Change object marking routines to minimize stack usage.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2014 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
29
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
33
34 #include "lisp.h"
35 #include "process.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "character.h"
39 #include "buffer.h"
40 #include "window.h"
41 #include "keyboard.h"
42 #include "frame.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45 #ifdef HAVE_WINDOW_SYSTEM
46 #include TERM_HEADER
47 #endif /* HAVE_WINDOW_SYSTEM */
48
49 #include <verify.h>
50 #include <execinfo.h> /* For backtrace. */
51
52 #if (defined ENABLE_CHECKING \
53 && defined HAVE_VALGRIND_VALGRIND_H \
54 && !defined USE_VALGRIND)
55 # define USE_VALGRIND 1
56 #endif
57
58 #if USE_VALGRIND
59 #include <valgrind/valgrind.h>
60 #include <valgrind/memcheck.h>
61 static bool valgrind_p;
62 #endif
63
64 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
65 Doable only if GC_MARK_STACK. */
66 #if ! GC_MARK_STACK
67 # undef GC_CHECK_MARKED_OBJECTS
68 #endif
69
70 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
71 memory. Can do this only if using gmalloc.c and if not checking
72 marked objects. */
73
74 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
75 || defined GC_CHECK_MARKED_OBJECTS)
76 #undef GC_MALLOC_CHECK
77 #endif
78
79 #include <unistd.h>
80 #include <fcntl.h>
81
82 #ifdef USE_GTK
83 # include "gtkutil.h"
84 #endif
85 #ifdef WINDOWSNT
86 #include "w32.h"
87 #include "w32heap.h" /* for sbrk */
88 #endif
89
90 #ifdef DOUG_LEA_MALLOC
91
92 #include <malloc.h>
93
94 /* Specify maximum number of areas to mmap. It would be nice to use a
95 value that explicitly means "no limit". */
96
97 #define MMAP_MAX_AREAS 100000000
98
99 #endif /* not DOUG_LEA_MALLOC */
100
101 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
102 to a struct Lisp_String. */
103
104 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
105 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
106 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
107
108 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
109 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
110 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
111
112 /* Default value of gc_cons_threshold (see below). */
113
114 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
115
116 /* Global variables. */
117 struct emacs_globals globals;
118
119 /* Number of bytes of consing done since the last gc. */
120
121 EMACS_INT consing_since_gc;
122
123 /* Similar minimum, computed from Vgc_cons_percentage. */
124
125 EMACS_INT gc_relative_threshold;
126
127 /* Minimum number of bytes of consing since GC before next GC,
128 when memory is full. */
129
130 EMACS_INT memory_full_cons_threshold;
131
132 /* True during GC. */
133
134 bool gc_in_progress;
135
136 /* True means abort if try to GC.
137 This is for code which is written on the assumption that
138 no GC will happen, so as to verify that assumption. */
139
140 bool abort_on_gc;
141
142 /* Number of live and free conses etc. */
143
144 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
145 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
146 static EMACS_INT total_free_floats, total_floats;
147
148 /* Points to memory space allocated as "spare", to be freed if we run
149 out of memory. We keep one large block, four cons-blocks, and
150 two string blocks. */
151
152 static char *spare_memory[7];
153
154 /* Amount of spare memory to keep in large reserve block, or to see
155 whether this much is available when malloc fails on a larger request. */
156
157 #define SPARE_MEMORY (1 << 14)
158
159 /* Initialize it to a nonzero value to force it into data space
160 (rather than bss space). That way unexec will remap it into text
161 space (pure), on some systems. We have not implemented the
162 remapping on more recent systems because this is less important
163 nowadays than in the days of small memories and timesharing. */
164
165 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
166 #define PUREBEG (char *) pure
167
168 /* Pointer to the pure area, and its size. */
169
170 static char *purebeg;
171 static ptrdiff_t pure_size;
172
173 /* Number of bytes of pure storage used before pure storage overflowed.
174 If this is non-zero, this implies that an overflow occurred. */
175
176 static ptrdiff_t pure_bytes_used_before_overflow;
177
178 /* True if P points into pure space. */
179
180 #define PURE_POINTER_P(P) \
181 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
182
183 /* Index in pure at which next pure Lisp object will be allocated.. */
184
185 static ptrdiff_t pure_bytes_used_lisp;
186
187 /* Number of bytes allocated for non-Lisp objects in pure storage. */
188
189 static ptrdiff_t pure_bytes_used_non_lisp;
190
191 /* If nonzero, this is a warning delivered by malloc and not yet
192 displayed. */
193
194 const char *pending_malloc_warning;
195
196 #if 0 /* Normally, pointer sanity only on request... */
197 #ifdef ENABLE_CHECKING
198 #define SUSPICIOUS_OBJECT_CHECKING 1
199 #endif
200 #endif
201
202 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
203 bug is unresolved. */
204 #define SUSPICIOUS_OBJECT_CHECKING 1
205
206 #ifdef SUSPICIOUS_OBJECT_CHECKING
207 struct suspicious_free_record
208 {
209 void *suspicious_object;
210 void *backtrace[128];
211 };
212 static void *suspicious_objects[32];
213 static int suspicious_object_index;
214 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
215 static int suspicious_free_history_index;
216 /* Find the first currently-monitored suspicious pointer in range
217 [begin,end) or NULL if no such pointer exists. */
218 static void *find_suspicious_object_in_range (void *begin, void *end);
219 static void detect_suspicious_free (void *ptr);
220 #else
221 # define find_suspicious_object_in_range(begin, end) NULL
222 # define detect_suspicious_free(ptr) (void)
223 #endif
224
225 /* Maximum amount of C stack to save when a GC happens. */
226
227 #ifndef MAX_SAVE_STACK
228 #define MAX_SAVE_STACK 16000
229 #endif
230
231 /* Buffer in which we save a copy of the C stack at each GC. */
232
233 #if MAX_SAVE_STACK > 0
234 static char *stack_copy;
235 static ptrdiff_t stack_copy_size;
236
237 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
238 avoiding any address sanitization. */
239
240 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
241 no_sanitize_memcpy (void *dest, void const *src, size_t size)
242 {
243 if (! ADDRESS_SANITIZER)
244 return memcpy (dest, src, size);
245 else
246 {
247 size_t i;
248 char *d = dest;
249 char const *s = src;
250 for (i = 0; i < size; i++)
251 d[i] = s[i];
252 return dest;
253 }
254 }
255
256 #endif /* MAX_SAVE_STACK > 0 */
257
258 static Lisp_Object Qconses;
259 static Lisp_Object Qsymbols;
260 static Lisp_Object Qmiscs;
261 static Lisp_Object Qstrings;
262 static Lisp_Object Qvectors;
263 static Lisp_Object Qfloats;
264 static Lisp_Object Qintervals;
265 static Lisp_Object Qbuffers;
266 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
267 static Lisp_Object Qgc_cons_threshold;
268 Lisp_Object Qautomatic_gc;
269 Lisp_Object Qchar_table_extra_slots;
270
271 /* Hook run after GC has finished. */
272
273 static Lisp_Object Qpost_gc_hook;
274
275 static void mark_terminals (void);
276 static void gc_sweep (void);
277 static Lisp_Object make_pure_vector (ptrdiff_t);
278 static void mark_buffer (struct buffer *);
279
280 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
281 static void refill_memory_reserve (void);
282 #endif
283 static void compact_small_strings (void);
284 static void free_large_strings (void);
285 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
286
287 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
288 what memory allocated via lisp_malloc and lisp_align_malloc is intended
289 for what purpose. This enumeration specifies the type of memory. */
290
291 enum mem_type
292 {
293 MEM_TYPE_NON_LISP,
294 MEM_TYPE_BUFFER,
295 MEM_TYPE_CONS,
296 MEM_TYPE_STRING,
297 MEM_TYPE_MISC,
298 MEM_TYPE_SYMBOL,
299 MEM_TYPE_FLOAT,
300 /* Since all non-bool pseudovectors are small enough to be
301 allocated from vector blocks, this memory type denotes
302 large regular vectors and large bool pseudovectors. */
303 MEM_TYPE_VECTORLIKE,
304 /* Special type to denote vector blocks. */
305 MEM_TYPE_VECTOR_BLOCK,
306 /* Special type to denote reserved memory. */
307 MEM_TYPE_SPARE
308 };
309
310 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
311
312 /* A unique object in pure space used to make some Lisp objects
313 on free lists recognizable in O(1). */
314
315 static Lisp_Object Vdead;
316 #define DEADP(x) EQ (x, Vdead)
317
318 #ifdef GC_MALLOC_CHECK
319
320 enum mem_type allocated_mem_type;
321
322 #endif /* GC_MALLOC_CHECK */
323
324 /* A node in the red-black tree describing allocated memory containing
325 Lisp data. Each such block is recorded with its start and end
326 address when it is allocated, and removed from the tree when it
327 is freed.
328
329 A red-black tree is a balanced binary tree with the following
330 properties:
331
332 1. Every node is either red or black.
333 2. Every leaf is black.
334 3. If a node is red, then both of its children are black.
335 4. Every simple path from a node to a descendant leaf contains
336 the same number of black nodes.
337 5. The root is always black.
338
339 When nodes are inserted into the tree, or deleted from the tree,
340 the tree is "fixed" so that these properties are always true.
341
342 A red-black tree with N internal nodes has height at most 2
343 log(N+1). Searches, insertions and deletions are done in O(log N).
344 Please see a text book about data structures for a detailed
345 description of red-black trees. Any book worth its salt should
346 describe them. */
347
348 struct mem_node
349 {
350 /* Children of this node. These pointers are never NULL. When there
351 is no child, the value is MEM_NIL, which points to a dummy node. */
352 struct mem_node *left, *right;
353
354 /* The parent of this node. In the root node, this is NULL. */
355 struct mem_node *parent;
356
357 /* Start and end of allocated region. */
358 void *start, *end;
359
360 /* Node color. */
361 enum {MEM_BLACK, MEM_RED} color;
362
363 /* Memory type. */
364 enum mem_type type;
365 };
366
367 /* Base address of stack. Set in main. */
368
369 Lisp_Object *stack_base;
370
371 /* Root of the tree describing allocated Lisp memory. */
372
373 static struct mem_node *mem_root;
374
375 /* Lowest and highest known address in the heap. */
376
377 static void *min_heap_address, *max_heap_address;
378
379 /* Sentinel node of the tree. */
380
381 static struct mem_node mem_z;
382 #define MEM_NIL &mem_z
383
384 static struct mem_node *mem_insert (void *, void *, enum mem_type);
385 static void mem_insert_fixup (struct mem_node *);
386 static void mem_rotate_left (struct mem_node *);
387 static void mem_rotate_right (struct mem_node *);
388 static void mem_delete (struct mem_node *);
389 static void mem_delete_fixup (struct mem_node *);
390 static struct mem_node *mem_find (void *);
391
392 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
393
394 #ifndef DEADP
395 # define DEADP(x) 0
396 #endif
397
398 /* Recording what needs to be marked for gc. */
399
400 struct gcpro *gcprolist;
401
402 /* Addresses of staticpro'd variables. Initialize it to a nonzero
403 value; otherwise some compilers put it into BSS. */
404
405 enum { NSTATICS = 2048 };
406 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
407
408 /* Index of next unused slot in staticvec. */
409
410 static int staticidx;
411
412 static void *pure_alloc (size_t, int);
413
414 /* Return X rounded to the next multiple of Y. Arguments should not
415 have side effects, as they are evaluated more than once. Assume X
416 + Y - 1 does not overflow. Tune for Y being a power of 2. */
417
418 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
419 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
420 : ((x) + (y) - 1) & ~ ((y) - 1))
421
422 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
423
424 static void *
425 ALIGN (void *ptr, int alignment)
426 {
427 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
428 }
429
430 static void
431 XFLOAT_INIT (Lisp_Object f, double n)
432 {
433 XFLOAT (f)->u.data = n;
434 }
435
436 static bool
437 pointers_fit_in_lispobj_p (void)
438 {
439 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
440 }
441
442 static bool
443 mmap_lisp_allowed_p (void)
444 {
445 /* If we can't store all memory addresses in our lisp objects, it's
446 risky to let the heap use mmap and give us addresses from all
447 over our address space. We also can't use mmap for lisp objects
448 if we might dump: unexec doesn't preserve the contents of mmaped
449 regions. */
450 return pointers_fit_in_lispobj_p () && !might_dump;
451 }
452
453 \f
454 /************************************************************************
455 Malloc
456 ************************************************************************/
457
458 /* Function malloc calls this if it finds we are near exhausting storage. */
459
460 void
461 malloc_warning (const char *str)
462 {
463 pending_malloc_warning = str;
464 }
465
466
467 /* Display an already-pending malloc warning. */
468
469 void
470 display_malloc_warning (void)
471 {
472 call3 (intern ("display-warning"),
473 intern ("alloc"),
474 build_string (pending_malloc_warning),
475 intern ("emergency"));
476 pending_malloc_warning = 0;
477 }
478 \f
479 /* Called if we can't allocate relocatable space for a buffer. */
480
481 void
482 buffer_memory_full (ptrdiff_t nbytes)
483 {
484 /* If buffers use the relocating allocator, no need to free
485 spare_memory, because we may have plenty of malloc space left
486 that we could get, and if we don't, the malloc that fails will
487 itself cause spare_memory to be freed. If buffers don't use the
488 relocating allocator, treat this like any other failing
489 malloc. */
490
491 #ifndef REL_ALLOC
492 memory_full (nbytes);
493 #else
494 /* This used to call error, but if we've run out of memory, we could
495 get infinite recursion trying to build the string. */
496 xsignal (Qnil, Vmemory_signal_data);
497 #endif
498 }
499
500 /* A common multiple of the positive integers A and B. Ideally this
501 would be the least common multiple, but there's no way to do that
502 as a constant expression in C, so do the best that we can easily do. */
503 #define COMMON_MULTIPLE(a, b) \
504 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
505
506 #ifndef XMALLOC_OVERRUN_CHECK
507 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
508 #else
509
510 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
511 around each block.
512
513 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
514 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
515 block size in little-endian order. The trailer consists of
516 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
517
518 The header is used to detect whether this block has been allocated
519 through these functions, as some low-level libc functions may
520 bypass the malloc hooks. */
521
522 #define XMALLOC_OVERRUN_CHECK_SIZE 16
523 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
524 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
525
526 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
527 hold a size_t value and (2) the header size is a multiple of the
528 alignment that Emacs needs for C types and for USE_LSB_TAG. */
529 #define XMALLOC_BASE_ALIGNMENT \
530 alignof (union { long double d; intmax_t i; void *p; })
531
532 #if USE_LSB_TAG
533 # define XMALLOC_HEADER_ALIGNMENT \
534 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
535 #else
536 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
537 #endif
538 #define XMALLOC_OVERRUN_SIZE_SIZE \
539 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
540 + XMALLOC_HEADER_ALIGNMENT - 1) \
541 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
542 - XMALLOC_OVERRUN_CHECK_SIZE)
543
544 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
545 { '\x9a', '\x9b', '\xae', '\xaf',
546 '\xbf', '\xbe', '\xce', '\xcf',
547 '\xea', '\xeb', '\xec', '\xed',
548 '\xdf', '\xde', '\x9c', '\x9d' };
549
550 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
551 { '\xaa', '\xab', '\xac', '\xad',
552 '\xba', '\xbb', '\xbc', '\xbd',
553 '\xca', '\xcb', '\xcc', '\xcd',
554 '\xda', '\xdb', '\xdc', '\xdd' };
555
556 /* Insert and extract the block size in the header. */
557
558 static void
559 xmalloc_put_size (unsigned char *ptr, size_t size)
560 {
561 int i;
562 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
563 {
564 *--ptr = size & ((1 << CHAR_BIT) - 1);
565 size >>= CHAR_BIT;
566 }
567 }
568
569 static size_t
570 xmalloc_get_size (unsigned char *ptr)
571 {
572 size_t size = 0;
573 int i;
574 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
575 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
576 {
577 size <<= CHAR_BIT;
578 size += *ptr++;
579 }
580 return size;
581 }
582
583
584 /* Like malloc, but wraps allocated block with header and trailer. */
585
586 static void *
587 overrun_check_malloc (size_t size)
588 {
589 register unsigned char *val;
590 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
591 emacs_abort ();
592
593 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
594 if (val)
595 {
596 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
597 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
598 xmalloc_put_size (val, size);
599 memcpy (val + size, xmalloc_overrun_check_trailer,
600 XMALLOC_OVERRUN_CHECK_SIZE);
601 }
602 return val;
603 }
604
605
606 /* Like realloc, but checks old block for overrun, and wraps new block
607 with header and trailer. */
608
609 static void *
610 overrun_check_realloc (void *block, size_t size)
611 {
612 register unsigned char *val = (unsigned char *) block;
613 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
614 emacs_abort ();
615
616 if (val
617 && memcmp (xmalloc_overrun_check_header,
618 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
619 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
620 {
621 size_t osize = xmalloc_get_size (val);
622 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
623 XMALLOC_OVERRUN_CHECK_SIZE))
624 emacs_abort ();
625 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
626 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
627 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
628 }
629
630 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
631
632 if (val)
633 {
634 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
635 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
636 xmalloc_put_size (val, size);
637 memcpy (val + size, xmalloc_overrun_check_trailer,
638 XMALLOC_OVERRUN_CHECK_SIZE);
639 }
640 return val;
641 }
642
643 /* Like free, but checks block for overrun. */
644
645 static void
646 overrun_check_free (void *block)
647 {
648 unsigned char *val = (unsigned char *) block;
649
650 if (val
651 && memcmp (xmalloc_overrun_check_header,
652 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
653 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
654 {
655 size_t osize = xmalloc_get_size (val);
656 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
657 XMALLOC_OVERRUN_CHECK_SIZE))
658 emacs_abort ();
659 #ifdef XMALLOC_CLEAR_FREE_MEMORY
660 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
661 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
662 #else
663 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
664 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
665 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
666 #endif
667 }
668
669 free (val);
670 }
671
672 #undef malloc
673 #undef realloc
674 #undef free
675 #define malloc overrun_check_malloc
676 #define realloc overrun_check_realloc
677 #define free overrun_check_free
678 #endif
679
680 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
681 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
682 If that variable is set, block input while in one of Emacs's memory
683 allocation functions. There should be no need for this debugging
684 option, since signal handlers do not allocate memory, but Emacs
685 formerly allocated memory in signal handlers and this compile-time
686 option remains as a way to help debug the issue should it rear its
687 ugly head again. */
688 #ifdef XMALLOC_BLOCK_INPUT_CHECK
689 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
690 static void
691 malloc_block_input (void)
692 {
693 if (block_input_in_memory_allocators)
694 block_input ();
695 }
696 static void
697 malloc_unblock_input (void)
698 {
699 if (block_input_in_memory_allocators)
700 unblock_input ();
701 }
702 # define MALLOC_BLOCK_INPUT malloc_block_input ()
703 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
704 #else
705 # define MALLOC_BLOCK_INPUT ((void) 0)
706 # define MALLOC_UNBLOCK_INPUT ((void) 0)
707 #endif
708
709 #define MALLOC_PROBE(size) \
710 do { \
711 if (profiler_memory_running) \
712 malloc_probe (size); \
713 } while (0)
714
715
716 /* Like malloc but check for no memory and block interrupt input.. */
717
718 void *
719 xmalloc (size_t size)
720 {
721 void *val;
722
723 MALLOC_BLOCK_INPUT;
724 val = malloc (size);
725 MALLOC_UNBLOCK_INPUT;
726
727 if (!val && size)
728 memory_full (size);
729 MALLOC_PROBE (size);
730 return val;
731 }
732
733 /* Like the above, but zeroes out the memory just allocated. */
734
735 void *
736 xzalloc (size_t size)
737 {
738 void *val;
739
740 MALLOC_BLOCK_INPUT;
741 val = malloc (size);
742 MALLOC_UNBLOCK_INPUT;
743
744 if (!val && size)
745 memory_full (size);
746 memset (val, 0, size);
747 MALLOC_PROBE (size);
748 return val;
749 }
750
751 /* Like realloc but check for no memory and block interrupt input.. */
752
753 void *
754 xrealloc (void *block, size_t size)
755 {
756 void *val;
757
758 MALLOC_BLOCK_INPUT;
759 /* We must call malloc explicitly when BLOCK is 0, since some
760 reallocs don't do this. */
761 if (! block)
762 val = malloc (size);
763 else
764 val = realloc (block, size);
765 MALLOC_UNBLOCK_INPUT;
766
767 if (!val && size)
768 memory_full (size);
769 MALLOC_PROBE (size);
770 return val;
771 }
772
773
774 /* Like free but block interrupt input. */
775
776 void
777 xfree (void *block)
778 {
779 if (!block)
780 return;
781 MALLOC_BLOCK_INPUT;
782 free (block);
783 MALLOC_UNBLOCK_INPUT;
784 /* We don't call refill_memory_reserve here
785 because in practice the call in r_alloc_free seems to suffice. */
786 }
787
788
789 /* Other parts of Emacs pass large int values to allocator functions
790 expecting ptrdiff_t. This is portable in practice, but check it to
791 be safe. */
792 verify (INT_MAX <= PTRDIFF_MAX);
793
794
795 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
796 Signal an error on memory exhaustion, and block interrupt input. */
797
798 void *
799 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
800 {
801 eassert (0 <= nitems && 0 < item_size);
802 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
803 memory_full (SIZE_MAX);
804 return xmalloc (nitems * item_size);
805 }
806
807
808 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
809 Signal an error on memory exhaustion, and block interrupt input. */
810
811 void *
812 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
813 {
814 eassert (0 <= nitems && 0 < item_size);
815 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
816 memory_full (SIZE_MAX);
817 return xrealloc (pa, nitems * item_size);
818 }
819
820
821 /* Grow PA, which points to an array of *NITEMS items, and return the
822 location of the reallocated array, updating *NITEMS to reflect its
823 new size. The new array will contain at least NITEMS_INCR_MIN more
824 items, but will not contain more than NITEMS_MAX items total.
825 ITEM_SIZE is the size of each item, in bytes.
826
827 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
828 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
829 infinity.
830
831 If PA is null, then allocate a new array instead of reallocating
832 the old one.
833
834 Block interrupt input as needed. If memory exhaustion occurs, set
835 *NITEMS to zero if PA is null, and signal an error (i.e., do not
836 return).
837
838 Thus, to grow an array A without saving its old contents, do
839 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
840 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
841 and signals an error, and later this code is reexecuted and
842 attempts to free A. */
843
844 void *
845 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
846 ptrdiff_t nitems_max, ptrdiff_t item_size)
847 {
848 /* The approximate size to use for initial small allocation
849 requests. This is the largest "small" request for the GNU C
850 library malloc. */
851 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
852
853 /* If the array is tiny, grow it to about (but no greater than)
854 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
855 ptrdiff_t n = *nitems;
856 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
857 ptrdiff_t half_again = n >> 1;
858 ptrdiff_t incr_estimate = max (tiny_max, half_again);
859
860 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
861 NITEMS_MAX, and what the C language can represent safely. */
862 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
863 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
864 ? nitems_max : C_language_max);
865 ptrdiff_t nitems_incr_max = n_max - n;
866 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
867
868 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
869 if (! pa)
870 *nitems = 0;
871 if (nitems_incr_max < incr)
872 memory_full (SIZE_MAX);
873 n += incr;
874 pa = xrealloc (pa, n * item_size);
875 *nitems = n;
876 return pa;
877 }
878
879
880 /* Like strdup, but uses xmalloc. */
881
882 char *
883 xstrdup (const char *s)
884 {
885 ptrdiff_t size;
886 eassert (s);
887 size = strlen (s) + 1;
888 return memcpy (xmalloc (size), s, size);
889 }
890
891 /* Like above, but duplicates Lisp string to C string. */
892
893 char *
894 xlispstrdup (Lisp_Object string)
895 {
896 ptrdiff_t size = SBYTES (string) + 1;
897 return memcpy (xmalloc (size), SSDATA (string), size);
898 }
899
900 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
901 pointed to. If STRING is null, assign it without copying anything.
902 Allocate before freeing, to avoid a dangling pointer if allocation
903 fails. */
904
905 void
906 dupstring (char **ptr, char const *string)
907 {
908 char *old = *ptr;
909 *ptr = string ? xstrdup (string) : 0;
910 xfree (old);
911 }
912
913
914 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
915 argument is a const pointer. */
916
917 void
918 xputenv (char const *string)
919 {
920 if (putenv ((char *) string) != 0)
921 memory_full (0);
922 }
923
924 /* Return a newly allocated memory block of SIZE bytes, remembering
925 to free it when unwinding. */
926 void *
927 record_xmalloc (size_t size)
928 {
929 void *p = xmalloc (size);
930 record_unwind_protect_ptr (xfree, p);
931 return p;
932 }
933
934
935 /* Like malloc but used for allocating Lisp data. NBYTES is the
936 number of bytes to allocate, TYPE describes the intended use of the
937 allocated memory block (for strings, for conses, ...). */
938
939 #if ! USE_LSB_TAG
940 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
941 #endif
942
943 static void *
944 lisp_malloc (size_t nbytes, enum mem_type type)
945 {
946 register void *val;
947
948 MALLOC_BLOCK_INPUT;
949
950 #ifdef GC_MALLOC_CHECK
951 allocated_mem_type = type;
952 #endif
953
954 val = malloc (nbytes);
955
956 #if ! USE_LSB_TAG
957 /* If the memory just allocated cannot be addressed thru a Lisp
958 object's pointer, and it needs to be,
959 that's equivalent to running out of memory. */
960 if (val && type != MEM_TYPE_NON_LISP)
961 {
962 Lisp_Object tem;
963 XSETCONS (tem, (char *) val + nbytes - 1);
964 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
965 {
966 lisp_malloc_loser = val;
967 free (val);
968 val = 0;
969 }
970 }
971 #endif
972
973 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
974 if (val && type != MEM_TYPE_NON_LISP)
975 mem_insert (val, (char *) val + nbytes, type);
976 #endif
977
978 MALLOC_UNBLOCK_INPUT;
979 if (!val && nbytes)
980 memory_full (nbytes);
981 MALLOC_PROBE (nbytes);
982 return val;
983 }
984
985 /* Free BLOCK. This must be called to free memory allocated with a
986 call to lisp_malloc. */
987
988 static void
989 lisp_free (void *block)
990 {
991 MALLOC_BLOCK_INPUT;
992 free (block);
993 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
994 mem_delete (mem_find (block));
995 #endif
996 MALLOC_UNBLOCK_INPUT;
997 }
998
999 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1000
1001 /* The entry point is lisp_align_malloc which returns blocks of at most
1002 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1003
1004 /* Use aligned_alloc if it or a simple substitute is available.
