Merge from trunk.
[bpt/emacs.git] / src / intervals.c
1 /* Code for doing intervals.
2 Copyright (C) 1993-1995, 1997-1998, 2001-2011 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
18
19
20 /* NOTES:
21
22 Have to ensure that we can't put symbol nil on a plist, or some
23 functions may work incorrectly.
24
25 An idea: Have the owner of the tree keep count of splits and/or
26 insertion lengths (in intervals), and balance after every N.
27
28 Need to call *_left_hook when buffer is killed.
29
30 Scan for zero-length, or 0-length to see notes about handling
31 zero length interval-markers.
32
33 There are comments around about freeing intervals. It might be
34 faster to explicitly free them (put them on the free list) than
35 to GC them.
36
37 */
38
39
40 #include <config.h>
41 #include <setjmp.h>
42 #include <intprops.h>
43 #include "lisp.h"
44 #include "intervals.h"
45 #include "buffer.h"
46 #include "puresize.h"
47 #include "keyboard.h"
48 #include "keymap.h"
49
50 /* Test for membership, allowing for t (actually any non-cons) to mean the
51 universal set. */
52
53 #define TMEM(sym, set) (CONSP (set) ? ! NILP (Fmemq (sym, set)) : ! NILP (set))
54
55 static Lisp_Object merge_properties_sticky (Lisp_Object, Lisp_Object);
56 static INTERVAL merge_interval_right (INTERVAL);
57 static INTERVAL reproduce_tree (INTERVAL, INTERVAL);
58 static INTERVAL reproduce_tree_obj (INTERVAL, Lisp_Object);
59 \f
60 /* Utility functions for intervals. */
61
62
63 /* Create the root interval of some object, a buffer or string. */
64
65 INTERVAL
66 create_root_interval (Lisp_Object parent)
67 {
68 INTERVAL new;
69
70 CHECK_IMPURE (parent);
71
72 new = make_interval ();
73
74 if (BUFFERP (parent))
75 {
76 new->total_length = (BUF_Z (XBUFFER (parent))
77 - BUF_BEG (XBUFFER (parent)));
78 CHECK_TOTAL_LENGTH (new);
79 BUF_INTERVALS (XBUFFER (parent)) = new;
80 new->position = BEG;
81 }
82 else if (STRINGP (parent))
83 {
84 new->total_length = SCHARS (parent);
85 CHECK_TOTAL_LENGTH (new);
86 STRING_SET_INTERVALS (parent, new);
87 new->position = 0;
88 }
89
90 SET_INTERVAL_OBJECT (new, parent);
91
92 return new;
93 }
94
95 /* Make the interval TARGET have exactly the properties of SOURCE */
96
97 void
98 copy_properties (register INTERVAL source, register INTERVAL target)
99 {
100 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
101 return;
102
103 COPY_INTERVAL_CACHE (source, target);
104 target->plist = Fcopy_sequence (source->plist);
105 }
106
107 /* Merge the properties of interval SOURCE into the properties
108 of interval TARGET. That is to say, each property in SOURCE
109 is added to TARGET if TARGET has no such property as yet. */
110
111 static void
112 merge_properties (register INTERVAL source, register INTERVAL target)
113 {
114 register Lisp_Object o, sym, val;
115
116 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
117 return;
118
119 MERGE_INTERVAL_CACHE (source, target);
120
121 o = source->plist;
122 while (CONSP (o))
123 {
124 sym = XCAR (o);
125 o = XCDR (o);
126 CHECK_CONS (o);
127
128 val = target->plist;
129 while (CONSP (val) && !EQ (XCAR (val), sym))
130 {
131 val = XCDR (val);
132 if (!CONSP (val))
133 break;
134 val = XCDR (val);
135 }
136
137 if (NILP (val))
138 {
139 val = XCAR (o);
140 target->plist = Fcons (sym, Fcons (val, target->plist));
141 }
142 o = XCDR (o);
143 }
144 }
145
146 /* Return 1 if the two intervals have the same properties,
147 0 otherwise. */
148
149 int
150 intervals_equal (INTERVAL i0, INTERVAL i1)
151 {
152 register Lisp_Object i0_cdr, i0_sym;
153 register Lisp_Object i1_cdr, i1_val;
154
155 if (DEFAULT_INTERVAL_P (i0) && DEFAULT_INTERVAL_P (i1))
156 return 1;
157
158 if (DEFAULT_INTERVAL_P (i0) || DEFAULT_INTERVAL_P (i1))
159 return 0;
160
161 i0_cdr = i0->plist;
162 i1_cdr = i1->plist;
163 while (CONSP (i0_cdr) && CONSP (i1_cdr))
164 {
165 i0_sym = XCAR (i0_cdr);
166 i0_cdr = XCDR (i0_cdr);
167 if (!CONSP (i0_cdr))
168 return 0; /* abort (); */
169 i1_val = i1->plist;
170 while (CONSP (i1_val) && !EQ (XCAR (i1_val), i0_sym))
171 {
172 i1_val = XCDR (i1_val);
173 if (!CONSP (i1_val))
174 return 0; /* abort (); */
175 i1_val = XCDR (i1_val);
176 }
177
178 /* i0 has something i1 doesn't. */
179 if (EQ (i1_val, Qnil))
180 return 0;
181
182 /* i0 and i1 both have sym, but it has different values in each. */
183 if (!CONSP (i1_val)
184 || (i1_val = XCDR (i1_val), !CONSP (i1_val))
185 || !EQ (XCAR (i1_val), XCAR (i0_cdr)))
186 return 0;
187
188 i0_cdr = XCDR (i0_cdr);
189
190 i1_cdr = XCDR (i1_cdr);
191 if (!CONSP (i1_cdr))
192 return 0; /* abort (); */
193 i1_cdr = XCDR (i1_cdr);
194 }
195
196 /* Lengths of the two plists were equal. */
197 return (NILP (i0_cdr) && NILP (i1_cdr));
198 }
199 \f
200
201 /* Traverse an interval tree TREE, performing FUNCTION on each node.
202 No guarantee is made about the order of traversal.
203 Pass FUNCTION two args: an interval, and ARG. */
204
205 void
206 traverse_intervals_noorder (INTERVAL tree, void (*function) (INTERVAL, Lisp_Object), Lisp_Object arg)
207 {
208 /* Minimize stack usage. */
209 while (!NULL_INTERVAL_P (tree))
210 {
211 (*function) (tree, arg);
212 if (NULL_INTERVAL_P (tree->right))
213 tree = tree->left;
214 else
215 {
216 traverse_intervals_noorder (tree->left, function, arg);
217 tree = tree->right;
218 }
219 }
220 }
221
222 /* Traverse an interval tree TREE, performing FUNCTION on each node.
223 Pass FUNCTION two args: an interval, and ARG. */
224
225 void
226 traverse_intervals (INTERVAL tree, EMACS_INT position,
227 void (*function) (INTERVAL, Lisp_Object), Lisp_Object arg)
228 {
229 while (!NULL_INTERVAL_P (tree))
230 {
231 traverse_intervals (tree->left, position, function, arg);
232 position += LEFT_TOTAL_LENGTH (tree);
233 tree->position = position;
234 (*function) (tree, arg);
235 position += LENGTH (tree); tree = tree->right;
236 }
237 }
238 \f
239 #if 0
240
241 static int icount;
242 static int idepth;
243 static int zero_length;
244
245 /* These functions are temporary, for debugging purposes only. */
246
247 INTERVAL search_interval, found_interval;
248
249 void
250 check_for_interval (i)
251 register INTERVAL i;
252 {
253 if (i == search_interval)
254 {
255 found_interval = i;
256 icount++;
257 }
258 }
259
260 INTERVAL
261 search_for_interval (i, tree)
262 register INTERVAL i, tree;
263 {
264 icount = 0;
265 search_interval = i;
266 found_interval = NULL_INTERVAL;
267 traverse_intervals_noorder (tree, &check_for_interval, Qnil);
268 return found_interval;
269 }
270
271 static void
272 inc_interval_count (i)
273 INTERVAL i;
274 {
275 icount++;
276 if (LENGTH (i) == 0)
277 zero_length++;
278 if (depth > idepth)
279 idepth = depth;
280 }
281
282 int
283 count_intervals (i)
284 register INTERVAL i;
285 {
286 icount = 0;
287 idepth = 0;
288 zero_length = 0;
289 traverse_intervals_noorder (i, &inc_interval_count, Qnil);
290
291 return icount;
292 }
293
294 static INTERVAL
295 root_interval (interval)
296 INTERVAL interval;
297 {
298 register INTERVAL i = interval;
299
300 while (! ROOT_INTERVAL_P (i))
301 i = INTERVAL_PARENT (i);
302
303 return i;
304 }
305 #endif
306 \f
307 /* Assuming that a left child exists, perform the following operation:
308
309 A B
310 / \ / \
311 B => A
312 / \ / \
313 c c
314 */
315
316 static inline INTERVAL
317 rotate_right (INTERVAL interval)
318 {
319 INTERVAL i;
320 INTERVAL B = interval->left;
321 EMACS_INT old_total = interval->total_length;
322
323 /* Deal with any Parent of A; make it point to B. */
324 if (! ROOT_INTERVAL_P (interval))
325 {
326 if (AM_LEFT_CHILD (interval))
327 INTERVAL_PARENT (interval)->left = B;
328 else
329 INTERVAL_PARENT (interval)->right = B;
330 }
331 COPY_INTERVAL_PARENT (B, interval);
332
333 /* Make B the parent of A */
334 i = B->right;
335 B->right = interval;
336 SET_INTERVAL_PARENT (interval, B);
337
338 /* Make A point to c */
339 interval->left = i;
340 if (! NULL_INTERVAL_P (i))
341 SET_INTERVAL_PARENT (i, interval);
342
343 /* A's total length is decreased by the length of B and its left child. */
344 interval->total_length -= B->total_length - LEFT_TOTAL_LENGTH (interval);
345 CHECK_TOTAL_LENGTH (interval);
346
347 /* B must have the same total length of A. */
348 B->total_length = old_total;
349 CHECK_TOTAL_LENGTH (B);
350
351 return B;
352 }
353
354 /* Assuming that a right child exists, perform the following operation:
355
356 A B
357 / \ / \
358 B => A
359 / \ / \
360 c c
361 */
362
363 static inline INTERVAL
364 rotate_left (INTERVAL interval)
365 {
366 INTERVAL i;
367 INTERVAL B = interval->right;
368 EMACS_INT old_total = interval->total_length;
369
370 /* Deal with any parent of A; make it point to B. */
371 if (! ROOT_INTERVAL_P (interval))
372 {
373 if (AM_LEFT_CHILD (interval))
374 INTERVAL_PARENT (interval)->left = B;
375 else
376 INTERVAL_PARENT (interval)->right = B;
377 }
378 COPY_INTERVAL_PARENT (B, interval);
379
380 /* Make B the parent of A */
381 i = B->left;
382 B->left = interval;
383 SET_INTERVAL_PARENT (interval, B);
384
385 /* Make A point to c */
386 interval->right = i;
387 if (! NULL_INTERVAL_P (i))
388 SET_INTERVAL_PARENT (i, interval);
389
390 /* A's total length is decreased by the length of B and its right child. */
391 interval->total_length -= B->total_length - RIGHT_TOTAL_LENGTH (interval);
392 CHECK_TOTAL_LENGTH (interval);
393
394 /* B must have the same total length of A. */
395 B->total_length = old_total;
396 CHECK_TOTAL_LENGTH (B);
397
398 return B;
399 }
400 \f
401 /* Balance an interval tree with the assumption that the subtrees
402 themselves are already balanced. */
403
404 static INTERVAL
405 balance_an_interval (INTERVAL i)
406 {
407 register EMACS_INT old_diff, new_diff;
408
409 while (1)
410 {
411 old_diff = LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i);
412 if (old_diff > 0)
413 {
414 /* Since the left child is longer, there must be one. */
415 new_diff = i->total_length - i->left->total_length
416 + RIGHT_TOTAL_LENGTH (i->left) - LEFT_TOTAL_LENGTH (i->left);
417 if (eabs (new_diff) >= old_diff)
418 break;
419 i = rotate_right (i);
420 balance_an_interval (i->right);
421 }
422 else if (old_diff < 0)
423 {
424 /* Since the right child is longer, there must be one. */
425 new_diff = i->total_length - i->right->total_length
426 + LEFT_TOTAL_LENGTH (i->right) - RIGHT_TOTAL_LENGTH (i->right);
427 if (eabs (new_diff) >= -old_diff)
428 break;
429 i = rotate_left (i);
430 balance_an_interval (i->left);
431 }
432 else
433 break;
434 }
435 return i;
436 }
437
438 /* Balance INTERVAL, potentially stuffing it back into its parent
439 Lisp Object. */
440
441 static inline INTERVAL
442 balance_possible_root_interval (register INTERVAL interval)
443 {
444 Lisp_Object parent;
445 int have_parent = 0;
446
447 if (!INTERVAL_HAS_OBJECT (interval) && !INTERVAL_HAS_PARENT (interval))
448 return interval;
449
450 if (INTERVAL_HAS_OBJECT (interval))
451 {
452 have_parent = 1;
453 GET_INTERVAL_OBJECT (parent, interval);
454 }
455 interval = balance_an_interval (interval);
456
457 if (have_parent)
458 {
459 if (BUFFERP (parent))
460 BUF_INTERVALS (XBUFFER (parent)) = interval;
461 else if (STRINGP (parent))
462 STRING_SET_INTERVALS (parent, interval);
463 }
464
465 return interval;
466 }
467
468 /* Balance the interval tree TREE. Balancing is by weight
469 (the amount of text). */
470
471 static INTERVAL
472 balance_intervals_internal (register INTERVAL tree)
473 {
474 /* Balance within each side. */
475 if (tree->left)
476 balance_intervals_internal (tree->left);
477 if (tree->right)
478 balance_intervals_internal (tree->right);
479 return balance_an_interval (tree);
480 }
481
482 /* Advertised interface to balance intervals. */
483
484 INTERVAL
485 balance_intervals (INTERVAL tree)
486 {
487 if (tree == NULL_INTERVAL)
488 return NULL_INTERVAL;
489
490 return balance_intervals_internal (tree);
491 }
492 \f
493 /* Split INTERVAL into two pieces, starting the second piece at
494 character position OFFSET (counting from 0), relative to INTERVAL.
