(scan_lists): Follow coding convention.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs; see the file COPYING. If not, write to
20 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include <config.h>
24 #include <stdio.h>
25 #include <limits.h> /* For CHAR_BIT. */
26
27 #ifdef STDC_HEADERS
28 #include <stddef.h> /* For offsetof, used by PSEUDOVECSIZE. */
29 #endif
30
31 #ifdef ALLOC_DEBUG
32 #undef INLINE
33 #endif
34
35 /* Note that this declares bzero on OSF/1. How dumb. */
36
37 #include <signal.h>
38
39 #ifdef HAVE_GTK_AND_PTHREAD
40 #include <pthread.h>
41 #endif
42
43 /* This file is part of the core Lisp implementation, and thus must
44 deal with the real data structures. If the Lisp implementation is
45 replaced, this file likely will not be used. */
46
47 #undef HIDE_LISP_IMPLEMENTATION
48 #include "lisp.h"
49 #include "process.h"
50 #include "intervals.h"
51 #include "puresize.h"
52 #include "buffer.h"
53 #include "window.h"
54 #include "keyboard.h"
55 #include "frame.h"
56 #include "blockinput.h"
57 #include "character.h"
58 #include "syssignal.h"
59 #include "termhooks.h" /* For struct terminal. */
60 #include <setjmp.h>
61
62 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
63 memory. Can do this only if using gmalloc.c. */
64
65 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
66 #undef GC_MALLOC_CHECK
67 #endif
68
69 #ifdef HAVE_UNISTD_H
70 #include <unistd.h>
71 #else
72 extern POINTER_TYPE *sbrk ();
73 #endif
74
75 #ifdef HAVE_FCNTL_H
76 #define INCLUDED_FCNTL
77 #include <fcntl.h>
78 #endif
79 #ifndef O_WRONLY
80 #define O_WRONLY 1
81 #endif
82
83 #ifdef WINDOWSNT
84 #include <fcntl.h>
85 #include "w32.h"
86 #endif
87
88 #ifdef DOUG_LEA_MALLOC
89
90 #include <malloc.h>
91 /* malloc.h #defines this as size_t, at least in glibc2. */
92 #ifndef __malloc_size_t
93 #define __malloc_size_t int
94 #endif
95
96 /* Specify maximum number of areas to mmap. It would be nice to use a
97 value that explicitly means "no limit". */
98
99 #define MMAP_MAX_AREAS 100000000
100
101 #else /* not DOUG_LEA_MALLOC */
102
103 /* The following come from gmalloc.c. */
104
105 #define __malloc_size_t size_t
106 extern __malloc_size_t _bytes_used;
107 extern __malloc_size_t __malloc_extra_blocks;
108
109 #endif /* not DOUG_LEA_MALLOC */
110
111 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
112
113 /* When GTK uses the file chooser dialog, different backends can be loaded
114 dynamically. One such a backend is the Gnome VFS backend that gets loaded
115 if you run Gnome. That backend creates several threads and also allocates
116 memory with malloc.
117
118 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
119 functions below are called from malloc, there is a chance that one
120 of these threads preempts the Emacs main thread and the hook variables
121 end up in an inconsistent state. So we have a mutex to prevent that (note
122 that the backend handles concurrent access to malloc within its own threads
123 but Emacs code running in the main thread is not included in that control).
124
125 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
126 happens in one of the backend threads we will have two threads that tries
127 to run Emacs code at once, and the code is not prepared for that.
128 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
129
130 static pthread_mutex_t alloc_mutex;
131
132 #define BLOCK_INPUT_ALLOC \
133 do \
134 { \
135 if (pthread_equal (pthread_self (), main_thread)) \
136 BLOCK_INPUT; \
137 pthread_mutex_lock (&alloc_mutex); \
138 } \
139 while (0)
140 #define UNBLOCK_INPUT_ALLOC \
141 do \
142 { \
143 pthread_mutex_unlock (&alloc_mutex); \
144 if (pthread_equal (pthread_self (), main_thread)) \
145 UNBLOCK_INPUT; \
146 } \
147 while (0)
148
149 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
150
151 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
152 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
153
154 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
155
156 /* Value of _bytes_used, when spare_memory was freed. */
157
158 static __malloc_size_t bytes_used_when_full;
159
160 static __malloc_size_t bytes_used_when_reconsidered;
161
162 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
163 to a struct Lisp_String. */
164
165 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
166 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
167 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
168
169 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
170 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
171 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
172
173 /* Value is the number of bytes/chars of S, a pointer to a struct
174 Lisp_String. This must be used instead of STRING_BYTES (S) or
175 S->size during GC, because S->size contains the mark bit for
176 strings. */
177
178 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
179 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
180
181 /* Number of bytes of consing done since the last gc. */
182
183 int consing_since_gc;
184
185 /* Count the amount of consing of various sorts of space. */
186
187 EMACS_INT cons_cells_consed;
188 EMACS_INT floats_consed;
189 EMACS_INT vector_cells_consed;
190 EMACS_INT symbols_consed;
191 EMACS_INT string_chars_consed;
192 EMACS_INT misc_objects_consed;
193 EMACS_INT intervals_consed;
194 EMACS_INT strings_consed;
195
196 /* Minimum number of bytes of consing since GC before next GC. */
197
198 EMACS_INT gc_cons_threshold;
199
200 /* Similar minimum, computed from Vgc_cons_percentage. */
201
202 EMACS_INT gc_relative_threshold;
203
204 static Lisp_Object Vgc_cons_percentage;
205
206 /* Minimum number of bytes of consing since GC before next GC,
207 when memory is full. */
208
209 EMACS_INT memory_full_cons_threshold;
210
211 /* Nonzero during GC. */
212
213 int gc_in_progress;
214
215 /* Nonzero means abort if try to GC.
216 This is for code which is written on the assumption that
217 no GC will happen, so as to verify that assumption. */
218
219 int abort_on_gc;
220
221 /* Nonzero means display messages at beginning and end of GC. */
222
223 int garbage_collection_messages;
224
225 #ifndef VIRT_ADDR_VARIES
226 extern
227 #endif /* VIRT_ADDR_VARIES */
228 int malloc_sbrk_used;
229
230 #ifndef VIRT_ADDR_VARIES
231 extern
232 #endif /* VIRT_ADDR_VARIES */
233 int malloc_sbrk_unused;
234
235 /* Number of live and free conses etc. */
236
237 static int total_conses, total_markers, total_symbols, total_vector_size;
238 static int total_free_conses, total_free_markers, total_free_symbols;
239 static int total_free_floats, total_floats;
240
241 /* Points to memory space allocated as "spare", to be freed if we run
242 out of memory. We keep one large block, four cons-blocks, and
243 two string blocks. */
244
245 static char *spare_memory[7];
246
247 /* Amount of spare memory to keep in large reserve block. */
248
249 #define SPARE_MEMORY (1 << 14)
250
251 /* Number of extra blocks malloc should get when it needs more core. */
252
253 static int malloc_hysteresis;
254
255 /* Non-nil means defun should do purecopy on the function definition. */
256
257 Lisp_Object Vpurify_flag;
258
259 /* Non-nil means we are handling a memory-full error. */
260
261 Lisp_Object Vmemory_full;
262
263 #ifndef HAVE_SHM
264
265 /* Initialize it to a nonzero value to force it into data space
266 (rather than bss space). That way unexec will remap it into text
267 space (pure), on some systems. We have not implemented the
268 remapping on more recent systems because this is less important
269 nowadays than in the days of small memories and timesharing. */
270
271 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
272 #define PUREBEG (char *) pure
273
274 #else /* HAVE_SHM */
275
276 #define pure PURE_SEG_BITS /* Use shared memory segment */
277 #define PUREBEG (char *)PURE_SEG_BITS
278
279 #endif /* HAVE_SHM */
280
281 /* Pointer to the pure area, and its size. */
282
283 static char *purebeg;
284 static size_t pure_size;
285
286 /* Number of bytes of pure storage used before pure storage overflowed.
287 If this is non-zero, this implies that an overflow occurred. */
288
289 static size_t pure_bytes_used_before_overflow;
290
291 /* Value is non-zero if P points into pure space. */
292
293 #define PURE_POINTER_P(P) \
294 (((PNTR_COMPARISON_TYPE) (P) \
295 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
296 && ((PNTR_COMPARISON_TYPE) (P) \
297 >= (PNTR_COMPARISON_TYPE) purebeg))
298
299 /* Total number of bytes allocated in pure storage. */
300
301 EMACS_INT pure_bytes_used;
302
303 /* Index in pure at which next pure Lisp object will be allocated.. */
304
305 static EMACS_INT pure_bytes_used_lisp;
306
307 /* Number of bytes allocated for non-Lisp objects in pure storage. */
308
309 static EMACS_INT pure_bytes_used_non_lisp;
310
311 /* If nonzero, this is a warning delivered by malloc and not yet
312 displayed. */
313
314 char *pending_malloc_warning;
315
316 /* Pre-computed signal argument for use when memory is exhausted. */
317
318 Lisp_Object Vmemory_signal_data;
319
320 /* Maximum amount of C stack to save when a GC happens. */
321
322 #ifndef MAX_SAVE_STACK
323 #define MAX_SAVE_STACK 16000
324 #endif
325
326 /* Buffer in which we save a copy of the C stack at each GC. */
327
328 static char *stack_copy;
329 static int stack_copy_size;
330
331 /* Non-zero means ignore malloc warnings. Set during initialization.
332 Currently not used. */
333
334 static int ignore_warnings;
335
336 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
337
338 /* Hook run after GC has finished. */
339
340 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
341
342 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
343 EMACS_INT gcs_done; /* accumulated GCs */
344
345 static void mark_buffer P_ ((Lisp_Object));
346 static void mark_terminals P_ ((void));
347 extern void mark_kboards P_ ((void));
348 extern void mark_ttys P_ ((void));
349 extern void mark_backtrace P_ ((void));
350 static void gc_sweep P_ ((void));
351 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
352 static void mark_face_cache P_ ((struct face_cache *));
353
354 #ifdef HAVE_WINDOW_SYSTEM
355 extern void mark_fringe_data P_ ((void));
356 static void mark_image P_ ((struct image *));
357 static void mark_image_cache P_ ((struct frame *));
358 #endif /* HAVE_WINDOW_SYSTEM */
359
360 static struct Lisp_String *allocate_string P_ ((void));
361 static void compact_small_strings P_ ((void));
362 static void free_large_strings P_ ((void));
363 static void sweep_strings P_ ((void));
364
365 extern int message_enable_multibyte;
366
367 /* When scanning the C stack for live Lisp objects, Emacs keeps track
368 of what memory allocated via lisp_malloc is intended for what
369 purpose. This enumeration specifies the type of memory. */
370
371 enum mem_type
372 {
373 MEM_TYPE_NON_LISP,
374 MEM_TYPE_BUFFER,
375 MEM_TYPE_CONS,
376 MEM_TYPE_STRING,
377 MEM_TYPE_MISC,
378 MEM_TYPE_SYMBOL,
379 MEM_TYPE_FLOAT,
380 /* We used to keep separate mem_types for subtypes of vectors such as
381 process, hash_table, frame, terminal, and window, but we never made
382 use of the distinction, so it only caused source-code complexity
383 and runtime slowdown. Minor but pointless. */
384 MEM_TYPE_VECTORLIKE
385 };
386
387 static POINTER_TYPE *lisp_align_malloc P_ ((size_t, enum mem_type));
388 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
389 void refill_memory_reserve ();
390
391
392 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
393
394 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
395 #include <stdio.h> /* For fprintf. */
396 #endif
397
398 /* A unique object in pure space used to make some Lisp objects
399 on free lists recognizable in O(1). */
400
401 static Lisp_Object Vdead;
402
403 #ifdef GC_MALLOC_CHECK
404
405 enum mem_type allocated_mem_type;
406 static int dont_register_blocks;
407
408 #endif /* GC_MALLOC_CHECK */
409
410 /* A node in the red-black tree describing allocated memory containing
411 Lisp data. Each such block is recorded with its start and end
412 address when it is allocated, and removed from the tree when it
413 is freed.
414
415 A red-black tree is a balanced binary tree with the following
416 properties:
417
418 1. Every node is either red or black.
419 2. Every leaf is black.
420 3. If a node is red, then both of its children are black.
421 4. Every simple path from a node to a descendant leaf contains
422 the same number of black nodes.
423 5. The root is always black.
424
425 When nodes are inserted into the tree, or deleted from the tree,
426 the tree is "fixed" so that these properties are always true.
427
428 A red-black tree with N internal nodes has height at most 2
429 log(N+1). Searches, insertions and deletions are done in O(log N).
430 Please see a text book about data structures for a detailed
431 description of red-black trees. Any book worth its salt should
432 describe them. */
433
434 struct mem_node
435 {
436 /* Children of this node. These pointers are never NULL. When there
437 is no child, the value is MEM_NIL, which points to a dummy node. */
438 struct mem_node *left, *right;
439
440 /* The parent of this node. In the root node, this is NULL. */
441 struct mem_node *parent;
442
443 /* Start and end of allocated region. */
444 void *start, *end;
445
446 /* Node color. */
447 enum {MEM_BLACK, MEM_RED} color;
448
449 /* Memory type. */
450 enum mem_type type;
451 };
452
453 /* Base address of stack. Set in main. */
454
455 Lisp_Object *stack_base;
456
457 /* Root of the tree describing allocated Lisp memory. */
458
459 static struct mem_node *mem_root;
460
461 /* Lowest and highest known address in the heap. */
462
463 static void *min_heap_address, *max_heap_address;
464
465 /* Sentinel node of the tree. */
466
467 static struct mem_node mem_z;
468 #define MEM_NIL &mem_z
469
470 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
471 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT));
472 static void lisp_free P_ ((POINTER_TYPE *));
473 static void mark_stack P_ ((void));
474 static int live_vector_p P_ ((struct mem_node *, void *));
475 static int live_buffer_p P_ ((struct mem_node *, void *));
476 static int live_string_p P_ ((struct mem_node *, void *));
477 static int live_cons_p P_ ((struct mem_node *, void *));
478 static int live_symbol_p P_ ((struct mem_node *, void *));
479 static int live_float_p P_ ((struct mem_node *, void *));
480 static int live_misc_p P_ ((struct mem_node *, void *));
481 static void mark_maybe_object P_ ((Lisp_Object));
482 static void mark_memory P_ ((void *, void *, int));
483 static void mem_init P_ ((void));
484 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
485 static void mem_insert_fixup P_ ((struct mem_node *));
486 static void mem_rotate_left P_ ((struct mem_node *));
487 static void mem_rotate_right P_ ((struct mem_node *));
488 static void mem_delete P_ ((struct mem_node *));
489 static void mem_delete_fixup P_ ((struct mem_node *));
490 static INLINE struct mem_node *mem_find P_ ((void *));
491
492
493 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
494 static void check_gcpros P_ ((void));
495 #endif
496
497 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
498
499 /* Recording what needs to be marked for gc. */
500
501 struct gcpro *gcprolist;
502
503 /* Addresses of staticpro'd variables. Initialize it to a nonzero
504 value; otherwise some compilers put it into BSS. */
505
506 #define NSTATICS 0x600
507 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
508
509 /* Index of next unused slot in staticvec. */
510
511 static int staticidx = 0;
512
513 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
514
515
516 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
517 ALIGNMENT must be a power of 2. */
518
519 #define ALIGN(ptr, ALIGNMENT) \
520 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
521 & ~((ALIGNMENT) - 1)))
522
523
524 \f
525 /************************************************************************
526 Malloc
527 ************************************************************************/
528
529 /* Function malloc calls this if it finds we are near exhausting storage. */
530
531 void
532 malloc_warning (str)
533 char *str;
534 {
535 pending_malloc_warning = str;
536 }
537
538
539 /* Display an already-pending malloc warning. */
540
541 void
542 display_malloc_warning ()
543 {
544 call3 (intern ("display-warning"),
545 intern ("alloc"),
546 build_string (pending_malloc_warning),
547 intern ("emergency"));
548 pending_malloc_warning = 0;
549 }
550
551
552 #ifdef DOUG_LEA_MALLOC
553 # define BYTES_USED (mallinfo ().uordblks)
554 #else
555 # define BYTES_USED _bytes_used
556 #endif
557 \f
558 /* Called if we can't allocate relocatable space for a buffer. */
559
560 void
561 buffer_memory_full ()
562 {
563 /* If buffers use the relocating allocator, no need to free
564 spare_memory, because we may have plenty of malloc space left
565 that we could get, and if we don't, the malloc that fails will
566 itself cause spare_memory to be freed. If buffers don't use the
567 relocating allocator, treat this like any other failing
568 malloc. */
569
570 #ifndef REL_ALLOC
571 memory_full ();
572 #endif
573
574 /* This used to call error, but if we've run out of memory, we could
575 get infinite recursion trying to build the string. */
576 xsignal (Qnil, Vmemory_signal_data);
577 }
578
579
580 #ifdef XMALLOC_OVERRUN_CHECK
581
582 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
583 and a 16 byte trailer around each block.
584
585 The header consists of 12 fixed bytes + a 4 byte integer contaning the
586 original block size, while the trailer consists of 16 fixed bytes.
587
588 The header is used to detect whether this block has been allocated
589 through these functions -- as it seems that some low-level libc
590 functions may bypass the malloc hooks.
591 */
592
593
594 #define XMALLOC_OVERRUN_CHECK_SIZE 16
595
596 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
597 { 0x9a, 0x9b, 0xae, 0xaf,
598 0xbf, 0xbe, 0xce, 0xcf,
599 0xea, 0xeb, 0xec, 0xed };
600
601 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
602 { 0xaa, 0xab, 0xac, 0xad,
603 0xba, 0xbb, 0xbc, 0xbd,
604 0xca, 0xcb, 0xcc, 0xcd,
605 0xda, 0xdb, 0xdc, 0xdd };
606
607 /* Macros to insert and extract the block size in the header. */
608
609 #define XMALLOC_PUT_SIZE(ptr, size) \
610 (ptr[-1] = (size & 0xff), \
611 ptr[-2] = ((size >> 8) & 0xff), \
612 ptr[-3] = ((size >> 16) & 0xff), \
613 ptr[-4] = ((size >> 24) & 0xff))
614
615 #define XMALLOC_GET_SIZE(ptr) \
616 (size_t)((unsigned)(ptr[-1]) | \
617 ((unsigned)(ptr[-2]) << 8) | \
618 ((unsigned)(ptr[-3]) << 16) | \
619 ((unsigned)(ptr[-4]) << 24))
620
621
622 /* The call depth in overrun_check functions. For example, this might happen:
623 xmalloc()
624 overrun_check_malloc()
625 -> malloc -> (via hook)_-> emacs_blocked_malloc
626 -> overrun_check_malloc
627 call malloc (hooks are NULL, so real malloc is called).
628 malloc returns 10000.
629 add overhead, return 10016.
630 <- (back in overrun_check_malloc)
631 add overhead again, return 10032
632 xmalloc returns 10032.
633
634 (time passes).
635
636 xfree(10032)
637 overrun_check_free(10032)
638 decrease overhed
639 free(10016) <- crash, because 10000 is the original pointer. */
640
641 static int check_depth;
642
643 /* Like malloc, but wraps allocated block with header and trailer. */
644
645 POINTER_TYPE *
646 overrun_check_malloc (size)
647 size_t size;
648 {
649 register unsigned char *val;
650 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
651
652 val = (unsigned char *) malloc (size + overhead);
653 if (val && check_depth == 1)
654 {
655 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
656 val += XMALLOC_OVERRUN_CHECK_SIZE;
657 XMALLOC_PUT_SIZE(val, size);
658 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
659 }
660 --check_depth;
661 return (POINTER_TYPE *)val;
662 }
663
664
665 /* Like realloc, but checks old block for overrun, and wraps new block
666 with header and trailer. */
667
668 POINTER_TYPE *
669 overrun_check_realloc (block, size)
670 POINTER_TYPE *block;
671 size_t size;
672 {
673 register unsigned char *val = (unsigned char *)block;
674 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
675
676 if (val
677 && check_depth == 1
678 && bcmp (xmalloc_overrun_check_header,
679 val - XMALLOC_OVERRUN_CHECK_SIZE,
680 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
681 {
682 size_t osize = XMALLOC_GET_SIZE (val);
683 if (bcmp (xmalloc_overrun_check_trailer,
684 val + osize,
685 XMALLOC_OVERRUN_CHECK_SIZE))
686 abort ();
687 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
688 val -= XMALLOC_OVERRUN_CHECK_SIZE;
689 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
690 }
691
692 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
693
694 if (val && check_depth == 1)
695 {
696 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
697 val += XMALLOC_OVERRUN_CHECK_SIZE;
698 XMALLOC_PUT_SIZE(val, size);
699 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
700 }
701 --check_depth;
702 return (POINTER_TYPE *)val;
703 }
704
705 /* Like free, but checks block for overrun. */
706
707 void
708 overrun_check_free (block)
709 POINTER_TYPE *block;
710 {
711 unsigned char *val = (unsigned char *)block;
712
713 ++check_depth;
714 if (val
715 && check_depth == 1
716 && bcmp (xmalloc_overrun_check_header,
717 val - XMALLOC_OVERRUN_CHECK_SIZE,
718 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
719 {
720 size_t osize = XMALLOC_GET_SIZE (val);
721 if (bcmp (xmalloc_overrun_check_trailer,
722 val + osize,
723 XMALLOC_OVERRUN_CHECK_SIZE))
724 abort ();
725 #ifdef XMALLOC_CLEAR_FREE_MEMORY
726 val -= XMALLOC_OVERRUN_CHECK_SIZE;
727 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
728 #else
729 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
730 val -= XMALLOC_OVERRUN_CHECK_SIZE;
731 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
732 #endif
733 }
734
735 free (val);
736 --check_depth;
737 }
738
739 #undef malloc
740 #undef realloc
741 #undef free
742 #define malloc overrun_check_malloc
743 #define realloc overrun_check_realloc
744 #define free overrun_check_free
745 #endif
746
747 #ifdef SYNC_INPUT
748 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
749 there's no need to block input around malloc. */
750 #define MALLOC_BLOCK_INPUT ((void)0)
751 #define MALLOC_UNBLOCK_INPUT ((void)0)
752 #else
753 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
754 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
755 #endif
756
757 /* Like malloc but check for no memory and block interrupt input.. */
758
759 POINTER_TYPE *
760 xmalloc (size)
761 size_t size;
762 {
763 register POINTER_TYPE *val;
764
765 MALLOC_BLOCK_INPUT;
766 val = (POINTER_TYPE *) malloc (size);
767 MALLOC_UNBLOCK_INPUT;
768
769 if (!val && size)
770 memory_full ();
771 return val;
772 }
773
774
775 /* Like realloc but check for no memory and block interrupt input.. */
776
777 POINTER_TYPE *
778 xrealloc (block, size)
779 POINTER_TYPE *block;
780 size_t size;
781 {
782 register POINTER_TYPE *val;
783
784 MALLOC_BLOCK_INPUT;
785 /* We must call malloc explicitly when BLOCK is 0, since some
786 reallocs don't do this. */
787 if (! block)
788 val = (POINTER_TYPE *) malloc (size);
789 else
790 val = (POINTER_TYPE *) realloc (block, size);
791 MALLOC_UNBLOCK_INPUT;
792
793 if (!val && size) memory_full ();
794 return val;
795 }
796
797
798 /* Like free but block interrupt input. */
799
800 void
801 xfree (block)
802 POINTER_TYPE *block;
803 {
804 MALLOC_BLOCK_INPUT;
805 free (block);
806 MALLOC_UNBLOCK_INPUT;
807 /* We don't call refill_memory_reserve here
808 because that duplicates doing so in emacs_blocked_free
809 and the criterion should go there. */
810 }
811
812
813 /* Like strdup, but uses xmalloc. */
814
815 char *
816 xstrdup (s)
817 const char *s;
818 {
819 size_t len = strlen (s) + 1;
820 char *p = (char *) xmalloc (len);
821 bcopy (s, p, len);
822 return p;
823 }
824
825
826 /* Unwind for SAFE_ALLOCA */
827
828 Lisp_Object
829 safe_alloca_unwind (arg)
830 Lisp_Object arg;
831 {
832 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
833
834 p->dogc = 0;
835 xfree (p->pointer);
836 p->pointer = 0;
837 free_misc (arg);
838 return Qnil;
839 }
840
841
842 /* Like malloc but used for allocating Lisp data. NBYTES is the
843 number of bytes to allocate, TYPE describes the intended use of the
844 allcated memory block (for strings, for conses, ...). */
845
846 #ifndef USE_LSB_TAG
847 static void *lisp_malloc_loser;
848 #endif
849
850 static POINTER_TYPE *
851 lisp_malloc (nbytes, type)
852 size_t nbytes;
853 enum mem_type type;
854 {
855 register void *val;
856
857 MALLOC_BLOCK_INPUT;
858
859 #ifdef GC_MALLOC_CHECK
860 allocated_mem_type = type;
861 #endif
862
863 val = (void *) malloc (nbytes);
864
865 #ifndef USE_LSB_TAG
866 /* If the memory just allocated cannot be addressed thru a Lisp
867 object's pointer, and it needs to be,
868 that's equivalent to running out of memory. */
869 if (val && type != MEM_TYPE_NON_LISP)
870 {
871 Lisp_Object tem;
872 XSETCONS (tem, (char *) val + nbytes - 1);
873 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
874 {
875 lisp_malloc_loser = val;
876 free (val);
877 val = 0;
878 }
879 }
880 #endif
881
882 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
883 if (val && type != MEM_TYPE_NON_LISP)
884 mem_insert (val, (char *) val + nbytes, type);
885 #endif
886
887 MALLOC_UNBLOCK_INPUT;
888 if (!val && nbytes)
889 memory_full ();
890 return val;
891 }
892
893 /* Free BLOCK. This must be called to free memory allocated with a
894 call to lisp_malloc. */
895
896 static void
897 lisp_free (block)
898 POINTER_TYPE *block;
899 {
900 MALLOC_BLOCK_INPUT;
901 free (block);
902 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
903 mem_delete (mem_find (block));
904 #endif
905 MALLOC_UNBLOCK_INPUT;
906 }
907
908 /* Allocation of aligned blocks of memory to store Lisp data. */
909 /* The entry point is lisp_align_malloc which returns blocks of at most */
910 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
911
912 /* Use posix_memalloc if the system has it and we're using the system's
913 malloc (because our gmalloc.c routines don't have posix_memalign although
914 its memalloc could be used). */
915 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
916 #define USE_POSIX_MEMALIGN 1
917 #endif
918
919 /* BLOCK_ALIGN has to be a power of 2. */
920 #define BLOCK_ALIGN (1 << 10)
921
922 /* Padding to leave at the end of a malloc'd block. This is to give
923 malloc a chance to minimize the amount of memory wasted to alignment.
