Tweak last vectorlike_header change.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #define LISP_INLINE EXTERN_INLINE
24
25 #include <stdio.h>
26 #include <limits.h> /* For CHAR_BIT. */
27
28 #ifdef ENABLE_CHECKING
29 #include <signal.h> /* For SIGABRT. */
30 #endif
31
32 #ifdef HAVE_PTHREAD
33 #include <pthread.h>
34 #endif
35
36 #include "lisp.h"
37 #include "process.h"
38 #include "intervals.h"
39 #include "puresize.h"
40 #include "character.h"
41 #include "buffer.h"
42 #include "window.h"
43 #include "keyboard.h"
44 #include "frame.h"
45 #include "blockinput.h"
46 #include "termhooks.h" /* For struct terminal. */
47
48 #include <verify.h>
49
50 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
51 Doable only if GC_MARK_STACK. */
52 #if ! GC_MARK_STACK
53 # undef GC_CHECK_MARKED_OBJECTS
54 #endif
55
56 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c and if not checking
58 marked objects. */
59
60 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
61 || defined GC_CHECK_MARKED_OBJECTS)
62 #undef GC_MALLOC_CHECK
63 #endif
64
65 #include <unistd.h>
66 #ifndef HAVE_UNISTD_H
67 extern void *sbrk ();
68 #endif
69
70 #include <fcntl.h>
71
72 #ifdef USE_GTK
73 # include "gtkutil.h"
74 #endif
75 #ifdef WINDOWSNT
76 #include "w32.h"
77 #include "w32heap.h" /* for sbrk */
78 #endif
79
80 #ifdef DOUG_LEA_MALLOC
81
82 #include <malloc.h>
83
84 /* Specify maximum number of areas to mmap. It would be nice to use a
85 value that explicitly means "no limit". */
86
87 #define MMAP_MAX_AREAS 100000000
88
89 #endif /* not DOUG_LEA_MALLOC */
90
91 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
92 to a struct Lisp_String. */
93
94 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
95 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
96 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
97
98 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
99 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
100 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
101
102 /* Default value of gc_cons_threshold (see below). */
103
104 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
105
106 /* Global variables. */
107 struct emacs_globals globals;
108
109 /* Number of bytes of consing done since the last gc. */
110
111 EMACS_INT consing_since_gc;
112
113 /* Similar minimum, computed from Vgc_cons_percentage. */
114
115 EMACS_INT gc_relative_threshold;
116
117 /* Minimum number of bytes of consing since GC before next GC,
118 when memory is full. */
119
120 EMACS_INT memory_full_cons_threshold;
121
122 /* True during GC. */
123
124 bool gc_in_progress;
125
126 /* True means abort if try to GC.
127 This is for code which is written on the assumption that
128 no GC will happen, so as to verify that assumption. */
129
130 bool abort_on_gc;
131
132 /* Number of live and free conses etc. */
133
134 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
135 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
136 static EMACS_INT total_free_floats, total_floats;
137
138 /* Points to memory space allocated as "spare", to be freed if we run
139 out of memory. We keep one large block, four cons-blocks, and
140 two string blocks. */
141
142 static char *spare_memory[7];
143
144 /* Amount of spare memory to keep in large reserve block, or to see
145 whether this much is available when malloc fails on a larger request. */
146
147 #define SPARE_MEMORY (1 << 14)
148
149 /* Initialize it to a nonzero value to force it into data space
150 (rather than bss space). That way unexec will remap it into text
151 space (pure), on some systems. We have not implemented the
152 remapping on more recent systems because this is less important
153 nowadays than in the days of small memories and timesharing. */
154
155 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
156 #define PUREBEG (char *) pure
157
158 /* Pointer to the pure area, and its size. */
159
160 static char *purebeg;
161 static ptrdiff_t pure_size;
162
163 /* Number of bytes of pure storage used before pure storage overflowed.
164 If this is non-zero, this implies that an overflow occurred. */
165
166 static ptrdiff_t pure_bytes_used_before_overflow;
167
168 /* True if P points into pure space. */
169
170 #define PURE_POINTER_P(P) \
171 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
172
173 /* Index in pure at which next pure Lisp object will be allocated.. */
174
175 static ptrdiff_t pure_bytes_used_lisp;
176
177 /* Number of bytes allocated for non-Lisp objects in pure storage. */
178
179 static ptrdiff_t pure_bytes_used_non_lisp;
180
181 /* If nonzero, this is a warning delivered by malloc and not yet
182 displayed. */
183
184 const char *pending_malloc_warning;
185
186 /* Maximum amount of C stack to save when a GC happens. */
187
188 #ifndef MAX_SAVE_STACK
189 #define MAX_SAVE_STACK 16000
190 #endif
191
192 /* Buffer in which we save a copy of the C stack at each GC. */
193
194 #if MAX_SAVE_STACK > 0
195 static char *stack_copy;
196 static ptrdiff_t stack_copy_size;
197 #endif
198
199 static Lisp_Object Qconses;
200 static Lisp_Object Qsymbols;
201 static Lisp_Object Qmiscs;
202 static Lisp_Object Qstrings;
203 static Lisp_Object Qvectors;
204 static Lisp_Object Qfloats;
205 static Lisp_Object Qintervals;
206 static Lisp_Object Qbuffers;
207 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
208 static Lisp_Object Qgc_cons_threshold;
209 Lisp_Object Qautomatic_gc;
210 Lisp_Object Qchar_table_extra_slots;
211
212 /* Hook run after GC has finished. */
213
214 static Lisp_Object Qpost_gc_hook;
215
216 static void mark_terminals (void);
217 static void gc_sweep (void);
218 static Lisp_Object make_pure_vector (ptrdiff_t);
219 static void mark_buffer (struct buffer *);
220
221 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
222 static void refill_memory_reserve (void);
223 #endif
224 static void compact_small_strings (void);
225 static void free_large_strings (void);
226 static void free_misc (Lisp_Object);
227 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
228
229 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
230 what memory allocated via lisp_malloc and lisp_align_malloc is intended
231 for what purpose. This enumeration specifies the type of memory. */
232
233 enum mem_type
234 {
235 MEM_TYPE_NON_LISP,
236 MEM_TYPE_BUFFER,
237 MEM_TYPE_CONS,
238 MEM_TYPE_STRING,
239 MEM_TYPE_MISC,
240 MEM_TYPE_SYMBOL,
241 MEM_TYPE_FLOAT,
242 /* Since all non-bool pseudovectors are small enough to be
243 allocated from vector blocks, this memory type denotes
244 large regular vectors and large bool pseudovectors. */
245 MEM_TYPE_VECTORLIKE,
246 /* Special type to denote vector blocks. */
247 MEM_TYPE_VECTOR_BLOCK,
248 /* Special type to denote reserved memory. */
249 MEM_TYPE_SPARE
250 };
251
252 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
253
254 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
255 #include <stdio.h> /* For fprintf. */
256 #endif
257
258 /* A unique object in pure space used to make some Lisp objects
259 on free lists recognizable in O(1). */
260
261 static Lisp_Object Vdead;
262 #define DEADP(x) EQ (x, Vdead)
263
264 #ifdef GC_MALLOC_CHECK
265
266 enum mem_type allocated_mem_type;
267
268 #endif /* GC_MALLOC_CHECK */
269
270 /* A node in the red-black tree describing allocated memory containing
271 Lisp data. Each such block is recorded with its start and end
272 address when it is allocated, and removed from the tree when it
273 is freed.
274
275 A red-black tree is a balanced binary tree with the following
276 properties:
277
278 1. Every node is either red or black.
279 2. Every leaf is black.
280 3. If a node is red, then both of its children are black.
281 4. Every simple path from a node to a descendant leaf contains
282 the same number of black nodes.
283 5. The root is always black.
284
285 When nodes are inserted into the tree, or deleted from the tree,
286 the tree is "fixed" so that these properties are always true.
287
288 A red-black tree with N internal nodes has height at most 2
289 log(N+1). Searches, insertions and deletions are done in O(log N).
290 Please see a text book about data structures for a detailed
291 description of red-black trees. Any book worth its salt should
292 describe them. */
293
294 struct mem_node
295 {
296 /* Children of this node. These pointers are never NULL. When there
297 is no child, the value is MEM_NIL, which points to a dummy node. */
298 struct mem_node *left, *right;
299
300 /* The parent of this node. In the root node, this is NULL. */
301 struct mem_node *parent;
302
303 /* Start and end of allocated region. */
304 void *start, *end;
305
306 /* Node color. */
307 enum {MEM_BLACK, MEM_RED} color;
308
309 /* Memory type. */
310 enum mem_type type;
311 };
312
313 /* Base address of stack. Set in main. */
314
315 Lisp_Object *stack_base;
316
317 /* Root of the tree describing allocated Lisp memory. */
318
319 static struct mem_node *mem_root;
320
321 /* Lowest and highest known address in the heap. */
322
323 static void *min_heap_address, *max_heap_address;
324
325 /* Sentinel node of the tree. */
326
327 static struct mem_node mem_z;
328 #define MEM_NIL &mem_z
329
330 static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
331 static void lisp_free (void *);
332 static void mark_stack (void);
333 static bool live_vector_p (struct mem_node *, void *);
334 static bool live_buffer_p (struct mem_node *, void *);
335 static bool live_string_p (struct mem_node *, void *);
336 static bool live_cons_p (struct mem_node *, void *);
337 static bool live_symbol_p (struct mem_node *, void *);
338 static bool live_float_p (struct mem_node *, void *);
339 static bool live_misc_p (struct mem_node *, void *);
340 static void mark_maybe_object (Lisp_Object);
341 static void mark_memory (void *, void *);
342 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
343 static void mem_init (void);
344 static struct mem_node *mem_insert (void *, void *, enum mem_type);
345 static void mem_insert_fixup (struct mem_node *);
346 static void mem_rotate_left (struct mem_node *);
347 static void mem_rotate_right (struct mem_node *);
348 static void mem_delete (struct mem_node *);
349 static void mem_delete_fixup (struct mem_node *);
350 static struct mem_node *mem_find (void *);
351 #endif
352
353
354 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
355 static void check_gcpros (void);
356 #endif
357
358 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
359
360 #ifndef DEADP
361 # define DEADP(x) 0
362 #endif
363
364 /* Recording what needs to be marked for gc. */
365
366 struct gcpro *gcprolist;
367
368 /* Addresses of staticpro'd variables. Initialize it to a nonzero
369 value; otherwise some compilers put it into BSS. */
370
371 #define NSTATICS 0x800
372 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
373
374 /* Index of next unused slot in staticvec. */
375
376 static int staticidx;
377
378 static void *pure_alloc (size_t, int);
379
380
381 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
382 ALIGNMENT must be a power of 2. */
383
384 #define ALIGN(ptr, ALIGNMENT) \
385 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
386 & ~ ((ALIGNMENT) - 1)))
387
388
389 \f
390 /************************************************************************
391 Malloc
392 ************************************************************************/
393
394 /* Function malloc calls this if it finds we are near exhausting storage. */
395
396 void
397 malloc_warning (const char *str)
398 {
399 pending_malloc_warning = str;
400 }
401
402
403 /* Display an already-pending malloc warning. */
404
405 void
406 display_malloc_warning (void)
407 {
408 call3 (intern ("display-warning"),
409 intern ("alloc"),
410 build_string (pending_malloc_warning),
411 intern ("emergency"));
412 pending_malloc_warning = 0;
413 }
414 \f
415 /* Called if we can't allocate relocatable space for a buffer. */
416
417 void
418 buffer_memory_full (ptrdiff_t nbytes)
419 {
420 /* If buffers use the relocating allocator, no need to free
421 spare_memory, because we may have plenty of malloc space left
422 that we could get, and if we don't, the malloc that fails will
423 itself cause spare_memory to be freed. If buffers don't use the
424 relocating allocator, treat this like any other failing
425 malloc. */
426
427 #ifndef REL_ALLOC
428 memory_full (nbytes);
429 #endif
430
431 /* This used to call error, but if we've run out of memory, we could
432 get infinite recursion trying to build the string. */
433 xsignal (Qnil, Vmemory_signal_data);
434 }
435
436 /* A common multiple of the positive integers A and B. Ideally this
437 would be the least common multiple, but there's no way to do that
438 as a constant expression in C, so do the best that we can easily do. */
439 #define COMMON_MULTIPLE(a, b) \
440 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
441
442 #ifndef XMALLOC_OVERRUN_CHECK
443 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
444 #else
445
446 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
447 around each block.
448
449 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
450 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
451 block size in little-endian order. The trailer consists of
452 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
453
454 The header is used to detect whether this block has been allocated
455 through these functions, as some low-level libc functions may
456 bypass the malloc hooks. */
457
458 #define XMALLOC_OVERRUN_CHECK_SIZE 16
459 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
460 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
461
462 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
463 hold a size_t value and (2) the header size is a multiple of the
464 alignment that Emacs needs for C types and for USE_LSB_TAG. */
465 #define XMALLOC_BASE_ALIGNMENT \
466 alignof (union { long double d; intmax_t i; void *p; })
467
468 #if USE_LSB_TAG
469 # define XMALLOC_HEADER_ALIGNMENT \
470 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
471 #else
472 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
473 #endif
474 #define XMALLOC_OVERRUN_SIZE_SIZE \
475 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
476 + XMALLOC_HEADER_ALIGNMENT - 1) \
477 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
478 - XMALLOC_OVERRUN_CHECK_SIZE)
479
480 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
481 { '\x9a', '\x9b', '\xae', '\xaf',
482 '\xbf', '\xbe', '\xce', '\xcf',
483 '\xea', '\xeb', '\xec', '\xed',
484 '\xdf', '\xde', '\x9c', '\x9d' };
485
486 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
487 { '\xaa', '\xab', '\xac', '\xad',
488 '\xba', '\xbb', '\xbc', '\xbd',
489 '\xca', '\xcb', '\xcc', '\xcd',
490 '\xda', '\xdb', '\xdc', '\xdd' };
491
492 /* Insert and extract the block size in the header. */
493
494 static void
495 xmalloc_put_size (unsigned char *ptr, size_t size)
496 {
497 int i;
498 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
499 {
500 *--ptr = size & ((1 << CHAR_BIT) - 1);
501 size >>= CHAR_BIT;
502 }
503 }
504
505 static size_t
506 xmalloc_get_size (unsigned char *ptr)
507 {
508 size_t size = 0;
509 int i;
510 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
511 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
512 {
513 size <<= CHAR_BIT;
514 size += *ptr++;
515 }
516 return size;
517 }
518
519
520 /* Like malloc, but wraps allocated block with header and trailer. */
521
522 static void *
523 overrun_check_malloc (size_t size)
524 {
525 register unsigned char *val;
526 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
527 emacs_abort ();
528
529 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
530 if (val)
531 {
532 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
533 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
534 xmalloc_put_size (val, size);
535 memcpy (val + size, xmalloc_overrun_check_trailer,
536 XMALLOC_OVERRUN_CHECK_SIZE);
537 }
538 return val;
539 }
540
541
542 /* Like realloc, but checks old block for overrun, and wraps new block
543 with header and trailer. */
544
545 static void *
546 overrun_check_realloc (void *block, size_t size)
547 {
548 register unsigned char *val = (unsigned char *) block;
549 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
550 emacs_abort ();
551
552 if (val
553 && memcmp (xmalloc_overrun_check_header,
554 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
555 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
556 {
557 size_t osize = xmalloc_get_size (val);
558 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
559 XMALLOC_OVERRUN_CHECK_SIZE))
560 emacs_abort ();
561 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
562 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
563 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
564 }
565
566 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
567
568 if (val)
569 {
570 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
571 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
572 xmalloc_put_size (val, size);
573 memcpy (val + size, xmalloc_overrun_check_trailer,
574 XMALLOC_OVERRUN_CHECK_SIZE);
575 }
576 return val;
577 }
578
579 /* Like free, but checks block for overrun. */
580
581 static void
582 overrun_check_free (void *block)
583 {
584 unsigned char *val = (unsigned char *) block;
585
586 if (val
587 && memcmp (xmalloc_overrun_check_header,
588 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
589 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
590 {
591 size_t osize = xmalloc_get_size (val);
592 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
593 XMALLOC_OVERRUN_CHECK_SIZE))
594 emacs_abort ();
595 #ifdef XMALLOC_CLEAR_FREE_MEMORY
596 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
597 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
598 #else
599 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
600 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
601 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
602 #endif
603 }
604
605 free (val);
606 }
607
608 #undef malloc
609 #undef realloc
610 #undef free
611 #define malloc overrun_check_malloc
612 #define realloc overrun_check_realloc
613 #define free overrun_check_free
614 #endif
615
616 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
617 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
618 If that variable is set, block input while in one of Emacs's memory
619 allocation functions. There should be no need for this debugging
620 option, since signal handlers do not allocate memory, but Emacs
621 formerly allocated memory in signal handlers and this compile-time
622 option remains as a way to help debug the issue should it rear its
623 ugly head again. */
624 #ifdef XMALLOC_BLOCK_INPUT_CHECK
625 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
626 static void
627 malloc_block_input (void)
628 {
629 if (block_input_in_memory_allocators)
630 block_input ();
631 }
632 static void
633 malloc_unblock_input (void)
634 {
635 if (block_input_in_memory_allocators)
636 unblock_input ();
637 }
638 # define MALLOC_BLOCK_INPUT malloc_block_input ()
639 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
640 #else
641 # define MALLOC_BLOCK_INPUT ((void) 0)
642 # define MALLOC_UNBLOCK_INPUT ((void) 0)
643 #endif
644
645 #define MALLOC_PROBE(size) \
646 do { \
647 if (profiler_memory_running) \
648 malloc_probe (size); \
649 } while (0)
650
651
652 /* Like malloc but check for no memory and block interrupt input.. */
653
654 void *
655 xmalloc (size_t size)
656 {
657 void *val;
658
659 MALLOC_BLOCK_INPUT;
660 val = malloc (size);
661 MALLOC_UNBLOCK_INPUT;
662
663 if (!val && size)
664 memory_full (size);
665 MALLOC_PROBE (size);
666 return val;
667 }
668
669 /* Like the above, but zeroes out the memory just allocated. */
670
671 void *
672 xzalloc (size_t size)
673 {
674 void *val;
675
676 MALLOC_BLOCK_INPUT;
677 val = malloc (size);
678 MALLOC_UNBLOCK_INPUT;
679
680 if (!val && size)
681 memory_full (size);
682 memset (val, 0, size);
683 MALLOC_PROBE (size);
684 return val;
685 }
686
687 /* Like realloc but check for no memory and block interrupt input.. */
688
689 void *
690 xrealloc (void *block, size_t size)
691 {
692 void *val;
693
694 MALLOC_BLOCK_INPUT;
695 /* We must call malloc explicitly when BLOCK is 0, since some
696 reallocs don't do this. */
697 if (! block)
698 val = malloc (size);
699 else
700 val = realloc (block, size);
701 MALLOC_UNBLOCK_INPUT;
702
703 if (!val && size)
704 memory_full (size);
705 MALLOC_PROBE (size);
706 return val;
707 }
708
709
710 /* Like free but block interrupt input. */
711
712 void
713 xfree (void *block)
714 {
715 if (!block)
716 return;
717 MALLOC_BLOCK_INPUT;
718 free (block);
719 MALLOC_UNBLOCK_INPUT;
720 /* We don't call refill_memory_reserve here
721 because in practice the call in r_alloc_free seems to suffice. */
722 }
723
724
725 /* Other parts of Emacs pass large int values to allocator functions
726 expecting ptrdiff_t. This is portable in practice, but check it to
727 be safe. */
728 verify (INT_MAX <= PTRDIFF_MAX);
729
730
731 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
732 Signal an error on memory exhaustion, and block interrupt input. */
733
734 void *
735 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
736 {
737 eassert (0 <= nitems && 0 < item_size);
738 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
739 memory_full (SIZE_MAX);
740 return xmalloc (nitems * item_size);
741 }
742
743
744 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
745 Signal an error on memory exhaustion, and block interrupt input. */
746
747 void *
748 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
749 {
750 eassert (0 <= nitems && 0 < item_size);
751 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
752 memory_full (SIZE_MAX);
753 return xrealloc (pa, nitems * item_size);
754 }
755
756
757 /* Grow PA, which points to an array of *NITEMS items, and return the
758 location of the reallocated array, updating *NITEMS to reflect its
759 new size. The new array will contain at least NITEMS_INCR_MIN more
760 items, but will not contain more than NITEMS_MAX items total.
761 ITEM_SIZE is the size of each item, in bytes.
762
763 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
764 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
765 infinity.
766
767 If PA is null, then allocate a new array instead of reallocating
768 the old one. Thus, to grow an array A without saving its old
769 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
770 &NITEMS, ...).
771
772 Block interrupt input as needed. If memory exhaustion occurs, set
773 *NITEMS to zero if PA is null, and signal an error (i.e., do not
774 return). */
775
776 void *
777 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
778 ptrdiff_t nitems_max, ptrdiff_t item_size)
779 {
780 /* The approximate size to use for initial small allocation
781 requests. This is the largest "small" request for the GNU C
782 library malloc. */
783 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
784
785 /* If the array is tiny, grow it to about (but no greater than)
786 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
787 ptrdiff_t n = *nitems;
788 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
789 ptrdiff_t half_again = n >> 1;
790 ptrdiff_t incr_estimate = max (tiny_max, half_again);
791
792 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
793 NITEMS_MAX, and what the C language can represent safely. */
794 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
795 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
796 ? nitems_max : C_language_max);
797 ptrdiff_t nitems_incr_max = n_max - n;
798 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
799
800 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
801 if (! pa)
802 *nitems = 0;
803 if (nitems_incr_max < incr)
804 memory_full (SIZE_MAX);
805 n += incr;
806 pa = xrealloc (pa, n * item_size);
807 *nitems = n;
808 return pa;
809 }
810
811
812 /* Like strdup, but uses xmalloc. */
813
814 char *
815 xstrdup (const char *s)
816 {
817 size_t len = strlen (s) + 1;
818 char *p = xmalloc (len);
819 memcpy (p, s, len);
820 return p;
821 }
822
823
824 /* Unwind for SAFE_ALLOCA */
825
826 Lisp_Object
827 safe_alloca_unwind (Lisp_Object arg)
828 {
829 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
830
831 p->dogc = 0;
832 xfree (p->pointer);
833 p->pointer = 0;
834 free_misc (arg);
835 return Qnil;
836 }
837
838 /* Return a newly allocated memory block of SIZE bytes, remembering
839 to free it when unwinding. */
840 void *
841 record_xmalloc (size_t size)
842 {
843 void *p = xmalloc (size);
844 record_unwind_protect (safe_alloca_unwind, make_save_value (p, 0));
845 return p;
846 }
847
848
849 /* Like malloc but used for allocating Lisp data. NBYTES is the
850 number of bytes to allocate, TYPE describes the intended use of the
851 allocated memory block (for strings, for conses, ...). */
852
853 #if ! USE_LSB_TAG
854 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
855 #endif
856
857 static void *
858 lisp_malloc (size_t nbytes, enum mem_type type)
859 {
860 register void *val;
861
862 MALLOC_BLOCK_INPUT;
863
864 #ifdef GC_MALLOC_CHECK
865 allocated_mem_type = type;
866 #endif
867
868 val = malloc (nbytes);
869
870 #if ! USE_LSB_TAG
871 /* If the memory just allocated cannot be addressed thru a Lisp
872 object's pointer, and it needs to be,
873 that's equivalent to running out of memory. */
874 if (val && type != MEM_TYPE_NON_LISP)
875 {
876 Lisp_Object tem;
877 XSETCONS (tem, (char *) val + nbytes - 1);
878 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
879 {
880 lisp_malloc_loser = val;
881 free (val);
882 val = 0;
883 }
884 }
885 #endif
886
887 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
888 if (val && type != MEM_TYPE_NON_LISP)
889 mem_insert (val, (char *) val + nbytes, type);
890 #endif
891
892 MALLOC_UNBLOCK_INPUT;
893 if (!val && nbytes)
894 memory_full (nbytes);
895 MALLOC_PROBE (nbytes);
896 return val;
897 }
898
899 /* Free BLOCK. This must be called to free memory allocated with a
900 call to lisp_malloc. */
901
902 static void
903 lisp_free (void *block)
904 {
905 MALLOC_BLOCK_INPUT;
906 free (block);
907 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
908 mem_delete (mem_find (block));
909 #endif
910 MALLOC_UNBLOCK_INPUT;
911 }
912
913 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
914
915 /* The entry point is lisp_align_malloc which returns blocks of at most
916 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
917
918 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
919 #define USE_POSIX_MEMALIGN 1
920 #endif
921
922 /* BLOCK_ALIGN has to be a power of 2. */
923 #define BLOCK_ALIGN (1 << 10)
924
925 /* Padding to leave at the end of a malloc'd block. This is to give
926 malloc a chance to minimize the amount of memory wasted to alignment.