495 INTERVAL becomes the left-hand piece, and the right-hand piece
496 (second, lexicographically) is returned.
497
498 The size and position fields of the two intervals are set based upon
499 those of the original interval. The property list of the new interval
500 is reset, thus it is up to the caller to do the right thing with the
501 result.
502
503 Note that this does not change the position of INTERVAL; if it is a root,
504 it is still a root after this operation. */
505
506 INTERVAL
507 split_interval_right (INTERVAL interval, EMACS_INT offset)
508 {
509 INTERVAL new = make_interval ();
510 EMACS_INT position = interval->position;
511 EMACS_INT new_length = LENGTH (interval) - offset;
512
513 new->position = position + offset;
514 SET_INTERVAL_PARENT (new, interval);
515
516 if (NULL_RIGHT_CHILD (interval))
517 {
518 interval->right = new;
519 new->total_length = new_length;
520 CHECK_TOTAL_LENGTH (new);
521 }
522 else
523 {
524 /* Insert the new node between INTERVAL and its right child. */
525 new->right = interval->right;
526 SET_INTERVAL_PARENT (interval->right, new);
527 interval->right = new;
528 new->total_length = new_length + new->right->total_length;
529 CHECK_TOTAL_LENGTH (new);
530 balance_an_interval (new);
531 }
532
533 balance_possible_root_interval (interval);
534
535 return new;
536 }
537
538 /* Split INTERVAL into two pieces, starting the second piece at
539 character position OFFSET (counting from 0), relative to INTERVAL.
540 INTERVAL becomes the right-hand piece, and the left-hand piece
541 (first, lexicographically) is returned.
542
543 The size and position fields of the two intervals are set based upon
544 those of the original interval. The property list of the new interval
545 is reset, thus it is up to the caller to do the right thing with the
546 result.
547
548 Note that this does not change the position of INTERVAL; if it is a root,
549 it is still a root after this operation. */
550
551 INTERVAL
552 split_interval_left (INTERVAL interval, EMACS_INT offset)
553 {
554 INTERVAL new = make_interval ();
555 EMACS_INT new_length = offset;
556
557 new->position = interval->position;
558 interval->position = interval->position + offset;
559 SET_INTERVAL_PARENT (new, interval);
560
561 if (NULL_LEFT_CHILD (interval))
562 {
563 interval->left = new;
564 new->total_length = new_length;
565 CHECK_TOTAL_LENGTH (new);
566 }
567 else
568 {
569 /* Insert the new node between INTERVAL and its left child. */
570 new->left = interval->left;
571 SET_INTERVAL_PARENT (new->left, new);
572 interval->left = new;
573 new->total_length = new_length + new->left->total_length;
574 CHECK_TOTAL_LENGTH (new);
575 balance_an_interval (new);
576 }
577
578 balance_possible_root_interval (interval);
579
580 return new;
581 }
582 \f
583 /* Return the proper position for the first character
584 described by the interval tree SOURCE.
585 This is 1 if the parent is a buffer,
586 0 if the parent is a string or if there is no parent.
587
588 Don't use this function on an interval which is the child
589 of another interval! */
590
591 static int
592 interval_start_pos (INTERVAL source)
593 {
594 Lisp_Object parent;
595
596 if (NULL_INTERVAL_P (source))
597 return 0;
598
599 if (! INTERVAL_HAS_OBJECT (source))
600 return 0;
601 GET_INTERVAL_OBJECT (parent, source);
602 if (BUFFERP (parent))
603 return BUF_BEG (XBUFFER (parent));
604 return 0;
605 }
606
607 /* Find the interval containing text position POSITION in the text
608 represented by the interval tree TREE. POSITION is a buffer
609 position (starting from 1) or a string index (starting from 0).
610 If POSITION is at the end of the buffer or string,
611 return the interval containing the last character.
612
613 The `position' field, which is a cache of an interval's position,
614 is updated in the interval found. Other functions (e.g., next_interval)
615 will update this cache based on the result of find_interval. */
616
617 INTERVAL
618 find_interval (register INTERVAL tree, register EMACS_INT position)
619 {
620 /* The distance from the left edge of the subtree at TREE
621 to POSITION. */
622 register EMACS_INT relative_position;
623
624 if (NULL_INTERVAL_P (tree))
625 return NULL_INTERVAL;
626
627 relative_position = position;
628 if (INTERVAL_HAS_OBJECT (tree))
629 {
630 Lisp_Object parent;
631 GET_INTERVAL_OBJECT (parent, tree);
632 if (BUFFERP (parent))
633 relative_position -= BUF_BEG (XBUFFER (parent));
634 }
635
636 if (relative_position > TOTAL_LENGTH (tree))
637 abort (); /* Paranoia */
638
639 if (!handling_signal)
640 tree = balance_possible_root_interval (tree);
641
642 while (1)
643 {
644 if (relative_position < LEFT_TOTAL_LENGTH (tree))
645 {
646 tree = tree->left;
647 }
648 else if (! NULL_RIGHT_CHILD (tree)
649 && relative_position >= (TOTAL_LENGTH (tree)
650 - RIGHT_TOTAL_LENGTH (tree)))
651 {
652 relative_position -= (TOTAL_LENGTH (tree)
653 - RIGHT_TOTAL_LENGTH (tree));
654 tree = tree->right;
655 }
656 else
657 {
658 tree->position
659 = (position - relative_position /* left edge of *tree. */
660 + LEFT_TOTAL_LENGTH (tree)); /* left edge of this interval. */
661
662 return tree;
663 }
664 }
665 }
666 \f
667 /* Find the succeeding interval (lexicographically) to INTERVAL.
668 Sets the `position' field based on that of INTERVAL (see
669 find_interval). */
670
671 INTERVAL
672 next_interval (register INTERVAL interval)
673 {
674 register INTERVAL i = interval;
675 register EMACS_INT next_position;
676
677 if (NULL_INTERVAL_P (i))
678 return NULL_INTERVAL;
679 next_position = interval->position + LENGTH (interval);
680
681 if (! NULL_RIGHT_CHILD (i))
682 {
683 i = i->right;
684 while (! NULL_LEFT_CHILD (i))
685 i = i->left;
686
687 i->position = next_position;
688 return i;
689 }
690
691 while (! NULL_PARENT (i))
692 {
693 if (AM_LEFT_CHILD (i))
694 {
695 i = INTERVAL_PARENT (i);
696 i->position = next_position;
697 return i;
698 }
699
700 i = INTERVAL_PARENT (i);
701 }
702
703 return NULL_INTERVAL;
704 }
705
706 /* Find the preceding interval (lexicographically) to INTERVAL.
707 Sets the `position' field based on that of INTERVAL (see
708 find_interval). */
709
710 INTERVAL
711 previous_interval (register INTERVAL interval)
712 {
713 register INTERVAL i;
714
715 if (NULL_INTERVAL_P (interval))
716 return NULL_INTERVAL;
717
718 if (! NULL_LEFT_CHILD (interval))
719 {
720 i = interval->left;
721 while (! NULL_RIGHT_CHILD (i))
722 i = i->right;
723
724 i->position = interval->position - LENGTH (i);
725 return i;
726 }
727
728 i = interval;
729 while (! NULL_PARENT (i))
730 {
731 if (AM_RIGHT_CHILD (i))
732 {
733 i = INTERVAL_PARENT (i);
734
735 i->position = interval->position - LENGTH (i);
736 return i;
737 }
738 i = INTERVAL_PARENT (i);
739 }
740
741 return NULL_INTERVAL;
742 }
743
744 /* Find the interval containing POS given some non-NULL INTERVAL
745 in the same tree. Note that we need to update interval->position
746 if we go down the tree.