924 It should be tuned to the particular malloc library used.
925 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
926 posix_memalign on the other hand would ideally prefer a value of 4
927 because otherwise, there's 1020 bytes wasted between each ablocks.
928 In Emacs, testing shows that those 1020 can most of the time be
929 efficiently used by malloc to place other objects, so a value of 0 can
930 still preferable unless you have a lot of aligned blocks and virtually
931 nothing else. */
932 #define BLOCK_PADDING 0
933 #define BLOCK_BYTES \
934 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
935
936 /* Internal data structures and constants. */
937
938 #define ABLOCKS_SIZE 16
939
940 /* An aligned block of memory. */
941 struct ablock
942 {
943 union
944 {
945 char payload[BLOCK_BYTES];
946 struct ablock *next_free;
947 } x;
948 /* `abase' is the aligned base of the ablocks. */
949 /* It is overloaded to hold the virtual `busy' field that counts
950 the number of used ablock in the parent ablocks.
951 The first ablock has the `busy' field, the others have the `abase'
952 field. To tell the difference, we assume that pointers will have
953 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
954 is used to tell whether the real base of the parent ablocks is `abase'
955 (if not, the word before the first ablock holds a pointer to the
956 real base). */
957 struct ablocks *abase;
958 /* The padding of all but the last ablock is unused. The padding of
959 the last ablock in an ablocks is not allocated. */
960 #if BLOCK_PADDING
961 char padding[BLOCK_PADDING];
962 #endif
963 };
964
965 /* A bunch of consecutive aligned blocks. */
966 struct ablocks
967 {
968 struct ablock blocks[ABLOCKS_SIZE];
969 };
970
971 /* Size of the block requested from malloc or memalign. */
972 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
973
974 #define ABLOCK_ABASE(block) \
975 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
976 ? (struct ablocks *)(block) \
977 : (block)->abase)
978
979 /* Virtual `busy' field. */
980 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
981
982 /* Pointer to the (not necessarily aligned) malloc block. */
983 #ifdef USE_POSIX_MEMALIGN
984 #define ABLOCKS_BASE(abase) (abase)
985 #else
986 #define ABLOCKS_BASE(abase) \
987 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
988 #endif
989
990 /* The list of free ablock. */
991 static struct ablock *free_ablock;
992
993 /* Allocate an aligned block of nbytes.
994 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
995 smaller or equal to BLOCK_BYTES. */
996 static POINTER_TYPE *
997 lisp_align_malloc (nbytes, type)
998 size_t nbytes;
999 enum mem_type type;
1000 {
1001 void *base, *val;
1002 struct ablocks *abase;
1003
1004 eassert (nbytes <= BLOCK_BYTES);
1005
1006 MALLOC_BLOCK_INPUT;
1007
1008 #ifdef GC_MALLOC_CHECK
1009 allocated_mem_type = type;
1010 #endif
1011
1012 if (!free_ablock)
1013 {
1014 int i;
1015 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
1016
1017 #ifdef DOUG_LEA_MALLOC
1018 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1019 because mapped region contents are not preserved in
1020 a dumped Emacs. */
1021 mallopt (M_MMAP_MAX, 0);
1022 #endif
1023
1024 #ifdef USE_POSIX_MEMALIGN
1025 {
1026 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1027 if (err)
1028 base = NULL;
1029 abase = base;
1030 }
1031 #else
1032 base = malloc (ABLOCKS_BYTES);
1033 abase = ALIGN (base, BLOCK_ALIGN);
1034 #endif
1035
1036 if (base == 0)
1037 {
1038 MALLOC_UNBLOCK_INPUT;
1039 memory_full ();
1040 }
1041
1042 aligned = (base == abase);
1043 if (!aligned)
1044 ((void**)abase)[-1] = base;
1045
1046 #ifdef DOUG_LEA_MALLOC
1047 /* Back to a reasonable maximum of mmap'ed areas. */
1048 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1049 #endif
1050
1051 #ifndef USE_LSB_TAG
1052 /* If the memory just allocated cannot be addressed thru a Lisp
1053 object's pointer, and it needs to be, that's equivalent to
1054 running out of memory. */
1055 if (type != MEM_TYPE_NON_LISP)
1056 {
1057 Lisp_Object tem;
1058 char *end = (char *) base + ABLOCKS_BYTES - 1;
1059 XSETCONS (tem, end);
1060 if ((char *) XCONS (tem) != end)
1061 {
1062 lisp_malloc_loser = base;
1063 free (base);
1064 MALLOC_UNBLOCK_INPUT;
1065 memory_full ();
1066 }
1067 }
1068 #endif
1069
1070 /* Initialize the blocks and put them on the free list.
1071 Is `base' was not properly aligned, we can't use the last block. */
1072 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1073 {
1074 abase->blocks[i].abase = abase;
1075 abase->blocks[i].x.next_free = free_ablock;
1076 free_ablock = &abase->blocks[i];
1077 }
1078 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1079
1080 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1081 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1082 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1083 eassert (ABLOCKS_BASE (abase) == base);
1084 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1085 }
1086
1087 abase = ABLOCK_ABASE (free_ablock);
1088 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1089 val = free_ablock;
1090 free_ablock = free_ablock->x.next_free;
1091
1092 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1093 if (val && type != MEM_TYPE_NON_LISP)
1094 mem_insert (val, (char *) val + nbytes, type);
1095 #endif
1096
1097 MALLOC_UNBLOCK_INPUT;
1098 if (!val && nbytes)
1099 memory_full ();
1100
1101 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1102 return val;
1103 }
1104
1105 static void
1106 lisp_align_free (block)
1107 POINTER_TYPE *block;
1108 {
1109 struct ablock *ablock = block;
1110 struct ablocks *abase = ABLOCK_ABASE (ablock);
1111
1112 MALLOC_BLOCK_INPUT;
1113 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1114 mem_delete (mem_find (block));
1115 #endif
1116 /* Put on free list. */
1117 ablock->x.next_free = free_ablock;
1118 free_ablock = ablock;
1119 /* Update busy count. */
1120 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1121
1122 if (2 > (long) ABLOCKS_BUSY (abase))
1123 { /* All the blocks are free. */
1124 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1125 struct ablock **tem = &free_ablock;
1126 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1127
1128 while (*tem)
1129 {
1130 if (*tem >= (struct ablock *) abase && *tem < atop)
1131 {
1132 i++;
1133 *tem = (*tem)->x.next_free;
1134 }
1135 else
1136 tem = &(*tem)->x.next_free;
1137 }
1138 eassert ((aligned & 1) == aligned);
1139 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1140 #ifdef USE_POSIX_MEMALIGN
1141 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1142 #endif
1143 free (ABLOCKS_BASE (abase));
1144 }
1145 MALLOC_UNBLOCK_INPUT;
1146 }
1147
1148 /* Return a new buffer structure allocated from the heap with
1149 a call to lisp_malloc. */
1150
1151 struct buffer *
1152 allocate_buffer ()
1153 {
1154 struct buffer *b
1155 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1156 MEM_TYPE_BUFFER);
1157 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1158 XSETPVECTYPE (b, PVEC_BUFFER);
1159 return b;
1160 }
1161
1162 \f
1163 #ifndef SYSTEM_MALLOC
1164
1165 /* Arranging to disable input signals while we're in malloc.
1166
1167 This only works with GNU malloc. To help out systems which can't
1168 use GNU malloc, all the calls to malloc, realloc, and free
1169 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1170 pair; unfortunately, we have no idea what C library functions
1171 might call malloc, so we can't really protect them unless you're
1172 using GNU malloc. Fortunately, most of the major operating systems
1173 can use GNU malloc. */
1174
1175 #ifndef SYNC_INPUT
1176 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1177 there's no need to block input around malloc. */
1178
1179 #ifndef DOUG_LEA_MALLOC
1180 extern void * (*__malloc_hook) P_ ((size_t, const void *));
1181 extern void * (*__realloc_hook) P_ ((void *, size_t, const void *));
1182 extern void (*__free_hook) P_ ((void *, const void *));
1183 /* Else declared in malloc.h, perhaps with an extra arg. */
1184 #endif /* DOUG_LEA_MALLOC */
1185 static void * (*old_malloc_hook) P_ ((size_t, const void *));
1186 static void * (*old_realloc_hook) P_ ((void *, size_t, const void*));
1187 static void (*old_free_hook) P_ ((void*, const void*));
1188
1189 /* This function is used as the hook for free to call. */
1190
1191 static void
1192 emacs_blocked_free (ptr, ptr2)
1193 void *ptr;
1194 const void *ptr2;
1195 {
1196 BLOCK_INPUT_ALLOC;
1197
1198 #ifdef GC_MALLOC_CHECK
1199 if (ptr)
1200 {
1201 struct mem_node *m;
1202
1203 m = mem_find (ptr);
1204 if (m == MEM_NIL || m->start != ptr)
1205 {
1206 fprintf (stderr,
1207 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1208 abort ();
1209 }
1210 else
1211 {
1212 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1213 mem_delete (m);
1214 }
1215 }
1216 #endif /* GC_MALLOC_CHECK */
1217
1218 __free_hook = old_free_hook;
1219 free (ptr);
1220
1221 /* If we released our reserve (due to running out of memory),
1222 and we have a fair amount free once again,
1223 try to set aside another reserve in case we run out once more. */
1224 if (! NILP (Vmemory_full)
1225 /* Verify there is enough space that even with the malloc
1226 hysteresis this call won't run out again.
1227 The code here is correct as long as SPARE_MEMORY
1228 is substantially larger than the block size malloc uses. */
1229 && (bytes_used_when_full
1230 > ((bytes_used_when_reconsidered = BYTES_USED)
1231 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1232 refill_memory_reserve ();
1233
1234 __free_hook = emacs_blocked_free;
1235 UNBLOCK_INPUT_ALLOC;
1236 }
1237
1238
1239 /* This function is the malloc hook that Emacs uses. */
1240
1241 static void *
1242 emacs_blocked_malloc (size, ptr)
1243 size_t size;
1244 const void *ptr;
1245 {
1246 void *value;
1247
1248 BLOCK_INPUT_ALLOC;
1249 __malloc_hook = old_malloc_hook;
1250 #ifdef DOUG_LEA_MALLOC
1251 /* Segfaults on my system. --lorentey */
1252 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1253 #else
1254 __malloc_extra_blocks = malloc_hysteresis;
1255 #endif
1256
1257 value = (void *) malloc (size);
1258
1259 #ifdef GC_MALLOC_CHECK
1260 {
1261 struct mem_node *m = mem_find (value);
1262 if (m != MEM_NIL)
1263 {
1264 fprintf (stderr, "Malloc returned %p which is already in use\n",
1265 value);
1266 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1267 m->start, m->end, (char *) m->end - (char *) m->start,
1268 m->type);
1269 abort ();
1270 }
1271
1272 if (!dont_register_blocks)
1273 {
1274 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1275 allocated_mem_type = MEM_TYPE_NON_LISP;
1276 }
1277 }
1278 #endif /* GC_MALLOC_CHECK */
1279
1280 __malloc_hook = emacs_blocked_malloc;
1281 UNBLOCK_INPUT_ALLOC;
1282
1283 /* fprintf (stderr, "%p malloc\n", value); */
1284 return value;
1285 }
1286
1287
1288 /* This function is the realloc hook that Emacs uses. */
1289
1290 static void *
1291 emacs_blocked_realloc (ptr, size, ptr2)
1292 void *ptr;
1293 size_t size;
1294 const void *ptr2;
1295 {
1296 void *value;
1297
1298 BLOCK_INPUT_ALLOC;
1299 __realloc_hook = old_realloc_hook;
1300
1301 #ifdef GC_MALLOC_CHECK
1302 if (ptr)
1303 {
1304 struct mem_node *m = mem_find (ptr);
1305 if (m == MEM_NIL || m->start != ptr)
1306 {
1307 fprintf (stderr,
1308 "Realloc of %p which wasn't allocated with malloc\n",
1309 ptr);
1310 abort ();
1311 }
1312
1313 mem_delete (m);
1314 }
1315
1316 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1317
1318 /* Prevent malloc from registering blocks. */
1319 dont_register_blocks = 1;
1320 #endif /* GC_MALLOC_CHECK */
1321
1322 value = (void *) realloc (ptr, size);
1323
1324 #ifdef GC_MALLOC_CHECK
1325 dont_register_blocks = 0;
1326
1327 {
1328 struct mem_node *m = mem_find (value);
1329 if (m != MEM_NIL)
1330 {
1331 fprintf (stderr, "Realloc returns memory that is already in use\n");
1332 abort ();
1333 }
1334
1335 /* Can't handle zero size regions in the red-black tree. */
1336 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1337 }
1338
1339 /* fprintf (stderr, "%p <- realloc\n", value); */
1340 #endif /* GC_MALLOC_CHECK */
1341
1342 __realloc_hook = emacs_blocked_realloc;
1343 UNBLOCK_INPUT_ALLOC;
1344
1345 return value;
1346 }
1347
1348
1349 #ifdef HAVE_GTK_AND_PTHREAD
1350 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1351 normal malloc. Some thread implementations need this as they call
1352 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1353 calls malloc because it is the first call, and we have an endless loop. */
1354
1355 void
1356 reset_malloc_hooks ()
1357 {
1358 __free_hook = old_free_hook;
1359 __malloc_hook = old_malloc_hook;
1360 __realloc_hook = old_realloc_hook;
1361 }
1362 #endif /* HAVE_GTK_AND_PTHREAD */
1363
1364
1365 /* Called from main to set up malloc to use our hooks. */
1366
1367 void
1368 uninterrupt_malloc ()
1369 {
1370 #ifdef HAVE_GTK_AND_PTHREAD
1371 pthread_mutexattr_t attr;
1372
1373 /* GLIBC has a faster way to do this, but lets keep it portable.
1374 This is according to the Single UNIX Specification. */
1375 pthread_mutexattr_init (&attr);
1376 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1377 pthread_mutex_init (&alloc_mutex, &attr);
1378 #endif /* HAVE_GTK_AND_PTHREAD */
1379
1380 if (__free_hook != emacs_blocked_free)
1381 old_free_hook = __free_hook;
1382 __free_hook = emacs_blocked_free;
1383
1384 if (__malloc_hook != emacs_blocked_malloc)
1385 old_malloc_hook = __malloc_hook;
1386 __malloc_hook = emacs_blocked_malloc;
1387
1388 if (__realloc_hook != emacs_blocked_realloc)
1389 old_realloc_hook = __realloc_hook;
1390 __realloc_hook = emacs_blocked_realloc;
1391 }
1392
1393 #endif /* not SYNC_INPUT */
1394 #endif /* not SYSTEM_MALLOC */
1395
1396
1397 \f
1398 /***********************************************************************
1399 Interval Allocation
1400 ***********************************************************************/
1401
1402 /* Number of intervals allocated in an interval_block structure.
1403 The 1020 is 1024 minus malloc overhead. */
1404
1405 #define INTERVAL_BLOCK_SIZE \
1406 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1407
1408 /* Intervals are allocated in chunks in form of an interval_block
1409 structure. */
1410
1411 struct interval_block
1412 {
1413 /* Place `intervals' first, to preserve alignment. */
1414 struct interval intervals[INTERVAL_BLOCK_SIZE];
1415 struct interval_block *next;
1416 };
1417
1418 /* Current interval block. Its `next' pointer points to older
1419 blocks. */
1420
1421 static struct interval_block *interval_block;
1422
1423 /* Index in interval_block above of the next unused interval
1424 structure. */
1425
1426 static int interval_block_index;
1427
1428 /* Number of free and live intervals. */
1429
1430 static int total_free_intervals, total_intervals;
1431
1432 /* List of free intervals. */
1433
1434 INTERVAL interval_free_list;
1435
1436 /* Total number of interval blocks now in use. */
1437
1438 static int n_interval_blocks;
1439
1440
1441 /* Initialize interval allocation. */
1442
1443 static void
1444 init_intervals ()
1445 {
1446 interval_block = NULL;
1447 interval_block_index = INTERVAL_BLOCK_SIZE;
1448 interval_free_list = 0;
1449 n_interval_blocks = 0;
1450 }
1451
1452
1453 /* Return a new interval. */
1454
1455 INTERVAL
1456 make_interval ()
1457 {
1458 INTERVAL val;
1459
1460 /* eassert (!handling_signal); */
1461
1462 MALLOC_BLOCK_INPUT;
1463
1464 if (interval_free_list)
1465 {
1466 val = interval_free_list;
1467 interval_free_list = INTERVAL_PARENT (interval_free_list);
1468 }
1469 else
1470 {
1471 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1472 {
1473 register struct interval_block *newi;
1474
1475 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1476 MEM_TYPE_NON_LISP);
1477
1478 newi->next = interval_block;
1479 interval_block = newi;
1480 interval_block_index = 0;
1481 n_interval_blocks++;
1482 }
1483 val = &interval_block->intervals[interval_block_index++];
1484 }
1485
1486 MALLOC_UNBLOCK_INPUT;
1487
1488 consing_since_gc += sizeof (struct interval);
1489 intervals_consed++;
1490 RESET_INTERVAL (val);
1491 val->gcmarkbit = 0;
1492 return val;
1493 }
1494
1495
1496 /* Mark Lisp objects in interval I. */
1497
1498 static void
1499 mark_interval (i, dummy)
1500 register INTERVAL i;
1501 Lisp_Object dummy;
1502 {
1503 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1504 i->gcmarkbit = 1;
1505 mark_object (i->plist);
1506 }
1507
1508
1509 /* Mark the interval tree rooted in TREE. Don't call this directly;
1510 use the macro MARK_INTERVAL_TREE instead. */
1511
1512 static void
1513 mark_interval_tree (tree)
1514 register INTERVAL tree;
1515 {
1516 /* No need to test if this tree has been marked already; this
1517 function is always called through the MARK_INTERVAL_TREE macro,
1518 which takes care of that. */
1519
1520 traverse_intervals_noorder (tree, mark_interval, Qnil);
1521 }
1522
1523
1524 /* Mark the interval tree rooted in I. */
1525
1526 #define MARK_INTERVAL_TREE(i) \
1527 do { \
1528 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1529 mark_interval_tree (i); \
1530 } while (0)
1531
1532
1533 #define UNMARK_BALANCE_INTERVALS(i) \
1534 do { \
1535 if (! NULL_INTERVAL_P (i)) \
1536 (i) = balance_intervals (i); \
1537 } while (0)
1538
1539 \f
1540 /* Number support. If NO_UNION_TYPE isn't in effect, we
1541 can't create number objects in macros. */
1542 #ifndef make_number
1543 Lisp_Object
1544 make_number (n)
1545 EMACS_INT n;
1546 {
1547 Lisp_Object obj;
1548 obj.s.val = n;
1549 obj.s.type = Lisp_Int;
1550 return obj;
1551 }
1552 #endif
1553 \f
1554 /***********************************************************************
1555 String Allocation
1556 ***********************************************************************/
1557
1558 /* Lisp_Strings are allocated in string_block structures. When a new
1559 string_block is allocated, all the Lisp_Strings it contains are
1560 added to a free-list string_free_list. When a new Lisp_String is
1561 needed, it is taken from that list. During the sweep phase of GC,
1562 string_blocks that are entirely free are freed, except two which
1563 we keep.
