(Fcall_process): Deal with decode_coding returning
[bpt/emacs.git] / src / keymap.c
1 /* Manipulation of keymaps
2 Copyright (C) 1985, 86,87,88,93,94,95,98,99, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 #include <config.h>
24 #include <stdio.h>
25 #include "lisp.h"
26 #include "commands.h"
27 #include "buffer.h"
28 #include "charset.h"
29 #include "keyboard.h"
30 #include "termhooks.h"
31 #include "blockinput.h"
32 #include "puresize.h"
33 #include "intervals.h"
34
35 #define min(a, b) ((a) < (b) ? (a) : (b))
36
37 /* The number of elements in keymap vectors. */
38 #define DENSE_TABLE_SIZE (0200)
39
40 /* Actually allocate storage for these variables */
41
42 Lisp_Object current_global_map; /* Current global keymap */
43
44 Lisp_Object global_map; /* default global key bindings */
45
46 Lisp_Object meta_map; /* The keymap used for globally bound
47 ESC-prefixed default commands */
48
49 Lisp_Object control_x_map; /* The keymap used for globally bound
50 C-x-prefixed default commands */
51
52 /* was MinibufLocalMap */
53 Lisp_Object Vminibuffer_local_map;
54 /* The keymap used by the minibuf for local
55 bindings when spaces are allowed in the
56 minibuf */
57
58 /* was MinibufLocalNSMap */
59 Lisp_Object Vminibuffer_local_ns_map;
60 /* The keymap used by the minibuf for local
61 bindings when spaces are not encouraged
62 in the minibuf */
63
64 /* keymap used for minibuffers when doing completion */
65 /* was MinibufLocalCompletionMap */
66 Lisp_Object Vminibuffer_local_completion_map;
67
68 /* keymap used for minibuffers when doing completion and require a match */
69 /* was MinibufLocalMustMatchMap */
70 Lisp_Object Vminibuffer_local_must_match_map;
71
72 /* Alist of minor mode variables and keymaps. */
73 Lisp_Object Vminor_mode_map_alist;
74
75 /* Alist of major-mode-specific overrides for
76 minor mode variables and keymaps. */
77 Lisp_Object Vminor_mode_overriding_map_alist;
78
79 /* Keymap mapping ASCII function key sequences onto their preferred forms.
80 Initialized by the terminal-specific lisp files. See DEFVAR for more
81 documentation. */
82 Lisp_Object Vfunction_key_map;
83
84 /* Keymap mapping ASCII function key sequences onto their preferred forms. */
85 Lisp_Object Vkey_translation_map;
86
87 /* A list of all commands given new bindings since a certain time
88 when nil was stored here.
89 This is used to speed up recomputation of menu key equivalents
90 when Emacs starts up. t means don't record anything here. */
91 Lisp_Object Vdefine_key_rebound_commands;
92
93 Lisp_Object Qkeymapp, Qkeymap, Qnon_ascii, Qmenu_item;
94
95 /* A char with the CHAR_META bit set in a vector or the 0200 bit set
96 in a string key sequence is equivalent to prefixing with this
97 character. */
98 extern Lisp_Object meta_prefix_char;
99
100 extern Lisp_Object Voverriding_local_map;
101
102 /* Hash table used to cache a reverse-map to speed up calls to where-is. */
103 static Lisp_Object where_is_cache;
104 /* Which keymaps are reverse-stored in the cache. */
105 static Lisp_Object where_is_cache_keymaps;
106
107 static Lisp_Object store_in_keymap P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
108 static void fix_submap_inheritance P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
109
110 static Lisp_Object define_as_prefix P_ ((Lisp_Object, Lisp_Object));
111 static Lisp_Object describe_buffer_bindings P_ ((Lisp_Object));
112 static void describe_command P_ ((Lisp_Object));
113 static void describe_translation P_ ((Lisp_Object));
114 static void describe_map P_ ((Lisp_Object, Lisp_Object,
115 void (*) P_ ((Lisp_Object)),
116 int, Lisp_Object, Lisp_Object*, int));
117 \f
118 /* Keymap object support - constructors and predicates. */
119
120 DEFUN ("make-keymap", Fmake_keymap, Smake_keymap, 0, 1, 0,
121 "Construct and return a new keymap, of the form (keymap CHARTABLE . ALIST).\n\
122 CHARTABLE is a char-table that holds the bindings for the ASCII\n\
123 characters. ALIST is an assoc-list which holds bindings for function keys,\n\
124 mouse events, and any other things that appear in the input stream.\n\
125 All entries in it are initially nil, meaning \"command undefined\".\n\n\
126 The optional arg STRING supplies a menu name for the keymap\n\
127 in case you use it as a menu with `x-popup-menu'.")
128 (string)
129 Lisp_Object string;
130 {
131 Lisp_Object tail;
132 if (!NILP (string))
133 tail = Fcons (string, Qnil);
134 else
135 tail = Qnil;
136 return Fcons (Qkeymap,
137 Fcons (Fmake_char_table (Qkeymap, Qnil), tail));
138 }
139
140 DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, Smake_sparse_keymap, 0, 1, 0,
141 "Construct and return a new sparse keymap.\n\
142 Its car is `keymap' and its cdr is an alist of (CHAR . DEFINITION),\n\
143 which binds the character CHAR to DEFINITION, or (SYMBOL . DEFINITION),\n\
144 which binds the function key or mouse event SYMBOL to DEFINITION.\n\
145 Initially the alist is nil.\n\n\
146 The optional arg STRING supplies a menu name for the keymap\n\
147 in case you use it as a menu with `x-popup-menu'.")
148 (string)
149 Lisp_Object string;
150 {
151 if (!NILP (string))
152 return Fcons (Qkeymap, Fcons (string, Qnil));
153 return Fcons (Qkeymap, Qnil);
154 }
155
156 /* This function is used for installing the standard key bindings
157 at initialization time.
158
159 For example:
160
161 initial_define_key (control_x_map, Ctl('X'), "exchange-point-and-mark"); */
162
163 void
164 initial_define_key (keymap, key, defname)
165 Lisp_Object keymap;
166 int key;
167 char *defname;
168 {
169 store_in_keymap (keymap, make_number (key), intern (defname));
170 }
171
172 void
173 initial_define_lispy_key (keymap, keyname, defname)
174 Lisp_Object keymap;
175 char *keyname;
176 char *defname;
177 {
178 store_in_keymap (keymap, intern (keyname), intern (defname));
179 }
180
181 DEFUN ("keymapp", Fkeymapp, Skeymapp, 1, 1, 0,
182 "Return t if OBJECT is a keymap.\n\
183 \n\
184 A keymap is a list (keymap . ALIST),\n\
185 or a symbol whose function definition is itself a keymap.\n\
186 ALIST elements look like (CHAR . DEFN) or (SYMBOL . DEFN);\n\
187 a vector of densely packed bindings for small character codes\n\
188 is also allowed as an element.")
189 (object)
190 Lisp_Object object;
191 {
192 return (KEYMAPP (object) ? Qt : Qnil);
193 }
194
195 /* Check that OBJECT is a keymap (after dereferencing through any
196 symbols). If it is, return it.
197
198 If AUTOLOAD is non-zero and OBJECT is a symbol whose function value
199 is an autoload form, do the autoload and try again.
200 If AUTOLOAD is nonzero, callers must assume GC is possible.
201
202 If the map needs to be autoloaded, but AUTOLOAD is zero (and ERROR
203 is zero as well), return Qt.
204
205 ERROR controls how we respond if OBJECT isn't a keymap.
206 If ERROR is non-zero, signal an error; otherwise, just return Qnil.
207
208 Note that most of the time, we don't want to pursue autoloads.
209 Functions like Faccessible_keymaps which scan entire keymap trees
210 shouldn't load every autoloaded keymap. I'm not sure about this,
211 but it seems to me that only read_key_sequence, Flookup_key, and
212 Fdefine_key should cause keymaps to be autoloaded.
213
214 This function can GC when AUTOLOAD is non-zero, because it calls
215 do_autoload which can GC. */
216
217 Lisp_Object
218 get_keymap (object, error, autoload)
219 Lisp_Object object;
220 int error, autoload;
221 {
222 Lisp_Object tem;
223
224 autoload_retry:
225 if (NILP (object))
226 goto end;
227 if (CONSP (object) && EQ (XCAR (object), Qkeymap))
228 return object;
229
230 tem = indirect_function (object);
231 if (CONSP (tem))
232 {
233 if (EQ (XCAR (tem), Qkeymap))
234 return tem;
235
236 /* Should we do an autoload? Autoload forms for keymaps have
237 Qkeymap as their fifth element. */
238 if ((autoload || !error) && EQ (XCAR (tem), Qautoload))
239 {
240 Lisp_Object tail;
241
242 tail = Fnth (make_number (4), tem);
243 if (EQ (tail, Qkeymap))
244 {
245 if (autoload)
246 {
247 struct gcpro gcpro1, gcpro2;
248
249 GCPRO2 (tem, object);
250 do_autoload (tem, object);
251 UNGCPRO;
252
253 goto autoload_retry;
254 }
255 else
256 return Qt;
257 }
258 }
259 }
260
261 end:
262 if (error)
263 wrong_type_argument (Qkeymapp, object);
264 return Qnil;
265 }
266 \f
267 /* Return the parent map of the keymap MAP, or nil if it has none.
268 We assume that MAP is a valid keymap. */
269
270 DEFUN ("keymap-parent", Fkeymap_parent, Skeymap_parent, 1, 1, 0,
271 "Return the parent keymap of KEYMAP.")
272 (keymap)
273 Lisp_Object keymap;
274 {
275 Lisp_Object list;
276
277 keymap = get_keymap (keymap, 1, 1);
278
279 /* Skip past the initial element `keymap'. */
280 list = XCDR (keymap);
281 for (; CONSP (list); list = XCDR (list))
282 {
283 /* See if there is another `keymap'. */
284 if (KEYMAPP (list))
285 return list;
286 }
287
288 return get_keymap (list, 0, 1);
289 }
290
291
292 /* Check whether MAP is one of MAPS parents. */
293 int
294 keymap_memberp (map, maps)
295 Lisp_Object map, maps;
296 {
297 if (NILP (map)) return 0;
298 while (KEYMAPP (maps) && !EQ (map, maps))
299 maps = Fkeymap_parent (maps);
300 return (EQ (map, maps));
301 }
302
303 /* Set the parent keymap of MAP to PARENT. */
304
305 DEFUN ("set-keymap-parent", Fset_keymap_parent, Sset_keymap_parent, 2, 2, 0,
306 "Modify KEYMAP to set its parent map to PARENT.\n\
307 PARENT should be nil or another keymap.")
308 (keymap, parent)
309 Lisp_Object keymap, parent;
310 {
311 Lisp_Object list, prev;
312 struct gcpro gcpro1;
313 int i;
314
315 /* Force a keymap flush for the next call to where-is.
316 Since this can be called from within where-is, we don't set where_is_cache
317 directly but only where_is_cache_keymaps, since where_is_cache shouldn't
318 be changed during where-is, while where_is_cache_keymaps is only used at
319 the very beginning of where-is and can thus be changed here without any
320 adverse effect.
321 This is a very minor correctness (rather than safety) issue. */
322 where_is_cache_keymaps = Qt;
323
324 keymap = get_keymap (keymap, 1, 1);
325 GCPRO1 (keymap);
326
327 if (!NILP (parent))
328 {
329 parent = get_keymap (parent, 1, 1);
330
331 /* Check for cycles. */
332 if (keymap_memberp (keymap, parent))
333 error ("Cyclic keymap inheritance");
334 }
335
336 /* Skip past the initial element `keymap'. */
337 prev = keymap;
338 while (1)
339 {
340 list = XCDR (prev);
341 /* If there is a parent keymap here, replace it.
342 If we came to the end, add the parent in PREV. */
343 if (! CONSP (list) || KEYMAPP (list))
344 {
345 /* If we already have the right parent, return now
346 so that we avoid the loops below. */
347 if (EQ (XCDR (prev), parent))
348 RETURN_UNGCPRO (parent);
349
350 XCDR (prev) = parent;
351 break;
352 }
353 prev = list;
354 }
355
356 /* Scan through for submaps, and set their parents too. */
357
358 for (list = XCDR (keymap); CONSP (list); list = XCDR (list))
359 {
360 /* Stop the scan when we come to the parent. */
361 if (EQ (XCAR (list), Qkeymap))
362 break;
363
364 /* If this element holds a prefix map, deal with it. */
365 if (CONSP (XCAR (list))
366 && CONSP (XCDR (XCAR (list))))
367 fix_submap_inheritance (keymap, XCAR (XCAR (list)),
368 XCDR (XCAR (list)));
369
370 if (VECTORP (XCAR (list)))
371 for (i = 0; i < XVECTOR (XCAR (list))->size; i++)
372 if (CONSP (XVECTOR (XCAR (list))->contents[i]))
373 fix_submap_inheritance (keymap, make_number (i),
374 XVECTOR (XCAR (list))->contents[i]);
375
376 if (CHAR_TABLE_P (XCAR (list)))
377 {
378 Lisp_Object indices[3];
379
380 map_char_table (fix_submap_inheritance, Qnil, XCAR (list),
381 keymap, 0, indices);
382 }
383 }
384
385 RETURN_UNGCPRO (parent);
386 }
387
388 /* EVENT is defined in MAP as a prefix, and SUBMAP is its definition.
389 if EVENT is also a prefix in MAP's parent,
390 make sure that SUBMAP inherits that definition as its own parent. */
391
392 static void
393 fix_submap_inheritance (map, event, submap)
394 Lisp_Object map, event, submap;
395 {
396 Lisp_Object map_parent, parent_entry;
397
398 /* SUBMAP is a cons that we found as a key binding.
399 Discard the other things found in a menu key binding. */
400
401 submap = get_keymap (get_keyelt (submap, 0), 0, 0);
402
403 /* If it isn't a keymap now, there's no work to do. */
404 if (!CONSP (submap))
405 return;
406
407 map_parent = Fkeymap_parent (map);
408 if (!NILP (map_parent))
409 parent_entry =
410 get_keymap (access_keymap (map_parent, event, 0, 0, 0), 0, 0);
411 else
412 parent_entry = Qnil;
413
414 /* If MAP's parent has something other than a keymap,
415 our own submap shadows it completely. */
416 if (!CONSP (parent_entry))
417 return;
418
419 if (! EQ (parent_entry, submap))
420 {
421 Lisp_Object submap_parent;
422 submap_parent = submap;
423 while (1)
424 {
425 Lisp_Object tem;
426
427 tem = Fkeymap_parent (submap_parent);
428
429 if (KEYMAPP (tem))
430 {
431 if (keymap_memberp (tem, parent_entry))
432 /* Fset_keymap_parent could create a cycle. */
433 return;
434 submap_parent = tem;
435 }
436 else
437 break;
438 }
439 Fset_keymap_parent (submap_parent, parent_entry);
440 }
441 }
442 \f
443 /* Look up IDX in MAP. IDX may be any sort of event.
444 Note that this does only one level of lookup; IDX must be a single
445 event, not a sequence.
446
447 If T_OK is non-zero, bindings for Qt are treated as default
448 bindings; any key left unmentioned by other tables and bindings is
449 given the binding of Qt.