1005 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1006 clang 3.3 anyway. */
1007
1008 #if ! ADDRESS_SANITIZER
1009 # if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC
1010 # define USE_ALIGNED_ALLOC 1
1011 /* Defined in gmalloc.c. */
1012 void *aligned_alloc (size_t, size_t);
1013 # elif defined HAVE_ALIGNED_ALLOC
1014 # define USE_ALIGNED_ALLOC 1
1015 # elif defined HAVE_POSIX_MEMALIGN
1016 # define USE_ALIGNED_ALLOC 1
1017 static void *
1018 aligned_alloc (size_t alignment, size_t size)
1019 {
1020 void *p;
1021 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1022 }
1023 # endif
1024 #endif
1025
1026 /* BLOCK_ALIGN has to be a power of 2. */
1027 #define BLOCK_ALIGN (1 << 10)
1028
1029 /* Padding to leave at the end of a malloc'd block. This is to give
1030 malloc a chance to minimize the amount of memory wasted to alignment.
1031 It should be tuned to the particular malloc library used.
1032 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1033 aligned_alloc on the other hand would ideally prefer a value of 4
1034 because otherwise, there's 1020 bytes wasted between each ablocks.
1035 In Emacs, testing shows that those 1020 can most of the time be
1036 efficiently used by malloc to place other objects, so a value of 0 can
1037 still preferable unless you have a lot of aligned blocks and virtually
1038 nothing else. */
1039 #define BLOCK_PADDING 0
1040 #define BLOCK_BYTES \
1041 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1042
1043 /* Internal data structures and constants. */
1044
1045 #define ABLOCKS_SIZE 16
1046
1047 /* An aligned block of memory. */
1048 struct ablock
1049 {
1050 union
1051 {
1052 char payload[BLOCK_BYTES];
1053 struct ablock *next_free;
1054 } x;
1055 /* `abase' is the aligned base of the ablocks. */
1056 /* It is overloaded to hold the virtual `busy' field that counts
1057 the number of used ablock in the parent ablocks.
1058 The first ablock has the `busy' field, the others have the `abase'
1059 field. To tell the difference, we assume that pointers will have
1060 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1061 is used to tell whether the real base of the parent ablocks is `abase'
1062 (if not, the word before the first ablock holds a pointer to the
1063 real base). */
1064 struct ablocks *abase;
1065 /* The padding of all but the last ablock is unused. The padding of
1066 the last ablock in an ablocks is not allocated. */
1067 #if BLOCK_PADDING
1068 char padding[BLOCK_PADDING];
1069 #endif
1070 };
1071
1072 /* A bunch of consecutive aligned blocks. */
1073 struct ablocks
1074 {
1075 struct ablock blocks[ABLOCKS_SIZE];
1076 };
1077
1078 /* Size of the block requested from malloc or aligned_alloc. */
1079 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1080
1081 #define ABLOCK_ABASE(block) \
1082 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1083 ? (struct ablocks *)(block) \
1084 : (block)->abase)
1085
1086 /* Virtual `busy' field. */
1087 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1088
1089 /* Pointer to the (not necessarily aligned) malloc block. */
1090 #ifdef USE_ALIGNED_ALLOC
1091 #define ABLOCKS_BASE(abase) (abase)
1092 #else
1093 #define ABLOCKS_BASE(abase) \
1094 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1095 #endif
1096
1097 /* The list of free ablock. */
1098 static struct ablock *free_ablock;
1099
1100 /* Allocate an aligned block of nbytes.
1101 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1102 smaller or equal to BLOCK_BYTES. */
1103 static void *
1104 lisp_align_malloc (size_t nbytes, enum mem_type type)
1105 {
1106 void *base, *val;
1107 struct ablocks *abase;
1108
1109 eassert (nbytes <= BLOCK_BYTES);
1110
1111 MALLOC_BLOCK_INPUT;
1112
1113 #ifdef GC_MALLOC_CHECK
1114 allocated_mem_type = type;
1115 #endif
1116
1117 if (!free_ablock)
1118 {
1119 int i;
1120 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1121
1122 #ifdef DOUG_LEA_MALLOC
1123 if (!mmap_lisp_allowed_p ())
1124 mallopt (M_MMAP_MAX, 0);
1125 #endif
1126
1127 #ifdef USE_ALIGNED_ALLOC
1128 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1129 #else
1130 base = malloc (ABLOCKS_BYTES);
1131 abase = ALIGN (base, BLOCK_ALIGN);
1132 #endif
1133
1134 if (base == 0)
1135 {
1136 MALLOC_UNBLOCK_INPUT;
1137 memory_full (ABLOCKS_BYTES);
1138 }
1139
1140 aligned = (base == abase);
1141 if (!aligned)
1142 ((void **) abase)[-1] = base;
1143
1144 #ifdef DOUG_LEA_MALLOC
1145 if (!mmap_lisp_allowed_p ())
1146 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1147 #endif
1148
1149 #if ! USE_LSB_TAG
1150 /* If the memory just allocated cannot be addressed thru a Lisp
1151 object's pointer, and it needs to be, that's equivalent to
1152 running out of memory. */
1153 if (type != MEM_TYPE_NON_LISP)
1154 {
1155 Lisp_Object tem;
1156 char *end = (char *) base + ABLOCKS_BYTES - 1;
1157 XSETCONS (tem, end);
1158 if ((char *) XCONS (tem) != end)
1159 {
1160 lisp_malloc_loser = base;
1161 free (base);
1162 MALLOC_UNBLOCK_INPUT;
1163 memory_full (SIZE_MAX);
1164 }
1165 }
1166 #endif
1167
1168 /* Initialize the blocks and put them on the free list.
1169 If `base' was not properly aligned, we can't use the last block. */
1170 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1171 {
1172 abase->blocks[i].abase = abase;
1173 abase->blocks[i].x.next_free = free_ablock;
1174 free_ablock = &abase->blocks[i];
1175 }
1176 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1177
1178 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1179 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1180 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1181 eassert (ABLOCKS_BASE (abase) == base);
1182 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1183 }
1184
1185 abase = ABLOCK_ABASE (free_ablock);
1186 ABLOCKS_BUSY (abase)
1187 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1188 val = free_ablock;
1189 free_ablock = free_ablock->x.next_free;
1190
1191 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1192 if (type != MEM_TYPE_NON_LISP)
1193 mem_insert (val, (char *) val + nbytes, type);
1194 #endif
1195
1196 MALLOC_UNBLOCK_INPUT;
1197
1198 MALLOC_PROBE (nbytes);
1199
1200 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1201 return val;
1202 }
1203
1204 static void
1205 lisp_align_free (void *block)
1206 {
1207 struct ablock *ablock = block;
1208 struct ablocks *abase = ABLOCK_ABASE (ablock);
1209
1210 MALLOC_BLOCK_INPUT;
1211 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1212 mem_delete (mem_find (block));
1213 #endif
1214 /* Put on free list. */
1215 ablock->x.next_free = free_ablock;
1216 free_ablock = ablock;
1217 /* Update busy count. */
1218 ABLOCKS_BUSY (abase)
1219 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1220
1221 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1222 { /* All the blocks are free. */
1223 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1224 struct ablock **tem = &free_ablock;
1225 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1226
1227 while (*tem)
1228 {
1229 if (*tem >= (struct ablock *) abase && *tem < atop)
1230 {
1231 i++;
1232 *tem = (*tem)->x.next_free;
1233 }
1234 else
1235 tem = &(*tem)->x.next_free;
1236 }
1237 eassert ((aligned & 1) == aligned);
1238 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1239 #ifdef USE_POSIX_MEMALIGN
1240 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1241 #endif
1242 free (ABLOCKS_BASE (abase));
1243 }
1244 MALLOC_UNBLOCK_INPUT;
1245 }
1246
1247 \f
1248 /***********************************************************************
1249 Interval Allocation
1250 ***********************************************************************/
1251
1252 /* Number of intervals allocated in an interval_block structure.
1253 The 1020 is 1024 minus malloc overhead. */
1254
1255 #define INTERVAL_BLOCK_SIZE \
1256 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1257
1258 /* Intervals are allocated in chunks in the form of an interval_block
1259 structure. */
1260
1261 struct interval_block
1262 {
1263 /* Place `intervals' first, to preserve alignment. */
1264 struct interval intervals[INTERVAL_BLOCK_SIZE];
1265 struct interval_block *next;
1266 };
1267
1268 /* Current interval block. Its `next' pointer points to older
1269 blocks. */
1270
1271 static struct interval_block *interval_block;
1272
1273 /* Index in interval_block above of the next unused interval
1274 structure. */
1275
1276 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1277
1278 /* Number of free and live intervals. */
1279
1280 static EMACS_INT total_free_intervals, total_intervals;
1281
1282 /* List of free intervals. */
1283
1284 static INTERVAL interval_free_list;
1285
1286 /* Return a new interval. */
1287
1288 INTERVAL
1289 make_interval (void)
1290 {
1291 INTERVAL val;
1292
1293 MALLOC_BLOCK_INPUT;
1294
1295 if (interval_free_list)
1296 {
1297 val = interval_free_list;
1298 interval_free_list = INTERVAL_PARENT (interval_free_list);
1299 }
1300 else
1301 {
1302 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1303 {
1304 struct interval_block *newi
1305 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1306
1307 newi->next = interval_block;
1308 interval_block = newi;
1309 interval_block_index = 0;
1310 total_free_intervals += INTERVAL_BLOCK_SIZE;
1311 }
1312 val = &interval_block->intervals[interval_block_index++];
1313 }
1314
1315 MALLOC_UNBLOCK_INPUT;
1316
1317 consing_since_gc += sizeof (struct interval);
1318 intervals_consed++;
1319 total_free_intervals--;
1320 RESET_INTERVAL (val);
1321 val->gcmarkbit = 0;
1322 return val;
1323 }
1324
1325
1326 /* Mark Lisp objects in interval I. */
1327
1328 static void
1329 mark_interval (register INTERVAL i, Lisp_Object dummy)
1330 {
1331 /* Intervals should never be shared. So, if extra internal checking is
1332 enabled, GC aborts if it seems to have visited an interval twice. */
1333 eassert (!i->gcmarkbit);
1334 i->gcmarkbit = 1;
1335 mark_object (i->plist);
1336 }
1337
1338 /* Mark the interval tree rooted in I. */
1339
1340 #define MARK_INTERVAL_TREE(i) \
1341 do { \
1342 if (i && !i->gcmarkbit) \
1343 traverse_intervals_noorder (i, mark_interval, Qnil); \
1344 } while (0)
1345
1346 /***********************************************************************
1347 String Allocation
1348 ***********************************************************************/
1349
1350 /* Lisp_Strings are allocated in string_block structures. When a new
1351 string_block is allocated, all the Lisp_Strings it contains are
1352 added to a free-list string_free_list. When a new Lisp_String is
1353 needed, it is taken from that list. During the sweep phase of GC,
1354 string_blocks that are entirely free are freed, except two which
1355 we keep.
1356
1357 String data is allocated from sblock structures. Strings larger
1358 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1359 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1360
1361 Sblocks consist internally of sdata structures, one for each
1362 Lisp_String. The sdata structure points to the Lisp_String it
1363 belongs to. The Lisp_String points back to the `u.data' member of
1364 its sdata structure.
1365
1366 When a Lisp_String is freed during GC, it is put back on
1367 string_free_list, and its `data' member and its sdata's `string'
1368 pointer is set to null. The size of the string is recorded in the
1369 `n.nbytes' member of the sdata. So, sdata structures that are no
1370 longer used, can be easily recognized, and it's easy to compact the
1371 sblocks of small strings which we do in compact_small_strings. */
1372
1373 /* Size in bytes of an sblock structure used for small strings. This
1374 is 8192 minus malloc overhead. */
1375
1376 #define SBLOCK_SIZE 8188
1377
1378 /* Strings larger than this are considered large strings. String data
1379 for large strings is allocated from individual sblocks. */
1380
1381 #define LARGE_STRING_BYTES 1024
1382
1383 /* The SDATA typedef is a struct or union describing string memory
1384 sub-allocated from an sblock. This is where the contents of Lisp
1385 strings are stored. */
1386
1387 struct sdata
1388 {
1389 /* Back-pointer to the string this sdata belongs to. If null, this
1390 structure is free, and NBYTES (in this structure or in the union below)
1391 contains the string's byte size (the same value that STRING_BYTES
1392 would return if STRING were non-null). If non-null, STRING_BYTES
1393 (STRING) is the size of the data, and DATA contains the string's
1394 contents. */
1395 struct Lisp_String *string;
1396
1397 #ifdef GC_CHECK_STRING_BYTES
1398 ptrdiff_t nbytes;
1399 #endif
1400
1401 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1402 };
1403
1404 #ifdef GC_CHECK_STRING_BYTES
1405
1406 typedef struct sdata sdata;
1407 #define SDATA_NBYTES(S) (S)->nbytes
1408 #define SDATA_DATA(S) (S)->data
1409
1410 #else
1411
1412 typedef union
1413 {
1414 struct Lisp_String *string;
1415
1416 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1417 which has a flexible array member. However, if implemented by
1418 giving this union a member of type 'struct sdata', the union
1419 could not be the last (flexible) member of 'struct sblock',
1420 because C99 prohibits a flexible array member from having a type
1421 that is itself a flexible array. So, comment this member out here,
1422 but remember that the option's there when using this union. */
1423 #if 0
1424 struct sdata u;
1425 #endif
1426
1427 /* When STRING is null. */
1428 struct
1429 {
1430 struct Lisp_String *string;
1431 ptrdiff_t nbytes;
1432 } n;
1433 } sdata;
1434
1435 #define SDATA_NBYTES(S) (S)->n.nbytes
1436 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1437
1438 #endif /* not GC_CHECK_STRING_BYTES */
1439
1440 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1441
1442 /* Structure describing a block of memory which is sub-allocated to
1443 obtain string data memory for strings. Blocks for small strings
1444 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1445 as large as needed. */
1446
1447 struct sblock
1448 {
1449 /* Next in list. */
1450 struct sblock *next;
1451
1452 /* Pointer to the next free sdata block. This points past the end
1453 of the sblock if there isn't any space left in this block. */
1454 sdata *next_free;
1455
1456 /* String data. */
1457 sdata data[FLEXIBLE_ARRAY_MEMBER];
1458 };
1459
1460 /* Number of Lisp strings in a string_block structure. The 1020 is
1461 1024 minus malloc overhead. */
1462
1463 #define STRING_BLOCK_SIZE \
1464 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1465
1466 /* Structure describing a block from which Lisp_String structures
1467 are allocated. */
1468
1469 struct string_block
1470 {
1471 /* Place `strings' first, to preserve alignment. */
1472 struct Lisp_String strings[STRING_BLOCK_SIZE];
1473 struct string_block *next;
1474 };
1475
1476 /* Head and tail of the list of sblock structures holding Lisp string
1477 data. We always allocate from current_sblock. The NEXT pointers
1478 in the sblock structures go from oldest_sblock to current_sblock. */
1479
1480 static struct sblock *oldest_sblock, *current_sblock;
1481
1482 /* List of sblocks for large strings. */
1483
1484 static struct sblock *large_sblocks;
1485
1486 /* List of string_block structures. */
1487
1488 static struct string_block *string_blocks;
1489
1490 /* Free-list of Lisp_Strings. */
1491
1492 static struct Lisp_String *string_free_list;
1493
1494 /* Number of live and free Lisp_Strings. */
1495
1496 static EMACS_INT total_strings, total_free_strings;
1497
1498 /* Number of bytes used by live strings. */
1499
1500 static EMACS_INT total_string_bytes;
1501
1502 /* Given a pointer to a Lisp_String S which is on the free-list
1503 string_free_list, return a pointer to its successor in the
1504 free-list. */
1505
1506 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1507
1508 /* Return a pointer to the sdata structure belonging to Lisp string S.
1509 S must be live, i.e. S->data must not be null. S->data is actually
1510 a pointer to the `u.data' member of its sdata structure; the
1511 structure starts at a constant offset in front of that. */
1512
1513 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1514
1515
1516 #ifdef GC_CHECK_STRING_OVERRUN
1517
1518 /* We check for overrun in string data blocks by appending a small
1519 "cookie" after each allocated string data block, and check for the
1520 presence of this cookie during GC. */
1521
1522 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1523 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1524 { '\xde', '\xad', '\xbe', '\xef' };
1525
1526 #else
1527 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1528 #endif
1529
1530 /* Value is the size of an sdata structure large enough to hold NBYTES
1531 bytes of string data. The value returned includes a terminating
1532 NUL byte, the size of the sdata structure, and padding. */
1533
1534 #ifdef GC_CHECK_STRING_BYTES
1535
1536 #define SDATA_SIZE(NBYTES) \
1537 ((SDATA_DATA_OFFSET \
1538 + (NBYTES) + 1 \
1539 + sizeof (ptrdiff_t) - 1) \
1540 & ~(sizeof (ptrdiff_t) - 1))
1541
1542 #else /* not GC_CHECK_STRING_BYTES */
1543
1544 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1545 less than the size of that member. The 'max' is not needed when
1546 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1547 alignment code reserves enough space. */
1548
1549 #define SDATA_SIZE(NBYTES) \
1550 ((SDATA_DATA_OFFSET \
1551 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1552 ? NBYTES \
1553 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1554 + 1 \
1555 + sizeof (ptrdiff_t) - 1) \
1556 & ~(sizeof (ptrdiff_t) - 1))
1557
1558 #endif /* not GC_CHECK_STRING_BYTES */
1559
1560 /* Extra bytes to allocate for each string. */
1561
1562 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1563
1564 /* Exact bound on the number of bytes in a string, not counting the
1565 terminating null. A string cannot contain more bytes than
1566 STRING_BYTES_BOUND, nor can it be so long that the size_t
1567 arithmetic in allocate_string_data would overflow while it is
1568 calculating a value to be passed to malloc. */
1569 static ptrdiff_t const STRING_BYTES_MAX =
1570 min (STRING_BYTES_BOUND,
1571 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1572 - GC_STRING_EXTRA
1573 - offsetof (struct sblock, data)
1574 - SDATA_DATA_OFFSET)
1575 & ~(sizeof (EMACS_INT) - 1)));
1576
1577 /* Initialize string allocation. Called from init_alloc_once. */
1578
1579 static void
1580 init_strings (void)
1581 {
1582 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1583 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1584 }
1585
1586
1587 #ifdef GC_CHECK_STRING_BYTES
1588
1589 static int check_string_bytes_count;
1590
1591 /* Like STRING_BYTES, but with debugging check. Can be
1592 called during GC, so pay attention to the mark bit. */
1593
1594 ptrdiff_t
1595 string_bytes (struct Lisp_String *s)
1596 {
1597 ptrdiff_t nbytes =
1598 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1599
1600 if (!PURE_POINTER_P (s)
1601 && s->data
1602 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1603 emacs_abort ();
1604 return nbytes;
1605 }
1606
1607 /* Check validity of Lisp strings' string_bytes member in B. */
1608
1609 static void
1610 check_sblock (struct sblock *b)
1611 {
1612 sdata *from, *end, *from_end;
1613
1614 end = b->next_free;
1615
1616 for (from = b->data; from < end; from = from_end)
1617 {
1618 /* Compute the next FROM here because copying below may
1619 overwrite data we need to compute it. */
1620 ptrdiff_t nbytes;
1621
1622 /* Check that the string size recorded in the string is the
1623 same as the one recorded in the sdata structure. */
1624 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1625 : SDATA_NBYTES (from));
1626 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1627 }
1628 }
1629
1630
1631 /* Check validity of Lisp strings' string_bytes member. ALL_P
1632 means check all strings, otherwise check only most
1633 recently allocated strings. Used for hunting a bug. */
1634
1635 static void
1636 check_string_bytes (bool all_p)
1637 {
1638 if (all_p)
1639 {
1640 struct sblock *b;
1641
1642 for (b = large_sblocks; b; b = b->next)
1643 {
1644 struct Lisp_String *s = b->data[0].string;
1645 if (s)
1646 string_bytes (s);
1647 }
1648
1649 for (b = oldest_sblock; b; b = b->next)
1650 check_sblock (b);
1651 }
1652 else if (current_sblock)
1653 check_sblock (current_sblock);
1654 }
1655
1656 #else /* not GC_CHECK_STRING_BYTES */
1657
1658 #define check_string_bytes(all) ((void) 0)
1659
1660 #endif /* GC_CHECK_STRING_BYTES */
1661
1662 #ifdef GC_CHECK_STRING_FREE_LIST
1663
1664 /* Walk through the string free list looking for bogus next pointers.
