(Fcopy_keymap): After copying a sub-char-table, do store the copy.
[bpt/emacs.git] / src / keymap.c
1 /* Manipulation of keymaps
2 Copyright (C) 1985, 86, 87, 88, 93, 94, 95 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 #include <config.h>
23 #include <stdio.h>
24 #undef NULL
25 #include "lisp.h"
26 #include "commands.h"
27 #include "buffer.h"
28 #include "charset.h"
29 #include "keyboard.h"
30 #include "termhooks.h"
31 #include "blockinput.h"
32 #include "puresize.h"
33
34 #define min(a, b) ((a) < (b) ? (a) : (b))
35
36 /* The number of elements in keymap vectors. */
37 #define DENSE_TABLE_SIZE (0200)
38
39 /* Actually allocate storage for these variables */
40
41 Lisp_Object current_global_map; /* Current global keymap */
42
43 Lisp_Object global_map; /* default global key bindings */
44
45 Lisp_Object meta_map; /* The keymap used for globally bound
46 ESC-prefixed default commands */
47
48 Lisp_Object control_x_map; /* The keymap used for globally bound
49 C-x-prefixed default commands */
50
51 /* was MinibufLocalMap */
52 Lisp_Object Vminibuffer_local_map;
53 /* The keymap used by the minibuf for local
54 bindings when spaces are allowed in the
55 minibuf */
56
57 /* was MinibufLocalNSMap */
58 Lisp_Object Vminibuffer_local_ns_map;
59 /* The keymap used by the minibuf for local
60 bindings when spaces are not encouraged
61 in the minibuf */
62
63 /* keymap used for minibuffers when doing completion */
64 /* was MinibufLocalCompletionMap */
65 Lisp_Object Vminibuffer_local_completion_map;
66
67 /* keymap used for minibuffers when doing completion and require a match */
68 /* was MinibufLocalMustMatchMap */
69 Lisp_Object Vminibuffer_local_must_match_map;
70
71 /* Alist of minor mode variables and keymaps. */
72 Lisp_Object Vminor_mode_map_alist;
73
74 /* Keymap mapping ASCII function key sequences onto their preferred forms.
75 Initialized by the terminal-specific lisp files. See DEFVAR for more
76 documentation. */
77 Lisp_Object Vfunction_key_map;
78
79 /* Keymap mapping ASCII function key sequences onto their preferred forms. */
80 Lisp_Object Vkey_translation_map;
81
82 /* A list of all commands given new bindings since a certain time
83 when nil was stored here.
84 This is used to speed up recomputation of menu key equivalents
85 when Emacs starts up. t means don't record anything here. */
86 Lisp_Object Vdefine_key_rebound_commands;
87
88 Lisp_Object Qkeymapp, Qkeymap, Qnon_ascii;
89
90 /* A char with the CHAR_META bit set in a vector or the 0200 bit set
91 in a string key sequence is equivalent to prefixing with this
92 character. */
93 extern Lisp_Object meta_prefix_char;
94
95 extern Lisp_Object Voverriding_local_map;
96
97 static Lisp_Object define_as_prefix ();
98 static Lisp_Object describe_buffer_bindings ();
99 static void describe_command (), describe_translation ();
100 static void describe_map ();
101 Lisp_Object Fcopy_keymap ();
102 \f
103 /* Keymap object support - constructors and predicates. */
104
105 DEFUN ("make-keymap", Fmake_keymap, Smake_keymap, 0, 1, 0,
106 "Construct and return a new keymap, of the form (keymap VECTOR . ALIST).\n\
107 VECTOR is a vector which holds the bindings for the ASCII\n\
108 characters. ALIST is an assoc-list which holds bindings for function keys,\n\
109 mouse events, and any other things that appear in the input stream.\n\
110 All entries in it are initially nil, meaning \"command undefined\".\n\n\
111 The optional arg STRING supplies a menu name for the keymap\n\
112 in case you use it as a menu with `x-popup-menu'.")
113 (string)
114 Lisp_Object string;
115 {
116 Lisp_Object tail;
117 if (!NILP (string))
118 tail = Fcons (string, Qnil);
119 else
120 tail = Qnil;
121 return Fcons (Qkeymap,
122 Fcons (Fmake_char_table (Qkeymap, Qnil), tail));
123 }
124
125 DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, Smake_sparse_keymap, 0, 1, 0,
126 "Construct and return a new sparse-keymap list.\n\
127 Its car is `keymap' and its cdr is an alist of (CHAR . DEFINITION),\n\
128 which binds the character CHAR to DEFINITION, or (SYMBOL . DEFINITION),\n\
129 which binds the function key or mouse event SYMBOL to DEFINITION.\n\
130 Initially the alist is nil.\n\n\
131 The optional arg STRING supplies a menu name for the keymap\n\
132 in case you use it as a menu with `x-popup-menu'.")
133 (string)
134 Lisp_Object string;
135 {
136 if (!NILP (string))
137 return Fcons (Qkeymap, Fcons (string, Qnil));
138 return Fcons (Qkeymap, Qnil);
139 }
140
141 /* This function is used for installing the standard key bindings
142 at initialization time.
143
144 For example:
145
146 initial_define_key (control_x_map, Ctl('X'), "exchange-point-and-mark"); */
147
148 void
149 initial_define_key (keymap, key, defname)
150 Lisp_Object keymap;
151 int key;
152 char *defname;
153 {
154 store_in_keymap (keymap, make_number (key), intern (defname));
155 }
156
157 void
158 initial_define_lispy_key (keymap, keyname, defname)
159 Lisp_Object keymap;
160 char *keyname;
161 char *defname;
162 {
163 store_in_keymap (keymap, intern (keyname), intern (defname));
164 }
165
166 /* Define character fromchar in map frommap as an alias for character
167 tochar in map tomap. Subsequent redefinitions of the latter WILL
168 affect the former. */
169
170 #if 0
171 void
172 synkey (frommap, fromchar, tomap, tochar)
173 struct Lisp_Vector *frommap, *tomap;
174 int fromchar, tochar;
175 {
176 Lisp_Object v, c;
177 XSETVECTOR (v, tomap);
178 XSETFASTINT (c, tochar);
179 frommap->contents[fromchar] = Fcons (v, c);
180 }
181 #endif /* 0 */
182
183 DEFUN ("keymapp", Fkeymapp, Skeymapp, 1, 1, 0,
184 "Return t if OBJECT is a keymap.\n\
185 \n\
186 A keymap is a list (keymap . ALIST),\n\
187 or a symbol whose function definition is itself a keymap.\n\
188 ALIST elements look like (CHAR . DEFN) or (SYMBOL . DEFN);\n\
189 a vector of densely packed bindings for small character codes\n\
190 is also allowed as an element.")
191 (object)
192 Lisp_Object object;
193 {
194 return (NILP (get_keymap_1 (object, 0, 0)) ? Qnil : Qt);
195 }
196
197 /* Check that OBJECT is a keymap (after dereferencing through any
198 symbols). If it is, return it.
199
200 If AUTOLOAD is non-zero and OBJECT is a symbol whose function value
201 is an autoload form, do the autoload and try again.
202 If AUTOLOAD is nonzero, callers must assume GC is possible.
203
204 ERROR controls how we respond if OBJECT isn't a keymap.
205 If ERROR is non-zero, signal an error; otherwise, just return Qnil.
206
207 Note that most of the time, we don't want to pursue autoloads.
208 Functions like Faccessible_keymaps which scan entire keymap trees
209 shouldn't load every autoloaded keymap. I'm not sure about this,
210 but it seems to me that only read_key_sequence, Flookup_key, and
211 Fdefine_key should cause keymaps to be autoloaded. */
212
213 Lisp_Object
214 get_keymap_1 (object, error, autoload)
215 Lisp_Object object;
216 int error, autoload;
217 {
218 Lisp_Object tem;
219
220 autoload_retry:
221 tem = indirect_function (object);
222 if (CONSP (tem) && EQ (XCONS (tem)->car, Qkeymap))
223 return tem;
224
225 /* Should we do an autoload? Autoload forms for keymaps have
226 Qkeymap as their fifth element. */
227 if (autoload
228 && SYMBOLP (object)
229 && CONSP (tem)
230 && EQ (XCONS (tem)->car, Qautoload))
231 {
232 Lisp_Object tail;
233
234 tail = Fnth (make_number (4), tem);
235 if (EQ (tail, Qkeymap))
236 {
237 struct gcpro gcpro1, gcpro2;
238
239 GCPRO2 (tem, object);
240 do_autoload (tem, object);
241 UNGCPRO;
242
243 goto autoload_retry;
244 }
245 }
246
247 if (error)
248 wrong_type_argument (Qkeymapp, object);
249 else
250 return Qnil;
251 }
252
253
254 /* Follow any symbol chaining, and return the keymap denoted by OBJECT.
255 If OBJECT doesn't denote a keymap at all, signal an error. */
256 Lisp_Object
257 get_keymap (object)
258 Lisp_Object object;
259 {
260 return get_keymap_1 (object, 1, 0);
261 }
262 \f
263 /* Return the parent map of the keymap MAP, or nil if it has none.
264 We assume that MAP is a valid keymap. */
265
266 DEFUN ("keymap-parent", Fkeymap_parent, Skeymap_parent, 1, 1, 0,
267 "Return the parent keymap of KEYMAP.")
268 (keymap)
269 Lisp_Object keymap;
270 {
271 Lisp_Object list;
272
273 keymap = get_keymap_1 (keymap, 1, 1);
274
275 /* Skip past the initial element `keymap'. */
276 list = XCONS (keymap)->cdr;
277 for (; CONSP (list); list = XCONS (list)->cdr)
278 {
279 /* See if there is another `keymap'. */
280 if (EQ (Qkeymap, XCONS (list)->car))
281 return list;
282 }
283
284 return Qnil;
285 }
286
287 /* Set the parent keymap of MAP to PARENT. */
288
289 DEFUN ("set-keymap-parent", Fset_keymap_parent, Sset_keymap_parent, 2, 2, 0,
290 "Modify KEYMAP to set its parent map to PARENT.\n\
291 PARENT should be nil or another keymap.")
292 (keymap, parent)
293 Lisp_Object keymap, parent;
294 {
295 Lisp_Object list, prev;
296 int i;
297
298 keymap = get_keymap_1 (keymap, 1, 1);
299 if (!NILP (parent))
300 parent = get_keymap_1 (parent, 1, 1);
301
302 /* Skip past the initial element `keymap'. */
303 prev = keymap;
304 while (1)
305 {
306 list = XCONS (prev)->cdr;
307 /* If there is a parent keymap here, replace it.
308 If we came to the end, add the parent in PREV. */
309 if (! CONSP (list) || EQ (Qkeymap, XCONS (list)->car))
310 {
311 /* If we already have the right parent, return now
312 so that we avoid the loops below. */
313 if (EQ (XCONS (prev)->cdr, parent))
314 return parent;
315
316 XCONS (prev)->cdr = parent;
317 break;
318 }
319 prev = list;
320 }
321
322 /* Scan through for submaps, and set their parents too. */
323
324 for (list = XCONS (keymap)->cdr; CONSP (list); list = XCONS (list)->cdr)
325 {
326 /* Stop the scan when we come to the parent. */
327 if (EQ (XCONS (list)->car, Qkeymap))
328 break;
329
330 /* If this element holds a prefix map, deal with it. */
331 if (CONSP (XCONS (list)->car)
332 && CONSP (XCONS (XCONS (list)->car)->cdr))
333 fix_submap_inheritance (keymap, XCONS (XCONS (list)->car)->car,
334 XCONS (XCONS (list)->car)->cdr);
335
336 if (VECTORP (XCONS (list)->car))
337 for (i = 0; i < XVECTOR (XCONS (list)->car)->size; i++)
338 if (CONSP (XVECTOR (XCONS (list)->car)->contents[i]))
339 fix_submap_inheritance (keymap, make_number (i),
340 XVECTOR (XCONS (list)->car)->contents[i]);
341
342 if (CHAR_TABLE_P (XCONS (list)->car))
343 {
344 Lisp_Object *indices
345 = (Lisp_Object *) alloca (3 * sizeof (Lisp_Object));
346
347 map_char_table (fix_submap_inheritance, Qnil, XCONS (list)->car,
348 keymap, 0, indices);
349 }
350 }
351
352 return parent;
353 }
354
355 /* EVENT is defined in MAP as a prefix, and SUBMAP is its definition.
356 if EVENT is also a prefix in MAP's parent,
357 make sure that SUBMAP inherits that definition as its own parent. */
358
359 fix_submap_inheritance (map, event, submap)
360 Lisp_Object map, event, submap;
361 {
362 Lisp_Object map_parent, parent_entry;
363
364 /* SUBMAP is a cons that we found as a key binding.
365 Discard the other things found in a menu key binding. */
366
367 if (CONSP (submap)
368 && STRINGP (XCONS (submap)->car))
369 {
370 submap = XCONS (submap)->cdr;
371 /* Also remove a menu help string, if any,
372 following the menu item name. */
373 if (CONSP (submap) && STRINGP (XCONS (submap)->car))
374 submap = XCONS (submap)->cdr;
375 /* Also remove the sublist that caches key equivalences, if any. */
376 if (CONSP (submap)
377 && CONSP (XCONS (submap)->car))
378 {
379 Lisp_Object carcar;
380 carcar = XCONS (XCONS (submap)->car)->car;
381 if (NILP (carcar) || VECTORP (carcar))
382 submap = XCONS (submap)->cdr;
383 }
384 }
385
386 /* If it isn't a keymap now, there's no work to do. */
387 if (! CONSP (submap)
388 || ! EQ (XCONS (submap)->car, Qkeymap))
389 return;
390
391 map_parent = Fkeymap_parent (map);
392 if (! NILP (map_parent))
393 parent_entry = access_keymap (map_parent, event, 0, 0);
394 else
395 parent_entry = Qnil;
396
397 /* If MAP's parent has something other than a keymap,
398 our own submap shadows it completely, so use nil as SUBMAP's parent. */
399 if (! (CONSP (parent_entry) && EQ (XCONS (parent_entry)->car, Qkeymap)))
400 parent_entry = Qnil;
401
402 if (! EQ (parent_entry, submap))
403 Fset_keymap_parent (submap, parent_entry);
404 }
405 \f
406 /* Look up IDX in MAP. IDX may be any sort of event.