927 It should be tuned to the particular malloc library used.
928 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
929 posix_memalign on the other hand would ideally prefer a value of 4
930 because otherwise, there's 1020 bytes wasted between each ablocks.
931 In Emacs, testing shows that those 1020 can most of the time be
932 efficiently used by malloc to place other objects, so a value of 0 can
933 still preferable unless you have a lot of aligned blocks and virtually
934 nothing else. */
935 #define BLOCK_PADDING 0
936 #define BLOCK_BYTES \
937 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
938
939 /* Internal data structures and constants. */
940
941 #define ABLOCKS_SIZE 16
942
943 /* An aligned block of memory. */
944 struct ablock
945 {
946 union
947 {
948 char payload[BLOCK_BYTES];
949 struct ablock *next_free;
950 } x;
951 /* `abase' is the aligned base of the ablocks. */
952 /* It is overloaded to hold the virtual `busy' field that counts
953 the number of used ablock in the parent ablocks.
954 The first ablock has the `busy' field, the others have the `abase'
955 field. To tell the difference, we assume that pointers will have
956 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
957 is used to tell whether the real base of the parent ablocks is `abase'
958 (if not, the word before the first ablock holds a pointer to the
959 real base). */
960 struct ablocks *abase;
961 /* The padding of all but the last ablock is unused. The padding of
962 the last ablock in an ablocks is not allocated. */
963 #if BLOCK_PADDING
964 char padding[BLOCK_PADDING];
965 #endif
966 };
967
968 /* A bunch of consecutive aligned blocks. */
969 struct ablocks
970 {
971 struct ablock blocks[ABLOCKS_SIZE];
972 };
973
974 /* Size of the block requested from malloc or posix_memalign. */
975 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
976
977 #define ABLOCK_ABASE(block) \
978 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
979 ? (struct ablocks *)(block) \
980 : (block)->abase)
981
982 /* Virtual `busy' field. */
983 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
984
985 /* Pointer to the (not necessarily aligned) malloc block. */
986 #ifdef USE_POSIX_MEMALIGN
987 #define ABLOCKS_BASE(abase) (abase)
988 #else
989 #define ABLOCKS_BASE(abase) \
990 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
991 #endif
992
993 /* The list of free ablock. */
994 static struct ablock *free_ablock;
995
996 /* Allocate an aligned block of nbytes.
997 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
998 smaller or equal to BLOCK_BYTES. */
999 static void *
1000 lisp_align_malloc (size_t nbytes, enum mem_type type)
1001 {
1002 void *base, *val;
1003 struct ablocks *abase;
1004
1005 eassert (nbytes <= BLOCK_BYTES);
1006
1007 MALLOC_BLOCK_INPUT;
1008
1009 #ifdef GC_MALLOC_CHECK
1010 allocated_mem_type = type;
1011 #endif
1012
1013 if (!free_ablock)
1014 {
1015 int i;
1016 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1017
1018 #ifdef DOUG_LEA_MALLOC
1019 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1020 because mapped region contents are not preserved in
1021 a dumped Emacs. */
1022 mallopt (M_MMAP_MAX, 0);
1023 #endif
1024
1025 #ifdef USE_POSIX_MEMALIGN
1026 {
1027 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1028 if (err)
1029 base = NULL;
1030 abase = base;
1031 }
1032 #else
1033 base = malloc (ABLOCKS_BYTES);
1034 abase = ALIGN (base, BLOCK_ALIGN);
1035 #endif
1036
1037 if (base == 0)
1038 {
1039 MALLOC_UNBLOCK_INPUT;
1040 memory_full (ABLOCKS_BYTES);
1041 }
1042
1043 aligned = (base == abase);
1044 if (!aligned)
1045 ((void**)abase)[-1] = base;
1046
1047 #ifdef DOUG_LEA_MALLOC
1048 /* Back to a reasonable maximum of mmap'ed areas. */
1049 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1050 #endif
1051
1052 #if ! USE_LSB_TAG
1053 /* If the memory just allocated cannot be addressed thru a Lisp
1054 object's pointer, and it needs to be, that's equivalent to
1055 running out of memory. */
1056 if (type != MEM_TYPE_NON_LISP)
1057 {
1058 Lisp_Object tem;
1059 char *end = (char *) base + ABLOCKS_BYTES - 1;
1060 XSETCONS (tem, end);
1061 if ((char *) XCONS (tem) != end)
1062 {
1063 lisp_malloc_loser = base;
1064 free (base);
1065 MALLOC_UNBLOCK_INPUT;
1066 memory_full (SIZE_MAX);
1067 }
1068 }
1069 #endif
1070
1071 /* Initialize the blocks and put them on the free list.
1072 If `base' was not properly aligned, we can't use the last block. */
1073 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1074 {
1075 abase->blocks[i].abase = abase;
1076 abase->blocks[i].x.next_free = free_ablock;
1077 free_ablock = &abase->blocks[i];
1078 }
1079 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1080
1081 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1082 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1083 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1084 eassert (ABLOCKS_BASE (abase) == base);
1085 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1086 }
1087
1088 abase = ABLOCK_ABASE (free_ablock);
1089 ABLOCKS_BUSY (abase) =
1090 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1091 val = free_ablock;
1092 free_ablock = free_ablock->x.next_free;
1093
1094 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1095 if (type != MEM_TYPE_NON_LISP)
1096 mem_insert (val, (char *) val + nbytes, type);
1097 #endif
1098
1099 MALLOC_UNBLOCK_INPUT;
1100
1101 MALLOC_PROBE (nbytes);
1102
1103 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1104 return val;
1105 }
1106
1107 static void
1108 lisp_align_free (void *block)
1109 {
1110 struct ablock *ablock = block;
1111 struct ablocks *abase = ABLOCK_ABASE (ablock);
1112
1113 MALLOC_BLOCK_INPUT;
1114 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1115 mem_delete (mem_find (block));
1116 #endif
1117 /* Put on free list. */
1118 ablock->x.next_free = free_ablock;
1119 free_ablock = ablock;
1120 /* Update busy count. */
1121 ABLOCKS_BUSY (abase)
1122 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1123
1124 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1125 { /* All the blocks are free. */
1126 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1127 struct ablock **tem = &free_ablock;
1128 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1129
1130 while (*tem)
1131 {
1132 if (*tem >= (struct ablock *) abase && *tem < atop)
1133 {
1134 i++;
1135 *tem = (*tem)->x.next_free;
1136 }
1137 else
1138 tem = &(*tem)->x.next_free;
1139 }
1140 eassert ((aligned & 1) == aligned);
1141 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1142 #ifdef USE_POSIX_MEMALIGN
1143 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1144 #endif
1145 free (ABLOCKS_BASE (abase));
1146 }
1147 MALLOC_UNBLOCK_INPUT;
1148 }
1149
1150 \f
1151 /***********************************************************************
1152 Interval Allocation
1153 ***********************************************************************/
1154
1155 /* Number of intervals allocated in an interval_block structure.
1156 The 1020 is 1024 minus malloc overhead. */
1157
1158 #define INTERVAL_BLOCK_SIZE \
1159 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1160
1161 /* Intervals are allocated in chunks in form of an interval_block
1162 structure. */
1163
1164 struct interval_block
1165 {
1166 /* Place `intervals' first, to preserve alignment. */
1167 struct interval intervals[INTERVAL_BLOCK_SIZE];
1168 struct interval_block *next;
1169 };
1170
1171 /* Current interval block. Its `next' pointer points to older
1172 blocks. */
1173
1174 static struct interval_block *interval_block;
1175
1176 /* Index in interval_block above of the next unused interval
1177 structure. */
1178
1179 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1180
1181 /* Number of free and live intervals. */
1182
1183 static EMACS_INT total_free_intervals, total_intervals;
1184
1185 /* List of free intervals. */
1186
1187 static INTERVAL interval_free_list;
1188
1189 /* Return a new interval. */
1190
1191 INTERVAL
1192 make_interval (void)
1193 {
1194 INTERVAL val;
1195
1196 MALLOC_BLOCK_INPUT;
1197
1198 if (interval_free_list)
1199 {
1200 val = interval_free_list;
1201 interval_free_list = INTERVAL_PARENT (interval_free_list);
1202 }
1203 else
1204 {
1205 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1206 {
1207 struct interval_block *newi
1208 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1209
1210 newi->next = interval_block;
1211 interval_block = newi;
1212 interval_block_index = 0;
1213 total_free_intervals += INTERVAL_BLOCK_SIZE;
1214 }
1215 val = &interval_block->intervals[interval_block_index++];
1216 }
1217
1218 MALLOC_UNBLOCK_INPUT;
1219
1220 consing_since_gc += sizeof (struct interval);
1221 intervals_consed++;
1222 total_free_intervals--;
1223 RESET_INTERVAL (val);
1224 val->gcmarkbit = 0;
1225 return val;
1226 }
1227
1228
1229 /* Mark Lisp objects in interval I. */
1230
1231 static void
1232 mark_interval (register INTERVAL i, Lisp_Object dummy)
1233 {
1234 /* Intervals should never be shared. So, if extra internal checking is
1235 enabled, GC aborts if it seems to have visited an interval twice. */
1236 eassert (!i->gcmarkbit);
1237 i->gcmarkbit = 1;
1238 mark_object (i->plist);
1239 }
1240
1241 /* Mark the interval tree rooted in I. */
1242
1243 #define MARK_INTERVAL_TREE(i) \
1244 do { \
1245 if (i && !i->gcmarkbit) \
1246 traverse_intervals_noorder (i, mark_interval, Qnil); \
1247 } while (0)
1248
1249 /***********************************************************************
1250 String Allocation
1251 ***********************************************************************/
1252
1253 /* Lisp_Strings are allocated in string_block structures. When a new
1254 string_block is allocated, all the Lisp_Strings it contains are
1255 added to a free-list string_free_list. When a new Lisp_String is
1256 needed, it is taken from that list. During the sweep phase of GC,
1257 string_blocks that are entirely free are freed, except two which
1258 we keep.
1259
1260 String data is allocated from sblock structures. Strings larger
1261 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1262 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1263
1264 Sblocks consist internally of sdata structures, one for each
1265 Lisp_String. The sdata structure points to the Lisp_String it
1266 belongs to. The Lisp_String points back to the `u.data' member of
1267 its sdata structure.
1268
1269 When a Lisp_String is freed during GC, it is put back on
1270 string_free_list, and its `data' member and its sdata's `string'
1271 pointer is set to null. The size of the string is recorded in the
1272 `u.nbytes' member of the sdata. So, sdata structures that are no
1273 longer used, can be easily recognized, and it's easy to compact the
1274 sblocks of small strings which we do in compact_small_strings. */
1275
1276 /* Size in bytes of an sblock structure used for small strings. This
1277 is 8192 minus malloc overhead. */
1278
1279 #define SBLOCK_SIZE 8188
1280
1281 /* Strings larger than this are considered large strings. String data
1282 for large strings is allocated from individual sblocks. */
1283
1284 #define LARGE_STRING_BYTES 1024
1285
1286 /* Structure describing string memory sub-allocated from an sblock.
1287 This is where the contents of Lisp strings are stored. */
1288
1289 struct sdata
1290 {
1291 /* Back-pointer to the string this sdata belongs to. If null, this
1292 structure is free, and the NBYTES member of the union below
1293 contains the string's byte size (the same value that STRING_BYTES
1294 would return if STRING were non-null). If non-null, STRING_BYTES
1295 (STRING) is the size of the data, and DATA contains the string's
1296 contents. */
1297 struct Lisp_String *string;
1298
1299 #ifdef GC_CHECK_STRING_BYTES
1300
1301 ptrdiff_t nbytes;
1302 unsigned char data[1];
1303
1304 #define SDATA_NBYTES(S) (S)->nbytes
1305 #define SDATA_DATA(S) (S)->data
1306 #define SDATA_SELECTOR(member) member
1307
1308 #else /* not GC_CHECK_STRING_BYTES */
1309
1310 union
1311 {
1312 /* When STRING is non-null. */
1313 unsigned char data[1];
1314
1315 /* When STRING is null. */
1316 ptrdiff_t nbytes;
1317 } u;
1318
1319 #define SDATA_NBYTES(S) (S)->u.nbytes
1320 #define SDATA_DATA(S) (S)->u.data
1321 #define SDATA_SELECTOR(member) u.member
1322
1323 #endif /* not GC_CHECK_STRING_BYTES */
1324
1325 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1326 };
1327
1328
1329 /* Structure describing a block of memory which is sub-allocated to
1330 obtain string data memory for strings. Blocks for small strings
1331 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1332 as large as needed. */
1333
1334 struct sblock
1335 {
1336 /* Next in list. */
1337 struct sblock *next;
1338
1339 /* Pointer to the next free sdata block. This points past the end
1340 of the sblock if there isn't any space left in this block. */
1341 struct sdata *next_free;
1342
1343 /* Start of data. */
1344 struct sdata first_data;
1345 };
1346
1347 /* Number of Lisp strings in a string_block structure. The 1020 is
1348 1024 minus malloc overhead. */
1349
1350 #define STRING_BLOCK_SIZE \
1351 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1352
1353 /* Structure describing a block from which Lisp_String structures
1354 are allocated. */
1355
1356 struct string_block
1357 {
1358 /* Place `strings' first, to preserve alignment. */
1359 struct Lisp_String strings[STRING_BLOCK_SIZE];
1360 struct string_block *next;
1361 };
1362
1363 /* Head and tail of the list of sblock structures holding Lisp string
1364 data. We always allocate from current_sblock. The NEXT pointers
1365 in the sblock structures go from oldest_sblock to current_sblock. */
1366
1367 static struct sblock *oldest_sblock, *current_sblock;
1368
1369 /* List of sblocks for large strings. */
1370
1371 static struct sblock *large_sblocks;
1372
1373 /* List of string_block structures. */
1374
1375 static struct string_block *string_blocks;
1376
1377 /* Free-list of Lisp_Strings. */
1378
1379 static struct Lisp_String *string_free_list;
1380
1381 /* Number of live and free Lisp_Strings. */
1382
1383 static EMACS_INT total_strings, total_free_strings;
1384
1385 /* Number of bytes used by live strings. */
1386
1387 static EMACS_INT total_string_bytes;
1388
1389 /* Given a pointer to a Lisp_String S which is on the free-list
1390 string_free_list, return a pointer to its successor in the
1391 free-list. */
1392
1393 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1394
1395 /* Return a pointer to the sdata structure belonging to Lisp string S.
1396 S must be live, i.e. S->data must not be null. S->data is actually
1397 a pointer to the `u.data' member of its sdata structure; the
1398 structure starts at a constant offset in front of that. */
1399
1400 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1401
1402
1403 #ifdef GC_CHECK_STRING_OVERRUN
1404
1405 /* We check for overrun in string data blocks by appending a small
1406 "cookie" after each allocated string data block, and check for the
1407 presence of this cookie during GC. */
1408
1409 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1410 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1411 { '\xde', '\xad', '\xbe', '\xef' };
1412
1413 #else
1414 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1415 #endif
1416
1417 /* Value is the size of an sdata structure large enough to hold NBYTES
1418 bytes of string data. The value returned includes a terminating
1419 NUL byte, the size of the sdata structure, and padding. */
1420
1421 #ifdef GC_CHECK_STRING_BYTES
1422
1423 #define SDATA_SIZE(NBYTES) \
1424 ((SDATA_DATA_OFFSET \
1425 + (NBYTES) + 1 \
1426 + sizeof (ptrdiff_t) - 1) \
1427 & ~(sizeof (ptrdiff_t) - 1))
1428
1429 #else /* not GC_CHECK_STRING_BYTES */
1430
1431 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1432 less than the size of that member. The 'max' is not needed when
1433 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1434 alignment code reserves enough space. */
1435
1436 #define SDATA_SIZE(NBYTES) \
1437 ((SDATA_DATA_OFFSET \
1438 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1439 ? NBYTES \
1440 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1441 + 1 \
1442 + sizeof (ptrdiff_t) - 1) \
1443 & ~(sizeof (ptrdiff_t) - 1))
1444
1445 #endif /* not GC_CHECK_STRING_BYTES */
1446
1447 /* Extra bytes to allocate for each string. */
1448
1449 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1450
1451 /* Exact bound on the number of bytes in a string, not counting the
1452 terminating null. A string cannot contain more bytes than
1453 STRING_BYTES_BOUND, nor can it be so long that the size_t
1454 arithmetic in allocate_string_data would overflow while it is
1455 calculating a value to be passed to malloc. */
1456 static ptrdiff_t const STRING_BYTES_MAX =
1457 min (STRING_BYTES_BOUND,
1458 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1459 - GC_STRING_EXTRA
1460 - offsetof (struct sblock, first_data)
1461 - SDATA_DATA_OFFSET)
1462 & ~(sizeof (EMACS_INT) - 1)));
1463
1464 /* Initialize string allocation. Called from init_alloc_once. */
1465
1466 static void
1467 init_strings (void)
1468 {
1469 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1470 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1471 }
1472
1473
1474 #ifdef GC_CHECK_STRING_BYTES
1475
1476 static int check_string_bytes_count;
1477
1478 /* Like STRING_BYTES, but with debugging check. Can be
1479 called during GC, so pay attention to the mark bit. */
1480
1481 ptrdiff_t
1482 string_bytes (struct Lisp_String *s)
1483 {
1484 ptrdiff_t nbytes =
1485 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1486
1487 if (!PURE_POINTER_P (s)
1488 && s->data
1489 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1490 emacs_abort ();
1491 return nbytes;
1492 }
1493
1494 /* Check validity of Lisp strings' string_bytes member in B. */
1495
1496 static void
1497 check_sblock (struct sblock *b)
1498 {
1499 struct sdata *from, *end, *from_end;
1500
1501 end = b->next_free;
1502
1503 for (from = &b->first_data; from < end; from = from_end)
1504 {
1505 /* Compute the next FROM here because copying below may
1506 overwrite data we need to compute it. */
1507 ptrdiff_t nbytes;
1508
1509 /* Check that the string size recorded in the string is the
1510 same as the one recorded in the sdata structure. */
1511 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1512 : SDATA_NBYTES (from));
1513 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1514 }
1515 }
1516
1517
1518 /* Check validity of Lisp strings' string_bytes member. ALL_P
1519 means check all strings, otherwise check only most
1520 recently allocated strings. Used for hunting a bug. */
1521
1522 static void
1523 check_string_bytes (bool all_p)
1524 {
1525 if (all_p)
1526 {
1527 struct sblock *b;
1528
1529 for (b = large_sblocks; b; b = b->next)
1530 {
1531 struct Lisp_String *s = b->first_data.string;
1532 if (s)
1533 string_bytes (s);
1534 }
1535
1536 for (b = oldest_sblock; b; b = b->next)
1537 check_sblock (b);
1538 }
1539 else if (current_sblock)
1540 check_sblock (current_sblock);
1541 }
1542
1543 #else /* not GC_CHECK_STRING_BYTES */
1544
1545 #define check_string_bytes(all) ((void) 0)
1546
1547 #endif /* GC_CHECK_STRING_BYTES */
1548
1549 #ifdef GC_CHECK_STRING_FREE_LIST
1550
1551 /* Walk through the string free list looking for bogus next pointers.
1552 This may catch buffer overrun from a previous string. */
1553
1554 static void
1555 check_string_free_list (void)
1556 {
1557 struct Lisp_String *s;
1558
1559 /* Pop a Lisp_String off the free-list. */
1560 s = string_free_list;
1561 while (s != NULL)
1562 {
1563 if ((uintptr_t) s < 1024)
1564 emacs_abort ();
1565 s = NEXT_FREE_LISP_STRING (s);
1566 }
1567 }
1568 #else
1569 #define check_string_free_list()
1570 #endif
1571
1572 /* Return a new Lisp_String. */
1573
1574 static struct Lisp_String *
1575 allocate_string (void)
1576 {
1577 struct Lisp_String *s;
1578
1579 MALLOC_BLOCK_INPUT;
1580
1581 /* If the free-list is empty, allocate a new string_block, and
1582 add all the Lisp_Strings in it to the free-list. */
1583 if (string_free_list == NULL)
1584 {
1585 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1586 int i;
1587
1588 b->next = string_blocks;
1589 string_blocks = b;
1590
1591 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1592 {
1593 s = b->strings + i;
1594 /* Every string on a free list should have NULL data pointer. */
1595 s->data = NULL;
1596 NEXT_FREE_LISP_STRING (s) = string_free_list;
1597 string_free_list = s;
1598 }
1599
1600 total_free_strings += STRING_BLOCK_SIZE;
1601 }
1602
1603 check_string_free_list ();
1604
1605 /* Pop a Lisp_String off the free-list. */
1606 s = string_free_list;
1607 string_free_list = NEXT_FREE_LISP_STRING (s);
1608
1609 MALLOC_UNBLOCK_INPUT;
1610
1611 --total_free_strings;
1612 ++total_strings;
1613 ++strings_consed;
1614 consing_since_gc += sizeof *s;
1615
1616 #ifdef GC_CHECK_STRING_BYTES
1617 if (!noninteractive)
1618 {
1619 if (++check_string_bytes_count == 200)
1620 {
1621 check_string_bytes_count = 0;
1622 check_string_bytes (1);
1623 }
1624 else
1625 check_string_bytes (0);
1626 }
1627 #endif /* GC_CHECK_STRING_BYTES */
1628
1629 return s;
1630 }
1631
1632
1633 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1634 plus a NUL byte at the end. Allocate an sdata structure for S, and
1635 set S->data to its `u.data' member. Store a NUL byte at the end of
1636 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1637 S->data if it was initially non-null. */
1638
1639 void
1640 allocate_string_data (struct Lisp_String *s,
1641 EMACS_INT nchars, EMACS_INT nbytes)
1642 {
1643 struct sdata *data, *old_data;
1644 struct sblock *b;
1645 ptrdiff_t needed, old_nbytes;
1646
1647 if (STRING_BYTES_MAX < nbytes)
1648 string_overflow ();
1649
1650 /* Determine the number of bytes needed to store NBYTES bytes
1651 of string data. */
1652 needed = SDATA_SIZE (nbytes);
1653 if (s->data)
1654 {
1655 old_data = SDATA_OF_STRING (s);
1656 old_nbytes = STRING_BYTES (s);
1657 }
1658 else
1659 old_data = NULL;
1660
1661 MALLOC_BLOCK_INPUT;
1662
1663 if (nbytes > LARGE_STRING_BYTES)
1664 {
1665 size_t size = offsetof (struct sblock, first_data) + needed;
1666
1667 #ifdef DOUG_LEA_MALLOC
1668 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1669 because mapped region contents are not preserved in
1670 a dumped Emacs.