1665 This may catch buffer overrun from a previous string. */
1666
1667 static void
1668 check_string_free_list (void)
1669 {
1670 struct Lisp_String *s;
1671
1672 /* Pop a Lisp_String off the free-list. */
1673 s = string_free_list;
1674 while (s != NULL)
1675 {
1676 if ((uintptr_t) s < 1024)
1677 emacs_abort ();
1678 s = NEXT_FREE_LISP_STRING (s);
1679 }
1680 }
1681 #else
1682 #define check_string_free_list()
1683 #endif
1684
1685 /* Return a new Lisp_String. */
1686
1687 static struct Lisp_String *
1688 allocate_string (void)
1689 {
1690 struct Lisp_String *s;
1691
1692 MALLOC_BLOCK_INPUT;
1693
1694 /* If the free-list is empty, allocate a new string_block, and
1695 add all the Lisp_Strings in it to the free-list. */
1696 if (string_free_list == NULL)
1697 {
1698 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1699 int i;
1700
1701 b->next = string_blocks;
1702 string_blocks = b;
1703
1704 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1705 {
1706 s = b->strings + i;
1707 /* Every string on a free list should have NULL data pointer. */
1708 s->data = NULL;
1709 NEXT_FREE_LISP_STRING (s) = string_free_list;
1710 string_free_list = s;
1711 }
1712
1713 total_free_strings += STRING_BLOCK_SIZE;
1714 }
1715
1716 check_string_free_list ();
1717
1718 /* Pop a Lisp_String off the free-list. */
1719 s = string_free_list;
1720 string_free_list = NEXT_FREE_LISP_STRING (s);
1721
1722 MALLOC_UNBLOCK_INPUT;
1723
1724 --total_free_strings;
1725 ++total_strings;
1726 ++strings_consed;
1727 consing_since_gc += sizeof *s;
1728
1729 #ifdef GC_CHECK_STRING_BYTES
1730 if (!noninteractive)
1731 {
1732 if (++check_string_bytes_count == 200)
1733 {
1734 check_string_bytes_count = 0;
1735 check_string_bytes (1);
1736 }
1737 else
1738 check_string_bytes (0);
1739 }
1740 #endif /* GC_CHECK_STRING_BYTES */
1741
1742 return s;
1743 }
1744
1745
1746 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1747 plus a NUL byte at the end. Allocate an sdata structure for S, and
1748 set S->data to its `u.data' member. Store a NUL byte at the end of
1749 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1750 S->data if it was initially non-null. */
1751
1752 void
1753 allocate_string_data (struct Lisp_String *s,
1754 EMACS_INT nchars, EMACS_INT nbytes)
1755 {
1756 sdata *data, *old_data;
1757 struct sblock *b;
1758 ptrdiff_t needed, old_nbytes;
1759
1760 if (STRING_BYTES_MAX < nbytes)
1761 string_overflow ();
1762
1763 /* Determine the number of bytes needed to store NBYTES bytes
1764 of string data. */
1765 needed = SDATA_SIZE (nbytes);
1766 if (s->data)
1767 {
1768 old_data = SDATA_OF_STRING (s);
1769 old_nbytes = STRING_BYTES (s);
1770 }
1771 else
1772 old_data = NULL;
1773
1774 MALLOC_BLOCK_INPUT;
1775
1776 if (nbytes > LARGE_STRING_BYTES)
1777 {
1778 size_t size = offsetof (struct sblock, data) + needed;
1779
1780 #ifdef DOUG_LEA_MALLOC
1781 if (!mmap_lisp_allowed_p ())
1782 mallopt (M_MMAP_MAX, 0);
1783 #endif
1784
1785 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1786
1787 #ifdef DOUG_LEA_MALLOC
1788 if (!mmap_lisp_allowed_p ())
1789 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1790 #endif
1791
1792 b->next_free = b->data;
1793 b->data[0].string = NULL;
1794 b->next = large_sblocks;
1795 large_sblocks = b;
1796 }
1797 else if (current_sblock == NULL
1798 || (((char *) current_sblock + SBLOCK_SIZE
1799 - (char *) current_sblock->next_free)
1800 < (needed + GC_STRING_EXTRA)))
1801 {
1802 /* Not enough room in the current sblock. */
1803 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1804 b->next_free = b->data;
1805 b->data[0].string = NULL;
1806 b->next = NULL;
1807
1808 if (current_sblock)
1809 current_sblock->next = b;
1810 else
1811 oldest_sblock = b;
1812 current_sblock = b;
1813 }
1814 else
1815 b = current_sblock;
1816
1817 data = b->next_free;
1818 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1819
1820 MALLOC_UNBLOCK_INPUT;
1821
1822 data->string = s;
1823 s->data = SDATA_DATA (data);
1824 #ifdef GC_CHECK_STRING_BYTES
1825 SDATA_NBYTES (data) = nbytes;
1826 #endif
1827 s->size = nchars;
1828 s->size_byte = nbytes;
1829 s->data[nbytes] = '\0';
1830 #ifdef GC_CHECK_STRING_OVERRUN
1831 memcpy ((char *) data + needed, string_overrun_cookie,
1832 GC_STRING_OVERRUN_COOKIE_SIZE);
1833 #endif
1834
1835 /* Note that Faset may call to this function when S has already data
1836 assigned. In this case, mark data as free by setting it's string
1837 back-pointer to null, and record the size of the data in it. */
1838 if (old_data)
1839 {
1840 SDATA_NBYTES (old_data) = old_nbytes;
1841 old_data->string = NULL;
1842 }
1843
1844 consing_since_gc += needed;
1845 }
1846
1847
1848 /* Sweep and compact strings. */
1849
1850 NO_INLINE /* For better stack traces */
1851 static void
1852 sweep_strings (void)
1853 {
1854 struct string_block *b, *next;
1855 struct string_block *live_blocks = NULL;
1856
1857 string_free_list = NULL;
1858 total_strings = total_free_strings = 0;
1859 total_string_bytes = 0;
1860
1861 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1862 for (b = string_blocks; b; b = next)
1863 {
1864 int i, nfree = 0;
1865 struct Lisp_String *free_list_before = string_free_list;
1866
1867 next = b->next;
1868
1869 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1870 {
1871 struct Lisp_String *s = b->strings + i;
1872
1873 if (s->data)
1874 {
1875 /* String was not on free-list before. */
1876 if (STRING_MARKED_P (s))
1877 {
1878 /* String is live; unmark it and its intervals. */
1879 UNMARK_STRING (s);
1880
1881 /* Do not use string_(set|get)_intervals here. */
1882 s->intervals = balance_intervals (s->intervals);
1883
1884 ++total_strings;
1885 total_string_bytes += STRING_BYTES (s);
1886 }
1887 else
1888 {
1889 /* String is dead. Put it on the free-list. */
1890 sdata *data = SDATA_OF_STRING (s);
1891
1892 /* Save the size of S in its sdata so that we know
1893 how large that is. Reset the sdata's string
1894 back-pointer so that we know it's free. */
1895 #ifdef GC_CHECK_STRING_BYTES
1896 if (string_bytes (s) != SDATA_NBYTES (data))
1897 emacs_abort ();
1898 #else
1899 data->n.nbytes = STRING_BYTES (s);
1900 #endif
1901 data->string = NULL;
1902
1903 /* Reset the strings's `data' member so that we
1904 know it's free. */
1905 s->data = NULL;
1906
1907 /* Put the string on the free-list. */
1908 NEXT_FREE_LISP_STRING (s) = string_free_list;
1909 string_free_list = s;
1910 ++nfree;
1911 }
1912 }
1913 else
1914 {
1915 /* S was on the free-list before. Put it there again. */
1916 NEXT_FREE_LISP_STRING (s) = string_free_list;
1917 string_free_list = s;
1918 ++nfree;
1919 }
1920 }
1921
1922 /* Free blocks that contain free Lisp_Strings only, except
1923 the first two of them. */
1924 if (nfree == STRING_BLOCK_SIZE
1925 && total_free_strings > STRING_BLOCK_SIZE)
1926 {
1927 lisp_free (b);
1928 string_free_list = free_list_before;
1929 }
1930 else
1931 {
1932 total_free_strings += nfree;
1933 b->next = live_blocks;
1934 live_blocks = b;
1935 }
1936 }
1937
1938 check_string_free_list ();
1939
1940 string_blocks = live_blocks;
1941 free_large_strings ();
1942 compact_small_strings ();
1943
1944 check_string_free_list ();
1945 }
1946
1947
1948 /* Free dead large strings. */
1949
1950 static void
1951 free_large_strings (void)
1952 {
1953 struct sblock *b, *next;
1954 struct sblock *live_blocks = NULL;
1955
1956 for (b = large_sblocks; b; b = next)
1957 {
1958 next = b->next;
1959
1960 if (b->data[0].string == NULL)
1961 lisp_free (b);
1962 else
1963 {
1964 b->next = live_blocks;
1965 live_blocks = b;
1966 }
1967 }
1968
1969 large_sblocks = live_blocks;
1970 }
1971
1972
1973 /* Compact data of small strings. Free sblocks that don't contain
1974 data of live strings after compaction. */
1975
1976 static void
1977 compact_small_strings (void)
1978 {
1979 struct sblock *b, *tb, *next;
1980 sdata *from, *to, *end, *tb_end;
1981 sdata *to_end, *from_end;
1982
1983 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1984 to, and TB_END is the end of TB. */
1985 tb = oldest_sblock;
1986 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1987 to = tb->data;
1988
1989 /* Step through the blocks from the oldest to the youngest. We
1990 expect that old blocks will stabilize over time, so that less
1991 copying will happen this way. */
1992 for (b = oldest_sblock; b; b = b->next)
1993 {
1994 end = b->next_free;
1995 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1996
1997 for (from = b->data; from < end; from = from_end)
1998 {
1999 /* Compute the next FROM here because copying below may
2000 overwrite data we need to compute it. */
2001 ptrdiff_t nbytes;
2002 struct Lisp_String *s = from->string;
2003
2004 #ifdef GC_CHECK_STRING_BYTES
2005 /* Check that the string size recorded in the string is the
2006 same as the one recorded in the sdata structure. */
2007 if (s && string_bytes (s) != SDATA_NBYTES (from))
2008 emacs_abort ();
2009 #endif /* GC_CHECK_STRING_BYTES */
2010
2011 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2012 eassert (nbytes <= LARGE_STRING_BYTES);
2013
2014 nbytes = SDATA_SIZE (nbytes);
2015 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2016
2017 #ifdef GC_CHECK_STRING_OVERRUN
2018 if (memcmp (string_overrun_cookie,
2019 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2020 GC_STRING_OVERRUN_COOKIE_SIZE))
2021 emacs_abort ();
2022 #endif
2023
2024 /* Non-NULL S means it's alive. Copy its data. */
2025 if (s)
2026 {
2027 /* If TB is full, proceed with the next sblock. */
2028 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2029 if (to_end > tb_end)
2030 {
2031 tb->next_free = to;
2032 tb = tb->next;
2033 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2034 to = tb->data;
2035 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2036 }
2037
2038 /* Copy, and update the string's `data' pointer. */
2039 if (from != to)
2040 {
2041 eassert (tb != b || to < from);
2042 memmove (to, from, nbytes + GC_STRING_EXTRA);
2043 to->string->data = SDATA_DATA (to);
2044 }
2045
2046 /* Advance past the sdata we copied to. */
2047 to = to_end;
2048 }
2049 }
2050 }
2051
2052 /* The rest of the sblocks following TB don't contain live data, so
2053 we can free them. */
2054 for (b = tb->next; b; b = next)
2055 {
2056 next = b->next;
2057 lisp_free (b);
2058 }
2059
2060 tb->next_free = to;
2061 tb->next = NULL;
2062 current_sblock = tb;
2063 }
2064
2065 void
2066 string_overflow (void)
2067 {
2068 error ("Maximum string size exceeded");
2069 }
2070
2071 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2072 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2073 LENGTH must be an integer.
2074 INIT must be an integer that represents a character. */)
2075 (Lisp_Object length, Lisp_Object init)
2076 {
2077 register Lisp_Object val;
2078 int c;
2079 EMACS_INT nbytes;
2080
2081 CHECK_NATNUM (length);
2082 CHECK_CHARACTER (init);
2083
2084 c = XFASTINT (init);
2085 if (ASCII_CHAR_P (c))
2086 {
2087 nbytes = XINT (length);
2088 val = make_uninit_string (nbytes);
2089 memset (SDATA (val), c, nbytes);
2090 SDATA (val)[nbytes] = 0;
2091 }
2092 else
2093 {
2094 unsigned char str[MAX_MULTIBYTE_LENGTH];
2095 ptrdiff_t len = CHAR_STRING (c, str);
2096 EMACS_INT string_len = XINT (length);
2097 unsigned char *p, *beg, *end;
2098
2099 if (string_len > STRING_BYTES_MAX / len)
2100 string_overflow ();
2101 nbytes = len * string_len;
2102 val = make_uninit_multibyte_string (string_len, nbytes);
2103 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2104 {
2105 /* First time we just copy `str' to the data of `val'. */
2106 if (p == beg)
2107 memcpy (p, str, len);
2108 else
2109 {
2110 /* Next time we copy largest possible chunk from
2111 initialized to uninitialized part of `val'. */
2112 len = min (p - beg, end - p);
2113 memcpy (p, beg, len);
2114 }
2115 }
2116 *p = 0;
2117 }
2118
2119 return val;
2120 }
2121
2122 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2123 Return A. */
2124
2125 Lisp_Object
2126 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2127 {
2128 EMACS_INT nbits = bool_vector_size (a);
2129 if (0 < nbits)
2130 {
2131 unsigned char *data = bool_vector_uchar_data (a);
2132 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2133 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2134 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2135 memset (data, pattern, nbytes - 1);
2136 data[nbytes - 1] = pattern & last_mask;
2137 }
2138 return a;
2139 }
2140
2141 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2142
2143 Lisp_Object
2144 make_uninit_bool_vector (EMACS_INT nbits)
2145 {
2146 Lisp_Object val;
2147 EMACS_INT words = bool_vector_words (nbits);
2148 EMACS_INT word_bytes = words * sizeof (bits_word);
2149 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2150 + word_size - 1)
2151 / word_size);
2152 struct Lisp_Bool_Vector *p
2153 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2154 XSETVECTOR (val, p);
2155 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2156 p->size = nbits;
2157
2158 /* Clear padding at the end. */
2159 if (words)
2160 p->data[words - 1] = 0;
2161
2162 return val;
2163 }
2164
2165 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2166 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2167 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2168 (Lisp_Object length, Lisp_Object init)
2169 {
2170 Lisp_Object val;
2171
2172 CHECK_NATNUM (length);
2173 val = make_uninit_bool_vector (XFASTINT (length));
2174 return bool_vector_fill (val, init);
2175 }
2176
2177 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2178 doc: /* Return a new bool-vector with specified arguments as elements.
2179 Any number of arguments, even zero arguments, are allowed.
2180 usage: (bool-vector &rest OBJECTS) */)
2181 (ptrdiff_t nargs, Lisp_Object *args)
2182 {
2183 ptrdiff_t i;
2184 Lisp_Object vector;
2185
2186 vector = make_uninit_bool_vector (nargs);
2187 for (i = 0; i < nargs; i++)
2188 bool_vector_set (vector, i, !NILP (args[i]));
2189
2190 return vector;
2191 }
2192
2193 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2194 of characters from the contents. This string may be unibyte or
2195 multibyte, depending on the contents. */
2196
2197 Lisp_Object
2198 make_string (const char *contents, ptrdiff_t nbytes)
2199 {
2200 register Lisp_Object val;
2201 ptrdiff_t nchars, multibyte_nbytes;
2202
2203 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2204 &nchars, &multibyte_nbytes);
2205 if (nbytes == nchars || nbytes != multibyte_nbytes)
2206 /* CONTENTS contains no multibyte sequences or contains an invalid
2207 multibyte sequence. We must make unibyte string. */
2208 val = make_unibyte_string (contents, nbytes);
2209 else
2210 val = make_multibyte_string (contents, nchars, nbytes);
2211 return val;
2212 }
2213
2214
2215 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2216
2217 Lisp_Object
2218 make_unibyte_string (const char *contents, ptrdiff_t length)
2219 {
2220 register Lisp_Object val;
2221 val = make_uninit_string (length);
2222 memcpy (SDATA (val), contents, length);
2223 return val;
2224 }
2225
2226
2227 /* Make a multibyte string from NCHARS characters occupying NBYTES
2228 bytes at CONTENTS. */
2229
2230 Lisp_Object
2231 make_multibyte_string (const char *contents,
2232 ptrdiff_t nchars, ptrdiff_t nbytes)
2233 {
2234 register Lisp_Object val;
2235 val = make_uninit_multibyte_string (nchars, nbytes);
2236 memcpy (SDATA (val), contents, nbytes);
2237 return val;
2238 }
2239
2240
2241 /* Make a string from NCHARS characters occupying NBYTES bytes at
2242 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2243
2244 Lisp_Object
2245 make_string_from_bytes (const char *contents,
2246 ptrdiff_t nchars, ptrdiff_t nbytes)
2247 {
2248 register Lisp_Object val;
2249 val = make_uninit_multibyte_string (nchars, nbytes);
2250 memcpy (SDATA (val), contents, nbytes);
2251 if (SBYTES (val) == SCHARS (val))
2252 STRING_SET_UNIBYTE (val);
2253 return val;
2254 }
2255
2256
2257 /* Make a string from NCHARS characters occupying NBYTES bytes at
2258 CONTENTS. The argument MULTIBYTE controls whether to label the
2259 string as multibyte. If NCHARS is negative, it counts the number of
2260 characters by itself. */
2261
2262 Lisp_Object
2263 make_specified_string (const char *contents,
2264 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2265 {
2266 Lisp_Object val;
2267
2268 if (nchars < 0)
2269 {
2270 if (multibyte)
2271 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2272 nbytes);
2273 else
2274 nchars = nbytes;
2275 }
2276 val = make_uninit_multibyte_string (nchars, nbytes);
2277 memcpy (SDATA (val), contents, nbytes);
2278 if (!multibyte)
2279 STRING_SET_UNIBYTE (val);
2280 return val;
2281 }
2282
2283
2284 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2285 occupying LENGTH bytes. */
2286
2287 Lisp_Object
2288 make_uninit_string (EMACS_INT length)
2289 {
2290 Lisp_Object val;
2291
2292 if (!length)
2293 return empty_unibyte_string;
2294 val = make_uninit_multibyte_string (length, length);
2295 STRING_SET_UNIBYTE (val);
2296 return val;
2297 }
2298
2299
2300 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2301 which occupy NBYTES bytes. */
2302
2303 Lisp_Object
2304 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2305 {
2306 Lisp_Object string;
2307 struct Lisp_String *s;
2308
2309 if (nchars < 0)
2310 emacs_abort ();
2311 if (!nbytes)
2312 return empty_multibyte_string;
2313
2314 s = allocate_string ();
2315 s->intervals = NULL;
2316 allocate_string_data (s, nchars, nbytes);
2317 XSETSTRING (string, s);
2318 string_chars_consed += nbytes;
2319 return string;
2320 }
2321
2322 /* Print arguments to BUF according to a FORMAT, then return
2323 a Lisp_String initialized with the data from BUF. */
2324
2325 Lisp_Object
2326 make_formatted_string (char *buf, const char *format, ...)
2327 {
2328 va_list ap;
2329 int length;
2330
2331 va_start (ap, format);
2332 length = vsprintf (buf, format, ap);
2333 va_end (ap);
2334 return make_string (buf, length);
2335 }
2336
2337 \f
2338 /***********************************************************************
2339 Float Allocation
2340 ***********************************************************************/
2341
2342 /* We store float cells inside of float_blocks, allocating a new
2343 float_block with malloc whenever necessary. Float cells reclaimed
2344 by GC are put on a free list to be reallocated before allocating
2345 any new float cells from the latest float_block. */
2346
2347 #define FLOAT_BLOCK_SIZE \
2348 (((BLOCK_BYTES - sizeof (struct float_block *) \
2349 /* The compiler might add padding at the end. */ \
2350 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2351 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2352
2353 #define GETMARKBIT(block,n) \
2354 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2355 >> ((n) % BITS_PER_BITS_WORD)) \
2356 & 1)
2357
2358 #define SETMARKBIT(block,n) \
2359 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2360 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2361
2362 #define UNSETMARKBIT(block,n) \
2363 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2364 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2365
2366 #define FLOAT_BLOCK(fptr) \
2367 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2368
2369 #define FLOAT_INDEX(fptr) \
2370 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2371
2372 struct float_block
2373 {
2374 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2375 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2376 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2377 struct float_block *next;
2378 };
2379
2380 #define FLOAT_MARKED_P(fptr) \
2381 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2382
2383 #define FLOAT_MARK(fptr) \
2384 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2385
2386 #define FLOAT_UNMARK(fptr) \
2387 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2388
2389 /* Current float_block. */
2390
2391 static struct float_block *float_block;
2392
2393 /* Index of first unused Lisp_Float in the current float_block. */
2394
2395 static int float_block_index = FLOAT_BLOCK_SIZE;
2396
2397 /* Free-list of Lisp_Floats. */
2398
2399 static struct Lisp_Float *float_free_list;
2400
2401 /* Return a new float object with value FLOAT_VALUE. */
2402
2403 Lisp_Object
2404 make_float (double float_value)
2405 {
2406 register Lisp_Object val;
2407
2408 MALLOC_BLOCK_INPUT;
2409
2410 if (float_free_list)
2411 {
2412 /* We use the data field for chaining the free list
2413 so that we won't use the same field that has the mark bit. */
2414 XSETFLOAT (val, float_free_list);
2415 float_free_list = float_free_list->u.chain;
2416 }
2417 else
2418 {
2419 if (float_block_index == FLOAT_BLOCK_SIZE)
2420 {
2421 struct float_block *new
2422 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2423 new->next = float_block;
2424 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2425 float_block = new;
2426 float_block_index = 0;
2427 total_free_floats += FLOAT_BLOCK_SIZE;
2428 }
2429 XSETFLOAT (val, &float_block->floats[float_block_index]);
2430 float_block_index++;
2431 }
2432
2433 MALLOC_UNBLOCK_INPUT;
2434
2435 XFLOAT_INIT (val, float_value);
2436 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2437 consing_since_gc += sizeof (struct Lisp_Float);
2438 floats_consed++;
2439 total_free_floats--;
2440 return val;
2441 }
2442
2443
2444 \f
2445 /***********************************************************************
2446 Cons Allocation
2447 ***********************************************************************/
2448
2449 /* We store cons cells inside of cons_blocks, allocating a new
2450 cons_block with malloc whenever necessary. Cons cells reclaimed by
2451 GC are put on a free list to be reallocated before allocating
2452 any new cons cells from the latest cons_block. */
2453
2454 #define CONS_BLOCK_SIZE \
2455 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2456 /* The compiler might add padding at the end. */ \
2457 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2458 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2459
2460 #define CONS_BLOCK(fptr) \
2461 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2462
2463 #define CONS_INDEX(fptr) \
2464 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2465
2466 struct cons_block
2467 {
2468 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2469 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2470 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2471 struct cons_block *next;
2472 };
2473
2474 #define CONS_MARKED_P(fptr) \
2475 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2476
2477 #define CONS_MARK(fptr) \
2478 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2479
2480 #define CONS_UNMARK(fptr) \
2481 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2482
2483 /* Current cons_block. */
2484
2485 static struct cons_block *cons_block;
2486
2487 /* Index of first unused Lisp_Cons in the current block. */
2488
2489 static int cons_block_index = CONS_BLOCK_SIZE;
2490
2491 /* Free-list of Lisp_Cons structures. */
2492
2493 static struct Lisp_Cons *cons_free_list;
2494
2495 /* Explicitly free a cons cell by putting it on the free-list. */
2496
2497 void
2498 free_cons (struct Lisp_Cons *ptr)
2499 {
2500 ptr->u.chain = cons_free_list;
2501 #if GC_MARK_STACK
2502 ptr->car = Vdead;
2503 #endif
2504 cons_free_list = ptr;
2505 consing_since_gc -= sizeof *ptr;
2506 total_free_conses++;
2507 }
2508
2509 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2510 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2511 (Lisp_Object car, Lisp_Object cdr)
2512 {
2513 register Lisp_Object val;
2514
2515 MALLOC_BLOCK_INPUT;
2516
2517 if (cons_free_list)
2518 {
2519 /* We use the cdr for chaining the free list
2520 so that we won't use the same field that has the mark bit. */
2521 XSETCONS (val, cons_free_list);
2522 cons_free_list = cons_free_list->u.chain;
2523 }
2524 else
2525 {
2526 if (cons_block_index == CONS_BLOCK_SIZE)
2527 {
2528 struct cons_block *new
2529 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2530 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2531 new->next = cons_block;
2532 cons_block = new;
2533 cons_block_index = 0;
2534 total_free_conses += CONS_BLOCK_SIZE;
2535 }
2536 XSETCONS (val, &cons_block->conses[cons_block_index]);
2537 cons_block_index++;
2538 }
2539
2540 MALLOC_UNBLOCK_INPUT;
2541
2542 XSETCAR (val, car);
2543 XSETCDR (val, cdr);
2544 eassert (!CONS_MARKED_P (XCONS (val)));
2545 consing_since_gc += sizeof (struct Lisp_Cons);
2546 total_free_conses--;
2547 cons_cells_consed++;
2548 return val;
2549 }
2550
2551 #ifdef GC_CHECK_CONS_LIST
2552 /* Get an error now if there's any junk in the cons free list. */
2553 void
2554 check_cons_list (void)
2555 {
2556 struct Lisp_Cons *tail = cons_free_list;
2557
2558 while (tail)
2559 tail = tail->u.chain;
2560 }
2561 #endif
2562
2563 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2564
2565 Lisp_Object
2566 list1 (Lisp_Object arg1)
2567 {
2568 return Fcons (arg1, Qnil);
2569 }
2570
2571 Lisp_Object
2572 list2 (Lisp_Object arg1, Lisp_Object arg2)
2573 {
2574 return Fcons (arg1, Fcons (arg2, Qnil));
2575 }
2576
2577
2578 Lisp_Object
2579 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2580 {
2581 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2582 }
2583
2584
2585 Lisp_Object
2586 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2587 {
2588 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2589 }
2590
2591
2592 Lisp_Object
2593 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2594 {
2595 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2596 Fcons (arg5, Qnil)))));
2597 }
2598
2599 /* Make a list of COUNT Lisp_Objects, where ARG is the
2600 first one. Allocate conses from pure space if TYPE
2601 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2602
2603 Lisp_Object
2604 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2605 {
2606 va_list ap;
2607 ptrdiff_t i;
2608 Lisp_Object val, *objp;
2609
2610 /* Change to SAFE_ALLOCA if you hit this eassert. */
2611 eassert (count <= MAX_ALLOCA / word_size);
2612
2613 objp = alloca (count * word_size);
2614 objp[0] = arg;
2615 va_start (ap, arg);
2616 for (i = 1; i < count; i++)
2617 objp[i] = va_arg (ap, Lisp_Object);
2618 va_end (ap);
2619
2620 for (val = Qnil, i = count - 1; i >= 0; i--)
2621 {
2622 if (type == CONSTYPE_PURE)
2623 val = pure_cons (objp[i], val);
2624 else if (type == CONSTYPE_HEAP)
2625 val = Fcons (objp[i], val);
2626 else
2627 emacs_abort ();
2628 }
2629 return val;
2630 }
2631
2632 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2633 doc: /* Return a newly created list with specified arguments as elements.
2634 Any number of arguments, even zero arguments, are allowed.
2635 usage: (list &rest OBJECTS) */)
2636 (ptrdiff_t nargs, Lisp_Object *args)
2637 {
2638 register Lisp_Object val;
2639 val = Qnil;
2640
2641 while (nargs > 0)
2642 {
2643 nargs--;
2644 val = Fcons (args[nargs], val);
2645 }
2646 return val;
2647 }
2648
2649
2650 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2651 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2652 (register Lisp_Object length, Lisp_Object init)
2653 {
2654 register Lisp_Object val;
2655 register EMACS_INT size;
2656
2657 CHECK_NATNUM (length);
2658 size = XFASTINT (length);
2659
2660 val = Qnil;
2661 while (size > 0)
2662 {
2663 val = Fcons (init, val);
2664 --size;
2665
2666 if (size > 0)
2667 {
2668 val = Fcons (init, val);
2669 --size;
2670
2671 if (size > 0)
2672 {
2673 val = Fcons (init, val);
2674 --size;
2675
2676 if (size > 0)
2677 {
2678 val = Fcons (init, val);
2679 --size;
2680
2681 if (size > 0)
2682 {
2683 val = Fcons (init, val);
2684 --size;
2685 }
2686 }
2687 }
2688 }
2689
2690 QUIT;
2691 }
2692
2693 return val;
2694 }
2695
2696
2697 \f
2698 /***********************************************************************
2699 Vector Allocation
2700 ***********************************************************************/
2701
2702 /* Sometimes a vector's contents are merely a pointer internally used
2703 in vector allocation code. On the rare platforms where a null
2704 pointer cannot be tagged, represent it with a Lisp 0.
2705 Usually you don't want to touch this. */
2706
2707 static struct Lisp_Vector *
2708 next_vector (struct Lisp_Vector *v)
2709 {
2710 return XUNTAG (v->contents[0], 0);
2711 }
2712
2713 static void
2714 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2715 {
2716 v->contents[0] = make_lisp_ptr (p, 0);
2717 }
2718
2719 /* This value is balanced well enough to avoid too much internal overhead
2720 for the most common cases; it's not required to be a power of two, but
2721 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2722
2723 #define VECTOR_BLOCK_SIZE 4096
2724
2725 enum
2726 {
2727 /* Alignment of struct Lisp_Vector objects. */
2728 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2729 USE_LSB_TAG ? GCALIGNMENT : 1),
2730
2731 /* Vector size requests are a multiple of this. */
2732 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2733 };
2734
2735 /* Verify assumptions described above. */
2736 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2737 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2738
2739 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2740 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2741 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2742 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2743
2744 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2745
2746 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2747
2748 /* Size of the minimal vector allocated from block. */
2749
2750 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2751
2752 /* Size of the largest vector allocated from block. */
2753
2754 #define VBLOCK_BYTES_MAX \
2755 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2756
2757 /* We maintain one free list for each possible block-allocated
2758 vector size, and this is the number of free lists we have. */
2759
2760 #define VECTOR_MAX_FREE_LIST_INDEX \
2761 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2762
2763 /* Common shortcut to advance vector pointer over a block data. */
2764
2765 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2766
2767 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2768
2769 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2770
2771 /* Common shortcut to setup vector on a free list. */
2772
2773 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2774 do { \
2775 (tmp) = ((nbytes - header_size) / word_size); \
2776 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2777 eassert ((nbytes) % roundup_size == 0); \
2778 (tmp) = VINDEX (nbytes); \
2779 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2780 set_next_vector (v, vector_free_lists[tmp]); \
2781 vector_free_lists[tmp] = (v); \
2782 total_free_vector_slots += (nbytes) / word_size; \
2783 } while (0)
2784
2785 /* This internal type is used to maintain the list of large vectors
2786 which are allocated at their own, e.g. outside of vector blocks.
