table *
3693 check_hash_table (obj)
3694 Lisp_Object obj;
3695 {
3696 CHECK_HASH_TABLE (obj);
3697 return XHASH_TABLE (obj);
3698 }
3699
3700
3701 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3702 number. */
3703
3704 int
3705 next_almost_prime (n)
3706 int n;
3707 {
3708 if (n % 2 == 0)
3709 n += 1;
3710 if (n % 3 == 0)
3711 n += 2;
3712 if (n % 7 == 0)
3713 n += 4;
3714 return n;
3715 }
3716
3717
3718 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3719 which USED[I] is non-zero. If found at index I in ARGS, set
3720 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3721 -1. This function is used to extract a keyword/argument pair from
3722 a DEFUN parameter list. */
3723
3724 static int
3725 get_key_arg (key, nargs, args, used)
3726 Lisp_Object key;
3727 int nargs;
3728 Lisp_Object *args;
3729 char *used;
3730 {
3731 int i;
3732
3733 for (i = 0; i < nargs - 1; ++i)
3734 if (!used[i] && EQ (args[i], key))
3735 break;
3736
3737 if (i >= nargs - 1)
3738 i = -1;
3739 else
3740 {
3741 used[i++] = 1;
3742 used[i] = 1;
3743 }
3744
3745 return i;
3746 }
3747
3748
3749 /* Return a Lisp vector which has the same contents as VEC but has
3750 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
3751 vector that are not copied from VEC are set to INIT. */
3752
3753 Lisp_Object
3754 larger_vector (vec, new_size, init)
3755 Lisp_Object vec;
3756 int new_size;
3757 Lisp_Object init;
3758 {
3759 struct Lisp_Vector *v;
3760 int i, old_size;
3761
3762 xassert (VECTORP (vec));
3763 old_size = ASIZE (vec);
3764 xassert (new_size >= old_size);
3765
3766 v = allocate_vector (new_size);
3767 bcopy (XVECTOR (vec)->contents, v->contents,
3768 old_size * sizeof *v->contents);
3769 for (i = old_size; i < new_size; ++i)
3770 v->contents[i] = init;
3771 XSETVECTOR (vec, v);
3772 return vec;
3773 }
3774
3775
3776 /***********************************************************************
3777 Low-level Functions
3778 ***********************************************************************/
3779
3780 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3781 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
3782 KEY2 are the same. */
3783
3784 static int
3785 cmpfn_eql (h, key1, hash1, key2, hash2)
3786 struct Lisp_Hash_Table *h;
3787 Lisp_Object key1, key2;
3788 unsigned hash1, hash2;
3789 {
3790 return (FLOATP (key1)
3791 && FLOATP (key2)
3792 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3793 }
3794
3795
3796 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3797 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
3798 KEY2 are the same. */
3799
3800 static int
3801 cmpfn_equal (h, key1, hash1, key2, hash2)
3802 struct Lisp_Hash_Table *h;
3803 Lisp_Object key1, key2;
3804 unsigned hash1, hash2;
3805 {
3806 return hash1 == hash2 && !NILP (Fequal (key1, key2));
3807 }
3808
3809
3810 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3811 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
3812 if KEY1 and KEY2 are the same. */
3813
3814 static int
3815 cmpfn_user_defined (h, key1, hash1, key2, hash2)
3816 struct Lisp_Hash_Table *h;
3817 Lisp_Object key1, key2;
3818 unsigned hash1, hash2;
3819 {
3820 if (hash1 == hash2)
3821 {
3822 Lisp_Object args[3];
3823
3824 args[0] = h->user_cmp_function;
3825 args[1] = key1;
3826 args[2] = key2;
3827 return !NILP (Ffuncall (3, args));
3828 }
3829 else
3830 return 0;
3831 }
3832
3833
3834 /* Value is a hash code for KEY for use in hash table H which uses
3835 `eq' to compare keys. The hash code returned is guaranteed to fit
3836 in a Lisp integer. */
3837
3838 static unsigned
3839 hashfn_eq (h, key)
3840 struct Lisp_Hash_Table *h;
3841 Lisp_Object key;
3842 {
3843 unsigned hash = XUINT (key) ^ XTYPE (key);
3844 xassert ((hash & ~INTMASK) == 0);
3845 return hash;
3846 }
3847
3848
3849 /* Value is a hash code for KEY for use in hash table H which uses
3850 `eql' to compare keys. The hash code returned is guaranteed to fit
3851 in a Lisp integer. */
3852
3853 static unsigned
3854 hashfn_eql (h, key)
3855 struct Lisp_Hash_Table *h;
3856 Lisp_Object key;
3857 {
3858 unsigned hash;
3859 if (FLOATP (key))
3860 hash = sxhash (key, 0);
3861 else
3862 hash = XUINT (key) ^ XTYPE (key);
3863 xassert ((hash & ~INTMASK) == 0);
3864 return hash;
3865 }
3866
3867
3868 /* Value is a hash code for KEY for use in hash table H which uses
3869 `equal' to compare keys. The hash code returned is guaranteed to fit
3870 in a Lisp integer. */
3871
3872 static unsigned
3873 hashfn_equal (h, key)
3874 struct Lisp_Hash_Table *h;
3875 Lisp_Object key;
3876 {
3877 unsigned hash = sxhash (key, 0);
3878 xassert ((hash & ~INTMASK) == 0);
3879 return hash;
3880 }
3881
3882
3883 /* Value is a hash code for KEY for use in hash table H which uses as
3884 user-defined function to compare keys. The hash code returned is
3885 guaranteed to fit in a Lisp integer. */
3886
3887 static unsigned
3888 hashfn_user_defined (h, key)
3889 struct Lisp_Hash_Table *h;
3890 Lisp_Object key;
3891 {
3892 Lisp_Object args[2], hash;
3893
3894 args[0] = h->user_hash_function;
3895 args[1] = key;
3896 hash = Ffuncall (2, args);
3897 if (!INTEGERP (hash))
3898 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3899 return XUINT (hash);
3900 }
3901
3902
3903 /* Create and initialize a new hash table.
3904
3905 TEST specifies the test the hash table will use to compare keys.
3906 It must be either one of the predefined tests `eq', `eql' or
3907 `equal' or a symbol denoting a user-defined test named TEST with
3908 test and hash functions USER_TEST and USER_HASH.
