(TAGS): Fix typo.
[bpt/emacs.git] / src / regex.c
1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P10003.2/D11.2, except for
3 internationalization features.)
4
5 Copyright (C) 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
20 USA. */
21
22 /* AIX requires this to be the first thing in the file. */
23 #if defined (_AIX) && !defined (REGEX_MALLOC)
24 #pragma alloca
25 #endif
26
27 #undef _GNU_SOURCE
28 #define _GNU_SOURCE
29
30 #ifdef HAVE_CONFIG_H
31 #include <config.h>
32 #endif
33
34 /* We need this for `regex.h', and perhaps for the Emacs include files. */
35 #include <sys/types.h>
36
37 /* This is for other GNU distributions with internationalized messages. */
38 #if HAVE_LIBINTL_H || defined (_LIBC)
39 # include <libintl.h>
40 #else
41 # define gettext(msgid) (msgid)
42 #endif
43
44 #ifndef gettext_noop
45 /* This define is so xgettext can find the internationalizable
46 strings. */
47 #define gettext_noop(String) String
48 #endif
49
50 /* The `emacs' switch turns on certain matching commands
51 that make sense only in Emacs. */
52 #ifdef emacs
53
54 #include "lisp.h"
55 #include "buffer.h"
56 #include "syntax.h"
57
58 #define malloc xmalloc
59 #define free xfree
60
61 #else /* not emacs */
62
63 /* If we are not linking with Emacs proper,
64 we can't use the relocating allocator
65 even if config.h says that we can. */
66 #undef REL_ALLOC
67
68 #if defined (STDC_HEADERS) || defined (_LIBC)
69 #include <stdlib.h>
70 #else
71 char *malloc ();
72 char *realloc ();
73 #endif
74
75 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
76 If nothing else has been done, use the method below. */
77 #ifdef INHIBIT_STRING_HEADER
78 #if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
79 #if !defined (bzero) && !defined (bcopy)
80 #undef INHIBIT_STRING_HEADER
81 #endif
82 #endif
83 #endif
84
85 /* This is the normal way of making sure we have a bcopy and a bzero.
86 This is used in most programs--a few other programs avoid this
87 by defining INHIBIT_STRING_HEADER. */
88 #ifndef INHIBIT_STRING_HEADER
89 #if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
90 #include <string.h>
91 #ifndef bcmp
92 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
93 #endif
94 #ifndef bcopy
95 #define bcopy(s, d, n) memcpy ((d), (s), (n))
96 #endif
97 #ifndef bzero
98 #define bzero(s, n) memset ((s), 0, (n))
99 #endif
100 #else
101 #include <strings.h>
102 #endif
103 #endif
104
105 /* Define the syntax stuff for \<, \>, etc. */
106
107 /* This must be nonzero for the wordchar and notwordchar pattern
108 commands in re_match_2. */
109 #ifndef Sword
110 #define Sword 1
111 #endif
112
113 #ifdef SWITCH_ENUM_BUG
114 #define SWITCH_ENUM_CAST(x) ((int)(x))
115 #else
116 #define SWITCH_ENUM_CAST(x) (x)
117 #endif
118
119 #ifdef SYNTAX_TABLE
120
121 extern char *re_syntax_table;
122
123 #else /* not SYNTAX_TABLE */
124
125 /* How many characters in the character set. */
126 #define CHAR_SET_SIZE 256
127
128 static char re_syntax_table[CHAR_SET_SIZE];
129
130 static void
131 init_syntax_once ()
132 {
133 register int c;
134 static int done = 0;
135
136 if (done)
137 return;
138
139 bzero (re_syntax_table, sizeof re_syntax_table);
140
141 for (c = 'a'; c <= 'z'; c++)
142 re_syntax_table[c] = Sword;
143
144 for (c = 'A'; c <= 'Z'; c++)
145 re_syntax_table[c] = Sword;
146
147 for (c = '0'; c <= '9'; c++)
148 re_syntax_table[c] = Sword;
149
150 re_syntax_table['_'] = Sword;
151
152 done = 1;
153 }
154
155 #endif /* not SYNTAX_TABLE */
156
157 #define SYNTAX(c) re_syntax_table[c]
158
159 #endif /* not emacs */
160 \f
161 /* Get the interface, including the syntax bits. */
162 #include "regex.h"
163
164 /* isalpha etc. are used for the character classes. */
165 #include <ctype.h>
166
167 /* Jim Meyering writes:
168
169 "... Some ctype macros are valid only for character codes that
170 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
171 using /bin/cc or gcc but without giving an ansi option). So, all
172 ctype uses should be through macros like ISPRINT... If
173 STDC_HEADERS is defined, then autoconf has verified that the ctype
174 macros don't need to be guarded with references to isascii. ...
175 Defining isascii to 1 should let any compiler worth its salt
176 eliminate the && through constant folding." */
177
178 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
179 #define ISASCII(c) 1
180 #else
181 #define ISASCII(c) isascii(c)
182 #endif
183
184 #ifdef isblank
185 #define ISBLANK(c) (ISASCII (c) && isblank (c))
186 #else
187 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
188 #endif
189 #ifdef isgraph
190 #define ISGRAPH(c) (ISASCII (c) && isgraph (c))
191 #else
192 #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
193 #endif
194
195 #define ISPRINT(c) (ISASCII (c) && isprint (c))
196 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
197 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
198 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
199 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
200 #define ISLOWER(c) (ISASCII (c) && islower (c))
201 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
202 #define ISSPACE(c) (ISASCII (c) && isspace (c))
203 #define ISUPPER(c) (ISASCII (c) && isupper (c))
204 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
205
206 #ifndef NULL
207 #define NULL (void *)0
208 #endif
209
210 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
211 since ours (we hope) works properly with all combinations of
212 machines, compilers, `char' and `unsigned char' argument types.
213 (Per Bothner suggested the basic approach.) */
214 #undef SIGN_EXTEND_CHAR
215 #if __STDC__
216 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
217 #else /* not __STDC__ */
218 /* As in Harbison and Steele. */
219 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
220 #endif
221 \f
222 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
223 use `alloca' instead of `malloc'. This is because using malloc in
224 re_search* or re_match* could cause memory leaks when C-g is used in
225 Emacs; also, malloc is slower and causes storage fragmentation. On
226 the other hand, malloc is more portable, and easier to debug.
227
228 Because we sometimes use alloca, some routines have to be macros,
229 not functions -- `alloca'-allocated space disappears at the end of the
230 function it is called in. */
231
232 #ifdef REGEX_MALLOC
233
234 #define REGEX_ALLOCATE malloc
235 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
236 #define REGEX_FREE free
237
238 #else /* not REGEX_MALLOC */
239
240 /* Emacs already defines alloca, sometimes. */
241 #ifndef alloca
242
243 /* Make alloca work the best possible way. */
244 #ifdef __GNUC__
245 #define alloca __builtin_alloca
246 #else /* not __GNUC__ */
247 #if HAVE_ALLOCA_H
248 #include <alloca.h>
249 #else /* not __GNUC__ or HAVE_ALLOCA_H */
250 #if 0 /* It is a bad idea to declare alloca. We always cast the result. */
251 #ifndef _AIX /* Already did AIX, up at the top. */
252 char *alloca ();
253 #endif /* not _AIX */
254 #endif
255 #endif /* not HAVE_ALLOCA_H */
256 #endif /* not __GNUC__ */
257
258 #endif /* not alloca */
259
260 #define REGEX_ALLOCATE alloca
261
262 /* Assumes a `char *destination' variable. */
263 #define REGEX_REALLOCATE(source, osize, nsize) \
264 (destination = (char *) alloca (nsize), \
265 bcopy (source, destination, osize), \
266 destination)
267
268 /* No need to do anything to free, after alloca. */
269 #define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
270
271 #endif /* not REGEX_MALLOC */
272
273 /* Define how to allocate the failure stack. */
274
275 #if defined (REL_ALLOC) && defined (REGEX_MALLOC)
276
277 #define REGEX_ALLOCATE_STACK(size) \
278 r_alloc (&failure_stack_ptr, (size))
279 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
280 r_re_alloc (&failure_stack_ptr, (nsize))
281 #define REGEX_FREE_STACK(ptr) \
282 r_alloc_free (&failure_stack_ptr)
283
284 #else /* not using relocating allocator */
285
286 #ifdef REGEX_MALLOC
287
288 #define REGEX_ALLOCATE_STACK malloc
289 #define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
290 #define REGEX_FREE_STACK free
291
292 #else /* not REGEX_MALLOC */
293
294 #define REGEX_ALLOCATE_STACK alloca
295
296 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
297 REGEX_REALLOCATE (source, osize, nsize)
298 /* No need to explicitly free anything. */
299 #define REGEX_FREE_STACK(arg)
300
301 #endif /* not REGEX_MALLOC */
302 #endif /* not using relocating allocator */
303
304
305 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
306 `string1' or just past its end. This works if PTR is NULL, which is
307 a good thing. */
308 #define FIRST_STRING_P(ptr) \
309 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
310
311 /* (Re)Allocate N items of type T using malloc, or fail. */
312 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
313 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
314 #define RETALLOC_IF(addr, n, t) \
315 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
316 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
317
318 #define BYTEWIDTH 8 /* In bits. */
319
320 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
321
322 #undef MAX
323 #undef MIN
324 #define MAX(a, b) ((a) > (b) ? (a) : (b))
325 #define MIN(a, b) ((a) < (b) ? (a) : (b))
326
327 typedef char boolean;
328 #define false 0
329 #define true 1
330
331 static int re_match_2_internal ();
332 \f
333 /* These are the command codes that appear in compiled regular
334 expressions. Some opcodes are followed by argument bytes. A
335 command code can specify any interpretation whatsoever for its
336 arguments. Zero bytes may appear in the compiled regular expression. */
337
338 typedef enum
339 {
340 no_op = 0,
341
342 /* Succeed right away--no more backtracking. */
343 succeed,
344
345 /* Followed by one byte giving n, then by n literal bytes. */
346 exactn,
347
348 /* Matches any (more or less) character. */
349 anychar,
350
351 /* Matches any one char belonging to specified set. First
352 following byte is number of bitmap bytes. Then come bytes
353 for a bitmap saying which chars are in. Bits in each byte
354 are ordered low-bit-first. A character is in the set if its
355 bit is 1. A character too large to have a bit in the map is
356 automatically not in the set. */
357 charset,
358
359 /* Same parameters as charset, but match any character that is
360 not one of those specified. */
361 charset_not,
362
363 /* Start remembering the text that is matched, for storing in a
364 register. Followed by one byte with the register number, in
365 the range 0 to one less than the pattern buffer's re_nsub
366 field. Then followed by one byte with the number of groups
367 inner to this one. (This last has to be part of the
368 start_memory only because we need it in the on_failure_jump
369 of re_match_2.) */
370 start_memory,
371
372 /* Stop remembering the text that is matched and store it in a
373 memory register. Followed by one byte with the register
374 number, in the range 0 to one less than `re_nsub' in the
375 pattern buffer, and one byte with the number of inner groups,
376 just like `start_memory'. (We need the number of inner
377 groups here because we don't have any easy way of finding the
378 corresponding start_memory when we're at a stop_memory.) */
379 stop_memory,
380
381 /* Match a duplicate of something remembered. Followed by one
382 byte containing the register number. */
383 duplicate,
384
385 /* Fail unless at beginning of line. */
386 begline,
387
388 /* Fail unless at end of line. */
389 endline,
390
391 /* Succeeds if at beginning of buffer (if emacs) or at beginning
392 of string to be matched (if not). */
393 begbuf,
394
395 /* Analogously, for end of buffer/string. */
396 endbuf,
397
398 /* Followed by two byte relative address to which to jump. */
399 jump,
400
401 /* Same as jump, but marks the end of an alternative. */
402 jump_past_alt,
403
404 /* Followed by two-byte relative address of place to resume at
405 in case of failure. */
406 on_failure_jump,
407
408 /* Like on_failure_jump, but pushes a placeholder instead of the
409 current string position when executed. */
410 on_failure_keep_string_jump,
411
412 /* Throw away latest failure point and then jump to following
413 two-byte relative address. */
414 pop_failure_jump,
415
416 /* Change to pop_failure_jump if know won't have to backtrack to
417 match; otherwise change to jump. This is used to jump
418 back to the beginning of a repeat. If what follows this jump
419 clearly won't match what the repeat does, such that we can be
420 sure that there is no use backtracking out of repetitions
421 already matched, then we change it to a pop_failure_jump.
422 Followed by two-byte address. */
423 maybe_pop_jump,
424
425 /* Jump to following two-byte address, and push a dummy failure
426 point. This failure point will be thrown away if an attempt
427 is made to use it for a failure. A `+' construct makes this
428 before the first repeat. Also used as an intermediary kind
429 of jump when compiling an alternative. */
430 dummy_failure_jump,
431
432 /* Push a dummy failure point and continue. Used at the end of
433 alternatives. */
434 push_dummy_failure,
435
436 /* Followed by two-byte relative address and two-byte number n.
437 After matching N times, jump to the address upon failure. */
438 succeed_n,
439
440 /* Followed by two-byte relative address, and two-byte number n.
441 Jump to the address N times, then fail. */
442 jump_n,
443
444 /* Set the following two-byte relative address to the
445 subsequent two-byte number. The address *includes* the two
446 bytes of number. */
447 set_number_at,
448
449 wordchar, /* Matches any word-constituent character. */
450 notwordchar, /* Matches any char that is not a word-constituent. */
451
452 wordbeg, /* Succeeds if at word beginning. */
453 wordend, /* Succeeds if at word end. */
454
455 wordbound, /* Succeeds if at a word boundary. */
456 notwordbound /* Succeeds if not at a word boundary. */
457
458 #ifdef emacs
459 ,before_dot, /* Succeeds if before point. */
460 at_dot, /* Succeeds if at point. */
461 after_dot, /* Succeeds if after point. */
462
463 /* Matches any character whose syntax is specified. Followed by
464 a byte which contains a syntax code, e.g., Sword. */
465 syntaxspec,
466
467 /* Matches any character whose syntax is not that specified. */
468 notsyntaxspec
469 #endif /* emacs */
470 } re_opcode_t;
471 \f
472 /* Common operations on the compiled pattern. */
473
474 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
475
476 #define STORE_NUMBER(destination, number) \
477 do { \
478 (destination)[0] = (number) & 0377; \
479 (destination)[1] = (number) >> 8; \
480 } while (0)
481
482 /* Same as STORE_NUMBER, except increment DESTINATION to
483 the byte after where the number is stored. Therefore, DESTINATION
484 must be an lvalue. */
485
486 #define STORE_NUMBER_AND_INCR(destination, number) \
487 do { \
488 STORE_NUMBER (destination, number); \
489 (destination) += 2; \
490 } while (0)
491
492 /* Put into DESTINATION a number stored in two contiguous bytes starting
493 at SOURCE. */
494
495 #define EXTRACT_NUMBER(destination, source) \
496 do { \
497 (destination) = *(source) & 0377; \
498 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
499 } while (0)
500
501 #ifdef DEBUG
502 static void
503 extract_number (dest, source)
504 int *dest;
505 unsigned char *source;
506 {
507 int temp = SIGN_EXTEND_CHAR (*(source + 1));
508 *dest = *source & 0377;
509 *dest += temp << 8;
510 }
511
512 #ifndef EXTRACT_MACROS /* To debug the macros. */
513 #undef EXTRACT_NUMBER
514 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
515 #endif /* not EXTRACT_MACROS */
516
517 #endif /* DEBUG */
518
519 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
520 SOURCE must be an lvalue. */
521
522 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
523 do { \
524 EXTRACT_NUMBER (destination, source); \
525 (source) += 2; \
526 } while (0)
527
528 #ifdef DEBUG
529 static void
530 extract_number_and_incr (destination, source)
531 int *destination;
532 unsigned char **source;
533 {
534 extract_number (destination, *source);
535 *source += 2;
536 }
537
538 #ifndef EXTRACT_MACROS
539 #undef EXTRACT_NUMBER_AND_INCR
540 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
541 extract_number_and_incr (&dest, &src)
542 #endif /* not EXTRACT_MACROS */
543
544 #endif /* DEBUG */
545 \f
546 /* If DEBUG is defined, Regex prints many voluminous messages about what
547 it is doing (if the variable `debug' is nonzero). If linked with the
548 main program in `iregex.c', you can enter patterns and strings
549 interactively. And if linked with the main program in `main.c' and
550 the other test files, you can run the already-written tests. */
551
552 #ifdef DEBUG
553
554 /* We use standard I/O for debugging. */
555 #include <stdio.h>
556
557 /* It is useful to test things that ``must'' be true when debugging. */
558 #include <assert.h>
559
560 static int debug = 0;
561
562 #define DEBUG_STATEMENT(e) e
563 #define DEBUG_PRINT1(x) if (debug) printf (x)
564 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
565 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
566 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
567 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
568 if (debug) print_partial_compiled_pattern (s, e)
569 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
570 if (debug) print_double_string (w, s1, sz1, s2, sz2)
571
572
573 /* Print the fastmap in human-readable form. */
574
575 void
576 print_fastmap (fastmap)
577 char *fastmap;
578 {
579 unsigned was_a_range = 0;
580 unsigned i = 0;
581
582 while (i < (1 << BYTEWIDTH))
583 {
584 if (fastmap[i++])
585 {
586 was_a_range = 0;
587 putchar (i - 1);
588 while (i < (1 << BYTEWIDTH) && fastmap[i])
589 {
590 was_a_range = 1;
591 i++;
592 }
593 if (was_a_range)
594 {
595 printf ("-");
596 putchar (i - 1);
597 }
598 }
599 }
600 putchar ('\n');
601 }
602
603
604 /* Print a compiled pattern string in human-readable form, starting at
605 the START pointer into it and ending just before the pointer END. */
606
607 void
608 print_partial_compiled_pattern (start, end)
609 unsigned char *start;
610 unsigned char *end;
611 {
612 int mcnt, mcnt2;
613 unsigned char *p = start;
614 unsigned char *pend = end;
615
616 if (start == NULL)
617 {
618 printf ("(null)\n");
619 return;
620 }
621
622 /* Loop over pattern commands. */
623 while (p < pend)
624 {
625 printf ("%d:\t", p - start);
626
627 switch ((re_opcode_t) *p++)
628 {
629 case no_op:
630 printf ("/no_op");
631 break;
632
633 case exactn:
634 mcnt = *p++;
635 printf ("/exactn/%d", mcnt);
636 do
637 {
638 putchar ('/');
639 putchar (*p++);
640 }
641 while (--mcnt);
642 break;
643
644 case start_memory:
645 mcnt = *p++;
646 printf ("/start_memory/%d/%d", mcnt, *p++);
647 break;
648
649 case stop_memory:
650 mcnt = *p++;
651 printf ("/stop_memory/%d/%d", mcnt, *p++);
652 break;
653
654 case duplicate:
655 printf ("/duplicate/%d", *p++);
656 break;
657
658 case anychar:
659 printf ("/anychar");
660 break;
661
662 case charset:
663 case charset_not:
664 {
665 register int c, last = -100;
666 register int in_range = 0;
667
668 printf ("/charset [%s",
669 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
670
671 assert (p + *p < pend);
672
673 for (c = 0; c < 256; c++)
674 if (c / 8 < *p
675 && (p[1 + (c/8)] & (1 << (c % 8))))
676 {
677 /* Are we starting a range? */
678 if (last + 1 == c && ! in_range)
679 {
680 putchar ('-');
681 in_range = 1;
682 }
683 /* Have we broken a range? */
684 else if (last + 1 != c && in_range)
685 {
686 putchar (last);
687 in_range = 0;
688 }
689
690 if (! in_range)
691 putchar (c);
692
693 last = c;
694 }
695
696 if (in_range)
697 putchar (last);
698
699 putchar (']');
700
701 p += 1 + *p;
702 }
703 break;
704
705 case begline:
706 printf ("/begline");
707 break;
708
709 case endline:
710 printf ("/endline");
711 break;
712
713 case on_failure_jump:
714 extract_number_and_incr (&mcnt, &p);
715 printf ("/on_failure_jump to %d", p + mcnt - start);
716 break;
717
718 case on_failure_keep_string_jump:
719 extract_number_and_incr (&mcnt, &p);
720 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
721 break;
722
723 case dummy_failure_jump:
724 extract_number_and_incr (&mcnt, &p);
725 printf ("/dummy_failure_jump to %d", p + mcnt - start);
726 break;
727
728 case push_dummy_failure:
729 printf ("/push_dummy_failure");
730 break;
731
732 case maybe_pop_jump:
733 extract_number_and_incr (&mcnt, &p);
734 printf ("/maybe_pop_jump to %d", p + mcnt - start);
735 break;
736
737 case pop_failure_jump:
738 extract_number_and_incr (&mcnt, &p);
739 printf ("/pop_failure_jump to %d", p + mcnt - start);
740 break;
741
742 case jump_past_alt:
743 extract_number_and_incr (&mcnt, &p);
744 printf ("/jump_past_alt to %d", p + mcnt - start);
745 break;
746
747 case jump:
748 extract_number_and_incr (&mcnt, &p);
749 printf ("/jump to %d", p + mcnt - start);
750 break;
751
752 case succeed_n:
753 extract_number_and_incr (&mcnt, &p);
754 extract_number_and_incr (&mcnt2, &p);
755 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
756 break;
757
758 case jump_n:
759 extract_number_and_incr (&mcnt, &p);
760 extract_number_and_incr (&mcnt2, &p);
761 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
762 break;
763
764 case set_number_at:
765 extract_number_and_incr (&mcnt, &p);
766 extract_number_and_incr (&mcnt2, &p);
767 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
768 break;
769
770 case wordbound:
771 printf ("/wordbound");
772 break;
773
774 case notwordbound:
775 printf ("/notwordbound");
776 break;
777
778 case wordbeg:
779 printf ("/wordbeg");
780 break;
781
782 case wordend:
783 printf ("/wordend");
784
785 #ifdef emacs
786 case before_dot:
787 printf ("/before_dot");
788 break;
789
790 case at_dot:
791 printf ("/at_dot");
792 break;
793
794 case after_dot:
795 printf ("/after_dot");
796 break;
797
798 case syntaxspec:
799 printf ("/syntaxspec");
800 mcnt = *p++;
801 printf ("/%d", mcnt);
802 break;
803
804 case notsyntaxspec:
805 printf ("/notsyntaxspec");
806 mcnt = *p++;
807 printf ("/%d", mcnt);
808 break;
809 #endif /* emacs */
810
811 case wordchar:
812 printf ("/wordchar");
813 break;
814
815 case notwordchar:
816 printf ("/notwordchar");
817 break;
818
819 case begbuf:
820 printf ("/begbuf");
821 break;
822
823 case endbuf:
824 printf ("/endbuf");
825 break;
826
827 default:
828 printf ("?%d", *(p-1));
829 }
830
831 putchar ('\n');
832 }
833
834 printf ("%d:\tend of pattern.\n", p - start);
835 }
836
837
838 void
839 print_compiled_pattern (bufp)
840 struct re_pattern_buffer *bufp;
841 {
842 unsigned char *buffer = bufp->buffer;
843
844 print_partial_compiled_pattern (buffer, buffer + bufp->used);
845 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
846
847 if (bufp->fastmap_accurate && bufp->fastmap)
848 {
849 printf ("fastmap: ");
850 print_fastmap (bufp->fastmap);
851 }
852
853 printf ("re_nsub: %d\t", bufp->re_nsub);
854 printf ("regs_alloc: %d\t", bufp->regs_allocated);
855 printf ("can_be_null: %d\t", bufp->can_be_null);
856 printf ("newline_anchor: %d\n", bufp->newline_anchor);
857 printf ("no_sub: %d\t", bufp->no_sub);
858 printf ("not_bol: %d\t", bufp->not_bol);
859 printf ("not_eol: %d\t", bufp->not_eol);
860 printf ("syntax: %d\n", bufp->syntax);
861 /* Perhaps we should print the translate table? */
862 }
863
864
865 void
866 print_double_string (where, string1, size1, string2, size2)
867 const char *where;
868 const char *string1;
869 const char *string2;
870 int size1;
871 int size2;
872 {
873 unsigned this_char;
874
875 if (where == NULL)
876 printf ("(null)");
877 else
878 {
879 if (FIRST_STRING_P (where))
880 {
881 for (this_char = where - string1; this_char < size1; this_char++)
882 putchar (string1[this_char]);
883
884 where = string2;
885 }
886
887 for (this_char = where - string2; this_char < size2; this_char++)
888 putchar (string2[this_char]);
889 }
890 }
891
892 #else /* not DEBUG */
893
894 #undef assert
895 #define assert(e)
896
897 #define DEBUG_STATEMENT(e)
898 #define DEBUG_PRINT1(x)
899 #define DEBUG_PRINT2(x1, x2)
900 #define DEBUG_PRINT3(x1, x2, x3)
901 #define DEBUG_PRINT4(x1, x2, x3, x4)
902 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
903 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
904
905 #endif /* not DEBUG */
906 \f
907 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
908 also be assigned to arbitrarily: each pattern buffer stores its own
909 syntax, so it can be changed between regex compilations. */
910 /* This has no initializer because initialized variables in Emacs
911 become read-only after dumping. */
912 reg_syntax_t re_syntax_options;
913
914
915 /* Specify the precise syntax of regexps for compilation. This provides
916 for compatibility for various utilities which historically have
917 different, incompatible syntaxes.