450
451 If T_OK is zero, bindings for Qt are not treated specially.
452
453 If NOINHERIT, don't accept a subkeymap found in an inherited keymap. */
454
455 Lisp_Object
456 access_keymap (map, idx, t_ok, noinherit, autoload)
457 Lisp_Object map;
458 Lisp_Object idx;
459 int t_ok;
460 int noinherit;
461 int autoload;
462 {
463 int noprefix = 0;
464 Lisp_Object val;
465
466 /* If idx is a list (some sort of mouse click, perhaps?),
467 the index we want to use is the car of the list, which
468 ought to be a symbol. */
469 idx = EVENT_HEAD (idx);
470
471 /* If idx is a symbol, it might have modifiers, which need to
472 be put in the canonical order. */
473 if (SYMBOLP (idx))
474 idx = reorder_modifiers (idx);
475 else if (INTEGERP (idx))
476 /* Clobber the high bits that can be present on a machine
477 with more than 24 bits of integer. */
478 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
479
480 /* Handle the special meta -> esc mapping. */
481 if (INTEGERP (idx) && XUINT (idx) & meta_modifier)
482 {
483 /* See if there is a meta-map. If there's none, there is
484 no binding for IDX, unless a default binding exists in MAP. */
485 Lisp_Object meta_map =
486 get_keymap (access_keymap (map, meta_prefix_char,
487 t_ok, noinherit, autoload),
488 0, autoload);
489 if (CONSP (meta_map))
490 {
491 map = meta_map;
492 idx = make_number (XUINT (idx) & ~meta_modifier);
493 }
494 else if (t_ok)
495 /* Set IDX to t, so that we only find a default binding. */
496 idx = Qt;
497 else
498 /* We know there is no binding. */
499 return Qnil;
500 }
501
502 {
503 Lisp_Object tail;
504 Lisp_Object t_binding;
505
506 t_binding = Qnil;
507 for (tail = XCDR (map);
508 (CONSP (tail)
509 || (tail = get_keymap (tail, 0, autoload), CONSP (tail)));
510 tail = XCDR (tail))
511 {
512 Lisp_Object binding;
513
514 binding = XCAR (tail);
515 if (SYMBOLP (binding))
516 {
517 /* If NOINHERIT, stop finding prefix definitions
518 after we pass a second occurrence of the `keymap' symbol. */
519 if (noinherit && EQ (binding, Qkeymap))
520 noprefix = 1;
521 }
522 else if (CONSP (binding))
523 {
524 if (EQ (XCAR (binding), idx))
525 {
526 val = XCDR (binding);
527 if (noprefix && KEYMAPP (val))
528 return Qnil;
529 if (CONSP (val))
530 fix_submap_inheritance (map, idx, val);
531 return get_keyelt (val, autoload);
532 }
533 if (t_ok && EQ (XCAR (binding), Qt))
534 t_binding = XCDR (binding);
535 }
536 else if (VECTORP (binding))
537 {
538 if (NATNUMP (idx) && XFASTINT (idx) < XVECTOR (binding)->size)
539 {
540 val = XVECTOR (binding)->contents[XFASTINT (idx)];
541 if (noprefix && KEYMAPP (val))
542 return Qnil;
543 if (CONSP (val))
544 fix_submap_inheritance (map, idx, val);
545 return get_keyelt (val, autoload);
546 }
547 }
548 else if (CHAR_TABLE_P (binding))
549 {
550 /* Character codes with modifiers
551 are not included in a char-table.
552 All character codes without modifiers are included. */
553 if (NATNUMP (idx)
554 && ! (XFASTINT (idx)
555 & (CHAR_ALT | CHAR_SUPER | CHAR_HYPER
556 | CHAR_SHIFT | CHAR_CTL | CHAR_META)))
557 {
558 val = Faref (binding, idx);
559 if (noprefix && KEYMAPP (val))
560 return Qnil;
561 if (CONSP (val))
562 fix_submap_inheritance (map, idx, val);
563 return get_keyelt (val, autoload);
564 }
565 }
566
567 QUIT;
568 }
569
570 return get_keyelt (t_binding, autoload);
571 }
572 }
573
574 /* Given OBJECT which was found in a slot in a keymap,
575 trace indirect definitions to get the actual definition of that slot.
576 An indirect definition is a list of the form
577 (KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one
578 and INDEX is the object to look up in KEYMAP to yield the definition.
579
580 Also if OBJECT has a menu string as the first element,
581 remove that. Also remove a menu help string as second element.
582
583 If AUTOLOAD is nonzero, load autoloadable keymaps
584 that are referred to with indirection. */
585
586 Lisp_Object
587 get_keyelt (object, autoload)
588 register Lisp_Object object;
589 int autoload;
590 {
591 while (1)
592 {
593 if (!(CONSP (object)))
594 /* This is really the value. */
595 return object;
596
597 /* If the keymap contents looks like (keymap ...) or (lambda ...)
598 then use itself. */
599 else if (EQ (XCAR (object), Qkeymap) || EQ (XCAR (object), Qlambda))
600 return object;
601
602 /* If the keymap contents looks like (menu-item name . DEFN)
603 or (menu-item name DEFN ...) then use DEFN.
604 This is a new format menu item. */
605 else if (EQ (XCAR (object), Qmenu_item))
606 {
607 if (CONSP (XCDR (object)))
608 {
609 Lisp_Object tem;
610
611 object = XCDR (XCDR (object));
612 tem = object;
613 if (CONSP (object))
614 object = XCAR (object);
615
616 /* If there's a `:filter FILTER', apply FILTER to the
617 menu-item's definition to get the real definition to
618 use. */
619 for (; CONSP (tem) && CONSP (XCDR (tem)); tem = XCDR (tem))
620 if (EQ (XCAR (tem), QCfilter) && autoload)
621 {
622 Lisp_Object filter;
623 filter = XCAR (XCDR (tem));
624 filter = list2 (filter, list2 (Qquote, object));
625 object = menu_item_eval_property (filter);
626 break;
627 }
628 }
629 else
630 /* Invalid keymap */
631 return object;
632 }
633
634 /* If the keymap contents looks like (STRING . DEFN), use DEFN.
635 Keymap alist elements like (CHAR MENUSTRING . DEFN)
636 will be used by HierarKey menus. */
637 else if (STRINGP (XCAR (object)))
638 {
639 object = XCDR (object);
640 /* Also remove a menu help string, if any,
641 following the menu item name. */
642 if (CONSP (object) && STRINGP (XCAR (object)))
643 object = XCDR (object);
644 /* Also remove the sublist that caches key equivalences, if any. */
645 if (CONSP (object) && CONSP (XCAR (object)))
646 {
647 Lisp_Object carcar;
648 carcar = XCAR (XCAR (object));
649 if (NILP (carcar) || VECTORP (carcar))
650 object = XCDR (object);
651 }
652 }
653
654 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
655 else
656 {
657 Lisp_Object map;
658 map = get_keymap (Fcar_safe (object), 0, autoload);
659 return (!CONSP (map) ? object /* Invalid keymap */
660 : access_keymap (map, Fcdr (object), 0, 0, autoload));
661 }
662 }
663 }
664
665 static Lisp_Object
666 store_in_keymap (keymap, idx, def)
667 Lisp_Object keymap;
668 register Lisp_Object idx;
669 register Lisp_Object def;
670 {
671 /* Flush any reverse-map cache. */
672 where_is_cache = Qnil;
673 where_is_cache_keymaps = Qt;
674
675 /* If we are preparing to dump, and DEF is a menu element
676 with a menu item indicator, copy it to ensure it is not pure. */
677 if (CONSP (def) && PURE_P (def)
678 && (EQ (XCAR (def), Qmenu_item) || STRINGP (XCAR (def))))
679 def = Fcons (XCAR (def), XCDR (def));
680
681 if (!CONSP (keymap) || ! EQ (XCAR (keymap), Qkeymap))
682 error ("attempt to define a key in a non-keymap");
683
684 /* If idx is a list (some sort of mouse click, perhaps?),
685 the index we want to use is the car of the list, which
686 ought to be a symbol. */
687 idx = EVENT_HEAD (idx);
688
689 /* If idx is a symbol, it might have modifiers, which need to
690 be put in the canonical order. */
691 if (SYMBOLP (idx))
692 idx = reorder_modifiers (idx);
693 else if (INTEGERP (idx))
694 /* Clobber the high bits that can be present on a machine
695 with more than 24 bits of integer. */
696 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
697
698 /* Scan the keymap for a binding of idx. */
699 {
700 Lisp_Object tail;
701
702 /* The cons after which we should insert new bindings. If the
703 keymap has a table element, we record its position here, so new
704 bindings will go after it; this way, the table will stay
705 towards the front of the alist and character lookups in dense
706 keymaps will remain fast. Otherwise, this just points at the
707 front of the keymap. */
708 Lisp_Object insertion_point;
709
710 insertion_point = keymap;
711 for (tail = XCDR (keymap); CONSP (tail); tail = XCDR (tail))
712 {
713 Lisp_Object elt;
714
715 elt = XCAR (tail);
716 if (VECTORP (elt))
717 {
718 if (NATNUMP (idx) && XFASTINT (idx) < ASIZE (elt))
719 {
720 ASET (elt, XFASTINT (idx), def);
721 return def;
722 }
723 insertion_point = tail;
724 }
725 else if (CHAR_TABLE_P (elt))
726 {
727 /* Character codes with modifiers
728 are not included in a char-table.
729 All character codes without modifiers are included. */
730 if (NATNUMP (idx)
731 && ! (XFASTINT (idx)
732 & (CHAR_ALT | CHAR_SUPER | CHAR_HYPER
733 | CHAR_SHIFT | CHAR_CTL | CHAR_META)))
734 {
735 Faset (elt, idx, def);
736 return def;
737 }
738 insertion_point = tail;
739 }
740 else if (CONSP (elt))
741 {
742 if (EQ (idx, XCAR (elt)))
743 {
744 XCDR (elt) = def;
745 return def;
746 }
747 }
748 else if (EQ (elt, Qkeymap))
749 /* If we find a 'keymap' symbol in the spine of KEYMAP,
750 then we must have found the start of a second keymap
751 being used as the tail of KEYMAP, and a binding for IDX
752 should be inserted before it. */
753 goto keymap_end;
754
755 QUIT;
756 }
757
758 keymap_end:
759 /* We have scanned the entire keymap, and not found a binding for
760 IDX. Let's add one. */
761 XCDR (insertion_point)
762 = Fcons (Fcons (idx, def), XCDR (insertion_point));
763 }
764
765 return def;
766 }
767
768 void
769 copy_keymap_1 (chartable, idx, elt)
770 Lisp_Object chartable, idx, elt;
771 {
772 if (CONSP (elt) && EQ (XCAR (elt), Qkeymap))
773 Faset (chartable, idx, Fcopy_keymap (elt));
774 }
775
776 DEFUN ("copy-keymap", Fcopy_keymap, Scopy_keymap, 1, 1, 0,
777 "Return a copy of the keymap KEYMAP.\n\
778 The copy starts out with the same definitions of KEYMAP,\n\
779 but changing either the copy or KEYMAP does not affect the other.\n\
780 Any key definitions that are subkeymaps are recursively copied.\n\
781 However, a key definition which is a symbol whose definition is a keymap\n\
782 is not copied.")
783 (keymap)
784 Lisp_Object keymap;
785 {
786 register Lisp_Object copy, tail;
787
788 copy = Fcopy_alist (get_keymap (keymap, 1, 0));
789
790 for (tail = copy; CONSP (tail); tail = XCDR (tail))
791 {
792 Lisp_Object elt;
793
794 elt = XCAR (tail);
795 if (CHAR_TABLE_P (elt))
796 {
797 Lisp_Object indices[3];
798
799 elt = Fcopy_sequence (elt);
800 XCAR (tail) = elt;
801
802 map_char_table (copy_keymap_1, Qnil, elt, elt, 0, indices);
803 }
804 else if (VECTORP (elt))
805 {
806 int i;
807
808 elt = Fcopy_sequence (elt);
809 XCAR (tail) = elt;
810
811 for (i = 0; i < ASIZE (elt); i++)
812 if (CONSP (AREF (elt, i)) && EQ (XCAR (AREF (elt, i)), Qkeymap))
813 ASET (elt, i, Fcopy_keymap (AREF (elt, i)));
814 }
815 else if (CONSP (elt) && CONSP (XCDR (elt)))
816 {
817 Lisp_Object tem;
818 tem = XCDR (elt);
819
820 /* Is this a new format menu item. */
821 if (EQ (XCAR (tem),Qmenu_item))
822 {
823 /* Copy cell with menu-item marker. */
824 XCDR (elt)
825 = Fcons (XCAR (tem), XCDR (tem));
826 elt = XCDR (elt);
827 tem = XCDR (elt);
828 if (CONSP (tem))
829 {
830 /* Copy cell with menu-item name. */
831 XCDR (elt)
832 = Fcons (XCAR (tem), XCDR (tem));
833 elt = XCDR (elt);
834 tem = XCDR (elt);
835 };
836 if (CONSP (tem))
837 {
838 /* Copy cell with binding and if the binding is a keymap,
839 copy that. */
840 XCDR (elt)
841 = Fcons (XCAR (tem), XCDR (tem));
842 elt = XCDR (elt);
843 tem = XCAR (elt);
844 if (CONSP (tem) && EQ (XCAR (tem), Qkeymap))
845 XCAR (elt) = Fcopy_keymap (tem);
846 tem = XCDR (elt);
847 if (CONSP (tem) && CONSP (XCAR (tem)))
848 /* Delete cache for key equivalences. */
849 XCDR (elt) = XCDR (tem);
850 }
851 }
852 else
853 {
854 /* It may be an old fomat menu item.
855 Skip the optional menu string.
856 */
857 if (STRINGP (XCAR (tem)))
858 {
859 /* Copy the cell, since copy-alist didn't go this deep. */
860 XCDR (elt)
861 = Fcons (XCAR (tem), XCDR (tem));
862 elt = XCDR (elt);
863 tem = XCDR (elt);
864 /* Also skip the optional menu help string. */
865 if (CONSP (tem) && STRINGP (XCAR (tem)))
866 {
867 XCDR (elt)
868 = Fcons (XCAR (tem), XCDR (tem));
869 elt = XCDR (elt);
870 tem = XCDR (elt);
871 }
872 /* There may also be a list that caches key equivalences.
873 Just delete it for the new keymap. */
874 if (CONSP (tem)
875 && CONSP (XCAR (tem))
876 && (NILP (XCAR (XCAR (tem)))
877 || VECTORP (XCAR (XCAR (tem)))))
878 XCDR (elt) = XCDR (tem);
879 }
880 if (CONSP (elt)
881 && CONSP (XCDR (elt))
882 && EQ (XCAR (XCDR (elt)), Qkeymap))
883 XCDR (elt) = Fcopy_keymap (XCDR (elt));
884 }
885
886 }
887 }
888
889 return copy;
890 }
891 \f
892 /* Simple Keymap mutators and accessors. */
893
894 /* GC is possible in this function if it autoloads a keymap. */
895
896 DEFUN ("define-key", Fdefine_key, Sdefine_key, 3, 3, 0,
897 "Args KEYMAP, KEY, DEF. Define key sequence KEY, in KEYMAP, as DEF.\n\
898 KEYMAP is a keymap. KEY is a string or a vector of symbols and characters\n\
899 meaning a sequence of keystrokes and events.\n\
900 Non-ASCII characters with codes above 127 (such as ISO Latin-1)\n\
901 can be included if you use a vector.\n\
902 DEF is anything that can be a key's definition:\n\
903 nil (means key is undefined in this keymap),\n\
904 a command (a Lisp function suitable for interactive calling)\n\
905 a string (treated as a keyboard macro),\n\
906 a keymap (to define a prefix key),\n\
907 a symbol. When the key is looked up, the symbol will stand for its\n\
908 function definition, which should at that time be one of the above,\n\
909 or another symbol whose function definition is used, etc.\n\
910 a cons (STRING . DEFN), meaning that DEFN is the definition\n\
911 (DEFN should be a valid definition in its own right),\n\
912 or a cons (KEYMAP . CHAR), meaning use definition of CHAR in map KEYMAP.\n\
913 \n\
914 If KEYMAP is a sparse keymap, the pair binding KEY to DEF is added at\n\
915 the front of KEYMAP.")
