Merge from trunk.
[bpt/emacs.git] / src / dispnew.c
1 /* Updating of data structures for redisplay.
2
3 Copyright (C) 1985-1988, 1993-1995, 1997-2012 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21 #include <signal.h>
22 #include <stdio.h>
23 #include <ctype.h>
24 #include <setjmp.h>
25 #include <unistd.h>
26
27 #include "lisp.h"
28 #include "termchar.h"
29 #include "termopts.h"
30 /* cm.h must come after dispextern.h on Windows. */
31 #include "dispextern.h"
32 #include "cm.h"
33 #include "buffer.h"
34 #include "character.h"
35 #include "keyboard.h"
36 #include "frame.h"
37 #include "termhooks.h"
38 #include "window.h"
39 #include "commands.h"
40 #include "disptab.h"
41 #include "indent.h"
42 #include "intervals.h"
43 #include "blockinput.h"
44 #include "process.h"
45
46 #include "syssignal.h"
47
48 #ifdef HAVE_X_WINDOWS
49 #include "xterm.h"
50 #endif /* HAVE_X_WINDOWS */
51
52 #ifdef HAVE_NTGUI
53 #include "w32term.h"
54 #endif /* HAVE_NTGUI */
55
56 #ifdef HAVE_NS
57 #include "nsterm.h"
58 #endif
59
60 /* Include systime.h after xterm.h to avoid double inclusion of time.h. */
61
62 #include "systime.h"
63 #include <errno.h>
64
65 /* Get number of chars of output now in the buffer of a stdio stream.
66 This ought to be built in stdio, but it isn't. Some s- files
67 override this because their stdio internals differ. */
68
69 #ifdef __GNU_LIBRARY__
70
71 /* The s- file might have overridden the definition with one that
72 works for the system's C library. But we are using the GNU C
73 library, so this is the right definition for every system. */
74
75 #ifdef GNU_LIBRARY_PENDING_OUTPUT_COUNT
76 #define PENDING_OUTPUT_COUNT GNU_LIBRARY_PENDING_OUTPUT_COUNT
77 #else
78 #undef PENDING_OUTPUT_COUNT
79 #define PENDING_OUTPUT_COUNT(FILE) ((FILE)->__bufp - (FILE)->__buffer)
80 #endif
81 #else /* not __GNU_LIBRARY__ */
82 #if !defined (PENDING_OUTPUT_COUNT) && HAVE_STDIO_EXT_H && HAVE___FPENDING
83 #include <stdio_ext.h>
84 #define PENDING_OUTPUT_COUNT(FILE) __fpending (FILE)
85 #endif
86 #ifndef PENDING_OUTPUT_COUNT
87 #define PENDING_OUTPUT_COUNT(FILE) ((FILE)->_ptr - (FILE)->_base)
88 #endif
89 #endif /* not __GNU_LIBRARY__ */
90
91 #if defined (HAVE_TERM_H) && defined (GNU_LINUX)
92 #include <term.h> /* for tgetent */
93 #endif
94 \f
95 /* Structure to pass dimensions around. Used for character bounding
96 boxes, glyph matrix dimensions and alike. */
97
98 struct dim
99 {
100 int width;
101 int height;
102 };
103
104 \f
105 /* Function prototypes. */
106
107 static void update_frame_line (struct frame *, int);
108 static int required_matrix_height (struct window *);
109 static int required_matrix_width (struct window *);
110 static void adjust_frame_glyphs (struct frame *);
111 static void change_frame_size_1 (struct frame *, int, int, int, int, int);
112 static void increment_row_positions (struct glyph_row *, ptrdiff_t, ptrdiff_t);
113 static void fill_up_frame_row_with_spaces (struct glyph_row *, int);
114 static void build_frame_matrix_from_window_tree (struct glyph_matrix *,
115 struct window *);
116 static void build_frame_matrix_from_leaf_window (struct glyph_matrix *,
117 struct window *);
118 static void adjust_frame_message_buffer (struct frame *);
119 static void adjust_decode_mode_spec_buffer (struct frame *);
120 static void fill_up_glyph_row_with_spaces (struct glyph_row *);
121 static void clear_window_matrices (struct window *, int);
122 static void fill_up_glyph_row_area_with_spaces (struct glyph_row *, int);
123 static int scrolling_window (struct window *, int);
124 static int update_window_line (struct window *, int, int *);
125 static void mirror_make_current (struct window *, int);
126 #if GLYPH_DEBUG
127 static void check_matrix_pointers (struct glyph_matrix *,
128 struct glyph_matrix *);
129 #endif
130 static void mirror_line_dance (struct window *, int, int, int *, char *);
131 static int update_window_tree (struct window *, int);
132 static int update_window (struct window *, int);
133 static int update_frame_1 (struct frame *, int, int);
134 static int scrolling (struct frame *);
135 static void set_window_cursor_after_update (struct window *);
136 static void adjust_frame_glyphs_for_window_redisplay (struct frame *);
137 static void adjust_frame_glyphs_for_frame_redisplay (struct frame *);
138
139 \f
140 /* Define PERIODIC_PREEMPTION_CHECKING to 1, if micro-second timers
141 are supported, so we can check for input during redisplay at
142 regular intervals. */
143 #ifdef EMACS_HAS_USECS
144 #define PERIODIC_PREEMPTION_CHECKING 1
145 #else
146 #define PERIODIC_PREEMPTION_CHECKING 0
147 #endif
148
149 #if PERIODIC_PREEMPTION_CHECKING
150
151 /* Redisplay preemption timers. */
152
153 static EMACS_TIME preemption_period;
154 static EMACS_TIME preemption_next_check;
155
156 #endif
157
158 /* Nonzero upon entry to redisplay means do not assume anything about
159 current contents of actual terminal frame; clear and redraw it. */
160
161 int frame_garbaged;
162
163 /* Nonzero means last display completed. Zero means it was preempted. */
164
165 int display_completed;
166
167 Lisp_Object Qdisplay_table, Qredisplay_dont_pause;
168
169 \f
170 /* The currently selected frame. In a single-frame version, this
171 variable always equals the_only_frame. */
172
173 Lisp_Object selected_frame;
174
175 /* A frame which is not just a mini-buffer, or 0 if there are no such
176 frames. This is usually the most recent such frame that was
177 selected. In a single-frame version, this variable always holds
178 the address of the_only_frame. */
179
180 struct frame *last_nonminibuf_frame;
181
182 /* 1 means SIGWINCH happened when not safe. */
183
184 static int delayed_size_change;
185
186 /* 1 means glyph initialization has been completed at startup. */
187
188 static int glyphs_initialized_initially_p;
189
190 /* Updated window if != 0. Set by update_window. */
191
192 struct window *updated_window;
193
194 /* Glyph row updated in update_window_line, and area that is updated. */
195
196 struct glyph_row *updated_row;
197 int updated_area;
198
199 /* A glyph for a space. */
200
201 struct glyph space_glyph;
202
203 /* Counts of allocated structures. These counts serve to diagnose
204 memory leaks and double frees. */
205
206 static int glyph_matrix_count;
207 static int glyph_pool_count;
208
209 /* If non-null, the frame whose frame matrices are manipulated. If
210 null, window matrices are worked on. */
211
212 static struct frame *frame_matrix_frame;
213
214 /* Non-zero means that fonts have been loaded since the last glyph
215 matrix adjustments. Redisplay must stop, and glyph matrices must
216 be adjusted when this flag becomes non-zero during display. The
217 reason fonts can be loaded so late is that fonts of fontsets are
218 loaded on demand. Another reason is that a line contains many
219 characters displayed by zero width or very narrow glyphs of
220 variable-width fonts. */
221
222 int fonts_changed_p;
223
224 /* Convert vpos and hpos from frame to window and vice versa.
225 This may only be used for terminal frames. */
226
227 #if GLYPH_DEBUG
228
229 static int window_to_frame_vpos (struct window *, int);
230 static int window_to_frame_hpos (struct window *, int);
231 #define WINDOW_TO_FRAME_VPOS(W, VPOS) window_to_frame_vpos ((W), (VPOS))
232 #define WINDOW_TO_FRAME_HPOS(W, HPOS) window_to_frame_hpos ((W), (HPOS))
233
234 /* One element of the ring buffer containing redisplay history
235 information. */
236
237 struct redisplay_history
238 {
239 char trace[512 + 100];
240 };
241
242 /* The size of the history buffer. */
243
244 #define REDISPLAY_HISTORY_SIZE 30
245
246 /* The redisplay history buffer. */
247
248 static struct redisplay_history redisplay_history[REDISPLAY_HISTORY_SIZE];
249
250 /* Next free entry in redisplay_history. */
251
252 static int history_idx;
253
254 /* A tick that's incremented each time something is added to the
255 history. */
256
257 static uprintmax_t history_tick;
258
259 static void add_frame_display_history (struct frame *, int);
260 \f
261 /* Add to the redisplay history how window W has been displayed.
262 MSG is a trace containing the information how W's glyph matrix
263 has been constructed. PAUSED_P non-zero means that the update
264 has been interrupted for pending input. */
265
266 static void
267 add_window_display_history (struct window *w, const char *msg, int paused_p)
268 {
269 char *buf;
270
271 if (history_idx >= REDISPLAY_HISTORY_SIZE)
272 history_idx = 0;
273 buf = redisplay_history[history_idx].trace;
274 ++history_idx;
275
276 snprintf (buf, sizeof redisplay_history[0].trace,
277 "%"pMu": window %p (`%s')%s\n%s",
278 history_tick++,
279 w,
280 ((BUFFERP (w->buffer)
281 && STRINGP (BVAR (XBUFFER (w->buffer), name)))
282 ? SSDATA (BVAR (XBUFFER (w->buffer), name))
283 : "???"),
284 paused_p ? " ***paused***" : "",
285 msg);
286 }
287
288
289 /* Add to the redisplay history that frame F has been displayed.
290 PAUSED_P non-zero means that the update has been interrupted for
291 pending input. */
292
293 static void
294 add_frame_display_history (struct frame *f, int paused_p)
295 {
296 char *buf;
297
298 if (history_idx >= REDISPLAY_HISTORY_SIZE)
299 history_idx = 0;
300 buf = redisplay_history[history_idx].trace;
301 ++history_idx;
302
303 sprintf (buf, "%"pMu": update frame %p%s",
304 history_tick++,
305 f, paused_p ? " ***paused***" : "");
306 }
307
308
309 DEFUN ("dump-redisplay-history", Fdump_redisplay_history,
310 Sdump_redisplay_history, 0, 0, "",
311 doc: /* Dump redisplay history to stderr. */)
312 (void)
313 {
314 int i;
315
316 for (i = history_idx - 1; i != history_idx; --i)
317 {
318 if (i < 0)
319 i = REDISPLAY_HISTORY_SIZE - 1;
320 fprintf (stderr, "%s\n", redisplay_history[i].trace);
321 }
322
323 return Qnil;
324 }
325
326
327 #else /* GLYPH_DEBUG == 0 */
328
329 #define WINDOW_TO_FRAME_VPOS(W, VPOS) ((VPOS) + WINDOW_TOP_EDGE_LINE (W))
330 #define WINDOW_TO_FRAME_HPOS(W, HPOS) ((HPOS) + WINDOW_LEFT_EDGE_COL (W))
331
332 #endif /* GLYPH_DEBUG == 0 */
333
334
335 #if defined PROFILING && !HAVE___EXECUTABLE_START
336 /* FIXME: only used to find text start for profiling. */
337
338 void
339 safe_bcopy (const char *from, char *to, int size)
340 {
341 abort ();
342 }
343 #endif
344 \f
345 /***********************************************************************
346 Glyph Matrices
347 ***********************************************************************/
348
349 /* Allocate and return a glyph_matrix structure. POOL is the glyph
350 pool from which memory for the matrix should be allocated, or null
351 for window-based redisplay where no glyph pools are used. The
352 member `pool' of the glyph matrix structure returned is set to
353 POOL, the structure is otherwise zeroed. */
354
355 static struct glyph_matrix *
356 new_glyph_matrix (struct glyph_pool *pool)
357 {
358 struct glyph_matrix *result;
359
360 /* Allocate and clear. */
361 result = (struct glyph_matrix *) xmalloc (sizeof *result);
362 memset (result, 0, sizeof *result);
363
364 /* Increment number of allocated matrices. This count is used
365 to detect memory leaks. */
366 ++glyph_matrix_count;
367
368 /* Set pool and return. */
369 result->pool = pool;
370 return result;
371 }
372
373
374 /* Free glyph matrix MATRIX. Passing in a null MATRIX is allowed.
375
376 The global counter glyph_matrix_count is decremented when a matrix
377 is freed. If the count gets negative, more structures were freed
378 than allocated, i.e. one matrix was freed more than once or a bogus
379 pointer was passed to this function.
380
381 If MATRIX->pool is null, this means that the matrix manages its own
382 glyph memory---this is done for matrices on X frames. Freeing the
383 matrix also frees the glyph memory in this case. */
384
385 static void
386 free_glyph_matrix (struct glyph_matrix *matrix)
387 {
388 if (matrix)
389 {
390 int i;
391
392 /* Detect the case that more matrices are freed than were
393 allocated. */
394 if (--glyph_matrix_count < 0)
395 abort ();
396
397 /* Free glyph memory if MATRIX owns it. */
398 if (matrix->pool == NULL)
399 for (i = 0; i < matrix->rows_allocated; ++i)
400 xfree (matrix->rows[i].glyphs[LEFT_MARGIN_AREA]);
401
402 /* Free row structures and the matrix itself. */
403 xfree (matrix->rows);
404 xfree (matrix);
405 }
406 }
407
408
409 /* Return the number of glyphs to reserve for a marginal area of
410 window W. TOTAL_GLYPHS is the number of glyphs in a complete
411 display line of window W. MARGIN gives the width of the marginal
412 area in canonical character units. MARGIN should be an integer
413 or a float. */
414
415 static int
416 margin_glyphs_to_reserve (struct window *w, int total_glyphs, Lisp_Object margin)
417 {
418 int n;
419
420 if (NUMBERP (margin))
421 {
422 int width = XFASTINT (w->total_cols);
423 double d = max (0, XFLOATINT (margin));
424 d = min (width / 2 - 1, d);
425 n = (int) ((double) total_glyphs / width * d);
426 }
427 else
428 n = 0;
429
430 return n;
431 }
432
433 #if XASSERTS
434 /* Return non-zero if ROW's hash value is correct, zero if not. */
435 int
436 verify_row_hash (struct glyph_row *row)
437 {
438 return row->hash == row_hash (row);
439 }
440 #endif
441
442 /* Adjust glyph matrix MATRIX on window W or on a frame to changed
443 window sizes.
444
445 W is null if the function is called for a frame glyph matrix.
446 Otherwise it is the window MATRIX is a member of. X and Y are the
447 indices of the first column and row of MATRIX within the frame
448 matrix, if such a matrix exists. They are zero for purely
449 window-based redisplay. DIM is the needed size of the matrix.
450
451 In window-based redisplay, where no frame matrices exist, glyph
452 matrices manage their own glyph storage. Otherwise, they allocate
453 storage from a common frame glyph pool which can be found in
454 MATRIX->pool.
455
456 The reason for this memory management strategy is to avoid complete
457 frame redraws if possible. When we allocate from a common pool, a
458 change of the location or size of a sub-matrix within the pool
459 requires a complete redisplay of the frame because we cannot easily
460 make sure that the current matrices of all windows still agree with
461 what is displayed on the screen. While this is usually fast, it
462 leads to screen flickering. */
463
464 static void
465 adjust_glyph_matrix (struct window *w, struct glyph_matrix *matrix, int x, int y, struct dim dim)
466 {
467 int i;
468 int new_rows;
469 int marginal_areas_changed_p = 0;
470 int header_line_changed_p = 0;
471 int header_line_p = 0;
472 int left = -1, right = -1;
473 int window_width = -1, window_height = -1;
474
475 /* See if W had a header line that has disappeared now, or vice versa.
476 Get W's size. */
477 if (w)
478 {
479 window_box (w, -1, 0, 0, &window_width, &window_height);
480
481 header_line_p = WINDOW_WANTS_HEADER_LINE_P (w);
482 header_line_changed_p = header_line_p != matrix->header_line_p;
483 }
484 matrix->header_line_p = header_line_p;
485
486 /* If POOL is null, MATRIX is a window matrix for window-based redisplay.
487 Do nothing if MATRIX' size, position, vscroll, and marginal areas
488 haven't changed. This optimization is important because preserving
489 the matrix means preventing redisplay. */
490 if (matrix->pool == NULL)
491 {
492 left = margin_glyphs_to_reserve (w, dim.width, w->left_margin_cols);
493 right = margin_glyphs_to_reserve (w, dim.width, w->right_margin_cols);
494 xassert (left >= 0 && right >= 0);
495 marginal_areas_changed_p = (left != matrix->left_margin_glyphs
496 || right != matrix->right_margin_glyphs);
497
498 if (!marginal_areas_changed_p
499 && !fonts_changed_p
500 && !header_line_changed_p
501 && matrix->window_left_col == WINDOW_LEFT_EDGE_COL (w)
502 && matrix->window_top_line == WINDOW_TOP_EDGE_LINE (w)
503 && matrix->window_height == window_height
504 && matrix->window_vscroll == w->vscroll
505 && matrix->window_width == window_width)
506 return;
507 }
508
509 /* Enlarge MATRIX->rows if necessary. New rows are cleared. */
510 if (matrix->rows_allocated < dim.height)
511 {
512 int old_alloc = matrix->rows_allocated;
513 new_rows = dim.height - matrix->rows_allocated;
514 matrix->rows = xpalloc (matrix->rows, &matrix->rows_allocated,
515 new_rows, INT_MAX, sizeof *matrix->rows);
516 memset (matrix->rows + old_alloc, 0,
517 (matrix->rows_allocated - old_alloc) * sizeof *matrix->rows);
518 }
519 else
520 new_rows = 0;
521
522 /* If POOL is not null, MATRIX is a frame matrix or a window matrix
523 on a frame not using window-based redisplay. Set up pointers for
524 each row into the glyph pool. */
525 if (matrix->pool)
526 {
527 xassert (matrix->pool->glyphs);
528
529 if (w)
530 {
531 left = margin_glyphs_to_reserve (w, dim.width,
532 w->left_margin_cols);
533 right = margin_glyphs_to_reserve (w, dim.width,
534 w->right_margin_cols);
535 }
536 else
537 left = right = 0;
538
539 for (i = 0; i < dim.height; ++i)
540 {
541 struct glyph_row *row = &matrix->rows[i];
542
543 row->glyphs[LEFT_MARGIN_AREA]
544 = (matrix->pool->glyphs
545 + (y + i) * matrix->pool->ncolumns
546 + x);
547
548 if (w == NULL
549 || row == matrix->rows + dim.height - 1
550 || (row == matrix->rows && matrix->header_line_p))
551 {
552 row->glyphs[TEXT_AREA]
553 = row->glyphs[LEFT_MARGIN_AREA];
554 row->glyphs[RIGHT_MARGIN_AREA]
555 = row->glyphs[TEXT_AREA] + dim.width;
556 row->glyphs[LAST_AREA]
557 = row->glyphs[RIGHT_MARGIN_AREA];
558 }
559 else
560 {
561 row->glyphs[TEXT_AREA]
562 = row->glyphs[LEFT_MARGIN_AREA] + left;
563 row->glyphs[RIGHT_MARGIN_AREA]
564 = row->glyphs[TEXT_AREA] + dim.width - left - right;
565 row->glyphs[LAST_AREA]
566 = row->glyphs[LEFT_MARGIN_AREA] + dim.width;
567 }
568 }
569
570 matrix->left_margin_glyphs = left;
571 matrix->right_margin_glyphs = right;
572 }
573 else
574 {
575 /* If MATRIX->pool is null, MATRIX is responsible for managing
576 its own memory. It is a window matrix for window-based redisplay.
577 Allocate glyph memory from the heap. */
578 if (dim.width > matrix->matrix_w
579 || new_rows
580 || header_line_changed_p
581 || marginal_areas_changed_p)
582 {
583 struct glyph_row *row = matrix->rows;
584 struct glyph_row *end = row + matrix->rows_allocated;
585
586 while (row < end)
587 {
588 row->glyphs[LEFT_MARGIN_AREA]
589 = xnrealloc (row->glyphs[LEFT_MARGIN_AREA],
590 dim.width, sizeof (struct glyph));
591
592 /* The mode line never has marginal areas. */
593 if (row == matrix->rows + dim.height - 1
594 || (row == matrix->rows && matrix->header_line_p))
595 {
596 row->glyphs[TEXT_AREA]
597 = row->glyphs[LEFT_MARGIN_AREA];
598 row->glyphs[RIGHT_MARGIN_AREA]
599 = row->glyphs[TEXT_AREA] + dim.width;
600 row->glyphs[LAST_AREA]
601 = row->glyphs[RIGHT_MARGIN_AREA];
602 }
603 else
604 {
605 row->glyphs[TEXT_AREA]
606 = row->glyphs[LEFT_MARGIN_AREA] + left;
607 row->glyphs[RIGHT_MARGIN_AREA]
608 = row->glyphs[TEXT_AREA] + dim.width - left - right;
609 row->glyphs[LAST_AREA]
610 = row->glyphs[LEFT_MARGIN_AREA] + dim.width;
611 }
612 ++row;
613 }
614 }
615
616 xassert (left >= 0 && right >= 0);
617 matrix->left_margin_glyphs = left;
618 matrix->right_margin_glyphs = right;
619 }
620
621 /* Number of rows to be used by MATRIX. */
622 matrix->nrows = dim.height;
623 xassert (matrix->nrows >= 0);
624
625 if (w)
626 {
627 if (matrix == w->current_matrix)
628 {
629 /* Mark rows in a current matrix of a window as not having
630 valid contents. It's important to not do this for
631 desired matrices. When Emacs starts, it may already be
632 building desired matrices when this function runs. */
633 if (window_width < 0)
634 window_width = window_box_width (w, -1);
635
636 /* Optimize the case that only the height has changed (C-x 2,
637 upper window). Invalidate all rows that are no longer part
638 of the window. */
639 if (!marginal_areas_changed_p
640 && !header_line_changed_p
641 && new_rows == 0
642 && dim.width == matrix->matrix_w
643 && matrix->window_left_col == WINDOW_LEFT_EDGE_COL (w)
644 && matrix->window_top_line == WINDOW_TOP_EDGE_LINE (w)
645 && matrix->window_width == window_width)
646 {
647 /* Find the last row in the window. */
648 for (i = 0; i < matrix->nrows && matrix->rows[i].enabled_p; ++i)
649 if (MATRIX_ROW_BOTTOM_Y (matrix->rows + i) >= window_height)
650 {
651 ++i;
652 break;
653 }
654
655 /* Window end is invalid, if inside of the rows that
656 are invalidated below. */
657 if (INTEGERP (w->window_end_vpos)
658 && XFASTINT (w->window_end_vpos) >= i)
659 w->window_end_valid = Qnil;
660
661 while (i < matrix->nrows)
662 matrix->rows[i++].enabled_p = 0;
663 }
664 else
665 {
666 for (i = 0; i < matrix->nrows; ++i)
667 matrix->rows[i].enabled_p = 0;
668 }
669 }
670 else if (matrix == w->desired_matrix)
671 {
672 /* Rows in desired matrices always have to be cleared;
673 redisplay expects this is the case when it runs, so it
674 had better be the case when we adjust matrices between
675 redisplays. */
676 for (i = 0; i < matrix->nrows; ++i)
677 matrix->rows[i].enabled_p = 0;
678 }
679 }
680
681
682 /* Remember last values to be able to optimize frame redraws. */
683 matrix->matrix_x = x;
684 matrix->matrix_y = y;
685 matrix->matrix_w = dim.width;
686 matrix->matrix_h = dim.height;
687
688 /* Record the top y location and height of W at the time the matrix
689 was last adjusted. This is used to optimize redisplay above. */
690 if (w)
691 {
692 matrix->window_left_col = WINDOW_LEFT_EDGE_COL (w);
693 matrix->window_top_line = WINDOW_TOP_EDGE_LINE (w);
694 matrix->window_height = window_height;
695 matrix->window_width = window_width;
696 matrix->window_vscroll = w->vscroll;
697 }
698 }
699
700
701 /* Reverse the contents of rows in MATRIX between START and END. The
702 contents of the row at END - 1 end up at START, END - 2 at START +
703 1 etc. This is part of the implementation of rotate_matrix (see
704 below). */
705
706 static void
707 reverse_rows (struct glyph_matrix *matrix, int start, int end)
708 {
709 int i, j;
710
711 for (i = start, j = end - 1; i < j; ++i, --j)
712 {
713 /* Non-ISO HP/UX compiler doesn't like auto struct
714 initialization. */
715 struct glyph_row temp;
716 temp = matrix->rows[i];
717 matrix->rows[i] = matrix->rows[j];
718 matrix->rows[j] = temp;
719 }
720 }
721
722
723 /* Rotate the contents of rows in MATRIX in the range FIRST .. LAST -
724 1 by BY positions. BY < 0 means rotate left, i.e. towards lower
725 indices. (Note: this does not copy glyphs, only glyph pointers in
726 row structures are moved around).
727
728 The algorithm used for rotating the vector was, I believe, first
729 described by Kernighan. See the vector R as consisting of two
730 sub-vectors AB, where A has length BY for BY >= 0. The result
731 after rotating is then BA. Reverse both sub-vectors to get ArBr
732 and reverse the result to get (ArBr)r which is BA. Similar for
733 rotating right. */
734
735 void
736 rotate_matrix (struct glyph_matrix *matrix, int first, int last, int by)
737 {
738 if (by < 0)
739 {
740 /* Up (rotate left, i.e. towards lower indices). */
741 by = -by;
742 reverse_rows (matrix, first, first + by);
743 reverse_rows (matrix, first + by, last);
744 reverse_rows (matrix, first, last);
745 }
746 else if (by > 0)
747 {
748 /* Down (rotate right, i.e. towards higher indices). */
749 reverse_rows (matrix, last - by, last);
750 reverse_rows (matrix, first, last - by);
751 reverse_rows (matrix, first, last);
752 }
753 }
754
755
756 /* Increment buffer positions in glyph rows of MATRIX. Do it for rows
757 with indices START <= index < END. Increment positions by DELTA/
758 DELTA_BYTES. */
759
760 void
761 increment_matrix_positions (struct glyph_matrix *matrix, int start, int end,
762 ptrdiff_t delta, ptrdiff_t delta_bytes)
763 {
764 /* Check that START and END are reasonable values. */
765 xassert (start >= 0 && start <= matrix->nrows);
766 xassert (end >= 0 && end <= matrix->nrows);
767 xassert (start <= end);
768
769 for (; start < end; ++start)
770 increment_row_positions (matrix->rows + start, delta, delta_bytes);
771 }
772
773
774 /* Enable a range of rows in glyph matrix MATRIX. START and END are
775 the row indices of the first and last + 1 row to enable. If
776 ENABLED_P is non-zero, enabled_p flags in rows will be set to 1. */
777
778 void
779 enable_glyph_matrix_rows (struct glyph_matrix *matrix, int start, int end, int enabled_p)
780 {
781 xassert (start <= end);
782 xassert (start >= 0 && start < matrix->nrows);
783 xassert (end >= 0 && end <= matrix->nrows);
784
785 for (; start < end; ++start)
786 matrix->rows[start].enabled_p = enabled_p != 0;
787 }
788
789
790 /* Clear MATRIX.
791
792 This empties all rows in MATRIX by setting the enabled_p flag for
793 all rows of the matrix to zero. The function prepare_desired_row
794 will eventually really clear a row when it sees one with a zero
795 enabled_p flag.
796
797 Resets update hints to defaults value. The only update hint
798 currently present is the flag MATRIX->no_scrolling_p. */
799
800 void
801 clear_glyph_matrix (struct glyph_matrix *matrix)
802 {
803 if (matrix)
804 {
805 enable_glyph_matrix_rows (matrix, 0, matrix->nrows, 0);
806 matrix->no_scrolling_p = 0;
807 }
808 }
809
810
811 /* Shift part of the glyph matrix MATRIX of window W up or down.
812 Increment y-positions in glyph rows between START and END by DY,
813 and recompute their visible height. */
814
815 void
816 shift_glyph_matrix (struct window *w, struct glyph_matrix *matrix, int start, int end, int dy)
817 {
818 int min_y, max_y;
819
820 xassert (start <= end);
821 xassert (start >= 0 && start < matrix->nrows);
822 xassert (end >= 0 && end <= matrix->nrows);
823
824 min_y = WINDOW_HEADER_LINE_HEIGHT (w);
825 max_y = WINDOW_BOX_HEIGHT_NO_MODE_LINE (w);
826
827 for (; start < end; ++start)
828 {
829 struct glyph_row *row = &matrix->rows[start];
830
831 row->y += dy;
832 row->visible_height = row->height;
833
834 if (row->y < min_y)
835 row->visible_height -= min_y - row->y;
836 if (row->y + row->height > max_y)
837 row->visible_height -= row->y + row->height - max_y;
838 if (row->fringe_bitmap_periodic_p)
839 row->redraw_fringe_bitmaps_p = 1;
840 }
841 }
842
843
844 /* Mark all rows in current matrices of frame F as invalid. Marking
845 invalid is done by setting enabled_p to zero for all rows in a
846 current matrix. */
847
848 void
849 clear_current_matrices (register struct frame *f)
850 {
851 /* Clear frame current matrix, if we have one. */
852 if (f->current_matrix)
853 clear_glyph_matrix (f->current_matrix);
854
855 /* Clear the matrix of the menu bar window, if such a window exists.