918
919 The argument SYNTAX is a bit mask comprised of the various bits
920 defined in regex.h. We return the old syntax. */
921
922 reg_syntax_t
923 re_set_syntax (syntax)
924 reg_syntax_t syntax;
925 {
926 reg_syntax_t ret = re_syntax_options;
927
928 re_syntax_options = syntax;
929 return ret;
930 }
931 \f
932 /* This table gives an error message for each of the error codes listed
933 in regex.h. Obviously the order here has to be same as there.
934 POSIX doesn't require that we do anything for REG_NOERROR,
935 but why not be nice? */
936
937 static const char *re_error_msgid[] =
938 {
939 gettext_noop ("Success"), /* REG_NOERROR */
940 gettext_noop ("No match"), /* REG_NOMATCH */
941 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
942 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
943 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
944 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
945 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
946 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
947 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
948 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
949 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
950 gettext_noop ("Invalid range end"), /* REG_ERANGE */
951 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
952 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
953 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
954 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
955 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
956 };
957 \f
958 /* Avoiding alloca during matching, to placate r_alloc. */
959
960 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
961 searching and matching functions should not call alloca. On some
962 systems, alloca is implemented in terms of malloc, and if we're
963 using the relocating allocator routines, then malloc could cause a
964 relocation, which might (if the strings being searched are in the
965 ralloc heap) shift the data out from underneath the regexp
966 routines.
967
968 Here's another reason to avoid allocation: Emacs
969 processes input from X in a signal handler; processing X input may
970 call malloc; if input arrives while a matching routine is calling
971 malloc, then we're scrod. But Emacs can't just block input while
972 calling matching routines; then we don't notice interrupts when
973 they come in. So, Emacs blocks input around all regexp calls
974 except the matching calls, which it leaves unprotected, in the
975 faith that they will not malloc. */
976
977 /* Normally, this is fine. */
978 #define MATCH_MAY_ALLOCATE
979
980 /* When using GNU C, we are not REALLY using the C alloca, no matter
981 what config.h may say. So don't take precautions for it. */
982 #ifdef __GNUC__
983 #undef C_ALLOCA
984 #endif
985
986 /* The match routines may not allocate if (1) they would do it with malloc
987 and (2) it's not safe for them to use malloc.
988 Note that if REL_ALLOC is defined, matching would not use malloc for the
989 failure stack, but we would still use it for the register vectors;
990 so REL_ALLOC should not affect this. */
991 #if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
992 #undef MATCH_MAY_ALLOCATE
993 #endif
994
995 \f
996 /* Failure stack declarations and macros; both re_compile_fastmap and
997 re_match_2 use a failure stack. These have to be macros because of
998 REGEX_ALLOCATE_STACK. */
999
1000
1001 /* Number of failure points for which to initially allocate space
1002 when matching. If this number is exceeded, we allocate more
1003 space, so it is not a hard limit. */
1004 #ifndef INIT_FAILURE_ALLOC
1005 #define INIT_FAILURE_ALLOC 5
1006 #endif
1007
1008 /* Roughly the maximum number of failure points on the stack. Would be
1009 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1010 This is a variable only so users of regex can assign to it; we never
1011 change it ourselves. */
1012 #if defined (MATCH_MAY_ALLOCATE)
1013 /* 4400 was enough to cause a crash on Alpha OSF/1,
1014 whose default stack limit is 2mb. */
1015 int re_max_failures = 20000;
1016 #else
1017 int re_max_failures = 2000;
1018 #endif
1019
1020 union fail_stack_elt
1021 {
1022 unsigned char *pointer;
1023 int integer;
1024 };
1025
1026 typedef union fail_stack_elt fail_stack_elt_t;
1027
1028 typedef struct
1029 {
1030 fail_stack_elt_t *stack;
1031 unsigned size;
1032 unsigned avail; /* Offset of next open position. */
1033 } fail_stack_type;
1034
1035 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1036 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1037 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1038
1039
1040 /* Define macros to initialize and free the failure stack.
1041 Do `return -2' if the alloc fails. */
1042
1043 #ifdef MATCH_MAY_ALLOCATE
1044 #define INIT_FAIL_STACK() \
1045 do { \
1046 fail_stack.stack = (fail_stack_elt_t *) \
1047 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1048 \
1049 if (fail_stack.stack == NULL) \
1050 return -2; \
1051 \
1052 fail_stack.size = INIT_FAILURE_ALLOC; \
1053 fail_stack.avail = 0; \
1054 } while (0)
1055
1056 #define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1057 #else
1058 #define INIT_FAIL_STACK() \
1059 do { \
1060 fail_stack.avail = 0; \
1061 } while (0)
1062
1063 #define RESET_FAIL_STACK()
1064 #endif
1065
1066
1067 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1068
1069 Return 1 if succeeds, and 0 if either ran out of memory
1070 allocating space for it or it was already too large.
1071
1072 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1073
1074 #define DOUBLE_FAIL_STACK(fail_stack) \
1075 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
1076 ? 0 \
1077 : ((fail_stack).stack = (fail_stack_elt_t *) \
1078 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1079 (fail_stack).size * sizeof (fail_stack_elt_t), \
1080 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1081 \
1082 (fail_stack).stack == NULL \
1083 ? 0 \
1084 : ((fail_stack).size <<= 1, \
1085 1)))
1086
1087
1088 /* Push pointer POINTER on FAIL_STACK.
1089 Return 1 if was able to do so and 0 if ran out of memory allocating
1090 space to do so. */
1091 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1092 ((FAIL_STACK_FULL () \
1093 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1094 ? 0 \
1095 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1096 1))
1097
1098 /* Push a pointer value onto the failure stack.
1099 Assumes the variable `fail_stack'. Probably should only
1100 be called from within `PUSH_FAILURE_POINT'. */
1101 #define PUSH_FAILURE_POINTER(item) \
1102 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1103
1104 /* This pushes an integer-valued item onto the failure stack.
1105 Assumes the variable `fail_stack'. Probably should only
1106 be called from within `PUSH_FAILURE_POINT'. */
1107 #define PUSH_FAILURE_INT(item) \
1108 fail_stack.stack[fail_stack.avail++].integer = (item)
1109
1110 /* Push a fail_stack_elt_t value onto the failure stack.
1111 Assumes the variable `fail_stack'. Probably should only
1112 be called from within `PUSH_FAILURE_POINT'. */
1113 #define PUSH_FAILURE_ELT(item) \
1114 fail_stack.stack[fail_stack.avail++] = (item)
1115
1116 /* These three POP... operations complement the three PUSH... operations.
1117 All assume that `fail_stack' is nonempty. */
1118 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1119 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1120 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1121
1122 /* Used to omit pushing failure point id's when we're not debugging. */
1123 #ifdef DEBUG
1124 #define DEBUG_PUSH PUSH_FAILURE_INT
1125 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1126 #else
1127 #define DEBUG_PUSH(item)
1128 #define DEBUG_POP(item_addr)
1129 #endif
1130
1131
1132 /* Push the information about the state we will need
1133 if we ever fail back to it.
1134
1135 Requires variables fail_stack, regstart, regend, reg_info, and
1136 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1137 declared.
1138
1139 Does `return FAILURE_CODE' if runs out of memory. */
1140
1141 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1142 do { \
1143 char *destination; \
1144 /* Must be int, so when we don't save any registers, the arithmetic \
1145 of 0 + -1 isn't done as unsigned. */ \
1146 int this_reg; \
1147 \
1148 DEBUG_STATEMENT (failure_id++); \
1149 DEBUG_STATEMENT (nfailure_points_pushed++); \
1150 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1151 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1152 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1153 \
1154 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
1155 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1156 \
1157 /* Ensure we have enough space allocated for what we will push. */ \
1158 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1159 { \
1160 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1161 return failure_code; \
1162 \
1163 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1164 (fail_stack).size); \
1165 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1166 } \
1167 \
1168 /* Push the info, starting with the registers. */ \
1169 DEBUG_PRINT1 ("\n"); \
1170 \
1171 if (1) \
1172 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1173 this_reg++) \
1174 { \
1175 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1176 DEBUG_STATEMENT (num_regs_pushed++); \
1177 \
1178 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1179 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1180 \
1181 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1182 PUSH_FAILURE_POINTER (regend[this_reg]); \
1183 \
1184 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1185 DEBUG_PRINT2 (" match_null=%d", \
1186 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1187 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1188 DEBUG_PRINT2 (" matched_something=%d", \
1189 MATCHED_SOMETHING (reg_info[this_reg])); \
1190 DEBUG_PRINT2 (" ever_matched=%d", \
1191 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1192 DEBUG_PRINT1 ("\n"); \
1193 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1194 } \
1195 \
1196 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1197 PUSH_FAILURE_INT (lowest_active_reg); \
1198 \
1199 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1200 PUSH_FAILURE_INT (highest_active_reg); \
1201 \
1202 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1203 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1204 PUSH_FAILURE_POINTER (pattern_place); \
1205 \
1206 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
1207 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1208 size2); \
1209 DEBUG_PRINT1 ("'\n"); \
1210 PUSH_FAILURE_POINTER (string_place); \
1211 \
1212 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1213 DEBUG_PUSH (failure_id); \
1214 } while (0)
1215
1216 /* This is the number of items that are pushed and popped on the stack
1217 for each register. */
1218 #define NUM_REG_ITEMS 3
1219
1220 /* Individual items aside from the registers. */
1221 #ifdef DEBUG
1222 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1223 #else
1224 #define NUM_NONREG_ITEMS 4
1225 #endif
1226
1227 /* We push at most this many items on the stack. */
1228 /* We used to use (num_regs - 1), which is the number of registers
1229 this regexp will save; but that was changed to 5
1230 to avoid stack overflow for a regexp with lots of parens. */
1231 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1232
1233 /* We actually push this many items. */
1234 #define NUM_FAILURE_ITEMS \
1235 (((0 \
1236 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1237 * NUM_REG_ITEMS) \
1238 + NUM_NONREG_ITEMS)
1239
1240 /* How many items can still be added to the stack without overflowing it. */
1241 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1242
1243
1244 /* Pops what PUSH_FAIL_STACK pushes.
1245
1246 We restore into the parameters, all of which should be lvalues:
1247 STR -- the saved data position.
1248 PAT -- the saved pattern position.
1249 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1250 REGSTART, REGEND -- arrays of string positions.
1251 REG_INFO -- array of information about each subexpression.
1252
1253 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1254 `pend', `string1', `size1', `string2', and `size2'. */
1255
1256 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1257 { \
1258 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1259 int this_reg; \
1260 const unsigned char *string_temp; \
1261 \
1262 assert (!FAIL_STACK_EMPTY ()); \
1263 \
1264 /* Remove failure points and point to how many regs pushed. */ \
1265 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1266 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1267 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1268 \
1269 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1270 \
1271 DEBUG_POP (&failure_id); \
1272 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1273 \
1274 /* If the saved string location is NULL, it came from an \
1275 on_failure_keep_string_jump opcode, and we want to throw away the \
1276 saved NULL, thus retaining our current position in the string. */ \
1277 string_temp = POP_FAILURE_POINTER (); \
1278 if (string_temp != NULL) \
1279 str = (const char *) string_temp; \
1280 \
1281 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1282 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1283 DEBUG_PRINT1 ("'\n"); \
1284 \
1285 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1286 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1287 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1288 \
1289 /* Restore register info. */ \
1290 high_reg = (unsigned) POP_FAILURE_INT (); \
1291 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1292 \
1293 low_reg = (unsigned) POP_FAILURE_INT (); \
1294 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1295 \
1296 if (1) \
1297 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1298 { \
1299 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
1300 \
1301 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1302 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
1303 \
1304 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1305 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1306 \
1307 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1308 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1309 } \
1310 else \
1311 { \
1312 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1313 { \
1314 reg_info[this_reg].word.integer = 0; \
1315 regend[this_reg] = 0; \
1316 regstart[this_reg] = 0; \
1317 } \
1318 highest_active_reg = high_reg; \
1319 } \
1320 \
1321 set_regs_matched_done = 0; \
1322 DEBUG_STATEMENT (nfailure_points_popped++); \
1323 } /* POP_FAILURE_POINT */
1324
1325
1326 \f
1327 /* Structure for per-register (a.k.a. per-group) information.
1328 Other register information, such as the
1329 starting and ending positions (which are addresses), and the list of
1330 inner groups (which is a bits list) are maintained in separate
1331 variables.