916 (keymap, key, def)
917 Lisp_Object keymap;
918 Lisp_Object key;
919 Lisp_Object def;
920 {
921 register int idx;
922 register Lisp_Object c;
923 register Lisp_Object cmd;
924 int metized = 0;
925 int meta_bit;
926 int length;
927 struct gcpro gcpro1, gcpro2, gcpro3;
928
929 keymap = get_keymap (keymap, 1, 1);
930
931 if (!VECTORP (key) && !STRINGP (key))
932 key = wrong_type_argument (Qarrayp, key);
933
934 length = XFASTINT (Flength (key));
935 if (length == 0)
936 return Qnil;
937
938 if (SYMBOLP (def) && !EQ (Vdefine_key_rebound_commands, Qt))
939 Vdefine_key_rebound_commands = Fcons (def, Vdefine_key_rebound_commands);
940
941 GCPRO3 (keymap, key, def);
942
943 if (VECTORP (key))
944 meta_bit = meta_modifier;
945 else
946 meta_bit = 0x80;
947
948 idx = 0;
949 while (1)
950 {
951 c = Faref (key, make_number (idx));
952
953 if (CONSP (c) && lucid_event_type_list_p (c))
954 c = Fevent_convert_list (c);
955
956 if (INTEGERP (c)
957 && (XINT (c) & meta_bit)
958 && !metized)
959 {
960 c = meta_prefix_char;
961 metized = 1;
962 }
963 else
964 {
965 if (INTEGERP (c))
966 XSETINT (c, XINT (c) & ~meta_bit);
967
968 metized = 0;
969 idx++;
970 }
971
972 if (! INTEGERP (c) && ! SYMBOLP (c) && ! CONSP (c))
973 error ("Key sequence contains invalid events");
974
975 if (idx == length)
976 RETURN_UNGCPRO (store_in_keymap (keymap, c, def));
977
978 cmd = access_keymap (keymap, c, 0, 1, 1);
979
980 /* If this key is undefined, make it a prefix. */
981 if (NILP (cmd))
982 cmd = define_as_prefix (keymap, c);
983
984 keymap = get_keymap (cmd, 0, 1);
985 if (!CONSP (keymap))
986 /* We must use Fkey_description rather than just passing key to
987 error; key might be a vector, not a string. */
988 error ("Key sequence %s uses invalid prefix characters",
989 XSTRING (Fkey_description (key))->data);
990 }
991 }
992
993 /* Value is number if KEY is too long; NIL if valid but has no definition. */
994 /* GC is possible in this function if it autoloads a keymap. */
995
996 DEFUN ("lookup-key", Flookup_key, Slookup_key, 2, 3, 0,
997 "In keymap KEYMAP, look up key sequence KEY. Return the definition.\n\
998 nil means undefined. See doc of `define-key' for kinds of definitions.\n\
999 \n\
1000 A number as value means KEY is \"too long\";\n\
1001 that is, characters or symbols in it except for the last one\n\
1002 fail to be a valid sequence of prefix characters in KEYMAP.\n\
1003 The number is how many characters at the front of KEY\n\
1004 it takes to reach a non-prefix command.\n\
1005 \n\
1006 Normally, `lookup-key' ignores bindings for t, which act as default\n\
1007 bindings, used when nothing else in the keymap applies; this makes it\n\
1008 usable as a general function for probing keymaps. However, if the\n\
1009 third optional argument ACCEPT-DEFAULT is non-nil, `lookup-key' will\n\
1010 recognize the default bindings, just as `read-key-sequence' does.")
1011 (keymap, key, accept_default)
1012 register Lisp_Object keymap;
1013 Lisp_Object key;
1014 Lisp_Object accept_default;
1015 {
1016 register int idx;
1017 register Lisp_Object cmd;
1018 register Lisp_Object c;
1019 int length;
1020 int t_ok = ! NILP (accept_default);
1021 struct gcpro gcpro1;
1022
1023 keymap = get_keymap (keymap, 1, 1);
1024
1025 if (!VECTORP (key) && !STRINGP (key))
1026 key = wrong_type_argument (Qarrayp, key);
1027
1028 length = XFASTINT (Flength (key));
1029 if (length == 0)
1030 return keymap;
1031
1032 GCPRO1 (key);
1033
1034 idx = 0;
1035 while (1)
1036 {
1037 c = Faref (key, make_number (idx++));
1038
1039 if (CONSP (c) && lucid_event_type_list_p (c))
1040 c = Fevent_convert_list (c);
1041
1042 /* Turn the 8th bit of string chars into a meta modifier. */
1043 if (XINT (c) & 0x80 && STRINGP (key))
1044 XSETINT (c, (XINT (c) | meta_modifier) & ~0x80);
1045
1046 cmd = access_keymap (keymap, c, t_ok, 0, 1);
1047 if (idx == length)
1048 RETURN_UNGCPRO (cmd);
1049
1050 keymap = get_keymap (cmd, 0, 1);
1051 if (!CONSP (keymap))
1052 RETURN_UNGCPRO (make_number (idx));
1053
1054 QUIT;
1055 }
1056 }
1057
1058 /* Make KEYMAP define event C as a keymap (i.e., as a prefix).
1059 Assume that currently it does not define C at all.
1060 Return the keymap. */
1061
1062 static Lisp_Object
1063 define_as_prefix (keymap, c)
1064 Lisp_Object keymap, c;
1065 {
1066 Lisp_Object cmd;
1067
1068 cmd = Fmake_sparse_keymap (Qnil);
1069 /* If this key is defined as a prefix in an inherited keymap,
1070 make it a prefix in this map, and make its definition
1071 inherit the other prefix definition. */
1072 cmd = nconc2 (cmd, access_keymap (keymap, c, 0, 0, 0));
1073 store_in_keymap (keymap, c, cmd);
1074
1075 return cmd;
1076 }
1077
1078 /* Append a key to the end of a key sequence. We always make a vector. */
1079
1080 Lisp_Object
1081 append_key (key_sequence, key)
1082 Lisp_Object key_sequence, key;
1083 {
1084 Lisp_Object args[2];
1085
1086 args[0] = key_sequence;
1087
1088 args[1] = Fcons (key, Qnil);
1089 return Fvconcat (2, args);
1090 }
1091
1092 \f
1093 /* Global, local, and minor mode keymap stuff. */
1094
1095 /* We can't put these variables inside current_minor_maps, since under
1096 some systems, static gets macro-defined to be the empty string.
1097 Ickypoo. */
1098 static Lisp_Object *cmm_modes, *cmm_maps;
1099 static int cmm_size;
1100
1101 /* Error handler used in current_minor_maps. */
1102 static Lisp_Object
1103 current_minor_maps_error ()
1104 {
1105 return Qnil;
1106 }
1107
1108 /* Store a pointer to an array of the keymaps of the currently active
1109 minor modes in *buf, and return the number of maps it contains.
1110
1111 This function always returns a pointer to the same buffer, and may
1112 free or reallocate it, so if you want to keep it for a long time or
1113 hand it out to lisp code, copy it. This procedure will be called
1114 for every key sequence read, so the nice lispy approach (return a
1115 new assoclist, list, what have you) for each invocation would
1116 result in a lot of consing over time.
1117
1118 If we used xrealloc/xmalloc and ran out of memory, they would throw
1119 back to the command loop, which would try to read a key sequence,
1120 which would call this function again, resulting in an infinite
1121 loop. Instead, we'll use realloc/malloc and silently truncate the
1122 list, let the key sequence be read, and hope some other piece of
1123 code signals the error. */
1124 int
1125 current_minor_maps (modeptr, mapptr)
1126 Lisp_Object **modeptr, **mapptr;
1127 {
1128 int i = 0;
1129 int list_number = 0;
1130 Lisp_Object alist, assoc, var, val;
1131 Lisp_Object lists[2];
1132
1133 lists[0] = Vminor_mode_overriding_map_alist;
1134 lists[1] = Vminor_mode_map_alist;
1135
1136 for (list_number = 0; list_number < 2; list_number++)
1137 for (alist = lists[list_number];
1138 CONSP (alist);
1139 alist = XCDR (alist))
1140 if ((assoc = XCAR (alist), CONSP (assoc))
1141 && (var = XCAR (assoc), SYMBOLP (var))
1142 && (val = find_symbol_value (var), ! EQ (val, Qunbound))
1143 && ! NILP (val))
1144 {
1145 Lisp_Object temp;
1146
1147 /* If a variable has an entry in Vminor_mode_overriding_map_alist,
1148 and also an entry in Vminor_mode_map_alist,
1149 ignore the latter. */
1150 if (list_number == 1)
1151 {
1152 val = assq_no_quit (var, lists[0]);
1153 if (!NILP (val))
1154 break;
1155 }
1156
1157 if (i >= cmm_size)
1158 {
1159 Lisp_Object *newmodes, *newmaps;
1160
1161 /* Use malloc/realloc here. See the comment above
1162 this function. */
1163 if (cmm_maps)
1164 {
1165 BLOCK_INPUT;
1166 cmm_size *= 2;
1167 newmodes
1168 = (Lisp_Object *) realloc (cmm_modes,
1169 cmm_size * sizeof *newmodes);
1170 newmaps
1171 = (Lisp_Object *) realloc (cmm_maps,
1172 cmm_size * sizeof *newmaps);
1173 UNBLOCK_INPUT;
1174 }
1175 else
1176 {
1177 BLOCK_INPUT;
1178 cmm_size = 30;
1179 newmodes
1180 = (Lisp_Object *) malloc (cmm_size * sizeof *newmodes);
1181 newmaps
1182 = (Lisp_Object *) malloc (cmm_size * sizeof *newmaps);
1183 UNBLOCK_INPUT;
1184 }
1185
1186 if (newmodes)
1187 cmm_modes = newmodes;
1188 if (newmaps)
1189 cmm_maps = newmaps;
1190
1191 if (newmodes == NULL || newmaps == NULL)
1192 break;
1193 }
1194
1195 /* Get the keymap definition--or nil if it is not defined. */
1196 temp = internal_condition_case_1 (Findirect_function,
1197 XCDR (assoc),
1198 Qerror, current_minor_maps_error);
1199 if (!NILP (temp))
1200 {
1201 cmm_modes[i] = var;
1202 cmm_maps [i] = temp;
1203 i++;
1204 }
1205 }
1206
1207 if (modeptr) *modeptr = cmm_modes;
1208 if (mapptr) *mapptr = cmm_maps;
1209 return i;
1210 }
1211
1212 /* GC is possible in this function if it autoloads a keymap. */
1213
1214 DEFUN ("key-binding", Fkey_binding, Skey_binding, 1, 2, 0,
1215 "Return the binding for command KEY in current keymaps.\n\
1216 KEY is a string or vector, a sequence of keystrokes.\n\
1217 The binding is probably a symbol with a function definition.\n\
1218 \n\
1219 Normally, `key-binding' ignores bindings for t, which act as default\n\
1220 bindings, used when nothing else in the keymap applies; this makes it\n\
1221 usable as a general function for probing keymaps. However, if the\n\
1222 optional second argument ACCEPT-DEFAULT is non-nil, `key-binding' does\n\
1223 recognize the default bindings, just as `read-key-sequence' does.")
1224 (key, accept_default)
1225 Lisp_Object key, accept_default;
1226 {
1227 Lisp_Object *maps, value;
1228 int nmaps, i;
1229 struct gcpro gcpro1;
1230
1231 GCPRO1 (key);
1232
1233 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1234 {
1235 value = Flookup_key (current_kboard->Voverriding_terminal_local_map,
1236 key, accept_default);
1237 if (! NILP (value) && !INTEGERP (value))
1238 RETURN_UNGCPRO (value);
1239 }
1240 else if (!NILP (Voverriding_local_map))
1241 {
1242 value = Flookup_key (Voverriding_local_map, key, accept_default);
1243 if (! NILP (value) && !INTEGERP (value))
1244 RETURN_UNGCPRO (value);
1245 }
1246 else
1247 {
1248 Lisp_Object local;
1249
1250 nmaps = current_minor_maps (0, &maps);
1251 /* Note that all these maps are GCPRO'd
1252 in the places where we found them. */
1253
1254 for (i = 0; i < nmaps; i++)
1255 if (! NILP (maps[i]))
1256 {
1257 value = Flookup_key (maps[i], key, accept_default);
1258 if (! NILP (value) && !INTEGERP (value))
1259 RETURN_UNGCPRO (value);
1260 }
1261
1262 local = get_local_map (PT, current_buffer, Qkeymap);
1263 if (! NILP (local))
1264 {
1265 value = Flookup_key (local, key, accept_default);
1266 if (! NILP (value) && !INTEGERP (value))
1267 RETURN_UNGCPRO (value);
1268 }
1269
1270 local = get_local_map (PT, current_buffer, Qlocal_map);
1271
1272 if (! NILP (local))
1273 {
1274 value = Flookup_key (local, key, accept_default);
1275 if (! NILP (value) && !INTEGERP (value))
1276 RETURN_UNGCPRO (value);
1277 }
1278 }
1279
1280 value = Flookup_key (current_global_map, key, accept_default);
1281 UNGCPRO;
1282 if (! NILP (value) && !INTEGERP (value))
1283 return value;
1284
1285 return Qnil;
1286 }
1287
1288 /* GC is possible in this function if it autoloads a keymap. */
1289
1290 DEFUN ("local-key-binding", Flocal_key_binding, Slocal_key_binding, 1, 2, 0,
1291 "Return the binding for command KEYS in current local keymap only.\n\
1292 KEYS is a string, a sequence of keystrokes.\n\
1293 The binding is probably a symbol with a function definition.\n\
1294 \n\
1295 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1296 bindings; see the description of `lookup-key' for more details about this.")
1297 (keys, accept_default)
1298 Lisp_Object keys, accept_default;
1299 {
1300 register Lisp_Object map;
1301 map = current_buffer->keymap;
1302 if (NILP (map))
1303 return Qnil;
1304 return Flookup_key (map, keys, accept_default);
1305 }
1306
1307 /* GC is possible in this function if it autoloads a keymap. */
1308
1309 DEFUN ("global-key-binding", Fglobal_key_binding, Sglobal_key_binding, 1, 2, 0,
1310 "Return the binding for command KEYS in current global keymap only.\n\
1311 KEYS is a string, a sequence of keystrokes.\n\
1312 The binding is probably a symbol with a function definition.\n\
1313 This function's return values are the same as those of lookup-key\n\
1314 \(which see).\n\
1315 \n\
1316 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1317 bindings; see the description of `lookup-key' for more details about this.")
