Switch from NO_RETURN to C11's _Noreturn.
[bpt/emacs.git] / src / search.c
1 /* String search routines for GNU Emacs.
2
3 Copyright (C) 1985-1987, 1993-1994, 1997-1999, 2001-2012
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include <config.h>
23 #include <setjmp.h>
24 #include "lisp.h"
25 #include "syntax.h"
26 #include "category.h"
27 #include "character.h"
28 #include "buffer.h"
29 #include "charset.h"
30 #include "region-cache.h"
31 #include "commands.h"
32 #include "blockinput.h"
33 #include "intervals.h"
34
35 #include <sys/types.h>
36 #include "regex.h"
37
38 #define REGEXP_CACHE_SIZE 20
39
40 /* If the regexp is non-nil, then the buffer contains the compiled form
41 of that regexp, suitable for searching. */
42 struct regexp_cache
43 {
44 struct regexp_cache *next;
45 Lisp_Object regexp, whitespace_regexp;
46 /* Syntax table for which the regexp applies. We need this because
47 of character classes. If this is t, then the compiled pattern is valid
48 for any syntax-table. */
49 Lisp_Object syntax_table;
50 struct re_pattern_buffer buf;
51 char fastmap[0400];
52 /* Nonzero means regexp was compiled to do full POSIX backtracking. */
53 char posix;
54 };
55
56 /* The instances of that struct. */
57 static struct regexp_cache searchbufs[REGEXP_CACHE_SIZE];
58
59 /* The head of the linked list; points to the most recently used buffer. */
60 static struct regexp_cache *searchbuf_head;
61
62
63 /* Every call to re_match, etc., must pass &search_regs as the regs
64 argument unless you can show it is unnecessary (i.e., if re_match
65 is certainly going to be called again before region-around-match
66 can be called).
67
68 Since the registers are now dynamically allocated, we need to make
69 sure not to refer to the Nth register before checking that it has
70 been allocated by checking search_regs.num_regs.
71
72 The regex code keeps track of whether it has allocated the search
73 buffer using bits in the re_pattern_buffer. This means that whenever
74 you compile a new pattern, it completely forgets whether it has
75 allocated any registers, and will allocate new registers the next
76 time you call a searching or matching function. Therefore, we need
77 to call re_set_registers after compiling a new pattern or after
78 setting the match registers, so that the regex functions will be
79 able to free or re-allocate it properly. */
80 static struct re_registers search_regs;
81
82 /* The buffer in which the last search was performed, or
83 Qt if the last search was done in a string;
84 Qnil if no searching has been done yet. */
85 static Lisp_Object last_thing_searched;
86
87 /* Error condition signaled when regexp compile_pattern fails. */
88 static Lisp_Object Qinvalid_regexp;
89
90 /* Error condition used for failing searches. */
91 static Lisp_Object Qsearch_failed;
92
93 static void set_search_regs (ptrdiff_t, ptrdiff_t);
94 static void save_search_regs (void);
95 static EMACS_INT simple_search (EMACS_INT, unsigned char *, ptrdiff_t,
96 ptrdiff_t, Lisp_Object, ptrdiff_t, ptrdiff_t,
97 ptrdiff_t, ptrdiff_t);
98 static EMACS_INT boyer_moore (EMACS_INT, unsigned char *, ptrdiff_t,
99 Lisp_Object, Lisp_Object, ptrdiff_t,
100 ptrdiff_t, int);
101 static EMACS_INT search_buffer (Lisp_Object, ptrdiff_t, ptrdiff_t,
102 ptrdiff_t, ptrdiff_t, EMACS_INT, int,
103 Lisp_Object, Lisp_Object, int);
104
105 static _Noreturn void
106 matcher_overflow (void)
107 {
108 error ("Stack overflow in regexp matcher");
109 }
110
111 /* Compile a regexp and signal a Lisp error if anything goes wrong.
112 PATTERN is the pattern to compile.
113 CP is the place to put the result.
114 TRANSLATE is a translation table for ignoring case, or nil for none.
115 POSIX is nonzero if we want full backtracking (POSIX style)
116 for this pattern. 0 means backtrack only enough to get a valid match.
117
118 The behavior also depends on Vsearch_spaces_regexp. */
119
120 static void
121 compile_pattern_1 (struct regexp_cache *cp, Lisp_Object pattern, Lisp_Object translate, int posix)
122 {
123 char *val;
124 reg_syntax_t old;
125
126 cp->regexp = Qnil;
127 cp->buf.translate = (! NILP (translate) ? translate : make_number (0));
128 cp->posix = posix;
129 cp->buf.multibyte = STRING_MULTIBYTE (pattern);
130 cp->buf.charset_unibyte = charset_unibyte;
131 if (STRINGP (Vsearch_spaces_regexp))
132 cp->whitespace_regexp = Vsearch_spaces_regexp;
133 else
134 cp->whitespace_regexp = Qnil;
135
136 /* rms: I think BLOCK_INPUT is not needed here any more,
137 because regex.c defines malloc to call xmalloc.
138 Using BLOCK_INPUT here means the debugger won't run if an error occurs.
139 So let's turn it off. */
140 /* BLOCK_INPUT; */
141 old = re_set_syntax (RE_SYNTAX_EMACS
142 | (posix ? 0 : RE_NO_POSIX_BACKTRACKING));
143
144 if (STRINGP (Vsearch_spaces_regexp))
145 re_set_whitespace_regexp (SSDATA (Vsearch_spaces_regexp));
146 else
147 re_set_whitespace_regexp (NULL);
148
149 val = (char *) re_compile_pattern (SSDATA (pattern),
150 SBYTES (pattern), &cp->buf);
151
152 /* If the compiled pattern hard codes some of the contents of the
153 syntax-table, it can only be reused with *this* syntax table. */
154 cp->syntax_table = cp->buf.used_syntax ? BVAR (current_buffer, syntax_table) : Qt;
155
156 re_set_whitespace_regexp (NULL);
157
158 re_set_syntax (old);
159 /* UNBLOCK_INPUT; */
160 if (val)
161 xsignal1 (Qinvalid_regexp, build_string (val));
162
163 cp->regexp = Fcopy_sequence (pattern);
164 }
165
166 /* Shrink each compiled regexp buffer in the cache
167 to the size actually used right now.
168 This is called from garbage collection. */
169
170 void
171 shrink_regexp_cache (void)
172 {
173 struct regexp_cache *cp;
174
175 for (cp = searchbuf_head; cp != 0; cp = cp->next)
176 {
177 cp->buf.allocated = cp->buf.used;
178 cp->buf.buffer
179 = (unsigned char *) xrealloc (cp->buf.buffer, cp->buf.used);
180 }
181 }
182
183 /* Clear the regexp cache w.r.t. a particular syntax table,
184 because it was changed.
185 There is no danger of memory leak here because re_compile_pattern
186 automagically manages the memory in each re_pattern_buffer struct,
187 based on its `allocated' and `buffer' values. */
188 void
189 clear_regexp_cache (void)
190 {
191 int i;
192
193 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
194 /* It's tempting to compare with the syntax-table we've actually changed,
195 but it's not sufficient because char-table inheritance means that
196 modifying one syntax-table can change others at the same time. */
197 if (!EQ (searchbufs[i].syntax_table, Qt))
198 searchbufs[i].regexp = Qnil;
199 }
200
201 /* Compile a regexp if necessary, but first check to see if there's one in
202 the cache.
203 PATTERN is the pattern to compile.
204 TRANSLATE is a translation table for ignoring case, or nil for none.
205 REGP is the structure that says where to store the "register"
206 values that will result from matching this pattern.
207 If it is 0, we should compile the pattern not to record any
208 subexpression bounds.
209 POSIX is nonzero if we want full backtracking (POSIX style)
210 for this pattern. 0 means backtrack only enough to get a valid match. */
211
212 struct re_pattern_buffer *
213 compile_pattern (Lisp_Object pattern, struct re_registers *regp, Lisp_Object translate, int posix, int multibyte)
214 {
215 struct regexp_cache *cp, **cpp;
216
217 for (cpp = &searchbuf_head; ; cpp = &cp->next)
218 {
219 cp = *cpp;
220 /* Entries are initialized to nil, and may be set to nil by
221 compile_pattern_1 if the pattern isn't valid. Don't apply
222 string accessors in those cases. However, compile_pattern_1
223 is only applied to the cache entry we pick here to reuse. So
224 nil should never appear before a non-nil entry. */
225 if (NILP (cp->regexp))
226 goto compile_it;
227 if (SCHARS (cp->regexp) == SCHARS (pattern)
228 && STRING_MULTIBYTE (cp->regexp) == STRING_MULTIBYTE (pattern)
229 && !NILP (Fstring_equal (cp->regexp, pattern))
230 && EQ (cp->buf.translate, (! NILP (translate) ? translate : make_number (0)))
231 && cp->posix == posix
232 && (EQ (cp->syntax_table, Qt)
233 || EQ (cp->syntax_table, BVAR (current_buffer, syntax_table)))
234 && !NILP (Fequal (cp->whitespace_regexp, Vsearch_spaces_regexp))
235 && cp->buf.charset_unibyte == charset_unibyte)
236 break;
237
238 /* If we're at the end of the cache, compile into the nil cell
239 we found, or the last (least recently used) cell with a
240 string value. */
241 if (cp->next == 0)
242 {
243 compile_it:
244 compile_pattern_1 (cp, pattern, translate, posix);
245 break;
246 }
247 }
248
249 /* When we get here, cp (aka *cpp) contains the compiled pattern,
250 either because we found it in the cache or because we just compiled it.
251 Move it to the front of the queue to mark it as most recently used. */
252 *cpp = cp->next;
253 cp->next = searchbuf_head;
254 searchbuf_head = cp;
255
256 /* Advise the searching functions about the space we have allocated
257 for register data. */
258 if (regp)
259 re_set_registers (&cp->buf, regp, regp->num_regs, regp->start, regp->end);
260
261 /* The compiled pattern can be used both for multibyte and unibyte
262 target. But, we have to tell which the pattern is used for. */
263 cp->buf.target_multibyte = multibyte;
264
265 return &cp->buf;
266 }
267
268 \f
269 static Lisp_Object
270 looking_at_1 (Lisp_Object string, int posix)
271 {
272 Lisp_Object val;
273 unsigned char *p1, *p2;
274 ptrdiff_t s1, s2;
275 register ptrdiff_t i;
276 struct re_pattern_buffer *bufp;
277
278 if (running_asynch_code)
279 save_search_regs ();
280
281 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
282 XCHAR_TABLE (BVAR (current_buffer, case_canon_table))->extras[2]
283 = BVAR (current_buffer, case_eqv_table);
284
285 CHECK_STRING (string);
286 bufp = compile_pattern (string,
287 (NILP (Vinhibit_changing_match_data)
288 ? &search_regs : NULL),
289 (!NILP (BVAR (current_buffer, case_fold_search))
290 ? BVAR (current_buffer, case_canon_table) : Qnil),
291 posix,
292 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
293
294 immediate_quit = 1;
295 QUIT; /* Do a pending quit right away, to avoid paradoxical behavior */
296
297 /* Get pointers and sizes of the two strings
298 that make up the visible portion of the buffer. */
299
300 p1 = BEGV_ADDR;
301 s1 = GPT_BYTE - BEGV_BYTE;
302 p2 = GAP_END_ADDR;
303 s2 = ZV_BYTE - GPT_BYTE;
304 if (s1 < 0)
305 {
306 p2 = p1;
307 s2 = ZV_BYTE - BEGV_BYTE;
308 s1 = 0;
309 }
310 if (s2 < 0)
311 {
312 s1 = ZV_BYTE - BEGV_BYTE;
313 s2 = 0;
314 }
315
316 re_match_object = Qnil;
317
318 i = re_match_2 (bufp, (char *) p1, s1, (char *) p2, s2,
319 PT_BYTE - BEGV_BYTE,
320 (NILP (Vinhibit_changing_match_data)
321 ? &search_regs : NULL),
322 ZV_BYTE - BEGV_BYTE);
323 immediate_quit = 0;
324
325 if (i == -2)
326 matcher_overflow ();
327
328 val = (0 <= i ? Qt : Qnil);
329 if (NILP (Vinhibit_changing_match_data) && i >= 0)
330 for (i = 0; i < search_regs.num_regs; i++)
331 if (search_regs.start[i] >= 0)
332 {
333 search_regs.start[i]
334 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
335 search_regs.end[i]
336 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
337 }
338
339 /* Set last_thing_searched only when match data is changed. */
340 if (NILP (Vinhibit_changing_match_data))
341 XSETBUFFER (last_thing_searched, current_buffer);
342
343 return val;
344 }
345
346 DEFUN ("looking-at", Flooking_at, Slooking_at, 1, 1, 0,
347 doc: /* Return t if text after point matches regular expression REGEXP.
348 This function modifies the match data that `match-beginning',
349 `match-end' and `match-data' access; save and restore the match
350 data if you want to preserve them. */)
351 (Lisp_Object regexp)
352 {
353 return looking_at_1 (regexp, 0);
354 }
355
356 DEFUN ("posix-looking-at", Fposix_looking_at, Sposix_looking_at, 1, 1, 0,
357 doc: /* Return t if text after point matches regular expression REGEXP.