1332
1333 We are making a (strictly speaking) nonportable assumption here: that
1334 the compiler will pack our bit fields into something that fits into
1335 the type of `word', i.e., is something that fits into one item on the
1336 failure stack. */
1337
1338 typedef union
1339 {
1340 fail_stack_elt_t word;
1341 struct
1342 {
1343 /* This field is one if this group can match the empty string,
1344 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1345 #define MATCH_NULL_UNSET_VALUE 3
1346 unsigned match_null_string_p : 2;
1347 unsigned is_active : 1;
1348 unsigned matched_something : 1;
1349 unsigned ever_matched_something : 1;
1350 } bits;
1351 } register_info_type;
1352
1353 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1354 #define IS_ACTIVE(R) ((R).bits.is_active)
1355 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1356 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1357
1358
1359 /* Call this when have matched a real character; it sets `matched' flags
1360 for the subexpressions which we are currently inside. Also records
1361 that those subexprs have matched. */
1362 #define SET_REGS_MATCHED() \
1363 do \
1364 { \
1365 if (!set_regs_matched_done) \
1366 { \
1367 unsigned r; \
1368 set_regs_matched_done = 1; \
1369 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1370 { \
1371 MATCHED_SOMETHING (reg_info[r]) \
1372 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1373 = 1; \
1374 } \
1375 } \
1376 } \
1377 while (0)
1378
1379 /* Registers are set to a sentinel when they haven't yet matched. */
1380 static char reg_unset_dummy;
1381 #define REG_UNSET_VALUE (&reg_unset_dummy)
1382 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1383 \f
1384 /* Subroutine declarations and macros for regex_compile. */
1385
1386 static void store_op1 (), store_op2 ();
1387 static void insert_op1 (), insert_op2 ();
1388 static boolean at_begline_loc_p (), at_endline_loc_p ();
1389 static boolean group_in_compile_stack ();
1390 static reg_errcode_t compile_range ();
1391
1392 /* Fetch the next character in the uncompiled pattern---translating it
1393 if necessary. Also cast from a signed character in the constant
1394 string passed to us by the user to an unsigned char that we can use
1395 as an array index (in, e.g., `translate'). */
1396 #ifndef PATFETCH
1397 #define PATFETCH(c) \
1398 do {if (p == pend) return REG_EEND; \
1399 c = (unsigned char) *p++; \
1400 if (translate) c = (unsigned char) translate[c]; \
1401 } while (0)
1402 #endif
1403
1404 /* Fetch the next character in the uncompiled pattern, with no
1405 translation. */
1406 #define PATFETCH_RAW(c) \
1407 do {if (p == pend) return REG_EEND; \
1408 c = (unsigned char) *p++; \
1409 } while (0)
1410
1411 /* Go backwards one character in the pattern. */
1412 #define PATUNFETCH p--
1413
1414
1415 /* If `translate' is non-null, return translate[D], else just D. We
1416 cast the subscript to translate because some data is declared as
1417 `char *', to avoid warnings when a string constant is passed. But
1418 when we use a character as a subscript we must make it unsigned. */
1419 #ifndef TRANSLATE
1420 #define TRANSLATE(d) \
1421 (translate ? (char) translate[(unsigned char) (d)] : (d))
1422 #endif
1423
1424
1425 /* Macros for outputting the compiled pattern into `buffer'. */
1426
1427 /* If the buffer isn't allocated when it comes in, use this. */
1428 #define INIT_BUF_SIZE 32
1429
1430 /* Make sure we have at least N more bytes of space in buffer. */
1431 #define GET_BUFFER_SPACE(n) \
1432 while (b - bufp->buffer + (n) > bufp->allocated) \
1433 EXTEND_BUFFER ()
1434
1435 /* Make sure we have one more byte of buffer space and then add C to it. */
1436 #define BUF_PUSH(c) \
1437 do { \
1438 GET_BUFFER_SPACE (1); \
1439 *b++ = (unsigned char) (c); \
1440 } while (0)
1441
1442
1443 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1444 #define BUF_PUSH_2(c1, c2) \
1445 do { \
1446 GET_BUFFER_SPACE (2); \
1447 *b++ = (unsigned char) (c1); \
1448 *b++ = (unsigned char) (c2); \
1449 } while (0)
1450
1451
1452 /* As with BUF_PUSH_2, except for three bytes. */
1453 #define BUF_PUSH_3(c1, c2, c3) \
1454 do { \
1455 GET_BUFFER_SPACE (3); \
1456 *b++ = (unsigned char) (c1); \
1457 *b++ = (unsigned char) (c2); \
1458 *b++ = (unsigned char) (c3); \
1459 } while (0)
1460
1461
1462 /* Store a jump with opcode OP at LOC to location TO. We store a
1463 relative address offset by the three bytes the jump itself occupies. */
1464 #define STORE_JUMP(op, loc, to) \
1465 store_op1 (op, loc, (to) - (loc) - 3)
1466
1467 /* Likewise, for a two-argument jump. */
1468 #define STORE_JUMP2(op, loc, to, arg) \
1469 store_op2 (op, loc, (to) - (loc) - 3, arg)
1470
1471 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1472 #define INSERT_JUMP(op, loc, to) \
1473 insert_op1 (op, loc, (to) - (loc) - 3, b)
1474
1475 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1476 #define INSERT_JUMP2(op, loc, to, arg) \
1477 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1478
1479
1480 /* This is not an arbitrary limit: the arguments which represent offsets
1481 into the pattern are two bytes long. So if 2^16 bytes turns out to
1482 be too small, many things would have to change. */
1483 #define MAX_BUF_SIZE (1L << 16)
1484
1485
1486 /* Extend the buffer by twice its current size via realloc and
1487 reset the pointers that pointed into the old block to point to the
1488 correct places in the new one. If extending the buffer results in it
1489 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1490 #define EXTEND_BUFFER() \
1491 do { \
1492 unsigned char *old_buffer = bufp->buffer; \
1493 if (bufp->allocated == MAX_BUF_SIZE) \
1494 return REG_ESIZE; \
1495 bufp->allocated <<= 1; \
1496 if (bufp->allocated > MAX_BUF_SIZE) \
1497 bufp->allocated = MAX_BUF_SIZE; \
1498 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1499 if (bufp->buffer == NULL) \
1500 return REG_ESPACE; \
1501 /* If the buffer moved, move all the pointers into it. */ \
1502 if (old_buffer != bufp->buffer) \
1503 { \
1504 b = (b - old_buffer) + bufp->buffer; \
1505 begalt = (begalt - old_buffer) + bufp->buffer; \
1506 if (fixup_alt_jump) \
1507 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1508 if (laststart) \
1509 laststart = (laststart - old_buffer) + bufp->buffer; \
1510 if (pending_exact) \
1511 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1512 } \
1513 } while (0)
1514
1515
1516 /* Since we have one byte reserved for the register number argument to
1517 {start,stop}_memory, the maximum number of groups we can report
1518 things about is what fits in that byte. */
1519 #define MAX_REGNUM 255
1520
1521 /* But patterns can have more than `MAX_REGNUM' registers. We just
1522 ignore the excess. */
1523 typedef unsigned regnum_t;
1524
1525
1526 /* Macros for the compile stack. */
1527
1528 /* Since offsets can go either forwards or backwards, this type needs to
1529 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1530 typedef int pattern_offset_t;
1531
1532 typedef struct
1533 {
1534 pattern_offset_t begalt_offset;
1535 pattern_offset_t fixup_alt_jump;
1536 pattern_offset_t inner_group_offset;
1537 pattern_offset_t laststart_offset;
1538 regnum_t regnum;
1539 } compile_stack_elt_t;
1540
1541
1542 typedef struct
1543 {
1544 compile_stack_elt_t *stack;
1545 unsigned size;
1546 unsigned avail; /* Offset of next open position. */
1547 } compile_stack_type;
1548
1549
1550 #define INIT_COMPILE_STACK_SIZE 32
1551
1552 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1553 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1554
1555 /* The next available element. */
1556 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1557
1558
1559 /* Set the bit for character C in a list. */
1560 #define SET_LIST_BIT(c) \
1561 (b[((unsigned char) (c)) / BYTEWIDTH] \
1562 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1563
1564
1565 /* Get the next unsigned number in the uncompiled pattern. */
1566 #define GET_UNSIGNED_NUMBER(num) \
1567 { if (p != pend) \
1568 { \
1569 PATFETCH (c); \
1570 while (ISDIGIT (c)) \
1571 { \
1572 if (num < 0) \
1573 num = 0; \
1574 num = num * 10 + c - '0'; \
1575 if (p == pend) \
1576 break; \
1577 PATFETCH (c); \
1578 } \
1579 } \
1580 }
1581
1582 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1583
1584 #define IS_CHAR_CLASS(string) \
1585 (STREQ (string, "alpha") || STREQ (string, "upper") \
1586 || STREQ (string, "lower") || STREQ (string, "digit") \
1587 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1588 || STREQ (string, "space") || STREQ (string, "print") \
1589 || STREQ (string, "punct") || STREQ (string, "graph") \
1590 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1591 \f
1592 #ifndef MATCH_MAY_ALLOCATE
1593
1594 /* If we cannot allocate large objects within re_match_2_internal,
1595 we make the fail stack and register vectors global.
1596 The fail stack, we grow to the maximum size when a regexp
1597 is compiled.
1598 The register vectors, we adjust in size each time we
1599 compile a regexp, according to the number of registers it needs. */
1600
1601 static fail_stack_type fail_stack;
1602
1603 /* Size with which the following vectors are currently allocated.
1604 That is so we can make them bigger as needed,
1605 but never make them smaller. */
1606 static int regs_allocated_size;
1607
1608 static const char ** regstart, ** regend;
1609 static const char ** old_regstart, ** old_regend;
1610 static const char **best_regstart, **best_regend;
1611 static register_info_type *reg_info;
1612 static const char **reg_dummy;
1613 static register_info_type *reg_info_dummy;
1614
1615 /* Make the register vectors big enough for NUM_REGS registers,
1616 but don't make them smaller. */
1617
1618 static
1619 regex_grow_registers (num_regs)
1620 int num_regs;
1621 {
1622 if (num_regs > regs_allocated_size)
1623 {
1624 RETALLOC_IF (regstart, num_regs, const char *);
1625 RETALLOC_IF (regend, num_regs, const char *);
1626 RETALLOC_IF (old_regstart, num_regs, const char *);
1627 RETALLOC_IF (old_regend, num_regs, const char *);
1628 RETALLOC_IF (best_regstart, num_regs, const char *);
1629 RETALLOC_IF (best_regend, num_regs, const char *);
1630 RETALLOC_IF (reg_info, num_regs, register_info_type);
1631 RETALLOC_IF (reg_dummy, num_regs, const char *);
1632 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1633
1634 regs_allocated_size = num_regs;
1635 }
1636 }
1637
1638 #endif /* not MATCH_MAY_ALLOCATE */
1639 \f
1640 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1641 Returns one of error codes defined in `regex.h', or zero for success.
1642
1643 Assumes the `allocated' (and perhaps `buffer') and `translate'
1644 fields are set in BUFP on entry.
1645
1646 If it succeeds, results are put in BUFP (if it returns an error, the
1647 contents of BUFP are undefined):
1648 `buffer' is the compiled pattern;
1649 `syntax' is set to SYNTAX;
1650 `used' is set to the length of the compiled pattern;
1651 `fastmap_accurate' is zero;
1652 `re_nsub' is the number of subexpressions in PATTERN;
1653 `not_bol' and `not_eol' are zero;
1654
1655 The `fastmap' and `newline_anchor' fields are neither
1656 examined nor set. */
1657
1658 /* Return, freeing storage we allocated. */
1659 #define FREE_STACK_RETURN(value) \
1660 return (free (compile_stack.stack), value)
1661
1662 static reg_errcode_t
1663 regex_compile (pattern, size, syntax, bufp)
1664 const char *pattern;
1665 int size;
1666 reg_syntax_t syntax;
1667 struct re_pattern_buffer *bufp;
1668 {
1669 /* We fetch characters from PATTERN here. Even though PATTERN is
1670 `char *' (i.e., signed), we declare these variables as unsigned, so
1671 they can be reliably used as array indices. */
1672 register unsigned char c, c1;
1673
1674 /* A random temporary spot in PATTERN. */
1675 const char *p1;
1676
1677 /* Points to the end of the buffer, where we should append. */
1678 register unsigned char *b;
1679
1680 /* Keeps track of unclosed groups. */
1681 compile_stack_type compile_stack;
1682
1683 /* Points to the current (ending) position in the pattern. */
1684 const char *p = pattern;
1685 const char *pend = pattern + size;
1686
1687 /* How to translate the characters in the pattern. */
1688 RE_TRANSLATE_TYPE translate = bufp->translate;
1689
1690 /* Address of the count-byte of the most recently inserted `exactn'
1691 command. This makes it possible to tell if a new exact-match
1692 character can be added to that command or if the character requires
1693 a new `exactn' command. */
1694 unsigned char *pending_exact = 0;
1695
1696 /* Address of start of the most recently finished expression.
1697 This tells, e.g., postfix * where to find the start of its
1698 operand. Reset at the beginning of groups and alternatives. */
1699 unsigned char *laststart = 0;
1700
1701 /* Address of beginning of regexp, or inside of last group. */
1702 unsigned char *begalt;
1703
1704 /* Place in the uncompiled pattern (i.e., the {) to
1705 which to go back if the interval is invalid. */
1706 const char *beg_interval;
1707
1708 /* Address of the place where a forward jump should go to the end of
1709 the containing expression. Each alternative of an `or' -- except the
1710 last -- ends with a forward jump of this sort. */
1711 unsigned char *fixup_alt_jump = 0;
1712
1713 /* Counts open-groups as they are encountered. Remembered for the
1714 matching close-group on the compile stack, so the same register
1715 number is put in the stop_memory as the start_memory. */
1716 regnum_t regnum = 0;
1717
1718 #ifdef DEBUG
1719 DEBUG_PRINT1 ("\nCompiling pattern: ");
1720 if (debug)
1721 {
1722 unsigned debug_count;
1723
1724 for (debug_count = 0; debug_count < size; debug_count++)
1725 putchar (pattern[debug_count]);
1726 putchar ('\n');
1727 }
1728 #endif /* DEBUG */
1729
1730 /* Initialize the compile stack. */
1731 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1732 if (compile_stack.stack == NULL)
1733 return REG_ESPACE;
1734
1735 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1736 compile_stack.avail = 0;
1737
1738 /* Initialize the pattern buffer. */
1739 bufp->syntax = syntax;
1740 bufp->fastmap_accurate = 0;
1741 bufp->not_bol = bufp->not_eol = 0;
1742
1743 /* Set `used' to zero, so that if we return an error, the pattern
1744 printer (for debugging) will think there's no pattern. We reset it
1745 at the end. */
1746 bufp->used = 0;
1747
1748 /* Always count groups, whether or not bufp->no_sub is set. */
1749 bufp->re_nsub = 0;
1750
1751 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1752 /* Initialize the syntax table. */
1753 init_syntax_once ();
1754 #endif
1755
1756 if (bufp->allocated == 0)
1757 {
1758 if (bufp->buffer)
1759 { /* If zero allocated, but buffer is non-null, try to realloc
1760 enough space. This loses if buffer's address is bogus, but
1761 that is the user's responsibility. */
1762 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1763 }
1764 else
1765 { /* Caller did not allocate a buffer. Do it for them. */
1766 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1767 }
1768 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1769
1770 bufp->allocated = INIT_BUF_SIZE;
1771 }
1772
1773 begalt = b = bufp->buffer;
1774
1775 /* Loop through the uncompiled pattern until we're at the end. */
1776 while (p != pend)
1777 {
1778 PATFETCH (c);
1779
1780 switch (c)
1781 {
1782 case '^':
1783 {
1784 if ( /* If at start of pattern, it's an operator. */
1785 p == pattern + 1
1786 /* If context independent, it's an operator. */
1787 || syntax & RE_CONTEXT_INDEP_ANCHORS
1788 /* Otherwise, depends on what's come before. */
1789 || at_begline_loc_p (pattern, p, syntax))
1790 BUF_PUSH (begline);
1791 else
1792 goto normal_char;
1793 }
1794 break;
1795
1796
1797 case '$':
1798 {
1799 if ( /* If at end of pattern, it's an operator. */
1800 p == pend
1801 /* If context independent, it's an operator. */
1802 || syntax & RE_CONTEXT_INDEP_ANCHORS
1803 /* Otherwise, depends on what's next. */
1804 || at_endline_loc_p (p, pend, syntax))
1805 BUF_PUSH (endline);
1806 else
1807 goto normal_char;
1808 }
1809 break;
1810
1811
1812 case '+':
1813 case '?':
1814 if ((syntax & RE_BK_PLUS_QM)
1815 || (syntax & RE_LIMITED_OPS))
1816 goto normal_char;
1817 handle_plus:
1818 case '*':
1819 /* If there is no previous pattern... */
1820 if (!laststart)
1821 {
1822 if (syntax & RE_CONTEXT_INVALID_OPS)
1823 FREE_STACK_RETURN (REG_BADRPT);
1824 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1825 goto normal_char;
1826 }
1827
1828 {
1829 /* Are we optimizing this jump? */
1830 boolean keep_string_p = false;
1831
1832 /* 1 means zero (many) matches is allowed. */
1833 char zero_times_ok = 0, many_times_ok = 0;
1834
1835 /* If there is a sequence of repetition chars, collapse it
1836 down to just one (the right one). We can't combine
1837 interval operators with these because of, e.g., `a{2}*',
1838 which should only match an even number of `a's. */
1839
1840 for (;;)
1841 {
1842 zero_times_ok |= c != '+';
1843 many_times_ok |= c != '?';
1844
1845 if (p == pend)
1846 break;
1847
1848 PATFETCH (c);
1849
1850 if (c == '*'
1851 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1852 ;
1853
1854 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1855 {
1856 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1857
1858 PATFETCH (c1);
1859 if (!(c1 == '+' || c1 == '?'))
1860 {
1861 PATUNFETCH;
1862 PATUNFETCH;
1863 break;
1864 }
1865
1866 c = c1;
1867 }
1868 else
1869 {
1870 PATUNFETCH;
1871 break;
1872 }
1873
1874 /* If we get here, we found another repeat character. */
1875 }
1876
1877 /* Star, etc. applied to an empty pattern is equivalent
1878 to an empty pattern. */
1879 if (!laststart)
1880 break;
1881
1882 /* Now we know whether or not zero matches is allowed
1883 and also whether or not two or more matches is allowed. */
1884 if (many_times_ok)
1885 { /* More than one repetition is allowed, so put in at the
1886 end a backward relative jump from `b' to before the next
1887 jump we're going to put in below (which jumps from
1888 laststart to after this jump).