1671
1672 In case you think of allowing it in a dumped Emacs at the
1673 cost of not being able to re-dump, there's another reason:
1674 mmap'ed data typically have an address towards the top of the
1675 address space, which won't fit into an EMACS_INT (at least on
1676 32-bit systems with the current tagging scheme). --fx */
1677 mallopt (M_MMAP_MAX, 0);
1678 #endif
1679
1680 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1681
1682 #ifdef DOUG_LEA_MALLOC
1683 /* Back to a reasonable maximum of mmap'ed areas. */
1684 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1685 #endif
1686
1687 b->next_free = &b->first_data;
1688 b->first_data.string = NULL;
1689 b->next = large_sblocks;
1690 large_sblocks = b;
1691 }
1692 else if (current_sblock == NULL
1693 || (((char *) current_sblock + SBLOCK_SIZE
1694 - (char *) current_sblock->next_free)
1695 < (needed + GC_STRING_EXTRA)))
1696 {
1697 /* Not enough room in the current sblock. */
1698 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1699 b->next_free = &b->first_data;
1700 b->first_data.string = NULL;
1701 b->next = NULL;
1702
1703 if (current_sblock)
1704 current_sblock->next = b;
1705 else
1706 oldest_sblock = b;
1707 current_sblock = b;
1708 }
1709 else
1710 b = current_sblock;
1711
1712 data = b->next_free;
1713 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1714
1715 MALLOC_UNBLOCK_INPUT;
1716
1717 data->string = s;
1718 s->data = SDATA_DATA (data);
1719 #ifdef GC_CHECK_STRING_BYTES
1720 SDATA_NBYTES (data) = nbytes;
1721 #endif
1722 s->size = nchars;
1723 s->size_byte = nbytes;
1724 s->data[nbytes] = '\0';
1725 #ifdef GC_CHECK_STRING_OVERRUN
1726 memcpy ((char *) data + needed, string_overrun_cookie,
1727 GC_STRING_OVERRUN_COOKIE_SIZE);
1728 #endif
1729
1730 /* Note that Faset may call to this function when S has already data
1731 assigned. In this case, mark data as free by setting it's string
1732 back-pointer to null, and record the size of the data in it. */
1733 if (old_data)
1734 {
1735 SDATA_NBYTES (old_data) = old_nbytes;
1736 old_data->string = NULL;
1737 }
1738
1739 consing_since_gc += needed;
1740 }
1741
1742
1743 /* Sweep and compact strings. */
1744
1745 static void
1746 sweep_strings (void)
1747 {
1748 struct string_block *b, *next;
1749 struct string_block *live_blocks = NULL;
1750
1751 string_free_list = NULL;
1752 total_strings = total_free_strings = 0;
1753 total_string_bytes = 0;
1754
1755 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1756 for (b = string_blocks; b; b = next)
1757 {
1758 int i, nfree = 0;
1759 struct Lisp_String *free_list_before = string_free_list;
1760
1761 next = b->next;
1762
1763 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1764 {
1765 struct Lisp_String *s = b->strings + i;
1766
1767 if (s->data)
1768 {
1769 /* String was not on free-list before. */
1770 if (STRING_MARKED_P (s))
1771 {
1772 /* String is live; unmark it and its intervals. */
1773 UNMARK_STRING (s);
1774
1775 /* Do not use string_(set|get)_intervals here. */
1776 s->intervals = balance_intervals (s->intervals);
1777
1778 ++total_strings;
1779 total_string_bytes += STRING_BYTES (s);
1780 }
1781 else
1782 {
1783 /* String is dead. Put it on the free-list. */
1784 struct sdata *data = SDATA_OF_STRING (s);
1785
1786 /* Save the size of S in its sdata so that we know
1787 how large that is. Reset the sdata's string
1788 back-pointer so that we know it's free. */
1789 #ifdef GC_CHECK_STRING_BYTES
1790 if (string_bytes (s) != SDATA_NBYTES (data))
1791 emacs_abort ();
1792 #else
1793 data->u.nbytes = STRING_BYTES (s);
1794 #endif
1795 data->string = NULL;
1796
1797 /* Reset the strings's `data' member so that we
1798 know it's free. */
1799 s->data = NULL;
1800
1801 /* Put the string on the free-list. */
1802 NEXT_FREE_LISP_STRING (s) = string_free_list;
1803 string_free_list = s;
1804 ++nfree;
1805 }
1806 }
1807 else
1808 {
1809 /* S was on the free-list before. Put it there again. */
1810 NEXT_FREE_LISP_STRING (s) = string_free_list;
1811 string_free_list = s;
1812 ++nfree;
1813 }
1814 }
1815
1816 /* Free blocks that contain free Lisp_Strings only, except
1817 the first two of them. */
1818 if (nfree == STRING_BLOCK_SIZE
1819 && total_free_strings > STRING_BLOCK_SIZE)
1820 {
1821 lisp_free (b);
1822 string_free_list = free_list_before;
1823 }
1824 else
1825 {
1826 total_free_strings += nfree;
1827 b->next = live_blocks;
1828 live_blocks = b;
1829 }
1830 }
1831
1832 check_string_free_list ();
1833
1834 string_blocks = live_blocks;
1835 free_large_strings ();
1836 compact_small_strings ();
1837
1838 check_string_free_list ();
1839 }
1840
1841
1842 /* Free dead large strings. */
1843
1844 static void
1845 free_large_strings (void)
1846 {
1847 struct sblock *b, *next;
1848 struct sblock *live_blocks = NULL;
1849
1850 for (b = large_sblocks; b; b = next)
1851 {
1852 next = b->next;
1853
1854 if (b->first_data.string == NULL)
1855 lisp_free (b);
1856 else
1857 {
1858 b->next = live_blocks;
1859 live_blocks = b;
1860 }
1861 }
1862
1863 large_sblocks = live_blocks;
1864 }
1865
1866
1867 /* Compact data of small strings. Free sblocks that don't contain
1868 data of live strings after compaction. */
1869
1870 static void
1871 compact_small_strings (void)
1872 {
1873 struct sblock *b, *tb, *next;
1874 struct sdata *from, *to, *end, *tb_end;
1875 struct sdata *to_end, *from_end;
1876
1877 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1878 to, and TB_END is the end of TB. */
1879 tb = oldest_sblock;
1880 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1881 to = &tb->first_data;
1882
1883 /* Step through the blocks from the oldest to the youngest. We
1884 expect that old blocks will stabilize over time, so that less
1885 copying will happen this way. */
1886 for (b = oldest_sblock; b; b = b->next)
1887 {
1888 end = b->next_free;
1889 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1890
1891 for (from = &b->first_data; from < end; from = from_end)
1892 {
1893 /* Compute the next FROM here because copying below may
1894 overwrite data we need to compute it. */
1895 ptrdiff_t nbytes;
1896 struct Lisp_String *s = from->string;
1897
1898 #ifdef GC_CHECK_STRING_BYTES
1899 /* Check that the string size recorded in the string is the
1900 same as the one recorded in the sdata structure. */
1901 if (s && string_bytes (s) != SDATA_NBYTES (from))
1902 emacs_abort ();
1903 #endif /* GC_CHECK_STRING_BYTES */
1904
1905 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1906 eassert (nbytes <= LARGE_STRING_BYTES);
1907
1908 nbytes = SDATA_SIZE (nbytes);
1909 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1910
1911 #ifdef GC_CHECK_STRING_OVERRUN
1912 if (memcmp (string_overrun_cookie,
1913 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1914 GC_STRING_OVERRUN_COOKIE_SIZE))
1915 emacs_abort ();
1916 #endif
1917
1918 /* Non-NULL S means it's alive. Copy its data. */
1919 if (s)
1920 {
1921 /* If TB is full, proceed with the next sblock. */
1922 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1923 if (to_end > tb_end)
1924 {
1925 tb->next_free = to;
1926 tb = tb->next;
1927 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1928 to = &tb->first_data;
1929 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1930 }
1931
1932 /* Copy, and update the string's `data' pointer. */
1933 if (from != to)
1934 {
1935 eassert (tb != b || to < from);
1936 memmove (to, from, nbytes + GC_STRING_EXTRA);
1937 to->string->data = SDATA_DATA (to);
1938 }
1939
1940 /* Advance past the sdata we copied to. */
1941 to = to_end;
1942 }
1943 }
1944 }
1945
1946 /* The rest of the sblocks following TB don't contain live data, so
1947 we can free them. */
1948 for (b = tb->next; b; b = next)
1949 {
1950 next = b->next;
1951 lisp_free (b);
1952 }
1953
1954 tb->next_free = to;
1955 tb->next = NULL;
1956 current_sblock = tb;
1957 }
1958
1959 void
1960 string_overflow (void)
1961 {
1962 error ("Maximum string size exceeded");
1963 }
1964
1965 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1966 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1967 LENGTH must be an integer.
1968 INIT must be an integer that represents a character. */)
1969 (Lisp_Object length, Lisp_Object init)
1970 {
1971 register Lisp_Object val;
1972 register unsigned char *p, *end;
1973 int c;
1974 EMACS_INT nbytes;
1975
1976 CHECK_NATNUM (length);
1977 CHECK_CHARACTER (init);
1978
1979 c = XFASTINT (init);
1980 if (ASCII_CHAR_P (c))
1981 {
1982 nbytes = XINT (length);
1983 val = make_uninit_string (nbytes);
1984 p = SDATA (val);
1985 end = p + SCHARS (val);
1986 while (p != end)
1987 *p++ = c;
1988 }
1989 else
1990 {
1991 unsigned char str[MAX_MULTIBYTE_LENGTH];
1992 int len = CHAR_STRING (c, str);
1993 EMACS_INT string_len = XINT (length);
1994
1995 if (string_len > STRING_BYTES_MAX / len)
1996 string_overflow ();
1997 nbytes = len * string_len;
1998 val = make_uninit_multibyte_string (string_len, nbytes);
1999 p = SDATA (val);
2000 end = p + nbytes;
2001 while (p != end)
2002 {
2003 memcpy (p, str, len);
2004 p += len;
2005 }
2006 }
2007
2008 *p = 0;
2009 return val;
2010 }
2011
2012
2013 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2014 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2015 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2016 (Lisp_Object length, Lisp_Object init)
2017 {
2018 register Lisp_Object val;
2019 struct Lisp_Bool_Vector *p;
2020 ptrdiff_t length_in_chars;
2021 EMACS_INT length_in_elts;
2022 int bits_per_value;
2023 int extra_bool_elts = ((bool_header_size - header_size + word_size - 1)
2024 / word_size);
2025
2026 CHECK_NATNUM (length);
2027
2028 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2029
2030 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2031
2032 val = Fmake_vector (make_number (length_in_elts + extra_bool_elts), Qnil);
2033
2034 /* No Lisp_Object to trace in there. */
2035 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2036
2037 p = XBOOL_VECTOR (val);
2038 p->size = XFASTINT (length);
2039
2040 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2041 / BOOL_VECTOR_BITS_PER_CHAR);
2042 if (length_in_chars)
2043 {
2044 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2045
2046 /* Clear any extraneous bits in the last byte. */
2047 p->data[length_in_chars - 1]
2048 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
2049 }
2050
2051 return val;
2052 }
2053
2054
2055 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2056 of characters from the contents. This string may be unibyte or
2057 multibyte, depending on the contents. */
2058
2059 Lisp_Object
2060 make_string (const char *contents, ptrdiff_t nbytes)
2061 {
2062 register Lisp_Object val;
2063 ptrdiff_t nchars, multibyte_nbytes;
2064
2065 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2066 &nchars, &multibyte_nbytes);
2067 if (nbytes == nchars || nbytes != multibyte_nbytes)
2068 /* CONTENTS contains no multibyte sequences or contains an invalid
2069 multibyte sequence. We must make unibyte string. */
2070 val = make_unibyte_string (contents, nbytes);
2071 else
2072 val = make_multibyte_string (contents, nchars, nbytes);
2073 return val;
2074 }
2075
2076
2077 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2078
2079 Lisp_Object
2080 make_unibyte_string (const char *contents, ptrdiff_t length)
2081 {
2082 register Lisp_Object val;
2083 val = make_uninit_string (length);
2084 memcpy (SDATA (val), contents, length);
2085 return val;
2086 }
2087
2088
2089 /* Make a multibyte string from NCHARS characters occupying NBYTES
2090 bytes at CONTENTS. */
2091
2092 Lisp_Object
2093 make_multibyte_string (const char *contents,
2094 ptrdiff_t nchars, ptrdiff_t nbytes)
2095 {
2096 register Lisp_Object val;
2097 val = make_uninit_multibyte_string (nchars, nbytes);
2098 memcpy (SDATA (val), contents, nbytes);
2099 return val;
2100 }
2101
2102
2103 /* Make a string from NCHARS characters occupying NBYTES bytes at
2104 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2105
2106 Lisp_Object
2107 make_string_from_bytes (const char *contents,
2108 ptrdiff_t nchars, ptrdiff_t nbytes)
2109 {
2110 register Lisp_Object val;
2111 val = make_uninit_multibyte_string (nchars, nbytes);
2112 memcpy (SDATA (val), contents, nbytes);
2113 if (SBYTES (val) == SCHARS (val))
2114 STRING_SET_UNIBYTE (val);
2115 return val;
2116 }
2117
2118
2119 /* Make a string from NCHARS characters occupying NBYTES bytes at
2120 CONTENTS. The argument MULTIBYTE controls whether to label the
2121 string as multibyte. If NCHARS is negative, it counts the number of
2122 characters by itself. */
2123
2124 Lisp_Object
2125 make_specified_string (const char *contents,
2126 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2127 {
2128 Lisp_Object val;
2129
2130 if (nchars < 0)
2131 {
2132 if (multibyte)
2133 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2134 nbytes);
2135 else
2136 nchars = nbytes;
2137 }
2138 val = make_uninit_multibyte_string (nchars, nbytes);
2139 memcpy (SDATA (val), contents, nbytes);
2140 if (!multibyte)
2141 STRING_SET_UNIBYTE (val);
2142 return val;
2143 }
2144
2145
2146 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2147 occupying LENGTH bytes. */
2148
2149 Lisp_Object
2150 make_uninit_string (EMACS_INT length)
2151 {
2152 Lisp_Object val;
2153
2154 if (!length)
2155 return empty_unibyte_string;
2156 val = make_uninit_multibyte_string (length, length);
2157 STRING_SET_UNIBYTE (val);
2158 return val;
2159 }
2160
2161
2162 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2163 which occupy NBYTES bytes. */
2164
2165 Lisp_Object
2166 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2167 {
2168 Lisp_Object string;
2169 struct Lisp_String *s;
2170
2171 if (nchars < 0)
2172 emacs_abort ();
2173 if (!nbytes)
2174 return empty_multibyte_string;
2175
2176 s = allocate_string ();
2177 s->intervals = NULL;
2178 allocate_string_data (s, nchars, nbytes);
2179 XSETSTRING (string, s);
2180 string_chars_consed += nbytes;
2181 return string;
2182 }
2183
2184 /* Print arguments to BUF according to a FORMAT, then return
2185 a Lisp_String initialized with the data from BUF. */
2186
2187 Lisp_Object
2188 make_formatted_string (char *buf, const char *format, ...)
2189 {
2190 va_list ap;
2191 int length;
2192
2193 va_start (ap, format);
2194 length = vsprintf (buf, format, ap);
2195 va_end (ap);
2196 return make_string (buf, length);
2197 }
2198
2199 \f
2200 /***********************************************************************
2201 Float Allocation
2202 ***********************************************************************/
2203
2204 /* We store float cells inside of float_blocks, allocating a new
2205 float_block with malloc whenever necessary. Float cells reclaimed
2206 by GC are put on a free list to be reallocated before allocating
2207 any new float cells from the latest float_block. */
2208
2209 #define FLOAT_BLOCK_SIZE \
2210 (((BLOCK_BYTES - sizeof (struct float_block *) \
2211 /* The compiler might add padding at the end. */ \
2212 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2213 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2214
2215 #define GETMARKBIT(block,n) \
2216 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2217 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2218 & 1)
2219
2220 #define SETMARKBIT(block,n) \
2221 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2222 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2223
2224 #define UNSETMARKBIT(block,n) \
2225 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2226 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2227
2228 #define FLOAT_BLOCK(fptr) \
2229 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2230
2231 #define FLOAT_INDEX(fptr) \
2232 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2233
2234 struct float_block
2235 {
2236 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2237 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2238 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2239 struct float_block *next;
2240 };
2241
2242 #define FLOAT_MARKED_P(fptr) \
2243 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2244
2245 #define FLOAT_MARK(fptr) \
2246 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2247
2248 #define FLOAT_UNMARK(fptr) \
2249 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2250
2251 /* Current float_block. */
2252
2253 static struct float_block *float_block;
2254
2255 /* Index of first unused Lisp_Float in the current float_block. */
2256
2257 static int float_block_index = FLOAT_BLOCK_SIZE;
2258
2259 /* Free-list of Lisp_Floats. */
2260
2261 static struct Lisp_Float *float_free_list;
2262
2263 /* Return a new float object with value FLOAT_VALUE. */
2264
2265 Lisp_Object
2266 make_float (double float_value)
2267 {
2268 register Lisp_Object val;
2269
2270 MALLOC_BLOCK_INPUT;
2271
2272 if (float_free_list)
2273 {
2274 /* We use the data field for chaining the free list
2275 so that we won't use the same field that has the mark bit. */
2276 XSETFLOAT (val, float_free_list);
2277 float_free_list = float_free_list->u.chain;
2278 }
2279 else
2280 {
2281 if (float_block_index == FLOAT_BLOCK_SIZE)
2282 {
2283 struct float_block *new
2284 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2285 new->next = float_block;
2286 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2287 float_block = new;
2288 float_block_index = 0;
2289 total_free_floats += FLOAT_BLOCK_SIZE;
2290 }
2291 XSETFLOAT (val, &float_block->floats[float_block_index]);
2292 float_block_index++;
2293 }
2294
2295 MALLOC_UNBLOCK_INPUT;
2296
2297 XFLOAT_INIT (val, float_value);
2298 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2299 consing_since_gc += sizeof (struct Lisp_Float);
2300 floats_consed++;
2301 total_free_floats--;
2302 return val;
2303 }
2304
2305
2306 \f
2307 /***********************************************************************
2308 Cons Allocation
2309 ***********************************************************************/
2310
2311 /* We store cons cells inside of cons_blocks, allocating a new
2312 cons_block with malloc whenever necessary. Cons cells reclaimed by
2313 GC are put on a free list to be reallocated before allocating
2314 any new cons cells from the latest cons_block. */
2315
2316 #define CONS_BLOCK_SIZE \
2317 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2318 /* The compiler might add padding at the end. */ \
2319 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2320 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2321
2322 #define CONS_BLOCK(fptr) \
2323 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2324
2325 #define CONS_INDEX(fptr) \
2326 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2327
2328 struct cons_block
2329 {
2330 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2331 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2332 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2333 struct cons_block *next;
2334 };
2335
2336 #define CONS_MARKED_P(fptr) \
2337 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2338
2339 #define CONS_MARK(fptr) \
2340 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2341
2342 #define CONS_UNMARK(fptr) \
2343 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2344
2345 /* Current cons_block. */
2346
2347 static struct cons_block *cons_block;
2348
2349 /* Index of first unused Lisp_Cons in the current block. */
2350
2351 static int cons_block_index = CONS_BLOCK_SIZE;
2352
2353 /* Free-list of Lisp_Cons structures. */
2354
2355 static struct Lisp_Cons *cons_free_list;
2356
2357 /* Explicitly free a cons cell by putting it on the free-list. */
2358
2359 void
2360 free_cons (struct Lisp_Cons *ptr)
2361 {
2362 ptr->u.chain = cons_free_list;
2363 #if GC_MARK_STACK
2364 ptr->car = Vdead;
2365 #endif
2366 cons_free_list = ptr;
2367 consing_since_gc -= sizeof *ptr;
2368 total_free_conses++;
2369 }
2370
2371 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2372 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2373 (Lisp_Object car, Lisp_Object cdr)
2374 {
2375 register Lisp_Object val;
2376
2377 MALLOC_BLOCK_INPUT;
2378
2379 if (cons_free_list)
2380 {
2381 /* We use the cdr for chaining the free list
2382 so that we won't use the same field that has the mark bit. */
2383 XSETCONS (val, cons_free_list);
2384 cons_free_list = cons_free_list->u.chain;
2385 }
2386 else
2387 {
2388 if (cons_block_index == CONS_BLOCK_SIZE)
2389 {
2390 struct cons_block *new
2391 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2392 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2393 new->next = cons_block;
2394 cons_block = new;
2395 cons_block_index = 0;
2396 total_free_conses += CONS_BLOCK_SIZE;
2397 }
2398 XSETCONS (val, &cons_block->conses[cons_block_index]);
2399 cons_block_index++;
2400 }
2401
2402 MALLOC_UNBLOCK_INPUT;
2403
2404 XSETCAR (val, car);
2405 XSETCDR (val, cdr);
2406 eassert (!CONS_MARKED_P (XCONS (val)));
2407 consing_since_gc += sizeof (struct Lisp_Cons);
2408 total_free_conses--;
2409 cons_cells_consed++;
2410 return val;
2411 }
2412
2413 #ifdef GC_CHECK_CONS_LIST
2414 /* Get an error now if there's any junk in the cons free list. */
2415 void
2416 check_cons_list (void)
2417 {
2418 struct Lisp_Cons *tail = cons_free_list;
2419
2420 while (tail)
2421 tail = tail->u.chain;
2422 }
2423 #endif
2424
2425 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2426
2427 Lisp_Object
2428 list1 (Lisp_Object arg1)
2429 {
2430 return Fcons (arg1, Qnil);
2431 }
2432
2433 Lisp_Object
2434 list2 (Lisp_Object arg1, Lisp_Object arg2)
2435 {
2436 return Fcons (arg1, Fcons (arg2, Qnil));
2437 }
2438
2439
2440 Lisp_Object
2441 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2442 {
2443 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2444 }
2445
2446
2447 Lisp_Object
2448 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2449 {
2450 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2451 }
2452
2453
2454 Lisp_Object
2455 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2456 {
2457 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2458 Fcons (arg5, Qnil)))));
2459 }
2460
2461 /* Make a list of COUNT Lisp_Objects, where ARG is the
2462 first one. Allocate conses from pure space if TYPE
2463 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2464
2465 Lisp_Object
2466 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2467 {
2468 va_list ap;
2469 ptrdiff_t i;
2470 Lisp_Object val, *objp;
2471
2472 /* Change to SAFE_ALLOCA if you hit this eassert. */
2473 eassert (count <= MAX_ALLOCA / word_size);
2474
2475 objp = alloca (count * word_size);
2476 objp[0] = arg;
2477 va_start (ap, arg);
2478 for (i = 1; i < count; i++)
2479 objp[i] = va_arg (ap, Lisp_Object);
2480 va_end (ap);
2481
2482 for (val = Qnil, i = count - 1; i >= 0; i--)
2483 {
2484 if (type == CONSTYPE_PURE)
2485 val = pure_cons (objp[i], val);
2486 else if (type == CONSTYPE_HEAP)
2487 val = Fcons (objp[i], val);
2488 else
2489 emacs_abort ();
2490 }
2491 return val;
2492 }
2493
2494 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2495 doc: /* Return a newly created list with specified arguments as elements.
