Don't let the 'B' interactive spec default to buffers viewed in
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include <signal.h>
21
22 #include "config.h"
23 #include "lisp.h"
24 #include "intervals.h"
25 #include "puresize.h"
26 #ifndef standalone
27 #include "buffer.h"
28 #include "window.h"
29 #include "frame.h"
30 #include "blockinput.h"
31 #endif
32
33 #include "syssignal.h"
34
35 #define max(A,B) ((A) > (B) ? (A) : (B))
36
37 /* Macro to verify that storage intended for Lisp objects is not
38 out of range to fit in the space for a pointer.
39 ADDRESS is the start of the block, and SIZE
40 is the amount of space within which objects can start. */
41 #define VALIDATE_LISP_STORAGE(address, size) \
42 do \
43 { \
44 Lisp_Object val; \
45 XSET (val, Lisp_Cons, (char *) address + size); \
46 if ((char *) XCONS (val) != (char *) address + size) \
47 { \
48 xfree (address); \
49 memory_full (); \
50 } \
51 } while (0)
52
53 /* Number of bytes of consing done since the last gc */
54 int consing_since_gc;
55
56 /* Number of bytes of consing since gc before another gc should be done. */
57 int gc_cons_threshold;
58
59 /* Nonzero during gc */
60 int gc_in_progress;
61
62 #ifndef VIRT_ADDR_VARIES
63 extern
64 #endif /* VIRT_ADDR_VARIES */
65 int malloc_sbrk_used;
66
67 #ifndef VIRT_ADDR_VARIES
68 extern
69 #endif /* VIRT_ADDR_VARIES */
70 int malloc_sbrk_unused;
71
72 /* Two limits controlling how much undo information to keep. */
73 int undo_limit;
74 int undo_strong_limit;
75
76 /* Non-nil means defun should do purecopy on the function definition */
77 Lisp_Object Vpurify_flag;
78
79 #ifndef HAVE_SHM
80 int pure[PURESIZE / sizeof (int)] = {0,}; /* Force it into data space! */
81 #define PUREBEG (char *) pure
82 #else
83 #define pure PURE_SEG_BITS /* Use shared memory segment */
84 #define PUREBEG (char *)PURE_SEG_BITS
85
86 /* This variable is used only by the XPNTR macro when HAVE_SHM is
87 defined. If we used the PURESIZE macro directly there, that would
88 make most of emacs dependent on puresize.h, which we don't want -
89 you should be able to change that without too much recompilation.
90 So map_in_data initializes pure_size, and the dependencies work
91 out. */
92 int pure_size;
93 #endif /* not HAVE_SHM */
94
95 /* Index in pure at which next pure object will be allocated. */
96 int pureptr;
97
98 /* If nonzero, this is a warning delivered by malloc and not yet displayed. */
99 char *pending_malloc_warning;
100
101 /* Maximum amount of C stack to save when a GC happens. */
102
103 #ifndef MAX_SAVE_STACK
104 #define MAX_SAVE_STACK 16000
105 #endif
106
107 /* Buffer in which we save a copy of the C stack at each GC. */
108
109 char *stack_copy;
110 int stack_copy_size;
111
112 /* Non-zero means ignore malloc warnings. Set during initialization. */
113 int ignore_warnings;
114
115 static void mark_object (), mark_buffer ();
116 static void clear_marks (), gc_sweep ();
117 static void compact_strings ();
118 \f
119 /* Versions of malloc and realloc that print warnings as memory gets full. */
120
121 Lisp_Object
122 malloc_warning_1 (str)
123 Lisp_Object str;
124 {
125 Fprinc (str, Vstandard_output);
126 write_string ("\nKilling some buffers may delay running out of memory.\n", -1);
127 write_string ("However, certainly by the time you receive the 95% warning,\n", -1);
128 write_string ("you should clean up, kill this Emacs, and start a new one.", -1);
129 return Qnil;
130 }
131
132 /* malloc calls this if it finds we are near exhausting storage */
133 malloc_warning (str)
134 char *str;
135 {
136 pending_malloc_warning = str;
137 }
138
139 display_malloc_warning ()
140 {
141 register Lisp_Object val;
142
143 val = build_string (pending_malloc_warning);
144 pending_malloc_warning = 0;
145 internal_with_output_to_temp_buffer (" *Danger*", malloc_warning_1, val);
146 }
147
148 /* Called if malloc returns zero */
149 memory_full ()
150 {
151 error ("Memory exhausted");
152 }
153
154 /* like malloc routines but check for no memory and block interrupt input. */
155
156 long *
157 xmalloc (size)
158 int size;
159 {
160 register long *val;
161
162 BLOCK_INPUT;
163 val = (long *) malloc (size);
164 UNBLOCK_INPUT;
165
166 if (!val && size) memory_full ();
167 return val;
168 }
169
170 long *
171 xrealloc (block, size)
172 long *block;
173 int size;
174 {
175 register long *val;
176
177 BLOCK_INPUT;
178 /* We must call malloc explicitly when BLOCK is 0, since some
179 reallocs don't do this. */
180 if (! block)
181 val = (long *) malloc (size);
182 else
183 val = (long *) realloc (block, size);
184 UNBLOCK_INPUT;
185
186 if (!val && size) memory_full ();
187 return val;
188 }
189
190 void
191 xfree (block)
192 long *block;
193 {
194 BLOCK_INPUT;
195 free (block);
196 UNBLOCK_INPUT;
197 }
198
199 \f
200 /* Arranging to disable input signals while we're in malloc.
201
202 This only works with GNU malloc. To help out systems which can't
203 use GNU malloc, all the calls to malloc, realloc, and free
204 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
205 pairs; unfortunately, we have no idea what C library functions
206 might call malloc, so we can't really protect them unless you're
207 using GNU malloc. Fortunately, most of the major operating can use
208 GNU malloc. */
209
210 #ifndef SYSTEM_MALLOC
211 extern void * (*__malloc_hook) ();
212 static void * (*old_malloc_hook) ();
213 extern void * (*__realloc_hook) ();
214 static void * (*old_realloc_hook) ();
215 extern void (*__free_hook) ();
216 static void (*old_free_hook) ();
217
218 static void
219 emacs_blocked_free (ptr)
220 void *ptr;
221 {
222 BLOCK_INPUT;
223 __free_hook = old_free_hook;
224 free (ptr);
225 __free_hook = emacs_blocked_free;
226 UNBLOCK_INPUT;
227 }
228
229 static void *
230 emacs_blocked_malloc (size)
231 unsigned size;
232 {
233 void *value;
234
235 BLOCK_INPUT;
236 __malloc_hook = old_malloc_hook;
237 value = (void *) malloc (size);
238 __malloc_hook = emacs_blocked_malloc;
239 UNBLOCK_INPUT;
240
241 return value;
242 }
243
244 static void *
245 emacs_blocked_realloc (ptr, size)
246 void *ptr;
247 unsigned size;
248 {
249 void *value;
250
251 BLOCK_INPUT;
252 __realloc_hook = old_realloc_hook;
253 value = (void *) realloc (ptr, size);
254 __realloc_hook = emacs_blocked_realloc;
255 UNBLOCK_INPUT;
256
257 return value;
258 }
259
260 void
261 uninterrupt_malloc ()
262 {
263 old_free_hook = __free_hook;
264 __free_hook = emacs_blocked_free;
265
266 old_malloc_hook = __malloc_hook;
267 __malloc_hook = emacs_blocked_malloc;
268
269 old_realloc_hook = __realloc_hook;
270 __realloc_hook = emacs_blocked_realloc;
271 }
272 #endif
273 \f
274 /* Interval allocation. */
275
276 #ifdef USE_TEXT_PROPERTIES
277 #define INTERVAL_BLOCK_SIZE \
278 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
279
280 struct interval_block
281 {
282 struct interval_block *next;
283 struct interval intervals[INTERVAL_BLOCK_SIZE];
284 };
285
286 struct interval_block *interval_block;
287 static int interval_block_index;
288
289 INTERVAL interval_free_list;
290
291 static void
292 init_intervals ()
293 {
294 interval_block
295 = (struct interval_block *) malloc (sizeof (struct interval_block));
296 interval_block->next = 0;
297 bzero (interval_block->intervals, sizeof interval_block->intervals);
298 interval_block_index = 0;
299 interval_free_list = 0;
300 }
301
302 #define INIT_INTERVALS init_intervals ()
303
304 INTERVAL
305 make_interval ()
306 {
307 INTERVAL val;
308
309 if (interval_free_list)
310 {
311 val = interval_free_list;
312 interval_free_list = interval_free_list->parent;
313 }
314 else
315 {
316 if (interval_block_index == INTERVAL_BLOCK_SIZE)
317 {
318 register struct interval_block *newi
319 = (struct interval_block *) xmalloc (sizeof (struct interval_block));
320
321 VALIDATE_LISP_STORAGE (newi, sizeof *newi);
322 newi->next = interval_block;
323 interval_block = newi;
324 interval_block_index = 0;
325 }
326 val = &interval_block->intervals[interval_block_index++];
327 }
328 consing_since_gc += sizeof (struct interval);
329 RESET_INTERVAL (val);
330 return val;
331 }
332
333 static int total_free_intervals, total_intervals;
334
335 /* Mark the pointers of one interval. */
336
337 static void
338 mark_interval (i, dummy)
339 register INTERVAL i;
340 Lisp_Object dummy;
341 {
342 if (XMARKBIT (i->plist))
343 abort ();
344 mark_object (&i->plist);
345 XMARK (i->plist);
346 }
347
348 static void
349 mark_interval_tree (tree)
350 register INTERVAL tree;
351 {
352 if (XMARKBIT (tree->plist))
353 return;
354
355 traverse_intervals (tree, 1, 0, mark_interval, Qnil);
356 }
357
358 #define MARK_INTERVAL_TREE(i) \
359 { if (!NULL_INTERVAL_P (i)) mark_interval_tree (i); }
360
361 /* The oddity in the call to XUNMARK is necessary because XUNMARK
362 expands to an assignment to its argument, and most C compilers don't
363 support casts on the left operand of `='. */
364 #define UNMARK_BALANCE_INTERVALS(i) \
365 { \
366 if (! NULL_INTERVAL_P (i)) \
367 { \
368 XUNMARK (* (Lisp_Object *) (&(i)->parent)); \
369 (i) = balance_intervals (i); \
370 } \
371 }
372
373 #else /* no interval use */
374
375 #define INIT_INTERVALS
376
377 #define UNMARK_BALANCE_INTERVALS(i)
378 #define MARK_INTERVAL_TREE(i)
379
380 #endif /* no interval use */
381 \f
382 /* Floating point allocation. */
383
384 #ifdef LISP_FLOAT_TYPE
385 /* Allocation of float cells, just like conses */
386 /* We store float cells inside of float_blocks, allocating a new
387 float_block with malloc whenever necessary. Float cells reclaimed by
388 GC are put on a free list to be reallocated before allocating
389 any new float cells from the latest float_block.