1889
1890 But if we are at the `*' in the exact sequence `.*\n',
1891 insert an unconditional jump backwards to the .,
1892 instead of the beginning of the loop. This way we only
1893 push a failure point once, instead of every time
1894 through the loop. */
1895 assert (p - 1 > pattern);
1896
1897 /* Allocate the space for the jump. */
1898 GET_BUFFER_SPACE (3);
1899
1900 /* We know we are not at the first character of the pattern,
1901 because laststart was nonzero. And we've already
1902 incremented `p', by the way, to be the character after
1903 the `*'. Do we have to do something analogous here
1904 for null bytes, because of RE_DOT_NOT_NULL? */
1905 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
1906 && zero_times_ok
1907 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
1908 && !(syntax & RE_DOT_NEWLINE))
1909 { /* We have .*\n. */
1910 STORE_JUMP (jump, b, laststart);
1911 keep_string_p = true;
1912 }
1913 else
1914 /* Anything else. */
1915 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
1916
1917 /* We've added more stuff to the buffer. */
1918 b += 3;
1919 }
1920
1921 /* On failure, jump from laststart to b + 3, which will be the
1922 end of the buffer after this jump is inserted. */
1923 GET_BUFFER_SPACE (3);
1924 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
1925 : on_failure_jump,
1926 laststart, b + 3);
1927 pending_exact = 0;
1928 b += 3;
1929
1930 if (!zero_times_ok)
1931 {
1932 /* At least one repetition is required, so insert a
1933 `dummy_failure_jump' before the initial
1934 `on_failure_jump' instruction of the loop. This
1935 effects a skip over that instruction the first time
1936 we hit that loop. */
1937 GET_BUFFER_SPACE (3);
1938 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
1939 b += 3;
1940 }
1941 }
1942 break;
1943
1944
1945 case '.':
1946 laststart = b;
1947 BUF_PUSH (anychar);
1948 break;
1949
1950
1951 case '[':
1952 {
1953 boolean had_char_class = false;
1954
1955 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
1956
1957 /* Ensure that we have enough space to push a charset: the
1958 opcode, the length count, and the bitset; 34 bytes in all. */
1959 GET_BUFFER_SPACE (34);
1960
1961 laststart = b;
1962
1963 /* We test `*p == '^' twice, instead of using an if
1964 statement, so we only need one BUF_PUSH. */
1965 BUF_PUSH (*p == '^' ? charset_not : charset);
1966 if (*p == '^')
1967 p++;
1968
1969 /* Remember the first position in the bracket expression. */
1970 p1 = p;
1971
1972 /* Push the number of bytes in the bitmap. */
1973 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
1974
1975 /* Clear the whole map. */
1976 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
1977
1978 /* charset_not matches newline according to a syntax bit. */
1979 if ((re_opcode_t) b[-2] == charset_not
1980 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1981 SET_LIST_BIT ('\n');
1982
1983 /* Read in characters and ranges, setting map bits. */
1984 for (;;)
1985 {
1986 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
1987
1988 PATFETCH (c);
1989
1990 /* \ might escape characters inside [...] and [^...]. */
1991 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
1992 {
1993 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1994
1995 PATFETCH (c1);
1996 SET_LIST_BIT (c1);
1997 continue;
1998 }
1999
2000 /* Could be the end of the bracket expression. If it's
2001 not (i.e., when the bracket expression is `[]' so
2002 far), the ']' character bit gets set way below. */
2003 if (c == ']' && p != p1 + 1)
2004 break;
2005
2006 /* Look ahead to see if it's a range when the last thing
2007 was a character class. */
2008 if (had_char_class && c == '-' && *p != ']')
2009 FREE_STACK_RETURN (REG_ERANGE);
2010
2011 /* Look ahead to see if it's a range when the last thing
2012 was a character: if this is a hyphen not at the
2013 beginning or the end of a list, then it's the range
2014 operator. */
2015 if (c == '-'
2016 && !(p - 2 >= pattern && p[-2] == '[')
2017 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2018 && *p != ']')
2019 {
2020 reg_errcode_t ret
2021 = compile_range (&p, pend, translate, syntax, b);
2022 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2023 }
2024
2025 else if (p[0] == '-' && p[1] != ']')
2026 { /* This handles ranges made up of characters only. */
2027 reg_errcode_t ret;
2028
2029 /* Move past the `-'. */
2030 PATFETCH (c1);
2031
2032 ret = compile_range (&p, pend, translate, syntax, b);
2033 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2034 }
2035
2036 /* See if we're at the beginning of a possible character
2037 class. */
2038
2039 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2040 { /* Leave room for the null. */
2041 char str[CHAR_CLASS_MAX_LENGTH + 1];
2042
2043 PATFETCH (c);
2044 c1 = 0;
2045
2046 /* If pattern is `[[:'. */
2047 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2048
2049 for (;;)
2050 {
2051 PATFETCH (c);
2052 if (c == ':' || c == ']' || p == pend
2053 || c1 == CHAR_CLASS_MAX_LENGTH)
2054 break;
2055 str[c1++] = c;
2056 }
2057 str[c1] = '\0';
2058
2059 /* If isn't a word bracketed by `[:' and:`]':
2060 undo the ending character, the letters, and leave
2061 the leading `:' and `[' (but set bits for them). */
2062 if (c == ':' && *p == ']')
2063 {
2064 int ch;
2065 boolean is_alnum = STREQ (str, "alnum");
2066 boolean is_alpha = STREQ (str, "alpha");
2067 boolean is_blank = STREQ (str, "blank");
2068 boolean is_cntrl = STREQ (str, "cntrl");
2069 boolean is_digit = STREQ (str, "digit");
2070 boolean is_graph = STREQ (str, "graph");
2071 boolean is_lower = STREQ (str, "lower");
2072 boolean is_print = STREQ (str, "print");
2073 boolean is_punct = STREQ (str, "punct");
2074 boolean is_space = STREQ (str, "space");
2075 boolean is_upper = STREQ (str, "upper");
2076 boolean is_xdigit = STREQ (str, "xdigit");
2077
2078 if (!IS_CHAR_CLASS (str))
2079 FREE_STACK_RETURN (REG_ECTYPE);
2080
2081 /* Throw away the ] at the end of the character
2082 class. */
2083 PATFETCH (c);
2084
2085 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2086
2087 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2088 {
2089 int translated = TRANSLATE (ch);
2090 /* This was split into 3 if's to
2091 avoid an arbitrary limit in some compiler. */
2092 if ( (is_alnum && ISALNUM (ch))
2093 || (is_alpha && ISALPHA (ch))
2094 || (is_blank && ISBLANK (ch))
2095 || (is_cntrl && ISCNTRL (ch)))
2096 SET_LIST_BIT (translated);
2097 if ( (is_digit && ISDIGIT (ch))
2098 || (is_graph && ISGRAPH (ch))
2099 || (is_lower && ISLOWER (ch))
2100 || (is_print && ISPRINT (ch)))
2101 SET_LIST_BIT (translated);
2102 if ( (is_punct && ISPUNCT (ch))
2103 || (is_space && ISSPACE (ch))
2104 || (is_upper && ISUPPER (ch))
2105 || (is_xdigit && ISXDIGIT (ch)))
2106 SET_LIST_BIT (translated);
2107 }
2108 had_char_class = true;
2109 }
2110 else
2111 {
2112 c1++;
2113 while (c1--)
2114 PATUNFETCH;
2115 SET_LIST_BIT ('[');
2116 SET_LIST_BIT (':');
2117 had_char_class = false;
2118 }
2119 }
2120 else
2121 {
2122 had_char_class = false;
2123 SET_LIST_BIT (c);
2124 }
2125 }
2126
2127 /* Discard any (non)matching list bytes that are all 0 at the
2128 end of the map. Decrease the map-length byte too. */
2129 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2130 b[-1]--;
2131 b += b[-1];
2132 }
2133 break;
2134
2135
2136 case '(':
2137 if (syntax & RE_NO_BK_PARENS)
2138 goto handle_open;
2139 else
2140 goto normal_char;
2141
2142
2143 case ')':
2144 if (syntax & RE_NO_BK_PARENS)
2145 goto handle_close;
2146 else
2147 goto normal_char;
2148
2149
2150 case '\n':
2151 if (syntax & RE_NEWLINE_ALT)
2152 goto handle_alt;
2153 else
2154 goto normal_char;
2155
2156
2157 case '|':
2158 if (syntax & RE_NO_BK_VBAR)
2159 goto handle_alt;
2160 else
2161 goto normal_char;
2162
2163
2164 case '{':
2165 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2166 goto handle_interval;
2167 else
2168 goto normal_char;
2169
2170
2171 case '\\':
2172 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2173
2174 /* Do not translate the character after the \, so that we can
2175 distinguish, e.g., \B from \b, even if we normally would
2176 translate, e.g., B to b. */
2177 PATFETCH_RAW (c);
2178
2179 switch (c)
2180 {
2181 case '(':
2182 if (syntax & RE_NO_BK_PARENS)
2183 goto normal_backslash;
2184
2185 handle_open:
2186 bufp->re_nsub++;
2187 regnum++;
2188
2189 if (COMPILE_STACK_FULL)
2190 {
2191 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2192 compile_stack_elt_t);
2193 if (compile_stack.stack == NULL) return REG_ESPACE;
2194
2195 compile_stack.size <<= 1;
2196 }
2197
2198 /* These are the values to restore when we hit end of this
2199 group. They are all relative offsets, so that if the
2200 whole pattern moves because of realloc, they will still
2201 be valid. */
2202 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2203 COMPILE_STACK_TOP.fixup_alt_jump
2204 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2205 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2206 COMPILE_STACK_TOP.regnum = regnum;
2207
2208 /* We will eventually replace the 0 with the number of
2209 groups inner to this one. But do not push a
2210 start_memory for groups beyond the last one we can
2211 represent in the compiled pattern. */
2212 if (regnum <= MAX_REGNUM)
2213 {
2214 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2215 BUF_PUSH_3 (start_memory, regnum, 0);
2216 }
2217
2218 compile_stack.avail++;
2219
2220 fixup_alt_jump = 0;
2221 laststart = 0;
2222 begalt = b;
2223 /* If we've reached MAX_REGNUM groups, then this open
2224 won't actually generate any code, so we'll have to
2225 clear pending_exact explicitly. */
2226 pending_exact = 0;
2227 break;
2228
2229
2230 case ')':
2231 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2232
2233 if (COMPILE_STACK_EMPTY)
2234 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2235 goto normal_backslash;
2236 else
2237 FREE_STACK_RETURN (REG_ERPAREN);
2238
2239 handle_close:
2240 if (fixup_alt_jump)
2241 { /* Push a dummy failure point at the end of the
2242 alternative for a possible future
2243 `pop_failure_jump' to pop. See comments at
2244 `push_dummy_failure' in `re_match_2'. */
2245 BUF_PUSH (push_dummy_failure);
2246
2247 /* We allocated space for this jump when we assigned
2248 to `fixup_alt_jump', in the `handle_alt' case below. */
2249 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2250 }
2251
2252 /* See similar code for backslashed left paren above. */
2253 if (COMPILE_STACK_EMPTY)
2254 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2255 goto normal_char;
2256 else
2257 FREE_STACK_RETURN (REG_ERPAREN);
2258
2259 /* Since we just checked for an empty stack above, this
2260 ``can't happen''. */
2261 assert (compile_stack.avail != 0);
2262 {
2263 /* We don't just want to restore into `regnum', because
2264 later groups should continue to be numbered higher,
2265 as in `(ab)c(de)' -- the second group is #2. */
2266 regnum_t this_group_regnum;
2267
2268 compile_stack.avail--;
2269 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2270 fixup_alt_jump
2271 = COMPILE_STACK_TOP.fixup_alt_jump
2272 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2273 : 0;
2274 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2275 this_group_regnum = COMPILE_STACK_TOP.regnum;
2276 /* If we've reached MAX_REGNUM groups, then this open
2277 won't actually generate any code, so we'll have to
2278 clear pending_exact explicitly. */
2279 pending_exact = 0;
2280
2281 /* We're at the end of the group, so now we know how many
2282 groups were inside this one. */
2283 if (this_group_regnum <= MAX_REGNUM)
2284 {
2285 unsigned char *inner_group_loc
2286 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2287
2288 *inner_group_loc = regnum - this_group_regnum;
2289 BUF_PUSH_3 (stop_memory, this_group_regnum,
2290 regnum - this_group_regnum);
2291 }
2292 }
2293 break;
2294
2295
2296 case '|': /* `\|'. */
2297 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2298 goto normal_backslash;
2299 handle_alt:
2300 if (syntax & RE_LIMITED_OPS)
2301 goto normal_char;
2302
2303 /* Insert before the previous alternative a jump which
2304 jumps to this alternative if the former fails. */
2305 GET_BUFFER_SPACE (3);
2306 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2307 pending_exact = 0;
2308 b += 3;
2309
2310 /* The alternative before this one has a jump after it
2311 which gets executed if it gets matched. Adjust that
2312 jump so it will jump to this alternative's analogous
2313 jump (put in below, which in turn will jump to the next
2314 (if any) alternative's such jump, etc.). The last such
2315 jump jumps to the correct final destination. A picture:
2316 _____ _____
2317 | | | |
2318 | v | v
2319 a | b | c
2320
2321 If we are at `b', then fixup_alt_jump right now points to a
2322 three-byte space after `a'. We'll put in the jump, set
2323 fixup_alt_jump to right after `b', and leave behind three
2324 bytes which we'll fill in when we get to after `c'. */
2325
2326 if (fixup_alt_jump)
2327 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2328
2329 /* Mark and leave space for a jump after this alternative,
2330 to be filled in later either by next alternative or
2331 when know we're at the end of a series of alternatives. */
2332 fixup_alt_jump = b;
2333 GET_BUFFER_SPACE (3);
2334 b += 3;
2335
2336 laststart = 0;
2337 begalt = b;
2338 break;
2339
2340
2341 case '{':
2342 /* If \{ is a literal. */
2343 if (!(syntax & RE_INTERVALS)
2344 /* If we're at `\{' and it's not the open-interval
2345 operator. */
2346 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2347 || (p - 2 == pattern && p == pend))
2348 goto normal_backslash;
2349
2350 handle_interval:
2351 {
2352 /* If got here, then the syntax allows intervals. */
2353
2354 /* At least (most) this many matches must be made. */
2355 int lower_bound = -1, upper_bound = -1;
2356
2357 beg_interval = p - 1;
2358
2359 if (p == pend)
2360 {
2361 if (syntax & RE_NO_BK_BRACES)
2362 goto unfetch_interval;
2363 else
2364 FREE_STACK_RETURN (REG_EBRACE);
2365 }
2366
2367 GET_UNSIGNED_NUMBER (lower_bound);
2368
2369 if (c == ',')
2370 {
2371 GET_UNSIGNED_NUMBER (upper_bound);
2372 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2373 }
2374 else
2375 /* Interval such as `{1}' => match exactly once. */
2376 upper_bound = lower_bound;
2377
2378 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2379 || lower_bound > upper_bound)
2380 {
2381 if (syntax & RE_NO_BK_BRACES)
2382 goto unfetch_interval;
2383 else
2384 FREE_STACK_RETURN (REG_BADBR);
2385 }
2386
2387 if (!(syntax & RE_NO_BK_BRACES))
2388 {
2389 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2390
2391 PATFETCH (c);
2392 }
2393
2394 if (c != '}')
2395 {
2396 if (syntax & RE_NO_BK_BRACES)
2397 goto unfetch_interval;
2398 else
2399 FREE_STACK_RETURN (REG_BADBR);
2400 }
2401
2402 /* We just parsed a valid interval. */
2403
2404 /* If it's invalid to have no preceding re. */
2405 if (!laststart)
2406 {
2407 if (syntax & RE_CONTEXT_INVALID_OPS)
2408 FREE_STACK_RETURN (REG_BADRPT);
2409 else if (syntax & RE_CONTEXT_INDEP_OPS)
2410 laststart = b;
2411 else
2412 goto unfetch_interval;
2413 }
2414
2415 /* If the upper bound is zero, don't want to succeed at
2416 all; jump from `laststart' to `b + 3', which will be
2417 the end of the buffer after we insert the jump. */
2418 if (upper_bound == 0)
2419 {
2420 GET_BUFFER_SPACE (3);
2421 INSERT_JUMP (jump, laststart, b + 3);
2422 b += 3;
2423 }
2424
2425 /* Otherwise, we have a nontrivial interval. When
2426 we're all done, the pattern will look like:
2427 set_number_at <jump count> <upper bound>
2428 set_number_at <succeed_n count> <lower bound>
2429 succeed_n <after jump addr> <succeed_n count>
2430 <body of loop>
2431 jump_n <succeed_n addr> <jump count>
2432 (The upper bound and `jump_n' are omitted if
2433 `upper_bound' is 1, though.) */
2434 else
2435 { /* If the upper bound is > 1, we need to insert
2436 more at the end of the loop. */
2437 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2438
2439 GET_BUFFER_SPACE (nbytes);
2440
2441 /* Initialize lower bound of the `succeed_n', even
2442 though it will be set during matching by its
2443 attendant `set_number_at' (inserted next),
2444 because `re_compile_fastmap' needs to know.
2445 Jump to the `jump_n' we might insert below. */
2446 INSERT_JUMP2 (succeed_n, laststart,
2447 b + 5 + (upper_bound > 1) * 5,
2448 lower_bound);
2449 b += 5;
2450
2451 /* Code to initialize the lower bound. Insert
2452 before the `succeed_n'. The `5' is the last two
2453 bytes of this `set_number_at', plus 3 bytes of
2454 the following `succeed_n'. */
2455 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2456 b += 5;
2457
2458 if (upper_bound > 1)
2459 { /* More than one repetition is allowed, so
2460 append a backward jump to the `succeed_n'
2461 that starts this interval.
2462
2463 When we've reached this during matching,
2464 we'll have matched the interval once, so
2465 jump back only `upper_bound - 1' times. */
2466 STORE_JUMP2 (jump_n, b, laststart + 5,
2467 upper_bound - 1);
2468 b += 5;
2469
2470 /* The location we want to set is the second
2471 parameter of the `jump_n'; that is `b-2' as
2472 an absolute address. `laststart' will be
2473 the `set_number_at' we're about to insert;
2474 `laststart+3' the number to set, the source
2475 for the relative address. But we are
2476 inserting into the middle of the pattern --
2477 so everything is getting moved up by 5.
2478 Conclusion: (b - 2) - (laststart + 3) + 5,
2479 i.e., b - laststart.
2480
2481 We insert this at the beginning of the loop
2482 so that if we fail during matching, we'll
2483 reinitialize the bounds. */
2484 insert_op2 (set_number_at, laststart, b - laststart,
2485 upper_bound - 1, b);
2486 b += 5;
2487 }
2488 }
2489 pending_exact = 0;
2490 beg_interval = NULL;
2491 }
2492 break;
2493
2494 unfetch_interval:
2495 /* If an invalid interval, match the characters as literals. */
2496 assert (beg_interval);
2497 p = beg_interval;
2498 beg_interval = NULL;
2499
2500 /* normal_char and normal_backslash need `c'. */
2501 PATFETCH (c);
2502
2503 if (!(syntax & RE_NO_BK_BRACES))
2504 {
2505 if (p > pattern && p[-1] == '\\')
2506 goto normal_backslash;
2507 }
2508 goto normal_char;
2509
2510 #ifdef emacs
2511 /* There is no way to specify the before_dot and after_dot
2512 operators. rms says this is ok. --karl */
2513 case '=':
2514 BUF_PUSH (at_dot);
2515 break;
2516
2517 case 's':
2518 laststart = b;
2519 PATFETCH (c);
2520 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2521 break;
2522
2523 case 'S':
2524 laststart = b;
2525 PATFETCH (c);
2526 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2527 break;
2528 #endif /* emacs */
2529
2530
2531 case 'w':
2532 laststart = b;
2533 BUF_PUSH (wordchar);
2534 break;
2535
2536
2537 case 'W':
2538 laststart = b;
2539 BUF_PUSH (notwordchar);
2540 break;
2541
2542
2543 case '<':
2544 BUF_PUSH (wordbeg);
2545 break;
2546
2547 case '>':
2548 BUF_PUSH (wordend);
2549 break;
2550
2551 case 'b':
2552 BUF_PUSH (wordbound);
2553 break;
2554
2555 case 'B':
2556 BUF_PUSH (notwordbound);
2557 break;
2558
2559 case '`':
2560 BUF_PUSH (begbuf);
2561 break;
2562
2563 case '\'':
2564 BUF_PUSH (endbuf);
2565 break;
2566
2567 case '1': case '2': case '3': case '4': case '5':
2568 case '6': case '7': case '8': case '9':
2569 if (syntax & RE_NO_BK_REFS)
2570 goto normal_char;
2571
2572 c1 = c - '0';
2573
2574 if (c1 > regnum)
2575 FREE_STACK_RETURN (REG_ESUBREG);
2576
2577 /* Can't back reference to a subexpression if inside of it. */
2578 if (group_in_compile_stack (compile_stack, c1))
2579 goto normal_char;
2580
2581 laststart = b;
2582 BUF_PUSH_2 (duplicate, c1);
2583 break;
2584
2585
2586 case '+':
2587 case '?':
2588 if (syntax & RE_BK_PLUS_QM)
2589 goto handle_plus;
2590 else
2591 goto normal_backslash;
2592
2593 default:
2594 normal_backslash:
2595 /* You might think it would be useful for \ to mean
2596 not to translate; but if we don't translate it
2597 it will never match anything. */
2598 c = TRANSLATE (c);
2599 goto normal_char;
2600 }
2601 break;
2602
2603
2604 default:
2605 /* Expects the character in `c'. */
2606 normal_char:
2607 /* If no exactn currently being built. */
2608 if (!pending_exact
2609
2610 /* If last exactn not at current position. */
2611 || pending_exact + *pending_exact + 1 != b
2612
2613 /* We have only one byte following the exactn for the count. */
2614 || *pending_exact == (1 << BYTEWIDTH) - 1
2615
2616 /* If followed by a repetition operator. */
2617 || *p == '*' || *p == '^'
2618 || ((syntax & RE_BK_PLUS_QM)
2619 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2620 : (*p == '+' || *p == '?'))
2621 || ((syntax & RE_INTERVALS)
2622 && ((syntax & RE_NO_BK_BRACES)
2623 ? *p == '{'
2624 : (p[0] == '\\' && p[1] == '{'))))
2625 {
2626 /* Start building a new exactn. */
2627
2628 laststart = b;
2629
2630 BUF_PUSH_2 (exactn, 0);
2631 pending_exact = b - 1;
2632 }
2633
2634 BUF_PUSH (c);
2635 (*pending_exact)++;
2636 break;
2637 } /* switch (c) */
2638 } /* while p != pend */
2639
2640
2641 /* Through the pattern now. */
2642
2643 if (fixup_alt_jump)
2644 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2645
2646 if (!COMPILE_STACK_EMPTY)
2647 FREE_STACK_RETURN (REG_EPAREN);
2648
2649 /* If we don't want backtracking, force success
2650 the first time we reach the end of the compiled pattern. */
2651 if (syntax & RE_NO_POSIX_BACKTRACKING)
2652 BUF_PUSH (succeed);
2653
2654 free (compile_stack.stack);
2655
2656 /* We have succeeded; set the length of the buffer. */
2657 bufp->used = b - bufp->buffer;
2658
2659 #ifdef DEBUG
2660 if (debug)
2661 {
2662 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2663 print_compiled_pattern (bufp);
2664 }
2665 #endif /* DEBUG */
2666
2667 #ifndef MATCH_MAY_ALLOCATE
2668 /* Initialize the failure stack to the largest possible stack. This
2669 isn't necessary unless we're trying to avoid calling alloca in
2670 the search and match routines. */
2671 {
2672 int num_regs = bufp->re_nsub + 1;
2673
2674 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2675 is strictly greater than re_max_failures, the largest possible stack
2676 is 2 * re_max_failures failure points. */
2677 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2678 {
2679 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2680
2681 #ifdef emacs
2682 if (! fail_stack.stack)
2683 fail_stack.stack
2684 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2685 * sizeof (fail_stack_elt_t));
2686 else
2687 fail_stack.stack
2688 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2689 (fail_stack.size
2690 * sizeof (fail_stack_elt_t)));
2691 #else /* not emacs */
2692 if (! fail_stack.stack)
2693 fail_stack.stack
2694 = (fail_stack_elt_t *) malloc (fail_stack.size
2695 * sizeof (fail_stack_elt_t));
2696 else
2697 fail_stack.stack
2698 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2699 (fail_stack.size
2700 * sizeof (fail_stack_elt_t)));
2701 #endif /* not emacs */
2702 }
2703
2704 regex_grow_registers (num_regs);
2705 }
2706 #endif /* not MATCH_MAY_ALLOCATE */
2707
2708 return REG_NOERROR;
2709 } /* regex_compile */
2710 \f
2711 /* Subroutines for `regex_compile'. */
2712
2713 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2714
2715 static void
2716 store_op1 (op, loc, arg)
2717 re_opcode_t op;
2718 unsigned char *loc;
2719 int arg;
2720 {
2721 *loc = (unsigned char) op;
2722 STORE_NUMBER (loc + 1, arg);
2723 }
2724
2725
2726 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2727
2728 static void
2729 store_op2 (op, loc, arg1, arg2)
2730 re_opcode_t op;
2731 unsigned char *loc;
2732 int arg1, arg2;
2733 {
2734 *loc = (unsigned char) op;
2735 STORE_NUMBER (loc + 1, arg1);
2736 STORE_NUMBER (loc + 3, arg2);
2737 }
2738
2739
2740 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2741 for OP followed by two-byte integer parameter ARG. */
2742
2743 static void
2744 insert_op1 (op, loc, arg, end)
2745 re_opcode_t op;
2746 unsigned char *loc;
2747 int arg;
2748 unsigned char *end;
2749 {
2750 register unsigned char *pfrom = end;
2751 register unsigned char *pto = end + 3;
2752
2753 while (pfrom != loc)
2754 *--pto = *--pfrom;
2755
2756 store_op1 (op, loc, arg);
2757 }
2758
2759
2760 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2761
2762 static void
2763 insert_op2 (op, loc, arg1, arg2, end)
2764 re_opcode_t op;
2765 unsigned char *loc;
2766 int arg1, arg2;
2767 unsigned char *end;
2768 {
2769 register unsigned char *pfrom = end;
2770 register unsigned char *pto = end + 5;
2771
2772 while (pfrom != loc)
2773 *--pto = *--pfrom;
2774
2775 store_op2 (op, loc, arg1, arg2);
2776 }
2777
2778
2779 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2780 after an alternative or a begin-subexpression. We assume there is at
2781 least one character before the ^. */
2782
2783 static boolean
2784 at_begline_loc_p (pattern, p, syntax)
2785 const char *pattern, *p;
2786 reg_syntax_t syntax;
2787 {
2788 const char *prev = p - 2;
2789 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2790
2791 return
2792 /* After a subexpression? */
2793 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2794 /* After an alternative? */
2795 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2796 }
2797
2798
2799 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2800 at least one character after the $, i.e., `P < PEND'. */
2801
2802 static boolean
2803 at_endline_loc_p (p, pend, syntax)
2804 const char *p, *pend;
2805 int syntax;
2806 {
2807 const char *next = p;
2808 boolean next_backslash = *next == '\\';
2809 const char *next_next = p + 1 < pend ? p + 1 : 0;
2810
2811 return
2812 /* Before a subexpression? */
2813 (syntax & RE_NO_BK_PARENS ? *next == ')'
2814 : next_backslash && next_next && *next_next == ')')
2815 /* Before an alternative? */
2816 || (syntax & RE_NO_BK_VBAR ? *next == '|'
2817 : next_backslash && next_next && *next_next == '|');
2818 }
2819
2820
2821 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2822 false if it's not. */
2823
2824 static boolean
2825 group_in_compile_stack (compile_stack, regnum)
2826 compile_stack_type compile_stack;
2827 regnum_t regnum;
2828 {
2829 int this_element;
2830
2831 for (this_element = compile_stack.avail - 1;
2832 this_element >= 0;
2833 this_element--)
2834 if (compile_stack.stack[this_element].regnum == regnum)
2835 return true;
2836
2837 return false;
2838 }
2839
2840
2841 /* Read the ending character of a range (in a bracket expression) from the
2842 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2843 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2844 Then we set the translation of all bits between the starting and
2845 ending characters (inclusive) in the compiled pattern B.