856 The menu bar window is currently used to display menus on X when
857 no toolkit support is compiled in. */
858 if (WINDOWP (f->menu_bar_window))
859 clear_glyph_matrix (XWINDOW (f->menu_bar_window)->current_matrix);
860
861 /* Clear the matrix of the tool-bar window, if any. */
862 if (WINDOWP (f->tool_bar_window))
863 clear_glyph_matrix (XWINDOW (f->tool_bar_window)->current_matrix);
864
865 /* Clear current window matrices. */
866 xassert (WINDOWP (FRAME_ROOT_WINDOW (f)));
867 clear_window_matrices (XWINDOW (FRAME_ROOT_WINDOW (f)), 0);
868 }
869
870
871 /* Clear out all display lines of F for a coming redisplay. */
872
873 void
874 clear_desired_matrices (register struct frame *f)
875 {
876 if (f->desired_matrix)
877 clear_glyph_matrix (f->desired_matrix);
878
879 if (WINDOWP (f->menu_bar_window))
880 clear_glyph_matrix (XWINDOW (f->menu_bar_window)->desired_matrix);
881
882 if (WINDOWP (f->tool_bar_window))
883 clear_glyph_matrix (XWINDOW (f->tool_bar_window)->desired_matrix);
884
885 /* Do it for window matrices. */
886 xassert (WINDOWP (FRAME_ROOT_WINDOW (f)));
887 clear_window_matrices (XWINDOW (FRAME_ROOT_WINDOW (f)), 1);
888 }
889
890
891 /* Clear matrices in window tree rooted in W. If DESIRED_P is
892 non-zero clear desired matrices, otherwise clear current matrices. */
893
894 static void
895 clear_window_matrices (struct window *w, int desired_p)
896 {
897 while (w)
898 {
899 if (!NILP (w->hchild))
900 {
901 xassert (WINDOWP (w->hchild));
902 clear_window_matrices (XWINDOW (w->hchild), desired_p);
903 }
904 else if (!NILP (w->vchild))
905 {
906 xassert (WINDOWP (w->vchild));
907 clear_window_matrices (XWINDOW (w->vchild), desired_p);
908 }
909 else
910 {
911 if (desired_p)
912 clear_glyph_matrix (w->desired_matrix);
913 else
914 {
915 clear_glyph_matrix (w->current_matrix);
916 w->window_end_valid = Qnil;
917 }
918 }
919
920 w = NILP (w->next) ? 0 : XWINDOW (w->next);
921 }
922 }
923
924
925 \f
926 /***********************************************************************
927 Glyph Rows
928
929 See dispextern.h for an overall explanation of glyph rows.
930 ***********************************************************************/
931
932 /* Clear glyph row ROW. Do it in a way that makes it robust against
933 changes in the glyph_row structure, i.e. addition or removal of
934 structure members. */
935
936 static struct glyph_row null_row;
937
938 void
939 clear_glyph_row (struct glyph_row *row)
940 {
941 struct glyph *p[1 + LAST_AREA];
942
943 /* Save pointers. */
944 p[LEFT_MARGIN_AREA] = row->glyphs[LEFT_MARGIN_AREA];
945 p[TEXT_AREA] = row->glyphs[TEXT_AREA];
946 p[RIGHT_MARGIN_AREA] = row->glyphs[RIGHT_MARGIN_AREA];
947 p[LAST_AREA] = row->glyphs[LAST_AREA];
948
949 /* Clear. */
950 *row = null_row;
951
952 /* Restore pointers. */
953 row->glyphs[LEFT_MARGIN_AREA] = p[LEFT_MARGIN_AREA];
954 row->glyphs[TEXT_AREA] = p[TEXT_AREA];
955 row->glyphs[RIGHT_MARGIN_AREA] = p[RIGHT_MARGIN_AREA];
956 row->glyphs[LAST_AREA] = p[LAST_AREA];
957
958 #if 0 /* At some point, some bit-fields of struct glyph were not set,
959 which made glyphs unequal when compared with GLYPH_EQUAL_P.
960 Redisplay outputs such glyphs, and flickering effects were
961 the result. This also depended on the contents of memory
962 returned by xmalloc. If flickering happens again, activate
963 the code below. If the flickering is gone with that, chances
964 are that the flickering has the same reason as here. */
965 memset (p[0], 0, (char *) p[LAST_AREA] - (char *) p[0]);
966 #endif
967 }
968
969
970 /* Make ROW an empty, enabled row of canonical character height,
971 in window W starting at y-position Y. */
972
973 void
974 blank_row (struct window *w, struct glyph_row *row, int y)
975 {
976 int min_y, max_y;
977
978 min_y = WINDOW_HEADER_LINE_HEIGHT (w);
979 max_y = WINDOW_BOX_HEIGHT_NO_MODE_LINE (w);
980
981 clear_glyph_row (row);
982 row->y = y;
983 row->ascent = row->phys_ascent = 0;
984 row->height = row->phys_height = FRAME_LINE_HEIGHT (XFRAME (w->frame));
985 row->visible_height = row->height;
986
987 if (row->y < min_y)
988 row->visible_height -= min_y - row->y;
989 if (row->y + row->height > max_y)
990 row->visible_height -= row->y + row->height - max_y;
991
992 row->enabled_p = 1;
993 }
994
995
996 /* Increment buffer positions in glyph row ROW. DELTA and DELTA_BYTES
997 are the amounts by which to change positions. Note that the first
998 glyph of the text area of a row can have a buffer position even if
999 the used count of the text area is zero. Such rows display line
1000 ends. */
1001
1002 static void
1003 increment_row_positions (struct glyph_row *row,
1004 ptrdiff_t delta, ptrdiff_t delta_bytes)
1005 {
1006 int area, i;
1007
1008 /* Increment start and end positions. */
1009 MATRIX_ROW_START_CHARPOS (row) += delta;
1010 MATRIX_ROW_START_BYTEPOS (row) += delta_bytes;
1011 MATRIX_ROW_END_CHARPOS (row) += delta;
1012 MATRIX_ROW_END_BYTEPOS (row) += delta_bytes;
1013 CHARPOS (row->start.pos) += delta;
1014 BYTEPOS (row->start.pos) += delta_bytes;
1015 CHARPOS (row->end.pos) += delta;
1016 BYTEPOS (row->end.pos) += delta_bytes;
1017
1018 if (!row->enabled_p)
1019 return;
1020
1021 /* Increment positions in glyphs. */
1022 for (area = 0; area < LAST_AREA; ++area)
1023 for (i = 0; i < row->used[area]; ++i)
1024 if (BUFFERP (row->glyphs[area][i].object)
1025 && row->glyphs[area][i].charpos > 0)
1026 row->glyphs[area][i].charpos += delta;
1027
1028 /* Capture the case of rows displaying a line end. */
1029 if (row->used[TEXT_AREA] == 0
1030 && MATRIX_ROW_DISPLAYS_TEXT_P (row))
1031 row->glyphs[TEXT_AREA]->charpos += delta;
1032 }
1033
1034
1035 #if 0
1036 /* Swap glyphs between two glyph rows A and B. This exchanges glyph
1037 contents, i.e. glyph structure contents are exchanged between A and
1038 B without changing glyph pointers in A and B. */
1039
1040 static void
1041 swap_glyphs_in_rows (struct glyph_row *a, struct glyph_row *b)
1042 {
1043 int area;
1044
1045 for (area = 0; area < LAST_AREA; ++area)
1046 {
1047 /* Number of glyphs to swap. */
1048 int max_used = max (a->used[area], b->used[area]);
1049
1050 /* Start of glyphs in area of row A. */
1051 struct glyph *glyph_a = a->glyphs[area];
1052
1053 /* End + 1 of glyphs in area of row A. */
1054 struct glyph *glyph_a_end = a->glyphs[max_used];
1055
1056 /* Start of glyphs in area of row B. */
1057 struct glyph *glyph_b = b->glyphs[area];
1058
1059 while (glyph_a < glyph_a_end)
1060 {
1061 /* Non-ISO HP/UX compiler doesn't like auto struct
1062 initialization. */
1063 struct glyph temp;
1064 temp = *glyph_a;
1065 *glyph_a = *glyph_b;
1066 *glyph_b = temp;
1067 ++glyph_a;
1068 ++glyph_b;
1069 }
1070 }
1071 }
1072
1073 #endif /* 0 */
1074
1075 /* Exchange pointers to glyph memory between glyph rows A and B. Also
1076 exchange the used[] array and the hash values of the rows, because
1077 these should all go together for the row's hash value to be
1078 correct. */
1079
1080 static inline void
1081 swap_glyph_pointers (struct glyph_row *a, struct glyph_row *b)
1082 {
1083 int i;
1084 unsigned hash_tem = a->hash;
1085
1086 for (i = 0; i < LAST_AREA + 1; ++i)
1087 {
1088 struct glyph *temp = a->glyphs[i];
1089
1090 a->glyphs[i] = b->glyphs[i];
1091 b->glyphs[i] = temp;
1092 if (i < LAST_AREA)
1093 {
1094 short used_tem = a->used[i];
1095
1096 a->used[i] = b->used[i];
1097 b->used[i] = used_tem;
1098 }
1099 }
1100 a->hash = b->hash;
1101 b->hash = hash_tem;
1102 }
1103
1104
1105 /* Copy glyph row structure FROM to glyph row structure TO, except
1106 that glyph pointers, the `used' counts, and the hash values in the
1107 structures are left unchanged. */
1108
1109 static inline void
1110 copy_row_except_pointers (struct glyph_row *to, struct glyph_row *from)
1111 {
1112 struct glyph *pointers[1 + LAST_AREA];
1113 short used[LAST_AREA];
1114 unsigned hashval;
1115
1116 /* Save glyph pointers of TO. */
1117 memcpy (pointers, to->glyphs, sizeof to->glyphs);
1118 memcpy (used, to->used, sizeof to->used);
1119 hashval = to->hash;
1120
1121 /* Do a structure assignment. */
1122 *to = *from;
1123
1124 /* Restore original pointers of TO. */
1125 memcpy (to->glyphs, pointers, sizeof to->glyphs);
1126 memcpy (to->used, used, sizeof to->used);
1127 to->hash = hashval;
1128 }
1129
1130
1131 /* Assign glyph row FROM to glyph row TO. This works like a structure
1132 assignment TO = FROM, except that glyph pointers are not copied but
1133 exchanged between TO and FROM. Pointers must be exchanged to avoid
1134 a memory leak. */
1135
1136 static inline void
1137 assign_row (struct glyph_row *to, struct glyph_row *from)
1138 {
1139 swap_glyph_pointers (to, from);
1140 copy_row_except_pointers (to, from);
1141 }
1142
1143
1144 /* Test whether the glyph memory of the glyph row WINDOW_ROW, which is
1145 a row in a window matrix, is a slice of the glyph memory of the
1146 glyph row FRAME_ROW which is a row in a frame glyph matrix. Value
1147 is non-zero if the glyph memory of WINDOW_ROW is part of the glyph
1148 memory of FRAME_ROW. */
1149
1150 #if GLYPH_DEBUG
1151
1152 static int
1153 glyph_row_slice_p (struct glyph_row *window_row, struct glyph_row *frame_row)
1154 {
1155 struct glyph *window_glyph_start = window_row->glyphs[0];
1156 struct glyph *frame_glyph_start = frame_row->glyphs[0];
1157 struct glyph *frame_glyph_end = frame_row->glyphs[LAST_AREA];
1158
1159 return (frame_glyph_start <= window_glyph_start
1160 && window_glyph_start < frame_glyph_end);
1161 }
1162
1163 #endif /* GLYPH_DEBUG */
1164
1165 #if 0
1166
1167 /* Find the row in the window glyph matrix WINDOW_MATRIX being a slice
1168 of ROW in the frame matrix FRAME_MATRIX. Value is null if no row
1169 in WINDOW_MATRIX is found satisfying the condition. */
1170
1171 static struct glyph_row *
1172 find_glyph_row_slice (struct glyph_matrix *window_matrix,
1173 struct glyph_matrix *frame_matrix, int row)
1174 {
1175 int i;
1176
1177 xassert (row >= 0 && row < frame_matrix->nrows);
1178
1179 for (i = 0; i < window_matrix->nrows; ++i)
1180 if (glyph_row_slice_p (window_matrix->rows + i,
1181 frame_matrix->rows + row))
1182 break;
1183
1184 return i < window_matrix->nrows ? window_matrix->rows + i : 0;
1185 }
1186
1187 #endif /* 0 */
1188
1189 /* Prepare ROW for display. Desired rows are cleared lazily,
1190 i.e. they are only marked as to be cleared by setting their
1191 enabled_p flag to zero. When a row is to be displayed, a prior
1192 call to this function really clears it. */
1193
1194 void
1195 prepare_desired_row (struct glyph_row *row)
1196 {
1197 if (!row->enabled_p)
1198 {
1199 int rp = row->reversed_p;
1200
1201 clear_glyph_row (row);
1202 row->enabled_p = 1;
1203 row->reversed_p = rp;
1204 }
1205 }
1206
1207
1208 /* Return a hash code for glyph row ROW. */
1209
1210 static int
1211 line_hash_code (struct glyph_row *row)
1212 {
1213 int hash = 0;
1214
1215 if (row->enabled_p)
1216 {
1217 struct glyph *glyph = row->glyphs[TEXT_AREA];
1218 struct glyph *end = glyph + row->used[TEXT_AREA];
1219
1220 while (glyph < end)
1221 {
1222 int c = glyph->u.ch;
1223 int face_id = glyph->face_id;
1224 if (FRAME_MUST_WRITE_SPACES (SELECTED_FRAME ())) /* XXX Is SELECTED_FRAME OK here? */
1225 c -= SPACEGLYPH;
1226 hash = (((hash << 4) + (hash >> 24)) & 0x0fffffff) + c;
1227 hash = (((hash << 4) + (hash >> 24)) & 0x0fffffff) + face_id;
1228 ++glyph;
1229 }
1230
1231 if (hash == 0)
1232 hash = 1;
1233 }
1234
1235 return hash;
1236 }
1237
1238
1239 /* Return the cost of drawing line VPOS in MATRIX. The cost equals
1240 the number of characters in the line. If must_write_spaces is
1241 zero, leading and trailing spaces are ignored. */
1242
1243 static int
1244 line_draw_cost (struct glyph_matrix *matrix, int vpos)
1245 {
1246 struct glyph_row *row = matrix->rows + vpos;
1247 struct glyph *beg = row->glyphs[TEXT_AREA];
1248 struct glyph *end = beg + row->used[TEXT_AREA];
1249 int len;
1250 Lisp_Object *glyph_table_base = GLYPH_TABLE_BASE;
1251 ptrdiff_t glyph_table_len = GLYPH_TABLE_LENGTH;
1252
1253 /* Ignore trailing and leading spaces if we can. */
1254 if (!FRAME_MUST_WRITE_SPACES (SELECTED_FRAME ())) /* XXX Is SELECTED_FRAME OK here? */
1255 {
1256 /* Skip from the end over trailing spaces. */
1257 while (end > beg && CHAR_GLYPH_SPACE_P (*(end - 1)))
1258 --end;
1259
1260 /* All blank line. */
1261 if (end == beg)
1262 return 0;
1263
1264 /* Skip over leading spaces. */
1265 while (CHAR_GLYPH_SPACE_P (*beg))
1266 ++beg;
1267 }
1268
1269 /* If we don't have a glyph-table, each glyph is one character,
1270 so return the number of glyphs. */
1271 if (glyph_table_base == 0)
1272 len = end - beg;
1273 else
1274 {
1275 /* Otherwise, scan the glyphs and accumulate their total length
1276 in LEN. */
1277 len = 0;
1278 while (beg < end)
1279 {
1280 GLYPH g;
1281
1282 SET_GLYPH_FROM_CHAR_GLYPH (g, *beg);
1283
1284 if (GLYPH_INVALID_P (g)
1285 || GLYPH_SIMPLE_P (glyph_table_base, glyph_table_len, g))
1286 len += 1;
1287 else
1288 len += GLYPH_LENGTH (glyph_table_base, g);
1289
1290 ++beg;
1291 }
1292 }
1293
1294 return len;
1295 }
1296
1297
1298 /* Test two glyph rows A and B for equality. Value is non-zero if A
1299 and B have equal contents. MOUSE_FACE_P non-zero means compare the
1300 mouse_face_p flags of A and B, too. */
1301
1302 static inline int
1303 row_equal_p (struct glyph_row *a, struct glyph_row *b, int mouse_face_p)
1304 {
1305 xassert (verify_row_hash (a));
1306 xassert (verify_row_hash (b));
1307
1308 if (a == b)
1309 return 1;
1310 else if (a->hash != b->hash)
1311 return 0;
1312 else
1313 {
1314 struct glyph *a_glyph, *b_glyph, *a_end;
1315 int area;
1316
1317 if (mouse_face_p && a->mouse_face_p != b->mouse_face_p)
1318 return 0;
1319
1320 /* Compare glyphs. */
1321 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
1322 {
1323 if (a->used[area] != b->used[area])
1324 return 0;
1325
1326 a_glyph = a->glyphs[area];
1327 a_end = a_glyph + a->used[area];
1328 b_glyph = b->glyphs[area];
1329
1330 while (a_glyph < a_end
1331 && GLYPH_EQUAL_P (a_glyph, b_glyph))
1332 ++a_glyph, ++b_glyph;
1333
1334 if (a_glyph != a_end)
1335 return 0;
1336 }
1337
1338 if (a->fill_line_p != b->fill_line_p
1339 || a->cursor_in_fringe_p != b->cursor_in_fringe_p
1340 || a->left_fringe_bitmap != b->left_fringe_bitmap
1341 || a->left_fringe_face_id != b->left_fringe_face_id
1342 || a->left_fringe_offset != b->left_fringe_offset
1343 || a->right_fringe_bitmap != b->right_fringe_bitmap
1344 || a->right_fringe_face_id != b->right_fringe_face_id
1345 || a->right_fringe_offset != b->right_fringe_offset
1346 || a->fringe_bitmap_periodic_p != b->fringe_bitmap_periodic_p
1347 || a->overlay_arrow_bitmap != b->overlay_arrow_bitmap
1348 || a->exact_window_width_line_p != b->exact_window_width_line_p
1349 || a->overlapped_p != b->overlapped_p
1350 || (MATRIX_ROW_CONTINUATION_LINE_P (a)
1351 != MATRIX_ROW_CONTINUATION_LINE_P (b))
1352 || a->reversed_p != b->reversed_p
1353 /* Different partially visible characters on left margin. */
1354 || a->x != b->x
1355 /* Different height. */
1356 || a->ascent != b->ascent
1357 || a->phys_ascent != b->phys_ascent
1358 || a->phys_height != b->phys_height
1359 || a->visible_height != b->visible_height)
1360 return 0;
1361 }
1362
1363 return 1;
1364 }
1365
1366
1367 \f
1368 /***********************************************************************
1369 Glyph Pool
1370
1371 See dispextern.h for an overall explanation of glyph pools.
1372 ***********************************************************************/
1373
1374 /* Allocate a glyph_pool structure. The structure returned is
1375 initialized with zeros. The global variable glyph_pool_count is
1376 incremented for each pool allocated. */
1377
1378 static struct glyph_pool *
1379 new_glyph_pool (void)
1380 {
1381 struct glyph_pool *result;
1382
1383 /* Allocate a new glyph_pool and clear it. */
1384 result = (struct glyph_pool *) xmalloc (sizeof *result);
1385 memset (result, 0, sizeof *result);
1386
1387 /* For memory leak and double deletion checking. */
1388 ++glyph_pool_count;
1389
1390 return result;
1391 }
1392
1393
1394 /* Free a glyph_pool structure POOL. The function may be called with
1395 a null POOL pointer. The global variable glyph_pool_count is
1396 decremented with every pool structure freed. If this count gets
1397 negative, more structures were freed than allocated, i.e. one
1398 structure must have been freed more than once or a bogus pointer
1399 was passed to free_glyph_pool. */
1400
1401 static void
1402 free_glyph_pool (struct glyph_pool *pool)
1403 {
1404 if (pool)
1405 {
1406 /* More freed than allocated? */
1407 --glyph_pool_count;
1408 xassert (glyph_pool_count >= 0);
1409
1410 xfree (pool->glyphs);
1411 xfree (pool);
1412 }
1413 }
1414
1415
1416 /* Enlarge a glyph pool POOL. MATRIX_DIM gives the number of rows and
1417 columns we need. This function never shrinks a pool. The only
1418 case in which this would make sense, would be when a frame's size
1419 is changed from a large value to a smaller one. But, if someone
1420 does it once, we can expect that he will do it again.
1421
1422 Value is non-zero if the pool changed in a way which makes
1423 re-adjusting window glyph matrices necessary. */
1424
1425 static int
1426 realloc_glyph_pool (struct glyph_pool *pool, struct dim matrix_dim)
1427 {
1428 ptrdiff_t needed;
1429 int changed_p;
1430
1431 changed_p = (pool->glyphs == 0
1432 || matrix_dim.height != pool->nrows
1433 || matrix_dim.width != pool->ncolumns);
1434
1435 /* Enlarge the glyph pool. */
1436 needed = matrix_dim.width;
1437 if (INT_MULTIPLY_OVERFLOW (needed, matrix_dim.height))
1438 memory_full (SIZE_MAX);
1439 needed *= matrix_dim.height;
1440 if (needed > pool->nglyphs)
1441 {
1442 ptrdiff_t old_nglyphs = pool->nglyphs;
1443 pool->glyphs = xpalloc (pool->glyphs, &pool->nglyphs,
1444 needed - old_nglyphs, -1, sizeof *pool->glyphs);
1445 memset (pool->glyphs + old_nglyphs, 0,
1446 (pool->nglyphs - old_nglyphs) * sizeof *pool->glyphs);
1447 }
1448
1449 /* Remember the number of rows and columns because (a) we use them
1450 to do sanity checks, and (b) the number of columns determines
1451 where rows in the frame matrix start---this must be available to
1452 determine pointers to rows of window sub-matrices. */
1453 pool->nrows = matrix_dim.height;
1454 pool->ncolumns = matrix_dim.width;
1455
1456 return changed_p;
1457 }
1458
1459
1460 \f
1461 /***********************************************************************
1462 Debug Code
1463 ***********************************************************************/
1464
1465 #if GLYPH_DEBUG
1466
1467
1468 /* Flush standard output. This is sometimes useful to call from the debugger.
1469 XXX Maybe this should be changed to flush the current terminal instead of
1470 stdout.
1471 */
1472
1473 void flush_stdout (void) EXTERNALLY_VISIBLE;
1474
1475 void
1476 flush_stdout (void)
1477 {
1478 fflush (stdout);
1479 }
1480
1481
1482 /* Check that no glyph pointers have been lost in MATRIX. If a
1483 pointer has been lost, e.g. by using a structure assignment between
1484 rows, at least one pointer must occur more than once in the rows of
1485 MATRIX. */
1486
1487 void
1488 check_matrix_pointer_lossage (struct glyph_matrix *matrix)
1489 {
1490 int i, j;
1491
1492 for (i = 0; i < matrix->nrows; ++i)
1493 for (j = 0; j < matrix->nrows; ++j)
1494 xassert (i == j
1495 || (matrix->rows[i].glyphs[TEXT_AREA]
1496 != matrix->rows[j].glyphs[TEXT_AREA]));
1497 }
1498
1499
1500 /* Get a pointer to glyph row ROW in MATRIX, with bounds checks. */
1501
1502 struct glyph_row *
1503 matrix_row (struct glyph_matrix *matrix, int row)
1504 {
1505 xassert (matrix && matrix->rows);
1506 xassert (row >= 0 && row < matrix->nrows);
1507
1508 /* That's really too slow for normal testing because this function
1509 is called almost everywhere. Although---it's still astonishingly
1510 fast, so it is valuable to have for debugging purposes. */
1511 #if 0
1512 check_matrix_pointer_lossage (matrix);
1513 #endif
1514
1515 return matrix->rows + row;
1516 }
1517
1518
1519 #if 0 /* This function makes invalid assumptions when text is
1520 partially invisible. But it might come handy for debugging
1521 nevertheless. */
1522
1523 /* Check invariants that must hold for an up to date current matrix of
1524 window W. */
1525
1526 static void
1527 check_matrix_invariants (struct window *w)
1528 {
1529 struct glyph_matrix *matrix = w->current_matrix;
1530 int yb = window_text_bottom_y (w);
1531 struct glyph_row *row = matrix->rows;
1532 struct glyph_row *last_text_row = NULL;
1533 struct buffer *saved = current_buffer;
1534 struct buffer *buffer = XBUFFER (w->buffer);
1535 int c;
1536
1537 /* This can sometimes happen for a fresh window. */
1538 if (matrix->nrows < 2)
1539 return;
1540
1541 set_buffer_temp (buffer);
1542
1543 /* Note: last row is always reserved for the mode line. */
1544 while (MATRIX_ROW_DISPLAYS_TEXT_P (row)
1545 && MATRIX_ROW_BOTTOM_Y (row) < yb)
1546 {
1547 struct glyph_row *next = row + 1;
1548
1549 if (MATRIX_ROW_DISPLAYS_TEXT_P (row))
1550 last_text_row = row;
1551
1552 /* Check that character and byte positions are in sync. */
1553 xassert (MATRIX_ROW_START_BYTEPOS (row)
1554 == CHAR_TO_BYTE (MATRIX_ROW_START_CHARPOS (row)));
1555 xassert (BYTEPOS (row->start.pos)
1556 == CHAR_TO_BYTE (CHARPOS (row->start.pos)));
1557
1558 /* CHAR_TO_BYTE aborts when invoked for a position > Z. We can
1559 have such a position temporarily in case of a minibuffer
1560 displaying something like `[Sole completion]' at its end. */
1561 if (MATRIX_ROW_END_CHARPOS (row) < BUF_ZV (current_buffer))
1562 {
1563 xassert (MATRIX_ROW_END_BYTEPOS (row)
1564 == CHAR_TO_BYTE (MATRIX_ROW_END_CHARPOS (row)));
1565 xassert (BYTEPOS (row->end.pos)
1566 == CHAR_TO_BYTE (CHARPOS (row->end.pos)));
1567 }
1568
1569 /* Check that end position of `row' is equal to start position
1570 of next row. */
1571 if (next->enabled_p && MATRIX_ROW_DISPLAYS_TEXT_P (next))
1572 {
1573 xassert (MATRIX_ROW_END_CHARPOS (row)
1574 == MATRIX_ROW_START_CHARPOS (next));
1575 xassert (MATRIX_ROW_END_BYTEPOS (row)
1576 == MATRIX_ROW_START_BYTEPOS (next));
1577 xassert (CHARPOS (row->end.pos) == CHARPOS (next->start.pos));
1578 xassert (BYTEPOS (row->end.pos) == BYTEPOS (next->start.pos));
1579 }
1580 row = next;
1581 }
1582
1583 xassert (w->current_matrix->nrows == w->desired_matrix->nrows);
1584 xassert (w->desired_matrix->rows != NULL);
1585 set_buffer_temp (saved);
1586 }
1587
1588 #endif /* 0 */
1589
1590 #endif /* GLYPH_DEBUG != 0 */
1591
1592
1593 \f
1594 /**********************************************************************
1595 Allocating/ Adjusting Glyph Matrices
1596 **********************************************************************/
1597
1598 /* Allocate glyph matrices over a window tree for a frame-based
1599 redisplay
1600
1601 X and Y are column/row within the frame glyph matrix where
1602 sub-matrices for the window tree rooted at WINDOW must be
1603 allocated. DIM_ONLY_P non-zero means that the caller of this
1604 function is only interested in the result matrix dimension, and
1605 matrix adjustments should not be performed.
1606
1607 The function returns the total width/height of the sub-matrices of
1608 the window tree. If called on a frame root window, the computation
1609 will take the mini-buffer window into account.
1610
1611 *WINDOW_CHANGE_FLAGS is set to a bit mask with bits
1612
1613 NEW_LEAF_MATRIX set if any window in the tree did not have a
1614 glyph matrices yet, and
1615
1616 CHANGED_LEAF_MATRIX set if the dimension or location of a matrix of
1617 any window in the tree will be changed or have been changed (see
1618 DIM_ONLY_P)
1619
1620 *WINDOW_CHANGE_FLAGS must be initialized by the caller of this
1621 function.
1622
1623 Windows are arranged into chains of windows on the same level
1624 through the next fields of window structures. Such a level can be
1625 either a sequence of horizontally adjacent windows from left to
1626 right, or a sequence of vertically adjacent windows from top to
1627 bottom. Each window in a horizontal sequence can be either a leaf
1628 window or a vertical sequence; a window in a vertical sequence can
1629 be either a leaf or a horizontal sequence. All windows in a
1630 horizontal sequence have the same height, and all windows in a
1631 vertical sequence have the same width.
1632
1633 This function uses, for historical reasons, a more general
1634 algorithm to determine glyph matrix dimensions that would be
1635 necessary.
1636
1637 The matrix height of a horizontal sequence is determined by the
1638 maximum height of any matrix in the sequence. The matrix width of
1639 a horizontal sequence is computed by adding up matrix widths of
1640 windows in the sequence.
1641
1642 |<------- result width ------->|
1643 +---------+----------+---------+ ---
1644 | | | | |
1645 | | | |
1646 +---------+ | | result height
1647 | +---------+
1648 | | |
1649 +----------+ ---
1650
1651 The matrix width of a vertical sequence is the maximum matrix width
1652 of any window in the sequence. Its height is computed by adding up
1653 matrix heights of windows in the sequence.