358 Find the longest match, in accord with Posix regular expression rules.
359 This function modifies the match data that `match-beginning',
360 `match-end' and `match-data' access; save and restore the match
361 data if you want to preserve them. */)
362 (Lisp_Object regexp)
363 {
364 return looking_at_1 (regexp, 1);
365 }
366 \f
367 static Lisp_Object
368 string_match_1 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start, int posix)
369 {
370 ptrdiff_t val;
371 struct re_pattern_buffer *bufp;
372 EMACS_INT pos;
373 ptrdiff_t pos_byte, i;
374
375 if (running_asynch_code)
376 save_search_regs ();
377
378 CHECK_STRING (regexp);
379 CHECK_STRING (string);
380
381 if (NILP (start))
382 pos = 0, pos_byte = 0;
383 else
384 {
385 ptrdiff_t len = SCHARS (string);
386
387 CHECK_NUMBER (start);
388 pos = XINT (start);
389 if (pos < 0 && -pos <= len)
390 pos = len + pos;
391 else if (0 > pos || pos > len)
392 args_out_of_range (string, start);
393 pos_byte = string_char_to_byte (string, pos);
394 }
395
396 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
397 XCHAR_TABLE (BVAR (current_buffer, case_canon_table))->extras[2]
398 = BVAR (current_buffer, case_eqv_table);
399
400 bufp = compile_pattern (regexp,
401 (NILP (Vinhibit_changing_match_data)
402 ? &search_regs : NULL),
403 (!NILP (BVAR (current_buffer, case_fold_search))
404 ? BVAR (current_buffer, case_canon_table) : Qnil),
405 posix,
406 STRING_MULTIBYTE (string));
407 immediate_quit = 1;
408 re_match_object = string;
409
410 val = re_search (bufp, SSDATA (string),
411 SBYTES (string), pos_byte,
412 SBYTES (string) - pos_byte,
413 (NILP (Vinhibit_changing_match_data)
414 ? &search_regs : NULL));
415 immediate_quit = 0;
416
417 /* Set last_thing_searched only when match data is changed. */
418 if (NILP (Vinhibit_changing_match_data))
419 last_thing_searched = Qt;
420
421 if (val == -2)
422 matcher_overflow ();
423 if (val < 0) return Qnil;
424
425 if (NILP (Vinhibit_changing_match_data))
426 for (i = 0; i < search_regs.num_regs; i++)
427 if (search_regs.start[i] >= 0)
428 {
429 search_regs.start[i]
430 = string_byte_to_char (string, search_regs.start[i]);
431 search_regs.end[i]
432 = string_byte_to_char (string, search_regs.end[i]);
433 }
434
435 return make_number (string_byte_to_char (string, val));
436 }
437
438 DEFUN ("string-match", Fstring_match, Sstring_match, 2, 3, 0,
439 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
440 Matching ignores case if `case-fold-search' is non-nil.
441 If third arg START is non-nil, start search at that index in STRING.
442 For index of first char beyond the match, do (match-end 0).
443 `match-end' and `match-beginning' also give indices of substrings
444 matched by parenthesis constructs in the pattern.
445
446 You can use the function `match-string' to extract the substrings
447 matched by the parenthesis constructions in REGEXP. */)
448 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
449 {
450 return string_match_1 (regexp, string, start, 0);
451 }
452
453 DEFUN ("posix-string-match", Fposix_string_match, Sposix_string_match, 2, 3, 0,
454 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
455 Find the longest match, in accord with Posix regular expression rules.
456 Case is ignored if `case-fold-search' is non-nil in the current buffer.
457 If third arg START is non-nil, start search at that index in STRING.
458 For index of first char beyond the match, do (match-end 0).
459 `match-end' and `match-beginning' also give indices of substrings
460 matched by parenthesis constructs in the pattern. */)
461 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
462 {
463 return string_match_1 (regexp, string, start, 1);
464 }
465
466 /* Match REGEXP against STRING, searching all of STRING,
467 and return the index of the match, or negative on failure.
468 This does not clobber the match data. */
469
470 ptrdiff_t
471 fast_string_match (Lisp_Object regexp, Lisp_Object string)
472 {
473 ptrdiff_t val;
474 struct re_pattern_buffer *bufp;
475
476 bufp = compile_pattern (regexp, 0, Qnil,
477 0, STRING_MULTIBYTE (string));
478 immediate_quit = 1;
479 re_match_object = string;
480
481 val = re_search (bufp, SSDATA (string),
482 SBYTES (string), 0,
483 SBYTES (string), 0);
484 immediate_quit = 0;
485 return val;
486 }
487
488 /* Match REGEXP against STRING, searching all of STRING ignoring case,
489 and return the index of the match, or negative on failure.
490 This does not clobber the match data.
491 We assume that STRING contains single-byte characters. */
492
493 ptrdiff_t
494 fast_c_string_match_ignore_case (Lisp_Object regexp, const char *string)
495 {
496 ptrdiff_t val;
497 struct re_pattern_buffer *bufp;
498 size_t len = strlen (string);
499
500 regexp = string_make_unibyte (regexp);
501 re_match_object = Qt;
502 bufp = compile_pattern (regexp, 0,
503 Vascii_canon_table, 0,
504 0);
505 immediate_quit = 1;
506 val = re_search (bufp, string, len, 0, len, 0);
507 immediate_quit = 0;
508 return val;
509 }
510
511 /* Like fast_string_match but ignore case. */
512
513 ptrdiff_t
514 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
515 {
516 ptrdiff_t val;
517 struct re_pattern_buffer *bufp;
518
519 bufp = compile_pattern (regexp, 0, Vascii_canon_table,
520 0, STRING_MULTIBYTE (string));
521 immediate_quit = 1;
522 re_match_object = string;
523
524 val = re_search (bufp, SSDATA (string),
525 SBYTES (string), 0,
526 SBYTES (string), 0);
527 immediate_quit = 0;
528 return val;
529 }
530 \f
531 /* Match REGEXP against the characters after POS to LIMIT, and return
532 the number of matched characters. If STRING is non-nil, match
533 against the characters in it. In that case, POS and LIMIT are
534 indices into the string. This function doesn't modify the match
535 data. */
536
537 ptrdiff_t
538 fast_looking_at (Lisp_Object regexp, ptrdiff_t pos, ptrdiff_t pos_byte, ptrdiff_t limit, ptrdiff_t limit_byte, Lisp_Object string)
539 {
540 int multibyte;
541 struct re_pattern_buffer *buf;
542 unsigned char *p1, *p2;
543 ptrdiff_t s1, s2;
544 ptrdiff_t len;
545
546 if (STRINGP (string))
547 {
548 if (pos_byte < 0)
549 pos_byte = string_char_to_byte (string, pos);
550 if (limit_byte < 0)
551 limit_byte = string_char_to_byte (string, limit);
552 p1 = NULL;
553 s1 = 0;
554 p2 = SDATA (string);
555 s2 = SBYTES (string);
556 re_match_object = string;
557 multibyte = STRING_MULTIBYTE (string);
558 }
559 else
560 {
561 if (pos_byte < 0)
562 pos_byte = CHAR_TO_BYTE (pos);
563 if (limit_byte < 0)
564 limit_byte = CHAR_TO_BYTE (limit);
565 pos_byte -= BEGV_BYTE;
566 limit_byte -= BEGV_BYTE;
567 p1 = BEGV_ADDR;
568 s1 = GPT_BYTE - BEGV_BYTE;
569 p2 = GAP_END_ADDR;
570 s2 = ZV_BYTE - GPT_BYTE;
571 if (s1 < 0)
572 {
573 p2 = p1;
574 s2 = ZV_BYTE - BEGV_BYTE;
575 s1 = 0;
576 }
577 if (s2 < 0)
578 {
579 s1 = ZV_BYTE - BEGV_BYTE;
580 s2 = 0;
581 }
582 re_match_object = Qnil;
583 multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
584 }
585
586 buf = compile_pattern (regexp, 0, Qnil, 0, multibyte);
587 immediate_quit = 1;
588 len = re_match_2 (buf, (char *) p1, s1, (char *) p2, s2,
589 pos_byte, NULL, limit_byte);
590 immediate_quit = 0;
591
592 return len;
593 }
594
595 \f
596 /* The newline cache: remembering which sections of text have no newlines. */
597
598 /* If the user has requested newline caching, make sure it's on.
599 Otherwise, make sure it's off.
600 This is our cheezy way of associating an action with the change of
601 state of a buffer-local variable. */
602 static void
603 newline_cache_on_off (struct buffer *buf)
604 {
605 if (NILP (BVAR (buf, cache_long_line_scans)))
606 {
607 /* It should be off. */
608 if (buf->newline_cache)
609 {
610 free_region_cache (buf->newline_cache);
611 buf->newline_cache = 0;
612 }
613 }
614 else
615 {
616 /* It should be on. */
617 if (buf->newline_cache == 0)
618 buf->newline_cache = new_region_cache ();
619 }
620 }
621
622 \f
623 /* Search for COUNT instances of the character TARGET between START and END.
624
625 If COUNT is positive, search forwards; END must be >= START.
626 If COUNT is negative, search backwards for the -COUNTth instance;
627 END must be <= START.
628 If COUNT is zero, do anything you please; run rogue, for all I care.
629
630 If END is zero, use BEGV or ZV instead, as appropriate for the
631 direction indicated by COUNT.
632
633 If we find COUNT instances, set *SHORTAGE to zero, and return the
634 position past the COUNTth match. Note that for reverse motion
635 this is not the same as the usual convention for Emacs motion commands.
636
637 If we don't find COUNT instances before reaching END, set *SHORTAGE
638 to the number of TARGETs left unfound, and return END.
639
640 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
641 except when inside redisplay. */
642
643 ptrdiff_t
644 scan_buffer (register int target, ptrdiff_t start, ptrdiff_t end,
645 ptrdiff_t count, ptrdiff_t *shortage, int allow_quit)
646 {
647 struct region_cache *newline_cache;
648 int direction;
649
650 if (count > 0)
651 {
652 direction = 1;
653 if (! end) end = ZV;
654 }
655 else
656 {
657 direction = -1;
658 if (! end) end = BEGV;
659 }
660
661 newline_cache_on_off (current_buffer);
662 newline_cache = current_buffer->newline_cache;
663
664 if (shortage != 0)
665 *shortage = 0;
666
667 immediate_quit = allow_quit;
668
669 if (count > 0)
670 while (start != end)
671 {
672 /* Our innermost scanning loop is very simple; it doesn't know
673 about gaps, buffer ends, or the newline cache. ceiling is
674 the position of the last character before the next such
675 obstacle --- the last character the dumb search loop should
676 examine. */
677 ptrdiff_t ceiling_byte = CHAR_TO_BYTE (end) - 1;
678 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
679 ptrdiff_t tem;
680
681 /* If we're looking for a newline, consult the newline cache
682 to see where we can avoid some scanning. */
683 if (target == '\n' && newline_cache)
684 {
685 ptrdiff_t next_change;
686 immediate_quit = 0;
687 while (region_cache_forward
688 (current_buffer, newline_cache, start_byte, &next_change))
689 start_byte = next_change;
690 immediate_quit = allow_quit;
691
692 /* START should never be after END. */
693 if (start_byte > ceiling_byte)
694 start_byte = ceiling_byte;
695
696 /* Now the text after start is an unknown region, and
697 next_change is the position of the next known region. */
698 ceiling_byte = min (next_change - 1, ceiling_byte);
699 }
700
701 /* The dumb loop can only scan text stored in contiguous
702 bytes. BUFFER_CEILING_OF returns the last character
703 position that is contiguous, so the ceiling is the
704 position after that. */
705 tem = BUFFER_CEILING_OF (start_byte);
706 ceiling_byte = min (tem, ceiling_byte);
707
708 {
709 /* The termination address of the dumb loop. */
710 register unsigned char *ceiling_addr
711 = BYTE_POS_ADDR (ceiling_byte) + 1;
712 register unsigned char *cursor
713 = BYTE_POS_ADDR (start_byte);
714 unsigned char *base = cursor;
715
716 while (cursor < ceiling_addr)
717 {
718 unsigned char *scan_start = cursor;
719
720 /* The dumb loop. */
721 while (*cursor != target && ++cursor < ceiling_addr)
722 ;
723
724 /* If we're looking for newlines, cache the fact that
725 the region from start to cursor is free of them. */
726 if (target == '\n' && newline_cache)
727 know_region_cache (current_buffer, newline_cache,
728 BYTE_TO_CHAR (start_byte + scan_start - base),
729 BYTE_TO_CHAR (start_byte + cursor - base));
730
731 /* Did we find the target character? */
732 if (cursor < ceiling_addr)
733 {
734 if (--count == 0)
735 {
736 immediate_quit = 0;
737 return BYTE_TO_CHAR (start_byte + cursor - base + 1);
738 }
739 cursor++;
740 }
741 }
742
743 start = BYTE_TO_CHAR (start_byte + cursor - base);
744 }
745 }
746 else
747 while (start > end)
748 {
749 /* The last character to check before the next obstacle. */
750 ptrdiff_t ceiling_byte = CHAR_TO_BYTE (end);
751 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
752 ptrdiff_t tem;
753
754 /* Consult the newline cache, if appropriate. */
755 if (target == '\n' && newline_cache)
756 {
757 ptrdiff_t next_change;
758 immediate_quit = 0;
759 while (region_cache_backward
760 (current_buffer, newline_cache, start_byte, &next_change))
761 start_byte = next_change;
762 immediate_quit = allow_quit;
763
764 /* Start should never be at or before end. */
765 if (start_byte <= ceiling_byte)
766 start_byte = ceiling_byte + 1;
767
768 /* Now the text before start is an unknown region, and
769 next_change is the position of the next known region. */
770 ceiling_byte = max (next_change, ceiling_byte);
771 }
772
773 /* Stop scanning before the gap. */
774 tem = BUFFER_FLOOR_OF (start_byte - 1);
775 ceiling_byte = max (tem, ceiling_byte);
776
777 {
778 /* The termination address of the dumb loop. */
779 register unsigned char *ceiling_addr = BYTE_POS_ADDR (ceiling_byte);
780 register unsigned char *cursor = BYTE_POS_ADDR (start_byte - 1);
781 unsigned char *base = cursor;
782
783 while (cursor >= ceiling_addr)
784 {
785 unsigned char *scan_start = cursor;
786
787 while (*cursor != target && --cursor >= ceiling_addr)
788 ;
789
790 /* If we're looking for newlines, cache the fact that
791 the region from after the cursor to start is free of them. */
792 if (target == '\n' && newline_cache)
793 know_region_cache (current_buffer, newline_cache,
794 BYTE_TO_CHAR (start_byte + cursor - base),
795 BYTE_TO_CHAR (start_byte + scan_start - base));
796
797 /* Did we find the target character? */
798 if (cursor >= ceiling_addr)
799 {
800 if (++count >= 0)
801 {
802 immediate_quit = 0;
803 return BYTE_TO_CHAR (start_byte + cursor - base);
804 }
805 cursor--;
806 }
807 }
808
809 start = BYTE_TO_CHAR (start_byte + cursor - base);
810 }
811 }
812
813 immediate_quit = 0;
814 if (shortage != 0)
815 *shortage = count * direction;
816 return start;
817 }
818 \f
819 /* Search for COUNT instances of a line boundary, which means either a
820 newline or (if selective display enabled) a carriage return.