2846
2847 Return an error code.
2848
2849 We use these short variable names so we can use the same macros as
2850 `regex_compile' itself. */
2851
2852 static reg_errcode_t
2853 compile_range (p_ptr, pend, translate, syntax, b)
2854 const char **p_ptr, *pend;
2855 RE_TRANSLATE_TYPE translate;
2856 reg_syntax_t syntax;
2857 unsigned char *b;
2858 {
2859 unsigned this_char;
2860
2861 const char *p = *p_ptr;
2862 int range_start, range_end;
2863
2864 if (p == pend)
2865 return REG_ERANGE;
2866
2867 /* Even though the pattern is a signed `char *', we need to fetch
2868 with unsigned char *'s; if the high bit of the pattern character
2869 is set, the range endpoints will be negative if we fetch using a
2870 signed char *.
2871
2872 We also want to fetch the endpoints without translating them; the
2873 appropriate translation is done in the bit-setting loop below. */
2874 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
2875 range_start = ((const unsigned char *) p)[-2];
2876 range_end = ((const unsigned char *) p)[0];
2877
2878 /* Have to increment the pointer into the pattern string, so the
2879 caller isn't still at the ending character. */
2880 (*p_ptr)++;
2881
2882 /* If the start is after the end, the range is empty. */
2883 if (range_start > range_end)
2884 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
2885
2886 /* Here we see why `this_char' has to be larger than an `unsigned
2887 char' -- the range is inclusive, so if `range_end' == 0xff
2888 (assuming 8-bit characters), we would otherwise go into an infinite
2889 loop, since all characters <= 0xff. */
2890 for (this_char = range_start; this_char <= range_end; this_char++)
2891 {
2892 SET_LIST_BIT (TRANSLATE (this_char));
2893 }
2894
2895 return REG_NOERROR;
2896 }
2897 \f
2898 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2899 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2900 characters can start a string that matches the pattern. This fastmap
2901 is used by re_search to skip quickly over impossible starting points.
2902
2903 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2904 area as BUFP->fastmap.
2905
2906 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2907 the pattern buffer.
2908
2909 Returns 0 if we succeed, -2 if an internal error. */
2910
2911 int
2912 re_compile_fastmap (bufp)
2913 struct re_pattern_buffer *bufp;
2914 {
2915 int j, k;
2916 #ifdef MATCH_MAY_ALLOCATE
2917 fail_stack_type fail_stack;
2918 #endif
2919 #ifndef REGEX_MALLOC
2920 char *destination;
2921 #endif
2922 /* We don't push any register information onto the failure stack. */
2923 unsigned num_regs = 0;
2924
2925 register char *fastmap = bufp->fastmap;
2926 unsigned char *pattern = bufp->buffer;
2927 unsigned long size = bufp->used;
2928 unsigned char *p = pattern;
2929 register unsigned char *pend = pattern + size;
2930
2931 /* This holds the pointer to the failure stack, when
2932 it is allocated relocatably. */
2933 fail_stack_elt_t *failure_stack_ptr;
2934
2935 /* Assume that each path through the pattern can be null until
2936 proven otherwise. We set this false at the bottom of switch
2937 statement, to which we get only if a particular path doesn't
2938 match the empty string. */
2939 boolean path_can_be_null = true;
2940
2941 /* We aren't doing a `succeed_n' to begin with. */
2942 boolean succeed_n_p = false;
2943
2944 assert (fastmap != NULL && p != NULL);
2945
2946 INIT_FAIL_STACK ();
2947 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
2948 bufp->fastmap_accurate = 1; /* It will be when we're done. */
2949 bufp->can_be_null = 0;
2950
2951 while (1)
2952 {
2953 if (p == pend || *p == succeed)
2954 {
2955 /* We have reached the (effective) end of pattern. */
2956 if (!FAIL_STACK_EMPTY ())
2957 {
2958 bufp->can_be_null |= path_can_be_null;
2959
2960 /* Reset for next path. */
2961 path_can_be_null = true;
2962
2963 p = fail_stack.stack[--fail_stack.avail].pointer;
2964
2965 continue;
2966 }
2967 else
2968 break;
2969 }
2970
2971 /* We should never be about to go beyond the end of the pattern. */
2972 assert (p < pend);
2973
2974 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
2975 {
2976
2977 /* I guess the idea here is to simply not bother with a fastmap
2978 if a backreference is used, since it's too hard to figure out
2979 the fastmap for the corresponding group. Setting
2980 `can_be_null' stops `re_search_2' from using the fastmap, so
2981 that is all we do. */
2982 case duplicate:
2983 bufp->can_be_null = 1;
2984 goto done;
2985
2986
2987 /* Following are the cases which match a character. These end
2988 with `break'. */
2989
2990 case exactn:
2991 fastmap[p[1]] = 1;
2992 break;
2993
2994
2995 case charset:
2996 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2997 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
2998 fastmap[j] = 1;
2999 break;
3000
3001
3002 case charset_not:
3003 /* Chars beyond end of map must be allowed. */
3004 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3005 fastmap[j] = 1;
3006
3007 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3008 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3009 fastmap[j] = 1;
3010 break;
3011
3012
3013 case wordchar:
3014 for (j = 0; j < (1 << BYTEWIDTH); j++)
3015 if (SYNTAX (j) == Sword)
3016 fastmap[j] = 1;
3017 break;
3018
3019
3020 case notwordchar:
3021 for (j = 0; j < (1 << BYTEWIDTH); j++)
3022 if (SYNTAX (j) != Sword)
3023 fastmap[j] = 1;
3024 break;
3025
3026
3027 case anychar:
3028 {
3029 int fastmap_newline = fastmap['\n'];
3030
3031 /* `.' matches anything ... */
3032 for (j = 0; j < (1 << BYTEWIDTH); j++)
3033 fastmap[j] = 1;
3034
3035 /* ... except perhaps newline. */
3036 if (!(bufp->syntax & RE_DOT_NEWLINE))
3037 fastmap['\n'] = fastmap_newline;
3038
3039 /* Return if we have already set `can_be_null'; if we have,
3040 then the fastmap is irrelevant. Something's wrong here. */
3041 else if (bufp->can_be_null)
3042 goto done;
3043
3044 /* Otherwise, have to check alternative paths. */
3045 break;
3046 }
3047
3048 #ifdef emacs
3049 case syntaxspec:
3050 k = *p++;
3051 for (j = 0; j < (1 << BYTEWIDTH); j++)
3052 if (SYNTAX (j) == (enum syntaxcode) k)
3053 fastmap[j] = 1;
3054 break;
3055
3056
3057 case notsyntaxspec:
3058 k = *p++;
3059 for (j = 0; j < (1 << BYTEWIDTH); j++)
3060 if (SYNTAX (j) != (enum syntaxcode) k)
3061 fastmap[j] = 1;
3062 break;
3063
3064
3065 /* All cases after this match the empty string. These end with
3066 `continue'. */
3067
3068
3069 case before_dot:
3070 case at_dot:
3071 case after_dot:
3072 continue;
3073 #endif /* emacs */
3074
3075
3076 case no_op:
3077 case begline:
3078 case endline:
3079 case begbuf:
3080 case endbuf:
3081 case wordbound:
3082 case notwordbound:
3083 case wordbeg:
3084 case wordend:
3085 case push_dummy_failure:
3086 continue;
3087
3088
3089 case jump_n:
3090 case pop_failure_jump:
3091 case maybe_pop_jump:
3092 case jump:
3093 case jump_past_alt:
3094 case dummy_failure_jump:
3095 EXTRACT_NUMBER_AND_INCR (j, p);
3096 p += j;
3097 if (j > 0)
3098 continue;
3099
3100 /* Jump backward implies we just went through the body of a
3101 loop and matched nothing. Opcode jumped to should be
3102 `on_failure_jump' or `succeed_n'. Just treat it like an
3103 ordinary jump. For a * loop, it has pushed its failure
3104 point already; if so, discard that as redundant. */
3105 if ((re_opcode_t) *p != on_failure_jump
3106 && (re_opcode_t) *p != succeed_n)
3107 continue;
3108
3109 p++;
3110 EXTRACT_NUMBER_AND_INCR (j, p);
3111 p += j;
3112
3113 /* If what's on the stack is where we are now, pop it. */
3114 if (!FAIL_STACK_EMPTY ()
3115 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3116 fail_stack.avail--;
3117
3118 continue;
3119
3120
3121 case on_failure_jump:
3122 case on_failure_keep_string_jump:
3123 handle_on_failure_jump:
3124 EXTRACT_NUMBER_AND_INCR (j, p);
3125
3126 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3127 end of the pattern. We don't want to push such a point,
3128 since when we restore it above, entering the switch will
3129 increment `p' past the end of the pattern. We don't need
3130 to push such a point since we obviously won't find any more
3131 fastmap entries beyond `pend'. Such a pattern can match
3132 the null string, though. */
3133 if (p + j < pend)
3134 {
3135 if (!PUSH_PATTERN_OP (p + j, fail_stack))
3136 {
3137 RESET_FAIL_STACK ();
3138 return -2;
3139 }
3140 }
3141 else
3142 bufp->can_be_null = 1;
3143
3144 if (succeed_n_p)
3145 {
3146 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3147 succeed_n_p = false;
3148 }
3149
3150 continue;
3151
3152
3153 case succeed_n:
3154 /* Get to the number of times to succeed. */
3155 p += 2;
3156
3157 /* Increment p past the n for when k != 0. */
3158 EXTRACT_NUMBER_AND_INCR (k, p);
3159 if (k == 0)
3160 {
3161 p -= 4;
3162 succeed_n_p = true; /* Spaghetti code alert. */
3163 goto handle_on_failure_jump;
3164 }
3165 continue;
3166
3167
3168 case set_number_at:
3169 p += 4;
3170 continue;
3171
3172
3173 case start_memory:
3174 case stop_memory:
3175 p += 2;
3176 continue;
3177
3178
3179 default:
3180 abort (); /* We have listed all the cases. */
3181 } /* switch *p++ */
3182
3183 /* Getting here means we have found the possible starting
3184 characters for one path of the pattern -- and that the empty
3185 string does not match. We need not follow this path further.
3186 Instead, look at the next alternative (remembered on the
3187 stack), or quit if no more. The test at the top of the loop
3188 does these things. */
3189 path_can_be_null = false;
3190 p = pend;
3191 } /* while p */
3192
3193 /* Set `can_be_null' for the last path (also the first path, if the
3194 pattern is empty). */
3195 bufp->can_be_null |= path_can_be_null;
3196
3197 done:
3198 RESET_FAIL_STACK ();
3199 return 0;
3200 } /* re_compile_fastmap */
3201 \f
3202 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3203 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3204 this memory for recording register information. STARTS and ENDS
3205 must be allocated using the malloc library routine, and must each
3206 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3207
3208 If NUM_REGS == 0, then subsequent matches should allocate their own
3209 register data.
3210
3211 Unless this function is called, the first search or match using
3212 PATTERN_BUFFER will allocate its own register data, without
3213 freeing the old data. */
3214
3215 void
3216 re_set_registers (bufp, regs, num_regs, starts, ends)
3217 struct re_pattern_buffer *bufp;
3218 struct re_registers *regs;
3219 unsigned num_regs;
3220 regoff_t *starts, *ends;
3221 {
3222 if (num_regs)
3223 {
3224 bufp->regs_allocated = REGS_REALLOCATE;
3225 regs->num_regs = num_regs;
3226 regs->start = starts;
3227 regs->end = ends;
3228 }
3229 else
3230 {
3231 bufp->regs_allocated = REGS_UNALLOCATED;
3232 regs->num_regs = 0;
3233 regs->start = regs->end = (regoff_t *) 0;
3234 }
3235 }
3236 \f
3237 /* Searching routines. */
3238
3239 /* Like re_search_2, below, but only one string is specified, and
3240 doesn't let you say where to stop matching. */
3241
3242 int
3243 re_search (bufp, string, size, startpos, range, regs)
3244 struct re_pattern_buffer *bufp;
3245 const char *string;
3246 int size, startpos, range;
3247 struct re_registers *regs;
3248 {
3249 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3250 regs, size);
3251 }
3252
3253
3254 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3255 virtual concatenation of STRING1 and STRING2, starting first at index
3256 STARTPOS, then at STARTPOS + 1, and so on.
3257
3258 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3259
3260 RANGE is how far to scan while trying to match. RANGE = 0 means try
3261 only at STARTPOS; in general, the last start tried is STARTPOS +
3262 RANGE.
3263
3264 In REGS, return the indices of the virtual concatenation of STRING1
3265 and STRING2 that matched the entire BUFP->buffer and its contained
3266 subexpressions.
3267
3268 Do not consider matching one past the index STOP in the virtual
3269 concatenation of STRING1 and STRING2.
3270
3271 We return either the position in the strings at which the match was
3272 found, -1 if no match, or -2 if error (such as failure
3273 stack overflow). */
3274
3275 int
3276 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3277 struct re_pattern_buffer *bufp;
3278 const char *string1, *string2;
3279 int size1, size2;
3280 int startpos;
3281 int range;
3282 struct re_registers *regs;
3283 int stop;
3284 {
3285 int val;
3286 register char *fastmap = bufp->fastmap;
3287 register RE_TRANSLATE_TYPE translate = bufp->translate;
3288 int total_size = size1 + size2;
3289 int endpos = startpos + range;
3290 int anchored_start = 0;
3291
3292 /* Check for out-of-range STARTPOS. */
3293 if (startpos < 0 || startpos > total_size)
3294 return -1;
3295
3296 /* Fix up RANGE if it might eventually take us outside
3297 the virtual concatenation of STRING1 and STRING2.
3298 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3299 if (endpos < 0)
3300 range = 0 - startpos;
3301 else if (endpos > total_size)
3302 range = total_size - startpos;
3303
3304 /* If the search isn't to be a backwards one, don't waste time in a
3305 search for a pattern that must be anchored. */
3306 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3307 {
3308 if (startpos > 0)
3309 return -1;
3310 else
3311 range = 1;
3312 }
3313
3314 #ifdef emacs
3315 /* In a forward search for something that starts with \=.
3316 don't keep searching past point. */
3317 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3318 {
3319 range = PT - startpos;
3320 if (range <= 0)
3321 return -1;
3322 }
3323 #endif /* emacs */
3324
3325 /* Update the fastmap now if not correct already. */
3326 if (fastmap && !bufp->fastmap_accurate)
3327 if (re_compile_fastmap (bufp) == -2)
3328 return -2;
3329
3330 /* See whether the pattern is anchored. */
3331 if (bufp->buffer[0] == begline)
3332 anchored_start = 1;
3333
3334 /* Loop through the string, looking for a place to start matching. */
3335 for (;;)
3336 {
3337 /* If the pattern is anchored,
3338 skip quickly past places we cannot match.
3339 We don't bother to treat startpos == 0 specially
3340 because that case doesn't repeat. */
3341 if (anchored_start && startpos > 0)
3342 {
3343 if (! (bufp->newline_anchor
3344 && ((startpos <= size1 ? string1[startpos - 1]
3345 : string2[startpos - size1 - 1])
3346 == '\n')))
3347 goto advance;
3348 }
3349
3350 /* If a fastmap is supplied, skip quickly over characters that
3351 cannot be the start of a match. If the pattern can match the
3352 null string, however, we don't need to skip characters; we want
3353 the first null string. */
3354 if (fastmap && startpos < total_size && !bufp->can_be_null)
3355 {
3356 if (range > 0) /* Searching forwards. */
3357 {
3358 register const char *d;
3359 register int lim = 0;
3360 int irange = range;
3361
3362 if (startpos < size1 && startpos + range >= size1)
3363 lim = range - (size1 - startpos);
3364
3365 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3366
3367 /* Written out as an if-else to avoid testing `translate'
3368 inside the loop. */
3369 if (translate)
3370 while (range > lim
3371 && !fastmap[(unsigned char)
3372 translate[(unsigned char) *d++]])
3373 range--;
3374 else
3375 while (range > lim && !fastmap[(unsigned char) *d++])
3376 range--;
3377
3378 startpos += irange - range;
3379 }
3380 else /* Searching backwards. */
3381 {
3382 register char c = (size1 == 0 || startpos >= size1
3383 ? string2[startpos - size1]
3384 : string1[startpos]);
3385
3386 if (!fastmap[(unsigned char) TRANSLATE (c)])
3387 goto advance;
3388 }
3389 }
3390
3391 /* If can't match the null string, and that's all we have left, fail. */
3392 if (range >= 0 && startpos == total_size && fastmap
3393 && !bufp->can_be_null)
3394 return -1;
3395
3396 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3397 startpos, regs, stop);
3398 #ifndef REGEX_MALLOC
3399 #ifdef C_ALLOCA
3400 alloca (0);
3401 #endif
3402 #endif
3403
3404 if (val >= 0)
3405 return startpos;
3406
3407 if (val == -2)
3408 return -2;
3409
3410 advance:
3411 if (!range)
3412 break;
3413 else if (range > 0)
3414 {
3415 range--;
3416 startpos++;
3417 }
3418 else
3419 {
3420 range++;
3421 startpos--;
3422 }
3423 }
3424 return -1;
3425 } /* re_search_2 */
3426 \f
3427 /* Declarations and macros for re_match_2. */
3428
3429 static int bcmp_translate ();
3430 static boolean alt_match_null_string_p (),
3431 common_op_match_null_string_p (),
3432 group_match_null_string_p ();
3433
3434 /* This converts PTR, a pointer into one of the search strings `string1'
3435 and `string2' into an offset from the beginning of that string. */
3436 #define POINTER_TO_OFFSET(ptr) \
3437 (FIRST_STRING_P (ptr) \
3438 ? ((regoff_t) ((ptr) - string1)) \
3439 : ((regoff_t) ((ptr) - string2 + size1)))
3440
3441 /* Macros for dealing with the split strings in re_match_2. */
3442
3443 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3444
3445 /* Call before fetching a character with *d. This switches over to
3446 string2 if necessary. */
3447 #define PREFETCH() \
3448 while (d == dend) \
3449 { \
3450 /* End of string2 => fail. */ \
3451 if (dend == end_match_2) \
3452 goto fail; \
3453 /* End of string1 => advance to string2. */ \
3454 d = string2; \
3455 dend = end_match_2; \
3456 }
3457
3458
3459 /* Test if at very beginning or at very end of the virtual concatenation
3460 of `string1' and `string2'. If only one string, it's `string2'. */
3461 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3462 #define AT_STRINGS_END(d) ((d) == end2)
3463
3464
3465 /* Test if D points to a character which is word-constituent. We have
3466 two special cases to check for: if past the end of string1, look at
3467 the first character in string2; and if before the beginning of
3468 string2, look at the last character in string1. */
3469 #define WORDCHAR_P(d) \
3470 (SYNTAX ((d) == end1 ? *string2 \
3471 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3472 == Sword)
3473
3474 /* Disabled due to a compiler bug -- see comment at case wordbound */
3475 #if 0
3476 /* Test if the character before D and the one at D differ with respect
3477 to being word-constituent. */
3478 #define AT_WORD_BOUNDARY(d) \
3479 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3480 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3481 #endif
3482
3483 /* Free everything we malloc. */
3484 #ifdef MATCH_MAY_ALLOCATE
3485 #define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
3486 #define FREE_VARIABLES() \
3487 do { \
3488 REGEX_FREE_STACK (fail_stack.stack); \
3489 FREE_VAR (regstart); \
3490 FREE_VAR (regend); \
3491 FREE_VAR (old_regstart); \
3492 FREE_VAR (old_regend); \
3493 FREE_VAR (best_regstart); \
3494 FREE_VAR (best_regend); \
3495 FREE_VAR (reg_info); \
3496 FREE_VAR (reg_dummy); \
3497 FREE_VAR (reg_info_dummy); \
3498 } while (0)
3499 #else
3500 #define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3501 #endif /* not MATCH_MAY_ALLOCATE */
3502
3503 /* These values must meet several constraints. They must not be valid
3504 register values; since we have a limit of 255 registers (because
3505 we use only one byte in the pattern for the register number), we can
3506 use numbers larger than 255. They must differ by 1, because of
3507 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3508 be larger than the value for the highest register, so we do not try
3509 to actually save any registers when none are active. */
3510 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3511 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3512 \f
3513 /* Matching routines. */
3514
3515 #ifndef emacs /* Emacs never uses this. */
3516 /* re_match is like re_match_2 except it takes only a single string. */
3517
3518 int
3519 re_match (bufp, string, size, pos, regs)
3520 struct re_pattern_buffer *bufp;
3521 const char *string;
3522 int size, pos;
3523 struct re_registers *regs;
3524 {
3525 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3526 pos, regs, size);
3527 alloca (0);
3528 return result;
3529 }
3530 #endif /* not emacs */
3531
3532
3533 /* re_match_2 matches the compiled pattern in BUFP against the
3534 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3535 and SIZE2, respectively). We start matching at POS, and stop
3536 matching at STOP.