1564
1565 String data is allocated from sblock structures. Strings larger
1566 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1567 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1568
1569 Sblocks consist internally of sdata structures, one for each
1570 Lisp_String. The sdata structure points to the Lisp_String it
1571 belongs to. The Lisp_String points back to the `u.data' member of
1572 its sdata structure.
1573
1574 When a Lisp_String is freed during GC, it is put back on
1575 string_free_list, and its `data' member and its sdata's `string'
1576 pointer is set to null. The size of the string is recorded in the
1577 `u.nbytes' member of the sdata. So, sdata structures that are no
1578 longer used, can be easily recognized, and it's easy to compact the
1579 sblocks of small strings which we do in compact_small_strings. */
1580
1581 /* Size in bytes of an sblock structure used for small strings. This
1582 is 8192 minus malloc overhead. */
1583
1584 #define SBLOCK_SIZE 8188
1585
1586 /* Strings larger than this are considered large strings. String data
1587 for large strings is allocated from individual sblocks. */
1588
1589 #define LARGE_STRING_BYTES 1024
1590
1591 /* Structure describing string memory sub-allocated from an sblock.
1592 This is where the contents of Lisp strings are stored. */
1593
1594 struct sdata
1595 {
1596 /* Back-pointer to the string this sdata belongs to. If null, this
1597 structure is free, and the NBYTES member of the union below
1598 contains the string's byte size (the same value that STRING_BYTES
1599 would return if STRING were non-null). If non-null, STRING_BYTES
1600 (STRING) is the size of the data, and DATA contains the string's
1601 contents. */
1602 struct Lisp_String *string;
1603
1604 #ifdef GC_CHECK_STRING_BYTES
1605
1606 EMACS_INT nbytes;
1607 unsigned char data[1];
1608
1609 #define SDATA_NBYTES(S) (S)->nbytes
1610 #define SDATA_DATA(S) (S)->data
1611
1612 #else /* not GC_CHECK_STRING_BYTES */
1613
1614 union
1615 {
1616 /* When STRING in non-null. */
1617 unsigned char data[1];
1618
1619 /* When STRING is null. */
1620 EMACS_INT nbytes;
1621 } u;
1622
1623
1624 #define SDATA_NBYTES(S) (S)->u.nbytes
1625 #define SDATA_DATA(S) (S)->u.data
1626
1627 #endif /* not GC_CHECK_STRING_BYTES */
1628 };
1629
1630
1631 /* Structure describing a block of memory which is sub-allocated to
1632 obtain string data memory for strings. Blocks for small strings
1633 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1634 as large as needed. */
1635
1636 struct sblock
1637 {
1638 /* Next in list. */
1639 struct sblock *next;
1640
1641 /* Pointer to the next free sdata block. This points past the end
1642 of the sblock if there isn't any space left in this block. */
1643 struct sdata *next_free;
1644
1645 /* Start of data. */
1646 struct sdata first_data;
1647 };
1648
1649 /* Number of Lisp strings in a string_block structure. The 1020 is
1650 1024 minus malloc overhead. */
1651
1652 #define STRING_BLOCK_SIZE \
1653 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1654
1655 /* Structure describing a block from which Lisp_String structures
1656 are allocated. */
1657
1658 struct string_block
1659 {
1660 /* Place `strings' first, to preserve alignment. */
1661 struct Lisp_String strings[STRING_BLOCK_SIZE];
1662 struct string_block *next;
1663 };
1664
1665 /* Head and tail of the list of sblock structures holding Lisp string
1666 data. We always allocate from current_sblock. The NEXT pointers
1667 in the sblock structures go from oldest_sblock to current_sblock. */
1668
1669 static struct sblock *oldest_sblock, *current_sblock;
1670
1671 /* List of sblocks for large strings. */
1672
1673 static struct sblock *large_sblocks;
1674
1675 /* List of string_block structures, and how many there are. */
1676
1677 static struct string_block *string_blocks;
1678 static int n_string_blocks;
1679
1680 /* Free-list of Lisp_Strings. */
1681
1682 static struct Lisp_String *string_free_list;
1683
1684 /* Number of live and free Lisp_Strings. */
1685
1686 static int total_strings, total_free_strings;
1687
1688 /* Number of bytes used by live strings. */
1689
1690 static int total_string_size;
1691
1692 /* Given a pointer to a Lisp_String S which is on the free-list
1693 string_free_list, return a pointer to its successor in the
1694 free-list. */
1695
1696 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1697
1698 /* Return a pointer to the sdata structure belonging to Lisp string S.
1699 S must be live, i.e. S->data must not be null. S->data is actually
1700 a pointer to the `u.data' member of its sdata structure; the
1701 structure starts at a constant offset in front of that. */
1702
1703 #ifdef GC_CHECK_STRING_BYTES
1704
1705 #define SDATA_OF_STRING(S) \
1706 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1707 - sizeof (EMACS_INT)))
1708
1709 #else /* not GC_CHECK_STRING_BYTES */
1710
1711 #define SDATA_OF_STRING(S) \
1712 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1713
1714 #endif /* not GC_CHECK_STRING_BYTES */
1715
1716
1717 #ifdef GC_CHECK_STRING_OVERRUN
1718
1719 /* We check for overrun in string data blocks by appending a small
1720 "cookie" after each allocated string data block, and check for the
1721 presence of this cookie during GC. */
1722
1723 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1724 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1725 { 0xde, 0xad, 0xbe, 0xef };
1726
1727 #else
1728 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1729 #endif
1730
1731 /* Value is the size of an sdata structure large enough to hold NBYTES
1732 bytes of string data. The value returned includes a terminating
1733 NUL byte, the size of the sdata structure, and padding. */
1734
1735 #ifdef GC_CHECK_STRING_BYTES
1736
1737 #define SDATA_SIZE(NBYTES) \
1738 ((sizeof (struct Lisp_String *) \
1739 + (NBYTES) + 1 \
1740 + sizeof (EMACS_INT) \
1741 + sizeof (EMACS_INT) - 1) \
1742 & ~(sizeof (EMACS_INT) - 1))
1743
1744 #else /* not GC_CHECK_STRING_BYTES */
1745
1746 #define SDATA_SIZE(NBYTES) \
1747 ((sizeof (struct Lisp_String *) \
1748 + (NBYTES) + 1 \
1749 + sizeof (EMACS_INT) - 1) \
1750 & ~(sizeof (EMACS_INT) - 1))
1751
1752 #endif /* not GC_CHECK_STRING_BYTES */
1753
1754 /* Extra bytes to allocate for each string. */
1755
1756 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1757
1758 /* Initialize string allocation. Called from init_alloc_once. */
1759
1760 static void
1761 init_strings ()
1762 {
1763 total_strings = total_free_strings = total_string_size = 0;
1764 oldest_sblock = current_sblock = large_sblocks = NULL;
1765 string_blocks = NULL;
1766 n_string_blocks = 0;
1767 string_free_list = NULL;
1768 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1769 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1770 }
1771
1772
1773 #ifdef GC_CHECK_STRING_BYTES
1774
1775 static int check_string_bytes_count;
1776
1777 static void check_string_bytes P_ ((int));
1778 static void check_sblock P_ ((struct sblock *));
1779
1780 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1781
1782
1783 /* Like GC_STRING_BYTES, but with debugging check. */
1784
1785 int
1786 string_bytes (s)
1787 struct Lisp_String *s;
1788 {
1789 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1790 if (!PURE_POINTER_P (s)
1791 && s->data
1792 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1793 abort ();
1794 return nbytes;
1795 }
1796
1797 /* Check validity of Lisp strings' string_bytes member in B. */
1798
1799 static void
1800 check_sblock (b)
1801 struct sblock *b;
1802 {
1803 struct sdata *from, *end, *from_end;
1804
1805 end = b->next_free;
1806
1807 for (from = &b->first_data; from < end; from = from_end)
1808 {
1809 /* Compute the next FROM here because copying below may
1810 overwrite data we need to compute it. */
1811 int nbytes;
1812
1813 /* Check that the string size recorded in the string is the
1814 same as the one recorded in the sdata structure. */
1815 if (from->string)
1816 CHECK_STRING_BYTES (from->string);
1817
1818 if (from->string)
1819 nbytes = GC_STRING_BYTES (from->string);
1820 else
1821 nbytes = SDATA_NBYTES (from);
1822
1823 nbytes = SDATA_SIZE (nbytes);
1824 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1825 }
1826 }
1827
1828
1829 /* Check validity of Lisp strings' string_bytes member. ALL_P
1830 non-zero means check all strings, otherwise check only most
1831 recently allocated strings. Used for hunting a bug. */
1832
1833 static void
1834 check_string_bytes (all_p)
1835 int all_p;
1836 {
1837 if (all_p)
1838 {
1839 struct sblock *b;
1840
1841 for (b = large_sblocks; b; b = b->next)
1842 {
1843 struct Lisp_String *s = b->first_data.string;
1844 if (s)
1845 CHECK_STRING_BYTES (s);
1846 }
1847
1848 for (b = oldest_sblock; b; b = b->next)
1849 check_sblock (b);
1850 }
1851 else
1852 check_sblock (current_sblock);
1853 }
1854
1855 #endif /* GC_CHECK_STRING_BYTES */
1856
1857 #ifdef GC_CHECK_STRING_FREE_LIST
1858
1859 /* Walk through the string free list looking for bogus next pointers.
1860 This may catch buffer overrun from a previous string. */
1861
1862 static void
1863 check_string_free_list ()
1864 {
1865 struct Lisp_String *s;
1866
1867 /* Pop a Lisp_String off the free-list. */
1868 s = string_free_list;
1869 while (s != NULL)
1870 {
1871 if ((unsigned)s < 1024)
1872 abort();
1873 s = NEXT_FREE_LISP_STRING (s);
1874 }
1875 }
1876 #else
1877 #define check_string_free_list()
1878 #endif
1879
1880 /* Return a new Lisp_String. */
1881
1882 static struct Lisp_String *
1883 allocate_string ()
1884 {
1885 struct Lisp_String *s;
1886
1887 /* eassert (!handling_signal); */
1888
1889 MALLOC_BLOCK_INPUT;
1890
1891 /* If the free-list is empty, allocate a new string_block, and
1892 add all the Lisp_Strings in it to the free-list. */
1893 if (string_free_list == NULL)
1894 {
1895 struct string_block *b;
1896 int i;
1897
1898 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1899 bzero (b, sizeof *b);
1900 b->next = string_blocks;
1901 string_blocks = b;
1902 ++n_string_blocks;
1903
1904 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1905 {
1906 s = b->strings + i;
1907 NEXT_FREE_LISP_STRING (s) = string_free_list;
1908 string_free_list = s;
1909 }
1910
1911 total_free_strings += STRING_BLOCK_SIZE;
1912 }
1913
1914 check_string_free_list ();
1915
1916 /* Pop a Lisp_String off the free-list. */
1917 s = string_free_list;
1918 string_free_list = NEXT_FREE_LISP_STRING (s);
1919
1920 MALLOC_UNBLOCK_INPUT;
1921
1922 /* Probably not strictly necessary, but play it safe. */
1923 bzero (s, sizeof *s);
1924
1925 --total_free_strings;
1926 ++total_strings;
1927 ++strings_consed;
1928 consing_since_gc += sizeof *s;
1929
1930 #ifdef GC_CHECK_STRING_BYTES
1931 if (!noninteractive)
1932 {
1933 if (++check_string_bytes_count == 200)
1934 {
1935 check_string_bytes_count = 0;
1936 check_string_bytes (1);
1937 }
1938 else
1939 check_string_bytes (0);
1940 }
1941 #endif /* GC_CHECK_STRING_BYTES */
1942
1943 return s;
1944 }
1945
1946
1947 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1948 plus a NUL byte at the end. Allocate an sdata structure for S, and
1949 set S->data to its `u.data' member. Store a NUL byte at the end of
1950 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1951 S->data if it was initially non-null. */
1952
1953 void
1954 allocate_string_data (s, nchars, nbytes)
1955 struct Lisp_String *s;
1956 int nchars, nbytes;
1957 {
1958 struct sdata *data, *old_data;
1959 struct sblock *b;
1960 int needed, old_nbytes;
1961
1962 /* Determine the number of bytes needed to store NBYTES bytes
1963 of string data. */
1964 needed = SDATA_SIZE (nbytes);
1965 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1966 old_nbytes = GC_STRING_BYTES (s);
1967
1968 MALLOC_BLOCK_INPUT;
1969
1970 if (nbytes > LARGE_STRING_BYTES)
1971 {
1972 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1973
1974 #ifdef DOUG_LEA_MALLOC
1975 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1976 because mapped region contents are not preserved in
1977 a dumped Emacs.
1978
1979 In case you think of allowing it in a dumped Emacs at the
1980 cost of not being able to re-dump, there's another reason:
1981 mmap'ed data typically have an address towards the top of the
1982 address space, which won't fit into an EMACS_INT (at least on
1983 32-bit systems with the current tagging scheme). --fx */
1984 mallopt (M_MMAP_MAX, 0);
1985 #endif
1986
1987 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1988
1989 #ifdef DOUG_LEA_MALLOC
1990 /* Back to a reasonable maximum of mmap'ed areas. */
1991 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1992 #endif
1993
1994 b->next_free = &b->first_data;
1995 b->first_data.string = NULL;
1996 b->next = large_sblocks;
1997 large_sblocks = b;
1998 }
1999 else if (current_sblock == NULL
2000 || (((char *) current_sblock + SBLOCK_SIZE
2001 - (char *) current_sblock->next_free)
2002 < (needed + GC_STRING_EXTRA)))
2003 {
2004 /* Not enough room in the current sblock. */
2005 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2006 b->next_free = &b->first_data;
2007 b->first_data.string = NULL;
2008 b->next = NULL;
2009
2010 if (current_sblock)
2011 current_sblock->next = b;
2012 else
2013 oldest_sblock = b;
2014 current_sblock = b;
2015 }
2016 else
2017 b = current_sblock;
2018
2019 data = b->next_free;
2020 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2021
2022 MALLOC_UNBLOCK_INPUT;
2023
2024 data->string = s;
2025 s->data = SDATA_DATA (data);
2026 #ifdef GC_CHECK_STRING_BYTES
2027 SDATA_NBYTES (data) = nbytes;
2028 #endif
2029 s->size = nchars;
2030 s->size_byte = nbytes;
2031 s->data[nbytes] = '\0';
2032 #ifdef GC_CHECK_STRING_OVERRUN
2033 bcopy (string_overrun_cookie, (char *) data + needed,
2034 GC_STRING_OVERRUN_COOKIE_SIZE);
2035 #endif
2036
2037 /* If S had already data assigned, mark that as free by setting its
2038 string back-pointer to null, and recording the size of the data
2039 in it. */
2040 if (old_data)
2041 {
2042 SDATA_NBYTES (old_data) = old_nbytes;
2043 old_data->string = NULL;
2044 }
2045
2046 consing_since_gc += needed;
2047 }
2048
2049
2050 /* Sweep and compact strings. */
2051
2052 static void
2053 sweep_strings ()
2054 {
2055 struct string_block *b, *next;
2056 struct string_block *live_blocks = NULL;
2057
2058 string_free_list = NULL;
2059 total_strings = total_free_strings = 0;
2060 total_string_size = 0;
2061
2062 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2063 for (b = string_blocks; b; b = next)
2064 {
2065 int i, nfree = 0;
2066 struct Lisp_String *free_list_before = string_free_list;
2067
2068 next = b->next;
2069
2070 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2071 {
2072 struct Lisp_String *s = b->strings + i;
2073
2074 if (s->data)
2075 {
2076 /* String was not on free-list before. */
2077 if (STRING_MARKED_P (s))
2078 {
2079 /* String is live; unmark it and its intervals. */
2080 UNMARK_STRING (s);
2081
2082 if (!NULL_INTERVAL_P (s->intervals))
2083 UNMARK_BALANCE_INTERVALS (s->intervals);
2084
2085 ++total_strings;
2086 total_string_size += STRING_BYTES (s);
2087 }
2088 else
2089 {
2090 /* String is dead. Put it on the free-list. */
2091 struct sdata *data = SDATA_OF_STRING (s);
2092
2093 /* Save the size of S in its sdata so that we know
2094 how large that is. Reset the sdata's string
2095 back-pointer so that we know it's free. */
2096 #ifdef GC_CHECK_STRING_BYTES
2097 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2098 abort ();
2099 #else
2100 data->u.nbytes = GC_STRING_BYTES (s);
2101 #endif
2102 data->string = NULL;
2103
2104 /* Reset the strings's `data' member so that we
2105 know it's free. */
2106 s->data = NULL;
2107
2108 /* Put the string on the free-list. */
2109 NEXT_FREE_LISP_STRING (s) = string_free_list;
2110 string_free_list = s;
2111 ++nfree;
2112 }
2113 }
2114 else
2115 {
2116 /* S was on the free-list before. Put it there again. */
2117 NEXT_FREE_LISP_STRING (s) = string_free_list;
2118 string_free_list = s;
2119 ++nfree;
2120 }
2121 }
2122
2123 /* Free blocks that contain free Lisp_Strings only, except
2124 the first two of them. */
2125 if (nfree == STRING_BLOCK_SIZE
2126 && total_free_strings > STRING_BLOCK_SIZE)
2127 {
2128 lisp_free (b);
2129 --n_string_blocks;
2130 string_free_list = free_list_before;
2131 }
2132 else
2133 {
2134 total_free_strings += nfree;
2135 b->next = live_blocks;
2136 live_blocks = b;
2137 }
2138 }
2139
2140 check_string_free_list ();
2141
2142 string_blocks = live_blocks;
2143 free_large_strings ();
2144 compact_small_strings ();
2145
2146 check_string_free_list ();
2147 }
2148
2149
2150 /* Free dead large strings. */
2151
2152 static void
2153 free_large_strings ()
2154 {
2155 struct sblock *b, *next;
2156 struct sblock *live_blocks = NULL;
2157
2158 for (b = large_sblocks; b; b = next)
2159 {
2160 next = b->next;
2161
2162 if (b->first_data.string == NULL)
2163 lisp_free (b);
2164 else
2165 {
2166 b->next = live_blocks;
2167 live_blocks = b;
2168 }
2169 }
2170
2171 large_sblocks = live_blocks;
2172 }
2173
2174
2175 /* Compact data of small strings. Free sblocks that don't contain
2176 data of live strings after compaction. */
2177
2178 static void
2179 compact_small_strings ()
2180 {
2181 struct sblock *b, *tb, *next;
2182 struct sdata *from, *to, *end, *tb_end;
2183 struct sdata *to_end, *from_end;
2184
2185 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2186 to, and TB_END is the end of TB. */
2187 tb = oldest_sblock;
2188 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2189 to = &tb->first_data;
2190
2191 /* Step through the blocks from the oldest to the youngest. We
2192 expect that old blocks will stabilize over time, so that less
2193 copying will happen this way. */
2194 for (b = oldest_sblock; b; b = b->next)
2195 {
2196 end = b->next_free;
2197 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2198
2199 for (from = &b->first_data; from < end; from = from_end)
2200 {
2201 /* Compute the next FROM here because copying below may
2202 overwrite data we need to compute it. */
2203 int nbytes;
2204
2205 #ifdef GC_CHECK_STRING_BYTES
2206 /* Check that the string size recorded in the string is the
2207 same as the one recorded in the sdata structure. */
2208 if (from->string
2209 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2210 abort ();
2211 #endif /* GC_CHECK_STRING_BYTES */
2212
2213 if (from->string)
2214 nbytes = GC_STRING_BYTES (from->string);
2215 else
2216 nbytes = SDATA_NBYTES (from);
2217
2218 if (nbytes > LARGE_STRING_BYTES)
2219 abort ();
2220
2221 nbytes = SDATA_SIZE (nbytes);
2222 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2223
2224 #ifdef GC_CHECK_STRING_OVERRUN
2225 if (bcmp (string_overrun_cookie,
2226 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2227 GC_STRING_OVERRUN_COOKIE_SIZE))
2228 abort ();
2229 #endif
2230
2231 /* FROM->string non-null means it's alive. Copy its data. */
2232 if (from->string)
2233 {
2234 /* If TB is full, proceed with the next sblock. */
2235 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2236 if (to_end > tb_end)
2237 {
2238 tb->next_free = to;
2239 tb = tb->next;
2240 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2241 to = &tb->first_data;
2242 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2243 }
2244
2245 /* Copy, and update the string's `data' pointer. */
2246 if (from != to)
2247 {
2248 xassert (tb != b || to <= from);
2249 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2250 to->string->data = SDATA_DATA (to);
2251 }
2252
2253 /* Advance past the sdata we copied to. */
2254 to = to_end;
2255 }
2256 }
2257 }
2258
2259 /* The rest of the sblocks following TB don't contain live data, so
2260 we can free them. */
2261 for (b = tb->next; b; b = next)
2262 {
2263 next = b->next;
2264 lisp_free (b);
2265 }
2266
2267 tb->next_free = to;
2268 tb->next = NULL;
2269 current_sblock = tb;
2270 }
2271
2272
2273 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2274 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2275 LENGTH must be an integer.
