Get rid of some platform-specific functions examining window
[bpt/emacs.git] / src / fns.c
1 /* Random utility Lisp functions.
2
3 Copyright (C) 1985-1987, 1993-1995, 1997-2013 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21
22 #include <unistd.h>
23 #include <time.h>
24
25 #include <intprops.h>
26
27 #include "lisp.h"
28 #include "commands.h"
29 #include "character.h"
30 #include "coding.h"
31 #include "buffer.h"
32 #include "keyboard.h"
33 #include "keymap.h"
34 #include "intervals.h"
35 #include "frame.h"
36 #include "window.h"
37 #include "blockinput.h"
38 #ifdef HAVE_MENUS
39 #if defined (HAVE_X_WINDOWS)
40 #include "xterm.h"
41 #endif
42 #endif /* HAVE_MENUS */
43
44 Lisp_Object Qstring_lessp;
45 static Lisp_Object Qprovide, Qrequire;
46 static Lisp_Object Qyes_or_no_p_history;
47 Lisp_Object Qcursor_in_echo_area;
48 static Lisp_Object Qwidget_type;
49 static Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
50
51 static Lisp_Object Qmd5, Qsha1, Qsha224, Qsha256, Qsha384, Qsha512;
52
53 static bool internal_equal (Lisp_Object, Lisp_Object, int, bool);
54 \f
55 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
56 doc: /* Return the argument unchanged. */)
57 (Lisp_Object arg)
58 {
59 return arg;
60 }
61
62 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
63 doc: /* Return a pseudo-random number.
64 All integers representable in Lisp, i.e. between `most-negative-fixnum'
65 and `most-positive-fixnum', inclusive, are equally likely.
66
67 With positive integer LIMIT, return random number in interval [0,LIMIT).
68 With argument t, set the random number seed from the current time and pid.
69 With a string argument, set the seed based on the string's contents.
70 Other values of LIMIT are ignored.
71
72 See Info node `(elisp)Random Numbers' for more details. */)
73 (Lisp_Object limit)
74 {
75 EMACS_INT val;
76
77 if (EQ (limit, Qt))
78 init_random ();
79 else if (STRINGP (limit))
80 seed_random (SSDATA (limit), SBYTES (limit));
81
82 val = get_random ();
83 if (NATNUMP (limit) && XFASTINT (limit) != 0)
84 val %= XFASTINT (limit);
85 return make_number (val);
86 }
87 \f
88 /* Heuristic on how many iterations of a tight loop can be safely done
89 before it's time to do a QUIT. This must be a power of 2. */
90 enum { QUIT_COUNT_HEURISTIC = 1 << 16 };
91
92 /* Random data-structure functions. */
93
94 DEFUN ("length", Flength, Slength, 1, 1, 0,
95 doc: /* Return the length of vector, list or string SEQUENCE.
96 A byte-code function object is also allowed.
97 If the string contains multibyte characters, this is not necessarily
98 the number of bytes in the string; it is the number of characters.
99 To get the number of bytes, use `string-bytes'. */)
100 (register Lisp_Object sequence)
101 {
102 register Lisp_Object val;
103
104 if (STRINGP (sequence))
105 XSETFASTINT (val, SCHARS (sequence));
106 else if (VECTORP (sequence))
107 XSETFASTINT (val, ASIZE (sequence));
108 else if (CHAR_TABLE_P (sequence))
109 XSETFASTINT (val, MAX_CHAR);
110 else if (BOOL_VECTOR_P (sequence))
111 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
112 else if (COMPILEDP (sequence))
113 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
114 else if (CONSP (sequence))
115 {
116 EMACS_INT i = 0;
117
118 do
119 {
120 ++i;
121 if ((i & (QUIT_COUNT_HEURISTIC - 1)) == 0)
122 {
123 if (MOST_POSITIVE_FIXNUM < i)
124 error ("List too long");
125 QUIT;
126 }
127 sequence = XCDR (sequence);
128 }
129 while (CONSP (sequence));
130
131 CHECK_LIST_END (sequence, sequence);
132
133 val = make_number (i);
134 }
135 else if (NILP (sequence))
136 XSETFASTINT (val, 0);
137 else
138 wrong_type_argument (Qsequencep, sequence);
139
140 return val;
141 }
142
143 /* This does not check for quits. That is safe since it must terminate. */
144
145 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
146 doc: /* Return the length of a list, but avoid error or infinite loop.