3909
3910 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3911
3912 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3913 new size when it becomes full is computed by adding REHASH_SIZE to
3914 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3915 table's new size is computed by multiplying its old size with
3916 REHASH_SIZE.
3917
3918 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3919 be resized when the ratio of (number of entries in the table) /
3920 (table size) is >= REHASH_THRESHOLD.
3921
3922 WEAK specifies the weakness of the table. If non-nil, it must be
3923 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3924
3925 Lisp_Object
3926 make_hash_table (test, size, rehash_size, rehash_threshold, weak,
3927 user_test, user_hash)
3928 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
3929 Lisp_Object user_test, user_hash;
3930 {
3931 struct Lisp_Hash_Table *h;
3932 Lisp_Object table;
3933 int index_size, i, sz;
3934
3935 /* Preconditions. */
3936 xassert (SYMBOLP (test));
3937 xassert (INTEGERP (size) && XINT (size) >= 0);
3938 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3939 || (FLOATP (rehash_size) && XFLOATINT (rehash_size) > 1.0));
3940 xassert (FLOATP (rehash_threshold)
3941 && XFLOATINT (rehash_threshold) > 0
3942 && XFLOATINT (rehash_threshold) <= 1.0);
3943
3944 if (XFASTINT (size) == 0)
3945 size = make_number (1);
3946
3947 /* Allocate a table and initialize it. */
3948 h = allocate_hash_table ();
3949
3950 /* Initialize hash table slots. */
3951 sz = XFASTINT (size);
3952
3953 h->test = test;
3954 if (EQ (test, Qeql))
3955 {
3956 h->cmpfn = cmpfn_eql;
3957 h->hashfn = hashfn_eql;
3958 }
3959 else if (EQ (test, Qeq))
3960 {
3961 h->cmpfn = NULL;
3962 h->hashfn = hashfn_eq;
3963 }
3964 else if (EQ (test, Qequal))
3965 {
3966 h->cmpfn = cmpfn_equal;
3967 h->hashfn = hashfn_equal;
3968 }
3969 else
3970 {
3971 h->user_cmp_function = user_test;
3972 h->user_hash_function = user_hash;
3973 h->cmpfn = cmpfn_user_defined;
3974 h->hashfn = hashfn_user_defined;
3975 }
3976
3977 h->weak = weak;
3978 h->rehash_threshold = rehash_threshold;
3979 h->rehash_size = rehash_size;
3980 h->count = 0;
3981 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3982 h->hash = Fmake_vector (size, Qnil);
3983 h->next = Fmake_vector (size, Qnil);
3984 /* Cast to int here avoids losing with gcc 2.95 on Tru64/Alpha... */
3985 index_size = next_almost_prime ((int) (sz / XFLOATINT (rehash_threshold)));
3986 h->index = Fmake_vector (make_number (index_size), Qnil);
3987
3988 /* Set up the free list. */
3989 for (i = 0; i < sz - 1; ++i)
3990 HASH_NEXT (h, i) = make_number (i + 1);
3991 h->next_free = make_number (0);
3992
3993 XSET_HASH_TABLE (table, h);
3994 xassert (HASH_TABLE_P (table));
3995 xassert (XHASH_TABLE (table) == h);
3996
3997 /* Maybe add this hash table to the list of all weak hash tables. */
3998 if (NILP (h->weak))
3999 h->next_weak = NULL;
4000 else
4001 {
4002 h->next_weak = weak_hash_tables;
4003 weak_hash_tables = h;
4004 }
4005
4006 return table;
4007 }
4008
4009
4010 /* Return a copy of hash table H1. Keys and values are not copied,
4011 only the table itself is. */
4012
4013 Lisp_Object
4014 copy_hash_table (h1)
4015 struct Lisp_Hash_Table *h1;
4016 {
4017 Lisp_Object table;
4018 struct Lisp_Hash_Table *h2;
4019 struct Lisp_Vector *next;
4020
4021 h2 = allocate_hash_table ();
4022 next = h2->vec_next;
4023 bcopy (h1, h2, sizeof *h2);
4024 h2->vec_next = next;
4025 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
4026 h2->hash = Fcopy_sequence (h1->hash);
4027 h2->next = Fcopy_sequence (h1->next);
4028 h2->index = Fcopy_sequence (h1->index);
4029 XSET_HASH_TABLE (table, h2);
4030
4031 /* Maybe add this hash table to the list of all weak hash tables. */
4032 if (!NILP (h2->weak))
4033 {
4034 h2->next_weak = weak_hash_tables;
4035 weak_hash_tables = h2;
4036 }
4037
4038 return table;
4039 }
4040
4041
4042 /* Resize hash table H if it's too full. If H cannot be resized
4043 because it's already too large, throw an error. */
4044
4045 static INLINE void
4046 maybe_resize_hash_table (h)
4047 struct Lisp_Hash_Table *h;
4048 {
4049 if (NILP (h->next_free))
4050 {
4051 int old_size = HASH_TABLE_SIZE (h);
4052 int i, new_size, index_size;
4053 EMACS_INT nsize;
4054
4055 if (INTEGERP (h->rehash_size))
4056 new_size = old_size + XFASTINT (h->rehash_size);
4057 else
4058 new_size = old_size * XFLOATINT (h->rehash_size);
4059 new_size = max (old_size + 1, new_size);
4060 index_size = next_almost_prime ((int)
4061 (new_size
4062 / XFLOATINT (h->rehash_threshold)));
4063 /* Assignment to EMACS_INT stops GCC whining about limited range
4064 of data type. */
4065 nsize = max (index_size, 2 * new_size);
4066 if (nsize > MOST_POSITIVE_FIXNUM)
4067 error ("Hash table too large to resize");
4068
4069 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
4070 h->next = larger_vector (h->next, new_size, Qnil);
4071 h->hash = larger_vector (h->hash, new_size, Qnil);
4072 h->index = Fmake_vector (make_number (index_size), Qnil);
4073
4074 /* Update the free list. Do it so that new entries are added at
4075 the end of the free list. This makes some operations like
4076 maphash faster. */
4077 for (i = old_size; i < new_size - 1; ++i)
4078 HASH_NEXT (h, i) = make_number (i + 1);
4079
4080 if (!NILP (h->next_free))
4081 {
4082 Lisp_Object last, next;
4083
4084 last = h->next_free;
4085 while (next = HASH_NEXT (h, XFASTINT (last)),
4086 !NILP (next))
4087 last = next;
4088
4089 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
4090 }
4091 else
4092 XSETFASTINT (h->next_free, old_size);
4093
4094 /* Rehash. */
4095 for (i = 0; i < old_size; ++i)
4096 if (!NILP (HASH_HASH (h, i)))
4097 {
4098 unsigned hash_code = XUINT (HASH_HASH (h, i));
4099 int start_of_bucket = hash_code % ASIZE (h->index);
4100 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4101 HASH_INDEX (h, start_of_bucket) = make_number (i);
4102 }
4103 }
4104 }
4105
4106
4107 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
4108 the hash code of KEY. Value is the index of the entry in H
4109 matching KEY, or -1 if not found. */
4110
4111 int
4112 hash_lookup (h, key, hash)
4113 struct Lisp_Hash_Table *h;
4114 Lisp_Object key;
4115 unsigned *hash;
4116 {
4117 unsigned hash_code;
4118 int start_of_bucket;
4119 Lisp_Object idx;
4120
4121 hash_code = h->hashfn (h, key);
4122 if (hash)
4123 *hash = hash_code;
4124
4125 start_of_bucket = hash_code % ASIZE (h->index);
4126 idx = HASH_INDEX (h, start_of_bucket);
4127
4128 /* We need not gcpro idx since it's either an integer or nil. */
4129 while (!NILP (idx))
4130 {
4131 int i = XFASTINT (idx);
4132 if (EQ (key, HASH_KEY (h, i))
4133 || (h->cmpfn
4134 && h->cmpfn (h, key, hash_code,
4135 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4136 break;
4137 idx = HASH_NEXT (h, i);
4138 }
4139
4140 return NILP (idx) ? -1 : XFASTINT (idx);
4141 }
4142
4143
4144 /* Put an entry into hash table H that associates KEY with VALUE.