2276 INIT must be an integer that represents a character. */)
2277 (length, init)
2278 Lisp_Object length, init;
2279 {
2280 register Lisp_Object val;
2281 register unsigned char *p, *end;
2282 int c, nbytes;
2283
2284 CHECK_NATNUM (length);
2285 CHECK_NUMBER (init);
2286
2287 c = XINT (init);
2288 if (ASCII_CHAR_P (c))
2289 {
2290 nbytes = XINT (length);
2291 val = make_uninit_string (nbytes);
2292 p = SDATA (val);
2293 end = p + SCHARS (val);
2294 while (p != end)
2295 *p++ = c;
2296 }
2297 else
2298 {
2299 unsigned char str[MAX_MULTIBYTE_LENGTH];
2300 int len = CHAR_STRING (c, str);
2301
2302 nbytes = len * XINT (length);
2303 val = make_uninit_multibyte_string (XINT (length), nbytes);
2304 p = SDATA (val);
2305 end = p + nbytes;
2306 while (p != end)
2307 {
2308 bcopy (str, p, len);
2309 p += len;
2310 }
2311 }
2312
2313 *p = 0;
2314 return val;
2315 }
2316
2317
2318 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2319 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2320 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2321 (length, init)
2322 Lisp_Object length, init;
2323 {
2324 register Lisp_Object val;
2325 struct Lisp_Bool_Vector *p;
2326 int real_init, i;
2327 int length_in_chars, length_in_elts, bits_per_value;
2328
2329 CHECK_NATNUM (length);
2330
2331 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2332
2333 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2334 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2335 / BOOL_VECTOR_BITS_PER_CHAR);
2336
2337 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2338 slot `size' of the struct Lisp_Bool_Vector. */
2339 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2340
2341 /* Get rid of any bits that would cause confusion. */
2342 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2343 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2344 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2345
2346 p = XBOOL_VECTOR (val);
2347 p->size = XFASTINT (length);
2348
2349 real_init = (NILP (init) ? 0 : -1);
2350 for (i = 0; i < length_in_chars ; i++)
2351 p->data[i] = real_init;
2352
2353 /* Clear the extraneous bits in the last byte. */
2354 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2355 p->data[length_in_chars - 1]
2356 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2357
2358 return val;
2359 }
2360
2361
2362 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2363 of characters from the contents. This string may be unibyte or
2364 multibyte, depending on the contents. */
2365
2366 Lisp_Object
2367 make_string (contents, nbytes)
2368 const char *contents;
2369 int nbytes;
2370 {
2371 register Lisp_Object val;
2372 int nchars, multibyte_nbytes;
2373
2374 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2375 if (nbytes == nchars || nbytes != multibyte_nbytes)
2376 /* CONTENTS contains no multibyte sequences or contains an invalid
2377 multibyte sequence. We must make unibyte string. */
2378 val = make_unibyte_string (contents, nbytes);
2379 else
2380 val = make_multibyte_string (contents, nchars, nbytes);
2381 return val;
2382 }
2383
2384
2385 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2386
2387 Lisp_Object
2388 make_unibyte_string (contents, length)
2389 const char *contents;
2390 int length;
2391 {
2392 register Lisp_Object val;
2393 val = make_uninit_string (length);
2394 bcopy (contents, SDATA (val), length);
2395 STRING_SET_UNIBYTE (val);
2396 return val;
2397 }
2398
2399
2400 /* Make a multibyte string from NCHARS characters occupying NBYTES
2401 bytes at CONTENTS. */
2402
2403 Lisp_Object
2404 make_multibyte_string (contents, nchars, nbytes)
2405 const char *contents;
2406 int nchars, nbytes;
2407 {
2408 register Lisp_Object val;
2409 val = make_uninit_multibyte_string (nchars, nbytes);
2410 bcopy (contents, SDATA (val), nbytes);
2411 return val;
2412 }
2413
2414
2415 /* Make a string from NCHARS characters occupying NBYTES bytes at
2416 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2417
2418 Lisp_Object
2419 make_string_from_bytes (contents, nchars, nbytes)
2420 const char *contents;
2421 int nchars, nbytes;
2422 {
2423 register Lisp_Object val;
2424 val = make_uninit_multibyte_string (nchars, nbytes);
2425 bcopy (contents, SDATA (val), nbytes);
2426 if (SBYTES (val) == SCHARS (val))
2427 STRING_SET_UNIBYTE (val);
2428 return val;
2429 }
2430
2431
2432 /* Make a string from NCHARS characters occupying NBYTES bytes at
2433 CONTENTS. The argument MULTIBYTE controls whether to label the
2434 string as multibyte. If NCHARS is negative, it counts the number of
2435 characters by itself. */
2436
2437 Lisp_Object
2438 make_specified_string (contents, nchars, nbytes, multibyte)
2439 const char *contents;
2440 int nchars, nbytes;
2441 int multibyte;
2442 {
2443 register Lisp_Object val;
2444
2445 if (nchars < 0)
2446 {
2447 if (multibyte)
2448 nchars = multibyte_chars_in_text (contents, nbytes);
2449 else
2450 nchars = nbytes;
2451 }
2452 val = make_uninit_multibyte_string (nchars, nbytes);
2453 bcopy (contents, SDATA (val), nbytes);
2454 if (!multibyte)
2455 STRING_SET_UNIBYTE (val);
2456 return val;
2457 }
2458
2459
2460 /* Make a string from the data at STR, treating it as multibyte if the
2461 data warrants. */
2462
2463 Lisp_Object
2464 build_string (str)
2465 const char *str;
2466 {
2467 return make_string (str, strlen (str));
2468 }
2469
2470
2471 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2472 occupying LENGTH bytes. */
2473
2474 Lisp_Object
2475 make_uninit_string (length)
2476 int length;
2477 {
2478 Lisp_Object val;
2479
2480 if (!length)
2481 return empty_unibyte_string;
2482 val = make_uninit_multibyte_string (length, length);
2483 STRING_SET_UNIBYTE (val);
2484 return val;
2485 }
2486
2487
2488 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2489 which occupy NBYTES bytes. */
2490
2491 Lisp_Object
2492 make_uninit_multibyte_string (nchars, nbytes)
2493 int nchars, nbytes;
2494 {
2495 Lisp_Object string;
2496 struct Lisp_String *s;
2497
2498 if (nchars < 0)
2499 abort ();
2500 if (!nbytes)
2501 return empty_multibyte_string;
2502
2503 s = allocate_string ();
2504 allocate_string_data (s, nchars, nbytes);
2505 XSETSTRING (string, s);
2506 string_chars_consed += nbytes;
2507 return string;
2508 }
2509
2510
2511 \f
2512 /***********************************************************************
2513 Float Allocation
2514 ***********************************************************************/
2515
2516 /* We store float cells inside of float_blocks, allocating a new
2517 float_block with malloc whenever necessary. Float cells reclaimed
2518 by GC are put on a free list to be reallocated before allocating
2519 any new float cells from the latest float_block. */
2520
2521 #define FLOAT_BLOCK_SIZE \
2522 (((BLOCK_BYTES - sizeof (struct float_block *) \
2523 /* The compiler might add padding at the end. */ \
2524 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2525 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2526
2527 #define GETMARKBIT(block,n) \
2528 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2529 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2530 & 1)
2531
2532 #define SETMARKBIT(block,n) \
2533 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2534 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2535
2536 #define UNSETMARKBIT(block,n) \
2537 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2538 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2539
2540 #define FLOAT_BLOCK(fptr) \
2541 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2542
2543 #define FLOAT_INDEX(fptr) \
2544 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2545
2546 struct float_block
2547 {
2548 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2549 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2550 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2551 struct float_block *next;
2552 };
2553
2554 #define FLOAT_MARKED_P(fptr) \
2555 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2556
2557 #define FLOAT_MARK(fptr) \
2558 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2559
2560 #define FLOAT_UNMARK(fptr) \
2561 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2562
2563 /* Current float_block. */
2564
2565 struct float_block *float_block;
2566
2567 /* Index of first unused Lisp_Float in the current float_block. */
2568
2569 int float_block_index;
2570
2571 /* Total number of float blocks now in use. */
2572
2573 int n_float_blocks;
2574
2575 /* Free-list of Lisp_Floats. */
2576
2577 struct Lisp_Float *float_free_list;
2578
2579
2580 /* Initialize float allocation. */
2581
2582 static void
2583 init_float ()
2584 {
2585 float_block = NULL;
2586 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2587 float_free_list = 0;
2588 n_float_blocks = 0;
2589 }
2590
2591
2592 /* Explicitly free a float cell by putting it on the free-list. */
2593
2594 static void
2595 free_float (ptr)
2596 struct Lisp_Float *ptr;
2597 {
2598 ptr->u.chain = float_free_list;
2599 float_free_list = ptr;
2600 }
2601
2602
2603 /* Return a new float object with value FLOAT_VALUE. */
2604
2605 Lisp_Object
2606 make_float (float_value)
2607 double float_value;
2608 {
2609 register Lisp_Object val;
2610
2611 /* eassert (!handling_signal); */
2612
2613 MALLOC_BLOCK_INPUT;
2614
2615 if (float_free_list)
2616 {
2617 /* We use the data field for chaining the free list
2618 so that we won't use the same field that has the mark bit. */
2619 XSETFLOAT (val, float_free_list);
2620 float_free_list = float_free_list->u.chain;
2621 }
2622 else
2623 {
2624 if (float_block_index == FLOAT_BLOCK_SIZE)
2625 {
2626 register struct float_block *new;
2627
2628 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2629 MEM_TYPE_FLOAT);
2630 new->next = float_block;
2631 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2632 float_block = new;
2633 float_block_index = 0;
2634 n_float_blocks++;
2635 }
2636 XSETFLOAT (val, &float_block->floats[float_block_index]);
2637 float_block_index++;
2638 }
2639
2640 MALLOC_UNBLOCK_INPUT;
2641
2642 XFLOAT_DATA (val) = float_value;
2643 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2644 consing_since_gc += sizeof (struct Lisp_Float);
2645 floats_consed++;
2646 return val;
2647 }
2648
2649
2650 \f
2651 /***********************************************************************
2652 Cons Allocation
2653 ***********************************************************************/
2654
2655 /* We store cons cells inside of cons_blocks, allocating a new
2656 cons_block with malloc whenever necessary. Cons cells reclaimed by
2657 GC are put on a free list to be reallocated before allocating
2658 any new cons cells from the latest cons_block. */
2659
2660 #define CONS_BLOCK_SIZE \
2661 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2662 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2663
2664 #define CONS_BLOCK(fptr) \
2665 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2666
2667 #define CONS_INDEX(fptr) \
2668 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2669
2670 struct cons_block
2671 {
2672 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2673 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2674 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2675 struct cons_block *next;
2676 };
2677
2678 #define CONS_MARKED_P(fptr) \
2679 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2680
2681 #define CONS_MARK(fptr) \
2682 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2683
2684 #define CONS_UNMARK(fptr) \
2685 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2686
2687 /* Current cons_block. */
2688
2689 struct cons_block *cons_block;
2690
2691 /* Index of first unused Lisp_Cons in the current block. */
2692
2693 int cons_block_index;
2694
2695 /* Free-list of Lisp_Cons structures. */
2696
2697 struct Lisp_Cons *cons_free_list;
2698
2699 /* Total number of cons blocks now in use. */
2700
2701 static int n_cons_blocks;
2702
2703
2704 /* Initialize cons allocation. */
2705
2706 static void
2707 init_cons ()
2708 {
2709 cons_block = NULL;
2710 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2711 cons_free_list = 0;
2712 n_cons_blocks = 0;
2713 }
2714
2715
2716 /* Explicitly free a cons cell by putting it on the free-list. */
2717
2718 void
2719 free_cons (ptr)
2720 struct Lisp_Cons *ptr;
2721 {
2722 ptr->u.chain = cons_free_list;
2723 #if GC_MARK_STACK
2724 ptr->car = Vdead;
2725 #endif
2726 cons_free_list = ptr;
2727 }
2728
2729 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2730 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2731 (car, cdr)
2732 Lisp_Object car, cdr;
2733 {
2734 register Lisp_Object val;
2735
2736 /* eassert (!handling_signal); */
2737
2738 MALLOC_BLOCK_INPUT;
2739
2740 if (cons_free_list)
2741 {
2742 /* We use the cdr for chaining the free list
2743 so that we won't use the same field that has the mark bit. */
2744 XSETCONS (val, cons_free_list);
2745 cons_free_list = cons_free_list->u.chain;
2746 }
2747 else
2748 {
2749 if (cons_block_index == CONS_BLOCK_SIZE)
2750 {
2751 register struct cons_block *new;
2752 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2753 MEM_TYPE_CONS);
2754 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2755 new->next = cons_block;
2756 cons_block = new;
2757 cons_block_index = 0;
2758 n_cons_blocks++;
2759 }
2760 XSETCONS (val, &cons_block->conses[cons_block_index]);
2761 cons_block_index++;
2762 }
2763
2764 MALLOC_UNBLOCK_INPUT;
2765
2766 XSETCAR (val, car);
2767 XSETCDR (val, cdr);
2768 eassert (!CONS_MARKED_P (XCONS (val)));
2769 consing_since_gc += sizeof (struct Lisp_Cons);
2770 cons_cells_consed++;
2771 return val;
2772 }
2773
2774 /* Get an error now if there's any junk in the cons free list. */
2775 void
2776 check_cons_list ()
2777 {
2778 #ifdef GC_CHECK_CONS_LIST
2779 struct Lisp_Cons *tail = cons_free_list;
2780
2781 while (tail)
2782 tail = tail->u.chain;
2783 #endif
2784 }
2785
2786 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2787
2788 Lisp_Object
2789 list1 (arg1)
2790 Lisp_Object arg1;
2791 {
2792 return Fcons (arg1, Qnil);
2793 }
2794
2795 Lisp_Object
2796 list2 (arg1, arg2)
2797 Lisp_Object arg1, arg2;
2798 {
2799 return Fcons (arg1, Fcons (arg2, Qnil));
2800 }
2801
2802
2803 Lisp_Object
2804 list3 (arg1, arg2, arg3)
2805 Lisp_Object arg1, arg2, arg3;
2806 {
2807 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2808 }
2809
2810
2811 Lisp_Object
2812 list4 (arg1, arg2, arg3, arg4)
2813 Lisp_Object arg1, arg2, arg3, arg4;
2814 {
2815 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2816 }
2817
2818
2819 Lisp_Object
2820 list5 (arg1, arg2, arg3, arg4, arg5)
2821 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2822 {
2823 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2824 Fcons (arg5, Qnil)))));
2825 }
2826
2827
2828 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2829 doc: /* Return a newly created list with specified arguments as elements.
2830 Any number of arguments, even zero arguments, are allowed.
2831 usage: (list &rest OBJECTS) */)
2832 (nargs, args)
2833 int nargs;
2834 register Lisp_Object *args;
2835 {
2836 register Lisp_Object val;
2837 val = Qnil;
2838
2839 while (nargs > 0)
2840 {
2841 nargs--;
2842 val = Fcons (args[nargs], val);
2843 }
2844 return val;
2845 }
2846
2847
2848 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2849 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2850 (length, init)
2851 register Lisp_Object length, init;
2852 {
2853 register Lisp_Object val;
2854 register int size;
2855
2856 CHECK_NATNUM (length);
2857 size = XFASTINT (length);
2858
2859 val = Qnil;
2860 while (size > 0)
2861 {
2862 val = Fcons (init, val);
2863 --size;
2864
2865 if (size > 0)
2866 {
2867 val = Fcons (init, val);
2868 --size;
2869
2870 if (size > 0)
2871 {
2872 val = Fcons (init, val);
2873 --size;
2874
2875 if (size > 0)
2876 {
2877 val = Fcons (init, val);
2878 --size;
2879
2880 if (size > 0)
2881 {
2882 val = Fcons (init, val);
2883 --size;
2884 }
2885 }
2886 }
2887 }
2888
2889 QUIT;
2890 }
2891
2892 return val;
2893 }
2894
2895
2896 \f
2897 /***********************************************************************
2898 Vector Allocation
2899 ***********************************************************************/
2900
2901 /* Singly-linked list of all vectors. */
2902
2903 static struct Lisp_Vector *all_vectors;
2904
2905 /* Total number of vector-like objects now in use. */
2906
2907 static int n_vectors;
2908
2909
2910 /* Value is a pointer to a newly allocated Lisp_Vector structure
2911 with room for LEN Lisp_Objects. */
2912
2913 static struct Lisp_Vector *
2914 allocate_vectorlike (len)
2915 EMACS_INT len;
2916 {
2917 struct Lisp_Vector *p;
2918 size_t nbytes;
2919
2920 MALLOC_BLOCK_INPUT;
2921
2922 #ifdef DOUG_LEA_MALLOC
2923 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2924 because mapped region contents are not preserved in
2925 a dumped Emacs. */
2926 mallopt (M_MMAP_MAX, 0);
2927 #endif
2928
2929 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2930 /* eassert (!handling_signal); */
2931
2932 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2933 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2934
2935 #ifdef DOUG_LEA_MALLOC
2936 /* Back to a reasonable maximum of mmap'ed areas. */
2937 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2938 #endif
2939
2940 consing_since_gc += nbytes;
2941 vector_cells_consed += len;
2942
2943 p->next = all_vectors;
2944 all_vectors = p;
2945
2946 MALLOC_UNBLOCK_INPUT;
2947
2948 ++n_vectors;
2949 return p;
2950 }
2951
2952
2953 /* Allocate a vector with NSLOTS slots. */
2954
2955 struct Lisp_Vector *
2956 allocate_vector (nslots)
2957 EMACS_INT nslots;
2958 {
2959 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2960 v->size = nslots;
2961 return v;
2962 }
2963
2964
2965 /* Allocate other vector-like structures. */
2966
2967 struct Lisp_Vector *
2968 allocate_pseudovector (memlen, lisplen, tag)
2969 int memlen, lisplen;
2970 EMACS_INT tag;
2971 {
2972 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2973 EMACS_INT i;
2974
2975 /* Only the first lisplen slots will be traced normally by the GC. */
2976 v->size = lisplen;
2977 for (i = 0; i < lisplen; ++i)
2978 v->contents[i] = Qnil;
2979
2980 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2981 return v;
2982 }
2983
2984 struct Lisp_Hash_Table *
2985 allocate_hash_table (void)
2986 {
2987 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2988 }
2989
2990
2991 struct window *
2992 allocate_window ()
2993 {
2994 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2995 }
2996
2997
2998 struct terminal *
2999 allocate_terminal ()
3000 {
3001 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
3002 next_terminal, PVEC_TERMINAL);
3003 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3004 bzero (&(t->next_terminal),
3005 ((char*)(t+1)) - ((char*)&(t->next_terminal)));
3006
3007 return t;
3008 }
3009
3010 struct frame *
3011 allocate_frame ()
3012 {
3013 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
3014 face_cache, PVEC_FRAME);
3015 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3016 bzero (&(f->face_cache),
3017 ((char*)(f+1)) - ((char*)&(f->face_cache)));
3018 return f;
3019 }
3020
3021
3022 struct Lisp_Process *
3023 allocate_process ()
3024 {
3025 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3026 }
3027
3028
3029 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3030 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3031 See also the function `vector'. */)
3032 (length, init)
3033 register Lisp_Object length, init;
3034 {
3035 Lisp_Object vector;
3036 register EMACS_INT sizei;
3037 register int index;
3038 register struct Lisp_Vector *p;
3039
3040 CHECK_NATNUM (length);
3041 sizei = XFASTINT (length);
3042
3043 p = allocate_vector (sizei);
3044 for (index = 0; index < sizei; index++)
3045 p->contents[index] = init;
3046
3047 XSETVECTOR (vector, p);
3048 return vector;
3049 }
3050
3051
3052 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3053 doc: /* Return a newly created vector with specified arguments as elements.
3054 Any number of arguments, even zero arguments, are allowed.
3055 usage: (vector &rest OBJECTS) */)
3056 (nargs, args)
3057 register int nargs;
3058 Lisp_Object *args;
3059 {
3060 register Lisp_Object len, val;
3061 register int index;
3062 register struct Lisp_Vector *p;
3063
3064 XSETFASTINT (len, nargs);
3065 val = Fmake_vector (len, Qnil);
3066 p = XVECTOR (val);
3067 for (index = 0; index < nargs; index++)
3068 p->contents[index] = args[index];
3069 return val;
3070 }
3071
3072
3073 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3074 doc: /* Create a byte-code object with specified arguments as elements.
3075 The arguments should be the arglist, bytecode-string, constant vector,
3076 stack size, (optional) doc string, and (optional) interactive spec.
3077 The first four arguments are required; at most six have any
3078 significance.
3079 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3080 (nargs, args)
3081 register int nargs;
3082 Lisp_Object *args;
3083 {
3084 register Lisp_Object len, val;
3085 register int index;
3086 register struct Lisp_Vector *p;
3087
3088 XSETFASTINT (len, nargs);
3089 if (!NILP (Vpurify_flag))
3090 val = make_pure_vector ((EMACS_INT) nargs);
3091 else
3092 val = Fmake_vector (len, Qnil);
3093
3094 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3095 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3096 earlier because they produced a raw 8-bit string for byte-code
3097 and now such a byte-code string is loaded as multibyte while
3098 raw 8-bit characters converted to multibyte form. Thus, now we
3099 must convert them back to the original unibyte form. */
3100 args[1] = Fstring_as_unibyte (args[1]);
3101
3102 p = XVECTOR (val);
3103 for (index = 0; index < nargs; index++)
3104 {
3105 if (!NILP (Vpurify_flag))
3106 args[index] = Fpurecopy (args[index]);
3107 p->contents[index] = args[index];
3108 }
3109 XSETPVECTYPE (p, PVEC_COMPILED);
3110 XSETCOMPILED (val, p);
3111 return val;
3112 }
3113
3114
3115 \f
3116 /***********************************************************************
3117 Symbol Allocation
3118 ***********************************************************************/
3119
3120 /* Each symbol_block is just under 1020 bytes long, since malloc
3121 really allocates in units of powers of two and uses 4 bytes for its
3122 own overhead. */
3123
3124 #define SYMBOL_BLOCK_SIZE \
3125 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3126
3127 struct symbol_block
3128 {
3129 /* Place `symbols' first, to preserve alignment. */
3130 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3131 struct symbol_block *next;
3132 };
3133
3134 /* Current symbol block and index of first unused Lisp_Symbol
3135 structure in it. */
3136
3137 static struct symbol_block *symbol_block;
3138 static int symbol_block_index;
3139
3140 /* List of free symbols. */
3141
3142 static struct Lisp_Symbol *symbol_free_list;
3143
3144 /* Total number of symbol blocks now in use. */
3145
3146 static int n_symbol_blocks;
3147
3148
3149 /* Initialize symbol allocation. */
3150
3151 static void
3152 init_symbol ()
3153 {
3154 symbol_block = NULL;
3155 symbol_block_index = SYMBOL_BLOCK_SIZE;
3156 symbol_free_list = 0;
3157 n_symbol_blocks = 0;
3158 }
3159
3160
3161 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3162 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3163 Its value and function definition are void, and its property list is nil. */)
3164 (name)
3165 Lisp_Object name;
3166 {
3167 register Lisp_Object val;
3168 register struct Lisp_Symbol *p;
3169
3170 CHECK_STRING (name);
3171
3172 /* eassert (!handling_signal); */
3173
3174 MALLOC_BLOCK_INPUT;
3175
3176 if (symbol_free_list)
3177 {
3178 XSETSYMBOL (val, symbol_free_list);
3179 symbol_free_list = symbol_free_list->next;
3180 }
3181 else
3182 {
3183 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3184 {
3185 struct symbol_block *new;
3186 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3187 MEM_TYPE_SYMBOL);
3188 new->next = symbol_block;
3189 symbol_block = new;
3190 symbol_block_index = 0;
3191 n_symbol_blocks++;
3192 }
3193 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3194 symbol_block_index++;
3195 }
3196
3197 MALLOC_UNBLOCK_INPUT;
3198
3199 p = XSYMBOL (val);
3200 p->xname = name;
3201 p->plist = Qnil;
3202 p->value = Qunbound;
3203 p->function = Qunbound;
3204 p->next = NULL;
3205 p->gcmarkbit = 0;
3206 p->interned = SYMBOL_UNINTERNED;
3207 p->constant = 0;
3208 p->indirect_variable = 0;
3209 consing_since_gc += sizeof (struct Lisp_Symbol);
3210 symbols_consed++;
3211 return val;
3212 }
3213
3214
3215 \f
3216 /***********************************************************************
3217 Marker (Misc) Allocation
3218 ***********************************************************************/
3219
3220 /* Allocation of markers and other objects that share that structure.