1654
1655 |<---- result width -->|
1656 +---------+ ---
1657 | | |
1658 | | |
1659 +---------+--+ |
1660 | | |
1661 | | result height
1662 | |
1663 +------------+---------+ |
1664 | | |
1665 | | |
1666 +------------+---------+ --- */
1667
1668 /* Bit indicating that a new matrix will be allocated or has been
1669 allocated. */
1670
1671 #define NEW_LEAF_MATRIX (1 << 0)
1672
1673 /* Bit indicating that a matrix will or has changed its location or
1674 size. */
1675
1676 #define CHANGED_LEAF_MATRIX (1 << 1)
1677
1678 static struct dim
1679 allocate_matrices_for_frame_redisplay (Lisp_Object window, int x, int y,
1680 int dim_only_p, int *window_change_flags)
1681 {
1682 struct frame *f = XFRAME (WINDOW_FRAME (XWINDOW (window)));
1683 int x0 = x, y0 = y;
1684 int wmax = 0, hmax = 0;
1685 struct dim total;
1686 struct dim dim;
1687 struct window *w;
1688 int in_horz_combination_p;
1689
1690 /* What combination is WINDOW part of? Compute this once since the
1691 result is the same for all windows in the `next' chain. The
1692 special case of a root window (parent equal to nil) is treated
1693 like a vertical combination because a root window's `next'
1694 points to the mini-buffer window, if any, which is arranged
1695 vertically below other windows. */
1696 in_horz_combination_p
1697 = (!NILP (XWINDOW (window)->parent)
1698 && !NILP (XWINDOW (XWINDOW (window)->parent)->hchild));
1699
1700 /* For WINDOW and all windows on the same level. */
1701 do
1702 {
1703 w = XWINDOW (window);
1704
1705 /* Get the dimension of the window sub-matrix for W, depending
1706 on whether this is a combination or a leaf window. */
1707 if (!NILP (w->hchild))
1708 dim = allocate_matrices_for_frame_redisplay (w->hchild, x, y,
1709 dim_only_p,
1710 window_change_flags);
1711 else if (!NILP (w->vchild))
1712 dim = allocate_matrices_for_frame_redisplay (w->vchild, x, y,
1713 dim_only_p,
1714 window_change_flags);
1715 else
1716 {
1717 /* If not already done, allocate sub-matrix structures. */
1718 if (w->desired_matrix == NULL)
1719 {
1720 w->desired_matrix = new_glyph_matrix (f->desired_pool);
1721 w->current_matrix = new_glyph_matrix (f->current_pool);
1722 *window_change_flags |= NEW_LEAF_MATRIX;
1723 }
1724
1725 /* Width and height MUST be chosen so that there are no
1726 holes in the frame matrix. */
1727 dim.width = required_matrix_width (w);
1728 dim.height = required_matrix_height (w);
1729
1730 /* Will matrix be re-allocated? */
1731 if (x != w->desired_matrix->matrix_x
1732 || y != w->desired_matrix->matrix_y
1733 || dim.width != w->desired_matrix->matrix_w
1734 || dim.height != w->desired_matrix->matrix_h
1735 || (margin_glyphs_to_reserve (w, dim.width,
1736 w->left_margin_cols)
1737 != w->desired_matrix->left_margin_glyphs)
1738 || (margin_glyphs_to_reserve (w, dim.width,
1739 w->right_margin_cols)
1740 != w->desired_matrix->right_margin_glyphs))
1741 *window_change_flags |= CHANGED_LEAF_MATRIX;
1742
1743 /* Actually change matrices, if allowed. Do not consider
1744 CHANGED_LEAF_MATRIX computed above here because the pool
1745 may have been changed which we don't now here. We trust
1746 that we only will be called with DIM_ONLY_P != 0 when
1747 necessary. */
1748 if (!dim_only_p)
1749 {
1750 adjust_glyph_matrix (w, w->desired_matrix, x, y, dim);
1751 adjust_glyph_matrix (w, w->current_matrix, x, y, dim);
1752 }
1753 }
1754
1755 /* If we are part of a horizontal combination, advance x for
1756 windows to the right of W; otherwise advance y for windows
1757 below W. */
1758 if (in_horz_combination_p)
1759 x += dim.width;
1760 else
1761 y += dim.height;
1762
1763 /* Remember maximum glyph matrix dimensions. */
1764 wmax = max (wmax, dim.width);
1765 hmax = max (hmax, dim.height);
1766
1767 /* Next window on same level. */
1768 window = w->next;
1769 }
1770 while (!NILP (window));
1771
1772 /* Set `total' to the total glyph matrix dimension of this window
1773 level. In a vertical combination, the width is the width of the
1774 widest window; the height is the y we finally reached, corrected
1775 by the y we started with. In a horizontal combination, the total
1776 height is the height of the tallest window, and the width is the
1777 x we finally reached, corrected by the x we started with. */
1778 if (in_horz_combination_p)
1779 {
1780 total.width = x - x0;
1781 total.height = hmax;
1782 }
1783 else
1784 {
1785 total.width = wmax;
1786 total.height = y - y0;
1787 }
1788
1789 return total;
1790 }
1791
1792
1793 /* Return the required height of glyph matrices for window W. */
1794
1795 static int
1796 required_matrix_height (struct window *w)
1797 {
1798 #ifdef HAVE_WINDOW_SYSTEM
1799 struct frame *f = XFRAME (w->frame);
1800
1801 if (FRAME_WINDOW_P (f))
1802 {
1803 int ch_height = FRAME_SMALLEST_FONT_HEIGHT (f);
1804 int window_pixel_height = window_box_height (w) + eabs (w->vscroll);
1805 return (((window_pixel_height + ch_height - 1)
1806 / ch_height) * w->nrows_scale_factor
1807 /* One partially visible line at the top and
1808 bottom of the window. */
1809 + 2
1810 /* 2 for header and mode line. */
1811 + 2);
1812 }
1813 #endif /* HAVE_WINDOW_SYSTEM */
1814
1815 return WINDOW_TOTAL_LINES (w);
1816 }
1817
1818
1819 /* Return the required width of glyph matrices for window W. */
1820
1821 static int
1822 required_matrix_width (struct window *w)
1823 {
1824 #ifdef HAVE_WINDOW_SYSTEM
1825 struct frame *f = XFRAME (w->frame);
1826 if (FRAME_WINDOW_P (f))
1827 {
1828 int ch_width = FRAME_SMALLEST_CHAR_WIDTH (f);
1829 int window_pixel_width = WINDOW_TOTAL_WIDTH (w);
1830
1831 /* Compute number of glyphs needed in a glyph row. */
1832 return (((window_pixel_width + ch_width - 1)
1833 / ch_width) * w->ncols_scale_factor
1834 /* 2 partially visible columns in the text area. */
1835 + 2
1836 /* One partially visible column at the right
1837 edge of each marginal area. */
1838 + 1 + 1);
1839 }
1840 #endif /* HAVE_WINDOW_SYSTEM */
1841
1842 return XINT (w->total_cols);
1843 }
1844
1845
1846 /* Allocate window matrices for window-based redisplay. W is the
1847 window whose matrices must be allocated/reallocated. */
1848
1849 static void
1850 allocate_matrices_for_window_redisplay (struct window *w)
1851 {
1852 while (w)
1853 {
1854 if (!NILP (w->vchild))
1855 allocate_matrices_for_window_redisplay (XWINDOW (w->vchild));
1856 else if (!NILP (w->hchild))
1857 allocate_matrices_for_window_redisplay (XWINDOW (w->hchild));
1858 else
1859 {
1860 /* W is a leaf window. */
1861 struct dim dim;
1862
1863 /* If matrices are not yet allocated, allocate them now. */
1864 if (w->desired_matrix == NULL)
1865 {
1866 w->desired_matrix = new_glyph_matrix (NULL);
1867 w->current_matrix = new_glyph_matrix (NULL);
1868 }
1869
1870 dim.width = required_matrix_width (w);
1871 dim.height = required_matrix_height (w);
1872 adjust_glyph_matrix (w, w->desired_matrix, 0, 0, dim);
1873 adjust_glyph_matrix (w, w->current_matrix, 0, 0, dim);
1874 }
1875
1876 w = NILP (w->next) ? NULL : XWINDOW (w->next);
1877 }
1878 }
1879
1880
1881 /* Re-allocate/ re-compute glyph matrices on frame F. If F is null,
1882 do it for all frames; otherwise do it just for the given frame.
1883 This function must be called when a new frame is created, its size
1884 changes, or its window configuration changes. */
1885
1886 void
1887 adjust_glyphs (struct frame *f)
1888 {
1889 /* Block input so that expose events and other events that access
1890 glyph matrices are not processed while we are changing them. */
1891 BLOCK_INPUT;
1892
1893 if (f)
1894 adjust_frame_glyphs (f);
1895 else
1896 {
1897 Lisp_Object tail, lisp_frame;
1898
1899 FOR_EACH_FRAME (tail, lisp_frame)
1900 adjust_frame_glyphs (XFRAME (lisp_frame));
1901 }
1902
1903 UNBLOCK_INPUT;
1904 }
1905
1906
1907 /* Adjust frame glyphs when Emacs is initialized.
1908
1909 To be called from init_display.
1910
1911 We need a glyph matrix because redraw will happen soon.
1912 Unfortunately, window sizes on selected_frame are not yet set to
1913 meaningful values. I believe we can assume that there are only two
1914 windows on the frame---the mini-buffer and the root window. Frame
1915 height and width seem to be correct so far. So, set the sizes of
1916 windows to estimated values. */
1917
1918 static void
1919 adjust_frame_glyphs_initially (void)
1920 {
1921 struct frame *sf = SELECTED_FRAME ();
1922 struct window *root = XWINDOW (sf->root_window);
1923 struct window *mini = XWINDOW (root->next);
1924 int frame_lines = FRAME_LINES (sf);
1925 int frame_cols = FRAME_COLS (sf);
1926 int top_margin = FRAME_TOP_MARGIN (sf);
1927
1928 /* Do it for the root window. */
1929 XSETFASTINT (root->top_line, top_margin);
1930 XSETFASTINT (root->total_lines, frame_lines - 1 - top_margin);
1931 XSETFASTINT (root->total_cols, frame_cols);
1932
1933 /* Do it for the mini-buffer window. */
1934 XSETFASTINT (mini->top_line, frame_lines - 1);
1935 XSETFASTINT (mini->total_lines, 1);
1936 XSETFASTINT (mini->total_cols, frame_cols);
1937
1938 adjust_frame_glyphs (sf);
1939 glyphs_initialized_initially_p = 1;
1940 }
1941
1942
1943 /* Allocate/reallocate glyph matrices of a single frame F. */
1944
1945 static void
1946 adjust_frame_glyphs (struct frame *f)
1947 {
1948 if (FRAME_WINDOW_P (f))
1949 adjust_frame_glyphs_for_window_redisplay (f);
1950 else
1951 adjust_frame_glyphs_for_frame_redisplay (f);
1952
1953 /* Don't forget the message buffer and the buffer for
1954 decode_mode_spec. */
1955 adjust_frame_message_buffer (f);
1956 adjust_decode_mode_spec_buffer (f);
1957
1958 f->glyphs_initialized_p = 1;
1959 }
1960
1961 /* Return 1 if any window in the tree has nonzero window margins. See
1962 the hack at the end of adjust_frame_glyphs_for_frame_redisplay. */
1963 static int
1964 showing_window_margins_p (struct window *w)
1965 {
1966 while (w)
1967 {
1968 if (!NILP (w->hchild))
1969 {
1970 if (showing_window_margins_p (XWINDOW (w->hchild)))
1971 return 1;
1972 }
1973 else if (!NILP (w->vchild))
1974 {
1975 if (showing_window_margins_p (XWINDOW (w->vchild)))
1976 return 1;
1977 }
1978 else if (!NILP (w->left_margin_cols)
1979 || !NILP (w->right_margin_cols))
1980 return 1;
1981
1982 w = NILP (w->next) ? 0 : XWINDOW (w->next);
1983 }
1984 return 0;
1985 }
1986
1987
1988 /* In the window tree with root W, build current matrices of leaf
1989 windows from the frame's current matrix. */
1990
1991 static void
1992 fake_current_matrices (Lisp_Object window)
1993 {
1994 struct window *w;
1995
1996 for (; !NILP (window); window = w->next)
1997 {
1998 w = XWINDOW (window);
1999
2000 if (!NILP (w->hchild))
2001 fake_current_matrices (w->hchild);
2002 else if (!NILP (w->vchild))
2003 fake_current_matrices (w->vchild);
2004 else
2005 {
2006 int i;
2007 struct frame *f = XFRAME (w->frame);
2008 struct glyph_matrix *m = w->current_matrix;
2009 struct glyph_matrix *fm = f->current_matrix;
2010
2011 xassert (m->matrix_h == WINDOW_TOTAL_LINES (w));
2012 xassert (m->matrix_w == WINDOW_TOTAL_COLS (w));
2013
2014 for (i = 0; i < m->matrix_h; ++i)
2015 {
2016 struct glyph_row *r = m->rows + i;
2017 struct glyph_row *fr = fm->rows + i + WINDOW_TOP_EDGE_LINE (w);
2018
2019 xassert (r->glyphs[TEXT_AREA] >= fr->glyphs[TEXT_AREA]
2020 && r->glyphs[LAST_AREA] <= fr->glyphs[LAST_AREA]);
2021
2022 r->enabled_p = fr->enabled_p;
2023 if (r->enabled_p)
2024 {
2025 r->used[LEFT_MARGIN_AREA] = m->left_margin_glyphs;
2026 r->used[RIGHT_MARGIN_AREA] = m->right_margin_glyphs;
2027 r->used[TEXT_AREA] = (m->matrix_w
2028 - r->used[LEFT_MARGIN_AREA]
2029 - r->used[RIGHT_MARGIN_AREA]);
2030 r->mode_line_p = 0;
2031 }
2032 }
2033 }
2034 }
2035 }
2036
2037
2038 /* Save away the contents of frame F's current frame matrix. Value is
2039 a glyph matrix holding the contents of F's current frame matrix. */
2040
2041 static struct glyph_matrix *
2042 save_current_matrix (struct frame *f)
2043 {
2044 int i;
2045 struct glyph_matrix *saved;
2046
2047 saved = (struct glyph_matrix *) xmalloc (sizeof *saved);
2048 memset (saved, 0, sizeof *saved);
2049 saved->nrows = f->current_matrix->nrows;
2050 saved->rows = (struct glyph_row *) xmalloc (saved->nrows
2051 * sizeof *saved->rows);
2052 memset (saved->rows, 0, saved->nrows * sizeof *saved->rows);
2053
2054 for (i = 0; i < saved->nrows; ++i)
2055 {
2056 struct glyph_row *from = f->current_matrix->rows + i;
2057 struct glyph_row *to = saved->rows + i;
2058 ptrdiff_t nbytes = from->used[TEXT_AREA] * sizeof (struct glyph);
2059 to->glyphs[TEXT_AREA] = (struct glyph *) xmalloc (nbytes);
2060 memcpy (to->glyphs[TEXT_AREA], from->glyphs[TEXT_AREA], nbytes);
2061 to->used[TEXT_AREA] = from->used[TEXT_AREA];
2062 }
2063
2064 return saved;
2065 }
2066
2067
2068 /* Restore the contents of frame F's current frame matrix from SAVED,
2069 and free memory associated with SAVED. */
2070
2071 static void
2072 restore_current_matrix (struct frame *f, struct glyph_matrix *saved)
2073 {
2074 int i;
2075
2076 for (i = 0; i < saved->nrows; ++i)
2077 {
2078 struct glyph_row *from = saved->rows + i;
2079 struct glyph_row *to = f->current_matrix->rows + i;
2080 ptrdiff_t nbytes = from->used[TEXT_AREA] * sizeof (struct glyph);
2081 memcpy (to->glyphs[TEXT_AREA], from->glyphs[TEXT_AREA], nbytes);
2082 to->used[TEXT_AREA] = from->used[TEXT_AREA];
2083 xfree (from->glyphs[TEXT_AREA]);
2084 }
2085
2086 xfree (saved->rows);
2087 xfree (saved);
2088 }
2089
2090
2091
2092 /* Allocate/reallocate glyph matrices of a single frame F for
2093 frame-based redisplay. */
2094
2095 static void
2096 adjust_frame_glyphs_for_frame_redisplay (struct frame *f)
2097 {
2098 struct dim matrix_dim;
2099 int pool_changed_p;
2100 int window_change_flags;
2101 int top_window_y;
2102
2103 if (!FRAME_LIVE_P (f))
2104 return;
2105
2106 top_window_y = FRAME_TOP_MARGIN (f);
2107
2108 /* Allocate glyph pool structures if not already done. */
2109 if (f->desired_pool == NULL)
2110 {
2111 f->desired_pool = new_glyph_pool ();
2112 f->current_pool = new_glyph_pool ();
2113 }
2114
2115 /* Allocate frames matrix structures if needed. */
2116 if (f->desired_matrix == NULL)
2117 {
2118 f->desired_matrix = new_glyph_matrix (f->desired_pool);
2119 f->current_matrix = new_glyph_matrix (f->current_pool);
2120 }
2121
2122 /* Compute window glyph matrices. (This takes the mini-buffer
2123 window into account). The result is the size of the frame glyph
2124 matrix needed. The variable window_change_flags is set to a bit
2125 mask indicating whether new matrices will be allocated or
2126 existing matrices change their size or location within the frame
2127 matrix. */
2128 window_change_flags = 0;
2129 matrix_dim
2130 = allocate_matrices_for_frame_redisplay (FRAME_ROOT_WINDOW (f),
2131 0, top_window_y,
2132 1,
2133 &window_change_flags);
2134
2135 /* Add in menu bar lines, if any. */
2136 matrix_dim.height += top_window_y;
2137
2138 /* Enlarge pools as necessary. */
2139 pool_changed_p = realloc_glyph_pool (f->desired_pool, matrix_dim);
2140 realloc_glyph_pool (f->current_pool, matrix_dim);
2141
2142 /* Set up glyph pointers within window matrices. Do this only if
2143 absolutely necessary since it requires a frame redraw. */
2144 if (pool_changed_p || window_change_flags)
2145 {
2146 /* Do it for window matrices. */
2147 allocate_matrices_for_frame_redisplay (FRAME_ROOT_WINDOW (f),
2148 0, top_window_y, 0,
2149 &window_change_flags);
2150
2151 /* Size of frame matrices must equal size of frame. Note
2152 that we are called for X frames with window widths NOT equal
2153 to the frame width (from CHANGE_FRAME_SIZE_1). */
2154 xassert (matrix_dim.width == FRAME_COLS (f)
2155 && matrix_dim.height == FRAME_LINES (f));
2156
2157 /* Pointers to glyph memory in glyph rows are exchanged during
2158 the update phase of redisplay, which means in general that a
2159 frame's current matrix consists of pointers into both the
2160 desired and current glyph pool of the frame. Adjusting a
2161 matrix sets the frame matrix up so that pointers are all into
2162 the same pool. If we want to preserve glyph contents of the
2163 current matrix over a call to adjust_glyph_matrix, we must
2164 make a copy of the current glyphs, and restore the current
2165 matrix' contents from that copy. */
2166 if (display_completed
2167 && !FRAME_GARBAGED_P (f)
2168 && matrix_dim.width == f->current_matrix->matrix_w
2169 && matrix_dim.height == f->current_matrix->matrix_h
2170 /* For some reason, the frame glyph matrix gets corrupted if
2171 any of the windows contain margins. I haven't been able
2172 to hunt down the reason, but for the moment this prevents
2173 the problem from manifesting. -- cyd */
2174 && !showing_window_margins_p (XWINDOW (FRAME_ROOT_WINDOW (f))))
2175 {
2176 struct glyph_matrix *copy = save_current_matrix (f);
2177 adjust_glyph_matrix (NULL, f->desired_matrix, 0, 0, matrix_dim);
2178 adjust_glyph_matrix (NULL, f->current_matrix, 0, 0, matrix_dim);
2179 restore_current_matrix (f, copy);
2180 fake_current_matrices (FRAME_ROOT_WINDOW (f));
2181 }
2182 else
2183 {
2184 adjust_glyph_matrix (NULL, f->desired_matrix, 0, 0, matrix_dim);
2185 adjust_glyph_matrix (NULL, f->current_matrix, 0, 0, matrix_dim);
2186 SET_FRAME_GARBAGED (f);
2187 }
2188 }
2189 }
2190
2191
2192 /* Allocate/reallocate glyph matrices of a single frame F for
2193 window-based redisplay. */
2194
2195 static void
2196 adjust_frame_glyphs_for_window_redisplay (struct frame *f)
2197 {
2198 xassert (FRAME_WINDOW_P (f) && FRAME_LIVE_P (f));
2199
2200 /* Allocate/reallocate window matrices. */
2201 allocate_matrices_for_window_redisplay (XWINDOW (FRAME_ROOT_WINDOW (f)));
2202
2203 #ifdef HAVE_X_WINDOWS
2204 /* Allocate/ reallocate matrices of the dummy window used to display
2205 the menu bar under X when no X toolkit support is available. */
2206 #if ! defined (USE_X_TOOLKIT) && ! defined (USE_GTK)
2207 {
2208 /* Allocate a dummy window if not already done. */
2209 struct window *w;
2210 if (NILP (f->menu_bar_window))
2211 {
2212 f->menu_bar_window = make_window ();
2213 w = XWINDOW (f->menu_bar_window);
2214 XSETFRAME (w->frame, f);
2215 w->pseudo_window_p = 1;
2216 }
2217 else
2218 w = XWINDOW (f->menu_bar_window);
2219
2220 /* Set window dimensions to frame dimensions and allocate or
2221 adjust glyph matrices of W. */
2222 XSETFASTINT (w->top_line, 0);
2223 XSETFASTINT (w->left_col, 0);
2224 XSETFASTINT (w->total_lines, FRAME_MENU_BAR_LINES (f));
2225 XSETFASTINT (w->total_cols, FRAME_TOTAL_COLS (f));
2226 allocate_matrices_for_window_redisplay (w);
2227 }
2228 #endif /* not USE_X_TOOLKIT && not USE_GTK */
2229 #endif /* HAVE_X_WINDOWS */
2230
2231 #ifndef USE_GTK
2232 {
2233 /* Allocate/ reallocate matrices of the tool bar window. If we
2234 don't have a tool bar window yet, make one. */
2235 struct window *w;
2236 if (NILP (f->tool_bar_window))
2237 {
2238 f->tool_bar_window = make_window ();
2239 w = XWINDOW (f->tool_bar_window);
2240 XSETFRAME (w->frame, f);
2241 w->pseudo_window_p = 1;
2242 }
2243 else
2244 w = XWINDOW (f->tool_bar_window);
2245
2246 XSETFASTINT (w->top_line, FRAME_MENU_BAR_LINES (f));
2247 XSETFASTINT (w->left_col, 0);
2248 XSETFASTINT (w->total_lines, FRAME_TOOL_BAR_LINES (f));
2249 XSETFASTINT (w->total_cols, FRAME_TOTAL_COLS (f));
2250 allocate_matrices_for_window_redisplay (w);
2251 }
2252 #endif
2253 }
2254
2255
2256 /* Adjust/ allocate message buffer of frame F.
2257
2258 Note that the message buffer is never freed. Since I could not
2259 find a free in 19.34, I assume that freeing it would be
2260 problematic in some way and don't do it either.
2261
2262 (Implementation note: It should be checked if we can free it
2263 eventually without causing trouble). */
2264
2265 static void
2266 adjust_frame_message_buffer (struct frame *f)
2267 {
2268 ptrdiff_t size = FRAME_MESSAGE_BUF_SIZE (f) + 1;
2269
2270 if (FRAME_MESSAGE_BUF (f))
2271 {
2272 char *buffer = FRAME_MESSAGE_BUF (f);
2273 char *new_buffer = (char *) xrealloc (buffer, size);
2274 FRAME_MESSAGE_BUF (f) = new_buffer;
2275 }
2276 else
2277 FRAME_MESSAGE_BUF (f) = (char *) xmalloc (size);
2278 }
2279
2280
2281 /* Re-allocate buffer for decode_mode_spec on frame F. */
2282
2283 static void
2284 adjust_decode_mode_spec_buffer (struct frame *f)
2285 {
2286 f->decode_mode_spec_buffer
2287 = (char *) xrealloc (f->decode_mode_spec_buffer,
2288 FRAME_MESSAGE_BUF_SIZE (f) + 1);
2289 }
2290
2291
2292 \f
2293 /**********************************************************************
2294 Freeing Glyph Matrices
2295 **********************************************************************/
2296
2297 /* Free glyph memory for a frame F. F may be null. This function can
2298 be called for the same frame more than once. The root window of
2299 F may be nil when this function is called. This is the case when
2300 the function is called when F is destroyed. */
2301
2302 void
2303 free_glyphs (struct frame *f)
2304 {
2305 if (f && f->glyphs_initialized_p)
2306 {
2307 /* Block interrupt input so that we don't get surprised by an X
2308 event while we're in an inconsistent state. */
2309 BLOCK_INPUT;
2310 f->glyphs_initialized_p = 0;
2311
2312 /* Release window sub-matrices. */
2313 if (!NILP (f->root_window))
2314 free_window_matrices (XWINDOW (f->root_window));
2315
2316 /* Free the dummy window for menu bars without X toolkit and its
2317 glyph matrices. */
2318 if (!NILP (f->menu_bar_window))
2319 {
2320 struct window *w = XWINDOW (f->menu_bar_window);
2321 free_glyph_matrix (w->desired_matrix);
2322 free_glyph_matrix (w->current_matrix);
2323 w->desired_matrix = w->current_matrix = NULL;
2324 f->menu_bar_window = Qnil;
2325 }
2326
2327 /* Free the tool bar window and its glyph matrices. */
2328 if (!NILP (f->tool_bar_window))
2329 {
2330 struct window *w = XWINDOW (f->tool_bar_window);
2331 free_glyph_matrix (w->desired_matrix);
2332 free_glyph_matrix (w->current_matrix);
2333 w->desired_matrix = w->current_matrix = NULL;
2334 f->tool_bar_window = Qnil;
2335 }
2336
2337 /* Release frame glyph matrices. Reset fields to zero in
2338 case we are called a second time. */
2339 if (f->desired_matrix)
2340 {
2341 free_glyph_matrix (f->desired_matrix);
2342 free_glyph_matrix (f->current_matrix);
2343 f->desired_matrix = f->current_matrix = NULL;
2344 }
2345
2346 /* Release glyph pools. */
2347 if (f->desired_pool)
2348 {
2349 free_glyph_pool (f->desired_pool);
2350 free_glyph_pool (f->current_pool);
2351 f->desired_pool = f->current_pool = NULL;
2352 }
2353
2354 UNBLOCK_INPUT;
2355 }
2356 }
2357
2358
2359 /* Free glyph sub-matrices in the window tree rooted at W. This
2360 function may be called with a null pointer, and it may be called on
2361 the same tree more than once. */
2362
2363 void
2364 free_window_matrices (struct window *w)
2365 {
2366 while (w)
2367 {
2368 if (!NILP (w->hchild))
2369 free_window_matrices (XWINDOW (w->hchild));
2370 else if (!NILP (w->vchild))
2371 free_window_matrices (XWINDOW (w->vchild));
2372 else
2373 {
2374 /* This is a leaf window. Free its memory and reset fields
2375 to zero in case this function is called a second time for
2376 W. */
2377 free_glyph_matrix (w->current_matrix);
2378 free_glyph_matrix (w->desired_matrix);
2379 w->current_matrix = w->desired_matrix = NULL;
2380 }
2381
2382 /* Next window on same level. */
2383 w = NILP (w->next) ? 0 : XWINDOW (w->next);
2384 }
2385 }
2386
2387
2388 /* Check glyph memory leaks. This function is called from
2389 shut_down_emacs. Note that frames are not destroyed when Emacs
2390 exits. We therefore free all glyph memory for all active frames
2391 explicitly and check that nothing is left allocated. */
2392
2393 void
2394 check_glyph_memory (void)
2395 {
2396 Lisp_Object tail, frame;
2397
2398 /* Free glyph memory for all frames. */
2399 FOR_EACH_FRAME (tail, frame)
2400 free_glyphs (XFRAME (frame));
2401
2402 /* Check that nothing is left allocated. */
2403 if (glyph_matrix_count)
2404 abort ();
2405 if (glyph_pool_count)
2406 abort ();
2407 }
2408
2409
2410 \f
2411 /**********************************************************************
2412 Building a Frame Matrix
2413 **********************************************************************/
2414
2415 /* Most of the redisplay code works on glyph matrices attached to
2416 windows. This is a good solution most of the time, but it is not
2417 suitable for terminal code. Terminal output functions cannot rely
2418 on being able to set an arbitrary terminal window. Instead they
2419 must be provided with a view of the whole frame, i.e. the whole
2420 screen. We build such a view by constructing a frame matrix from
2421 window matrices in this section.
2422
2423 Windows that must be updated have their must_be_update_p flag set.
2424 For all such windows, their desired matrix is made part of the
2425 desired frame matrix. For other windows, their current matrix is
2426 made part of the desired frame matrix.
2427
2428 +-----------------+----------------+
2429 | desired | desired |
2430 | | |
2431 +-----------------+----------------+
2432 | current |
2433 | |
2434 +----------------------------------+
2435
2436 Desired window matrices can be made part of the frame matrix in a
2437 cheap way: We exploit the fact that the desired frame matrix and
2438 desired window matrices share their glyph memory. This is not
2439 possible for current window matrices. Their glyphs are copied to
2440 the desired frame matrix. The latter is equivalent to
2441 preserve_other_columns in the old redisplay.
2442
2443 Used glyphs counters for frame matrix rows are the result of adding
2444 up glyph lengths of the window matrices. A line in the frame
2445 matrix is enabled, if a corresponding line in a window matrix is
2446 enabled.
2447
2448 After building the desired frame matrix, it will be passed to
2449 terminal code, which will manipulate both the desired and current
2450 frame matrix. Changes applied to the frame's current matrix have
2451 to be visible in current window matrices afterwards, of course.
2452
2453 This problem is solved like this:
2454
2455 1. Window and frame matrices share glyphs. Window matrices are
2456 constructed in a way that their glyph contents ARE the glyph
2457 contents needed in a frame matrix. Thus, any modification of
2458 glyphs done in terminal code will be reflected in window matrices
2459 automatically.
2460
2461 2. Exchanges of rows in a frame matrix done by terminal code are
2462 intercepted by hook functions so that corresponding row operations
2463 on window matrices can be performed. This is necessary because we
2464 use pointers to glyphs in glyph row structures. To satisfy the
2465 assumption of point 1 above that glyphs are updated implicitly in
2466 window matrices when they are manipulated via the frame matrix,
2467 window and frame matrix must of course agree where to find the
2468 glyphs for their rows. Possible manipulations that must be
2469 mirrored are assignments of rows of the desired frame matrix to the
2470 current frame matrix and scrolling the current frame matrix. */
2471
2472 /* Build frame F's desired matrix from window matrices. Only windows
2473 which have the flag must_be_updated_p set have to be updated. Menu
2474 bar lines of a frame are not covered by window matrices, so make
2475 sure not to touch them in this function. */
2476
2477 static void
2478 build_frame_matrix (struct frame *f)
2479 {
2480 int i;
2481
2482 /* F must have a frame matrix when this function is called. */
2483 xassert (!FRAME_WINDOW_P (f));
2484
2485 /* Clear all rows in the frame matrix covered by window matrices.
2486 Menu bar lines are not covered by windows. */
2487 for (i = FRAME_TOP_MARGIN (f); i < f->desired_matrix->nrows; ++i)
2488 clear_glyph_row (MATRIX_ROW (f->desired_matrix, i));
2489
2490 /* Build the matrix by walking the window tree. */
2491 build_frame_matrix_from_window_tree (f->desired_matrix,
2492 XWINDOW (FRAME_ROOT_WINDOW (f)));
2493 }
2494
2495
2496 /* Walk a window tree, building a frame matrix MATRIX from window
2497 matrices. W is the root of a window tree. */
2498
2499 static void
2500 build_frame_matrix_from_window_tree (struct glyph_matrix *matrix, struct window *w)
2501 {
2502 while (w)
2503 {
2504 if (!NILP (w->hchild))
2505 build_frame_matrix_from_window_tree (matrix, XWINDOW (w->hchild));
2506 else if (!NILP (w->vchild))
2507 build_frame_matrix_from_window_tree (matrix, XWINDOW (w->vchild));
2508 else
2509 build_frame_matrix_from_leaf_window (matrix, w);
2510
2511 w = NILP (w->next) ? 0 : XWINDOW (w->next);
2512 }
2513 }
2514
2515
2516 /* Add a window's matrix to a frame matrix. FRAME_MATRIX is the
2517 desired frame matrix built. W is a leaf window whose desired or
2518 current matrix is to be added to FRAME_MATRIX. W's flag
2519 must_be_updated_p determines which matrix it contributes to
2520 FRAME_MATRIX. If must_be_updated_p is non-zero, W's desired matrix
2521 is added to FRAME_MATRIX, otherwise W's current matrix is added.