747 To speed up the process, we assume that the ->position of
748 I and all its parents is already uptodate. */
749 INTERVAL
750 update_interval (register INTERVAL i, EMACS_INT pos)
751 {
752 if (NULL_INTERVAL_P (i))
753 return NULL_INTERVAL;
754
755 while (1)
756 {
757 if (pos < i->position)
758 {
759 /* Move left. */
760 if (pos >= i->position - TOTAL_LENGTH (i->left))
761 {
762 i->left->position = i->position - TOTAL_LENGTH (i->left)
763 + LEFT_TOTAL_LENGTH (i->left);
764 i = i->left; /* Move to the left child */
765 }
766 else if (NULL_PARENT (i))
767 error ("Point before start of properties");
768 else
769 i = INTERVAL_PARENT (i);
770 continue;
771 }
772 else if (pos >= INTERVAL_LAST_POS (i))
773 {
774 /* Move right. */
775 if (pos < INTERVAL_LAST_POS (i) + TOTAL_LENGTH (i->right))
776 {
777 i->right->position = INTERVAL_LAST_POS (i)
778 + LEFT_TOTAL_LENGTH (i->right);
779 i = i->right; /* Move to the right child */
780 }
781 else if (NULL_PARENT (i))
782 error ("Point %"pI"d after end of properties", pos);
783 else
784 i = INTERVAL_PARENT (i);
785 continue;
786 }
787 else
788 return i;
789 }
790 }
791
792 \f
793 #if 0
794 /* Traverse a path down the interval tree TREE to the interval
795 containing POSITION, adjusting all nodes on the path for
796 an addition of LENGTH characters. Insertion between two intervals
797 (i.e., point == i->position, where i is second interval) means
798 text goes into second interval.
799
800 Modifications are needed to handle the hungry bits -- after simply
801 finding the interval at position (don't add length going down),
802 if it's the beginning of the interval, get the previous interval
803 and check the hungry bits of both. Then add the length going back up
804 to the root. */
805
806 static INTERVAL
807 adjust_intervals_for_insertion (tree, position, length)
808 INTERVAL tree;
809 EMACS_INT position, length;
810 {
811 register EMACS_INT relative_position;
812 register INTERVAL this;
813
814 if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
815 abort ();
816
817 /* If inserting at point-max of a buffer, that position
818 will be out of range */
819 if (position > TOTAL_LENGTH (tree))
820 position = TOTAL_LENGTH (tree);
821 relative_position = position;
822 this = tree;
823
824 while (1)
825 {
826 if (relative_position <= LEFT_TOTAL_LENGTH (this))
827 {
828 this->total_length += length;
829 CHECK_TOTAL_LENGTH (this);
830 this = this->left;
831 }
832 else if (relative_position > (TOTAL_LENGTH (this)
833 - RIGHT_TOTAL_LENGTH (this)))
834 {
835 relative_position -= (TOTAL_LENGTH (this)
836 - RIGHT_TOTAL_LENGTH (this));
837 this->total_length += length;
838 CHECK_TOTAL_LENGTH (this);
839 this = this->right;
840 }
841 else
842 {
843 /* If we are to use zero-length intervals as buffer pointers,
844 then this code will have to change. */
845 this->total_length += length;
846 CHECK_TOTAL_LENGTH (this);
847 this->position = LEFT_TOTAL_LENGTH (this)
848 + position - relative_position + 1;
849 return tree;
850 }
851 }
852 }
853 #endif
854
855 /* Effect an adjustment corresponding to the addition of LENGTH characters
856 of text. Do this by finding the interval containing POSITION in the
857 interval tree TREE, and then adjusting all of its ancestors by adding
858 LENGTH to them.
859
860 If POSITION is the first character of an interval, meaning that point
861 is actually between the two intervals, make the new text belong to
862 the interval which is "sticky".
863
864 If both intervals are "sticky", then make them belong to the left-most
865 interval. Another possibility would be to create a new interval for
866 this text, and make it have the merged properties of both ends. */
867
868 static INTERVAL
869 adjust_intervals_for_insertion (INTERVAL tree,
870 EMACS_INT position, EMACS_INT length)
871 {
872 register INTERVAL i;
873 register INTERVAL temp;
874 int eobp = 0;
875 Lisp_Object parent;
876 EMACS_INT offset;
877
878 if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
879 abort ();
880
881 GET_INTERVAL_OBJECT (parent, tree);
882 offset = (BUFFERP (parent) ? BUF_BEG (XBUFFER (parent)) : 0);
883
884 /* If inserting at point-max of a buffer, that position will be out
885 of range. Remember that buffer positions are 1-based. */
886 if (position >= TOTAL_LENGTH (tree) + offset)
887 {
888 position = TOTAL_LENGTH (tree) + offset;
889 eobp = 1;
890 }
891
892 i = find_interval (tree, position);
893
894 /* If in middle of an interval which is not sticky either way,
895 we must not just give its properties to the insertion.
896 So split this interval at the insertion point.
897
898 Originally, the if condition here was this:
899 (! (position == i->position || eobp)
900 && END_NONSTICKY_P (i)
901 && FRONT_NONSTICKY_P (i))
902 But, these macros are now unreliable because of introduction of
903 Vtext_property_default_nonsticky. So, we always check properties
904 one by one if POSITION is in middle of an interval. */
905 if (! (position == i->position || eobp))
906 {
907 Lisp_Object tail;
908 Lisp_Object front, rear;
909
910 tail = i->plist;
911
912 /* Properties font-sticky and rear-nonsticky override
913 Vtext_property_default_nonsticky. So, if they are t, we can
914 skip one by one checking of properties. */
915 rear = textget (i->plist, Qrear_nonsticky);
916 if (! CONSP (rear) && ! NILP (rear))
917 {
918 /* All properties are nonsticky. We split the interval. */
919 goto check_done;
920 }
921 front = textget (i->plist, Qfront_sticky);
922 if (! CONSP (front) && ! NILP (front))
923 {
924 /* All properties are sticky. We don't split the interval. */
925 tail = Qnil;
926 goto check_done;
927 }
928
929 /* Does any actual property pose an actual problem? We break
930 the loop if we find a nonsticky property. */
931 for (; CONSP (tail); tail = Fcdr (XCDR (tail)))
932 {
933 Lisp_Object prop, tmp;
934 prop = XCAR (tail);
935
936 /* Is this particular property front-sticky? */
937 if (CONSP (front) && ! NILP (Fmemq (prop, front)))
938 continue;
939
940 /* Is this particular property rear-nonsticky? */
941 if (CONSP (rear) && ! NILP (Fmemq (prop, rear)))
942 break;
943
944 /* Is this particular property recorded as sticky or
945 nonsticky in Vtext_property_default_nonsticky? */
946 tmp = Fassq (prop, Vtext_property_default_nonsticky);
947 if (CONSP (tmp))
948 {
949 if (NILP (tmp))
950 continue;
951 break;
952 }
953
954 /* By default, a text property is rear-sticky, thus we
955 continue the loop. */
956 }
957
958 check_done:
959 /* If any property is a real problem, split the interval. */
960 if (! NILP (tail))
961 {
962 temp = split_interval_right (i, position - i->position);
963 copy_properties (i, temp);
964 i = temp;
965 }
966 }
967
968 /* If we are positioned between intervals, check the stickiness of
969 both of them. We have to do this too, if we are at BEG or Z. */
970 if (position == i->position || eobp)
971 {
972 register INTERVAL prev;
973
974 if (position == BEG)
975 prev = 0;
976 else if (eobp)
977 {
978 prev = i;
979 i = 0;
980 }
981 else
982 prev = previous_interval (i);
983
984 /* Even if we are positioned between intervals, we default
985 to the left one if it exists. We extend it now and split
986 off a part later, if stickiness demands it. */
987 for (temp = prev ? prev : i; temp; temp = INTERVAL_PARENT_OR_NULL (temp))
988 {
989 temp->total_length += length;
990 CHECK_TOTAL_LENGTH (temp);
991 temp = balance_possible_root_interval (temp);
992 }
993
994 /* If at least one interval has sticky properties,
995 we check the stickiness property by property.
996
997 Originally, the if condition here was this:
998 (END_NONSTICKY_P (prev) || FRONT_STICKY_P (i))
999 But, these macros are now unreliable because of introduction
1000 of Vtext_property_default_nonsticky. So, we always have to
1001 check stickiness of properties one by one. If cache of
1002 stickiness is implemented in the future, we may be able to
1003 use those macros again. */
1004 if (1)
1005 {
1006 Lisp_Object pleft, pright;
1007 struct interval newi;
1008
1009 pleft = NULL_INTERVAL_P (prev) ? Qnil : prev->plist;
1010 pright = NULL_INTERVAL_P (i) ? Qnil : i->plist;
1011 newi.plist = merge_properties_sticky (pleft, pright);
1012
1013 if (! prev) /* i.e. position == BEG */
1014 {
1015 if (! intervals_equal (i, &newi))
1016 {
1017 i = split_interval_left (i, length);
1018 i->plist = newi.plist;
1019 }
1020 }
1021 else if (! intervals_equal (prev, &newi))
1022 {
1023 prev = split_interval_right (prev,
1024 position - prev->position);
1025 prev->plist = newi.plist;
1026 if (! NULL_INTERVAL_P (i)
1027 && intervals_equal (prev, i))
1028 merge_interval_right (prev);
1029 }
1030
1031 /* We will need to update the cache here later. */
1032 }
1033 else if (! prev && ! NILP (i->plist))
1034 {
1035 /* Just split off a new interval at the left.
1036 Since I wasn't front-sticky, the empty plist is ok. */
1037 i = split_interval_left (i, length);
1038 }
1039 }
1040
1041 /* Otherwise just extend the interval. */
1042 else
1043 {
1044 for (temp = i; temp; temp = INTERVAL_PARENT_OR_NULL (temp))
1045 {
1046 temp->total_length += length;
1047 CHECK_TOTAL_LENGTH (temp);
1048 temp = balance_possible_root_interval (temp);
1049 }
1050 }
1051
1052 return tree;
1053 }
1054
1055 /* Any property might be front-sticky on the left, rear-sticky on the left,
1056 front-sticky on the right, or rear-sticky on the right; the 16 combinations
1057 can be arranged in a matrix with rows denoting the left conditions and
1058 columns denoting the right conditions:
1059 _ __ _
1060 _ FR FR FR FR
1061 FR__ 0 1 2 3
1062 _FR 4 5 6 7
1063 FR 8 9 A B
1064 FR C D E F
1065
1066 left-props = '(front-sticky (p8 p9 pa pb pc pd pe pf)
1067 rear-nonsticky (p4 p5 p6 p7 p8 p9 pa pb)
1068 p0 L p1 L p2 L p3 L p4 L p5 L p6 L p7 L
1069 p8 L p9 L pa L pb L pc L pd L pe L pf L)
1070 right-props = '(front-sticky (p2 p3 p6 p7 pa pb pe pf)
1071 rear-nonsticky (p1 p2 p5 p6 p9 pa pd pe)
1072 p0 R p1 R p2 R p3 R p4 R p5 R p6 R p7 R
1073 p8 R p9 R pa R pb R pc R pd R pe R pf R)
1074
1075 We inherit from whoever has a sticky side facing us. If both sides
1076 do (cases 2, 3, E, and F), then we inherit from whichever side has a
1077 non-nil value for the current property. If both sides do, then we take
1078 from the left.