3221 Works like allocation of conses. */
3222
3223 #define MARKER_BLOCK_SIZE \
3224 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3225
3226 struct marker_block
3227 {
3228 /* Place `markers' first, to preserve alignment. */
3229 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3230 struct marker_block *next;
3231 };
3232
3233 static struct marker_block *marker_block;
3234 static int marker_block_index;
3235
3236 static union Lisp_Misc *marker_free_list;
3237
3238 /* Total number of marker blocks now in use. */
3239
3240 static int n_marker_blocks;
3241
3242 static void
3243 init_marker ()
3244 {
3245 marker_block = NULL;
3246 marker_block_index = MARKER_BLOCK_SIZE;
3247 marker_free_list = 0;
3248 n_marker_blocks = 0;
3249 }
3250
3251 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3252
3253 Lisp_Object
3254 allocate_misc ()
3255 {
3256 Lisp_Object val;
3257
3258 /* eassert (!handling_signal); */
3259
3260 MALLOC_BLOCK_INPUT;
3261
3262 if (marker_free_list)
3263 {
3264 XSETMISC (val, marker_free_list);
3265 marker_free_list = marker_free_list->u_free.chain;
3266 }
3267 else
3268 {
3269 if (marker_block_index == MARKER_BLOCK_SIZE)
3270 {
3271 struct marker_block *new;
3272 new = (struct marker_block *) lisp_malloc (sizeof *new,
3273 MEM_TYPE_MISC);
3274 new->next = marker_block;
3275 marker_block = new;
3276 marker_block_index = 0;
3277 n_marker_blocks++;
3278 total_free_markers += MARKER_BLOCK_SIZE;
3279 }
3280 XSETMISC (val, &marker_block->markers[marker_block_index]);
3281 marker_block_index++;
3282 }
3283
3284 MALLOC_UNBLOCK_INPUT;
3285
3286 --total_free_markers;
3287 consing_since_gc += sizeof (union Lisp_Misc);
3288 misc_objects_consed++;
3289 XMISCANY (val)->gcmarkbit = 0;
3290 return val;
3291 }
3292
3293 /* Free a Lisp_Misc object */
3294
3295 void
3296 free_misc (misc)
3297 Lisp_Object misc;
3298 {
3299 XMISCTYPE (misc) = Lisp_Misc_Free;
3300 XMISC (misc)->u_free.chain = marker_free_list;
3301 marker_free_list = XMISC (misc);
3302
3303 total_free_markers++;
3304 }
3305
3306 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3307 INTEGER. This is used to package C values to call record_unwind_protect.
3308 The unwind function can get the C values back using XSAVE_VALUE. */
3309
3310 Lisp_Object
3311 make_save_value (pointer, integer)
3312 void *pointer;
3313 int integer;
3314 {
3315 register Lisp_Object val;
3316 register struct Lisp_Save_Value *p;
3317
3318 val = allocate_misc ();
3319 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3320 p = XSAVE_VALUE (val);
3321 p->pointer = pointer;
3322 p->integer = integer;
3323 p->dogc = 0;
3324 return val;
3325 }
3326
3327 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3328 doc: /* Return a newly allocated marker which does not point at any place. */)
3329 ()
3330 {
3331 register Lisp_Object val;
3332 register struct Lisp_Marker *p;
3333
3334 val = allocate_misc ();
3335 XMISCTYPE (val) = Lisp_Misc_Marker;
3336 p = XMARKER (val);
3337 p->buffer = 0;
3338 p->bytepos = 0;
3339 p->charpos = 0;
3340 p->next = NULL;
3341 p->insertion_type = 0;
3342 return val;
3343 }
3344
3345 /* Put MARKER back on the free list after using it temporarily. */
3346
3347 void
3348 free_marker (marker)
3349 Lisp_Object marker;
3350 {
3351 unchain_marker (XMARKER (marker));
3352 free_misc (marker);
3353 }
3354
3355 \f
3356 /* Return a newly created vector or string with specified arguments as
3357 elements. If all the arguments are characters that can fit
3358 in a string of events, make a string; otherwise, make a vector.
3359
3360 Any number of arguments, even zero arguments, are allowed. */
3361
3362 Lisp_Object
3363 make_event_array (nargs, args)
3364 register int nargs;
3365 Lisp_Object *args;
3366 {
3367 int i;
3368
3369 for (i = 0; i < nargs; i++)
3370 /* The things that fit in a string
3371 are characters that are in 0...127,
3372 after discarding the meta bit and all the bits above it. */
3373 if (!INTEGERP (args[i])
3374 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3375 return Fvector (nargs, args);
3376
3377 /* Since the loop exited, we know that all the things in it are
3378 characters, so we can make a string. */
3379 {
3380 Lisp_Object result;
3381
3382 result = Fmake_string (make_number (nargs), make_number (0));
3383 for (i = 0; i < nargs; i++)
3384 {
3385 SSET (result, i, XINT (args[i]));
3386 /* Move the meta bit to the right place for a string char. */
3387 if (XINT (args[i]) & CHAR_META)
3388 SSET (result, i, SREF (result, i) | 0x80);
3389 }
3390
3391 return result;
3392 }
3393 }
3394
3395
3396 \f
3397 /************************************************************************
3398 Memory Full Handling
3399 ************************************************************************/
3400
3401
3402 /* Called if malloc returns zero. */
3403
3404 void
3405 memory_full ()
3406 {
3407 int i;
3408
3409 Vmemory_full = Qt;
3410
3411 memory_full_cons_threshold = sizeof (struct cons_block);
3412
3413 /* The first time we get here, free the spare memory. */
3414 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3415 if (spare_memory[i])
3416 {
3417 if (i == 0)
3418 free (spare_memory[i]);
3419 else if (i >= 1 && i <= 4)
3420 lisp_align_free (spare_memory[i]);
3421 else
3422 lisp_free (spare_memory[i]);
3423 spare_memory[i] = 0;
3424 }
3425
3426 /* Record the space now used. When it decreases substantially,
3427 we can refill the memory reserve. */
3428 #ifndef SYSTEM_MALLOC
3429 bytes_used_when_full = BYTES_USED;
3430 #endif
3431
3432 /* This used to call error, but if we've run out of memory, we could
3433 get infinite recursion trying to build the string. */
3434 xsignal (Qnil, Vmemory_signal_data);
3435 }
3436
3437 /* If we released our reserve (due to running out of memory),
3438 and we have a fair amount free once again,
3439 try to set aside another reserve in case we run out once more.
3440
3441 This is called when a relocatable block is freed in ralloc.c,
3442 and also directly from this file, in case we're not using ralloc.c. */
3443
3444 void
3445 refill_memory_reserve ()
3446 {
3447 #ifndef SYSTEM_MALLOC
3448 if (spare_memory[0] == 0)
3449 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3450 if (spare_memory[1] == 0)
3451 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3452 MEM_TYPE_CONS);
3453 if (spare_memory[2] == 0)
3454 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3455 MEM_TYPE_CONS);
3456 if (spare_memory[3] == 0)
3457 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3458 MEM_TYPE_CONS);
3459 if (spare_memory[4] == 0)
3460 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3461 MEM_TYPE_CONS);
3462 if (spare_memory[5] == 0)
3463 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3464 MEM_TYPE_STRING);
3465 if (spare_memory[6] == 0)
3466 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3467 MEM_TYPE_STRING);
3468 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3469 Vmemory_full = Qnil;
3470 #endif
3471 }
3472 \f
3473 /************************************************************************
3474 C Stack Marking
3475 ************************************************************************/
3476
3477 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3478
3479 /* Conservative C stack marking requires a method to identify possibly
3480 live Lisp objects given a pointer value. We do this by keeping
3481 track of blocks of Lisp data that are allocated in a red-black tree
3482 (see also the comment of mem_node which is the type of nodes in
3483 that tree). Function lisp_malloc adds information for an allocated
3484 block to the red-black tree with calls to mem_insert, and function
3485 lisp_free removes it with mem_delete. Functions live_string_p etc
3486 call mem_find to lookup information about a given pointer in the
3487 tree, and use that to determine if the pointer points to a Lisp
3488 object or not. */
3489
3490 /* Initialize this part of alloc.c. */
3491
3492 static void
3493 mem_init ()
3494 {
3495 mem_z.left = mem_z.right = MEM_NIL;
3496 mem_z.parent = NULL;
3497 mem_z.color = MEM_BLACK;
3498 mem_z.start = mem_z.end = NULL;
3499 mem_root = MEM_NIL;
3500 }
3501
3502
3503 /* Value is a pointer to the mem_node containing START. Value is
3504 MEM_NIL if there is no node in the tree containing START. */
3505
3506 static INLINE struct mem_node *
3507 mem_find (start)
3508 void *start;
3509 {
3510 struct mem_node *p;
3511
3512 if (start < min_heap_address || start > max_heap_address)
3513 return MEM_NIL;
3514
3515 /* Make the search always successful to speed up the loop below. */
3516 mem_z.start = start;
3517 mem_z.end = (char *) start + 1;
3518
3519 p = mem_root;
3520 while (start < p->start || start >= p->end)
3521 p = start < p->start ? p->left : p->right;
3522 return p;
3523 }
3524
3525
3526 /* Insert a new node into the tree for a block of memory with start
3527 address START, end address END, and type TYPE. Value is a
3528 pointer to the node that was inserted. */
3529
3530 static struct mem_node *
3531 mem_insert (start, end, type)
3532 void *start, *end;
3533 enum mem_type type;
3534 {
3535 struct mem_node *c, *parent, *x;
3536
3537 if (min_heap_address == NULL || start < min_heap_address)
3538 min_heap_address = start;
3539 if (max_heap_address == NULL || end > max_heap_address)
3540 max_heap_address = end;
3541
3542 /* See where in the tree a node for START belongs. In this
3543 particular application, it shouldn't happen that a node is already
3544 present. For debugging purposes, let's check that. */
3545 c = mem_root;
3546 parent = NULL;
3547
3548 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3549
3550 while (c != MEM_NIL)
3551 {
3552 if (start >= c->start && start < c->end)
3553 abort ();
3554 parent = c;
3555 c = start < c->start ? c->left : c->right;
3556 }
3557
3558 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3559
3560 while (c != MEM_NIL)
3561 {
3562 parent = c;
3563 c = start < c->start ? c->left : c->right;
3564 }
3565
3566 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3567
3568 /* Create a new node. */
3569 #ifdef GC_MALLOC_CHECK
3570 x = (struct mem_node *) _malloc_internal (sizeof *x);
3571 if (x == NULL)
3572 abort ();
3573 #else
3574 x = (struct mem_node *) xmalloc (sizeof *x);
3575 #endif
3576 x->start = start;
3577 x->end = end;
3578 x->type = type;
3579 x->parent = parent;
3580 x->left = x->right = MEM_NIL;
3581 x->color = MEM_RED;
3582
3583 /* Insert it as child of PARENT or install it as root. */
3584 if (parent)
3585 {
3586 if (start < parent->start)
3587 parent->left = x;
3588 else
3589 parent->right = x;
3590 }
3591 else
3592 mem_root = x;
3593
3594 /* Re-establish red-black tree properties. */
3595 mem_insert_fixup (x);
3596
3597 return x;
3598 }
3599
3600
3601 /* Re-establish the red-black properties of the tree, and thereby
3602 balance the tree, after node X has been inserted; X is always red. */
3603
3604 static void
3605 mem_insert_fixup (x)
3606 struct mem_node *x;
3607 {
3608 while (x != mem_root && x->parent->color == MEM_RED)
3609 {
3610 /* X is red and its parent is red. This is a violation of
3611 red-black tree property #3. */
3612
3613 if (x->parent == x->parent->parent->left)
3614 {
3615 /* We're on the left side of our grandparent, and Y is our
3616 "uncle". */
3617 struct mem_node *y = x->parent->parent->right;
3618
3619 if (y->color == MEM_RED)
3620 {
3621 /* Uncle and parent are red but should be black because
3622 X is red. Change the colors accordingly and proceed
3623 with the grandparent. */
3624 x->parent->color = MEM_BLACK;
3625 y->color = MEM_BLACK;
3626 x->parent->parent->color = MEM_RED;
3627 x = x->parent->parent;
3628 }
3629 else
3630 {
3631 /* Parent and uncle have different colors; parent is
3632 red, uncle is black. */
3633 if (x == x->parent->right)
3634 {
3635 x = x->parent;
3636 mem_rotate_left (x);
3637 }
3638
3639 x->parent->color = MEM_BLACK;
3640 x->parent->parent->color = MEM_RED;
3641 mem_rotate_right (x->parent->parent);
3642 }
3643 }
3644 else
3645 {
3646 /* This is the symmetrical case of above. */
3647 struct mem_node *y = x->parent->parent->left;
3648
3649 if (y->color == MEM_RED)
3650 {
3651 x->parent->color = MEM_BLACK;
3652 y->color = MEM_BLACK;
3653 x->parent->parent->color = MEM_RED;
3654 x = x->parent->parent;
3655 }
3656 else
3657 {
3658 if (x == x->parent->left)
3659 {
3660 x = x->parent;
3661 mem_rotate_right (x);
3662 }
3663
3664 x->parent->color = MEM_BLACK;
3665 x->parent->parent->color = MEM_RED;
3666 mem_rotate_left (x->parent->parent);
3667 }
3668 }
3669 }
3670
3671 /* The root may have been changed to red due to the algorithm. Set
3672 it to black so that property #5 is satisfied. */
3673 mem_root->color = MEM_BLACK;
3674 }
3675
3676
3677 /* (x) (y)
3678 / \ / \
3679 a (y) ===> (x) c
3680 / \ / \
3681 b c a b */
3682
3683 static void
3684 mem_rotate_left (x)
3685 struct mem_node *x;
3686 {
3687 struct mem_node *y;
3688
3689 /* Turn y's left sub-tree into x's right sub-tree. */
3690 y = x->right;
3691 x->right = y->left;
3692 if (y->left != MEM_NIL)
3693 y->left->parent = x;
3694
3695 /* Y's parent was x's parent. */
3696 if (y != MEM_NIL)
3697 y->parent = x->parent;
3698
3699 /* Get the parent to point to y instead of x. */
3700 if (x->parent)
3701 {
3702 if (x == x->parent->left)
3703 x->parent->left = y;
3704 else
3705 x->parent->right = y;
3706 }
3707 else
3708 mem_root = y;
3709
3710 /* Put x on y's left. */
3711 y->left = x;
3712 if (x != MEM_NIL)
3713 x->parent = y;
3714 }
3715
3716
3717 /* (x) (Y)
3718 / \ / \
3719 (y) c ===> a (x)
3720 / \ / \
3721 a b b c */
3722
3723 static void
3724 mem_rotate_right (x)
3725 struct mem_node *x;
3726 {
3727 struct mem_node *y = x->left;
3728
3729 x->left = y->right;
3730 if (y->right != MEM_NIL)
3731 y->right->parent = x;
3732
3733 if (y != MEM_NIL)
3734 y->parent = x->parent;
3735 if (x->parent)
3736 {
3737 if (x == x->parent->right)
3738 x->parent->right = y;
3739 else
3740 x->parent->left = y;
3741 }
3742 else
3743 mem_root = y;
3744
3745 y->right = x;
3746 if (x != MEM_NIL)
3747 x->parent = y;
3748 }
3749
3750
3751 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3752
3753 static void
3754 mem_delete (z)
3755 struct mem_node *z;
3756 {
3757 struct mem_node *x, *y;
3758
3759 if (!z || z == MEM_NIL)
3760 return;
3761
3762 if (z->left == MEM_NIL || z->right == MEM_NIL)
3763 y = z;
3764 else
3765 {
3766 y = z->right;
3767 while (y->left != MEM_NIL)
3768 y = y->left;
3769 }
3770
3771 if (y->left != MEM_NIL)
3772 x = y->left;
3773 else
3774 x = y->right;
3775
3776 x->parent = y->parent;
3777 if (y->parent)
3778 {
3779 if (y == y->parent->left)
3780 y->parent->left = x;
3781 else
3782 y->parent->right = x;
3783 }
3784 else
3785 mem_root = x;
3786
3787 if (y != z)
3788 {
3789 z->start = y->start;
3790 z->end = y->end;
3791 z->type = y->type;
3792 }
3793
3794 if (y->color == MEM_BLACK)
3795 mem_delete_fixup (x);
3796
3797 #ifdef GC_MALLOC_CHECK
3798 _free_internal (y);
3799 #else
3800 xfree (y);
3801 #endif
3802 }
3803
3804
3805 /* Re-establish the red-black properties of the tree, after a
3806 deletion. */
3807
3808 static void
3809 mem_delete_fixup (x)
3810 struct mem_node *x;
3811 {
3812 while (x != mem_root && x->color == MEM_BLACK)
3813 {
3814 if (x == x->parent->left)
3815 {
3816 struct mem_node *w = x->parent->right;
3817
3818 if (w->color == MEM_RED)
3819 {
3820 w->color = MEM_BLACK;
3821 x->parent->color = MEM_RED;
3822 mem_rotate_left (x->parent);
3823 w = x->parent->right;
3824 }
3825
3826 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3827 {
3828 w->color = MEM_RED;
3829 x = x->parent;
3830 }
3831 else
3832 {
3833 if (w->right->color == MEM_BLACK)
3834 {
3835 w->left->color = MEM_BLACK;
3836 w->color = MEM_RED;
3837 mem_rotate_right (w);
3838 w = x->parent->right;
3839 }
3840 w->color = x->parent->color;
3841 x->parent->color = MEM_BLACK;
3842 w->right->color = MEM_BLACK;
3843 mem_rotate_left (x->parent);
3844 x = mem_root;
3845 }
3846 }
3847 else
3848 {
3849 struct mem_node *w = x->parent->left;
3850
3851 if (w->color == MEM_RED)
3852 {
3853 w->color = MEM_BLACK;
3854 x->parent->color = MEM_RED;
3855 mem_rotate_right (x->parent);
3856 w = x->parent->left;
3857 }
3858
3859 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3860 {
3861 w->color = MEM_RED;
3862 x = x->parent;
3863 }
3864 else
3865 {
3866 if (w->left->color == MEM_BLACK)
3867 {
3868 w->right->color = MEM_BLACK;
3869 w->color = MEM_RED;
3870 mem_rotate_left (w);
3871 w = x->parent->left;
3872 }
3873
3874 w->color = x->parent->color;
3875 x->parent->color = MEM_BLACK;
3876 w->left->color = MEM_BLACK;
3877 mem_rotate_right (x->parent);
3878 x = mem_root;
3879 }
3880 }
3881 }
3882
3883 x->color = MEM_BLACK;
3884 }
3885
3886
3887 /* Value is non-zero if P is a pointer to a live Lisp string on
3888 the heap. M is a pointer to the mem_block for P. */
3889
3890 static INLINE int
3891 live_string_p (m, p)
3892 struct mem_node *m;
3893 void *p;
3894 {
3895 if (m->type == MEM_TYPE_STRING)
3896 {
3897 struct string_block *b = (struct string_block *) m->start;
3898 int offset = (char *) p - (char *) &b->strings[0];
3899
3900 /* P must point to the start of a Lisp_String structure, and it
3901 must not be on the free-list. */
3902 return (offset >= 0
3903 && offset % sizeof b->strings[0] == 0
3904 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3905 && ((struct Lisp_String *) p)->data != NULL);
3906 }
3907 else
3908 return 0;
3909 }
3910
3911
3912 /* Value is non-zero if P is a pointer to a live Lisp cons on
3913 the heap. M is a pointer to the mem_block for P. */
3914
3915 static INLINE int
3916 live_cons_p (m, p)
3917 struct mem_node *m;
3918 void *p;
3919 {
3920 if (m->type == MEM_TYPE_CONS)
3921 {
3922 struct cons_block *b = (struct cons_block *) m->start;
3923 int offset = (char *) p - (char *) &b->conses[0];
3924
3925 /* P must point to the start of a Lisp_Cons, not be
3926 one of the unused cells in the current cons block,
3927 and not be on the free-list. */
3928 return (offset >= 0
3929 && offset % sizeof b->conses[0] == 0
3930 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3931 && (b != cons_block
3932 || offset / sizeof b->conses[0] < cons_block_index)
3933 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3934 }
3935 else
3936 return 0;
3937 }
3938
3939
3940 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3941 the heap. M is a pointer to the mem_block for P. */
3942
3943 static INLINE int
3944 live_symbol_p (m, p)
3945 struct mem_node *m;
3946 void *p;
3947 {
3948 if (m->type == MEM_TYPE_SYMBOL)
3949 {
3950 struct symbol_block *b = (struct symbol_block *) m->start;
3951 int offset = (char *) p - (char *) &b->symbols[0];
3952
3953 /* P must point to the start of a Lisp_Symbol, not be
3954 one of the unused cells in the current symbol block,
3955 and not be on the free-list. */
3956 return (offset >= 0
3957 && offset % sizeof b->symbols[0] == 0
3958 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3959 && (b != symbol_block
3960 || offset / sizeof b->symbols[0] < symbol_block_index)
3961 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3962 }
3963 else
3964 return 0;
3965 }
3966
3967
3968 /* Value is non-zero if P is a pointer to a live Lisp float on
3969 the heap. M is a pointer to the mem_block for P. */
3970
3971 static INLINE int
3972 live_float_p (m, p)
3973 struct mem_node *m;
3974 void *p;
3975 {
3976 if (m->type == MEM_TYPE_FLOAT)
3977 {
3978 struct float_block *b = (struct float_block *) m->start;
3979 int offset = (char *) p - (char *) &b->floats[0];
3980
3981 /* P must point to the start of a Lisp_Float and not be
3982 one of the unused cells in the current float block. */
3983 return (offset >= 0
3984 && offset % sizeof b->floats[0] == 0
3985 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3986 && (b != float_block
3987 || offset / sizeof b->floats[0] < float_block_index));
3988 }
3989 else
3990 return 0;
3991 }
3992
3993
3994 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3995 the heap. M is a pointer to the mem_block for P. */
3996
3997 static INLINE int
3998 live_misc_p (m, p)
3999 struct mem_node *m;
4000 void *p;
4001 {
4002 if (m->type == MEM_TYPE_MISC)
4003 {
4004 struct marker_block *b = (struct marker_block *) m->start;
4005 int offset = (char *) p - (char *) &b->markers[0];
4006
4007 /* P must point to the start of a Lisp_Misc, not be
4008 one of the unused cells in the current misc block,
4009 and not be on the free-list. */
4010 return (offset >= 0
4011 && offset % sizeof b->markers[0] == 0
4012 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4013 && (b != marker_block
4014 || offset / sizeof b->markers[0] < marker_block_index)
4015 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4016 }
4017 else
4018 return 0;
4019 }
4020
4021
4022 /* Value is non-zero if P is a pointer to a live vector-like object.