390
391 Each float_block is just under 1020 bytes long,
392 since malloc really allocates in units of powers of two
393 and uses 4 bytes for its own overhead. */
394
395 #define FLOAT_BLOCK_SIZE \
396 ((1020 - sizeof (struct float_block *)) / sizeof (struct Lisp_Float))
397
398 struct float_block
399 {
400 struct float_block *next;
401 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
402 };
403
404 struct float_block *float_block;
405 int float_block_index;
406
407 struct Lisp_Float *float_free_list;
408
409 void
410 init_float ()
411 {
412 float_block = (struct float_block *) malloc (sizeof (struct float_block));
413 float_block->next = 0;
414 bzero (float_block->floats, sizeof float_block->floats);
415 float_block_index = 0;
416 float_free_list = 0;
417 }
418
419 /* Explicitly free a float cell. */
420 free_float (ptr)
421 struct Lisp_Float *ptr;
422 {
423 XFASTINT (ptr->type) = (int) float_free_list;
424 float_free_list = ptr;
425 }
426
427 Lisp_Object
428 make_float (float_value)
429 double float_value;
430 {
431 register Lisp_Object val;
432
433 if (float_free_list)
434 {
435 XSET (val, Lisp_Float, float_free_list);
436 float_free_list = (struct Lisp_Float *) XFASTINT (float_free_list->type);
437 }
438 else
439 {
440 if (float_block_index == FLOAT_BLOCK_SIZE)
441 {
442 register struct float_block *new = (struct float_block *) xmalloc (sizeof (struct float_block));
443 VALIDATE_LISP_STORAGE (new, sizeof *new);
444 new->next = float_block;
445 float_block = new;
446 float_block_index = 0;
447 }
448 XSET (val, Lisp_Float, &float_block->floats[float_block_index++]);
449 }
450 XFLOAT (val)->data = float_value;
451 XFLOAT (val)->type = 0; /* bug chasing -wsr */
452 consing_since_gc += sizeof (struct Lisp_Float);
453 return val;
454 }
455
456 #endif /* LISP_FLOAT_TYPE */
457 \f
458 /* Allocation of cons cells */
459 /* We store cons cells inside of cons_blocks, allocating a new
460 cons_block with malloc whenever necessary. Cons cells reclaimed by
461 GC are put on a free list to be reallocated before allocating
462 any new cons cells from the latest cons_block.
463
464 Each cons_block is just under 1020 bytes long,
465 since malloc really allocates in units of powers of two
466 and uses 4 bytes for its own overhead. */
467
468 #define CONS_BLOCK_SIZE \
469 ((1020 - sizeof (struct cons_block *)) / sizeof (struct Lisp_Cons))
470
471 struct cons_block
472 {
473 struct cons_block *next;
474 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
475 };
476
477 struct cons_block *cons_block;
478 int cons_block_index;
479
480 struct Lisp_Cons *cons_free_list;
481
482 void
483 init_cons ()
484 {
485 cons_block = (struct cons_block *) malloc (sizeof (struct cons_block));
486 cons_block->next = 0;
487 bzero (cons_block->conses, sizeof cons_block->conses);
488 cons_block_index = 0;
489 cons_free_list = 0;
490 }
491
492 /* Explicitly free a cons cell. */
493 free_cons (ptr)
494 struct Lisp_Cons *ptr;
495 {
496 XFASTINT (ptr->car) = (int) cons_free_list;
497 cons_free_list = ptr;
498 }
499
500 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
501 "Create a new cons, give it CAR and CDR as components, and return it.")
502 (car, cdr)
503 Lisp_Object car, cdr;
504 {
505 register Lisp_Object val;
506
507 if (cons_free_list)
508 {
509 XSET (val, Lisp_Cons, cons_free_list);
510 cons_free_list = (struct Lisp_Cons *) XFASTINT (cons_free_list->car);
511 }
512 else
513 {
514 if (cons_block_index == CONS_BLOCK_SIZE)
515 {
516 register struct cons_block *new = (struct cons_block *) xmalloc (sizeof (struct cons_block));
517 VALIDATE_LISP_STORAGE (new, sizeof *new);
518 new->next = cons_block;
519 cons_block = new;
520 cons_block_index = 0;
521 }
522 XSET (val, Lisp_Cons, &cons_block->conses[cons_block_index++]);
523 }
524 XCONS (val)->car = car;
525 XCONS (val)->cdr = cdr;
526 consing_since_gc += sizeof (struct Lisp_Cons);
527 return val;
528 }
529
530 DEFUN ("list", Flist, Slist, 0, MANY, 0,
531 "Return a newly created list with specified arguments as elements.\n\
532 Any number of arguments, even zero arguments, are allowed.")
533 (nargs, args)
534 int nargs;
535 register Lisp_Object *args;
536 {
537 register Lisp_Object len, val, val_tail;
538
539 XFASTINT (len) = nargs;
540 val = Fmake_list (len, Qnil);
541 val_tail = val;
542 while (!NILP (val_tail))
543 {
544 XCONS (val_tail)->car = *args++;
545 val_tail = XCONS (val_tail)->cdr;
546 }
547 return val;
548 }
549
550 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
551 "Return a newly created list of length LENGTH, with each element being INIT.")
552 (length, init)
553 register Lisp_Object length, init;
554 {
555 register Lisp_Object val;
556 register int size;
557
558 if (XTYPE (length) != Lisp_Int || XINT (length) < 0)
559 length = wrong_type_argument (Qnatnump, length);
560 size = XINT (length);
561
562 val = Qnil;
563 while (size-- > 0)
564 val = Fcons (init, val);
565 return val;
566 }
567 \f
568 /* Allocation of vectors */
569
570 struct Lisp_Vector *all_vectors;
571
572 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
573 "Return a newly created vector of length LENGTH, with each element being INIT.\n\
574 See also the function `vector'.")
575 (length, init)
576 register Lisp_Object length, init;
577 {
578 register int sizei, index;
579 register Lisp_Object vector;
580 register struct Lisp_Vector *p;
581
582 if (XTYPE (length) != Lisp_Int || XINT (length) < 0)
583 length = wrong_type_argument (Qnatnump, length);
584 sizei = XINT (length);
585
586 p = (struct Lisp_Vector *) xmalloc (sizeof (struct Lisp_Vector) + (sizei - 1) * sizeof (Lisp_Object));
587 VALIDATE_LISP_STORAGE (p, 0);
588
589 XSET (vector, Lisp_Vector, p);
590 consing_since_gc += sizeof (struct Lisp_Vector) + (sizei - 1) * sizeof (Lisp_Object);
591
592 p->size = sizei;
593 p->next = all_vectors;
594 all_vectors = p;
595
596 for (index = 0; index < sizei; index++)
597 p->contents[index] = init;
598
599 return vector;
600 }
601
602 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
603 "Return a newly created vector with specified arguments as elements.\n\
604 Any number of arguments, even zero arguments, are allowed.")
605 (nargs, args)
606 register int nargs;
607 Lisp_Object *args;
608 {
609 register Lisp_Object len, val;
610 register int index;
611 register struct Lisp_Vector *p;
612
613 XFASTINT (len) = nargs;
614 val = Fmake_vector (len, Qnil);
615 p = XVECTOR (val);
616 for (index = 0; index < nargs; index++)
617 p->contents[index] = args[index];
618 return val;
619 }
620
621 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
622 "Create a byte-code object with specified arguments as elements.\n\
623 The arguments should be the arglist, bytecode-string, constant vector,\n\
624 stack size, (optional) doc string, and (optional) interactive spec.\n\
625 The first four arguments are required; at most six have any\n\
626 significance.")