407 Note that this does only one level of lookup; IDX must be a single
408 event, not a sequence.
409
410 If T_OK is non-zero, bindings for Qt are treated as default
411 bindings; any key left unmentioned by other tables and bindings is
412 given the binding of Qt.
413
414 If T_OK is zero, bindings for Qt are not treated specially.
415
416 If NOINHERIT, don't accept a subkeymap found in an inherited keymap. */
417
418 Lisp_Object
419 access_keymap (map, idx, t_ok, noinherit)
420 Lisp_Object map;
421 Lisp_Object idx;
422 int t_ok;
423 int noinherit;
424 {
425 int noprefix = 0;
426 Lisp_Object val;
427
428 /* If idx is a list (some sort of mouse click, perhaps?),
429 the index we want to use is the car of the list, which
430 ought to be a symbol. */
431 idx = EVENT_HEAD (idx);
432
433 /* If idx is a symbol, it might have modifiers, which need to
434 be put in the canonical order. */
435 if (SYMBOLP (idx))
436 idx = reorder_modifiers (idx);
437 else if (INTEGERP (idx))
438 /* Clobber the high bits that can be present on a machine
439 with more than 24 bits of integer. */
440 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
441
442 {
443 Lisp_Object tail;
444 Lisp_Object t_binding;
445
446 t_binding = Qnil;
447 for (tail = map; CONSP (tail); tail = XCONS (tail)->cdr)
448 {
449 Lisp_Object binding;
450
451 binding = XCONS (tail)->car;
452 if (SYMBOLP (binding))
453 {
454 /* If NOINHERIT, stop finding prefix definitions
455 after we pass a second occurrence of the `keymap' symbol. */
456 if (noinherit && EQ (binding, Qkeymap) && ! EQ (tail, map))
457 noprefix = 1;
458 }
459 else if (CONSP (binding))
460 {
461 if (EQ (XCONS (binding)->car, idx))
462 {
463 val = XCONS (binding)->cdr;
464 if (noprefix && CONSP (val) && EQ (XCONS (val)->car, Qkeymap))
465 return Qnil;
466 if (CONSP (val))
467 fix_submap_inheritance (map, idx, val);
468 return val;
469 }
470 if (t_ok && EQ (XCONS (binding)->car, Qt))
471 t_binding = XCONS (binding)->cdr;
472 }
473 else if (VECTORP (binding))
474 {
475 if (NATNUMP (idx) && XFASTINT (idx) < XVECTOR (binding)->size)
476 {
477 val = XVECTOR (binding)->contents[XFASTINT (idx)];
478 if (noprefix && CONSP (val) && EQ (XCONS (val)->car, Qkeymap))
479 return Qnil;
480 if (CONSP (val))
481 fix_submap_inheritance (map, idx, val);
482 return val;
483 }
484 }
485 else if (CHAR_TABLE_P (binding))
486 {
487 /* Character codes with modifiers
488 are not included in a char-table.
489 All character codes without modifiers are included. */
490 if (NATNUMP (idx)
491 && ! (XFASTINT (idx)
492 & (CHAR_ALT | CHAR_SUPER | CHAR_HYPER
493 | CHAR_SHIFT | CHAR_CTL | CHAR_META)))
494 {
495 val = Faref (binding, idx);
496 if (noprefix && CONSP (val) && EQ (XCONS (val)->car, Qkeymap))
497 return Qnil;
498 if (CONSP (val))
499 fix_submap_inheritance (map, idx, val);
500 return val;
501 }
502 }
503
504 QUIT;
505 }
506
507 return t_binding;
508 }
509 }
510
511 /* Given OBJECT which was found in a slot in a keymap,
512 trace indirect definitions to get the actual definition of that slot.
513 An indirect definition is a list of the form
514 (KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one
515 and INDEX is the object to look up in KEYMAP to yield the definition.
516
517 Also if OBJECT has a menu string as the first element,
518 remove that. Also remove a menu help string as second element.
519
520 If AUTOLOAD is nonzero, load autoloadable keymaps
521 that are referred to with indirection. */
522
523 Lisp_Object
524 get_keyelt (object, autoload)
525 register Lisp_Object object;
526 int autoload;
527 {
528 while (1)
529 {
530 register Lisp_Object map, tem;
531
532 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
533 map = get_keymap_1 (Fcar_safe (object), 0, autoload);
534 tem = Fkeymapp (map);
535 if (!NILP (tem))
536 {
537 Lisp_Object key;
538 key = Fcdr (object);
539 if (INTEGERP (key) && (XINT (key) & meta_modifier))
540 {
541 object = access_keymap (map, make_number (meta_prefix_char),
542 0, 0);
543 map = get_keymap_1 (object, 0, autoload);
544 object = access_keymap (map,
545 make_number (XINT (key) & ~meta_modifier),
546 0, 0);
547 }
548 else
549 object = access_keymap (map, key, 0, 0);
550 }
551
552 /* If the keymap contents looks like (STRING . DEFN),
553 use DEFN.
554 Keymap alist elements like (CHAR MENUSTRING . DEFN)
555 will be used by HierarKey menus. */
556 else if (CONSP (object)
557 && STRINGP (XCONS (object)->car))
558 {
559 object = XCONS (object)->cdr;
560 /* Also remove a menu help string, if any,
561 following the menu item name. */
562 if (CONSP (object) && STRINGP (XCONS (object)->car))
563 object = XCONS (object)->cdr;
564 /* Also remove the sublist that caches key equivalences, if any. */
565 if (CONSP (object)
566 && CONSP (XCONS (object)->car))
567 {
568 Lisp_Object carcar;
569 carcar = XCONS (XCONS (object)->car)->car;
570 if (NILP (carcar) || VECTORP (carcar))
571 object = XCONS (object)->cdr;
572 }
573 }
574
575 else
576 /* Anything else is really the value. */
577 return object;
578 }
579 }
580
581 Lisp_Object
582 store_in_keymap (keymap, idx, def)
583 Lisp_Object keymap;
584 register Lisp_Object idx;
585 register Lisp_Object def;
586 {
587 /* If we are preparing to dump, and DEF is a menu element
588 with a menu item string, copy it to ensure it is not pure. */
589 if (CONSP (def) && PURE_P (def) && STRINGP (XCONS (def)->car))
590 def = Fcons (XCONS (def)->car, XCONS (def)->cdr);
591
592 if (!CONSP (keymap) || ! EQ (XCONS (keymap)->car, Qkeymap))
593 error ("attempt to define a key in a non-keymap");
594
595 /* If idx is a list (some sort of mouse click, perhaps?),
596 the index we want to use is the car of the list, which
597 ought to be a symbol. */
598 idx = EVENT_HEAD (idx);
599
600 /* If idx is a symbol, it might have modifiers, which need to
601 be put in the canonical order. */
602 if (SYMBOLP (idx))
603 idx = reorder_modifiers (idx);
604 else if (INTEGERP (idx))
605 /* Clobber the high bits that can be present on a machine
606 with more than 24 bits of integer. */
607 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
608
609 /* Scan the keymap for a binding of idx. */
610 {
611 Lisp_Object tail;
612
613 /* The cons after which we should insert new bindings. If the
614 keymap has a table element, we record its position here, so new
615 bindings will go after it; this way, the table will stay
616 towards the front of the alist and character lookups in dense
617 keymaps will remain fast. Otherwise, this just points at the
618 front of the keymap. */
619 Lisp_Object insertion_point;
620
621 insertion_point = keymap;
622 for (tail = XCONS (keymap)->cdr; CONSP (tail); tail = XCONS (tail)->cdr)
623 {
624 Lisp_Object elt;
625
626 elt = XCONS (tail)->car;
627 if (VECTORP (elt))
628 {
629 if (NATNUMP (idx) && XFASTINT (idx) < XVECTOR (elt)->size)
630 {
631 XVECTOR (elt)->contents[XFASTINT (idx)] = def;
632 return def;
633 }
634 insertion_point = tail;
635 }
636 else if (CHAR_TABLE_P (elt))
637 {
638 /* Character codes with modifiers
639 are not included in a char-table.
640 All character codes without modifiers are included. */
641 if (NATNUMP (idx)
642 && ! (XFASTINT (idx)
643 & (CHAR_ALT | CHAR_SUPER | CHAR_HYPER
644 | CHAR_SHIFT | CHAR_CTL | CHAR_META)))
645 {
646 Faset (elt, idx, def);
647 return def;
648 }
649 insertion_point = tail;
650 }
651 else if (CONSP (elt))
652 {
653 if (EQ (idx, XCONS (elt)->car))
654 {
655 XCONS (elt)->cdr = def;
656 return def;
657 }
658 }
659 else if (SYMBOLP (elt))
660 {
661 /* If we find a 'keymap' symbol in the spine of KEYMAP,
662 then we must have found the start of a second keymap
663 being used as the tail of KEYMAP, and a binding for IDX
664 should be inserted before it. */
665 if (EQ (elt, Qkeymap))
666 goto keymap_end;
667 }
668
669 QUIT;
670 }
671
672 keymap_end:
673 /* We have scanned the entire keymap, and not found a binding for
674 IDX. Let's add one. */
675 XCONS (insertion_point)->cdr
676 = Fcons (Fcons (idx, def), XCONS (insertion_point)->cdr);
677 }
678
679 return def;
680 }
681
682 Lisp_Object
683 copy_keymap_1 (chartable, idx, elt)
684 Lisp_Object chartable, idx, elt;
685 {
686 if (!SYMBOLP (elt) && ! NILP (Fkeymapp (elt)))
687 Faset (chartable, idx, Fcopy_keymap (elt));
688 }
689
690 DEFUN ("copy-keymap", Fcopy_keymap, Scopy_keymap, 1, 1, 0,
691 "Return a copy of the keymap KEYMAP.\n\
692 The copy starts out with the same definitions of KEYMAP,\n\
693 but changing either the copy or KEYMAP does not affect the other.\n\
694 Any key definitions that are subkeymaps are recursively copied.\n\
695 However, a key definition which is a symbol whose definition is a keymap\n\
696 is not copied.")
697 (keymap)
698 Lisp_Object keymap;
699 {
700 register Lisp_Object copy, tail;
701
702 copy = Fcopy_alist (get_keymap (keymap));
703
704 for (tail = copy; CONSP (tail); tail = XCONS (tail)->cdr)
705 {
706 Lisp_Object elt;
707
708 elt = XCONS (tail)->car;
709 if (CHAR_TABLE_P (elt))
710 {
711 Lisp_Object *indices
712 = (Lisp_Object *) alloca (3 * sizeof (Lisp_Object));
713
714 elt = Fcopy_sequence (elt);
715 XCONS (tail)->car = elt;
716
717 map_char_table (copy_keymap_1, Qnil, elt, elt, 0, indices);
718 }
719 else if (VECTORP (elt))
720 {
721 int i;
722
723 elt = Fcopy_sequence (elt);
724 XCONS (tail)->car = elt;
725
726 for (i = 0; i < XVECTOR (elt)->size; i++)
727 if (!SYMBOLP (XVECTOR (elt)->contents[i])
728 && ! NILP (Fkeymapp (XVECTOR (elt)->contents[i])))
729 XVECTOR (elt)->contents[i]
730 = Fcopy_keymap (XVECTOR (elt)->contents[i]);
731 }
732 else if (CONSP (elt))
733 {
734 /* Skip the optional menu string. */
735 if (CONSP (XCONS (elt)->cdr)
736 && STRINGP (XCONS (XCONS (elt)->cdr)->car))
737 {
738 Lisp_Object tem;
739
740 /* Copy the cell, since copy-alist didn't go this deep. */
741 XCONS (elt)->cdr = Fcons (XCONS (XCONS (elt)->cdr)->car,
742 XCONS (XCONS (elt)->cdr)->cdr);
743 elt = XCONS (elt)->cdr;
744
745 /* Also skip the optional menu help string. */
746 if (CONSP (XCONS (elt)->cdr)
747 && STRINGP (XCONS (XCONS (elt)->cdr)->car))
748 {
749 XCONS (elt)->cdr = Fcons (XCONS (XCONS (elt)->cdr)->car,
750 XCONS (XCONS (elt)->cdr)->cdr);
751 elt = XCONS (elt)->cdr;
752 }
753 /* There may also be a list that caches key equivalences.
754 Just delete it for the new keymap. */
755 if (CONSP (XCONS (elt)->cdr)
756 && CONSP (XCONS (XCONS (elt)->cdr)->car)
757 && (NILP (tem = XCONS (XCONS (XCONS (elt)->cdr)->car)->car)
758 || VECTORP (tem)))
759 XCONS (elt)->cdr = XCONS (XCONS (elt)->cdr)->cdr;
760 }
761 if (CONSP (elt)
762 && ! SYMBOLP (XCONS (elt)->cdr)
763 && ! NILP (Fkeymapp (XCONS (elt)->cdr)))
764 XCONS (elt)->cdr = Fcopy_keymap (XCONS (elt)->cdr);
765 }
766 }
767
768 return copy;
769 }
770 \f
771 /* Simple Keymap mutators and accessors. */
772
773 /* GC is possible in this function if it autoloads a keymap. */
774
775 DEFUN ("define-key", Fdefine_key, Sdefine_key, 3, 3, 0,
776 "Args KEYMAP, KEY, DEF. Define key sequence KEY, in KEYMAP, as DEF.\n\
777 KEYMAP is a keymap. KEY is a string or a vector of symbols and characters\n\
778 meaning a sequence of keystrokes and events.\n\
779 Non-ASCII characters with codes above 127 (such as ISO Latin-1)\n\
780 can be included if you use a vector.\n\
781 DEF is anything that can be a key's definition:\n\
782 nil (means key is undefined in this keymap),\n\
783 a command (a Lisp function suitable for interactive calling)\n\
784 a string (treated as a keyboard macro),\n\
785 a keymap (to define a prefix key),\n\
786 a symbol. When the key is looked up, the symbol will stand for its\n\
787 function definition, which should at that time be one of the above,\n\
788 or another symbol whose function definition is used, etc.\n\
789 a cons (STRING . DEFN), meaning that DEFN is the definition\n\
790 (DEFN should be a valid definition in its own right),\n\
791 or a cons (KEYMAP . CHAR), meaning use definition of CHAR in map KEYMAP.\n\
792 \n\
793 If KEYMAP is a sparse keymap, the pair binding KEY to DEF is added at\n\
794 the front of KEYMAP.")