2787
2788 struct large_vector itself cannot contain a struct Lisp_Vector, as
2789 the latter contains a flexible array member and C99 does not allow
2790 such structs to be nested. Instead, each struct large_vector
2791 object LV is followed by a struct Lisp_Vector, which is at offset
2792 large_vector_offset from LV, and whose address is therefore
2793 large_vector_vec (&LV). */
2794
2795 struct large_vector
2796 {
2797 struct large_vector *next;
2798 };
2799
2800 enum
2801 {
2802 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2803 };
2804
2805 static struct Lisp_Vector *
2806 large_vector_vec (struct large_vector *p)
2807 {
2808 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2809 }
2810
2811 /* This internal type is used to maintain an underlying storage
2812 for small vectors. */
2813
2814 struct vector_block
2815 {
2816 char data[VECTOR_BLOCK_BYTES];
2817 struct vector_block *next;
2818 };
2819
2820 /* Chain of vector blocks. */
2821
2822 static struct vector_block *vector_blocks;
2823
2824 /* Vector free lists, where NTH item points to a chain of free
2825 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2826
2827 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2828
2829 /* Singly-linked list of large vectors. */
2830
2831 static struct large_vector *large_vectors;
2832
2833 /* The only vector with 0 slots, allocated from pure space. */
2834
2835 Lisp_Object zero_vector;
2836
2837 /* Number of live vectors. */
2838
2839 static EMACS_INT total_vectors;
2840
2841 /* Total size of live and free vectors, in Lisp_Object units. */
2842
2843 static EMACS_INT total_vector_slots, total_free_vector_slots;
2844
2845 /* Get a new vector block. */
2846
2847 static struct vector_block *
2848 allocate_vector_block (void)
2849 {
2850 struct vector_block *block = xmalloc (sizeof *block);
2851
2852 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2853 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2854 MEM_TYPE_VECTOR_BLOCK);
2855 #endif
2856
2857 block->next = vector_blocks;
2858 vector_blocks = block;
2859 return block;
2860 }
2861
2862 /* Called once to initialize vector allocation. */
2863
2864 static void
2865 init_vectors (void)
2866 {
2867 zero_vector = make_pure_vector (0);
2868 }
2869
2870 /* Allocate vector from a vector block. */
2871
2872 static struct Lisp_Vector *
2873 allocate_vector_from_block (size_t nbytes)
2874 {
2875 struct Lisp_Vector *vector;
2876 struct vector_block *block;
2877 size_t index, restbytes;
2878
2879 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2880 eassert (nbytes % roundup_size == 0);
2881
2882 /* First, try to allocate from a free list
2883 containing vectors of the requested size. */
2884 index = VINDEX (nbytes);
2885 if (vector_free_lists[index])
2886 {
2887 vector = vector_free_lists[index];
2888 vector_free_lists[index] = next_vector (vector);
2889 total_free_vector_slots -= nbytes / word_size;
2890 return vector;
2891 }
2892
2893 /* Next, check free lists containing larger vectors. Since
2894 we will split the result, we should have remaining space
2895 large enough to use for one-slot vector at least. */
2896 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2897 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2898 if (vector_free_lists[index])
2899 {
2900 /* This vector is larger than requested. */
2901 vector = vector_free_lists[index];
2902 vector_free_lists[index] = next_vector (vector);
2903 total_free_vector_slots -= nbytes / word_size;
2904
2905 /* Excess bytes are used for the smaller vector,
2906 which should be set on an appropriate free list. */
2907 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2908 eassert (restbytes % roundup_size == 0);
2909 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2910 return vector;
2911 }
2912
2913 /* Finally, need a new vector block. */
2914 block = allocate_vector_block ();
2915
2916 /* New vector will be at the beginning of this block. */
2917 vector = (struct Lisp_Vector *) block->data;
2918
2919 /* If the rest of space from this block is large enough
2920 for one-slot vector at least, set up it on a free list. */
2921 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2922 if (restbytes >= VBLOCK_BYTES_MIN)
2923 {
2924 eassert (restbytes % roundup_size == 0);
2925 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2926 }
2927 return vector;
2928 }
2929
2930 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2931
2932 #define VECTOR_IN_BLOCK(vector, block) \
2933 ((char *) (vector) <= (block)->data \
2934 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2935
2936 /* Return the memory footprint of V in bytes. */
2937
2938 static ptrdiff_t
2939 vector_nbytes (struct Lisp_Vector *v)
2940 {
2941 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2942 ptrdiff_t nwords;
2943
2944 if (size & PSEUDOVECTOR_FLAG)
2945 {
2946 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2947 {
2948 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2949 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
2950 * sizeof (bits_word));
2951 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
2952 verify (header_size <= bool_header_size);
2953 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
2954 }
2955 else
2956 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
2957 + ((size & PSEUDOVECTOR_REST_MASK)
2958 >> PSEUDOVECTOR_SIZE_BITS));
2959 }
2960 else
2961 nwords = size;
2962 return vroundup (header_size + word_size * nwords);
2963 }
2964
2965 /* Release extra resources still in use by VECTOR, which may be any
2966 vector-like object. For now, this is used just to free data in
2967 font objects. */
2968
2969 static void
2970 cleanup_vector (struct Lisp_Vector *vector)
2971 {
2972 detect_suspicious_free (vector);
2973 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
2974 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
2975 == FONT_OBJECT_MAX))
2976 {
2977 /* Attempt to catch subtle bugs like Bug#16140. */
2978 eassert (valid_font_driver (((struct font *) vector)->driver));
2979 ((struct font *) vector)->driver->close ((struct font *) vector);
2980 }
2981 }
2982
2983 /* Reclaim space used by unmarked vectors. */
2984
2985 NO_INLINE /* For better stack traces */
2986 static void
2987 sweep_vectors (void)
2988 {
2989 struct vector_block *block, **bprev = &vector_blocks;
2990 struct large_vector *lv, **lvprev = &large_vectors;
2991 struct Lisp_Vector *vector, *next;
2992
2993 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2994 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2995
2996 /* Looking through vector blocks. */
2997
2998 for (block = vector_blocks; block; block = *bprev)
2999 {
3000 bool free_this_block = 0;
3001 ptrdiff_t nbytes;
3002
3003 for (vector = (struct Lisp_Vector *) block->data;
3004 VECTOR_IN_BLOCK (vector, block); vector = next)
3005 {
3006 if (VECTOR_MARKED_P (vector))
3007 {
3008 VECTOR_UNMARK (vector);
3009 total_vectors++;
3010 nbytes = vector_nbytes (vector);
3011 total_vector_slots += nbytes / word_size;
3012 next = ADVANCE (vector, nbytes);
3013 }
3014 else
3015 {
3016 ptrdiff_t total_bytes;
3017
3018 cleanup_vector (vector);
3019 nbytes = vector_nbytes (vector);
3020 total_bytes = nbytes;
3021 next = ADVANCE (vector, nbytes);
3022
3023 /* While NEXT is not marked, try to coalesce with VECTOR,
3024 thus making VECTOR of the largest possible size. */
3025
3026 while (VECTOR_IN_BLOCK (next, block))
3027 {
3028 if (VECTOR_MARKED_P (next))
3029 break;
3030 cleanup_vector (next);
3031 nbytes = vector_nbytes (next);
3032 total_bytes += nbytes;
3033 next = ADVANCE (next, nbytes);
3034 }
3035
3036 eassert (total_bytes % roundup_size == 0);
3037
3038 if (vector == (struct Lisp_Vector *) block->data
3039 && !VECTOR_IN_BLOCK (next, block))
3040 /* This block should be freed because all of its
3041 space was coalesced into the only free vector. */
3042 free_this_block = 1;
3043 else
3044 {
3045 size_t tmp;
3046 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3047 }
3048 }
3049 }
3050
3051 if (free_this_block)
3052 {
3053 *bprev = block->next;
3054 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3055 mem_delete (mem_find (block->data));
3056 #endif
3057 xfree (block);
3058 }
3059 else
3060 bprev = &block->next;
3061 }
3062
3063 /* Sweep large vectors. */
3064
3065 for (lv = large_vectors; lv; lv = *lvprev)
3066 {
3067 vector = large_vector_vec (lv);
3068 if (VECTOR_MARKED_P (vector))
3069 {
3070 VECTOR_UNMARK (vector);
3071 total_vectors++;
3072 if (vector->header.size & PSEUDOVECTOR_FLAG)
3073 {
3074 /* All non-bool pseudovectors are small enough to be allocated
3075 from vector blocks. This code should be redesigned if some
3076 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3077 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3078 total_vector_slots += vector_nbytes (vector) / word_size;
3079 }
3080 else
3081 total_vector_slots
3082 += header_size / word_size + vector->header.size;
3083 lvprev = &lv->next;
3084 }
3085 else
3086 {
3087 *lvprev = lv->next;
3088 lisp_free (lv);
3089 }
3090 }
3091 }
3092
3093 /* Value is a pointer to a newly allocated Lisp_Vector structure
3094 with room for LEN Lisp_Objects. */
3095
3096 static struct Lisp_Vector *
3097 allocate_vectorlike (ptrdiff_t len)
3098 {
3099 struct Lisp_Vector *p;
3100
3101 MALLOC_BLOCK_INPUT;
3102
3103 if (len == 0)
3104 p = XVECTOR (zero_vector);
3105 else
3106 {
3107 size_t nbytes = header_size + len * word_size;
3108
3109 #ifdef DOUG_LEA_MALLOC
3110 if (!mmap_lisp_allowed_p ())
3111 mallopt (M_MMAP_MAX, 0);
3112 #endif
3113
3114 if (nbytes <= VBLOCK_BYTES_MAX)
3115 p = allocate_vector_from_block (vroundup (nbytes));
3116 else
3117 {
3118 struct large_vector *lv
3119 = lisp_malloc ((large_vector_offset + header_size
3120 + len * word_size),
3121 MEM_TYPE_VECTORLIKE);
3122 lv->next = large_vectors;
3123 large_vectors = lv;
3124 p = large_vector_vec (lv);
3125 }
3126
3127 #ifdef DOUG_LEA_MALLOC
3128 if (!mmap_lisp_allowed_p ())
3129 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3130 #endif
3131
3132 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3133 emacs_abort ();
3134
3135 consing_since_gc += nbytes;
3136 vector_cells_consed += len;
3137 }
3138
3139 MALLOC_UNBLOCK_INPUT;
3140
3141 return p;
3142 }
3143
3144
3145 /* Allocate a vector with LEN slots. */
3146
3147 struct Lisp_Vector *
3148 allocate_vector (EMACS_INT len)
3149 {
3150 struct Lisp_Vector *v;
3151 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3152
3153 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3154 memory_full (SIZE_MAX);
3155 v = allocate_vectorlike (len);
3156 v->header.size = len;
3157 return v;
3158 }
3159
3160
3161 /* Allocate other vector-like structures. */
3162
3163 struct Lisp_Vector *
3164 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
3165 {
3166 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3167 int i;
3168
3169 /* Catch bogus values. */
3170 eassert (tag <= PVEC_FONT);
3171 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3172 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3173
3174 /* Only the first lisplen slots will be traced normally by the GC. */
3175 for (i = 0; i < lisplen; ++i)
3176 v->contents[i] = Qnil;
3177
3178 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3179 return v;
3180 }
3181
3182 struct buffer *
3183 allocate_buffer (void)
3184 {
3185 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3186
3187 BUFFER_PVEC_INIT (b);
3188 /* Put B on the chain of all buffers including killed ones. */
3189 b->next = all_buffers;
3190 all_buffers = b;
3191 /* Note that the rest fields of B are not initialized. */
3192 return b;
3193 }
3194
3195 struct Lisp_Hash_Table *
3196 allocate_hash_table (void)
3197 {
3198 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3199 }
3200
3201 struct window *
3202 allocate_window (void)
3203 {
3204 struct window *w;
3205
3206 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3207 /* Users assumes that non-Lisp data is zeroed. */
3208 memset (&w->current_matrix, 0,
3209 sizeof (*w) - offsetof (struct window, current_matrix));
3210 return w;
3211 }
3212
3213 struct terminal *
3214 allocate_terminal (void)
3215 {
3216 struct terminal *t;
3217
3218 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3219 /* Users assumes that non-Lisp data is zeroed. */
3220 memset (&t->next_terminal, 0,
3221 sizeof (*t) - offsetof (struct terminal, next_terminal));
3222 return t;
3223 }
3224
3225 struct frame *
3226 allocate_frame (void)
3227 {
3228 struct frame *f;
3229
3230 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3231 /* Users assumes that non-Lisp data is zeroed. */
3232 memset (&f->face_cache, 0,
3233 sizeof (*f) - offsetof (struct frame, face_cache));
3234 return f;
3235 }
3236
3237 struct Lisp_Process *
3238 allocate_process (void)
3239 {
3240 struct Lisp_Process *p;
3241
3242 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3243 /* Users assumes that non-Lisp data is zeroed. */
3244 memset (&p->pid, 0,
3245 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3246 return p;
3247 }
3248
3249 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3250 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3251 See also the function `vector'. */)
3252 (register Lisp_Object length, Lisp_Object init)
3253 {
3254 Lisp_Object vector;
3255 register ptrdiff_t sizei;
3256 register ptrdiff_t i;
3257 register struct Lisp_Vector *p;
3258
3259 CHECK_NATNUM (length);
3260
3261 p = allocate_vector (XFASTINT (length));
3262 sizei = XFASTINT (length);
3263 for (i = 0; i < sizei; i++)
3264 p->contents[i] = init;
3265
3266 XSETVECTOR (vector, p);
3267 return vector;
3268 }
3269
3270
3271 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3272 doc: /* Return a newly created vector with specified arguments as elements.
3273 Any number of arguments, even zero arguments, are allowed.
3274 usage: (vector &rest OBJECTS) */)
3275 (ptrdiff_t nargs, Lisp_Object *args)
3276 {
3277 ptrdiff_t i;
3278 register Lisp_Object val = make_uninit_vector (nargs);
3279 register struct Lisp_Vector *p = XVECTOR (val);
3280
3281 for (i = 0; i < nargs; i++)
3282 p->contents[i] = args[i];
3283 return val;
3284 }
3285
3286 void
3287 make_byte_code (struct Lisp_Vector *v)
3288 {
3289 /* Don't allow the global zero_vector to become a byte code object. */
3290 eassert (0 < v->header.size);
3291
3292 if (v->header.size > 1 && STRINGP (v->contents[1])
3293 && STRING_MULTIBYTE (v->contents[1]))
3294 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3295 earlier because they produced a raw 8-bit string for byte-code
3296 and now such a byte-code string is loaded as multibyte while
3297 raw 8-bit characters converted to multibyte form. Thus, now we
3298 must convert them back to the original unibyte form. */
3299 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3300 XSETPVECTYPE (v, PVEC_COMPILED);
3301 }
3302
3303 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3304 doc: /* Create a byte-code object with specified arguments as elements.
3305 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3306 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3307 and (optional) INTERACTIVE-SPEC.
3308 The first four arguments are required; at most six have any
3309 significance.
3310 The ARGLIST can be either like the one of `lambda', in which case the arguments
3311 will be dynamically bound before executing the byte code, or it can be an
3312 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3313 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3314 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3315 argument to catch the left-over arguments. If such an integer is used, the
3316 arguments will not be dynamically bound but will be instead pushed on the
3317 stack before executing the byte-code.
3318 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3319 (ptrdiff_t nargs, Lisp_Object *args)
3320 {
3321 ptrdiff_t i;
3322 register Lisp_Object val = make_uninit_vector (nargs);
3323 register struct Lisp_Vector *p = XVECTOR (val);
3324
3325 /* We used to purecopy everything here, if purify-flag was set. This worked
3326 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3327 dangerous, since make-byte-code is used during execution to build
3328 closures, so any closure built during the preload phase would end up
3329 copied into pure space, including its free variables, which is sometimes
3330 just wasteful and other times plainly wrong (e.g. those free vars may want
3331 to be setcar'd). */
3332
3333 for (i = 0; i < nargs; i++)
3334 p->contents[i] = args[i];
3335 make_byte_code (p);
3336 XSETCOMPILED (val, p);
3337 return val;
3338 }
3339
3340
3341 \f
3342 /***********************************************************************
3343 Symbol Allocation
3344 ***********************************************************************/
3345
3346 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3347 of the required alignment if LSB tags are used. */
3348
3349 union aligned_Lisp_Symbol
3350 {
3351 struct Lisp_Symbol s;
3352 #if USE_LSB_TAG
3353 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3354 & -GCALIGNMENT];
3355 #endif
3356 };
3357
3358 /* Each symbol_block is just under 1020 bytes long, since malloc
3359 really allocates in units of powers of two and uses 4 bytes for its
3360 own overhead. */
3361
3362 #define SYMBOL_BLOCK_SIZE \
3363 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3364
3365 struct symbol_block
3366 {
3367 /* Place `symbols' first, to preserve alignment. */
3368 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3369 struct symbol_block *next;
3370 };
3371
3372 /* Current symbol block and index of first unused Lisp_Symbol
3373 structure in it. */
3374
3375 static struct symbol_block *symbol_block;
3376 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3377 /* Pointer to the first symbol_block that contains pinned symbols.
3378 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3379 10K of which are pinned (and all but 250 of them are interned in obarray),
3380 whereas a "typical session" has in the order of 30K symbols.
3381 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3382 than 30K to find the 10K symbols we need to mark. */
3383 static struct symbol_block *symbol_block_pinned;
3384
3385 /* List of free symbols. */
3386
3387 static struct Lisp_Symbol *symbol_free_list;
3388
3389 static void
3390 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3391 {
3392 XSYMBOL (sym)->name = name;
3393 }
3394
3395 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3396 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3397 Its value is void, and its function definition and property list are nil. */)
3398 (Lisp_Object name)
3399 {
3400 register Lisp_Object val;
3401 register struct Lisp_Symbol *p;
3402
3403 CHECK_STRING (name);
3404
3405 MALLOC_BLOCK_INPUT;
3406
3407 if (symbol_free_list)
3408 {
3409 XSETSYMBOL (val, symbol_free_list);
3410 symbol_free_list = symbol_free_list->next;
3411 }
3412 else
3413 {
3414 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3415 {
3416 struct symbol_block *new
3417 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3418 new->next = symbol_block;
3419 symbol_block = new;
3420 symbol_block_index = 0;
3421 total_free_symbols += SYMBOL_BLOCK_SIZE;
3422 }
3423 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3424 symbol_block_index++;
3425 }
3426
3427 MALLOC_UNBLOCK_INPUT;
3428
3429 p = XSYMBOL (val);
3430 set_symbol_name (val, name);
3431 set_symbol_plist (val, Qnil);
3432 p->redirect = SYMBOL_PLAINVAL;
3433 SET_SYMBOL_VAL (p, Qunbound);
3434 set_symbol_function (val, Qnil);
3435 set_symbol_next (val, NULL);
3436 p->gcmarkbit = false;
3437 p->interned = SYMBOL_UNINTERNED;
3438 p->constant = 0;
3439 p->declared_special = false;
3440 p->pinned = false;
3441 consing_since_gc += sizeof (struct Lisp_Symbol);
3442 symbols_consed++;
3443 total_free_symbols--;
3444 return val;
3445 }
3446
3447
3448 \f
3449 /***********************************************************************
3450 Marker (Misc) Allocation
3451 ***********************************************************************/
3452
3453 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3454 the required alignment when LSB tags are used. */
3455
3456 union aligned_Lisp_Misc
3457 {
3458 union Lisp_Misc m;
3459 #if USE_LSB_TAG
3460 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3461 & -GCALIGNMENT];
3462 #endif
3463 };
3464
3465 /* Allocation of markers and other objects that share that structure.
3466 Works like allocation of conses. */
3467
3468 #define MARKER_BLOCK_SIZE \
3469 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3470
3471 struct marker_block
3472 {
3473 /* Place `markers' first, to preserve alignment. */
3474 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3475 struct marker_block *next;
3476 };
3477
3478 static struct marker_block *marker_block;
3479 static int marker_block_index = MARKER_BLOCK_SIZE;
3480
3481 static union Lisp_Misc *marker_free_list;
3482
3483 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3484
3485 static Lisp_Object
3486 allocate_misc (enum Lisp_Misc_Type type)
3487 {
3488 Lisp_Object val;
3489
3490 MALLOC_BLOCK_INPUT;
3491
3492 if (marker_free_list)
3493 {
3494 XSETMISC (val, marker_free_list);
3495 marker_free_list = marker_free_list->u_free.chain;
3496 }
3497 else
3498 {
3499 if (marker_block_index == MARKER_BLOCK_SIZE)
3500 {
3501 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3502 new->next = marker_block;
3503 marker_block = new;
3504 marker_block_index = 0;
3505 total_free_markers += MARKER_BLOCK_SIZE;
3506 }
3507 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3508 marker_block_index++;
3509 }
3510
3511 MALLOC_UNBLOCK_INPUT;
3512
3513 --total_free_markers;
3514 consing_since_gc += sizeof (union Lisp_Misc);
3515 misc_objects_consed++;
3516 XMISCANY (val)->type = type;
3517 XMISCANY (val)->gcmarkbit = 0;
3518 return val;
3519 }
3520
3521 /* Free a Lisp_Misc object. */
3522
3523 void
3524 free_misc (Lisp_Object misc)
3525 {
3526 XMISCANY (misc)->type = Lisp_Misc_Free;
3527 XMISC (misc)->u_free.chain = marker_free_list;
3528 marker_free_list = XMISC (misc);
3529 consing_since_gc -= sizeof (union Lisp_Misc);
3530 total_free_markers++;
3531 }
3532
3533 /* Verify properties of Lisp_Save_Value's representation
3534 that are assumed here and elsewhere. */
3535
3536 verify (SAVE_UNUSED == 0);
3537 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3538 >> SAVE_SLOT_BITS)
3539 == 0);
3540
3541 /* Return Lisp_Save_Value objects for the various combinations
3542 that callers need. */
3543
3544 Lisp_Object
3545 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3546 {
3547 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3548 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3549 p->save_type = SAVE_TYPE_INT_INT_INT;
3550 p->data[0].integer = a;
3551 p->data[1].integer = b;
3552 p->data[2].integer = c;
3553 return val;
3554 }
3555
3556 Lisp_Object
3557 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3558 Lisp_Object d)
3559 {
3560 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3561 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3562 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3563 p->data[0].object = a;
3564 p->data[1].object = b;
3565 p->data[2].object = c;
3566 p->data[3].object = d;
3567 return val;
3568 }
3569
3570 Lisp_Object
3571 make_save_ptr (void *a)
3572 {
3573 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3574 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3575 p->save_type = SAVE_POINTER;
3576 p->data[0].pointer = a;
3577 return val;
3578 }
3579
3580 Lisp_Object
3581 make_save_ptr_int (void *a, ptrdiff_t b)
3582 {
3583 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3584 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3585 p->save_type = SAVE_TYPE_PTR_INT;
3586 p->data[0].pointer = a;
3587 p->data[1].integer = b;
3588 return val;
3589 }
3590
3591 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3592 Lisp_Object
3593 make_save_ptr_ptr (void *a, void *b)
3594 {
3595 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3596 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3597 p->save_type = SAVE_TYPE_PTR_PTR;
3598 p->data[0].pointer = a;
3599 p->data[1].pointer = b;
3600 return val;
3601 }
3602 #endif
3603
3604 Lisp_Object
3605 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3606 {
3607 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3608 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3609 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3610 p->data[0].funcpointer = a;
3611 p->data[1].pointer = b;
3612 p->data[2].object = c;
3613 return val;
3614 }
3615
3616 /* Return a Lisp_Save_Value object that represents an array A
3617 of N Lisp objects. */
3618
3619 Lisp_Object
3620 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3621 {
3622 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3623 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3624 p->save_type = SAVE_TYPE_MEMORY;
3625 p->data[0].pointer = a;
3626 p->data[1].integer = n;
3627 return val;
3628 }
3629
3630 /* Free a Lisp_Save_Value object. Do not use this function
3631 if SAVE contains pointer other than returned by xmalloc. */
3632
3633 void
3634 free_save_value (Lisp_Object save)
3635 {
3636 xfree (XSAVE_POINTER (save, 0));
3637 free_misc (save);
3638 }
3639
3640 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3641
3642 Lisp_Object
3643 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3644 {
3645 register Lisp_Object overlay;
3646
3647 overlay = allocate_misc (Lisp_Misc_Overlay);
3648 OVERLAY_START (overlay) = start;
3649 OVERLAY_END (overlay) = end;
3650 set_overlay_plist (overlay, plist);
3651 XOVERLAY (overlay)->next = NULL;
3652 return overlay;
3653 }
3654
3655 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3656 doc: /* Return a newly allocated marker which does not point at any place. */)
3657 (void)
3658 {
3659 register Lisp_Object val;
3660 register struct Lisp_Marker *p;
3661
3662 val = allocate_misc (Lisp_Misc_Marker);
3663 p = XMARKER (val);
3664 p->buffer = 0;
3665 p->bytepos = 0;
3666 p->charpos = 0;
3667 p->next = NULL;
3668 p->insertion_type = 0;
3669 p->need_adjustment = 0;
3670 return val;
3671 }
3672
3673 /* Return a newly allocated marker which points into BUF
3674 at character position CHARPOS and byte position BYTEPOS. */
3675
3676 Lisp_Object
3677 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3678 {
3679 Lisp_Object obj;
3680 struct Lisp_Marker *m;
3681
3682 /* No dead buffers here. */
3683 eassert (BUFFER_LIVE_P (buf));
3684
3685 /* Every character is at least one byte. */
3686 eassert (charpos <= bytepos);
3687
3688 obj = allocate_misc (Lisp_Misc_Marker);
3689 m = XMARKER (obj);
3690 m->buffer = buf;
3691 m->charpos = charpos;
3692 m->bytepos = bytepos;
3693 m->insertion_type = 0;
3694 m->need_adjustment = 0;
3695 m->next = BUF_MARKERS (buf);
3696 BUF_MARKERS (buf) = m;
3697 return obj;
3698 }
3699
3700 /* Put MARKER back on the free list after using it temporarily. */
3701
3702 void
3703 free_marker (Lisp_Object marker)
3704 {
3705 unchain_marker (XMARKER (marker));
3706 free_misc (marker);
3707 }
3708
3709 \f
3710 /* Return a newly created vector or string with specified arguments as
3711 elements. If all the arguments are characters that can fit
3712 in a string of events, make a string; otherwise, make a vector.