4023 M is a pointer to the mem_block for P. */
4024
4025 static INLINE int
4026 live_vector_p (m, p)
4027 struct mem_node *m;
4028 void *p;
4029 {
4030 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
4031 }
4032
4033
4034 /* Value is non-zero if P is a pointer to a live buffer. M is a
4035 pointer to the mem_block for P. */
4036
4037 static INLINE int
4038 live_buffer_p (m, p)
4039 struct mem_node *m;
4040 void *p;
4041 {
4042 /* P must point to the start of the block, and the buffer
4043 must not have been killed. */
4044 return (m->type == MEM_TYPE_BUFFER
4045 && p == m->start
4046 && !NILP (((struct buffer *) p)->name));
4047 }
4048
4049 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4050
4051 #if GC_MARK_STACK
4052
4053 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4054
4055 /* Array of objects that are kept alive because the C stack contains
4056 a pattern that looks like a reference to them . */
4057
4058 #define MAX_ZOMBIES 10
4059 static Lisp_Object zombies[MAX_ZOMBIES];
4060
4061 /* Number of zombie objects. */
4062
4063 static int nzombies;
4064
4065 /* Number of garbage collections. */
4066
4067 static int ngcs;
4068
4069 /* Average percentage of zombies per collection. */
4070
4071 static double avg_zombies;
4072
4073 /* Max. number of live and zombie objects. */
4074
4075 static int max_live, max_zombies;
4076
4077 /* Average number of live objects per GC. */
4078
4079 static double avg_live;
4080
4081 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4082 doc: /* Show information about live and zombie objects. */)
4083 ()
4084 {
4085 Lisp_Object args[8], zombie_list = Qnil;
4086 int i;
4087 for (i = 0; i < nzombies; i++)
4088 zombie_list = Fcons (zombies[i], zombie_list);
4089 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4090 args[1] = make_number (ngcs);
4091 args[2] = make_float (avg_live);
4092 args[3] = make_float (avg_zombies);
4093 args[4] = make_float (avg_zombies / avg_live / 100);
4094 args[5] = make_number (max_live);
4095 args[6] = make_number (max_zombies);
4096 args[7] = zombie_list;
4097 return Fmessage (8, args);
4098 }
4099
4100 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4101
4102
4103 /* Mark OBJ if we can prove it's a Lisp_Object. */
4104
4105 static INLINE void
4106 mark_maybe_object (obj)
4107 Lisp_Object obj;
4108 {
4109 void *po = (void *) XPNTR (obj);
4110 struct mem_node *m = mem_find (po);
4111
4112 if (m != MEM_NIL)
4113 {
4114 int mark_p = 0;
4115
4116 switch (XTYPE (obj))
4117 {
4118 case Lisp_String:
4119 mark_p = (live_string_p (m, po)
4120 && !STRING_MARKED_P ((struct Lisp_String *) po));
4121 break;
4122
4123 case Lisp_Cons:
4124 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4125 break;
4126
4127 case Lisp_Symbol:
4128 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4129 break;
4130
4131 case Lisp_Float:
4132 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4133 break;
4134
4135 case Lisp_Vectorlike:
4136 /* Note: can't check BUFFERP before we know it's a
4137 buffer because checking that dereferences the pointer
4138 PO which might point anywhere. */
4139 if (live_vector_p (m, po))
4140 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4141 else if (live_buffer_p (m, po))
4142 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4143 break;
4144
4145 case Lisp_Misc:
4146 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4147 break;
4148
4149 case Lisp_Int:
4150 case Lisp_Type_Limit:
4151 break;
4152 }
4153
4154 if (mark_p)
4155 {
4156 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4157 if (nzombies < MAX_ZOMBIES)
4158 zombies[nzombies] = obj;
4159 ++nzombies;
4160 #endif
4161 mark_object (obj);
4162 }
4163 }
4164 }
4165
4166
4167 /* If P points to Lisp data, mark that as live if it isn't already
4168 marked. */
4169
4170 static INLINE void
4171 mark_maybe_pointer (p)
4172 void *p;
4173 {
4174 struct mem_node *m;
4175
4176 /* Quickly rule out some values which can't point to Lisp data. */
4177 if ((EMACS_INT) p %
4178 #ifdef USE_LSB_TAG
4179 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4180 #else
4181 2 /* We assume that Lisp data is aligned on even addresses. */
4182 #endif
4183 )
4184 return;
4185
4186 m = mem_find (p);
4187 if (m != MEM_NIL)
4188 {
4189 Lisp_Object obj = Qnil;
4190
4191 switch (m->type)
4192 {
4193 case MEM_TYPE_NON_LISP:
4194 /* Nothing to do; not a pointer to Lisp memory. */
4195 break;
4196
4197 case MEM_TYPE_BUFFER:
4198 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4199 XSETVECTOR (obj, p);
4200 break;
4201
4202 case MEM_TYPE_CONS:
4203 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4204 XSETCONS (obj, p);
4205 break;
4206
4207 case MEM_TYPE_STRING:
4208 if (live_string_p (m, p)
4209 && !STRING_MARKED_P ((struct Lisp_String *) p))
4210 XSETSTRING (obj, p);
4211 break;
4212
4213 case MEM_TYPE_MISC:
4214 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4215 XSETMISC (obj, p);
4216 break;
4217
4218 case MEM_TYPE_SYMBOL:
4219 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4220 XSETSYMBOL (obj, p);
4221 break;
4222
4223 case MEM_TYPE_FLOAT:
4224 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4225 XSETFLOAT (obj, p);
4226 break;
4227
4228 case MEM_TYPE_VECTORLIKE:
4229 if (live_vector_p (m, p))
4230 {
4231 Lisp_Object tem;
4232 XSETVECTOR (tem, p);
4233 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4234 obj = tem;
4235 }
4236 break;
4237
4238 default:
4239 abort ();
4240 }
4241
4242 if (!NILP (obj))
4243 mark_object (obj);
4244 }
4245 }
4246
4247
4248 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4249 or END+OFFSET..START. */
4250
4251 static void
4252 mark_memory (start, end, offset)
4253 void *start, *end;
4254 int offset;
4255 {
4256 Lisp_Object *p;
4257 void **pp;
4258
4259 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4260 nzombies = 0;
4261 #endif
4262
4263 /* Make START the pointer to the start of the memory region,
4264 if it isn't already. */
4265 if (end < start)
4266 {
4267 void *tem = start;
4268 start = end;
4269 end = tem;
4270 }
4271
4272 /* Mark Lisp_Objects. */
4273 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4274 mark_maybe_object (*p);
4275
4276 /* Mark Lisp data pointed to. This is necessary because, in some
4277 situations, the C compiler optimizes Lisp objects away, so that
4278 only a pointer to them remains. Example:
4279
4280 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4281 ()
4282 {
4283 Lisp_Object obj = build_string ("test");
4284 struct Lisp_String *s = XSTRING (obj);
4285 Fgarbage_collect ();
4286 fprintf (stderr, "test `%s'\n", s->data);
4287 return Qnil;
4288 }
4289
4290 Here, `obj' isn't really used, and the compiler optimizes it
4291 away. The only reference to the life string is through the
4292 pointer `s'. */
4293
4294 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4295 mark_maybe_pointer (*pp);
4296 }
4297
4298 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4299 the GCC system configuration. In gcc 3.2, the only systems for
4300 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4301 by others?) and ns32k-pc532-min. */
4302
4303 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4304
4305 static int setjmp_tested_p, longjmps_done;
4306
4307 #define SETJMP_WILL_LIKELY_WORK "\
4308 \n\
4309 Emacs garbage collector has been changed to use conservative stack\n\
4310 marking. Emacs has determined that the method it uses to do the\n\
4311 marking will likely work on your system, but this isn't sure.\n\
4312 \n\
4313 If you are a system-programmer, or can get the help of a local wizard\n\
4314 who is, please take a look at the function mark_stack in alloc.c, and\n\
4315 verify that the methods used are appropriate for your system.\n\
4316 \n\
4317 Please mail the result to <emacs-devel@gnu.org>.\n\
4318 "
4319
4320 #define SETJMP_WILL_NOT_WORK "\
4321 \n\
4322 Emacs garbage collector has been changed to use conservative stack\n\
4323 marking. Emacs has determined that the default method it uses to do the\n\
4324 marking will not work on your system. We will need a system-dependent\n\
4325 solution for your system.\n\
4326 \n\
4327 Please take a look at the function mark_stack in alloc.c, and\n\
4328 try to find a way to make it work on your system.\n\
4329 \n\
4330 Note that you may get false negatives, depending on the compiler.\n\
4331 In particular, you need to use -O with GCC for this test.\n\
4332 \n\
4333 Please mail the result to <emacs-devel@gnu.org>.\n\
4334 "
4335
4336
4337 /* Perform a quick check if it looks like setjmp saves registers in a
4338 jmp_buf. Print a message to stderr saying so. When this test
4339 succeeds, this is _not_ a proof that setjmp is sufficient for
4340 conservative stack marking. Only the sources or a disassembly
4341 can prove that. */
4342
4343 static void
4344 test_setjmp ()
4345 {
4346 char buf[10];
4347 register int x;
4348 jmp_buf jbuf;
4349 int result = 0;
4350
4351 /* Arrange for X to be put in a register. */
4352 sprintf (buf, "1");
4353 x = strlen (buf);
4354 x = 2 * x - 1;
4355
4356 setjmp (jbuf);
4357 if (longjmps_done == 1)
4358 {
4359 /* Came here after the longjmp at the end of the function.
4360
4361 If x == 1, the longjmp has restored the register to its
4362 value before the setjmp, and we can hope that setjmp
4363 saves all such registers in the jmp_buf, although that
4364 isn't sure.
4365
4366 For other values of X, either something really strange is
4367 taking place, or the setjmp just didn't save the register. */
4368
4369 if (x == 1)
4370 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4371 else
4372 {
4373 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4374 exit (1);
4375 }
4376 }
4377
4378 ++longjmps_done;
4379 x = 2;
4380 if (longjmps_done == 1)
4381 longjmp (jbuf, 1);
4382 }
4383
4384 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4385
4386
4387 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4388
4389 /* Abort if anything GCPRO'd doesn't survive the GC. */
4390
4391 static void
4392 check_gcpros ()
4393 {
4394 struct gcpro *p;
4395 int i;
4396
4397 for (p = gcprolist; p; p = p->next)
4398 for (i = 0; i < p->nvars; ++i)
4399 if (!survives_gc_p (p->var[i]))
4400 /* FIXME: It's not necessarily a bug. It might just be that the
4401 GCPRO is unnecessary or should release the object sooner. */
4402 abort ();
4403 }
4404
4405 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4406
4407 static void
4408 dump_zombies ()
4409 {
4410 int i;
4411
4412 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4413 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4414 {
4415 fprintf (stderr, " %d = ", i);
4416 debug_print (zombies[i]);
4417 }
4418 }
4419
4420 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4421
4422
4423 /* Mark live Lisp objects on the C stack.
4424
4425 There are several system-dependent problems to consider when
4426 porting this to new architectures:
4427
4428 Processor Registers
4429
4430 We have to mark Lisp objects in CPU registers that can hold local
4431 variables or are used to pass parameters.
4432
4433 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4434 something that either saves relevant registers on the stack, or
4435 calls mark_maybe_object passing it each register's contents.
4436
4437 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4438 implementation assumes that calling setjmp saves registers we need
4439 to see in a jmp_buf which itself lies on the stack. This doesn't
4440 have to be true! It must be verified for each system, possibly
4441 by taking a look at the source code of setjmp.
4442
4443 Stack Layout
4444
4445 Architectures differ in the way their processor stack is organized.
4446 For example, the stack might look like this
4447
4448 +----------------+
4449 | Lisp_Object | size = 4
4450 +----------------+
4451 | something else | size = 2
4452 +----------------+
4453 | Lisp_Object | size = 4
4454 +----------------+
4455 | ... |
4456
4457 In such a case, not every Lisp_Object will be aligned equally. To
4458 find all Lisp_Object on the stack it won't be sufficient to walk
4459 the stack in steps of 4 bytes. Instead, two passes will be
4460 necessary, one starting at the start of the stack, and a second
4461 pass starting at the start of the stack + 2. Likewise, if the
4462 minimal alignment of Lisp_Objects on the stack is 1, four passes
4463 would be necessary, each one starting with one byte more offset
4464 from the stack start.
4465
4466 The current code assumes by default that Lisp_Objects are aligned
4467 equally on the stack. */
4468
4469 static void
4470 mark_stack ()
4471 {
4472 int i;
4473 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4474 union aligned_jmpbuf {
4475 Lisp_Object o;
4476 jmp_buf j;
4477 } j;
4478 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4479 void *end;
4480
4481 /* This trick flushes the register windows so that all the state of
4482 the process is contained in the stack. */
4483 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4484 needed on ia64 too. See mach_dep.c, where it also says inline
4485 assembler doesn't work with relevant proprietary compilers. */
4486 #ifdef sparc
4487 asm ("ta 3");
4488 #endif
4489
4490 /* Save registers that we need to see on the stack. We need to see
4491 registers used to hold register variables and registers used to
4492 pass parameters. */
4493 #ifdef GC_SAVE_REGISTERS_ON_STACK
4494 GC_SAVE_REGISTERS_ON_STACK (end);
4495 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4496
4497 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4498 setjmp will definitely work, test it
4499 and print a message with the result
4500 of the test. */
4501 if (!setjmp_tested_p)
4502 {
4503 setjmp_tested_p = 1;
4504 test_setjmp ();
4505 }
4506 #endif /* GC_SETJMP_WORKS */
4507
4508 setjmp (j.j);
4509 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4510 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4511
4512 /* This assumes that the stack is a contiguous region in memory. If
4513 that's not the case, something has to be done here to iterate
4514 over the stack segments. */
4515 #ifndef GC_LISP_OBJECT_ALIGNMENT
4516 #ifdef __GNUC__
4517 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4518 #else
4519 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4520 #endif
4521 #endif
4522 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4523 mark_memory (stack_base, end, i);
4524 /* Allow for marking a secondary stack, like the register stack on the
4525 ia64. */
4526 #ifdef GC_MARK_SECONDARY_STACK
4527 GC_MARK_SECONDARY_STACK ();
4528 #endif
4529
4530 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4531 check_gcpros ();
4532 #endif
4533 }
4534
4535 #endif /* GC_MARK_STACK != 0 */
4536
4537
4538 /* Determine whether it is safe to access memory at address P. */
4539 static int
4540 valid_pointer_p (p)
4541 void *p;
4542 {
4543 #ifdef WINDOWSNT
4544 return w32_valid_pointer_p (p, 16);
4545 #else
4546 int fd;
4547
4548 /* Obviously, we cannot just access it (we would SEGV trying), so we
4549 trick the o/s to tell us whether p is a valid pointer.
4550 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4551 not validate p in that case. */
4552
4553 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4554 {
4555 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4556 emacs_close (fd);
4557 unlink ("__Valid__Lisp__Object__");
4558 return valid;
4559 }
4560
4561 return -1;
4562 #endif
4563 }
4564
4565 /* Return 1 if OBJ is a valid lisp object.
4566 Return 0 if OBJ is NOT a valid lisp object.
4567 Return -1 if we cannot validate OBJ.
4568 This function can be quite slow,
4569 so it should only be used in code for manual debugging. */
4570
4571 int
4572 valid_lisp_object_p (obj)
4573 Lisp_Object obj;
4574 {
4575 void *p;
4576 #if GC_MARK_STACK
4577 struct mem_node *m;
4578 #endif
4579
4580 if (INTEGERP (obj))
4581 return 1;
4582
4583 p = (void *) XPNTR (obj);
4584 if (PURE_POINTER_P (p))
4585 return 1;
4586
4587 #if !GC_MARK_STACK
4588 return valid_pointer_p (p);
4589 #else
4590
4591 m = mem_find (p);
4592
4593 if (m == MEM_NIL)
4594 {
4595 int valid = valid_pointer_p (p);
4596 if (valid <= 0)
4597 return valid;
4598
4599 if (SUBRP (obj))
4600 return 1;
4601
4602 return 0;
4603 }
4604
4605 switch (m->type)
4606 {
4607 case MEM_TYPE_NON_LISP:
4608 return 0;
4609
4610 case MEM_TYPE_BUFFER:
4611 return live_buffer_p (m, p);
4612
4613 case MEM_TYPE_CONS:
4614 return live_cons_p (m, p);
4615
4616 case MEM_TYPE_STRING:
4617 return live_string_p (m, p);
4618
4619 case MEM_TYPE_MISC:
4620 return live_misc_p (m, p);
4621
4622 case MEM_TYPE_SYMBOL:
4623 return live_symbol_p (m, p);
4624
4625 case MEM_TYPE_FLOAT:
4626 return live_float_p (m, p);
4627
4628 case MEM_TYPE_VECTORLIKE:
4629 return live_vector_p (m, p);
4630
4631 default:
4632 break;
4633 }
4634
4635 return 0;
4636 #endif
4637 }
4638
4639
4640
4641 \f
4642 /***********************************************************************
4643 Pure Storage Management
4644 ***********************************************************************/
4645
4646 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4647 pointer to it. TYPE is the Lisp type for which the memory is
4648 allocated. TYPE < 0 means it's not used for a Lisp object. */
4649
4650 static POINTER_TYPE *
4651 pure_alloc (size, type)
4652 size_t size;
4653 int type;
4654 {
4655 POINTER_TYPE *result;
4656 #ifdef USE_LSB_TAG
4657 size_t alignment = (1 << GCTYPEBITS);
4658 #else
4659 size_t alignment = sizeof (EMACS_INT);
4660
4661 /* Give Lisp_Floats an extra alignment. */
4662 if (type == Lisp_Float)
4663 {
4664 #if defined __GNUC__ && __GNUC__ >= 2
4665 alignment = __alignof (struct Lisp_Float);
4666 #else
4667 alignment = sizeof (struct Lisp_Float);
4668 #endif
4669 }
4670 #endif
4671
4672 again:
4673 if (type >= 0)
4674 {
4675 /* Allocate space for a Lisp object from the beginning of the free
4676 space with taking account of alignment. */
4677 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4678 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4679 }
4680 else
4681 {
4682 /* Allocate space for a non-Lisp object from the end of the free
4683 space. */
4684 pure_bytes_used_non_lisp += size;
4685 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4686 }
4687 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4688
4689 if (pure_bytes_used <= pure_size)
4690 return result;
4691
4692 /* Don't allocate a large amount here,
4693 because it might get mmap'd and then its address
4694 might not be usable. */
4695 purebeg = (char *) xmalloc (10000);
4696 pure_size = 10000;
4697 pure_bytes_used_before_overflow += pure_bytes_used - size;
4698 pure_bytes_used = 0;
4699 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4700 goto again;
4701 }
4702
4703
4704 /* Print a warning if PURESIZE is too small. */
4705
4706 void
4707 check_pure_size ()
4708 {
4709 if (pure_bytes_used_before_overflow)
4710 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4711 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4712 }
4713
4714
4715 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4716 the non-Lisp data pool of the pure storage, and return its start
4717 address. Return NULL if not found. */
4718
4719 static char *
4720 find_string_data_in_pure (data, nbytes)
4721 char *data;
4722 int nbytes;
4723 {
4724 int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4725 unsigned char *p;
4726 char *non_lisp_beg;
4727
4728 if (pure_bytes_used_non_lisp < nbytes + 1)
4729 return NULL;
4730
4731 /* Set up the Boyer-Moore table. */
4732 skip = nbytes + 1;
4733 for (i = 0; i < 256; i++)
4734 bm_skip[i] = skip;
4735
4736 p = (unsigned char *) data;
4737 while (--skip > 0)
4738 bm_skip[*p++] = skip;
4739
4740 last_char_skip = bm_skip['\0'];
4741
4742 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4743 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4744
4745 /* See the comments in the function `boyer_moore' (search.c) for the
4746 use of `infinity'. */
4747 infinity = pure_bytes_used_non_lisp + 1;
4748 bm_skip['\0'] = infinity;
4749
4750 p = (unsigned char *) non_lisp_beg + nbytes;
4751 start = 0;
4752 do
4753 {
4754 /* Check the last character (== '\0'). */
4755 do
4756 {
4757 start += bm_skip[*(p + start)];
4758 }
4759 while (start <= start_max);
4760
4761 if (start < infinity)
4762 /* Couldn't find the last character. */
4763 return NULL;
4764
4765 /* No less than `infinity' means we could find the last
4766 character at `p[start - infinity]'. */
4767 start -= infinity;
4768
4769 /* Check the remaining characters. */
4770 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4771 /* Found. */
4772 return non_lisp_beg + start;
4773
4774 start += last_char_skip;
4775 }
4776 while (start <= start_max);
4777
4778 return NULL;
4779 }
4780
4781
4782 /* Return a string allocated in pure space. DATA is a buffer holding
4783 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4784 non-zero means make the result string multibyte.
4785
4786 Must get an error if pure storage is full, since if it cannot hold
4787 a large string it may be able to hold conses that point to that
4788 string; then the string is not protected from gc. */
4789
4790 Lisp_Object
4791 make_pure_string (data, nchars, nbytes, multibyte)
4792 char *data;
4793 int nchars, nbytes;
4794 int multibyte;
4795 {
4796 Lisp_Object string;
4797 struct Lisp_String *s;
4798
4799 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4800 s->data = find_string_data_in_pure (data, nbytes);
4801 if (s->data == NULL)
4802 {
4803 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4804 bcopy (data, s->data, nbytes);
4805 s->data[nbytes] = '\0';
4806 }
4807 s->size = nchars;
4808 s->size_byte = multibyte ? nbytes : -1;
4809 s->intervals = NULL_INTERVAL;
4810 XSETSTRING (string, s);
4811 return string;
4812 }
4813
4814
4815 /* Return a cons allocated from pure space. Give it pure copies
4816 of CAR as car and CDR as cdr. */
4817
4818 Lisp_Object
4819 pure_cons (car, cdr)
4820 Lisp_Object car, cdr;
4821 {
4822 register Lisp_Object new;
4823 struct Lisp_Cons *p;
4824
4825 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4826 XSETCONS (new, p);
4827 XSETCAR (new, Fpurecopy (car));
4828 XSETCDR (new, Fpurecopy (cdr));
4829 return new;
4830 }
4831
4832
4833 /* Value is a float object with value NUM allocated from pure space. */
4834
4835 static Lisp_Object
4836 make_pure_float (num)
4837 double num;
4838 {
4839 register Lisp_Object new;
4840 struct Lisp_Float *p;
4841
4842 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4843 XSETFLOAT (new, p);
4844 XFLOAT_DATA (new) = num;
4845 return new;
4846 }
4847
4848
4849 /* Return a vector with room for LEN Lisp_Objects allocated from
4850 pure space. */
4851
4852 Lisp_Object
4853 make_pure_vector (len)
4854 EMACS_INT len;
4855 {
4856 Lisp_Object new;
4857 struct Lisp_Vector *p;
4858 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4859
4860 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4861 XSETVECTOR (new, p);
4862 XVECTOR (new)->size = len;
4863 return new;
4864 }
4865
4866
4867 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4868 doc: /* Make a copy of object OBJ in pure storage.