1079
1080 When we inherit a property, we get its stickiness as well as its value.
1081 So, when we merge the above two lists, we expect to get this:
1082
1083 result = '(front-sticky (p6 p7 pa pb pc pd pe pf)
1084 rear-nonsticky (p6 pa)
1085 p0 L p1 L p2 L p3 L p6 R p7 R
1086 pa R pb R pc L pd L pe L pf L)
1087
1088 The optimizable special cases are:
1089 left rear-nonsticky = nil, right front-sticky = nil (inherit left)
1090 left rear-nonsticky = t, right front-sticky = t (inherit right)
1091 left rear-nonsticky = t, right front-sticky = nil (inherit none)
1092 */
1093
1094 static Lisp_Object
1095 merge_properties_sticky (Lisp_Object pleft, Lisp_Object pright)
1096 {
1097 register Lisp_Object props, front, rear;
1098 Lisp_Object lfront, lrear, rfront, rrear;
1099 register Lisp_Object tail1, tail2, sym, lval, rval, cat;
1100 int use_left, use_right;
1101 int lpresent;
1102
1103 props = Qnil;
1104 front = Qnil;
1105 rear = Qnil;
1106 lfront = textget (pleft, Qfront_sticky);
1107 lrear = textget (pleft, Qrear_nonsticky);
1108 rfront = textget (pright, Qfront_sticky);
1109 rrear = textget (pright, Qrear_nonsticky);
1110
1111 /* Go through each element of PRIGHT. */
1112 for (tail1 = pright; CONSP (tail1); tail1 = Fcdr (XCDR (tail1)))
1113 {
1114 Lisp_Object tmp;
1115
1116 sym = XCAR (tail1);
1117
1118 /* Sticky properties get special treatment. */
1119 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
1120 continue;
1121
1122 rval = Fcar (XCDR (tail1));
1123 for (tail2 = pleft; CONSP (tail2); tail2 = Fcdr (XCDR (tail2)))
1124 if (EQ (sym, XCAR (tail2)))
1125 break;
1126
1127 /* Indicate whether the property is explicitly defined on the left.
1128 (We know it is defined explicitly on the right
1129 because otherwise we don't get here.) */
1130 lpresent = ! NILP (tail2);
1131 lval = (NILP (tail2) ? Qnil : Fcar (Fcdr (tail2)));
1132
1133 /* Even if lrear or rfront say nothing about the stickiness of
1134 SYM, Vtext_property_default_nonsticky may give default
1135 stickiness to SYM. */
1136 tmp = Fassq (sym, Vtext_property_default_nonsticky);
1137 use_left = (lpresent
1138 && ! (TMEM (sym, lrear)
1139 || (CONSP (tmp) && ! NILP (XCDR (tmp)))));
1140 use_right = (TMEM (sym, rfront)
1141 || (CONSP (tmp) && NILP (XCDR (tmp))));
1142 if (use_left && use_right)
1143 {
1144 if (NILP (lval))
1145 use_left = 0;
1146 else if (NILP (rval))
1147 use_right = 0;
1148 }
1149 if (use_left)
1150 {
1151 /* We build props as (value sym ...) rather than (sym value ...)
1152 because we plan to nreverse it when we're done. */
1153 props = Fcons (lval, Fcons (sym, props));
1154 if (TMEM (sym, lfront))
1155 front = Fcons (sym, front);
1156 if (TMEM (sym, lrear))
1157 rear = Fcons (sym, rear);
1158 }
1159 else if (use_right)
1160 {
1161 props = Fcons (rval, Fcons (sym, props));
1162 if (TMEM (sym, rfront))
1163 front = Fcons (sym, front);
1164 if (TMEM (sym, rrear))
1165 rear = Fcons (sym, rear);
1166 }
1167 }
1168
1169 /* Now go through each element of PLEFT. */
1170 for (tail2 = pleft; CONSP (tail2); tail2 = Fcdr (XCDR (tail2)))
1171 {
1172 Lisp_Object tmp;
1173
1174 sym = XCAR (tail2);
1175
1176 /* Sticky properties get special treatment. */
1177 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
1178 continue;
1179
1180 /* If sym is in PRIGHT, we've already considered it. */
1181 for (tail1 = pright; CONSP (tail1); tail1 = Fcdr (XCDR (tail1)))
1182 if (EQ (sym, XCAR (tail1)))
1183 break;
1184 if (! NILP (tail1))
1185 continue;
1186
1187 lval = Fcar (XCDR (tail2));
1188
1189 /* Even if lrear or rfront say nothing about the stickiness of
1190 SYM, Vtext_property_default_nonsticky may give default
1191 stickiness to SYM. */
1192 tmp = Fassq (sym, Vtext_property_default_nonsticky);
1193
1194 /* Since rval is known to be nil in this loop, the test simplifies. */
1195 if (! (TMEM (sym, lrear) || (CONSP (tmp) && ! NILP (XCDR (tmp)))))
1196 {
1197 props = Fcons (lval, Fcons (sym, props));
1198 if (TMEM (sym, lfront))
1199 front = Fcons (sym, front);
1200 }
1201 else if (TMEM (sym, rfront) || (CONSP (tmp) && NILP (XCDR (tmp))))
1202 {
1203 /* The value is nil, but we still inherit the stickiness
1204 from the right. */
1205 front = Fcons (sym, front);
1206 if (TMEM (sym, rrear))
1207 rear = Fcons (sym, rear);
1208 }
1209 }
1210 props = Fnreverse (props);
1211 if (! NILP (rear))
1212 props = Fcons (Qrear_nonsticky, Fcons (Fnreverse (rear), props));
1213
1214 cat = textget (props, Qcategory);
1215 if (! NILP (front)
1216 &&
1217 /* If we have inherited a front-stick category property that is t,
1218 we don't need to set up a detailed one. */
1219 ! (! NILP (cat) && SYMBOLP (cat)
1220 && EQ (Fget (cat, Qfront_sticky), Qt)))
1221 props = Fcons (Qfront_sticky, Fcons (Fnreverse (front), props));
1222 return props;
1223 }
1224
1225 \f
1226 /* Delete a node I from its interval tree by merging its subtrees
1227 into one subtree which is then returned. Caller is responsible for
1228 storing the resulting subtree into its parent. */
1229
1230 static INTERVAL
1231 delete_node (register INTERVAL i)
1232 {
1233 register INTERVAL migrate, this;
1234 register EMACS_INT migrate_amt;
1235
1236 if (NULL_INTERVAL_P (i->left))
1237 return i->right;
1238 if (NULL_INTERVAL_P (i->right))
1239 return i->left;
1240
1241 migrate = i->left;
1242 migrate_amt = i->left->total_length;
1243 this = i->right;
1244 this->total_length += migrate_amt;
1245 while (! NULL_INTERVAL_P (this->left))
1246 {
1247 this = this->left;
1248 this->total_length += migrate_amt;
1249 }
1250 CHECK_TOTAL_LENGTH (this);
1251 this->left = migrate;
1252 SET_INTERVAL_PARENT (migrate, this);
1253
1254 return i->right;
1255 }
1256
1257 /* Delete interval I from its tree by calling `delete_node'
1258 and properly connecting the resultant subtree.
1259
1260 I is presumed to be empty; that is, no adjustments are made
1261 for the length of I. */
1262
1263 static void
1264 delete_interval (register INTERVAL i)
1265 {
1266 register INTERVAL parent;
1267 EMACS_INT amt = LENGTH (i);
1268
1269 if (amt > 0) /* Only used on zero-length intervals now. */
1270 abort ();
1271
1272 if (ROOT_INTERVAL_P (i))
1273 {
1274 Lisp_Object owner;
1275 GET_INTERVAL_OBJECT (owner, i);
1276 parent = delete_node (i);
1277 if (! NULL_INTERVAL_P (parent))
1278 SET_INTERVAL_OBJECT (parent, owner);
1279
1280 if (BUFFERP (owner))
1281 BUF_INTERVALS (XBUFFER (owner)) = parent;
1282 else if (STRINGP (owner))
1283 STRING_SET_INTERVALS (owner, parent);
1284 else
1285 abort ();
1286
1287 return;
1288 }
1289
1290 parent = INTERVAL_PARENT (i);
1291 if (AM_LEFT_CHILD (i))
1292 {
1293 parent->left = delete_node (i);
1294 if (! NULL_INTERVAL_P (parent->left))
1295 SET_INTERVAL_PARENT (parent->left, parent);
1296 }
1297 else
1298 {
1299 parent->right = delete_node (i);
1300 if (! NULL_INTERVAL_P (parent->right))
1301 SET_INTERVAL_PARENT (parent->right, parent);
1302 }
1303 }
1304 \f
1305 /* Find the interval in TREE corresponding to the relative position
1306 FROM and delete as much as possible of AMOUNT from that interval.
1307 Return the amount actually deleted, and if the interval was
1308 zeroed-out, delete that interval node from the tree.
1309
1310 Note that FROM is actually origin zero, aka relative to the
1311 leftmost edge of tree. This is appropriate since we call ourselves
1312 recursively on subtrees.
1313
1314 Do this by recursing down TREE to the interval in question, and
1315 deleting the appropriate amount of text. */
1316
1317 static EMACS_INT
1318 interval_deletion_adjustment (register INTERVAL tree, register EMACS_INT from,
1319 register EMACS_INT amount)
1320 {
1321 register EMACS_INT relative_position = from;
1322
1323 if (NULL_INTERVAL_P (tree))
1324 return 0;
1325
1326 /* Left branch */
1327 if (relative_position < LEFT_TOTAL_LENGTH (tree))
1328 {
1329 EMACS_INT subtract = interval_deletion_adjustment (tree->left,
1330 relative_position,
1331 amount);
1332 tree->total_length -= subtract;
1333 CHECK_TOTAL_LENGTH (tree);
1334 return subtract;
1335 }
1336 /* Right branch */
1337 else if (relative_position >= (TOTAL_LENGTH (tree)
1338 - RIGHT_TOTAL_LENGTH (tree)))
1339 {
1340 EMACS_INT subtract;
1341
1342 relative_position -= (tree->total_length
1343 - RIGHT_TOTAL_LENGTH (tree));
1344 subtract = interval_deletion_adjustment (tree->right,
1345 relative_position,
1346 amount);
1347 tree->total_length -= subtract;
1348 CHECK_TOTAL_LENGTH (tree);
1349 return subtract;
1350 }
1351 /* Here -- this node. */
1352 else
1353 {
1354 /* How much can we delete from this interval? */
1355 EMACS_INT my_amount = ((tree->total_length
1356 - RIGHT_TOTAL_LENGTH (tree))
1357 - relative_position);
1358
1359 if (amount > my_amount)
1360 amount = my_amount;
1361
1362 tree->total_length -= amount;
1363 CHECK_TOTAL_LENGTH (tree);
1364 if (LENGTH (tree) == 0)
1365 delete_interval (tree);
1366
1367 return amount;
1368 }
1369
1370 /* Never reach here. */
1371 }
1372
1373 /* Effect the adjustments necessary to the interval tree of BUFFER to
1374 correspond to the deletion of LENGTH characters from that buffer
1375 text. The deletion is effected at position START (which is a
1376 buffer position, i.e. origin 1). */
1377
1378 static void
1379 adjust_intervals_for_deletion (struct buffer *buffer,
1380 EMACS_INT start, EMACS_INT length)
1381 {
1382 register EMACS_INT left_to_delete = length;
1383 register INTERVAL tree = BUF_INTERVALS (buffer);
1384 Lisp_Object parent;
1385 EMACS_INT offset;
1386
1387 GET_INTERVAL_OBJECT (parent, tree);
1388 offset = (BUFFERP (parent) ? BUF_BEG (XBUFFER (parent)) : 0);
1389
1390 if (NULL_INTERVAL_P (tree))
1391 return;
1392
1393 if (start > offset + TOTAL_LENGTH (tree)
1394 || start + length > offset + TOTAL_LENGTH (tree))
1395 abort ();
1396
1397 if (length == TOTAL_LENGTH (tree))
1398 {
1399 BUF_INTERVALS (buffer) = NULL_INTERVAL;
1400 return;
1401 }
1402
1403 if (ONLY_INTERVAL_P (tree))
1404 {
1405 tree->total_length -= length;
1406 CHECK_TOTAL_LENGTH (tree);
1407 return;
1408 }
1409
1410 if (start > offset + TOTAL_LENGTH (tree))
1411 start = offset + TOTAL_LENGTH (tree);
1412 while (left_to_delete > 0)
1413 {
1414 left_to_delete -= interval_deletion_adjustment (tree, start - offset,
1415 left_to_delete);
1416 tree = BUF_INTERVALS (buffer);
1417 if (left_to_delete == tree->total_length)
1418 {
1419 BUF_INTERVALS (buffer) = NULL_INTERVAL;
1420 return;
1421 }
1422 }
1423 }
1424 \f
1425 /* Make the adjustments necessary to the interval tree of BUFFER to
1426 represent an addition or deletion of LENGTH characters starting
1427 at position START. Addition or deletion is indicated by the sign
1428 of LENGTH.