4145 HASH is a previously computed hash code of KEY.
4146 Value is the index of the entry in H matching KEY. */
4147
4148 int
4149 hash_put (h, key, value, hash)
4150 struct Lisp_Hash_Table *h;
4151 Lisp_Object key, value;
4152 unsigned hash;
4153 {
4154 int start_of_bucket, i;
4155
4156 xassert ((hash & ~INTMASK) == 0);
4157
4158 /* Increment count after resizing because resizing may fail. */
4159 maybe_resize_hash_table (h);
4160 h->count++;
4161
4162 /* Store key/value in the key_and_value vector. */
4163 i = XFASTINT (h->next_free);
4164 h->next_free = HASH_NEXT (h, i);
4165 HASH_KEY (h, i) = key;
4166 HASH_VALUE (h, i) = value;
4167
4168 /* Remember its hash code. */
4169 HASH_HASH (h, i) = make_number (hash);
4170
4171 /* Add new entry to its collision chain. */
4172 start_of_bucket = hash % ASIZE (h->index);
4173 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4174 HASH_INDEX (h, start_of_bucket) = make_number (i);
4175 return i;
4176 }
4177
4178
4179 /* Remove the entry matching KEY from hash table H, if there is one. */
4180
4181 void
4182 hash_remove (h, key)
4183 struct Lisp_Hash_Table *h;
4184 Lisp_Object key;
4185 {
4186 unsigned hash_code;
4187 int start_of_bucket;
4188 Lisp_Object idx, prev;
4189
4190 hash_code = h->hashfn (h, key);
4191 start_of_bucket = hash_code % ASIZE (h->index);
4192 idx = HASH_INDEX (h, start_of_bucket);
4193 prev = Qnil;
4194
4195 /* We need not gcpro idx, prev since they're either integers or nil. */
4196 while (!NILP (idx))
4197 {
4198 int i = XFASTINT (idx);
4199
4200 if (EQ (key, HASH_KEY (h, i))
4201 || (h->cmpfn
4202 && h->cmpfn (h, key, hash_code,
4203 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4204 {
4205 /* Take entry out of collision chain. */
4206 if (NILP (prev))
4207 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
4208 else
4209 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
4210
4211 /* Clear slots in key_and_value and add the slots to
4212 the free list. */
4213 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
4214 HASH_NEXT (h, i) = h->next_free;
4215 h->next_free = make_number (i);
4216 h->count--;
4217 xassert (h->count >= 0);
4218 break;
4219 }
4220 else
4221 {
4222 prev = idx;
4223 idx = HASH_NEXT (h, i);
4224 }
4225 }
4226 }
4227
4228
4229 /* Clear hash table H. */
4230
4231 void
4232 hash_clear (h)
4233 struct Lisp_Hash_Table *h;
4234 {
4235 if (h->count > 0)
4236 {
4237 int i, size = HASH_TABLE_SIZE (h);
4238
4239 for (i = 0; i < size; ++i)
4240 {
4241 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
4242 HASH_KEY (h, i) = Qnil;
4243 HASH_VALUE (h, i) = Qnil;
4244 HASH_HASH (h, i) = Qnil;
4245 }
4246
4247 for (i = 0; i < ASIZE (h->index); ++i)
4248 ASET (h->index, i, Qnil);
4249
4250 h->next_free = make_number (0);
4251 h->count = 0;
4252 }
4253 }
4254
4255
4256 \f
4257 /************************************************************************
4258 Weak Hash Tables
4259 ************************************************************************/
4260
4261 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
4262 entries from the table that don't survive the current GC.