821 Start at START. If COUNT is negative, search backwards.
822
823 We report the resulting position by calling TEMP_SET_PT_BOTH.
824
825 If we find COUNT instances. we position after (always after,
826 even if scanning backwards) the COUNTth match, and return 0.
827
828 If we don't find COUNT instances before reaching the end of the
829 buffer (or the beginning, if scanning backwards), we return
830 the number of line boundaries left unfound, and position at
831 the limit we bumped up against.
832
833 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
834 except in special cases. */
835
836 EMACS_INT
837 scan_newline (ptrdiff_t start, ptrdiff_t start_byte,
838 ptrdiff_t limit, ptrdiff_t limit_byte,
839 register EMACS_INT count, int allow_quit)
840 {
841 int direction = ((count > 0) ? 1 : -1);
842
843 register unsigned char *cursor;
844 unsigned char *base;
845
846 ptrdiff_t ceiling;
847 register unsigned char *ceiling_addr;
848
849 int old_immediate_quit = immediate_quit;
850
851 /* The code that follows is like scan_buffer
852 but checks for either newline or carriage return. */
853
854 if (allow_quit)
855 immediate_quit++;
856
857 start_byte = CHAR_TO_BYTE (start);
858
859 if (count > 0)
860 {
861 while (start_byte < limit_byte)
862 {
863 ceiling = BUFFER_CEILING_OF (start_byte);
864 ceiling = min (limit_byte - 1, ceiling);
865 ceiling_addr = BYTE_POS_ADDR (ceiling) + 1;
866 base = (cursor = BYTE_POS_ADDR (start_byte));
867 while (1)
868 {
869 while (*cursor != '\n' && ++cursor != ceiling_addr)
870 ;
871
872 if (cursor != ceiling_addr)
873 {
874 if (--count == 0)
875 {
876 immediate_quit = old_immediate_quit;
877 start_byte = start_byte + cursor - base + 1;
878 start = BYTE_TO_CHAR (start_byte);
879 TEMP_SET_PT_BOTH (start, start_byte);
880 return 0;
881 }
882 else
883 if (++cursor == ceiling_addr)
884 break;
885 }
886 else
887 break;
888 }
889 start_byte += cursor - base;
890 }
891 }
892 else
893 {
894 while (start_byte > limit_byte)
895 {
896 ceiling = BUFFER_FLOOR_OF (start_byte - 1);
897 ceiling = max (limit_byte, ceiling);
898 ceiling_addr = BYTE_POS_ADDR (ceiling) - 1;
899 base = (cursor = BYTE_POS_ADDR (start_byte - 1) + 1);
900 while (1)
901 {
902 while (--cursor != ceiling_addr && *cursor != '\n')
903 ;
904
905 if (cursor != ceiling_addr)
906 {
907 if (++count == 0)
908 {
909 immediate_quit = old_immediate_quit;
910 /* Return the position AFTER the match we found. */
911 start_byte = start_byte + cursor - base + 1;
912 start = BYTE_TO_CHAR (start_byte);
913 TEMP_SET_PT_BOTH (start, start_byte);
914 return 0;
915 }
916 }
917 else
918 break;
919 }
920 /* Here we add 1 to compensate for the last decrement
921 of CURSOR, which took it past the valid range. */
922 start_byte += cursor - base + 1;
923 }
924 }
925
926 TEMP_SET_PT_BOTH (limit, limit_byte);
927 immediate_quit = old_immediate_quit;
928
929 return count * direction;
930 }
931
932 ptrdiff_t
933 find_next_newline_no_quit (ptrdiff_t from, ptrdiff_t cnt)
934 {
935 return scan_buffer ('\n', from, 0, cnt, (ptrdiff_t *) 0, 0);
936 }
937
938 /* Like find_next_newline, but returns position before the newline,
939 not after, and only search up to TO. This isn't just
940 find_next_newline (...)-1, because you might hit TO. */
941
942 ptrdiff_t
943 find_before_next_newline (ptrdiff_t from, ptrdiff_t to, ptrdiff_t cnt)
944 {
945 ptrdiff_t shortage;
946 ptrdiff_t pos = scan_buffer ('\n', from, to, cnt, &shortage, 1);
947
948 if (shortage == 0)
949 pos--;
950
951 return pos;
952 }
953 \f
954 /* Subroutines of Lisp buffer search functions. */
955
956 static Lisp_Object
957 search_command (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror,
958 Lisp_Object count, int direction, int RE, int posix)
959 {
960 register EMACS_INT np;
961 EMACS_INT lim;
962 ptrdiff_t lim_byte;
963 EMACS_INT n = direction;
964
965 if (!NILP (count))
966 {
967 CHECK_NUMBER (count);
968 n *= XINT (count);
969 }
970
971 CHECK_STRING (string);
972 if (NILP (bound))
973 {
974 if (n > 0)
975 lim = ZV, lim_byte = ZV_BYTE;
976 else
977 lim = BEGV, lim_byte = BEGV_BYTE;
978 }
979 else
980 {
981 CHECK_NUMBER_COERCE_MARKER (bound);
982 lim = XINT (bound);
983 if (n > 0 ? lim < PT : lim > PT)
984 error ("Invalid search bound (wrong side of point)");
985 if (lim > ZV)
986 lim = ZV, lim_byte = ZV_BYTE;
987 else if (lim < BEGV)
988 lim = BEGV, lim_byte = BEGV_BYTE;
989 else
990 lim_byte = CHAR_TO_BYTE (lim);
991 }
992
993 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
994 XCHAR_TABLE (BVAR (current_buffer, case_canon_table))->extras[2]
995 = BVAR (current_buffer, case_eqv_table);
996
997 np = search_buffer (string, PT, PT_BYTE, lim, lim_byte, n, RE,
998 (!NILP (BVAR (current_buffer, case_fold_search))
999 ? BVAR (current_buffer, case_canon_table)
1000 : Qnil),
1001 (!NILP (BVAR (current_buffer, case_fold_search))
1002 ? BVAR (current_buffer, case_eqv_table)
1003 : Qnil),
1004 posix);
1005 if (np <= 0)
1006 {
1007 if (NILP (noerror))
1008 xsignal1 (Qsearch_failed, string);
1009
1010 if (!EQ (noerror, Qt))
1011 {
1012 if (lim < BEGV || lim > ZV)
1013 abort ();
1014 SET_PT_BOTH (lim, lim_byte);
1015 return Qnil;
1016 #if 0 /* This would be clean, but maybe programs depend on
1017 a value of nil here. */
1018 np = lim;
1019 #endif
1020 }
1021 else
1022 return Qnil;
1023 }
1024
1025 if (np < BEGV || np > ZV)
1026 abort ();
1027
1028 SET_PT (np);
1029
1030 return make_number (np);
1031 }
1032 \f
1033 /* Return 1 if REGEXP it matches just one constant string. */
1034
1035 static int
1036 trivial_regexp_p (Lisp_Object regexp)
1037 {
1038 ptrdiff_t len = SBYTES (regexp);
1039 unsigned char *s = SDATA (regexp);
1040 while (--len >= 0)
1041 {
1042 switch (*s++)
1043 {
1044 case '.': case '*': case '+': case '?': case '[': case '^': case '$':
1045 return 0;
1046 case '\\':
1047 if (--len < 0)
1048 return 0;
1049 switch (*s++)
1050 {
1051 case '|': case '(': case ')': case '`': case '\'': case 'b':
1052 case 'B': case '<': case '>': case 'w': case 'W': case 's':
1053 case 'S': case '=': case '{': case '}': case '_':
1054 case 'c': case 'C': /* for categoryspec and notcategoryspec */
1055 case '1': case '2': case '3': case '4': case '5':
1056 case '6': case '7': case '8': case '9':
1057 return 0;
1058 }
1059 }
1060 }
1061 return 1;
1062 }
1063
1064 /* Search for the n'th occurrence of STRING in the current buffer,
1065 starting at position POS and stopping at position LIM,
1066 treating STRING as a literal string if RE is false or as
1067 a regular expression if RE is true.
1068
1069 If N is positive, searching is forward and LIM must be greater than POS.
1070 If N is negative, searching is backward and LIM must be less than POS.
1071
1072 Returns -x if x occurrences remain to be found (x > 0),
1073 or else the position at the beginning of the Nth occurrence
1074 (if searching backward) or the end (if searching forward).
1075
1076 POSIX is nonzero if we want full backtracking (POSIX style)
1077 for this pattern. 0 means backtrack only enough to get a valid match. */
1078
1079 #define TRANSLATE(out, trt, d) \
1080 do \
1081 { \
1082 if (! NILP (trt)) \
1083 { \
1084 Lisp_Object temp; \
1085 temp = Faref (trt, make_number (d)); \
1086 if (INTEGERP (temp)) \
1087 out = XINT (temp); \
1088 else \
1089 out = d; \
1090 } \
1091 else \
1092 out = d; \
1093 } \
1094 while (0)
1095
1096 /* Only used in search_buffer, to record the end position of the match
1097 when searching regexps and SEARCH_REGS should not be changed
1098 (i.e. Vinhibit_changing_match_data is non-nil). */
1099 static struct re_registers search_regs_1;
1100
1101 static EMACS_INT
1102 search_buffer (Lisp_Object string, ptrdiff_t pos, ptrdiff_t pos_byte,
1103 ptrdiff_t lim, ptrdiff_t lim_byte, EMACS_INT n,
1104 int RE, Lisp_Object trt, Lisp_Object inverse_trt, int posix)
1105 {
1106 ptrdiff_t len = SCHARS (string);
1107 ptrdiff_t len_byte = SBYTES (string);
1108 register ptrdiff_t i;
1109
1110 if (running_asynch_code)
1111 save_search_regs ();
1112
1113 /* Searching 0 times means don't move. */
1114 /* Null string is found at starting position. */
1115 if (len == 0 || n == 0)
1116 {
1117 set_search_regs (pos_byte, 0);
1118 return pos;
1119 }
1120
1121 if (RE && !(trivial_regexp_p (string) && NILP (Vsearch_spaces_regexp)))
1122 {
1123 unsigned char *p1, *p2;
1124 ptrdiff_t s1, s2;
1125 struct re_pattern_buffer *bufp;
1126
1127 bufp = compile_pattern (string,
1128 (NILP (Vinhibit_changing_match_data)
1129 ? &search_regs : &search_regs_1),
1130 trt, posix,
1131 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
1132
1133 immediate_quit = 1; /* Quit immediately if user types ^G,
1134 because letting this function finish
1135 can take too long. */
1136 QUIT; /* Do a pending quit right away,
1137 to avoid paradoxical behavior */
1138 /* Get pointers and sizes of the two strings
1139 that make up the visible portion of the buffer. */
1140
1141 p1 = BEGV_ADDR;
1142 s1 = GPT_BYTE - BEGV_BYTE;
1143 p2 = GAP_END_ADDR;
1144 s2 = ZV_BYTE - GPT_BYTE;
1145 if (s1 < 0)
1146 {
1147 p2 = p1;
1148 s2 = ZV_BYTE - BEGV_BYTE;
1149 s1 = 0;
1150 }
1151 if (s2 < 0)
1152 {
1153 s1 = ZV_BYTE - BEGV_BYTE;
1154 s2 = 0;
1155 }
1156 re_match_object = Qnil;
1157
1158 while (n < 0)
1159 {
1160 ptrdiff_t val;
1161
1162 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1163 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1164 (NILP (Vinhibit_changing_match_data)
1165 ? &search_regs : &search_regs_1),
1166 /* Don't allow match past current point */
1167 pos_byte - BEGV_BYTE);
1168 if (val == -2)
1169 {
1170 matcher_overflow ();
1171 }
1172 if (val >= 0)
1173 {
1174 if (NILP (Vinhibit_changing_match_data))
1175 {
1176 pos_byte = search_regs.start[0] + BEGV_BYTE;
1177 for (i = 0; i < search_regs.num_regs; i++)
1178 if (search_regs.start[i] >= 0)
1179 {
1180 search_regs.start[i]
1181 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1182 search_regs.end[i]
1183 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1184 }
1185 XSETBUFFER (last_thing_searched, current_buffer);
1186 /* Set pos to the new position. */
1187 pos = search_regs.start[0];
1188 }
1189 else
1190 {
1191 pos_byte = search_regs_1.start[0] + BEGV_BYTE;
1192 /* Set pos to the new position. */
1193 pos = BYTE_TO_CHAR (search_regs_1.start[0] + BEGV_BYTE);
1194 }
1195 }
1196 else
1197 {
1198 immediate_quit = 0;
1199 return (n);
1200 }
1201 n++;
1202 }
1203 while (n > 0)
1204 {
1205 ptrdiff_t val;
1206
1207 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1208 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1209 (NILP (Vinhibit_changing_match_data)
1210 ? &search_regs : &search_regs_1),
1211 lim_byte - BEGV_BYTE);
1212 if (val == -2)
1213 {
1214 matcher_overflow ();
1215 }
1216 if (val >= 0)
1217 {
1218 if (NILP (Vinhibit_changing_match_data))
1219 {
1220 pos_byte = search_regs.end[0] + BEGV_BYTE;
1221 for (i = 0; i < search_regs.num_regs; i++)
1222 if (search_regs.start[i] >= 0)
1223 {
1224 search_regs.start[i]
1225 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1226 search_regs.end[i]
1227 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1228 }
1229 XSETBUFFER (last_thing_searched, current_buffer);
1230 pos = search_regs.end[0];
1231 }
1232 else
1233 {
1234 pos_byte = search_regs_1.end[0] + BEGV_BYTE;
1235 pos = BYTE_TO_CHAR (search_regs_1.end[0] + BEGV_BYTE);
1236 }
1237 }
1238 else
1239 {
1240 immediate_quit = 0;
1241 return (0 - n);
1242 }
1243 n--;
1244 }
1245 immediate_quit = 0;
1246 return (pos);
1247 }
1248 else /* non-RE case */
1249 {
1250 unsigned char *raw_pattern, *pat;
1251 ptrdiff_t raw_pattern_size;
1252 ptrdiff_t raw_pattern_size_byte;
1253 unsigned char *patbuf;
1254 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
1255 unsigned char *base_pat;
1256 /* Set to positive if we find a non-ASCII char that need
1257 translation. Otherwise set to zero later. */
1258 int char_base = -1;
1259 int boyer_moore_ok = 1;
1260
1261 /* MULTIBYTE says whether the text to be searched is multibyte.