4869 Recursively copies contents of vectors and cons cells.
4870 Does not copy symbols. Copies strings without text properties. */)
4871 (obj)
4872 register Lisp_Object obj;
4873 {
4874 if (NILP (Vpurify_flag))
4875 return obj;
4876
4877 if (PURE_POINTER_P (XPNTR (obj)))
4878 return obj;
4879
4880 if (CONSP (obj))
4881 return pure_cons (XCAR (obj), XCDR (obj));
4882 else if (FLOATP (obj))
4883 return make_pure_float (XFLOAT_DATA (obj));
4884 else if (STRINGP (obj))
4885 return make_pure_string (SDATA (obj), SCHARS (obj),
4886 SBYTES (obj),
4887 STRING_MULTIBYTE (obj));
4888 else if (COMPILEDP (obj) || VECTORP (obj))
4889 {
4890 register struct Lisp_Vector *vec;
4891 register int i;
4892 EMACS_INT size;
4893
4894 size = XVECTOR (obj)->size;
4895 if (size & PSEUDOVECTOR_FLAG)
4896 size &= PSEUDOVECTOR_SIZE_MASK;
4897 vec = XVECTOR (make_pure_vector (size));
4898 for (i = 0; i < size; i++)
4899 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4900 if (COMPILEDP (obj))
4901 {
4902 XSETPVECTYPE (vec, PVEC_COMPILED);
4903 XSETCOMPILED (obj, vec);
4904 }
4905 else
4906 XSETVECTOR (obj, vec);
4907 return obj;
4908 }
4909 else if (MARKERP (obj))
4910 error ("Attempt to copy a marker to pure storage");
4911
4912 return obj;
4913 }
4914
4915
4916 \f
4917 /***********************************************************************
4918 Protection from GC
4919 ***********************************************************************/
4920
4921 /* Put an entry in staticvec, pointing at the variable with address
4922 VARADDRESS. */
4923
4924 void
4925 staticpro (varaddress)
4926 Lisp_Object *varaddress;
4927 {
4928 staticvec[staticidx++] = varaddress;
4929 if (staticidx >= NSTATICS)
4930 abort ();
4931 }
4932
4933 struct catchtag
4934 {
4935 Lisp_Object tag;
4936 Lisp_Object val;
4937 struct catchtag *next;
4938 };
4939
4940 \f
4941 /***********************************************************************
4942 Protection from GC
4943 ***********************************************************************/
4944
4945 /* Temporarily prevent garbage collection. */
4946
4947 int
4948 inhibit_garbage_collection ()
4949 {
4950 int count = SPECPDL_INDEX ();
4951 int nbits = min (VALBITS, BITS_PER_INT);
4952
4953 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4954 return count;
4955 }
4956
4957
4958 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4959 doc: /* Reclaim storage for Lisp objects no longer needed.
4960 Garbage collection happens automatically if you cons more than
4961 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4962 `garbage-collect' normally returns a list with info on amount of space in use:
4963 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4964 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4965 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4966 (USED-STRINGS . FREE-STRINGS))
4967 However, if there was overflow in pure space, `garbage-collect'
4968 returns nil, because real GC can't be done. */)
4969 ()
4970 {
4971 register struct specbinding *bind;
4972 struct catchtag *catch;
4973 struct handler *handler;
4974 char stack_top_variable;
4975 register int i;
4976 int message_p;
4977 Lisp_Object total[8];
4978 int count = SPECPDL_INDEX ();
4979 EMACS_TIME t1, t2, t3;
4980
4981 if (abort_on_gc)
4982 abort ();
4983
4984 /* Can't GC if pure storage overflowed because we can't determine
4985 if something is a pure object or not. */
4986 if (pure_bytes_used_before_overflow)
4987 return Qnil;
4988
4989 CHECK_CONS_LIST ();
4990
4991 /* Don't keep undo information around forever.
4992 Do this early on, so it is no problem if the user quits. */
4993 {
4994 register struct buffer *nextb = all_buffers;
4995
4996 while (nextb)
4997 {
4998 /* If a buffer's undo list is Qt, that means that undo is
4999 turned off in that buffer. Calling truncate_undo_list on
5000 Qt tends to return NULL, which effectively turns undo back on.
5001 So don't call truncate_undo_list if undo_list is Qt. */
5002 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
5003 truncate_undo_list (nextb);
5004
5005 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5006 if (nextb->base_buffer == 0 && !NILP (nextb->name)
5007 && ! nextb->text->inhibit_shrinking)
5008 {
5009 /* If a buffer's gap size is more than 10% of the buffer
5010 size, or larger than 2000 bytes, then shrink it
5011 accordingly. Keep a minimum size of 20 bytes. */
5012 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5013
5014 if (nextb->text->gap_size > size)
5015 {
5016 struct buffer *save_current = current_buffer;
5017 current_buffer = nextb;
5018 make_gap (-(nextb->text->gap_size - size));
5019 current_buffer = save_current;
5020 }
5021 }
5022
5023 nextb = nextb->next;
5024 }
5025 }
5026
5027 EMACS_GET_TIME (t1);
5028
5029 /* In case user calls debug_print during GC,
5030 don't let that cause a recursive GC. */
5031 consing_since_gc = 0;
5032
5033 /* Save what's currently displayed in the echo area. */
5034 message_p = push_message ();
5035 record_unwind_protect (pop_message_unwind, Qnil);
5036
5037 /* Save a copy of the contents of the stack, for debugging. */
5038 #if MAX_SAVE_STACK > 0
5039 if (NILP (Vpurify_flag))
5040 {
5041 i = &stack_top_variable - stack_bottom;
5042 if (i < 0) i = -i;
5043 if (i < MAX_SAVE_STACK)
5044 {
5045 if (stack_copy == 0)
5046 stack_copy = (char *) xmalloc (stack_copy_size = i);
5047 else if (stack_copy_size < i)
5048 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
5049 if (stack_copy)
5050 {
5051 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
5052 bcopy (stack_bottom, stack_copy, i);
5053 else
5054 bcopy (&stack_top_variable, stack_copy, i);
5055 }
5056 }
5057 }
5058 #endif /* MAX_SAVE_STACK > 0 */
5059
5060 if (garbage_collection_messages)
5061 message1_nolog ("Garbage collecting...");
5062
5063 BLOCK_INPUT;
5064
5065 shrink_regexp_cache ();
5066
5067 gc_in_progress = 1;
5068
5069 /* clear_marks (); */
5070
5071 /* Mark all the special slots that serve as the roots of accessibility. */
5072
5073 for (i = 0; i < staticidx; i++)
5074 mark_object (*staticvec[i]);
5075
5076 for (bind = specpdl; bind != specpdl_ptr; bind++)
5077 {
5078 mark_object (bind->symbol);
5079 mark_object (bind->old_value);
5080 }
5081 mark_terminals ();
5082 mark_kboards ();
5083 mark_ttys ();
5084
5085 #ifdef USE_GTK
5086 {
5087 extern void xg_mark_data ();
5088 xg_mark_data ();
5089 }
5090 #endif
5091
5092 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5093 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5094 mark_stack ();
5095 #else
5096 {
5097 register struct gcpro *tail;
5098 for (tail = gcprolist; tail; tail = tail->next)
5099 for (i = 0; i < tail->nvars; i++)
5100 mark_object (tail->var[i]);
5101 }
5102 #endif
5103
5104 mark_byte_stack ();
5105 for (catch = catchlist; catch; catch = catch->next)
5106 {
5107 mark_object (catch->tag);
5108 mark_object (catch->val);
5109 }
5110 for (handler = handlerlist; handler; handler = handler->next)
5111 {
5112 mark_object (handler->handler);
5113 mark_object (handler->var);
5114 }
5115 mark_backtrace ();
5116
5117 #ifdef HAVE_WINDOW_SYSTEM
5118 mark_fringe_data ();
5119 #endif
5120
5121 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5122 mark_stack ();
5123 #endif
5124
5125 /* Everything is now marked, except for the things that require special
5126 finalization, i.e. the undo_list.
5127 Look thru every buffer's undo list
5128 for elements that update markers that were not marked,
5129 and delete them. */
5130 {
5131 register struct buffer *nextb = all_buffers;
5132
5133 while (nextb)
5134 {
5135 /* If a buffer's undo list is Qt, that means that undo is
5136 turned off in that buffer. Calling truncate_undo_list on
5137 Qt tends to return NULL, which effectively turns undo back on.
5138 So don't call truncate_undo_list if undo_list is Qt. */
5139 if (! EQ (nextb->undo_list, Qt))
5140 {
5141 Lisp_Object tail, prev;
5142 tail = nextb->undo_list;
5143 prev = Qnil;
5144 while (CONSP (tail))
5145 {
5146 if (CONSP (XCAR (tail))
5147 && MARKERP (XCAR (XCAR (tail)))
5148 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5149 {
5150 if (NILP (prev))
5151 nextb->undo_list = tail = XCDR (tail);
5152 else
5153 {
5154 tail = XCDR (tail);
5155 XSETCDR (prev, tail);
5156 }
5157 }
5158 else
5159 {
5160 prev = tail;
5161 tail = XCDR (tail);
5162 }
5163 }
5164 }
5165 /* Now that we have stripped the elements that need not be in the
5166 undo_list any more, we can finally mark the list. */
5167 mark_object (nextb->undo_list);
5168
5169 nextb = nextb->next;
5170 }
5171 }
5172
5173 gc_sweep ();
5174
5175 /* Clear the mark bits that we set in certain root slots. */
5176
5177 unmark_byte_stack ();
5178 VECTOR_UNMARK (&buffer_defaults);
5179 VECTOR_UNMARK (&buffer_local_symbols);
5180
5181 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5182 dump_zombies ();
5183 #endif
5184
5185 UNBLOCK_INPUT;
5186
5187 CHECK_CONS_LIST ();
5188
5189 /* clear_marks (); */
5190 gc_in_progress = 0;
5191
5192 consing_since_gc = 0;
5193 if (gc_cons_threshold < 10000)
5194 gc_cons_threshold = 10000;
5195
5196 if (FLOATP (Vgc_cons_percentage))
5197 { /* Set gc_cons_combined_threshold. */
5198 EMACS_INT total = 0;
5199
5200 total += total_conses * sizeof (struct Lisp_Cons);
5201 total += total_symbols * sizeof (struct Lisp_Symbol);
5202 total += total_markers * sizeof (union Lisp_Misc);
5203 total += total_string_size;
5204 total += total_vector_size * sizeof (Lisp_Object);
5205 total += total_floats * sizeof (struct Lisp_Float);
5206 total += total_intervals * sizeof (struct interval);
5207 total += total_strings * sizeof (struct Lisp_String);
5208
5209 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5210 }
5211 else
5212 gc_relative_threshold = 0;
5213
5214 if (garbage_collection_messages)
5215 {
5216 if (message_p || minibuf_level > 0)
5217 restore_message ();
5218 else
5219 message1_nolog ("Garbage collecting...done");
5220 }
5221
5222 unbind_to (count, Qnil);
5223
5224 total[0] = Fcons (make_number (total_conses),
5225 make_number (total_free_conses));
5226 total[1] = Fcons (make_number (total_symbols),
5227 make_number (total_free_symbols));
5228 total[2] = Fcons (make_number (total_markers),
5229 make_number (total_free_markers));
5230 total[3] = make_number (total_string_size);
5231 total[4] = make_number (total_vector_size);
5232 total[5] = Fcons (make_number (total_floats),
5233 make_number (total_free_floats));
5234 total[6] = Fcons (make_number (total_intervals),
5235 make_number (total_free_intervals));
5236 total[7] = Fcons (make_number (total_strings),
5237 make_number (total_free_strings));
5238
5239 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5240 {
5241 /* Compute average percentage of zombies. */
5242 double nlive = 0;
5243
5244 for (i = 0; i < 7; ++i)
5245 if (CONSP (total[i]))
5246 nlive += XFASTINT (XCAR (total[i]));
5247
5248 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5249 max_live = max (nlive, max_live);
5250 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5251 max_zombies = max (nzombies, max_zombies);
5252 ++ngcs;
5253 }
5254 #endif
5255
5256 if (!NILP (Vpost_gc_hook))
5257 {
5258 int count = inhibit_garbage_collection ();
5259 safe_run_hooks (Qpost_gc_hook);
5260 unbind_to (count, Qnil);
5261 }
5262
5263 /* Accumulate statistics. */
5264 EMACS_GET_TIME (t2);
5265 EMACS_SUB_TIME (t3, t2, t1);
5266 if (FLOATP (Vgc_elapsed))
5267 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5268 EMACS_SECS (t3) +
5269 EMACS_USECS (t3) * 1.0e-6);
5270 gcs_done++;
5271
5272 return Flist (sizeof total / sizeof *total, total);
5273 }
5274
5275
5276 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5277 only interesting objects referenced from glyphs are strings. */
5278
5279 static void
5280 mark_glyph_matrix (matrix)
5281 struct glyph_matrix *matrix;
5282 {
5283 struct glyph_row *row = matrix->rows;
5284 struct glyph_row *end = row + matrix->nrows;
5285
5286 for (; row < end; ++row)
5287 if (row->enabled_p)
5288 {
5289 int area;
5290 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5291 {
5292 struct glyph *glyph = row->glyphs[area];
5293 struct glyph *end_glyph = glyph + row->used[area];
5294
5295 for (; glyph < end_glyph; ++glyph)
5296 if (STRINGP (glyph->object)
5297 && !STRING_MARKED_P (XSTRING (glyph->object)))
5298 mark_object (glyph->object);
5299 }
5300 }
5301 }
5302
5303
5304 /* Mark Lisp faces in the face cache C. */
5305
5306 static void
5307 mark_face_cache (c)
5308 struct face_cache *c;
5309 {
5310 if (c)
5311 {
5312 int i, j;
5313 for (i = 0; i < c->used; ++i)
5314 {
5315 struct face *face = FACE_FROM_ID (c->f, i);
5316
5317 if (face)
5318 {
5319 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5320 mark_object (face->lface[j]);
5321 }
5322 }
5323 }
5324 }
5325
5326
5327 #ifdef HAVE_WINDOW_SYSTEM
5328
5329 /* Mark Lisp objects in image IMG. */
5330
5331 static void
5332 mark_image (img)
5333 struct image *img;
5334 {
5335 mark_object (img->spec);
5336
5337 if (!NILP (img->data.lisp_val))
5338 mark_object (img->data.lisp_val);
5339 }
5340
5341
5342 /* Mark Lisp objects in image cache of frame F. It's done this way so
5343 that we don't have to include xterm.h here. */
5344
5345 static void
5346 mark_image_cache (f)
5347 struct frame *f;
5348 {
5349 forall_images_in_image_cache (f, mark_image);
5350 }
5351
5352 #endif /* HAVE_X_WINDOWS */
5353
5354
5355 \f
5356 /* Mark reference to a Lisp_Object.
5357 If the object referred to has not been seen yet, recursively mark
5358 all the references contained in it. */
5359
5360 #define LAST_MARKED_SIZE 500
5361 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5362 int last_marked_index;
5363
5364 /* For debugging--call abort when we cdr down this many
5365 links of a list, in mark_object. In debugging,
5366 the call to abort will hit a breakpoint.
5367 Normally this is zero and the check never goes off. */
5368 static int mark_object_loop_halt;
5369
5370 /* Return non-zero if the object was not yet marked. */
5371 static int
5372 mark_vectorlike (ptr)
5373 struct Lisp_Vector *ptr;
5374 {
5375 register EMACS_INT size = ptr->size;
5376 register int i;
5377
5378 if (VECTOR_MARKED_P (ptr))
5379 return 0; /* Already marked */
5380 VECTOR_MARK (ptr); /* Else mark it */
5381 if (size & PSEUDOVECTOR_FLAG)
5382 size &= PSEUDOVECTOR_SIZE_MASK;
5383
5384 /* Note that this size is not the memory-footprint size, but only
5385 the number of Lisp_Object fields that we should trace.
5386 The distinction is used e.g. by Lisp_Process which places extra
5387 non-Lisp_Object fields at the end of the structure. */
5388 for (i = 0; i < size; i++) /* and then mark its elements */
5389 mark_object (ptr->contents[i]);
5390 return 1;
5391 }
5392
5393 void
5394 mark_object (arg)
5395 Lisp_Object arg;
5396 {
5397 register Lisp_Object obj = arg;
5398 #ifdef GC_CHECK_MARKED_OBJECTS
5399 void *po;
5400 struct mem_node *m;
5401 #endif
5402 int cdr_count = 0;
5403
5404 loop:
5405
5406 if (PURE_POINTER_P (XPNTR (obj)))
5407 return;
5408
5409 last_marked[last_marked_index++] = obj;
5410 if (last_marked_index == LAST_MARKED_SIZE)
5411 last_marked_index = 0;
5412
5413 /* Perform some sanity checks on the objects marked here. Abort if
5414 we encounter an object we know is bogus. This increases GC time
5415 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5416 #ifdef GC_CHECK_MARKED_OBJECTS
5417
5418 po = (void *) XPNTR (obj);
5419
5420 /* Check that the object pointed to by PO is known to be a Lisp
5421 structure allocated from the heap. */
5422 #define CHECK_ALLOCATED() \
5423 do { \
5424 m = mem_find (po); \
5425 if (m == MEM_NIL) \
5426 abort (); \
5427 } while (0)
5428
5429 /* Check that the object pointed to by PO is live, using predicate
5430 function LIVEP. */
5431 #define CHECK_LIVE(LIVEP) \
5432 do { \
5433 if (!LIVEP (m, po)) \
5434 abort (); \
5435 } while (0)
5436
5437 /* Check both of the above conditions. */
5438 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5439 do { \
5440 CHECK_ALLOCATED (); \
5441 CHECK_LIVE (LIVEP); \
5442 } while (0) \
5443
5444 #else /* not GC_CHECK_MARKED_OBJECTS */
5445
5446 #define CHECK_ALLOCATED() (void) 0
5447 #define CHECK_LIVE(LIVEP) (void) 0
5448 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5449
5450 #endif /* not GC_CHECK_MARKED_OBJECTS */
5451
5452 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5453 {
5454 case Lisp_String:
5455 {
5456 register struct Lisp_String *ptr = XSTRING (obj);
5457 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5458 MARK_INTERVAL_TREE (ptr->intervals);
5459 MARK_STRING (ptr);
5460 #ifdef GC_CHECK_STRING_BYTES
5461 /* Check that the string size recorded in the string is the
5462 same as the one recorded in the sdata structure. */
5463 CHECK_STRING_BYTES (ptr);
5464 #endif /* GC_CHECK_STRING_BYTES */
5465 }
5466 break;
5467
5468 case Lisp_Vectorlike:
5469 #ifdef GC_CHECK_MARKED_OBJECTS
5470 m = mem_find (po);
5471 if (m == MEM_NIL && !SUBRP (obj)
5472 && po != &buffer_defaults
5473 && po != &buffer_local_symbols)
5474 abort ();
5475 #endif /* GC_CHECK_MARKED_OBJECTS */
5476
5477 if (BUFFERP (obj))
5478 {
5479 if (!VECTOR_MARKED_P (XBUFFER (obj)))
5480 {
5481 #ifdef GC_CHECK_MARKED_OBJECTS
5482 if (po != &buffer_defaults && po != &buffer_local_symbols)
5483 {
5484 struct buffer *b;
5485 for (b = all_buffers; b && b != po; b = b->next)
5486 ;
5487 if (b == NULL)
5488 abort ();
5489 }
5490 #endif /* GC_CHECK_MARKED_OBJECTS */
5491 mark_buffer (obj);
5492 }
5493 }
5494 else if (SUBRP (obj))
5495 break;
5496 else if (COMPILEDP (obj))
5497 /* We could treat this just like a vector, but it is better to
5498 save the COMPILED_CONSTANTS element for last and avoid
5499 recursion there. */
5500 {
5501 register struct Lisp_Vector *ptr = XVECTOR (obj);
5502 register EMACS_INT size = ptr->size;
5503 register int i;
5504
5505 if (VECTOR_MARKED_P (ptr))
5506 break; /* Already marked */
5507
5508 CHECK_LIVE (live_vector_p);
5509 VECTOR_MARK (ptr); /* Else mark it */
5510 size &= PSEUDOVECTOR_SIZE_MASK;
5511 for (i = 0; i < size; i++) /* and then mark its elements */
5512 {
5513 if (i != COMPILED_CONSTANTS)
5514 mark_object (ptr->contents[i]);
5515 }
5516 obj = ptr->contents[COMPILED_CONSTANTS];
5517 goto loop;
5518 }
5519 else if (FRAMEP (obj))
5520 {
5521 register struct frame *ptr = XFRAME (obj);
5522 if (mark_vectorlike (XVECTOR (obj)))
5523 {
5524 mark_face_cache (ptr->face_cache);
5525 #ifdef HAVE_WINDOW_SYSTEM
5526 mark_image_cache (ptr);
5527 #endif /* HAVE_WINDOW_SYSTEM */
5528 }
5529 }
5530 else if (WINDOWP (obj))
5531 {
5532 register struct Lisp_Vector *ptr = XVECTOR (obj);
5533 struct window *w = XWINDOW (obj);
5534 if (mark_vectorlike (ptr))
5535 {
5536 /* Mark glyphs for leaf windows. Marking window matrices is
5537 sufficient because frame matrices use the same glyph
5538 memory. */
5539 if (NILP (w->hchild)
5540 && NILP (w->vchild)
5541 && w->current_matrix)
5542 {
5543 mark_glyph_matrix (w->current_matrix);
5544 mark_glyph_matrix (w->desired_matrix);
5545 }
5546 }
5547 }
5548 else if (HASH_TABLE_P (obj))
5549 {
5550 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5551 if (mark_vectorlike ((struct Lisp_Vector *)h))
5552 { /* If hash table is not weak, mark all keys and values.
5553 For weak tables, mark only the vector. */
5554 if (NILP (h->weak))
5555 mark_object (h->key_and_value);
5556 else
5557 VECTOR_MARK (XVECTOR (h->key_and_value));
5558 }
5559 }
5560 else
5561 mark_vectorlike (XVECTOR (obj));
5562 break;
5563
5564 case Lisp_Symbol:
5565 {
5566 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5567 struct Lisp_Symbol *ptrx;
5568
5569 if (ptr->gcmarkbit) break;
5570 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5571 ptr->gcmarkbit = 1;
5572 mark_object (ptr->value);
5573 mark_object (ptr->function);
5574 mark_object (ptr->plist);
5575
5576 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5577 MARK_STRING (XSTRING (ptr->xname));
5578 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5579
5580 /* Note that we do not mark the obarray of the symbol.
5581 It is safe not to do so because nothing accesses that
5582 slot except to check whether it is nil. */
5583 ptr = ptr->next;
5584 if (ptr)
5585 {
5586 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5587 XSETSYMBOL (obj, ptrx);
5588 goto loop;
5589 }
5590 }
5591 break;
5592
5593 case Lisp_Misc:
5594 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5595 if (XMISCANY (obj)->gcmarkbit)
5596 break;
5597 XMISCANY (obj)->gcmarkbit = 1;
5598
5599 switch (XMISCTYPE (obj))
5600 {
5601 case Lisp_Misc_Buffer_Local_Value:
5602 {
5603 register struct Lisp_Buffer_Local_Value *ptr
5604 = XBUFFER_LOCAL_VALUE (obj);
5605 /* If the cdr is nil, avoid recursion for the car. */
5606 if (EQ (ptr->cdr, Qnil))
5607 {
5608 obj = ptr->realvalue;
5609 goto loop;
5610 }
5611 mark_object (ptr->realvalue);
5612 mark_object (ptr->buffer);
5613 mark_object (ptr->frame);
5614 obj = ptr->cdr;
5615 goto loop;
5616 }
5617
5618 case Lisp_Misc_Marker:
5619 /* DO NOT mark thru the marker's chain.