2496 Any number of arguments, even zero arguments, are allowed.
2497 usage: (list &rest OBJECTS) */)
2498 (ptrdiff_t nargs, Lisp_Object *args)
2499 {
2500 register Lisp_Object val;
2501 val = Qnil;
2502
2503 while (nargs > 0)
2504 {
2505 nargs--;
2506 val = Fcons (args[nargs], val);
2507 }
2508 return val;
2509 }
2510
2511
2512 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2513 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2514 (register Lisp_Object length, Lisp_Object init)
2515 {
2516 register Lisp_Object val;
2517 register EMACS_INT size;
2518
2519 CHECK_NATNUM (length);
2520 size = XFASTINT (length);
2521
2522 val = Qnil;
2523 while (size > 0)
2524 {
2525 val = Fcons (init, val);
2526 --size;
2527
2528 if (size > 0)
2529 {
2530 val = Fcons (init, val);
2531 --size;
2532
2533 if (size > 0)
2534 {
2535 val = Fcons (init, val);
2536 --size;
2537
2538 if (size > 0)
2539 {
2540 val = Fcons (init, val);
2541 --size;
2542
2543 if (size > 0)
2544 {
2545 val = Fcons (init, val);
2546 --size;
2547 }
2548 }
2549 }
2550 }
2551
2552 QUIT;
2553 }
2554
2555 return val;
2556 }
2557
2558
2559 \f
2560 /***********************************************************************
2561 Vector Allocation
2562 ***********************************************************************/
2563
2564 /* This value is balanced well enough to avoid too much internal overhead
2565 for the most common cases; it's not required to be a power of two, but
2566 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2567
2568 #define VECTOR_BLOCK_SIZE 4096
2569
2570 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2571 enum
2572 {
2573 roundup_size = COMMON_MULTIPLE (word_size, USE_LSB_TAG ? GCALIGNMENT : 1)
2574 };
2575
2576 /* ROUNDUP_SIZE must be a power of 2. */
2577 verify ((roundup_size & (roundup_size - 1)) == 0);
2578
2579 /* Verify assumptions described above. */
2580 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2581 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2582
2583 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2584
2585 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2586
2587 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2588
2589 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2590
2591 /* Size of the minimal vector allocated from block. */
2592
2593 #define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2594
2595 /* Size of the largest vector allocated from block. */
2596
2597 #define VBLOCK_BYTES_MAX \
2598 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2599
2600 /* We maintain one free list for each possible block-allocated
2601 vector size, and this is the number of free lists we have. */
2602
2603 #define VECTOR_MAX_FREE_LIST_INDEX \
2604 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2605
2606 /* Common shortcut to advance vector pointer over a block data. */
2607
2608 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2609
2610 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2611
2612 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2613
2614 /* This special type is used to represent any block-allocated vectorlike
2615 object on the free list. */
2616
2617 struct Lisp_Vectorlike_Free
2618 {
2619 struct vectorlike_header header;
2620 struct Lisp_Vector *next;
2621 };
2622
2623 /* When V is on the free list, it's always treated as Lisp_Vectorlike_Free. */
2624
2625 #define NEXT_IN_FREE_LIST(v) ((struct Lisp_Vectorlike_Free *) v)->next
2626
2627 /* Common shortcut to setup vector on a free list. */
2628
2629 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2630 do { \
2631 (tmp) = ((nbytes - header_size) / word_size); \
2632 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2633 eassert ((nbytes) % roundup_size == 0); \
2634 (tmp) = VINDEX (nbytes); \
2635 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2636 NEXT_IN_FREE_LIST (v) = vector_free_lists[tmp]; \
2637 vector_free_lists[tmp] = (v); \
2638 total_free_vector_slots += (nbytes) / word_size; \
2639 } while (0)
2640
2641 /* This internal type is used to maintain the list of large vectors
2642 which are allocated at their own, e.g. outside of vector blocks. */
2643
2644 struct large_vector
2645 {
2646 union {
2647 struct large_vector *vector;
2648 #if USE_LSB_TAG
2649 /* We need to maintain ROUNDUP_SIZE alignment for the vector member. */
2650 unsigned char c[vroundup (sizeof (struct large_vector *))];
2651 #endif
2652 } next;
2653 struct Lisp_Vector v;
2654 };
2655
2656 /* This internal type is used to maintain an underlying storage
2657 for small vectors. */
2658
2659 struct vector_block
2660 {
2661 char data[VECTOR_BLOCK_BYTES];
2662 struct vector_block *next;
2663 };
2664
2665 /* Chain of vector blocks. */
2666
2667 static struct vector_block *vector_blocks;
2668
2669 /* Vector free lists, where NTH item points to a chain of free
2670 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2671
2672 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2673
2674 /* Singly-linked list of large vectors. */
2675
2676 static struct large_vector *large_vectors;
2677
2678 /* The only vector with 0 slots, allocated from pure space. */
2679
2680 Lisp_Object zero_vector;
2681
2682 /* Number of live vectors. */
2683
2684 static EMACS_INT total_vectors;
2685
2686 /* Total size of live and free vectors, in Lisp_Object units. */
2687
2688 static EMACS_INT total_vector_slots, total_free_vector_slots;
2689
2690 /* Get a new vector block. */
2691
2692 static struct vector_block *
2693 allocate_vector_block (void)
2694 {
2695 struct vector_block *block = xmalloc (sizeof *block);
2696
2697 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2698 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2699 MEM_TYPE_VECTOR_BLOCK);
2700 #endif
2701
2702 block->next = vector_blocks;
2703 vector_blocks = block;
2704 return block;
2705 }
2706
2707 /* Called once to initialize vector allocation. */
2708
2709 static void
2710 init_vectors (void)
2711 {
2712 zero_vector = make_pure_vector (0);
2713 }
2714
2715 /* Allocate vector from a vector block. */
2716
2717 static struct Lisp_Vector *
2718 allocate_vector_from_block (size_t nbytes)
2719 {
2720 struct Lisp_Vector *vector;
2721 struct vector_block *block;
2722 size_t index, restbytes;
2723
2724 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2725 eassert (nbytes % roundup_size == 0);
2726
2727 /* First, try to allocate from a free list
2728 containing vectors of the requested size. */
2729 index = VINDEX (nbytes);
2730 if (vector_free_lists[index])
2731 {
2732 vector = vector_free_lists[index];
2733 vector_free_lists[index] = NEXT_IN_FREE_LIST (vector);
2734 total_free_vector_slots -= nbytes / word_size;
2735 return vector;
2736 }
2737
2738 /* Next, check free lists containing larger vectors. Since
2739 we will split the result, we should have remaining space
2740 large enough to use for one-slot vector at least. */
2741 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2742 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2743 if (vector_free_lists[index])
2744 {
2745 /* This vector is larger than requested. */
2746 vector = vector_free_lists[index];
2747 vector_free_lists[index] = NEXT_IN_FREE_LIST (vector);
2748 total_free_vector_slots -= nbytes / word_size;
2749
2750 /* Excess bytes are used for the smaller vector,
2751 which should be set on an appropriate free list. */
2752 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2753 eassert (restbytes % roundup_size == 0);
2754 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2755 return vector;
2756 }
2757
2758 /* Finally, need a new vector block. */
2759 block = allocate_vector_block ();
2760
2761 /* New vector will be at the beginning of this block. */
2762 vector = (struct Lisp_Vector *) block->data;
2763
2764 /* If the rest of space from this block is large enough
2765 for one-slot vector at least, set up it on a free list. */
2766 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2767 if (restbytes >= VBLOCK_BYTES_MIN)
2768 {
2769 eassert (restbytes % roundup_size == 0);
2770 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2771 }
2772 return vector;
2773 }
2774
2775 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2776
2777 #define VECTOR_IN_BLOCK(vector, block) \
2778 ((char *) (vector) <= (block)->data \
2779 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2780
2781 /* Return the memory footprint of V in bytes. */
2782
2783 static ptrdiff_t
2784 vector_nbytes (struct Lisp_Vector *v)
2785 {
2786 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2787
2788 if (size & PSEUDOVECTOR_FLAG)
2789 {
2790 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2791 size = (bool_header_size
2792 + (((struct Lisp_Bool_Vector *) v)->size
2793 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2794 / BOOL_VECTOR_BITS_PER_CHAR);
2795 else
2796 size = (header_size
2797 + ((size & PSEUDOVECTOR_SIZE_MASK)
2798 + ((size & PSEUDOVECTOR_REST_MASK)
2799 >> PSEUDOVECTOR_SIZE_BITS)) * word_size);
2800 }
2801 else
2802 size = header_size + size * word_size;
2803 return vroundup (size);
2804 }
2805
2806 /* Reclaim space used by unmarked vectors. */
2807
2808 static void
2809 sweep_vectors (void)
2810 {
2811 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
2812 struct large_vector *lv, **lvprev = &large_vectors;
2813 struct Lisp_Vector *vector, *next;
2814
2815 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2816 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2817
2818 /* Looking through vector blocks. */
2819
2820 for (block = vector_blocks; block; block = *bprev)
2821 {
2822 bool free_this_block = 0;
2823 ptrdiff_t nbytes;
2824
2825 for (vector = (struct Lisp_Vector *) block->data;
2826 VECTOR_IN_BLOCK (vector, block); vector = next)
2827 {
2828 if (VECTOR_MARKED_P (vector))
2829 {
2830 VECTOR_UNMARK (vector);
2831 total_vectors++;
2832 nbytes = vector_nbytes (vector);
2833 total_vector_slots += nbytes / word_size;
2834 next = ADVANCE (vector, nbytes);
2835 }
2836 else
2837 {
2838 ptrdiff_t total_bytes;
2839
2840 nbytes = vector_nbytes (vector);
2841 total_bytes = nbytes;
2842 next = ADVANCE (vector, nbytes);
2843
2844 /* While NEXT is not marked, try to coalesce with VECTOR,
2845 thus making VECTOR of the largest possible size. */
2846
2847 while (VECTOR_IN_BLOCK (next, block))
2848 {
2849 if (VECTOR_MARKED_P (next))
2850 break;
2851 nbytes = vector_nbytes (next);
2852 total_bytes += nbytes;
2853 next = ADVANCE (next, nbytes);
2854 }
2855
2856 eassert (total_bytes % roundup_size == 0);
2857
2858 if (vector == (struct Lisp_Vector *) block->data
2859 && !VECTOR_IN_BLOCK (next, block))
2860 /* This block should be freed because all of it's
2861 space was coalesced into the only free vector. */
2862 free_this_block = 1;
2863 else
2864 {
2865 int tmp;
2866 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2867 }
2868 }
2869 }
2870
2871 if (free_this_block)
2872 {
2873 *bprev = block->next;
2874 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2875 mem_delete (mem_find (block->data));
2876 #endif
2877 xfree (block);
2878 }
2879 else
2880 bprev = &block->next;
2881 }
2882
2883 /* Sweep large vectors. */
2884
2885 for (lv = large_vectors; lv; lv = *lvprev)
2886 {
2887 vector = &lv->v;
2888 if (VECTOR_MARKED_P (vector))
2889 {
2890 VECTOR_UNMARK (vector);
2891 total_vectors++;
2892 if (vector->header.size & PSEUDOVECTOR_FLAG)
2893 {
2894 struct Lisp_Bool_Vector *b = (struct Lisp_Bool_Vector *) vector;
2895
2896 /* All non-bool pseudovectors are small enough to be allocated
2897 from vector blocks. This code should be redesigned if some
2898 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2899 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
2900
2901 total_vector_slots
2902 += (bool_header_size
2903 + ((b->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2904 / BOOL_VECTOR_BITS_PER_CHAR)) / word_size;
2905 }
2906 else
2907 total_vector_slots
2908 += header_size / word_size + vector->header.size;
2909 lvprev = &lv->next.vector;
2910 }
2911 else
2912 {
2913 *lvprev = lv->next.vector;
2914 lisp_free (lv);
2915 }
2916 }
2917 }
2918
2919 /* Value is a pointer to a newly allocated Lisp_Vector structure
2920 with room for LEN Lisp_Objects. */
2921
2922 static struct Lisp_Vector *
2923 allocate_vectorlike (ptrdiff_t len)
2924 {
2925 struct Lisp_Vector *p;
2926
2927 MALLOC_BLOCK_INPUT;
2928
2929 if (len == 0)
2930 p = XVECTOR (zero_vector);
2931 else
2932 {
2933 size_t nbytes = header_size + len * word_size;
2934
2935 #ifdef DOUG_LEA_MALLOC
2936 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2937 because mapped region contents are not preserved in
2938 a dumped Emacs. */
2939 mallopt (M_MMAP_MAX, 0);
2940 #endif
2941
2942 if (nbytes <= VBLOCK_BYTES_MAX)
2943 p = allocate_vector_from_block (vroundup (nbytes));
2944 else
2945 {
2946 struct large_vector *lv
2947 = lisp_malloc (sizeof (*lv) + (len - 1) * word_size,
2948 MEM_TYPE_VECTORLIKE);
2949 lv->next.vector = large_vectors;
2950 large_vectors = lv;
2951 p = &lv->v;
2952 }
2953
2954 #ifdef DOUG_LEA_MALLOC
2955 /* Back to a reasonable maximum of mmap'ed areas. */
2956 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2957 #endif
2958
2959 consing_since_gc += nbytes;
2960 vector_cells_consed += len;
2961 }
2962
2963 MALLOC_UNBLOCK_INPUT;
2964
2965 return p;
2966 }
2967
2968
2969 /* Allocate a vector with LEN slots. */
2970
2971 struct Lisp_Vector *
2972 allocate_vector (EMACS_INT len)
2973 {
2974 struct Lisp_Vector *v;
2975 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
2976
2977 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
2978 memory_full (SIZE_MAX);
2979 v = allocate_vectorlike (len);
2980 v->header.size = len;
2981 return v;
2982 }
2983
2984
2985 /* Allocate other vector-like structures. */
2986
2987 struct Lisp_Vector *
2988 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
2989 {
2990 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2991 int i;
2992
2993 /* Catch bogus values. */
2994 eassert (tag <= PVEC_FONT);
2995 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
2996 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
2997
2998 /* Only the first lisplen slots will be traced normally by the GC. */
2999 for (i = 0; i < lisplen; ++i)
3000 v->contents[i] = Qnil;
3001
3002 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3003 return v;
3004 }
3005
3006 struct buffer *
3007 allocate_buffer (void)
3008 {
3009 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3010
3011 BUFFER_PVEC_INIT (b);
3012 /* Put B on the chain of all buffers including killed ones. */
3013 b->next = all_buffers;
3014 all_buffers = b;
3015 /* Note that the rest fields of B are not initialized. */
3016 return b;
3017 }
3018
3019 struct Lisp_Hash_Table *
3020 allocate_hash_table (void)
3021 {
3022 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3023 }
3024
3025 struct window *
3026 allocate_window (void)
3027 {
3028 struct window *w;
3029
3030 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3031 /* Users assumes that non-Lisp data is zeroed. */
3032 memset (&w->current_matrix, 0,
3033 sizeof (*w) - offsetof (struct window, current_matrix));
3034 return w;
3035 }
3036
3037 struct terminal *
3038 allocate_terminal (void)
3039 {
3040 struct terminal *t;
3041
3042 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3043 /* Users assumes that non-Lisp data is zeroed. */
3044 memset (&t->next_terminal, 0,
3045 sizeof (*t) - offsetof (struct terminal, next_terminal));
3046 return t;
3047 }
3048
3049 struct frame *
3050 allocate_frame (void)
3051 {
3052 struct frame *f;
3053
3054 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3055 /* Users assumes that non-Lisp data is zeroed. */
3056 memset (&f->face_cache, 0,
3057 sizeof (*f) - offsetof (struct frame, face_cache));
3058 return f;
3059 }
3060
3061 struct Lisp_Process *
3062 allocate_process (void)
3063 {
3064 struct Lisp_Process *p;
3065
3066 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3067 /* Users assumes that non-Lisp data is zeroed. */
3068 memset (&p->pid, 0,
3069 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3070 return p;
3071 }
3072
3073 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3074 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3075 See also the function `vector'. */)
3076 (register Lisp_Object length, Lisp_Object init)
3077 {
3078 Lisp_Object vector;
3079 register ptrdiff_t sizei;
3080 register ptrdiff_t i;
3081 register struct Lisp_Vector *p;
3082
3083 CHECK_NATNUM (length);
3084
3085 p = allocate_vector (XFASTINT (length));
3086 sizei = XFASTINT (length);
3087 for (i = 0; i < sizei; i++)
3088 p->contents[i] = init;
3089
3090 XSETVECTOR (vector, p);
3091 return vector;
3092 }
3093
3094
3095 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3096 doc: /* Return a newly created vector with specified arguments as elements.
3097 Any number of arguments, even zero arguments, are allowed.
3098 usage: (vector &rest OBJECTS) */)
3099 (ptrdiff_t nargs, Lisp_Object *args)
3100 {
3101 register Lisp_Object len, val;
3102 ptrdiff_t i;
3103 register struct Lisp_Vector *p;
3104
3105 XSETFASTINT (len, nargs);
3106 val = Fmake_vector (len, Qnil);
3107 p = XVECTOR (val);
3108 for (i = 0; i < nargs; i++)
3109 p->contents[i] = args[i];
3110 return val;
3111 }
3112
3113 void
3114 make_byte_code (struct Lisp_Vector *v)
3115 {
3116 if (v->header.size > 1 && STRINGP (v->contents[1])
3117 && STRING_MULTIBYTE (v->contents[1]))
3118 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3119 earlier because they produced a raw 8-bit string for byte-code
3120 and now such a byte-code string is loaded as multibyte while
3121 raw 8-bit characters converted to multibyte form. Thus, now we
3122 must convert them back to the original unibyte form. */
3123 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3124 XSETPVECTYPE (v, PVEC_COMPILED);
3125 }
3126
3127 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3128 doc: /* Create a byte-code object with specified arguments as elements.
3129 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3130 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3131 and (optional) INTERACTIVE-SPEC.
3132 The first four arguments are required; at most six have any
3133 significance.
3134 The ARGLIST can be either like the one of `lambda', in which case the arguments
3135 will be dynamically bound before executing the byte code, or it can be an
3136 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3137 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3138 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3139 argument to catch the left-over arguments. If such an integer is used, the
3140 arguments will not be dynamically bound but will be instead pushed on the
3141 stack before executing the byte-code.
3142 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3143 (ptrdiff_t nargs, Lisp_Object *args)
3144 {
3145 register Lisp_Object len, val;
3146 ptrdiff_t i;
3147 register struct Lisp_Vector *p;
3148
3149 /* We used to purecopy everything here, if purify-flag was set. This worked
3150 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3151 dangerous, since make-byte-code is used during execution to build
3152 closures, so any closure built during the preload phase would end up
3153 copied into pure space, including its free variables, which is sometimes
3154 just wasteful and other times plainly wrong (e.g. those free vars may want
3155 to be setcar'd). */
3156
3157 XSETFASTINT (len, nargs);
3158 val = Fmake_vector (len, Qnil);
3159
3160 p = XVECTOR (val);
3161 for (i = 0; i < nargs; i++)
3162 p->contents[i] = args[i];
3163 make_byte_code (p);
3164 XSETCOMPILED (val, p);
3165 return val;
3166 }
3167
3168
3169 \f
3170 /***********************************************************************
3171 Symbol Allocation
3172 ***********************************************************************/
3173
3174 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3175 of the required alignment if LSB tags are used. */
3176
3177 union aligned_Lisp_Symbol
3178 {
3179 struct Lisp_Symbol s;
3180 #if USE_LSB_TAG
3181 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3182 & -GCALIGNMENT];
3183 #endif
3184 };
3185
3186 /* Each symbol_block is just under 1020 bytes long, since malloc
3187 really allocates in units of powers of two and uses 4 bytes for its
3188 own overhead. */
3189
3190 #define SYMBOL_BLOCK_SIZE \
3191 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3192
3193 struct symbol_block
3194 {
3195 /* Place `symbols' first, to preserve alignment. */
3196 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3197 struct symbol_block *next;
3198 };
3199
3200 /* Current symbol block and index of first unused Lisp_Symbol
3201 structure in it. */
3202
3203 static struct symbol_block *symbol_block;
3204 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3205
3206 /* List of free symbols. */
3207
3208 static struct Lisp_Symbol *symbol_free_list;
3209
3210 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3211 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3212 Its value and function definition are void, and its property list is nil. */)
3213 (Lisp_Object name)
3214 {
3215 register Lisp_Object val;
3216 register struct Lisp_Symbol *p;
3217
3218 CHECK_STRING (name);
3219
3220 MALLOC_BLOCK_INPUT;
3221
3222 if (symbol_free_list)
3223 {
3224 XSETSYMBOL (val, symbol_free_list);
3225 symbol_free_list = symbol_free_list->next;
3226 }
3227 else
3228 {
3229 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3230 {
3231 struct symbol_block *new
3232 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3233 new->next = symbol_block;
3234 symbol_block = new;
3235 symbol_block_index = 0;
3236 total_free_symbols += SYMBOL_BLOCK_SIZE;
3237 }
3238 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3239 symbol_block_index++;
3240 }
3241
3242 MALLOC_UNBLOCK_INPUT;
3243
3244 p = XSYMBOL (val);
3245 set_symbol_name (val, name);
3246 set_symbol_plist (val, Qnil);
3247 p->redirect = SYMBOL_PLAINVAL;
3248 SET_SYMBOL_VAL (p, Qunbound);
3249 set_symbol_function (val, Qunbound);
3250 set_symbol_next (val, NULL);
3251 p->gcmarkbit = 0;
3252 p->interned = SYMBOL_UNINTERNED;
3253 p->constant = 0;
3254 p->declared_special = 0;
3255 consing_since_gc += sizeof (struct Lisp_Symbol);
3256 symbols_consed++;
3257 total_free_symbols--;
3258 return val;
3259 }
3260
3261
3262 \f
3263 /***********************************************************************
3264 Marker (Misc) Allocation
3265 ***********************************************************************/
3266
3267 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3268 the required alignment when LSB tags are used. */
3269
3270 union aligned_Lisp_Misc
3271 {
3272 union Lisp_Misc m;
3273 #if USE_LSB_TAG
3274 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3275 & -GCALIGNMENT];
3276 #endif
3277 };
3278
3279 /* Allocation of markers and other objects that share that structure.
3280 Works like allocation of conses. */
3281
3282 #define MARKER_BLOCK_SIZE \
3283 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3284
3285 struct marker_block
3286 {
3287 /* Place `markers' first, to preserve alignment. */
3288 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3289 struct marker_block *next;
3290 };
3291
3292 static struct marker_block *marker_block;
3293 static int marker_block_index = MARKER_BLOCK_SIZE;
3294
3295 static union Lisp_Misc *marker_free_list;
3296
3297 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3298
3299 static Lisp_Object
3300 allocate_misc (enum Lisp_Misc_Type type)
3301 {
3302 Lisp_Object val;
3303
3304 MALLOC_BLOCK_INPUT;
3305
3306 if (marker_free_list)
3307 {
3308 XSETMISC (val, marker_free_list);
3309 marker_free_list = marker_free_list->u_free.chain;
3310 }
3311 else
3312 {
3313 if (marker_block_index == MARKER_BLOCK_SIZE)
3314 {
3315 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3316 new->next = marker_block;
3317 marker_block = new;
3318 marker_block_index = 0;
3319 total_free_markers += MARKER_BLOCK_SIZE;
3320 }
3321 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3322 marker_block_index++;
3323 }
3324
3325 MALLOC_UNBLOCK_INPUT;
3326
3327 --total_free_markers;
3328 consing_since_gc += sizeof (union Lisp_Misc);
3329 misc_objects_consed++;
3330 XMISCTYPE (val) = type;
3331 XMISCANY (val)->gcmarkbit = 0;
3332 return val;
3333 }
3334
3335 /* Free a Lisp_Misc object */
3336
3337 static void
3338 free_misc (Lisp_Object misc)
3339 {
3340 XMISCTYPE (misc) = Lisp_Misc_Free;
3341 XMISC (misc)->u_free.chain = marker_free_list;
3342 marker_free_list = XMISC (misc);
3343 consing_since_gc -= sizeof (union Lisp_Misc);
3344 total_free_markers++;
3345 }
3346
3347 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3348 INTEGER. This is used to package C values to call record_unwind_protect.
3349 The unwind function can get the C values back using XSAVE_VALUE. */
3350
3351 Lisp_Object
3352 make_save_value (void *pointer, ptrdiff_t integer)
3353 {
3354 register Lisp_Object val;
3355 register struct Lisp_Save_Value *p;
3356
3357 val = allocate_misc (Lisp_Misc_Save_Value);
3358 p = XSAVE_VALUE (val);
3359 p->pointer = pointer;
3360 p->integer = integer;
3361 p->dogc = 0;
3362 return val;
3363 }
3364
3365 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3366
3367 Lisp_Object
3368 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3369 {
3370 register Lisp_Object overlay;
3371
3372 overlay = allocate_misc (Lisp_Misc_Overlay);
3373 OVERLAY_START (overlay) = start;
3374 OVERLAY_END (overlay) = end;
3375 set_overlay_plist (overlay, plist);
3376 XOVERLAY (overlay)->next = NULL;
3377 return overlay;
3378 }
3379
3380 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3381 doc: /* Return a newly allocated marker which does not point at any place. */)
3382 (void)
3383 {
3384 register Lisp_Object val;
3385 register struct Lisp_Marker *p;
3386
3387 val = allocate_misc (Lisp_Misc_Marker);
3388 p = XMARKER (val);
3389 p->buffer = 0;
3390 p->bytepos = 0;
3391 p->charpos = 0;
3392 p->next = NULL;
3393 p->insertion_type = 0;
3394 return val;
3395 }
3396
3397 /* Return a newly allocated marker which points into BUF
3398 at character position CHARPOS and byte position BYTEPOS. */
3399
3400 Lisp_Object
3401 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3402 {
3403 Lisp_Object obj;
3404 struct Lisp_Marker *m;
3405
3406 /* No dead buffers here. */
3407 eassert (BUFFER_LIVE_P (buf));
3408
3409 /* Every character is at least one byte. */
3410 eassert (charpos <= bytepos);
3411
3412 obj = allocate_misc (Lisp_Misc_Marker);
3413 m = XMARKER (obj);
3414 m->buffer = buf;
3415 m->charpos = charpos;
3416 m->bytepos = bytepos;
3417 m->insertion_type = 0;
3418 m->next = BUF_MARKERS (buf);
3419 BUF_MARKERS (buf) = m;
3420 return obj;
3421 }
3422
3423 /* Put MARKER back on the free list after using it temporarily. */
3424
3425 void
3426 free_marker (Lisp_Object marker)
3427 {
3428 unchain_marker (XMARKER (marker));
3429 free_misc (marker);
3430 }
3431
3432 \f
3433 /* Return a newly created vector or string with specified arguments as
3434 elements. If all the arguments are characters that can fit
3435 in a string of events, make a string; otherwise, make a vector.