2522 Adding a desired matrix means setting up used counters and such in
2523 frame rows, while adding a current window matrix to FRAME_MATRIX
2524 means copying glyphs. The latter case corresponds to
2525 preserve_other_columns in the old redisplay. */
2526
2527 static void
2528 build_frame_matrix_from_leaf_window (struct glyph_matrix *frame_matrix, struct window *w)
2529 {
2530 struct glyph_matrix *window_matrix;
2531 int window_y, frame_y;
2532 /* If non-zero, a glyph to insert at the right border of W. */
2533 GLYPH right_border_glyph;
2534
2535 SET_GLYPH_FROM_CHAR (right_border_glyph, 0);
2536
2537 /* Set window_matrix to the matrix we have to add to FRAME_MATRIX. */
2538 if (w->must_be_updated_p)
2539 {
2540 window_matrix = w->desired_matrix;
2541
2542 /* Decide whether we want to add a vertical border glyph. */
2543 if (!WINDOW_RIGHTMOST_P (w))
2544 {
2545 struct Lisp_Char_Table *dp = window_display_table (w);
2546 Lisp_Object gc;
2547
2548 SET_GLYPH_FROM_CHAR (right_border_glyph, '|');
2549 if (dp
2550 && (gc = DISP_BORDER_GLYPH (dp), GLYPH_CODE_P (gc)))
2551 {
2552 SET_GLYPH_FROM_GLYPH_CODE (right_border_glyph, gc);
2553 spec_glyph_lookup_face (w, &right_border_glyph);
2554 }
2555
2556 if (GLYPH_FACE (right_border_glyph) <= 0)
2557 SET_GLYPH_FACE (right_border_glyph, VERTICAL_BORDER_FACE_ID);
2558 }
2559 }
2560 else
2561 window_matrix = w->current_matrix;
2562
2563 /* For all rows in the window matrix and corresponding rows in the
2564 frame matrix. */
2565 window_y = 0;
2566 frame_y = window_matrix->matrix_y;
2567 while (window_y < window_matrix->nrows)
2568 {
2569 struct glyph_row *frame_row = frame_matrix->rows + frame_y;
2570 struct glyph_row *window_row = window_matrix->rows + window_y;
2571 int current_row_p = window_matrix == w->current_matrix;
2572
2573 /* Fill up the frame row with spaces up to the left margin of the
2574 window row. */
2575 fill_up_frame_row_with_spaces (frame_row, window_matrix->matrix_x);
2576
2577 /* Fill up areas in the window matrix row with spaces. */
2578 fill_up_glyph_row_with_spaces (window_row);
2579
2580 /* If only part of W's desired matrix has been built, and
2581 window_row wasn't displayed, use the corresponding current
2582 row instead. */
2583 if (window_matrix == w->desired_matrix
2584 && !window_row->enabled_p)
2585 {
2586 window_row = w->current_matrix->rows + window_y;
2587 current_row_p = 1;
2588 }
2589
2590 if (current_row_p)
2591 {
2592 /* Copy window row to frame row. */
2593 memcpy (frame_row->glyphs[TEXT_AREA] + window_matrix->matrix_x,
2594 window_row->glyphs[0],
2595 window_matrix->matrix_w * sizeof (struct glyph));
2596 }
2597 else
2598 {
2599 xassert (window_row->enabled_p);
2600
2601 /* Only when a desired row has been displayed, we want
2602 the corresponding frame row to be updated. */
2603 frame_row->enabled_p = 1;
2604
2605 /* Maybe insert a vertical border between horizontally adjacent
2606 windows. */
2607 if (GLYPH_CHAR (right_border_glyph) != 0)
2608 {
2609 struct glyph *border = window_row->glyphs[LAST_AREA] - 1;
2610 SET_CHAR_GLYPH_FROM_GLYPH (*border, right_border_glyph);
2611 }
2612
2613 #if GLYPH_DEBUG
2614 /* Window row window_y must be a slice of frame row
2615 frame_y. */
2616 xassert (glyph_row_slice_p (window_row, frame_row));
2617
2618 /* If rows are in sync, we don't have to copy glyphs because
2619 frame and window share glyphs. */
2620
2621 strcpy (w->current_matrix->method, w->desired_matrix->method);
2622 add_window_display_history (w, w->current_matrix->method, 0);
2623 #endif
2624 }
2625
2626 /* Set number of used glyphs in the frame matrix. Since we fill
2627 up with spaces, and visit leaf windows from left to right it
2628 can be done simply. */
2629 frame_row->used[TEXT_AREA]
2630 = window_matrix->matrix_x + window_matrix->matrix_w;
2631
2632 /* Next row. */
2633 ++window_y;
2634 ++frame_y;
2635 }
2636 }
2637
2638 /* Given a user-specified glyph, possibly including a Lisp-level face
2639 ID, return a glyph that has a realized face ID.
2640 This is used for glyphs displayed specially and not part of the text;
2641 for instance, vertical separators, truncation markers, etc. */
2642
2643 void
2644 spec_glyph_lookup_face (struct window *w, GLYPH *glyph)
2645 {
2646 int lface_id = GLYPH_FACE (*glyph);
2647 /* Convert the glyph's specified face to a realized (cache) face. */
2648 if (lface_id > 0)
2649 {
2650 int face_id = merge_faces (XFRAME (w->frame),
2651 Qt, lface_id, DEFAULT_FACE_ID);
2652 SET_GLYPH_FACE (*glyph, face_id);
2653 }
2654 }
2655
2656 /* Add spaces to a glyph row ROW in a window matrix.
2657
2658 Each row has the form:
2659
2660 +---------+-----------------------------+------------+
2661 | left | text | right |
2662 +---------+-----------------------------+------------+
2663
2664 Left and right marginal areas are optional. This function adds
2665 spaces to areas so that there are no empty holes between areas.
2666 In other words: If the right area is not empty, the text area
2667 is filled up with spaces up to the right area. If the text area
2668 is not empty, the left area is filled up.
2669
2670 To be called for frame-based redisplay, only. */
2671
2672 static void
2673 fill_up_glyph_row_with_spaces (struct glyph_row *row)
2674 {
2675 fill_up_glyph_row_area_with_spaces (row, LEFT_MARGIN_AREA);
2676 fill_up_glyph_row_area_with_spaces (row, TEXT_AREA);
2677 fill_up_glyph_row_area_with_spaces (row, RIGHT_MARGIN_AREA);
2678 }
2679
2680
2681 /* Fill area AREA of glyph row ROW with spaces. To be called for
2682 frame-based redisplay only. */
2683
2684 static void
2685 fill_up_glyph_row_area_with_spaces (struct glyph_row *row, int area)
2686 {
2687 if (row->glyphs[area] < row->glyphs[area + 1])
2688 {
2689 struct glyph *end = row->glyphs[area + 1];
2690 struct glyph *text = row->glyphs[area] + row->used[area];
2691
2692 while (text < end)
2693 *text++ = space_glyph;
2694 row->used[area] = text - row->glyphs[area];
2695 }
2696 }
2697
2698
2699 /* Add spaces to the end of ROW in a frame matrix until index UPTO is
2700 reached. In frame matrices only one area, TEXT_AREA, is used. */
2701
2702 static void
2703 fill_up_frame_row_with_spaces (struct glyph_row *row, int upto)
2704 {
2705 int i = row->used[TEXT_AREA];
2706 struct glyph *glyph = row->glyphs[TEXT_AREA];
2707
2708 while (i < upto)
2709 glyph[i++] = space_glyph;
2710
2711 row->used[TEXT_AREA] = i;
2712 }
2713
2714
2715 \f
2716 /**********************************************************************
2717 Mirroring operations on frame matrices in window matrices
2718 **********************************************************************/
2719
2720 /* Set frame being updated via frame-based redisplay to F. This
2721 function must be called before updates to make explicit that we are
2722 working on frame matrices or not. */
2723
2724 static inline void
2725 set_frame_matrix_frame (struct frame *f)
2726 {
2727 frame_matrix_frame = f;
2728 }
2729
2730
2731 /* Make sure glyph row ROW in CURRENT_MATRIX is up to date.
2732 DESIRED_MATRIX is the desired matrix corresponding to
2733 CURRENT_MATRIX. The update is done by exchanging glyph pointers
2734 between rows in CURRENT_MATRIX and DESIRED_MATRIX. If
2735 frame_matrix_frame is non-null, this indicates that the exchange is
2736 done in frame matrices, and that we have to perform analogous
2737 operations in window matrices of frame_matrix_frame. */
2738
2739 static inline void
2740 make_current (struct glyph_matrix *desired_matrix, struct glyph_matrix *current_matrix, int row)
2741 {
2742 struct glyph_row *current_row = MATRIX_ROW (current_matrix, row);
2743 struct glyph_row *desired_row = MATRIX_ROW (desired_matrix, row);
2744 int mouse_face_p = current_row->mouse_face_p;
2745
2746 /* Do current_row = desired_row. This exchanges glyph pointers
2747 between both rows, and does a structure assignment otherwise. */
2748 assign_row (current_row, desired_row);
2749
2750 /* Enable current_row to mark it as valid. */
2751 current_row->enabled_p = 1;
2752 current_row->mouse_face_p = mouse_face_p;
2753
2754 /* If we are called on frame matrices, perform analogous operations
2755 for window matrices. */
2756 if (frame_matrix_frame)
2757 mirror_make_current (XWINDOW (frame_matrix_frame->root_window), row);
2758 }
2759
2760
2761 /* W is the root of a window tree. FRAME_ROW is the index of a row in
2762 W's frame which has been made current (by swapping pointers between
2763 current and desired matrix). Perform analogous operations in the
2764 matrices of leaf windows in the window tree rooted at W. */
2765
2766 static void
2767 mirror_make_current (struct window *w, int frame_row)
2768 {
2769 while (w)
2770 {
2771 if (!NILP (w->hchild))
2772 mirror_make_current (XWINDOW (w->hchild), frame_row);
2773 else if (!NILP (w->vchild))
2774 mirror_make_current (XWINDOW (w->vchild), frame_row);
2775 else
2776 {
2777 /* Row relative to window W. Don't use FRAME_TO_WINDOW_VPOS
2778 here because the checks performed in debug mode there
2779 will not allow the conversion. */
2780 int row = frame_row - w->desired_matrix->matrix_y;
2781
2782 /* If FRAME_ROW is within W, assign the desired row to the
2783 current row (exchanging glyph pointers). */
2784 if (row >= 0 && row < w->desired_matrix->matrix_h)
2785 {
2786 struct glyph_row *current_row
2787 = MATRIX_ROW (w->current_matrix, row);
2788 struct glyph_row *desired_row
2789 = MATRIX_ROW (w->desired_matrix, row);
2790
2791 if (desired_row->enabled_p)
2792 assign_row (current_row, desired_row);
2793 else
2794 swap_glyph_pointers (desired_row, current_row);
2795 current_row->enabled_p = 1;
2796
2797 /* Set the Y coordinate of the mode/header line's row.
2798 It is needed in draw_row_with_mouse_face to find the
2799 screen coordinates. (Window-based redisplay sets
2800 this in update_window, but no one seems to do that
2801 for frame-based redisplay.) */
2802 if (current_row->mode_line_p)
2803 current_row->y = row;
2804 }
2805 }
2806
2807 w = NILP (w->next) ? 0 : XWINDOW (w->next);
2808 }
2809 }
2810
2811
2812 /* Perform row dance after scrolling. We are working on the range of
2813 lines UNCHANGED_AT_TOP + 1 to UNCHANGED_AT_TOP + NLINES (not
2814 including) in MATRIX. COPY_FROM is a vector containing, for each
2815 row I in the range 0 <= I < NLINES, the index of the original line
2816 to move to I. This index is relative to the row range, i.e. 0 <=
2817 index < NLINES. RETAINED_P is a vector containing zero for each
2818 row 0 <= I < NLINES which is empty.
2819
2820 This function is called from do_scrolling and do_direct_scrolling. */
2821
2822 void
2823 mirrored_line_dance (struct glyph_matrix *matrix, int unchanged_at_top, int nlines,
2824 int *copy_from, char *retained_p)
2825 {
2826 /* A copy of original rows. */
2827 struct glyph_row *old_rows;
2828
2829 /* Rows to assign to. */
2830 struct glyph_row *new_rows = MATRIX_ROW (matrix, unchanged_at_top);
2831
2832 int i;
2833
2834 /* Make a copy of the original rows. */
2835 old_rows = (struct glyph_row *) alloca (nlines * sizeof *old_rows);
2836 memcpy (old_rows, new_rows, nlines * sizeof *old_rows);
2837
2838 /* Assign new rows, maybe clear lines. */
2839 for (i = 0; i < nlines; ++i)
2840 {
2841 int enabled_before_p = new_rows[i].enabled_p;
2842
2843 xassert (i + unchanged_at_top < matrix->nrows);
2844 xassert (unchanged_at_top + copy_from[i] < matrix->nrows);
2845 new_rows[i] = old_rows[copy_from[i]];
2846 new_rows[i].enabled_p = enabled_before_p;
2847
2848 /* RETAINED_P is zero for empty lines. */
2849 if (!retained_p[copy_from[i]])
2850 new_rows[i].enabled_p = 0;
2851 }
2852
2853 /* Do the same for window matrices, if MATRIX is a frame matrix. */
2854 if (frame_matrix_frame)
2855 mirror_line_dance (XWINDOW (frame_matrix_frame->root_window),
2856 unchanged_at_top, nlines, copy_from, retained_p);
2857 }
2858
2859
2860 /* Synchronize glyph pointers in the current matrix of window W with
2861 the current frame matrix. */
2862
2863 static void
2864 sync_window_with_frame_matrix_rows (struct window *w)
2865 {
2866 struct frame *f = XFRAME (w->frame);
2867 struct glyph_row *window_row, *window_row_end, *frame_row;
2868 int left, right, x, width;
2869
2870 /* Preconditions: W must be a leaf window on a tty frame. */
2871 xassert (NILP (w->hchild) && NILP (w->vchild));
2872 xassert (!FRAME_WINDOW_P (f));
2873
2874 left = margin_glyphs_to_reserve (w, 1, w->left_margin_cols);
2875 right = margin_glyphs_to_reserve (w, 1, w->right_margin_cols);
2876 x = w->current_matrix->matrix_x;
2877 width = w->current_matrix->matrix_w;
2878
2879 window_row = w->current_matrix->rows;
2880 window_row_end = window_row + w->current_matrix->nrows;
2881 frame_row = f->current_matrix->rows + WINDOW_TOP_EDGE_LINE (w);
2882
2883 for (; window_row < window_row_end; ++window_row, ++frame_row)
2884 {
2885 window_row->glyphs[LEFT_MARGIN_AREA]
2886 = frame_row->glyphs[0] + x;
2887 window_row->glyphs[TEXT_AREA]
2888 = window_row->glyphs[LEFT_MARGIN_AREA] + left;
2889 window_row->glyphs[LAST_AREA]
2890 = window_row->glyphs[LEFT_MARGIN_AREA] + width;
2891 window_row->glyphs[RIGHT_MARGIN_AREA]
2892 = window_row->glyphs[LAST_AREA] - right;
2893 }
2894 }
2895
2896
2897 /* Return the window in the window tree rooted in W containing frame
2898 row ROW. Value is null if none is found. */
2899
2900 static struct window *
2901 frame_row_to_window (struct window *w, int row)
2902 {
2903 struct window *found = NULL;
2904
2905 while (w && !found)
2906 {
2907 if (!NILP (w->hchild))
2908 found = frame_row_to_window (XWINDOW (w->hchild), row);
2909 else if (!NILP (w->vchild))
2910 found = frame_row_to_window (XWINDOW (w->vchild), row);
2911 else if (row >= WINDOW_TOP_EDGE_LINE (w)
2912 && row < WINDOW_BOTTOM_EDGE_LINE (w))
2913 found = w;
2914
2915 w = NILP (w->next) ? 0 : XWINDOW (w->next);
2916 }
2917
2918 return found;
2919 }
2920
2921
2922 /* Perform a line dance in the window tree rooted at W, after
2923 scrolling a frame matrix in mirrored_line_dance.
2924
2925 We are working on the range of lines UNCHANGED_AT_TOP + 1 to
2926 UNCHANGED_AT_TOP + NLINES (not including) in W's frame matrix.
2927 COPY_FROM is a vector containing, for each row I in the range 0 <=
2928 I < NLINES, the index of the original line to move to I. This
2929 index is relative to the row range, i.e. 0 <= index < NLINES.
2930 RETAINED_P is a vector containing zero for each row 0 <= I < NLINES
2931 which is empty. */
2932
2933 static void
2934 mirror_line_dance (struct window *w, int unchanged_at_top, int nlines, int *copy_from, char *retained_p)
2935 {
2936 while (w)
2937 {
2938 if (!NILP (w->hchild))
2939 mirror_line_dance (XWINDOW (w->hchild), unchanged_at_top,
2940 nlines, copy_from, retained_p);
2941 else if (!NILP (w->vchild))
2942 mirror_line_dance (XWINDOW (w->vchild), unchanged_at_top,
2943 nlines, copy_from, retained_p);
2944 else
2945 {
2946 /* W is a leaf window, and we are working on its current
2947 matrix m. */
2948 struct glyph_matrix *m = w->current_matrix;
2949 int i, sync_p = 0;
2950 struct glyph_row *old_rows;
2951
2952 /* Make a copy of the original rows of matrix m. */
2953 old_rows = (struct glyph_row *) alloca (m->nrows * sizeof *old_rows);
2954 memcpy (old_rows, m->rows, m->nrows * sizeof *old_rows);
2955
2956 for (i = 0; i < nlines; ++i)
2957 {
2958 /* Frame relative line assigned to. */
2959 int frame_to = i + unchanged_at_top;
2960
2961 /* Frame relative line assigned. */
2962 int frame_from = copy_from[i] + unchanged_at_top;
2963
2964 /* Window relative line assigned to. */
2965 int window_to = frame_to - m->matrix_y;
2966
2967 /* Window relative line assigned. */
2968 int window_from = frame_from - m->matrix_y;
2969
2970 /* Is assigned line inside window? */
2971 int from_inside_window_p
2972 = window_from >= 0 && window_from < m->matrix_h;
2973
2974 /* Is assigned to line inside window? */
2975 int to_inside_window_p
2976 = window_to >= 0 && window_to < m->matrix_h;
2977
2978 if (from_inside_window_p && to_inside_window_p)
2979 {
2980 /* Enabled setting before assignment. */
2981 int enabled_before_p;
2982
2983 /* Do the assignment. The enabled_p flag is saved
2984 over the assignment because the old redisplay did
2985 that. */
2986 enabled_before_p = m->rows[window_to].enabled_p;
2987 m->rows[window_to] = old_rows[window_from];
2988 m->rows[window_to].enabled_p = enabled_before_p;
2989
2990 /* If frame line is empty, window line is empty, too. */
2991 if (!retained_p[copy_from[i]])
2992 m->rows[window_to].enabled_p = 0;
2993 }
2994 else if (to_inside_window_p)
2995 {
2996 /* A copy between windows. This is an infrequent
2997 case not worth optimizing. */
2998 struct frame *f = XFRAME (w->frame);
2999 struct window *root = XWINDOW (FRAME_ROOT_WINDOW (f));
3000 struct window *w2;
3001 struct glyph_matrix *m2;
3002 int m2_from;
3003
3004 w2 = frame_row_to_window (root, frame_from);
3005 /* ttn@surf.glug.org: when enabling menu bar using `emacs
3006 -nw', FROM_FRAME sometimes has no associated window.
3007 This check avoids a segfault if W2 is null. */
3008 if (w2)
3009 {
3010 m2 = w2->current_matrix;
3011 m2_from = frame_from - m2->matrix_y;
3012 copy_row_except_pointers (m->rows + window_to,
3013 m2->rows + m2_from);
3014
3015 /* If frame line is empty, window line is empty, too. */
3016 if (!retained_p[copy_from[i]])
3017 m->rows[window_to].enabled_p = 0;
3018 }
3019 sync_p = 1;
3020 }
3021 else if (from_inside_window_p)
3022 sync_p = 1;
3023 }
3024
3025 /* If there was a copy between windows, make sure glyph
3026 pointers are in sync with the frame matrix. */
3027 if (sync_p)
3028 sync_window_with_frame_matrix_rows (w);
3029
3030 /* Check that no pointers are lost. */
3031 CHECK_MATRIX (m);
3032 }
3033
3034 /* Next window on same level. */
3035 w = NILP (w->next) ? 0 : XWINDOW (w->next);
3036 }
3037 }
3038
3039
3040 #if GLYPH_DEBUG
3041
3042 /* Check that window and frame matrices agree about their
3043 understanding where glyphs of the rows are to find. For each
3044 window in the window tree rooted at W, check that rows in the
3045 matrices of leaf window agree with their frame matrices about
3046 glyph pointers. */
3047
3048 static void
3049 check_window_matrix_pointers (struct window *w)
3050 {
3051 while (w)
3052 {
3053 if (!NILP (w->hchild))
3054 check_window_matrix_pointers (XWINDOW (w->hchild));
3055 else if (!NILP (w->vchild))
3056 check_window_matrix_pointers (XWINDOW (w->vchild));
3057 else
3058 {
3059 struct frame *f = XFRAME (w->frame);
3060 check_matrix_pointers (w->desired_matrix, f->desired_matrix);
3061 check_matrix_pointers (w->current_matrix, f->current_matrix);
3062 }
3063
3064 w = NILP (w->next) ? 0 : XWINDOW (w->next);
3065 }
3066 }
3067
3068
3069 /* Check that window rows are slices of frame rows. WINDOW_MATRIX is
3070 a window and FRAME_MATRIX is the corresponding frame matrix. For
3071 each row in WINDOW_MATRIX check that it's a slice of the
3072 corresponding frame row. If it isn't, abort. */
3073
3074 static void
3075 check_matrix_pointers (struct glyph_matrix *window_matrix,
3076 struct glyph_matrix *frame_matrix)
3077 {
3078 /* Row number in WINDOW_MATRIX. */
3079 int i = 0;
3080
3081 /* Row number corresponding to I in FRAME_MATRIX. */
3082 int j = window_matrix->matrix_y;
3083
3084 /* For all rows check that the row in the window matrix is a
3085 slice of the row in the frame matrix. If it isn't we didn't
3086 mirror an operation on the frame matrix correctly. */
3087 while (i < window_matrix->nrows)
3088 {
3089 if (!glyph_row_slice_p (window_matrix->rows + i,
3090 frame_matrix->rows + j))
3091 abort ();
3092 ++i, ++j;
3093 }
3094 }
3095
3096 #endif /* GLYPH_DEBUG != 0 */
3097
3098
3099 \f
3100 /**********************************************************************
3101 VPOS and HPOS translations
3102 **********************************************************************/
3103
3104 #if GLYPH_DEBUG
3105
3106 /* Translate vertical position VPOS which is relative to window W to a
3107 vertical position relative to W's frame. */
3108
3109 static int
3110 window_to_frame_vpos (struct window *w, int vpos)
3111 {
3112 xassert (!FRAME_WINDOW_P (XFRAME (w->frame)));
3113 xassert (vpos >= 0 && vpos <= w->desired_matrix->nrows);
3114 vpos += WINDOW_TOP_EDGE_LINE (w);
3115 xassert (vpos >= 0 && vpos <= FRAME_LINES (XFRAME (w->frame)));
3116 return vpos;
3117 }
3118
3119
3120 /* Translate horizontal position HPOS which is relative to window W to
3121 a horizontal position relative to W's frame. */
3122
3123 static int
3124 window_to_frame_hpos (struct window *w, int hpos)
3125 {
3126 xassert (!FRAME_WINDOW_P (XFRAME (w->frame)));
3127 hpos += WINDOW_LEFT_EDGE_COL (w);
3128 return hpos;
3129 }
3130
3131 #endif /* GLYPH_DEBUG */
3132
3133
3134 \f
3135 /**********************************************************************
3136 Redrawing Frames
3137 **********************************************************************/
3138
3139 DEFUN ("redraw-frame", Fredraw_frame, Sredraw_frame, 1, 1, 0,
3140 doc: /* Clear frame FRAME and output again what is supposed to appear on it. */)
3141 (Lisp_Object frame)
3142 {
3143 struct frame *f;
3144
3145 CHECK_LIVE_FRAME (frame);
3146 f = XFRAME (frame);
3147
3148 /* Ignore redraw requests, if frame has no glyphs yet.
3149 (Implementation note: It still has to be checked why we are
3150 called so early here). */
3151 if (!glyphs_initialized_initially_p)
3152 return Qnil;
3153
3154 update_begin (f);
3155 #ifdef MSDOS
3156 if (FRAME_MSDOS_P (f))
3157 FRAME_TERMINAL (f)->set_terminal_modes_hook (FRAME_TERMINAL (f));
3158 #endif
3159 clear_frame (f);
3160 clear_current_matrices (f);
3161 update_end (f);
3162 if (FRAME_TERMCAP_P (f))
3163 fflush (FRAME_TTY (f)->output);
3164 windows_or_buffers_changed++;
3165 /* Mark all windows as inaccurate, so that every window will have
3166 its redisplay done. */
3167 mark_window_display_accurate (FRAME_ROOT_WINDOW (f), 0);
3168 set_window_update_flags (XWINDOW (FRAME_ROOT_WINDOW (f)), 1);
3169 f->garbaged = 0;
3170 return Qnil;
3171 }
3172
3173
3174 /* Redraw frame F. This is nothing more than a call to the Lisp
3175 function redraw-frame. */
3176
3177 void
3178 redraw_frame (struct frame *f)
3179 {
3180 Lisp_Object frame;
3181 XSETFRAME (frame, f);
3182 Fredraw_frame (frame);
3183 }
3184
3185
3186 DEFUN ("redraw-display", Fredraw_display, Sredraw_display, 0, 0, "",
3187 doc: /* Clear and redisplay all visible frames. */)
3188 (void)
3189 {
3190 Lisp_Object tail, frame;
3191
3192 FOR_EACH_FRAME (tail, frame)
3193 if (FRAME_VISIBLE_P (XFRAME (frame)))
3194 Fredraw_frame (frame);
3195
3196 return Qnil;
3197 }
3198
3199
3200 \f
3201 /***********************************************************************
3202 Frame Update
3203 ***********************************************************************/
3204
3205 /* Update frame F based on the data in desired matrices.
3206
3207 If FORCE_P is non-zero, don't let redisplay be stopped by detecting
3208 pending input. If INHIBIT_HAIRY_ID_P is non-zero, don't try
3209 scrolling.
3210
3211 Value is non-zero if redisplay was stopped due to pending input. */
3212
3213 int
3214 update_frame (struct frame *f, int force_p, int inhibit_hairy_id_p)
3215 {
3216 /* 1 means display has been paused because of pending input. */
3217 int paused_p;
3218 struct window *root_window = XWINDOW (f->root_window);
3219
3220 if (redisplay_dont_pause)
3221 force_p = 1;
3222 #if PERIODIC_PREEMPTION_CHECKING
3223 else if (NILP (Vredisplay_preemption_period))
3224 force_p = 1;
3225 else if (!force_p && NUMBERP (Vredisplay_preemption_period))
3226 {
3227 EMACS_TIME tm;
3228 double p = XFLOATINT (Vredisplay_preemption_period);
3229 int sec, usec;
3230
3231 if (detect_input_pending_ignore_squeezables ())
3232 {
3233 paused_p = 1;
3234 goto do_pause;
3235 }
3236
3237 sec = (int) p;
3238 usec = (p - sec) * 1000000;
3239
3240 EMACS_GET_TIME (tm);
3241 EMACS_SET_SECS_USECS (preemption_period, sec, usec);
3242 EMACS_ADD_TIME (preemption_next_check, tm, preemption_period);
3243 }
3244 #endif
3245
3246 if (FRAME_WINDOW_P (f))
3247 {
3248 /* We are working on window matrix basis. All windows whose
3249 flag must_be_updated_p is set have to be updated. */
3250
3251 /* Record that we are not working on frame matrices. */
3252 set_frame_matrix_frame (NULL);
3253
3254 /* Update all windows in the window tree of F, maybe stopping
3255 when pending input is detected. */
3256 update_begin (f);
3257
3258 /* Update the menu bar on X frames that don't have toolkit
3259 support. */
3260 if (WINDOWP (f->menu_bar_window))
3261 update_window (XWINDOW (f->menu_bar_window), 1);
3262
3263 /* Update the tool-bar window, if present. */
3264 if (WINDOWP (f->tool_bar_window))
3265 {
3266 struct window *w = XWINDOW (f->tool_bar_window);
3267
3268 /* Update tool-bar window. */
3269 if (w->must_be_updated_p)
3270 {
3271 Lisp_Object tem;
3272
3273 update_window (w, 1);
3274 w->must_be_updated_p = 0;
3275
3276 /* Swap tool-bar strings. We swap because we want to
3277 reuse strings. */
3278 tem = f->current_tool_bar_string;
3279 f->current_tool_bar_string = f->desired_tool_bar_string;
3280 f->desired_tool_bar_string = tem;
3281 }
3282 }
3283
3284
3285 /* Update windows. */
3286 paused_p = update_window_tree (root_window, force_p);
3287 update_end (f);
3288
3289 /* This flush is a performance bottleneck under X,
3290 and it doesn't seem to be necessary anyway (in general).