3537
3538 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3539 store offsets for the substring each group matched in REGS. See the
3540 documentation for exactly how many groups we fill.
3541
3542 We return -1 if no match, -2 if an internal error (such as the
3543 failure stack overflowing). Otherwise, we return the length of the
3544 matched substring. */
3545
3546 int
3547 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3548 struct re_pattern_buffer *bufp;
3549 const char *string1, *string2;
3550 int size1, size2;
3551 int pos;
3552 struct re_registers *regs;
3553 int stop;
3554 {
3555 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3556 pos, regs, stop);
3557 alloca (0);
3558 return result;
3559 }
3560
3561 /* This is a separate function so that we can force an alloca cleanup
3562 afterwards. */
3563 static int
3564 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3565 struct re_pattern_buffer *bufp;
3566 const char *string1, *string2;
3567 int size1, size2;
3568 int pos;
3569 struct re_registers *regs;
3570 int stop;
3571 {
3572 /* General temporaries. */
3573 int mcnt;
3574 unsigned char *p1;
3575
3576 /* Just past the end of the corresponding string. */
3577 const char *end1, *end2;
3578
3579 /* Pointers into string1 and string2, just past the last characters in
3580 each to consider matching. */
3581 const char *end_match_1, *end_match_2;
3582
3583 /* Where we are in the data, and the end of the current string. */
3584 const char *d, *dend;
3585
3586 /* Where we are in the pattern, and the end of the pattern. */
3587 unsigned char *p = bufp->buffer;
3588 register unsigned char *pend = p + bufp->used;
3589
3590 /* Mark the opcode just after a start_memory, so we can test for an
3591 empty subpattern when we get to the stop_memory. */
3592 unsigned char *just_past_start_mem = 0;
3593
3594 /* We use this to map every character in the string. */
3595 RE_TRANSLATE_TYPE translate = bufp->translate;
3596
3597 /* Failure point stack. Each place that can handle a failure further
3598 down the line pushes a failure point on this stack. It consists of
3599 restart, regend, and reg_info for all registers corresponding to
3600 the subexpressions we're currently inside, plus the number of such
3601 registers, and, finally, two char *'s. The first char * is where
3602 to resume scanning the pattern; the second one is where to resume
3603 scanning the strings. If the latter is zero, the failure point is
3604 a ``dummy''; if a failure happens and the failure point is a dummy,
3605 it gets discarded and the next next one is tried. */
3606 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3607 fail_stack_type fail_stack;
3608 #endif
3609 #ifdef DEBUG
3610 static unsigned failure_id = 0;
3611 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3612 #endif
3613
3614 /* This holds the pointer to the failure stack, when
3615 it is allocated relocatably. */
3616 fail_stack_elt_t *failure_stack_ptr;
3617
3618 /* We fill all the registers internally, independent of what we
3619 return, for use in backreferences. The number here includes
3620 an element for register zero. */
3621 unsigned num_regs = bufp->re_nsub + 1;
3622
3623 /* The currently active registers. */
3624 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3625 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3626
3627 /* Information on the contents of registers. These are pointers into
3628 the input strings; they record just what was matched (on this
3629 attempt) by a subexpression part of the pattern, that is, the
3630 regnum-th regstart pointer points to where in the pattern we began
3631 matching and the regnum-th regend points to right after where we
3632 stopped matching the regnum-th subexpression. (The zeroth register
3633 keeps track of what the whole pattern matches.) */
3634 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3635 const char **regstart, **regend;
3636 #endif
3637
3638 /* If a group that's operated upon by a repetition operator fails to
3639 match anything, then the register for its start will need to be
3640 restored because it will have been set to wherever in the string we
3641 are when we last see its open-group operator. Similarly for a
3642 register's end. */
3643 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3644 const char **old_regstart, **old_regend;
3645 #endif
3646
3647 /* The is_active field of reg_info helps us keep track of which (possibly
3648 nested) subexpressions we are currently in. The matched_something
3649 field of reg_info[reg_num] helps us tell whether or not we have
3650 matched any of the pattern so far this time through the reg_num-th
3651 subexpression. These two fields get reset each time through any
3652 loop their register is in. */
3653 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3654 register_info_type *reg_info;
3655 #endif
3656
3657 /* The following record the register info as found in the above
3658 variables when we find a match better than any we've seen before.
3659 This happens as we backtrack through the failure points, which in
3660 turn happens only if we have not yet matched the entire string. */
3661 unsigned best_regs_set = false;
3662 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3663 const char **best_regstart, **best_regend;
3664 #endif
3665
3666 /* Logically, this is `best_regend[0]'. But we don't want to have to
3667 allocate space for that if we're not allocating space for anything
3668 else (see below). Also, we never need info about register 0 for
3669 any of the other register vectors, and it seems rather a kludge to
3670 treat `best_regend' differently than the rest. So we keep track of
3671 the end of the best match so far in a separate variable. We
3672 initialize this to NULL so that when we backtrack the first time
3673 and need to test it, it's not garbage. */
3674 const char *match_end = NULL;
3675
3676 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3677 int set_regs_matched_done = 0;
3678
3679 /* Used when we pop values we don't care about. */
3680 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3681 const char **reg_dummy;
3682 register_info_type *reg_info_dummy;
3683 #endif
3684
3685 #ifdef DEBUG
3686 /* Counts the total number of registers pushed. */
3687 unsigned num_regs_pushed = 0;
3688 #endif
3689
3690 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3691
3692 INIT_FAIL_STACK ();
3693
3694 #ifdef MATCH_MAY_ALLOCATE
3695 /* Do not bother to initialize all the register variables if there are
3696 no groups in the pattern, as it takes a fair amount of time. If
3697 there are groups, we include space for register 0 (the whole
3698 pattern), even though we never use it, since it simplifies the
3699 array indexing. We should fix this. */
3700 if (bufp->re_nsub)
3701 {
3702 regstart = REGEX_TALLOC (num_regs, const char *);
3703 regend = REGEX_TALLOC (num_regs, const char *);
3704 old_regstart = REGEX_TALLOC (num_regs, const char *);
3705 old_regend = REGEX_TALLOC (num_regs, const char *);
3706 best_regstart = REGEX_TALLOC (num_regs, const char *);
3707 best_regend = REGEX_TALLOC (num_regs, const char *);
3708 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3709 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3710 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3711
3712 if (!(regstart && regend && old_regstart && old_regend && reg_info
3713 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3714 {
3715 FREE_VARIABLES ();
3716 return -2;
3717 }
3718 }
3719 else
3720 {
3721 /* We must initialize all our variables to NULL, so that
3722 `FREE_VARIABLES' doesn't try to free them. */
3723 regstart = regend = old_regstart = old_regend = best_regstart
3724 = best_regend = reg_dummy = NULL;
3725 reg_info = reg_info_dummy = (register_info_type *) NULL;
3726 }
3727 #endif /* MATCH_MAY_ALLOCATE */
3728
3729 /* The starting position is bogus. */
3730 if (pos < 0 || pos > size1 + size2)
3731 {
3732 FREE_VARIABLES ();
3733 return -1;
3734 }
3735
3736 /* Initialize subexpression text positions to -1 to mark ones that no
3737 start_memory/stop_memory has been seen for. Also initialize the
3738 register information struct. */
3739 for (mcnt = 1; mcnt < num_regs; mcnt++)
3740 {
3741 regstart[mcnt] = regend[mcnt]
3742 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3743
3744 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3745 IS_ACTIVE (reg_info[mcnt]) = 0;
3746 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3747 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3748 }
3749
3750 /* We move `string1' into `string2' if the latter's empty -- but not if
3751 `string1' is null. */
3752 if (size2 == 0 && string1 != NULL)
3753 {
3754 string2 = string1;
3755 size2 = size1;
3756 string1 = 0;
3757 size1 = 0;
3758 }
3759 end1 = string1 + size1;
3760 end2 = string2 + size2;
3761
3762 /* Compute where to stop matching, within the two strings. */
3763 if (stop <= size1)
3764 {
3765 end_match_1 = string1 + stop;
3766 end_match_2 = string2;
3767 }
3768 else
3769 {
3770 end_match_1 = end1;
3771 end_match_2 = string2 + stop - size1;
3772 }
3773
3774 /* `p' scans through the pattern as `d' scans through the data.
3775 `dend' is the end of the input string that `d' points within. `d'
3776 is advanced into the following input string whenever necessary, but
3777 this happens before fetching; therefore, at the beginning of the
3778 loop, `d' can be pointing at the end of a string, but it cannot
3779 equal `string2'. */
3780 if (size1 > 0 && pos <= size1)
3781 {
3782 d = string1 + pos;
3783 dend = end_match_1;
3784 }
3785 else
3786 {
3787 d = string2 + pos - size1;
3788 dend = end_match_2;
3789 }
3790
3791 DEBUG_PRINT1 ("The compiled pattern is: ");
3792 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3793 DEBUG_PRINT1 ("The string to match is: `");
3794 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3795 DEBUG_PRINT1 ("'\n");
3796
3797 /* This loops over pattern commands. It exits by returning from the
3798 function if the match is complete, or it drops through if the match
3799 fails at this starting point in the input data. */
3800 for (;;)
3801 {
3802 DEBUG_PRINT2 ("\n0x%x: ", p);
3803
3804 if (p == pend)
3805 { /* End of pattern means we might have succeeded. */
3806 DEBUG_PRINT1 ("end of pattern ... ");
3807
3808 /* If we haven't matched the entire string, and we want the
3809 longest match, try backtracking. */
3810 if (d != end_match_2)
3811 {
3812 /* 1 if this match ends in the same string (string1 or string2)
3813 as the best previous match. */
3814 boolean same_str_p = (FIRST_STRING_P (match_end)
3815 == MATCHING_IN_FIRST_STRING);
3816 /* 1 if this match is the best seen so far. */
3817 boolean best_match_p;
3818
3819 /* AIX compiler got confused when this was combined
3820 with the previous declaration. */
3821 if (same_str_p)
3822 best_match_p = d > match_end;
3823 else
3824 best_match_p = !MATCHING_IN_FIRST_STRING;
3825
3826 DEBUG_PRINT1 ("backtracking.\n");
3827
3828 if (!FAIL_STACK_EMPTY ())
3829 { /* More failure points to try. */
3830
3831 /* If exceeds best match so far, save it. */
3832 if (!best_regs_set || best_match_p)
3833 {
3834 best_regs_set = true;
3835 match_end = d;
3836
3837 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3838
3839 for (mcnt = 1; mcnt < num_regs; mcnt++)
3840 {
3841 best_regstart[mcnt] = regstart[mcnt];
3842 best_regend[mcnt] = regend[mcnt];
3843 }
3844 }
3845 goto fail;
3846 }
3847
3848 /* If no failure points, don't restore garbage. And if
3849 last match is real best match, don't restore second
3850 best one. */
3851 else if (best_regs_set && !best_match_p)
3852 {
3853 restore_best_regs:
3854 /* Restore best match. It may happen that `dend ==
3855 end_match_1' while the restored d is in string2.
3856 For example, the pattern `x.*y.*z' against the
3857 strings `x-' and `y-z-', if the two strings are
3858 not consecutive in memory. */
3859 DEBUG_PRINT1 ("Restoring best registers.\n");
3860
3861 d = match_end;
3862 dend = ((d >= string1 && d <= end1)
3863 ? end_match_1 : end_match_2);
3864
3865 for (mcnt = 1; mcnt < num_regs; mcnt++)
3866 {
3867 regstart[mcnt] = best_regstart[mcnt];
3868 regend[mcnt] = best_regend[mcnt];
3869 }
3870 }
3871 } /* d != end_match_2 */
3872
3873 succeed_label:
3874 DEBUG_PRINT1 ("Accepting match.\n");
3875
3876 /* If caller wants register contents data back, do it. */
3877 if (regs && !bufp->no_sub)
3878 {
3879 /* Have the register data arrays been allocated? */
3880 if (bufp->regs_allocated == REGS_UNALLOCATED)
3881 { /* No. So allocate them with malloc. We need one
3882 extra element beyond `num_regs' for the `-1' marker
3883 GNU code uses. */
3884 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
3885 regs->start = TALLOC (regs->num_regs, regoff_t);
3886 regs->end = TALLOC (regs->num_regs, regoff_t);
3887 if (regs->start == NULL || regs->end == NULL)
3888 {
3889 FREE_VARIABLES ();
3890 return -2;
3891 }
3892 bufp->regs_allocated = REGS_REALLOCATE;
3893 }
3894 else if (bufp->regs_allocated == REGS_REALLOCATE)
3895 { /* Yes. If we need more elements than were already
3896 allocated, reallocate them. If we need fewer, just
3897 leave it alone. */
3898 if (regs->num_regs < num_regs + 1)
3899 {
3900 regs->num_regs = num_regs + 1;
3901 RETALLOC (regs->start, regs->num_regs, regoff_t);
3902 RETALLOC (regs->end, regs->num_regs, regoff_t);
3903 if (regs->start == NULL || regs->end == NULL)
3904 {
3905 FREE_VARIABLES ();
3906 return -2;
3907 }
3908 }
3909 }
3910 else
3911 {
3912 /* These braces fend off a "empty body in an else-statement"
3913 warning under GCC when assert expands to nothing. */
3914 assert (bufp->regs_allocated == REGS_FIXED);
3915 }
3916
3917 /* Convert the pointer data in `regstart' and `regend' to
3918 indices. Register zero has to be set differently,
3919 since we haven't kept track of any info for it. */
3920 if (regs->num_regs > 0)
3921 {
3922 regs->start[0] = pos;
3923 regs->end[0] = (MATCHING_IN_FIRST_STRING
3924 ? ((regoff_t) (d - string1))
3925 : ((regoff_t) (d - string2 + size1)));
3926 }
3927
3928 /* Go through the first `min (num_regs, regs->num_regs)'
3929 registers, since that is all we initialized. */
3930 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
3931 {
3932 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
3933 regs->start[mcnt] = regs->end[mcnt] = -1;
3934 else
3935 {
3936 regs->start[mcnt]
3937 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
3938 regs->end[mcnt]
3939 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
3940 }
3941 }
3942
3943 /* If the regs structure we return has more elements than
3944 were in the pattern, set the extra elements to -1. If
3945 we (re)allocated the registers, this is the case,
3946 because we always allocate enough to have at least one
3947 -1 at the end. */
3948 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
3949 regs->start[mcnt] = regs->end[mcnt] = -1;
3950 } /* regs && !bufp->no_sub */
3951
3952 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3953 nfailure_points_pushed, nfailure_points_popped,
3954 nfailure_points_pushed - nfailure_points_popped);
3955 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
3956
3957 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
3958 ? string1
3959 : string2 - size1);
3960
3961 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
3962
3963 FREE_VARIABLES ();
3964 return mcnt;
3965 }
3966
3967 /* Otherwise match next pattern command. */
3968 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3969 {
3970 /* Ignore these. Used to ignore the n of succeed_n's which
3971 currently have n == 0. */
3972 case no_op:
3973 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3974 break;
3975
3976 case succeed:
3977 DEBUG_PRINT1 ("EXECUTING succeed.\n");
3978 goto succeed_label;
3979
3980 /* Match the next n pattern characters exactly. The following
3981 byte in the pattern defines n, and the n bytes after that
3982 are the characters to match. */
3983 case exactn:
3984 mcnt = *p++;
3985 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
3986
3987 /* This is written out as an if-else so we don't waste time
3988 testing `translate' inside the loop. */
3989 if (translate)
3990 {
3991 do
3992 {
3993 PREFETCH ();
3994 if ((unsigned char) translate[(unsigned char) *d++]
3995 != (unsigned char) *p++)
3996 goto fail;
3997 }
3998 while (--mcnt);
3999 }
4000 else
4001 {
4002 do
4003 {
4004 PREFETCH ();
4005 if (*d++ != (char) *p++) goto fail;
4006 }
4007 while (--mcnt);
4008 }
4009 SET_REGS_MATCHED ();
4010 break;
4011
4012
4013 /* Match any character except possibly a newline or a null. */
4014 case anychar:
4015 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4016
4017 PREFETCH ();
4018
4019 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4020 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
4021 goto fail;
4022
4023 SET_REGS_MATCHED ();
4024 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4025 d++;
4026 break;
4027
4028
4029 case charset:
4030 case charset_not:
4031 {
4032 register unsigned char c;
4033 boolean not = (re_opcode_t) *(p - 1) == charset_not;
4034
4035 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4036
4037 PREFETCH ();
4038 c = TRANSLATE (*d); /* The character to match. */
4039
4040 /* Cast to `unsigned' instead of `unsigned char' in case the
4041 bit list is a full 32 bytes long. */
4042 if (c < (unsigned) (*p * BYTEWIDTH)
4043 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4044 not = !not;
4045
4046 p += 1 + *p;
4047
4048 if (!not) goto fail;
4049
4050 SET_REGS_MATCHED ();
4051 d++;
4052 break;
4053 }
4054
4055
4056 /* The beginning of a group is represented by start_memory.