795 (keymap, key, def)
796 Lisp_Object keymap;
797 Lisp_Object key;
798 Lisp_Object def;
799 {
800 register int idx;
801 register Lisp_Object c;
802 register Lisp_Object tem;
803 register Lisp_Object cmd;
804 int metized = 0;
805 int meta_bit;
806 int length;
807 struct gcpro gcpro1, gcpro2, gcpro3;
808
809 keymap = get_keymap_1 (keymap, 1, 1);
810
811 if (!VECTORP (key) && !STRINGP (key))
812 key = wrong_type_argument (Qarrayp, key);
813
814 length = XFASTINT (Flength (key));
815 if (length == 0)
816 return Qnil;
817
818 if (SYMBOLP (def) && !EQ (Vdefine_key_rebound_commands, Qt))
819 Vdefine_key_rebound_commands = Fcons (def, Vdefine_key_rebound_commands);
820
821 GCPRO3 (keymap, key, def);
822
823 if (VECTORP (key))
824 meta_bit = meta_modifier;
825 else
826 meta_bit = 0x80;
827
828 idx = 0;
829 while (1)
830 {
831 c = Faref (key, make_number (idx));
832
833 if (CONSP (c) && lucid_event_type_list_p (c))
834 c = Fevent_convert_list (c);
835
836 if (INTEGERP (c)
837 && (XINT (c) & meta_bit)
838 && !metized)
839 {
840 c = meta_prefix_char;
841 metized = 1;
842 }
843 else
844 {
845 if (INTEGERP (c))
846 XSETINT (c, XINT (c) & ~meta_bit);
847
848 metized = 0;
849 idx++;
850 }
851
852 if (! INTEGERP (c) && ! SYMBOLP (c) && ! CONSP (c))
853 error ("Key sequence contains invalid events");
854
855 if (idx == length)
856 RETURN_UNGCPRO (store_in_keymap (keymap, c, def));
857
858 cmd = get_keyelt (access_keymap (keymap, c, 0, 1), 1);
859
860 /* If this key is undefined, make it a prefix. */
861 if (NILP (cmd))
862 cmd = define_as_prefix (keymap, c);
863
864 keymap = get_keymap_1 (cmd, 0, 1);
865 if (NILP (keymap))
866 /* We must use Fkey_description rather than just passing key to
867 error; key might be a vector, not a string. */
868 error ("Key sequence %s uses invalid prefix characters",
869 XSTRING (Fkey_description (key))->data);
870 }
871 }
872
873 /* Value is number if KEY is too long; NIL if valid but has no definition. */
874 /* GC is possible in this function if it autoloads a keymap. */
875
876 DEFUN ("lookup-key", Flookup_key, Slookup_key, 2, 3, 0,
877 "In keymap KEYMAP, look up key sequence KEY. Return the definition.\n\
878 nil means undefined. See doc of `define-key' for kinds of definitions.\n\
879 \n\
880 A number as value means KEY is \"too long\";\n\
881 that is, characters or symbols in it except for the last one\n\
882 fail to be a valid sequence of prefix characters in KEYMAP.\n\
883 The number is how many characters at the front of KEY\n\
884 it takes to reach a non-prefix command.\n\
885 \n\
886 Normally, `lookup-key' ignores bindings for t, which act as default\n\
887 bindings, used when nothing else in the keymap applies; this makes it\n\
888 usable as a general function for probing keymaps. However, if the\n\
889 third optional argument ACCEPT-DEFAULT is non-nil, `lookup-key' will\n\
890 recognize the default bindings, just as `read-key-sequence' does.")
891 (keymap, key, accept_default)
892 register Lisp_Object keymap;
893 Lisp_Object key;
894 Lisp_Object accept_default;
895 {
896 register int idx;
897 register Lisp_Object tem;
898 register Lisp_Object cmd;
899 register Lisp_Object c;
900 int metized = 0;
901 int length;
902 int t_ok = ! NILP (accept_default);
903 int meta_bit;
904 struct gcpro gcpro1;
905
906 keymap = get_keymap_1 (keymap, 1, 1);
907
908 if (!VECTORP (key) && !STRINGP (key))
909 key = wrong_type_argument (Qarrayp, key);
910
911 length = XFASTINT (Flength (key));
912 if (length == 0)
913 return keymap;
914
915 if (VECTORP (key))
916 meta_bit = meta_modifier;
917 else
918 meta_bit = 0x80;
919
920 GCPRO1 (key);
921
922 idx = 0;
923 while (1)
924 {
925 c = Faref (key, make_number (idx));
926
927 if (CONSP (c) && lucid_event_type_list_p (c))
928 c = Fevent_convert_list (c);
929
930 if (INTEGERP (c)
931 && (XINT (c) & meta_bit)
932 && !metized)
933 {
934 c = meta_prefix_char;
935 metized = 1;
936 }
937 else
938 {
939 if (INTEGERP (c))
940 XSETINT (c, XINT (c) & ~meta_bit);
941
942 metized = 0;
943 idx++;
944 }
945
946 cmd = get_keyelt (access_keymap (keymap, c, t_ok, 0), 1);
947 if (idx == length)
948 RETURN_UNGCPRO (cmd);
949
950 keymap = get_keymap_1 (cmd, 0, 1);
951 if (NILP (keymap))
952 RETURN_UNGCPRO (make_number (idx));
953
954 QUIT;
955 }
956 }
957
958 /* Make KEYMAP define event C as a keymap (i.e., as a prefix).
959 Assume that currently it does not define C at all.
960 Return the keymap. */
961
962 static Lisp_Object
963 define_as_prefix (keymap, c)
964 Lisp_Object keymap, c;
965 {
966 Lisp_Object inherit, cmd;
967
968 cmd = Fmake_sparse_keymap (Qnil);
969 /* If this key is defined as a prefix in an inherited keymap,
970 make it a prefix in this map, and make its definition
971 inherit the other prefix definition. */
972 inherit = access_keymap (keymap, c, 0, 0);
973 #if 0
974 /* This code is needed to do the right thing in the following case:
975 keymap A inherits from B,
976 you define KEY as a prefix in A,
977 then later you define KEY as a prefix in B.
978 We want the old prefix definition in A to inherit from that in B.
979 It is hard to do that retroactively, so this code
980 creates the prefix in B right away.
981
982 But it turns out that this code causes problems immediately
983 when the prefix in A is defined: it causes B to define KEY
984 as a prefix with no subcommands.
985
986 So I took out this code. */
987 if (NILP (inherit))
988 {
989 /* If there's an inherited keymap
990 and it doesn't define this key,
991 make it define this key. */
992 Lisp_Object tail;
993
994 for (tail = Fcdr (keymap); CONSP (tail); tail = XCONS (tail)->cdr)
995 if (EQ (XCONS (tail)->car, Qkeymap))
996 break;
997
998 if (!NILP (tail))
999 inherit = define_as_prefix (tail, c);
1000 }
1001 #endif
1002
1003 cmd = nconc2 (cmd, inherit);
1004 store_in_keymap (keymap, c, cmd);
1005
1006 return cmd;
1007 }
1008
1009 /* Append a key to the end of a key sequence. We always make a vector. */
1010
1011 Lisp_Object
1012 append_key (key_sequence, key)
1013 Lisp_Object key_sequence, key;
1014 {
1015 Lisp_Object args[2];
1016
1017 args[0] = key_sequence;
1018
1019 args[1] = Fcons (key, Qnil);
1020 return Fvconcat (2, args);
1021 }
1022
1023 \f
1024 /* Global, local, and minor mode keymap stuff. */
1025
1026 /* We can't put these variables inside current_minor_maps, since under
1027 some systems, static gets macro-defined to be the empty string.
1028 Ickypoo. */
1029 static Lisp_Object *cmm_modes, *cmm_maps;
1030 static int cmm_size;
1031
1032 /* Error handler used in current_minor_maps. */
1033 static Lisp_Object
1034 current_minor_maps_error ()
1035 {
1036 return Qnil;
1037 }
1038
1039 /* Store a pointer to an array of the keymaps of the currently active
1040 minor modes in *buf, and return the number of maps it contains.
1041
1042 This function always returns a pointer to the same buffer, and may
1043 free or reallocate it, so if you want to keep it for a long time or
1044 hand it out to lisp code, copy it. This procedure will be called
1045 for every key sequence read, so the nice lispy approach (return a
1046 new assoclist, list, what have you) for each invocation would
1047 result in a lot of consing over time.
1048
1049 If we used xrealloc/xmalloc and ran out of memory, they would throw
1050 back to the command loop, which would try to read a key sequence,
1051 which would call this function again, resulting in an infinite
1052 loop. Instead, we'll use realloc/malloc and silently truncate the
1053 list, let the key sequence be read, and hope some other piece of
1054 code signals the error. */
1055 int
1056 current_minor_maps (modeptr, mapptr)
1057 Lisp_Object **modeptr, **mapptr;
1058 {
1059 int i = 0;
1060 Lisp_Object alist, assoc, var, val;
1061
1062 for (alist = Vminor_mode_map_alist;
1063 CONSP (alist);
1064 alist = XCONS (alist)->cdr)
1065 if ((assoc = XCONS (alist)->car, CONSP (assoc))
1066 && (var = XCONS (assoc)->car, SYMBOLP (var))
1067 && (val = find_symbol_value (var), ! EQ (val, Qunbound))
1068 && ! NILP (val))
1069 {
1070 Lisp_Object temp;
1071
1072 if (i >= cmm_size)
1073 {
1074 Lisp_Object *newmodes, *newmaps;
1075
1076 if (cmm_maps)
1077 {
1078 BLOCK_INPUT;
1079 cmm_size *= 2;
1080 newmodes
1081 = (Lisp_Object *) realloc (cmm_modes,
1082 cmm_size * sizeof (Lisp_Object));
1083 newmaps
1084 = (Lisp_Object *) realloc (cmm_maps,
1085 cmm_size * sizeof (Lisp_Object));
1086 UNBLOCK_INPUT;
1087 }
1088 else
1089 {
1090 BLOCK_INPUT;
1091 cmm_size = 30;
1092 newmodes
1093 = (Lisp_Object *) malloc (cmm_size * sizeof (Lisp_Object));
1094 newmaps
1095 = (Lisp_Object *) malloc (cmm_size * sizeof (Lisp_Object));
1096 UNBLOCK_INPUT;
1097 }
1098
1099 if (newmaps && newmodes)
1100 {
1101 cmm_modes = newmodes;
1102 cmm_maps = newmaps;
1103 }
1104 else
1105 break;
1106 }
1107
1108 /* Get the keymap definition--or nil if it is not defined. */
1109 temp = internal_condition_case_1 (Findirect_function,
1110 XCONS (assoc)->cdr,
1111 Qerror, current_minor_maps_error);
1112 if (!NILP (temp))
1113 {
1114 cmm_modes[i] = var;
1115 cmm_maps [i] = temp;
1116 i++;
1117 }
1118 }
1119
1120 if (modeptr) *modeptr = cmm_modes;
1121 if (mapptr) *mapptr = cmm_maps;
1122 return i;
1123 }
1124
1125 /* GC is possible in this function if it autoloads a keymap. */
1126
1127 DEFUN ("key-binding", Fkey_binding, Skey_binding, 1, 2, 0,
1128 "Return the binding for command KEY in current keymaps.\n\
1129 KEY is a string or vector, a sequence of keystrokes.\n\
1130 The binding is probably a symbol with a function definition.\n\
1131 \n\
1132 Normally, `key-binding' ignores bindings for t, which act as default\n\
1133 bindings, used when nothing else in the keymap applies; this makes it\n\
1134 usable as a general function for probing keymaps. However, if the\n\
1135 optional second argument ACCEPT-DEFAULT is non-nil, `key-binding' does\n\
1136 recognize the default bindings, just as `read-key-sequence' does.")
1137 (key, accept_default)
1138 Lisp_Object key, accept_default;
1139 {
1140 Lisp_Object *maps, value;
1141 int nmaps, i;
1142 struct gcpro gcpro1;
1143
1144 GCPRO1 (key);
1145
1146 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1147 {
1148 value = Flookup_key (current_kboard->Voverriding_terminal_local_map,
1149 key, accept_default);
1150 if (! NILP (value) && !INTEGERP (value))
1151 RETURN_UNGCPRO (value);
1152 }
1153 else if (!NILP (Voverriding_local_map))
1154 {
1155 value = Flookup_key (Voverriding_local_map, key, accept_default);
1156 if (! NILP (value) && !INTEGERP (value))
1157 RETURN_UNGCPRO (value);
1158 }
1159 else
1160 {
1161 Lisp_Object local;
1162
1163 nmaps = current_minor_maps (0, &maps);
1164 /* Note that all these maps are GCPRO'd
1165 in the places where we found them. */
1166
1167 for (i = 0; i < nmaps; i++)
1168 if (! NILP (maps[i]))
1169 {
1170 value = Flookup_key (maps[i], key, accept_default);
1171 if (! NILP (value) && !INTEGERP (value))
1172 RETURN_UNGCPRO (value);
1173 }
1174
1175 local = get_local_map (PT, current_buffer);
1176
1177 if (! NILP (local))
1178 {
1179 value = Flookup_key (local, key, accept_default);
1180 if (! NILP (value) && !INTEGERP (value))
1181 RETURN_UNGCPRO (value);
1182 }
1183 }
1184
1185 value = Flookup_key (current_global_map, key, accept_default);
1186 UNGCPRO;
1187 if (! NILP (value) && !INTEGERP (value))
1188 return value;
1189
1190 return Qnil;
1191 }
1192
1193 /* GC is possible in this function if it autoloads a keymap. */
1194
1195 DEFUN ("local-key-binding", Flocal_key_binding, Slocal_key_binding, 1, 2, 0,
1196 "Return the binding for command KEYS in current local keymap only.\n\
1197 KEYS is a string, a sequence of keystrokes.\n\
1198 The binding is probably a symbol with a function definition.\n\
1199 \n\
1200 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1201 bindings; see the description of `lookup-key' for more details about this.")