1262 We must convert PATTERN to match that, or we will not really
1263 find things right. */
1264
1265 if (multibyte == STRING_MULTIBYTE (string))
1266 {
1267 raw_pattern = SDATA (string);
1268 raw_pattern_size = SCHARS (string);
1269 raw_pattern_size_byte = SBYTES (string);
1270 }
1271 else if (multibyte)
1272 {
1273 raw_pattern_size = SCHARS (string);
1274 raw_pattern_size_byte
1275 = count_size_as_multibyte (SDATA (string),
1276 raw_pattern_size);
1277 raw_pattern = (unsigned char *) alloca (raw_pattern_size_byte + 1);
1278 copy_text (SDATA (string), raw_pattern,
1279 SCHARS (string), 0, 1);
1280 }
1281 else
1282 {
1283 /* Converting multibyte to single-byte.
1284
1285 ??? Perhaps this conversion should be done in a special way
1286 by subtracting nonascii-insert-offset from each non-ASCII char,
1287 so that only the multibyte chars which really correspond to
1288 the chosen single-byte character set can possibly match. */
1289 raw_pattern_size = SCHARS (string);
1290 raw_pattern_size_byte = SCHARS (string);
1291 raw_pattern = (unsigned char *) alloca (raw_pattern_size + 1);
1292 copy_text (SDATA (string), raw_pattern,
1293 SBYTES (string), 1, 0);
1294 }
1295
1296 /* Copy and optionally translate the pattern. */
1297 len = raw_pattern_size;
1298 len_byte = raw_pattern_size_byte;
1299 patbuf = (unsigned char *) alloca (len * MAX_MULTIBYTE_LENGTH);
1300 pat = patbuf;
1301 base_pat = raw_pattern;
1302 if (multibyte)
1303 {
1304 /* Fill patbuf by translated characters in STRING while
1305 checking if we can use boyer-moore search. If TRT is
1306 non-nil, we can use boyer-moore search only if TRT can be
1307 represented by the byte array of 256 elements. For that,
1308 all non-ASCII case-equivalents of all case-sensitive
1309 characters in STRING must belong to the same charset and
1310 row. */
1311
1312 while (--len >= 0)
1313 {
1314 unsigned char str_base[MAX_MULTIBYTE_LENGTH], *str;
1315 int c, translated, inverse;
1316 int in_charlen, charlen;
1317
1318 /* If we got here and the RE flag is set, it's because we're
1319 dealing with a regexp known to be trivial, so the backslash
1320 just quotes the next character. */
1321 if (RE && *base_pat == '\\')
1322 {
1323 len--;
1324 raw_pattern_size--;
1325 len_byte--;
1326 base_pat++;
1327 }
1328
1329 c = STRING_CHAR_AND_LENGTH (base_pat, in_charlen);
1330
1331 if (NILP (trt))
1332 {
1333 str = base_pat;
1334 charlen = in_charlen;
1335 }
1336 else
1337 {
1338 /* Translate the character. */
1339 TRANSLATE (translated, trt, c);
1340 charlen = CHAR_STRING (translated, str_base);
1341 str = str_base;
1342
1343 /* Check if C has any other case-equivalents. */
1344 TRANSLATE (inverse, inverse_trt, c);
1345 /* If so, check if we can use boyer-moore. */
1346 if (c != inverse && boyer_moore_ok)
1347 {
1348 /* Check if all equivalents belong to the same
1349 group of characters. Note that the check of C
1350 itself is done by the last iteration. */
1351 int this_char_base = -1;
1352
1353 while (boyer_moore_ok)
1354 {
1355 if (ASCII_BYTE_P (inverse))
1356 {
1357 if (this_char_base > 0)
1358 boyer_moore_ok = 0;
1359 else
1360 this_char_base = 0;
1361 }
1362 else if (CHAR_BYTE8_P (inverse))
1363 /* Boyer-moore search can't handle a
1364 translation of an eight-bit
1365 character. */
1366 boyer_moore_ok = 0;
1367 else if (this_char_base < 0)
1368 {
1369 this_char_base = inverse & ~0x3F;
1370 if (char_base < 0)
1371 char_base = this_char_base;
1372 else if (this_char_base != char_base)
1373 boyer_moore_ok = 0;
1374 }
1375 else if ((inverse & ~0x3F) != this_char_base)
1376 boyer_moore_ok = 0;
1377 if (c == inverse)
1378 break;
1379 TRANSLATE (inverse, inverse_trt, inverse);
1380 }
1381 }
1382 }
1383
1384 /* Store this character into the translated pattern. */
1385 memcpy (pat, str, charlen);
1386 pat += charlen;
1387 base_pat += in_charlen;
1388 len_byte -= in_charlen;
1389 }
1390
1391 /* If char_base is still negative we didn't find any translated
1392 non-ASCII characters. */
1393 if (char_base < 0)
1394 char_base = 0;
1395 }
1396 else
1397 {
1398 /* Unibyte buffer. */
1399 char_base = 0;
1400 while (--len >= 0)
1401 {
1402 int c, translated;
1403
1404 /* If we got here and the RE flag is set, it's because we're
1405 dealing with a regexp known to be trivial, so the backslash
1406 just quotes the next character. */
1407 if (RE && *base_pat == '\\')
1408 {
1409 len--;
1410 raw_pattern_size--;
1411 base_pat++;
1412 }
1413 c = *base_pat++;
1414 TRANSLATE (translated, trt, c);
1415 *pat++ = translated;
1416 }
1417 }
1418
1419 len_byte = pat - patbuf;
1420 pat = base_pat = patbuf;
1421
1422 if (boyer_moore_ok)
1423 return boyer_moore (n, pat, len_byte, trt, inverse_trt,
1424 pos_byte, lim_byte,
1425 char_base);
1426 else
1427 return simple_search (n, pat, raw_pattern_size, len_byte, trt,
1428 pos, pos_byte, lim, lim_byte);
1429 }
1430 }
1431 \f
1432 /* Do a simple string search N times for the string PAT,
1433 whose length is LEN/LEN_BYTE,
1434 from buffer position POS/POS_BYTE until LIM/LIM_BYTE.
1435 TRT is the translation table.
1436
1437 Return the character position where the match is found.
1438 Otherwise, if M matches remained to be found, return -M.
1439
1440 This kind of search works regardless of what is in PAT and
1441 regardless of what is in TRT. It is used in cases where
1442 boyer_moore cannot work. */
1443
1444 static EMACS_INT
1445 simple_search (EMACS_INT n, unsigned char *pat,
1446 ptrdiff_t len, ptrdiff_t len_byte, Lisp_Object trt,
1447 ptrdiff_t pos, ptrdiff_t pos_byte,
1448 ptrdiff_t lim, ptrdiff_t lim_byte)
1449 {
1450 int multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1451 int forward = n > 0;
1452 /* Number of buffer bytes matched. Note that this may be different
1453 from len_byte in a multibyte buffer. */
1454 ptrdiff_t match_byte;
1455
1456 if (lim > pos && multibyte)
1457 while (n > 0)
1458 {
1459 while (1)
1460 {
1461 /* Try matching at position POS. */
1462 ptrdiff_t this_pos = pos;
1463 ptrdiff_t this_pos_byte = pos_byte;
1464 ptrdiff_t this_len = len;
1465 unsigned char *p = pat;
1466 if (pos + len > lim || pos_byte + len_byte > lim_byte)
1467 goto stop;
1468
1469 while (this_len > 0)
1470 {
1471 int charlen, buf_charlen;
1472 int pat_ch, buf_ch;
1473
1474 pat_ch = STRING_CHAR_AND_LENGTH (p, charlen);
1475 buf_ch = STRING_CHAR_AND_LENGTH (BYTE_POS_ADDR (this_pos_byte),
1476 buf_charlen);
1477 TRANSLATE (buf_ch, trt, buf_ch);
1478
1479 if (buf_ch != pat_ch)
1480 break;
1481
1482 this_len--;
1483 p += charlen;
1484
1485 this_pos_byte += buf_charlen;
1486 this_pos++;
1487 }
1488
1489 if (this_len == 0)
1490 {
1491 match_byte = this_pos_byte - pos_byte;
1492 pos += len;
1493 pos_byte += match_byte;
1494 break;
1495 }
1496
1497 INC_BOTH (pos, pos_byte);
1498 }
1499
1500 n--;
1501 }
1502 else if (lim > pos)
1503 while (n > 0)
1504 {
1505 while (1)
1506 {
1507 /* Try matching at position POS. */
1508 ptrdiff_t this_pos = pos;
1509 ptrdiff_t this_len = len;
1510 unsigned char *p = pat;
1511
1512 if (pos + len > lim)
1513 goto stop;
1514
1515 while (this_len > 0)
1516 {
1517 int pat_ch = *p++;
1518 int buf_ch = FETCH_BYTE (this_pos);
1519 TRANSLATE (buf_ch, trt, buf_ch);
1520
1521 if (buf_ch != pat_ch)
1522 break;
1523
1524 this_len--;
1525 this_pos++;
1526 }
1527
1528 if (this_len == 0)
1529 {
1530 match_byte = len;
1531 pos += len;
1532 break;
1533 }
1534
1535 pos++;
1536 }
1537
1538 n--;
1539 }
1540 /* Backwards search. */
1541 else if (lim < pos && multibyte)
1542 while (n < 0)
1543 {
1544 while (1)
1545 {
1546 /* Try matching at position POS. */
1547 ptrdiff_t this_pos = pos;
1548 ptrdiff_t this_pos_byte = pos_byte;
1549 ptrdiff_t this_len = len;
1550 const unsigned char *p = pat + len_byte;
1551
1552 if (this_pos - len < lim || (pos_byte - len_byte) < lim_byte)
1553 goto stop;
1554
1555 while (this_len > 0)
1556 {
1557 int pat_ch, buf_ch;
1558
1559 DEC_BOTH (this_pos, this_pos_byte);
1560 PREV_CHAR_BOUNDARY (p, pat);
1561 pat_ch = STRING_CHAR (p);
1562 buf_ch = STRING_CHAR (BYTE_POS_ADDR (this_pos_byte));
1563 TRANSLATE (buf_ch, trt, buf_ch);
1564
1565 if (buf_ch != pat_ch)
1566 break;
1567
1568 this_len--;
1569 }
1570
1571 if (this_len == 0)
1572 {
1573 match_byte = pos_byte - this_pos_byte;
1574 pos = this_pos;
1575 pos_byte = this_pos_byte;
1576 break;
1577 }
1578
1579 DEC_BOTH (pos, pos_byte);
1580 }
1581
1582 n++;
1583 }
1584 else if (lim < pos)
1585 while (n < 0)
1586 {
1587 while (1)
1588 {
1589 /* Try matching at position POS. */
1590 ptrdiff_t this_pos = pos - len;
1591 ptrdiff_t this_len = len;
1592 unsigned char *p = pat;
1593
1594 if (this_pos < lim)
1595 goto stop;
1596
1597 while (this_len > 0)
1598 {
1599 int pat_ch = *p++;
1600 int buf_ch = FETCH_BYTE (this_pos);
1601 TRANSLATE (buf_ch, trt, buf_ch);
1602
1603 if (buf_ch != pat_ch)
1604 break;
1605 this_len--;
1606 this_pos++;
1607 }
1608
1609 if (this_len == 0)
1610 {
1611 match_byte = len;
1612 pos -= len;
1613 break;
1614 }
1615
1616 pos--;
1617 }
1618
1619 n++;
1620 }
1621
1622 stop:
1623 if (n == 0)
1624 {
1625 if (forward)
1626 set_search_regs ((multibyte ? pos_byte : pos) - match_byte, match_byte);
1627 else
1628 set_search_regs (multibyte ? pos_byte : pos, match_byte);
1629
1630 return pos;
1631 }
1632 else if (n > 0)
1633 return -n;
1634 else
1635 return n;
1636 }
1637 \f
1638 /* Do Boyer-Moore search N times for the string BASE_PAT,
1639 whose length is LEN_BYTE,
1640 from buffer position POS_BYTE until LIM_BYTE.