3436
3437 Any number of arguments, even zero arguments, are allowed. */
3438
3439 Lisp_Object
3440 make_event_array (register int nargs, Lisp_Object *args)
3441 {
3442 int i;
3443
3444 for (i = 0; i < nargs; i++)
3445 /* The things that fit in a string
3446 are characters that are in 0...127,
3447 after discarding the meta bit and all the bits above it. */
3448 if (!INTEGERP (args[i])
3449 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3450 return Fvector (nargs, args);
3451
3452 /* Since the loop exited, we know that all the things in it are
3453 characters, so we can make a string. */
3454 {
3455 Lisp_Object result;
3456
3457 result = Fmake_string (make_number (nargs), make_number (0));
3458 for (i = 0; i < nargs; i++)
3459 {
3460 SSET (result, i, XINT (args[i]));
3461 /* Move the meta bit to the right place for a string char. */
3462 if (XINT (args[i]) & CHAR_META)
3463 SSET (result, i, SREF (result, i) | 0x80);
3464 }
3465
3466 return result;
3467 }
3468 }
3469
3470
3471 \f
3472 /************************************************************************
3473 Memory Full Handling
3474 ************************************************************************/
3475
3476
3477 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3478 there may have been size_t overflow so that malloc was never
3479 called, or perhaps malloc was invoked successfully but the
3480 resulting pointer had problems fitting into a tagged EMACS_INT. In
3481 either case this counts as memory being full even though malloc did
3482 not fail. */
3483
3484 void
3485 memory_full (size_t nbytes)
3486 {
3487 /* Do not go into hysterics merely because a large request failed. */
3488 bool enough_free_memory = 0;
3489 if (SPARE_MEMORY < nbytes)
3490 {
3491 void *p;
3492
3493 MALLOC_BLOCK_INPUT;
3494 p = malloc (SPARE_MEMORY);
3495 if (p)
3496 {
3497 free (p);
3498 enough_free_memory = 1;
3499 }
3500 MALLOC_UNBLOCK_INPUT;
3501 }
3502
3503 if (! enough_free_memory)
3504 {
3505 int i;
3506
3507 Vmemory_full = Qt;
3508
3509 memory_full_cons_threshold = sizeof (struct cons_block);
3510
3511 /* The first time we get here, free the spare memory. */
3512 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3513 if (spare_memory[i])
3514 {
3515 if (i == 0)
3516 free (spare_memory[i]);
3517 else if (i >= 1 && i <= 4)
3518 lisp_align_free (spare_memory[i]);
3519 else
3520 lisp_free (spare_memory[i]);
3521 spare_memory[i] = 0;
3522 }
3523 }
3524
3525 /* This used to call error, but if we've run out of memory, we could
3526 get infinite recursion trying to build the string. */
3527 xsignal (Qnil, Vmemory_signal_data);
3528 }
3529
3530 /* If we released our reserve (due to running out of memory),
3531 and we have a fair amount free once again,
3532 try to set aside another reserve in case we run out once more.
3533
3534 This is called when a relocatable block is freed in ralloc.c,
3535 and also directly from this file, in case we're not using ralloc.c. */
3536
3537 void
3538 refill_memory_reserve (void)
3539 {
3540 #ifndef SYSTEM_MALLOC
3541 if (spare_memory[0] == 0)
3542 spare_memory[0] = malloc (SPARE_MEMORY);
3543 if (spare_memory[1] == 0)
3544 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3545 MEM_TYPE_SPARE);
3546 if (spare_memory[2] == 0)
3547 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3548 MEM_TYPE_SPARE);
3549 if (spare_memory[3] == 0)
3550 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3551 MEM_TYPE_SPARE);
3552 if (spare_memory[4] == 0)
3553 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3554 MEM_TYPE_SPARE);
3555 if (spare_memory[5] == 0)
3556 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3557 MEM_TYPE_SPARE);
3558 if (spare_memory[6] == 0)
3559 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3560 MEM_TYPE_SPARE);
3561 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3562 Vmemory_full = Qnil;
3563 #endif
3564 }
3565 \f
3566 /************************************************************************
3567 C Stack Marking
3568 ************************************************************************/
3569
3570 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3571
3572 /* Conservative C stack marking requires a method to identify possibly
3573 live Lisp objects given a pointer value. We do this by keeping
3574 track of blocks of Lisp data that are allocated in a red-black tree
3575 (see also the comment of mem_node which is the type of nodes in
3576 that tree). Function lisp_malloc adds information for an allocated
3577 block to the red-black tree with calls to mem_insert, and function
3578 lisp_free removes it with mem_delete. Functions live_string_p etc
3579 call mem_find to lookup information about a given pointer in the
3580 tree, and use that to determine if the pointer points to a Lisp
3581 object or not. */
3582
3583 /* Initialize this part of alloc.c. */
3584
3585 static void
3586 mem_init (void)
3587 {
3588 mem_z.left = mem_z.right = MEM_NIL;
3589 mem_z.parent = NULL;
3590 mem_z.color = MEM_BLACK;
3591 mem_z.start = mem_z.end = NULL;
3592 mem_root = MEM_NIL;
3593 }
3594
3595
3596 /* Value is a pointer to the mem_node containing START. Value is
3597 MEM_NIL if there is no node in the tree containing START. */
3598
3599 static struct mem_node *
3600 mem_find (void *start)
3601 {
3602 struct mem_node *p;
3603
3604 if (start < min_heap_address || start > max_heap_address)
3605 return MEM_NIL;
3606
3607 /* Make the search always successful to speed up the loop below. */
3608 mem_z.start = start;
3609 mem_z.end = (char *) start + 1;
3610
3611 p = mem_root;
3612 while (start < p->start || start >= p->end)
3613 p = start < p->start ? p->left : p->right;
3614 return p;
3615 }
3616
3617
3618 /* Insert a new node into the tree for a block of memory with start
3619 address START, end address END, and type TYPE. Value is a
3620 pointer to the node that was inserted. */
3621
3622 static struct mem_node *
3623 mem_insert (void *start, void *end, enum mem_type type)
3624 {
3625 struct mem_node *c, *parent, *x;
3626
3627 if (min_heap_address == NULL || start < min_heap_address)
3628 min_heap_address = start;
3629 if (max_heap_address == NULL || end > max_heap_address)
3630 max_heap_address = end;
3631
3632 /* See where in the tree a node for START belongs. In this
3633 particular application, it shouldn't happen that a node is already
3634 present. For debugging purposes, let's check that. */
3635 c = mem_root;
3636 parent = NULL;
3637
3638 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3639
3640 while (c != MEM_NIL)
3641 {
3642 if (start >= c->start && start < c->end)
3643 emacs_abort ();
3644 parent = c;
3645 c = start < c->start ? c->left : c->right;
3646 }
3647
3648 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3649
3650 while (c != MEM_NIL)
3651 {
3652 parent = c;
3653 c = start < c->start ? c->left : c->right;
3654 }
3655
3656 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3657
3658 /* Create a new node. */
3659 #ifdef GC_MALLOC_CHECK
3660 x = malloc (sizeof *x);
3661 if (x == NULL)
3662 emacs_abort ();
3663 #else
3664 x = xmalloc (sizeof *x);
3665 #endif
3666 x->start = start;
3667 x->end = end;
3668 x->type = type;
3669 x->parent = parent;
3670 x->left = x->right = MEM_NIL;
3671 x->color = MEM_RED;
3672
3673 /* Insert it as child of PARENT or install it as root. */
3674 if (parent)
3675 {
3676 if (start < parent->start)
3677 parent->left = x;
3678 else
3679 parent->right = x;
3680 }
3681 else
3682 mem_root = x;
3683
3684 /* Re-establish red-black tree properties. */
3685 mem_insert_fixup (x);
3686
3687 return x;
3688 }
3689
3690
3691 /* Re-establish the red-black properties of the tree, and thereby
3692 balance the tree, after node X has been inserted; X is always red. */
3693
3694 static void
3695 mem_insert_fixup (struct mem_node *x)
3696 {
3697 while (x != mem_root && x->parent->color == MEM_RED)
3698 {
3699 /* X is red and its parent is red. This is a violation of
3700 red-black tree property #3. */
3701
3702 if (x->parent == x->parent->parent->left)
3703 {
3704 /* We're on the left side of our grandparent, and Y is our
3705 "uncle". */
3706 struct mem_node *y = x->parent->parent->right;
3707
3708 if (y->color == MEM_RED)
3709 {
3710 /* Uncle and parent are red but should be black because
3711 X is red. Change the colors accordingly and proceed
3712 with the grandparent. */
3713 x->parent->color = MEM_BLACK;
3714 y->color = MEM_BLACK;
3715 x->parent->parent->color = MEM_RED;
3716 x = x->parent->parent;
3717 }
3718 else
3719 {
3720 /* Parent and uncle have different colors; parent is
3721 red, uncle is black. */
3722 if (x == x->parent->right)
3723 {
3724 x = x->parent;
3725 mem_rotate_left (x);
3726 }
3727
3728 x->parent->color = MEM_BLACK;
3729 x->parent->parent->color = MEM_RED;
3730 mem_rotate_right (x->parent->parent);
3731 }
3732 }
3733 else
3734 {
3735 /* This is the symmetrical case of above. */
3736 struct mem_node *y = x->parent->parent->left;
3737
3738 if (y->color == MEM_RED)
3739 {
3740 x->parent->color = MEM_BLACK;
3741 y->color = MEM_BLACK;
3742 x->parent->parent->color = MEM_RED;
3743 x = x->parent->parent;
3744 }
3745 else
3746 {
3747 if (x == x->parent->left)
3748 {
3749 x = x->parent;
3750 mem_rotate_right (x);
3751 }
3752
3753 x->parent->color = MEM_BLACK;
3754 x->parent->parent->color = MEM_RED;
3755 mem_rotate_left (x->parent->parent);
3756 }
3757 }
3758 }
3759
3760 /* The root may have been changed to red due to the algorithm. Set
3761 it to black so that property #5 is satisfied. */
3762 mem_root->color = MEM_BLACK;
3763 }
3764
3765
3766 /* (x) (y)
3767 / \ / \
3768 a (y) ===> (x) c
3769 / \ / \
3770 b c a b */
3771
3772 static void
3773 mem_rotate_left (struct mem_node *x)
3774 {
3775 struct mem_node *y;
3776
3777 /* Turn y's left sub-tree into x's right sub-tree. */
3778 y = x->right;
3779 x->right = y->left;
3780 if (y->left != MEM_NIL)
3781 y->left->parent = x;
3782
3783 /* Y's parent was x's parent. */
3784 if (y != MEM_NIL)
3785 y->parent = x->parent;
3786
3787 /* Get the parent to point to y instead of x. */
3788 if (x->parent)
3789 {
3790 if (x == x->parent->left)
3791 x->parent->left = y;
3792 else
3793 x->parent->right = y;
3794 }
3795 else
3796 mem_root = y;
3797
3798 /* Put x on y's left. */
3799 y->left = x;
3800 if (x != MEM_NIL)
3801 x->parent = y;
3802 }
3803
3804
3805 /* (x) (Y)
3806 / \ / \
3807 (y) c ===> a (x)
3808 / \ / \
3809 a b b c */
3810
3811 static void
3812 mem_rotate_right (struct mem_node *x)
3813 {
3814 struct mem_node *y = x->left;
3815
3816 x->left = y->right;
3817 if (y->right != MEM_NIL)
3818 y->right->parent = x;
3819
3820 if (y != MEM_NIL)
3821 y->parent = x->parent;
3822 if (x->parent)
3823 {
3824 if (x == x->parent->right)
3825 x->parent->right = y;
3826 else
3827 x->parent->left = y;
3828 }
3829 else
3830 mem_root = y;
3831
3832 y->right = x;
3833 if (x != MEM_NIL)
3834 x->parent = y;
3835 }
3836
3837
3838 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3839
3840 static void
3841 mem_delete (struct mem_node *z)
3842 {
3843 struct mem_node *x, *y;
3844
3845 if (!z || z == MEM_NIL)
3846 return;
3847
3848 if (z->left == MEM_NIL || z->right == MEM_NIL)
3849 y = z;
3850 else
3851 {
3852 y = z->right;
3853 while (y->left != MEM_NIL)
3854 y = y->left;
3855 }
3856
3857 if (y->left != MEM_NIL)
3858 x = y->left;
3859 else
3860 x = y->right;
3861
3862 x->parent = y->parent;
3863 if (y->parent)
3864 {
3865 if (y == y->parent->left)
3866 y->parent->left = x;
3867 else
3868 y->parent->right = x;
3869 }
3870 else
3871 mem_root = x;
3872
3873 if (y != z)
3874 {
3875 z->start = y->start;
3876 z->end = y->end;
3877 z->type = y->type;
3878 }
3879
3880 if (y->color == MEM_BLACK)
3881 mem_delete_fixup (x);
3882
3883 #ifdef GC_MALLOC_CHECK
3884 free (y);
3885 #else
3886 xfree (y);
3887 #endif
3888 }
3889
3890
3891 /* Re-establish the red-black properties of the tree, after a
3892 deletion. */
3893
3894 static void
3895 mem_delete_fixup (struct mem_node *x)
3896 {
3897 while (x != mem_root && x->color == MEM_BLACK)
3898 {
3899 if (x == x->parent->left)
3900 {
3901 struct mem_node *w = x->parent->right;
3902
3903 if (w->color == MEM_RED)
3904 {
3905 w->color = MEM_BLACK;
3906 x->parent->color = MEM_RED;
3907 mem_rotate_left (x->parent);
3908 w = x->parent->right;
3909 }
3910
3911 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3912 {
3913 w->color = MEM_RED;
3914 x = x->parent;
3915 }
3916 else
3917 {
3918 if (w->right->color == MEM_BLACK)
3919 {
3920 w->left->color = MEM_BLACK;
3921 w->color = MEM_RED;
3922 mem_rotate_right (w);
3923 w = x->parent->right;
3924 }
3925 w->color = x->parent->color;
3926 x->parent->color = MEM_BLACK;
3927 w->right->color = MEM_BLACK;
3928 mem_rotate_left (x->parent);
3929 x = mem_root;
3930 }
3931 }
3932 else
3933 {
3934 struct mem_node *w = x->parent->left;
3935
3936 if (w->color == MEM_RED)
3937 {
3938 w->color = MEM_BLACK;
3939 x->parent->color = MEM_RED;
3940 mem_rotate_right (x->parent);
3941 w = x->parent->left;
3942 }
3943
3944 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3945 {
3946 w->color = MEM_RED;
3947 x = x->parent;
3948 }
3949 else
3950 {
3951 if (w->left->color == MEM_BLACK)
3952 {
3953 w->right->color = MEM_BLACK;
3954 w->color = MEM_RED;
3955 mem_rotate_left (w);
3956 w = x->parent->left;
3957 }
3958
3959 w->color = x->parent->color;
3960 x->parent->color = MEM_BLACK;
3961 w->left->color = MEM_BLACK;
3962 mem_rotate_right (x->parent);
3963 x = mem_root;
3964 }
3965 }
3966 }
3967
3968 x->color = MEM_BLACK;
3969 }
3970
3971
3972 /* Value is non-zero if P is a pointer to a live Lisp string on
3973 the heap. M is a pointer to the mem_block for P. */
3974
3975 static bool
3976 live_string_p (struct mem_node *m, void *p)
3977 {
3978 if (m->type == MEM_TYPE_STRING)
3979 {
3980 struct string_block *b = (struct string_block *) m->start;
3981 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3982
3983 /* P must point to the start of a Lisp_String structure, and it
3984 must not be on the free-list. */
3985 return (offset >= 0
3986 && offset % sizeof b->strings[0] == 0
3987 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3988 && ((struct Lisp_String *) p)->data != NULL);
3989 }
3990 else
3991 return 0;
3992 }
3993
3994
3995 /* Value is non-zero if P is a pointer to a live Lisp cons on
3996 the heap. M is a pointer to the mem_block for P. */
3997
3998 static bool
3999 live_cons_p (struct mem_node *m, void *p)
4000 {
4001 if (m->type == MEM_TYPE_CONS)
4002 {
4003 struct cons_block *b = (struct cons_block *) m->start;
4004 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4005
4006 /* P must point to the start of a Lisp_Cons, not be
4007 one of the unused cells in the current cons block,
4008 and not be on the free-list. */
4009 return (offset >= 0
4010 && offset % sizeof b->conses[0] == 0
4011 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4012 && (b != cons_block
4013 || offset / sizeof b->conses[0] < cons_block_index)
4014 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4015 }
4016 else
4017 return 0;
4018 }
4019
4020
4021 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4022 the heap. M is a pointer to the mem_block for P. */
4023
4024 static bool
4025 live_symbol_p (struct mem_node *m, void *p)
4026 {
4027 if (m->type == MEM_TYPE_SYMBOL)
4028 {
4029 struct symbol_block *b = (struct symbol_block *) m->start;
4030 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4031
4032 /* P must point to the start of a Lisp_Symbol, not be
4033 one of the unused cells in the current symbol block,
4034 and not be on the free-list. */
4035 return (offset >= 0
4036 && offset % sizeof b->symbols[0] == 0
4037 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4038 && (b != symbol_block
4039 || offset / sizeof b->symbols[0] < symbol_block_index)
4040 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4041 }
4042 else
4043 return 0;
4044 }
4045
4046
4047 /* Value is non-zero if P is a pointer to a live Lisp float on
4048 the heap. M is a pointer to the mem_block for P. */
4049
4050 static bool
4051 live_float_p (struct mem_node *m, void *p)
4052 {
4053 if (m->type == MEM_TYPE_FLOAT)
4054 {
4055 struct float_block *b = (struct float_block *) m->start;
4056 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4057
4058 /* P must point to the start of a Lisp_Float and not be
4059 one of the unused cells in the current float block. */
4060 return (offset >= 0
4061 && offset % sizeof b->floats[0] == 0
4062 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4063 && (b != float_block
4064 || offset / sizeof b->floats[0] < float_block_index));
4065 }
4066 else
4067 return 0;
4068 }
4069
4070
4071 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4072 the heap. M is a pointer to the mem_block for P. */
4073
4074 static bool
4075 live_misc_p (struct mem_node *m, void *p)
4076 {
4077 if (m->type == MEM_TYPE_MISC)
4078 {
4079 struct marker_block *b = (struct marker_block *) m->start;
4080 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4081
4082 /* P must point to the start of a Lisp_Misc, not be
4083 one of the unused cells in the current misc block,
4084 and not be on the free-list. */
4085 return (offset >= 0
4086 && offset % sizeof b->markers[0] == 0
4087 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4088 && (b != marker_block
4089 || offset / sizeof b->markers[0] < marker_block_index)
4090 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4091 }
4092 else
4093 return 0;
4094 }
4095
4096
4097 /* Value is non-zero if P is a pointer to a live vector-like object.
4098 M is a pointer to the mem_block for P. */
4099
4100 static bool
4101 live_vector_p (struct mem_node *m, void *p)
4102 {
4103 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4104 {
4105 /* This memory node corresponds to a vector block. */
4106 struct vector_block *block = (struct vector_block *) m->start;
4107 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4108
4109 /* P is in the block's allocation range. Scan the block
4110 up to P and see whether P points to the start of some
4111 vector which is not on a free list. FIXME: check whether
4112 some allocation patterns (probably a lot of short vectors)
4113 may cause a substantial overhead of this loop. */
4114 while (VECTOR_IN_BLOCK (vector, block)
4115 && vector <= (struct Lisp_Vector *) p)
4116 {
4117 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4118 return 1;
4119 else
4120 vector = ADVANCE (vector, vector_nbytes (vector));
4121 }
4122 }
4123 else if (m->type == MEM_TYPE_VECTORLIKE
4124 && (char *) p == ((char *) m->start
4125 + offsetof (struct large_vector, v)))
4126 /* This memory node corresponds to a large vector. */
4127 return 1;
4128 return 0;
4129 }
4130
4131
4132 /* Value is non-zero if P is a pointer to a live buffer. M is a
4133 pointer to the mem_block for P. */
4134
4135 static bool
4136 live_buffer_p (struct mem_node *m, void *p)
4137 {
4138 /* P must point to the start of the block, and the buffer
4139 must not have been killed. */
4140 return (m->type == MEM_TYPE_BUFFER
4141 && p == m->start
4142 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4143 }
4144
4145 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4146
4147 #if GC_MARK_STACK
4148
4149 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4150
4151 /* Array of objects that are kept alive because the C stack contains
4152 a pattern that looks like a reference to them . */
4153
4154 #define MAX_ZOMBIES 10
4155 static Lisp_Object zombies[MAX_ZOMBIES];
4156
4157 /* Number of zombie objects. */
4158
4159 static EMACS_INT nzombies;
4160
4161 /* Number of garbage collections. */
4162
4163 static EMACS_INT ngcs;
4164
4165 /* Average percentage of zombies per collection. */
4166
4167 static double avg_zombies;
4168
4169 /* Max. number of live and zombie objects. */
4170
4171 static EMACS_INT max_live, max_zombies;
4172
4173 /* Average number of live objects per GC. */
4174
4175 static double avg_live;
4176
4177 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4178 doc: /* Show information about live and zombie objects. */)
4179 (void)
4180 {
4181 Lisp_Object args[8], zombie_list = Qnil;
4182 EMACS_INT i;
4183 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4184 zombie_list = Fcons (zombies[i], zombie_list);
4185 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4186 args[1] = make_number (ngcs);
4187 args[2] = make_float (avg_live);
4188 args[3] = make_float (avg_zombies);
4189 args[4] = make_float (avg_zombies / avg_live / 100);
4190 args[5] = make_number (max_live);
4191 args[6] = make_number (max_zombies);
4192 args[7] = zombie_list;
4193 return Fmessage (8, args);
4194 }
4195
4196 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4197
4198
4199 /* Mark OBJ if we can prove it's a Lisp_Object. */
4200
4201 static void
4202 mark_maybe_object (Lisp_Object obj)
4203 {
4204 void *po;
4205 struct mem_node *m;
4206
4207 if (INTEGERP (obj))
4208 return;
4209
4210 po = (void *) XPNTR (obj);
4211 m = mem_find (po);
4212
4213 if (m != MEM_NIL)
4214 {
4215 bool mark_p = 0;
4216
4217 switch (XTYPE (obj))
4218 {
4219 case Lisp_String:
4220 mark_p = (live_string_p (m, po)
4221 && !STRING_MARKED_P ((struct Lisp_String *) po));
4222 break;
4223
4224 case Lisp_Cons:
4225 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4226 break;
4227
4228 case Lisp_Symbol:
4229 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4230 break;
4231
4232 case Lisp_Float:
4233 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4234 break;
4235
4236 case Lisp_Vectorlike:
4237 /* Note: can't check BUFFERP before we know it's a
4238 buffer because checking that dereferences the pointer
4239 PO which might point anywhere. */
4240 if (live_vector_p (m, po))
4241 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4242 else if (live_buffer_p (m, po))
4243 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4244 break;
4245
4246 case Lisp_Misc:
4247 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4248 break;
4249
4250 default:
4251 break;
4252 }
4253
4254 if (mark_p)
4255 {
4256 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4257 if (nzombies < MAX_ZOMBIES)
4258 zombies[nzombies] = obj;
4259 ++nzombies;
4260 #endif
4261 mark_object (obj);
4262 }
4263 }
4264 }
4265
4266
4267 /* If P points to Lisp data, mark that as live if it isn't already
4268 marked. */
4269
4270 static void
4271 mark_maybe_pointer (void *p)
4272 {
4273 struct mem_node *m;
4274
4275 /* Quickly rule out some values which can't point to Lisp data.