1429
1430 The two inline functions (one static) pacify Sun C 5.8, a pre-C99
1431 compiler that does not allow calling a static function (here,
1432 adjust_intervals_for_deletion) from a non-static inline function. */
1433
1434 static inline void
1435 static_offset_intervals (struct buffer *buffer, EMACS_INT start,
1436 EMACS_INT length)
1437 {
1438 if (NULL_INTERVAL_P (BUF_INTERVALS (buffer)) || length == 0)
1439 return;
1440
1441 if (length > 0)
1442 adjust_intervals_for_insertion (BUF_INTERVALS (buffer), start, length);
1443 else
1444 {
1445 IF_LINT (if (length < - TYPE_MAXIMUM (EMACS_INT)) abort ();)
1446 adjust_intervals_for_deletion (buffer, start, -length);
1447 }
1448 }
1449
1450 inline void
1451 offset_intervals (struct buffer *buffer, EMACS_INT start, EMACS_INT length)
1452 {
1453 static_offset_intervals (buffer, start, length);
1454 }
1455 \f
1456 /* Merge interval I with its lexicographic successor. The resulting
1457 interval is returned, and has the properties of the original
1458 successor. The properties of I are lost. I is removed from the
1459 interval tree.
1460
1461 IMPORTANT:
1462 The caller must verify that this is not the last (rightmost)
1463 interval. */
1464
1465 static INTERVAL
1466 merge_interval_right (register INTERVAL i)
1467 {
1468 register EMACS_INT absorb = LENGTH (i);
1469 register INTERVAL successor;
1470
1471 /* Zero out this interval. */
1472 i->total_length -= absorb;
1473 CHECK_TOTAL_LENGTH (i);
1474
1475 /* Find the succeeding interval. */
1476 if (! NULL_RIGHT_CHILD (i)) /* It's below us. Add absorb
1477 as we descend. */
1478 {
1479 successor = i->right;
1480 while (! NULL_LEFT_CHILD (successor))
1481 {
1482 successor->total_length += absorb;
1483 CHECK_TOTAL_LENGTH (successor);
1484 successor = successor->left;
1485 }
1486
1487 successor->total_length += absorb;
1488 CHECK_TOTAL_LENGTH (successor);
1489 delete_interval (i);
1490 return successor;
1491 }
1492
1493 successor = i;
1494 while (! NULL_PARENT (successor)) /* It's above us. Subtract as
1495 we ascend. */
1496 {
1497 if (AM_LEFT_CHILD (successor))
1498 {
1499 successor = INTERVAL_PARENT (successor);
1500 delete_interval (i);
1501 return successor;
1502 }
1503
1504 successor = INTERVAL_PARENT (successor);
1505 successor->total_length -= absorb;
1506 CHECK_TOTAL_LENGTH (successor);
1507 }
1508
1509 /* This must be the rightmost or last interval and cannot
1510 be merged right. The caller should have known. */
1511 abort ();
1512 }
1513 \f
1514 /* Merge interval I with its lexicographic predecessor. The resulting
1515 interval is returned, and has the properties of the original predecessor.
1516 The properties of I are lost. Interval node I is removed from the tree.
1517
1518 IMPORTANT:
1519 The caller must verify that this is not the first (leftmost) interval. */
1520
1521 INTERVAL
1522 merge_interval_left (register INTERVAL i)
1523 {
1524 register EMACS_INT absorb = LENGTH (i);
1525 register INTERVAL predecessor;
1526
1527 /* Zero out this interval. */
1528 i->total_length -= absorb;
1529 CHECK_TOTAL_LENGTH (i);
1530
1531 /* Find the preceding interval. */
1532 if (! NULL_LEFT_CHILD (i)) /* It's below us. Go down,
1533 adding ABSORB as we go. */
1534 {
1535 predecessor = i->left;
1536 while (! NULL_RIGHT_CHILD (predecessor))
1537 {
1538 predecessor->total_length += absorb;
1539 CHECK_TOTAL_LENGTH (predecessor);
1540 predecessor = predecessor->right;
1541 }
1542
1543 predecessor->total_length += absorb;
1544 CHECK_TOTAL_LENGTH (predecessor);
1545 delete_interval (i);
1546 return predecessor;
1547 }
1548
1549 predecessor = i;
1550 while (! NULL_PARENT (predecessor)) /* It's above us. Go up,
1551 subtracting ABSORB. */
1552 {
1553 if (AM_RIGHT_CHILD (predecessor))
1554 {
1555 predecessor = INTERVAL_PARENT (predecessor);
1556 delete_interval (i);
1557 return predecessor;
1558 }
1559
1560 predecessor = INTERVAL_PARENT (predecessor);
1561 predecessor->total_length -= absorb;
1562 CHECK_TOTAL_LENGTH (predecessor);
1563 }
1564
1565 /* This must be the leftmost or first interval and cannot
1566 be merged left. The caller should have known. */
1567 abort ();
1568 }
1569 \f
1570 /* Make an exact copy of interval tree SOURCE which descends from
1571 PARENT. This is done by recursing through SOURCE, copying
1572 the current interval and its properties, and then adjusting
1573 the pointers of the copy. */
1574
1575 static INTERVAL
1576 reproduce_tree (INTERVAL source, INTERVAL parent)
1577 {
1578 register INTERVAL t = make_interval ();
1579
1580 memcpy (t, source, INTERVAL_SIZE);
1581 copy_properties (source, t);
1582 SET_INTERVAL_PARENT (t, parent);
1583 if (! NULL_LEFT_CHILD (source))
1584 t->left = reproduce_tree (source->left, t);
1585 if (! NULL_RIGHT_CHILD (source))
1586 t->right = reproduce_tree (source->right, t);
1587
1588 return t;
1589 }
1590
1591 static INTERVAL
1592 reproduce_tree_obj (INTERVAL source, Lisp_Object parent)
1593 {
1594 register INTERVAL t = make_interval ();
1595
1596 memcpy (t, source, INTERVAL_SIZE);
1597 copy_properties (source, t);
1598 SET_INTERVAL_OBJECT (t, parent);
1599 if (! NULL_LEFT_CHILD (source))
1600 t->left = reproduce_tree (source->left, t);
1601 if (! NULL_RIGHT_CHILD (source))
1602 t->right = reproduce_tree (source->right, t);
1603
1604 return t;
1605 }
1606
1607 #if 0
1608 /* Nobody calls this. Perhaps it's a vestige of an earlier design. */
1609
1610 /* Make a new interval of length LENGTH starting at START in the
1611 group of intervals INTERVALS, which is actually an interval tree.
1612 Returns the new interval.
1613
1614 Generate an error if the new positions would overlap an existing
1615 interval. */
1616
1617 static INTERVAL
1618 make_new_interval (intervals, start, length)
1619 INTERVAL intervals;
1620 EMACS_INT start, length;
1621 {
1622 INTERVAL slot;
1623
1624 slot = find_interval (intervals, start);
1625 if (start + length > slot->position + LENGTH (slot))
1626 error ("Interval would overlap");
1627
1628 if (start == slot->position && length == LENGTH (slot))
1629 return slot;
1630
1631 if (slot->position == start)
1632 {
1633 /* New right node. */
1634 split_interval_right (slot, length);
1635 return slot;
1636 }
1637
1638 if (slot->position + LENGTH (slot) == start + length)
1639 {
1640 /* New left node. */
1641 split_interval_left (slot, LENGTH (slot) - length);
1642 return slot;
1643 }
1644
1645 /* Convert interval SLOT into three intervals. */
1646 split_interval_left (slot, start - slot->position);
1647 split_interval_right (slot, length);
1648 return slot;
1649 }
1650 #endif
1651 \f
1652 /* Insert the intervals of SOURCE into BUFFER at POSITION.
1653 LENGTH is the length of the text in SOURCE.
1654
1655 The `position' field of the SOURCE intervals is assumed to be
1656 consistent with its parent; therefore, SOURCE must be an
1657 interval tree made with copy_interval or must be the whole
1658 tree of a buffer or a string.
1659
1660 This is used in insdel.c when inserting Lisp_Strings into the
1661 buffer. The text corresponding to SOURCE is already in the buffer
1662 when this is called. The intervals of new tree are a copy of those
1663 belonging to the string being inserted; intervals are never
1664 shared.
1665
1666 If the inserted text had no intervals associated, and we don't
1667 want to inherit the surrounding text's properties, this function
1668 simply returns -- offset_intervals should handle placing the
1669 text in the correct interval, depending on the sticky bits.
1670
1671 If the inserted text had properties (intervals), then there are two
1672 cases -- either insertion happened in the middle of some interval,
1673 or between two intervals.
1674
1675 If the text goes into the middle of an interval, then new
1676 intervals are created in the middle with only the properties of
1677 the new text, *unless* the macro MERGE_INSERTIONS is true, in
1678 which case the new text has the union of its properties and those
1679 of the text into which it was inserted.
1680
1681 If the text goes between two intervals, then if neither interval
1682 had its appropriate sticky property set (front_sticky, rear_sticky),
1683 the new text has only its properties. If one of the sticky properties
1684 is set, then the new text "sticks" to that region and its properties
1685 depend on merging as above. If both the preceding and succeeding
1686 intervals to the new text are "sticky", then the new text retains
1687 only its properties, as if neither sticky property were set. Perhaps
1688 we should consider merging all three sets of properties onto the new
1689 text... */
1690
1691 void
1692 graft_intervals_into_buffer (INTERVAL source, EMACS_INT position,
1693 EMACS_INT length, struct buffer *buffer,
1694 int inherit)
1695 {
1696 register INTERVAL under, over, this;
1697 register INTERVAL tree;
1698 EMACS_INT over_used;
1699
1700 tree = BUF_INTERVALS (buffer);
1701
1702 /* If the new text has no properties, then with inheritance it
1703 becomes part of whatever interval it was inserted into.