1202 (keys, accept_default)
1203 Lisp_Object keys, accept_default;
1204 {
1205 register Lisp_Object map;
1206 map = current_buffer->keymap;
1207 if (NILP (map))
1208 return Qnil;
1209 return Flookup_key (map, keys, accept_default);
1210 }
1211
1212 /* GC is possible in this function if it autoloads a keymap. */
1213
1214 DEFUN ("global-key-binding", Fglobal_key_binding, Sglobal_key_binding, 1, 2, 0,
1215 "Return the binding for command KEYS in current global keymap only.\n\
1216 KEYS is a string, a sequence of keystrokes.\n\
1217 The binding is probably a symbol with a function definition.\n\
1218 This function's return values are the same as those of lookup-key\n\
1219 \(which see).\n\
1220 \n\
1221 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1222 bindings; see the description of `lookup-key' for more details about this.")
1223 (keys, accept_default)
1224 Lisp_Object keys, accept_default;
1225 {
1226 return Flookup_key (current_global_map, keys, accept_default);
1227 }
1228
1229 /* GC is possible in this function if it autoloads a keymap. */
1230
1231 DEFUN ("minor-mode-key-binding", Fminor_mode_key_binding, Sminor_mode_key_binding, 1, 2, 0,
1232 "Find the visible minor mode bindings of KEY.\n\
1233 Return an alist of pairs (MODENAME . BINDING), where MODENAME is the\n\
1234 the symbol which names the minor mode binding KEY, and BINDING is\n\
1235 KEY's definition in that mode. In particular, if KEY has no\n\
1236 minor-mode bindings, return nil. If the first binding is a\n\
1237 non-prefix, all subsequent bindings will be omitted, since they would\n\
1238 be ignored. Similarly, the list doesn't include non-prefix bindings\n\
1239 that come after prefix bindings.\n\
1240 \n\
1241 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1242 bindings; see the description of `lookup-key' for more details about this.")
1243 (key, accept_default)
1244 Lisp_Object key, accept_default;
1245 {
1246 Lisp_Object *modes, *maps;
1247 int nmaps;
1248 Lisp_Object binding;
1249 int i, j;
1250 struct gcpro gcpro1, gcpro2;
1251
1252 nmaps = current_minor_maps (&modes, &maps);
1253 /* Note that all these maps are GCPRO'd
1254 in the places where we found them. */
1255
1256 binding = Qnil;
1257 GCPRO2 (key, binding);
1258
1259 for (i = j = 0; i < nmaps; i++)
1260 if (! NILP (maps[i])
1261 && ! NILP (binding = Flookup_key (maps[i], key, accept_default))
1262 && !INTEGERP (binding))
1263 {
1264 if (! NILP (get_keymap (binding)))
1265 maps[j++] = Fcons (modes[i], binding);
1266 else if (j == 0)
1267 RETURN_UNGCPRO (Fcons (Fcons (modes[i], binding), Qnil));
1268 }
1269
1270 UNGCPRO;
1271 return Flist (j, maps);
1272 }
1273
1274 DEFUN ("define-prefix-command", Fdefine_prefix_command, Sdefine_prefix_command, 1, 2, 0,
1275 "Define COMMAND as a prefix command. COMMAND should be a symbol.\n\
1276 A new sparse keymap is stored as COMMAND's function definition and its value.\n\
1277 If a second optional argument MAPVAR is given, the map is stored as\n\
1278 its value instead of as COMMAND's value; but COMMAND is still defined\n\
1279 as a function.")
1280 (command, mapvar)
1281 Lisp_Object command, mapvar;
1282 {
1283 Lisp_Object map;
1284 map = Fmake_sparse_keymap (Qnil);
1285 Ffset (command, map);
1286 if (!NILP (mapvar))
1287 Fset (mapvar, map);
1288 else
1289 Fset (command, map);
1290 return command;
1291 }
1292
1293 DEFUN ("use-global-map", Fuse_global_map, Suse_global_map, 1, 1, 0,
1294 "Select KEYMAP as the global keymap.")
1295 (keymap)
1296 Lisp_Object keymap;
1297 {
1298 keymap = get_keymap (keymap);
1299 current_global_map = keymap;
1300
1301 return Qnil;
1302 }
1303
1304 DEFUN ("use-local-map", Fuse_local_map, Suse_local_map, 1, 1, 0,
1305 "Select KEYMAP as the local keymap.\n\
1306 If KEYMAP is nil, that means no local keymap.")
1307 (keymap)
1308 Lisp_Object keymap;
1309 {
1310 if (!NILP (keymap))
1311 keymap = get_keymap (keymap);
1312
1313 current_buffer->keymap = keymap;
1314
1315 return Qnil;
1316 }
1317
1318 DEFUN ("current-local-map", Fcurrent_local_map, Scurrent_local_map, 0, 0, 0,
1319 "Return current buffer's local keymap, or nil if it has none.")
1320 ()
1321 {
1322 return current_buffer->keymap;
1323 }
1324
1325 DEFUN ("current-global-map", Fcurrent_global_map, Scurrent_global_map, 0, 0, 0,
1326 "Return the current global keymap.")
1327 ()
1328 {
1329 return current_global_map;
1330 }
1331
1332 DEFUN ("current-minor-mode-maps", Fcurrent_minor_mode_maps, Scurrent_minor_mode_maps, 0, 0, 0,
1333 "Return a list of keymaps for the minor modes of the current buffer.")
1334 ()
1335 {
1336 Lisp_Object *maps;
1337 int nmaps = current_minor_maps (0, &maps);
1338
1339 return Flist (nmaps, maps);
1340 }
1341 \f
1342 /* Help functions for describing and documenting keymaps. */
1343
1344 static Lisp_Object accessible_keymaps_char_table ();
1345
1346 /* This function cannot GC. */
1347
1348 DEFUN ("accessible-keymaps", Faccessible_keymaps, Saccessible_keymaps,
1349 1, 2, 0,
1350 "Find all keymaps accessible via prefix characters from KEYMAP.\n\
1351 Returns a list of elements of the form (KEYS . MAP), where the sequence\n\
1352 KEYS starting from KEYMAP gets you to MAP. These elements are ordered\n\
1353 so that the KEYS increase in length. The first element is ([] . KEYMAP).\n\
1354 An optional argument PREFIX, if non-nil, should be a key sequence;\n\
1355 then the value includes only maps for prefixes that start with PREFIX.")
1356 (keymap, prefix)
1357 Lisp_Object keymap, prefix;
1358 {
1359 Lisp_Object maps, good_maps, tail;
1360 int prefixlen = 0;
1361
1362 /* no need for gcpro because we don't autoload any keymaps. */
1363
1364 if (!NILP (prefix))
1365 prefixlen = XINT (Flength (prefix));
1366
1367 if (!NILP (prefix))
1368 {
1369 /* If a prefix was specified, start with the keymap (if any) for
1370 that prefix, so we don't waste time considering other prefixes. */
1371 Lisp_Object tem;
1372 tem = Flookup_key (keymap, prefix, Qt);
1373 /* Flookup_key may give us nil, or a number,
1374 if the prefix is not defined in this particular map.
1375 It might even give us a list that isn't a keymap. */
1376 tem = get_keymap_1 (tem, 0, 0);
1377 if (!NILP (tem))
1378 {
1379 /* Convert PREFIX to a vector now, so that later on
1380 we don't have to deal with the possibility of a string. */
1381 if (STRINGP (prefix))
1382 {
1383 int i;
1384 Lisp_Object copy;
1385
1386 copy = Fmake_vector (make_number (XSTRING (prefix)->size), Qnil);
1387 for (i = 0; i < XSTRING (prefix)->size; i++)
1388 {
1389 int c = XSTRING (prefix)->data[i];
1390 if (c & 0200)
1391 c ^= 0200 | meta_modifier;
1392 XVECTOR (copy)->contents[i] = make_number (c);
1393 }
1394 prefix = copy;
1395 }
1396 maps = Fcons (Fcons (prefix, tem), Qnil);
1397 }
1398 else
1399 return Qnil;
1400 }
1401 else
1402 maps = Fcons (Fcons (Fmake_vector (make_number (0), Qnil),
1403 get_keymap (keymap)),
1404 Qnil);
1405
1406 /* For each map in the list maps,
1407 look at any other maps it points to,
1408 and stick them at the end if they are not already in the list.
1409
1410 This is a breadth-first traversal, where tail is the queue of
1411 nodes, and maps accumulates a list of all nodes visited. */
1412
1413 for (tail = maps; CONSP (tail); tail = XCONS (tail)->cdr)
1414 {
1415 register Lisp_Object thisseq, thismap;
1416 Lisp_Object last;
1417 /* Does the current sequence end in the meta-prefix-char? */
1418 int is_metized;
1419
1420 thisseq = Fcar (Fcar (tail));
1421 thismap = Fcdr (Fcar (tail));
1422 last = make_number (XINT (Flength (thisseq)) - 1);
1423 is_metized = (XINT (last) >= 0
1424 /* Don't metize the last char of PREFIX. */
1425 && XINT (last) >= prefixlen
1426 && EQ (Faref (thisseq, last), meta_prefix_char));
1427
1428 for (; CONSP (thismap); thismap = XCONS (thismap)->cdr)
1429 {
1430 Lisp_Object elt;
1431
1432 elt = XCONS (thismap)->car;
1433
1434 QUIT;
1435
1436 if (CHAR_TABLE_P (elt))
1437 {
1438 Lisp_Object *indices
1439 = (Lisp_Object *) alloca (3 * sizeof (Lisp_Object));
1440
1441 map_char_table (accessible_keymaps_char_table, Qnil,
1442 elt, Fcons (maps, Fcons (tail, thisseq)),
1443 0, indices);
1444 }
1445 else if (VECTORP (elt))
1446 {
1447 register int i;
1448
1449 /* Vector keymap. Scan all the elements. */
1450 for (i = 0; i < XVECTOR (elt)->size; i++)
1451 {
1452 register Lisp_Object tem;
1453 register Lisp_Object cmd;
1454
1455 cmd = get_keyelt (XVECTOR (elt)->contents[i], 0);
1456 if (NILP (cmd)) continue;
1457 tem = Fkeymapp (cmd);
1458 if (!NILP (tem))
1459 {
1460 cmd = get_keymap (cmd);
1461 /* Ignore keymaps that are already added to maps. */
1462 tem = Frassq (cmd, maps);
1463 if (NILP (tem))
1464 {
1465 /* If the last key in thisseq is meta-prefix-char,
1466 turn it into a meta-ized keystroke. We know
1467 that the event we're about to append is an
1468 ascii keystroke since we're processing a
1469 keymap table. */
1470 if (is_metized)
1471 {
1472 int meta_bit = meta_modifier;
1473 tem = Fcopy_sequence (thisseq);
1474
1475 Faset (tem, last, make_number (i | meta_bit));
1476
1477 /* This new sequence is the same length as
1478 thisseq, so stick it in the list right
1479 after this one. */
1480 XCONS (tail)->cdr
1481 = Fcons (Fcons (tem, cmd), XCONS (tail)->cdr);
1482 }
1483 else
1484 {
1485 tem = append_key (thisseq, make_number (i));
1486 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1487 }
1488 }
1489 }
1490 }
1491 }
1492 else if (CONSP (elt))
1493 {
1494 register Lisp_Object cmd, tem, filter;
1495
1496 cmd = get_keyelt (XCONS (elt)->cdr, 0);
1497 /* Ignore definitions that aren't keymaps themselves. */
1498 tem = Fkeymapp (cmd);
1499 if (!NILP (tem))
1500 {
1501 /* Ignore keymaps that have been seen already. */
1502 cmd = get_keymap (cmd);
1503 tem = Frassq (cmd, maps);
1504 if (NILP (tem))
1505 {
1506 /* Let elt be the event defined by this map entry. */
1507 elt = XCONS (elt)->car;
1508
1509 /* If the last key in thisseq is meta-prefix-char, and
1510 this entry is a binding for an ascii keystroke,
1511 turn it into a meta-ized keystroke. */
1512 if (is_metized && INTEGERP (elt))
1513 {
1514 Lisp_Object element;
1515
1516 element = thisseq;
1517 tem = Fvconcat (1, &element);
1518 XVECTOR (tem)->contents[XINT (last)]
1519 = XINT (elt) | meta_modifier;
1520
1521 /* This new sequence is the same length as
1522 thisseq, so stick it in the list right
1523 after this one. */
1524 XCONS (tail)->cdr
1525 = Fcons (Fcons (tem, cmd), XCONS (tail)->cdr);
1526 }
1527 else
1528 nconc2 (tail,
1529 Fcons (Fcons (append_key (thisseq, elt), cmd),
1530 Qnil));
1531 }
1532 }
1533 }
1534 }
1535 }
1536
1537 if (NILP (prefix))
1538 return maps;
1539
1540 /* Now find just the maps whose access prefixes start with PREFIX. */
1541
1542 good_maps = Qnil;
1543 for (; CONSP (maps); maps = XCONS (maps)->cdr)
1544 {
1545 Lisp_Object elt, thisseq;
1546 elt = XCONS (maps)->car;
1547 thisseq = XCONS (elt)->car;
1548 /* The access prefix must be at least as long as PREFIX,
1549 and the first elements must match those of PREFIX. */
1550 if (XINT (Flength (thisseq)) >= prefixlen)
1551 {
1552 int i;
1553 for (i = 0; i < prefixlen; i++)
1554 {
1555 Lisp_Object i1;
1556 XSETFASTINT (i1, i);
1557 if (!EQ (Faref (thisseq, i1), Faref (prefix, i1)))
1558 break;
1559 }
1560 if (i == prefixlen)
1561 good_maps = Fcons (elt, good_maps);
1562 }
1563 }
1564
1565 return Fnreverse (good_maps);
1566 }
1567
1568 static Lisp_Object
1569 accessible_keymaps_char_table (args, index, cmd)
1570 Lisp_Object args, index, cmd;
1571 {
1572 Lisp_Object tem;
1573 Lisp_Object maps, tail, thisseq;
1574
1575 if (NILP (cmd))
1576 return Qnil;
1577
1578 maps = XCONS (args)->car;
1579 tail = XCONS (XCONS (args)->cdr)->car;
1580 thisseq = XCONS (XCONS (args)->cdr)->cdr;
1581
1582 tem = Fkeymapp (cmd);
1583 if (!NILP (tem))
1584 {
1585 cmd = get_keymap (cmd);
1586 /* Ignore keymaps that are already added to maps. */
1587 tem = Frassq (cmd, maps);
1588 if (NILP (tem))
1589 {
1590 tem = append_key (thisseq, index);
1591 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1592 }
1593 }
1594 return Qnil;
1595 }
1596 \f
1597 Lisp_Object Qsingle_key_description, Qkey_description;
1598
1599 /* This function cannot GC. */
1600
1601 DEFUN ("key-description", Fkey_description, Skey_description, 1, 1, 0,
1602 "Return a pretty description of key-sequence KEYS.\n\
1603 Control characters turn into \"C-foo\" sequences, meta into \"M-foo\"\n\
1604 spaces are put between sequence elements, etc.")