4263 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
4264 non-zero if anything was marked. */
4265
4266 static int
4267 sweep_weak_table (h, remove_entries_p)
4268 struct Lisp_Hash_Table *h;
4269 int remove_entries_p;
4270 {
4271 int bucket, n, marked;
4272
4273 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
4274 marked = 0;
4275
4276 for (bucket = 0; bucket < n; ++bucket)
4277 {
4278 Lisp_Object idx, next, prev;
4279
4280 /* Follow collision chain, removing entries that
4281 don't survive this garbage collection. */
4282 prev = Qnil;
4283 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
4284 {
4285 int i = XFASTINT (idx);
4286 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
4287 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
4288 int remove_p;
4289
4290 if (EQ (h->weak, Qkey))
4291 remove_p = !key_known_to_survive_p;
4292 else if (EQ (h->weak, Qvalue))
4293 remove_p = !value_known_to_survive_p;
4294 else if (EQ (h->weak, Qkey_or_value))
4295 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
4296 else if (EQ (h->weak, Qkey_and_value))
4297 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
4298 else
4299 abort ();
4300
4301 next = HASH_NEXT (h, i);
4302
4303 if (remove_entries_p)
4304 {
4305 if (remove_p)
4306 {
4307 /* Take out of collision chain. */
4308 if (NILP (prev))
4309 HASH_INDEX (h, bucket) = next;
4310 else
4311 HASH_NEXT (h, XFASTINT (prev)) = next;
4312
4313 /* Add to free list. */
4314 HASH_NEXT (h, i) = h->next_free;
4315 h->next_free = idx;
4316
4317 /* Clear key, value, and hash. */
4318 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
4319 HASH_HASH (h, i) = Qnil;
4320
4321 h->count--;
4322 }
4323 else
4324 {
4325 prev = idx;
4326 }
4327 }
4328 else
4329 {
4330 if (!remove_p)
4331 {
4332 /* Make sure key and value survive. */
4333 if (!key_known_to_survive_p)
4334 {
4335 mark_object (HASH_KEY (h, i));
4336 marked = 1;
4337 }
4338
4339 if (!value_known_to_survive_p)
4340 {
4341 mark_object (HASH_VALUE (h, i));
4342 marked = 1;
4343 }
4344 }
4345 }
4346 }
4347 }
4348
4349 return marked;
4350 }
4351
4352 /* Remove elements from weak hash tables that don't survive the
4353 current garbage collection. Remove weak tables that don't survive
4354 from Vweak_hash_tables. Called from gc_sweep. */
4355
4356 void
4357 sweep_weak_hash_tables ()
4358 {
4359 struct Lisp_Hash_Table *h, *used, *next;
4360 int marked;
4361
4362 /* Mark all keys and values that are in use. Keep on marking until
4363 there is no more change. This is necessary for cases like
4364 value-weak table A containing an entry X -> Y, where Y is used in a
4365 key-weak table B, Z -> Y. If B comes after A in the list of weak
4366 tables, X -> Y might be removed from A, although when looking at B
4367 one finds that it shouldn't. */
4368 do
4369 {
4370 marked = 0;
4371 for (h = weak_hash_tables; h; h = h->next_weak)
4372 {
4373 if (h->size & ARRAY_MARK_FLAG)
4374 marked |= sweep_weak_table (h, 0);
4375 }
4376 }
4377 while (marked);
4378
4379 /* Remove tables and entries that aren't used. */
4380 for (h = weak_hash_tables, used = NULL; h; h = next)
4381 {
4382 next = h->next_weak;
4383
4384 if (h->size & ARRAY_MARK_FLAG)
4385 {
4386 /* TABLE is marked as used. Sweep its contents. */
4387 if (h->count > 0)
4388 sweep_weak_table (h, 1);
4389
4390 /* Add table to the list of used weak hash tables. */
4391 h->next_weak = used;
4392 used = h;
4393 }
4394 }
4395
4396 weak_hash_tables = used;
4397 }
4398
4399
4400 \f
4401 /***********************************************************************
4402 Hash Code Computation
4403 ***********************************************************************/
4404
4405 /* Maximum depth up to which to dive into Lisp structures. */
4406
4407 #define SXHASH_MAX_DEPTH 3
4408
4409 /* Maximum length up to which to take list and vector elements into
4410 account. */
4411
4412 #define SXHASH_MAX_LEN 7
4413
4414 /* Combine two integers X and Y for hashing. */
4415
4416 #define SXHASH_COMBINE(X, Y) \
4417 ((((unsigned)(X) << 4) + (((unsigned)(X) >> 24) & 0x0fffffff)) \
4418 + (unsigned)(Y))
4419
4420
4421 /* Return a hash for string PTR which has length LEN. The hash
4422 code returned is guaranteed to fit in a Lisp integer. */
4423
4424 static unsigned
4425 sxhash_string (ptr, len)
4426 unsigned char *ptr;
4427 int len;
4428 {
4429 unsigned char *p = ptr;
4430 unsigned char *end = p + len;
4431 unsigned char c;
4432 unsigned hash = 0;
4433
4434 while (p != end)
4435 {
4436 c = *p++;
4437 if (c >= 0140)
4438 c -= 40;
4439 hash = ((hash << 4) + (hash >> 28) + c);
4440 }
4441
4442 return hash & INTMASK;
4443 }
4444
4445
4446 /* Return a hash for list LIST. DEPTH is the current depth in the
4447 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4448
4449 static unsigned
4450 sxhash_list (list, depth)
4451 Lisp_Object list;
4452 int depth;
4453 {
4454 unsigned hash = 0;
4455 int i;
4456
4457 if (depth < SXHASH_MAX_DEPTH)
4458 for (i = 0;
4459 CONSP (list) && i < SXHASH_MAX_LEN;
4460 list = XCDR (list), ++i)
4461 {
4462 unsigned hash2 = sxhash (XCAR (list), depth + 1);
4463 hash = SXHASH_COMBINE (hash, hash2);
4464 }
4465
4466 if (!NILP (list))
4467 {
4468 unsigned hash2 = sxhash (list, depth + 1);
4469 hash = SXHASH_COMBINE (hash, hash2);
4470 }
4471
4472 return hash;
4473 }
4474
4475
4476 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4477 the Lisp structure. */
4478
4479 static unsigned
4480 sxhash_vector (vec, depth)
4481 Lisp_Object vec;
4482 int depth;
4483 {
4484 unsigned hash = ASIZE (vec);
4485 int i, n;
4486
4487 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4488 for (i = 0; i < n; ++i)
4489 {
4490 unsigned hash2 = sxhash (AREF (vec, i), depth + 1);
4491 hash = SXHASH_COMBINE (hash, hash2);
4492 }
4493
4494 return hash;
4495 }
4496
4497
4498 /* Return a hash for bool-vector VECTOR. */
4499
4500 static unsigned
4501 sxhash_bool_vector (vec)
4502 Lisp_Object vec;
4503 {
4504 unsigned hash = XBOOL_VECTOR (vec)->size;
4505 int i, n;
4506
4507 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->vector_size);
4508 for (i = 0; i < n; ++i)
4509 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4510
4511 return hash;
4512 }
4513
4514
4515 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4516 structure. Value is an unsigned integer clipped to INTMASK. */
4517
4518 unsigned
4519 sxhash (obj, depth)
4520 Lisp_Object obj;
4521 int depth;
4522 {
4523 unsigned hash;
4524
4525 if (depth > SXHASH_MAX_DEPTH)
4526 return 0;
4527
4528 switch (XTYPE (obj))
4529 {
4530 case Lisp_Int:
4531 hash = XUINT (obj);
4532 break;
4533
4534 case Lisp_Misc:
4535 hash = XUINT (obj);
4536 break;
4537
4538 case Lisp_Symbol:
4539 obj = SYMBOL_NAME (obj);
4540 /* Fall through. */
4541
4542 case Lisp_String:
4543 hash = sxhash_string (SDATA (obj), SCHARS (obj));
4544 break;
4545
4546 /* This can be everything from a vector to an overlay. */
4547 case Lisp_Vectorlike:
4548 if (VECTORP (obj))
4549 /* According to the CL HyperSpec, two arrays are equal only if
4550 they are `eq', except for strings and bit-vectors. In
4551 Emacs, this works differently. We have to compare element
4552 by element. */
4553 hash = sxhash_vector (obj, depth);
4554 else if (BOOL_VECTOR_P (obj))
4555 hash = sxhash_bool_vector (obj);
4556 else
4557 /* Others are `equal' if they are `eq', so let's take their
4558 address as hash. */
4559 hash = XUINT (obj);
4560 break;
4561
4562 case Lisp_Cons:
4563 hash = sxhash_list (obj, depth);
4564 break;
4565
4566 case Lisp_Float:
4567 {
4568 unsigned char *p = (unsigned char *) &XFLOAT_DATA (obj);
4569 unsigned char *e = p + sizeof XFLOAT_DATA (obj);
4570 for (hash = 0; p < e; ++p)
4571 hash = SXHASH_COMBINE (hash, *p);
4572 break;
4573 }
4574
4575 default:
4576 abort ();
4577 }
4578
4579 return hash & INTMASK;
4580 }
4581
4582
4583 \f
4584 /***********************************************************************
4585 Lisp Interface
4586 ***********************************************************************/
4587
4588
4589 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4590 doc: /* Compute a hash code for OBJ and return it as integer. */)
4591 (obj)
4592 Lisp_Object obj;
4593 {
4594 unsigned hash = sxhash (obj, 0);
4595 return make_number (hash);
4596 }
4597
4598
4599 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4600 doc: /* Create and return a new hash table.
4601
4602 Arguments are specified as keyword/argument pairs. The following
4603 arguments are defined:
4604
4605 :test TEST -- TEST must be a symbol that specifies how to compare
4606 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4607 `equal'. User-supplied test and hash functions can be specified via
4608 `define-hash-table-test'.
4609
4610 :size SIZE -- A hint as to how many elements will be put in the table.
4611 Default is 65.
4612
4613 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4614 fills up. If REHASH-SIZE is an integer, add that many space. If it
4615 is a float, it must be > 1.0, and the new size is computed by
4616 multiplying the old size with that factor. Default is 1.5.
4617
4618 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4619 Resize the hash table when ratio of the number of entries in the
4620 table. Default is 0.8.
4621
4622 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4623 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4624 returned is a weak table. Key/value pairs are removed from a weak
4625 hash table when there are no non-weak references pointing to their
4626 key, value, one of key or value, or both key and value, depending on
4627 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4628 is nil.
4629
4630 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4631 (nargs, args)
4632 int nargs;
4633 Lisp_Object *args;
4634 {
4635 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4636 Lisp_Object user_test, user_hash;
4637 char *used;
4638 int i;
4639
4640 /* The vector `used' is used to keep track of arguments that
4641 have been consumed. */
4642 used = (char *) alloca (nargs * sizeof *used);
4643 bzero (used, nargs * sizeof *used);
4644
4645 /* See if there's a `:test TEST' among the arguments. */
4646 i = get_key_arg (QCtest, nargs, args, used);
4647 test = i < 0 ? Qeql : args[i];
4648 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
4649 {
4650 /* See if it is a user-defined test. */
4651 Lisp_Object prop;
4652
4653 prop = Fget (test, Qhash_table_test);
4654 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4655 signal_error ("Invalid hash table test", test);
4656 user_test = XCAR (prop);
4657 user_hash = XCAR (XCDR (prop));
4658 }
4659 else
4660 user_test = user_hash = Qnil;
4661
4662 /* See if there's a `:size SIZE' argument. */
4663 i = get_key_arg (QCsize, nargs, args, used);
4664 size = i < 0 ? Qnil : args[i];
4665 if (NILP (size))
4666 size = make_number (DEFAULT_HASH_SIZE);
4667 else if (!INTEGERP (size) || XINT (size) < 0)
4668 signal_error ("Invalid hash table size", size);
4669
4670 /* Look for `:rehash-size SIZE'. */
4671 i = get_key_arg (QCrehash_size, nargs, args, used);
4672 rehash_size = i < 0 ? make_float (DEFAULT_REHASH_SIZE) : args[i];
4673 if (!NUMBERP (rehash_size)
4674 || (INTEGERP (rehash_size) && XINT (rehash_size) <= 0)
4675 || XFLOATINT (rehash_size) <= 1.0)
4676 signal_error ("Invalid hash table rehash size", rehash_size);
4677
4678 /* Look for `:rehash-threshold THRESHOLD'. */
4679 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4680 rehash_threshold = i < 0 ? make_float (DEFAULT_REHASH_THRESHOLD) : args[i];
4681 if (!FLOATP (rehash_threshold)
4682 || XFLOATINT (rehash_threshold) <= 0.0
4683 || XFLOATINT (rehash_threshold) > 1.0)
4684 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4685
4686 /* Look for `:weakness WEAK'. */
4687 i = get_key_arg (QCweakness, nargs, args, used);
4688 weak = i < 0 ? Qnil : args[i];
4689 if (EQ (weak, Qt))
4690 weak = Qkey_and_value;
4691 if (!NILP (weak)
4692 && !EQ (weak, Qkey)
4693 && !EQ (weak, Qvalue)
4694 && !EQ (weak, Qkey_or_value)
4695 && !EQ (weak, Qkey_and_value))
4696 signal_error ("Invalid hash table weakness", weak);
4697
4698 /* Now, all args should have been used up, or there's a problem. */
4699 for (i = 0; i < nargs; ++i)
4700 if (!used[i])
4701 signal_error ("Invalid argument list", args[i]);
4702
4703 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4704 user_test, user_hash);
4705 }
4706
4707
4708 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4709 doc: /* Return a copy of hash table TABLE. */)
4710 (table)
4711 Lisp_Object table;
4712 {
4713 return copy_hash_table (check_hash_table (table));
4714 }
4715
4716
4717 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4718 doc: /* Return the number of elements in TABLE. */)
4719 (table)
4720 Lisp_Object table;
4721 {
4722 return make_number (check_hash_table (table)->count);
4723 }
4724
4725
4726 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4727 Shash_table_rehash_size, 1, 1, 0,
4728 doc: /* Return the current rehash size of TABLE. */)
4729 (table)
4730 Lisp_Object table;
4731 {
4732 return check_hash_table (table)->rehash_size;
4733 }
4734
4735
4736 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4737 Shash_table_rehash_threshold, 1, 1, 0,
4738 doc: /* Return the current rehash threshold of TABLE. */)
4739 (table)
4740 Lisp_Object table;
4741 {
4742 return check_hash_table (table)->rehash_threshold;
4743 }
4744
4745
4746 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4747 doc: /* Return the size of TABLE.