3291 It is necessary when resizing the window with the mouse, or
3292 at least the fringes are not redrawn in a timely manner. ++kfs */
3293 if (f->force_flush_display_p)
3294 {
3295 FRAME_RIF (f)->flush_display (f);
3296 f->force_flush_display_p = 0;
3297 }
3298 }
3299 else
3300 {
3301 /* We are working on frame matrix basis. Set the frame on whose
3302 frame matrix we operate. */
3303 set_frame_matrix_frame (f);
3304
3305 /* Build F's desired matrix from window matrices. */
3306 build_frame_matrix (f);
3307
3308 /* Update the display */
3309 update_begin (f);
3310 paused_p = update_frame_1 (f, force_p, inhibit_hairy_id_p);
3311 update_end (f);
3312
3313 if (FRAME_TERMCAP_P (f) || FRAME_MSDOS_P (f))
3314 {
3315 if (FRAME_TTY (f)->termscript)
3316 fflush (FRAME_TTY (f)->termscript);
3317 if (FRAME_TERMCAP_P (f))
3318 fflush (FRAME_TTY (f)->output);
3319 }
3320
3321 /* Check window matrices for lost pointers. */
3322 #if GLYPH_DEBUG
3323 check_window_matrix_pointers (root_window);
3324 add_frame_display_history (f, paused_p);
3325 #endif
3326 }
3327
3328 #if PERIODIC_PREEMPTION_CHECKING
3329 do_pause:
3330 #endif
3331 /* Reset flags indicating that a window should be updated. */
3332 set_window_update_flags (root_window, 0);
3333
3334 display_completed = !paused_p;
3335 return paused_p;
3336 }
3337
3338
3339 \f
3340 /************************************************************************
3341 Window-based updates
3342 ************************************************************************/
3343
3344 /* Perform updates in window tree rooted at W. FORCE_P non-zero means
3345 don't stop updating when input is pending. */
3346
3347 static int
3348 update_window_tree (struct window *w, int force_p)
3349 {
3350 int paused_p = 0;
3351
3352 while (w && !paused_p)
3353 {
3354 if (!NILP (w->hchild))
3355 paused_p |= update_window_tree (XWINDOW (w->hchild), force_p);
3356 else if (!NILP (w->vchild))
3357 paused_p |= update_window_tree (XWINDOW (w->vchild), force_p);
3358 else if (w->must_be_updated_p)
3359 paused_p |= update_window (w, force_p);
3360
3361 w = NILP (w->next) ? 0 : XWINDOW (w->next);
3362 }
3363
3364 return paused_p;
3365 }
3366
3367
3368 /* Update window W if its flag must_be_updated_p is non-zero. If
3369 FORCE_P is non-zero, don't stop updating if input is pending. */
3370
3371 void
3372 update_single_window (struct window *w, int force_p)
3373 {
3374 if (w->must_be_updated_p)
3375 {
3376 struct frame *f = XFRAME (WINDOW_FRAME (w));
3377
3378 /* Record that this is not a frame-based redisplay. */
3379 set_frame_matrix_frame (NULL);
3380
3381 if (redisplay_dont_pause)
3382 force_p = 1;
3383 #if PERIODIC_PREEMPTION_CHECKING
3384 else if (NILP (Vredisplay_preemption_period))
3385 force_p = 1;
3386 else if (!force_p && NUMBERP (Vredisplay_preemption_period))
3387 {
3388 EMACS_TIME tm;
3389 double p = XFLOATINT (Vredisplay_preemption_period);
3390 int sec, usec;
3391
3392 sec = (int) p;
3393 usec = (p - sec) * 1000000;
3394
3395 EMACS_GET_TIME (tm);
3396 EMACS_SET_SECS_USECS (preemption_period, sec, usec);
3397 EMACS_ADD_TIME (preemption_next_check, tm, preemption_period);
3398 }
3399 #endif
3400
3401 /* Update W. */
3402 update_begin (f);
3403 update_window (w, force_p);
3404 update_end (f);
3405
3406 /* Reset flag in W. */
3407 w->must_be_updated_p = 0;
3408 }
3409 }
3410
3411 #ifdef HAVE_WINDOW_SYSTEM
3412
3413 /* Redraw lines from the current matrix of window W that are
3414 overlapped by other rows. YB is bottom-most y-position in W. */
3415
3416 static void
3417 redraw_overlapped_rows (struct window *w, int yb)
3418 {
3419 int i;
3420 struct frame *f = XFRAME (WINDOW_FRAME (w));
3421
3422 /* If rows overlapping others have been changed, the rows being
3423 overlapped have to be redrawn. This won't draw lines that have
3424 already been drawn in update_window_line because overlapped_p in
3425 desired rows is 0, so after row assignment overlapped_p in
3426 current rows is 0. */
3427 for (i = 0; i < w->current_matrix->nrows; ++i)
3428 {
3429 struct glyph_row *row = w->current_matrix->rows + i;
3430
3431 if (!row->enabled_p)
3432 break;
3433 else if (row->mode_line_p)
3434 continue;
3435
3436 if (row->overlapped_p)
3437 {
3438 enum glyph_row_area area;
3439
3440 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
3441 {
3442 updated_row = row;
3443 updated_area = area;
3444 FRAME_RIF (f)->cursor_to (i, 0, row->y,
3445 area == TEXT_AREA ? row->x : 0);
3446 if (row->used[area])
3447 FRAME_RIF (f)->write_glyphs (row->glyphs[area],
3448 row->used[area]);
3449 FRAME_RIF (f)->clear_end_of_line (-1);
3450 }
3451
3452 row->overlapped_p = 0;
3453 }
3454
3455 if (MATRIX_ROW_BOTTOM_Y (row) >= yb)
3456 break;
3457 }
3458 }
3459
3460
3461 /* Redraw lines from the current matrix of window W that overlap
3462 others. YB is bottom-most y-position in W. */
3463
3464 static void
3465 redraw_overlapping_rows (struct window *w, int yb)
3466 {
3467 int i, bottom_y;
3468 struct glyph_row *row;
3469 struct redisplay_interface *rif = FRAME_RIF (XFRAME (WINDOW_FRAME (w)));
3470
3471 for (i = 0; i < w->current_matrix->nrows; ++i)
3472 {
3473 row = w->current_matrix->rows + i;
3474
3475 if (!row->enabled_p)
3476 break;
3477 else if (row->mode_line_p)
3478 continue;
3479
3480 bottom_y = MATRIX_ROW_BOTTOM_Y (row);
3481
3482 if (row->overlapping_p)
3483 {
3484 int overlaps = 0;
3485
3486 if (MATRIX_ROW_OVERLAPS_PRED_P (row) && i > 0
3487 && !MATRIX_ROW (w->current_matrix, i - 1)->overlapped_p)
3488 overlaps |= OVERLAPS_PRED;
3489 if (MATRIX_ROW_OVERLAPS_SUCC_P (row) && bottom_y < yb
3490 && !MATRIX_ROW (w->current_matrix, i + 1)->overlapped_p)
3491 overlaps |= OVERLAPS_SUCC;
3492
3493 if (overlaps)
3494 {
3495 if (row->used[LEFT_MARGIN_AREA])
3496 rif->fix_overlapping_area (w, row, LEFT_MARGIN_AREA, overlaps);
3497
3498 if (row->used[TEXT_AREA])
3499 rif->fix_overlapping_area (w, row, TEXT_AREA, overlaps);
3500
3501 if (row->used[RIGHT_MARGIN_AREA])
3502 rif->fix_overlapping_area (w, row, RIGHT_MARGIN_AREA, overlaps);
3503
3504 /* Record in neighbor rows that ROW overwrites part of
3505 their display. */
3506 if (overlaps & OVERLAPS_PRED)
3507 MATRIX_ROW (w->current_matrix, i - 1)->overlapped_p = 1;
3508 if (overlaps & OVERLAPS_SUCC)
3509 MATRIX_ROW (w->current_matrix, i + 1)->overlapped_p = 1;
3510 }
3511 }
3512
3513 if (bottom_y >= yb)
3514 break;
3515 }
3516 }
3517
3518 #endif /* HAVE_WINDOW_SYSTEM */
3519
3520
3521 #if defined GLYPH_DEBUG && 0
3522
3523 /* Check that no row in the current matrix of window W is enabled
3524 which is below what's displayed in the window. */
3525
3526 static void
3527 check_current_matrix_flags (struct window *w)
3528 {
3529 int last_seen_p = 0;
3530 int i, yb = window_text_bottom_y (w);
3531
3532 for (i = 0; i < w->current_matrix->nrows - 1; ++i)
3533 {
3534 struct glyph_row *row = MATRIX_ROW (w->current_matrix, i);
3535 if (!last_seen_p && MATRIX_ROW_BOTTOM_Y (row) >= yb)
3536 last_seen_p = 1;
3537 else if (last_seen_p && row->enabled_p)
3538 abort ();
3539 }
3540 }
3541
3542 #endif /* GLYPH_DEBUG */
3543
3544
3545 /* Update display of window W. FORCE_P non-zero means that we should
3546 not stop when detecting pending input. */
3547
3548 static int
3549 update_window (struct window *w, int force_p)
3550 {
3551 struct glyph_matrix *desired_matrix = w->desired_matrix;
3552 int paused_p;
3553 #if !PERIODIC_PREEMPTION_CHECKING
3554 int preempt_count = baud_rate / 2400 + 1;
3555 #endif
3556 struct redisplay_interface *rif = FRAME_RIF (XFRAME (WINDOW_FRAME (w)));
3557 #if GLYPH_DEBUG
3558 /* Check that W's frame doesn't have glyph matrices. */
3559 xassert (FRAME_WINDOW_P (XFRAME (WINDOW_FRAME (w))));
3560 #endif
3561
3562 /* Check pending input the first time so that we can quickly return. */
3563 #if !PERIODIC_PREEMPTION_CHECKING
3564 if (!force_p)
3565 detect_input_pending_ignore_squeezables ();
3566 #endif
3567
3568 /* If forced to complete the update, or if no input is pending, do
3569 the update. */
3570 if (force_p || !input_pending || !NILP (do_mouse_tracking))
3571 {
3572 struct glyph_row *row, *end;
3573 struct glyph_row *mode_line_row;
3574 struct glyph_row *header_line_row;
3575 int yb, changed_p = 0, mouse_face_overwritten_p = 0;
3576 #if ! PERIODIC_PREEMPTION_CHECKING
3577 int n_updated = 0;
3578 #endif
3579
3580 rif->update_window_begin_hook (w);
3581 yb = window_text_bottom_y (w);
3582 row = desired_matrix->rows;
3583 end = row + desired_matrix->nrows - 1;
3584
3585 /* Take note of the header line, if there is one. We will
3586 update it below, after updating all of the window's lines. */
3587 if (row->mode_line_p)
3588 {
3589 header_line_row = row;
3590 ++row;
3591 }
3592 else
3593 header_line_row = NULL;
3594
3595 /* Update the mode line, if necessary. */
3596 mode_line_row = MATRIX_MODE_LINE_ROW (desired_matrix);
3597 if (mode_line_row->mode_line_p && mode_line_row->enabled_p)
3598 {
3599 mode_line_row->y = yb;
3600 update_window_line (w, MATRIX_ROW_VPOS (mode_line_row,
3601 desired_matrix),
3602 &mouse_face_overwritten_p);
3603 }
3604
3605 /* Find first enabled row. Optimizations in redisplay_internal
3606 may lead to an update with only one row enabled. There may
3607 be also completely empty matrices. */
3608 while (row < end && !row->enabled_p)
3609 ++row;
3610
3611 /* Try reusing part of the display by copying. */
3612 if (row < end && !desired_matrix->no_scrolling_p)
3613 {
3614 int rc = scrolling_window (w, header_line_row != NULL);
3615 if (rc < 0)
3616 {
3617 /* All rows were found to be equal. */
3618 paused_p = 0;
3619 goto set_cursor;
3620 }
3621 else if (rc > 0)
3622 {
3623 /* We've scrolled the display. */
3624 force_p = 1;
3625 changed_p = 1;
3626 }
3627 }
3628
3629 /* Update the rest of the lines. */
3630 for (; row < end && (force_p || !input_pending); ++row)
3631 /* scrolling_window resets the enabled_p flag of the rows it
3632 reuses from current_matrix. */
3633 if (row->enabled_p)
3634 {
3635 int vpos = MATRIX_ROW_VPOS (row, desired_matrix);
3636 int i;
3637
3638 /* We'll have to play a little bit with when to
3639 detect_input_pending. If it's done too often,
3640 scrolling large windows with repeated scroll-up
3641 commands will too quickly pause redisplay. */
3642 #if PERIODIC_PREEMPTION_CHECKING
3643 if (!force_p)
3644 {
3645 EMACS_TIME tm, dif;
3646 EMACS_GET_TIME (tm);
3647 EMACS_SUB_TIME (dif, preemption_next_check, tm);
3648 if (EMACS_TIME_NEG_P (dif))
3649 {
3650 EMACS_ADD_TIME (preemption_next_check, tm, preemption_period);
3651 if (detect_input_pending_ignore_squeezables ())
3652 break;
3653 }
3654 }
3655 #else
3656 if (!force_p && ++n_updated % preempt_count == 0)
3657 detect_input_pending_ignore_squeezables ();
3658 #endif
3659 changed_p |= update_window_line (w, vpos,
3660 &mouse_face_overwritten_p);
3661
3662 /* Mark all rows below the last visible one in the current
3663 matrix as invalid. This is necessary because of
3664 variable line heights. Consider the case of three
3665 successive redisplays, where the first displays 5
3666 lines, the second 3 lines, and the third 5 lines again.
3667 If the second redisplay wouldn't mark rows in the
3668 current matrix invalid, the third redisplay might be
3669 tempted to optimize redisplay based on lines displayed
3670 in the first redisplay. */
3671 if (MATRIX_ROW_BOTTOM_Y (row) >= yb)
3672 for (i = vpos + 1; i < w->current_matrix->nrows - 1; ++i)
3673 MATRIX_ROW (w->current_matrix, i)->enabled_p = 0;
3674 }
3675
3676 /* Was display preempted? */
3677 paused_p = row < end;
3678
3679 set_cursor:
3680
3681 /* Update the header line after scrolling because a new header
3682 line would otherwise overwrite lines at the top of the window
3683 that can be scrolled. */
3684 if (header_line_row && header_line_row->enabled_p)
3685 {
3686 header_line_row->y = 0;
3687 update_window_line (w, 0, &mouse_face_overwritten_p);
3688 }
3689
3690 /* Fix the appearance of overlapping/overlapped rows. */
3691 if (!paused_p && !w->pseudo_window_p)
3692 {
3693 #ifdef HAVE_WINDOW_SYSTEM
3694 if (changed_p && rif->fix_overlapping_area)
3695 {
3696 redraw_overlapped_rows (w, yb);
3697 redraw_overlapping_rows (w, yb);
3698 }
3699 #endif
3700
3701 /* Make cursor visible at cursor position of W. */
3702 set_window_cursor_after_update (w);
3703
3704 #if 0 /* Check that current matrix invariants are satisfied. This is
3705 for debugging only. See the comment of check_matrix_invariants. */
3706 IF_DEBUG (check_matrix_invariants (w));
3707 #endif
3708 }
3709
3710 #if GLYPH_DEBUG
3711 /* Remember the redisplay method used to display the matrix. */
3712 strcpy (w->current_matrix->method, w->desired_matrix->method);
3713 #endif
3714
3715 #ifdef HAVE_WINDOW_SYSTEM
3716 update_window_fringes (w, 0);
3717 #endif
3718
3719 /* End the update of window W. Don't set the cursor if we
3720 paused updating the display because in this case,
3721 set_window_cursor_after_update hasn't been called, and
3722 output_cursor doesn't contain the cursor location. */
3723 rif->update_window_end_hook (w, !paused_p, mouse_face_overwritten_p);
3724 }
3725 else
3726 paused_p = 1;
3727
3728 #if GLYPH_DEBUG
3729 /* check_current_matrix_flags (w); */
3730 add_window_display_history (w, w->current_matrix->method, paused_p);
3731 #endif
3732
3733 clear_glyph_matrix (desired_matrix);
3734
3735 return paused_p;
3736 }
3737
3738
3739 /* Update the display of area AREA in window W, row number VPOS.
3740 AREA can be either LEFT_MARGIN_AREA or RIGHT_MARGIN_AREA. */
3741
3742 static void
3743 update_marginal_area (struct window *w, int area, int vpos)
3744 {
3745 struct glyph_row *desired_row = MATRIX_ROW (w->desired_matrix, vpos);
3746 struct redisplay_interface *rif = FRAME_RIF (XFRAME (WINDOW_FRAME (w)));
3747
3748 /* Let functions in xterm.c know what area subsequent X positions
3749 will be relative to. */
3750 updated_area = area;
3751
3752 /* Set cursor to start of glyphs, write them, and clear to the end
3753 of the area. I don't think that something more sophisticated is
3754 necessary here, since marginal areas will not be the default. */
3755 rif->cursor_to (vpos, 0, desired_row->y, 0);
3756 if (desired_row->used[area])
3757 rif->write_glyphs (desired_row->glyphs[area], desired_row->used[area]);
3758 rif->clear_end_of_line (-1);
3759 }
3760
3761
3762 /* Update the display of the text area of row VPOS in window W.
3763 Value is non-zero if display has changed. */
3764
3765 static int
3766 update_text_area (struct window *w, int vpos)
3767 {
3768 struct glyph_row *current_row = MATRIX_ROW (w->current_matrix, vpos);
3769 struct glyph_row *desired_row = MATRIX_ROW (w->desired_matrix, vpos);
3770 struct redisplay_interface *rif = FRAME_RIF (XFRAME (WINDOW_FRAME (w)));
3771 int changed_p = 0;
3772
3773 /* Let functions in xterm.c know what area subsequent X positions
3774 will be relative to. */
3775 updated_area = TEXT_AREA;
3776
3777 /* If rows are at different X or Y, or rows have different height,
3778 or the current row is marked invalid, write the entire line. */
3779 if (!current_row->enabled_p
3780 || desired_row->y != current_row->y
3781 || desired_row->ascent != current_row->ascent
3782 || desired_row->phys_ascent != current_row->phys_ascent
3783 || desired_row->phys_height != current_row->phys_height
3784 || desired_row->visible_height != current_row->visible_height
3785 || current_row->overlapped_p
3786 /* This next line is necessary for correctly redrawing
3787 mouse-face areas after scrolling and other operations.
3788 However, it causes excessive flickering when mouse is moved
3789 across the mode line. Luckily, turning it off for the mode
3790 line doesn't seem to hurt anything. -- cyd.
3791 But it is still needed for the header line. -- kfs. */
3792 || (current_row->mouse_face_p
3793 && !(current_row->mode_line_p && vpos > 0))
3794 || current_row->x != desired_row->x)
3795 {
3796 rif->cursor_to (vpos, 0, desired_row->y, desired_row->x);
3797
3798 if (desired_row->used[TEXT_AREA])
3799 rif->write_glyphs (desired_row->glyphs[TEXT_AREA],
3800 desired_row->used[TEXT_AREA]);
3801
3802 /* Clear to end of window. */
3803 rif->clear_end_of_line (-1);
3804 changed_p = 1;
3805
3806 /* This erases the cursor. We do this here because
3807 notice_overwritten_cursor cannot easily check this, which
3808 might indicate that the whole functionality of
3809 notice_overwritten_cursor would better be implemented here.
3810 On the other hand, we need notice_overwritten_cursor as long
3811 as mouse highlighting is done asynchronously outside of
3812 redisplay. */
3813 if (vpos == w->phys_cursor.vpos)
3814 w->phys_cursor_on_p = 0;
3815 }
3816 else
3817 {
3818 int stop, i, x;
3819 struct glyph *current_glyph = current_row->glyphs[TEXT_AREA];
3820 struct glyph *desired_glyph = desired_row->glyphs[TEXT_AREA];
3821 int overlapping_glyphs_p = current_row->contains_overlapping_glyphs_p;
3822 int desired_stop_pos = desired_row->used[TEXT_AREA];
3823 int abort_skipping = 0;
3824
3825 /* If the desired row extends its face to the text area end, and
3826 unless the current row also does so at the same position,
3827 make sure we write at least one glyph, so that the face
3828 extension actually takes place. */
3829 if (MATRIX_ROW_EXTENDS_FACE_P (desired_row)
3830 && (desired_stop_pos < current_row->used[TEXT_AREA]
3831 || (desired_stop_pos == current_row->used[TEXT_AREA]
3832 && !MATRIX_ROW_EXTENDS_FACE_P (current_row))))
3833 --desired_stop_pos;
3834
3835 stop = min (current_row->used[TEXT_AREA], desired_stop_pos);
3836 i = 0;
3837 x = desired_row->x;
3838
3839 /* Loop over glyphs that current and desired row may have
3840 in common. */
3841 while (i < stop)
3842 {
3843 int can_skip_p = !abort_skipping;
3844
3845 /* Skip over glyphs that both rows have in common. These
3846 don't have to be written. We can't skip if the last
3847 current glyph overlaps the glyph to its right. For
3848 example, consider a current row of `if ' with the `f' in
3849 Courier bold so that it overlaps the ` ' to its right.
3850 If the desired row is ` ', we would skip over the space
3851 after the `if' and there would remain a pixel from the
3852 `f' on the screen. */
3853 if (overlapping_glyphs_p && i > 0)
3854 {
3855 struct glyph *glyph = &current_row->glyphs[TEXT_AREA][i - 1];
3856 int left, right;
3857
3858 rif->get_glyph_overhangs (glyph, XFRAME (w->frame),
3859 &left, &right);
3860 can_skip_p = (right == 0 && !abort_skipping);
3861 }
3862
3863 if (can_skip_p)
3864 {
3865 int start_hpos = i;
3866
3867 while (i < stop
3868 && GLYPH_EQUAL_P (desired_glyph, current_glyph))
3869 {
3870 x += desired_glyph->pixel_width;
3871 ++desired_glyph, ++current_glyph, ++i;
3872 }
3873
3874 /* Consider the case that the current row contains "xxx
3875 ppp ggg" in italic Courier font, and the desired row
3876 is "xxx ggg". The character `p' has lbearing, `g'
3877 has not. The loop above will stop in front of the
3878 first `p' in the current row. If we would start
3879 writing glyphs there, we wouldn't erase the lbearing
3880 of the `p'. The rest of the lbearing problem is then
3881 taken care of by draw_glyphs. */
3882 if (overlapping_glyphs_p
3883 && i > 0
3884 && i < current_row->used[TEXT_AREA]
3885 && (current_row->used[TEXT_AREA]
3886 != desired_row->used[TEXT_AREA]))
3887 {
3888 int left, right;
3889
3890 rif->get_glyph_overhangs (current_glyph, XFRAME (w->frame),
3891 &left, &right);
3892 while (left > 0 && i > 0)
3893 {
3894 --i, --desired_glyph, --current_glyph;
3895 x -= desired_glyph->pixel_width;
3896 left -= desired_glyph->pixel_width;
3897 }
3898
3899 /* Abort the skipping algorithm if we end up before
3900 our starting point, to avoid looping (bug#1070).
3901 This can happen when the lbearing is larger than
3902 the pixel width. */
3903 abort_skipping = (i < start_hpos);
3904 }
3905 }
3906
3907 /* Try to avoid writing the entire rest of the desired row
3908 by looking for a resync point. This mainly prevents
3909 mode line flickering in the case the mode line is in
3910 fixed-pitch font, which it usually will be. */
3911 if (i < desired_row->used[TEXT_AREA])
3912 {
3913 int start_x = x, start_hpos = i;
3914 struct glyph *start = desired_glyph;
3915 int current_x = x;
3916 int skip_first_p = !can_skip_p;
3917
3918 /* Find the next glyph that's equal again. */
3919 while (i < stop
3920 && (skip_first_p
3921 || !GLYPH_EQUAL_P (desired_glyph, current_glyph))
3922 && x == current_x)
3923 {
3924 x += desired_glyph->pixel_width;
3925 current_x += current_glyph->pixel_width;
3926 ++desired_glyph, ++current_glyph, ++i;
3927 skip_first_p = 0;
3928 }
3929
3930 if (i == start_hpos || x != current_x)
3931 {
3932 i = start_hpos;
3933 x = start_x;
3934 desired_glyph = start;
3935 break;
3936 }
3937
3938 rif->cursor_to (vpos, start_hpos, desired_row->y, start_x);
3939 rif->write_glyphs (start, i - start_hpos);
3940 changed_p = 1;
3941 }
3942 }
3943
3944 /* Write the rest. */
3945 if (i < desired_row->used[TEXT_AREA])
3946 {
3947 rif->cursor_to (vpos, i, desired_row->y, x);
3948 rif->write_glyphs (desired_glyph, desired_row->used[TEXT_AREA] - i);
3949 changed_p = 1;
3950 }
3951
3952 /* Maybe clear to end of line. */
3953 if (MATRIX_ROW_EXTENDS_FACE_P (desired_row))
3954 {
3955 /* If new row extends to the end of the text area, nothing
3956 has to be cleared, if and only if we did a write_glyphs
3957 above. This is made sure by setting desired_stop_pos
3958 appropriately above. */
3959 xassert (i < desired_row->used[TEXT_AREA]
3960 || ((desired_row->used[TEXT_AREA]
3961 == current_row->used[TEXT_AREA])
3962 && MATRIX_ROW_EXTENDS_FACE_P (current_row)));
3963 }
3964 else if (MATRIX_ROW_EXTENDS_FACE_P (current_row))
3965 {
3966 /* If old row extends to the end of the text area, clear. */
3967 if (i >= desired_row->used[TEXT_AREA])
3968 rif->cursor_to (vpos, i, desired_row->y,
3969 desired_row->pixel_width);
3970 rif->clear_end_of_line (-1);
3971 changed_p = 1;
3972 }
3973 else if (desired_row->pixel_width < current_row->pixel_width)
3974 {
3975 /* Otherwise clear to the end of the old row. Everything
3976 after that position should be clear already. */
3977 int xlim;
3978
3979 if (i >= desired_row->used[TEXT_AREA])
3980 rif->cursor_to (vpos, i, desired_row->y,
3981 desired_row->pixel_width);
3982
3983 /* If cursor is displayed at the end of the line, make sure
3984 it's cleared. Nowadays we don't have a phys_cursor_glyph
3985 with which to erase the cursor (because this method
3986 doesn't work with lbearing/rbearing), so we must do it
3987 this way. */
3988 if (vpos == w->phys_cursor.vpos
3989 && (desired_row->reversed_p
3990 ? (w->phys_cursor.hpos < 0)
3991 : (w->phys_cursor.hpos >= desired_row->used[TEXT_AREA])))
3992 {
3993 w->phys_cursor_on_p = 0;
3994 xlim = -1;
3995 }
3996 else
3997 xlim = current_row->pixel_width;
3998 rif->clear_end_of_line (xlim);
3999 changed_p = 1;
4000 }
4001 }
4002
4003 return changed_p;
4004 }
4005
4006
4007 /* Update row VPOS in window W. Value is non-zero if display has been
4008 changed. */
4009
4010 static int
4011 update_window_line (struct window *w, int vpos, int *mouse_face_overwritten_p)
4012 {
4013 struct glyph_row *current_row = MATRIX_ROW (w->current_matrix, vpos);
4014 struct glyph_row *desired_row = MATRIX_ROW (w->desired_matrix, vpos);
4015 struct redisplay_interface *rif = FRAME_RIF (XFRAME (WINDOW_FRAME (w)));
4016 int changed_p = 0;
4017
4018 /* Set the row being updated. This is important to let xterm.c
4019 know what line height values are in effect. */
4020 updated_row = desired_row;
4021
4022 /* A row can be completely invisible in case a desired matrix was
4023 built with a vscroll and then make_cursor_line_fully_visible shifts
4024 the matrix. Make sure to make such rows current anyway, since
4025 we need the correct y-position, for example, in the current matrix. */
4026 if (desired_row->mode_line_p
4027 || desired_row->visible_height > 0)
4028 {
4029 xassert (desired_row->enabled_p);
4030
4031 /* Update display of the left margin area, if there is one. */
4032 if (!desired_row->full_width_p
4033 && !NILP (w->left_margin_cols))
4034 {
4035 changed_p = 1;
4036 update_marginal_area (w, LEFT_MARGIN_AREA, vpos);
4037 }
4038
4039 /* Update the display of the text area. */
4040 if (update_text_area (w, vpos))
4041 {
4042 changed_p = 1;
4043 if (current_row->mouse_face_p)
4044 *mouse_face_overwritten_p = 1;
4045 }
4046
4047 /* Update display of the right margin area, if there is one. */
4048 if (!desired_row->full_width_p
4049 && !NILP (w->right_margin_cols))
4050 {
4051 changed_p = 1;
4052 update_marginal_area (w, RIGHT_MARGIN_AREA, vpos);
4053 }
4054
4055 /* Draw truncation marks etc. */
4056 if (!current_row->enabled_p
4057 || desired_row->y != current_row->y
4058 || desired_row->visible_height != current_row->visible_height
4059 || desired_row->cursor_in_fringe_p != current_row->cursor_in_fringe_p
4060 || desired_row->overlay_arrow_bitmap != current_row->overlay_arrow_bitmap
4061 || current_row->redraw_fringe_bitmaps_p
4062 || desired_row->mode_line_p != current_row->mode_line_p
4063 || desired_row->exact_window_width_line_p != current_row->exact_window_width_line_p
4064 || (MATRIX_ROW_CONTINUATION_LINE_P (desired_row)
4065 != MATRIX_ROW_CONTINUATION_LINE_P (current_row)))
4066 rif->after_update_window_line_hook (desired_row);
4067 }
4068
4069 /* Update current_row from desired_row. */
4070 make_current (w->desired_matrix, w->current_matrix, vpos);
4071 updated_row = NULL;
4072 return changed_p;
4073 }
4074
4075
4076 /* Set the cursor after an update of window W. This function may only
4077 be called from update_window. */
4078
4079 static void
4080 set_window_cursor_after_update (struct window *w)
4081 {
4082 struct frame *f = XFRAME (w->frame);
4083 struct redisplay_interface *rif = FRAME_RIF (f);
4084 int cx, cy, vpos, hpos;
4085
4086 /* Not intended for frame matrix updates. */
4087 xassert (FRAME_WINDOW_P (f));
4088
4089 if (cursor_in_echo_area
4090 && !NILP (echo_area_buffer[0])
4091 /* If we are showing a message instead of the mini-buffer,
4092 show the cursor for the message instead. */
4093 && XWINDOW (minibuf_window) == w
4094 && EQ (minibuf_window, echo_area_window)
4095 /* These cases apply only to the frame that contains
4096 the active mini-buffer window. */
4097 && FRAME_HAS_MINIBUF_P (f)
4098 && EQ (FRAME_MINIBUF_WINDOW (f), echo_area_window))
4099 {
4100 cx = cy = vpos = hpos = 0;
4101
4102 if (cursor_in_echo_area >= 0)
4103 {
4104 /* If the mini-buffer is several lines high, find the last
4105 line that has any text on it. Note: either all lines
4106 are enabled or none. Otherwise we wouldn't be able to
4107 determine Y. */
4108 struct glyph_row *row, *last_row;
4109 struct glyph *glyph;
4110 int yb = window_text_bottom_y (w);
4111
4112 last_row = NULL;
4113 row = w->current_matrix->rows;
4114 while (row->enabled_p
4115 && (last_row == NULL
4116 || MATRIX_ROW_BOTTOM_Y (row) <= yb))
4117 {
4118 if (row->used[TEXT_AREA]
4119 && row->glyphs[TEXT_AREA][0].charpos >= 0)
4120 last_row = row;
4121 ++row;
4122 }
4123
4124 if (last_row)
4125 {
4126 struct glyph *start = last_row->glyphs[TEXT_AREA];
4127 struct glyph *last = start + last_row->used[TEXT_AREA] - 1;
4128
4129 while (last > start && last->charpos < 0)
4130 --last;
4131
4132 for (glyph = start; glyph < last; ++glyph)
4133 {
4134 cx += glyph->pixel_width;
4135 ++hpos;
4136 }
4137
4138 cy = last_row->y;
4139 vpos = MATRIX_ROW_VPOS (last_row, w->current_matrix);
4140 }
4141 }
4142 }
4143 else
4144 {
4145 cx = w->cursor.x;
4146 cy = w->cursor.y;
4147 hpos = w->cursor.hpos;
4148 vpos = w->cursor.vpos;
4149 }
4150
4151 /* Window cursor can be out of sync for horizontally split windows. */
4152 hpos = max (-1, hpos); /* -1 is for when cursor is on the left fringe */
4153 hpos = min (w->current_matrix->matrix_w - 1, hpos);
4154 vpos = max (0, vpos);
4155 vpos = min (w->current_matrix->nrows - 1, vpos);
4156 rif->cursor_to (vpos, hpos, cy, cx);
4157 }
4158
4159
4160 /* Set WINDOW->must_be_updated_p to ON_P for all windows in the window
4161 tree rooted at W. */
4162
4163 void
4164 set_window_update_flags (struct window *w, int on_p)
4165 {
4166 while (w)
4167 {
4168 if (!NILP (w->hchild))
4169 set_window_update_flags (XWINDOW (w->hchild), on_p);
4170 else if (!NILP (w->vchild))
4171 set_window_update_flags (XWINDOW (w->vchild), on_p);
4172 else
4173 w->must_be_updated_p = on_p;
4174
4175 w = NILP (w->next) ? 0 : XWINDOW (w->next);
4176 }
4177 }
4178
4179
4180 \f
4181 /***********************************************************************
4182 Window-Based Scrolling
4183 ***********************************************************************/
4184
4185 /* Structure describing rows in scrolling_window. */
4186
4187 struct row_entry
4188 {
4189 /* Number of occurrences of this row in desired and current matrix. */
4190 int old_uses, new_uses;
4191
4192 /* Vpos of row in new matrix. */
4193 int new_line_number;
4194
4195 /* Bucket index of this row_entry in the hash table row_table. */
4196 ptrdiff_t bucket;
4197
4198 /* The row described by this entry. */
4199 struct glyph_row *row;
4200
4201 /* Hash collision chain. */
4202 struct row_entry *next;
4203 };
4204
4205 /* A pool to allocate row_entry structures from, and the size of the
4206 pool. The pool is reallocated in scrolling_window when we find
4207 that we need a larger one. */
4208
4209 static struct row_entry *row_entry_pool;
4210 static ptrdiff_t row_entry_pool_size;
4211
4212 /* Index of next free entry in row_entry_pool. */
4213
4214 static ptrdiff_t row_entry_idx;
4215
4216 /* The hash table used during scrolling, and the table's size. This
4217 table is used to quickly identify equal rows in the desired and
4218 current matrix. */
4219
4220 static struct row_entry **row_table;
4221 static ptrdiff_t row_table_size;
4222
4223 /* Vectors of pointers to row_entry structures belonging to the
4224 current and desired matrix, and the size of the vectors. */
4225
4226 static struct row_entry **old_lines, **new_lines;
4227 static ptrdiff_t old_lines_size, new_lines_size;
4228
4229 /* A pool to allocate run structures from, and its size. */
4230
4231 static struct run *run_pool;
4232 static ptrdiff_t runs_size;
4233
4234 /* A vector of runs of lines found during scrolling. */
4235
4236 static struct run **runs;
4237
4238 /* Add glyph row ROW to the scrolling hash table. */
4239
4240 static inline struct row_entry *
4241 add_row_entry (struct glyph_row *row)
4242 {
4243 struct row_entry *entry;
4244 ptrdiff_t i = row->hash % row_table_size;
4245
4246 entry = row_table[i];
4247 xassert (entry || verify_row_hash (row));
4248 while (entry && !row_equal_p (entry->row, row, 1))
4249 entry = entry->next;
4250
4251 if (entry == NULL)
4252 {
4253 entry = row_entry_pool + row_entry_idx++;
4254 entry->row = row;
4255 entry->old_uses = entry->new_uses = 0;
4256 entry->new_line_number = 0;
4257 entry->bucket = i;
4258 entry->next = row_table[i];
4259 row_table[i] = entry;
4260 }
4261
4262 return entry;
4263 }
4264
4265
4266 /* Try to reuse part of the current display of W by scrolling lines.