1605 (keys)
1606 Lisp_Object keys;
1607 {
1608 int len;
1609 int i;
1610 Lisp_Object sep;
1611 Lisp_Object *args;
1612
1613 if (STRINGP (keys))
1614 {
1615 Lisp_Object vector;
1616 vector = Fmake_vector (Flength (keys), Qnil);
1617 for (i = 0; i < XSTRING (keys)->size; i++)
1618 {
1619 if (XSTRING (keys)->data[i] & 0x80)
1620 XSETFASTINT (XVECTOR (vector)->contents[i],
1621 meta_modifier | (XSTRING (keys)->data[i] & ~0x80));
1622 else
1623 XSETFASTINT (XVECTOR (vector)->contents[i],
1624 XSTRING (keys)->data[i]);
1625 }
1626 keys = vector;
1627 }
1628 else if (!VECTORP (keys))
1629 keys = wrong_type_argument (Qarrayp, keys);
1630
1631 /* In effect, this computes
1632 (mapconcat 'single-key-description keys " ")
1633 but we shouldn't use mapconcat because it can do GC. */
1634
1635 len = XVECTOR (keys)->size;
1636 sep = build_string (" ");
1637 /* This has one extra element at the end that we don't pass to Fconcat. */
1638 args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
1639
1640 for (i = 0; i < len; i++)
1641 {
1642 args[i * 2] = Fsingle_key_description (XVECTOR (keys)->contents[i]);
1643 args[i * 2 + 1] = sep;
1644 }
1645
1646 return Fconcat (len * 2 - 1, args);
1647 }
1648
1649 char *
1650 push_key_description (c, p)
1651 register unsigned int c;
1652 register char *p;
1653 {
1654 /* Clear all the meaningless bits above the meta bit. */
1655 c &= meta_modifier | ~ - meta_modifier;
1656
1657 if (c & alt_modifier)
1658 {
1659 *p++ = 'A';
1660 *p++ = '-';
1661 c -= alt_modifier;
1662 }
1663 if (c & ctrl_modifier)
1664 {
1665 *p++ = 'C';
1666 *p++ = '-';
1667 c -= ctrl_modifier;
1668 }
1669 if (c & hyper_modifier)
1670 {
1671 *p++ = 'H';
1672 *p++ = '-';
1673 c -= hyper_modifier;
1674 }
1675 if (c & meta_modifier)
1676 {
1677 *p++ = 'M';
1678 *p++ = '-';
1679 c -= meta_modifier;
1680 }
1681 if (c & shift_modifier)
1682 {
1683 *p++ = 'S';
1684 *p++ = '-';
1685 c -= shift_modifier;
1686 }
1687 if (c & super_modifier)
1688 {
1689 *p++ = 's';
1690 *p++ = '-';
1691 c -= super_modifier;
1692 }
1693 if (c < 040)
1694 {
1695 if (c == 033)
1696 {
1697 *p++ = 'E';
1698 *p++ = 'S';
1699 *p++ = 'C';
1700 }
1701 else if (c == '\t')
1702 {
1703 *p++ = 'T';
1704 *p++ = 'A';
1705 *p++ = 'B';
1706 }
1707 else if (c == Ctl ('M'))
1708 {
1709 *p++ = 'R';
1710 *p++ = 'E';
1711 *p++ = 'T';
1712 }
1713 else
1714 {
1715 *p++ = 'C';
1716 *p++ = '-';
1717 if (c > 0 && c <= Ctl ('Z'))
1718 *p++ = c + 0140;
1719 else
1720 *p++ = c + 0100;
1721 }
1722 }
1723 else if (c == 0177)
1724 {
1725 *p++ = 'D';
1726 *p++ = 'E';
1727 *p++ = 'L';
1728 }
1729 else if (c == ' ')
1730 {
1731 *p++ = 'S';
1732 *p++ = 'P';
1733 *p++ = 'C';
1734 }
1735 else if (c < 128)
1736 *p++ = c;
1737 else if (c < 256)
1738 *p++ = c;
1739 else if (c < 512)
1740 {
1741 *p++ = '\\';
1742 *p++ = (7 & (c >> 6)) + '0';
1743 *p++ = (7 & (c >> 3)) + '0';
1744 *p++ = (7 & (c >> 0)) + '0';
1745 }
1746 else
1747 {
1748 *p++ = '\\';
1749 *p++ = (7 & (c >> 15)) + '0';
1750 *p++ = (7 & (c >> 12)) + '0';
1751 *p++ = (7 & (c >> 9)) + '0';
1752 *p++ = (7 & (c >> 6)) + '0';
1753 *p++ = (7 & (c >> 3)) + '0';
1754 *p++ = (7 & (c >> 0)) + '0';
1755 }
1756
1757 return p;
1758 }
1759
1760 /* This function cannot GC. */
1761
1762 DEFUN ("single-key-description", Fsingle_key_description, Ssingle_key_description, 1, 1, 0,
1763 "Return a pretty description of command character KEY.\n\
1764 Control characters turn into C-whatever, etc.")
1765 (key)
1766 Lisp_Object key;
1767 {
1768 char tem[20];
1769
1770 key = EVENT_HEAD (key);
1771
1772 if (INTEGERP (key)) /* Normal character */
1773 {
1774 *push_key_description (XUINT (key), tem) = 0;
1775 return build_string (tem);
1776 }
1777 else if (SYMBOLP (key)) /* Function key or event-symbol */
1778 return Fsymbol_name (key);
1779 else if (STRINGP (key)) /* Buffer names in the menubar. */
1780 return Fcopy_sequence (key);
1781 else
1782 error ("KEY must be an integer, cons, symbol, or string");
1783 }
1784
1785 char *
1786 push_text_char_description (c, p)
1787 register unsigned int c;
1788 register char *p;
1789 {
1790 if (c >= 0200)
1791 {
1792 *p++ = 'M';
1793 *p++ = '-';
1794 c -= 0200;
1795 }
1796 if (c < 040)
1797 {
1798 *p++ = '^';
1799 *p++ = c + 64; /* 'A' - 1 */
1800 }
1801 else if (c == 0177)
1802 {
1803 *p++ = '^';
1804 *p++ = '?';
1805 }
1806 else
1807 *p++ = c;
1808 return p;
1809 }
1810
1811 /* This function cannot GC. */
1812
1813 DEFUN ("text-char-description", Ftext_char_description, Stext_char_description, 1, 1, 0,
1814 "Return a pretty description of file-character CHARACTER.\n\
1815 Control characters turn into \"^char\", etc.")
1816 (character)
1817 Lisp_Object character;
1818 {
1819 char tem[6];
1820
1821 CHECK_NUMBER (character, 0);
1822
1823 if (!SINGLE_BYTE_CHAR_P (XFASTINT (character)))
1824 {
1825 char *str;
1826 int len = non_ascii_char_to_string (XFASTINT (character), tem, &str);
1827
1828 return make_string (str, len);
1829 }
1830
1831 *push_text_char_description (XINT (character) & 0377, tem) = 0;
1832
1833 return build_string (tem);
1834 }
1835
1836 /* Return non-zero if SEQ contains only ASCII characters, perhaps with
1837 a meta bit. */
1838 static int
1839 ascii_sequence_p (seq)
1840 Lisp_Object seq;
1841 {
1842 int i;
1843 int len = XINT (Flength (seq));
1844
1845 for (i = 0; i < len; i++)
1846 {
1847 Lisp_Object ii, elt;
1848
1849 XSETFASTINT (ii, i);
1850 elt = Faref (seq, ii);
1851
1852 if (!INTEGERP (elt)
1853 || (XUINT (elt) & ~CHAR_META) >= 0x80)
1854 return 0;
1855 }
1856
1857 return 1;
1858 }
1859
1860 \f
1861 /* where-is - finding a command in a set of keymaps. */
1862
1863 static Lisp_Object where_is_internal_1 ();
1864 static Lisp_Object where_is_internal_2 ();
1865
1866 /* This function can GC if Flookup_key autoloads any keymaps. */
1867
1868 DEFUN ("where-is-internal", Fwhere_is_internal, Swhere_is_internal, 1, 4, 0,
1869 "Return list of keys that invoke DEFINITION.\n\
1870 If KEYMAP is non-nil, search only KEYMAP and the global keymap.\n\
1871 If KEYMAP is nil, search all the currently active keymaps.\n\
1872 \n\
1873 If optional 3rd arg FIRSTONLY is non-nil, return the first key sequence found,\n\
1874 rather than a list of all possible key sequences.\n\
1875 If FIRSTONLY is the symbol `non-ascii', return the first binding found,\n\
1876 no matter what it is.\n\
1877 If FIRSTONLY has another non-nil value, prefer sequences of ASCII characters,\n\
1878 and entirely reject menu bindings.\n\
1879 \n\
1880 If optional 4th arg NOINDIRECT is non-nil, don't follow indirections\n\
1881 to other keymaps or slots. This makes it possible to search for an\n\
1882 indirect definition itself.")
1883 (definition, keymap, firstonly, noindirect)
1884 Lisp_Object definition, keymap;
1885 Lisp_Object firstonly, noindirect;
1886 {
1887 Lisp_Object maps;
1888 Lisp_Object found, sequences;
1889 int keymap_specified = !NILP (keymap);
1890 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
1891 /* 1 means ignore all menu bindings entirely. */
1892 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
1893
1894 if (! keymap_specified)
1895 {
1896 #ifdef USE_TEXT_PROPERTIES
1897 keymap = get_local_map (PT, current_buffer);
1898 #else
1899 keymap = current_buffer->keymap;
1900 #endif
1901 }
1902
1903 if (!NILP (keymap))
1904 maps = nconc2 (Faccessible_keymaps (get_keymap (keymap), Qnil),
1905 Faccessible_keymaps (get_keymap (current_global_map),
1906 Qnil));
1907 else
1908 maps = Faccessible_keymaps (get_keymap (current_global_map), Qnil);
1909
1910 /* Put the minor mode keymaps on the front. */
1911 if (! keymap_specified)
1912 {
1913 Lisp_Object minors;
1914 minors = Fnreverse (Fcurrent_minor_mode_maps ());
1915 while (!NILP (minors))
1916 {
1917 maps = nconc2 (Faccessible_keymaps (get_keymap (XCONS (minors)->car),
1918 Qnil),
1919 maps);
1920 minors = XCONS (minors)->cdr;
1921 }
1922 }
1923
1924 GCPRO5 (definition, keymap, maps, found, sequences);
1925 found = Qnil;
1926 sequences = Qnil;
1927
1928 for (; !NILP (maps); maps = Fcdr (maps))
1929 {
1930 /* Key sequence to reach map, and the map that it reaches */
1931 register Lisp_Object this, map;
1932
1933 /* In order to fold [META-PREFIX-CHAR CHAR] sequences into
1934 [M-CHAR] sequences, check if last character of the sequence
1935 is the meta-prefix char. */
1936 Lisp_Object last;
1937 int last_is_meta;
1938
1939 this = Fcar (Fcar (maps));
1940 map = Fcdr (Fcar (maps));
1941 last = make_number (XINT (Flength (this)) - 1);
1942 last_is_meta = (XINT (last) >= 0
1943 && EQ (Faref (this, last), meta_prefix_char));
1944
1945 QUIT;
1946
1947 while (CONSP (map))
1948 {
1949 /* Because the code we want to run on each binding is rather
1950 large, we don't want to have two separate loop bodies for
1951 sparse keymap bindings and tables; we want to iterate one
1952 loop body over both keymap and vector bindings.
1953
1954 For this reason, if Fcar (map) is a vector, we don't
1955 advance map to the next element until i indicates that we
1956 have finished off the vector. */
1957 Lisp_Object elt, key, binding;
1958 elt = XCONS (map)->car;
1959 map = XCONS (map)->cdr;
1960
1961 sequences = Qnil;
1962
1963 QUIT;
1964
1965 /* Set key and binding to the current key and binding, and
1966 advance map and i to the next binding. */
1967 if (VECTORP (elt))
1968 {
1969 Lisp_Object sequence;
1970 int i;
1971 /* In a vector, look at each element. */
1972 for (i = 0; i < XVECTOR (elt)->size; i++)
1973 {
1974 binding = XVECTOR (elt)->contents[i];
1975 XSETFASTINT (key, i);
1976 sequence = where_is_internal_1 (binding, key, definition,
1977 noindirect, keymap, this,
1978 last, nomenus, last_is_meta);
1979 if (!NILP (sequence))
1980 sequences = Fcons (sequence, sequences);
1981 }
1982 }
1983 else if (CHAR_TABLE_P (elt))
1984 {
1985 Lisp_Object *indices
1986 = (Lisp_Object *) alloca (3 * sizeof (Lisp_Object));
1987 Lisp_Object args;
1988 args = Fcons (Fcons (Fcons (definition, noindirect),
1989 Fcons (keymap, Qnil)),
1990 Fcons (Fcons (this, last),
1991 Fcons (make_number (nomenus),
1992 make_number (last_is_meta))));
1993
1994 map_char_table (where_is_internal_2, Qnil, elt, args,
1995 0, indices);
1996 sequences = XCONS (XCONS (XCONS (args)->car)->cdr)->cdr;
1997 }
1998 else if (CONSP (elt))
1999 {
2000 Lisp_Object sequence;
2001
2002 key = XCONS (elt)->car;
2003 binding = XCONS (elt)->cdr;
2004
2005 sequence = where_is_internal_1 (binding, key, definition,
2006 noindirect, keymap, this,
2007 last, nomenus, last_is_meta);
2008 if (!NILP (sequence))
2009 sequences = Fcons (sequence, sequences);
2010 }
2011
2012
2013 for (; ! NILP (sequences); sequences = XCONS (sequences)->cdr)
2014 {
2015 Lisp_Object sequence;
2016
2017 sequence = XCONS (sequences)->car;
2018
2019 /* It is a true unshadowed match. Record it, unless it's already
2020 been seen (as could happen when inheriting keymaps). */
2021 if (NILP (Fmember (sequence, found)))
2022 found = Fcons (sequence, found);
2023
2024 /* If firstonly is Qnon_ascii, then we can return the first
2025 binding we find. If firstonly is not Qnon_ascii but not
2026 nil, then we should return the first ascii-only binding
2027 we find. */
2028 if (EQ (firstonly, Qnon_ascii))
2029 RETURN_UNGCPRO (sequence);
2030 else if (! NILP (firstonly) && ascii_sequence_p (sequence))
2031 RETURN_UNGCPRO (sequence);
2032 }
2033 }
2034 }
2035
2036 UNGCPRO;
2037
2038 found = Fnreverse (found);
2039
2040 /* firstonly may have been t, but we may have gone all the way through
2041 the keymaps without finding an all-ASCII key sequence. So just
2042 return the best we could find. */
2043 if (! NILP (firstonly))
2044 return Fcar (found);
2045
2046 return found;
2047 }
2048
2049 /* This is the function that Fwhere_is_internal calls using map_char_table.