627 (nargs, args)
628 register int nargs;
629 Lisp_Object *args;
630 {
631 register Lisp_Object len, val;
632 register int index;
633 register struct Lisp_Vector *p;
634
635 XFASTINT (len) = nargs;
636 if (!NILP (Vpurify_flag))
637 val = make_pure_vector (len);
638 else
639 val = Fmake_vector (len, Qnil);
640 p = XVECTOR (val);
641 for (index = 0; index < nargs; index++)
642 {
643 if (!NILP (Vpurify_flag))
644 args[index] = Fpurecopy (args[index]);
645 p->contents[index] = args[index];
646 }
647 XSETTYPE (val, Lisp_Compiled);
648 return val;
649 }
650 \f
651 /* Allocation of symbols.
652 Just like allocation of conses!
653
654 Each symbol_block is just under 1020 bytes long,
655 since malloc really allocates in units of powers of two
656 and uses 4 bytes for its own overhead. */
657
658 #define SYMBOL_BLOCK_SIZE \
659 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
660
661 struct symbol_block
662 {
663 struct symbol_block *next;
664 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
665 };
666
667 struct symbol_block *symbol_block;
668 int symbol_block_index;
669
670 struct Lisp_Symbol *symbol_free_list;
671
672 void
673 init_symbol ()
674 {
675 symbol_block = (struct symbol_block *) malloc (sizeof (struct symbol_block));
676 symbol_block->next = 0;
677 bzero (symbol_block->symbols, sizeof symbol_block->symbols);
678 symbol_block_index = 0;
679 symbol_free_list = 0;
680 }
681
682 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
683 "Return a newly allocated uninterned symbol whose name is NAME.\n\
684 Its value and function definition are void, and its property list is nil.")
685 (str)
686 Lisp_Object str;
687 {
688 register Lisp_Object val;
689 register struct Lisp_Symbol *p;
690
691 CHECK_STRING (str, 0);
692
693 if (symbol_free_list)
694 {
695 XSET (val, Lisp_Symbol, symbol_free_list);
696 symbol_free_list
697 = (struct Lisp_Symbol *) XFASTINT (symbol_free_list->value);
698 }
699 else
700 {
701 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
702 {
703 struct symbol_block *new = (struct symbol_block *) xmalloc (sizeof (struct symbol_block));
704 VALIDATE_LISP_STORAGE (new, sizeof *new);
705 new->next = symbol_block;
706 symbol_block = new;
707 symbol_block_index = 0;
708 }
709 XSET (val, Lisp_Symbol, &symbol_block->symbols[symbol_block_index++]);
710 }
711 p = XSYMBOL (val);
712 p->name = XSTRING (str);
713 p->plist = Qnil;
714 p->value = Qunbound;
715 p->function = Qunbound;
716 p->next = 0;
717 consing_since_gc += sizeof (struct Lisp_Symbol);
718 return val;
719 }
720 \f
721 /* Allocation of markers.
722 Works like allocation of conses. */
723
724 #define MARKER_BLOCK_SIZE \
725 ((1020 - sizeof (struct marker_block *)) / sizeof (struct Lisp_Marker))
726
727 struct marker_block
728 {
729 struct marker_block *next;
730 struct Lisp_Marker markers[MARKER_BLOCK_SIZE];
731 };
732
733 struct marker_block *marker_block;
734 int marker_block_index;
735
736 struct Lisp_Marker *marker_free_list;
737
738 void
739 init_marker ()
740 {
741 marker_block = (struct marker_block *) malloc (sizeof (struct marker_block));
742 marker_block->next = 0;
743 bzero (marker_block->markers, sizeof marker_block->markers);
744 marker_block_index = 0;
745 marker_free_list = 0;
746 }
747
748 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
749 "Return a newly allocated marker which does not point at any place.")
750 ()
751 {
752 register Lisp_Object val;
753 register struct Lisp_Marker *p;
754
755 if (marker_free_list)
756 {
757 XSET (val, Lisp_Marker, marker_free_list);
758 marker_free_list
759 = (struct Lisp_Marker *) XFASTINT (marker_free_list->chain);
760 }
761 else
762 {
763 if (marker_block_index == MARKER_BLOCK_SIZE)
764 {
765 struct marker_block *new = (struct marker_block *) xmalloc (sizeof (struct marker_block));
766 VALIDATE_LISP_STORAGE (new, sizeof *new);
767 new->next = marker_block;
768 marker_block = new;
769 marker_block_index = 0;
770 }
771 XSET (val, Lisp_Marker, &marker_block->markers[marker_block_index++]);
772 }
773 p = XMARKER (val);
774 p->buffer = 0;
775 p->bufpos = 0;
776 p->chain = Qnil;
777 consing_since_gc += sizeof (struct Lisp_Marker);
778 return val;
779 }
780 \f
781 /* Allocation of strings */
782
783 /* Strings reside inside of string_blocks. The entire data of the string,
784 both the size and the contents, live in part of the `chars' component of a string_block.
785 The `pos' component is the index within `chars' of the first free byte.
786
787 first_string_block points to the first string_block ever allocated.
788 Each block points to the next one with its `next' field.
789 The `prev' fields chain in reverse order.
790 The last one allocated is the one currently being filled.
791 current_string_block points to it.
792
793 The string_blocks that hold individual large strings
794 go in a separate chain, started by large_string_blocks. */
795
796
797 /* String blocks contain this many useful bytes.
798 8188 is power of 2, minus 4 for malloc overhead. */
799 #define STRING_BLOCK_SIZE (8188 - sizeof (struct string_block_head))
800
801 /* A string bigger than this gets its own specially-made string block
802 if it doesn't fit in the current one. */
803 #define STRING_BLOCK_OUTSIZE 1024
804
805 struct string_block_head
806 {
807 struct string_block *next, *prev;
808 int pos;
809 };
810
811 struct string_block
812 {
813 struct string_block *next, *prev;
814 int pos;
815 char chars[STRING_BLOCK_SIZE];
816 };
817
818 /* This points to the string block we are now allocating strings. */
819
820 struct string_block *current_string_block;
821
822 /* This points to the oldest string block, the one that starts the chain. */
823
824 struct string_block *first_string_block;
825
826 /* Last string block in chain of those made for individual large strings. */
827
828 struct string_block *large_string_blocks;
829
830 /* If SIZE is the length of a string, this returns how many bytes
831 the string occupies in a string_block (including padding). */
832
833 #define STRING_FULLSIZE(size) (((size) + sizeof (struct Lisp_String) + PAD) \
834 & ~(PAD - 1))
835 #define PAD (sizeof (int))
836
837 #if 0
838 #define STRING_FULLSIZE(SIZE) \
839 (((SIZE) + 2 * sizeof (int)) & ~(sizeof (int) - 1))
840 #endif
841
842 void
843 init_strings ()
844 {
845 current_string_block = (struct string_block *) malloc (sizeof (struct string_block));
846 first_string_block = current_string_block;
847 consing_since_gc += sizeof (struct string_block);
848 current_string_block->next = 0;
849 current_string_block->prev = 0;
850 current_string_block->pos = 0;
851 large_string_blocks = 0;
852 }
853
854 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
855 "Return a newly created string of length LENGTH, with each element being INIT.\n\