4267 HEADER_LINE_P non-zero means W has a header line.
4268
4269 The algorithm is taken from Communications of the ACM, Apr78 "A
4270 Technique for Isolating Differences Between Files." It should take
4271 O(N) time.
4272
4273 A short outline of the steps of the algorithm
4274
4275 1. Skip lines equal at the start and end of both matrices.
4276
4277 2. Enter rows in the current and desired matrix into a symbol
4278 table, counting how often they appear in both matrices.
4279
4280 3. Rows that appear exactly once in both matrices serve as anchors,
4281 i.e. we assume that such lines are likely to have been moved.
4282
4283 4. Starting from anchor lines, extend regions to be scrolled both
4284 forward and backward.
4285
4286 Value is
4287
4288 -1 if all rows were found to be equal.
4289 0 to indicate that we did not scroll the display, or
4290 1 if we did scroll. */
4291
4292 static int
4293 scrolling_window (struct window *w, int header_line_p)
4294 {
4295 struct glyph_matrix *desired_matrix = w->desired_matrix;
4296 struct glyph_matrix *current_matrix = w->current_matrix;
4297 int yb = window_text_bottom_y (w);
4298 ptrdiff_t i;
4299 int j, first_old, first_new, last_old, last_new;
4300 int nruns, run_idx;
4301 ptrdiff_t n;
4302 struct row_entry *entry;
4303 struct redisplay_interface *rif = FRAME_RIF (XFRAME (WINDOW_FRAME (w)));
4304
4305 /* Skip over rows equal at the start. */
4306 for (i = header_line_p ? 1 : 0; i < current_matrix->nrows - 1; ++i)
4307 {
4308 struct glyph_row *d = MATRIX_ROW (desired_matrix, i);
4309 struct glyph_row *c = MATRIX_ROW (current_matrix, i);
4310
4311 if (c->enabled_p
4312 && d->enabled_p
4313 && !d->redraw_fringe_bitmaps_p
4314 && c->y == d->y
4315 && MATRIX_ROW_BOTTOM_Y (c) <= yb
4316 && MATRIX_ROW_BOTTOM_Y (d) <= yb
4317 && row_equal_p (c, d, 1))
4318 {
4319 assign_row (c, d);
4320 d->enabled_p = 0;
4321 }
4322 else
4323 break;
4324 }
4325
4326 /* Give up if some rows in the desired matrix are not enabled. */
4327 if (!MATRIX_ROW (desired_matrix, i)->enabled_p)
4328 return -1;
4329
4330 first_old = first_new = i;
4331
4332 /* Set last_new to the index + 1 of the row that reaches the
4333 bottom boundary in the desired matrix. Give up if we find a
4334 disabled row before we reach the bottom boundary. */
4335 i = first_new + 1;
4336 while (i < desired_matrix->nrows - 1)
4337 {
4338 int bottom;
4339
4340 if (!MATRIX_ROW (desired_matrix, i)->enabled_p)
4341 return 0;
4342 bottom = MATRIX_ROW_BOTTOM_Y (MATRIX_ROW (desired_matrix, i));
4343 if (bottom <= yb)
4344 ++i;
4345 if (bottom >= yb)
4346 break;
4347 }
4348
4349 last_new = i;
4350
4351 /* Set last_old to the index + 1 of the row that reaches the bottom
4352 boundary in the current matrix. We don't look at the enabled
4353 flag here because we plan to reuse part of the display even if
4354 other parts are disabled. */
4355 i = first_old + 1;
4356 while (i < current_matrix->nrows - 1)
4357 {
4358 int bottom = MATRIX_ROW_BOTTOM_Y (MATRIX_ROW (current_matrix, i));
4359 if (bottom <= yb)
4360 ++i;
4361 if (bottom >= yb)
4362 break;
4363 }
4364
4365 last_old = i;
4366
4367 /* Skip over rows equal at the bottom. */
4368 i = last_new;
4369 j = last_old;
4370 while (i - 1 > first_new
4371 && j - 1 > first_old
4372 && MATRIX_ROW (current_matrix, j - 1)->enabled_p
4373 && (MATRIX_ROW (current_matrix, j - 1)->y
4374 == MATRIX_ROW (desired_matrix, i - 1)->y)
4375 && !MATRIX_ROW (desired_matrix, i - 1)->redraw_fringe_bitmaps_p
4376 && row_equal_p (MATRIX_ROW (desired_matrix, i - 1),
4377 MATRIX_ROW (current_matrix, j - 1), 1))
4378 --i, --j;
4379 last_new = i;
4380 last_old = j;
4381
4382 /* Nothing to do if all rows are equal. */
4383 if (last_new == first_new)
4384 return 0;
4385
4386 /* Check for integer overflow in size calculation.
4387
4388 If next_almost_prime checks (N) for divisibility by 2..10, then
4389 it can return at most N + 10, e.g., next_almost_prime (1) == 11.
4390 So, set next_almost_prime_increment_max to 10.
4391
4392 It's just a coincidence that next_almost_prime_increment_max ==
4393 NEXT_ALMOST_PRIME_LIMIT - 1. If NEXT_ALMOST_PRIME_LIMIT were
4394 13, then next_almost_prime_increment_max would be 14, e.g.,
4395 because next_almost_prime (113) would be 127. */
4396 {
4397 verify (NEXT_ALMOST_PRIME_LIMIT == 11);
4398 enum { next_almost_prime_increment_max = 10 };
4399 ptrdiff_t row_table_max =
4400 (min (PTRDIFF_MAX, SIZE_MAX) / (3 * sizeof *row_table)
4401 - next_almost_prime_increment_max);
4402 ptrdiff_t current_nrows_max = row_table_max - desired_matrix->nrows;
4403 if (current_nrows_max < current_matrix->nrows)
4404 memory_full (SIZE_MAX);
4405 }
4406
4407 /* Reallocate vectors, tables etc. if necessary. */
4408
4409 if (current_matrix->nrows > old_lines_size)
4410 old_lines = xpalloc (old_lines, &old_lines_size,
4411 current_matrix->nrows - old_lines_size,
4412 INT_MAX, sizeof *old_lines);
4413
4414 if (desired_matrix->nrows > new_lines_size)
4415 new_lines = xpalloc (new_lines, &new_lines_size,
4416 desired_matrix->nrows - new_lines_size,
4417 INT_MAX, sizeof *new_lines);
4418
4419 n = desired_matrix->nrows;
4420 n += current_matrix->nrows;
4421 if (row_table_size < 3 * n)
4422 {
4423 ptrdiff_t size = next_almost_prime (3 * n);
4424 row_table = xnrealloc (row_table, size, sizeof *row_table);
4425 row_table_size = size;
4426 memset (row_table, 0, size * sizeof *row_table);
4427 }
4428
4429 if (n > row_entry_pool_size)
4430 row_entry_pool = xpalloc (row_entry_pool, &row_entry_pool_size,
4431 n - row_entry_pool_size,
4432 -1, sizeof *row_entry_pool);
4433
4434 if (desired_matrix->nrows > runs_size)
4435 {
4436 runs = xnrealloc (runs, desired_matrix->nrows, sizeof *runs);
4437 run_pool = xnrealloc (run_pool, desired_matrix->nrows, sizeof *run_pool);
4438 runs_size = desired_matrix->nrows;
4439 }
4440
4441 nruns = run_idx = 0;
4442 row_entry_idx = 0;
4443
4444 /* Add rows from the current and desired matrix to the hash table
4445 row_hash_table to be able to find equal ones quickly. */
4446
4447 for (i = first_old; i < last_old; ++i)
4448 {
4449 if (MATRIX_ROW (current_matrix, i)->enabled_p)
4450 {
4451 entry = add_row_entry (MATRIX_ROW (current_matrix, i));
4452 old_lines[i] = entry;
4453 ++entry->old_uses;
4454 }
4455 else
4456 old_lines[i] = NULL;
4457 }
4458
4459 for (i = first_new; i < last_new; ++i)
4460 {
4461 xassert (MATRIX_ROW_ENABLED_P (desired_matrix, i));
4462 entry = add_row_entry (MATRIX_ROW (desired_matrix, i));
4463 ++entry->new_uses;
4464 entry->new_line_number = i;
4465 new_lines[i] = entry;
4466 }
4467
4468 /* Identify moves based on lines that are unique and equal
4469 in both matrices. */
4470 for (i = first_old; i < last_old;)
4471 if (old_lines[i]
4472 && old_lines[i]->old_uses == 1
4473 && old_lines[i]->new_uses == 1)
4474 {
4475 int p, q;
4476 int new_line = old_lines[i]->new_line_number;
4477 struct run *run = run_pool + run_idx++;
4478
4479 /* Record move. */
4480 run->current_vpos = i;
4481 run->current_y = MATRIX_ROW (current_matrix, i)->y;
4482 run->desired_vpos = new_line;
4483 run->desired_y = MATRIX_ROW (desired_matrix, new_line)->y;
4484 run->nrows = 1;
4485 run->height = MATRIX_ROW (current_matrix, i)->height;
4486
4487 /* Extend backward. */
4488 p = i - 1;
4489 q = new_line - 1;
4490 while (p > first_old
4491 && q > first_new
4492 && old_lines[p] == new_lines[q])
4493 {
4494 int h = MATRIX_ROW (current_matrix, p)->height;
4495 --run->current_vpos;
4496 --run->desired_vpos;
4497 ++run->nrows;
4498 run->height += h;
4499 run->desired_y -= h;
4500 run->current_y -= h;
4501 --p, --q;
4502 }
4503
4504 /* Extend forward. */
4505 p = i + 1;
4506 q = new_line + 1;
4507 while (p < last_old
4508 && q < last_new
4509 && old_lines[p] == new_lines[q])
4510 {
4511 int h = MATRIX_ROW (current_matrix, p)->height;
4512 ++run->nrows;
4513 run->height += h;
4514 ++p, ++q;
4515 }
4516
4517 /* Insert run into list of all runs. Order runs by copied
4518 pixel lines. Note that we record runs that don't have to
4519 be copied because they are already in place. This is done
4520 because we can avoid calling update_window_line in this
4521 case. */
4522 for (p = 0; p < nruns && runs[p]->height > run->height; ++p)
4523 ;
4524 for (q = nruns; q > p; --q)
4525 runs[q] = runs[q - 1];
4526 runs[p] = run;
4527 ++nruns;
4528
4529 i += run->nrows;
4530 }
4531 else
4532 ++i;
4533
4534 /* Do the moves. Do it in a way that we don't overwrite something
4535 we want to copy later on. This is not solvable in general
4536 because there is only one display and we don't have a way to
4537 exchange areas on this display. Example:
4538
4539 +-----------+ +-----------+
4540 | A | | B |
4541 +-----------+ --> +-----------+
4542 | B | | A |
4543 +-----------+ +-----------+
4544
4545 Instead, prefer bigger moves, and invalidate moves that would
4546 copy from where we copied to. */
4547
4548 for (i = 0; i < nruns; ++i)
4549 if (runs[i]->nrows > 0)
4550 {
4551 struct run *r = runs[i];
4552
4553 /* Copy on the display. */
4554 if (r->current_y != r->desired_y)
4555 {
4556 rif->clear_window_mouse_face (w);
4557 rif->scroll_run_hook (w, r);
4558 }
4559
4560 /* Truncate runs that copy to where we copied to, and
4561 invalidate runs that copy from where we copied to. */
4562 for (j = nruns - 1; j > i; --j)
4563 {
4564 struct run *p = runs[j];
4565 int truncated_p = 0;
4566
4567 if (p->nrows > 0
4568 && p->desired_y < r->desired_y + r->height
4569 && p->desired_y + p->height > r->desired_y)
4570 {
4571 if (p->desired_y < r->desired_y)
4572 {
4573 p->nrows = r->desired_vpos - p->desired_vpos;
4574 p->height = r->desired_y - p->desired_y;
4575 truncated_p = 1;
4576 }
4577 else
4578 {
4579 int nrows_copied = (r->desired_vpos + r->nrows
4580 - p->desired_vpos);
4581
4582 if (p->nrows <= nrows_copied)
4583 p->nrows = 0;
4584 else
4585 {
4586 int height_copied = (r->desired_y + r->height
4587 - p->desired_y);
4588
4589 p->current_vpos += nrows_copied;
4590 p->desired_vpos += nrows_copied;
4591 p->nrows -= nrows_copied;
4592 p->current_y += height_copied;
4593 p->desired_y += height_copied;
4594 p->height -= height_copied;
4595 truncated_p = 1;
4596 }
4597 }
4598 }
4599
4600 if (r->current_y != r->desired_y
4601 /* The condition below is equivalent to
4602 ((p->current_y >= r->desired_y
4603 && p->current_y < r->desired_y + r->height)
4604 || (p->current_y + p->height > r->desired_y
4605 && (p->current_y + p->height
4606 <= r->desired_y + r->height)))
4607 because we have 0 < p->height <= r->height. */
4608 && p->current_y < r->desired_y + r->height
4609 && p->current_y + p->height > r->desired_y)
4610 p->nrows = 0;
4611
4612 /* Reorder runs by copied pixel lines if truncated. */
4613 if (truncated_p && p->nrows > 0)
4614 {
4615 int k = nruns - 1;
4616
4617 while (runs[k]->nrows == 0 || runs[k]->height < p->height)
4618 k--;
4619 memmove (runs + j, runs + j + 1, (k - j) * sizeof (*runs));
4620 runs[k] = p;
4621 }
4622 }
4623
4624 /* Assign matrix rows. */
4625 for (j = 0; j < r->nrows; ++j)
4626 {
4627 struct glyph_row *from, *to;
4628 int to_overlapped_p;
4629
4630 to = MATRIX_ROW (current_matrix, r->desired_vpos + j);
4631 from = MATRIX_ROW (desired_matrix, r->desired_vpos + j);
4632 to_overlapped_p = to->overlapped_p;
4633 from->redraw_fringe_bitmaps_p = from->fringe_bitmap_periodic_p;
4634 assign_row (to, from);
4635 /* The above `assign_row' actually does swap, so if we had
4636 an overlap in the copy destination of two runs, then
4637 the second run would assign a previously disabled bogus
4638 row. But thanks to the truncation code in the
4639 preceding for-loop, we no longer have such an overlap,
4640 and thus the assigned row should always be enabled. */
4641 xassert (to->enabled_p);
4642 from->enabled_p = 0;
4643 to->overlapped_p = to_overlapped_p;
4644 }
4645 }
4646
4647 /* Clear the hash table, for the next time. */
4648 for (i = 0; i < row_entry_idx; ++i)
4649 row_table[row_entry_pool[i].bucket] = NULL;
4650
4651 /* Value is 1 to indicate that we scrolled the display. */
4652 return 0 < nruns;
4653 }
4654
4655
4656 \f
4657 /************************************************************************
4658 Frame-Based Updates
4659 ************************************************************************/
4660
4661 /* Update the desired frame matrix of frame F.
4662
4663 FORCE_P non-zero means that the update should not be stopped by
4664 pending input. INHIBIT_HAIRY_ID_P non-zero means that scrolling
4665 should not be tried.
4666
4667 Value is non-zero if update was stopped due to pending input. */
4668
4669 static int
4670 update_frame_1 (struct frame *f, int force_p, int inhibit_id_p)
4671 {
4672 /* Frame matrices to work on. */
4673 struct glyph_matrix *current_matrix = f->current_matrix;
4674 struct glyph_matrix *desired_matrix = f->desired_matrix;
4675 int i;
4676 int pause_p;
4677 int preempt_count = baud_rate / 2400 + 1;
4678
4679 xassert (current_matrix && desired_matrix);
4680
4681 if (baud_rate != FRAME_COST_BAUD_RATE (f))
4682 calculate_costs (f);
4683
4684 if (preempt_count <= 0)
4685 preempt_count = 1;
4686
4687 #if !PERIODIC_PREEMPTION_CHECKING
4688 if (!force_p && detect_input_pending_ignore_squeezables ())
4689 {
4690 pause_p = 1;
4691 goto do_pause;
4692 }
4693 #endif
4694
4695 /* If we cannot insert/delete lines, it's no use trying it. */
4696 if (!FRAME_LINE_INS_DEL_OK (f))
4697 inhibit_id_p = 1;
4698
4699 /* See if any of the desired lines are enabled; don't compute for
4700 i/d line if just want cursor motion. */
4701 for (i = 0; i < desired_matrix->nrows; i++)
4702 if (MATRIX_ROW_ENABLED_P (desired_matrix, i))
4703 break;
4704
4705 /* Try doing i/d line, if not yet inhibited. */
4706 if (!inhibit_id_p && i < desired_matrix->nrows)
4707 force_p |= scrolling (f);
4708
4709 /* Update the individual lines as needed. Do bottom line first. */
4710 if (MATRIX_ROW_ENABLED_P (desired_matrix, desired_matrix->nrows - 1))
4711 update_frame_line (f, desired_matrix->nrows - 1);
4712
4713 /* Now update the rest of the lines. */
4714 for (i = 0; i < desired_matrix->nrows - 1 && (force_p || !input_pending); i++)
4715 {
4716 if (MATRIX_ROW_ENABLED_P (desired_matrix, i))
4717 {
4718 if (FRAME_TERMCAP_P (f))
4719 {
4720 /* Flush out every so many lines.
4721 Also flush out if likely to have more than 1k buffered
4722 otherwise. I'm told that some telnet connections get
4723 really screwed by more than 1k output at once. */
4724 FILE *display_output = FRAME_TTY (f)->output;
4725 if (display_output)
4726 {
4727 int outq = PENDING_OUTPUT_COUNT (display_output);
4728 if (outq > 900
4729 || (outq > 20 && ((i - 1) % preempt_count == 0)))
4730 {
4731 fflush (display_output);
4732 if (preempt_count == 1)
4733 {
4734 #ifdef EMACS_OUTQSIZE
4735 if (EMACS_OUTQSIZE (0, &outq) < 0)
4736 /* Probably not a tty. Ignore the error and reset
4737 the outq count. */
4738 outq = PENDING_OUTPUT_COUNT (FRAME_TTY (f->output));
4739 #endif
4740 outq *= 10;
4741 if (baud_rate <= outq && baud_rate > 0)
4742 sleep (outq / baud_rate);
4743 }
4744 }
4745 }
4746 }
4747
4748 #if PERIODIC_PREEMPTION_CHECKING
4749 if (!force_p)
4750 {
4751 EMACS_TIME tm, dif;
4752 EMACS_GET_TIME (tm);
4753 EMACS_SUB_TIME (dif, preemption_next_check, tm);
4754 if (EMACS_TIME_NEG_P (dif))
4755 {
4756 EMACS_ADD_TIME (preemption_next_check, tm, preemption_period);
4757 if (detect_input_pending_ignore_squeezables ())
4758 break;
4759 }
4760 }
4761 #else
4762 if (!force_p && (i - 1) % preempt_count == 0)
4763 detect_input_pending_ignore_squeezables ();
4764 #endif
4765
4766 update_frame_line (f, i);
4767 }
4768 }
4769
4770 pause_p = (i < FRAME_LINES (f) - 1) ? i : 0;
4771
4772 /* Now just clean up termcap drivers and set cursor, etc. */
4773 if (!pause_p)
4774 {
4775 if ((cursor_in_echo_area
4776 /* If we are showing a message instead of the mini-buffer,
4777 show the cursor for the message instead of for the
4778 (now hidden) mini-buffer contents. */
4779 || (EQ (minibuf_window, selected_window)
4780 && EQ (minibuf_window, echo_area_window)
4781 && !NILP (echo_area_buffer[0])))
4782 /* These cases apply only to the frame that contains
4783 the active mini-buffer window. */
4784 && FRAME_HAS_MINIBUF_P (f)
4785 && EQ (FRAME_MINIBUF_WINDOW (f), echo_area_window))
4786 {
4787 int top = WINDOW_TOP_EDGE_LINE (XWINDOW (FRAME_MINIBUF_WINDOW (f)));
4788 int row, col;
4789
4790 if (cursor_in_echo_area < 0)
4791 {
4792 /* Negative value of cursor_in_echo_area means put
4793 cursor at beginning of line. */
4794 row = top;
4795 col = 0;
4796 }
4797 else
4798 {
4799 /* Positive value of cursor_in_echo_area means put
4800 cursor at the end of the prompt. If the mini-buffer
4801 is several lines high, find the last line that has
4802 any text on it. */
4803 row = FRAME_LINES (f);
4804 do
4805 {
4806 --row;
4807 col = 0;
4808
4809 if (MATRIX_ROW_ENABLED_P (current_matrix, row))
4810 {
4811 /* Frame rows are filled up with spaces that
4812 must be ignored here. */
4813 struct glyph_row *r = MATRIX_ROW (current_matrix,
4814 row);
4815 struct glyph *start = r->glyphs[TEXT_AREA];
4816 struct glyph *last = start + r->used[TEXT_AREA];
4817
4818 while (last > start
4819 && (last - 1)->charpos < 0)
4820 --last;
4821
4822 col = last - start;
4823 }
4824 }
4825 while (row > top && col == 0);
4826
4827 /* Make sure COL is not out of range. */
4828 if (col >= FRAME_CURSOR_X_LIMIT (f))
4829 {
4830 /* If we have another row, advance cursor into it. */
4831 if (row < FRAME_LINES (f) - 1)
4832 {
4833 col = FRAME_LEFT_SCROLL_BAR_COLS (f);
4834 row++;
4835 }
4836 /* Otherwise move it back in range. */
4837 else
4838 col = FRAME_CURSOR_X_LIMIT (f) - 1;
4839 }
4840 }
4841
4842 cursor_to (f, row, col);
4843 }
4844 else
4845 {
4846 /* We have only one cursor on terminal frames. Use it to
4847 display the cursor of the selected window. */
4848 struct window *w = XWINDOW (FRAME_SELECTED_WINDOW (f));
4849 if (w->cursor.vpos >= 0
4850 /* The cursor vpos may be temporarily out of bounds
4851 in the following situation: There is one window,
4852 with the cursor in the lower half of it. The window
4853 is split, and a message causes a redisplay before
4854 a new cursor position has been computed. */
4855 && w->cursor.vpos < WINDOW_TOTAL_LINES (w))
4856 {
4857 int x = WINDOW_TO_FRAME_HPOS (w, w->cursor.hpos);
4858 int y = WINDOW_TO_FRAME_VPOS (w, w->cursor.vpos);
4859
4860 if (INTEGERP (w->left_margin_cols))
4861 x += XFASTINT (w->left_margin_cols);
4862
4863 /* x = max (min (x, FRAME_TOTAL_COLS (f) - 1), 0); */
4864 cursor_to (f, y, x);
4865 }
4866 }
4867 }
4868
4869 #if !PERIODIC_PREEMPTION_CHECKING
4870 do_pause:
4871 #endif
4872
4873 clear_desired_matrices (f);
4874 return pause_p;
4875 }
4876
4877
4878 /* Do line insertions/deletions on frame F for frame-based redisplay. */
4879
4880 static int
4881 scrolling (struct frame *frame)
4882 {
4883 int unchanged_at_top, unchanged_at_bottom;
4884 int window_size;
4885 int changed_lines;
4886 int *old_hash = (int *) alloca (FRAME_LINES (frame) * sizeof (int));
4887 int *new_hash = (int *) alloca (FRAME_LINES (frame) * sizeof (int));
4888 int *draw_cost = (int *) alloca (FRAME_LINES (frame) * sizeof (int));
4889 int *old_draw_cost = (int *) alloca (FRAME_LINES (frame) * sizeof (int));
4890 register int i;
4891 int free_at_end_vpos = FRAME_LINES (frame);
4892 struct glyph_matrix *current_matrix = frame->current_matrix;
4893 struct glyph_matrix *desired_matrix = frame->desired_matrix;
4894
4895 if (!current_matrix)
4896 abort ();
4897
4898 /* Compute hash codes of all the lines. Also calculate number of
4899 changed lines, number of unchanged lines at the beginning, and
4900 number of unchanged lines at the end. */
4901 changed_lines = 0;
4902 unchanged_at_top = 0;
4903 unchanged_at_bottom = FRAME_LINES (frame);
4904 for (i = 0; i < FRAME_LINES (frame); i++)
4905 {
4906 /* Give up on this scrolling if some old lines are not enabled. */
4907 if (!MATRIX_ROW_ENABLED_P (current_matrix, i))
4908 return 0;
4909 old_hash[i] = line_hash_code (MATRIX_ROW (current_matrix, i));
4910 if (! MATRIX_ROW_ENABLED_P (desired_matrix, i))
4911 {
4912 /* This line cannot be redrawn, so don't let scrolling mess it. */
4913 new_hash[i] = old_hash[i];
4914 #define INFINITY 1000000 /* Taken from scroll.c */
4915 draw_cost[i] = INFINITY;
4916 }
4917 else
4918 {
4919 new_hash[i] = line_hash_code (MATRIX_ROW (desired_matrix, i));
4920 draw_cost[i] = line_draw_cost (desired_matrix, i);
4921 }
4922
4923 if (old_hash[i] != new_hash[i])
4924 {
4925 changed_lines++;
4926 unchanged_at_bottom = FRAME_LINES (frame) - i - 1;
4927 }
4928 else if (i == unchanged_at_top)
4929 unchanged_at_top++;
4930 old_draw_cost[i] = line_draw_cost (current_matrix, i);
4931 }
4932
4933 /* If changed lines are few, don't allow preemption, don't scroll. */
4934 if ((!FRAME_SCROLL_REGION_OK (frame)
4935 && changed_lines < baud_rate / 2400)
4936 || unchanged_at_bottom == FRAME_LINES (frame))
4937 return 1;
4938
4939 window_size = (FRAME_LINES (frame) - unchanged_at_top
4940 - unchanged_at_bottom);
4941
4942 if (FRAME_SCROLL_REGION_OK (frame))
4943 free_at_end_vpos -= unchanged_at_bottom;
4944 else if (FRAME_MEMORY_BELOW_FRAME (frame))
4945 free_at_end_vpos = -1;
4946
4947 /* If large window, fast terminal and few lines in common between
4948 current frame and desired frame, don't bother with i/d calc. */
4949 if (!FRAME_SCROLL_REGION_OK (frame)
4950 && window_size >= 18 && baud_rate > 2400
4951 && (window_size >=
4952 10 * scrolling_max_lines_saved (unchanged_at_top,
4953 FRAME_LINES (frame) - unchanged_at_bottom,
4954 old_hash, new_hash, draw_cost)))
4955 return 0;
4956
4957 if (window_size < 2)
4958 return 0;
4959
4960 scrolling_1 (frame, window_size, unchanged_at_top, unchanged_at_bottom,
4961 draw_cost + unchanged_at_top - 1,
4962 old_draw_cost + unchanged_at_top - 1,
4963 old_hash + unchanged_at_top - 1,
4964 new_hash + unchanged_at_top - 1,
4965 free_at_end_vpos - unchanged_at_top);
4966
4967 return 0;
4968 }
4969
4970
4971 /* Count the number of blanks at the start of the vector of glyphs R
4972 which is LEN glyphs long. */
4973
4974 static int
4975 count_blanks (struct glyph *r, int len)
4976 {
4977 int i;
4978
4979 for (i = 0; i < len; ++i)
4980 if (!CHAR_GLYPH_SPACE_P (r[i]))
4981 break;
4982
4983 return i;
4984 }
4985
4986
4987 /* Count the number of glyphs in common at the start of the glyph
4988 vectors STR1 and STR2. END1 is the end of STR1 and END2 is the end
4989 of STR2. Value is the number of equal glyphs equal at the start. */
4990
4991 static int
4992 count_match (struct glyph *str1, struct glyph *end1, struct glyph *str2, struct glyph *end2)
4993 {
4994 struct glyph *p1 = str1;
4995 struct glyph *p2 = str2;
4996
4997 while (p1 < end1
4998 && p2 < end2
4999 && GLYPH_CHAR_AND_FACE_EQUAL_P (p1, p2))
5000 ++p1, ++p2;
5001
5002 return p1 - str1;
5003 }
5004
5005
5006 /* Char insertion/deletion cost vector, from term.c */
5007
5008 #define char_ins_del_cost(f) (&char_ins_del_vector[FRAME_TOTAL_COLS ((f))])
5009
5010
5011 /* Perform a frame-based update on line VPOS in frame FRAME. */
5012
5013 static void
5014 update_frame_line (struct frame *f, int vpos)
5015 {
5016 struct glyph *obody, *nbody, *op1, *op2, *np1, *nend;
5017 int tem;
5018 int osp, nsp, begmatch, endmatch, olen, nlen;
5019 struct glyph_matrix *current_matrix = f->current_matrix;
5020 struct glyph_matrix *desired_matrix = f->desired_matrix;
5021 struct glyph_row *current_row = MATRIX_ROW (current_matrix, vpos);
5022 struct glyph_row *desired_row = MATRIX_ROW (desired_matrix, vpos);
5023 int must_write_whole_line_p;
5024 int write_spaces_p = FRAME_MUST_WRITE_SPACES (f);
5025 int colored_spaces_p = (FACE_FROM_ID (f, DEFAULT_FACE_ID)->background
5026 != FACE_TTY_DEFAULT_BG_COLOR);
5027
5028 if (colored_spaces_p)
5029 write_spaces_p = 1;
5030
5031 /* Current row not enabled means it has unknown contents. We must
5032 write the whole desired line in that case. */
5033 must_write_whole_line_p = !current_row->enabled_p;
5034 if (must_write_whole_line_p)
5035 {
5036 obody = 0;
5037 olen = 0;
5038 }
5039 else
5040 {
5041 obody = MATRIX_ROW_GLYPH_START (current_matrix, vpos);
5042 olen = current_row->used[TEXT_AREA];
5043
5044 /* Ignore trailing spaces, if we can. */
5045 if (!write_spaces_p)
5046 while (olen > 0 && CHAR_GLYPH_SPACE_P (obody[olen-1]))
5047 olen--;
5048 }
5049
5050 current_row->enabled_p = 1;
5051 current_row->used[TEXT_AREA] = desired_row->used[TEXT_AREA];
5052
5053 /* If desired line is empty, just clear the line. */
5054 if (!desired_row->enabled_p)
5055 {
5056 nlen = 0;
5057 goto just_erase;
5058 }
5059
5060 nbody = desired_row->glyphs[TEXT_AREA];
5061 nlen = desired_row->used[TEXT_AREA];
5062 nend = nbody + nlen;
5063
5064 /* If display line has unknown contents, write the whole line. */
5065 if (must_write_whole_line_p)
5066 {
5067 /* Ignore spaces at the end, if we can. */
5068 if (!write_spaces_p)
5069 while (nlen > 0 && CHAR_GLYPH_SPACE_P (nbody[nlen - 1]))
5070 --nlen;
5071
5072 /* Write the contents of the desired line. */
5073 if (nlen)
5074 {
5075 cursor_to (f, vpos, 0);
5076 write_glyphs (f, nbody, nlen);
5077 }
5078
5079 /* Don't call clear_end_of_line if we already wrote the whole
5080 line. The cursor will not be at the right margin in that
5081 case but in the line below. */
5082 if (nlen < FRAME_TOTAL_COLS (f))
5083 {
5084 cursor_to (f, vpos, nlen);
5085 clear_end_of_line (f, FRAME_TOTAL_COLS (f));
5086 }
5087 else
5088 /* Make sure we are in the right row, otherwise cursor movement
5089 with cmgoto might use `ch' in the wrong row. */
5090 cursor_to (f, vpos, 0);
5091
5092 make_current (desired_matrix, current_matrix, vpos);
5093 return;
5094 }
5095
5096 /* Pretend trailing spaces are not there at all,
5097 unless for one reason or another we must write all spaces. */
5098 if (!write_spaces_p)
5099 while (nlen > 0 && CHAR_GLYPH_SPACE_P (nbody[nlen - 1]))
5100 nlen--;
5101
5102 /* If there's no i/d char, quickly do the best we can without it. */
5103 if (!FRAME_CHAR_INS_DEL_OK (f))
5104 {
5105 int i, j;
5106
5107 /* Find the first glyph in desired row that doesn't agree with
5108 a glyph in the current row, and write the rest from there on. */
5109 for (i = 0; i < nlen; i++)
5110 {
5111 if (i >= olen || !GLYPH_EQUAL_P (nbody + i, obody + i))
5112 {
5113 /* Find the end of the run of different glyphs. */
5114 j = i + 1;
5115 while (j < nlen
5116 && (j >= olen
5117 || !GLYPH_EQUAL_P (nbody + j, obody + j)
5118 || CHAR_GLYPH_PADDING_P (nbody[j])))
5119 ++j;
5120
5121 /* Output this run of non-matching chars. */
5122 cursor_to (f, vpos, i);
5123 write_glyphs (f, nbody + i, j - i);
5124 i = j - 1;
5125
5126 /* Now find the next non-match. */
5127 }
5128 }
5129
5130 /* Clear the rest of the line, or the non-clear part of it. */
5131 if (olen > nlen)
5132 {
5133 cursor_to (f, vpos, nlen);
5134 clear_end_of_line (f, olen);
5135 }
5136
5137 /* Make current row = desired row. */
5138 make_current (desired_matrix, current_matrix, vpos);
5139 return;
5140 }
5141
5142 /* Here when CHAR_INS_DEL_OK != 0, i.e. we can insert or delete
5143 characters in a row. */
5144
5145 if (!olen)
5146 {
5147 /* If current line is blank, skip over initial spaces, if
5148 possible, and write the rest. */
5149 if (write_spaces_p)
5150 nsp = 0;
5151 else
5152 nsp = count_blanks (nbody, nlen);
5153
5154 if (nlen > nsp)
5155 {
5156 cursor_to (f, vpos, nsp);
5157 write_glyphs (f, nbody + nsp, nlen - nsp);
5158 }
5159
5160 /* Exchange contents between current_frame and new_frame. */
5161 make_current (desired_matrix, current_matrix, vpos);
5162 return;
5163 }
5164
5165 /* Compute number of leading blanks in old and new contents. */
5166 osp = count_blanks (obody, olen);
5167 nsp = (colored_spaces_p ? 0 : count_blanks (nbody, nlen));
5168
5169 /* Compute number of matching chars starting with first non-blank. */
5170 begmatch = count_match (obody + osp, obody + olen,
5171 nbody + nsp, nbody + nlen);
5172
5173 /* Spaces in new match implicit space past the end of old. */
5174 /* A bug causing this to be a no-op was fixed in 18.29. */
5175 if (!write_spaces_p && osp + begmatch == olen)
5176 {
5177 np1 = nbody + nsp;
5178 while (np1 + begmatch < nend && CHAR_GLYPH_SPACE_P (np1[begmatch]))
5179 ++begmatch;
5180 }
5181
5182 /* Avoid doing insert/delete char
5183 just cause number of leading spaces differs
5184 when the following text does not match. */
5185 if (begmatch == 0 && osp != nsp)
5186 osp = nsp = min (osp, nsp);
5187
5188 /* Find matching characters at end of line */
5189 op1 = obody + olen;
5190 np1 = nbody + nlen;
5191 op2 = op1 + begmatch - min (olen - osp, nlen - nsp);
5192 while (op1 > op2
5193 && GLYPH_EQUAL_P (op1 - 1, np1 - 1))
5194 {
5195 op1--;
5196 np1--;
5197 }
5198 endmatch = obody + olen - op1;
5199
5200 /* tem gets the distance to insert or delete.