1318 (keys, accept_default)
1319 Lisp_Object keys, accept_default;
1320 {
1321 return Flookup_key (current_global_map, keys, accept_default);
1322 }
1323
1324 /* GC is possible in this function if it autoloads a keymap. */
1325
1326 DEFUN ("minor-mode-key-binding", Fminor_mode_key_binding, Sminor_mode_key_binding, 1, 2, 0,
1327 "Find the visible minor mode bindings of KEY.\n\
1328 Return an alist of pairs (MODENAME . BINDING), where MODENAME is the\n\
1329 the symbol which names the minor mode binding KEY, and BINDING is\n\
1330 KEY's definition in that mode. In particular, if KEY has no\n\
1331 minor-mode bindings, return nil. If the first binding is a\n\
1332 non-prefix, all subsequent bindings will be omitted, since they would\n\
1333 be ignored. Similarly, the list doesn't include non-prefix bindings\n\
1334 that come after prefix bindings.\n\
1335 \n\
1336 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1337 bindings; see the description of `lookup-key' for more details about this.")
1338 (key, accept_default)
1339 Lisp_Object key, accept_default;
1340 {
1341 Lisp_Object *modes, *maps;
1342 int nmaps;
1343 Lisp_Object binding;
1344 int i, j;
1345 struct gcpro gcpro1, gcpro2;
1346
1347 nmaps = current_minor_maps (&modes, &maps);
1348 /* Note that all these maps are GCPRO'd
1349 in the places where we found them. */
1350
1351 binding = Qnil;
1352 GCPRO2 (key, binding);
1353
1354 for (i = j = 0; i < nmaps; i++)
1355 if (!NILP (maps[i])
1356 && !NILP (binding = Flookup_key (maps[i], key, accept_default))
1357 && !INTEGERP (binding))
1358 {
1359 if (KEYMAPP (binding))
1360 maps[j++] = Fcons (modes[i], binding);
1361 else if (j == 0)
1362 RETURN_UNGCPRO (Fcons (Fcons (modes[i], binding), Qnil));
1363 }
1364
1365 UNGCPRO;
1366 return Flist (j, maps);
1367 }
1368
1369 DEFUN ("define-prefix-command", Fdefine_prefix_command, Sdefine_prefix_command, 1, 3, 0,
1370 "Define COMMAND as a prefix command. COMMAND should be a symbol.\n\
1371 A new sparse keymap is stored as COMMAND's function definition and its value.\n\
1372 If a second optional argument MAPVAR is given, the map is stored as\n\
1373 its value instead of as COMMAND's value; but COMMAND is still defined\n\
1374 as a function.\n\
1375 The third optional argument NAME, if given, supplies a menu name\n\
1376 string for the map. This is required to use the keymap as a menu.")
1377 (command, mapvar, name)
1378 Lisp_Object command, mapvar, name;
1379 {
1380 Lisp_Object map;
1381 map = Fmake_sparse_keymap (name);
1382 Ffset (command, map);
1383 if (!NILP (mapvar))
1384 Fset (mapvar, map);
1385 else
1386 Fset (command, map);
1387 return command;
1388 }
1389
1390 DEFUN ("use-global-map", Fuse_global_map, Suse_global_map, 1, 1, 0,
1391 "Select KEYMAP as the global keymap.")
1392 (keymap)
1393 Lisp_Object keymap;
1394 {
1395 keymap = get_keymap (keymap, 1, 1);
1396 current_global_map = keymap;
1397
1398 return Qnil;
1399 }
1400
1401 DEFUN ("use-local-map", Fuse_local_map, Suse_local_map, 1, 1, 0,
1402 "Select KEYMAP as the local keymap.\n\
1403 If KEYMAP is nil, that means no local keymap.")
1404 (keymap)
1405 Lisp_Object keymap;
1406 {
1407 if (!NILP (keymap))
1408 keymap = get_keymap (keymap, 1, 1);
1409
1410 current_buffer->keymap = keymap;
1411
1412 return Qnil;
1413 }
1414
1415 DEFUN ("current-local-map", Fcurrent_local_map, Scurrent_local_map, 0, 0, 0,
1416 "Return current buffer's local keymap, or nil if it has none.")
1417 ()
1418 {
1419 return current_buffer->keymap;
1420 }
1421
1422 DEFUN ("current-global-map", Fcurrent_global_map, Scurrent_global_map, 0, 0, 0,
1423 "Return the current global keymap.")
1424 ()
1425 {
1426 return current_global_map;
1427 }
1428
1429 DEFUN ("current-minor-mode-maps", Fcurrent_minor_mode_maps, Scurrent_minor_mode_maps, 0, 0, 0,
1430 "Return a list of keymaps for the minor modes of the current buffer.")
1431 ()
1432 {
1433 Lisp_Object *maps;
1434 int nmaps = current_minor_maps (0, &maps);
1435
1436 return Flist (nmaps, maps);
1437 }
1438 \f
1439 /* Help functions for describing and documenting keymaps. */
1440
1441 static void accessible_keymaps_char_table P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
1442
1443 /* This function cannot GC. */
1444
1445 DEFUN ("accessible-keymaps", Faccessible_keymaps, Saccessible_keymaps,
1446 1, 2, 0,
1447 "Find all keymaps accessible via prefix characters from KEYMAP.\n\
1448 Returns a list of elements of the form (KEYS . MAP), where the sequence\n\
1449 KEYS starting from KEYMAP gets you to MAP. These elements are ordered\n\
1450 so that the KEYS increase in length. The first element is ([] . KEYMAP).\n\
1451 An optional argument PREFIX, if non-nil, should be a key sequence;\n\
1452 then the value includes only maps for prefixes that start with PREFIX.")
1453 (keymap, prefix)
1454 Lisp_Object keymap, prefix;
1455 {
1456 Lisp_Object maps, good_maps, tail;
1457 int prefixlen = 0;
1458
1459 /* no need for gcpro because we don't autoload any keymaps. */
1460
1461 if (!NILP (prefix))
1462 prefixlen = XINT (Flength (prefix));
1463
1464 if (!NILP (prefix))
1465 {
1466 /* If a prefix was specified, start with the keymap (if any) for
1467 that prefix, so we don't waste time considering other prefixes. */
1468 Lisp_Object tem;
1469 tem = Flookup_key (keymap, prefix, Qt);
1470 /* Flookup_key may give us nil, or a number,
1471 if the prefix is not defined in this particular map.
1472 It might even give us a list that isn't a keymap. */
1473 tem = get_keymap (tem, 0, 0);
1474 if (CONSP (tem))
1475 {
1476 /* Convert PREFIX to a vector now, so that later on
1477 we don't have to deal with the possibility of a string. */
1478 if (STRINGP (prefix))
1479 {
1480 int i, i_byte, c;
1481 Lisp_Object copy;
1482
1483 copy = Fmake_vector (make_number (XSTRING (prefix)->size), Qnil);
1484 for (i = 0, i_byte = 0; i < XSTRING (prefix)->size;)
1485 {
1486 int i_before = i;
1487
1488 FETCH_STRING_CHAR_ADVANCE (c, prefix, i, i_byte);
1489 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
1490 c ^= 0200 | meta_modifier;
1491 ASET (copy, i_before, make_number (c));
1492 }
1493 prefix = copy;
1494 }
1495 maps = Fcons (Fcons (prefix, tem), Qnil);
1496 }
1497 else
1498 return Qnil;
1499 }
1500 else
1501 maps = Fcons (Fcons (Fmake_vector (make_number (0), Qnil),
1502 get_keymap (keymap, 1, 0)),
1503 Qnil);
1504
1505 /* For each map in the list maps,
1506 look at any other maps it points to,
1507 and stick them at the end if they are not already in the list.
1508
1509 This is a breadth-first traversal, where tail is the queue of
1510 nodes, and maps accumulates a list of all nodes visited. */
1511
1512 for (tail = maps; CONSP (tail); tail = XCDR (tail))
1513 {
1514 register Lisp_Object thisseq, thismap;
1515 Lisp_Object last;
1516 /* Does the current sequence end in the meta-prefix-char? */
1517 int is_metized;
1518
1519 thisseq = Fcar (Fcar (tail));
1520 thismap = Fcdr (Fcar (tail));
1521 last = make_number (XINT (Flength (thisseq)) - 1);
1522 is_metized = (XINT (last) >= 0
1523 /* Don't metize the last char of PREFIX. */
1524 && XINT (last) >= prefixlen
1525 && EQ (Faref (thisseq, last), meta_prefix_char));
1526
1527 for (; CONSP (thismap); thismap = XCDR (thismap))
1528 {
1529 Lisp_Object elt;
1530
1531 elt = XCAR (thismap);
1532
1533 QUIT;
1534
1535 if (CHAR_TABLE_P (elt))
1536 {
1537 Lisp_Object indices[3];
1538
1539 map_char_table (accessible_keymaps_char_table, Qnil,
1540 elt, Fcons (Fcons (maps, make_number (is_metized)),
1541 Fcons (tail, thisseq)),
1542 0, indices);
1543 }
1544 else if (VECTORP (elt))
1545 {
1546 register int i;
1547
1548 /* Vector keymap. Scan all the elements. */
1549 for (i = 0; i < ASIZE (elt); i++)
1550 {
1551 register Lisp_Object tem;
1552 register Lisp_Object cmd;
1553
1554 cmd = get_keyelt (AREF (elt, i), 0);
1555 if (NILP (cmd)) continue;
1556 tem = get_keymap (cmd, 0, 0);
1557 if (CONSP (tem))
1558 {
1559 cmd = tem;
1560 /* Ignore keymaps that are already added to maps. */
1561 tem = Frassq (cmd, maps);
1562 if (NILP (tem))
1563 {
1564 /* If the last key in thisseq is meta-prefix-char,
1565 turn it into a meta-ized keystroke. We know
1566 that the event we're about to append is an
1567 ascii keystroke since we're processing a
1568 keymap table. */
1569 if (is_metized)
1570 {
1571 int meta_bit = meta_modifier;
1572 tem = Fcopy_sequence (thisseq);
1573
1574 Faset (tem, last, make_number (i | meta_bit));
1575
1576 /* This new sequence is the same length as
1577 thisseq, so stick it in the list right
1578 after this one. */
1579 XCDR (tail)
1580 = Fcons (Fcons (tem, cmd), XCDR (tail));
1581 }
1582 else
1583 {
1584 tem = append_key (thisseq, make_number (i));
1585 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1586 }
1587 }
1588 }
1589 }
1590 }
1591 else if (CONSP (elt))
1592 {
1593 register Lisp_Object cmd, tem;
1594
1595 cmd = get_keyelt (XCDR (elt), 0);
1596 /* Ignore definitions that aren't keymaps themselves. */
1597 tem = get_keymap (cmd, 0, 0);
1598 if (CONSP (tem))
1599 {
1600 /* Ignore keymaps that have been seen already. */
1601 cmd = tem;
1602 tem = Frassq (cmd, maps);
1603 if (NILP (tem))
1604 {
1605 /* Let elt be the event defined by this map entry. */
1606 elt = XCAR (elt);
1607
1608 /* If the last key in thisseq is meta-prefix-char, and
1609 this entry is a binding for an ascii keystroke,
1610 turn it into a meta-ized keystroke. */
1611 if (is_metized && INTEGERP (elt))
1612 {
1613 Lisp_Object element;
1614
1615 element = thisseq;
1616 tem = Fvconcat (1, &element);
1617 XSETFASTINT (AREF (tem, XINT (last)),
1618 XINT (elt) | meta_modifier);
1619
1620 /* This new sequence is the same length as
1621 thisseq, so stick it in the list right
1622 after this one. */
1623 XCDR (tail)
1624 = Fcons (Fcons (tem, cmd), XCDR (tail));
1625 }
1626 else
1627 nconc2 (tail,
1628 Fcons (Fcons (append_key (thisseq, elt), cmd),
1629 Qnil));
1630 }
1631 }
1632 }
1633 }
1634 }
1635
1636 if (NILP (prefix))
1637 return maps;
1638
1639 /* Now find just the maps whose access prefixes start with PREFIX. */
1640
1641 good_maps = Qnil;
1642 for (; CONSP (maps); maps = XCDR (maps))
1643 {
1644 Lisp_Object elt, thisseq;
1645 elt = XCAR (maps);
1646 thisseq = XCAR (elt);
1647 /* The access prefix must be at least as long as PREFIX,
1648 and the first elements must match those of PREFIX. */
1649 if (XINT (Flength (thisseq)) >= prefixlen)
1650 {
1651 int i;
1652 for (i = 0; i < prefixlen; i++)
1653 {
1654 Lisp_Object i1;
1655 XSETFASTINT (i1, i);
1656 if (!EQ (Faref (thisseq, i1), Faref (prefix, i1)))
1657 break;
1658 }
1659 if (i == prefixlen)
1660 good_maps = Fcons (elt, good_maps);
1661 }
1662 }
1663
1664 return Fnreverse (good_maps);
1665 }
1666
1667 static void
1668 accessible_keymaps_char_table (args, index, cmd)
1669 Lisp_Object args, index, cmd;
1670 {
1671 Lisp_Object tem;
1672 Lisp_Object maps, tail, thisseq;
1673 int is_metized;
1674
1675 cmd = get_keyelt (cmd, 0);
1676 if (NILP (cmd))
1677 return;
1678
1679 maps = XCAR (XCAR (args));
1680 is_metized = XINT (XCDR (XCAR (args)));
1681 tail = XCAR (XCDR (args));
1682 thisseq = XCDR (XCDR (args));
1683
1684 tem = get_keymap (cmd, 0, 0);
1685 if (CONSP (tem))
1686 {
1687 cmd = tem;
1688 /* Ignore keymaps that are already added to maps. */
1689 tem = Frassq (cmd, maps);
1690 if (NILP (tem))
1691 {
1692 /* If the last key in thisseq is meta-prefix-char,
1693 turn it into a meta-ized keystroke. We know
1694 that the event we're about to append is an
1695 ascii keystroke since we're processing a
1696 keymap table. */
1697 if (is_metized)
1698 {
1699 int meta_bit = meta_modifier;
1700 Lisp_Object last = make_number (XINT (Flength (thisseq)) - 1);
1701 tem = Fcopy_sequence (thisseq);
1702
1703 Faset (tem, last, make_number (XINT (index) | meta_bit));
1704
1705 /* This new sequence is the same length as
1706 thisseq, so stick it in the list right
1707 after this one. */
1708 XCDR (tail)
1709 = Fcons (Fcons (tem, cmd), XCDR (tail));
1710 }
1711 else
1712 {
1713 tem = append_key (thisseq, index);
1714 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1715 }
1716 }
1717 }
1718 }
1719 \f
1720 Lisp_Object Qsingle_key_description, Qkey_description;
1721
1722 /* This function cannot GC. */
1723
1724 DEFUN ("key-description", Fkey_description, Skey_description, 1, 1, 0,
1725 "Return a pretty description of key-sequence KEYS.\n\
1726 Control characters turn into \"C-foo\" sequences, meta into \"M-foo\"\n\
1727 spaces are put between sequence elements, etc.")