2050 ARGS has the form
2051 (((DEFINITION . NOINDIRECT) . (KEYMAP . RESULT))
2052 .
2053 ((THIS . LAST) . (NOMENUS . LAST_IS_META)))
2054 Since map_char_table doesn't really use the return value from this function,
2055 we the result append to RESULT, the slot in ARGS. */
2056
2057 static Lisp_Object
2058 where_is_internal_2 (args, key, binding)
2059 Lisp_Object args, key, binding;
2060 {
2061 Lisp_Object definition, noindirect, keymap, this, last;
2062 Lisp_Object result, sequence;
2063 int nomenus, last_is_meta;
2064
2065 result = XCONS (XCONS (XCONS (args)->car)->cdr)->cdr;
2066 definition = XCONS (XCONS (XCONS (args)->car)->car)->car;
2067 noindirect = XCONS (XCONS (XCONS (args)->car)->car)->cdr;
2068 keymap = XCONS (XCONS (XCONS (args)->car)->cdr)->car;
2069 this = XCONS (XCONS (XCONS (args)->cdr)->car)->car;
2070 last = XCONS (XCONS (XCONS (args)->cdr)->car)->cdr;
2071 nomenus = XFASTINT (XCONS (XCONS (XCONS (args)->cdr)->cdr)->car);
2072 last_is_meta = XFASTINT (XCONS (XCONS (XCONS (args)->cdr)->cdr)->cdr);
2073
2074 sequence = where_is_internal_1 (binding, key, definition, noindirect, keymap,
2075 this, last, nomenus, last_is_meta);
2076
2077 if (!NILP (sequence))
2078 XCONS (XCONS (XCONS (args)->car)->cdr)->cdr
2079 = Fcons (sequence, result);
2080
2081 return Qnil;
2082 }
2083
2084 static Lisp_Object
2085 where_is_internal_1 (binding, key, definition, noindirect, keymap, this, last,
2086 nomenus, last_is_meta)
2087 Lisp_Object binding, key, definition, noindirect, keymap, this, last;
2088 int nomenus, last_is_meta;
2089 {
2090 Lisp_Object sequence;
2091 int keymap_specified = !NILP (keymap);
2092
2093 /* Search through indirections unless that's not wanted. */
2094 if (NILP (noindirect))
2095 {
2096 if (nomenus)
2097 {
2098 while (1)
2099 {
2100 Lisp_Object map, tem;
2101 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
2102 map = get_keymap_1 (Fcar_safe (definition), 0, 0);
2103 tem = Fkeymapp (map);
2104 if (!NILP (tem))
2105 definition = access_keymap (map, Fcdr (definition), 0, 0);
2106 else
2107 break;
2108 }
2109 /* If the contents are (STRING ...), reject. */
2110 if (CONSP (definition)
2111 && STRINGP (XCONS (definition)->car))
2112 return Qnil;
2113 }
2114 else
2115 binding = get_keyelt (binding, 0);
2116 }
2117
2118 /* End this iteration if this element does not match
2119 the target. */
2120
2121 if (CONSP (definition))
2122 {
2123 Lisp_Object tem;
2124 tem = Fequal (binding, definition);
2125 if (NILP (tem))
2126 return Qnil;
2127 }
2128 else
2129 if (!EQ (binding, definition))
2130 return Qnil;
2131
2132 /* We have found a match.
2133 Construct the key sequence where we found it. */
2134 if (INTEGERP (key) && last_is_meta)
2135 {
2136 sequence = Fcopy_sequence (this);
2137 Faset (sequence, last, make_number (XINT (key) | meta_modifier));
2138 }
2139 else
2140 sequence = append_key (this, key);
2141
2142 /* Verify that this key binding is not shadowed by another
2143 binding for the same key, before we say it exists.
2144
2145 Mechanism: look for local definition of this key and if
2146 it is defined and does not match what we found then
2147 ignore this key.
2148
2149 Either nil or number as value from Flookup_key
2150 means undefined. */
2151 if (keymap_specified)
2152 {
2153 binding = Flookup_key (keymap, sequence, Qnil);
2154 if (!NILP (binding) && !INTEGERP (binding))
2155 {
2156 if (CONSP (definition))
2157 {
2158 Lisp_Object tem;
2159 tem = Fequal (binding, definition);
2160 if (NILP (tem))
2161 return Qnil;
2162 }
2163 else
2164 if (!EQ (binding, definition))
2165 return Qnil;
2166 }
2167 }
2168 else
2169 {
2170 binding = Fkey_binding (sequence, Qnil);
2171 if (!EQ (binding, definition))
2172 return Qnil;
2173 }
2174
2175 return sequence;
2176 }
2177 \f
2178 /* describe-bindings - summarizing all the bindings in a set of keymaps. */
2179
2180 DEFUN ("describe-bindings", Fdescribe_bindings, Sdescribe_bindings, 0, 1, "",
2181 "Show a list of all defined keys, and their definitions.\n\
2182 The list is put in a buffer, which is displayed.\n\
2183 An optional argument PREFIX, if non-nil, should be a key sequence;\n\
2184 then we display only bindings that start with that prefix.")
2185 (prefix)
2186 Lisp_Object prefix;
2187 {
2188 register Lisp_Object thisbuf;
2189 XSETBUFFER (thisbuf, current_buffer);
2190 internal_with_output_to_temp_buffer ("*Help*",
2191 describe_buffer_bindings,
2192 Fcons (thisbuf, prefix));
2193 return Qnil;
2194 }
2195
2196 /* ARG is (BUFFER . PREFIX). */
2197
2198 static Lisp_Object
2199 describe_buffer_bindings (arg)
2200 Lisp_Object arg;
2201 {
2202 Lisp_Object descbuf, prefix, shadow;
2203 register Lisp_Object start1;
2204 struct gcpro gcpro1;
2205
2206 char *alternate_heading
2207 = "\
2208 Alternate Characters (use anywhere the nominal character is listed):\n\
2209 nominal alternate\n\
2210 ------- ---------\n";
2211
2212 descbuf = XCONS (arg)->car;
2213 prefix = XCONS (arg)->cdr;
2214 shadow = Qnil;
2215 GCPRO1 (shadow);
2216
2217 Fset_buffer (Vstandard_output);
2218
2219 /* Report on alternates for keys. */
2220 if (STRINGP (Vkeyboard_translate_table) && !NILP (prefix))
2221 {
2222 int c;
2223 unsigned char *translate = XSTRING (Vkeyboard_translate_table)->data;
2224 int translate_len = XSTRING (Vkeyboard_translate_table)->size;
2225
2226 for (c = 0; c < translate_len; c++)
2227 if (translate[c] != c)
2228 {
2229 char buf[20];
2230 char *bufend;
2231
2232 if (alternate_heading)
2233 {
2234 insert_string (alternate_heading);
2235 alternate_heading = 0;
2236 }
2237
2238 bufend = push_key_description (translate[c], buf);
2239 insert (buf, bufend - buf);
2240 Findent_to (make_number (16), make_number (1));
2241 bufend = push_key_description (c, buf);
2242 insert (buf, bufend - buf);
2243
2244 insert ("\n", 1);
2245 }
2246
2247 insert ("\n", 1);
2248 }
2249
2250 if (!NILP (Vkey_translation_map))
2251 describe_map_tree (Vkey_translation_map, 0, Qnil, prefix,
2252 "Key translations", 0, 1, 0);
2253
2254 {
2255 int i, nmaps;
2256 Lisp_Object *modes, *maps;
2257
2258 /* Temporarily switch to descbuf, so that we can get that buffer's
2259 minor modes correctly. */
2260 Fset_buffer (descbuf);
2261
2262 if (!NILP (current_kboard->Voverriding_terminal_local_map)
2263 || !NILP (Voverriding_local_map))
2264 nmaps = 0;
2265 else
2266 nmaps = current_minor_maps (&modes, &maps);
2267 Fset_buffer (Vstandard_output);
2268
2269 /* Print the minor mode maps. */
2270 for (i = 0; i < nmaps; i++)
2271 {
2272 /* The title for a minor mode keymap
2273 is constructed at run time.
2274 We let describe_map_tree do the actual insertion
2275 because it takes care of other features when doing so. */
2276 char *title, *p;
2277
2278 if (!SYMBOLP (modes[i]))
2279 abort();
2280
2281 p = title = (char *) alloca (40 + XSYMBOL (modes[i])->name->size);
2282 *p++ = '`';
2283 bcopy (XSYMBOL (modes[i])->name->data, p,
2284 XSYMBOL (modes[i])->name->size);
2285 p += XSYMBOL (modes[i])->name->size;
2286 *p++ = '\'';
2287 bcopy (" Minor Mode Bindings", p, sizeof (" Minor Mode Bindings") - 1);
2288 p += sizeof (" Minor Mode Bindings") - 1;
2289 *p = 0;
2290
2291 describe_map_tree (maps[i], 1, shadow, prefix, title, 0, 0, 0);
2292 shadow = Fcons (maps[i], shadow);
2293 }
2294 }
2295
2296 /* Print the (major mode) local map. */
2297 if (!NILP (current_kboard->Voverriding_terminal_local_map))
2298 start1 = current_kboard->Voverriding_terminal_local_map;
2299 else if (!NILP (Voverriding_local_map))
2300 start1 = Voverriding_local_map;
2301 else
2302 start1 = XBUFFER (descbuf)->keymap;
2303
2304 if (!NILP (start1))
2305 {
2306 describe_map_tree (start1, 1, shadow, prefix,
2307 "Major Mode Bindings", 0, 0, 0);
2308 shadow = Fcons (start1, shadow);
2309 }
2310
2311 describe_map_tree (current_global_map, 1, shadow, prefix,
2312 "Global Bindings", 0, 0, 1);
2313
2314 /* Print the function-key-map translations under this prefix. */
2315 if (!NILP (Vfunction_key_map))
2316 describe_map_tree (Vfunction_key_map, 0, Qnil, prefix,
2317 "Function key map translations", 0, 1, 0);
2318
2319 call0 (intern ("help-mode"));
2320 Fset_buffer (descbuf);
2321 UNGCPRO;
2322 return Qnil;
2323 }
2324
2325 /* Insert a description of the key bindings in STARTMAP,
2326 followed by those of all maps reachable through STARTMAP.
2327 If PARTIAL is nonzero, omit certain "uninteresting" commands
2328 (such as `undefined').
2329 If SHADOW is non-nil, it is a list of maps;
2330 don't mention keys which would be shadowed by any of them.
2331 PREFIX, if non-nil, says mention only keys that start with PREFIX.
2332 TITLE, if not 0, is a string to insert at the beginning.
2333 TITLE should not end with a colon or a newline; we supply that.
2334 If NOMENU is not 0, then omit menu-bar commands.
2335
2336 If TRANSL is nonzero, the definitions are actually key translations
2337 so print strings and vectors differently.