856 Both LENGTH and INIT must be numbers.")
857 (length, init)
858 Lisp_Object length, init;
859 {
860 register Lisp_Object val;
861 register unsigned char *p, *end, c;
862
863 if (XTYPE (length) != Lisp_Int || XINT (length) < 0)
864 length = wrong_type_argument (Qnatnump, length);
865 CHECK_NUMBER (init, 1);
866 val = make_uninit_string (XINT (length));
867 c = XINT (init);
868 p = XSTRING (val)->data;
869 end = p + XSTRING (val)->size;
870 while (p != end)
871 *p++ = c;
872 *p = 0;
873 return val;
874 }
875
876 Lisp_Object
877 make_string (contents, length)
878 char *contents;
879 int length;
880 {
881 register Lisp_Object val;
882 val = make_uninit_string (length);
883 bcopy (contents, XSTRING (val)->data, length);
884 return val;
885 }
886
887 Lisp_Object
888 build_string (str)
889 char *str;
890 {
891 return make_string (str, strlen (str));
892 }
893
894 Lisp_Object
895 make_uninit_string (length)
896 int length;
897 {
898 register Lisp_Object val;
899 register int fullsize = STRING_FULLSIZE (length);
900
901 if (length < 0) abort ();
902
903 if (fullsize <= STRING_BLOCK_SIZE - current_string_block->pos)
904 /* This string can fit in the current string block */
905 {
906 XSET (val, Lisp_String,
907 (struct Lisp_String *) (current_string_block->chars + current_string_block->pos));
908 current_string_block->pos += fullsize;
909 }
910 else if (fullsize > STRING_BLOCK_OUTSIZE)
911 /* This string gets its own string block */
912 {
913 register struct string_block *new
914 = (struct string_block *) xmalloc (sizeof (struct string_block_head) + fullsize);
915 VALIDATE_LISP_STORAGE (new, 0);
916 consing_since_gc += sizeof (struct string_block_head) + fullsize;
917 new->pos = fullsize;
918 new->next = large_string_blocks;
919 large_string_blocks = new;
920 XSET (val, Lisp_String,
921 (struct Lisp_String *) ((struct string_block_head *)new + 1));
922 }
923 else
924 /* Make a new current string block and start it off with this string */
925 {
926 register struct string_block *new
927 = (struct string_block *) xmalloc (sizeof (struct string_block));
928 VALIDATE_LISP_STORAGE (new, sizeof *new);
929 consing_since_gc += sizeof (struct string_block);
930 current_string_block->next = new;
931 new->prev = current_string_block;
932 new->next = 0;
933 current_string_block = new;
934 new->pos = fullsize;
935 XSET (val, Lisp_String,
936 (struct Lisp_String *) current_string_block->chars);
937 }
938
939 XSTRING (val)->size = length;
940 XSTRING (val)->data[length] = 0;
941 INITIALIZE_INTERVAL (XSTRING (val), NULL_INTERVAL);
942
943 return val;
944 }
945
946 /* Return a newly created vector or string with specified arguments as
947 elements. If all the arguments are characters that can fit
948 in a string of events, make a string; otherwise, make a vector.
949
950 Any number of arguments, even zero arguments, are allowed. */
951
952 Lisp_Object
953 make_event_array (nargs, args)
954 register int nargs;
955 Lisp_Object *args;
956 {
957 int i;
958
959 for (i = 0; i < nargs; i++)
960 /* The things that fit in a string
961 are characters that are in 0...127,
962 after discarding the meta bit and all the bits above it. */
963 if (XTYPE (args[i]) != Lisp_Int
964 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
965 return Fvector (nargs, args);
966
967 /* Since the loop exited, we know that all the things in it are
968 characters, so we can make a string. */
969 {
970 Lisp_Object result = Fmake_string (nargs, make_number (0));
971
972 for (i = 0; i < nargs; i++)
973 {
974 XSTRING (result)->data[i] = XINT (args[i]);
975 /* Move the meta bit to the right place for a string char. */
976 if (XINT (args[i]) & CHAR_META)
977 XSTRING (result)->data[i] |= 0x80;
978 }
979
980 return result;
981 }
982 }
983 \f
984 /* Pure storage management. */
985
986 /* Must get an error if pure storage is full,
987 since if it cannot hold a large string
988 it may be able to hold conses that point to that string;
989 then the string is not protected from gc. */
990
991 Lisp_Object
992 make_pure_string (data, length)
993 char *data;
994 int length;
995 {
996 register Lisp_Object new;
997 register int size = sizeof (int) + INTERVAL_PTR_SIZE + length + 1;
998
999 if (pureptr + size > PURESIZE)
1000 error ("Pure Lisp storage exhausted");
1001 XSET (new, Lisp_String, PUREBEG + pureptr);
1002 XSTRING (new)->size = length;
1003 bcopy (data, XSTRING (new)->data, length);
1004 XSTRING (new)->data[length] = 0;
1005 pureptr += (size + sizeof (int) - 1)
1006 / sizeof (int) * sizeof (int);
1007 return new;
1008 }
1009
1010 Lisp_Object
1011 pure_cons (car, cdr)
1012 Lisp_Object car, cdr;
1013 {
1014 register Lisp_Object new;
1015
1016 if (pureptr + sizeof (struct Lisp_Cons) > PURESIZE)
1017 error ("Pure Lisp storage exhausted");
1018 XSET (new, Lisp_Cons, PUREBEG + pureptr);
1019 pureptr += sizeof (struct Lisp_Cons);
1020 XCONS (new)->car = Fpurecopy (car);
1021 XCONS (new)->cdr = Fpurecopy (cdr);
1022 return new;
1023 }
1024
1025 #ifdef LISP_FLOAT_TYPE
1026
1027 Lisp_Object
1028 make_pure_float (num)
1029 double num;
1030 {
1031 register Lisp_Object new;
1032
1033 /* Make sure that PUREBEG + pureptr is aligned on at least a sizeof
1034 (double) boundary. Some architectures (like the sparc) require
1035 this, and I suspect that floats are rare enough that it's no
1036 tragedy for those that do. */
1037 {
1038 int alignment;
1039 char *p = PUREBEG + pureptr;
1040
1041 #ifdef __GNUC__
1042 #if __GNUC__ >= 2
1043 alignment = __alignof (struct Lisp_Float);
1044 #else
1045 alignment = sizeof (struct Lisp_Float);
1046 #endif
1047 #else
1048 alignment = sizeof (struct Lisp_Float);
1049 #endif
1050 p = (char *) (((unsigned long) p + alignment - 1) & - alignment);
1051 pureptr = p - PUREBEG;
1052 }
1053
1054 if (pureptr + sizeof (struct Lisp_Float) > PURESIZE)
1055 error ("Pure Lisp storage exhausted");
1056 XSET (new, Lisp_Float, PUREBEG + pureptr);
1057 pureptr += sizeof (struct Lisp_Float);
1058 XFLOAT (new)->data = num;
1059 XFLOAT (new)->type = 0; /* bug chasing -wsr */
1060 return new;
1061 }
1062
1063 #endif /* LISP_FLOAT_TYPE */
1064
1065 Lisp_Object
1066 make_pure_vector (len)
1067 int len;
1068 {
1069 register Lisp_Object new;
1070 register int size = sizeof (struct Lisp_Vector) + (len - 1) * sizeof (Lisp_Object);
1071
1072 if (pureptr + size > PURESIZE)
1073 error ("Pure Lisp storage exhausted");
1074
1075 XSET (new, Lisp_Vector, PUREBEG + pureptr);
1076 pureptr += size;
1077 XVECTOR (new)->size = len;
1078 return new;
1079 }
1080
1081 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
1082 "Make a copy of OBJECT in pure storage.\n\
1083 Recursively copies contents of vectors and cons cells.\n\
1084 Does not copy symbols.")
1085 (obj)
1086 register Lisp_Object obj;
1087 {
1088 register Lisp_Object new, tem;
1089 register int i;
1090
1091 if (NILP (Vpurify_flag))
1092 return obj;
1093
1094 if ((PNTR_COMPARISON_TYPE) XPNTR (obj) < (PNTR_COMPARISON_TYPE) ((char *) pure + PURESIZE)
1095 && (PNTR_COMPARISON_TYPE) XPNTR (obj) >= (PNTR_COMPARISON_TYPE) pure)
1096 return obj;
1097
1098 #ifdef SWITCH_ENUM_BUG
1099 switch ((int) XTYPE (obj))
1100 #else
1101 switch (XTYPE (obj))
1102 #endif
1103 {
1104 case Lisp_Marker:
1105 error ("Attempt to copy a marker to pure storage");
1106
1107 case Lisp_Cons:
1108 return pure_cons (XCONS (obj)->car, XCONS (obj)->cdr);
1109
1110 #ifdef LISP_FLOAT_TYPE
1111 case Lisp_Float:
1112 return make_pure_float (XFLOAT (obj)->data);
1113 #endif /* LISP_FLOAT_TYPE */
1114
1115 case Lisp_String:
1116 return make_pure_string (XSTRING (obj)->data, XSTRING (obj)->size);
1117
1118 case Lisp_Compiled:
1119 case Lisp_Vector:
1120 new = make_pure_vector (XVECTOR (obj)->size);
1121 for (i = 0; i < XVECTOR (obj)->size; i++)
1122 {
1123 tem = XVECTOR (obj)->contents[i];
1124 XVECTOR (new)->contents[i] = Fpurecopy (tem);
1125 }
1126 XSETTYPE (new, XTYPE (obj));
1127 return new;
1128
1129 default:
1130 return obj;
1131 }
1132 }
1133 \f
1134 /* Recording what needs to be marked for gc. */
1135
1136 struct gcpro *gcprolist;
1137
1138 #define NSTATICS 512
1139
1140 Lisp_Object *staticvec[NSTATICS] = {0};
1141
1142 int staticidx = 0;
1143
1144 /* Put an entry in staticvec, pointing at the variable whose address is given */
1145
1146 void
1147 staticpro (varaddress)
1148 Lisp_Object *varaddress;
1149 {
1150 staticvec[staticidx++] = varaddress;
1151 if (staticidx >= NSTATICS)
1152 abort ();
1153 }
1154
1155 struct catchtag
1156 {
1157 Lisp_Object tag;
1158 Lisp_Object val;
1159 struct catchtag *next;
1160 /* jmp_buf jmp; /* We don't need this for GC purposes */
1161 };
1162
1163 struct backtrace
1164 {
1165 struct backtrace *next;
1166 Lisp_Object *function;
1167 Lisp_Object *args; /* Points to vector of args. */
1168 int nargs; /* length of vector */
1169 /* if nargs is UNEVALLED, args points to slot holding list of unevalled args */
1170 char evalargs;
1171 };
1172
1173 /* Two flags that are set during GC in the `size' component
1174 of a string or vector. On some machines, these flags
1175 are defined by the m- file to be different bits. */
1176
1177 /* On vector, means it has been marked.