5620 The buffer's markers chain does not preserve markers from gc;
5621 instead, markers are removed from the chain when freed by gc. */
5622 break;
5623
5624 case Lisp_Misc_Intfwd:
5625 case Lisp_Misc_Boolfwd:
5626 case Lisp_Misc_Objfwd:
5627 case Lisp_Misc_Buffer_Objfwd:
5628 case Lisp_Misc_Kboard_Objfwd:
5629 /* Don't bother with Lisp_Buffer_Objfwd,
5630 since all markable slots in current buffer marked anyway. */
5631 /* Don't need to do Lisp_Objfwd, since the places they point
5632 are protected with staticpro. */
5633 break;
5634
5635 case Lisp_Misc_Save_Value:
5636 #if GC_MARK_STACK
5637 {
5638 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5639 /* If DOGC is set, POINTER is the address of a memory
5640 area containing INTEGER potential Lisp_Objects. */
5641 if (ptr->dogc)
5642 {
5643 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5644 int nelt;
5645 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5646 mark_maybe_object (*p);
5647 }
5648 }
5649 #endif
5650 break;
5651
5652 case Lisp_Misc_Overlay:
5653 {
5654 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5655 mark_object (ptr->start);
5656 mark_object (ptr->end);
5657 mark_object (ptr->plist);
5658 if (ptr->next)
5659 {
5660 XSETMISC (obj, ptr->next);
5661 goto loop;
5662 }
5663 }
5664 break;
5665
5666 default:
5667 abort ();
5668 }
5669 break;
5670
5671 case Lisp_Cons:
5672 {
5673 register struct Lisp_Cons *ptr = XCONS (obj);
5674 if (CONS_MARKED_P (ptr)) break;
5675 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5676 CONS_MARK (ptr);
5677 /* If the cdr is nil, avoid recursion for the car. */
5678 if (EQ (ptr->u.cdr, Qnil))
5679 {
5680 obj = ptr->car;
5681 cdr_count = 0;
5682 goto loop;
5683 }
5684 mark_object (ptr->car);
5685 obj = ptr->u.cdr;
5686 cdr_count++;
5687 if (cdr_count == mark_object_loop_halt)
5688 abort ();
5689 goto loop;
5690 }
5691
5692 case Lisp_Float:
5693 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5694 FLOAT_MARK (XFLOAT (obj));
5695 break;
5696
5697 case Lisp_Int:
5698 break;
5699
5700 default:
5701 abort ();
5702 }
5703
5704 #undef CHECK_LIVE
5705 #undef CHECK_ALLOCATED
5706 #undef CHECK_ALLOCATED_AND_LIVE
5707 }
5708
5709 /* Mark the pointers in a buffer structure. */
5710
5711 static void
5712 mark_buffer (buf)
5713 Lisp_Object buf;
5714 {
5715 register struct buffer *buffer = XBUFFER (buf);
5716 register Lisp_Object *ptr, tmp;
5717 Lisp_Object base_buffer;
5718
5719 VECTOR_MARK (buffer);
5720
5721 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5722
5723 /* For now, we just don't mark the undo_list. It's done later in
5724 a special way just before the sweep phase, and after stripping
5725 some of its elements that are not needed any more. */
5726
5727 if (buffer->overlays_before)
5728 {
5729 XSETMISC (tmp, buffer->overlays_before);
5730 mark_object (tmp);
5731 }
5732 if (buffer->overlays_after)
5733 {
5734 XSETMISC (tmp, buffer->overlays_after);
5735 mark_object (tmp);
5736 }
5737
5738 /* buffer-local Lisp variables start at `undo_list',
5739 tho only the ones from `name' on are GC'd normally. */
5740 for (ptr = &buffer->name;
5741 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5742 ptr++)
5743 mark_object (*ptr);
5744
5745 /* If this is an indirect buffer, mark its base buffer. */
5746 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5747 {
5748 XSETBUFFER (base_buffer, buffer->base_buffer);
5749 mark_buffer (base_buffer);
5750 }
5751 }
5752
5753 /* Mark the Lisp pointers in the terminal objects.
5754 Called by the Fgarbage_collector. */
5755
5756 static void
5757 mark_terminals (void)
5758 {
5759 struct terminal *t;
5760 for (t = terminal_list; t; t = t->next_terminal)
5761 {
5762 eassert (t->name != NULL);
5763 mark_vectorlike ((struct Lisp_Vector *)t);
5764 }
5765 }
5766
5767
5768
5769 /* Value is non-zero if OBJ will survive the current GC because it's
5770 either marked or does not need to be marked to survive. */
5771
5772 int
5773 survives_gc_p (obj)
5774 Lisp_Object obj;
5775 {
5776 int survives_p;
5777
5778 switch (XTYPE (obj))
5779 {
5780 case Lisp_Int:
5781 survives_p = 1;
5782 break;
5783
5784 case Lisp_Symbol:
5785 survives_p = XSYMBOL (obj)->gcmarkbit;
5786 break;
5787
5788 case Lisp_Misc:
5789 survives_p = XMISCANY (obj)->gcmarkbit;
5790 break;
5791
5792 case Lisp_String:
5793 survives_p = STRING_MARKED_P (XSTRING (obj));
5794 break;
5795
5796 case Lisp_Vectorlike:
5797 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5798 break;
5799
5800 case Lisp_Cons:
5801 survives_p = CONS_MARKED_P (XCONS (obj));
5802 break;
5803
5804 case Lisp_Float:
5805 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5806 break;
5807
5808 default:
5809 abort ();
5810 }
5811
5812 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5813 }
5814
5815
5816 \f
5817 /* Sweep: find all structures not marked, and free them. */
5818
5819 static void
5820 gc_sweep ()
5821 {
5822 /* Remove or mark entries in weak hash tables.
5823 This must be done before any object is unmarked. */
5824 sweep_weak_hash_tables ();
5825
5826 sweep_strings ();
5827 #ifdef GC_CHECK_STRING_BYTES
5828 if (!noninteractive)
5829 check_string_bytes (1);
5830 #endif
5831
5832 /* Put all unmarked conses on free list */
5833 {
5834 register struct cons_block *cblk;
5835 struct cons_block **cprev = &cons_block;
5836 register int lim = cons_block_index;
5837 register int num_free = 0, num_used = 0;
5838
5839 cons_free_list = 0;
5840
5841 for (cblk = cons_block; cblk; cblk = *cprev)
5842 {
5843 register int i = 0;
5844 int this_free = 0;
5845 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5846
5847 /* Scan the mark bits an int at a time. */
5848 for (i = 0; i <= ilim; i++)
5849 {
5850 if (cblk->gcmarkbits[i] == -1)
5851 {
5852 /* Fast path - all cons cells for this int are marked. */
5853 cblk->gcmarkbits[i] = 0;
5854 num_used += BITS_PER_INT;
5855 }
5856 else
5857 {
5858 /* Some cons cells for this int are not marked.
5859 Find which ones, and free them. */
5860 int start, pos, stop;
5861
5862 start = i * BITS_PER_INT;
5863 stop = lim - start;
5864 if (stop > BITS_PER_INT)
5865 stop = BITS_PER_INT;
5866 stop += start;
5867
5868 for (pos = start; pos < stop; pos++)
5869 {
5870 if (!CONS_MARKED_P (&cblk->conses[pos]))
5871 {
5872 this_free++;
5873 cblk->conses[pos].u.chain = cons_free_list;
5874 cons_free_list = &cblk->conses[pos];
5875 #if GC_MARK_STACK
5876 cons_free_list->car = Vdead;
5877 #endif
5878 }
5879 else
5880 {
5881 num_used++;
5882 CONS_UNMARK (&cblk->conses[pos]);
5883 }
5884 }
5885 }
5886 }
5887
5888 lim = CONS_BLOCK_SIZE;
5889 /* If this block contains only free conses and we have already
5890 seen more than two blocks worth of free conses then deallocate
5891 this block. */
5892 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5893 {
5894 *cprev = cblk->next;
5895 /* Unhook from the free list. */
5896 cons_free_list = cblk->conses[0].u.chain;
5897 lisp_align_free (cblk);
5898 n_cons_blocks--;
5899 }
5900 else
5901 {
5902 num_free += this_free;
5903 cprev = &cblk->next;
5904 }
5905 }
5906 total_conses = num_used;
5907 total_free_conses = num_free;
5908 }
5909
5910 /* Put all unmarked floats on free list */
5911 {
5912 register struct float_block *fblk;
5913 struct float_block **fprev = &float_block;
5914 register int lim = float_block_index;
5915 register int num_free = 0, num_used = 0;
5916
5917 float_free_list = 0;
5918
5919 for (fblk = float_block; fblk; fblk = *fprev)
5920 {
5921 register int i;
5922 int this_free = 0;
5923 for (i = 0; i < lim; i++)
5924 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5925 {
5926 this_free++;
5927 fblk->floats[i].u.chain = float_free_list;
5928 float_free_list = &fblk->floats[i];
5929 }
5930 else
5931 {
5932 num_used++;
5933 FLOAT_UNMARK (&fblk->floats[i]);
5934 }
5935 lim = FLOAT_BLOCK_SIZE;
5936 /* If this block contains only free floats and we have already
5937 seen more than two blocks worth of free floats then deallocate
5938 this block. */
5939 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5940 {
5941 *fprev = fblk->next;
5942 /* Unhook from the free list. */
5943 float_free_list = fblk->floats[0].u.chain;
5944 lisp_align_free (fblk);
5945 n_float_blocks--;
5946 }
5947 else
5948 {
5949 num_free += this_free;
5950 fprev = &fblk->next;
5951 }
5952 }
5953 total_floats = num_used;
5954 total_free_floats = num_free;
5955 }
5956
5957 /* Put all unmarked intervals on free list */
5958 {
5959 register struct interval_block *iblk;
5960 struct interval_block **iprev = &interval_block;
5961 register int lim = interval_block_index;
5962 register int num_free = 0, num_used = 0;
5963
5964 interval_free_list = 0;
5965
5966 for (iblk = interval_block; iblk; iblk = *iprev)
5967 {
5968 register int i;
5969 int this_free = 0;
5970
5971 for (i = 0; i < lim; i++)
5972 {
5973 if (!iblk->intervals[i].gcmarkbit)
5974 {
5975 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5976 interval_free_list = &iblk->intervals[i];
5977 this_free++;
5978 }
5979 else
5980 {
5981 num_used++;
5982 iblk->intervals[i].gcmarkbit = 0;
5983 }
5984 }
5985 lim = INTERVAL_BLOCK_SIZE;
5986 /* If this block contains only free intervals and we have already
5987 seen more than two blocks worth of free intervals then
5988 deallocate this block. */
5989 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5990 {
5991 *iprev = iblk->next;
5992 /* Unhook from the free list. */
5993 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5994 lisp_free (iblk);
5995 n_interval_blocks--;
5996 }
5997 else
5998 {
5999 num_free += this_free;
6000 iprev = &iblk->next;
6001 }
6002 }
6003 total_intervals = num_used;
6004 total_free_intervals = num_free;
6005 }
6006
6007 /* Put all unmarked symbols on free list */
6008 {
6009 register struct symbol_block *sblk;
6010 struct symbol_block **sprev = &symbol_block;
6011 register int lim = symbol_block_index;
6012 register int num_free = 0, num_used = 0;
6013
6014 symbol_free_list = NULL;
6015
6016 for (sblk = symbol_block; sblk; sblk = *sprev)
6017 {
6018 int this_free = 0;
6019 struct Lisp_Symbol *sym = sblk->symbols;
6020 struct Lisp_Symbol *end = sym + lim;
6021
6022 for (; sym < end; ++sym)
6023 {
6024 /* Check if the symbol was created during loadup. In such a case
6025 it might be pointed to by pure bytecode which we don't trace,
6026 so we conservatively assume that it is live. */
6027 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
6028
6029 if (!sym->gcmarkbit && !pure_p)
6030 {
6031 sym->next = symbol_free_list;
6032 symbol_free_list = sym;
6033 #if GC_MARK_STACK
6034 symbol_free_list->function = Vdead;
6035 #endif
6036 ++this_free;
6037 }
6038 else
6039 {
6040 ++num_used;
6041 if (!pure_p)
6042 UNMARK_STRING (XSTRING (sym->xname));
6043 sym->gcmarkbit = 0;
6044 }
6045 }
6046
6047 lim = SYMBOL_BLOCK_SIZE;
6048 /* If this block contains only free symbols and we have already
6049 seen more than two blocks worth of free symbols then deallocate
6050 this block. */
6051 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6052 {
6053 *sprev = sblk->next;
6054 /* Unhook from the free list. */
6055 symbol_free_list = sblk->symbols[0].next;
6056 lisp_free (sblk);
6057 n_symbol_blocks--;
6058 }
6059 else
6060 {
6061 num_free += this_free;
6062 sprev = &sblk->next;
6063 }
6064 }
6065 total_symbols = num_used;
6066 total_free_symbols = num_free;
6067 }
6068
6069 /* Put all unmarked misc's on free list.
6070 For a marker, first unchain it from the buffer it points into. */
6071 {
6072 register struct marker_block *mblk;
6073 struct marker_block **mprev = &marker_block;
6074 register int lim = marker_block_index;
6075 register int num_free = 0, num_used = 0;
6076
6077 marker_free_list = 0;
6078
6079 for (mblk = marker_block; mblk; mblk = *mprev)
6080 {
6081 register int i;
6082 int this_free = 0;
6083
6084 for (i = 0; i < lim; i++)
6085 {
6086 if (!mblk->markers[i].u_any.gcmarkbit)
6087 {
6088 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
6089 unchain_marker (&mblk->markers[i].u_marker);
6090 /* Set the type of the freed object to Lisp_Misc_Free.
6091 We could leave the type alone, since nobody checks it,
6092 but this might catch bugs faster. */
6093 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6094 mblk->markers[i].u_free.chain = marker_free_list;
6095 marker_free_list = &mblk->markers[i];
6096 this_free++;
6097 }
6098 else
6099 {
6100 num_used++;
6101 mblk->markers[i].u_any.gcmarkbit = 0;
6102 }
6103 }
6104 lim = MARKER_BLOCK_SIZE;
6105 /* If this block contains only free markers and we have already
6106 seen more than two blocks worth of free markers then deallocate
6107 this block. */
6108 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6109 {
6110 *mprev = mblk->next;
6111 /* Unhook from the free list. */
6112 marker_free_list = mblk->markers[0].u_free.chain;
6113 lisp_free (mblk);
6114 n_marker_blocks--;
6115 }
6116 else
6117 {
6118 num_free += this_free;
6119 mprev = &mblk->next;
6120 }
6121 }
6122
6123 total_markers = num_used;
6124 total_free_markers = num_free;
6125 }
6126
6127 /* Free all unmarked buffers */
6128 {
6129 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6130
6131 while (buffer)
6132 if (!VECTOR_MARKED_P (buffer))
6133 {
6134 if (prev)
6135 prev->next = buffer->next;
6136 else
6137 all_buffers = buffer->next;
6138 next = buffer->next;
6139 lisp_free (buffer);
6140 buffer = next;
6141 }
6142 else
6143 {
6144 VECTOR_UNMARK (buffer);
6145 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6146 prev = buffer, buffer = buffer->next;
6147 }
6148 }
6149
6150 /* Free all unmarked vectors */
6151 {
6152 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6153 total_vector_size = 0;
6154
6155 while (vector)
6156 if (!VECTOR_MARKED_P (vector))
6157 {
6158 if (prev)
6159 prev->next = vector->next;
6160 else
6161 all_vectors = vector->next;
6162 next = vector->next;
6163 lisp_free (vector);
6164 n_vectors--;
6165 vector = next;
6166
6167 }
6168 else
6169 {
6170 VECTOR_UNMARK (vector);
6171 if (vector->size & PSEUDOVECTOR_FLAG)
6172 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6173 else
6174 total_vector_size += vector->size;
6175 prev = vector, vector = vector->next;
6176 }
6177 }
6178
6179 #ifdef GC_CHECK_STRING_BYTES
6180 if (!noninteractive)
6181 check_string_bytes (1);
6182 #endif
6183 }
6184
6185
6186
6187 \f
6188 /* Debugging aids. */
6189
6190 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6191 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6192 This may be helpful in debugging Emacs's memory usage.
6193 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6194 ()
6195 {
6196 Lisp_Object end;
6197
6198 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6199
6200 return end;
6201 }
6202
6203 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6204 doc: /* Return a list of counters that measure how much consing there has been.
6205 Each of these counters increments for a certain kind of object.
6206 The counters wrap around from the largest positive integer to zero.
6207 Garbage collection does not decrease them.
6208 The elements of the value are as follows:
6209 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6210 All are in units of 1 = one object consed
6211 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6212 objects consed.
6213 MISCS include overlays, markers, and some internal types.
6214 Frames, windows, buffers, and subprocesses count as vectors
6215 (but the contents of a buffer's text do not count here). */)
6216 ()
6217 {
6218 Lisp_Object consed[8];
6219
6220 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6221 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6222 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6223 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6224 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6225 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6226 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6227 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6228
6229 return Flist (8, consed);
6230 }
6231
6232 int suppress_checking;
6233
6234 void
6235 die (msg, file, line)
6236 const char *msg;
6237 const char *file;
6238 int line;
6239 {
6240 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6241 file, line, msg);
6242 abort ();
6243 }
6244 \f
6245 /* Initialization */
6246
6247 void
6248 init_alloc_once ()
6249 {
6250 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6251 purebeg = PUREBEG;
6252 pure_size = PURESIZE;
6253 pure_bytes_used = 0;
6254 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6255 pure_bytes_used_before_overflow = 0;
6256
6257 /* Initialize the list of free aligned blocks. */
6258 free_ablock = NULL;
6259
6260 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6261 mem_init ();
6262 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6263 #endif
6264
6265 all_vectors = 0;
6266 ignore_warnings = 1;
6267 #ifdef DOUG_LEA_MALLOC
6268 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6269 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6270 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6271 #endif
6272 init_strings ();
6273 init_cons ();
6274 init_symbol ();
6275 init_marker ();
6276 init_float ();
6277 init_intervals ();
6278
6279 #ifdef REL_ALLOC
6280 malloc_hysteresis = 32;
6281 #else
6282 malloc_hysteresis = 0;
6283 #endif
6284
6285 refill_memory_reserve ();
6286
6287 ignore_warnings = 0;
6288 gcprolist = 0;
6289 byte_stack_list = 0;
6290 staticidx = 0;
6291 consing_since_gc = 0;
6292 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6293 gc_relative_threshold = 0;
6294
6295 #ifdef VIRT_ADDR_VARIES
6296 malloc_sbrk_unused = 1<<22; /* A large number */
6297 malloc_sbrk_used = 100000; /* as reasonable as any number */
6298 #endif /* VIRT_ADDR_VARIES */
6299 }
6300
6301 void
6302 init_alloc ()
6303 {
6304 gcprolist = 0;
6305 byte_stack_list = 0;
6306 #if GC_MARK_STACK
6307 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6308 setjmp_tested_p = longjmps_done = 0;
6309 #endif
6310 #endif
6311 Vgc_elapsed = make_float (0.0);
6312 gcs_done = 0;
6313 }
6314
6315 void
6316 syms_of_alloc ()
6317 {
6318 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6319 doc: /* *Number of bytes of consing between garbage collections.
6320 Garbage collection can happen automatically once this many bytes have been
6321 allocated since the last garbage collection. All data types count.
6322
6323 Garbage collection happens automatically only when `eval' is called.
6324
6325 By binding this temporarily to a large number, you can effectively
6326 prevent garbage collection during a part of the program.
6327 See also `gc-cons-percentage'. */);
6328
6329 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6330 doc: /* *Portion of the heap used for allocation.
6331 Garbage collection can happen automatically once this portion of the heap
6332 has been allocated since the last garbage collection.
6333 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6334 Vgc_cons_percentage = make_float (0.1);
6335
6336 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6337 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6338
6339 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6340 doc: /* Number of cons cells that have been consed so far. */);
6341
6342 DEFVAR_INT ("floats-consed", &floats_consed,
6343 doc: /* Number of floats that have been consed so far. */);
6344
6345 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6346 doc: /* Number of vector cells that have been consed so far. */);
6347
6348 DEFVAR_INT ("symbols-consed", &symbols_consed,
6349 doc: /* Number of symbols that have been consed so far. */);
6350
6351 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6352 doc: /* Number of string characters that have been consed so far. */);
6353
6354 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6355 doc: /* Number of miscellaneous objects that have been consed so far. */);
6356
6357 DEFVAR_INT ("intervals-consed", &intervals_consed,
6358 doc: /* Number of intervals that have been consed so far. */);
6359
6360 DEFVAR_INT ("strings-consed", &strings_consed,
6361 doc: /* Number of strings that have been consed so far. */);
6362
6363 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6364 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6365 This means that certain objects should be allocated in shared (pure) space. */);
6366
6367 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6368 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6369 garbage_collection_messages = 0;
6370
6371 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6372 doc: /* Hook run after garbage collection has finished. */);
6373 Vpost_gc_hook = Qnil;
6374 Qpost_gc_hook = intern ("post-gc-hook");
6375 staticpro (&Qpost_gc_hook);
6376
6377 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6378 doc: /* Precomputed `signal' argument for memory-full error. */);
6379 /* We build this in advance because if we wait until we need it, we might
6380 not be able to allocate the memory to hold it. */
6381 Vmemory_signal_data
6382 = list2 (Qerror,
6383 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6384
6385 DEFVAR_LISP ("memory-full", &Vmemory_full,
6386 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6387 Vmemory_full = Qnil;
6388
6389 staticpro (&Qgc_cons_threshold);
6390 Qgc_cons_threshold = intern ("gc-cons-threshold");
6391
6392 staticpro (&Qchar_table_extra_slots);
6393 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6394
6395 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6396 doc: /* Accumulated time elapsed in garbage collections.
6397 The time is in seconds as a floating point value. */);
6398 DEFVAR_INT ("gcs-done", &gcs_done,
6399 doc: /* Accumulated number of garbage collections done. */);
6400
6401 defsubr (&Scons);
6402 defsubr (&Slist);
6403 defsubr (&Svector);
6404 defsubr (&Smake_byte_code);
6405 defsubr (&Smake_list);
6406 defsubr (&Smake_vector);
6407 defsubr (&Smake_string);
6408 defsubr (&Smake_bool_vector);
6409 defsubr (&Smake_symbol);
6410 defsubr (&Smake_marker);
6411 defsubr (&Spurecopy);
6412 defsubr (&Sgarbage_collect);
6413 defsubr (&Smemory_limit);
6414 defsubr (&Smemory_use_counts);
6415
6416 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6417 defsubr (&Sgc_status);
6418 #endif
6419 }
6420
6421 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6422 (do not change this comment) */