4057 The arguments are the register number in the next byte, and the
4058 number of groups inner to this one in the next. The text
4059 matched within the group is recorded (in the internal
4060 registers data structure) under the register number. */
4061 case start_memory:
4062 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4063
4064 /* Find out if this group can match the empty string. */
4065 p1 = p; /* To send to group_match_null_string_p. */
4066
4067 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4068 REG_MATCH_NULL_STRING_P (reg_info[*p])
4069 = group_match_null_string_p (&p1, pend, reg_info);
4070
4071 /* Save the position in the string where we were the last time
4072 we were at this open-group operator in case the group is
4073 operated upon by a repetition operator, e.g., with `(a*)*b'
4074 against `ab'; then we want to ignore where we are now in
4075 the string in case this attempt to match fails. */
4076 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4077 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4078 : regstart[*p];
4079 DEBUG_PRINT2 (" old_regstart: %d\n",
4080 POINTER_TO_OFFSET (old_regstart[*p]));
4081
4082 regstart[*p] = d;
4083 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4084
4085 IS_ACTIVE (reg_info[*p]) = 1;
4086 MATCHED_SOMETHING (reg_info[*p]) = 0;
4087
4088 /* Clear this whenever we change the register activity status. */
4089 set_regs_matched_done = 0;
4090
4091 /* This is the new highest active register. */
4092 highest_active_reg = *p;
4093
4094 /* If nothing was active before, this is the new lowest active
4095 register. */
4096 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4097 lowest_active_reg = *p;
4098
4099 /* Move past the register number and inner group count. */
4100 p += 2;
4101 just_past_start_mem = p;
4102
4103 break;
4104
4105
4106 /* The stop_memory opcode represents the end of a group. Its
4107 arguments are the same as start_memory's: the register
4108 number, and the number of inner groups. */
4109 case stop_memory:
4110 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4111
4112 /* We need to save the string position the last time we were at
4113 this close-group operator in case the group is operated
4114 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4115 against `aba'; then we want to ignore where we are now in
4116 the string in case this attempt to match fails. */
4117 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4118 ? REG_UNSET (regend[*p]) ? d : regend[*p]
4119 : regend[*p];
4120 DEBUG_PRINT2 (" old_regend: %d\n",
4121 POINTER_TO_OFFSET (old_regend[*p]));
4122
4123 regend[*p] = d;
4124 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4125
4126 /* This register isn't active anymore. */
4127 IS_ACTIVE (reg_info[*p]) = 0;
4128
4129 /* Clear this whenever we change the register activity status. */
4130 set_regs_matched_done = 0;
4131
4132 /* If this was the only register active, nothing is active
4133 anymore. */
4134 if (lowest_active_reg == highest_active_reg)
4135 {
4136 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4137 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4138 }
4139 else
4140 { /* We must scan for the new highest active register, since
4141 it isn't necessarily one less than now: consider
4142 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4143 new highest active register is 1. */
4144 unsigned char r = *p - 1;
4145 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4146 r--;
4147
4148 /* If we end up at register zero, that means that we saved
4149 the registers as the result of an `on_failure_jump', not
4150 a `start_memory', and we jumped to past the innermost
4151 `stop_memory'. For example, in ((.)*) we save
4152 registers 1 and 2 as a result of the *, but when we pop
4153 back to the second ), we are at the stop_memory 1.
4154 Thus, nothing is active. */
4155 if (r == 0)
4156 {
4157 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4158 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4159 }
4160 else
4161 highest_active_reg = r;
4162 }
4163
4164 /* If just failed to match something this time around with a
4165 group that's operated on by a repetition operator, try to
4166 force exit from the ``loop'', and restore the register
4167 information for this group that we had before trying this
4168 last match. */
4169 if ((!MATCHED_SOMETHING (reg_info[*p])
4170 || just_past_start_mem == p - 1)
4171 && (p + 2) < pend)
4172 {
4173 boolean is_a_jump_n = false;
4174
4175 p1 = p + 2;
4176 mcnt = 0;
4177 switch ((re_opcode_t) *p1++)
4178 {
4179 case jump_n:
4180 is_a_jump_n = true;
4181 case pop_failure_jump:
4182 case maybe_pop_jump:
4183 case jump:
4184 case dummy_failure_jump:
4185 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4186 if (is_a_jump_n)
4187 p1 += 2;
4188 break;
4189
4190 default:
4191 /* do nothing */ ;
4192 }
4193 p1 += mcnt;
4194
4195 /* If the next operation is a jump backwards in the pattern
4196 to an on_failure_jump right before the start_memory
4197 corresponding to this stop_memory, exit from the loop
4198 by forcing a failure after pushing on the stack the
4199 on_failure_jump's jump in the pattern, and d. */
4200 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4201 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4202 {
4203 /* If this group ever matched anything, then restore
4204 what its registers were before trying this last
4205 failed match, e.g., with `(a*)*b' against `ab' for
4206 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4207 against `aba' for regend[3].
4208
4209 Also restore the registers for inner groups for,
4210 e.g., `((a*)(b*))*' against `aba' (register 3 would
4211 otherwise get trashed). */
4212
4213 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4214 {
4215 unsigned r;
4216
4217 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4218
4219 /* Restore this and inner groups' (if any) registers. */
4220 for (r = *p; r < *p + *(p + 1); r++)
4221 {
4222 regstart[r] = old_regstart[r];
4223
4224 /* xx why this test? */
4225 if (old_regend[r] >= regstart[r])
4226 regend[r] = old_regend[r];
4227 }
4228 }
4229 p1++;
4230 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4231 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4232
4233 goto fail;
4234 }
4235 }
4236
4237 /* Move past the register number and the inner group count. */
4238 p += 2;
4239 break;
4240
4241
4242 /* \<digit> has been turned into a `duplicate' command which is
4243 followed by the numeric value of <digit> as the register number. */
4244 case duplicate:
4245 {
4246 register const char *d2, *dend2;
4247 int regno = *p++; /* Get which register to match against. */
4248 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4249
4250 /* Can't back reference a group which we've never matched. */
4251 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4252 goto fail;
4253
4254 /* Where in input to try to start matching. */
4255 d2 = regstart[regno];
4256
4257 /* Where to stop matching; if both the place to start and
4258 the place to stop matching are in the same string, then
4259 set to the place to stop, otherwise, for now have to use
4260 the end of the first string. */
4261
4262 dend2 = ((FIRST_STRING_P (regstart[regno])
4263 == FIRST_STRING_P (regend[regno]))
4264 ? regend[regno] : end_match_1);
4265 for (;;)
4266 {
4267 /* If necessary, advance to next segment in register
4268 contents. */
4269 while (d2 == dend2)
4270 {
4271 if (dend2 == end_match_2) break;
4272 if (dend2 == regend[regno]) break;
4273
4274 /* End of string1 => advance to string2. */
4275 d2 = string2;
4276 dend2 = regend[regno];
4277 }
4278 /* At end of register contents => success */
4279 if (d2 == dend2) break;
4280
4281 /* If necessary, advance to next segment in data. */
4282 PREFETCH ();
4283
4284 /* How many characters left in this segment to match. */
4285 mcnt = dend - d;
4286
4287 /* Want how many consecutive characters we can match in
4288 one shot, so, if necessary, adjust the count. */
4289 if (mcnt > dend2 - d2)
4290 mcnt = dend2 - d2;
4291
4292 /* Compare that many; failure if mismatch, else move
4293 past them. */
4294 if (translate
4295 ? bcmp_translate (d, d2, mcnt, translate)
4296 : bcmp (d, d2, mcnt))
4297 goto fail;
4298 d += mcnt, d2 += mcnt;
4299
4300 /* Do this because we've match some characters. */
4301 SET_REGS_MATCHED ();
4302 }
4303 }
4304 break;
4305
4306
4307 /* begline matches the empty string at the beginning of the string
4308 (unless `not_bol' is set in `bufp'), and, if
4309 `newline_anchor' is set, after newlines. */
4310 case begline:
4311 DEBUG_PRINT1 ("EXECUTING begline.\n");
4312
4313 if (AT_STRINGS_BEG (d))
4314 {
4315 if (!bufp->not_bol) break;
4316 }
4317 else if (d[-1] == '\n' && bufp->newline_anchor)
4318 {
4319 break;
4320 }
4321 /* In all other cases, we fail. */
4322 goto fail;
4323
4324
4325 /* endline is the dual of begline. */
4326 case endline:
4327 DEBUG_PRINT1 ("EXECUTING endline.\n");
4328
4329 if (AT_STRINGS_END (d))
4330 {
4331 if (!bufp->not_eol) break;
4332 }
4333
4334 /* We have to ``prefetch'' the next character. */
4335 else if ((d == end1 ? *string2 : *d) == '\n'
4336 && bufp->newline_anchor)
4337 {
4338 break;
4339 }
4340 goto fail;
4341
4342
4343 /* Match at the very beginning of the data. */
4344 case begbuf:
4345 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4346 if (AT_STRINGS_BEG (d))
4347 break;
4348 goto fail;
4349
4350
4351 /* Match at the very end of the data. */
4352 case endbuf:
4353 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4354 if (AT_STRINGS_END (d))
4355 break;
4356 goto fail;
4357
4358
4359 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4360 pushes NULL as the value for the string on the stack. Then
4361 `pop_failure_point' will keep the current value for the
4362 string, instead of restoring it. To see why, consider
4363 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4364 then the . fails against the \n. But the next thing we want
4365 to do is match the \n against the \n; if we restored the
4366 string value, we would be back at the foo.
4367
4368 Because this is used only in specific cases, we don't need to
4369 check all the things that `on_failure_jump' does, to make
4370 sure the right things get saved on the stack. Hence we don't
4371 share its code. The only reason to push anything on the
4372 stack at all is that otherwise we would have to change
4373 `anychar's code to do something besides goto fail in this
4374 case; that seems worse than this. */
4375 case on_failure_keep_string_jump:
4376 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4377
4378 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4379 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4380
4381 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4382 break;
4383
4384
4385 /* Uses of on_failure_jump:
4386
4387 Each alternative starts with an on_failure_jump that points
4388 to the beginning of the next alternative. Each alternative
4389 except the last ends with a jump that in effect jumps past
4390 the rest of the alternatives. (They really jump to the
4391 ending jump of the following alternative, because tensioning
4392 these jumps is a hassle.)
4393
4394 Repeats start with an on_failure_jump that points past both
4395 the repetition text and either the following jump or
4396 pop_failure_jump back to this on_failure_jump. */
4397 case on_failure_jump:
4398 on_failure:
4399 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4400
4401 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4402 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4403
4404 /* If this on_failure_jump comes right before a group (i.e.,
4405 the original * applied to a group), save the information
4406 for that group and all inner ones, so that if we fail back
4407 to this point, the group's information will be correct.
4408 For example, in \(a*\)*\1, we need the preceding group,
4409 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4410
4411 /* We can't use `p' to check ahead because we push
4412 a failure point to `p + mcnt' after we do this. */
4413 p1 = p;
4414
4415 /* We need to skip no_op's before we look for the
4416 start_memory in case this on_failure_jump is happening as
4417 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4418 against aba. */
4419 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4420 p1++;
4421
4422 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4423 {
4424 /* We have a new highest active register now. This will
4425 get reset at the start_memory we are about to get to,
4426 but we will have saved all the registers relevant to
4427 this repetition op, as described above. */
4428 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4429 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4430 lowest_active_reg = *(p1 + 1);
4431 }
4432
4433 DEBUG_PRINT1 (":\n");
4434 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4435 break;
4436
4437
4438 /* A smart repeat ends with `maybe_pop_jump'.
4439 We change it to either `pop_failure_jump' or `jump'. */
4440 case maybe_pop_jump:
4441 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4442 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4443 {
4444 register unsigned char *p2 = p;
4445
4446 /* Compare the beginning of the repeat with what in the
4447 pattern follows its end. If we can establish that there
4448 is nothing that they would both match, i.e., that we
4449 would have to backtrack because of (as in, e.g., `a*a')
4450 then we can change to pop_failure_jump, because we'll
4451 never have to backtrack.
4452
4453 This is not true in the case of alternatives: in
4454 `(a|ab)*' we do need to backtrack to the `ab' alternative
4455 (e.g., if the string was `ab'). But instead of trying to
4456 detect that here, the alternative has put on a dummy
4457 failure point which is what we will end up popping. */
4458
4459 /* Skip over open/close-group commands.
4460 If what follows this loop is a ...+ construct,
4461 look at what begins its body, since we will have to
4462 match at least one of that. */
4463 while (1)
4464 {
4465 if (p2 + 2 < pend
4466 && ((re_opcode_t) *p2 == stop_memory
4467 || (re_opcode_t) *p2 == start_memory))
4468 p2 += 3;
4469 else if (p2 + 6 < pend
4470 && (re_opcode_t) *p2 == dummy_failure_jump)
4471 p2 += 6;
4472 else
4473 break;
4474 }
4475
4476 p1 = p + mcnt;
4477 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4478 to the `maybe_finalize_jump' of this case. Examine what
4479 follows. */
4480
4481 /* If we're at the end of the pattern, we can change. */
4482 if (p2 == pend)
4483 {
4484 /* Consider what happens when matching ":\(.*\)"
4485 against ":/". I don't really understand this code
4486 yet. */
4487 p[-3] = (unsigned char) pop_failure_jump;
4488 DEBUG_PRINT1
4489 (" End of pattern: change to `pop_failure_jump'.\n");
4490 }
4491
4492 else if ((re_opcode_t) *p2 == exactn
4493 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4494 {
4495 register unsigned char c
4496 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4497
4498 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4499 {
4500 p[-3] = (unsigned char) pop_failure_jump;
4501 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4502 c, p1[5]);
4503 }
4504
4505 else if ((re_opcode_t) p1[3] == charset
4506 || (re_opcode_t) p1[3] == charset_not)
4507 {
4508 int not = (re_opcode_t) p1[3] == charset_not;
4509
4510 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4511 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4512 not = !not;
4513
4514 /* `not' is equal to 1 if c would match, which means
4515 that we can't change to pop_failure_jump. */
4516 if (!not)
4517 {
4518 p[-3] = (unsigned char) pop_failure_jump;
4519 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4520 }
4521 }
4522 }
4523 else if ((re_opcode_t) *p2 == charset)
4524 {
4525 #ifdef DEBUG
4526 register unsigned char c
4527 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4528 #endif
4529
4530 if ((re_opcode_t) p1[3] == exactn
4531 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
4532 && (p2[2 + p1[5] / BYTEWIDTH]
4533 & (1 << (p1[5] % BYTEWIDTH)))))
4534 {
4535 p[-3] = (unsigned char) pop_failure_jump;
4536 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4537 c, p1[5]);
4538 }
4539
4540 else if ((re_opcode_t) p1[3] == charset_not)
4541 {
4542 int idx;
4543 /* We win if the charset_not inside the loop
4544 lists every character listed in the charset after. */
4545 for (idx = 0; idx < (int) p2[1]; idx++)
4546 if (! (p2[2 + idx] == 0
4547 || (idx < (int) p1[4]
4548 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4549 break;
4550
4551 if (idx == p2[1])
4552 {
4553 p[-3] = (unsigned char) pop_failure_jump;
4554 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4555 }
4556 }
4557 else if ((re_opcode_t) p1[3] == charset)
4558 {
4559 int idx;
4560 /* We win if the charset inside the loop
4561 has no overlap with the one after the loop. */
4562 for (idx = 0;
4563 idx < (int) p2[1] && idx < (int) p1[4];
4564 idx++)
4565 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4566 break;
4567
4568 if (idx == p2[1] || idx == p1[4])
4569 {
4570 p[-3] = (unsigned char) pop_failure_jump;
4571 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4572 }
4573 }
4574 }
4575 }
4576 p -= 2; /* Point at relative address again. */
4577 if ((re_opcode_t) p[-1] != pop_failure_jump)
4578 {
4579 p[-1] = (unsigned char) jump;
4580 DEBUG_PRINT1 (" Match => jump.\n");
4581 goto unconditional_jump;
4582 }
4583 /* Note fall through. */
4584
4585
4586 /* The end of a simple repeat has a pop_failure_jump back to
4587 its matching on_failure_jump, where the latter will push a
4588 failure point. The pop_failure_jump takes off failure
4589 points put on by this pop_failure_jump's matching
4590 on_failure_jump; we got through the pattern to here from the
4591 matching on_failure_jump, so didn't fail. */
4592 case pop_failure_jump:
4593 {
4594 /* We need to pass separate storage for the lowest and
4595 highest registers, even though we don't care about the
4596 actual values. Otherwise, we will restore only one
4597 register from the stack, since lowest will == highest in
4598 `pop_failure_point'. */
4599 unsigned dummy_low_reg, dummy_high_reg;
4600 unsigned char *pdummy;
4601 const char *sdummy;
4602
4603 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4604 POP_FAILURE_POINT (sdummy, pdummy,
4605 dummy_low_reg, dummy_high_reg,
4606 reg_dummy, reg_dummy, reg_info_dummy);
4607 }
4608 /* Note fall through. */
4609
4610
4611 /* Unconditionally jump (without popping any failure points). */
4612 case jump:
4613 unconditional_jump:
4614 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4615 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4616 p += mcnt; /* Do the jump. */
4617 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4618 break;
4619
4620
4621 /* We need this opcode so we can detect where alternatives end
4622 in `group_match_null_string_p' et al. */
4623 case jump_past_alt:
4624 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4625 goto unconditional_jump;
4626
4627
4628 /* Normally, the on_failure_jump pushes a failure point, which
4629 then gets popped at pop_failure_jump. We will end up at
4630 pop_failure_jump, also, and with a pattern of, say, `a+', we
4631 are skipping over the on_failure_jump, so we have to push
4632 something meaningless for pop_failure_jump to pop. */
4633 case dummy_failure_jump:
4634 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4635 /* It doesn't matter what we push for the string here. What
4636 the code at `fail' tests is the value for the pattern. */
4637 PUSH_FAILURE_POINT (0, 0, -2);
4638 goto unconditional_jump;
4639
4640
4641 /* At the end of an alternative, we need to push a dummy failure
4642 point in case we are followed by a `pop_failure_jump', because
4643 we don't want the failure point for the alternative to be
4644 popped. For example, matching `(a|ab)*' against `aab'
4645 requires that we match the `ab' alternative. */
4646 case push_dummy_failure:
4647 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4648 /* See comments just above at `dummy_failure_jump' about the
4649 two zeroes. */
4650 PUSH_FAILURE_POINT (0, 0, -2);
4651 break;
4652
4653 /* Have to succeed matching what follows at least n times.