4276 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4277 Otherwise, assume that Lisp data is aligned on even addresses. */
4278 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4279 return;
4280
4281 m = mem_find (p);
4282 if (m != MEM_NIL)
4283 {
4284 Lisp_Object obj = Qnil;
4285
4286 switch (m->type)
4287 {
4288 case MEM_TYPE_NON_LISP:
4289 case MEM_TYPE_SPARE:
4290 /* Nothing to do; not a pointer to Lisp memory. */
4291 break;
4292
4293 case MEM_TYPE_BUFFER:
4294 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4295 XSETVECTOR (obj, p);
4296 break;
4297
4298 case MEM_TYPE_CONS:
4299 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4300 XSETCONS (obj, p);
4301 break;
4302
4303 case MEM_TYPE_STRING:
4304 if (live_string_p (m, p)
4305 && !STRING_MARKED_P ((struct Lisp_String *) p))
4306 XSETSTRING (obj, p);
4307 break;
4308
4309 case MEM_TYPE_MISC:
4310 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4311 XSETMISC (obj, p);
4312 break;
4313
4314 case MEM_TYPE_SYMBOL:
4315 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4316 XSETSYMBOL (obj, p);
4317 break;
4318
4319 case MEM_TYPE_FLOAT:
4320 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4321 XSETFLOAT (obj, p);
4322 break;
4323
4324 case MEM_TYPE_VECTORLIKE:
4325 case MEM_TYPE_VECTOR_BLOCK:
4326 if (live_vector_p (m, p))
4327 {
4328 Lisp_Object tem;
4329 XSETVECTOR (tem, p);
4330 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4331 obj = tem;
4332 }
4333 break;
4334
4335 default:
4336 emacs_abort ();
4337 }
4338
4339 if (!NILP (obj))
4340 mark_object (obj);
4341 }
4342 }
4343
4344
4345 /* Alignment of pointer values. Use alignof, as it sometimes returns
4346 a smaller alignment than GCC's __alignof__ and mark_memory might
4347 miss objects if __alignof__ were used. */
4348 #define GC_POINTER_ALIGNMENT alignof (void *)
4349
4350 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4351 not suffice, which is the typical case. A host where a Lisp_Object is
4352 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4353 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4354 suffice to widen it to to a Lisp_Object and check it that way. */
4355 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4356 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4357 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4358 nor mark_maybe_object can follow the pointers. This should not occur on
4359 any practical porting target. */
4360 # error "MSB type bits straddle pointer-word boundaries"
4361 # endif
4362 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4363 pointer words that hold pointers ORed with type bits. */
4364 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4365 #else
4366 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4367 words that hold unmodified pointers. */
4368 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4369 #endif
4370
4371 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4372 or END+OFFSET..START. */
4373
4374 static void
4375 mark_memory (void *start, void *end)
4376 #if defined (__clang__) && defined (__has_feature)
4377 #if __has_feature(address_sanitizer)
4378 /* Do not allow -faddress-sanitizer to check this function, since it
4379 crosses the function stack boundary, and thus would yield many
4380 false positives. */
4381 __attribute__((no_address_safety_analysis))
4382 #endif
4383 #endif
4384 {
4385 void **pp;
4386 int i;
4387
4388 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4389 nzombies = 0;
4390 #endif
4391
4392 /* Make START the pointer to the start of the memory region,
4393 if it isn't already. */
4394 if (end < start)
4395 {
4396 void *tem = start;
4397 start = end;
4398 end = tem;
4399 }
4400
4401 /* Mark Lisp data pointed to. This is necessary because, in some
4402 situations, the C compiler optimizes Lisp objects away, so that
4403 only a pointer to them remains. Example:
4404
4405 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4406 ()
4407 {
4408 Lisp_Object obj = build_string ("test");
4409 struct Lisp_String *s = XSTRING (obj);
4410 Fgarbage_collect ();
4411 fprintf (stderr, "test `%s'\n", s->data);
4412 return Qnil;
4413 }
4414
4415 Here, `obj' isn't really used, and the compiler optimizes it
4416 away. The only reference to the life string is through the
4417 pointer `s'. */
4418
4419 for (pp = start; (void *) pp < end; pp++)
4420 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4421 {
4422 void *p = *(void **) ((char *) pp + i);
4423 mark_maybe_pointer (p);
4424 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4425 mark_maybe_object (XIL ((intptr_t) p));
4426 }
4427 }
4428
4429 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4430 the GCC system configuration. In gcc 3.2, the only systems for
4431 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4432 by others?) and ns32k-pc532-min. */
4433
4434 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4435
4436 static bool setjmp_tested_p;
4437 static int longjmps_done;
4438
4439 #define SETJMP_WILL_LIKELY_WORK "\
4440 \n\
4441 Emacs garbage collector has been changed to use conservative stack\n\
4442 marking. Emacs has determined that the method it uses to do the\n\
4443 marking will likely work on your system, but this isn't sure.\n\
4444 \n\
4445 If you are a system-programmer, or can get the help of a local wizard\n\
4446 who is, please take a look at the function mark_stack in alloc.c, and\n\
4447 verify that the methods used are appropriate for your system.\n\
4448 \n\
4449 Please mail the result to <emacs-devel@gnu.org>.\n\
4450 "
4451
4452 #define SETJMP_WILL_NOT_WORK "\
4453 \n\
4454 Emacs garbage collector has been changed to use conservative stack\n\
4455 marking. Emacs has determined that the default method it uses to do the\n\
4456 marking will not work on your system. We will need a system-dependent\n\
4457 solution for your system.\n\
4458 \n\
4459 Please take a look at the function mark_stack in alloc.c, and\n\
4460 try to find a way to make it work on your system.\n\
4461 \n\
4462 Note that you may get false negatives, depending on the compiler.\n\
4463 In particular, you need to use -O with GCC for this test.\n\
4464 \n\
4465 Please mail the result to <emacs-devel@gnu.org>.\n\
4466 "
4467
4468
4469 /* Perform a quick check if it looks like setjmp saves registers in a
4470 jmp_buf. Print a message to stderr saying so. When this test
4471 succeeds, this is _not_ a proof that setjmp is sufficient for
4472 conservative stack marking. Only the sources or a disassembly
4473 can prove that. */
4474
4475 static void
4476 test_setjmp (void)
4477 {
4478 char buf[10];
4479 register int x;
4480 sys_jmp_buf jbuf;
4481
4482 /* Arrange for X to be put in a register. */
4483 sprintf (buf, "1");
4484 x = strlen (buf);
4485 x = 2 * x - 1;
4486
4487 sys_setjmp (jbuf);
4488 if (longjmps_done == 1)
4489 {
4490 /* Came here after the longjmp at the end of the function.
4491
4492 If x == 1, the longjmp has restored the register to its
4493 value before the setjmp, and we can hope that setjmp
4494 saves all such registers in the jmp_buf, although that
4495 isn't sure.
4496
4497 For other values of X, either something really strange is
4498 taking place, or the setjmp just didn't save the register. */
4499
4500 if (x == 1)
4501 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4502 else
4503 {
4504 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4505 exit (1);
4506 }
4507 }
4508
4509 ++longjmps_done;
4510 x = 2;
4511 if (longjmps_done == 1)
4512 sys_longjmp (jbuf, 1);
4513 }
4514
4515 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4516
4517
4518 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4519
4520 /* Abort if anything GCPRO'd doesn't survive the GC. */
4521
4522 static void
4523 check_gcpros (void)
4524 {
4525 struct gcpro *p;
4526 ptrdiff_t i;
4527
4528 for (p = gcprolist; p; p = p->next)
4529 for (i = 0; i < p->nvars; ++i)
4530 if (!survives_gc_p (p->var[i]))
4531 /* FIXME: It's not necessarily a bug. It might just be that the
4532 GCPRO is unnecessary or should release the object sooner. */
4533 emacs_abort ();
4534 }
4535
4536 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4537
4538 static void
4539 dump_zombies (void)
4540 {
4541 int i;
4542
4543 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4544 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4545 {
4546 fprintf (stderr, " %d = ", i);
4547 debug_print (zombies[i]);
4548 }
4549 }
4550
4551 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4552
4553
4554 /* Mark live Lisp objects on the C stack.
4555
4556 There are several system-dependent problems to consider when
4557 porting this to new architectures:
4558
4559 Processor Registers
4560
4561 We have to mark Lisp objects in CPU registers that can hold local
4562 variables or are used to pass parameters.
4563
4564 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4565 something that either saves relevant registers on the stack, or
4566 calls mark_maybe_object passing it each register's contents.
4567
4568 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4569 implementation assumes that calling setjmp saves registers we need
4570 to see in a jmp_buf which itself lies on the stack. This doesn't
4571 have to be true! It must be verified for each system, possibly
4572 by taking a look at the source code of setjmp.
4573
4574 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4575 can use it as a machine independent method to store all registers
4576 to the stack. In this case the macros described in the previous
4577 two paragraphs are not used.
4578
4579 Stack Layout
4580
4581 Architectures differ in the way their processor stack is organized.
4582 For example, the stack might look like this
4583
4584 +----------------+
4585 | Lisp_Object | size = 4
4586 +----------------+
4587 | something else | size = 2
4588 +----------------+
4589 | Lisp_Object | size = 4
4590 +----------------+
4591 | ... |
4592
4593 In such a case, not every Lisp_Object will be aligned equally. To
4594 find all Lisp_Object on the stack it won't be sufficient to walk
4595 the stack in steps of 4 bytes. Instead, two passes will be
4596 necessary, one starting at the start of the stack, and a second
4597 pass starting at the start of the stack + 2. Likewise, if the
4598 minimal alignment of Lisp_Objects on the stack is 1, four passes
4599 would be necessary, each one starting with one byte more offset
4600 from the stack start. */
4601
4602 static void
4603 mark_stack (void)
4604 {
4605 void *end;
4606
4607 #ifdef HAVE___BUILTIN_UNWIND_INIT
4608 /* Force callee-saved registers and register windows onto the stack.
4609 This is the preferred method if available, obviating the need for
4610 machine dependent methods. */
4611 __builtin_unwind_init ();
4612 end = &end;
4613 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4614 #ifndef GC_SAVE_REGISTERS_ON_STACK
4615 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4616 union aligned_jmpbuf {
4617 Lisp_Object o;
4618 sys_jmp_buf j;
4619 } j;
4620 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4621 #endif
4622 /* This trick flushes the register windows so that all the state of
4623 the process is contained in the stack. */
4624 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4625 needed on ia64 too. See mach_dep.c, where it also says inline
4626 assembler doesn't work with relevant proprietary compilers. */
4627 #ifdef __sparc__
4628 #if defined (__sparc64__) && defined (__FreeBSD__)
4629 /* FreeBSD does not have a ta 3 handler. */
4630 asm ("flushw");
4631 #else
4632 asm ("ta 3");
4633 #endif
4634 #endif
4635
4636 /* Save registers that we need to see on the stack. We need to see
4637 registers used to hold register variables and registers used to
4638 pass parameters. */
4639 #ifdef GC_SAVE_REGISTERS_ON_STACK
4640 GC_SAVE_REGISTERS_ON_STACK (end);
4641 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4642
4643 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4644 setjmp will definitely work, test it
4645 and print a message with the result
4646 of the test. */
4647 if (!setjmp_tested_p)
4648 {
4649 setjmp_tested_p = 1;
4650 test_setjmp ();
4651 }
4652 #endif /* GC_SETJMP_WORKS */
4653
4654 sys_setjmp (j.j);
4655 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4656 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4657 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4658
4659 /* This assumes that the stack is a contiguous region in memory. If
4660 that's not the case, something has to be done here to iterate
4661 over the stack segments. */
4662 mark_memory (stack_base, end);
4663
4664 /* Allow for marking a secondary stack, like the register stack on the
4665 ia64. */
4666 #ifdef GC_MARK_SECONDARY_STACK
4667 GC_MARK_SECONDARY_STACK ();
4668 #endif
4669
4670 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4671 check_gcpros ();
4672 #endif
4673 }
4674
4675 #endif /* GC_MARK_STACK != 0 */
4676
4677
4678 /* Determine whether it is safe to access memory at address P. */
4679 static int
4680 valid_pointer_p (void *p)
4681 {
4682 #ifdef WINDOWSNT
4683 return w32_valid_pointer_p (p, 16);
4684 #else
4685 int fd[2];
4686
4687 /* Obviously, we cannot just access it (we would SEGV trying), so we
4688 trick the o/s to tell us whether p is a valid pointer.
4689 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4690 not validate p in that case. */
4691
4692 if (pipe (fd) == 0)
4693 {
4694 bool valid = emacs_write (fd[1], (char *) p, 16) == 16;
4695 emacs_close (fd[1]);
4696 emacs_close (fd[0]);
4697 return valid;
4698 }
4699
4700 return -1;
4701 #endif
4702 }
4703
4704 /* Return 2 if OBJ is a killed or special buffer object.
4705 Return 1 if OBJ is a valid lisp object.
4706 Return 0 if OBJ is NOT a valid lisp object.
4707 Return -1 if we cannot validate OBJ.
4708 This function can be quite slow,
4709 so it should only be used in code for manual debugging. */
4710
4711 int
4712 valid_lisp_object_p (Lisp_Object obj)
4713 {
4714 void *p;
4715 #if GC_MARK_STACK
4716 struct mem_node *m;
4717 #endif
4718
4719 if (INTEGERP (obj))
4720 return 1;
4721
4722 p = (void *) XPNTR (obj);
4723 if (PURE_POINTER_P (p))
4724 return 1;
4725
4726 if (p == &buffer_defaults || p == &buffer_local_symbols)
4727 return 2;
4728
4729 #if !GC_MARK_STACK
4730 return valid_pointer_p (p);
4731 #else
4732
4733 m = mem_find (p);
4734
4735 if (m == MEM_NIL)
4736 {
4737 int valid = valid_pointer_p (p);
4738 if (valid <= 0)
4739 return valid;
4740
4741 if (SUBRP (obj))
4742 return 1;
4743
4744 return 0;
4745 }
4746
4747 switch (m->type)
4748 {
4749 case MEM_TYPE_NON_LISP:
4750 case MEM_TYPE_SPARE:
4751 return 0;
4752
4753 case MEM_TYPE_BUFFER:
4754 return live_buffer_p (m, p) ? 1 : 2;
4755
4756 case MEM_TYPE_CONS:
4757 return live_cons_p (m, p);
4758
4759 case MEM_TYPE_STRING:
4760 return live_string_p (m, p);
4761
4762 case MEM_TYPE_MISC:
4763 return live_misc_p (m, p);
4764
4765 case MEM_TYPE_SYMBOL:
4766 return live_symbol_p (m, p);
4767
4768 case MEM_TYPE_FLOAT:
4769 return live_float_p (m, p);
4770
4771 case MEM_TYPE_VECTORLIKE:
4772 case MEM_TYPE_VECTOR_BLOCK:
4773 return live_vector_p (m, p);
4774
4775 default:
4776 break;
4777 }
4778
4779 return 0;
4780 #endif
4781 }
4782
4783
4784
4785 \f
4786 /***********************************************************************
4787 Pure Storage Management
4788 ***********************************************************************/
4789
4790 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4791 pointer to it. TYPE is the Lisp type for which the memory is
4792 allocated. TYPE < 0 means it's not used for a Lisp object. */
4793
4794 static void *
4795 pure_alloc (size_t size, int type)
4796 {
4797 void *result;
4798 #if USE_LSB_TAG
4799 size_t alignment = GCALIGNMENT;
4800 #else
4801 size_t alignment = alignof (EMACS_INT);
4802
4803 /* Give Lisp_Floats an extra alignment. */
4804 if (type == Lisp_Float)
4805 alignment = alignof (struct Lisp_Float);
4806 #endif
4807
4808 again:
4809 if (type >= 0)
4810 {
4811 /* Allocate space for a Lisp object from the beginning of the free
4812 space with taking account of alignment. */
4813 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4814 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4815 }
4816 else
4817 {
4818 /* Allocate space for a non-Lisp object from the end of the free
4819 space. */
4820 pure_bytes_used_non_lisp += size;
4821 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4822 }
4823 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4824
4825 if (pure_bytes_used <= pure_size)
4826 return result;
4827
4828 /* Don't allocate a large amount here,
4829 because it might get mmap'd and then its address
4830 might not be usable. */
4831 purebeg = xmalloc (10000);
4832 pure_size = 10000;
4833 pure_bytes_used_before_overflow += pure_bytes_used - size;
4834 pure_bytes_used = 0;
4835 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4836 goto again;
4837 }
4838
4839
4840 /* Print a warning if PURESIZE is too small. */
4841
4842 void
4843 check_pure_size (void)
4844 {
4845 if (pure_bytes_used_before_overflow)
4846 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4847 " bytes needed)"),
4848 pure_bytes_used + pure_bytes_used_before_overflow);
4849 }
4850
4851
4852 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4853 the non-Lisp data pool of the pure storage, and return its start
4854 address. Return NULL if not found. */
4855
4856 static char *
4857 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
4858 {
4859 int i;
4860 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4861 const unsigned char *p;
4862 char *non_lisp_beg;
4863
4864 if (pure_bytes_used_non_lisp <= nbytes)
4865 return NULL;
4866
4867 /* Set up the Boyer-Moore table. */
4868 skip = nbytes + 1;
4869 for (i = 0; i < 256; i++)
4870 bm_skip[i] = skip;
4871
4872 p = (const unsigned char *) data;
4873 while (--skip > 0)
4874 bm_skip[*p++] = skip;
4875
4876 last_char_skip = bm_skip['\0'];
4877
4878 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4879 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4880
4881 /* See the comments in the function `boyer_moore' (search.c) for the
4882 use of `infinity'. */
4883 infinity = pure_bytes_used_non_lisp + 1;
4884 bm_skip['\0'] = infinity;
4885
4886 p = (const unsigned char *) non_lisp_beg + nbytes;
4887 start = 0;
4888 do
4889 {
4890 /* Check the last character (== '\0'). */
4891 do
4892 {
4893 start += bm_skip[*(p + start)];
4894 }
4895 while (start <= start_max);
4896
4897 if (start < infinity)
4898 /* Couldn't find the last character. */
4899 return NULL;
4900
4901 /* No less than `infinity' means we could find the last
4902 character at `p[start - infinity]'. */
4903 start -= infinity;
4904
4905 /* Check the remaining characters. */
4906 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4907 /* Found. */
4908 return non_lisp_beg + start;
4909
4910 start += last_char_skip;
4911 }
4912 while (start <= start_max);
4913
4914 return NULL;
4915 }
4916
4917
4918 /* Return a string allocated in pure space. DATA is a buffer holding
4919 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4920 means make the result string multibyte.
4921
4922 Must get an error if pure storage is full, since if it cannot hold
4923 a large string it may be able to hold conses that point to that
4924 string; then the string is not protected from gc. */
4925
4926 Lisp_Object
4927 make_pure_string (const char *data,
4928 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
4929 {
4930 Lisp_Object string;
4931 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
4932 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4933 if (s->data == NULL)
4934 {
4935 s->data = pure_alloc (nbytes + 1, -1);
4936 memcpy (s->data, data, nbytes);
4937 s->data[nbytes] = '\0';
4938 }
4939 s->size = nchars;
4940 s->size_byte = multibyte ? nbytes : -1;
4941 s->intervals = NULL;
4942 XSETSTRING (string, s);
4943 return string;
4944 }
4945
4946 /* Return a string allocated in pure space. Do not
4947 allocate the string data, just point to DATA. */
4948
4949 Lisp_Object
4950 make_pure_c_string (const char *data, ptrdiff_t nchars)
4951 {
4952 Lisp_Object string;
4953 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
4954 s->size = nchars;
4955 s->size_byte = -1;
4956 s->data = (unsigned char *) data;
4957 s->intervals = NULL;
4958 XSETSTRING (string, s);
4959 return string;
4960 }
4961
4962 /* Return a cons allocated from pure space. Give it pure copies
4963 of CAR as car and CDR as cdr. */
4964
4965 Lisp_Object
4966 pure_cons (Lisp_Object car, Lisp_Object cdr)
4967 {
4968 Lisp_Object new;
4969 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
4970 XSETCONS (new, p);
4971 XSETCAR (new, Fpurecopy (car));
4972 XSETCDR (new, Fpurecopy (cdr));
4973 return new;
4974 }
4975
4976
4977 /* Value is a float object with value NUM allocated from pure space. */
4978
4979 static Lisp_Object
4980 make_pure_float (double num)
4981 {
4982 Lisp_Object new;
4983 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
4984 XSETFLOAT (new, p);
4985 XFLOAT_INIT (new, num);
4986 return new;
4987 }
4988
4989
4990 /* Return a vector with room for LEN Lisp_Objects allocated from
4991 pure space. */
4992
4993 static Lisp_Object
4994 make_pure_vector (ptrdiff_t len)
4995 {
4996 Lisp_Object new;
4997 size_t size = header_size + len * word_size;
4998 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
4999 XSETVECTOR (new, p);
5000 XVECTOR (new)->header.size = len;
5001 return new;
5002 }
5003
5004
5005 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5006 doc: /* Make a copy of object OBJ in pure storage.
5007 Recursively copies contents of vectors and cons cells.
5008 Does not copy symbols. Copies strings without text properties. */)
5009 (register Lisp_Object obj)
5010 {
5011 if (NILP (Vpurify_flag))
5012 return obj;
5013
5014 if (PURE_POINTER_P (XPNTR (obj)))
5015 return obj;
5016
5017 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5018 {
5019 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5020 if (!NILP (tmp))
5021 return tmp;
5022 }
5023
5024 if (CONSP (obj))
5025 obj = pure_cons (XCAR (obj), XCDR (obj));
5026 else if (FLOATP (obj))
5027 obj = make_pure_float (XFLOAT_DATA (obj));
5028 else if (STRINGP (obj))
5029 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5030 SBYTES (obj),
5031 STRING_MULTIBYTE (obj));
5032 else if (COMPILEDP (obj) || VECTORP (obj))
5033 {
5034 register struct Lisp_Vector *vec;
5035 register ptrdiff_t i;
5036 ptrdiff_t size;
5037
5038 size = ASIZE (obj);
5039 if (size & PSEUDOVECTOR_FLAG)
5040 size &= PSEUDOVECTOR_SIZE_MASK;
5041 vec = XVECTOR (make_pure_vector (size));
5042 for (i = 0; i < size; i++)
5043 vec->contents[i] = Fpurecopy (AREF (obj, i));
5044 if (COMPILEDP (obj))
5045 {
5046 XSETPVECTYPE (vec, PVEC_COMPILED);
5047 XSETCOMPILED (obj, vec);
5048 }
5049 else
5050 XSETVECTOR (obj, vec);
5051 }
5052 else if (MARKERP (obj))
5053 error ("Attempt to copy a marker to pure storage");
5054 else
5055 /* Not purified, don't hash-cons. */
5056 return obj;
5057
5058 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5059 Fputhash (obj, obj, Vpurify_flag);
5060
5061 return obj;
5062 }
5063
5064
5065 \f
5066 /***********************************************************************
5067 Protection from GC
5068 ***********************************************************************/
5069
5070 /* Put an entry in staticvec, pointing at the variable with address
5071 VARADDRESS. */
5072
5073 void
5074 staticpro (Lisp_Object *varaddress)
5075 {
5076 staticvec[staticidx++] = varaddress;
5077 if (staticidx >= NSTATICS)
5078 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5079 }
5080
5081 \f
5082 /***********************************************************************
5083 Protection from GC
5084 ***********************************************************************/
5085
5086 /* Temporarily prevent garbage collection. */
5087
5088 ptrdiff_t
5089 inhibit_garbage_collection (void)
5090 {
5091 ptrdiff_t count = SPECPDL_INDEX ();
5092
5093 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5094 return count;
5095 }
5096
5097 /* Used to avoid possible overflows when
5098 converting from C to Lisp integers. */
5099
5100 static Lisp_Object
5101 bounded_number (EMACS_INT number)
5102 {
5103 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5104 }
5105
5106 /* Calculate total bytes of live objects. */
5107
5108 static size_t
5109 total_bytes_of_live_objects (void)
5110 {
5111 size_t tot = 0;
5112 tot += total_conses * sizeof (struct Lisp_Cons);
5113 tot += total_symbols * sizeof (struct Lisp_Symbol);
5114 tot += total_markers * sizeof (union Lisp_Misc);
5115 tot += total_string_bytes;
5116 tot += total_vector_slots * word_size;
5117 tot += total_floats * sizeof (struct Lisp_Float);
5118 tot += total_intervals * sizeof (struct interval);
5119 tot += total_strings * sizeof (struct Lisp_String);
5120 return tot;
5121 }
5122
5123 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5124 doc: /* Reclaim storage for Lisp objects no longer needed.