3713
3714 Any number of arguments, even zero arguments, are allowed. */
3715
3716 Lisp_Object
3717 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3718 {
3719 ptrdiff_t i;
3720
3721 for (i = 0; i < nargs; i++)
3722 /* The things that fit in a string
3723 are characters that are in 0...127,
3724 after discarding the meta bit and all the bits above it. */
3725 if (!INTEGERP (args[i])
3726 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3727 return Fvector (nargs, args);
3728
3729 /* Since the loop exited, we know that all the things in it are
3730 characters, so we can make a string. */
3731 {
3732 Lisp_Object result;
3733
3734 result = Fmake_string (make_number (nargs), make_number (0));
3735 for (i = 0; i < nargs; i++)
3736 {
3737 SSET (result, i, XINT (args[i]));
3738 /* Move the meta bit to the right place for a string char. */
3739 if (XINT (args[i]) & CHAR_META)
3740 SSET (result, i, SREF (result, i) | 0x80);
3741 }
3742
3743 return result;
3744 }
3745 }
3746
3747
3748 \f
3749 /************************************************************************
3750 Memory Full Handling
3751 ************************************************************************/
3752
3753
3754 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3755 there may have been size_t overflow so that malloc was never
3756 called, or perhaps malloc was invoked successfully but the
3757 resulting pointer had problems fitting into a tagged EMACS_INT. In
3758 either case this counts as memory being full even though malloc did
3759 not fail. */
3760
3761 void
3762 memory_full (size_t nbytes)
3763 {
3764 /* Do not go into hysterics merely because a large request failed. */
3765 bool enough_free_memory = 0;
3766 if (SPARE_MEMORY < nbytes)
3767 {
3768 void *p;
3769
3770 MALLOC_BLOCK_INPUT;
3771 p = malloc (SPARE_MEMORY);
3772 if (p)
3773 {
3774 free (p);
3775 enough_free_memory = 1;
3776 }
3777 MALLOC_UNBLOCK_INPUT;
3778 }
3779
3780 if (! enough_free_memory)
3781 {
3782 int i;
3783
3784 Vmemory_full = Qt;
3785
3786 memory_full_cons_threshold = sizeof (struct cons_block);
3787
3788 /* The first time we get here, free the spare memory. */
3789 for (i = 0; i < ARRAYELTS (spare_memory); i++)
3790 if (spare_memory[i])
3791 {
3792 if (i == 0)
3793 free (spare_memory[i]);
3794 else if (i >= 1 && i <= 4)
3795 lisp_align_free (spare_memory[i]);
3796 else
3797 lisp_free (spare_memory[i]);
3798 spare_memory[i] = 0;
3799 }
3800 }
3801
3802 /* This used to call error, but if we've run out of memory, we could
3803 get infinite recursion trying to build the string. */
3804 xsignal (Qnil, Vmemory_signal_data);
3805 }
3806
3807 /* If we released our reserve (due to running out of memory),
3808 and we have a fair amount free once again,
3809 try to set aside another reserve in case we run out once more.
3810
3811 This is called when a relocatable block is freed in ralloc.c,
3812 and also directly from this file, in case we're not using ralloc.c. */
3813
3814 void
3815 refill_memory_reserve (void)
3816 {
3817 #ifndef SYSTEM_MALLOC
3818 if (spare_memory[0] == 0)
3819 spare_memory[0] = malloc (SPARE_MEMORY);
3820 if (spare_memory[1] == 0)
3821 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3822 MEM_TYPE_SPARE);
3823 if (spare_memory[2] == 0)
3824 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3825 MEM_TYPE_SPARE);
3826 if (spare_memory[3] == 0)
3827 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3828 MEM_TYPE_SPARE);
3829 if (spare_memory[4] == 0)
3830 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3831 MEM_TYPE_SPARE);
3832 if (spare_memory[5] == 0)
3833 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3834 MEM_TYPE_SPARE);
3835 if (spare_memory[6] == 0)
3836 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3837 MEM_TYPE_SPARE);
3838 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3839 Vmemory_full = Qnil;
3840 #endif
3841 }
3842 \f
3843 /************************************************************************
3844 C Stack Marking
3845 ************************************************************************/
3846
3847 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3848
3849 /* Conservative C stack marking requires a method to identify possibly
3850 live Lisp objects given a pointer value. We do this by keeping
3851 track of blocks of Lisp data that are allocated in a red-black tree
3852 (see also the comment of mem_node which is the type of nodes in
3853 that tree). Function lisp_malloc adds information for an allocated
3854 block to the red-black tree with calls to mem_insert, and function
3855 lisp_free removes it with mem_delete. Functions live_string_p etc
3856 call mem_find to lookup information about a given pointer in the
3857 tree, and use that to determine if the pointer points to a Lisp
3858 object or not. */
3859
3860 /* Initialize this part of alloc.c. */
3861
3862 static void
3863 mem_init (void)
3864 {
3865 mem_z.left = mem_z.right = MEM_NIL;
3866 mem_z.parent = NULL;
3867 mem_z.color = MEM_BLACK;
3868 mem_z.start = mem_z.end = NULL;
3869 mem_root = MEM_NIL;
3870 }
3871
3872
3873 /* Value is a pointer to the mem_node containing START. Value is
3874 MEM_NIL if there is no node in the tree containing START. */
3875
3876 static struct mem_node *
3877 mem_find (void *start)
3878 {
3879 struct mem_node *p;
3880
3881 if (start < min_heap_address || start > max_heap_address)
3882 return MEM_NIL;
3883
3884 /* Make the search always successful to speed up the loop below. */
3885 mem_z.start = start;
3886 mem_z.end = (char *) start + 1;
3887
3888 p = mem_root;
3889 while (start < p->start || start >= p->end)
3890 p = start < p->start ? p->left : p->right;
3891 return p;
3892 }
3893
3894
3895 /* Insert a new node into the tree for a block of memory with start
3896 address START, end address END, and type TYPE. Value is a
3897 pointer to the node that was inserted. */
3898
3899 static struct mem_node *
3900 mem_insert (void *start, void *end, enum mem_type type)
3901 {
3902 struct mem_node *c, *parent, *x;
3903
3904 if (min_heap_address == NULL || start < min_heap_address)
3905 min_heap_address = start;
3906 if (max_heap_address == NULL || end > max_heap_address)
3907 max_heap_address = end;
3908
3909 /* See where in the tree a node for START belongs. In this
3910 particular application, it shouldn't happen that a node is already
3911 present. For debugging purposes, let's check that. */
3912 c = mem_root;
3913 parent = NULL;
3914
3915 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3916
3917 while (c != MEM_NIL)
3918 {
3919 if (start >= c->start && start < c->end)
3920 emacs_abort ();
3921 parent = c;
3922 c = start < c->start ? c->left : c->right;
3923 }
3924
3925 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3926
3927 while (c != MEM_NIL)
3928 {
3929 parent = c;
3930 c = start < c->start ? c->left : c->right;
3931 }
3932
3933 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3934
3935 /* Create a new node. */
3936 #ifdef GC_MALLOC_CHECK
3937 x = malloc (sizeof *x);
3938 if (x == NULL)
3939 emacs_abort ();
3940 #else
3941 x = xmalloc (sizeof *x);
3942 #endif
3943 x->start = start;
3944 x->end = end;
3945 x->type = type;
3946 x->parent = parent;
3947 x->left = x->right = MEM_NIL;
3948 x->color = MEM_RED;
3949
3950 /* Insert it as child of PARENT or install it as root. */
3951 if (parent)
3952 {
3953 if (start < parent->start)
3954 parent->left = x;
3955 else
3956 parent->right = x;
3957 }
3958 else
3959 mem_root = x;
3960
3961 /* Re-establish red-black tree properties. */
3962 mem_insert_fixup (x);
3963
3964 return x;
3965 }
3966
3967
3968 /* Re-establish the red-black properties of the tree, and thereby
3969 balance the tree, after node X has been inserted; X is always red. */
3970
3971 static void
3972 mem_insert_fixup (struct mem_node *x)
3973 {
3974 while (x != mem_root && x->parent->color == MEM_RED)
3975 {
3976 /* X is red and its parent is red. This is a violation of
3977 red-black tree property #3. */
3978
3979 if (x->parent == x->parent->parent->left)
3980 {
3981 /* We're on the left side of our grandparent, and Y is our
3982 "uncle". */
3983 struct mem_node *y = x->parent->parent->right;
3984
3985 if (y->color == MEM_RED)
3986 {
3987 /* Uncle and parent are red but should be black because
3988 X is red. Change the colors accordingly and proceed
3989 with the grandparent. */
3990 x->parent->color = MEM_BLACK;
3991 y->color = MEM_BLACK;
3992 x->parent->parent->color = MEM_RED;
3993 x = x->parent->parent;
3994 }
3995 else
3996 {
3997 /* Parent and uncle have different colors; parent is
3998 red, uncle is black. */
3999 if (x == x->parent->right)
4000 {
4001 x = x->parent;
4002 mem_rotate_left (x);
4003 }
4004
4005 x->parent->color = MEM_BLACK;
4006 x->parent->parent->color = MEM_RED;
4007 mem_rotate_right (x->parent->parent);
4008 }
4009 }
4010 else
4011 {
4012 /* This is the symmetrical case of above. */
4013 struct mem_node *y = x->parent->parent->left;
4014
4015 if (y->color == MEM_RED)
4016 {
4017 x->parent->color = MEM_BLACK;
4018 y->color = MEM_BLACK;
4019 x->parent->parent->color = MEM_RED;
4020 x = x->parent->parent;
4021 }
4022 else
4023 {
4024 if (x == x->parent->left)
4025 {
4026 x = x->parent;
4027 mem_rotate_right (x);
4028 }
4029
4030 x->parent->color = MEM_BLACK;
4031 x->parent->parent->color = MEM_RED;
4032 mem_rotate_left (x->parent->parent);
4033 }
4034 }
4035 }
4036
4037 /* The root may have been changed to red due to the algorithm. Set
4038 it to black so that property #5 is satisfied. */
4039 mem_root->color = MEM_BLACK;
4040 }
4041
4042
4043 /* (x) (y)
4044 / \ / \
4045 a (y) ===> (x) c
4046 / \ / \
4047 b c a b */
4048
4049 static void
4050 mem_rotate_left (struct mem_node *x)
4051 {
4052 struct mem_node *y;
4053
4054 /* Turn y's left sub-tree into x's right sub-tree. */
4055 y = x->right;
4056 x->right = y->left;
4057 if (y->left != MEM_NIL)
4058 y->left->parent = x;
4059
4060 /* Y's parent was x's parent. */
4061 if (y != MEM_NIL)
4062 y->parent = x->parent;
4063
4064 /* Get the parent to point to y instead of x. */
4065 if (x->parent)
4066 {
4067 if (x == x->parent->left)
4068 x->parent->left = y;
4069 else
4070 x->parent->right = y;
4071 }
4072 else
4073 mem_root = y;
4074
4075 /* Put x on y's left. */
4076 y->left = x;
4077 if (x != MEM_NIL)
4078 x->parent = y;
4079 }
4080
4081
4082 /* (x) (Y)
4083 / \ / \
4084 (y) c ===> a (x)
4085 / \ / \
4086 a b b c */
4087
4088 static void
4089 mem_rotate_right (struct mem_node *x)
4090 {
4091 struct mem_node *y = x->left;
4092
4093 x->left = y->right;
4094 if (y->right != MEM_NIL)
4095 y->right->parent = x;
4096
4097 if (y != MEM_NIL)
4098 y->parent = x->parent;
4099 if (x->parent)
4100 {
4101 if (x == x->parent->right)
4102 x->parent->right = y;
4103 else
4104 x->parent->left = y;
4105 }
4106 else
4107 mem_root = y;
4108
4109 y->right = x;
4110 if (x != MEM_NIL)
4111 x->parent = y;
4112 }
4113
4114
4115 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4116
4117 static void
4118 mem_delete (struct mem_node *z)
4119 {
4120 struct mem_node *x, *y;
4121
4122 if (!z || z == MEM_NIL)
4123 return;
4124
4125 if (z->left == MEM_NIL || z->right == MEM_NIL)
4126 y = z;
4127 else
4128 {
4129 y = z->right;
4130 while (y->left != MEM_NIL)
4131 y = y->left;
4132 }
4133
4134 if (y->left != MEM_NIL)
4135 x = y->left;
4136 else
4137 x = y->right;
4138
4139 x->parent = y->parent;
4140 if (y->parent)
4141 {
4142 if (y == y->parent->left)
4143 y->parent->left = x;
4144 else
4145 y->parent->right = x;
4146 }
4147 else
4148 mem_root = x;
4149
4150 if (y != z)
4151 {
4152 z->start = y->start;
4153 z->end = y->end;
4154 z->type = y->type;
4155 }
4156
4157 if (y->color == MEM_BLACK)
4158 mem_delete_fixup (x);
4159
4160 #ifdef GC_MALLOC_CHECK
4161 free (y);
4162 #else
4163 xfree (y);
4164 #endif
4165 }
4166
4167
4168 /* Re-establish the red-black properties of the tree, after a
4169 deletion. */
4170
4171 static void
4172 mem_delete_fixup (struct mem_node *x)
4173 {
4174 while (x != mem_root && x->color == MEM_BLACK)
4175 {
4176 if (x == x->parent->left)
4177 {
4178 struct mem_node *w = x->parent->right;
4179
4180 if (w->color == MEM_RED)
4181 {
4182 w->color = MEM_BLACK;
4183 x->parent->color = MEM_RED;
4184 mem_rotate_left (x->parent);
4185 w = x->parent->right;
4186 }
4187
4188 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4189 {
4190 w->color = MEM_RED;
4191 x = x->parent;
4192 }
4193 else
4194 {
4195 if (w->right->color == MEM_BLACK)
4196 {
4197 w->left->color = MEM_BLACK;
4198 w->color = MEM_RED;
4199 mem_rotate_right (w);
4200 w = x->parent->right;
4201 }
4202 w->color = x->parent->color;
4203 x->parent->color = MEM_BLACK;
4204 w->right->color = MEM_BLACK;
4205 mem_rotate_left (x->parent);
4206 x = mem_root;
4207 }
4208 }
4209 else
4210 {
4211 struct mem_node *w = x->parent->left;
4212
4213 if (w->color == MEM_RED)
4214 {
4215 w->color = MEM_BLACK;
4216 x->parent->color = MEM_RED;
4217 mem_rotate_right (x->parent);
4218 w = x->parent->left;
4219 }
4220
4221 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4222 {
4223 w->color = MEM_RED;
4224 x = x->parent;
4225 }
4226 else
4227 {
4228 if (w->left->color == MEM_BLACK)
4229 {
4230 w->right->color = MEM_BLACK;
4231 w->color = MEM_RED;
4232 mem_rotate_left (w);
4233 w = x->parent->left;
4234 }
4235
4236 w->color = x->parent->color;
4237 x->parent->color = MEM_BLACK;
4238 w->left->color = MEM_BLACK;
4239 mem_rotate_right (x->parent);
4240 x = mem_root;
4241 }
4242 }
4243 }
4244
4245 x->color = MEM_BLACK;
4246 }
4247
4248
4249 /* Value is non-zero if P is a pointer to a live Lisp string on
4250 the heap. M is a pointer to the mem_block for P. */
4251
4252 static bool
4253 live_string_p (struct mem_node *m, void *p)
4254 {
4255 if (m->type == MEM_TYPE_STRING)
4256 {
4257 struct string_block *b = m->start;
4258 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4259
4260 /* P must point to the start of a Lisp_String structure, and it
4261 must not be on the free-list. */
4262 return (offset >= 0
4263 && offset % sizeof b->strings[0] == 0
4264 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4265 && ((struct Lisp_String *) p)->data != NULL);
4266 }
4267 else
4268 return 0;
4269 }
4270
4271
4272 /* Value is non-zero if P is a pointer to a live Lisp cons on
4273 the heap. M is a pointer to the mem_block for P. */
4274
4275 static bool
4276 live_cons_p (struct mem_node *m, void *p)
4277 {
4278 if (m->type == MEM_TYPE_CONS)
4279 {
4280 struct cons_block *b = m->start;
4281 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4282
4283 /* P must point to the start of a Lisp_Cons, not be
4284 one of the unused cells in the current cons block,
4285 and not be on the free-list. */
4286 return (offset >= 0
4287 && offset % sizeof b->conses[0] == 0
4288 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4289 && (b != cons_block
4290 || offset / sizeof b->conses[0] < cons_block_index)
4291 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4292 }
4293 else
4294 return 0;
4295 }
4296
4297
4298 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4299 the heap. M is a pointer to the mem_block for P. */
4300
4301 static bool
4302 live_symbol_p (struct mem_node *m, void *p)
4303 {
4304 if (m->type == MEM_TYPE_SYMBOL)
4305 {
4306 struct symbol_block *b = m->start;
4307 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4308
4309 /* P must point to the start of a Lisp_Symbol, not be
4310 one of the unused cells in the current symbol block,
4311 and not be on the free-list. */
4312 return (offset >= 0
4313 && offset % sizeof b->symbols[0] == 0
4314 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4315 && (b != symbol_block
4316 || offset / sizeof b->symbols[0] < symbol_block_index)
4317 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4318 }
4319 else
4320 return 0;
4321 }
4322
4323
4324 /* Value is non-zero if P is a pointer to a live Lisp float on
4325 the heap. M is a pointer to the mem_block for P. */
4326
4327 static bool
4328 live_float_p (struct mem_node *m, void *p)
4329 {
4330 if (m->type == MEM_TYPE_FLOAT)
4331 {
4332 struct float_block *b = m->start;
4333 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4334
4335 /* P must point to the start of a Lisp_Float and not be
4336 one of the unused cells in the current float block. */
4337 return (offset >= 0
4338 && offset % sizeof b->floats[0] == 0
4339 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4340 && (b != float_block
4341 || offset / sizeof b->floats[0] < float_block_index));
4342 }
4343 else
4344 return 0;
4345 }
4346
4347
4348 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4349 the heap. M is a pointer to the mem_block for P. */
4350
4351 static bool
4352 live_misc_p (struct mem_node *m, void *p)
4353 {
4354 if (m->type == MEM_TYPE_MISC)
4355 {
4356 struct marker_block *b = m->start;
4357 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4358
4359 /* P must point to the start of a Lisp_Misc, not be
4360 one of the unused cells in the current misc block,
4361 and not be on the free-list. */
4362 return (offset >= 0
4363 && offset % sizeof b->markers[0] == 0
4364 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4365 && (b != marker_block
4366 || offset / sizeof b->markers[0] < marker_block_index)
4367 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4368 }
4369 else
4370 return 0;
4371 }
4372
4373
4374 /* Value is non-zero if P is a pointer to a live vector-like object.
4375 M is a pointer to the mem_block for P. */
4376
4377 static bool
4378 live_vector_p (struct mem_node *m, void *p)
4379 {
4380 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4381 {
4382 /* This memory node corresponds to a vector block. */
4383 struct vector_block *block = m->start;
4384 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4385
4386 /* P is in the block's allocation range. Scan the block
4387 up to P and see whether P points to the start of some
4388 vector which is not on a free list. FIXME: check whether
4389 some allocation patterns (probably a lot of short vectors)
4390 may cause a substantial overhead of this loop. */
4391 while (VECTOR_IN_BLOCK (vector, block)
4392 && vector <= (struct Lisp_Vector *) p)
4393 {
4394 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4395 return 1;
4396 else
4397 vector = ADVANCE (vector, vector_nbytes (vector));
4398 }
4399 }
4400 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4401 /* This memory node corresponds to a large vector. */
4402 return 1;
4403 return 0;
4404 }
4405
4406
4407 /* Value is non-zero if P is a pointer to a live buffer. M is a
4408 pointer to the mem_block for P. */
4409
4410 static bool
4411 live_buffer_p (struct mem_node *m, void *p)
4412 {
4413 /* P must point to the start of the block, and the buffer
4414 must not have been killed. */
4415 return (m->type == MEM_TYPE_BUFFER
4416 && p == m->start
4417 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4418 }
4419
4420 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4421
4422 #if GC_MARK_STACK
4423
4424 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4425
4426 /* Currently not used, but may be called from gdb. */
4427
4428 void dump_zombies (void) EXTERNALLY_VISIBLE;
4429
4430 /* Array of objects that are kept alive because the C stack contains
4431 a pattern that looks like a reference to them. */
4432
4433 #define MAX_ZOMBIES 10
4434 static Lisp_Object zombies[MAX_ZOMBIES];
4435
4436 /* Number of zombie objects. */
4437
4438 static EMACS_INT nzombies;
4439
4440 /* Number of garbage collections. */
4441
4442 static EMACS_INT ngcs;
4443
4444 /* Average percentage of zombies per collection. */
4445
4446 static double avg_zombies;
4447
4448 /* Max. number of live and zombie objects. */
4449
4450 static EMACS_INT max_live, max_zombies;
4451
4452 /* Average number of live objects per GC. */
4453
4454 static double avg_live;
4455
4456 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4457 doc: /* Show information about live and zombie objects. */)
4458 (void)
4459 {
4460 Lisp_Object args[8], zombie_list = Qnil;
4461 EMACS_INT i;
4462 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4463 zombie_list = Fcons (zombies[i], zombie_list);
4464 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4465 args[1] = make_number (ngcs);
4466 args[2] = make_float (avg_live);
4467 args[3] = make_float (avg_zombies);
4468 args[4] = make_float (avg_zombies / avg_live / 100);
4469 args[5] = make_number (max_live);
4470 args[6] = make_number (max_zombies);
4471 args[7] = zombie_list;
4472 return Fmessage (8, args);
4473 }
4474
4475 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4476
4477
4478 /* Mark OBJ if we can prove it's a Lisp_Object. */
4479
4480 static void
4481 mark_maybe_object (Lisp_Object obj)
4482 {
4483 void *po;
4484 struct mem_node *m;
4485
4486 #if USE_VALGRIND
4487 if (valgrind_p)
4488 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4489 #endif
4490
4491 if (INTEGERP (obj))
4492 return;
4493
4494 po = (void *) XPNTR (obj);
4495 m = mem_find (po);
4496
4497 if (m != MEM_NIL)
4498 {
4499 bool mark_p = 0;
4500
4501 switch (XTYPE (obj))
4502 {
4503 case Lisp_String:
4504 mark_p = (live_string_p (m, po)
4505 && !STRING_MARKED_P ((struct Lisp_String *) po));
4506 break;
4507
4508 case Lisp_Cons:
4509 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4510 break;
4511
4512 case Lisp_Symbol:
4513 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4514 break;
4515
4516 case Lisp_Float:
4517 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4518 break;
4519
4520 case Lisp_Vectorlike:
4521 /* Note: can't check BUFFERP before we know it's a
4522 buffer because checking that dereferences the pointer
4523 PO which might point anywhere. */
4524 if (live_vector_p (m, po))
4525 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4526 else if (live_buffer_p (m, po))
4527 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4528 break;
4529
4530 case Lisp_Misc:
4531 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4532 break;
4533
4534 default:
4535 break;
4536 }
4537
4538 if (mark_p)
4539 {
4540 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4541 if (nzombies < MAX_ZOMBIES)
4542 zombies[nzombies] = obj;
4543 ++nzombies;
4544 #endif
4545 mark_object (obj);
4546 }
4547 }
4548 }
4549
4550 /* Return true if P can point to Lisp data, and false otherwise.