1641 DIRECTION says which direction we search in.
1642 TRT and INVERSE_TRT are translation tables.
1643 Characters in PAT are already translated by TRT.
1644
1645 This kind of search works if all the characters in BASE_PAT that
1646 have nontrivial translation are the same aside from the last byte.
1647 This makes it possible to translate just the last byte of a
1648 character, and do so after just a simple test of the context.
1649 CHAR_BASE is nonzero if there is such a non-ASCII character.
1650
1651 If that criterion is not satisfied, do not call this function. */
1652
1653 static EMACS_INT
1654 boyer_moore (EMACS_INT n, unsigned char *base_pat,
1655 ptrdiff_t len_byte,
1656 Lisp_Object trt, Lisp_Object inverse_trt,
1657 ptrdiff_t pos_byte, ptrdiff_t lim_byte,
1658 int char_base)
1659 {
1660 int direction = ((n > 0) ? 1 : -1);
1661 register ptrdiff_t dirlen;
1662 ptrdiff_t limit;
1663 int stride_for_teases = 0;
1664 int BM_tab[0400];
1665 register unsigned char *cursor, *p_limit;
1666 register ptrdiff_t i;
1667 register int j;
1668 unsigned char *pat, *pat_end;
1669 int multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1670
1671 unsigned char simple_translate[0400];
1672 /* These are set to the preceding bytes of a byte to be translated
1673 if char_base is nonzero. As the maximum byte length of a
1674 multibyte character is 5, we have to check at most four previous
1675 bytes. */
1676 int translate_prev_byte1 = 0;
1677 int translate_prev_byte2 = 0;
1678 int translate_prev_byte3 = 0;
1679
1680 /* The general approach is that we are going to maintain that we know
1681 the first (closest to the present position, in whatever direction
1682 we're searching) character that could possibly be the last
1683 (furthest from present position) character of a valid match. We
1684 advance the state of our knowledge by looking at that character
1685 and seeing whether it indeed matches the last character of the
1686 pattern. If it does, we take a closer look. If it does not, we
1687 move our pointer (to putative last characters) as far as is
1688 logically possible. This amount of movement, which I call a
1689 stride, will be the length of the pattern if the actual character
1690 appears nowhere in the pattern, otherwise it will be the distance
1691 from the last occurrence of that character to the end of the
1692 pattern. If the amount is zero we have a possible match. */
1693
1694 /* Here we make a "mickey mouse" BM table. The stride of the search
1695 is determined only by the last character of the putative match.
1696 If that character does not match, we will stride the proper
1697 distance to propose a match that superimposes it on the last
1698 instance of a character that matches it (per trt), or misses
1699 it entirely if there is none. */
1700
1701 dirlen = len_byte * direction;
1702
1703 /* Record position after the end of the pattern. */
1704 pat_end = base_pat + len_byte;
1705 /* BASE_PAT points to a character that we start scanning from.
1706 It is the first character in a forward search,
1707 the last character in a backward search. */
1708 if (direction < 0)
1709 base_pat = pat_end - 1;
1710
1711 /* A character that does not appear in the pattern induces a
1712 stride equal to the pattern length. */
1713 for (i = 0; i < 0400; i++)
1714 BM_tab[i] = dirlen;
1715
1716 /* We use this for translation, instead of TRT itself.
1717 We fill this in to handle the characters that actually
1718 occur in the pattern. Others don't matter anyway! */
1719 for (i = 0; i < 0400; i++)
1720 simple_translate[i] = i;
1721
1722 if (char_base)
1723 {
1724 /* Setup translate_prev_byte1/2/3/4 from CHAR_BASE. Only a
1725 byte following them are the target of translation. */
1726 unsigned char str[MAX_MULTIBYTE_LENGTH];
1727 int cblen = CHAR_STRING (char_base, str);
1728
1729 translate_prev_byte1 = str[cblen - 2];
1730 if (cblen > 2)
1731 {
1732 translate_prev_byte2 = str[cblen - 3];
1733 if (cblen > 3)
1734 translate_prev_byte3 = str[cblen - 4];
1735 }
1736 }
1737
1738 i = 0;
1739 while (i != dirlen)
1740 {
1741 unsigned char *ptr = base_pat + i;
1742 i += direction;
1743 if (! NILP (trt))
1744 {
1745 /* If the byte currently looking at is the last of a
1746 character to check case-equivalents, set CH to that
1747 character. An ASCII character and a non-ASCII character
1748 matching with CHAR_BASE are to be checked. */
1749 int ch = -1;
1750
1751 if (ASCII_BYTE_P (*ptr) || ! multibyte)
1752 ch = *ptr;
1753 else if (char_base
1754 && ((pat_end - ptr) == 1 || CHAR_HEAD_P (ptr[1])))
1755 {
1756 unsigned char *charstart = ptr - 1;
1757
1758 while (! (CHAR_HEAD_P (*charstart)))
1759 charstart--;
1760 ch = STRING_CHAR (charstart);
1761 if (char_base != (ch & ~0x3F))
1762 ch = -1;
1763 }
1764
1765 if (ch >= 0200 && multibyte)
1766 j = (ch & 0x3F) | 0200;
1767 else
1768 j = *ptr;
1769
1770 if (i == dirlen)
1771 stride_for_teases = BM_tab[j];
1772
1773 BM_tab[j] = dirlen - i;
1774 /* A translation table is accompanied by its inverse -- see
1775 comment following downcase_table for details. */
1776 if (ch >= 0)
1777 {
1778 int starting_ch = ch;
1779 int starting_j = j;
1780
1781 while (1)
1782 {
1783 TRANSLATE (ch, inverse_trt, ch);
1784 if (ch >= 0200 && multibyte)
1785 j = (ch & 0x3F) | 0200;
1786 else
1787 j = ch;
1788
1789 /* For all the characters that map into CH,
1790 set up simple_translate to map the last byte
1791 into STARTING_J. */
1792 simple_translate[j] = starting_j;
1793 if (ch == starting_ch)
1794 break;
1795 BM_tab[j] = dirlen - i;
1796 }
1797 }
1798 }
1799 else
1800 {
1801 j = *ptr;
1802
1803 if (i == dirlen)
1804 stride_for_teases = BM_tab[j];
1805 BM_tab[j] = dirlen - i;
1806 }
1807 /* stride_for_teases tells how much to stride if we get a
1808 match on the far character but are subsequently
1809 disappointed, by recording what the stride would have been
1810 for that character if the last character had been
1811 different. */
1812 }
1813 pos_byte += dirlen - ((direction > 0) ? direction : 0);
1814 /* loop invariant - POS_BYTE points at where last char (first
1815 char if reverse) of pattern would align in a possible match. */
1816 while (n != 0)
1817 {
1818 ptrdiff_t tail_end;
1819 unsigned char *tail_end_ptr;
1820
1821 /* It's been reported that some (broken) compiler thinks that
1822 Boolean expressions in an arithmetic context are unsigned.
1823 Using an explicit ?1:0 prevents this. */
1824 if ((lim_byte - pos_byte - ((direction > 0) ? 1 : 0)) * direction
1825 < 0)
1826 return (n * (0 - direction));
1827 /* First we do the part we can by pointers (maybe nothing) */
1828 QUIT;
1829 pat = base_pat;
1830 limit = pos_byte - dirlen + direction;
1831 if (direction > 0)
1832 {
1833 limit = BUFFER_CEILING_OF (limit);
1834 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1835 can take on without hitting edge of buffer or the gap. */
1836 limit = min (limit, pos_byte + 20000);
1837 limit = min (limit, lim_byte - 1);
1838 }
1839 else
1840 {
1841 limit = BUFFER_FLOOR_OF (limit);
1842 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1843 can take on without hitting edge of buffer or the gap. */
1844 limit = max (limit, pos_byte - 20000);
1845 limit = max (limit, lim_byte);
1846 }
1847 tail_end = BUFFER_CEILING_OF (pos_byte) + 1;
1848 tail_end_ptr = BYTE_POS_ADDR (tail_end);
1849
1850 if ((limit - pos_byte) * direction > 20)
1851 {
1852 unsigned char *p2;
1853
1854 p_limit = BYTE_POS_ADDR (limit);
1855 p2 = (cursor = BYTE_POS_ADDR (pos_byte));
1856 /* In this loop, pos + cursor - p2 is the surrogate for pos. */
1857 while (1) /* use one cursor setting as long as i can */
1858 {
1859 if (direction > 0) /* worth duplicating */
1860 {
1861 while (cursor <= p_limit)
1862 {
1863 if (BM_tab[*cursor] == 0)
1864 goto hit;
1865 cursor += BM_tab[*cursor];
1866 }
1867 }
1868 else
1869 {
1870 while (cursor >= p_limit)
1871 {
1872 if (BM_tab[*cursor] == 0)
1873 goto hit;
1874 cursor += BM_tab[*cursor];
1875 }
1876 }
1877 /* If you are here, cursor is beyond the end of the
1878 searched region. You fail to match within the
1879 permitted region and would otherwise try a character
1880 beyond that region. */
1881 break;
1882
1883 hit:
1884 i = dirlen - direction;
1885 if (! NILP (trt))
1886 {
1887 while ((i -= direction) + direction != 0)
1888 {
1889 int ch;
1890 cursor -= direction;
1891 /* Translate only the last byte of a character. */
1892 if (! multibyte
1893 || ((cursor == tail_end_ptr
1894 || CHAR_HEAD_P (cursor[1]))
1895 && (CHAR_HEAD_P (cursor[0])
1896 /* Check if this is the last byte of
1897 a translatable character. */
1898 || (translate_prev_byte1 == cursor[-1]
1899 && (CHAR_HEAD_P (translate_prev_byte1)
1900 || (translate_prev_byte2 == cursor[-2]
1901 && (CHAR_HEAD_P (translate_prev_byte2)
1902 || (translate_prev_byte3 == cursor[-3]))))))))
1903 ch = simple_translate[*cursor];
1904 else
1905 ch = *cursor;
1906 if (pat[i] != ch)
1907 break;
1908 }
1909 }
1910 else
1911 {
1912 while ((i -= direction) + direction != 0)
1913 {
1914 cursor -= direction;
1915 if (pat[i] != *cursor)
1916 break;
1917 }
1918 }
1919 cursor += dirlen - i - direction; /* fix cursor */
1920 if (i + direction == 0)
1921 {
1922 ptrdiff_t position, start, end;
1923
1924 cursor -= direction;
1925
1926 position = pos_byte + cursor - p2 + ((direction > 0)
1927 ? 1 - len_byte : 0);
1928 set_search_regs (position, len_byte);
1929
1930 if (NILP (Vinhibit_changing_match_data))
1931 {
1932 start = search_regs.start[0];
1933 end = search_regs.end[0];
1934 }
1935 else
1936 /* If Vinhibit_changing_match_data is non-nil,
1937 search_regs will not be changed. So let's
1938 compute start and end here. */
1939 {
1940 start = BYTE_TO_CHAR (position);
1941 end = BYTE_TO_CHAR (position + len_byte);
1942 }
1943
1944 if ((n -= direction) != 0)
1945 cursor += dirlen; /* to resume search */
1946 else
1947 return direction > 0 ? end : start;
1948 }
1949 else
1950 cursor += stride_for_teases; /* <sigh> we lose - */
1951 }
1952 pos_byte += cursor - p2;
1953 }
1954 else
1955 /* Now we'll pick up a clump that has to be done the hard
1956 way because it covers a discontinuity. */
1957 {
1958 limit = ((direction > 0)
1959 ? BUFFER_CEILING_OF (pos_byte - dirlen + 1)
1960 : BUFFER_FLOOR_OF (pos_byte - dirlen - 1));
1961 limit = ((direction > 0)
1962 ? min (limit + len_byte, lim_byte - 1)
1963 : max (limit - len_byte, lim_byte));
1964 /* LIMIT is now the last value POS_BYTE can have
1965 and still be valid for a possible match. */
1966 while (1)
1967 {
1968 /* This loop can be coded for space rather than
1969 speed because it will usually run only once.
1970 (the reach is at most len + 21, and typically
1971 does not exceed len). */
1972 while ((limit - pos_byte) * direction >= 0)
1973 {
1974 int ch = FETCH_BYTE (pos_byte);
1975 if (BM_tab[ch] == 0)
1976 goto hit2;
1977 pos_byte += BM_tab[ch];
1978 }
1979 break; /* ran off the end */
1980
1981 hit2:
1982 /* Found what might be a match. */
1983 i = dirlen - direction;
1984 while ((i -= direction) + direction != 0)
1985 {
1986 int ch;
1987 unsigned char *ptr;
1988 pos_byte -= direction;
1989 ptr = BYTE_POS_ADDR (pos_byte);
1990 /* Translate only the last byte of a character. */
1991 if (! multibyte
1992 || ((ptr == tail_end_ptr
1993 || CHAR_HEAD_P (ptr[1]))
1994 && (CHAR_HEAD_P (ptr[0])
1995 /* Check if this is the last byte of a
1996 translatable character. */
1997 || (translate_prev_byte1 == ptr[-1]
1998 && (CHAR_HEAD_P (translate_prev_byte1)
1999 || (translate_prev_byte2 == ptr[-2]
2000 && (CHAR_HEAD_P (translate_prev_byte2)
2001 || translate_prev_byte3 == ptr[-3])))))))
2002 ch = simple_translate[*ptr];
2003 else
2004 ch = *ptr;
2005 if (pat[i] != ch)
2006 break;
2007 }
2008 /* Above loop has moved POS_BYTE part or all the way
2009 back to the first pos (last pos if reverse).