4748 The size can be used as an argument to `make-hash-table' to create
4749 a hash table than can hold as many elements of TABLE holds
4750 without need for resizing. */)
4751 (table)
4752 Lisp_Object table;
4753 {
4754 struct Lisp_Hash_Table *h = check_hash_table (table);
4755 return make_number (HASH_TABLE_SIZE (h));
4756 }
4757
4758
4759 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4760 doc: /* Return the test TABLE uses. */)
4761 (table)
4762 Lisp_Object table;
4763 {
4764 return check_hash_table (table)->test;
4765 }
4766
4767
4768 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4769 1, 1, 0,
4770 doc: /* Return the weakness of TABLE. */)
4771 (table)
4772 Lisp_Object table;
4773 {
4774 return check_hash_table (table)->weak;
4775 }
4776
4777
4778 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4779 doc: /* Return t if OBJ is a Lisp hash table object. */)
4780 (obj)
4781 Lisp_Object obj;
4782 {
4783 return HASH_TABLE_P (obj) ? Qt : Qnil;
4784 }
4785
4786
4787 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4788 doc: /* Clear hash table TABLE and return it. */)
4789 (table)
4790 Lisp_Object table;
4791 {
4792 hash_clear (check_hash_table (table));
4793 /* Be compatible with XEmacs. */
4794 return table;
4795 }
4796
4797
4798 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4799 doc: /* Look up KEY in TABLE and return its associated value.
4800 If KEY is not found, return DFLT which defaults to nil. */)
4801 (key, table, dflt)
4802 Lisp_Object key, table, dflt;
4803 {
4804 struct Lisp_Hash_Table *h = check_hash_table (table);
4805 int i = hash_lookup (h, key, NULL);
4806 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4807 }
4808
4809
4810 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4811 doc: /* Associate KEY with VALUE in hash table TABLE.
4812 If KEY is already present in table, replace its current value with
4813 VALUE. */)
4814 (key, value, table)
4815 Lisp_Object key, value, table;
4816 {
4817 struct Lisp_Hash_Table *h = check_hash_table (table);
4818 int i;
4819 unsigned hash;
4820
4821 i = hash_lookup (h, key, &hash);
4822 if (i >= 0)
4823 HASH_VALUE (h, i) = value;
4824 else
4825 hash_put (h, key, value, hash);
4826
4827 return value;
4828 }
4829
4830
4831 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4832 doc: /* Remove KEY from TABLE. */)
4833 (key, table)
4834 Lisp_Object key, table;
4835 {
4836 struct Lisp_Hash_Table *h = check_hash_table (table);
4837 hash_remove (h, key);
4838 return Qnil;
4839 }
4840
4841
4842 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4843 doc: /* Call FUNCTION for all entries in hash table TABLE.
4844 FUNCTION is called with two arguments, KEY and VALUE. */)
4845 (function, table)
4846 Lisp_Object function, table;
4847 {
4848 struct Lisp_Hash_Table *h = check_hash_table (table);
4849 Lisp_Object args[3];
4850 int i;
4851
4852 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4853 if (!NILP (HASH_HASH (h, i)))
4854 {
4855 args[0] = function;
4856 args[1] = HASH_KEY (h, i);
4857 args[2] = HASH_VALUE (h, i);
4858 Ffuncall (3, args);
4859 }
4860
4861 return Qnil;
4862 }
4863
4864
4865 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4866 Sdefine_hash_table_test, 3, 3, 0,
4867 doc: /* Define a new hash table test with name NAME, a symbol.
4868
4869 In hash tables created with NAME specified as test, use TEST to
4870 compare keys, and HASH for computing hash codes of keys.
4871
4872 TEST must be a function taking two arguments and returning non-nil if
4873 both arguments are the same. HASH must be a function taking one
4874 argument and return an integer that is the hash code of the argument.
4875 Hash code computation should use the whole value range of integers,
4876 including negative integers. */)
4877 (name, test, hash)
4878 Lisp_Object name, test, hash;
4879 {
4880 return Fput (name, Qhash_table_test, list2 (test, hash));
4881 }
4882
4883
4884 \f
4885 /************************************************************************
4886 MD5
4887 ************************************************************************/
4888
4889 #include "md5.h"
4890
4891 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4892 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4893
4894 A message digest is a cryptographic checksum of a document, and the
4895 algorithm to calculate it is defined in RFC 1321.
4896
4897 The two optional arguments START and END are character positions
4898 specifying for which part of OBJECT the message digest should be
4899 computed. If nil or omitted, the digest is computed for the whole
4900 OBJECT.
4901
4902 The MD5 message digest is computed from the result of encoding the
4903 text in a coding system, not directly from the internal Emacs form of
4904 the text. The optional fourth argument CODING-SYSTEM specifies which
4905 coding system to encode the text with. It should be the same coding
4906 system that you used or will use when actually writing the text into a
4907 file.
4908
4909 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4910 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4911 system would be chosen by default for writing this text into a file.
4912
4913 If OBJECT is a string, the most preferred coding system (see the
4914 command `prefer-coding-system') is used.