1728 (keys)
1729 Lisp_Object keys;
1730 {
1731 int len = 0;
1732 int i, i_byte;
1733 Lisp_Object sep;
1734 Lisp_Object *args = NULL;
1735
1736 if (STRINGP (keys))
1737 {
1738 Lisp_Object vector;
1739 vector = Fmake_vector (Flength (keys), Qnil);
1740 for (i = 0, i_byte = 0; i < XSTRING (keys)->size; )
1741 {
1742 int c;
1743 int i_before = i;
1744
1745 FETCH_STRING_CHAR_ADVANCE (c, keys, i, i_byte);
1746 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
1747 c ^= 0200 | meta_modifier;
1748 XSETFASTINT (AREF (vector, i_before), c);
1749 }
1750 keys = vector;
1751 }
1752
1753 if (VECTORP (keys))
1754 {
1755 /* In effect, this computes
1756 (mapconcat 'single-key-description keys " ")
1757 but we shouldn't use mapconcat because it can do GC. */
1758
1759 len = XVECTOR (keys)->size;
1760 sep = build_string (" ");
1761 /* This has one extra element at the end that we don't pass to Fconcat. */
1762 args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
1763
1764 for (i = 0; i < len; i++)
1765 {
1766 args[i * 2] = Fsingle_key_description (AREF (keys, i), Qnil);
1767 args[i * 2 + 1] = sep;
1768 }
1769 }
1770 else if (CONSP (keys))
1771 {
1772 /* In effect, this computes
1773 (mapconcat 'single-key-description keys " ")
1774 but we shouldn't use mapconcat because it can do GC. */
1775
1776 len = XFASTINT (Flength (keys));
1777 sep = build_string (" ");
1778 /* This has one extra element at the end that we don't pass to Fconcat. */
1779 args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
1780
1781 for (i = 0; i < len; i++)
1782 {
1783 args[i * 2] = Fsingle_key_description (XCAR (keys), Qnil);
1784 args[i * 2 + 1] = sep;
1785 keys = XCDR (keys);
1786 }
1787 }
1788 else
1789 keys = wrong_type_argument (Qarrayp, keys);
1790
1791 if (len == 0)
1792 return build_string ("");
1793 return Fconcat (len * 2 - 1, args);
1794 }
1795
1796 char *
1797 push_key_description (c, p, force_multibyte)
1798 register unsigned int c;
1799 register char *p;
1800 int force_multibyte;
1801 {
1802 unsigned c2;
1803
1804 /* Clear all the meaningless bits above the meta bit. */
1805 c &= meta_modifier | ~ - meta_modifier;
1806 c2 = c & ~(alt_modifier | ctrl_modifier | hyper_modifier
1807 | meta_modifier | shift_modifier | super_modifier);
1808
1809 if (c & alt_modifier)
1810 {
1811 *p++ = 'A';
1812 *p++ = '-';
1813 c -= alt_modifier;
1814 }
1815 if ((c & ctrl_modifier) != 0
1816 || (c2 < ' ' && c2 != 27 && c2 != '\t' && c2 != Ctl ('M')))
1817 {
1818 *p++ = 'C';
1819 *p++ = '-';
1820 c &= ~ctrl_modifier;
1821 }
1822 if (c & hyper_modifier)
1823 {
1824 *p++ = 'H';
1825 *p++ = '-';
1826 c -= hyper_modifier;
1827 }
1828 if (c & meta_modifier)
1829 {
1830 *p++ = 'M';
1831 *p++ = '-';
1832 c -= meta_modifier;
1833 }
1834 if (c & shift_modifier)
1835 {
1836 *p++ = 'S';
1837 *p++ = '-';
1838 c -= shift_modifier;
1839 }
1840 if (c & super_modifier)
1841 {
1842 *p++ = 's';
1843 *p++ = '-';
1844 c -= super_modifier;
1845 }
1846 if (c < 040)
1847 {
1848 if (c == 033)
1849 {
1850 *p++ = 'E';
1851 *p++ = 'S';
1852 *p++ = 'C';
1853 }
1854 else if (c == '\t')
1855 {
1856 *p++ = 'T';
1857 *p++ = 'A';
1858 *p++ = 'B';
1859 }
1860 else if (c == Ctl ('M'))
1861 {
1862 *p++ = 'R';
1863 *p++ = 'E';
1864 *p++ = 'T';
1865 }
1866 else
1867 {
1868 /* `C-' already added above. */
1869 if (c > 0 && c <= Ctl ('Z'))
1870 *p++ = c + 0140;
1871 else
1872 *p++ = c + 0100;
1873 }
1874 }
1875 else if (c == 0177)
1876 {
1877 *p++ = 'D';
1878 *p++ = 'E';
1879 *p++ = 'L';
1880 }
1881 else if (c == ' ')
1882 {
1883 *p++ = 'S';
1884 *p++ = 'P';
1885 *p++ = 'C';
1886 }
1887 else if (c < 128
1888 || (NILP (current_buffer->enable_multibyte_characters)
1889 && SINGLE_BYTE_CHAR_P (c)
1890 && !force_multibyte))
1891 {
1892 *p++ = c;
1893 }
1894 else
1895 {
1896 int valid_p = SINGLE_BYTE_CHAR_P (c) || char_valid_p (c, 0);
1897
1898 if (force_multibyte && valid_p)
1899 {
1900 if (SINGLE_BYTE_CHAR_P (c))
1901 c = unibyte_char_to_multibyte (c);
1902 p += CHAR_STRING (c, p);
1903 }
1904 else if (NILP (current_buffer->enable_multibyte_characters)
1905 || valid_p)
1906 {
1907 int bit_offset;
1908 *p++ = '\\';
1909 /* The biggest character code uses 19 bits. */
1910 for (bit_offset = 18; bit_offset >= 0; bit_offset -= 3)
1911 {
1912 if (c >= (1 << bit_offset))
1913 *p++ = ((c & (7 << bit_offset)) >> bit_offset) + '0';
1914 }
1915 }
1916 else
1917 p += CHAR_STRING (c, p);
1918 }
1919
1920 return p;
1921 }
1922
1923 /* This function cannot GC. */
1924
1925 DEFUN ("single-key-description", Fsingle_key_description,
1926 Ssingle_key_description, 1, 2, 0,
1927 "Return a pretty description of command character KEY.\n\
1928 Control characters turn into C-whatever, etc.\n\
1929 Optional argument NO-ANGLES non-nil means don't put angle brackets\n\
1930 around function keys and event symbols.")
1931 (key, no_angles)
1932 Lisp_Object key, no_angles;
1933 {
1934 if (CONSP (key) && lucid_event_type_list_p (key))
1935 key = Fevent_convert_list (key);
1936
1937 key = EVENT_HEAD (key);
1938
1939 if (INTEGERP (key)) /* Normal character */
1940 {
1941 unsigned int charset, c1, c2;
1942 int without_bits = XINT (key) & ~((-1) << CHARACTERBITS);
1943
1944 if (SINGLE_BYTE_CHAR_P (without_bits))
1945 charset = 0;
1946 else
1947 SPLIT_CHAR (without_bits, charset, c1, c2);
1948
1949 if (charset
1950 && CHARSET_DEFINED_P (charset)
1951 && ((c1 >= 0 && c1 < 32)
1952 || (c2 >= 0 && c2 < 32)))
1953 {
1954 /* Handle a generic character. */
1955 Lisp_Object name;
1956 name = CHARSET_TABLE_INFO (charset, CHARSET_LONG_NAME_IDX);
1957 CHECK_STRING (name, 0);
1958 return concat2 (build_string ("Character set "), name);
1959 }
1960 else
1961 {
1962 char tem[KEY_DESCRIPTION_SIZE], *end;
1963 int nbytes, nchars;
1964 Lisp_Object string;
1965
1966 end = push_key_description (XUINT (key), tem, 1);
1967 nbytes = end - tem;
1968 nchars = multibyte_chars_in_text (tem, nbytes);
1969 if (nchars == nbytes)
1970 string = build_string (tem);
1971 else
1972 string = make_multibyte_string (tem, nchars, nbytes);
1973 return string;
1974 }
1975 }
1976 else if (SYMBOLP (key)) /* Function key or event-symbol */
1977 {
1978 if (NILP (no_angles))
1979 {
1980 char *buffer
1981 = (char *) alloca (STRING_BYTES (XSYMBOL (key)->name) + 5);
1982 sprintf (buffer, "<%s>", XSYMBOL (key)->name->data);
1983 return build_string (buffer);
1984 }
1985 else
1986 return Fsymbol_name (key);
1987 }
1988 else if (STRINGP (key)) /* Buffer names in the menubar. */
1989 return Fcopy_sequence (key);
1990 else
1991 error ("KEY must be an integer, cons, symbol, or string");
1992 return Qnil;
1993 }
1994
1995 char *
1996 push_text_char_description (c, p)
1997 register unsigned int c;
1998 register char *p;
1999 {
2000 if (c >= 0200)
2001 {
2002 *p++ = 'M';
2003 *p++ = '-';
2004 c -= 0200;
2005 }
2006 if (c < 040)
2007 {
2008 *p++ = '^';
2009 *p++ = c + 64; /* 'A' - 1 */
2010 }
2011 else if (c == 0177)
2012 {
2013 *p++ = '^';
2014 *p++ = '?';
2015 }
2016 else
2017 *p++ = c;
2018 return p;
2019 }
2020
2021 /* This function cannot GC. */
2022
2023 DEFUN ("text-char-description", Ftext_char_description, Stext_char_description, 1, 1, 0,
2024 "Return a pretty description of file-character CHARACTER.\n\
2025 Control characters turn into \"^char\", etc.")
2026 (character)
2027 Lisp_Object character;
2028 {
2029 /* Currently MAX_MULTIBYTE_LENGTH is 4 (< 6). */
2030 unsigned char str[6];
2031 int c;
2032
2033 CHECK_NUMBER (character, 0);
2034
2035 c = XINT (character);
2036 if (!SINGLE_BYTE_CHAR_P (c))
2037 {
2038 int len = CHAR_STRING (c, str);
2039
2040 return make_multibyte_string (str, 1, len);
2041 }
2042
2043 *push_text_char_description (c & 0377, str) = 0;
2044
2045 return build_string (str);
2046 }
2047
2048 /* Return non-zero if SEQ contains only ASCII characters, perhaps with
2049 a meta bit. */
2050 static int
2051 ascii_sequence_p (seq)
2052 Lisp_Object seq;
2053 {
2054 int i;
2055 int len = XINT (Flength (seq));
2056
2057 for (i = 0; i < len; i++)
2058 {
2059 Lisp_Object ii, elt;
2060
2061 XSETFASTINT (ii, i);
2062 elt = Faref (seq, ii);
2063
2064 if (!INTEGERP (elt)
2065 || (XUINT (elt) & ~CHAR_META) >= 0x80)
2066 return 0;
2067 }
2068
2069 return 1;
2070 }
2071
2072 \f
2073 /* where-is - finding a command in a set of keymaps. */
2074
2075 static Lisp_Object where_is_internal_1 ();
2076 static void where_is_internal_2 ();
2077
2078 /* Like Flookup_key, but uses a list of keymaps SHADOW instead of a single map.
2079 Returns the first non-nil binding found in any of those maps. */
2080
2081 static Lisp_Object
2082 shadow_lookup (shadow, key, flag)
2083 Lisp_Object shadow, key, flag;
2084 {
2085 Lisp_Object tail, value;
2086
2087 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
2088 {
2089 value = Flookup_key (XCAR (tail), key, flag);
2090 if (!NILP (value) && !NATNUMP (value))
2091 return value;
2092 }
2093 return Qnil;
2094 }
2095
2096 /* This function can GC if Flookup_key autoloads any keymaps. */
2097
2098 static Lisp_Object
2099 where_is_internal (definition, keymaps, firstonly, noindirect)
2100 Lisp_Object definition, keymaps;
2101 Lisp_Object firstonly, noindirect;
2102 {
2103 Lisp_Object maps = Qnil;
2104 Lisp_Object found, sequences;
2105 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2106 /* 1 means ignore all menu bindings entirely. */
2107 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2108
2109 found = keymaps;
2110 while (CONSP (found))
2111 {
2112 maps =
2113 nconc2 (maps,
2114 Faccessible_keymaps (get_keymap (XCAR (found), 1, 0), Qnil));
2115 found = XCDR (found);
2116 }
2117
2118 GCPRO5 (definition, keymaps, maps, found, sequences);
2119 found = Qnil;
2120 sequences = Qnil;
2121
2122 for (; !NILP (maps); maps = Fcdr (maps))
2123 {
2124 /* Key sequence to reach map, and the map that it reaches */
2125 register Lisp_Object this, map;
2126
2127 /* In order to fold [META-PREFIX-CHAR CHAR] sequences into
2128 [M-CHAR] sequences, check if last character of the sequence
2129 is the meta-prefix char. */
2130 Lisp_Object last;
2131 int last_is_meta;
2132
2133 this = Fcar (Fcar (maps));
2134 map = Fcdr (Fcar (maps));
2135 last = make_number (XINT (Flength (this)) - 1);
2136 last_is_meta = (XINT (last) >= 0
2137 && EQ (Faref (this, last), meta_prefix_char));
2138
2139 /* if (nomenus && !ascii_sequence_p (this)) */
2140 if (nomenus && XINT (last) >= 0
2141 && !INTEGERP (Faref (this, make_number (0))))
2142 /* If no menu entries should be returned, skip over the
2143 keymaps bound to `menu-bar' and `tool-bar' and other
2144 non-ascii prefixes like `C-down-mouse-2'. */
2145 continue;
2146
2147 QUIT;
2148
2149 while (CONSP (map))
2150 {
2151 /* Because the code we want to run on each binding is rather
2152 large, we don't want to have two separate loop bodies for
2153 sparse keymap bindings and tables; we want to iterate one
2154 loop body over both keymap and vector bindings.
2155
2156 For this reason, if Fcar (map) is a vector, we don't
2157 advance map to the next element until i indicates that we
2158 have finished off the vector. */
2159 Lisp_Object elt, key, binding;
2160 elt = XCAR (map);
2161 map = XCDR (map);
2162
2163 sequences = Qnil;
2164
2165 QUIT;
2166
2167 /* Set key and binding to the current key and binding, and
2168 advance map and i to the next binding. */
2169 if (VECTORP (elt))
2170 {
2171 Lisp_Object sequence;
2172 int i;
2173 /* In a vector, look at each element. */
2174 for (i = 0; i < XVECTOR (elt)->size; i++)
2175 {
2176 binding = AREF (elt, i);
2177 XSETFASTINT (key, i);
2178 sequence = where_is_internal_1 (binding, key, definition,
2179 noindirect, this,
2180 last, nomenus, last_is_meta);
2181 if (!NILP (sequence))
2182 sequences = Fcons (sequence, sequences);
2183 }
2184 }
2185 else if (CHAR_TABLE_P (elt))
2186 {
2187 Lisp_Object indices[3];
2188 Lisp_Object args;
2189
2190 args = Fcons (Fcons (Fcons (definition, noindirect),
2191 Qnil), /* Result accumulator. */
2192 Fcons (Fcons (this, last),
2193 Fcons (make_number (nomenus),
2194 make_number (last_is_meta))));
2195 map_char_table (where_is_internal_2, Qnil, elt, args,
2196 0, indices);
2197 sequences = XCDR (XCAR (args));
2198 }
2199 else if (CONSP (elt))
2200 {
2201 Lisp_Object sequence;
2202
2203 key = XCAR (elt);
2204 binding = XCDR (elt);
2205
2206 sequence = where_is_internal_1 (binding, key, definition,
2207 noindirect, this,
2208 last, nomenus, last_is_meta);
2209 if (!NILP (sequence))
2210 sequences = Fcons (sequence, sequences);
2211 }
2212
2213
2214 for (; ! NILP (sequences); sequences = XCDR (sequences))
2215 {
2216 Lisp_Object sequence;
2217
2218 sequence = XCAR (sequences);
2219
2220 /* Verify that this key binding is not shadowed by another
2221 binding for the same key, before we say it exists.