5125 Garbage collection happens automatically if you cons more than
5126 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5127 `garbage-collect' normally returns a list with info on amount of space in use,
5128 where each entry has the form (NAME SIZE USED FREE), where:
5129 - NAME is a symbol describing the kind of objects this entry represents,
5130 - SIZE is the number of bytes used by each one,
5131 - USED is the number of those objects that were found live in the heap,
5132 - FREE is the number of those objects that are not live but that Emacs
5133 keeps around for future allocations (maybe because it does not know how
5134 to return them to the OS).
5135 However, if there was overflow in pure space, `garbage-collect'
5136 returns nil, because real GC can't be done.
5137 See Info node `(elisp)Garbage Collection'. */)
5138 (void)
5139 {
5140 struct specbinding *bind;
5141 struct buffer *nextb;
5142 char stack_top_variable;
5143 ptrdiff_t i;
5144 bool message_p;
5145 ptrdiff_t count = SPECPDL_INDEX ();
5146 EMACS_TIME start;
5147 Lisp_Object retval = Qnil;
5148 size_t tot_before = 0;
5149 struct backtrace backtrace;
5150
5151 if (abort_on_gc)
5152 emacs_abort ();
5153
5154 /* Can't GC if pure storage overflowed because we can't determine
5155 if something is a pure object or not. */
5156 if (pure_bytes_used_before_overflow)
5157 return Qnil;
5158
5159 /* Record this function, so it appears on the profiler's backtraces. */
5160 backtrace.next = backtrace_list;
5161 backtrace.function = Qautomatic_gc;
5162 backtrace.args = &Qnil;
5163 backtrace.nargs = 0;
5164 backtrace.debug_on_exit = 0;
5165 backtrace_list = &backtrace;
5166
5167 check_cons_list ();
5168
5169 /* Don't keep undo information around forever.
5170 Do this early on, so it is no problem if the user quits. */
5171 FOR_EACH_BUFFER (nextb)
5172 compact_buffer (nextb);
5173
5174 if (profiler_memory_running)
5175 tot_before = total_bytes_of_live_objects ();
5176
5177 start = current_emacs_time ();
5178
5179 /* In case user calls debug_print during GC,
5180 don't let that cause a recursive GC. */
5181 consing_since_gc = 0;
5182
5183 /* Save what's currently displayed in the echo area. */
5184 message_p = push_message ();
5185 record_unwind_protect (pop_message_unwind, Qnil);
5186
5187 /* Save a copy of the contents of the stack, for debugging. */
5188 #if MAX_SAVE_STACK > 0
5189 if (NILP (Vpurify_flag))
5190 {
5191 char *stack;
5192 ptrdiff_t stack_size;
5193 if (&stack_top_variable < stack_bottom)
5194 {
5195 stack = &stack_top_variable;
5196 stack_size = stack_bottom - &stack_top_variable;
5197 }
5198 else
5199 {
5200 stack = stack_bottom;
5201 stack_size = &stack_top_variable - stack_bottom;
5202 }
5203 if (stack_size <= MAX_SAVE_STACK)
5204 {
5205 if (stack_copy_size < stack_size)
5206 {
5207 stack_copy = xrealloc (stack_copy, stack_size);
5208 stack_copy_size = stack_size;
5209 }
5210 memcpy (stack_copy, stack, stack_size);
5211 }
5212 }
5213 #endif /* MAX_SAVE_STACK > 0 */
5214
5215 if (garbage_collection_messages)
5216 message1_nolog ("Garbage collecting...");
5217
5218 block_input ();
5219
5220 shrink_regexp_cache ();
5221
5222 gc_in_progress = 1;
5223
5224 /* Mark all the special slots that serve as the roots of accessibility. */
5225
5226 mark_buffer (&buffer_defaults);
5227 mark_buffer (&buffer_local_symbols);
5228
5229 for (i = 0; i < staticidx; i++)
5230 mark_object (*staticvec[i]);
5231
5232 for (bind = specpdl; bind != specpdl_ptr; bind++)
5233 {
5234 mark_object (bind->symbol);
5235 mark_object (bind->old_value);
5236 }
5237 mark_terminals ();
5238 mark_kboards ();
5239
5240 #ifdef USE_GTK
5241 xg_mark_data ();
5242 #endif
5243
5244 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5245 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5246 mark_stack ();
5247 #else
5248 {
5249 register struct gcpro *tail;
5250 for (tail = gcprolist; tail; tail = tail->next)
5251 for (i = 0; i < tail->nvars; i++)
5252 mark_object (tail->var[i]);
5253 }
5254 mark_byte_stack ();
5255 {
5256 struct catchtag *catch;
5257 struct handler *handler;
5258
5259 for (catch = catchlist; catch; catch = catch->next)
5260 {
5261 mark_object (catch->tag);
5262 mark_object (catch->val);
5263 }
5264 for (handler = handlerlist; handler; handler = handler->next)
5265 {
5266 mark_object (handler->handler);
5267 mark_object (handler->var);
5268 }
5269 }
5270 mark_backtrace ();
5271 #endif
5272
5273 #ifdef HAVE_WINDOW_SYSTEM
5274 mark_fringe_data ();
5275 #endif
5276
5277 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5278 mark_stack ();
5279 #endif
5280
5281 /* Everything is now marked, except for the things that require special
5282 finalization, i.e. the undo_list.
5283 Look thru every buffer's undo list
5284 for elements that update markers that were not marked,
5285 and delete them. */
5286 FOR_EACH_BUFFER (nextb)
5287 {
5288 /* If a buffer's undo list is Qt, that means that undo is
5289 turned off in that buffer. Calling truncate_undo_list on
5290 Qt tends to return NULL, which effectively turns undo back on.
5291 So don't call truncate_undo_list if undo_list is Qt. */
5292 if (! EQ (nextb->INTERNAL_FIELD (undo_list), Qt))
5293 {
5294 Lisp_Object tail, prev;
5295 tail = nextb->INTERNAL_FIELD (undo_list);
5296 prev = Qnil;
5297 while (CONSP (tail))
5298 {
5299 if (CONSP (XCAR (tail))
5300 && MARKERP (XCAR (XCAR (tail)))
5301 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5302 {
5303 if (NILP (prev))
5304 nextb->INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5305 else
5306 {
5307 tail = XCDR (tail);
5308 XSETCDR (prev, tail);
5309 }
5310 }
5311 else
5312 {
5313 prev = tail;
5314 tail = XCDR (tail);
5315 }
5316 }
5317 }
5318 /* Now that we have stripped the elements that need not be in the
5319 undo_list any more, we can finally mark the list. */
5320 mark_object (nextb->INTERNAL_FIELD (undo_list));
5321 }
5322
5323 gc_sweep ();
5324
5325 /* Clear the mark bits that we set in certain root slots. */
5326
5327 unmark_byte_stack ();
5328 VECTOR_UNMARK (&buffer_defaults);
5329 VECTOR_UNMARK (&buffer_local_symbols);
5330
5331 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5332 dump_zombies ();
5333 #endif
5334
5335 unblock_input ();
5336
5337 check_cons_list ();
5338
5339 gc_in_progress = 0;
5340
5341 consing_since_gc = 0;
5342 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5343 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5344
5345 gc_relative_threshold = 0;
5346 if (FLOATP (Vgc_cons_percentage))
5347 { /* Set gc_cons_combined_threshold. */
5348 double tot = total_bytes_of_live_objects ();
5349
5350 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5351 if (0 < tot)
5352 {
5353 if (tot < TYPE_MAXIMUM (EMACS_INT))
5354 gc_relative_threshold = tot;
5355 else
5356 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5357 }
5358 }
5359
5360 if (garbage_collection_messages)
5361 {
5362 if (message_p || minibuf_level > 0)
5363 restore_message ();
5364 else
5365 message1_nolog ("Garbage collecting...done");
5366 }
5367
5368 unbind_to (count, Qnil);
5369 {
5370 Lisp_Object total[11];
5371 int total_size = 10;
5372
5373 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5374 bounded_number (total_conses),
5375 bounded_number (total_free_conses));
5376
5377 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5378 bounded_number (total_symbols),
5379 bounded_number (total_free_symbols));
5380
5381 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5382 bounded_number (total_markers),
5383 bounded_number (total_free_markers));
5384
5385 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5386 bounded_number (total_strings),
5387 bounded_number (total_free_strings));
5388
5389 total[4] = list3 (Qstring_bytes, make_number (1),
5390 bounded_number (total_string_bytes));
5391
5392 total[5] = list3 (Qvectors, make_number (sizeof (struct Lisp_Vector)),
5393 bounded_number (total_vectors));
5394
5395 total[6] = list4 (Qvector_slots, make_number (word_size),
5396 bounded_number (total_vector_slots),
5397 bounded_number (total_free_vector_slots));
5398
5399 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5400 bounded_number (total_floats),
5401 bounded_number (total_free_floats));
5402
5403 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5404 bounded_number (total_intervals),
5405 bounded_number (total_free_intervals));
5406
5407 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5408 bounded_number (total_buffers));
5409
5410 #ifdef DOUG_LEA_MALLOC
5411 total_size++;
5412 total[10] = list4 (Qheap, make_number (1024),
5413 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5414 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5415 #endif
5416 retval = Flist (total_size, total);
5417 }
5418
5419 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5420 {
5421 /* Compute average percentage of zombies. */
5422 double nlive
5423 = (total_conses + total_symbols + total_markers + total_strings
5424 + total_vectors + total_floats + total_intervals + total_buffers);
5425
5426 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5427 max_live = max (nlive, max_live);
5428 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5429 max_zombies = max (nzombies, max_zombies);
5430 ++ngcs;
5431 }
5432 #endif
5433
5434 if (!NILP (Vpost_gc_hook))
5435 {
5436 ptrdiff_t gc_count = inhibit_garbage_collection ();
5437 safe_run_hooks (Qpost_gc_hook);
5438 unbind_to (gc_count, Qnil);
5439 }
5440
5441 /* Accumulate statistics. */
5442 if (FLOATP (Vgc_elapsed))
5443 {
5444 EMACS_TIME since_start = sub_emacs_time (current_emacs_time (), start);
5445 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5446 + EMACS_TIME_TO_DOUBLE (since_start));
5447 }
5448
5449 gcs_done++;
5450
5451 /* Collect profiling data. */
5452 if (profiler_memory_running)
5453 {
5454 size_t swept = 0;
5455 size_t tot_after = total_bytes_of_live_objects ();
5456 if (tot_before > tot_after)
5457 swept = tot_before - tot_after;
5458 malloc_probe (swept);
5459 }
5460
5461 backtrace_list = backtrace.next;
5462 return retval;
5463 }
5464
5465
5466 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5467 only interesting objects referenced from glyphs are strings. */
5468
5469 static void
5470 mark_glyph_matrix (struct glyph_matrix *matrix)
5471 {
5472 struct glyph_row *row = matrix->rows;
5473 struct glyph_row *end = row + matrix->nrows;
5474
5475 for (; row < end; ++row)
5476 if (row->enabled_p)
5477 {
5478 int area;
5479 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5480 {
5481 struct glyph *glyph = row->glyphs[area];
5482 struct glyph *end_glyph = glyph + row->used[area];
5483
5484 for (; glyph < end_glyph; ++glyph)
5485 if (STRINGP (glyph->object)
5486 && !STRING_MARKED_P (XSTRING (glyph->object)))
5487 mark_object (glyph->object);
5488 }
5489 }
5490 }
5491
5492
5493 /* Mark Lisp faces in the face cache C. */
5494
5495 static void
5496 mark_face_cache (struct face_cache *c)
5497 {
5498 if (c)
5499 {
5500 int i, j;
5501 for (i = 0; i < c->used; ++i)
5502 {
5503 struct face *face = FACE_FROM_ID (c->f, i);
5504
5505 if (face)
5506 {
5507 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5508 mark_object (face->lface[j]);
5509 }
5510 }
5511 }
5512 }
5513
5514
5515 \f
5516 /* Mark reference to a Lisp_Object.
5517 If the object referred to has not been seen yet, recursively mark
5518 all the references contained in it. */
5519
5520 #define LAST_MARKED_SIZE 500
5521 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5522 static int last_marked_index;
5523
5524 /* For debugging--call abort when we cdr down this many
5525 links of a list, in mark_object. In debugging,
5526 the call to abort will hit a breakpoint.
5527 Normally this is zero and the check never goes off. */
5528 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5529
5530 static void
5531 mark_vectorlike (struct Lisp_Vector *ptr)
5532 {
5533 ptrdiff_t size = ptr->header.size;
5534 ptrdiff_t i;
5535
5536 eassert (!VECTOR_MARKED_P (ptr));
5537 VECTOR_MARK (ptr); /* Else mark it. */
5538 if (size & PSEUDOVECTOR_FLAG)
5539 size &= PSEUDOVECTOR_SIZE_MASK;
5540
5541 /* Note that this size is not the memory-footprint size, but only
5542 the number of Lisp_Object fields that we should trace.
5543 The distinction is used e.g. by Lisp_Process which places extra
5544 non-Lisp_Object fields at the end of the structure... */
5545 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5546 mark_object (ptr->contents[i]);
5547 }
5548
5549 /* Like mark_vectorlike but optimized for char-tables (and
5550 sub-char-tables) assuming that the contents are mostly integers or
5551 symbols. */
5552
5553 static void
5554 mark_char_table (struct Lisp_Vector *ptr)
5555 {
5556 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5557 int i;
5558
5559 eassert (!VECTOR_MARKED_P (ptr));
5560 VECTOR_MARK (ptr);
5561 for (i = 0; i < size; i++)
5562 {
5563 Lisp_Object val = ptr->contents[i];
5564
5565 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5566 continue;
5567 if (SUB_CHAR_TABLE_P (val))
5568 {
5569 if (! VECTOR_MARKED_P (XVECTOR (val)))
5570 mark_char_table (XVECTOR (val));
5571 }
5572 else
5573 mark_object (val);
5574 }
5575 }
5576
5577 /* Mark the chain of overlays starting at PTR. */
5578
5579 static void
5580 mark_overlay (struct Lisp_Overlay *ptr)
5581 {
5582 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5583 {
5584 ptr->gcmarkbit = 1;
5585 mark_object (ptr->start);
5586 mark_object (ptr->end);
5587 mark_object (ptr->plist);
5588 }
5589 }
5590
5591 /* Mark Lisp_Objects and special pointers in BUFFER. */
5592
5593 static void
5594 mark_buffer (struct buffer *buffer)
5595 {
5596 /* This is handled much like other pseudovectors... */
5597 mark_vectorlike ((struct Lisp_Vector *) buffer);
5598
5599 /* ...but there are some buffer-specific things. */
5600
5601 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5602
5603 /* For now, we just don't mark the undo_list. It's done later in
5604 a special way just before the sweep phase, and after stripping
5605 some of its elements that are not needed any more. */
5606
5607 mark_overlay (buffer->overlays_before);
5608 mark_overlay (buffer->overlays_after);
5609
5610 /* If this is an indirect buffer, mark its base buffer. */
5611 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5612 mark_buffer (buffer->base_buffer);
5613 }
5614
5615 /* Remove killed buffers or items whose car is a killed buffer from
5616 LIST, and mark other items. Return changed LIST, which is marked. */
5617
5618 static Lisp_Object
5619 mark_discard_killed_buffers (Lisp_Object list)
5620 {
5621 Lisp_Object tail, *prev = &list;
5622
5623 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5624 tail = XCDR (tail))
5625 {
5626 Lisp_Object tem = XCAR (tail);
5627 if (CONSP (tem))
5628 tem = XCAR (tem);
5629 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5630 *prev = XCDR (tail);
5631 else
5632 {
5633 CONS_MARK (XCONS (tail));
5634 mark_object (XCAR (tail));
5635 prev = &XCDR_AS_LVALUE (tail);
5636 }
5637 }
5638 mark_object (tail);
5639 return list;
5640 }
5641
5642 /* Determine type of generic Lisp_Object and mark it accordingly. */
5643
5644 void
5645 mark_object (Lisp_Object arg)
5646 {
5647 register Lisp_Object obj = arg;
5648 #ifdef GC_CHECK_MARKED_OBJECTS
5649 void *po;
5650 struct mem_node *m;
5651 #endif
5652 ptrdiff_t cdr_count = 0;
5653
5654 loop:
5655
5656 if (PURE_POINTER_P (XPNTR (obj)))
5657 return;
5658
5659 last_marked[last_marked_index++] = obj;
5660 if (last_marked_index == LAST_MARKED_SIZE)
5661 last_marked_index = 0;
5662
5663 /* Perform some sanity checks on the objects marked here. Abort if
5664 we encounter an object we know is bogus. This increases GC time
5665 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5666 #ifdef GC_CHECK_MARKED_OBJECTS
5667
5668 po = (void *) XPNTR (obj);
5669
5670 /* Check that the object pointed to by PO is known to be a Lisp
5671 structure allocated from the heap. */
5672 #define CHECK_ALLOCATED() \
5673 do { \
5674 m = mem_find (po); \
5675 if (m == MEM_NIL) \
5676 emacs_abort (); \
5677 } while (0)
5678
5679 /* Check that the object pointed to by PO is live, using predicate
5680 function LIVEP. */
5681 #define CHECK_LIVE(LIVEP) \
5682 do { \
5683 if (!LIVEP (m, po)) \
5684 emacs_abort (); \
5685 } while (0)
5686
5687 /* Check both of the above conditions. */
5688 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5689 do { \
5690 CHECK_ALLOCATED (); \
5691 CHECK_LIVE (LIVEP); \
5692 } while (0) \
5693
5694 #else /* not GC_CHECK_MARKED_OBJECTS */
5695
5696 #define CHECK_LIVE(LIVEP) (void) 0
5697 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5698
5699 #endif /* not GC_CHECK_MARKED_OBJECTS */
5700
5701 switch (XTYPE (obj))
5702 {
5703 case Lisp_String:
5704 {
5705 register struct Lisp_String *ptr = XSTRING (obj);
5706 if (STRING_MARKED_P (ptr))
5707 break;
5708 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5709 MARK_STRING (ptr);
5710 MARK_INTERVAL_TREE (ptr->intervals);
5711 #ifdef GC_CHECK_STRING_BYTES
5712 /* Check that the string size recorded in the string is the
5713 same as the one recorded in the sdata structure. */
5714 string_bytes (ptr);
5715 #endif /* GC_CHECK_STRING_BYTES */
5716 }
5717 break;
5718
5719 case Lisp_Vectorlike:
5720 {
5721 register struct Lisp_Vector *ptr = XVECTOR (obj);
5722 register ptrdiff_t pvectype;
5723
5724 if (VECTOR_MARKED_P (ptr))
5725 break;
5726
5727 #ifdef GC_CHECK_MARKED_OBJECTS
5728 m = mem_find (po);
5729 if (m == MEM_NIL && !SUBRP (obj))
5730 emacs_abort ();
5731 #endif /* GC_CHECK_MARKED_OBJECTS */
5732
5733 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5734 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5735 >> PSEUDOVECTOR_AREA_BITS);
5736 else
5737 pvectype = PVEC_NORMAL_VECTOR;
5738
5739 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5740 CHECK_LIVE (live_vector_p);
5741
5742 switch (pvectype)
5743 {
5744 case PVEC_BUFFER:
5745 #ifdef GC_CHECK_MARKED_OBJECTS
5746 {
5747 struct buffer *b;
5748 FOR_EACH_BUFFER (b)
5749 if (b == po)
5750 break;
5751 if (b == NULL)
5752 emacs_abort ();
5753 }
5754 #endif /* GC_CHECK_MARKED_OBJECTS */
5755 mark_buffer ((struct buffer *) ptr);
5756 break;
5757
5758 case PVEC_COMPILED:
5759 { /* We could treat this just like a vector, but it is better
5760 to save the COMPILED_CONSTANTS element for last and avoid
5761 recursion there. */
5762 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5763 int i;
5764
5765 VECTOR_MARK (ptr);
5766 for (i = 0; i < size; i++)
5767 if (i != COMPILED_CONSTANTS)
5768 mark_object (ptr->contents[i]);
5769 if (size > COMPILED_CONSTANTS)
5770 {
5771 obj = ptr->contents[COMPILED_CONSTANTS];
5772 goto loop;
5773 }
5774 }
5775 break;
5776
5777 case PVEC_FRAME:
5778 mark_vectorlike (ptr);
5779 mark_face_cache (((struct frame *) ptr)->face_cache);
5780 break;
5781
5782 case PVEC_WINDOW:
5783 {
5784 struct window *w = (struct window *) ptr;
5785 bool leaf = NILP (w->hchild) && NILP (w->vchild);
5786
5787 mark_vectorlike (ptr);
5788
5789 /* Mark glyphs for leaf windows. Marking window
5790 matrices is sufficient because frame matrices
5791 use the same glyph memory. */
5792 if (leaf && w->current_matrix)
5793 {
5794 mark_glyph_matrix (w->current_matrix);
5795 mark_glyph_matrix (w->desired_matrix);
5796 }
5797
5798 /* Filter out killed buffers from both buffer lists
5799 in attempt to help GC to reclaim killed buffers faster.
5800 We can do it elsewhere for live windows, but this is the
5801 best place to do it for dead windows. */
5802 wset_prev_buffers
5803 (w, mark_discard_killed_buffers (w->prev_buffers));
5804 wset_next_buffers
5805 (w, mark_discard_killed_buffers (w->next_buffers));
5806 }
5807 break;
5808
5809 case PVEC_HASH_TABLE:
5810 {
5811 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
5812
5813 mark_vectorlike (ptr);
5814 mark_object (h->test.name);
5815 mark_object (h->test.user_hash_function);
5816 mark_object (h->test.user_cmp_function);
5817 /* If hash table is not weak, mark all keys and values.
5818 For weak tables, mark only the vector. */
5819 if (NILP (h->weak))
5820 mark_object (h->key_and_value);
5821 else
5822 VECTOR_MARK (XVECTOR (h->key_and_value));
5823 }
5824 break;
5825
5826 case PVEC_CHAR_TABLE:
5827 mark_char_table (ptr);
5828 break;
5829
5830 case PVEC_BOOL_VECTOR:
5831 /* No Lisp_Objects to mark in a bool vector. */
5832 VECTOR_MARK (ptr);
5833 break;
5834
5835 case PVEC_SUBR:
5836 break;
5837
5838 case PVEC_FREE:
5839 emacs_abort ();
5840
5841 default:
5842 mark_vectorlike (ptr);
5843 }
5844 }
5845 break;
5846
5847 case Lisp_Symbol:
5848 {
5849 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5850 struct Lisp_Symbol *ptrx;
5851
5852 if (ptr->gcmarkbit)
5853 break;
5854 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5855 ptr->gcmarkbit = 1;
5856 mark_object (ptr->function);
5857 mark_object (ptr->plist);
5858 switch (ptr->redirect)
5859 {
5860 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5861 case SYMBOL_VARALIAS:
5862 {
5863 Lisp_Object tem;
5864 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5865 mark_object (tem);
5866 break;
5867 }
5868 case SYMBOL_LOCALIZED:
5869 {
5870 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5871 Lisp_Object where = blv->where;
5872 /* If the value is set up for a killed buffer or deleted
5873 frame, restore it's global binding. If the value is
5874 forwarded to a C variable, either it's not a Lisp_Object
5875 var, or it's staticpro'd already. */
5876 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
5877 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
5878 swap_in_global_binding (ptr);
5879 mark_object (blv->where);
5880 mark_object (blv->valcell);
5881 mark_object (blv->defcell);
5882 break;
5883 }
5884 case SYMBOL_FORWARDED:
5885 /* If the value is forwarded to a buffer or keyboard field,
5886 these are marked when we see the corresponding object.