4915
4916 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4917 guesswork fails. Normally, an error is signaled in such case. */)
4918 (object, start, end, coding_system, noerror)
4919 Lisp_Object object, start, end, coding_system, noerror;
4920 {
4921 unsigned char digest[16];
4922 unsigned char value[33];
4923 int i;
4924 int size;
4925 int size_byte = 0;
4926 int start_char = 0, end_char = 0;
4927 int start_byte = 0, end_byte = 0;
4928 register int b, e;
4929 register struct buffer *bp;
4930 int temp;
4931
4932 if (STRINGP (object))
4933 {
4934 if (NILP (coding_system))
4935 {
4936 /* Decide the coding-system to encode the data with. */
4937
4938 if (STRING_MULTIBYTE (object))
4939 /* use default, we can't guess correct value */
4940 coding_system = preferred_coding_system ();
4941 else
4942 coding_system = Qraw_text;
4943 }
4944
4945 if (NILP (Fcoding_system_p (coding_system)))
4946 {
4947 /* Invalid coding system. */
4948
4949 if (!NILP (noerror))
4950 coding_system = Qraw_text;
4951 else
4952 xsignal1 (Qcoding_system_error, coding_system);
4953 }
4954
4955 if (STRING_MULTIBYTE (object))
4956 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4957
4958 size = SCHARS (object);
4959 size_byte = SBYTES (object);
4960
4961 if (!NILP (start))
4962 {
4963 CHECK_NUMBER (start);
4964
4965 start_char = XINT (start);
4966
4967 if (start_char < 0)
4968 start_char += size;
4969
4970 start_byte = string_char_to_byte (object, start_char);
4971 }
4972
4973 if (NILP (end))
4974 {
4975 end_char = size;
4976 end_byte = size_byte;
4977 }
4978 else
4979 {
4980 CHECK_NUMBER (end);
4981
4982 end_char = XINT (end);
4983
4984 if (end_char < 0)
4985 end_char += size;
4986
4987 end_byte = string_char_to_byte (object, end_char);
4988 }
4989
4990 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4991 args_out_of_range_3 (object, make_number (start_char),
4992 make_number (end_char));
4993 }
4994 else
4995 {
4996 struct buffer *prev = current_buffer;
4997
4998 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
4999
5000 CHECK_BUFFER (object);
5001
5002 bp = XBUFFER (object);
5003 if (bp != current_buffer)
5004 set_buffer_internal (bp);
5005
5006 if (NILP (start))
5007 b = BEGV;
5008 else
5009 {
5010 CHECK_NUMBER_COERCE_MARKER (start);
5011 b = XINT (start);
5012 }
5013
5014 if (NILP (end))
5015 e = ZV;
5016 else
5017 {
5018 CHECK_NUMBER_COERCE_MARKER (end);
5019 e = XINT (end);
5020 }
5021
5022 if (b > e)
5023 temp = b, b = e, e = temp;
5024
5025 if (!(BEGV <= b && e <= ZV))
5026 args_out_of_range (start, end);
5027
5028 if (NILP (coding_system))
5029 {
5030 /* Decide the coding-system to encode the data with.
5031 See fileio.c:Fwrite-region */
5032
5033 if (!NILP (Vcoding_system_for_write))
5034 coding_system = Vcoding_system_for_write;
5035 else
5036 {
5037 int force_raw_text = 0;
5038
5039 coding_system = XBUFFER (object)->buffer_file_coding_system;
5040 if (NILP (coding_system)
5041 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
5042 {
5043 coding_system = Qnil;
5044 if (NILP (current_buffer->enable_multibyte_characters))
5045 force_raw_text = 1;
5046 }
5047
5048 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
5049 {
5050 /* Check file-coding-system-alist. */
5051 Lisp_Object args[4], val;
5052
5053 args[0] = Qwrite_region; args[1] = start; args[2] = end;
5054 args[3] = Fbuffer_file_name(object);
5055 val = Ffind_operation_coding_system (4, args);
5056 if (CONSP (val) && !NILP (XCDR (val)))
5057 coding_system = XCDR (val);
5058 }
5059
5060 if (NILP (coding_system)
5061 && !NILP (XBUFFER (object)->buffer_file_coding_system))
5062 {
5063 /* If we still have not decided a coding system, use the
5064 default value of buffer-file-coding-system. */
5065 coding_system = XBUFFER (object)->buffer_file_coding_system;
5066 }
5067
5068 if (!force_raw_text
5069 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
5070 /* Confirm that VAL can surely encode the current region. */
5071 coding_system = call4 (Vselect_safe_coding_system_function,
5072 make_number (b), make_number (e),
5073 coding_system, Qnil);
5074
5075 if (force_raw_text)
5076 coding_system = Qraw_text;
5077 }
5078
5079 if (NILP (Fcoding_system_p (coding_system)))
5080 {
5081 /* Invalid coding system. */
5082
5083 if (!NILP (noerror))
5084 coding_system = Qraw_text;
5085 else
5086 xsignal1 (Qcoding_system_error, coding_system);
5087 }
5088 }
5089
5090 object = make_buffer_string (b, e, 0);
5091 if (prev != current_buffer)
5092 set_buffer_internal (prev);
5093 /* Discard the unwind protect for recovering the current
5094 buffer. */
5095 specpdl_ptr--;
5096
5097 if (STRING_MULTIBYTE (object))
5098 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
5099 }
5100
5101 md5_buffer (SDATA (object) + start_byte,
5102 SBYTES (object) - (size_byte - end_byte),
5103 digest);
5104
5105 for (i = 0; i < 16; i++)
5106 sprintf (&value[2 * i], "%02x", digest[i]);
5107 value[32] = '\0';
5108
5109 return make_string (value, 32);
5110 }
5111
5112 \f
5113 void
5114 syms_of_fns ()
5115 {
5116 /* Hash table stuff. */
5117 Qhash_table_p = intern ("hash-table-p");
5118 staticpro (&Qhash_table_p);
5119 Qeq = intern ("eq");
5120 staticpro (&Qeq);
5121 Qeql = intern ("eql");
5122 staticpro (&Qeql);
5123 Qequal = intern ("equal");
5124 staticpro (&Qequal);
5125 QCtest = intern (":test");
5126 staticpro (&QCtest);