1178 On string size field or a reference to a string,
1179 means not the last reference in the chain. */
1180
1181 #ifndef ARRAY_MARK_FLAG
1182 #define ARRAY_MARK_FLAG ((MARKBIT >> 1) & ~MARKBIT)
1183 #endif /* no ARRAY_MARK_FLAG */
1184
1185 /* Any slot that is a Lisp_Object can point to a string
1186 and thus can be put on a string's reference-chain
1187 and thus may need to have its ARRAY_MARK_FLAG set.
1188 This includes the slots whose markbits are used to mark
1189 the containing objects. */
1190
1191 #if ARRAY_MARK_FLAG == MARKBIT
1192 you lose
1193 #endif
1194 \f
1195 /* Garbage collection! */
1196
1197 int total_conses, total_markers, total_symbols, total_string_size, total_vector_size;
1198 int total_free_conses, total_free_markers, total_free_symbols;
1199 #ifdef LISP_FLOAT_TYPE
1200 int total_free_floats, total_floats;
1201 #endif /* LISP_FLOAT_TYPE */
1202
1203 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
1204 "Reclaim storage for Lisp objects no longer needed.\n\
1205 Returns info on amount of space in use:\n\
1206 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)\n\
1207 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS\n\
1208 (USED-FLOATS . FREE-FLOATS))\n\
1209 Garbage collection happens automatically if you cons more than\n\
1210 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.")
1211 ()
1212 {
1213 register struct gcpro *tail;
1214 register struct specbinding *bind;
1215 struct catchtag *catch;
1216 struct handler *handler;
1217 register struct backtrace *backlist;
1218 register Lisp_Object tem;
1219 char *omessage = echo_area_glyphs;
1220 char stack_top_variable;
1221 register int i;
1222
1223 /* Save a copy of the contents of the stack, for debugging. */
1224 #if MAX_SAVE_STACK > 0
1225 if (NILP (Vpurify_flag))
1226 {
1227 i = &stack_top_variable - stack_bottom;
1228 if (i < 0) i = -i;
1229 if (i < MAX_SAVE_STACK)
1230 {
1231 if (stack_copy == 0)
1232 stack_copy = (char *) xmalloc (stack_copy_size = i);
1233 else if (stack_copy_size < i)
1234 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
1235 if (stack_copy)
1236 {
1237 if ((int) (&stack_top_variable - stack_bottom) > 0)
1238 bcopy (stack_bottom, stack_copy, i);
1239 else
1240 bcopy (&stack_top_variable, stack_copy, i);
1241 }
1242 }
1243 }
1244 #endif /* MAX_SAVE_STACK > 0 */
1245
1246 if (!noninteractive)
1247 message1 ("Garbage collecting...");
1248
1249 /* Don't keep command history around forever */
1250 tem = Fnthcdr (make_number (30), Vcommand_history);
1251 if (CONSP (tem))
1252 XCONS (tem)->cdr = Qnil;
1253
1254 /* Likewise for undo information. */
1255 {
1256 register struct buffer *nextb = all_buffers;
1257
1258 while (nextb)
1259 {
1260 /* If a buffer's undo list is Qt, that means that undo is
1261 turned off in that buffer. Calling truncate_undo_list on
1262 Qt tends to return NULL, which effectively turns undo back on.
1263 So don't call truncate_undo_list if undo_list is Qt. */
1264 if (! EQ (nextb->undo_list, Qt))
1265 nextb->undo_list
1266 = truncate_undo_list (nextb->undo_list, undo_limit,
1267 undo_strong_limit);
1268 nextb = nextb->next;
1269 }
1270 }
1271
1272 gc_in_progress = 1;
1273
1274 /* clear_marks (); */
1275
1276 /* In each "large string", set the MARKBIT of the size field.
1277 That enables mark_object to recognize them. */
1278 {
1279 register struct string_block *b;
1280 for (b = large_string_blocks; b; b = b->next)
1281 ((struct Lisp_String *)(&b->chars[0]))->size |= MARKBIT;
1282 }
1283
1284 /* Mark all the special slots that serve as the roots of accessibility.
1285
1286 Usually the special slots to mark are contained in particular structures.
1287 Then we know no slot is marked twice because the structures don't overlap.
1288 In some cases, the structures point to the slots to be marked.
1289 For these, we use MARKBIT to avoid double marking of the slot. */
1290
1291 for (i = 0; i < staticidx; i++)
1292 mark_object (staticvec[i]);
1293 for (tail = gcprolist; tail; tail = tail->next)
1294 for (i = 0; i < tail->nvars; i++)
1295 if (!XMARKBIT (tail->var[i]))
1296 {
1297 mark_object (&tail->var[i]);
1298 XMARK (tail->var[i]);
1299 }
1300 for (bind = specpdl; bind != specpdl_ptr; bind++)
1301 {
1302 mark_object (&bind->symbol);
1303 mark_object (&bind->old_value);
1304 }
1305 for (catch = catchlist; catch; catch = catch->next)
1306 {
1307 mark_object (&catch->tag);
1308 mark_object (&catch->val);
1309 }
1310 for (handler = handlerlist; handler; handler = handler->next)
1311 {
1312 mark_object (&handler->handler);
1313 mark_object (&handler->var);
1314 }
1315 for (backlist = backtrace_list; backlist; backlist = backlist->next)
1316 {
1317 if (!XMARKBIT (*backlist->function))
1318 {
1319 mark_object (backlist->function);
1320 XMARK (*backlist->function);
1321 }
1322 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
1323 i = 0;
1324 else
1325 i = backlist->nargs - 1;
1326 for (; i >= 0; i--)
1327 if (!XMARKBIT (backlist->args[i]))
1328 {
1329 mark_object (&backlist->args[i]);
1330 XMARK (backlist->args[i]);
1331 }
1332 }
1333
1334 gc_sweep ();
1335
1336 /* Clear the mark bits that we set in certain root slots. */
1337
1338 for (tail = gcprolist; tail; tail = tail->next)
1339 for (i = 0; i < tail->nvars; i++)
1340 XUNMARK (tail->var[i]);
1341 for (backlist = backtrace_list; backlist; backlist = backlist->next)
1342 {
1343 XUNMARK (*backlist->function);
1344 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
1345 i = 0;
1346 else
1347 i = backlist->nargs - 1;
1348 for (; i >= 0; i--)
1349 XUNMARK (backlist->args[i]);
1350 }
1351 XUNMARK (buffer_defaults.name);
1352 XUNMARK (buffer_local_symbols.name);
1353
1354 /* clear_marks (); */
1355 gc_in_progress = 0;
1356
1357 consing_since_gc = 0;
1358 if (gc_cons_threshold < 10000)
1359 gc_cons_threshold = 10000;
1360
1361 if (omessage)
1362 message1 (omessage);
1363 else if (!noninteractive)
1364 message1 ("Garbage collecting...done");
1365
1366 return Fcons (Fcons (make_number (total_conses),
1367 make_number (total_free_conses)),
1368 Fcons (Fcons (make_number (total_symbols),
1369 make_number (total_free_symbols)),
1370 Fcons (Fcons (make_number (total_markers),
1371 make_number (total_free_markers)),
1372 Fcons (make_number (total_string_size),
1373 Fcons (make_number (total_vector_size),
1374
1375 #ifdef LISP_FLOAT_TYPE
1376 Fcons (Fcons (make_number (total_floats),
1377 make_number (total_free_floats)),
1378 Qnil)
1379 #else /* not LISP_FLOAT_TYPE */
1380 Qnil
1381 #endif /* not LISP_FLOAT_TYPE */
1382 )))));
1383 }
1384 \f
1385 #if 0
1386 static void
1387 clear_marks ()
1388 {
1389 /* Clear marks on all conses */
1390 {
1391 register struct cons_block *cblk;
1392 register int lim = cons_block_index;
1393
1394 for (cblk = cons_block; cblk; cblk = cblk->next)
1395 {
1396 register int i;
1397 for (i = 0; i < lim; i++)
1398 XUNMARK (cblk->conses[i].car);
1399 lim = CONS_BLOCK_SIZE;
1400 }
1401 }
1402 /* Clear marks on all symbols */
1403 {
1404 register struct symbol_block *sblk;
1405 register int lim = symbol_block_index;
1406
1407 for (sblk = symbol_block; sblk; sblk = sblk->next)
1408 {
1409 register int i;
1410 for (i = 0; i < lim; i++)
1411 {
1412 XUNMARK (sblk->symbols[i].plist);
1413 }
1414 lim = SYMBOL_BLOCK_SIZE;
1415 }
1416 }
1417 /* Clear marks on all markers */
1418 {
1419 register struct marker_block *sblk;
1420 register int lim = marker_block_index;
1421
1422 for (sblk = marker_block; sblk; sblk = sblk->next)
1423 {
1424 register int i;
1425 for (i = 0; i < lim; i++)
1426 XUNMARK (sblk->markers[i].chain);
1427 lim = MARKER_BLOCK_SIZE;
1428 }
1429 }
1430 /* Clear mark bits on all buffers */
1431 {
1432 register struct buffer *nextb = all_buffers;
1433
1434 while (nextb)
1435 {
1436 XUNMARK (nextb->name);
1437 nextb = nextb->next;
1438 }
1439 }
1440 }
1441 #endif
1442 \f
1443 /* Mark reference to a Lisp_Object.