5201 endmatch is how many characters we save by doing so.
5202 Is it worth it? */
5203
5204 tem = (nlen - nsp) - (olen - osp);
5205 if (endmatch && tem
5206 && (!FRAME_CHAR_INS_DEL_OK (f)
5207 || endmatch <= char_ins_del_cost (f)[tem]))
5208 endmatch = 0;
5209
5210 /* nsp - osp is the distance to insert or delete.
5211 If that is nonzero, begmatch is known to be nonzero also.
5212 begmatch + endmatch is how much we save by doing the ins/del.
5213 Is it worth it? */
5214
5215 if (nsp != osp
5216 && (!FRAME_CHAR_INS_DEL_OK (f)
5217 || begmatch + endmatch <= char_ins_del_cost (f)[nsp - osp]))
5218 {
5219 begmatch = 0;
5220 endmatch = 0;
5221 osp = nsp = min (osp, nsp);
5222 }
5223
5224 /* Now go through the line, inserting, writing and
5225 deleting as appropriate. */
5226
5227 if (osp > nsp)
5228 {
5229 cursor_to (f, vpos, nsp);
5230 delete_glyphs (f, osp - nsp);
5231 }
5232 else if (nsp > osp)
5233 {
5234 /* If going to delete chars later in line
5235 and insert earlier in the line,
5236 must delete first to avoid losing data in the insert */
5237 if (endmatch && nlen < olen + nsp - osp)
5238 {
5239 cursor_to (f, vpos, nlen - endmatch + osp - nsp);
5240 delete_glyphs (f, olen + nsp - osp - nlen);
5241 olen = nlen - (nsp - osp);
5242 }
5243 cursor_to (f, vpos, osp);
5244 insert_glyphs (f, 0, nsp - osp);
5245 }
5246 olen += nsp - osp;
5247
5248 tem = nsp + begmatch + endmatch;
5249 if (nlen != tem || olen != tem)
5250 {
5251 if (!endmatch || nlen == olen)
5252 {
5253 /* If new text being written reaches right margin, there is
5254 no need to do clear-to-eol at the end of this function
5255 (and it would not be safe, since cursor is not going to
5256 be "at the margin" after the text is done). */
5257 if (nlen == FRAME_TOTAL_COLS (f))
5258 olen = 0;
5259
5260 /* Function write_glyphs is prepared to do nothing
5261 if passed a length <= 0. Check it here to avoid
5262 unnecessary cursor movement. */
5263 if (nlen - tem > 0)
5264 {
5265 cursor_to (f, vpos, nsp + begmatch);
5266 write_glyphs (f, nbody + nsp + begmatch, nlen - tem);
5267 }
5268 }
5269 else if (nlen > olen)
5270 {
5271 /* Here, we used to have the following simple code:
5272 ----------------------------------------
5273 write_glyphs (nbody + nsp + begmatch, olen - tem);
5274 insert_glyphs (nbody + nsp + begmatch + olen - tem, nlen - olen);
5275 ----------------------------------------
5276 but it doesn't work if nbody[nsp + begmatch + olen - tem]
5277 is a padding glyph. */
5278 int out = olen - tem; /* Columns to be overwritten originally. */
5279 int del;
5280
5281 cursor_to (f, vpos, nsp + begmatch);
5282
5283 /* Calculate columns we can actually overwrite. */
5284 while (CHAR_GLYPH_PADDING_P (nbody[nsp + begmatch + out]))
5285 out--;
5286 write_glyphs (f, nbody + nsp + begmatch, out);
5287
5288 /* If we left columns to be overwritten, we must delete them. */
5289 del = olen - tem - out;
5290 if (del > 0)
5291 delete_glyphs (f, del);
5292
5293 /* At last, we insert columns not yet written out. */
5294 insert_glyphs (f, nbody + nsp + begmatch + out, nlen - olen + del);
5295 olen = nlen;
5296 }
5297 else if (olen > nlen)
5298 {
5299 cursor_to (f, vpos, nsp + begmatch);
5300 write_glyphs (f, nbody + nsp + begmatch, nlen - tem);
5301 delete_glyphs (f, olen - nlen);
5302 olen = nlen;
5303 }
5304 }
5305
5306 just_erase:
5307 /* If any unerased characters remain after the new line, erase them. */
5308 if (olen > nlen)
5309 {
5310 cursor_to (f, vpos, nlen);
5311 clear_end_of_line (f, olen);
5312 }
5313
5314 /* Exchange contents between current_frame and new_frame. */
5315 make_current (desired_matrix, current_matrix, vpos);
5316 }
5317
5318
5319 \f
5320 /***********************************************************************
5321 X/Y Position -> Buffer Position
5322 ***********************************************************************/
5323
5324 /* Determine what's under window-relative pixel position (*X, *Y).
5325 Return the OBJECT (string or buffer) that's there.
5326 Return in *POS the position in that object.
5327 Adjust *X and *Y to character positions.
5328 Return in *DX and *DY the pixel coordinates of the click,
5329 relative to the top left corner of OBJECT, or relative to
5330 the top left corner of the character glyph at (*X, *Y)
5331 if OBJECT is nil.
5332 Return WIDTH and HEIGHT of the object at (*X, *Y), or zero
5333 if the coordinates point to an empty area of the display. */
5334
5335 Lisp_Object
5336 buffer_posn_from_coords (struct window *w, int *x, int *y, struct display_pos *pos, Lisp_Object *object, int *dx, int *dy, int *width, int *height)
5337 {
5338 struct it it;
5339 Lisp_Object old_current_buffer = Fcurrent_buffer ();
5340 struct text_pos startp;
5341 Lisp_Object string;
5342 struct glyph_row *row;
5343 #ifdef HAVE_WINDOW_SYSTEM
5344 struct image *img = 0;
5345 #endif
5346 int x0, x1, to_x;
5347 void *itdata = NULL;
5348
5349 /* We used to set current_buffer directly here, but that does the
5350 wrong thing with `face-remapping-alist' (bug#2044). */
5351 Fset_buffer (w->buffer);
5352 itdata = bidi_shelve_cache ();
5353 SET_TEXT_POS_FROM_MARKER (startp, w->start);
5354 CHARPOS (startp) = min (ZV, max (BEGV, CHARPOS (startp)));
5355 BYTEPOS (startp) = min (ZV_BYTE, max (BEGV_BYTE, BYTEPOS (startp)));
5356 start_display (&it, w, startp);
5357 /* start_display takes into account the header-line row, but IT's
5358 vpos still counts from the glyph row that includes the window's
5359 start position. Adjust for a possible header-line row. */
5360 it.vpos += WINDOW_WANTS_HEADER_LINE_P (w) ? 1 : 0;
5361
5362 x0 = *x;
5363
5364 /* First, move to the beginning of the row corresponding to *Y. We
5365 need to be in that row to get the correct value of base paragraph
5366 direction for the text at (*X, *Y). */
5367 move_it_to (&it, -1, 0, *y, -1, MOVE_TO_X | MOVE_TO_Y);
5368
5369 /* TO_X is the pixel position that the iterator will compute for the
5370 glyph at *X. We add it.first_visible_x because iterator
5371 positions include the hscroll. */
5372 to_x = x0 + it.first_visible_x;
5373 if (it.bidi_it.paragraph_dir == R2L)
5374 /* For lines in an R2L paragraph, we need to mirror TO_X wrt the
5375 text area. This is because the iterator, even in R2L
5376 paragraphs, delivers glyphs as if they started at the left
5377 margin of the window. (When we actually produce glyphs for
5378 display, we reverse their order in PRODUCE_GLYPHS, but the
5379 iterator doesn't know about that.) The following line adjusts
5380 the pixel position to the iterator geometry, which is what
5381 move_it_* routines use. (The -1 is because in a window whose
5382 text-area width is W, the rightmost pixel position is W-1, and
5383 it should be mirrored into zero pixel position.) */
5384 to_x = window_box_width (w, TEXT_AREA) - to_x - 1;
5385
5386 /* Now move horizontally in the row to the glyph under *X. Second
5387 argument is ZV to prevent move_it_in_display_line from matching
5388 based on buffer positions. */
5389 move_it_in_display_line (&it, ZV, to_x, MOVE_TO_X);
5390 bidi_unshelve_cache (itdata, 0);
5391
5392 Fset_buffer (old_current_buffer);
5393
5394 *dx = x0 + it.first_visible_x - it.current_x;
5395 *dy = *y - it.current_y;
5396
5397 string = w->buffer;
5398 if (STRINGP (it.string))
5399 string = it.string;
5400 *pos = it.current;
5401 if (it.what == IT_COMPOSITION
5402 && it.cmp_it.nchars > 1
5403 && it.cmp_it.reversed_p)
5404 {
5405 /* The current display element is a grapheme cluster in a
5406 composition. In that case, we need the position of the first
5407 character of the cluster. But, as it.cmp_it.reversed_p is 1,
5408 it.current points to the last character of the cluster, thus
5409 we must move back to the first character of the same
5410 cluster. */
5411 CHARPOS (pos->pos) -= it.cmp_it.nchars - 1;
5412 if (STRINGP (it.string))
5413 BYTEPOS (pos->pos) = string_char_to_byte (string, CHARPOS (pos->pos));
5414 else
5415 BYTEPOS (pos->pos) = buf_charpos_to_bytepos (XBUFFER (w->buffer),
5416 CHARPOS (pos->pos));
5417 }
5418
5419 #ifdef HAVE_WINDOW_SYSTEM
5420 if (it.what == IT_IMAGE)
5421 {
5422 if ((img = IMAGE_FROM_ID (it.f, it.image_id)) != NULL
5423 && !NILP (img->spec))
5424 *object = img->spec;
5425 }
5426 #endif
5427
5428 if (it.vpos < w->current_matrix->nrows
5429 && (row = MATRIX_ROW (w->current_matrix, it.vpos),
5430 row->enabled_p))
5431 {
5432 if (it.hpos < row->used[TEXT_AREA])
5433 {
5434 struct glyph *glyph = row->glyphs[TEXT_AREA] + it.hpos;
5435 #ifdef HAVE_WINDOW_SYSTEM
5436 if (img)
5437 {
5438 *dy -= row->ascent - glyph->ascent;
5439 *dx += glyph->slice.img.x;
5440 *dy += glyph->slice.img.y;
5441 /* Image slices positions are still relative to the entire image */
5442 *width = img->width;
5443 *height = img->height;
5444 }
5445 else
5446 #endif
5447 {
5448 *width = glyph->pixel_width;
5449 *height = glyph->ascent + glyph->descent;
5450 }
5451 }
5452 else
5453 {
5454 *width = 0;
5455 *height = row->height;
5456 }
5457 }
5458 else
5459 {
5460 *width = *height = 0;
5461 }
5462
5463 /* Add extra (default width) columns if clicked after EOL. */
5464 x1 = max (0, it.current_x + it.pixel_width - it.first_visible_x);
5465 if (x0 > x1)
5466 it.hpos += (x0 - x1) / WINDOW_FRAME_COLUMN_WIDTH (w);
5467
5468 *x = it.hpos;
5469 *y = it.vpos;
5470
5471 return string;
5472 }
5473
5474
5475 /* Value is the string under window-relative coordinates X/Y in the
5476 mode line or header line (PART says which) of window W, or nil if none.
5477 *CHARPOS is set to the position in the string returned. */
5478
5479 Lisp_Object
5480 mode_line_string (struct window *w, enum window_part part,
5481 int *x, int *y, ptrdiff_t *charpos, Lisp_Object *object,
5482 int *dx, int *dy, int *width, int *height)
5483 {
5484 struct glyph_row *row;
5485 struct glyph *glyph, *end;
5486 int x0, y0;
5487 Lisp_Object string = Qnil;
5488
5489 if (part == ON_MODE_LINE)
5490 row = MATRIX_MODE_LINE_ROW (w->current_matrix);
5491 else
5492 row = MATRIX_HEADER_LINE_ROW (w->current_matrix);
5493 y0 = *y - row->y;
5494 *y = row - MATRIX_FIRST_TEXT_ROW (w->current_matrix);
5495
5496 if (row->mode_line_p && row->enabled_p)
5497 {
5498 /* Find the glyph under X. If we find one with a string object,
5499 it's the one we were looking for. */
5500 glyph = row->glyphs[TEXT_AREA];
5501 end = glyph + row->used[TEXT_AREA];
5502 for (x0 = *x; glyph < end && x0 >= glyph->pixel_width; ++glyph)
5503 x0 -= glyph->pixel_width;
5504 *x = glyph - row->glyphs[TEXT_AREA];
5505 if (glyph < end)
5506 {
5507 string = glyph->object;
5508 *charpos = glyph->charpos;
5509 *width = glyph->pixel_width;
5510 *height = glyph->ascent + glyph->descent;
5511 #ifdef HAVE_WINDOW_SYSTEM
5512 if (glyph->type == IMAGE_GLYPH)
5513 {
5514 struct image *img;
5515 img = IMAGE_FROM_ID (WINDOW_XFRAME (w), glyph->u.img_id);
5516 if (img != NULL)
5517 *object = img->spec;
5518 y0 -= row->ascent - glyph->ascent;
5519 }
5520 #endif
5521 }
5522 else
5523 {
5524 /* Add extra (default width) columns if clicked after EOL. */
5525 *x += x0 / WINDOW_FRAME_COLUMN_WIDTH (w);
5526 *width = 0;
5527 *height = row->height;
5528 }
5529 }
5530 else
5531 {
5532 *x = 0;
5533 x0 = 0;
5534 *width = *height = 0;
5535 }
5536
5537 *dx = x0;
5538 *dy = y0;
5539
5540 return string;
5541 }
5542
5543
5544 /* Value is the string under window-relative coordinates X/Y in either
5545 marginal area, or nil if none. *CHARPOS is set to the position in
5546 the string returned. */
5547
5548 Lisp_Object
5549 marginal_area_string (struct window *w, enum window_part part,
5550 int *x, int *y, ptrdiff_t *charpos, Lisp_Object *object,
5551 int *dx, int *dy, int *width, int *height)
5552 {
5553 struct glyph_row *row = w->current_matrix->rows;
5554 struct glyph *glyph, *end;
5555 int x0, y0, i, wy = *y;
5556 int area;
5557 Lisp_Object string = Qnil;
5558
5559 if (part == ON_LEFT_MARGIN)
5560 area = LEFT_MARGIN_AREA;
5561 else if (part == ON_RIGHT_MARGIN)
5562 area = RIGHT_MARGIN_AREA;
5563 else
5564 abort ();
5565
5566 for (i = 0; row->enabled_p && i < w->current_matrix->nrows; ++i, ++row)
5567 if (wy >= row->y && wy < MATRIX_ROW_BOTTOM_Y (row))
5568 break;
5569 y0 = *y - row->y;
5570 *y = row - MATRIX_FIRST_TEXT_ROW (w->current_matrix);
5571
5572 if (row->enabled_p)
5573 {
5574 /* Find the glyph under X. If we find one with a string object,
5575 it's the one we were looking for. */
5576 if (area == RIGHT_MARGIN_AREA)
5577 x0 = ((WINDOW_HAS_FRINGES_OUTSIDE_MARGINS (w)
5578 ? WINDOW_LEFT_FRINGE_WIDTH (w)
5579 : WINDOW_TOTAL_FRINGE_WIDTH (w))
5580 + window_box_width (w, LEFT_MARGIN_AREA)
5581 + window_box_width (w, TEXT_AREA));
5582 else
5583 x0 = (WINDOW_HAS_FRINGES_OUTSIDE_MARGINS (w)
5584 ? WINDOW_LEFT_FRINGE_WIDTH (w)
5585 : 0);
5586
5587 glyph = row->glyphs[area];
5588 end = glyph + row->used[area];
5589 for (x0 = *x - x0; glyph < end && x0 >= glyph->pixel_width; ++glyph)
5590 x0 -= glyph->pixel_width;
5591 *x = glyph - row->glyphs[area];
5592 if (glyph < end)
5593 {
5594 string = glyph->object;
5595 *charpos = glyph->charpos;
5596 *width = glyph->pixel_width;
5597 *height = glyph->ascent + glyph->descent;
5598 #ifdef HAVE_WINDOW_SYSTEM
5599 if (glyph->type == IMAGE_GLYPH)
5600 {
5601 struct image *img;
5602 img = IMAGE_FROM_ID (WINDOW_XFRAME (w), glyph->u.img_id);
5603 if (img != NULL)
5604 *object = img->spec;
5605 y0 -= row->ascent - glyph->ascent;
5606 x0 += glyph->slice.img.x;
5607 y0 += glyph->slice.img.y;
5608 }
5609 #endif
5610 }
5611 else
5612 {
5613 /* Add extra (default width) columns if clicked after EOL. */
5614 *x += x0 / WINDOW_FRAME_COLUMN_WIDTH (w);
5615 *width = 0;
5616 *height = row->height;
5617 }
5618 }
5619 else
5620 {
5621 x0 = 0;
5622 *x = 0;
5623 *width = *height = 0;
5624 }
5625
5626 *dx = x0;
5627 *dy = y0;
5628
5629 return string;
5630 }
5631
5632
5633 /***********************************************************************
5634 Changing Frame Sizes
5635 ***********************************************************************/
5636
5637 #ifdef SIGWINCH
5638
5639 static void
5640 window_change_signal (int signalnum) /* If we don't have an argument, */
5641 /* some compilers complain in signal calls. */
5642 {
5643 int width, height;
5644 int old_errno = errno;
5645
5646 struct tty_display_info *tty;
5647
5648 signal (SIGWINCH, window_change_signal);
5649 SIGNAL_THREAD_CHECK (signalnum);
5650
5651 /* The frame size change obviously applies to a single
5652 termcap-controlled terminal, but we can't decide which.
5653 Therefore, we resize the frames corresponding to each tty.
5654 */
5655 for (tty = tty_list; tty; tty = tty->next) {
5656
5657 if (! tty->term_initted)
5658 continue;
5659
5660 /* Suspended tty frames have tty->input == NULL avoid trying to
5661 use it. */
5662 if (!tty->input)
5663 continue;
5664
5665 get_tty_size (fileno (tty->input), &width, &height);
5666
5667 if (width > 5 && height > 2) {
5668 Lisp_Object tail, frame;
5669
5670 FOR_EACH_FRAME (tail, frame)
5671 if (FRAME_TERMCAP_P (XFRAME (frame)) && FRAME_TTY (XFRAME (frame)) == tty)
5672 /* Record the new sizes, but don't reallocate the data
5673 structures now. Let that be done later outside of the
5674 signal handler. */
5675 change_frame_size (XFRAME (frame), height, width, 0, 1, 0);
5676 }
5677 }
5678
5679 errno = old_errno;
5680 }
5681 #endif /* SIGWINCH */
5682
5683
5684 /* Do any change in frame size that was requested by a signal. SAFE
5685 non-zero means this function is called from a place where it is
5686 safe to change frame sizes while a redisplay is in progress. */
5687
5688 void
5689 do_pending_window_change (int safe)
5690 {
5691 /* If window_change_signal should have run before, run it now. */
5692 if (redisplaying_p && !safe)
5693 return;
5694
5695 while (delayed_size_change)
5696 {
5697 Lisp_Object tail, frame;
5698
5699 delayed_size_change = 0;
5700
5701 FOR_EACH_FRAME (tail, frame)
5702 {
5703 struct frame *f = XFRAME (frame);
5704
5705 if (f->new_text_lines != 0 || f->new_text_cols != 0)
5706 change_frame_size (f, f->new_text_lines, f->new_text_cols,
5707 0, 0, safe);
5708 }
5709 }
5710 }
5711
5712
5713 /* Change the frame height and/or width. Values may be given as zero to
5714 indicate no change is to take place.
5715
5716 If DELAY is non-zero, then assume we're being called from a signal
5717 handler, and queue the change for later - perhaps the next
5718 redisplay. Since this tries to resize windows, we can't call it
5719 from a signal handler.
5720
5721 SAFE non-zero means this function is called from a place where it's
5722 safe to change frame sizes while a redisplay is in progress. */
5723
5724 void
5725 change_frame_size (register struct frame *f, int newheight, int newwidth, int pretend, int delay, int safe)
5726 {
5727 Lisp_Object tail, frame;
5728
5729 if (FRAME_MSDOS_P (f))
5730 {
5731 /* On MS-DOS, all frames use the same screen, so a change in
5732 size affects all frames. Termcap now supports multiple
5733 ttys. */
5734 FOR_EACH_FRAME (tail, frame)
5735 if (! FRAME_WINDOW_P (XFRAME (frame)))
5736 change_frame_size_1 (XFRAME (frame), newheight, newwidth,
5737 pretend, delay, safe);
5738 }
5739 else
5740 change_frame_size_1 (f, newheight, newwidth, pretend, delay, safe);
5741 }
5742
5743 static void
5744 change_frame_size_1 (register struct frame *f, int newheight, int newwidth, int pretend, int delay, int safe)
5745 {
5746 int new_frame_total_cols;
5747 ptrdiff_t count = SPECPDL_INDEX ();
5748
5749 /* If we can't deal with the change now, queue it for later. */
5750 if (delay || (redisplaying_p && !safe))
5751 {
5752 f->new_text_lines = newheight;
5753 f->new_text_cols = newwidth;
5754 delayed_size_change = 1;
5755 return;
5756 }
5757
5758 /* This size-change overrides any pending one for this frame. */
5759 f->new_text_lines = 0;
5760 f->new_text_cols = 0;
5761
5762 /* If an argument is zero, set it to the current value. */
5763 if (newheight == 0)
5764 newheight = FRAME_LINES (f);
5765 if (newwidth == 0)
5766 newwidth = FRAME_COLS (f);
5767
5768 /* Compute width of windows in F. */
5769 /* Round up to the smallest acceptable size. */
5770 check_frame_size (f, &newheight, &newwidth);
5771
5772 /* This is the width of the frame with vertical scroll bars and fringe
5773 columns. Do this after rounding - see discussion of bug#9723. */
5774 new_frame_total_cols = FRAME_TOTAL_COLS_ARG (f, newwidth);
5775
5776 /* If we're not changing the frame size, quit now. */
5777 /* Frame width may be unchanged but the text portion may change, for
5778 example, fullscreen and remove/add scroll bar. */
5779 if (newheight == FRAME_LINES (f)
5780 /* Text portion unchanged? */
5781 && newwidth == FRAME_COLS (f)
5782 /* Frame width unchanged? */
5783 && new_frame_total_cols == FRAME_TOTAL_COLS (f))
5784 return;
5785
5786 BLOCK_INPUT;
5787
5788 #ifdef MSDOS
5789 /* We only can set screen dimensions to certain values supported
5790 by our video hardware. Try to find the smallest size greater
5791 or equal to the requested dimensions. */
5792 dos_set_window_size (&newheight, &newwidth);
5793 #endif
5794
5795 if (newheight != FRAME_LINES (f))
5796 {
5797 resize_frame_windows (f, newheight, 0);
5798
5799 /* MSDOS frames cannot PRETEND, as they change frame size by
5800 manipulating video hardware. */
5801 if ((FRAME_TERMCAP_P (f) && !pretend) || FRAME_MSDOS_P (f))
5802 FrameRows (FRAME_TTY (f)) = newheight;
5803 }
5804
5805 if (new_frame_total_cols != FRAME_TOTAL_COLS (f))
5806 {
5807 resize_frame_windows (f, new_frame_total_cols, 1);
5808
5809 /* MSDOS frames cannot PRETEND, as they change frame size by
5810 manipulating video hardware. */
5811 if ((FRAME_TERMCAP_P (f) && !pretend) || FRAME_MSDOS_P (f))
5812 FrameCols (FRAME_TTY (f)) = newwidth;
5813
5814 if (WINDOWP (f->tool_bar_window))
5815 XSETFASTINT (XWINDOW (f->tool_bar_window)->total_cols, newwidth);
5816 }
5817
5818 FRAME_LINES (f) = newheight;
5819 SET_FRAME_COLS (f, newwidth);
5820
5821 {
5822 struct window *w = XWINDOW (FRAME_SELECTED_WINDOW (f));
5823 int text_area_x, text_area_y, text_area_width, text_area_height;
5824
5825 window_box (w, TEXT_AREA, &text_area_x, &text_area_y, &text_area_width,
5826 &text_area_height);
5827 if (w->cursor.x >= text_area_x + text_area_width)
5828 w->cursor.hpos = w->cursor.x = 0;
5829 if (w->cursor.y >= text_area_y + text_area_height)
5830 w->cursor.vpos = w->cursor.y = 0;
5831 }
5832
5833 adjust_glyphs (f);
5834 calculate_costs (f);
5835 SET_FRAME_GARBAGED (f);
5836 f->resized_p = 1;
5837
5838 UNBLOCK_INPUT;
5839
5840 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
5841
5842 run_window_configuration_change_hook (f);
5843
5844 unbind_to (count, Qnil);
5845 }
5846
5847
5848 \f
5849 /***********************************************************************
5850 Terminal Related Lisp Functions
5851 ***********************************************************************/
5852
5853 DEFUN ("open-termscript", Fopen_termscript, Sopen_termscript,
5854 1, 1, "FOpen termscript file: ",
5855 doc: /* Start writing all terminal output to FILE as well as the terminal.