5127 QCsize = intern (":size");
5128 staticpro (&QCsize);
5129 QCrehash_size = intern (":rehash-size");
5130 staticpro (&QCrehash_size);
5131 QCrehash_threshold = intern (":rehash-threshold");
5132 staticpro (&QCrehash_threshold);
5133 QCweakness = intern (":weakness");
5134 staticpro (&QCweakness);
5135 Qkey = intern ("key");
5136 staticpro (&Qkey);
5137 Qvalue = intern ("value");
5138 staticpro (&Qvalue);
5139 Qhash_table_test = intern ("hash-table-test");
5140 staticpro (&Qhash_table_test);
5141 Qkey_or_value = intern ("key-or-value");
5142 staticpro (&Qkey_or_value);
5143 Qkey_and_value = intern ("key-and-value");
5144 staticpro (&Qkey_and_value);
5145
5146 defsubr (&Ssxhash);
5147 defsubr (&Smake_hash_table);
5148 defsubr (&Scopy_hash_table);
5149 defsubr (&Shash_table_count);
5150 defsubr (&Shash_table_rehash_size);
5151 defsubr (&Shash_table_rehash_threshold);
5152 defsubr (&Shash_table_size);
5153 defsubr (&Shash_table_test);
5154 defsubr (&Shash_table_weakness);
5155 defsubr (&Shash_table_p);
5156 defsubr (&Sclrhash);
5157 defsubr (&Sgethash);
5158 defsubr (&Sputhash);
5159 defsubr (&Sremhash);
5160 defsubr (&Smaphash);
5161 defsubr (&Sdefine_hash_table_test);
5162
5163 Qstring_lessp = intern ("string-lessp");
5164 staticpro (&Qstring_lessp);
5165 Qprovide = intern ("provide");
5166 staticpro (&Qprovide);
5167 Qrequire = intern ("require");
5168 staticpro (&Qrequire);
5169 Qyes_or_no_p_history = intern ("yes-or-no-p-history");
5170 staticpro (&Qyes_or_no_p_history);
5171 Qcursor_in_echo_area = intern ("cursor-in-echo-area");
5172 staticpro (&Qcursor_in_echo_area);
5173 Qwidget_type = intern ("widget-type");
5174 staticpro (&Qwidget_type);
5175
5176 staticpro (&string_char_byte_cache_string);
5177 string_char_byte_cache_string = Qnil;
5178
5179 require_nesting_list = Qnil;
5180 staticpro (&require_nesting_list);
5181
5182 Fset (Qyes_or_no_p_history, Qnil);
5183
5184 DEFVAR_LISP ("features", &Vfeatures,
5185 doc: /* A list of symbols which are the features of the executing Emacs.
5186 Used by `featurep' and `require', and altered by `provide'. */);
5187 Vfeatures = Fcons (intern ("emacs"), Qnil);
5188 Qsubfeatures = intern ("subfeatures");
5189 staticpro (&Qsubfeatures);
5190
5191 #ifdef HAVE_LANGINFO_CODESET
5192 Qcodeset = intern ("codeset");
5193 staticpro (&Qcodeset);
5194 Qdays = intern ("days");
5195 staticpro (&Qdays);
5196 Qmonths = intern ("months");
5197 staticpro (&Qmonths);
5198 Qpaper = intern ("paper");
5199 staticpro (&Qpaper);
5200 #endif /* HAVE_LANGINFO_CODESET */
5201
5202 DEFVAR_BOOL ("use-dialog-box", &use_dialog_box,
5203 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
5204 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
5205 invoked by mouse clicks and mouse menu items. */);
5206 use_dialog_box = 1;
5207
5208 DEFVAR_BOOL ("use-file-dialog", &use_file_dialog,
5209 doc: /* *Non-nil means mouse commands use a file dialog to ask for files.
5210 This applies to commands from menus and tool bar buttons even when
5211 they are initiated from the keyboard. The value of `use-dialog-box'
5212 takes precedence over this variable, so a file dialog is only used if
5213 both `use-dialog-box' and this variable are non-nil. */);
5214 use_file_dialog = 1;
5215
5216 defsubr (&Sidentity);
5217 defsubr (&Srandom);
5218 defsubr (&Slength);
5219 defsubr (&Ssafe_length);
5220 defsubr (&Sstring_bytes);
5221 defsubr (&Sstring_equal);
5222 defsubr (&Scompare_strings);
5223 defsubr (&Sstring_lessp);
5224 defsubr (&Sappend);
5225 defsubr (&Sconcat);
5226 defsubr (&Svconcat);
5227 defsubr (&Scopy_sequence);
5228 defsubr (&Sstring_make_multibyte);
5229 defsubr (&Sstring_make_unibyte);
5230 defsubr (&Sstring_as_multibyte);
5231 defsubr (&Sstring_as_unibyte);
5232 defsubr (&Sstring_to_multibyte);
5233 defsubr (&Scopy_alist);
5234 defsubr (&Ssubstring);
5235 defsubr (&Ssubstring_no_properties);
5236 defsubr (&Snthcdr);
5237 defsubr (&Snth);
5238 defsubr (&Selt);
5239 defsubr (&Smember);
5240 defsubr (&Smemq);
5241 defsubr (&Smemql);
5242 defsubr (&Sassq);
5243 defsubr (&Sassoc);
5244 defsubr (&Srassq);
5245 defsubr (&Srassoc);
5246 defsubr (&Sdelq);
5247 defsubr (&Sdelete);
5248 defsubr (&Snreverse);
5249 defsubr (&Sreverse);
5250 defsubr (&Ssort);
5251 defsubr (&Splist_get);
5252 defsubr (&Sget);
5253 defsubr (&Splist_put);
5254 defsubr (&Sput);
5255 defsubr (&Slax_plist_get);
5256 defsubr (&Slax_plist_put);
5257 defsubr (&Seql);
5258 defsubr (&Sequal);
5259 defsubr (&Sequal_including_properties);
5260 defsubr (&Sfillarray);
5261 defsubr (&Sclear_string);
5262 defsubr (&Snconc);
5263 defsubr (&Smapcar);
5264 defsubr (&Smapc);
5265 defsubr (&Smapconcat);
5266 defsubr (&Sy_or_n_p);
5267 defsubr (&Syes_or_no_p);
5268 defsubr (&Sload_average);
5269 defsubr (&Sfeaturep);
5270 defsubr (&Srequire);
5271 defsubr (&Sprovide);
5272 defsubr (&Splist_member);
5273 defsubr (&Swidget_put);
5274 defsubr (&Swidget_get);
5275 defsubr (&Swidget_apply);
5276 defsubr (&Sbase64_encode_region);
5277 defsubr (&Sbase64_decode_region);
5278 defsubr (&Sbase64_encode_string);
5279 defsubr (&Sbase64_decode_string);
5280 defsubr (&Smd5);
5281 defsubr (&Slocale_info);
5282 }
5283
5284
5285 void
5286 init_fns ()
5287 {
5288 weak_hash_tables = NULL;
5289 }
5290
5291 /* arch-tag: 787f8219-5b74-46bd-8469-7e1cc475fa31
5292 (do not change this comment) */