1444 If the object referred to has not been seen yet, recursively mark
1445 all the references contained in it.
1446
1447 If the object referenced is a short string, the referencing slot
1448 is threaded into a chain of such slots, pointed to from
1449 the `size' field of the string. The actual string size
1450 lives in the last slot in the chain. We recognize the end
1451 because it is < (unsigned) STRING_BLOCK_SIZE. */
1452
1453 #define LAST_MARKED_SIZE 500
1454 Lisp_Object *last_marked[LAST_MARKED_SIZE];
1455 int last_marked_index;
1456
1457 static void
1458 mark_object (objptr)
1459 Lisp_Object *objptr;
1460 {
1461 register Lisp_Object obj;
1462
1463 obj = *objptr;
1464 XUNMARK (obj);
1465
1466 loop:
1467
1468 if ((PNTR_COMPARISON_TYPE) XPNTR (obj) < (PNTR_COMPARISON_TYPE) ((char *) pure + PURESIZE)
1469 && (PNTR_COMPARISON_TYPE) XPNTR (obj) >= (PNTR_COMPARISON_TYPE) pure)
1470 return;
1471
1472 last_marked[last_marked_index++] = objptr;
1473 if (last_marked_index == LAST_MARKED_SIZE)
1474 last_marked_index = 0;
1475
1476 #ifdef SWITCH_ENUM_BUG
1477 switch ((int) XGCTYPE (obj))
1478 #else
1479 switch (XGCTYPE (obj))
1480 #endif
1481 {
1482 case Lisp_String:
1483 {
1484 register struct Lisp_String *ptr = XSTRING (obj);
1485
1486 MARK_INTERVAL_TREE (ptr->intervals);
1487 if (ptr->size & MARKBIT)
1488 /* A large string. Just set ARRAY_MARK_FLAG. */
1489 ptr->size |= ARRAY_MARK_FLAG;
1490 else
1491 {
1492 /* A small string. Put this reference
1493 into the chain of references to it.
1494 The address OBJPTR is even, so if the address
1495 includes MARKBIT, put it in the low bit
1496 when we store OBJPTR into the size field. */
1497
1498 if (XMARKBIT (*objptr))
1499 {
1500 XFASTINT (*objptr) = ptr->size;
1501 XMARK (*objptr);
1502 }
1503 else
1504 XFASTINT (*objptr) = ptr->size;
1505 if ((int)objptr & 1) abort ();
1506 ptr->size = (int) objptr & ~MARKBIT;
1507 if ((int) objptr & MARKBIT)
1508 ptr->size ++;
1509 }
1510 }
1511 break;
1512
1513 case Lisp_Vector:
1514 case Lisp_Window:
1515 case Lisp_Process:
1516 case Lisp_Window_Configuration:
1517 {
1518 register struct Lisp_Vector *ptr = XVECTOR (obj);
1519 register int size = ptr->size;
1520 struct Lisp_Vector *volatile ptr1 = ptr;
1521 register int i;
1522
1523 if (size & ARRAY_MARK_FLAG) break; /* Already marked */
1524 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
1525 for (i = 0; i < size; i++) /* and then mark its elements */
1526 {
1527 if (ptr != ptr1)
1528 abort ();
1529 mark_object (&ptr->contents[i]);
1530 }
1531 }
1532 break;
1533
1534 case Lisp_Compiled:
1535 /* We could treat this just like a vector, but it is better
1536 to save the COMPILED_CONSTANTS element for last and avoid recursion
1537 there. */
1538 {
1539 register struct Lisp_Vector *ptr = XVECTOR (obj);
1540 register int size = ptr->size;
1541 struct Lisp_Vector *volatile ptr1 = ptr;
1542 register int i;
1543
1544 if (size & ARRAY_MARK_FLAG) break; /* Already marked */
1545 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
1546 for (i = 0; i < size; i++) /* and then mark its elements */
1547 {
1548 if (ptr != ptr1)
1549 abort ();
1550 if (i != COMPILED_CONSTANTS)
1551 mark_object (&ptr->contents[i]);
1552 }
1553 objptr = &ptr->contents[COMPILED_CONSTANTS];
1554 obj = *objptr;
1555 goto loop;
1556 }
1557
1558 #ifdef MULTI_FRAME
1559 case Lisp_Frame:
1560 {
1561 register struct frame *ptr = XFRAME (obj);
1562 register int size = ptr->size;
1563
1564 if (size & ARRAY_MARK_FLAG) break; /* Already marked */
1565 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
1566
1567 mark_object (&ptr->name);
1568 mark_object (&ptr->focus_frame);
1569 mark_object (&ptr->width);
1570 mark_object (&ptr->height);
1571 mark_object (&ptr->selected_window);
1572 mark_object (&ptr->minibuffer_window);
1573 mark_object (&ptr->param_alist);
1574 mark_object (&ptr->scroll_bars);
1575 mark_object (&ptr->condemned_scroll_bars);
1576 mark_object (&ptr->menu_bar_items);
1577 mark_object (&ptr->face_alist);
1578 }
1579 break;
1580 #endif /* MULTI_FRAME */
1581
1582 case Lisp_Symbol:
1583 {
1584 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
1585 struct Lisp_Symbol *ptrx;
1586
1587 if (XMARKBIT (ptr->plist)) break;
1588 XMARK (ptr->plist);
1589 mark_object ((Lisp_Object *) &ptr->value);
1590 mark_object (&ptr->function);
1591 mark_object (&ptr->plist);
1592 XSETTYPE (*(Lisp_Object *) &ptr->name, Lisp_String);
1593 mark_object (&ptr->name);
1594 ptr = ptr->next;
1595 if (ptr)
1596 {
1597 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
1598 XSETSYMBOL (obj, ptrx);
1599 goto loop;
1600 }
1601 }
1602 break;
1603
1604 case Lisp_Marker:
1605 XMARK (XMARKER (obj)->chain);
1606 /* DO NOT mark thru the marker's chain.
1607 The buffer's markers chain does not preserve markers from gc;
1608 instead, markers are removed from the chain when freed by gc. */
1609 break;
1610
1611 case Lisp_Cons:
1612 case Lisp_Buffer_Local_Value:
1613 case Lisp_Some_Buffer_Local_Value:
1614 case Lisp_Overlay:
1615 {
1616 register struct Lisp_Cons *ptr = XCONS (obj);
1617 if (XMARKBIT (ptr->car)) break;
1618 XMARK (ptr->car);
1619 /* If the cdr is nil, avoid recursion for the car. */
1620 if (EQ (ptr->cdr, Qnil))
1621 {
1622 objptr = &ptr->car;
1623 obj = ptr->car;
1624 XUNMARK (obj);
1625 goto loop;
1626 }
1627 if (ptr == 0)
1628 abort ();
1629 mark_object (&ptr->car);
1630 if (ptr == 0)
1631 abort ();
1632 objptr = &ptr->cdr;
1633 obj = ptr->cdr;
1634 goto loop;
1635 }
1636
1637 #ifdef LISP_FLOAT_TYPE
1638 case Lisp_Float:
1639 XMARK (XFLOAT (obj)->type);
1640 break;
1641 #endif /* LISP_FLOAT_TYPE */
1642
1643 case Lisp_Buffer:
1644 if (!XMARKBIT (XBUFFER (obj)->name))
1645 mark_buffer (obj);
1646 break;
1647
1648 case Lisp_Int:
1649 case Lisp_Void:
1650 case Lisp_Subr:
1651 case Lisp_Intfwd:
1652 case Lisp_Boolfwd:
1653 case Lisp_Objfwd:
1654 case Lisp_Buffer_Objfwd:
1655 case Lisp_Internal_Stream:
1656 /* Don't bother with Lisp_Buffer_Objfwd,
1657 since all markable slots in current buffer marked anyway. */
1658 /* Don't need to do Lisp_Objfwd, since the places they point
1659 are protected with staticpro. */
1660 break;
1661
1662 default:
1663 abort ();
1664 }
1665 }
1666
1667 /* Mark the pointers in a buffer structure. */
1668
1669 static void
1670 mark_buffer (buf)
1671 Lisp_Object buf;
1672 {
1673 register struct buffer *buffer = XBUFFER (buf);
1674 register Lisp_Object *ptr;
1675
1676 /* This is the buffer's markbit */
1677 mark_object (&buffer->name);
1678 XMARK (buffer->name);
1679
1680 MARK_INTERVAL_TREE (buffer->intervals);
1681
1682 #if 0
1683 mark_object (buffer->syntax_table);
1684
1685 /* Mark the various string-pointers in the buffer object.