2010 Set it once again at the last (first if reverse) char. */
2011 pos_byte += dirlen - i - direction;
2012 if (i + direction == 0)
2013 {
2014 ptrdiff_t position, start, end;
2015 pos_byte -= direction;
2016
2017 position = pos_byte + ((direction > 0) ? 1 - len_byte : 0);
2018 set_search_regs (position, len_byte);
2019
2020 if (NILP (Vinhibit_changing_match_data))
2021 {
2022 start = search_regs.start[0];
2023 end = search_regs.end[0];
2024 }
2025 else
2026 /* If Vinhibit_changing_match_data is non-nil,
2027 search_regs will not be changed. So let's
2028 compute start and end here. */
2029 {
2030 start = BYTE_TO_CHAR (position);
2031 end = BYTE_TO_CHAR (position + len_byte);
2032 }
2033
2034 if ((n -= direction) != 0)
2035 pos_byte += dirlen; /* to resume search */
2036 else
2037 return direction > 0 ? end : start;
2038 }
2039 else
2040 pos_byte += stride_for_teases;
2041 }
2042 }
2043 /* We have done one clump. Can we continue? */
2044 if ((lim_byte - pos_byte) * direction < 0)
2045 return ((0 - n) * direction);
2046 }
2047 return BYTE_TO_CHAR (pos_byte);
2048 }
2049
2050 /* Record beginning BEG_BYTE and end BEG_BYTE + NBYTES
2051 for the overall match just found in the current buffer.
2052 Also clear out the match data for registers 1 and up. */
2053
2054 static void
2055 set_search_regs (ptrdiff_t beg_byte, ptrdiff_t nbytes)
2056 {
2057 ptrdiff_t i;
2058
2059 if (!NILP (Vinhibit_changing_match_data))
2060 return;
2061
2062 /* Make sure we have registers in which to store
2063 the match position. */
2064 if (search_regs.num_regs == 0)
2065 {
2066 search_regs.start = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
2067 search_regs.end = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
2068 search_regs.num_regs = 2;
2069 }
2070
2071 /* Clear out the other registers. */
2072 for (i = 1; i < search_regs.num_regs; i++)
2073 {
2074 search_regs.start[i] = -1;
2075 search_regs.end[i] = -1;
2076 }
2077
2078 search_regs.start[0] = BYTE_TO_CHAR (beg_byte);
2079 search_regs.end[0] = BYTE_TO_CHAR (beg_byte + nbytes);
2080 XSETBUFFER (last_thing_searched, current_buffer);
2081 }
2082 \f
2083 DEFUN ("search-backward", Fsearch_backward, Ssearch_backward, 1, 4,
2084 "MSearch backward: ",
2085 doc: /* Search backward from point for STRING.
2086 Set point to the beginning of the occurrence found, and return point.
2087 An optional second argument bounds the search; it is a buffer position.
2088 The match found must not extend before that position.
2089 Optional third argument, if t, means if fail just return nil (no error).
2090 If not nil and not t, position at limit of search and return nil.
2091 Optional fourth argument COUNT, if non-nil, means to search for COUNT
2092 successive occurrences. If COUNT is negative, search forward,
2093 instead of backward, for -COUNT occurrences.
2094
2095 Search case-sensitivity is determined by the value of the variable
2096 `case-fold-search', which see.
2097
2098 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2099 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2100 {
2101 return search_command (string, bound, noerror, count, -1, 0, 0);
2102 }
2103
2104 DEFUN ("search-forward", Fsearch_forward, Ssearch_forward, 1, 4, "MSearch: ",
2105 doc: /* Search forward from point for STRING.
2106 Set point to the end of the occurrence found, and return point.
2107 An optional second argument bounds the search; it is a buffer position.
2108 The match found must not extend after that position. A value of nil is
2109 equivalent to (point-max).
2110 Optional third argument, if t, means if fail just return nil (no error).
2111 If not nil and not t, move to limit of search and return nil.
2112 Optional fourth argument COUNT, if non-nil, means to search for COUNT
2113 successive occurrences. If COUNT is negative, search backward,
2114 instead of forward, for -COUNT occurrences.
2115
2116 Search case-sensitivity is determined by the value of the variable
2117 `case-fold-search', which see.
2118
2119 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2120 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2121 {
2122 return search_command (string, bound, noerror, count, 1, 0, 0);
2123 }
2124
2125 DEFUN ("re-search-backward", Fre_search_backward, Sre_search_backward, 1, 4,
2126 "sRE search backward: ",
2127 doc: /* Search backward from point for match for regular expression REGEXP.
2128 Set point to the beginning of the match, and return point.
2129 The match found is the one starting last in the buffer
2130 and yet ending before the origin of the search.
2131 An optional second argument bounds the search; it is a buffer position.
2132 The match found must start at or after that position.
2133 Optional third argument, if t, means if fail just return nil (no error).
2134 If not nil and not t, move to limit of search and return nil.
2135 Optional fourth argument is repeat count--search for successive occurrences.
2136
2137 Search case-sensitivity is determined by the value of the variable
2138 `case-fold-search', which see.
2139
2140 See also the functions `match-beginning', `match-end', `match-string',
2141 and `replace-match'. */)
2142 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2143 {
2144 return search_command (regexp, bound, noerror, count, -1, 1, 0);
2145 }
2146
2147 DEFUN ("re-search-forward", Fre_search_forward, Sre_search_forward, 1, 4,
2148 "sRE search: ",
2149 doc: /* Search forward from point for regular expression REGEXP.
2150 Set point to the end of the occurrence found, and return point.
2151 An optional second argument bounds the search; it is a buffer position.
2152 The match found must not extend after that position.
2153 Optional third argument, if t, means if fail just return nil (no error).
2154 If not nil and not t, move to limit of search and return nil.
2155 Optional fourth argument is repeat count--search for successive occurrences.
2156
2157 Search case-sensitivity is determined by the value of the variable
2158 `case-fold-search', which see.
2159
2160 See also the functions `match-beginning', `match-end', `match-string',
2161 and `replace-match'. */)
2162 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2163 {
2164 return search_command (regexp, bound, noerror, count, 1, 1, 0);
2165 }
2166
2167 DEFUN ("posix-search-backward", Fposix_search_backward, Sposix_search_backward, 1, 4,
2168 "sPosix search backward: ",
2169 doc: /* Search backward from point for match for regular expression REGEXP.
2170 Find the longest match in accord with Posix regular expression rules.
2171 Set point to the beginning of the match, and return point.
2172 The match found is the one starting last in the buffer
2173 and yet ending before the origin of the search.
2174 An optional second argument bounds the search; it is a buffer position.
2175 The match found must start at or after that position.
2176 Optional third argument, if t, means if fail just return nil (no error).
2177 If not nil and not t, move to limit of search and return nil.
2178 Optional fourth argument is repeat count--search for successive occurrences.
2179
2180 Search case-sensitivity is determined by the value of the variable
2181 `case-fold-search', which see.
2182
2183 See also the functions `match-beginning', `match-end', `match-string',
2184 and `replace-match'. */)
2185 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2186 {
2187 return search_command (regexp, bound, noerror, count, -1, 1, 1);
2188 }
2189
2190 DEFUN ("posix-search-forward", Fposix_search_forward, Sposix_search_forward, 1, 4,
2191 "sPosix search: ",
2192 doc: /* Search forward from point for regular expression REGEXP.
2193 Find the longest match in accord with Posix regular expression rules.
2194 Set point to the end of the occurrence found, and return point.
2195 An optional second argument bounds the search; it is a buffer position.
2196 The match found must not extend after that position.
2197 Optional third argument, if t, means if fail just return nil (no error).
2198 If not nil and not t, move to limit of search and return nil.
2199 Optional fourth argument is repeat count--search for successive occurrences.
2200
2201 Search case-sensitivity is determined by the value of the variable
2202 `case-fold-search', which see.
2203
2204 See also the functions `match-beginning', `match-end', `match-string',
2205 and `replace-match'. */)
2206 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2207 {
2208 return search_command (regexp, bound, noerror, count, 1, 1, 1);
2209 }
2210 \f
2211 DEFUN ("replace-match", Freplace_match, Sreplace_match, 1, 5, 0,
2212 doc: /* Replace text matched by last search with NEWTEXT.
2213 Leave point at the end of the replacement text.
2214
2215 If second arg FIXEDCASE is non-nil, do not alter case of replacement text.
2216 Otherwise maybe capitalize the whole text, or maybe just word initials,
2217 based on the replaced text.
2218 If the replaced text has only capital letters
2219 and has at least one multiletter word, convert NEWTEXT to all caps.
2220 Otherwise if all words are capitalized in the replaced text,
2221 capitalize each word in NEWTEXT.
2222
2223 If third arg LITERAL is non-nil, insert NEWTEXT literally.
2224 Otherwise treat `\\' as special:
2225 `\\&' in NEWTEXT means substitute original matched text.
2226 `\\N' means substitute what matched the Nth `\\(...\\)'.
2227 If Nth parens didn't match, substitute nothing.
2228 `\\\\' means insert one `\\'.
2229 Case conversion does not apply to these substitutions.
2230
2231 FIXEDCASE and LITERAL are optional arguments.
2232
2233 The optional fourth argument STRING can be a string to modify.
2234 This is meaningful when the previous match was done against STRING,
2235 using `string-match'. When used this way, `replace-match'
2236 creates and returns a new string made by copying STRING and replacing
2237 the part of STRING that was matched.
2238
2239 The optional fifth argument SUBEXP specifies a subexpression;
2240 it says to replace just that subexpression with NEWTEXT,
2241 rather than replacing the entire matched text.
2242 This is, in a vague sense, the inverse of using `\\N' in NEWTEXT;
2243 `\\N' copies subexp N into NEWTEXT, but using N as SUBEXP puts
2244 NEWTEXT in place of subexp N.
2245 This is useful only after a regular expression search or match,
2246 since only regular expressions have distinguished subexpressions. */)
2247 (Lisp_Object newtext, Lisp_Object fixedcase, Lisp_Object literal, Lisp_Object string, Lisp_Object subexp)
2248 {
2249 enum { nochange, all_caps, cap_initial } case_action;
2250 register ptrdiff_t pos, pos_byte;
2251 int some_multiletter_word;
2252 int some_lowercase;
2253 int some_uppercase;
2254 int some_nonuppercase_initial;
2255 register int c, prevc;
2256 ptrdiff_t sub;
2257 ptrdiff_t opoint, newpoint;
2258
2259 CHECK_STRING (newtext);
2260
2261 if (! NILP (string))
2262 CHECK_STRING (string);
2263
2264 case_action = nochange; /* We tried an initialization */
2265 /* but some C compilers blew it */
2266
2267 if (search_regs.num_regs <= 0)
2268 error ("`replace-match' called before any match found");
2269
2270 if (NILP (subexp))
2271 sub = 0;
2272 else
2273 {
2274 CHECK_NUMBER (subexp);
2275 if (! (0 <= XINT (subexp) && XINT (subexp) < search_regs.num_regs))
2276 args_out_of_range (subexp, make_number (search_regs.num_regs));
2277 sub = XINT (subexp);
2278 }
2279
2280 if (NILP (string))
2281 {
2282 if (search_regs.start[sub] < BEGV
2283 || search_regs.start[sub] > search_regs.end[sub]
2284 || search_regs.end[sub] > ZV)
2285 args_out_of_range (make_number (search_regs.start[sub]),
2286 make_number (search_regs.end[sub]));
2287 }
2288 else
2289 {
2290 if (search_regs.start[sub] < 0
2291 || search_regs.start[sub] > search_regs.end[sub]
2292 || search_regs.end[sub] > SCHARS (string))
2293 args_out_of_range (make_number (search_regs.start[sub]),
2294 make_number (search_regs.end[sub]));
2295 }
2296
2297 if (NILP (fixedcase))
2298 {
2299 /* Decide how to casify by examining the matched text. */
2300 ptrdiff_t last;
2301
2302 pos = search_regs.start[sub];
2303 last = search_regs.end[sub];
2304
2305 if (NILP (string))
2306 pos_byte = CHAR_TO_BYTE (pos);
2307 else
2308 pos_byte = string_char_to_byte (string, pos);
2309
2310 prevc = '\n';
2311 case_action = all_caps;
2312
2313 /* some_multiletter_word is set nonzero if any original word
2314 is more than one letter long. */
2315 some_multiletter_word = 0;
2316 some_lowercase = 0;
2317 some_nonuppercase_initial = 0;
2318 some_uppercase = 0;
2319
2320 while (pos < last)
2321 {
2322 if (NILP (string))
2323 {
2324 c = FETCH_CHAR_AS_MULTIBYTE (pos_byte);
2325 INC_BOTH (pos, pos_byte);
2326 }
2327 else
2328 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c, string, pos, pos_byte);
2329
2330 if (lowercasep (c))
2331 {
2332 /* Cannot be all caps if any original char is lower case */
2333
2334 some_lowercase = 1;
2335 if (SYNTAX (prevc) != Sword)
2336 some_nonuppercase_initial = 1;
2337 else
2338 some_multiletter_word = 1;
2339 }
2340 else if (uppercasep (c))
2341 {
2342 some_uppercase = 1;
2343 if (SYNTAX (prevc) != Sword)
2344 ;
2345 else
2346 some_multiletter_word = 1;
2347 }
2348 else
2349 {
2350 /* If the initial is a caseless word constituent,
2351 treat that like a lowercase initial. */
2352 if (SYNTAX (prevc) != Sword)
2353 some_nonuppercase_initial = 1;
2354 }
2355
2356 prevc = c;
2357 }
2358
2359 /* Convert to all caps if the old text is all caps
2360 and has at least one multiletter word. */
2361 if (! some_lowercase && some_multiletter_word)
2362 case_action = all_caps;
2363 /* Capitalize each word, if the old text has all capitalized words. */
2364 else if (!some_nonuppercase_initial && some_multiletter_word)
2365 case_action = cap_initial;
2366 else if (!some_nonuppercase_initial && some_uppercase)
2367 /* Should x -> yz, operating on X, give Yz or YZ?