4551 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4552 Otherwise, assume that Lisp data is aligned on even addresses. */
4553
4554 static bool
4555 maybe_lisp_pointer (void *p)
4556 {
4557 return !((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2));
4558 }
4559
4560 /* If P points to Lisp data, mark that as live if it isn't already
4561 marked. */
4562
4563 static void
4564 mark_maybe_pointer (void *p)
4565 {
4566 struct mem_node *m;
4567
4568 #if USE_VALGRIND
4569 if (valgrind_p)
4570 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4571 #endif
4572
4573 if (!maybe_lisp_pointer (p))
4574 return;
4575
4576 m = mem_find (p);
4577 if (m != MEM_NIL)
4578 {
4579 Lisp_Object obj = Qnil;
4580
4581 switch (m->type)
4582 {
4583 case MEM_TYPE_NON_LISP:
4584 case MEM_TYPE_SPARE:
4585 /* Nothing to do; not a pointer to Lisp memory. */
4586 break;
4587
4588 case MEM_TYPE_BUFFER:
4589 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4590 XSETVECTOR (obj, p);
4591 break;
4592
4593 case MEM_TYPE_CONS:
4594 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4595 XSETCONS (obj, p);
4596 break;
4597
4598 case MEM_TYPE_STRING:
4599 if (live_string_p (m, p)
4600 && !STRING_MARKED_P ((struct Lisp_String *) p))
4601 XSETSTRING (obj, p);
4602 break;
4603
4604 case MEM_TYPE_MISC:
4605 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4606 XSETMISC (obj, p);
4607 break;
4608
4609 case MEM_TYPE_SYMBOL:
4610 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4611 XSETSYMBOL (obj, p);
4612 break;
4613
4614 case MEM_TYPE_FLOAT:
4615 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4616 XSETFLOAT (obj, p);
4617 break;
4618
4619 case MEM_TYPE_VECTORLIKE:
4620 case MEM_TYPE_VECTOR_BLOCK:
4621 if (live_vector_p (m, p))
4622 {
4623 Lisp_Object tem;
4624 XSETVECTOR (tem, p);
4625 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4626 obj = tem;
4627 }
4628 break;
4629
4630 default:
4631 emacs_abort ();
4632 }
4633
4634 if (!NILP (obj))
4635 mark_object (obj);
4636 }
4637 }
4638
4639
4640 /* Alignment of pointer values. Use alignof, as it sometimes returns
4641 a smaller alignment than GCC's __alignof__ and mark_memory might
4642 miss objects if __alignof__ were used. */
4643 #define GC_POINTER_ALIGNMENT alignof (void *)
4644
4645 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4646 not suffice, which is the typical case. A host where a Lisp_Object is
4647 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4648 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4649 suffice to widen it to to a Lisp_Object and check it that way. */
4650 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4651 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4652 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4653 nor mark_maybe_object can follow the pointers. This should not occur on
4654 any practical porting target. */
4655 # error "MSB type bits straddle pointer-word boundaries"
4656 # endif
4657 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4658 pointer words that hold pointers ORed with type bits. */
4659 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4660 #else
4661 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4662 words that hold unmodified pointers. */
4663 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4664 #endif
4665
4666 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4667 or END+OFFSET..START. */
4668
4669 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4670 mark_memory (void *start, void *end)
4671 {
4672 void **pp;
4673 int i;
4674
4675 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4676 nzombies = 0;
4677 #endif
4678
4679 /* Make START the pointer to the start of the memory region,
4680 if it isn't already. */
4681 if (end < start)
4682 {
4683 void *tem = start;
4684 start = end;
4685 end = tem;
4686 }
4687
4688 /* Mark Lisp data pointed to. This is necessary because, in some
4689 situations, the C compiler optimizes Lisp objects away, so that
4690 only a pointer to them remains. Example:
4691
4692 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4693 ()
4694 {
4695 Lisp_Object obj = build_string ("test");
4696 struct Lisp_String *s = XSTRING (obj);
4697 Fgarbage_collect ();
4698 fprintf (stderr, "test `%s'\n", s->data);
4699 return Qnil;
4700 }
4701
4702 Here, `obj' isn't really used, and the compiler optimizes it
4703 away. The only reference to the life string is through the
4704 pointer `s'. */
4705
4706 for (pp = start; (void *) pp < end; pp++)
4707 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4708 {
4709 void *p = *(void **) ((char *) pp + i);
4710 mark_maybe_pointer (p);
4711 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4712 mark_maybe_object (XIL ((intptr_t) p));
4713 }
4714 }
4715
4716 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4717
4718 static bool setjmp_tested_p;
4719 static int longjmps_done;
4720
4721 #define SETJMP_WILL_LIKELY_WORK "\
4722 \n\
4723 Emacs garbage collector has been changed to use conservative stack\n\
4724 marking. Emacs has determined that the method it uses to do the\n\
4725 marking will likely work on your system, but this isn't sure.\n\
4726 \n\
4727 If you are a system-programmer, or can get the help of a local wizard\n\
4728 who is, please take a look at the function mark_stack in alloc.c, and\n\
4729 verify that the methods used are appropriate for your system.\n\
4730 \n\
4731 Please mail the result to <emacs-devel@gnu.org>.\n\
4732 "
4733
4734 #define SETJMP_WILL_NOT_WORK "\
4735 \n\
4736 Emacs garbage collector has been changed to use conservative stack\n\
4737 marking. Emacs has determined that the default method it uses to do the\n\
4738 marking will not work on your system. We will need a system-dependent\n\
4739 solution for your system.\n\
4740 \n\
4741 Please take a look at the function mark_stack in alloc.c, and\n\
4742 try to find a way to make it work on your system.\n\
4743 \n\
4744 Note that you may get false negatives, depending on the compiler.\n\
4745 In particular, you need to use -O with GCC for this test.\n\
4746 \n\
4747 Please mail the result to <emacs-devel@gnu.org>.\n\
4748 "
4749
4750
4751 /* Perform a quick check if it looks like setjmp saves registers in a
4752 jmp_buf. Print a message to stderr saying so. When this test
4753 succeeds, this is _not_ a proof that setjmp is sufficient for
4754 conservative stack marking. Only the sources or a disassembly
4755 can prove that. */
4756
4757 static void
4758 test_setjmp (void)
4759 {
4760 char buf[10];
4761 register int x;
4762 sys_jmp_buf jbuf;
4763
4764 /* Arrange for X to be put in a register. */
4765 sprintf (buf, "1");
4766 x = strlen (buf);
4767 x = 2 * x - 1;
4768
4769 sys_setjmp (jbuf);
4770 if (longjmps_done == 1)
4771 {
4772 /* Came here after the longjmp at the end of the function.
4773
4774 If x == 1, the longjmp has restored the register to its
4775 value before the setjmp, and we can hope that setjmp
4776 saves all such registers in the jmp_buf, although that
4777 isn't sure.
4778
4779 For other values of X, either something really strange is
4780 taking place, or the setjmp just didn't save the register. */
4781
4782 if (x == 1)
4783 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4784 else
4785 {
4786 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4787 exit (1);
4788 }
4789 }
4790
4791 ++longjmps_done;
4792 x = 2;
4793 if (longjmps_done == 1)
4794 sys_longjmp (jbuf, 1);
4795 }
4796
4797 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4798
4799
4800 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4801
4802 /* Abort if anything GCPRO'd doesn't survive the GC. */
4803
4804 static void
4805 check_gcpros (void)
4806 {
4807 struct gcpro *p;
4808 ptrdiff_t i;
4809
4810 for (p = gcprolist; p; p = p->next)
4811 for (i = 0; i < p->nvars; ++i)
4812 if (!survives_gc_p (p->var[i]))
4813 /* FIXME: It's not necessarily a bug. It might just be that the
4814 GCPRO is unnecessary or should release the object sooner. */
4815 emacs_abort ();
4816 }
4817
4818 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4819
4820 void
4821 dump_zombies (void)
4822 {
4823 int i;
4824
4825 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4826 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4827 {
4828 fprintf (stderr, " %d = ", i);
4829 debug_print (zombies[i]);
4830 }
4831 }
4832
4833 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4834
4835
4836 /* Mark live Lisp objects on the C stack.
4837
4838 There are several system-dependent problems to consider when
4839 porting this to new architectures:
4840
4841 Processor Registers
4842
4843 We have to mark Lisp objects in CPU registers that can hold local
4844 variables or are used to pass parameters.
4845
4846 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4847 something that either saves relevant registers on the stack, or
4848 calls mark_maybe_object passing it each register's contents.
4849
4850 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4851 implementation assumes that calling setjmp saves registers we need
4852 to see in a jmp_buf which itself lies on the stack. This doesn't
4853 have to be true! It must be verified for each system, possibly
4854 by taking a look at the source code of setjmp.
4855
4856 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4857 can use it as a machine independent method to store all registers
4858 to the stack. In this case the macros described in the previous
4859 two paragraphs are not used.
4860
4861 Stack Layout
4862
4863 Architectures differ in the way their processor stack is organized.
4864 For example, the stack might look like this
4865
4866 +----------------+
4867 | Lisp_Object | size = 4
4868 +----------------+
4869 | something else | size = 2
4870 +----------------+
4871 | Lisp_Object | size = 4
4872 +----------------+
4873 | ... |
4874
4875 In such a case, not every Lisp_Object will be aligned equally. To
4876 find all Lisp_Object on the stack it won't be sufficient to walk
4877 the stack in steps of 4 bytes. Instead, two passes will be
4878 necessary, one starting at the start of the stack, and a second
4879 pass starting at the start of the stack + 2. Likewise, if the
4880 minimal alignment of Lisp_Objects on the stack is 1, four passes
4881 would be necessary, each one starting with one byte more offset
4882 from the stack start. */
4883
4884 static void
4885 mark_stack (void *end)
4886 {
4887
4888 /* This assumes that the stack is a contiguous region in memory. If
4889 that's not the case, something has to be done here to iterate
4890 over the stack segments. */
4891 mark_memory (stack_base, end);
4892
4893 /* Allow for marking a secondary stack, like the register stack on the
4894 ia64. */
4895 #ifdef GC_MARK_SECONDARY_STACK
4896 GC_MARK_SECONDARY_STACK ();
4897 #endif
4898
4899 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4900 check_gcpros ();
4901 #endif
4902 }
4903
4904 #else /* GC_MARK_STACK == 0 */
4905
4906 #define mark_maybe_object(obj) emacs_abort ()
4907
4908 #endif /* GC_MARK_STACK != 0 */
4909
4910
4911 /* Determine whether it is safe to access memory at address P. */
4912 static int
4913 valid_pointer_p (void *p)
4914 {
4915 #ifdef WINDOWSNT
4916 return w32_valid_pointer_p (p, 16);
4917 #else
4918 int fd[2];
4919
4920 /* Obviously, we cannot just access it (we would SEGV trying), so we
4921 trick the o/s to tell us whether p is a valid pointer.
4922 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4923 not validate p in that case. */
4924
4925 if (emacs_pipe (fd) == 0)
4926 {
4927 bool valid = emacs_write (fd[1], p, 16) == 16;
4928 emacs_close (fd[1]);
4929 emacs_close (fd[0]);
4930 return valid;
4931 }
4932
4933 return -1;
4934 #endif
4935 }
4936
4937 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4938 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4939 cannot validate OBJ. This function can be quite slow, so its primary
4940 use is the manual debugging. The only exception is print_object, where
4941 we use it to check whether the memory referenced by the pointer of
4942 Lisp_Save_Value object contains valid objects. */
4943
4944 int
4945 valid_lisp_object_p (Lisp_Object obj)
4946 {
4947 void *p;
4948 #if GC_MARK_STACK
4949 struct mem_node *m;
4950 #endif
4951
4952 if (INTEGERP (obj))
4953 return 1;
4954
4955 p = (void *) XPNTR (obj);
4956 if (PURE_POINTER_P (p))
4957 return 1;
4958
4959 if (p == &buffer_defaults || p == &buffer_local_symbols)
4960 return 2;
4961
4962 #if !GC_MARK_STACK
4963 return valid_pointer_p (p);
4964 #else
4965
4966 m = mem_find (p);
4967
4968 if (m == MEM_NIL)
4969 {
4970 int valid = valid_pointer_p (p);
4971 if (valid <= 0)
4972 return valid;
4973
4974 if (SUBRP (obj))
4975 return 1;
4976
4977 return 0;
4978 }
4979
4980 switch (m->type)
4981 {
4982 case MEM_TYPE_NON_LISP:
4983 case MEM_TYPE_SPARE:
4984 return 0;
4985
4986 case MEM_TYPE_BUFFER:
4987 return live_buffer_p (m, p) ? 1 : 2;
4988
4989 case MEM_TYPE_CONS:
4990 return live_cons_p (m, p);
4991
4992 case MEM_TYPE_STRING:
4993 return live_string_p (m, p);
4994
4995 case MEM_TYPE_MISC:
4996 return live_misc_p (m, p);
4997
4998 case MEM_TYPE_SYMBOL:
4999 return live_symbol_p (m, p);
5000
5001 case MEM_TYPE_FLOAT:
5002 return live_float_p (m, p);
5003
5004 case MEM_TYPE_VECTORLIKE:
5005 case MEM_TYPE_VECTOR_BLOCK:
5006 return live_vector_p (m, p);
5007
5008 default:
5009 break;
5010 }
5011
5012 return 0;
5013 #endif
5014 }
5015
5016 /* If GC_MARK_STACK, return 1 if STR is a relocatable data of Lisp_String
5017 (i.e. there is a non-pure Lisp_Object X so that SDATA (X) == STR) and 0
5018 if not. Otherwise we can't rely on valid_lisp_object_p and return -1.
5019 This function is slow and should be used for debugging purposes. */
5020
5021 int
5022 relocatable_string_data_p (const char *str)
5023 {
5024 if (PURE_POINTER_P (str))
5025 return 0;
5026 #if GC_MARK_STACK
5027 if (str)
5028 {
5029 struct sdata *sdata
5030 = (struct sdata *) (str - offsetof (struct sdata, data));
5031
5032 if (valid_pointer_p (sdata)
5033 && valid_pointer_p (sdata->string)
5034 && maybe_lisp_pointer (sdata->string))
5035 return (valid_lisp_object_p
5036 (make_lisp_ptr (sdata->string, Lisp_String))
5037 && (const char *) sdata->string->data == str);
5038 }
5039 return 0;
5040 #endif /* GC_MARK_STACK */
5041 return -1;
5042 }
5043
5044 /***********************************************************************
5045 Pure Storage Management
5046 ***********************************************************************/
5047
5048 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5049 pointer to it. TYPE is the Lisp type for which the memory is
5050 allocated. TYPE < 0 means it's not used for a Lisp object. */
5051
5052 static void *
5053 pure_alloc (size_t size, int type)
5054 {
5055 void *result;
5056 #if USE_LSB_TAG
5057 size_t alignment = GCALIGNMENT;
5058 #else
5059 size_t alignment = alignof (EMACS_INT);
5060
5061 /* Give Lisp_Floats an extra alignment. */
5062 if (type == Lisp_Float)
5063 alignment = alignof (struct Lisp_Float);
5064 #endif
5065
5066 again:
5067 if (type >= 0)
5068 {
5069 /* Allocate space for a Lisp object from the beginning of the free
5070 space with taking account of alignment. */
5071 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5072 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5073 }
5074 else
5075 {
5076 /* Allocate space for a non-Lisp object from the end of the free
5077 space. */
5078 pure_bytes_used_non_lisp += size;
5079 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5080 }
5081 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5082
5083 if (pure_bytes_used <= pure_size)
5084 return result;
5085
5086 /* Don't allocate a large amount here,
5087 because it might get mmap'd and then its address
5088 might not be usable. */
5089 purebeg = xmalloc (10000);
5090 pure_size = 10000;
5091 pure_bytes_used_before_overflow += pure_bytes_used - size;
5092 pure_bytes_used = 0;
5093 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5094 goto again;
5095 }
5096
5097
5098 /* Print a warning if PURESIZE is too small. */
5099
5100 void
5101 check_pure_size (void)
5102 {
5103 if (pure_bytes_used_before_overflow)
5104 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5105 " bytes needed)"),
5106 pure_bytes_used + pure_bytes_used_before_overflow);
5107 }
5108
5109
5110 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5111 the non-Lisp data pool of the pure storage, and return its start
5112 address. Return NULL if not found. */
5113
5114 static char *
5115 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5116 {
5117 int i;
5118 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5119 const unsigned char *p;
5120 char *non_lisp_beg;
5121
5122 if (pure_bytes_used_non_lisp <= nbytes)
5123 return NULL;
5124
5125 /* Set up the Boyer-Moore table. */
5126 skip = nbytes + 1;
5127 for (i = 0; i < 256; i++)
5128 bm_skip[i] = skip;
5129
5130 p = (const unsigned char *) data;
5131 while (--skip > 0)
5132 bm_skip[*p++] = skip;
5133
5134 last_char_skip = bm_skip['\0'];
5135
5136 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5137 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5138
5139 /* See the comments in the function `boyer_moore' (search.c) for the
5140 use of `infinity'. */
5141 infinity = pure_bytes_used_non_lisp + 1;
5142 bm_skip['\0'] = infinity;
5143
5144 p = (const unsigned char *) non_lisp_beg + nbytes;
5145 start = 0;
5146 do
5147 {
5148 /* Check the last character (== '\0'). */
5149 do
5150 {
5151 start += bm_skip[*(p + start)];
5152 }
5153 while (start <= start_max);
5154
5155 if (start < infinity)
5156 /* Couldn't find the last character. */
5157 return NULL;
5158
5159 /* No less than `infinity' means we could find the last
5160 character at `p[start - infinity]'. */
5161 start -= infinity;
5162
5163 /* Check the remaining characters. */
5164 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5165 /* Found. */
5166 return non_lisp_beg + start;
5167
5168 start += last_char_skip;
5169 }
5170 while (start <= start_max);
5171
5172 return NULL;
5173 }
5174
5175
5176 /* Return a string allocated in pure space. DATA is a buffer holding
5177 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5178 means make the result string multibyte.
5179
5180 Must get an error if pure storage is full, since if it cannot hold
5181 a large string it may be able to hold conses that point to that
5182 string; then the string is not protected from gc. */
5183
5184 Lisp_Object
5185 make_pure_string (const char *data,
5186 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5187 {
5188 Lisp_Object string;
5189 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5190 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5191 if (s->data == NULL)
5192 {
5193 s->data = pure_alloc (nbytes + 1, -1);
5194 memcpy (s->data, data, nbytes);
5195 s->data[nbytes] = '\0';
5196 }
5197 s->size = nchars;
5198 s->size_byte = multibyte ? nbytes : -1;
5199 s->intervals = NULL;
5200 XSETSTRING (string, s);
5201 return string;
5202 }
5203
5204 /* Return a string allocated in pure space. Do not
5205 allocate the string data, just point to DATA. */
5206
5207 Lisp_Object
5208 make_pure_c_string (const char *data, ptrdiff_t nchars)
5209 {
5210 Lisp_Object string;
5211 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5212 s->size = nchars;
5213 s->size_byte = -1;
5214 s->data = (unsigned char *) data;
5215 s->intervals = NULL;
5216 XSETSTRING (string, s);
5217 return string;
5218 }
5219
5220 static Lisp_Object purecopy (Lisp_Object obj);
5221
5222 /* Return a cons allocated from pure space. Give it pure copies
5223 of CAR as car and CDR as cdr. */
5224
5225 Lisp_Object
5226 pure_cons (Lisp_Object car, Lisp_Object cdr)
5227 {
5228 Lisp_Object new;
5229 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5230 XSETCONS (new, p);
5231 XSETCAR (new, purecopy (car));
5232 XSETCDR (new, purecopy (cdr));
5233 return new;
5234 }
5235
5236
5237 /* Value is a float object with value NUM allocated from pure space. */
5238
5239 static Lisp_Object
5240 make_pure_float (double num)
5241 {
5242 Lisp_Object new;
5243 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5244 XSETFLOAT (new, p);
5245 XFLOAT_INIT (new, num);
5246 return new;
5247 }
5248
5249
5250 /* Return a vector with room for LEN Lisp_Objects allocated from
5251 pure space. */
5252
5253 static Lisp_Object
5254 make_pure_vector (ptrdiff_t len)
5255 {
5256 Lisp_Object new;
5257 size_t size = header_size + len * word_size;
5258 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5259 XSETVECTOR (new, p);
5260 XVECTOR (new)->header.size = len;
5261 return new;
5262 }
5263
5264
5265 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5266 doc: /* Make a copy of object OBJ in pure storage.
5267 Recursively copies contents of vectors and cons cells.
5268 Does not copy symbols. Copies strings without text properties. */)
5269 (register Lisp_Object obj)
5270 {
5271 if (NILP (Vpurify_flag))
5272 return obj;
5273 else if (MARKERP (obj) || OVERLAYP (obj)
5274 || HASH_TABLE_P (obj) || SYMBOLP (obj))
5275 /* Can't purify those. */
5276 return obj;
5277 else
5278 return purecopy (obj);
5279 }
5280
5281 static Lisp_Object
5282 purecopy (Lisp_Object obj)
5283 {
5284 if (PURE_POINTER_P (XPNTR (obj)) || INTEGERP (obj) || SUBRP (obj))
5285 return obj; /* Already pure. */
5286
5287 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5288 {
5289 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5290 if (!NILP (tmp))
5291 return tmp;
5292 }
5293
5294 if (CONSP (obj))
5295 obj = pure_cons (XCAR (obj), XCDR (obj));
5296 else if (FLOATP (obj))
5297 obj = make_pure_float (XFLOAT_DATA (obj));
5298 else if (STRINGP (obj))
5299 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5300 SBYTES (obj),
5301 STRING_MULTIBYTE (obj));
5302 else if (COMPILEDP (obj) || VECTORP (obj))
5303 {
5304 register struct Lisp_Vector *vec;
5305 register ptrdiff_t i;
5306 ptrdiff_t size;
5307
5308 size = ASIZE (obj);
5309 if (size & PSEUDOVECTOR_FLAG)
5310 size &= PSEUDOVECTOR_SIZE_MASK;
5311 vec = XVECTOR (make_pure_vector (size));
5312 for (i = 0; i < size; i++)
5313 vec->contents[i] = purecopy (AREF (obj, i));
5314 if (COMPILEDP (obj))
5315 {
5316 XSETPVECTYPE (vec, PVEC_COMPILED);
5317 XSETCOMPILED (obj, vec);
5318 }
5319 else
5320 XSETVECTOR (obj, vec);
5321 }
5322 else if (SYMBOLP (obj))
5323 {
5324 if (!XSYMBOL (obj)->pinned)
5325 { /* We can't purify them, but they appear in many pure objects.
5326 Mark them as `pinned' so we know to mark them at every GC cycle. */
5327 XSYMBOL (obj)->pinned = true;
5328 symbol_block_pinned = symbol_block;
5329 }
5330 return obj;
5331 }
5332 else
5333 {
5334 Lisp_Object args[2];
5335 args[0] = build_pure_c_string ("Don't know how to purify: %S");
5336 args[1] = obj;
5337 Fsignal (Qerror, (Fcons (Fformat (2, args), Qnil)));
5338 }
5339
5340 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5341 Fputhash (obj, obj, Vpurify_flag);
5342
5343 return obj;
5344 }
5345
5346
5347 \f
5348 /***********************************************************************
5349 Protection from GC
5350 ***********************************************************************/
5351
5352 /* Put an entry in staticvec, pointing at the variable with address
5353 VARADDRESS. */
5354
5355 void
5356 staticpro (Lisp_Object *varaddress)
5357 {
5358 if (staticidx >= NSTATICS)
5359 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5360 staticvec[staticidx++] = varaddress;
5361 }
5362
5363 \f
5364 /***********************************************************************
5365 Protection from GC
5366 ***********************************************************************/
5367
5368 /* Temporarily prevent garbage collection. */
5369
5370 ptrdiff_t
5371 inhibit_garbage_collection (void)
5372 {
5373 ptrdiff_t count = SPECPDL_INDEX ();
5374
5375 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5376 return count;
5377 }
5378
5379 /* Used to avoid possible overflows when
5380 converting from C to Lisp integers. */
5381
5382 static Lisp_Object
5383 bounded_number (EMACS_INT number)
5384 {
5385 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5386 }
5387
5388 /* Calculate total bytes of live objects. */
5389
5390 static size_t
5391 total_bytes_of_live_objects (void)
5392 {
5393 size_t tot = 0;
5394 tot += total_conses * sizeof (struct Lisp_Cons);
5395 tot += total_symbols * sizeof (struct Lisp_Symbol);
5396 tot += total_markers * sizeof (union Lisp_Misc);
5397 tot += total_string_bytes;
5398 tot += total_vector_slots * word_size;
5399 tot += total_floats * sizeof (struct Lisp_Float);
5400 tot += total_intervals * sizeof (struct interval);
5401 tot += total_strings * sizeof (struct Lisp_String);
5402 return tot;
5403 }
5404
5405 #ifdef HAVE_WINDOW_SYSTEM
5406
5407 /* This code has a few issues on MS-Windows, see Bug#15876 and Bug#16140. */
5408
5409 #if !defined (HAVE_NTGUI)
5410
5411 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5412 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5413
5414 static Lisp_Object
5415 compact_font_cache_entry (Lisp_Object entry)
5416 {
5417 Lisp_Object tail, *prev = &entry;
5418
5419 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5420 {
5421 bool drop = 0;
5422 Lisp_Object obj = XCAR (tail);
5423
5424 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5425 if (CONSP (obj) && FONT_SPEC_P (XCAR (obj))
5426 && !VECTOR_MARKED_P (XFONT_SPEC (XCAR (obj)))
5427 && VECTORP (XCDR (obj)))
5428 {
5429 ptrdiff_t i, size = ASIZE (XCDR (obj)) & ~ARRAY_MARK_FLAG;
5430
5431 /* If font-spec is not marked, most likely all font-entities
5432 are not marked too. But we must be sure that nothing is
5433 marked within OBJ before we really drop it. */
5434 for (i = 0; i < size; i++)
5435 if (VECTOR_MARKED_P (XFONT_ENTITY (AREF (XCDR (obj), i))))
5436 break;
5437
5438 if (i == size)
5439 drop = 1;
5440 }
5441 if (drop)
5442 *prev = XCDR (tail);
5443 else
5444 prev = xcdr_addr (tail);
5445 }
5446 return entry;
5447 }
5448
5449 #endif /* not HAVE_NTGUI */
5450
5451 /* Compact font caches on all terminals and mark
5452 everything which is still here after compaction. */
5453
5454 static void
5455 compact_font_caches (void)
5456 {
5457 struct terminal *t;
5458
5459 for (t = terminal_list; t; t = t->next_terminal)
5460 {
5461 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5462 #if !defined (HAVE_NTGUI)
5463 if (CONSP (cache))
5464 {
5465 Lisp_Object entry;
5466
5467 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5468 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5469 }
5470 #endif /* not HAVE_NTGUI */
5471 mark_object (cache);
5472 }
5473 }
5474
5475 #else /* not HAVE_WINDOW_SYSTEM */
5476
5477 #define compact_font_caches() (void)(0)
5478
5479 #endif /* HAVE_WINDOW_SYSTEM */
5480
5481 /* Remove (MARKER . DATA) entries with unmarked MARKER
5482 from buffer undo LIST and return changed list. */
5483
5484 static Lisp_Object
5485 compact_undo_list (Lisp_Object list)
5486 {
5487 Lisp_Object tail, *prev = &list;
5488
5489 for (tail = list; CONSP (tail); tail = XCDR (tail))
5490 {
5491 if (CONSP (XCAR (tail))
5492 && MARKERP (XCAR (XCAR (tail)))
5493 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5494 *prev = XCDR (tail);
5495 else
5496 prev = xcdr_addr (tail);
5497 }
5498 return list;
5499 }
5500
5501 static void
5502 mark_pinned_symbols (void)
5503 {
5504 struct symbol_block *sblk;
5505 int lim = (symbol_block_pinned == symbol_block
5506 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5507
5508 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5509 {
5510 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5511 for (; sym < end; ++sym)
5512 if (sym->s.pinned)
5513 mark_object (make_lisp_ptr (&sym->s, Lisp_Symbol));
5514
5515 lim = SYMBOL_BLOCK_SIZE;
5516 }
5517 }
5518
5519 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5520 separate function so that we could limit mark_stack in searching
5521 the stack frames below this function, thus avoiding the rare cases
5522 where mark_stack finds values that look like live Lisp objects on
5523 portions of stack that couldn't possibly contain such live objects.