2222
2223 Mechanism: look for local definition of this key and if
2224 it is defined and does not match what we found then
2225 ignore this key.
2226
2227 Either nil or number as value from Flookup_key
2228 means undefined. */
2229 if (!EQ (shadow_lookup (keymaps, sequence, Qnil), definition))
2230 continue;
2231
2232 /* It is a true unshadowed match. Record it, unless it's already
2233 been seen (as could happen when inheriting keymaps). */
2234 if (NILP (Fmember (sequence, found)))
2235 found = Fcons (sequence, found);
2236
2237 /* If firstonly is Qnon_ascii, then we can return the first
2238 binding we find. If firstonly is not Qnon_ascii but not
2239 nil, then we should return the first ascii-only binding
2240 we find. */
2241 if (EQ (firstonly, Qnon_ascii))
2242 RETURN_UNGCPRO (sequence);
2243 else if (! NILP (firstonly) && ascii_sequence_p (sequence))
2244 RETURN_UNGCPRO (sequence);
2245 }
2246 }
2247 }
2248
2249 UNGCPRO;
2250
2251 found = Fnreverse (found);
2252
2253 /* firstonly may have been t, but we may have gone all the way through
2254 the keymaps without finding an all-ASCII key sequence. So just
2255 return the best we could find. */
2256 if (! NILP (firstonly))
2257 return Fcar (found);
2258
2259 return found;
2260 }
2261
2262 DEFUN ("where-is-internal", Fwhere_is_internal, Swhere_is_internal, 1, 4, 0,
2263 "Return list of keys that invoke DEFINITION.\n\
2264 If KEYMAP is non-nil, search only KEYMAP and the global keymap.\n\
2265 If KEYMAP is nil, search all the currently active keymaps.\n\
2266 If KEYMAP is a list of keymaps, search only those keymaps.\n\
2267 \n\
2268 If optional 3rd arg FIRSTONLY is non-nil, return the first key sequence found,\n\
2269 rather than a list of all possible key sequences.\n\
2270 If FIRSTONLY is the symbol `non-ascii', return the first binding found,\n\
2271 no matter what it is.\n\
2272 If FIRSTONLY has another non-nil value, prefer sequences of ASCII characters,\n\
2273 and entirely reject menu bindings.\n\
2274 \n\
2275 If optional 4th arg NOINDIRECT is non-nil, don't follow indirections\n\
2276 to other keymaps or slots. This makes it possible to search for an\n\
2277 indirect definition itself.")
2278 (definition, keymap, firstonly, noindirect)
2279 Lisp_Object definition, keymap;
2280 Lisp_Object firstonly, noindirect;
2281 {
2282 Lisp_Object sequences, keymaps;
2283 /* 1 means ignore all menu bindings entirely. */
2284 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2285 Lisp_Object result;
2286
2287 /* Find the relevant keymaps. */
2288 if (CONSP (keymap) && KEYMAPP (XCAR (keymap)))
2289 keymaps = keymap;
2290 else if (! NILP (keymap))
2291 keymaps = Fcons (keymap, Fcons (current_global_map, Qnil));
2292 else
2293 keymaps =
2294 Fdelq (Qnil,
2295 nconc2 (Fcurrent_minor_mode_maps (),
2296 Fcons (get_local_map (PT, current_buffer, Qkeymap),
2297 Fcons (get_local_map (PT, current_buffer,
2298 Qlocal_map),
2299 Fcons (current_global_map, Qnil)))));
2300
2301 /* Only use caching for the menubar (i.e. called with (def nil t nil).
2302 We don't really need to check `keymap'. */
2303 if (nomenus && NILP (noindirect) && NILP (keymap))
2304 {
2305 Lisp_Object *defns;
2306 int i, j, n;
2307 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
2308
2309 /* Check heuristic-consistency of the cache. */
2310 if (NILP (Fequal (keymaps, where_is_cache_keymaps)))
2311 where_is_cache = Qnil;
2312
2313 if (NILP (where_is_cache))
2314 {
2315 /* We need to create the cache. */
2316 Lisp_Object args[2];
2317 where_is_cache = Fmake_hash_table (0, args);
2318 where_is_cache_keymaps = Qt;
2319
2320 /* Fill in the cache. */
2321 GCPRO4 (definition, keymaps, firstonly, noindirect);
2322 where_is_internal (definition, keymaps, firstonly, noindirect);
2323 UNGCPRO;
2324
2325 where_is_cache_keymaps = keymaps;
2326 }
2327
2328 /* We want to process definitions from the last to the first.
2329 Instead of consing, copy definitions to a vector and step
2330 over that vector. */
2331 sequences = Fgethash (definition, where_is_cache, Qnil);
2332 n = XINT (Flength (sequences));
2333 defns = (Lisp_Object *) alloca (n * sizeof *defns);
2334 for (i = 0; CONSP (sequences); sequences = XCDR (sequences))
2335 defns[i++] = XCAR (sequences);
2336
2337 /* Verify that the key bindings are not shadowed. Note that
2338 the following can GC. */
2339 GCPRO2 (definition, keymaps);
2340 result = Qnil;
2341 j = -1;
2342 for (i = n - 1; i >= 0; --i)
2343 if (EQ (shadow_lookup (keymaps, defns[i], Qnil), definition))
2344 {
2345 if (ascii_sequence_p (defns[i]))
2346 break;
2347 else if (j < 0)
2348 j = i;
2349 }
2350
2351 result = i >= 0 ? defns[i] : (j >= 0 ? defns[j] : Qnil);
2352 UNGCPRO;
2353 }
2354 else
2355 {
2356 /* Kill the cache so that where_is_internal_1 doesn't think
2357 we're filling it up. */
2358 where_is_cache = Qnil;
2359 result = where_is_internal (definition, keymaps, firstonly, noindirect);
2360 }
2361
2362 return result;
2363 }
2364
2365 /* This is the function that Fwhere_is_internal calls using map_char_table.
2366 ARGS has the form
2367 (((DEFINITION . NOINDIRECT) . (KEYMAP . RESULT))
2368 .
2369 ((THIS . LAST) . (NOMENUS . LAST_IS_META)))
2370 Since map_char_table doesn't really use the return value from this function,
2371 we the result append to RESULT, the slot in ARGS.
2372
2373 This function can GC because it calls where_is_internal_1 which can
2374 GC. */
2375
2376 static void
2377 where_is_internal_2 (args, key, binding)
2378 Lisp_Object args, key, binding;
2379 {
2380 Lisp_Object definition, noindirect, this, last;
2381 Lisp_Object result, sequence;
2382 int nomenus, last_is_meta;
2383 struct gcpro gcpro1, gcpro2, gcpro3;
2384
2385 GCPRO3 (args, key, binding);
2386 result = XCDR (XCAR (args));
2387 definition = XCAR (XCAR (XCAR (args)));
2388 noindirect = XCDR (XCAR (XCAR (args)));
2389 this = XCAR (XCAR (XCDR (args)));
2390 last = XCDR (XCAR (XCDR (args)));
2391 nomenus = XFASTINT (XCAR (XCDR (XCDR (args))));
2392 last_is_meta = XFASTINT (XCDR (XCDR (XCDR (args))));
2393
2394 sequence = where_is_internal_1 (binding, key, definition, noindirect,
2395 this, last, nomenus, last_is_meta);
2396
2397 if (!NILP (sequence))
2398 XCDR (XCAR (args)) = Fcons (sequence, result);
2399
2400 UNGCPRO;
2401 }
2402
2403
2404 /* This function cannot GC. */
2405
2406 static Lisp_Object
2407 where_is_internal_1 (binding, key, definition, noindirect, this, last,
2408 nomenus, last_is_meta)
2409 Lisp_Object binding, key, definition, noindirect, this, last;
2410 int nomenus, last_is_meta;
2411 {
2412 Lisp_Object sequence;
2413
2414 /* Search through indirections unless that's not wanted. */
2415 if (NILP (noindirect))
2416 binding = get_keyelt (binding, 0);
2417
2418 /* End this iteration if this element does not match
2419 the target. */
2420
2421 if (!(!NILP (where_is_cache) /* everything "matches" during cache-fill. */
2422 || EQ (binding, definition)
2423 || (CONSP (definition) && !NILP (Fequal (binding, definition)))))
2424 /* Doesn't match. */
2425 return Qnil;
2426
2427 /* We have found a match. Construct the key sequence where we found it. */
2428 if (INTEGERP (key) && last_is_meta)
2429 {
2430 sequence = Fcopy_sequence (this);
2431 Faset (sequence, last, make_number (XINT (key) | meta_modifier));
2432 }
2433 else
2434 sequence = append_key (this, key);
2435
2436 if (!NILP (where_is_cache))
2437 {
2438 Lisp_Object sequences = Fgethash (binding, where_is_cache, Qnil);
2439 Fputhash (binding, Fcons (sequence, sequences), where_is_cache);
2440 return Qnil;
2441 }
2442 else
2443 return sequence;
2444 }
2445 \f
2446 /* describe-bindings - summarizing all the bindings in a set of keymaps. */
2447
2448 DEFUN ("describe-bindings-internal", Fdescribe_bindings_internal, Sdescribe_bindings_internal, 0, 2, "",
2449 "Show a list of all defined keys, and their definitions.\n\
2450 We put that list in a buffer, and display the buffer.\n\
2451 \n\
2452 The optional argument MENUS, if non-nil, says to mention menu bindings.\n\
2453 \(Ordinarily these are omitted from the output.)\n\
2454 The optional argument PREFIX, if non-nil, should be a key sequence;\n\
2455 then we display only bindings that start with that prefix.")
2456 (menus, prefix)
2457 Lisp_Object menus, prefix;
2458 {
2459 register Lisp_Object thisbuf;
2460 XSETBUFFER (thisbuf, current_buffer);
2461 internal_with_output_to_temp_buffer ("*Help*",
2462 describe_buffer_bindings,
2463 list3 (thisbuf, prefix, menus));
2464 return Qnil;
2465 }
2466
2467 /* ARG is (BUFFER PREFIX MENU-FLAG). */
2468
2469 static Lisp_Object
2470 describe_buffer_bindings (arg)
2471 Lisp_Object arg;
2472 {
2473 Lisp_Object descbuf, prefix, shadow;
2474 int nomenu;
2475 register Lisp_Object start1;
2476 struct gcpro gcpro1;
2477
2478 char *alternate_heading
2479 = "\
2480 Keyboard translations:\n\n\
2481 You type Translation\n\
2482 -------- -----------\n";
2483
2484 descbuf = XCAR (arg);
2485 arg = XCDR (arg);
2486 prefix = XCAR (arg);
2487 arg = XCDR (arg);
2488 nomenu = NILP (XCAR (arg));
2489
2490 shadow = Qnil;
2491 GCPRO1 (shadow);
2492
2493 Fset_buffer (Vstandard_output);
2494
2495 /* Report on alternates for keys. */
2496 if (STRINGP (Vkeyboard_translate_table) && !NILP (prefix))
2497 {
2498 int c;
2499 unsigned char *translate = XSTRING (Vkeyboard_translate_table)->data;
2500 int translate_len = XSTRING (Vkeyboard_translate_table)->size;
2501
2502 for (c = 0; c < translate_len; c++)
2503 if (translate[c] != c)
2504 {
2505 char buf[KEY_DESCRIPTION_SIZE];
2506 char *bufend;
2507
2508 if (alternate_heading)
2509 {
2510 insert_string (alternate_heading);
2511 alternate_heading = 0;
2512 }
2513
2514 bufend = push_key_description (translate[c], buf, 1);
2515 insert (buf, bufend - buf);
2516 Findent_to (make_number (16), make_number (1));
2517 bufend = push_key_description (c, buf, 1);
2518 insert (buf, bufend - buf);
2519
2520 insert ("\n", 1);
2521 }
2522
2523 insert ("\n", 1);
2524 }
2525
2526 if (!NILP (Vkey_translation_map))
2527 describe_map_tree (Vkey_translation_map, 0, Qnil, prefix,
2528 "Key translations", nomenu, 1, 0);
2529
2530 {
2531 int i, nmaps;
2532 Lisp_Object *modes, *maps;
2533
2534 /* Temporarily switch to descbuf, so that we can get that buffer's
2535 minor modes correctly. */
2536 Fset_buffer (descbuf);
2537
2538 if (!NILP (current_kboard->Voverriding_terminal_local_map)
2539 || !NILP (Voverriding_local_map))
2540 nmaps = 0;
2541 else
2542 nmaps = current_minor_maps (&modes, &maps);
2543 Fset_buffer (Vstandard_output);
2544
2545 /* Print the minor mode maps. */
2546 for (i = 0; i < nmaps; i++)
2547 {
2548 /* The title for a minor mode keymap
2549 is constructed at run time.
2550 We let describe_map_tree do the actual insertion
2551 because it takes care of other features when doing so. */
2552 char *title, *p;
2553
2554 if (!SYMBOLP (modes[i]))
2555 abort();
2556
2557 p = title = (char *) alloca (42 + XSYMBOL (modes[i])->name->size);
2558 *p++ = '\f';
2559 *p++ = '\n';
2560 *p++ = '`';
2561 bcopy (XSYMBOL (modes[i])->name->data, p,
2562 XSYMBOL (modes[i])->name->size);
2563 p += XSYMBOL (modes[i])->name->size;
2564 *p++ = '\'';
2565 bcopy (" Minor Mode Bindings", p, sizeof (" Minor Mode Bindings") - 1);
2566 p += sizeof (" Minor Mode Bindings") - 1;
2567 *p = 0;
2568
2569 describe_map_tree (maps[i], 1, shadow, prefix, title, nomenu, 0, 0);
2570 shadow = Fcons (maps[i], shadow);
2571 }
2572 }
2573
2574 /* Print the (major mode) local map. */
2575 if (!NILP (current_kboard->Voverriding_terminal_local_map))
2576 start1 = current_kboard->Voverriding_terminal_local_map;
2577 else if (!NILP (Voverriding_local_map))
2578 start1 = Voverriding_local_map;
2579 else
2580 start1 = XBUFFER (descbuf)->keymap;
2581
2582 if (!NILP (start1))
2583 {
2584 describe_map_tree (start1, 1, shadow, prefix,
2585 "\f\nMajor Mode Bindings", nomenu, 0, 0);
2586 shadow = Fcons (start1, shadow);
2587 }
2588
2589 describe_map_tree (current_global_map, 1, shadow, prefix,
2590 "\f\nGlobal Bindings", nomenu, 0, 1);
2591
2592 /* Print the function-key-map translations under this prefix. */
2593 if (!NILP (Vfunction_key_map))
2594 describe_map_tree (Vfunction_key_map, 0, Qnil, prefix,
2595 "\f\nFunction key map translations", nomenu, 1, 0);
2596
2597 call0 (intern ("help-mode"));
2598 Fset_buffer (descbuf);
2599 UNGCPRO;
2600 return Qnil;
2601 }
2602
2603 /* Insert a description of the key bindings in STARTMAP,
2604 followed by those of all maps reachable through STARTMAP.
2605 If PARTIAL is nonzero, omit certain "uninteresting" commands
2606 (such as `undefined').
2607 If SHADOW is non-nil, it is a list of maps;
2608 don't mention keys which would be shadowed by any of them.
2609 PREFIX, if non-nil, says mention only keys that start with PREFIX.
2610 TITLE, if not 0, is a string to insert at the beginning.
2611 TITLE should not end with a colon or a newline; we supply that.
2612 If NOMENU is not 0, then omit menu-bar commands.
2613
2614 If TRANSL is nonzero, the definitions are actually key translations
2615 so print strings and vectors differently.