1704 To prevent inheritance, we must clear out the properties
1705 of the newly inserted text. */
1706 if (NULL_INTERVAL_P (source))
1707 {
1708 Lisp_Object buf;
1709 if (!inherit && !NULL_INTERVAL_P (tree) && length > 0)
1710 {
1711 XSETBUFFER (buf, buffer);
1712 set_text_properties_1 (make_number (position),
1713 make_number (position + length),
1714 Qnil, buf, 0);
1715 }
1716 if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer)))
1717 /* Shouldn't be necessary. -stef */
1718 BUF_INTERVALS (buffer) = balance_an_interval (BUF_INTERVALS (buffer));
1719 return;
1720 }
1721
1722 if (NULL_INTERVAL_P (tree))
1723 {
1724 /* The inserted text constitutes the whole buffer, so
1725 simply copy over the interval structure. */
1726 if ((BUF_Z (buffer) - BUF_BEG (buffer)) == TOTAL_LENGTH (source))
1727 {
1728 Lisp_Object buf;
1729 XSETBUFFER (buf, buffer);
1730 BUF_INTERVALS (buffer) = reproduce_tree_obj (source, buf);
1731 BUF_INTERVALS (buffer)->position = BEG;
1732 BUF_INTERVALS (buffer)->up_obj = 1;
1733
1734 /* Explicitly free the old tree here? */
1735
1736 return;
1737 }
1738
1739 /* Create an interval tree in which to place a copy
1740 of the intervals of the inserted string. */
1741 {
1742 Lisp_Object buf;
1743 XSETBUFFER (buf, buffer);
1744 tree = create_root_interval (buf);
1745 }
1746 }
1747 else if (TOTAL_LENGTH (tree) == TOTAL_LENGTH (source))
1748 /* If the buffer contains only the new string, but
1749 there was already some interval tree there, then it may be
1750 some zero length intervals. Eventually, do something clever
1751 about inserting properly. For now, just waste the old intervals. */
1752 {
1753 BUF_INTERVALS (buffer) = reproduce_tree (source, INTERVAL_PARENT (tree));
1754 BUF_INTERVALS (buffer)->position = BEG;
1755 BUF_INTERVALS (buffer)->up_obj = 1;
1756 /* Explicitly free the old tree here. */
1757
1758 return;
1759 }
1760 /* Paranoia -- the text has already been added, so this buffer
1761 should be of non-zero length. */
1762 else if (TOTAL_LENGTH (tree) == 0)
1763 abort ();
1764
1765 this = under = find_interval (tree, position);
1766 if (NULL_INTERVAL_P (under)) /* Paranoia */
1767 abort ();
1768 over = find_interval (source, interval_start_pos (source));
1769
1770 /* Here for insertion in the middle of an interval.
1771 Split off an equivalent interval to the right,
1772 then don't bother with it any more. */
1773
1774 if (position > under->position)
1775 {
1776 INTERVAL end_unchanged
1777 = split_interval_left (this, position - under->position);
1778 copy_properties (under, end_unchanged);
1779 under->position = position;
1780 }
1781 else
1782 {
1783 /* This call may have some effect because previous_interval may
1784 update `position' fields of intervals. Thus, don't ignore it
1785 for the moment. Someone please tell me the truth (K.Handa). */
1786 INTERVAL prev = previous_interval (under);
1787 (void) prev;
1788 #if 0
1789 /* But, this code surely has no effect. And, anyway,
1790 END_NONSTICKY_P is unreliable now. */
1791 if (prev && !END_NONSTICKY_P (prev))
1792 prev = 0;
1793 #endif /* 0 */
1794 }
1795
1796 /* Insertion is now at beginning of UNDER. */
1797
1798 /* The inserted text "sticks" to the interval `under',
1799 which means it gets those properties.
1800 The properties of under are the result of
1801 adjust_intervals_for_insertion, so stickiness has
1802 already been taken care of. */
1803
1804 /* OVER is the interval we are copying from next.
1805 OVER_USED says how many characters' worth of OVER
1806 have already been copied into target intervals.
1807 UNDER is the next interval in the target. */
1808 over_used = 0;
1809 while (! NULL_INTERVAL_P (over))
1810 {
1811 /* If UNDER is longer than OVER, split it. */
1812 if (LENGTH (over) - over_used < LENGTH (under))
1813 {
1814 this = split_interval_left (under, LENGTH (over) - over_used);
1815 copy_properties (under, this);
1816 }
1817 else
1818 this = under;
1819
1820 /* THIS is now the interval to copy or merge into.
1821 OVER covers all of it. */
1822 if (inherit)
1823 merge_properties (over, this);
1824 else
1825 copy_properties (over, this);
1826
1827 /* If THIS and OVER end at the same place,
1828 advance OVER to a new source interval. */
1829 if (LENGTH (this) == LENGTH (over) - over_used)
1830 {
1831 over = next_interval (over);
1832 over_used = 0;
1833 }
1834 else
1835 /* Otherwise just record that more of OVER has been used. */
1836 over_used += LENGTH (this);
1837
1838 /* Always advance to a new target interval. */
1839 under = next_interval (this);
1840 }
1841
1842 if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer)))
1843 BUF_INTERVALS (buffer) = balance_an_interval (BUF_INTERVALS (buffer));
1844 return;
1845 }
1846
1847 /* Get the value of property PROP from PLIST,
1848 which is the plist of an interval.
1849 We check for direct properties, for categories with property PROP,
1850 and for PROP appearing on the default-text-properties list. */
1851
1852 Lisp_Object
1853 textget (Lisp_Object plist, register Lisp_Object prop)
1854 {
1855 return lookup_char_property (plist, prop, 1);
1856 }
1857
1858 Lisp_Object
1859 lookup_char_property (Lisp_Object plist, register Lisp_Object prop, int textprop)
1860 {
1861 register Lisp_Object tail, fallback = Qnil;
1862
1863 for (tail = plist; CONSP (tail); tail = Fcdr (XCDR (tail)))
1864 {
1865 register Lisp_Object tem;
1866 tem = XCAR (tail);
1867 if (EQ (prop, tem))
1868 return Fcar (XCDR (tail));
1869 if (EQ (tem, Qcategory))
1870 {
1871 tem = Fcar (XCDR (tail));
1872 if (SYMBOLP (tem))
1873 fallback = Fget (tem, prop);
1874 }
1875 }
1876
1877 if (! NILP (fallback))
1878 return fallback;
1879 /* Check for alternative properties */
1880 tail = Fassq (prop, Vchar_property_alias_alist);
1881 if (! NILP (tail))
1882 {
1883 tail = XCDR (tail);
1884 for (; NILP (fallback) && CONSP (tail); tail = XCDR (tail))
1885 fallback = Fplist_get (plist, XCAR (tail));
1886 }
1887
1888 if (textprop && NILP (fallback) && CONSP (Vdefault_text_properties))
1889 fallback = Fplist_get (Vdefault_text_properties, prop);
1890 return fallback;
1891 }
1892
1893 \f
1894 /* Set point in BUFFER "temporarily" to CHARPOS, which corresponds to
1895 byte position BYTEPOS. */
1896
1897 inline void
1898 temp_set_point_both (struct buffer *buffer,
1899 EMACS_INT charpos, EMACS_INT bytepos)
1900 {
1901 /* In a single-byte buffer, the two positions must be equal. */
1902 if (BUF_ZV (buffer) == BUF_ZV_BYTE (buffer)
1903 && charpos != bytepos)
1904 abort ();
1905
1906 if (charpos > bytepos)
1907 abort ();
1908
1909 if (charpos > BUF_ZV (buffer) || charpos < BUF_BEGV (buffer))
1910 abort ();
1911
1912 SET_BUF_PT_BOTH (buffer, charpos, bytepos);
1913 }
1914
1915 /* Set point "temporarily", without checking any text properties. */
1916
1917 inline void
1918 temp_set_point (struct buffer *buffer, EMACS_INT charpos)
1919 {
1920 temp_set_point_both (buffer, charpos,
1921 buf_charpos_to_bytepos (buffer, charpos));
1922 }
1923
1924 /* Set point in BUFFER to CHARPOS. If the target position is
1925 before an intangible character, move to an ok place. */
1926
1927 void
1928 set_point (EMACS_INT charpos)
1929 {
1930 set_point_both (charpos, buf_charpos_to_bytepos (current_buffer, charpos));
1931 }
1932
1933 /* If there's an invisible character at position POS + TEST_OFFS in the
1934 current buffer, and the invisible property has a `stickiness' such that
1935 inserting a character at position POS would inherit the property it,
1936 return POS + ADJ, otherwise return POS. If TEST_INTANG is non-zero,
1937 then intangibility is required as well as invisibleness.
1938
1939 TEST_OFFS should be either 0 or -1, and ADJ should be either 1 or -1.
1940
1941 Note that `stickiness' is determined by overlay marker insertion types,
1942 if the invisible property comes from an overlay. */
1943
1944 static EMACS_INT
1945 adjust_for_invis_intang (EMACS_INT pos, EMACS_INT test_offs, EMACS_INT adj,
1946 int test_intang)
1947 {
1948 Lisp_Object invis_propval, invis_overlay;
1949 Lisp_Object test_pos;
1950
1951 if ((adj < 0 && pos + adj < BEGV) || (adj > 0 && pos + adj > ZV))
1952 /* POS + ADJ would be beyond the buffer bounds, so do no adjustment. */
1953 return pos;
1954
1955 test_pos = make_number (pos + test_offs);
1956
1957 invis_propval
1958 = get_char_property_and_overlay (test_pos, Qinvisible, Qnil,
1959 &invis_overlay);
1960
1961 if ((!test_intang
1962 || ! NILP (Fget_char_property (test_pos, Qintangible, Qnil)))
1963 && TEXT_PROP_MEANS_INVISIBLE (invis_propval)
1964 /* This next test is true if the invisible property has a stickiness
1965 such that an insertion at POS would inherit it. */
1966 && (NILP (invis_overlay)
1967 /* Invisible property is from a text-property. */
1968 ? (text_property_stickiness (Qinvisible, make_number (pos), Qnil)
1969 == (test_offs == 0 ? 1 : -1))
1970 /* Invisible property is from an overlay. */
1971 : (test_offs == 0
1972 ? XMARKER (OVERLAY_START (invis_overlay))->insertion_type == 0
1973 : XMARKER (OVERLAY_END (invis_overlay))->insertion_type == 1)))
1974 pos += adj;
1975
1976 return pos;
1977 }
1978
1979 /* Set point in BUFFER to CHARPOS, which corresponds to byte
1980 position BYTEPOS. If the target position is
1981 before an intangible character, move to an ok place. */
1982
1983 void
1984 set_point_both (EMACS_INT charpos, EMACS_INT bytepos)
1985 {
1986 register INTERVAL to, from, toprev, fromprev;
1987 EMACS_INT buffer_point;
1988 EMACS_INT old_position = PT;
1989 /* This ensures that we move forward past intangible text when the
1990 initial position is the same as the destination, in the rare
1991 instances where this is important, e.g. in line-move-finish
1992 (simple.el). */
1993 int backwards = (charpos < old_position ? 1 : 0);
1994 int have_overlays;
1995 EMACS_INT original_position;
1996
1997 BVAR (current_buffer, point_before_scroll) = Qnil;
1998
1999 if (charpos == PT)
2000 return;
2001
2002 /* In a single-byte buffer, the two positions must be equal. */
2003 eassert (ZV != ZV_BYTE || charpos == bytepos);
2004
2005 /* Check this now, before checking if the buffer has any intervals.