1686 Since the strings may be relocated, we must mark them
1687 in their actual slots. So gc_sweep must convert each slot
1688 back to an ordinary C pointer. */
1689 XSET (*(Lisp_Object *)&buffer->upcase_table,
1690 Lisp_String, buffer->upcase_table);
1691 mark_object ((Lisp_Object *)&buffer->upcase_table);
1692 XSET (*(Lisp_Object *)&buffer->downcase_table,
1693 Lisp_String, buffer->downcase_table);
1694 mark_object ((Lisp_Object *)&buffer->downcase_table);
1695
1696 XSET (*(Lisp_Object *)&buffer->sort_table,
1697 Lisp_String, buffer->sort_table);
1698 mark_object ((Lisp_Object *)&buffer->sort_table);
1699 XSET (*(Lisp_Object *)&buffer->folding_sort_table,
1700 Lisp_String, buffer->folding_sort_table);
1701 mark_object ((Lisp_Object *)&buffer->folding_sort_table);
1702 #endif
1703
1704 for (ptr = &buffer->name + 1;
1705 (char *)ptr < (char *)buffer + sizeof (struct buffer);
1706 ptr++)
1707 mark_object (ptr);
1708 }
1709 \f
1710 /* Sweep: find all structures not marked, and free them. */
1711
1712 static void
1713 gc_sweep ()
1714 {
1715 total_string_size = 0;
1716 compact_strings ();
1717
1718 /* Put all unmarked conses on free list */
1719 {
1720 register struct cons_block *cblk;
1721 register int lim = cons_block_index;
1722 register int num_free = 0, num_used = 0;
1723
1724 cons_free_list = 0;
1725
1726 for (cblk = cons_block; cblk; cblk = cblk->next)
1727 {
1728 register int i;
1729 for (i = 0; i < lim; i++)
1730 if (!XMARKBIT (cblk->conses[i].car))
1731 {
1732 XFASTINT (cblk->conses[i].car) = (int) cons_free_list;
1733 num_free++;
1734 cons_free_list = &cblk->conses[i];
1735 }
1736 else
1737 {
1738 num_used++;
1739 XUNMARK (cblk->conses[i].car);
1740 }
1741 lim = CONS_BLOCK_SIZE;
1742 }
1743 total_conses = num_used;
1744 total_free_conses = num_free;
1745 }
1746
1747 #ifdef LISP_FLOAT_TYPE
1748 /* Put all unmarked floats on free list */
1749 {
1750 register struct float_block *fblk;
1751 register int lim = float_block_index;
1752 register int num_free = 0, num_used = 0;
1753
1754 float_free_list = 0;
1755
1756 for (fblk = float_block; fblk; fblk = fblk->next)
1757 {
1758 register int i;
1759 for (i = 0; i < lim; i++)
1760 if (!XMARKBIT (fblk->floats[i].type))
1761 {
1762 XFASTINT (fblk->floats[i].type) = (int) float_free_list;
1763 num_free++;
1764 float_free_list = &fblk->floats[i];
1765 }
1766 else
1767 {
1768 num_used++;
1769 XUNMARK (fblk->floats[i].type);
1770 }
1771 lim = FLOAT_BLOCK_SIZE;
1772 }
1773 total_floats = num_used;
1774 total_free_floats = num_free;
1775 }
1776 #endif /* LISP_FLOAT_TYPE */
1777
1778 #ifdef USE_TEXT_PROPERTIES
1779 /* Put all unmarked intervals on free list */
1780 {
1781 register struct interval_block *iblk;
1782 register int lim = interval_block_index;
1783 register int num_free = 0, num_used = 0;
1784
1785 interval_free_list = 0;
1786
1787 for (iblk = interval_block; iblk; iblk = iblk->next)
1788 {
1789 register int i;
1790
1791 for (i = 0; i < lim; i++)
1792 {
1793 if (! XMARKBIT (iblk->intervals[i].plist))
1794 {
1795 iblk->intervals[i].parent = interval_free_list;
1796 interval_free_list = &iblk->intervals[i];
1797 num_free++;
1798 }
1799 else
1800 {
1801 num_used++;
1802 XUNMARK (iblk->intervals[i].plist);
1803 }
1804 }
1805 lim = INTERVAL_BLOCK_SIZE;
1806 }
1807 total_intervals = num_used;
1808 total_free_intervals = num_free;
1809 }
1810 #endif /* USE_TEXT_PROPERTIES */
1811
1812 /* Put all unmarked symbols on free list */
1813 {
1814 register struct symbol_block *sblk;
1815 register int lim = symbol_block_index;
1816 register int num_free = 0, num_used = 0;
1817
1818 symbol_free_list = 0;
1819
1820 for (sblk = symbol_block; sblk; sblk = sblk->next)
1821 {
1822 register int i;
1823 for (i = 0; i < lim; i++)
1824 if (!XMARKBIT (sblk->symbols[i].plist))
1825 {
1826 XFASTINT (sblk->symbols[i].value) = (int) symbol_free_list;
1827 symbol_free_list = &sblk->symbols[i];
1828 num_free++;
1829 }
1830 else
1831 {
1832 num_used++;
1833 sblk->symbols[i].name
1834 = XSTRING (*(Lisp_Object *) &sblk->symbols[i].name);
1835 XUNMARK (sblk->symbols[i].plist);
1836 }
1837 lim = SYMBOL_BLOCK_SIZE;
1838 }
1839 total_symbols = num_used;
1840 total_free_symbols = num_free;
1841 }
1842
1843 #ifndef standalone
1844 /* Put all unmarked markers on free list.
1845 Dechain each one first from the buffer it points into. */
1846 {
1847 register struct marker_block *mblk;
1848 struct Lisp_Marker *tem1;
1849 register int lim = marker_block_index;
1850 register int num_free = 0, num_used = 0;
1851
1852 marker_free_list = 0;
1853
1854 for (mblk = marker_block; mblk; mblk = mblk->next)
1855 {
1856 register int i;
1857 for (i = 0; i < lim; i++)
1858 if (!XMARKBIT (mblk->markers[i].chain))
1859 {
1860 Lisp_Object tem;
1861 tem1 = &mblk->markers[i]; /* tem1 avoids Sun compiler bug */
1862 XSET (tem, Lisp_Marker, tem1);
1863 unchain_marker (tem);
1864 XFASTINT (mblk->markers[i].chain) = (int) marker_free_list;
1865 marker_free_list = &mblk->markers[i];
1866 num_free++;
1867 }
1868 else
1869 {
1870 num_used++;
1871 XUNMARK (mblk->markers[i].chain);
1872 }
1873 lim = MARKER_BLOCK_SIZE;
1874 }
1875
1876 total_markers = num_used;
1877 total_free_markers = num_free;
1878 }
1879
1880 /* Free all unmarked buffers */
1881 {
1882 register struct buffer *buffer = all_buffers, *prev = 0, *next;
1883
1884 while (buffer)
1885 if (!XMARKBIT (buffer->name))
1886 {
1887 if (prev)
1888 prev->next = buffer->next;
1889 else
1890 all_buffers = buffer->next;
1891 next = buffer->next;
1892 xfree (buffer);
1893 buffer = next;
1894 }
1895 else
1896 {
1897 XUNMARK (buffer->name);
1898 UNMARK_BALANCE_INTERVALS (buffer->intervals);
1899
1900 #if 0
1901 /* Each `struct Lisp_String *' was turned into a Lisp_Object
1902 for purposes of marking and relocation.