2368 We'll assume the latter. */
2369 case_action = all_caps;
2370 else
2371 case_action = nochange;
2372 }
2373
2374 /* Do replacement in a string. */
2375 if (!NILP (string))
2376 {
2377 Lisp_Object before, after;
2378
2379 before = Fsubstring (string, make_number (0),
2380 make_number (search_regs.start[sub]));
2381 after = Fsubstring (string, make_number (search_regs.end[sub]), Qnil);
2382
2383 /* Substitute parts of the match into NEWTEXT
2384 if desired. */
2385 if (NILP (literal))
2386 {
2387 ptrdiff_t lastpos = 0;
2388 ptrdiff_t lastpos_byte = 0;
2389 /* We build up the substituted string in ACCUM. */
2390 Lisp_Object accum;
2391 Lisp_Object middle;
2392 ptrdiff_t length = SBYTES (newtext);
2393
2394 accum = Qnil;
2395
2396 for (pos_byte = 0, pos = 0; pos_byte < length;)
2397 {
2398 ptrdiff_t substart = -1;
2399 ptrdiff_t subend = 0;
2400 int delbackslash = 0;
2401
2402 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2403
2404 if (c == '\\')
2405 {
2406 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2407
2408 if (c == '&')
2409 {
2410 substart = search_regs.start[sub];
2411 subend = search_regs.end[sub];
2412 }
2413 else if (c >= '1' && c <= '9')
2414 {
2415 if (c - '0' < search_regs.num_regs
2416 && 0 <= search_regs.start[c - '0'])
2417 {
2418 substart = search_regs.start[c - '0'];
2419 subend = search_regs.end[c - '0'];
2420 }
2421 else
2422 {
2423 /* If that subexp did not match,
2424 replace \\N with nothing. */
2425 substart = 0;
2426 subend = 0;
2427 }
2428 }
2429 else if (c == '\\')
2430 delbackslash = 1;
2431 else
2432 error ("Invalid use of `\\' in replacement text");
2433 }
2434 if (substart >= 0)
2435 {
2436 if (pos - 2 != lastpos)
2437 middle = substring_both (newtext, lastpos,
2438 lastpos_byte,
2439 pos - 2, pos_byte - 2);
2440 else
2441 middle = Qnil;
2442 accum = concat3 (accum, middle,
2443 Fsubstring (string,
2444 make_number (substart),
2445 make_number (subend)));
2446 lastpos = pos;
2447 lastpos_byte = pos_byte;
2448 }
2449 else if (delbackslash)
2450 {
2451 middle = substring_both (newtext, lastpos,
2452 lastpos_byte,
2453 pos - 1, pos_byte - 1);
2454
2455 accum = concat2 (accum, middle);
2456 lastpos = pos;
2457 lastpos_byte = pos_byte;
2458 }
2459 }
2460
2461 if (pos != lastpos)
2462 middle = substring_both (newtext, lastpos,
2463 lastpos_byte,
2464 pos, pos_byte);
2465 else
2466 middle = Qnil;
2467
2468 newtext = concat2 (accum, middle);
2469 }
2470
2471 /* Do case substitution in NEWTEXT if desired. */
2472 if (case_action == all_caps)
2473 newtext = Fupcase (newtext);
2474 else if (case_action == cap_initial)
2475 newtext = Fupcase_initials (newtext);
2476
2477 return concat3 (before, newtext, after);
2478 }
2479
2480 /* Record point, then move (quietly) to the start of the match. */
2481 if (PT >= search_regs.end[sub])
2482 opoint = PT - ZV;
2483 else if (PT > search_regs.start[sub])
2484 opoint = search_regs.end[sub] - ZV;
2485 else
2486 opoint = PT;
2487
2488 /* If we want non-literal replacement,
2489 perform substitution on the replacement string. */
2490 if (NILP (literal))
2491 {
2492 ptrdiff_t length = SBYTES (newtext);
2493 unsigned char *substed;
2494 ptrdiff_t substed_alloc_size, substed_len;
2495 int buf_multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2496 int str_multibyte = STRING_MULTIBYTE (newtext);
2497 int really_changed = 0;
2498
2499 substed_alloc_size = ((STRING_BYTES_BOUND - 100) / 2 < length
2500 ? STRING_BYTES_BOUND
2501 : length * 2 + 100);
2502 substed = (unsigned char *) xmalloc (substed_alloc_size);
2503 substed_len = 0;
2504
2505 /* Go thru NEWTEXT, producing the actual text to insert in
2506 SUBSTED while adjusting multibyteness to that of the current
2507 buffer. */
2508
2509 for (pos_byte = 0, pos = 0; pos_byte < length;)
2510 {
2511 unsigned char str[MAX_MULTIBYTE_LENGTH];
2512 const unsigned char *add_stuff = NULL;
2513 ptrdiff_t add_len = 0;
2514 ptrdiff_t idx = -1;
2515
2516 if (str_multibyte)
2517 {
2518 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext, pos, pos_byte);
2519 if (!buf_multibyte)
2520 c = multibyte_char_to_unibyte (c);
2521 }
2522 else
2523 {
2524 /* Note that we don't have to increment POS. */
2525 c = SREF (newtext, pos_byte++);
2526 if (buf_multibyte)
2527 MAKE_CHAR_MULTIBYTE (c);
2528 }
2529
2530 /* Either set ADD_STUFF and ADD_LEN to the text to put in SUBSTED,
2531 or set IDX to a match index, which means put that part
2532 of the buffer text into SUBSTED. */
2533
2534 if (c == '\\')
2535 {
2536 really_changed = 1;
2537
2538 if (str_multibyte)
2539 {
2540 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext,
2541 pos, pos_byte);
2542 if (!buf_multibyte && !ASCII_CHAR_P (c))
2543 c = multibyte_char_to_unibyte (c);
2544 }
2545 else
2546 {
2547 c = SREF (newtext, pos_byte++);
2548 if (buf_multibyte)
2549 MAKE_CHAR_MULTIBYTE (c);
2550 }
2551
2552 if (c == '&')
2553 idx = sub;
2554 else if (c >= '1' && c <= '9' && c - '0' < search_regs.num_regs)
2555 {
2556 if (search_regs.start[c - '0'] >= 1)
2557 idx = c - '0';
2558 }
2559 else if (c == '\\')
2560 add_len = 1, add_stuff = (unsigned char *) "\\";
2561 else
2562 {
2563 xfree (substed);
2564 error ("Invalid use of `\\' in replacement text");
2565 }
2566 }
2567 else
2568 {
2569 add_len = CHAR_STRING (c, str);
2570 add_stuff = str;
2571 }
2572
2573 /* If we want to copy part of a previous match,
2574 set up ADD_STUFF and ADD_LEN to point to it. */
2575 if (idx >= 0)
2576 {
2577 ptrdiff_t begbyte = CHAR_TO_BYTE (search_regs.start[idx]);
2578 add_len = CHAR_TO_BYTE (search_regs.end[idx]) - begbyte;
2579 if (search_regs.start[idx] < GPT && GPT < search_regs.end[idx])
2580 move_gap (search_regs.start[idx]);
2581 add_stuff = BYTE_POS_ADDR (begbyte);
2582 }
2583
2584 /* Now the stuff we want to add to SUBSTED
2585 is invariably ADD_LEN bytes starting at ADD_STUFF. */
2586
2587 /* Make sure SUBSTED is big enough. */
2588 if (substed_alloc_size - substed_len < add_len)
2589 substed =
2590 xpalloc (substed, &substed_alloc_size,
2591 add_len - (substed_alloc_size - substed_len),
2592 STRING_BYTES_BOUND, 1);
2593
2594 /* Now add to the end of SUBSTED. */
2595 if (add_stuff)
2596 {
2597 memcpy (substed + substed_len, add_stuff, add_len);
2598 substed_len += add_len;
2599 }
2600 }
2601
2602 if (really_changed)
2603 {
2604 if (buf_multibyte)
2605 {
2606 ptrdiff_t nchars =
2607 multibyte_chars_in_text (substed, substed_len);
2608
2609 newtext = make_multibyte_string ((char *) substed, nchars,
2610 substed_len);
2611 }
2612 else
2613 newtext = make_unibyte_string ((char *) substed, substed_len);
2614 }
2615 xfree (substed);
2616 }
2617
2618 /* Replace the old text with the new in the cleanest possible way. */
2619 replace_range (search_regs.start[sub], search_regs.end[sub],
2620 newtext, 1, 0, 1);
2621 newpoint = search_regs.start[sub] + SCHARS (newtext);
2622
2623 if (case_action == all_caps)
2624 Fupcase_region (make_number (search_regs.start[sub]),
2625 make_number (newpoint));
2626 else if (case_action == cap_initial)
2627 Fupcase_initials_region (make_number (search_regs.start[sub]),
2628 make_number (newpoint));
2629
2630 /* Adjust search data for this change. */
2631 {
2632 ptrdiff_t oldend = search_regs.end[sub];
2633 ptrdiff_t oldstart = search_regs.start[sub];
2634 ptrdiff_t change = newpoint - search_regs.end[sub];
2635 ptrdiff_t i;
2636
2637 for (i = 0; i < search_regs.num_regs; i++)
2638 {
2639 if (search_regs.start[i] >= oldend)
2640 search_regs.start[i] += change;
2641 else if (search_regs.start[i] > oldstart)
2642 search_regs.start[i] = oldstart;
2643 if (search_regs.end[i] >= oldend)
2644 search_regs.end[i] += change;
2645 else if (search_regs.end[i] > oldstart)
2646 search_regs.end[i] = oldstart;
2647 }
2648 }
2649
2650 /* Put point back where it was in the text. */
2651 if (opoint <= 0)
2652 TEMP_SET_PT (opoint + ZV);
2653 else
2654 TEMP_SET_PT (opoint);
2655
2656 /* Now move point "officially" to the start of the inserted replacement. */
2657 move_if_not_intangible (newpoint);
2658
2659 return Qnil;
2660 }
2661 \f
2662 static Lisp_Object
2663 match_limit (Lisp_Object num, int beginningp)
2664 {
2665 EMACS_INT n;
2666
2667 CHECK_NUMBER (num);
2668 n = XINT (num);
2669 if (n < 0)
2670 args_out_of_range (num, make_number (0));
2671 if (search_regs.num_regs <= 0)
2672 error ("No match data, because no search succeeded");
2673 if (n >= search_regs.num_regs
2674 || search_regs.start[n] < 0)
2675 return Qnil;
2676 return (make_number ((beginningp) ? search_regs.start[n]
2677 : search_regs.end[n]));
2678 }
2679
2680 DEFUN ("match-beginning", Fmatch_beginning, Smatch_beginning, 1, 1, 0,
2681 doc: /* Return position of start of text matched by last search.
2682 SUBEXP, a number, specifies which parenthesized expression in the last
2683 regexp.
2684 Value is nil if SUBEXPth pair didn't match, or there were less than
2685 SUBEXP pairs.
2686 Zero means the entire text matched by the whole regexp or whole string. */)
2687 (Lisp_Object subexp)
2688 {
2689 return match_limit (subexp, 1);
2690 }
2691
2692 DEFUN ("match-end", Fmatch_end, Smatch_end, 1, 1, 0,
2693 doc: /* Return position of end of text matched by last search.
2694 SUBEXP, a number, specifies which parenthesized expression in the last
2695 regexp.
2696 Value is nil if SUBEXPth pair didn't match, or there were less than
2697 SUBEXP pairs.
2698 Zero means the entire text matched by the whole regexp or whole string. */)
2699 (Lisp_Object subexp)
2700 {
2701 return match_limit (subexp, 0);
2702 }
2703
2704 DEFUN ("match-data", Fmatch_data, Smatch_data, 0, 3, 0,
2705 doc: /* Return a list containing all info on what the last search matched.
2706 Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.
2707 All the elements are markers or nil (nil if the Nth pair didn't match)
2708 if the last match was on a buffer; integers or nil if a string was matched.
2709 Use `set-match-data' to reinstate the data in this list.
2710
2711 If INTEGERS (the optional first argument) is non-nil, always use
2712 integers \(rather than markers) to represent buffer positions. In
2713 this case, and if the last match was in a buffer, the buffer will get
2714 stored as one additional element at the end of the list.
2715
2716 If REUSE is a list, reuse it as part of the value. If REUSE is long
2717 enough to hold all the values, and if INTEGERS is non-nil, no consing
2718 is done.