2006 That way, we can catch conditions which break this sanity check
2007 whether or not there are intervals in the buffer. */
2008 eassert (charpos <= ZV && charpos >= BEGV);
2009
2010 have_overlays = (current_buffer->overlays_before
2011 || current_buffer->overlays_after);
2012
2013 /* If we have no text properties and overlays,
2014 then we can do it quickly. */
2015 if (NULL_INTERVAL_P (BUF_INTERVALS (current_buffer)) && ! have_overlays)
2016 {
2017 temp_set_point_both (current_buffer, charpos, bytepos);
2018 return;
2019 }
2020
2021 /* Set TO to the interval containing the char after CHARPOS,
2022 and TOPREV to the interval containing the char before CHARPOS.
2023 Either one may be null. They may be equal. */
2024 to = find_interval (BUF_INTERVALS (current_buffer), charpos);
2025 if (charpos == BEGV)
2026 toprev = 0;
2027 else if (to && to->position == charpos)
2028 toprev = previous_interval (to);
2029 else
2030 toprev = to;
2031
2032 buffer_point = (PT == ZV ? ZV - 1 : PT);
2033
2034 /* Set FROM to the interval containing the char after PT,
2035 and FROMPREV to the interval containing the char before PT.
2036 Either one may be null. They may be equal. */
2037 /* We could cache this and save time. */
2038 from = find_interval (BUF_INTERVALS (current_buffer), buffer_point);
2039 if (buffer_point == BEGV)
2040 fromprev = 0;
2041 else if (from && from->position == PT)
2042 fromprev = previous_interval (from);
2043 else if (buffer_point != PT)
2044 fromprev = from, from = 0;
2045 else
2046 fromprev = from;
2047
2048 /* Moving within an interval. */
2049 if (to == from && toprev == fromprev && INTERVAL_VISIBLE_P (to)
2050 && ! have_overlays)
2051 {
2052 temp_set_point_both (current_buffer, charpos, bytepos);
2053 return;
2054 }
2055
2056 original_position = charpos;
2057
2058 /* If the new position is between two intangible characters
2059 with the same intangible property value,
2060 move forward or backward until a change in that property. */
2061 if (NILP (Vinhibit_point_motion_hooks)
2062 && ((! NULL_INTERVAL_P (to) && ! NULL_INTERVAL_P (toprev))
2063 || have_overlays)
2064 /* Intangibility never stops us from positioning at the beginning
2065 or end of the buffer, so don't bother checking in that case. */
2066 && charpos != BEGV && charpos != ZV)
2067 {
2068 Lisp_Object pos;
2069 Lisp_Object intangible_propval;
2070
2071 if (backwards)
2072 {
2073 /* If the preceding character is both intangible and invisible,
2074 and the invisible property is `rear-sticky', perturb it so
2075 that the search starts one character earlier -- this ensures
2076 that point can never move to the end of an invisible/
2077 intangible/rear-sticky region. */
2078 charpos = adjust_for_invis_intang (charpos, -1, -1, 1);
2079
2080 XSETINT (pos, charpos);
2081
2082 /* If following char is intangible,
2083 skip back over all chars with matching intangible property. */
2084
2085 intangible_propval = Fget_char_property (pos, Qintangible, Qnil);
2086
2087 if (! NILP (intangible_propval))
2088 {
2089 while (XINT (pos) > BEGV
2090 && EQ (Fget_char_property (make_number (XINT (pos) - 1),
2091 Qintangible, Qnil),
2092 intangible_propval))
2093 pos = Fprevious_char_property_change (pos, Qnil);
2094
2095 /* Set CHARPOS from POS, and if the final intangible character
2096 that we skipped over is also invisible, and the invisible
2097 property is `front-sticky', perturb it to be one character
2098 earlier -- this ensures that point can never move to the
2099 beginning of an invisible/intangible/front-sticky region. */
2100 charpos = adjust_for_invis_intang (XINT (pos), 0, -1, 0);
2101 }
2102 }
2103 else
2104 {
2105 /* If the following character is both intangible and invisible,
2106 and the invisible property is `front-sticky', perturb it so
2107 that the search starts one character later -- this ensures
2108 that point can never move to the beginning of an
2109 invisible/intangible/front-sticky region. */
2110 charpos = adjust_for_invis_intang (charpos, 0, 1, 1);
2111
2112 XSETINT (pos, charpos);
2113
2114 /* If preceding char is intangible,
2115 skip forward over all chars with matching intangible property. */
2116
2117 intangible_propval = Fget_char_property (make_number (charpos - 1),
2118 Qintangible, Qnil);
2119
2120 if (! NILP (intangible_propval))
2121 {
2122 while (XINT (pos) < ZV
2123 && EQ (Fget_char_property (pos, Qintangible, Qnil),
2124 intangible_propval))
2125 pos = Fnext_char_property_change (pos, Qnil);
2126
2127 /* Set CHARPOS from POS, and if the final intangible character
2128 that we skipped over is also invisible, and the invisible
2129 property is `rear-sticky', perturb it to be one character
2130 later -- this ensures that point can never move to the
2131 end of an invisible/intangible/rear-sticky region. */
2132 charpos = adjust_for_invis_intang (XINT (pos), -1, 1, 0);
2133 }
2134 }
2135
2136 bytepos = buf_charpos_to_bytepos (current_buffer, charpos);
2137 }
2138
2139 if (charpos != original_position)
2140 {
2141 /* Set TO to the interval containing the char after CHARPOS,
2142 and TOPREV to the interval containing the char before CHARPOS.
2143 Either one may be null. They may be equal. */
2144 to = find_interval (BUF_INTERVALS (current_buffer), charpos);
2145 if (charpos == BEGV)
2146 toprev = 0;
2147 else if (to && to->position == charpos)
2148 toprev = previous_interval (to);
2149 else
2150 toprev = to;
2151 }
2152
2153 /* Here TO is the interval after the stopping point
2154 and TOPREV is the interval before the stopping point.
2155 One or the other may be null. */
2156
2157 temp_set_point_both (current_buffer, charpos, bytepos);
2158
2159 /* We run point-left and point-entered hooks here, if the
2160 two intervals are not equivalent. These hooks take
2161 (old_point, new_point) as arguments. */
2162 if (NILP (Vinhibit_point_motion_hooks)
2163 && (! intervals_equal (from, to)
2164 || ! intervals_equal (fromprev, toprev)))
2165 {
2166 Lisp_Object leave_after, leave_before, enter_after, enter_before;
2167
2168 if (fromprev)
2169 leave_before = textget (fromprev->plist, Qpoint_left);
2170 else
2171 leave_before = Qnil;
2172
2173 if (from)
2174 leave_after = textget (from->plist, Qpoint_left);
2175 else
2176 leave_after = Qnil;
2177
2178 if (toprev)
2179 enter_before = textget (toprev->plist, Qpoint_entered);
2180 else
2181 enter_before = Qnil;
2182
2183 if (to)
2184 enter_after = textget (to->plist, Qpoint_entered);
2185 else
2186 enter_after = Qnil;
2187
2188 if (! EQ (leave_before, enter_before) && !NILP (leave_before))
2189 call2 (leave_before, make_number (old_position),
2190 make_number (charpos));
2191 if (! EQ (leave_after, enter_after) && !NILP (leave_after))
2192 call2 (leave_after, make_number (old_position),
2193 make_number (charpos));
2194
2195 if (! EQ (enter_before, leave_before) && !NILP (enter_before))
2196 call2 (enter_before, make_number (old_position),
2197 make_number (charpos));
2198 if (! EQ (enter_after, leave_after) && !NILP (enter_after))
2199 call2 (enter_after, make_number (old_position),
2200 make_number (charpos));
2201 }
2202 }
2203 \f
2204 /* Move point to POSITION, unless POSITION is inside an intangible
2205 segment that reaches all the way to point. */
2206
2207 void
2208 move_if_not_intangible (EMACS_INT position)
2209 {
2210 Lisp_Object pos;
2211 Lisp_Object intangible_propval;
2212
2213 XSETINT (pos, position);
2214
2215 if (! NILP (Vinhibit_point_motion_hooks))
2216 /* If intangible is inhibited, always move point to POSITION. */
2217 ;
2218 else if (PT < position && XINT (pos) < ZV)
2219 {
2220 /* We want to move forward, so check the text before POSITION. */
2221
2222 intangible_propval = Fget_char_property (pos,
2223 Qintangible, Qnil);
2224
2225 /* If following char is intangible,
2226 skip back over all chars with matching intangible property. */
2227 if (! NILP (intangible_propval))
2228 while (XINT (pos) > BEGV
2229 && EQ (Fget_char_property (make_number (XINT (pos) - 1),
2230 Qintangible, Qnil),
2231 intangible_propval))
2232 pos = Fprevious_char_property_change (pos, Qnil);
2233 }
2234 else if (XINT (pos) > BEGV)
2235 {
2236 /* We want to move backward, so check the text after POSITION. */
2237
2238 intangible_propval = Fget_char_property (make_number (XINT (pos) - 1),
2239 Qintangible, Qnil);
2240
2241 /* If following char is intangible,
2242 skip forward over all chars with matching intangible property. */
2243 if (! NILP (intangible_propval))
2244 while (XINT (pos) < ZV
2245 && EQ (Fget_char_property (pos, Qintangible, Qnil),
2246 intangible_propval))
2247 pos = Fnext_char_property_change (pos, Qnil);
2248
2249 }
2250 else if (position < BEGV)
2251 position = BEGV;
2252 else if (position > ZV)
2253 position = ZV;
2254
2255 /* If the whole stretch between PT and POSITION isn't intangible,
2256 try moving to POSITION (which means we actually move farther
2257 if POSITION is inside of intangible text). */
2258
2259 if (XINT (pos) != PT)
2260 SET_PT (position);
2261 }
2262 \f
2263 /* If text at position POS has property PROP, set *VAL to the property
2264 value, *START and *END to the beginning and end of a region that
2265 has the same property, and return 1. Otherwise return 0.