1903 Turn them back into C pointers now. */
1904 buffer->upcase_table
1905 = XSTRING (*(Lisp_Object *)&buffer->upcase_table);
1906 buffer->downcase_table
1907 = XSTRING (*(Lisp_Object *)&buffer->downcase_table);
1908 buffer->sort_table
1909 = XSTRING (*(Lisp_Object *)&buffer->sort_table);
1910 buffer->folding_sort_table
1911 = XSTRING (*(Lisp_Object *)&buffer->folding_sort_table);
1912 #endif
1913
1914 prev = buffer, buffer = buffer->next;
1915 }
1916 }
1917
1918 #endif /* standalone */
1919
1920 /* Free all unmarked vectors */
1921 {
1922 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
1923 total_vector_size = 0;
1924
1925 while (vector)
1926 if (!(vector->size & ARRAY_MARK_FLAG))
1927 {
1928 if (prev)
1929 prev->next = vector->next;
1930 else
1931 all_vectors = vector->next;
1932 next = vector->next;
1933 xfree (vector);
1934 vector = next;
1935 }
1936 else
1937 {
1938 vector->size &= ~ARRAY_MARK_FLAG;
1939 total_vector_size += vector->size;
1940 prev = vector, vector = vector->next;
1941 }
1942 }
1943
1944 /* Free all "large strings" not marked with ARRAY_MARK_FLAG. */
1945 {
1946 register struct string_block *sb = large_string_blocks, *prev = 0, *next;
1947
1948 while (sb)
1949 if (!(((struct Lisp_String *)(&sb->chars[0]))->size & ARRAY_MARK_FLAG))
1950 {
1951 if (prev)
1952 prev->next = sb->next;
1953 else
1954 large_string_blocks = sb->next;
1955 next = sb->next;
1956 xfree (sb);
1957 sb = next;
1958 }
1959 else
1960 {
1961 ((struct Lisp_String *)(&sb->chars[0]))->size
1962 &= ~ARRAY_MARK_FLAG & ~MARKBIT;
1963 total_string_size += ((struct Lisp_String *)(&sb->chars[0]))->size;
1964 prev = sb, sb = sb->next;
1965 }
1966 }
1967 }
1968 \f
1969 /* Compactify strings, relocate references, and free empty string blocks. */
1970
1971 static void
1972 compact_strings ()
1973 {
1974 /* String block of old strings we are scanning. */
1975 register struct string_block *from_sb;
1976 /* A preceding string block (or maybe the same one)
1977 where we are copying the still-live strings to. */
1978 register struct string_block *to_sb;
1979 int pos;
1980 int to_pos;
1981
1982 to_sb = first_string_block;
1983 to_pos = 0;
1984
1985 /* Scan each existing string block sequentially, string by string. */
1986 for (from_sb = first_string_block; from_sb; from_sb = from_sb->next)
1987 {
1988 pos = 0;
1989 /* POS is the index of the next string in the block. */
1990 while (pos < from_sb->pos)
1991 {
1992 register struct Lisp_String *nextstr
1993 = (struct Lisp_String *) &from_sb->chars[pos];
1994
1995 register struct Lisp_String *newaddr;
1996 register int size = nextstr->size;
1997
1998 /* NEXTSTR is the old address of the next string.
1999 Just skip it if it isn't marked. */
2000 if ((unsigned) size > STRING_BLOCK_SIZE)
2001 {
2002 /* It is marked, so its size field is really a chain of refs.
2003 Find the end of the chain, where the actual size lives. */
2004 while ((unsigned) size > STRING_BLOCK_SIZE)
2005 {
2006 if (size & 1) size ^= MARKBIT | 1;
2007 size = *(int *)size & ~MARKBIT;
2008 }
2009
2010 total_string_size += size;
2011
2012 /* If it won't fit in TO_SB, close it out,
2013 and move to the next sb. Keep doing so until
2014 TO_SB reaches a large enough, empty enough string block.
2015 We know that TO_SB cannot advance past FROM_SB here
2016 since FROM_SB is large enough to contain this string.
2017 Any string blocks skipped here
2018 will be patched out and freed later. */
2019 while (to_pos + STRING_FULLSIZE (size)
2020 > max (to_sb->pos, STRING_BLOCK_SIZE))
2021 {
2022 to_sb->pos = to_pos;
2023 to_sb = to_sb->next;
2024 to_pos = 0;
2025 }
2026 /* Compute new address of this string
2027 and update TO_POS for the space being used. */
2028 newaddr = (struct Lisp_String *) &to_sb->chars[to_pos];
2029 to_pos += STRING_FULLSIZE (size);
2030
2031 /* Copy the string itself to the new place. */
2032 if (nextstr != newaddr)
2033 bcopy (nextstr, newaddr, size + 1 + sizeof (int)
2034 + INTERVAL_PTR_SIZE);
2035
2036 /* Go through NEXTSTR's chain of references
2037 and make each slot in the chain point to
2038 the new address of this string. */
2039 size = newaddr->size;
2040 while ((unsigned) size > STRING_BLOCK_SIZE)
2041 {
2042 register Lisp_Object *objptr;
2043 if (size & 1) size ^= MARKBIT | 1;
2044 objptr = (Lisp_Object *)size;
2045
2046 size = XFASTINT (*objptr) & ~MARKBIT;
2047 if (XMARKBIT (*objptr))
2048 {
2049 XSET (*objptr, Lisp_String, newaddr);
2050 XMARK (*objptr);
2051 }
2052 else
2053 XSET (*objptr, Lisp_String, newaddr);
2054 }
2055 /* Store the actual size in the size field. */
2056 newaddr->size = size;
2057 }
2058 pos += STRING_FULLSIZE (size);
2059 }
2060 }
2061
2062 /* Close out the last string block still used and free any that follow. */
2063 to_sb->pos = to_pos;
2064 current_string_block = to_sb;
2065
2066 from_sb = to_sb->next;
2067 to_sb->next = 0;
2068 while (from_sb)
2069 {
2070 to_sb = from_sb->next;
2071 xfree (from_sb);
2072 from_sb = to_sb;
2073 }
2074
2075 /* Free any empty string blocks further back in the chain.
2076 This loop will never free first_string_block, but it is very
2077 unlikely that that one will become empty, so why bother checking? */
2078
2079 from_sb = first_string_block;
2080 while (to_sb = from_sb->next)
2081 {
2082 if (to_sb->pos == 0)
2083 {
2084 if (from_sb->next = to_sb->next)
2085 from_sb->next->prev = from_sb;
2086 xfree (to_sb);
2087 }
2088 else
2089 from_sb = to_sb;
2090 }
2091 }
2092 \f
2093 /* Debugging aids. */
2094
2095 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, "",
2096 "Return the address of the last byte Emacs has allocated, divided by 1024.\n\
2097 This may be helpful in debugging Emacs's memory usage.\n\
2098 We divide the value by 1024 to make sure it fits in a Lisp integer.")
2099 ()
2100 {
2101 Lisp_Object end;
2102
2103 XSET (end, Lisp_Int, (int) sbrk (0) / 1024);
2104
2105 return end;
2106 }
2107
2108 \f
2109 /* Initialization */
2110
2111 init_alloc_once ()
2112 {
2113 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
2114 pureptr = 0;
2115 #ifdef HAVE_SHM
2116 pure_size = PURESIZE;
2117 #endif
2118 all_vectors = 0;
2119 ignore_warnings = 1;
2120 init_strings ();
2121 init_cons ();
2122 init_symbol ();
2123 init_marker ();
2124 #ifdef LISP_FLOAT_TYPE
2125 init_float ();
2126 #endif /* LISP_FLOAT_TYPE */
2127 INIT_INTERVALS;
2128
2129 ignore_warnings = 0;
2130 gcprolist = 0;
2131 staticidx = 0;
2132 consing_since_gc = 0;
2133 gc_cons_threshold = 100000;
2134 #ifdef VIRT_ADDR_VARIES
2135 malloc_sbrk_unused = 1<<22; /* A large number */
2136 malloc_sbrk_used = 100000; /* as reasonable as any number */
2137 #endif /* VIRT_ADDR_VARIES */
2138 }
2139
2140 init_alloc ()
2141 {
2142 gcprolist = 0;
2143 }
2144
2145 void
2146 syms_of_alloc ()
2147 {
2148 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
2149 "*Number of bytes of consing between garbage collections.\n\
2150 Garbage collection can happen automatically once this many bytes have been\n\
2151 allocated since the last garbage collection. All data types count.\n\n\
2152 Garbage collection happens automatically only when `eval' is called.\n\n\
2153 By binding this temporarily to a large number, you can effectively\n\
2154 prevent garbage collection during a part of the program.");
2155
2156 DEFVAR_INT ("pure-bytes-used", &pureptr,
2157 "Number of bytes of sharable Lisp data allocated so far.");
2158
2159 #if 0
2160 DEFVAR_INT ("data-bytes-used", &malloc_sbrk_used,
2161 "Number of bytes of unshared memory allocated in this session.");
2162
2163 DEFVAR_INT ("data-bytes-free", &malloc_sbrk_unused,
2164 "Number of bytes of unshared memory remaining available in this session.");
2165 #endif
2166
2167 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
2168 "Non-nil means loading Lisp code in order to dump an executable.\n\
2169 This means that certain objects should be allocated in shared (pure) space.");
2170
2171 DEFVAR_INT ("undo-limit", &undo_limit,
2172 "Keep no more undo information once it exceeds this size.\n\
2173 This limit is applied when garbage collection happens.\n\
2174 The size is counted as the number of bytes occupied,\n\
2175 which includes both saved text and other data.");
2176 undo_limit = 20000;
2177
2178 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
2179 "Don't keep more than this much size of undo information.\n\
2180 A command which pushes past this size is itself forgotten.\n\
2181 This limit is applied when garbage collection happens.\n\
2182 The size is counted as the number of bytes occupied,\n\
2183 which includes both saved text and other data.");
2184 undo_strong_limit = 30000;
2185
2186 defsubr (&Scons);
2187 defsubr (&Slist);
2188 defsubr (&Svector);
2189 defsubr (&Smake_byte_code);
2190 defsubr (&Smake_list);
2191 defsubr (&Smake_vector);
2192 defsubr (&Smake_string);
2193 defsubr (&Smake_symbol);
2194 defsubr (&Smake_marker);
2195 defsubr (&Spurecopy);
2196 defsubr (&Sgarbage_collect);
2197 defsubr (&Smemory_limit);
2198 }