4654 After that, handle like `on_failure_jump'. */
4655 case succeed_n:
4656 EXTRACT_NUMBER (mcnt, p + 2);
4657 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4658
4659 assert (mcnt >= 0);
4660 /* Originally, this is how many times we HAVE to succeed. */
4661 if (mcnt > 0)
4662 {
4663 mcnt--;
4664 p += 2;
4665 STORE_NUMBER_AND_INCR (p, mcnt);
4666 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
4667 }
4668 else if (mcnt == 0)
4669 {
4670 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4671 p[2] = (unsigned char) no_op;
4672 p[3] = (unsigned char) no_op;
4673 goto on_failure;
4674 }
4675 break;
4676
4677 case jump_n:
4678 EXTRACT_NUMBER (mcnt, p + 2);
4679 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4680
4681 /* Originally, this is how many times we CAN jump. */
4682 if (mcnt)
4683 {
4684 mcnt--;
4685 STORE_NUMBER (p + 2, mcnt);
4686 goto unconditional_jump;
4687 }
4688 /* If don't have to jump any more, skip over the rest of command. */
4689 else
4690 p += 4;
4691 break;
4692
4693 case set_number_at:
4694 {
4695 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4696
4697 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4698 p1 = p + mcnt;
4699 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4700 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4701 STORE_NUMBER (p1, mcnt);
4702 break;
4703 }
4704
4705 #if 0
4706 /* The DEC Alpha C compiler 3.x generates incorrect code for the
4707 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4708 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4709 macro and introducing temporary variables works around the bug. */
4710
4711 case wordbound:
4712 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4713 if (AT_WORD_BOUNDARY (d))
4714 break;
4715 goto fail;
4716
4717 case notwordbound:
4718 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4719 if (AT_WORD_BOUNDARY (d))
4720 goto fail;
4721 break;
4722 #else
4723 case wordbound:
4724 {
4725 boolean prevchar, thischar;
4726
4727 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4728 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4729 break;
4730
4731 prevchar = WORDCHAR_P (d - 1);
4732 thischar = WORDCHAR_P (d);
4733 if (prevchar != thischar)
4734 break;
4735 goto fail;
4736 }
4737
4738 case notwordbound:
4739 {
4740 boolean prevchar, thischar;
4741
4742 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4743 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4744 goto fail;
4745
4746 prevchar = WORDCHAR_P (d - 1);
4747 thischar = WORDCHAR_P (d);
4748 if (prevchar != thischar)
4749 goto fail;
4750 break;
4751 }
4752 #endif
4753
4754 case wordbeg:
4755 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4756 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
4757 break;
4758 goto fail;
4759
4760 case wordend:
4761 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4762 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4763 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
4764 break;
4765 goto fail;
4766
4767 #ifdef emacs
4768 case before_dot:
4769 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4770 if (PTR_CHAR_POS ((unsigned char *) d) >= PT)
4771 goto fail;
4772 break;
4773
4774 case at_dot:
4775 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4776 if (PTR_CHAR_POS ((unsigned char *) d) != PT)
4777 goto fail;
4778 break;
4779
4780 case after_dot:
4781 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4782 if (PTR_CHAR_POS ((unsigned char *) d) <= PT)
4783 goto fail;
4784 break;
4785
4786 case syntaxspec:
4787 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
4788 mcnt = *p++;
4789 goto matchsyntax;
4790
4791 case wordchar:
4792 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4793 mcnt = (int) Sword;
4794 matchsyntax:
4795 PREFETCH ();
4796 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4797 d++;
4798 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
4799 goto fail;
4800 SET_REGS_MATCHED ();
4801 break;
4802
4803 case notsyntaxspec:
4804 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
4805 mcnt = *p++;
4806 goto matchnotsyntax;
4807
4808 case notwordchar:
4809 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4810 mcnt = (int) Sword;
4811 matchnotsyntax:
4812 PREFETCH ();
4813 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4814 d++;
4815 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
4816 goto fail;
4817 SET_REGS_MATCHED ();
4818 break;
4819
4820 #else /* not emacs */
4821 case wordchar:
4822 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4823 PREFETCH ();
4824 if (!WORDCHAR_P (d))
4825 goto fail;
4826 SET_REGS_MATCHED ();
4827 d++;
4828 break;
4829
4830 case notwordchar:
4831 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4832 PREFETCH ();
4833 if (WORDCHAR_P (d))
4834 goto fail;
4835 SET_REGS_MATCHED ();
4836 d++;
4837 break;
4838 #endif /* not emacs */
4839
4840 default:
4841 abort ();
4842 }
4843 continue; /* Successfully executed one pattern command; keep going. */
4844
4845
4846 /* We goto here if a matching operation fails. */
4847 fail:
4848 if (!FAIL_STACK_EMPTY ())
4849 { /* A restart point is known. Restore to that state. */
4850 DEBUG_PRINT1 ("\nFAIL:\n");
4851 POP_FAILURE_POINT (d, p,
4852 lowest_active_reg, highest_active_reg,
4853 regstart, regend, reg_info);
4854
4855 /* If this failure point is a dummy, try the next one. */
4856 if (!p)
4857 goto fail;
4858
4859 /* If we failed to the end of the pattern, don't examine *p. */
4860 assert (p <= pend);
4861 if (p < pend)
4862 {
4863 boolean is_a_jump_n = false;
4864
4865 /* If failed to a backwards jump that's part of a repetition
4866 loop, need to pop this failure point and use the next one. */
4867 switch ((re_opcode_t) *p)
4868 {
4869 case jump_n:
4870 is_a_jump_n = true;
4871 case maybe_pop_jump:
4872 case pop_failure_jump:
4873 case jump:
4874 p1 = p + 1;
4875 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4876 p1 += mcnt;
4877
4878 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
4879 || (!is_a_jump_n
4880 && (re_opcode_t) *p1 == on_failure_jump))
4881 goto fail;
4882 break;
4883 default:
4884 /* do nothing */ ;
4885 }
4886 }
4887
4888 if (d >= string1 && d <= end1)
4889 dend = end_match_1;
4890 }
4891 else
4892 break; /* Matching at this starting point really fails. */
4893 } /* for (;;) */
4894
4895 if (best_regs_set)
4896 goto restore_best_regs;
4897
4898 FREE_VARIABLES ();
4899
4900 return -1; /* Failure to match. */
4901 } /* re_match_2 */
4902 \f
4903 /* Subroutine definitions for re_match_2. */
4904
4905
4906 /* We are passed P pointing to a register number after a start_memory.
4907
4908 Return true if the pattern up to the corresponding stop_memory can
4909 match the empty string, and false otherwise.
4910
4911 If we find the matching stop_memory, sets P to point to one past its number.
4912 Otherwise, sets P to an undefined byte less than or equal to END.
4913
4914 We don't handle duplicates properly (yet). */
4915
4916 static boolean
4917 group_match_null_string_p (p, end, reg_info)
4918 unsigned char **p, *end;
4919 register_info_type *reg_info;
4920 {
4921 int mcnt;
4922 /* Point to after the args to the start_memory. */
4923 unsigned char *p1 = *p + 2;
4924
4925 while (p1 < end)
4926 {
4927 /* Skip over opcodes that can match nothing, and return true or
4928 false, as appropriate, when we get to one that can't, or to the
4929 matching stop_memory. */
4930
4931 switch ((re_opcode_t) *p1)
4932 {
4933 /* Could be either a loop or a series of alternatives. */
4934 case on_failure_jump:
4935 p1++;
4936 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4937
4938 /* If the next operation is not a jump backwards in the
4939 pattern. */
4940
4941 if (mcnt >= 0)
4942 {
4943 /* Go through the on_failure_jumps of the alternatives,
4944 seeing if any of the alternatives cannot match nothing.
4945 The last alternative starts with only a jump,
4946 whereas the rest start with on_failure_jump and end
4947 with a jump, e.g., here is the pattern for `a|b|c':
4948
4949 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4950 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4951 /exactn/1/c
4952
4953 So, we have to first go through the first (n-1)
4954 alternatives and then deal with the last one separately. */
4955
4956
4957 /* Deal with the first (n-1) alternatives, which start
4958 with an on_failure_jump (see above) that jumps to right
4959 past a jump_past_alt. */
4960
4961 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
4962 {
4963 /* `mcnt' holds how many bytes long the alternative
4964 is, including the ending `jump_past_alt' and
4965 its number. */
4966
4967 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
4968 reg_info))
4969 return false;
4970
4971 /* Move to right after this alternative, including the
4972 jump_past_alt. */
4973 p1 += mcnt;
4974
4975 /* Break if it's the beginning of an n-th alternative
4976 that doesn't begin with an on_failure_jump. */
4977 if ((re_opcode_t) *p1 != on_failure_jump)
4978 break;
4979
4980 /* Still have to check that it's not an n-th
4981 alternative that starts with an on_failure_jump. */
4982 p1++;
4983 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4984 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
4985 {
4986 /* Get to the beginning of the n-th alternative. */
4987 p1 -= 3;
4988 break;
4989 }
4990 }
4991
4992 /* Deal with the last alternative: go back and get number
4993 of the `jump_past_alt' just before it. `mcnt' contains
4994 the length of the alternative. */
4995 EXTRACT_NUMBER (mcnt, p1 - 2);
4996
4997 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
4998 return false;
4999
5000 p1 += mcnt; /* Get past the n-th alternative. */
5001 } /* if mcnt > 0 */
5002 break;
5003
5004
5005 case stop_memory:
5006 assert (p1[1] == **p);
5007 *p = p1 + 2;
5008 return true;
5009
5010
5011 default:
5012 if (!common_op_match_null_string_p (&p1, end, reg_info))
5013 return false;
5014 }
5015 } /* while p1 < end */
5016
5017 return false;
5018 } /* group_match_null_string_p */
5019
5020
5021 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5022 It expects P to be the first byte of a single alternative and END one
5023 byte past the last. The alternative can contain groups. */
5024
5025 static boolean
5026 alt_match_null_string_p (p, end, reg_info)
5027 unsigned char *p, *end;
5028 register_info_type *reg_info;
5029 {
5030 int mcnt;
5031 unsigned char *p1 = p;
5032
5033 while (p1 < end)
5034 {
5035 /* Skip over opcodes that can match nothing, and break when we get
5036 to one that can't. */
5037
5038 switch ((re_opcode_t) *p1)
5039 {
5040 /* It's a loop. */
5041 case on_failure_jump:
5042 p1++;
5043 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5044 p1 += mcnt;
5045 break;
5046
5047 default:
5048 if (!common_op_match_null_string_p (&p1, end, reg_info))
5049 return false;
5050 }
5051 } /* while p1 < end */
5052
5053 return true;
5054 } /* alt_match_null_string_p */
5055
5056
5057 /* Deals with the ops common to group_match_null_string_p and
5058 alt_match_null_string_p.
5059
5060 Sets P to one after the op and its arguments, if any. */
5061
5062 static boolean
5063 common_op_match_null_string_p (p, end, reg_info)
5064 unsigned char **p, *end;
5065 register_info_type *reg_info;
5066 {
5067 int mcnt;
5068 boolean ret;
5069 int reg_no;
5070 unsigned char *p1 = *p;
5071
5072 switch ((re_opcode_t) *p1++)
5073 {
5074 case no_op:
5075 case begline:
5076 case endline:
5077 case begbuf:
5078 case endbuf:
5079 case wordbeg:
5080 case wordend:
5081 case wordbound:
5082 case notwordbound:
5083 #ifdef emacs
5084 case before_dot:
5085 case at_dot:
5086 case after_dot:
5087 #endif
5088 break;
5089
5090 case start_memory:
5091 reg_no = *p1;
5092 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5093 ret = group_match_null_string_p (&p1, end, reg_info);
5094
5095 /* Have to set this here in case we're checking a group which
5096 contains a group and a back reference to it. */
5097
5098 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5099 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5100
5101 if (!ret)
5102 return false;
5103 break;
5104
5105 /* If this is an optimized succeed_n for zero times, make the jump. */
5106 case jump:
5107 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5108 if (mcnt >= 0)
5109 p1 += mcnt;
5110 else
5111 return false;
5112 break;
5113
5114 case succeed_n:
5115 /* Get to the number of times to succeed. */
5116 p1 += 2;
5117 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5118
5119 if (mcnt == 0)
5120 {
5121 p1 -= 4;
5122 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5123 p1 += mcnt;
5124 }
5125 else
5126 return false;
5127 break;
5128
5129 case duplicate:
5130 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5131 return false;
5132 break;
5133
5134 case set_number_at:
5135 p1 += 4;
5136
5137 default:
5138 /* All other opcodes mean we cannot match the empty string. */
5139 return false;
5140 }
5141
5142 *p = p1;
5143 return true;
5144 } /* common_op_match_null_string_p */
5145
5146
5147 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5148 bytes; nonzero otherwise. */
5149
5150 static int
5151 bcmp_translate (s1, s2, len, translate)
5152 unsigned char *s1, *s2;
5153 register int len;
5154 RE_TRANSLATE_TYPE translate;
5155 {
5156 register unsigned char *p1 = s1, *p2 = s2;
5157 while (len)
5158 {
5159 if (translate[*p1++] != translate[*p2++]) return 1;
5160 len--;
5161 }
5162 return 0;
5163 }
5164 \f
5165 /* Entry points for GNU code. */
5166
5167 /* re_compile_pattern is the GNU regular expression compiler: it
5168 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5169 Returns 0 if the pattern was valid, otherwise an error string.
5170
5171 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5172 are set in BUFP on entry.
5173
5174 We call regex_compile to do the actual compilation. */
5175
5176 const char *
5177 re_compile_pattern (pattern, length, bufp)
5178 const char *pattern;
5179 int length;
5180 struct re_pattern_buffer *bufp;
5181 {
5182 reg_errcode_t ret;
5183
5184 /* GNU code is written to assume at least RE_NREGS registers will be set
5185 (and at least one extra will be -1). */
5186 bufp->regs_allocated = REGS_UNALLOCATED;
5187
5188 /* And GNU code determines whether or not to get register information
5189 by passing null for the REGS argument to re_match, etc., not by
5190 setting no_sub. */
5191 bufp->no_sub = 0;
5192
5193 /* Match anchors at newline. */
5194 bufp->newline_anchor = 1;
5195
5196 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5197
5198 if (!ret)
5199 return NULL;
5200 return gettext (re_error_msgid[(int) ret]);
5201 }
5202 \f
5203 /* Entry points compatible with 4.2 BSD regex library. We don't define
5204 them unless specifically requested. */
5205
5206 #if defined (_REGEX_RE_COMP) || defined (_LIBC)
5207
5208 /* BSD has one and only one pattern buffer. */
5209 static struct re_pattern_buffer re_comp_buf;
5210
5211 char *
5212 #ifdef _LIBC
5213 /* Make these definitions weak in libc, so POSIX programs can redefine
5214 these names if they don't use our functions, and still use
5215 regcomp/regexec below without link errors. */
5216 weak_function
5217 #endif
5218 re_comp (s)
5219 const char *s;
5220 {
5221 reg_errcode_t ret;
5222
5223 if (!s)
5224 {
5225 if (!re_comp_buf.buffer)
5226 return gettext ("No previous regular expression");
5227 return 0;
5228 }
5229
5230 if (!re_comp_buf.buffer)
5231 {
5232 re_comp_buf.buffer = (unsigned char *) malloc (200);
5233 if (re_comp_buf.buffer == NULL)
5234 return gettext (re_error_msgid[(int) REG_ESPACE]);
5235 re_comp_buf.allocated = 200;
5236
5237 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5238 if (re_comp_buf.fastmap == NULL)
5239 return gettext (re_error_msgid[(int) REG_ESPACE]);
5240 }
5241
5242 /* Since `re_exec' always passes NULL for the `regs' argument, we
5243 don't need to initialize the pattern buffer fields which affect it. */
5244
5245 /* Match anchors at newlines. */
5246 re_comp_buf.newline_anchor = 1;
5247
5248 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5249
5250 if (!ret)
5251 return NULL;
5252
5253 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5254 return (char *) gettext (re_error_msgid[(int) ret]);
5255 }
5256
5257
5258 int
5259 #ifdef _LIBC
5260 weak_function
5261 #endif
5262 re_exec (s)
5263 const char *s;
5264 {
5265 const int len = strlen (s);
5266 return
5267 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5268 }
5269 #endif /* _REGEX_RE_COMP */
5270 \f
5271 /* POSIX.2 functions. Don't define these for Emacs. */
5272
5273 #ifndef emacs
5274
5275 /* regcomp takes a regular expression as a string and compiles it.
5276
5277 PREG is a regex_t *. We do not expect any fields to be initialized,
5278 since POSIX says we shouldn't. Thus, we set
5279
5280 `buffer' to the compiled pattern;
5281 `used' to the length of the compiled pattern;
5282 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5283 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5284 RE_SYNTAX_POSIX_BASIC;
5285 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5286 `fastmap' and `fastmap_accurate' to zero;
5287 `re_nsub' to the number of subexpressions in PATTERN.
5288
5289 PATTERN is the address of the pattern string.
5290
5291 CFLAGS is a series of bits which affect compilation.
5292
5293 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5294 use POSIX basic syntax.
5295
5296 If REG_NEWLINE is set, then . and [^...] don't match newline.
5297 Also, regexec will try a match beginning after every newline.
5298
5299 If REG_ICASE is set, then we considers upper- and lowercase
5300 versions of letters to be equivalent when matching.
5301
5302 If REG_NOSUB is set, then when PREG is passed to regexec, that
5303 routine will report only success or failure, and nothing about the
5304 registers.
5305
5306 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5307 the return codes and their meanings.) */
5308
5309 int
5310 regcomp (preg, pattern, cflags)
5311 regex_t *preg;
5312 const char *pattern;
5313 int cflags;
5314 {
5315 reg_errcode_t ret;
5316 unsigned syntax
5317 = (cflags & REG_EXTENDED) ?
5318 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5319
5320 /* regex_compile will allocate the space for the compiled pattern. */
5321 preg->buffer = 0;
5322 preg->allocated = 0;
5323 preg->used = 0;
5324
5325 /* Don't bother to use a fastmap when searching. This simplifies the
5326 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5327 characters after newlines into the fastmap. This way, we just try
5328 every character. */
5329 preg->fastmap = 0;
5330
5331 if (cflags & REG_ICASE)
5332 {
5333 unsigned i;
5334
5335 preg->translate
5336 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5337 * sizeof (*(RE_TRANSLATE_TYPE)0));
5338 if (preg->translate == NULL)
5339 return (int) REG_ESPACE;
5340
5341 /* Map uppercase characters to corresponding lowercase ones. */
5342 for (i = 0; i < CHAR_SET_SIZE; i++)
5343 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
5344 }
5345 else
5346 preg->translate = NULL;
5347
5348 /* If REG_NEWLINE is set, newlines are treated differently. */
5349 if (cflags & REG_NEWLINE)
5350 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5351 syntax &= ~RE_DOT_NEWLINE;
5352 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5353 /* It also changes the matching behavior. */
5354 preg->newline_anchor = 1;
5355 }
5356 else
5357 preg->newline_anchor = 0;
5358
5359 preg->no_sub = !!(cflags & REG_NOSUB);
5360
5361 /* POSIX says a null character in the pattern terminates it, so we
5362 can use strlen here in compiling the pattern. */
5363 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5364
5365 /* POSIX doesn't distinguish between an unmatched open-group and an
5366 unmatched close-group: both are REG_EPAREN. */
5367 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5368
5369 return (int) ret;
5370 }
5371
5372
5373 /* regexec searches for a given pattern, specified by PREG, in the
5374 string STRING.
5375
5376 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5377 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5378 least NMATCH elements, and we set them to the offsets of the
5379 corresponding matched substrings.
5380
5381 EFLAGS specifies `execution flags' which affect matching: if
5382 REG_NOTBOL is set, then ^ does not match at the beginning of the
5383 string; if REG_NOTEOL is set, then $ does not match at the end.
5384
5385 We return 0 if we find a match and REG_NOMATCH if not. */
5386
5387 int
5388 regexec (preg, string, nmatch, pmatch, eflags)
5389 const regex_t *preg;
5390 const char *string;
5391 size_t nmatch;
5392 regmatch_t pmatch[];
5393 int eflags;
5394 {
5395 int ret;
5396 struct re_registers regs;
5397 regex_t private_preg;
5398 int len = strlen (string);
5399 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5400
5401 private_preg = *preg;
5402
5403 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5404 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5405
5406 /* The user has told us exactly how many registers to return
5407 information about, via `nmatch'. We have to pass that on to the
5408 matching routines. */
5409 private_preg.regs_allocated = REGS_FIXED;
5410
5411 if (want_reg_info)
5412 {
5413 regs.num_regs = nmatch;
5414 regs.start = TALLOC (nmatch, regoff_t);
5415 regs.end = TALLOC (nmatch, regoff_t);
5416 if (regs.start == NULL || regs.end == NULL)
5417 return (int) REG_NOMATCH;
5418 }
5419
5420 /* Perform the searching operation. */
5421 ret = re_search (&private_preg, string, len,
5422 /* start: */ 0, /* range: */ len,
5423 want_reg_info ? &regs : (struct re_registers *) 0);
5424
5425 /* Copy the register information to the POSIX structure. */
5426 if (want_reg_info)
5427 {
5428 if (ret >= 0)
5429 {
5430 unsigned r;
5431
5432 for (r = 0; r < nmatch; r++)
5433 {
5434 pmatch[r].rm_so = regs.start[r];
5435 pmatch[r].rm_eo = regs.end[r];
5436 }
5437 }
5438
5439 /* If we needed the temporary register info, free the space now. */
5440 free (regs.start);
5441 free (regs.end);
5442 }
5443
5444 /* We want zero return to mean success, unlike `re_search'. */
5445 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5446 }
5447
5448
5449 /* Returns a message corresponding to an error code, ERRCODE, returned
5450 from either regcomp or regexec. We don't use PREG here. */
5451
5452 size_t
5453 regerror (errcode, preg, errbuf, errbuf_size)
5454 int errcode;
5455 const regex_t *preg;
5456 char *errbuf;
5457 size_t errbuf_size;
5458 {
5459 const char *msg;
5460 size_t msg_size;
5461
5462 if (errcode < 0
5463 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
5464 /* Only error codes returned by the rest of the code should be passed
5465 to this routine. If we are given anything else, or if other regex
5466 code generates an invalid error code, then the program has a bug.
5467 Dump core so we can fix it. */
5468 abort ();
5469
5470 msg = gettext (re_error_msgid[errcode]);
5471
5472 msg_size = strlen (msg) + 1; /* Includes the null. */
5473
5474 if (errbuf_size != 0)
5475 {
5476 if (msg_size > errbuf_size)
5477 {
5478 strncpy (errbuf, msg, errbuf_size - 1);
5479 errbuf[errbuf_size - 1] = 0;
5480 }
5481 else
5482 strcpy (errbuf, msg);
5483 }
5484
5485 return msg_size;
5486 }
5487
5488
5489 /* Free dynamically allocated space used by PREG. */
5490
5491 void
5492 regfree (preg)
5493 regex_t *preg;
5494 {
5495 if (preg->buffer != NULL)
5496 free (preg->buffer);
5497 preg->buffer = NULL;
5498
5499 preg->allocated = 0;
5500 preg->used = 0;
5501
5502 if (preg->fastmap != NULL)
5503 free (preg->fastmap);
5504 preg->fastmap = NULL;
5505 preg->fastmap_accurate = 0;
5506
5507 if (preg->translate != NULL)
5508 free (preg->translate);
5509 preg->translate = NULL;
5510 }
5511
5512 #endif /* not emacs */