2616
2617 If ALWAYS_TITLE is nonzero, print the title even if there are no maps
2618 to look through. */
2619
2620 void
2621 describe_map_tree (startmap, partial, shadow, prefix, title, nomenu, transl,
2622 always_title)
2623 Lisp_Object startmap, shadow, prefix;
2624 int partial;
2625 char *title;
2626 int nomenu;
2627 int transl;
2628 int always_title;
2629 {
2630 Lisp_Object maps, orig_maps, seen, sub_shadows;
2631 struct gcpro gcpro1, gcpro2, gcpro3;
2632 int something = 0;
2633 char *key_heading
2634 = "\
2635 key binding\n\
2636 --- -------\n";
2637
2638 orig_maps = maps = Faccessible_keymaps (startmap, prefix);
2639 seen = Qnil;
2640 sub_shadows = Qnil;
2641 GCPRO3 (maps, seen, sub_shadows);
2642
2643 if (nomenu)
2644 {
2645 Lisp_Object list;
2646
2647 /* Delete from MAPS each element that is for the menu bar. */
2648 for (list = maps; !NILP (list); list = XCDR (list))
2649 {
2650 Lisp_Object elt, prefix, tem;
2651
2652 elt = Fcar (list);
2653 prefix = Fcar (elt);
2654 if (XVECTOR (prefix)->size >= 1)
2655 {
2656 tem = Faref (prefix, make_number (0));
2657 if (EQ (tem, Qmenu_bar))
2658 maps = Fdelq (elt, maps);
2659 }
2660 }
2661 }
2662
2663 if (!NILP (maps) || always_title)
2664 {
2665 if (title)
2666 {
2667 insert_string (title);
2668 if (!NILP (prefix))
2669 {
2670 insert_string (" Starting With ");
2671 insert1 (Fkey_description (prefix));
2672 }
2673 insert_string (":\n");
2674 }
2675 insert_string (key_heading);
2676 something = 1;
2677 }
2678
2679 for (; !NILP (maps); maps = Fcdr (maps))
2680 {
2681 register Lisp_Object elt, prefix, tail;
2682
2683 elt = Fcar (maps);
2684 prefix = Fcar (elt);
2685
2686 sub_shadows = Qnil;
2687
2688 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
2689 {
2690 Lisp_Object shmap;
2691
2692 shmap = XCAR (tail);
2693
2694 /* If the sequence by which we reach this keymap is zero-length,
2695 then the shadow map for this keymap is just SHADOW. */
2696 if ((STRINGP (prefix) && XSTRING (prefix)->size == 0)
2697 || (VECTORP (prefix) && XVECTOR (prefix)->size == 0))
2698 ;
2699 /* If the sequence by which we reach this keymap actually has
2700 some elements, then the sequence's definition in SHADOW is
2701 what we should use. */
2702 else
2703 {
2704 shmap = Flookup_key (shmap, Fcar (elt), Qt);
2705 if (INTEGERP (shmap))
2706 shmap = Qnil;
2707 }
2708
2709 /* If shmap is not nil and not a keymap,
2710 it completely shadows this map, so don't
2711 describe this map at all. */
2712 if (!NILP (shmap) && !KEYMAPP (shmap))
2713 goto skip;
2714
2715 if (!NILP (shmap))
2716 sub_shadows = Fcons (shmap, sub_shadows);
2717 }
2718
2719 /* Maps we have already listed in this loop shadow this map. */
2720 for (tail = orig_maps; ! EQ (tail, maps); tail = XCDR (tail))
2721 {
2722 Lisp_Object tem;
2723 tem = Fequal (Fcar (XCAR (tail)), prefix);
2724 if (! NILP (tem))
2725 sub_shadows = Fcons (XCDR (XCAR (tail)), sub_shadows);
2726 }
2727
2728 describe_map (Fcdr (elt), prefix,
2729 transl ? describe_translation : describe_command,
2730 partial, sub_shadows, &seen, nomenu);
2731
2732 skip: ;
2733 }
2734
2735 if (something)
2736 insert_string ("\n");
2737
2738 UNGCPRO;
2739 }
2740
2741 static int previous_description_column;
2742
2743 static void
2744 describe_command (definition)
2745 Lisp_Object definition;
2746 {
2747 register Lisp_Object tem1;
2748 int column = current_column ();
2749 int description_column;
2750
2751 /* If column 16 is no good, go to col 32;
2752 but don't push beyond that--go to next line instead. */
2753 if (column > 30)
2754 {
2755 insert_char ('\n');
2756 description_column = 32;
2757 }
2758 else if (column > 14 || (column > 10 && previous_description_column == 32))
2759 description_column = 32;
2760 else
2761 description_column = 16;
2762
2763 Findent_to (make_number (description_column), make_number (1));
2764 previous_description_column = description_column;
2765
2766 if (SYMBOLP (definition))
2767 {
2768 XSETSTRING (tem1, XSYMBOL (definition)->name);
2769 insert1 (tem1);
2770 insert_string ("\n");
2771 }
2772 else if (STRINGP (definition) || VECTORP (definition))
2773 insert_string ("Keyboard Macro\n");
2774 else if (KEYMAPP (definition))
2775 insert_string ("Prefix Command\n");
2776 else
2777 insert_string ("??\n");
2778 }
2779
2780 static void
2781 describe_translation (definition)
2782 Lisp_Object definition;
2783 {
2784 register Lisp_Object tem1;
2785
2786 Findent_to (make_number (16), make_number (1));
2787
2788 if (SYMBOLP (definition))
2789 {
2790 XSETSTRING (tem1, XSYMBOL (definition)->name);
2791 insert1 (tem1);
2792 insert_string ("\n");
2793 }
2794 else if (STRINGP (definition) || VECTORP (definition))
2795 {
2796 insert1 (Fkey_description (definition));
2797 insert_string ("\n");
2798 }
2799 else if (KEYMAPP (definition))
2800 insert_string ("Prefix Command\n");
2801 else
2802 insert_string ("??\n");
2803 }
2804
2805 /* Describe the contents of map MAP, assuming that this map itself is
2806 reached by the sequence of prefix keys KEYS (a string or vector).
2807 PARTIAL, SHADOW, NOMENU are as in `describe_map_tree' above. */
2808
2809 static void
2810 describe_map (map, keys, elt_describer, partial, shadow, seen, nomenu)
2811 register Lisp_Object map;
2812 Lisp_Object keys;
2813 void (*elt_describer) P_ ((Lisp_Object));
2814 int partial;
2815 Lisp_Object shadow;
2816 Lisp_Object *seen;
2817 int nomenu;
2818 {
2819 Lisp_Object elt_prefix;
2820 Lisp_Object tail, definition, event;
2821 Lisp_Object tem;
2822 Lisp_Object suppress;
2823 Lisp_Object kludge;
2824 int first = 1;
2825 struct gcpro gcpro1, gcpro2, gcpro3;
2826
2827 suppress = Qnil;
2828
2829 if (!NILP (keys) && XFASTINT (Flength (keys)) > 0)
2830 {
2831 /* Call Fkey_description first, to avoid GC bug for the other string. */
2832 tem = Fkey_description (keys);
2833 elt_prefix = concat2 (tem, build_string (" "));
2834 }
2835 else
2836 elt_prefix = Qnil;
2837
2838 if (partial)
2839 suppress = intern ("suppress-keymap");
2840
2841 /* This vector gets used to present single keys to Flookup_key. Since
2842 that is done once per keymap element, we don't want to cons up a
2843 fresh vector every time. */
2844 kludge = Fmake_vector (make_number (1), Qnil);
2845 definition = Qnil;
2846
2847 GCPRO3 (elt_prefix, definition, kludge);
2848
2849 for (tail = map; CONSP (tail); tail = XCDR (tail))
2850 {
2851 QUIT;
2852
2853 if (VECTORP (XCAR (tail))
2854 || CHAR_TABLE_P (XCAR (tail)))
2855 describe_vector (XCAR (tail),
2856 elt_prefix, elt_describer, partial, shadow, map,
2857 (int *)0, 0);
2858 else if (CONSP (XCAR (tail)))
2859 {
2860 event = XCAR (XCAR (tail));
2861
2862 /* Ignore bindings whose "keys" are not really valid events.
2863 (We get these in the frames and buffers menu.) */
2864 if (! (SYMBOLP (event) || INTEGERP (event)))
2865 continue;
2866
2867 if (nomenu && EQ (event, Qmenu_bar))
2868 continue;
2869
2870 definition = get_keyelt (XCDR (XCAR (tail)), 0);
2871
2872 /* Don't show undefined commands or suppressed commands. */
2873 if (NILP (definition)) continue;
2874 if (SYMBOLP (definition) && partial)
2875 {
2876 tem = Fget (definition, suppress);
2877 if (!NILP (tem))
2878 continue;
2879 }
2880
2881 /* Don't show a command that isn't really visible
2882 because a local definition of the same key shadows it. */
2883
2884 ASET (kludge, 0, event);
2885 if (!NILP (shadow))
2886 {
2887 tem = shadow_lookup (shadow, kludge, Qt);
2888 if (!NILP (tem)) continue;
2889 }
2890
2891 tem = Flookup_key (map, kludge, Qt);
2892 if (! EQ (tem, definition)) continue;
2893
2894 if (first)
2895 {
2896 previous_description_column = 0;
2897 insert ("\n", 1);
2898 first = 0;
2899 }
2900
2901 if (!NILP (elt_prefix))
2902 insert1 (elt_prefix);
2903
2904 /* THIS gets the string to describe the character EVENT. */
2905 insert1 (Fsingle_key_description (event, Qnil));
2906
2907 /* Print a description of the definition of this character.
2908 elt_describer will take care of spacing out far enough
2909 for alignment purposes. */
2910 (*elt_describer) (definition);
2911 }
2912 else if (EQ (XCAR (tail), Qkeymap))
2913 {
2914 /* The same keymap might be in the structure twice, if we're
2915 using an inherited keymap. So skip anything we've already
2916 encountered. */
2917 tem = Fassq (tail, *seen);
2918 if (CONSP (tem) && !NILP (Fequal (XCAR (tem), keys)))
2919 break;
2920 *seen = Fcons (Fcons (tail, keys), *seen);
2921 }
2922 }
2923
2924 UNGCPRO;
2925 }
2926
2927 static void
2928 describe_vector_princ (elt)
2929 Lisp_Object elt;
2930 {
2931 Findent_to (make_number (16), make_number (1));
2932 Fprinc (elt, Qnil);
2933 Fterpri (Qnil);
2934 }
2935
2936 DEFUN ("describe-vector", Fdescribe_vector, Sdescribe_vector, 1, 1, 0,
2937 "Insert a description of contents of VECTOR.\n\
2938 This is text showing the elements of vector matched against indices.")
2939 (vector)
2940 Lisp_Object vector;
2941 {
2942 int count = specpdl_ptr - specpdl;
2943
2944 specbind (Qstandard_output, Fcurrent_buffer ());
2945 CHECK_VECTOR_OR_CHAR_TABLE (vector, 0);
2946 describe_vector (vector, Qnil, describe_vector_princ, 0,
2947 Qnil, Qnil, (int *)0, 0);
2948
2949 return unbind_to (count, Qnil);
2950 }
2951
2952 /* Insert in the current buffer a description of the contents of VECTOR.
2953 We call ELT_DESCRIBER to insert the description of one value found
2954 in VECTOR.
2955
2956 ELT_PREFIX describes what "comes before" the keys or indices defined
2957 by this vector. This is a human-readable string whose size
2958 is not necessarily related to the situation.
2959
2960 If the vector is in a keymap, ELT_PREFIX is a prefix key which
2961 leads to this keymap.
2962
2963 If the vector is a chartable, ELT_PREFIX is the vector
2964 of bytes that lead to the character set or portion of a character
2965 set described by this chartable.
2966
2967 If PARTIAL is nonzero, it means do not mention suppressed commands
2968 (that assumes the vector is in a keymap).
2969
2970 SHADOW is a list of keymaps that shadow this map.
2971 If it is non-nil, then we look up the key in those maps
2972 and we don't mention it now if it is defined by any of them.
2973
2974 ENTIRE_MAP is the keymap in which this vector appears.
2975 If the definition in effect in the whole map does not match
2976 the one in this vector, we ignore this one.
2977
2978 When describing a sub-char-table, INDICES is a list of
2979 indices at higher levels in this char-table,
2980 and CHAR_TABLE_DEPTH says how many levels down we have gone. */
2981
2982 void
2983 describe_vector (vector, elt_prefix, elt_describer,
2984 partial, shadow, entire_map,
2985 indices, char_table_depth)
2986 register Lisp_Object vector;
2987 Lisp_Object elt_prefix;
2988 void (*elt_describer) P_ ((Lisp_Object));
2989 int partial;
2990 Lisp_Object shadow;
2991 Lisp_Object entire_map;
2992 int *indices;
2993 int char_table_depth;
2994 {
2995 Lisp_Object definition;
2996 Lisp_Object tem2;
2997 register int i;
2998 Lisp_Object suppress;
2999 Lisp_Object kludge;
3000 int first = 1;
3001 struct gcpro gcpro1, gcpro2, gcpro3;
3002 /* Range of elements to be handled. */
3003 int from, to;
3004 /* A flag to tell if a leaf in this level of char-table is not a
3005 generic character (i.e. a complete multibyte character). */
3006 int complete_char;
3007 int character;
3008 int starting_i;
3009
3010 suppress = Qnil;
3011
3012 if (indices == 0)
3013 indices = (int *) alloca (3 * sizeof (int));
3014
3015 definition = Qnil;
3016
3017 /* This vector gets used to present single keys to Flookup_key. Since
3018 that is done once per vector element, we don't want to cons up a
3019 fresh vector every time. */
3020 kludge = Fmake_vector (make_number (1), Qnil);
3021 GCPRO3 (elt_prefix, definition, kludge);
3022
3023 if (partial)
3024 suppress = intern ("suppress-keymap");
3025
3026 if (CHAR_TABLE_P (vector))
3027 {
3028 if (char_table_depth == 0)
3029 {
3030 /* VECTOR is a top level char-table. */
3031 complete_char = 1;
3032 from = 0;
3033 to = CHAR_TABLE_ORDINARY_SLOTS;
3034 }
3035 else
3036 {
3037 /* VECTOR is a sub char-table. */
3038 if (char_table_depth >= 3)
3039 /* A char-table is never that deep. */
3040 error ("Too deep char table");
3041
3042 complete_char
3043 = (CHARSET_VALID_P (indices[0])
3044 && ((CHARSET_DIMENSION (indices[0]) == 1
3045 && char_table_depth == 1)
3046 || char_table_depth == 2));
3047
3048 /* Meaningful elements are from 32th to 127th. */
3049 from = 32;
3050 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
3051 }
3052 }
3053 else
3054 {
3055 /* This does the right thing for ordinary vectors. */
3056
3057 complete_char = 1;
3058 from = 0;
3059 to = XVECTOR (vector)->size;
3060 }
3061
3062 for (i = from; i < to; i++)
3063 {
3064 QUIT;
3065
3066 if (CHAR_TABLE_P (vector))
3067 {
3068 if (char_table_depth == 0 && i >= CHAR_TABLE_SINGLE_BYTE_SLOTS)
3069 complete_char = 0;
3070
3071 if (i >= CHAR_TABLE_SINGLE_BYTE_SLOTS
3072 && !CHARSET_DEFINED_P (i - 128))
3073 continue;
3074
3075 definition
3076 = get_keyelt (XCHAR_TABLE (vector)->contents[i], 0);
3077 }
3078 else
3079 definition = get_keyelt (AREF (vector, i), 0);
3080
3081 if (NILP (definition)) continue;
3082
3083 /* Don't mention suppressed commands. */
3084 if (SYMBOLP (definition) && partial)
3085 {
3086 Lisp_Object tem;
3087
3088 tem = Fget (definition, suppress);
3089
3090 if (!NILP (tem)) continue;
3091 }
3092
3093 /* Set CHARACTER to the character this entry describes, if any.