2266
2267 OBJECT is the string or buffer to look for the property in;
2268 nil means the current buffer. */
2269
2270 int
2271 get_property_and_range (EMACS_INT pos, Lisp_Object prop, Lisp_Object *val,
2272 EMACS_INT *start, EMACS_INT *end, Lisp_Object object)
2273 {
2274 INTERVAL i, prev, next;
2275
2276 if (NILP (object))
2277 i = find_interval (BUF_INTERVALS (current_buffer), pos);
2278 else if (BUFFERP (object))
2279 i = find_interval (BUF_INTERVALS (XBUFFER (object)), pos);
2280 else if (STRINGP (object))
2281 i = find_interval (STRING_INTERVALS (object), pos);
2282 else
2283 abort ();
2284
2285 if (NULL_INTERVAL_P (i) || (i->position + LENGTH (i) <= pos))
2286 return 0;
2287 *val = textget (i->plist, prop);
2288 if (NILP (*val))
2289 return 0;
2290
2291 next = i; /* remember it in advance */
2292 prev = previous_interval (i);
2293 while (! NULL_INTERVAL_P (prev)
2294 && EQ (*val, textget (prev->plist, prop)))
2295 i = prev, prev = previous_interval (prev);
2296 *start = i->position;
2297
2298 next = next_interval (i);
2299 while (! NULL_INTERVAL_P (next)
2300 && EQ (*val, textget (next->plist, prop)))
2301 i = next, next = next_interval (next);
2302 *end = i->position + LENGTH (i);
2303
2304 return 1;
2305 }
2306 \f
2307 /* Return the proper local keymap TYPE for position POSITION in
2308 BUFFER; TYPE should be one of `keymap' or `local-map'. Use the map
2309 specified by the PROP property, if any. Otherwise, if TYPE is
2310 `local-map' use BUFFER's local map.
2311
2312 POSITION must be in the accessible part of BUFFER. */
2313
2314 Lisp_Object
2315 get_local_map (register EMACS_INT position, register struct buffer *buffer,
2316 Lisp_Object type)
2317 {
2318 Lisp_Object prop, lispy_position, lispy_buffer;
2319 EMACS_INT old_begv, old_zv, old_begv_byte, old_zv_byte;
2320
2321 /* Perhaps we should just change `position' to the limit. */
2322 if (position > BUF_ZV (buffer) || position < BUF_BEGV (buffer))
2323 abort ();
2324
2325 /* Ignore narrowing, so that a local map continues to be valid even if
2326 the visible region contains no characters and hence no properties. */
2327 old_begv = BUF_BEGV (buffer);
2328 old_zv = BUF_ZV (buffer);
2329 old_begv_byte = BUF_BEGV_BYTE (buffer);
2330 old_zv_byte = BUF_ZV_BYTE (buffer);
2331
2332 SET_BUF_BEGV_BOTH (buffer, BUF_BEG (buffer), BUF_BEG_BYTE (buffer));
2333 SET_BUF_ZV_BOTH (buffer, BUF_Z (buffer), BUF_Z_BYTE (buffer));
2334
2335 XSETFASTINT (lispy_position, position);
2336 XSETBUFFER (lispy_buffer, buffer);
2337 /* First check if the CHAR has any property. This is because when
2338 we click with the mouse, the mouse pointer is really pointing
2339 to the CHAR after POS. */
2340 prop = Fget_char_property (lispy_position, type, lispy_buffer);
2341 /* If not, look at the POS's properties. This is necessary because when
2342 editing a field with a `local-map' property, we want insertion at the end
2343 to obey the `local-map' property. */
2344 if (NILP (prop))
2345 prop = get_pos_property (lispy_position, type, lispy_buffer);
2346
2347 SET_BUF_BEGV_BOTH (buffer, old_begv, old_begv_byte);
2348 SET_BUF_ZV_BOTH (buffer, old_zv, old_zv_byte);
2349
2350 /* Use the local map only if it is valid. */
2351 prop = get_keymap (prop, 0, 0);
2352 if (CONSP (prop))
2353 return prop;
2354
2355 if (EQ (type, Qkeymap))
2356 return Qnil;
2357 else
2358 return BVAR (buffer, keymap);
2359 }
2360 \f
2361 /* Produce an interval tree reflecting the intervals in
2362 TREE from START to START + LENGTH.
2363 The new interval tree has no parent and has a starting-position of 0. */
2364
2365 INTERVAL
2366 copy_intervals (INTERVAL tree, EMACS_INT start, EMACS_INT length)
2367 {
2368 register INTERVAL i, new, t;
2369 register EMACS_INT got, prevlen;
2370
2371 if (NULL_INTERVAL_P (tree) || length <= 0)
2372 return NULL_INTERVAL;
2373
2374 i = find_interval (tree, start);
2375 if (NULL_INTERVAL_P (i) || LENGTH (i) == 0)
2376 abort ();
2377
2378 /* If there is only one interval and it's the default, return nil. */
2379 if ((start - i->position + 1 + length) < LENGTH (i)
2380 && DEFAULT_INTERVAL_P (i))
2381 return NULL_INTERVAL;
2382
2383 new = make_interval ();
2384 new->position = 0;
2385 got = (LENGTH (i) - (start - i->position));
2386 new->total_length = length;
2387 CHECK_TOTAL_LENGTH (new);
2388 copy_properties (i, new);
2389
2390 t = new;
2391 prevlen = got;
2392 while (got < length)
2393 {
2394 i = next_interval (i);
2395 t = split_interval_right (t, prevlen);
2396 copy_properties (i, t);
2397 prevlen = LENGTH (i);
2398 got += prevlen;
2399 }
2400
2401 return balance_an_interval (new);
2402 }
2403
2404 /* Give STRING the properties of BUFFER from POSITION to LENGTH. */
2405
2406 inline void
2407 copy_intervals_to_string (Lisp_Object string, struct buffer *buffer,
2408 EMACS_INT position, EMACS_INT length)
2409 {
2410 INTERVAL interval_copy = copy_intervals (BUF_INTERVALS (buffer),
2411 position, length);
2412 if (NULL_INTERVAL_P (interval_copy))
2413 return;
2414
2415 SET_INTERVAL_OBJECT (interval_copy, string);
2416 STRING_SET_INTERVALS (string, interval_copy);
2417 }
2418 \f
2419 /* Return 1 if strings S1 and S2 have identical properties; 0 otherwise.
2420 Assume they have identical characters. */
2421
2422 int
2423 compare_string_intervals (Lisp_Object s1, Lisp_Object s2)
2424 {
2425 INTERVAL i1, i2;
2426 EMACS_INT pos = 0;
2427 EMACS_INT end = SCHARS (s1);
2428
2429 i1 = find_interval (STRING_INTERVALS (s1), 0);
2430 i2 = find_interval (STRING_INTERVALS (s2), 0);
2431
2432 while (pos < end)
2433 {
2434 /* Determine how far we can go before we reach the end of I1 or I2. */
2435 EMACS_INT len1 = (i1 != 0 ? INTERVAL_LAST_POS (i1) : end) - pos;
2436 EMACS_INT len2 = (i2 != 0 ? INTERVAL_LAST_POS (i2) : end) - pos;
2437 EMACS_INT distance = min (len1, len2);
2438
2439 /* If we ever find a mismatch between the strings,
2440 they differ. */
2441 if (! intervals_equal (i1, i2))
2442 return 0;
2443
2444 /* Advance POS till the end of the shorter interval,
2445 and advance one or both interval pointers for the new position. */
2446 pos += distance;
2447 if (len1 == distance)
2448 i1 = next_interval (i1);
2449 if (len2 == distance)
2450 i2 = next_interval (i2);
2451 }
2452 return 1;
2453 }
2454 \f
2455 /* Recursively adjust interval I in the current buffer
2456 for setting enable_multibyte_characters to MULTI_FLAG.
2457 The range of interval I is START ... END in characters,
2458 START_BYTE ... END_BYTE in bytes. */
2459
2460 static void
2461 set_intervals_multibyte_1 (INTERVAL i, int multi_flag,
2462 EMACS_INT start, EMACS_INT start_byte,
2463 EMACS_INT end, EMACS_INT end_byte)
2464 {
2465 /* Fix the length of this interval. */
2466 if (multi_flag)
2467 i->total_length = end - start;
2468 else
2469 i->total_length = end_byte - start_byte;
2470 CHECK_TOTAL_LENGTH (i);
2471
2472 if (TOTAL_LENGTH (i) == 0)
2473 {
2474 delete_interval (i);
2475 return;
2476 }
2477
2478 /* Recursively fix the length of the subintervals. */
2479 if (i->left)
2480 {
2481 EMACS_INT left_end, left_end_byte;
2482
2483 if (multi_flag)
2484 {
2485 EMACS_INT temp;
2486 left_end_byte = start_byte + LEFT_TOTAL_LENGTH (i);
2487 left_end = BYTE_TO_CHAR (left_end_byte);
2488
2489 temp = CHAR_TO_BYTE (left_end);
2490
2491 /* If LEFT_END_BYTE is in the middle of a character,
2492 adjust it and LEFT_END to a char boundary. */
2493 if (left_end_byte > temp)
2494 {
2495 left_end_byte = temp;
2496 }
2497 if (left_end_byte < temp)
2498 {
2499 left_end--;
2500 left_end_byte = CHAR_TO_BYTE (left_end);
2501 }
2502 }
2503 else
2504 {
2505 left_end = start + LEFT_TOTAL_LENGTH (i);
2506 left_end_byte = CHAR_TO_BYTE (left_end);
2507 }
2508
2509 set_intervals_multibyte_1 (i->left, multi_flag, start, start_byte,
2510 left_end, left_end_byte);
2511 }
2512 if (i->right)
2513 {
2514 EMACS_INT right_start_byte, right_start;
2515
2516 if (multi_flag)
2517 {
2518 EMACS_INT temp;
2519
2520 right_start_byte = end_byte - RIGHT_TOTAL_LENGTH (i);
2521 right_start = BYTE_TO_CHAR (right_start_byte);
2522
2523 /* If RIGHT_START_BYTE is in the middle of a character,
2524 adjust it and RIGHT_START to a char boundary. */
2525 temp = CHAR_TO_BYTE (right_start);
2526
2527 if (right_start_byte < temp)
2528 {
2529 right_start_byte = temp;
2530 }
2531 if (right_start_byte > temp)
2532 {
2533 right_start++;
2534 right_start_byte = CHAR_TO_BYTE (right_start);
2535 }
2536 }
2537 else
2538 {
2539 right_start = end - RIGHT_TOTAL_LENGTH (i);
2540 right_start_byte = CHAR_TO_BYTE (right_start);
2541 }
2542
2543 set_intervals_multibyte_1 (i->right, multi_flag,
2544 right_start, right_start_byte,
2545 end, end_byte);
2546 }
2547
2548 /* Rounding to char boundaries can theoretically ake this interval
2549 spurious. If so, delete one child, and copy its property list
2550 to this interval. */
2551 if (LEFT_TOTAL_LENGTH (i) + RIGHT_TOTAL_LENGTH (i) >= TOTAL_LENGTH (i))
2552 {
2553 if ((i)->left)
2554 {
2555 (i)->plist = (i)->left->plist;
2556 (i)->left->total_length = 0;
2557 delete_interval ((i)->left);
2558 }
2559 else
2560 {
2561 (i)->plist = (i)->right->plist;
2562 (i)->right->total_length = 0;
2563 delete_interval ((i)->right);
2564 }
2565 }
2566 }
2567
2568 /* Update the intervals of the current buffer
2569 to fit the contents as multibyte (if MULTI_FLAG is 1)
2570 or to fit them as non-multibyte (if MULTI_FLAG is 0). */
2571
2572 void
2573 set_intervals_multibyte (int multi_flag)
2574 {
2575 if (BUF_INTERVALS (current_buffer))
2576 set_intervals_multibyte_1 (BUF_INTERVALS (current_buffer), multi_flag,
2577 BEG, BEG_BYTE, Z, Z_BYTE);
2578 }