5887 And if it's forwarded to a C variable, either it's not
5888 a Lisp_Object var, or it's staticpro'd already. */
5889 break;
5890 default: emacs_abort ();
5891 }
5892 if (!PURE_POINTER_P (XSTRING (ptr->name)))
5893 MARK_STRING (XSTRING (ptr->name));
5894 MARK_INTERVAL_TREE (string_intervals (ptr->name));
5895
5896 ptr = ptr->next;
5897 if (ptr)
5898 {
5899 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
5900 XSETSYMBOL (obj, ptrx);
5901 goto loop;
5902 }
5903 }
5904 break;
5905
5906 case Lisp_Misc:
5907 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5908
5909 if (XMISCANY (obj)->gcmarkbit)
5910 break;
5911
5912 switch (XMISCTYPE (obj))
5913 {
5914 case Lisp_Misc_Marker:
5915 /* DO NOT mark thru the marker's chain.
5916 The buffer's markers chain does not preserve markers from gc;
5917 instead, markers are removed from the chain when freed by gc. */
5918 XMISCANY (obj)->gcmarkbit = 1;
5919 break;
5920
5921 case Lisp_Misc_Save_Value:
5922 XMISCANY (obj)->gcmarkbit = 1;
5923 #if GC_MARK_STACK
5924 {
5925 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5926 /* If DOGC is set, POINTER is the address of a memory
5927 area containing INTEGER potential Lisp_Objects. */
5928 if (ptr->dogc)
5929 {
5930 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5931 ptrdiff_t nelt;
5932 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5933 mark_maybe_object (*p);
5934 }
5935 }
5936 #endif
5937 break;
5938
5939 case Lisp_Misc_Overlay:
5940 mark_overlay (XOVERLAY (obj));
5941 break;
5942
5943 default:
5944 emacs_abort ();
5945 }
5946 break;
5947
5948 case Lisp_Cons:
5949 {
5950 register struct Lisp_Cons *ptr = XCONS (obj);
5951 if (CONS_MARKED_P (ptr))
5952 break;
5953 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5954 CONS_MARK (ptr);
5955 /* If the cdr is nil, avoid recursion for the car. */
5956 if (EQ (ptr->u.cdr, Qnil))
5957 {
5958 obj = ptr->car;
5959 cdr_count = 0;
5960 goto loop;
5961 }
5962 mark_object (ptr->car);
5963 obj = ptr->u.cdr;
5964 cdr_count++;
5965 if (cdr_count == mark_object_loop_halt)
5966 emacs_abort ();
5967 goto loop;
5968 }
5969
5970 case Lisp_Float:
5971 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5972 FLOAT_MARK (XFLOAT (obj));
5973 break;
5974
5975 case_Lisp_Int:
5976 break;
5977
5978 default:
5979 emacs_abort ();
5980 }
5981
5982 #undef CHECK_LIVE
5983 #undef CHECK_ALLOCATED
5984 #undef CHECK_ALLOCATED_AND_LIVE
5985 }
5986 /* Mark the Lisp pointers in the terminal objects.
5987 Called by Fgarbage_collect. */
5988
5989 static void
5990 mark_terminals (void)
5991 {
5992 struct terminal *t;
5993 for (t = terminal_list; t; t = t->next_terminal)
5994 {
5995 eassert (t->name != NULL);
5996 #ifdef HAVE_WINDOW_SYSTEM
5997 /* If a terminal object is reachable from a stacpro'ed object,
5998 it might have been marked already. Make sure the image cache
5999 gets marked. */
6000 mark_image_cache (t->image_cache);
6001 #endif /* HAVE_WINDOW_SYSTEM */
6002 if (!VECTOR_MARKED_P (t))
6003 mark_vectorlike ((struct Lisp_Vector *)t);
6004 }
6005 }
6006
6007
6008
6009 /* Value is non-zero if OBJ will survive the current GC because it's
6010 either marked or does not need to be marked to survive. */
6011
6012 bool
6013 survives_gc_p (Lisp_Object obj)
6014 {
6015 bool survives_p;
6016
6017 switch (XTYPE (obj))
6018 {
6019 case_Lisp_Int:
6020 survives_p = 1;
6021 break;
6022
6023 case Lisp_Symbol:
6024 survives_p = XSYMBOL (obj)->gcmarkbit;
6025 break;
6026
6027 case Lisp_Misc:
6028 survives_p = XMISCANY (obj)->gcmarkbit;
6029 break;
6030
6031 case Lisp_String:
6032 survives_p = STRING_MARKED_P (XSTRING (obj));
6033 break;
6034
6035 case Lisp_Vectorlike:
6036 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6037 break;
6038
6039 case Lisp_Cons:
6040 survives_p = CONS_MARKED_P (XCONS (obj));
6041 break;
6042
6043 case Lisp_Float:
6044 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6045 break;
6046
6047 default:
6048 emacs_abort ();
6049 }
6050
6051 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6052 }
6053
6054
6055 \f
6056 /* Sweep: find all structures not marked, and free them. */
6057
6058 static void
6059 gc_sweep (void)
6060 {
6061 /* Remove or mark entries in weak hash tables.
6062 This must be done before any object is unmarked. */
6063 sweep_weak_hash_tables ();
6064
6065 sweep_strings ();
6066 check_string_bytes (!noninteractive);
6067
6068 /* Put all unmarked conses on free list */
6069 {
6070 register struct cons_block *cblk;
6071 struct cons_block **cprev = &cons_block;
6072 register int lim = cons_block_index;
6073 EMACS_INT num_free = 0, num_used = 0;
6074
6075 cons_free_list = 0;
6076
6077 for (cblk = cons_block; cblk; cblk = *cprev)
6078 {
6079 register int i = 0;
6080 int this_free = 0;
6081 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6082
6083 /* Scan the mark bits an int at a time. */
6084 for (i = 0; i < ilim; i++)
6085 {
6086 if (cblk->gcmarkbits[i] == -1)
6087 {
6088 /* Fast path - all cons cells for this int are marked. */
6089 cblk->gcmarkbits[i] = 0;
6090 num_used += BITS_PER_INT;
6091 }
6092 else
6093 {
6094 /* Some cons cells for this int are not marked.
6095 Find which ones, and free them. */
6096 int start, pos, stop;
6097
6098 start = i * BITS_PER_INT;
6099 stop = lim - start;
6100 if (stop > BITS_PER_INT)
6101 stop = BITS_PER_INT;
6102 stop += start;
6103
6104 for (pos = start; pos < stop; pos++)
6105 {
6106 if (!CONS_MARKED_P (&cblk->conses[pos]))
6107 {
6108 this_free++;
6109 cblk->conses[pos].u.chain = cons_free_list;
6110 cons_free_list = &cblk->conses[pos];
6111 #if GC_MARK_STACK
6112 cons_free_list->car = Vdead;
6113 #endif
6114 }
6115 else
6116 {
6117 num_used++;
6118 CONS_UNMARK (&cblk->conses[pos]);
6119 }
6120 }
6121 }
6122 }
6123
6124 lim = CONS_BLOCK_SIZE;
6125 /* If this block contains only free conses and we have already
6126 seen more than two blocks worth of free conses then deallocate
6127 this block. */
6128 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6129 {
6130 *cprev = cblk->next;
6131 /* Unhook from the free list. */
6132 cons_free_list = cblk->conses[0].u.chain;
6133 lisp_align_free (cblk);
6134 }
6135 else
6136 {
6137 num_free += this_free;
6138 cprev = &cblk->next;
6139 }
6140 }
6141 total_conses = num_used;
6142 total_free_conses = num_free;
6143 }
6144
6145 /* Put all unmarked floats on free list */
6146 {
6147 register struct float_block *fblk;
6148 struct float_block **fprev = &float_block;
6149 register int lim = float_block_index;
6150 EMACS_INT num_free = 0, num_used = 0;
6151
6152 float_free_list = 0;
6153
6154 for (fblk = float_block; fblk; fblk = *fprev)
6155 {
6156 register int i;
6157 int this_free = 0;
6158 for (i = 0; i < lim; i++)
6159 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6160 {
6161 this_free++;
6162 fblk->floats[i].u.chain = float_free_list;
6163 float_free_list = &fblk->floats[i];
6164 }
6165 else
6166 {
6167 num_used++;
6168 FLOAT_UNMARK (&fblk->floats[i]);
6169 }
6170 lim = FLOAT_BLOCK_SIZE;
6171 /* If this block contains only free floats and we have already
6172 seen more than two blocks worth of free floats then deallocate
6173 this block. */
6174 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6175 {
6176 *fprev = fblk->next;
6177 /* Unhook from the free list. */
6178 float_free_list = fblk->floats[0].u.chain;
6179 lisp_align_free (fblk);
6180 }
6181 else
6182 {
6183 num_free += this_free;
6184 fprev = &fblk->next;
6185 }
6186 }
6187 total_floats = num_used;
6188 total_free_floats = num_free;
6189 }
6190
6191 /* Put all unmarked intervals on free list */
6192 {
6193 register struct interval_block *iblk;
6194 struct interval_block **iprev = &interval_block;
6195 register int lim = interval_block_index;
6196 EMACS_INT num_free = 0, num_used = 0;
6197
6198 interval_free_list = 0;
6199
6200 for (iblk = interval_block; iblk; iblk = *iprev)
6201 {
6202 register int i;
6203 int this_free = 0;
6204
6205 for (i = 0; i < lim; i++)
6206 {
6207 if (!iblk->intervals[i].gcmarkbit)
6208 {
6209 set_interval_parent (&iblk->intervals[i], interval_free_list);
6210 interval_free_list = &iblk->intervals[i];
6211 this_free++;
6212 }
6213 else
6214 {
6215 num_used++;
6216 iblk->intervals[i].gcmarkbit = 0;
6217 }
6218 }
6219 lim = INTERVAL_BLOCK_SIZE;
6220 /* If this block contains only free intervals and we have already
6221 seen more than two blocks worth of free intervals then
6222 deallocate this block. */
6223 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6224 {
6225 *iprev = iblk->next;
6226 /* Unhook from the free list. */
6227 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6228 lisp_free (iblk);
6229 }
6230 else
6231 {
6232 num_free += this_free;
6233 iprev = &iblk->next;
6234 }
6235 }
6236 total_intervals = num_used;
6237 total_free_intervals = num_free;
6238 }
6239
6240 /* Put all unmarked symbols on free list */
6241 {
6242 register struct symbol_block *sblk;
6243 struct symbol_block **sprev = &symbol_block;
6244 register int lim = symbol_block_index;
6245 EMACS_INT num_free = 0, num_used = 0;
6246
6247 symbol_free_list = NULL;
6248
6249 for (sblk = symbol_block; sblk; sblk = *sprev)
6250 {
6251 int this_free = 0;
6252 union aligned_Lisp_Symbol *sym = sblk->symbols;
6253 union aligned_Lisp_Symbol *end = sym + lim;
6254
6255 for (; sym < end; ++sym)
6256 {
6257 /* Check if the symbol was created during loadup. In such a case
6258 it might be pointed to by pure bytecode which we don't trace,
6259 so we conservatively assume that it is live. */
6260 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6261
6262 if (!sym->s.gcmarkbit && !pure_p)
6263 {
6264 if (sym->s.redirect == SYMBOL_LOCALIZED)
6265 xfree (SYMBOL_BLV (&sym->s));
6266 sym->s.next = symbol_free_list;
6267 symbol_free_list = &sym->s;
6268 #if GC_MARK_STACK
6269 symbol_free_list->function = Vdead;
6270 #endif
6271 ++this_free;
6272 }
6273 else
6274 {
6275 ++num_used;
6276 if (!pure_p)
6277 UNMARK_STRING (XSTRING (sym->s.name));
6278 sym->s.gcmarkbit = 0;
6279 }
6280 }
6281
6282 lim = SYMBOL_BLOCK_SIZE;
6283 /* If this block contains only free symbols and we have already
6284 seen more than two blocks worth of free symbols then deallocate
6285 this block. */
6286 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6287 {
6288 *sprev = sblk->next;
6289 /* Unhook from the free list. */
6290 symbol_free_list = sblk->symbols[0].s.next;
6291 lisp_free (sblk);
6292 }
6293 else
6294 {
6295 num_free += this_free;
6296 sprev = &sblk->next;
6297 }
6298 }
6299 total_symbols = num_used;
6300 total_free_symbols = num_free;
6301 }
6302
6303 /* Put all unmarked misc's on free list.
6304 For a marker, first unchain it from the buffer it points into. */
6305 {
6306 register struct marker_block *mblk;
6307 struct marker_block **mprev = &marker_block;
6308 register int lim = marker_block_index;
6309 EMACS_INT num_free = 0, num_used = 0;
6310
6311 marker_free_list = 0;
6312
6313 for (mblk = marker_block; mblk; mblk = *mprev)
6314 {
6315 register int i;
6316 int this_free = 0;
6317
6318 for (i = 0; i < lim; i++)
6319 {
6320 if (!mblk->markers[i].m.u_any.gcmarkbit)
6321 {
6322 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6323 unchain_marker (&mblk->markers[i].m.u_marker);
6324 /* Set the type of the freed object to Lisp_Misc_Free.
6325 We could leave the type alone, since nobody checks it,
6326 but this might catch bugs faster. */
6327 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6328 mblk->markers[i].m.u_free.chain = marker_free_list;
6329 marker_free_list = &mblk->markers[i].m;
6330 this_free++;
6331 }
6332 else
6333 {
6334 num_used++;
6335 mblk->markers[i].m.u_any.gcmarkbit = 0;
6336 }
6337 }
6338 lim = MARKER_BLOCK_SIZE;
6339 /* If this block contains only free markers and we have already
6340 seen more than two blocks worth of free markers then deallocate
6341 this block. */
6342 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6343 {
6344 *mprev = mblk->next;
6345 /* Unhook from the free list. */
6346 marker_free_list = mblk->markers[0].m.u_free.chain;
6347 lisp_free (mblk);
6348 }
6349 else
6350 {
6351 num_free += this_free;
6352 mprev = &mblk->next;
6353 }
6354 }
6355
6356 total_markers = num_used;
6357 total_free_markers = num_free;
6358 }
6359
6360 /* Free all unmarked buffers */
6361 {
6362 register struct buffer *buffer, **bprev = &all_buffers;
6363
6364 total_buffers = 0;
6365 for (buffer = all_buffers; buffer; buffer = *bprev)
6366 if (!VECTOR_MARKED_P (buffer))
6367 {
6368 *bprev = buffer->next;
6369 lisp_free (buffer);
6370 }
6371 else
6372 {
6373 VECTOR_UNMARK (buffer);
6374 /* Do not use buffer_(set|get)_intervals here. */
6375 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6376 total_buffers++;
6377 bprev = &buffer->next;
6378 }
6379 }
6380
6381 sweep_vectors ();
6382 check_string_bytes (!noninteractive);
6383 }
6384
6385
6386
6387 \f
6388 /* Debugging aids. */
6389
6390 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6391 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6392 This may be helpful in debugging Emacs's memory usage.
6393 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6394 (void)
6395 {
6396 Lisp_Object end;
6397
6398 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6399
6400 return end;
6401 }
6402
6403 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6404 doc: /* Return a list of counters that measure how much consing there has been.
6405 Each of these counters increments for a certain kind of object.
6406 The counters wrap around from the largest positive integer to zero.
6407 Garbage collection does not decrease them.
6408 The elements of the value are as follows:
6409 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6410 All are in units of 1 = one object consed
6411 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6412 objects consed.
6413 MISCS include overlays, markers, and some internal types.
6414 Frames, windows, buffers, and subprocesses count as vectors
6415 (but the contents of a buffer's text do not count here). */)
6416 (void)
6417 {
6418 return listn (CONSTYPE_HEAP, 8,
6419 bounded_number (cons_cells_consed),
6420 bounded_number (floats_consed),
6421 bounded_number (vector_cells_consed),
6422 bounded_number (symbols_consed),
6423 bounded_number (string_chars_consed),
6424 bounded_number (misc_objects_consed),
6425 bounded_number (intervals_consed),
6426 bounded_number (strings_consed));
6427 }
6428
6429 /* Find at most FIND_MAX symbols which have OBJ as their value or
6430 function. This is used in gdbinit's `xwhichsymbols' command. */
6431
6432 Lisp_Object
6433 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6434 {
6435 struct symbol_block *sblk;
6436 ptrdiff_t gc_count = inhibit_garbage_collection ();
6437 Lisp_Object found = Qnil;
6438
6439 if (! DEADP (obj))
6440 {
6441 for (sblk = symbol_block; sblk; sblk = sblk->next)
6442 {
6443 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6444 int bn;
6445
6446 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6447 {
6448 struct Lisp_Symbol *sym = &aligned_sym->s;
6449 Lisp_Object val;
6450 Lisp_Object tem;
6451
6452 if (sblk == symbol_block && bn >= symbol_block_index)
6453 break;
6454
6455 XSETSYMBOL (tem, sym);
6456 val = find_symbol_value (tem);
6457 if (EQ (val, obj)
6458 || EQ (sym->function, obj)
6459 || (!NILP (sym->function)
6460 && COMPILEDP (sym->function)
6461 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6462 || (!NILP (val)
6463 && COMPILEDP (val)
6464 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6465 {
6466 found = Fcons (tem, found);
6467 if (--find_max == 0)
6468 goto out;
6469 }
6470 }
6471 }
6472 }
6473
6474 out:
6475 unbind_to (gc_count, Qnil);
6476 return found;
6477 }
6478
6479 #ifdef ENABLE_CHECKING
6480
6481 bool suppress_checking;
6482
6483 void
6484 die (const char *msg, const char *file, int line)
6485 {
6486 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6487 file, line, msg);
6488 terminate_due_to_signal (SIGABRT, INT_MAX);
6489 }
6490 #endif
6491 \f
6492 /* Initialization */
6493
6494 void
6495 init_alloc_once (void)
6496 {
6497 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6498 purebeg = PUREBEG;
6499 pure_size = PURESIZE;
6500
6501 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6502 mem_init ();
6503 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6504 #endif
6505
6506 #ifdef DOUG_LEA_MALLOC
6507 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6508 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6509 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6510 #endif
6511 init_strings ();
6512 init_vectors ();
6513
6514 refill_memory_reserve ();
6515 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6516 }
6517
6518 void
6519 init_alloc (void)
6520 {
6521 gcprolist = 0;
6522 byte_stack_list = 0;
6523 #if GC_MARK_STACK
6524 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6525 setjmp_tested_p = longjmps_done = 0;
6526 #endif
6527 #endif
6528 Vgc_elapsed = make_float (0.0);
6529 gcs_done = 0;
6530 }
6531
6532 void
6533 syms_of_alloc (void)
6534 {
6535 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6536 doc: /* Number of bytes of consing between garbage collections.
6537 Garbage collection can happen automatically once this many bytes have been
6538 allocated since the last garbage collection. All data types count.
6539
6540 Garbage collection happens automatically only when `eval' is called.
6541
6542 By binding this temporarily to a large number, you can effectively
6543 prevent garbage collection during a part of the program.
6544 See also `gc-cons-percentage'. */);
6545
6546 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6547 doc: /* Portion of the heap used for allocation.
6548 Garbage collection can happen automatically once this portion of the heap
6549 has been allocated since the last garbage collection.
6550 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6551 Vgc_cons_percentage = make_float (0.1);
6552
6553 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6554 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6555
6556 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6557 doc: /* Number of cons cells that have been consed so far. */);
6558
6559 DEFVAR_INT ("floats-consed", floats_consed,
6560 doc: /* Number of floats that have been consed so far. */);
6561
6562 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6563 doc: /* Number of vector cells that have been consed so far. */);
6564
6565 DEFVAR_INT ("symbols-consed", symbols_consed,
6566 doc: /* Number of symbols that have been consed so far. */);
6567
6568 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6569 doc: /* Number of string characters that have been consed so far. */);
6570
6571 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6572 doc: /* Number of miscellaneous objects that have been consed so far.
6573 These include markers and overlays, plus certain objects not visible
6574 to users. */);
6575
6576 DEFVAR_INT ("intervals-consed", intervals_consed,
6577 doc: /* Number of intervals that have been consed so far. */);
6578
6579 DEFVAR_INT ("strings-consed", strings_consed,
6580 doc: /* Number of strings that have been consed so far. */);
6581
6582 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6583 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6584 This means that certain objects should be allocated in shared (pure) space.
6585 It can also be set to a hash-table, in which case this table is used to
6586 do hash-consing of the objects allocated to pure space. */);
6587
6588 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6589 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6590 garbage_collection_messages = 0;
6591
6592 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6593 doc: /* Hook run after garbage collection has finished. */);
6594 Vpost_gc_hook = Qnil;
6595 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6596
6597 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6598 doc: /* Precomputed `signal' argument for memory-full error. */);
6599 /* We build this in advance because if we wait until we need it, we might
6600 not be able to allocate the memory to hold it. */
6601 Vmemory_signal_data
6602 = listn (CONSTYPE_PURE, 2, Qerror,
6603 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6604
6605 DEFVAR_LISP ("memory-full", Vmemory_full,
6606 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6607 Vmemory_full = Qnil;
6608
6609 DEFSYM (Qconses, "conses");
6610 DEFSYM (Qsymbols, "symbols");
6611 DEFSYM (Qmiscs, "miscs");
6612 DEFSYM (Qstrings, "strings");
6613 DEFSYM (Qvectors, "vectors");
6614 DEFSYM (Qfloats, "floats");
6615 DEFSYM (Qintervals, "intervals");
6616 DEFSYM (Qbuffers, "buffers");
6617 DEFSYM (Qstring_bytes, "string-bytes");
6618 DEFSYM (Qvector_slots, "vector-slots");
6619 DEFSYM (Qheap, "heap");
6620 DEFSYM (Qautomatic_gc, "Automatic GC");
6621
6622 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6623 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6624
6625 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6626 doc: /* Accumulated time elapsed in garbage collections.
6627 The time is in seconds as a floating point value. */);
6628 DEFVAR_INT ("gcs-done", gcs_done,
6629 doc: /* Accumulated number of garbage collections done. */);
6630
6631 defsubr (&Scons);
6632 defsubr (&Slist);
6633 defsubr (&Svector);
6634 defsubr (&Smake_byte_code);
6635 defsubr (&Smake_list);
6636 defsubr (&Smake_vector);
6637 defsubr (&Smake_string);
6638 defsubr (&Smake_bool_vector);
6639 defsubr (&Smake_symbol);
6640 defsubr (&Smake_marker);
6641 defsubr (&Spurecopy);
6642 defsubr (&Sgarbage_collect);
6643 defsubr (&Smemory_limit);
6644 defsubr (&Smemory_use_counts);
6645
6646 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6647 defsubr (&Sgc_status);
6648 #endif
6649 }
6650
6651 /* When compiled with GCC, GDB might say "No enum type named
6652 pvec_type" if we don't have at least one symbol with that type, and
6653 then xbacktrace could fail. Similarly for the other enums and
6654 their values. Some non-GCC compilers don't like these constructs. */
6655 #ifdef __GNUC__
6656 union
6657 {
6658 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6659 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6660 enum char_bits char_bits;
6661 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6662 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6663 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6664 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6665 enum Lisp_Bits Lisp_Bits;
6666 enum Lisp_Compiled Lisp_Compiled;
6667 enum maxargs maxargs;
6668 enum MAX_ALLOCA MAX_ALLOCA;
6669 enum More_Lisp_Bits More_Lisp_Bits;
6670 enum pvec_type pvec_type;
6671 #if USE_LSB_TAG
6672 enum lsb_bits lsb_bits;
6673 #endif
6674 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6675 #endif /* __GNUC__ */