5524 For more details of this, see the discussion at
5525 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5526 static Lisp_Object
5527 garbage_collect_1 (void *end)
5528 {
5529 struct buffer *nextb;
5530 char stack_top_variable;
5531 ptrdiff_t i;
5532 bool message_p;
5533 ptrdiff_t count = SPECPDL_INDEX ();
5534 struct timespec start;
5535 Lisp_Object retval = Qnil;
5536 size_t tot_before = 0;
5537
5538 if (abort_on_gc)
5539 emacs_abort ();
5540
5541 /* Can't GC if pure storage overflowed because we can't determine
5542 if something is a pure object or not. */
5543 if (pure_bytes_used_before_overflow)
5544 return Qnil;
5545
5546 /* Record this function, so it appears on the profiler's backtraces. */
5547 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5548
5549 check_cons_list ();
5550
5551 /* Don't keep undo information around forever.
5552 Do this early on, so it is no problem if the user quits. */
5553 FOR_EACH_BUFFER (nextb)
5554 compact_buffer (nextb);
5555
5556 if (profiler_memory_running)
5557 tot_before = total_bytes_of_live_objects ();
5558
5559 start = current_timespec ();
5560
5561 /* In case user calls debug_print during GC,
5562 don't let that cause a recursive GC. */
5563 consing_since_gc = 0;
5564
5565 /* Save what's currently displayed in the echo area. */
5566 message_p = push_message ();
5567 record_unwind_protect_void (pop_message_unwind);
5568
5569 /* Save a copy of the contents of the stack, for debugging. */
5570 #if MAX_SAVE_STACK > 0
5571 if (NILP (Vpurify_flag))
5572 {
5573 char *stack;
5574 ptrdiff_t stack_size;
5575 if (&stack_top_variable < stack_bottom)
5576 {
5577 stack = &stack_top_variable;
5578 stack_size = stack_bottom - &stack_top_variable;
5579 }
5580 else
5581 {
5582 stack = stack_bottom;
5583 stack_size = &stack_top_variable - stack_bottom;
5584 }
5585 if (stack_size <= MAX_SAVE_STACK)
5586 {
5587 if (stack_copy_size < stack_size)
5588 {
5589 stack_copy = xrealloc (stack_copy, stack_size);
5590 stack_copy_size = stack_size;
5591 }
5592 no_sanitize_memcpy (stack_copy, stack, stack_size);
5593 }
5594 }
5595 #endif /* MAX_SAVE_STACK > 0 */
5596
5597 if (garbage_collection_messages)
5598 message1_nolog ("Garbage collecting...");
5599
5600 block_input ();
5601
5602 shrink_regexp_cache ();
5603
5604 gc_in_progress = 1;
5605
5606 /* Mark all the special slots that serve as the roots of accessibility. */
5607
5608 mark_buffer (&buffer_defaults);
5609 mark_buffer (&buffer_local_symbols);
5610
5611 for (i = 0; i < staticidx; i++)
5612 mark_object (*staticvec[i]);
5613
5614 mark_pinned_symbols ();
5615 mark_specpdl ();
5616 mark_terminals ();
5617 mark_kboards ();
5618
5619 #ifdef USE_GTK
5620 xg_mark_data ();
5621 #endif
5622
5623 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5624 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5625 mark_stack (end);
5626 #else
5627 {
5628 register struct gcpro *tail;
5629 for (tail = gcprolist; tail; tail = tail->next)
5630 for (i = 0; i < tail->nvars; i++)
5631 mark_object (tail->var[i]);
5632 }
5633 mark_byte_stack ();
5634 #endif
5635 {
5636 struct handler *handler;
5637 for (handler = handlerlist; handler; handler = handler->next)
5638 {
5639 mark_object (handler->tag_or_ch);
5640 mark_object (handler->val);
5641 }
5642 }
5643 #ifdef HAVE_WINDOW_SYSTEM
5644 mark_fringe_data ();
5645 #endif
5646
5647 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5648 mark_stack (end);
5649 #endif
5650
5651 /* Everything is now marked, except for the data in font caches
5652 and undo lists. They're compacted by removing an items which
5653 aren't reachable otherwise. */
5654
5655 compact_font_caches ();
5656
5657 FOR_EACH_BUFFER (nextb)
5658 {
5659 if (!EQ (BVAR (nextb, undo_list), Qt))
5660 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5661 /* Now that we have stripped the elements that need not be
5662 in the undo_list any more, we can finally mark the list. */
5663 mark_object (BVAR (nextb, undo_list));
5664 }
5665
5666 gc_sweep ();
5667
5668 /* Clear the mark bits that we set in certain root slots. */
5669
5670 unmark_byte_stack ();
5671 VECTOR_UNMARK (&buffer_defaults);
5672 VECTOR_UNMARK (&buffer_local_symbols);
5673
5674 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5675 dump_zombies ();
5676 #endif
5677
5678 check_cons_list ();
5679
5680 gc_in_progress = 0;
5681
5682 unblock_input ();
5683
5684 consing_since_gc = 0;
5685 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5686 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5687
5688 gc_relative_threshold = 0;
5689 if (FLOATP (Vgc_cons_percentage))
5690 { /* Set gc_cons_combined_threshold. */
5691 double tot = total_bytes_of_live_objects ();
5692
5693 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5694 if (0 < tot)
5695 {
5696 if (tot < TYPE_MAXIMUM (EMACS_INT))
5697 gc_relative_threshold = tot;
5698 else
5699 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5700 }
5701 }
5702
5703 if (garbage_collection_messages)
5704 {
5705 if (message_p || minibuf_level > 0)
5706 restore_message ();
5707 else
5708 message1_nolog ("Garbage collecting...done");
5709 }
5710
5711 unbind_to (count, Qnil);
5712 {
5713 Lisp_Object total[11];
5714 int total_size = 10;
5715
5716 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5717 bounded_number (total_conses),
5718 bounded_number (total_free_conses));
5719
5720 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5721 bounded_number (total_symbols),
5722 bounded_number (total_free_symbols));
5723
5724 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5725 bounded_number (total_markers),
5726 bounded_number (total_free_markers));
5727
5728 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5729 bounded_number (total_strings),
5730 bounded_number (total_free_strings));
5731
5732 total[4] = list3 (Qstring_bytes, make_number (1),
5733 bounded_number (total_string_bytes));
5734
5735 total[5] = list3 (Qvectors,
5736 make_number (header_size + sizeof (Lisp_Object)),
5737 bounded_number (total_vectors));
5738
5739 total[6] = list4 (Qvector_slots, make_number (word_size),
5740 bounded_number (total_vector_slots),
5741 bounded_number (total_free_vector_slots));
5742
5743 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5744 bounded_number (total_floats),
5745 bounded_number (total_free_floats));
5746
5747 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5748 bounded_number (total_intervals),
5749 bounded_number (total_free_intervals));
5750
5751 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5752 bounded_number (total_buffers));
5753
5754 #ifdef DOUG_LEA_MALLOC
5755 total_size++;
5756 total[10] = list4 (Qheap, make_number (1024),
5757 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5758 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5759 #endif
5760 retval = Flist (total_size, total);
5761 }
5762
5763 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5764 {
5765 /* Compute average percentage of zombies. */
5766 double nlive
5767 = (total_conses + total_symbols + total_markers + total_strings
5768 + total_vectors + total_floats + total_intervals + total_buffers);
5769
5770 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5771 max_live = max (nlive, max_live);
5772 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5773 max_zombies = max (nzombies, max_zombies);
5774 ++ngcs;
5775 }
5776 #endif
5777
5778 if (!NILP (Vpost_gc_hook))
5779 {
5780 ptrdiff_t gc_count = inhibit_garbage_collection ();
5781 safe_run_hooks (Qpost_gc_hook);
5782 unbind_to (gc_count, Qnil);
5783 }
5784
5785 /* Accumulate statistics. */
5786 if (FLOATP (Vgc_elapsed))
5787 {
5788 struct timespec since_start = timespec_sub (current_timespec (), start);
5789 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5790 + timespectod (since_start));
5791 }
5792
5793 gcs_done++;
5794
5795 /* Collect profiling data. */
5796 if (profiler_memory_running)
5797 {
5798 size_t swept = 0;
5799 size_t tot_after = total_bytes_of_live_objects ();
5800 if (tot_before > tot_after)
5801 swept = tot_before - tot_after;
5802 malloc_probe (swept);
5803 }
5804
5805 return retval;
5806 }
5807
5808 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5809 doc: /* Reclaim storage for Lisp objects no longer needed.
5810 Garbage collection happens automatically if you cons more than
5811 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5812 `garbage-collect' normally returns a list with info on amount of space in use,
5813 where each entry has the form (NAME SIZE USED FREE), where:
5814 - NAME is a symbol describing the kind of objects this entry represents,
5815 - SIZE is the number of bytes used by each one,
5816 - USED is the number of those objects that were found live in the heap,
5817 - FREE is the number of those objects that are not live but that Emacs
5818 keeps around for future allocations (maybe because it does not know how
5819 to return them to the OS).
5820 However, if there was overflow in pure space, `garbage-collect'
5821 returns nil, because real GC can't be done.
5822 See Info node `(elisp)Garbage Collection'. */)
5823 (void)
5824 {
5825 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5826 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS \
5827 || GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES)
5828 void *end;
5829
5830 #ifdef HAVE___BUILTIN_UNWIND_INIT
5831 /* Force callee-saved registers and register windows onto the stack.
5832 This is the preferred method if available, obviating the need for
5833 machine dependent methods. */
5834 __builtin_unwind_init ();
5835 end = &end;
5836 #else /* not HAVE___BUILTIN_UNWIND_INIT */
5837 #ifndef GC_SAVE_REGISTERS_ON_STACK
5838 /* jmp_buf may not be aligned enough on darwin-ppc64 */
5839 union aligned_jmpbuf {
5840 Lisp_Object o;
5841 sys_jmp_buf j;
5842 } j;
5843 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
5844 #endif
5845 /* This trick flushes the register windows so that all the state of
5846 the process is contained in the stack. */
5847 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
5848 needed on ia64 too. See mach_dep.c, where it also says inline
5849 assembler doesn't work with relevant proprietary compilers. */
5850 #ifdef __sparc__
5851 #if defined (__sparc64__) && defined (__FreeBSD__)
5852 /* FreeBSD does not have a ta 3 handler. */
5853 asm ("flushw");
5854 #else
5855 asm ("ta 3");
5856 #endif
5857 #endif
5858
5859 /* Save registers that we need to see on the stack. We need to see
5860 registers used to hold register variables and registers used to
5861 pass parameters. */
5862 #ifdef GC_SAVE_REGISTERS_ON_STACK
5863 GC_SAVE_REGISTERS_ON_STACK (end);
5864 #else /* not GC_SAVE_REGISTERS_ON_STACK */
5865
5866 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
5867 setjmp will definitely work, test it
5868 and print a message with the result
5869 of the test. */
5870 if (!setjmp_tested_p)
5871 {
5872 setjmp_tested_p = 1;
5873 test_setjmp ();
5874 }
5875 #endif /* GC_SETJMP_WORKS */
5876
5877 sys_setjmp (j.j);
5878 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
5879 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
5880 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
5881 return garbage_collect_1 (end);
5882 #elif (GC_MARK_STACK == GC_USE_GCPROS_AS_BEFORE)
5883 /* Old GCPROs-based method without stack marking. */
5884 return garbage_collect_1 (NULL);
5885 #else
5886 emacs_abort ();
5887 #endif /* GC_MARK_STACK */
5888 }
5889
5890 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5891 only interesting objects referenced from glyphs are strings. */
5892
5893 static void
5894 mark_glyph_matrix (struct glyph_matrix *matrix)
5895 {
5896 struct glyph_row *row = matrix->rows;
5897 struct glyph_row *end = row + matrix->nrows;
5898
5899 for (; row < end; ++row)
5900 if (row->enabled_p)
5901 {
5902 int area;
5903 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5904 {
5905 struct glyph *glyph = row->glyphs[area];
5906 struct glyph *end_glyph = glyph + row->used[area];
5907
5908 for (; glyph < end_glyph; ++glyph)
5909 if (STRINGP (glyph->object)
5910 && !STRING_MARKED_P (XSTRING (glyph->object)))
5911 mark_object (glyph->object);
5912 }
5913 }
5914 }
5915
5916 /* Mark reference to a Lisp_Object.
5917 If the object referred to has not been seen yet, recursively mark
5918 all the references contained in it. */
5919
5920 #define LAST_MARKED_SIZE 500
5921 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5922 static int last_marked_index;
5923
5924 /* For debugging--call abort when we cdr down this many
5925 links of a list, in mark_object. In debugging,
5926 the call to abort will hit a breakpoint.
5927 Normally this is zero and the check never goes off. */
5928 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5929
5930 static void
5931 mark_vectorlike (struct Lisp_Vector *ptr)
5932 {
5933 ptrdiff_t size = ptr->header.size;
5934 ptrdiff_t i;
5935
5936 eassert (!VECTOR_MARKED_P (ptr));
5937 VECTOR_MARK (ptr); /* Else mark it. */
5938 if (size & PSEUDOVECTOR_FLAG)
5939 size &= PSEUDOVECTOR_SIZE_MASK;
5940
5941 /* Note that this size is not the memory-footprint size, but only
5942 the number of Lisp_Object fields that we should trace.
5943 The distinction is used e.g. by Lisp_Process which places extra
5944 non-Lisp_Object fields at the end of the structure... */
5945 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5946 mark_object (ptr->contents[i]);
5947 }
5948
5949 /* Like mark_vectorlike but optimized for char-tables (and
5950 sub-char-tables) assuming that the contents are mostly integers or
5951 symbols. */
5952
5953 static void
5954 mark_char_table (struct Lisp_Vector *ptr)
5955 {
5956 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5957 int i;
5958
5959 eassert (!VECTOR_MARKED_P (ptr));
5960 VECTOR_MARK (ptr);
5961 for (i = 0; i < size; i++)
5962 {
5963 Lisp_Object val = ptr->contents[i];
5964
5965 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5966 continue;
5967 if (SUB_CHAR_TABLE_P (val))
5968 {
5969 if (! VECTOR_MARKED_P (XVECTOR (val)))
5970 mark_char_table (XVECTOR (val));
5971 }
5972 else
5973 mark_object (val);
5974 }
5975 }
5976
5977 NO_INLINE /* To reduce stack depth in mark_object. */
5978 static Lisp_Object
5979 mark_compiled (struct Lisp_Vector *ptr)
5980 {
5981 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5982
5983 VECTOR_MARK (ptr);
5984 for (i = 0; i < size; i++)
5985 if (i != COMPILED_CONSTANTS)
5986 mark_object (ptr->contents[i]);
5987 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
5988 }
5989
5990 /* Mark the chain of overlays starting at PTR. */
5991
5992 static void
5993 mark_overlay (struct Lisp_Overlay *ptr)
5994 {
5995 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5996 {
5997 ptr->gcmarkbit = 1;
5998 mark_object (ptr->start);
5999 mark_object (ptr->end);
6000 mark_object (ptr->plist);
6001 }
6002 }
6003
6004 /* Mark Lisp_Objects and special pointers in BUFFER. */
6005
6006 static void
6007 mark_buffer (struct buffer *buffer)
6008 {
6009 /* This is handled much like other pseudovectors... */
6010 mark_vectorlike ((struct Lisp_Vector *) buffer);
6011
6012 /* ...but there are some buffer-specific things. */
6013
6014 MARK_INTERVAL_TREE (buffer_intervals (buffer));
6015
6016 /* For now, we just don't mark the undo_list. It's done later in
6017 a special way just before the sweep phase, and after stripping
6018 some of its elements that are not needed any more. */
6019
6020 mark_overlay (buffer->overlays_before);
6021 mark_overlay (buffer->overlays_after);
6022
6023 /* If this is an indirect buffer, mark its base buffer. */
6024 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6025 mark_buffer (buffer->base_buffer);
6026 }
6027
6028 /* Mark Lisp faces in the face cache C. */
6029
6030 NO_INLINE /* To reduce stack depth in mark_object. */
6031 static void
6032 mark_face_cache (struct face_cache *c)
6033 {
6034 if (c)
6035 {
6036 int i, j;
6037 for (i = 0; i < c->used; ++i)
6038 {
6039 struct face *face = FACE_FROM_ID (c->f, i);
6040
6041 if (face)
6042 {
6043 if (face->font && !VECTOR_MARKED_P (face->font))
6044 mark_vectorlike ((struct Lisp_Vector *) face->font);
6045
6046 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
6047 mark_object (face->lface[j]);
6048 }
6049 }
6050 }
6051 }
6052
6053 NO_INLINE /* To reduce stack depth in mark_object. */
6054 static void
6055 mark_localized_symbol (struct Lisp_Symbol *ptr)
6056 {
6057 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6058 Lisp_Object where = blv->where;
6059 /* If the value is set up for a killed buffer or deleted
6060 frame, restore it's global binding. If the value is
6061 forwarded to a C variable, either it's not a Lisp_Object
6062 var, or it's staticpro'd already. */
6063 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6064 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6065 swap_in_global_binding (ptr);
6066 mark_object (blv->where);
6067 mark_object (blv->valcell);
6068 mark_object (blv->defcell);
6069 }
6070
6071 /* Remove killed buffers or items whose car is a killed buffer from
6072 LIST, and mark other items. Return changed LIST, which is marked. */
6073
6074 static Lisp_Object
6075 mark_discard_killed_buffers (Lisp_Object list)
6076 {
6077 Lisp_Object tail, *prev = &list;
6078
6079 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6080 tail = XCDR (tail))
6081 {
6082 Lisp_Object tem = XCAR (tail);
6083 if (CONSP (tem))
6084 tem = XCAR (tem);
6085 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6086 *prev = XCDR (tail);
6087 else
6088 {
6089 CONS_MARK (XCONS (tail));
6090 mark_object (XCAR (tail));
6091 prev = xcdr_addr (tail);
6092 }
6093 }
6094 mark_object (tail);
6095 return list;
6096 }
6097
6098 /* Determine type of generic Lisp_Object and mark it accordingly. */
6099
6100 void
6101 mark_object (Lisp_Object arg)
6102 {
6103 register Lisp_Object obj = arg;
6104 #ifdef GC_CHECK_MARKED_OBJECTS
6105 void *po;
6106 struct mem_node *m;
6107 #endif
6108 ptrdiff_t cdr_count = 0;
6109
6110 loop:
6111
6112 if (PURE_POINTER_P (XPNTR (obj)))
6113 return;
6114
6115 last_marked[last_marked_index++] = obj;
6116 if (last_marked_index == LAST_MARKED_SIZE)
6117 last_marked_index = 0;
6118
6119 /* Perform some sanity checks on the objects marked here. Abort if
6120 we encounter an object we know is bogus. This increases GC time
6121 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
6122 #ifdef GC_CHECK_MARKED_OBJECTS
6123
6124 po = (void *) XPNTR (obj);
6125
6126 /* Check that the object pointed to by PO is known to be a Lisp
6127 structure allocated from the heap. */
6128 #define CHECK_ALLOCATED() \
6129 do { \
6130 m = mem_find (po); \
6131 if (m == MEM_NIL) \
6132 emacs_abort (); \
6133 } while (0)
6134
6135 /* Check that the object pointed to by PO is live, using predicate
6136 function LIVEP. */
6137 #define CHECK_LIVE(LIVEP) \
6138 do { \
6139 if (!LIVEP (m, po)) \
6140 emacs_abort (); \
6141 } while (0)
6142
6143 /* Check both of the above conditions. */
6144 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6145 do { \
6146 CHECK_ALLOCATED (); \
6147 CHECK_LIVE (LIVEP); \
6148 } while (0) \
6149
6150 #else /* not GC_CHECK_MARKED_OBJECTS */
6151
6152 #define CHECK_LIVE(LIVEP) (void) 0
6153 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
6154
6155 #endif /* not GC_CHECK_MARKED_OBJECTS */
6156
6157 switch (XTYPE (obj))
6158 {
6159 case Lisp_String:
6160 {
6161 register struct Lisp_String *ptr = XSTRING (obj);
6162 if (STRING_MARKED_P (ptr))
6163 break;
6164 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6165 MARK_STRING (ptr);
6166 MARK_INTERVAL_TREE (ptr->intervals);
6167 #ifdef GC_CHECK_STRING_BYTES
6168 /* Check that the string size recorded in the string is the
6169 same as the one recorded in the sdata structure. */
6170 string_bytes (ptr);
6171 #endif /* GC_CHECK_STRING_BYTES */
6172 }
6173 break;
6174
6175 case Lisp_Vectorlike:
6176 {
6177 register struct Lisp_Vector *ptr = XVECTOR (obj);
6178 register ptrdiff_t pvectype;
6179
6180 if (VECTOR_MARKED_P (ptr))
6181 break;
6182
6183 #ifdef GC_CHECK_MARKED_OBJECTS
6184 m = mem_find (po);
6185 if (m == MEM_NIL && !SUBRP (obj))
6186 emacs_abort ();
6187 #endif /* GC_CHECK_MARKED_OBJECTS */
6188
6189 if (ptr->header.size & PSEUDOVECTOR_FLAG)
6190 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6191 >> PSEUDOVECTOR_AREA_BITS);
6192 else
6193 pvectype = PVEC_NORMAL_VECTOR;
6194
6195 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6196 CHECK_LIVE (live_vector_p);
6197
6198 switch (pvectype)
6199 {
6200 case PVEC_BUFFER:
6201 #ifdef GC_CHECK_MARKED_OBJECTS
6202 {
6203 struct buffer *b;
6204 FOR_EACH_BUFFER (b)
6205 if (b == po)
6206 break;
6207 if (b == NULL)
6208 emacs_abort ();
6209 }
6210 #endif /* GC_CHECK_MARKED_OBJECTS */
6211 mark_buffer ((struct buffer *) ptr);
6212 break;
6213
6214 case PVEC_COMPILED:
6215 /* Although we could treat this just like a vector, mark_compiled
6216 returns the COMPILED_CONSTANTS element, which is marked at the
6217 next iteration of goto-loop here. This is done to avoid a few
6218 recursive calls to mark_object. */
6219 obj = mark_compiled (ptr);
6220 if (!NILP (obj))
6221 goto loop;
6222 break;
6223
6224 case PVEC_FRAME:
6225 {
6226 struct frame *f = (struct frame *) ptr;
6227
6228 mark_vectorlike (ptr);
6229 mark_face_cache (f->face_cache);
6230 #ifdef HAVE_WINDOW_SYSTEM
6231 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6232 {
6233 struct font *font = FRAME_FONT (f);
6234
6235 if (font && !VECTOR_MARKED_P (font))
6236 mark_vectorlike ((struct Lisp_Vector *) font);
6237 }
6238 #endif
6239 }
6240 break;
6241
6242 case PVEC_WINDOW:
6243 {
6244 struct window *w = (struct window *) ptr;
6245
6246 mark_vectorlike (ptr);
6247
6248 /* Mark glyph matrices, if any. Marking window
6249 matrices is sufficient because frame matrices
6250 use the same glyph memory. */
6251 if (w->current_matrix)
6252 {
6253 mark_glyph_matrix (w->current_matrix);
6254 mark_glyph_matrix (w->desired_matrix);
6255 }
6256
6257 /* Filter out killed buffers from both buffer lists
6258 in attempt to help GC to reclaim killed buffers faster.
6259 We can do it elsewhere for live windows, but this is the
6260 best place to do it for dead windows. */
6261 wset_prev_buffers
6262 (w, mark_discard_killed_buffers (w->prev_buffers));
6263 wset_next_buffers
6264 (w, mark_discard_killed_buffers (w->next_buffers));
6265 }
6266 break;
6267
6268 case PVEC_HASH_TABLE:
6269 {
6270 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6271
6272 mark_vectorlike (ptr);
6273 mark_object (h->test.name);
6274 mark_object (h->test.user_hash_function);
6275 mark_object (h->test.user_cmp_function);
6276 /* If hash table is not weak, mark all keys and values.
6277 For weak tables, mark only the vector. */
6278 if (NILP (h->weak))
6279 mark_object (h->key_and_value);
6280 else
6281 VECTOR_MARK (XVECTOR (h->key_and_value));
6282 }
6283 break;
6284
6285 case PVEC_CHAR_TABLE:
6286 mark_char_table (ptr);
6287 break;
6288
6289 case PVEC_BOOL_VECTOR:
6290 /* No Lisp_Objects to mark in a bool vector. */
6291 VECTOR_MARK (ptr);
6292 break;
6293
6294 case PVEC_SUBR:
6295 break;
6296
6297 case PVEC_FREE:
6298 emacs_abort ();
6299
6300 default:
6301 mark_vectorlike (ptr);
6302 }
6303 }
6304 break;
6305
6306 case Lisp_Symbol:
6307 {
6308 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6309 nextsym:
6310 if (ptr->gcmarkbit)
6311 break;
6312 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6313 ptr->gcmarkbit = 1;
6314 /* Attempt to catch bogus objects. */
6315 eassert (valid_lisp_object_p (ptr->function) >= 1);
6316 mark_object (ptr->function);
6317 mark_object (ptr->plist);
6318 switch (ptr->redirect)
6319 {
6320 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6321 case SYMBOL_VARALIAS:
6322 {
6323 Lisp_Object tem;
6324 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6325 mark_object (tem);
6326 break;
6327 }
6328 case SYMBOL_LOCALIZED:
6329 mark_localized_symbol (ptr);
6330 break;
6331 case SYMBOL_FORWARDED:
6332 /* If the value is forwarded to a buffer or keyboard field,
6333 these are marked when we see the corresponding object.