5856 FILE = nil means just close any termscript file currently open. */)
5857 (Lisp_Object file)
5858 {
5859 struct tty_display_info *tty;
5860
5861 if (! FRAME_TERMCAP_P (SELECTED_FRAME ())
5862 && ! FRAME_MSDOS_P (SELECTED_FRAME ()))
5863 error ("Current frame is not on a tty device");
5864
5865 tty = CURTTY ();
5866
5867 if (tty->termscript != 0)
5868 {
5869 BLOCK_INPUT;
5870 fclose (tty->termscript);
5871 UNBLOCK_INPUT;
5872 }
5873 tty->termscript = 0;
5874
5875 if (! NILP (file))
5876 {
5877 file = Fexpand_file_name (file, Qnil);
5878 tty->termscript = fopen (SSDATA (file), "w");
5879 if (tty->termscript == 0)
5880 report_file_error ("Opening termscript", Fcons (file, Qnil));
5881 }
5882 return Qnil;
5883 }
5884
5885
5886 DEFUN ("send-string-to-terminal", Fsend_string_to_terminal,
5887 Ssend_string_to_terminal, 1, 2, 0,
5888 doc: /* Send STRING to the terminal without alteration.
5889 Control characters in STRING will have terminal-dependent effects.
5890
5891 Optional parameter TERMINAL specifies the tty terminal device to use.
5892 It may be a terminal object, a frame, or nil for the terminal used by
5893 the currently selected frame. In batch mode, STRING is sent to stdout
5894 when TERMINAL is nil. */)
5895 (Lisp_Object string, Lisp_Object terminal)
5896 {
5897 struct terminal *t = get_terminal (terminal, 1);
5898 FILE *out;
5899
5900 /* ??? Perhaps we should do something special for multibyte strings here. */
5901 CHECK_STRING (string);
5902 BLOCK_INPUT;
5903
5904 if (!t)
5905 error ("Unknown terminal device");
5906
5907 if (t->type == output_initial)
5908 out = stdout;
5909 else if (t->type != output_termcap && t->type != output_msdos_raw)
5910 error ("Device %d is not a termcap terminal device", t->id);
5911 else
5912 {
5913 struct tty_display_info *tty = t->display_info.tty;
5914
5915 if (! tty->output)
5916 error ("Terminal is currently suspended");
5917
5918 if (tty->termscript)
5919 {
5920 fwrite (SDATA (string), 1, SBYTES (string), tty->termscript);
5921 fflush (tty->termscript);
5922 }
5923 out = tty->output;
5924 }
5925 fwrite (SDATA (string), 1, SBYTES (string), out);
5926 fflush (out);
5927 UNBLOCK_INPUT;
5928 return Qnil;
5929 }
5930
5931
5932 DEFUN ("ding", Fding, Sding, 0, 1, 0,
5933 doc: /* Beep, or flash the screen.
5934 Also, unless an argument is given,
5935 terminate any keyboard macro currently executing. */)
5936 (Lisp_Object arg)
5937 {
5938 if (!NILP (arg))
5939 {
5940 if (noninteractive)
5941 putchar (07);
5942 else
5943 ring_bell (XFRAME (selected_frame));
5944 }
5945 else
5946 bitch_at_user ();
5947
5948 return Qnil;
5949 }
5950
5951 void
5952 bitch_at_user (void)
5953 {
5954 if (noninteractive)
5955 putchar (07);
5956 else if (!INTERACTIVE) /* Stop executing a keyboard macro. */
5957 error ("Keyboard macro terminated by a command ringing the bell");
5958 else
5959 ring_bell (XFRAME (selected_frame));
5960 }
5961
5962
5963 \f
5964 /***********************************************************************
5965 Sleeping, Waiting
5966 ***********************************************************************/
5967
5968 /* Convert a positive value DURATION to a seconds count *PSEC plus a
5969 microseconds count *PUSEC, rounding up. On overflow return the
5970 maximal value. */
5971 void
5972 duration_to_sec_usec (double duration, int *psec, int *pusec)
5973 {
5974 int MILLION = 1000000;
5975 int sec = INT_MAX, usec = MILLION - 1;
5976
5977 if (duration < INT_MAX + 1.0)
5978 {
5979 int s = duration;
5980 double usdouble = (duration - s) * MILLION;
5981 int usfloor = usdouble;
5982 int usceil = usfloor + (usfloor < usdouble);
5983
5984 if (usceil < MILLION)
5985 {
5986 sec = s;
5987 usec = usceil;
5988 }
5989 else if (sec < INT_MAX)
5990 {
5991 sec = s + 1;
5992 usec = 0;
5993 }
5994 }
5995
5996 *psec = sec;
5997 *pusec = usec;
5998 }
5999
6000 DEFUN ("sleep-for", Fsleep_for, Ssleep_for, 1, 2, 0,
6001 doc: /* Pause, without updating display, for SECONDS seconds.
6002 SECONDS may be a floating-point value, meaning that you can wait for a
6003 fraction of a second. Optional second arg MILLISECONDS specifies an
6004 additional wait period, in milliseconds; this may be useful if your
6005 Emacs was built without floating point support.
6006 \(Not all operating systems support waiting for a fraction of a second.) */)
6007 (Lisp_Object seconds, Lisp_Object milliseconds)
6008 {
6009 int sec, usec;
6010 double duration = extract_float (seconds);
6011
6012 if (!NILP (milliseconds))
6013 {
6014 CHECK_NUMBER (milliseconds);
6015 duration += XINT (milliseconds) / 1000.0;
6016 }
6017
6018 if (! (0 < duration))
6019 return Qnil;
6020
6021 duration_to_sec_usec (duration, &sec, &usec);
6022
6023 #ifndef EMACS_HAS_USECS
6024 if (sec == 0 && usec != 0)
6025 error ("Millisecond `sleep-for' not supported on %s", SYSTEM_TYPE);
6026 #endif
6027
6028 wait_reading_process_output (sec, usec, 0, 0, Qnil, NULL, 0);
6029
6030 return Qnil;
6031 }
6032
6033
6034 /* This is just like wait_reading_process_output, except that
6035 it does redisplay.
6036
6037 TIMEOUT is number of seconds to wait (float or integer),
6038 or t to wait forever.
6039 READING is 1 if reading input.
6040 If DO_DISPLAY is >0 display process output while waiting.
6041 If DO_DISPLAY is >1 perform an initial redisplay before waiting.
6042 */
6043
6044 Lisp_Object
6045 sit_for (Lisp_Object timeout, int reading, int do_display)
6046 {
6047 int sec, usec;
6048
6049 swallow_events (do_display);
6050
6051 if ((detect_input_pending_run_timers (do_display))
6052 || !NILP (Vexecuting_kbd_macro))
6053 return Qnil;
6054
6055 if (do_display >= 2)
6056 redisplay_preserve_echo_area (2);
6057
6058 if (EQ (timeout, Qt))
6059 {
6060 sec = 0;
6061 usec = 0;
6062 }
6063 else
6064 {
6065 double duration = extract_float (timeout);
6066
6067 if (! (0 < duration))
6068 return Qt;
6069
6070 duration_to_sec_usec (duration, &sec, &usec);
6071 }
6072
6073 #ifdef SIGIO
6074 gobble_input (0);
6075 #endif
6076
6077 wait_reading_process_output (sec, usec, reading ? -1 : 1, do_display,
6078 Qnil, NULL, 0);
6079
6080 return detect_input_pending () ? Qnil : Qt;
6081 }
6082
6083
6084 DEFUN ("redisplay", Fredisplay, Sredisplay, 0, 1, 0,
6085 doc: /* Perform redisplay.
6086 Optional arg FORCE, if non-nil, prevents redisplay from being
6087 preempted by arriving input, even if `redisplay-dont-pause' is nil.
6088 If `redisplay-dont-pause' is non-nil (the default), redisplay is never
6089 preempted by arriving input, so FORCE does nothing.
6090
6091 Return t if redisplay was performed, nil if redisplay was preempted
6092 immediately by pending input. */)
6093 (Lisp_Object force)
6094 {
6095 ptrdiff_t count;
6096
6097 swallow_events (1);
6098 if ((detect_input_pending_run_timers (1)
6099 && NILP (force) && !redisplay_dont_pause)
6100 || !NILP (Vexecuting_kbd_macro))
6101 return Qnil;
6102
6103 count = SPECPDL_INDEX ();
6104 if (!NILP (force) && !redisplay_dont_pause)
6105 specbind (Qredisplay_dont_pause, Qt);
6106 redisplay_preserve_echo_area (2);
6107 unbind_to (count, Qnil);
6108 return Qt;
6109 }
6110
6111
6112 \f
6113 /***********************************************************************
6114 Other Lisp Functions
6115 ***********************************************************************/
6116
6117 /* A vector of size >= 2 * NFRAMES + 3 * NBUFFERS + 1, containing the
6118 session's frames, frame names, buffers, buffer-read-only flags, and
6119 buffer-modified-flags. */
6120
6121 static Lisp_Object frame_and_buffer_state;
6122
6123
6124 DEFUN ("frame-or-buffer-changed-p", Fframe_or_buffer_changed_p,
6125 Sframe_or_buffer_changed_p, 0, 1, 0,
6126 doc: /* Return non-nil if the frame and buffer state appears to have changed.
6127 VARIABLE is a variable name whose value is either nil or a state vector
6128 that will be updated to contain all frames and buffers,
6129 aside from buffers whose names start with space,
6130 along with the buffers' read-only and modified flags. This allows a fast
6131 check to see whether buffer menus might need to be recomputed.
6132 If this function returns non-nil, it updates the internal vector to reflect
6133 the current state.
6134
6135 If VARIABLE is nil, an internal variable is used. Users should not
6136 pass nil for VARIABLE. */)
6137 (Lisp_Object variable)
6138 {
6139 Lisp_Object state, tail, frame, buf;
6140 Lisp_Object *vecp, *end;
6141 ptrdiff_t n;
6142
6143 if (! NILP (variable))
6144 {
6145 CHECK_SYMBOL (variable);
6146 state = Fsymbol_value (variable);
6147 if (! VECTORP (state))
6148 goto changed;
6149 }
6150 else
6151 state = frame_and_buffer_state;
6152
6153 vecp = XVECTOR (state)->contents;
6154 end = vecp + ASIZE (state);
6155
6156 FOR_EACH_FRAME (tail, frame)
6157 {
6158 if (vecp == end)
6159 goto changed;
6160 if (!EQ (*vecp++, frame))
6161 goto changed;
6162 if (vecp == end)
6163 goto changed;
6164 if (!EQ (*vecp++, XFRAME (frame)->name))
6165 goto changed;
6166 }
6167 /* Check that the buffer info matches. */
6168 for (tail = Vbuffer_alist; CONSP (tail); tail = XCDR (tail))
6169 {
6170 buf = XCDR (XCAR (tail));
6171 /* Ignore buffers that aren't included in buffer lists. */
6172 if (SREF (BVAR (XBUFFER (buf), name), 0) == ' ')
6173 continue;
6174 if (vecp == end)
6175 goto changed;
6176 if (!EQ (*vecp++, buf))
6177 goto changed;
6178 if (vecp == end)
6179 goto changed;
6180 if (!EQ (*vecp++, BVAR (XBUFFER (buf), read_only)))
6181 goto changed;
6182 if (vecp == end)
6183 goto changed;
6184 if (!EQ (*vecp++, Fbuffer_modified_p (buf)))
6185 goto changed;
6186 }
6187 if (vecp == end)
6188 goto changed;
6189 /* Detect deletion of a buffer at the end of the list. */
6190 if (EQ (*vecp, Qlambda))
6191 return Qnil;
6192
6193 /* Come here if we decide the data has changed. */
6194 changed:
6195 /* Count the size we will need.
6196 Start with 1 so there is room for at least one lambda at the end. */
6197 n = 1;
6198 FOR_EACH_FRAME (tail, frame)
6199 n += 2;
6200 for (tail = Vbuffer_alist; CONSP (tail); tail = XCDR (tail))
6201 n += 3;
6202 /* Reallocate the vector if data has grown to need it,
6203 or if it has shrunk a lot. */
6204 if (! VECTORP (state)
6205 || n > ASIZE (state)
6206 || n + 20 < ASIZE (state) / 2)
6207 /* Add 20 extra so we grow it less often. */
6208 {
6209 state = Fmake_vector (make_number (n + 20), Qlambda);
6210 if (! NILP (variable))
6211 Fset (variable, state);
6212 else
6213 frame_and_buffer_state = state;
6214 }
6215
6216 /* Record the new data in the (possibly reallocated) vector. */
6217 vecp = XVECTOR (state)->contents;
6218 FOR_EACH_FRAME (tail, frame)
6219 {
6220 *vecp++ = frame;
6221 *vecp++ = XFRAME (frame)->name;
6222 }
6223 for (tail = Vbuffer_alist; CONSP (tail); tail = XCDR (tail))
6224 {
6225 buf = XCDR (XCAR (tail));
6226 /* Ignore buffers that aren't included in buffer lists. */
6227 if (SREF (BVAR (XBUFFER (buf), name), 0) == ' ')
6228 continue;
6229 *vecp++ = buf;
6230 *vecp++ = BVAR (XBUFFER (buf), read_only);
6231 *vecp++ = Fbuffer_modified_p (buf);
6232 }
6233 /* Fill up the vector with lambdas (always at least one). */
6234 *vecp++ = Qlambda;
6235 while (vecp - XVECTOR (state)->contents
6236 < ASIZE (state))
6237 *vecp++ = Qlambda;
6238 /* Make sure we didn't overflow the vector. */
6239 if (vecp - XVECTOR (state)->contents
6240 > ASIZE (state))
6241 abort ();
6242 return Qt;
6243 }
6244
6245
6246 \f
6247 /***********************************************************************
6248 Initialization
6249 ***********************************************************************/
6250
6251 /* Initialization done when Emacs fork is started, before doing stty.
6252 Determine terminal type and set terminal_driver. Then invoke its
6253 decoding routine to set up variables in the terminal package. */
6254
6255 void
6256 init_display (void)
6257 {
6258 char *terminal_type;
6259
6260 /* Construct the space glyph. */
6261 space_glyph.type = CHAR_GLYPH;
6262 SET_CHAR_GLYPH (space_glyph, ' ', DEFAULT_FACE_ID, 0);
6263 space_glyph.charpos = -1;
6264
6265 inverse_video = 0;
6266 cursor_in_echo_area = 0;
6267 terminal_type = (char *) 0;
6268
6269 /* Now is the time to initialize this; it's used by init_sys_modes
6270 during startup. */
6271 Vinitial_window_system = Qnil;
6272
6273 /* SIGWINCH needs to be handled no matter what display we start
6274 with. Otherwise newly opened tty frames will not resize
6275 automatically. */
6276 #ifdef SIGWINCH
6277 #ifndef CANNOT_DUMP
6278 if (initialized)
6279 #endif /* CANNOT_DUMP */
6280 signal (SIGWINCH, window_change_signal);
6281 #endif /* SIGWINCH */
6282
6283 /* If running as a daemon, no need to initialize any frames/terminal. */
6284 if (IS_DAEMON)
6285 return;
6286
6287 /* If the user wants to use a window system, we shouldn't bother
6288 initializing the terminal. This is especially important when the
6289 terminal is so dumb that emacs gives up before and doesn't bother
6290 using the window system.
6291
6292 If the DISPLAY environment variable is set and nonempty,
6293 try to use X, and die with an error message if that doesn't work. */
6294
6295 #ifdef HAVE_X_WINDOWS
6296 if (! inhibit_window_system && ! display_arg)
6297 {
6298 char *display;
6299 display = getenv ("DISPLAY");
6300 display_arg = (display != 0 && *display != 0);
6301
6302 if (display_arg && !x_display_ok (display))
6303 {
6304 fprintf (stderr, "Display %s unavailable, simulating -nw\n",
6305 display);
6306 inhibit_window_system = 1;
6307 }
6308 }
6309
6310 if (!inhibit_window_system && display_arg)
6311 {
6312 Vinitial_window_system = Qx;
6313 #ifdef HAVE_X11
6314 Vwindow_system_version = make_number (11);
6315 #endif
6316 #ifdef GNU_LINUX
6317 /* In some versions of ncurses,
6318 tputs crashes if we have not called tgetent.
6319 So call tgetent. */
6320 { char b[2044]; tgetent (b, "xterm");}
6321 #endif
6322 adjust_frame_glyphs_initially ();
6323 return;
6324 }
6325 #endif /* HAVE_X_WINDOWS */
6326
6327 #ifdef HAVE_NTGUI
6328 if (!inhibit_window_system)
6329 {
6330 Vinitial_window_system = Qw32;
6331 Vwindow_system_version = make_number (1);
6332 adjust_frame_glyphs_initially ();
6333 return;
6334 }
6335 #endif /* HAVE_NTGUI */
6336
6337 #ifdef HAVE_NS
6338 if (!inhibit_window_system
6339 #ifndef CANNOT_DUMP
6340 && initialized
6341 #endif
6342 )
6343 {
6344 Vinitial_window_system = Qns;
6345 Vwindow_system_version = make_number (10);
6346 adjust_frame_glyphs_initially ();
6347 return;
6348 }
6349 #endif
6350
6351 /* If no window system has been specified, try to use the terminal. */
6352 if (! isatty (0))
6353 {
6354 fatal ("standard input is not a tty");
6355 exit (1);
6356 }
6357
6358 #ifdef WINDOWSNT
6359 terminal_type = "w32console";
6360 #else
6361 /* Look at the TERM variable. */
6362 terminal_type = (char *) getenv ("TERM");
6363 #endif
6364 if (!terminal_type)
6365 {
6366 #ifdef HAVE_WINDOW_SYSTEM
6367 if (! inhibit_window_system)
6368 fprintf (stderr, "Please set the environment variable DISPLAY or TERM (see `tset').\n");
6369 else
6370 #endif /* HAVE_WINDOW_SYSTEM */
6371 fprintf (stderr, "Please set the environment variable TERM; see `tset'.\n");
6372 exit (1);
6373 }
6374
6375 {
6376 struct terminal *t;
6377 struct frame *f = XFRAME (selected_frame);
6378
6379 /* Open a display on the controlling tty. */
6380 t = init_tty (0, terminal_type, 1); /* Errors are fatal. */
6381
6382 /* Convert the initial frame to use the new display. */
6383 if (f->output_method != output_initial)
6384 abort ();
6385 f->output_method = t->type;
6386 f->terminal = t;
6387
6388 t->reference_count++;
6389 #ifdef MSDOS
6390 f->output_data.tty->display_info = &the_only_display_info;
6391 #else
6392 if (f->output_method == output_termcap)
6393 create_tty_output (f);
6394 #endif
6395 t->display_info.tty->top_frame = selected_frame;
6396 change_frame_size (XFRAME (selected_frame),
6397 FrameRows (t->display_info.tty),
6398 FrameCols (t->display_info.tty), 0, 0, 1);
6399
6400 /* Delete the initial terminal. */
6401 if (--initial_terminal->reference_count == 0
6402 && initial_terminal->delete_terminal_hook)
6403 (*initial_terminal->delete_terminal_hook) (initial_terminal);
6404
6405 /* Update frame parameters to reflect the new type. */
6406 Fmodify_frame_parameters
6407 (selected_frame, Fcons (Fcons (Qtty_type,
6408 Ftty_type (selected_frame)), Qnil));
6409 if (t->display_info.tty->name)
6410 Fmodify_frame_parameters (selected_frame,
6411 Fcons (Fcons (Qtty, build_string (t->display_info.tty->name)),
6412 Qnil));
6413 else
6414 Fmodify_frame_parameters (selected_frame, Fcons (Fcons (Qtty, Qnil),
6415 Qnil));
6416 }
6417
6418 {
6419 struct frame *sf = SELECTED_FRAME ();
6420 int width = FRAME_TOTAL_COLS (sf);
6421 int height = FRAME_LINES (sf);
6422
6423 /* If these sizes are so big they cause overflow, just ignore the
6424 change. It's not clear what better we could do. The rest of
6425 the code assumes that (width + 2) * height * sizeof (struct glyph)
6426 does not overflow and does not exceed PTRDIFF_MAX or SIZE_MAX. */
6427 if (INT_ADD_RANGE_OVERFLOW (width, 2, INT_MIN, INT_MAX)
6428 || INT_MULTIPLY_RANGE_OVERFLOW (width + 2, height, INT_MIN, INT_MAX)
6429 || (min (PTRDIFF_MAX, SIZE_MAX) / sizeof (struct glyph)
6430 < (width + 2) * height))
6431 fatal ("screen size %dx%d too big", width, height);
6432 }
6433
6434 adjust_frame_glyphs_initially ();
6435 calculate_costs (XFRAME (selected_frame));
6436
6437 /* Set up faces of the initial terminal frame of a dumped Emacs. */
6438 if (initialized
6439 && !noninteractive
6440 && NILP (Vinitial_window_system))
6441 {
6442 /* For the initial frame, we don't have any way of knowing what
6443 are the foreground and background colors of the terminal. */
6444 struct frame *sf = SELECTED_FRAME ();
6445
6446 FRAME_FOREGROUND_PIXEL (sf) = FACE_TTY_DEFAULT_FG_COLOR;
6447 FRAME_BACKGROUND_PIXEL (sf) = FACE_TTY_DEFAULT_BG_COLOR;
6448 call0 (intern ("tty-set-up-initial-frame-faces"));
6449 }
6450 }
6451
6452
6453 \f
6454 /***********************************************************************
6455 Blinking cursor
6456 ***********************************************************************/
6457
6458 DEFUN ("internal-show-cursor", Finternal_show_cursor,
6459 Sinternal_show_cursor, 2, 2, 0,
6460 doc: /* Set the cursor-visibility flag of WINDOW to SHOW.
6461 WINDOW nil means use the selected window. SHOW non-nil means
6462 show a cursor in WINDOW in the next redisplay. SHOW nil means
6463 don't show a cursor. */)
6464 (Lisp_Object window, Lisp_Object show)
6465 {
6466 /* Don't change cursor state while redisplaying. This could confuse
6467 output routines. */
6468 if (!redisplaying_p)
6469 {
6470 if (NILP (window))
6471 window = selected_window;
6472 else
6473 CHECK_WINDOW (window);
6474
6475 XWINDOW (window)->cursor_off_p = NILP (show);
6476 }
6477
6478 return Qnil;
6479 }
6480
6481
6482 DEFUN ("internal-show-cursor-p", Finternal_show_cursor_p,
6483 Sinternal_show_cursor_p, 0, 1, 0,
6484 doc: /* Value is non-nil if next redisplay will display a cursor in WINDOW.
6485 WINDOW nil or omitted means report on the selected window. */)
6486 (Lisp_Object window)
6487 {
6488 struct window *w;
6489
6490 if (NILP (window))
6491 window = selected_window;
6492 else
6493 CHECK_WINDOW (window);
6494
6495 w = XWINDOW (window);
6496 return w->cursor_off_p ? Qnil : Qt;
6497 }
6498
6499 DEFUN ("last-nonminibuffer-frame", Flast_nonminibuf_frame,
6500 Slast_nonminibuf_frame, 0, 0, 0,
6501 doc: /* Value is last nonminibuffer frame. */)
6502 (void)
6503 {
6504 Lisp_Object frame = Qnil;
6505
6506 if (last_nonminibuf_frame)
6507 XSETFRAME (frame, last_nonminibuf_frame);
6508
6509 return frame;
6510 }
6511 \f
6512 /***********************************************************************
6513 Initialization
6514 ***********************************************************************/
6515
6516 void
6517 syms_of_display (void)
6518 {
6519 defsubr (&Sredraw_frame);
6520 defsubr (&Sredraw_display);
6521 defsubr (&Sframe_or_buffer_changed_p);
6522 defsubr (&Sopen_termscript);
6523 defsubr (&Sding);
6524 defsubr (&Sredisplay);
6525 defsubr (&Ssleep_for);
6526 defsubr (&Ssend_string_to_terminal);
6527 defsubr (&Sinternal_show_cursor);
6528 defsubr (&Sinternal_show_cursor_p);
6529 defsubr (&Slast_nonminibuf_frame);
6530
6531 #if GLYPH_DEBUG
6532 defsubr (&Sdump_redisplay_history);
6533 #endif
6534
6535 frame_and_buffer_state = Fmake_vector (make_number (20), Qlambda);
6536 staticpro (&frame_and_buffer_state);
6537
6538 DEFSYM (Qdisplay_table, "display-table");
6539 DEFSYM (Qredisplay_dont_pause, "redisplay-dont-pause");
6540
6541 DEFVAR_INT ("baud-rate", baud_rate,
6542 doc: /* The output baud rate of the terminal.
6543 On most systems, changing this value will affect the amount of padding
6544 and the other strategic decisions made during redisplay. */);
6545
6546 DEFVAR_BOOL ("inverse-video", inverse_video,
6547 doc: /* Non-nil means invert the entire frame display.
6548 This means everything is in inverse video which otherwise would not be. */);
6549
6550 DEFVAR_BOOL ("visible-bell", visible_bell,
6551 doc: /* Non-nil means try to flash the frame to represent a bell.
6552
6553 See also `ring-bell-function'. */);
6554
6555 DEFVAR_BOOL ("no-redraw-on-reenter", no_redraw_on_reenter,
6556 doc: /* Non-nil means no need to redraw entire frame after suspending.
6557 A non-nil value is useful if the terminal can automatically preserve
6558 Emacs's frame display when you reenter Emacs.
6559 It is up to you to set this variable if your terminal can do that. */);
6560
6561 DEFVAR_LISP ("initial-window-system", Vinitial_window_system,
6562 doc: /* Name of the window system that Emacs uses for the first frame.
6563 The value is a symbol:
6564 nil for a termcap frame (a character-only terminal),
6565 'x' for an Emacs frame that is really an X window,
6566 'w32' for an Emacs frame that is a window on MS-Windows display,
6567 'ns' for an Emacs frame on a GNUstep or Macintosh Cocoa display,
6568 'pc' for a direct-write MS-DOS frame.
6569
6570 Use of this variable as a boolean is deprecated. Instead,
6571 use `display-graphic-p' or any of the other `display-*-p'
6572 predicates which report frame's specific UI-related capabilities. */);
6573
6574 DEFVAR_KBOARD ("window-system", Vwindow_system,
6575 doc: /* Name of window system through which the selected frame is displayed.
6576 The value is a symbol:
6577 nil for a termcap frame (a character-only terminal),
6578 'x' for an Emacs frame that is really an X window,
6579 'w32' for an Emacs frame that is a window on MS-Windows display,
6580 'ns' for an Emacs frame on a GNUstep or Macintosh Cocoa display,
6581 'pc' for a direct-write MS-DOS frame.
6582
6583 Use of this variable as a boolean is deprecated. Instead,
6584 use `display-graphic-p' or any of the other `display-*-p'
6585 predicates which report frame's specific UI-related capabilities. */);
6586
6587 DEFVAR_LISP ("window-system-version", Vwindow_system_version,
6588 doc: /* The version number of the window system in use.
6589 For X windows, this is 11. */);
6590
6591 DEFVAR_BOOL ("cursor-in-echo-area", cursor_in_echo_area,
6592 doc: /* Non-nil means put cursor in minibuffer, at end of any message there. */);
6593
6594 DEFVAR_LISP ("glyph-table", Vglyph_table,
6595 doc: /* Table defining how to output a glyph code to the frame.
6596 If not nil, this is a vector indexed by glyph code to define the glyph.
6597 Each element can be:
6598 integer: a glyph code which this glyph is an alias for.
6599 string: output this glyph using that string (not impl. in X windows).
6600 nil: this glyph mod 524288 is the code of a character to output,
6601 and this glyph / 524288 is the face number (see `face-id') to use
6602 while outputting it. */);
6603 Vglyph_table = Qnil;
6604
6605 DEFVAR_LISP ("standard-display-table", Vstandard_display_table,
6606 doc: /* Display table to use for buffers that specify none.
6607 See `buffer-display-table' for more information. */);
6608 Vstandard_display_table = Qnil;
6609
6610 DEFVAR_BOOL ("redisplay-dont-pause", redisplay_dont_pause,
6611 doc: /* Non-nil means display update isn't paused when input is detected. */);
6612 redisplay_dont_pause = 1;
6613
6614 #if PERIODIC_PREEMPTION_CHECKING
6615 DEFVAR_LISP ("redisplay-preemption-period", Vredisplay_preemption_period,
6616 doc: /* Period in seconds between checking for input during redisplay.
6617 This has an effect only if `redisplay-dont-pause' is nil; in that
6618 case, arriving input preempts redisplay until the input is processed.
6619 If the value is nil, redisplay is never preempted. */);
6620 Vredisplay_preemption_period = make_float (0.10);
6621 #endif
6622
6623 #ifdef CANNOT_DUMP
6624 if (noninteractive)
6625 #endif
6626 {
6627 Vinitial_window_system = Qnil;
6628 Vwindow_system_version = Qnil;
6629 }
6630 }