2719
2720 If optional third arg RESEAT is non-nil, any previous markers on the
2721 REUSE list will be modified to point to nowhere.
2722
2723 Return value is undefined if the last search failed. */)
2724 (Lisp_Object integers, Lisp_Object reuse, Lisp_Object reseat)
2725 {
2726 Lisp_Object tail, prev;
2727 Lisp_Object *data;
2728 ptrdiff_t i, len;
2729
2730 if (!NILP (reseat))
2731 for (tail = reuse; CONSP (tail); tail = XCDR (tail))
2732 if (MARKERP (XCAR (tail)))
2733 {
2734 unchain_marker (XMARKER (XCAR (tail)));
2735 XSETCAR (tail, Qnil);
2736 }
2737
2738 if (NILP (last_thing_searched))
2739 return Qnil;
2740
2741 prev = Qnil;
2742
2743 data = (Lisp_Object *) alloca ((2 * search_regs.num_regs + 1)
2744 * sizeof (Lisp_Object));
2745
2746 len = 0;
2747 for (i = 0; i < search_regs.num_regs; i++)
2748 {
2749 ptrdiff_t start = search_regs.start[i];
2750 if (start >= 0)
2751 {
2752 if (EQ (last_thing_searched, Qt)
2753 || ! NILP (integers))
2754 {
2755 XSETFASTINT (data[2 * i], start);
2756 XSETFASTINT (data[2 * i + 1], search_regs.end[i]);
2757 }
2758 else if (BUFFERP (last_thing_searched))
2759 {
2760 data[2 * i] = Fmake_marker ();
2761 Fset_marker (data[2 * i],
2762 make_number (start),
2763 last_thing_searched);
2764 data[2 * i + 1] = Fmake_marker ();
2765 Fset_marker (data[2 * i + 1],
2766 make_number (search_regs.end[i]),
2767 last_thing_searched);
2768 }
2769 else
2770 /* last_thing_searched must always be Qt, a buffer, or Qnil. */
2771 abort ();
2772
2773 len = 2 * i + 2;
2774 }
2775 else
2776 data[2 * i] = data[2 * i + 1] = Qnil;
2777 }
2778
2779 if (BUFFERP (last_thing_searched) && !NILP (integers))
2780 {
2781 data[len] = last_thing_searched;
2782 len++;
2783 }
2784
2785 /* If REUSE is not usable, cons up the values and return them. */
2786 if (! CONSP (reuse))
2787 return Flist (len, data);
2788
2789 /* If REUSE is a list, store as many value elements as will fit
2790 into the elements of REUSE. */
2791 for (i = 0, tail = reuse; CONSP (tail);
2792 i++, tail = XCDR (tail))
2793 {
2794 if (i < len)
2795 XSETCAR (tail, data[i]);
2796 else
2797 XSETCAR (tail, Qnil);
2798 prev = tail;
2799 }
2800
2801 /* If we couldn't fit all value elements into REUSE,
2802 cons up the rest of them and add them to the end of REUSE. */
2803 if (i < len)
2804 XSETCDR (prev, Flist (len - i, data + i));
2805
2806 return reuse;
2807 }
2808
2809 /* We used to have an internal use variant of `reseat' described as:
2810
2811 If RESEAT is `evaporate', put the markers back on the free list
2812 immediately. No other references to the markers must exist in this
2813 case, so it is used only internally on the unwind stack and
2814 save-match-data from Lisp.
2815
2816 But it was ill-conceived: those supposedly-internal markers get exposed via
2817 the undo-list, so freeing them here is unsafe. */
2818
2819 DEFUN ("set-match-data", Fset_match_data, Sset_match_data, 1, 2, 0,
2820 doc: /* Set internal data on last search match from elements of LIST.
2821 LIST should have been created by calling `match-data' previously.
2822
2823 If optional arg RESEAT is non-nil, make markers on LIST point nowhere. */)
2824 (register Lisp_Object list, Lisp_Object reseat)
2825 {
2826 ptrdiff_t i;
2827 register Lisp_Object marker;
2828
2829 if (running_asynch_code)
2830 save_search_regs ();
2831
2832 CHECK_LIST (list);
2833
2834 /* Unless we find a marker with a buffer or an explicit buffer
2835 in LIST, assume that this match data came from a string. */
2836 last_thing_searched = Qt;
2837
2838 /* Allocate registers if they don't already exist. */
2839 {
2840 EMACS_INT length = XFASTINT (Flength (list)) / 2;
2841
2842 if (length > search_regs.num_regs)
2843 {
2844 ptrdiff_t num_regs = search_regs.num_regs;
2845 if (PTRDIFF_MAX < length)
2846 memory_full (SIZE_MAX);
2847 search_regs.start =
2848 xpalloc (search_regs.start, &num_regs, length - num_regs,
2849 min (PTRDIFF_MAX, UINT_MAX), sizeof (regoff_t));
2850 search_regs.end =
2851 xrealloc (search_regs.end, num_regs * sizeof (regoff_t));
2852
2853 for (i = search_regs.num_regs; i < num_regs; i++)
2854 search_regs.start[i] = -1;
2855
2856 search_regs.num_regs = num_regs;
2857 }
2858
2859 for (i = 0; CONSP (list); i++)
2860 {
2861 marker = XCAR (list);
2862 if (BUFFERP (marker))
2863 {
2864 last_thing_searched = marker;
2865 break;
2866 }
2867 if (i >= length)
2868 break;
2869 if (NILP (marker))
2870 {
2871 search_regs.start[i] = -1;
2872 list = XCDR (list);
2873 }
2874 else
2875 {
2876 Lisp_Object from;
2877 Lisp_Object m;
2878
2879 m = marker;
2880 if (MARKERP (marker))
2881 {
2882 if (XMARKER (marker)->buffer == 0)
2883 XSETFASTINT (marker, 0);
2884 else
2885 XSETBUFFER (last_thing_searched, XMARKER (marker)->buffer);
2886 }
2887
2888 CHECK_NUMBER_COERCE_MARKER (marker);
2889 from = marker;
2890
2891 if (!NILP (reseat) && MARKERP (m))
2892 {
2893 unchain_marker (XMARKER (m));
2894 XSETCAR (list, Qnil);
2895 }
2896
2897 if ((list = XCDR (list), !CONSP (list)))
2898 break;
2899
2900 m = marker = XCAR (list);
2901
2902 if (MARKERP (marker) && XMARKER (marker)->buffer == 0)
2903 XSETFASTINT (marker, 0);
2904
2905 CHECK_NUMBER_COERCE_MARKER (marker);
2906 if ((XINT (from) < 0
2907 ? TYPE_MINIMUM (regoff_t) <= XINT (from)
2908 : XINT (from) <= TYPE_MAXIMUM (regoff_t))
2909 && (XINT (marker) < 0
2910 ? TYPE_MINIMUM (regoff_t) <= XINT (marker)
2911 : XINT (marker) <= TYPE_MAXIMUM (regoff_t)))
2912 {
2913 search_regs.start[i] = XINT (from);
2914 search_regs.end[i] = XINT (marker);
2915 }
2916 else
2917 {
2918 search_regs.start[i] = -1;
2919 }
2920
2921 if (!NILP (reseat) && MARKERP (m))
2922 {
2923 unchain_marker (XMARKER (m));
2924 XSETCAR (list, Qnil);
2925 }
2926 }
2927 list = XCDR (list);
2928 }
2929
2930 for (; i < search_regs.num_regs; i++)
2931 search_regs.start[i] = -1;
2932 }
2933
2934 return Qnil;
2935 }
2936
2937 /* If non-zero the match data have been saved in saved_search_regs
2938 during the execution of a sentinel or filter. */
2939 static int search_regs_saved;
2940 static struct re_registers saved_search_regs;
2941 static Lisp_Object saved_last_thing_searched;
2942
2943 /* Called from Flooking_at, Fstring_match, search_buffer, Fstore_match_data
2944 if asynchronous code (filter or sentinel) is running. */
2945 static void
2946 save_search_regs (void)
2947 {
2948 if (!search_regs_saved)
2949 {
2950 saved_search_regs.num_regs = search_regs.num_regs;
2951 saved_search_regs.start = search_regs.start;
2952 saved_search_regs.end = search_regs.end;
2953 saved_last_thing_searched = last_thing_searched;
2954 last_thing_searched = Qnil;
2955 search_regs.num_regs = 0;
2956 search_regs.start = 0;
2957 search_regs.end = 0;
2958
2959 search_regs_saved = 1;
2960 }
2961 }
2962
2963 /* Called upon exit from filters and sentinels. */
2964 void
2965 restore_search_regs (void)
2966 {
2967 if (search_regs_saved)
2968 {
2969 if (search_regs.num_regs > 0)
2970 {
2971 xfree (search_regs.start);
2972 xfree (search_regs.end);
2973 }
2974 search_regs.num_regs = saved_search_regs.num_regs;
2975 search_regs.start = saved_search_regs.start;
2976 search_regs.end = saved_search_regs.end;
2977 last_thing_searched = saved_last_thing_searched;
2978 saved_last_thing_searched = Qnil;
2979 search_regs_saved = 0;
2980 }
2981 }
2982
2983 static Lisp_Object
2984 unwind_set_match_data (Lisp_Object list)
2985 {
2986 /* It is NOT ALWAYS safe to free (evaporate) the markers immediately. */
2987 return Fset_match_data (list, Qt);
2988 }
2989
2990 /* Called to unwind protect the match data. */
2991 void
2992 record_unwind_save_match_data (void)
2993 {
2994 record_unwind_protect (unwind_set_match_data,
2995 Fmatch_data (Qnil, Qnil, Qnil));
2996 }
2997
2998 /* Quote a string to deactivate reg-expr chars */
2999
3000 DEFUN ("regexp-quote", Fregexp_quote, Sregexp_quote, 1, 1, 0,
3001 doc: /* Return a regexp string which matches exactly STRING and nothing else. */)
3002 (Lisp_Object string)
3003 {
3004 register char *in, *out, *end;
3005 register char *temp;
3006 int backslashes_added = 0;
3007
3008 CHECK_STRING (string);
3009
3010 temp = (char *) alloca (SBYTES (string) * 2);
3011
3012 /* Now copy the data into the new string, inserting escapes. */
3013
3014 in = SSDATA (string);
3015 end = in + SBYTES (string);
3016 out = temp;
3017
3018 for (; in != end; in++)
3019 {
3020 if (*in == '['
3021 || *in == '*' || *in == '.' || *in == '\\'
3022 || *in == '?' || *in == '+'
3023 || *in == '^' || *in == '$')
3024 *out++ = '\\', backslashes_added++;
3025 *out++ = *in;
3026 }
3027
3028 return make_specified_string (temp,
3029 SCHARS (string) + backslashes_added,
3030 out - temp,
3031 STRING_MULTIBYTE (string));
3032 }
3033 \f
3034 void
3035 syms_of_search (void)
3036 {
3037 register int i;
3038
3039 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
3040 {
3041 searchbufs[i].buf.allocated = 100;
3042 searchbufs[i].buf.buffer = (unsigned char *) xmalloc (100);
3043 searchbufs[i].buf.fastmap = searchbufs[i].fastmap;
3044 searchbufs[i].regexp = Qnil;
3045 searchbufs[i].whitespace_regexp = Qnil;
3046 searchbufs[i].syntax_table = Qnil;
3047 staticpro (&searchbufs[i].regexp);
3048 staticpro (&searchbufs[i].whitespace_regexp);
3049 staticpro (&searchbufs[i].syntax_table);
3050 searchbufs[i].next = (i == REGEXP_CACHE_SIZE-1 ? 0 : &searchbufs[i+1]);
3051 }
3052 searchbuf_head = &searchbufs[0];
3053
3054 DEFSYM (Qsearch_failed, "search-failed");
3055 DEFSYM (Qinvalid_regexp, "invalid-regexp");
3056
3057 Fput (Qsearch_failed, Qerror_conditions,
3058 pure_cons (Qsearch_failed, pure_cons (Qerror, Qnil)));
3059 Fput (Qsearch_failed, Qerror_message,
3060 make_pure_c_string ("Search failed"));
3061
3062 Fput (Qinvalid_regexp, Qerror_conditions,
3063 pure_cons (Qinvalid_regexp, pure_cons (Qerror, Qnil)));
3064 Fput (Qinvalid_regexp, Qerror_message,
3065 make_pure_c_string ("Invalid regexp"));
3066
3067 last_thing_searched = Qnil;
3068 staticpro (&last_thing_searched);
3069
3070 saved_last_thing_searched = Qnil;
3071 staticpro (&saved_last_thing_searched);
3072
3073 DEFVAR_LISP ("search-spaces-regexp", Vsearch_spaces_regexp,
3074 doc: /* Regexp to substitute for bunches of spaces in regexp search.
3075 Some commands use this for user-specified regexps.
3076 Spaces that occur inside character classes or repetition operators
3077 or other such regexp constructs are not replaced with this.
3078 A value of nil (which is the normal value) means treat spaces literally. */);
3079 Vsearch_spaces_regexp = Qnil;
3080
3081 DEFVAR_LISP ("inhibit-changing-match-data", Vinhibit_changing_match_data,
3082 doc: /* Internal use only.
3083 If non-nil, the primitive searching and matching functions
3084 such as `looking-at', `string-match', `re-search-forward', etc.,
3085 do not set the match data. The proper way to use this variable
3086 is to bind it with `let' around a small expression. */);
3087 Vinhibit_changing_match_data = Qnil;
3088
3089 defsubr (&Slooking_at);
3090 defsubr (&Sposix_looking_at);
3091 defsubr (&Sstring_match);
3092 defsubr (&Sposix_string_match);
3093 defsubr (&Ssearch_forward);
3094 defsubr (&Ssearch_backward);
3095 defsubr (&Sre_search_forward);
3096 defsubr (&Sre_search_backward);
3097 defsubr (&Sposix_search_forward);
3098 defsubr (&Sposix_search_backward);
3099 defsubr (&Sreplace_match);
3100 defsubr (&Smatch_beginning);
3101 defsubr (&Smatch_end);
3102 defsubr (&Smatch_data);
3103 defsubr (&Sset_match_data);
3104 defsubr (&Sregexp_quote);
3105 }