2338
2339 If ALWAYS_TITLE is nonzero, print the title even if there are no maps
2340 to look through. */
2341
2342 void
2343 describe_map_tree (startmap, partial, shadow, prefix, title, nomenu, transl,
2344 always_title)
2345 Lisp_Object startmap, shadow, prefix;
2346 int partial;
2347 char *title;
2348 int nomenu;
2349 int transl;
2350 int always_title;
2351 {
2352 Lisp_Object maps, seen, sub_shadows;
2353 struct gcpro gcpro1, gcpro2, gcpro3;
2354 int something = 0;
2355 char *key_heading
2356 = "\
2357 key binding\n\
2358 --- -------\n";
2359
2360 maps = Faccessible_keymaps (startmap, prefix);
2361 seen = Qnil;
2362 sub_shadows = Qnil;
2363 GCPRO3 (maps, seen, sub_shadows);
2364
2365 if (nomenu)
2366 {
2367 Lisp_Object list;
2368
2369 /* Delete from MAPS each element that is for the menu bar. */
2370 for (list = maps; !NILP (list); list = XCONS (list)->cdr)
2371 {
2372 Lisp_Object elt, prefix, tem;
2373
2374 elt = Fcar (list);
2375 prefix = Fcar (elt);
2376 if (XVECTOR (prefix)->size >= 1)
2377 {
2378 tem = Faref (prefix, make_number (0));
2379 if (EQ (tem, Qmenu_bar))
2380 maps = Fdelq (elt, maps);
2381 }
2382 }
2383 }
2384
2385 if (!NILP (maps) || always_title)
2386 {
2387 if (title)
2388 {
2389 insert_string (title);
2390 if (!NILP (prefix))
2391 {
2392 insert_string (" Starting With ");
2393 insert1 (Fkey_description (prefix));
2394 }
2395 insert_string (":\n");
2396 }
2397 insert_string (key_heading);
2398 something = 1;
2399 }
2400
2401 for (; !NILP (maps); maps = Fcdr (maps))
2402 {
2403 register Lisp_Object elt, prefix, tail;
2404
2405 elt = Fcar (maps);
2406 prefix = Fcar (elt);
2407
2408 sub_shadows = Qnil;
2409
2410 for (tail = shadow; CONSP (tail); tail = XCONS (tail)->cdr)
2411 {
2412 Lisp_Object shmap;
2413
2414 shmap = XCONS (tail)->car;
2415
2416 /* If the sequence by which we reach this keymap is zero-length,
2417 then the shadow map for this keymap is just SHADOW. */
2418 if ((STRINGP (prefix) && XSTRING (prefix)->size == 0)
2419 || (VECTORP (prefix) && XVECTOR (prefix)->size == 0))
2420 ;
2421 /* If the sequence by which we reach this keymap actually has
2422 some elements, then the sequence's definition in SHADOW is
2423 what we should use. */
2424 else
2425 {
2426 shmap = Flookup_key (shmap, Fcar (elt), Qt);
2427 if (INTEGERP (shmap))
2428 shmap = Qnil;
2429 }
2430
2431 /* If shmap is not nil and not a keymap,
2432 it completely shadows this map, so don't
2433 describe this map at all. */
2434 if (!NILP (shmap) && NILP (Fkeymapp (shmap)))
2435 goto skip;
2436
2437 if (!NILP (shmap))
2438 sub_shadows = Fcons (shmap, sub_shadows);
2439 }
2440
2441 describe_map (Fcdr (elt), Fcar (elt),
2442 transl ? describe_translation : describe_command,
2443 partial, sub_shadows, &seen, nomenu);
2444
2445 skip: ;
2446 }
2447
2448 if (something)
2449 insert_string ("\n");
2450
2451 UNGCPRO;
2452 }
2453
2454 static int previous_description_column;
2455
2456 static void
2457 describe_command (definition)
2458 Lisp_Object definition;
2459 {
2460 register Lisp_Object tem1;
2461 int column = current_column ();
2462 int description_column;
2463
2464 /* If column 16 is no good, go to col 32;
2465 but don't push beyond that--go to next line instead. */
2466 if (column > 30)
2467 {
2468 insert_char ('\n');
2469 description_column = 32;
2470 }
2471 else if (column > 14 || (column > 10 && previous_description_column == 32))
2472 description_column = 32;
2473 else
2474 description_column = 16;
2475
2476 Findent_to (make_number (description_column), make_number (1));
2477 previous_description_column = description_column;
2478
2479 if (SYMBOLP (definition))
2480 {
2481 XSETSTRING (tem1, XSYMBOL (definition)->name);
2482 insert1 (tem1);
2483 insert_string ("\n");
2484 }
2485 else if (STRINGP (definition) || VECTORP (definition))
2486 insert_string ("Keyboard Macro\n");
2487 else
2488 {
2489 tem1 = Fkeymapp (definition);
2490 if (!NILP (tem1))
2491 insert_string ("Prefix Command\n");
2492 else
2493 insert_string ("??\n");
2494 }
2495 }
2496
2497 static void
2498 describe_translation (definition)
2499 Lisp_Object definition;
2500 {
2501 register Lisp_Object tem1;
2502
2503 Findent_to (make_number (16), make_number (1));
2504
2505 if (SYMBOLP (definition))
2506 {
2507 XSETSTRING (tem1, XSYMBOL (definition)->name);
2508 insert1 (tem1);
2509 insert_string ("\n");
2510 }
2511 else if (STRINGP (definition) || VECTORP (definition))
2512 {
2513 insert1 (Fkey_description (definition));
2514 insert_string ("\n");
2515 }
2516 else
2517 {
2518 tem1 = Fkeymapp (definition);
2519 if (!NILP (tem1))
2520 insert_string ("Prefix Command\n");
2521 else
2522 insert_string ("??\n");
2523 }
2524 }
2525
2526 /* Like Flookup_key, but uses a list of keymaps SHADOW instead of a single map.
2527 Returns the first non-nil binding found in any of those maps. */
2528
2529 static Lisp_Object
2530 shadow_lookup (shadow, key, flag)
2531 Lisp_Object shadow, key, flag;
2532 {
2533 Lisp_Object tail, value;
2534
2535 for (tail = shadow; CONSP (tail); tail = XCONS (tail)->cdr)
2536 {
2537 value = Flookup_key (XCONS (tail)->car, key, flag);
2538 if (!NILP (value))
2539 return value;
2540 }
2541 return Qnil;
2542 }
2543
2544 /* Describe the contents of map MAP, assuming that this map itself is
2545 reached by the sequence of prefix keys KEYS (a string or vector).
2546 PARTIAL, SHADOW, NOMENU are as in `describe_map_tree' above. */
2547
2548 static void
2549 describe_map (map, keys, elt_describer, partial, shadow, seen, nomenu)
2550 register Lisp_Object map;
2551 Lisp_Object keys;
2552 int (*elt_describer) ();
2553 int partial;
2554 Lisp_Object shadow;
2555 Lisp_Object *seen;
2556 int nomenu;
2557 {
2558 Lisp_Object elt_prefix;
2559 Lisp_Object tail, definition, event;
2560 Lisp_Object tem;
2561 Lisp_Object suppress;
2562 Lisp_Object kludge;
2563 int first = 1;
2564 struct gcpro gcpro1, gcpro2, gcpro3;
2565
2566 if (!NILP (keys) && XFASTINT (Flength (keys)) > 0)
2567 {
2568 /* Call Fkey_description first, to avoid GC bug for the other string. */
2569 tem = Fkey_description (keys);
2570 elt_prefix = concat2 (tem, build_string (" "));
2571 }
2572 else
2573 elt_prefix = Qnil;
2574
2575 if (partial)
2576 suppress = intern ("suppress-keymap");
2577
2578 /* This vector gets used to present single keys to Flookup_key. Since
2579 that is done once per keymap element, we don't want to cons up a
2580 fresh vector every time. */
2581 kludge = Fmake_vector (make_number (1), Qnil);
2582 definition = Qnil;
2583
2584 GCPRO3 (elt_prefix, definition, kludge);
2585
2586 for (tail = map; CONSP (tail); tail = XCONS (tail)->cdr)
2587 {
2588 QUIT;
2589
2590 if (VECTORP (XCONS (tail)->car)
2591 || CHAR_TABLE_P (XCONS (tail)->car))
2592 describe_vector (XCONS (tail)->car,
2593 elt_prefix, elt_describer, partial, shadow, map,
2594 (int *)0, 0);
2595 else if (CONSP (XCONS (tail)->car))
2596 {
2597 event = XCONS (XCONS (tail)->car)->car;
2598
2599 /* Ignore bindings whose "keys" are not really valid events.
2600 (We get these in the frames and buffers menu.) */
2601 if (! (SYMBOLP (event) || INTEGERP (event)))
2602 continue;
2603
2604 if (nomenu && EQ (event, Qmenu_bar))
2605 continue;
2606
2607 definition = get_keyelt (XCONS (XCONS (tail)->car)->cdr, 0);
2608
2609 /* Don't show undefined commands or suppressed commands. */
2610 if (NILP (definition)) continue;
2611 if (SYMBOLP (definition) && partial)
2612 {
2613 tem = Fget (definition, suppress);
2614 if (!NILP (tem))
2615 continue;
2616 }
2617
2618 /* Don't show a command that isn't really visible
2619 because a local definition of the same key shadows it. */
2620
2621 XVECTOR (kludge)->contents[0] = event;
2622 if (!NILP (shadow))
2623 {
2624 tem = shadow_lookup (shadow, kludge, Qt);
2625 if (!NILP (tem)) continue;
2626 }
2627
2628 tem = Flookup_key (map, kludge, Qt);
2629 if (! EQ (tem, definition)) continue;
2630
2631 if (first)
2632 {
2633 previous_description_column = 0;
2634 insert ("\n", 1);
2635 first = 0;
2636 }
2637
2638 if (!NILP (elt_prefix))
2639 insert1 (elt_prefix);
2640
2641 /* THIS gets the string to describe the character EVENT. */
2642 insert1 (Fsingle_key_description (event));
2643
2644 /* Print a description of the definition of this character.
2645 elt_describer will take care of spacing out far enough
2646 for alignment purposes. */
2647 (*elt_describer) (definition);
2648 }
2649 else if (EQ (XCONS (tail)->car, Qkeymap))
2650 {
2651 /* The same keymap might be in the structure twice, if we're
2652 using an inherited keymap. So skip anything we've already
2653 encountered. */
2654 tem = Fassq (tail, *seen);
2655 if (CONSP (tem) && !NILP (Fequal (XCONS (tem)->car, keys)))
2656 break;
2657 *seen = Fcons (Fcons (tail, keys), *seen);
2658 }
2659 }
2660
2661 UNGCPRO;
2662 }
2663
2664 static int
2665 describe_vector_princ (elt)
2666 Lisp_Object elt;
2667 {
2668 Findent_to (make_number (16), make_number (1));
2669 Fprinc (elt, Qnil);
2670 Fterpri (Qnil);
2671 }
2672
2673 DEFUN ("describe-vector", Fdescribe_vector, Sdescribe_vector, 1, 1, 0,
2674 "Insert a description of contents of VECTOR.\n\
2675 This is text showing the elements of vector matched against indices.")
2676 (vector)
2677 Lisp_Object vector;
2678 {
2679 int count = specpdl_ptr - specpdl;
2680
2681 specbind (Qstandard_output, Fcurrent_buffer ());
2682 CHECK_VECTOR_OR_CHAR_TABLE (vector, 0);
2683 describe_vector (vector, Qnil, describe_vector_princ, 0,
2684 Qnil, Qnil, (int *)0, 0);
2685
2686 return unbind_to (count, Qnil);
2687 }
2688
2689 /* Insert in the current buffer a description of the contents of VECTOR.
2690 We call ELT_DESCRIBER to insert the description of one value found
2691 in VECTOR.
2692
2693 ELT_PREFIX describes what "comes before" the keys or indices defined
2694 by this vector. This is a human-readable string whose size
2695 is not necessarily related to the situation.
2696
2697 If the vector is in a keymap, ELT_PREFIX is a prefix key which
2698 leads to this keymap.
2699
2700 If the vector is a chartable, ELT_PREFIX is the vector
2701 of bytes that lead to the character set or portion of a character
2702 set described by this chartable.
2703
2704 If PARTIAL is nonzero, it means do not mention suppressed commands
2705 (that assumes the vector is in a keymap).
2706
2707 SHADOW is a list of keymaps that shadow this map.
2708 If it is non-nil, then we look up the key in those maps
2709 and we don't mention it now if it is defined by any of them.
2710
2711 ENTIRE_MAP is the keymap in which this vector appears.
2712 If the definition in effect in the whole map does not match
2713 the one in this vector, we ignore this one.
2714
2715 When describing a sub-char-table, INDICES is a list of
2716 indices at higher levels in this char-table,
2717 and CHAR_TABLE_DEPTH says how many levels down we have gone. */
2718
2719 describe_vector (vector, elt_prefix, elt_describer,
2720 partial, shadow, entire_map,
2721 indices, char_table_depth)
2722 register Lisp_Object vector;
2723 Lisp_Object elt_prefix;
2724 int (*elt_describer) ();
2725 int partial;
2726 Lisp_Object shadow;
2727 Lisp_Object entire_map;
2728 int *indices;
2729 int char_table_depth;
2730 {
2731 Lisp_Object definition;
2732 Lisp_Object tem2;
2733 register int i;
2734 Lisp_Object suppress;
2735 Lisp_Object kludge;
2736 int first = 1;
2737 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
2738 /* Range of elements to be handled. */
2739 int from, to;
2740 /* Flag to tell if we should handle multibyte characters. */
2741 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
2742 /* A flag to tell if a leaf in this level of char-table is not a
2743 generic character (i.e. a complete multibyte character). */
2744 int complete_char;
2745 int character;
2746 int starting_i;
2747
2748 if (indices == 0)
2749 indices = (Lisp_Object *) alloca (3 * sizeof (Lisp_Object));
2750
2751 definition = Qnil;
2752
2753 /* This vector gets used to present single keys to Flookup_key. Since
2754 that is done once per vector element, we don't want to cons up a
2755 fresh vector every time. */
2756 kludge = Fmake_vector (make_number (1), Qnil);
2757 GCPRO3 (elt_prefix, definition, kludge);
2758
2759 if (partial)
2760 suppress = intern ("suppress-keymap");
2761
2762 if (CHAR_TABLE_P (vector))
2763 {
2764 if (char_table_depth == 0)
2765 {
2766 /* VECTOR is a top level char-table. */
2767 complete_char = 1;
2768 from = 0;
2769 to = CHAR_TABLE_ORDINARY_SLOTS;
2770 }
2771 else
2772 {
2773 /* VECTOR is a sub char-table. */
2774 if (char_table_depth >= 3)
2775 /* A char-table is never that deep. */
2776 error ("Too deep char table");
2777
2778 complete_char
2779 = (CHARSET_VALID_P (indices[0])
2780 && ((CHARSET_DIMENSION (indices[0]) == 1
2781 && char_table_depth == 1)
2782 || char_table_depth == 2));
2783
2784 /* Meaningful elements are from 32th to 127th. */
2785 from = 32;
2786 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
2787 }
2788 }
2789 else
2790 {
2791 /* This does the right thing for ordinary vectors. */
2792
2793 complete_char = 1;
2794 from = 0;
2795 to = XVECTOR (vector)->size;
2796 }
2797
2798 for (i = from; i < to; i++)
2799 {
2800 QUIT;
2801
2802 if (CHAR_TABLE_P (vector))
2803 {
2804 if (char_table_depth == 0 && i >= CHAR_TABLE_SINGLE_BYTE_SLOTS)
2805 complete_char = 0;
2806
2807 if (i >= CHAR_TABLE_SINGLE_BYTE_SLOTS
2808 && !CHARSET_DEFINED_P (i - 128))
2809 continue;
2810
2811 definition
2812 = get_keyelt (XCHAR_TABLE (vector)->contents[i], 0);
2813 }
2814 else
2815 definition = get_keyelt (XVECTOR (vector)->contents[i], 0);
2816
2817 if (NILP (definition)) continue;
2818
2819 /* Don't mention suppressed commands. */
2820 if (SYMBOLP (definition) && partial)
2821 {
2822 Lisp_Object tem;
2823
2824 tem = Fget (definition, suppress);
2825
2826 if (!NILP (tem)) continue;
2827 }
2828
2829 /* Set CHARACTER to the character this entry describes, if any.