6334 And if it's forwarded to a C variable, either it's not
6335 a Lisp_Object var, or it's staticpro'd already. */
6336 break;
6337 default: emacs_abort ();
6338 }
6339 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6340 MARK_STRING (XSTRING (ptr->name));
6341 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6342 /* Inner loop to mark next symbol in this bucket, if any. */
6343 ptr = ptr->next;
6344 if (ptr)
6345 goto nextsym;
6346 }
6347 break;
6348
6349 case Lisp_Misc:
6350 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6351
6352 if (XMISCANY (obj)->gcmarkbit)
6353 break;
6354
6355 switch (XMISCTYPE (obj))
6356 {
6357 case Lisp_Misc_Marker:
6358 /* DO NOT mark thru the marker's chain.
6359 The buffer's markers chain does not preserve markers from gc;
6360 instead, markers are removed from the chain when freed by gc. */
6361 XMISCANY (obj)->gcmarkbit = 1;
6362 break;
6363
6364 case Lisp_Misc_Save_Value:
6365 XMISCANY (obj)->gcmarkbit = 1;
6366 {
6367 struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6368 /* If `save_type' is zero, `data[0].pointer' is the address
6369 of a memory area containing `data[1].integer' potential
6370 Lisp_Objects. */
6371 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
6372 {
6373 Lisp_Object *p = ptr->data[0].pointer;
6374 ptrdiff_t nelt;
6375 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6376 mark_maybe_object (*p);
6377 }
6378 else
6379 {
6380 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6381 int i;
6382 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6383 if (save_type (ptr, i) == SAVE_OBJECT)
6384 mark_object (ptr->data[i].object);
6385 }
6386 }
6387 break;
6388
6389 case Lisp_Misc_Overlay:
6390 mark_overlay (XOVERLAY (obj));
6391 break;
6392
6393 default:
6394 emacs_abort ();
6395 }
6396 break;
6397
6398 case Lisp_Cons:
6399 {
6400 register struct Lisp_Cons *ptr = XCONS (obj);
6401 if (CONS_MARKED_P (ptr))
6402 break;
6403 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6404 CONS_MARK (ptr);
6405 /* If the cdr is nil, avoid recursion for the car. */
6406 if (EQ (ptr->u.cdr, Qnil))
6407 {
6408 obj = ptr->car;
6409 cdr_count = 0;
6410 goto loop;
6411 }
6412 mark_object (ptr->car);
6413 obj = ptr->u.cdr;
6414 cdr_count++;
6415 if (cdr_count == mark_object_loop_halt)
6416 emacs_abort ();
6417 goto loop;
6418 }
6419
6420 case Lisp_Float:
6421 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6422 FLOAT_MARK (XFLOAT (obj));
6423 break;
6424
6425 case_Lisp_Int:
6426 break;
6427
6428 default:
6429 emacs_abort ();
6430 }
6431
6432 #undef CHECK_LIVE
6433 #undef CHECK_ALLOCATED
6434 #undef CHECK_ALLOCATED_AND_LIVE
6435 }
6436 /* Mark the Lisp pointers in the terminal objects.
6437 Called by Fgarbage_collect. */
6438
6439 static void
6440 mark_terminals (void)
6441 {
6442 struct terminal *t;
6443 for (t = terminal_list; t; t = t->next_terminal)
6444 {
6445 eassert (t->name != NULL);
6446 #ifdef HAVE_WINDOW_SYSTEM
6447 /* If a terminal object is reachable from a stacpro'ed object,
6448 it might have been marked already. Make sure the image cache
6449 gets marked. */
6450 mark_image_cache (t->image_cache);
6451 #endif /* HAVE_WINDOW_SYSTEM */
6452 if (!VECTOR_MARKED_P (t))
6453 mark_vectorlike ((struct Lisp_Vector *)t);
6454 }
6455 }
6456
6457
6458
6459 /* Value is non-zero if OBJ will survive the current GC because it's
6460 either marked or does not need to be marked to survive. */
6461
6462 bool
6463 survives_gc_p (Lisp_Object obj)
6464 {
6465 bool survives_p;
6466
6467 switch (XTYPE (obj))
6468 {
6469 case_Lisp_Int:
6470 survives_p = 1;
6471 break;
6472
6473 case Lisp_Symbol:
6474 survives_p = XSYMBOL (obj)->gcmarkbit;
6475 break;
6476
6477 case Lisp_Misc:
6478 survives_p = XMISCANY (obj)->gcmarkbit;
6479 break;
6480
6481 case Lisp_String:
6482 survives_p = STRING_MARKED_P (XSTRING (obj));
6483 break;
6484
6485 case Lisp_Vectorlike:
6486 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6487 break;
6488
6489 case Lisp_Cons:
6490 survives_p = CONS_MARKED_P (XCONS (obj));
6491 break;
6492
6493 case Lisp_Float:
6494 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6495 break;
6496
6497 default:
6498 emacs_abort ();
6499 }
6500
6501 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6502 }
6503
6504
6505 \f
6506
6507 NO_INLINE /* For better stack traces */
6508 static void
6509 sweep_conses (void)
6510 {
6511 struct cons_block *cblk;
6512 struct cons_block **cprev = &cons_block;
6513 int lim = cons_block_index;
6514 EMACS_INT num_free = 0, num_used = 0;
6515
6516 cons_free_list = 0;
6517
6518 for (cblk = cons_block; cblk; cblk = *cprev)
6519 {
6520 int i = 0;
6521 int this_free = 0;
6522 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6523
6524 /* Scan the mark bits an int at a time. */
6525 for (i = 0; i < ilim; i++)
6526 {
6527 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6528 {
6529 /* Fast path - all cons cells for this int are marked. */
6530 cblk->gcmarkbits[i] = 0;
6531 num_used += BITS_PER_BITS_WORD;
6532 }
6533 else
6534 {
6535 /* Some cons cells for this int are not marked.
6536 Find which ones, and free them. */
6537 int start, pos, stop;
6538
6539 start = i * BITS_PER_BITS_WORD;
6540 stop = lim - start;
6541 if (stop > BITS_PER_BITS_WORD)
6542 stop = BITS_PER_BITS_WORD;
6543 stop += start;
6544
6545 for (pos = start; pos < stop; pos++)
6546 {
6547 if (!CONS_MARKED_P (&cblk->conses[pos]))
6548 {
6549 this_free++;
6550 cblk->conses[pos].u.chain = cons_free_list;
6551 cons_free_list = &cblk->conses[pos];
6552 #if GC_MARK_STACK
6553 cons_free_list->car = Vdead;
6554 #endif
6555 }
6556 else
6557 {
6558 num_used++;
6559 CONS_UNMARK (&cblk->conses[pos]);
6560 }
6561 }
6562 }
6563 }
6564
6565 lim = CONS_BLOCK_SIZE;
6566 /* If this block contains only free conses and we have already
6567 seen more than two blocks worth of free conses then deallocate
6568 this block. */
6569 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6570 {
6571 *cprev = cblk->next;
6572 /* Unhook from the free list. */
6573 cons_free_list = cblk->conses[0].u.chain;
6574 lisp_align_free (cblk);
6575 }
6576 else
6577 {
6578 num_free += this_free;
6579 cprev = &cblk->next;
6580 }
6581 }
6582 total_conses = num_used;
6583 total_free_conses = num_free;
6584 }
6585
6586 NO_INLINE /* For better stack traces */
6587 static void
6588 sweep_floats (void)
6589 {
6590 register struct float_block *fblk;
6591 struct float_block **fprev = &float_block;
6592 register int lim = float_block_index;
6593 EMACS_INT num_free = 0, num_used = 0;
6594
6595 float_free_list = 0;
6596
6597 for (fblk = float_block; fblk; fblk = *fprev)
6598 {
6599 register int i;
6600 int this_free = 0;
6601 for (i = 0; i < lim; i++)
6602 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6603 {
6604 this_free++;
6605 fblk->floats[i].u.chain = float_free_list;
6606 float_free_list = &fblk->floats[i];
6607 }
6608 else
6609 {
6610 num_used++;
6611 FLOAT_UNMARK (&fblk->floats[i]);
6612 }
6613 lim = FLOAT_BLOCK_SIZE;
6614 /* If this block contains only free floats and we have already
6615 seen more than two blocks worth of free floats then deallocate
6616 this block. */
6617 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6618 {
6619 *fprev = fblk->next;
6620 /* Unhook from the free list. */
6621 float_free_list = fblk->floats[0].u.chain;
6622 lisp_align_free (fblk);
6623 }
6624 else
6625 {
6626 num_free += this_free;
6627 fprev = &fblk->next;
6628 }
6629 }
6630 total_floats = num_used;
6631 total_free_floats = num_free;
6632 }
6633
6634 NO_INLINE /* For better stack traces */
6635 static void
6636 sweep_intervals (void)
6637 {
6638 register struct interval_block *iblk;
6639 struct interval_block **iprev = &interval_block;
6640 register int lim = interval_block_index;
6641 EMACS_INT num_free = 0, num_used = 0;
6642
6643 interval_free_list = 0;
6644
6645 for (iblk = interval_block; iblk; iblk = *iprev)
6646 {
6647 register int i;
6648 int this_free = 0;
6649
6650 for (i = 0; i < lim; i++)
6651 {
6652 if (!iblk->intervals[i].gcmarkbit)
6653 {
6654 set_interval_parent (&iblk->intervals[i], interval_free_list);
6655 interval_free_list = &iblk->intervals[i];
6656 this_free++;
6657 }
6658 else
6659 {
6660 num_used++;
6661 iblk->intervals[i].gcmarkbit = 0;
6662 }
6663 }
6664 lim = INTERVAL_BLOCK_SIZE;
6665 /* If this block contains only free intervals and we have already
6666 seen more than two blocks worth of free intervals then
6667 deallocate this block. */
6668 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6669 {
6670 *iprev = iblk->next;
6671 /* Unhook from the free list. */
6672 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6673 lisp_free (iblk);
6674 }
6675 else
6676 {
6677 num_free += this_free;
6678 iprev = &iblk->next;
6679 }
6680 }
6681 total_intervals = num_used;
6682 total_free_intervals = num_free;
6683 }
6684
6685 NO_INLINE /* For better stack traces */
6686 static void
6687 sweep_symbols (void)
6688 {
6689 register struct symbol_block *sblk;
6690 struct symbol_block **sprev = &symbol_block;
6691 register int lim = symbol_block_index;
6692 EMACS_INT num_free = 0, num_used = 0;
6693
6694 symbol_free_list = NULL;
6695
6696 for (sblk = symbol_block; sblk; sblk = *sprev)
6697 {
6698 int this_free = 0;
6699 union aligned_Lisp_Symbol *sym = sblk->symbols;
6700 union aligned_Lisp_Symbol *end = sym + lim;
6701
6702 for (; sym < end; ++sym)
6703 {
6704 if (!sym->s.gcmarkbit)
6705 {
6706 if (sym->s.redirect == SYMBOL_LOCALIZED)
6707 xfree (SYMBOL_BLV (&sym->s));
6708 sym->s.next = symbol_free_list;
6709 symbol_free_list = &sym->s;
6710 #if GC_MARK_STACK
6711 symbol_free_list->function = Vdead;
6712 #endif
6713 ++this_free;
6714 }
6715 else
6716 {
6717 ++num_used;
6718 sym->s.gcmarkbit = 0;
6719 /* Attempt to catch bogus objects. */
6720 eassert (valid_lisp_object_p (sym->s.function) >= 1);
6721 }
6722 }
6723
6724 lim = SYMBOL_BLOCK_SIZE;
6725 /* If this block contains only free symbols and we have already
6726 seen more than two blocks worth of free symbols then deallocate
6727 this block. */
6728 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6729 {
6730 *sprev = sblk->next;
6731 /* Unhook from the free list. */
6732 symbol_free_list = sblk->symbols[0].s.next;
6733 lisp_free (sblk);
6734 }
6735 else
6736 {
6737 num_free += this_free;
6738 sprev = &sblk->next;
6739 }
6740 }
6741 total_symbols = num_used;
6742 total_free_symbols = num_free;
6743 }
6744
6745 NO_INLINE /* For better stack traces */
6746 static void
6747 sweep_misc (void)
6748 {
6749 register struct marker_block *mblk;
6750 struct marker_block **mprev = &marker_block;
6751 register int lim = marker_block_index;
6752 EMACS_INT num_free = 0, num_used = 0;
6753
6754 /* Put all unmarked misc's on free list. For a marker, first
6755 unchain it from the buffer it points into. */
6756
6757 marker_free_list = 0;
6758
6759 for (mblk = marker_block; mblk; mblk = *mprev)
6760 {
6761 register int i;
6762 int this_free = 0;
6763
6764 for (i = 0; i < lim; i++)
6765 {
6766 if (!mblk->markers[i].m.u_any.gcmarkbit)
6767 {
6768 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6769 unchain_marker (&mblk->markers[i].m.u_marker);
6770 /* Set the type of the freed object to Lisp_Misc_Free.
6771 We could leave the type alone, since nobody checks it,
6772 but this might catch bugs faster. */
6773 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6774 mblk->markers[i].m.u_free.chain = marker_free_list;
6775 marker_free_list = &mblk->markers[i].m;
6776 this_free++;
6777 }
6778 else
6779 {
6780 num_used++;
6781 mblk->markers[i].m.u_any.gcmarkbit = 0;
6782 }
6783 }
6784 lim = MARKER_BLOCK_SIZE;
6785 /* If this block contains only free markers and we have already
6786 seen more than two blocks worth of free markers then deallocate
6787 this block. */
6788 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6789 {
6790 *mprev = mblk->next;
6791 /* Unhook from the free list. */
6792 marker_free_list = mblk->markers[0].m.u_free.chain;
6793 lisp_free (mblk);
6794 }
6795 else
6796 {
6797 num_free += this_free;
6798 mprev = &mblk->next;
6799 }
6800 }
6801
6802 total_markers = num_used;
6803 total_free_markers = num_free;
6804 }
6805
6806 NO_INLINE /* For better stack traces */
6807 static void
6808 sweep_buffers (void)
6809 {
6810 register struct buffer *buffer, **bprev = &all_buffers;
6811
6812 total_buffers = 0;
6813 for (buffer = all_buffers; buffer; buffer = *bprev)
6814 if (!VECTOR_MARKED_P (buffer))
6815 {
6816 *bprev = buffer->next;
6817 lisp_free (buffer);
6818 }
6819 else
6820 {
6821 VECTOR_UNMARK (buffer);
6822 /* Do not use buffer_(set|get)_intervals here. */
6823 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6824 total_buffers++;
6825 bprev = &buffer->next;
6826 }
6827 }
6828
6829 /* Sweep: find all structures not marked, and free them. */
6830 static void
6831 gc_sweep (void)
6832 {
6833 /* Remove or mark entries in weak hash tables.
6834 This must be done before any object is unmarked. */
6835 sweep_weak_hash_tables ();
6836
6837 sweep_strings ();
6838 check_string_bytes (!noninteractive);
6839 sweep_conses ();
6840 sweep_floats ();
6841 sweep_intervals ();
6842 sweep_symbols ();
6843 sweep_misc ();
6844 sweep_buffers ();
6845 sweep_vectors ();
6846 check_string_bytes (!noninteractive);
6847 }
6848
6849 \f
6850 /* Debugging aids. */
6851
6852 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6853 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6854 This may be helpful in debugging Emacs's memory usage.
6855 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6856 (void)
6857 {
6858 Lisp_Object end;
6859
6860 #ifdef HAVE_NS
6861 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
6862 XSETINT (end, 0);
6863 #else
6864 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6865 #endif
6866
6867 return end;
6868 }
6869
6870 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6871 doc: /* Return a list of counters that measure how much consing there has been.
6872 Each of these counters increments for a certain kind of object.
6873 The counters wrap around from the largest positive integer to zero.
6874 Garbage collection does not decrease them.
6875 The elements of the value are as follows:
6876 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6877 All are in units of 1 = one object consed
6878 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6879 objects consed.
6880 MISCS include overlays, markers, and some internal types.
6881 Frames, windows, buffers, and subprocesses count as vectors
6882 (but the contents of a buffer's text do not count here). */)
6883 (void)
6884 {
6885 return listn (CONSTYPE_HEAP, 8,
6886 bounded_number (cons_cells_consed),
6887 bounded_number (floats_consed),
6888 bounded_number (vector_cells_consed),
6889 bounded_number (symbols_consed),
6890 bounded_number (string_chars_consed),
6891 bounded_number (misc_objects_consed),
6892 bounded_number (intervals_consed),
6893 bounded_number (strings_consed));
6894 }
6895
6896 /* Find at most FIND_MAX symbols which have OBJ as their value or
6897 function. This is used in gdbinit's `xwhichsymbols' command. */
6898
6899 Lisp_Object
6900 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6901 {
6902 struct symbol_block *sblk;
6903 ptrdiff_t gc_count = inhibit_garbage_collection ();
6904 Lisp_Object found = Qnil;
6905
6906 if (! DEADP (obj))
6907 {
6908 for (sblk = symbol_block; sblk; sblk = sblk->next)
6909 {
6910 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6911 int bn;
6912
6913 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6914 {
6915 struct Lisp_Symbol *sym = &aligned_sym->s;
6916 Lisp_Object val;
6917 Lisp_Object tem;
6918
6919 if (sblk == symbol_block && bn >= symbol_block_index)
6920 break;
6921
6922 XSETSYMBOL (tem, sym);
6923 val = find_symbol_value (tem);
6924 if (EQ (val, obj)
6925 || EQ (sym->function, obj)
6926 || (!NILP (sym->function)
6927 && COMPILEDP (sym->function)
6928 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6929 || (!NILP (val)
6930 && COMPILEDP (val)
6931 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6932 {
6933 found = Fcons (tem, found);
6934 if (--find_max == 0)
6935 goto out;
6936 }
6937 }
6938 }
6939 }
6940
6941 out:
6942 unbind_to (gc_count, Qnil);
6943 return found;
6944 }
6945
6946 #ifdef SUSPICIOUS_OBJECT_CHECKING
6947
6948 static void *
6949 find_suspicious_object_in_range (void *begin, void *end)
6950 {
6951 char *begin_a = begin;
6952 char *end_a = end;
6953 int i;
6954
6955 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
6956 {
6957 char *suspicious_object = suspicious_objects[i];
6958 if (begin_a <= suspicious_object && suspicious_object < end_a)
6959 return suspicious_object;
6960 }
6961
6962 return NULL;
6963 }
6964
6965 static void
6966 note_suspicious_free (void* ptr)
6967 {
6968 struct suspicious_free_record* rec;
6969
6970 rec = &suspicious_free_history[suspicious_free_history_index++];
6971 if (suspicious_free_history_index ==
6972 ARRAYELTS (suspicious_free_history))
6973 {
6974 suspicious_free_history_index = 0;
6975 }
6976
6977 memset (rec, 0, sizeof (*rec));
6978 rec->suspicious_object = ptr;
6979 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
6980 }
6981
6982 static void
6983 detect_suspicious_free (void* ptr)
6984 {
6985 int i;
6986
6987 eassert (ptr != NULL);
6988
6989 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
6990 if (suspicious_objects[i] == ptr)
6991 {
6992 note_suspicious_free (ptr);
6993 suspicious_objects[i] = NULL;
6994 }
6995 }
6996
6997 #endif /* SUSPICIOUS_OBJECT_CHECKING */
6998
6999 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
7000 doc: /* Return OBJ, maybe marking it for extra scrutiny.
7001 If Emacs is compiled with suspicous object checking, capture
7002 a stack trace when OBJ is freed in order to help track down
7003 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7004 (Lisp_Object obj)
7005 {
7006 #ifdef SUSPICIOUS_OBJECT_CHECKING
7007 /* Right now, we care only about vectors. */
7008 if (VECTORLIKEP (obj))
7009 {
7010 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
7011 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
7012 suspicious_object_index = 0;
7013 }
7014 #endif
7015 return obj;
7016 }
7017
7018 #ifdef ENABLE_CHECKING
7019
7020 bool suppress_checking;
7021
7022 void
7023 die (const char *msg, const char *file, int line)
7024 {
7025 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7026 file, line, msg);
7027 terminate_due_to_signal (SIGABRT, INT_MAX);
7028 }
7029 #endif
7030 \f
7031 /* Initialization. */
7032
7033 void
7034 init_alloc_once (void)
7035 {
7036 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
7037 purebeg = PUREBEG;
7038 pure_size = PURESIZE;
7039
7040 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
7041 mem_init ();
7042 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7043 #endif
7044
7045 #ifdef DOUG_LEA_MALLOC
7046 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7047 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7048 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7049 #endif
7050 init_strings ();
7051 init_vectors ();
7052
7053 refill_memory_reserve ();
7054 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7055 }
7056
7057 void
7058 init_alloc (void)
7059 {
7060 gcprolist = 0;
7061 byte_stack_list = 0;
7062 #if GC_MARK_STACK
7063 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
7064 setjmp_tested_p = longjmps_done = 0;
7065 #endif
7066 #endif
7067 Vgc_elapsed = make_float (0.0);
7068 gcs_done = 0;
7069
7070 #if USE_VALGRIND
7071 valgrind_p = RUNNING_ON_VALGRIND != 0;
7072 #endif
7073 }
7074
7075 void
7076 syms_of_alloc (void)
7077 {
7078 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7079 doc: /* Number of bytes of consing between garbage collections.
7080 Garbage collection can happen automatically once this many bytes have been
7081 allocated since the last garbage collection. All data types count.
7082
7083 Garbage collection happens automatically only when `eval' is called.
7084
7085 By binding this temporarily to a large number, you can effectively
7086 prevent garbage collection during a part of the program.
7087 See also `gc-cons-percentage'. */);
7088
7089 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7090 doc: /* Portion of the heap used for allocation.
7091 Garbage collection can happen automatically once this portion of the heap
7092 has been allocated since the last garbage collection.
7093 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7094 Vgc_cons_percentage = make_float (0.1);
7095
7096 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7097 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7098
7099 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7100 doc: /* Number of cons cells that have been consed so far. */);
7101
7102 DEFVAR_INT ("floats-consed", floats_consed,
7103 doc: /* Number of floats that have been consed so far. */);
7104
7105 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7106 doc: /* Number of vector cells that have been consed so far. */);
7107
7108 DEFVAR_INT ("symbols-consed", symbols_consed,
7109 doc: /* Number of symbols that have been consed so far. */);
7110
7111 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7112 doc: /* Number of string characters that have been consed so far. */);
7113
7114 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7115 doc: /* Number of miscellaneous objects that have been consed so far.
7116 These include markers and overlays, plus certain objects not visible
7117 to users. */);
7118
7119 DEFVAR_INT ("intervals-consed", intervals_consed,
7120 doc: /* Number of intervals that have been consed so far. */);
7121
7122 DEFVAR_INT ("strings-consed", strings_consed,
7123 doc: /* Number of strings that have been consed so far. */);
7124
7125 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7126 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7127 This means that certain objects should be allocated in shared (pure) space.
7128 It can also be set to a hash-table, in which case this table is used to
7129 do hash-consing of the objects allocated to pure space. */);
7130
7131 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7132 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7133 garbage_collection_messages = 0;
7134
7135 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7136 doc: /* Hook run after garbage collection has finished. */);
7137 Vpost_gc_hook = Qnil;
7138 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7139
7140 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7141 doc: /* Precomputed `signal' argument for memory-full error. */);
7142 /* We build this in advance because if we wait until we need it, we might
7143 not be able to allocate the memory to hold it. */
7144 Vmemory_signal_data
7145 = listn (CONSTYPE_PURE, 2, Qerror,
7146 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7147
7148 DEFVAR_LISP ("memory-full", Vmemory_full,
7149 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7150 Vmemory_full = Qnil;
7151
7152 DEFSYM (Qconses, "conses");
7153 DEFSYM (Qsymbols, "symbols");
7154 DEFSYM (Qmiscs, "miscs");
7155 DEFSYM (Qstrings, "strings");
7156 DEFSYM (Qvectors, "vectors");
7157 DEFSYM (Qfloats, "floats");
7158 DEFSYM (Qintervals, "intervals");
7159 DEFSYM (Qbuffers, "buffers");
7160 DEFSYM (Qstring_bytes, "string-bytes");
7161 DEFSYM (Qvector_slots, "vector-slots");
7162 DEFSYM (Qheap, "heap");
7163 DEFSYM (Qautomatic_gc, "Automatic GC");
7164
7165 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7166 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7167
7168 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7169 doc: /* Accumulated time elapsed in garbage collections.
7170 The time is in seconds as a floating point value. */);
7171 DEFVAR_INT ("gcs-done", gcs_done,
7172 doc: /* Accumulated number of garbage collections done. */);
7173
7174 defsubr (&Scons);
7175 defsubr (&Slist);
7176 defsubr (&Svector);
7177 defsubr (&Sbool_vector);
7178 defsubr (&Smake_byte_code);
7179 defsubr (&Smake_list);
7180 defsubr (&Smake_vector);
7181 defsubr (&Smake_string);
7182 defsubr (&Smake_bool_vector);
7183 defsubr (&Smake_symbol);
7184 defsubr (&Smake_marker);
7185 defsubr (&Spurecopy);
7186 defsubr (&Sgarbage_collect);
7187 defsubr (&Smemory_limit);
7188 defsubr (&Smemory_use_counts);
7189 defsubr (&Ssuspicious_object);
7190
7191 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7192 defsubr (&Sgc_status);
7193 #endif
7194 }
7195
7196 /* When compiled with GCC, GDB might say "No enum type named
7197 pvec_type" if we don't have at least one symbol with that type, and
7198 then xbacktrace could fail. Similarly for the other enums and
7199 their values. Some non-GCC compilers don't like these constructs. */
7200 #ifdef __GNUC__
7201 union
7202 {
7203 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7204 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
7205 enum char_bits char_bits;
7206 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7207 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7208 enum Lisp_Bits Lisp_Bits;
7209 enum Lisp_Compiled Lisp_Compiled;
7210 enum maxargs maxargs;
7211 enum MAX_ALLOCA MAX_ALLOCA;
7212 enum More_Lisp_Bits More_Lisp_Bits;
7213 enum pvec_type pvec_type;
7214 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7215 #endif /* __GNUC__ */