3094 Also update *INDICES. */
3095 if (CHAR_TABLE_P (vector))
3096 {
3097 indices[char_table_depth] = i;
3098
3099 if (char_table_depth == 0)
3100 {
3101 character = i;
3102 indices[0] = i - 128;
3103 }
3104 else if (complete_char)
3105 {
3106 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3107 }
3108 else
3109 character = 0;
3110 }
3111 else
3112 character = i;
3113
3114 /* If this binding is shadowed by some other map, ignore it. */
3115 if (!NILP (shadow) && complete_char)
3116 {
3117 Lisp_Object tem;
3118
3119 ASET (kludge, 0, make_number (character));
3120 tem = shadow_lookup (shadow, kludge, Qt);
3121
3122 if (!NILP (tem)) continue;
3123 }
3124
3125 /* Ignore this definition if it is shadowed by an earlier
3126 one in the same keymap. */
3127 if (!NILP (entire_map) && complete_char)
3128 {
3129 Lisp_Object tem;
3130
3131 ASET (kludge, 0, make_number (character));
3132 tem = Flookup_key (entire_map, kludge, Qt);
3133
3134 if (! EQ (tem, definition))
3135 continue;
3136 }
3137
3138 if (first)
3139 {
3140 if (char_table_depth == 0)
3141 insert ("\n", 1);
3142 first = 0;
3143 }
3144
3145 /* For a sub char-table, show the depth by indentation.
3146 CHAR_TABLE_DEPTH can be greater than 0 only for a char-table. */
3147 if (char_table_depth > 0)
3148 insert (" ", char_table_depth * 2); /* depth is 1 or 2. */
3149
3150 /* Output the prefix that applies to every entry in this map. */
3151 if (!NILP (elt_prefix))
3152 insert1 (elt_prefix);
3153
3154 /* Insert or describe the character this slot is for,
3155 or a description of what it is for. */
3156 if (SUB_CHAR_TABLE_P (vector))
3157 {
3158 if (complete_char)
3159 insert_char (character);
3160 else
3161 {
3162 /* We need an octal representation for this block of
3163 characters. */
3164 char work[16];
3165 sprintf (work, "(row %d)", i);
3166 insert (work, strlen (work));
3167 }
3168 }
3169 else if (CHAR_TABLE_P (vector))
3170 {
3171 if (complete_char)
3172 insert1 (Fsingle_key_description (make_number (character), Qnil));
3173 else
3174 {
3175 /* Print the information for this character set. */
3176 insert_string ("<");
3177 tem2 = CHARSET_TABLE_INFO (i - 128, CHARSET_SHORT_NAME_IDX);
3178 if (STRINGP (tem2))
3179 insert_from_string (tem2, 0, 0, XSTRING (tem2)->size,
3180 STRING_BYTES (XSTRING (tem2)), 0);
3181 else
3182 insert ("?", 1);
3183 insert (">", 1);
3184 }
3185 }
3186 else
3187 {
3188 insert1 (Fsingle_key_description (make_number (character), Qnil));
3189 }
3190
3191 /* If we find a sub char-table within a char-table,
3192 scan it recursively; it defines the details for
3193 a character set or a portion of a character set. */
3194 if (CHAR_TABLE_P (vector) && SUB_CHAR_TABLE_P (definition))
3195 {
3196 insert ("\n", 1);
3197 describe_vector (definition, elt_prefix, elt_describer,
3198 partial, shadow, entire_map,
3199 indices, char_table_depth + 1);
3200 continue;
3201 }
3202
3203 starting_i = i;
3204
3205 /* Find all consecutive characters or rows that have the same
3206 definition. But, for elements of a top level char table, if
3207 they are for charsets, we had better describe one by one even
3208 if they have the same definition. */
3209 if (CHAR_TABLE_P (vector))
3210 {
3211 int limit = to;
3212
3213 if (char_table_depth == 0)
3214 limit = CHAR_TABLE_SINGLE_BYTE_SLOTS;
3215
3216 while (i + 1 < limit
3217 && (tem2 = get_keyelt (XCHAR_TABLE (vector)->contents[i + 1], 0),
3218 !NILP (tem2))
3219 && !NILP (Fequal (tem2, definition)))
3220 i++;
3221 }
3222 else
3223 while (i + 1 < to
3224 && (tem2 = get_keyelt (AREF (vector, i + 1), 0),
3225 !NILP (tem2))
3226 && !NILP (Fequal (tem2, definition)))
3227 i++;
3228
3229
3230 /* If we have a range of more than one character,
3231 print where the range reaches to. */
3232
3233 if (i != starting_i)
3234 {
3235 insert (" .. ", 4);
3236
3237 if (!NILP (elt_prefix))
3238 insert1 (elt_prefix);
3239
3240 if (CHAR_TABLE_P (vector))
3241 {
3242 if (char_table_depth == 0)
3243 {
3244 insert1 (Fsingle_key_description (make_number (i), Qnil));
3245 }
3246 else if (complete_char)
3247 {
3248 indices[char_table_depth] = i;
3249 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3250 insert_char (character);
3251 }
3252 else
3253 {
3254 /* We need an octal representation for this block of
3255 characters. */
3256 char work[16];
3257 sprintf (work, "(row %d)", i);
3258 insert (work, strlen (work));
3259 }
3260 }
3261 else
3262 {
3263 insert1 (Fsingle_key_description (make_number (i), Qnil));
3264 }
3265 }
3266
3267 /* Print a description of the definition of this character.
3268 elt_describer will take care of spacing out far enough
3269 for alignment purposes. */
3270 (*elt_describer) (definition);
3271 }
3272
3273 /* For (sub) char-table, print `defalt' slot at last. */
3274 if (CHAR_TABLE_P (vector) && !NILP (XCHAR_TABLE (vector)->defalt))
3275 {
3276 insert (" ", char_table_depth * 2);
3277 insert_string ("<<default>>");
3278 (*elt_describer) (XCHAR_TABLE (vector)->defalt);
3279 }
3280
3281 UNGCPRO;
3282 }
3283 \f
3284 /* Apropos - finding all symbols whose names match a regexp. */
3285 Lisp_Object apropos_predicate;
3286 Lisp_Object apropos_accumulate;
3287
3288 static void
3289 apropos_accum (symbol, string)
3290 Lisp_Object symbol, string;
3291 {
3292 register Lisp_Object tem;
3293
3294 tem = Fstring_match (string, Fsymbol_name (symbol), Qnil);
3295 if (!NILP (tem) && !NILP (apropos_predicate))
3296 tem = call1 (apropos_predicate, symbol);
3297 if (!NILP (tem))
3298 apropos_accumulate = Fcons (symbol, apropos_accumulate);
3299 }
3300
3301 DEFUN ("apropos-internal", Fapropos_internal, Sapropos_internal, 1, 2, 0,
3302 "Show all symbols whose names contain match for REGEXP.\n\
3303 If optional 2nd arg PREDICATE is non-nil, (funcall PREDICATE SYMBOL) is done\n\
3304 for each symbol and a symbol is mentioned only if that returns non-nil.\n\
3305 Return list of symbols found.")
3306 (regexp, predicate)
3307 Lisp_Object regexp, predicate;
3308 {
3309 struct gcpro gcpro1, gcpro2;
3310 CHECK_STRING (regexp, 0);
3311 apropos_predicate = predicate;
3312 GCPRO2 (apropos_predicate, apropos_accumulate);
3313 apropos_accumulate = Qnil;
3314 map_obarray (Vobarray, apropos_accum, regexp);
3315 apropos_accumulate = Fsort (apropos_accumulate, Qstring_lessp);
3316 UNGCPRO;
3317 return apropos_accumulate;
3318 }
3319 \f
3320 void
3321 syms_of_keymap ()
3322 {
3323 Qkeymap = intern ("keymap");
3324 staticpro (&Qkeymap);
3325
3326 /* Now we are ready to set up this property, so we can
3327 create char tables. */
3328 Fput (Qkeymap, Qchar_table_extra_slots, make_number (0));
3329
3330 /* Initialize the keymaps standardly used.
3331 Each one is the value of a Lisp variable, and is also
3332 pointed to by a C variable */
3333
3334 global_map = Fmake_keymap (Qnil);
3335 Fset (intern ("global-map"), global_map);
3336
3337 current_global_map = global_map;
3338 staticpro (&global_map);
3339 staticpro (&current_global_map);
3340
3341 meta_map = Fmake_keymap (Qnil);
3342 Fset (intern ("esc-map"), meta_map);
3343 Ffset (intern ("ESC-prefix"), meta_map);
3344
3345 control_x_map = Fmake_keymap (Qnil);
3346 Fset (intern ("ctl-x-map"), control_x_map);
3347 Ffset (intern ("Control-X-prefix"), control_x_map);
3348
3349 DEFVAR_LISP ("define-key-rebound-commands", &Vdefine_key_rebound_commands,
3350 "List of commands given new key bindings recently.\n\
3351 This is used for internal purposes during Emacs startup;\n\
3352 don't alter it yourself.");
3353 Vdefine_key_rebound_commands = Qt;
3354
3355 DEFVAR_LISP ("minibuffer-local-map", &Vminibuffer_local_map,
3356 "Default keymap to use when reading from the minibuffer.");
3357 Vminibuffer_local_map = Fmake_sparse_keymap (Qnil);
3358
3359 DEFVAR_LISP ("minibuffer-local-ns-map", &Vminibuffer_local_ns_map,
3360 "Local keymap for the minibuffer when spaces are not allowed.");
3361 Vminibuffer_local_ns_map = Fmake_sparse_keymap (Qnil);
3362
3363 DEFVAR_LISP ("minibuffer-local-completion-map", &Vminibuffer_local_completion_map,
3364 "Local keymap for minibuffer input with completion.");
3365 Vminibuffer_local_completion_map = Fmake_sparse_keymap (Qnil);
3366
3367 DEFVAR_LISP ("minibuffer-local-must-match-map", &Vminibuffer_local_must_match_map,
3368 "Local keymap for minibuffer input with completion, for exact match.");
3369 Vminibuffer_local_must_match_map = Fmake_sparse_keymap (Qnil);
3370
3371 DEFVAR_LISP ("minor-mode-map-alist", &Vminor_mode_map_alist,
3372 "Alist of keymaps to use for minor modes.\n\
3373 Each element looks like (VARIABLE . KEYMAP); KEYMAP is used to read\n\
3374 key sequences and look up bindings iff VARIABLE's value is non-nil.\n\
3375 If two active keymaps bind the same key, the keymap appearing earlier\n\
3376 in the list takes precedence.");
3377 Vminor_mode_map_alist = Qnil;
3378
3379 DEFVAR_LISP ("minor-mode-overriding-map-alist", &Vminor_mode_overriding_map_alist,
3380 "Alist of keymaps to use for minor modes, in current major mode.\n\
3381 This variable is a alist just like `minor-mode-map-alist', and it is\n\
3382 used the same way (and before `minor-mode-map-alist'); however,\n\
3383 it is provided for major modes to bind locally.");
3384 Vminor_mode_overriding_map_alist = Qnil;
3385
3386 DEFVAR_LISP ("function-key-map", &Vfunction_key_map,
3387 "Keymap mapping ASCII function key sequences onto their preferred forms.\n\
3388 This allows Emacs to recognize function keys sent from ASCII\n\
3389 terminals at any point in a key sequence.\n\
3390 \n\
3391 The `read-key-sequence' function replaces any subsequence bound by\n\
3392 `function-key-map' with its binding. More precisely, when the active\n\
3393 keymaps have no binding for the current key sequence but\n\
3394 `function-key-map' binds a suffix of the sequence to a vector or string,\n\
3395 `read-key-sequence' replaces the matching suffix with its binding, and\n\
3396 continues with the new sequence.\n\
3397 \n\
3398 The events that come from bindings in `function-key-map' are not\n\
3399 themselves looked up in `function-key-map'.\n\
3400 \n\
3401 For example, suppose `function-key-map' binds `ESC O P' to [f1].\n\
3402 Typing `ESC O P' to `read-key-sequence' would return [f1]. Typing\n\
3403 `C-x ESC O P' would return [?\\C-x f1]. If [f1] were a prefix\n\
3404 key, typing `ESC O P x' would return [f1 x].");
3405 Vfunction_key_map = Fmake_sparse_keymap (Qnil);
3406
3407 DEFVAR_LISP ("key-translation-map", &Vkey_translation_map,
3408 "Keymap of key translations that can override keymaps.\n\
3409 This keymap works like `function-key-map', but comes after that,\n\
3410 and applies even for keys that have ordinary bindings.");
3411 Vkey_translation_map = Qnil;
3412
3413 Qsingle_key_description = intern ("single-key-description");
3414 staticpro (&Qsingle_key_description);
3415
3416 Qkey_description = intern ("key-description");
3417 staticpro (&Qkey_description);
3418
3419 Qkeymapp = intern ("keymapp");
3420 staticpro (&Qkeymapp);
3421
3422 Qnon_ascii = intern ("non-ascii");
3423 staticpro (&Qnon_ascii);
3424
3425 Qmenu_item = intern ("menu-item");
3426 staticpro (&Qmenu_item);
3427
3428 where_is_cache_keymaps = Qt;
3429 where_is_cache = Qnil;
3430 staticpro (&where_is_cache);
3431 staticpro (&where_is_cache_keymaps);
3432
3433 defsubr (&Skeymapp);
3434 defsubr (&Skeymap_parent);
3435 defsubr (&Sset_keymap_parent);
3436 defsubr (&Smake_keymap);
3437 defsubr (&Smake_sparse_keymap);
3438 defsubr (&Scopy_keymap);
3439 defsubr (&Skey_binding);
3440 defsubr (&Slocal_key_binding);
3441 defsubr (&Sglobal_key_binding);
3442 defsubr (&Sminor_mode_key_binding);
3443 defsubr (&Sdefine_key);
3444 defsubr (&Slookup_key);
3445 defsubr (&Sdefine_prefix_command);
3446 defsubr (&Suse_global_map);
3447 defsubr (&Suse_local_map);
3448 defsubr (&Scurrent_local_map);
3449 defsubr (&Scurrent_global_map);
3450 defsubr (&Scurrent_minor_mode_maps);
3451 defsubr (&Saccessible_keymaps);
3452 defsubr (&Skey_description);
3453 defsubr (&Sdescribe_vector);
3454 defsubr (&Ssingle_key_description);
3455 defsubr (&Stext_char_description);
3456 defsubr (&Swhere_is_internal);
3457 defsubr (&Sdescribe_bindings_internal);
3458 defsubr (&Sapropos_internal);
3459 }
3460
3461 void
3462 keys_of_keymap ()
3463 {
3464 initial_define_key (global_map, 033, "ESC-prefix");
3465 initial_define_key (global_map, Ctl('X'), "Control-X-prefix");
3466 }