2830 Also update *INDICES. */
2831 if (CHAR_TABLE_P (vector))
2832 {
2833 indices[char_table_depth] = i;
2834
2835 if (char_table_depth == 0)
2836 {
2837 character = i;
2838 indices[0] = i - 128;
2839 }
2840 else if (complete_char)
2841 {
2842 character
2843 = MAKE_NON_ASCII_CHAR (indices[0], indices[1], indices[2]);
2844 }
2845 else
2846 character = 0;
2847 }
2848 else
2849 character = i;
2850
2851 /* If this binding is shadowed by some other map, ignore it. */
2852 if (!NILP (shadow) && complete_char)
2853 {
2854 Lisp_Object tem;
2855
2856 XVECTOR (kludge)->contents[0] = make_number (character);
2857 tem = shadow_lookup (shadow, kludge, Qt);
2858
2859 if (!NILP (tem)) continue;
2860 }
2861
2862 /* Ignore this definition if it is shadowed by an earlier
2863 one in the same keymap. */
2864 if (!NILP (entire_map) && complete_char)
2865 {
2866 Lisp_Object tem;
2867
2868 XVECTOR (kludge)->contents[0] = make_number (character);
2869 tem = Flookup_key (entire_map, kludge, Qt);
2870
2871 if (! EQ (tem, definition))
2872 continue;
2873 }
2874
2875 if (first)
2876 {
2877 if (char_table_depth == 0)
2878 insert ("\n", 1);
2879 first = 0;
2880 }
2881
2882 /* For a sub char-table, show the depth by indentation.
2883 CHAR_TABLE_DEPTH can be greater than 0 only for a char-table. */
2884 if (char_table_depth > 0)
2885 insert (" ", char_table_depth * 2); /* depth is 1 or 2. */
2886
2887 /* Output the prefix that applies to every entry in this map. */
2888 if (!NILP (elt_prefix))
2889 insert1 (elt_prefix);
2890
2891 /* Insert or describe the character this slot is for,
2892 or a description of what it is for. */
2893 if (SUB_CHAR_TABLE_P (vector))
2894 {
2895 if (complete_char)
2896 insert_char (character);
2897 else
2898 {
2899 /* We need an octal representation for this block of
2900 characters. */
2901 char work[16];
2902 sprintf (work, "(row %d)", i);
2903 insert (work, strlen (work));
2904 }
2905 }
2906 else if (CHAR_TABLE_P (vector))
2907 {
2908 if (complete_char)
2909 insert1 (Fsingle_key_description (make_number (character)));
2910 else
2911 {
2912 /* Print the information for this character set. */
2913 insert_string ("<");
2914 tem2 = CHARSET_TABLE_INFO (i - 128, CHARSET_SHORT_NAME_IDX);
2915 if (STRINGP (tem2))
2916 insert_from_string (tem2, 0 , XSTRING (tem2)->size, 0);
2917 else
2918 insert ("?", 1);
2919 insert (">", 1);
2920 }
2921 }
2922 else
2923 {
2924 insert1 (Fsingle_key_description (make_number (character)));
2925 }
2926
2927 /* If we find a sub char-table within a char-table,
2928 scan it recursively; it defines the details for
2929 a character set or a portion of a character set. */
2930 if (multibyte && CHAR_TABLE_P (vector) && SUB_CHAR_TABLE_P (definition))
2931 {
2932 insert ("\n", 1);
2933 describe_vector (definition, elt_prefix, elt_describer,
2934 partial, shadow, entire_map,
2935 indices, char_table_depth + 1);
2936 continue;
2937 }
2938
2939 starting_i = i;
2940
2941 /* Find all consecutive characters or rows that have the same
2942 definition. But, for elements of a top level char table, if
2943 they are for charsets, we had better describe one by one even
2944 if they have the same definition. */
2945 if (CHAR_TABLE_P (vector))
2946 {
2947 int limit = to;
2948
2949 if (char_table_depth == 0)
2950 limit = CHAR_TABLE_SINGLE_BYTE_SLOTS;
2951
2952 while (i + 1 < limit
2953 && (tem2 = get_keyelt (XCHAR_TABLE (vector)->contents[i + 1], 0),
2954 !NILP (tem2))
2955 && !NILP (Fequal (tem2, definition)))
2956 i++;
2957 }
2958 else
2959 while (i + 1 < to
2960 && (tem2 = get_keyelt (XVECTOR (vector)->contents[i + 1], 0),
2961 !NILP (tem2))
2962 && !NILP (Fequal (tem2, definition)))
2963 i++;
2964
2965
2966 /* If we have a range of more than one character,
2967 print where the range reaches to. */
2968
2969 if (i != starting_i)
2970 {
2971 insert (" .. ", 4);
2972
2973 if (!NILP (elt_prefix))
2974 insert1 (elt_prefix);
2975
2976 if (CHAR_TABLE_P (vector))
2977 {
2978 if (char_table_depth == 0)
2979 {
2980 insert1 (Fsingle_key_description (make_number (i)));
2981 }
2982 else if (complete_char)
2983 {
2984 indices[char_table_depth] = i;
2985 character
2986 = MAKE_NON_ASCII_CHAR (indices[0], indices[1], indices[2]);
2987 insert_char (character);
2988 }
2989 else
2990 {
2991 /* We need an octal representation for this block of
2992 characters. */
2993 char work[16];
2994 sprintf (work, "(row %d)", i);
2995 insert (work, strlen (work));
2996 }
2997 }
2998 else
2999 {
3000 insert1 (Fsingle_key_description (make_number (i)));
3001 }
3002 }
3003
3004 /* Print a description of the definition of this character.
3005 elt_describer will take care of spacing out far enough
3006 for alignment purposes. */
3007 (*elt_describer) (definition);
3008 }
3009
3010 /* For (sub) char-table, print `defalt' slot at last. */
3011 if (CHAR_TABLE_P (vector) && !NILP (XCHAR_TABLE (vector)->defalt))
3012 {
3013 insert (" ", char_table_depth * 2);
3014 insert_string ("<<default>>");
3015 (*elt_describer) (XCHAR_TABLE (vector)->defalt);
3016 }
3017
3018 UNGCPRO;
3019 }
3020 \f
3021 /* Apropos - finding all symbols whose names match a regexp. */
3022 Lisp_Object apropos_predicate;
3023 Lisp_Object apropos_accumulate;
3024
3025 static void
3026 apropos_accum (symbol, string)
3027 Lisp_Object symbol, string;
3028 {
3029 register Lisp_Object tem;
3030
3031 tem = Fstring_match (string, Fsymbol_name (symbol), Qnil);
3032 if (!NILP (tem) && !NILP (apropos_predicate))
3033 tem = call1 (apropos_predicate, symbol);
3034 if (!NILP (tem))
3035 apropos_accumulate = Fcons (symbol, apropos_accumulate);
3036 }
3037
3038 DEFUN ("apropos-internal", Fapropos_internal, Sapropos_internal, 1, 2, 0,
3039 "Show all symbols whose names contain match for REGEXP.\n\
3040 If optional 2nd arg PREDICATE is non-nil, (funcall PREDICATE SYMBOL) is done\n\
3041 for each symbol and a symbol is mentioned only if that returns non-nil.\n\
3042 Return list of symbols found.")
3043 (regexp, predicate)
3044 Lisp_Object regexp, predicate;
3045 {
3046 struct gcpro gcpro1, gcpro2;
3047 CHECK_STRING (regexp, 0);
3048 apropos_predicate = predicate;
3049 GCPRO2 (apropos_predicate, apropos_accumulate);
3050 apropos_accumulate = Qnil;
3051 map_obarray (Vobarray, apropos_accum, regexp);
3052 apropos_accumulate = Fsort (apropos_accumulate, Qstring_lessp);
3053 UNGCPRO;
3054 return apropos_accumulate;
3055 }
3056 \f
3057 syms_of_keymap ()
3058 {
3059 Lisp_Object tem;
3060
3061 Qkeymap = intern ("keymap");
3062 staticpro (&Qkeymap);
3063
3064 /* Now we are ready to set up this property, so we can
3065 create char tables. */
3066 Fput (Qkeymap, Qchar_table_extra_slots, make_number (0));
3067
3068 /* Initialize the keymaps standardly used.
3069 Each one is the value of a Lisp variable, and is also
3070 pointed to by a C variable */
3071
3072 global_map = Fmake_keymap (Qnil);
3073 Fset (intern ("global-map"), global_map);
3074
3075 current_global_map = global_map;
3076 staticpro (&global_map);
3077 staticpro (&current_global_map);
3078
3079 meta_map = Fmake_keymap (Qnil);
3080 Fset (intern ("esc-map"), meta_map);
3081 Ffset (intern ("ESC-prefix"), meta_map);
3082
3083 control_x_map = Fmake_keymap (Qnil);
3084 Fset (intern ("ctl-x-map"), control_x_map);
3085 Ffset (intern ("Control-X-prefix"), control_x_map);
3086
3087 DEFVAR_LISP ("define-key-rebound-commands", &Vdefine_key_rebound_commands,
3088 "List of commands given new key bindings recently.\n\
3089 This is used for internal purposes during Emacs startup;\n\
3090 don't alter it yourself.");
3091 Vdefine_key_rebound_commands = Qt;
3092
3093 DEFVAR_LISP ("minibuffer-local-map", &Vminibuffer_local_map,
3094 "Default keymap to use when reading from the minibuffer.");
3095 Vminibuffer_local_map = Fmake_sparse_keymap (Qnil);
3096
3097 DEFVAR_LISP ("minibuffer-local-ns-map", &Vminibuffer_local_ns_map,
3098 "Local keymap for the minibuffer when spaces are not allowed.");
3099 Vminibuffer_local_ns_map = Fmake_sparse_keymap (Qnil);
3100
3101 DEFVAR_LISP ("minibuffer-local-completion-map", &Vminibuffer_local_completion_map,
3102 "Local keymap for minibuffer input with completion.");
3103 Vminibuffer_local_completion_map = Fmake_sparse_keymap (Qnil);
3104
3105 DEFVAR_LISP ("minibuffer-local-must-match-map", &Vminibuffer_local_must_match_map,
3106 "Local keymap for minibuffer input with completion, for exact match.");
3107 Vminibuffer_local_must_match_map = Fmake_sparse_keymap (Qnil);
3108
3109 DEFVAR_LISP ("minor-mode-map-alist", &Vminor_mode_map_alist,
3110 "Alist of keymaps to use for minor modes.\n\
3111 Each element looks like (VARIABLE . KEYMAP); KEYMAP is used to read\n\
3112 key sequences and look up bindings iff VARIABLE's value is non-nil.\n\
3113 If two active keymaps bind the same key, the keymap appearing earlier\n\
3114 in the list takes precedence.");
3115 Vminor_mode_map_alist = Qnil;
3116
3117 DEFVAR_LISP ("function-key-map", &Vfunction_key_map,
3118 "Keymap mapping ASCII function key sequences onto their preferred forms.\n\
3119 This allows Emacs to recognize function keys sent from ASCII\n\
3120 terminals at any point in a key sequence.\n\
3121 \n\
3122 The `read-key-sequence' function replaces any subsequence bound by\n\
3123 `function-key-map' with its binding. More precisely, when the active\n\
3124 keymaps have no binding for the current key sequence but\n\
3125 `function-key-map' binds a suffix of the sequence to a vector or string,\n\
3126 `read-key-sequence' replaces the matching suffix with its binding, and\n\
3127 continues with the new sequence.\n\
3128 \n\
3129 The events that come from bindings in `function-key-map' are not\n\
3130 themselves looked up in `function-key-map'.\n\
3131 \n\
3132 For example, suppose `function-key-map' binds `ESC O P' to [f1].\n\
3133 Typing `ESC O P' to `read-key-sequence' would return [f1]. Typing\n\
3134 `C-x ESC O P' would return [?\\C-x f1]. If [f1] were a prefix\n\
3135 key, typing `ESC O P x' would return [f1 x].");
3136 Vfunction_key_map = Fmake_sparse_keymap (Qnil);
3137
3138 DEFVAR_LISP ("key-translation-map", &Vkey_translation_map,
3139 "Keymap of key translations that can override keymaps.\n\
3140 This keymap works like `function-key-map', but comes after that,\n\
3141 and applies even for keys that have ordinary bindings.");
3142 Vkey_translation_map = Qnil;
3143
3144 Qsingle_key_description = intern ("single-key-description");
3145 staticpro (&Qsingle_key_description);
3146
3147 Qkey_description = intern ("key-description");
3148 staticpro (&Qkey_description);
3149
3150 Qkeymapp = intern ("keymapp");
3151 staticpro (&Qkeymapp);
3152
3153 Qnon_ascii = intern ("non-ascii");
3154 staticpro (&Qnon_ascii);
3155
3156 defsubr (&Skeymapp);
3157 defsubr (&Skeymap_parent);
3158 defsubr (&Sset_keymap_parent);
3159 defsubr (&Smake_keymap);
3160 defsubr (&Smake_sparse_keymap);
3161 defsubr (&Scopy_keymap);
3162 defsubr (&Skey_binding);
3163 defsubr (&Slocal_key_binding);
3164 defsubr (&Sglobal_key_binding);
3165 defsubr (&Sminor_mode_key_binding);
3166 defsubr (&Sdefine_key);
3167 defsubr (&Slookup_key);
3168 defsubr (&Sdefine_prefix_command);
3169 defsubr (&Suse_global_map);
3170 defsubr (&Suse_local_map);
3171 defsubr (&Scurrent_local_map);
3172 defsubr (&Scurrent_global_map);
3173 defsubr (&Scurrent_minor_mode_maps);
3174 defsubr (&Saccessible_keymaps);
3175 defsubr (&Skey_description);
3176 defsubr (&Sdescribe_vector);
3177 defsubr (&Ssingle_key_description);
3178 defsubr (&Stext_char_description);
3179 defsubr (&Swhere_is_internal);
3180 defsubr (&Sdescribe_bindings);
3181 defsubr (&Sapropos_internal);
3182 }
3183
3184 keys_of_keymap ()
3185 {
3186 Lisp_Object tem;
3187
3188 initial_define_key (global_map, 033, "ESC-prefix");
3189 initial_define_key (global_map, Ctl('X'), "Control-X-prefix");
3190 }