147 This function never gets an error. If LIST is not really a list,
148 it returns 0. If LIST is circular, it returns a finite value
149 which is at least the number of distinct elements. */)
150 (Lisp_Object list)
151 {
152 Lisp_Object tail, halftail;
153 double hilen = 0;
154 uintmax_t lolen = 1;
155
156 if (! CONSP (list))
157 return make_number (0);
158
159 /* halftail is used to detect circular lists. */
160 for (tail = halftail = list; ; )
161 {
162 tail = XCDR (tail);
163 if (! CONSP (tail))
164 break;
165 if (EQ (tail, halftail))
166 break;
167 lolen++;
168 if ((lolen & 1) == 0)
169 {
170 halftail = XCDR (halftail);
171 if ((lolen & (QUIT_COUNT_HEURISTIC - 1)) == 0)
172 {
173 QUIT;
174 if (lolen == 0)
175 hilen += UINTMAX_MAX + 1.0;
176 }
177 }
178 }
179
180 /* If the length does not fit into a fixnum, return a float.
181 On all known practical machines this returns an upper bound on
182 the true length. */
183 return hilen ? make_float (hilen + lolen) : make_fixnum_or_float (lolen);
184 }
185
186 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
187 doc: /* Return the number of bytes in STRING.
188 If STRING is multibyte, this may be greater than the length of STRING. */)
189 (Lisp_Object string)
190 {
191 CHECK_STRING (string);
192 return make_number (SBYTES (string));
193 }
194
195 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
196 doc: /* Return t if two strings have identical contents.
197 Case is significant, but text properties are ignored.
198 Symbols are also allowed; their print names are used instead. */)
199 (register Lisp_Object s1, Lisp_Object s2)
200 {
201 if (SYMBOLP (s1))
202 s1 = SYMBOL_NAME (s1);
203 if (SYMBOLP (s2))
204 s2 = SYMBOL_NAME (s2);
205 CHECK_STRING (s1);
206 CHECK_STRING (s2);
207
208 if (SCHARS (s1) != SCHARS (s2)
209 || SBYTES (s1) != SBYTES (s2)
210 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
211 return Qnil;
212 return Qt;
213 }
214
215 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
216 doc: /* Compare the contents of two strings, converting to multibyte if needed.
217 The arguments START1, END1, START2, and END2, if non-nil, are
218 positions specifying which parts of STR1 or STR2 to compare. In
219 string STR1, compare the part between START1 (inclusive) and END1
220 \(exclusive). If START1 is nil, it defaults to 0, the beginning of
221 the string; if END1 is nil, it defaults to the length of the string.
222 Likewise, in string STR2, compare the part between START2 and END2.
223
224 The strings are compared by the numeric values of their characters.
225 For instance, STR1 is "less than" STR2 if its first differing
226 character has a smaller numeric value. If IGNORE-CASE is non-nil,
227 characters are converted to lower-case before comparing them. Unibyte
228 strings are converted to multibyte for comparison.
229
230 The value is t if the strings (or specified portions) match.
231 If string STR1 is less, the value is a negative number N;
232 - 1 - N is the number of characters that match at the beginning.
233 If string STR1 is greater, the value is a positive number N;
234 N - 1 is the number of characters that match at the beginning. */)
235 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
236 {
237 register ptrdiff_t end1_char, end2_char;
238 register ptrdiff_t i1, i1_byte, i2, i2_byte;
239
240 CHECK_STRING (str1);
241 CHECK_STRING (str2);
242 if (NILP (start1))
243 start1 = make_number (0);
244 if (NILP (start2))
245 start2 = make_number (0);
246 CHECK_NATNUM (start1);
247 CHECK_NATNUM (start2);
248 if (! NILP (end1))
249 CHECK_NATNUM (end1);
250 if (! NILP (end2))
251 CHECK_NATNUM (end2);
252
253 end1_char = SCHARS (str1);
254 if (! NILP (end1) && end1_char > XINT (end1))
255 end1_char = XINT (end1);
256 if (end1_char < XINT (start1))
257 args_out_of_range (str1, start1);
258
259 end2_char = SCHARS (str2);
260 if (! NILP (end2) && end2_char > XINT (end2))
261 end2_char = XINT (end2);
262 if (end2_char < XINT (start2))
263 args_out_of_range (str2, start2);
264
265 i1 = XINT (start1);
266 i2 = XINT (start2);
267
268 i1_byte = string_char_to_byte (str1, i1);
269 i2_byte = string_char_to_byte (str2, i2);
270
271 while (i1 < end1_char && i2 < end2_char)
272 {
273 /* When we find a mismatch, we must compare the
274 characters, not just the bytes. */
275 int c1, c2;
276
277 if (STRING_MULTIBYTE (str1))
278 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
279 else
280 {
281 c1 = SREF (str1, i1++);
282 MAKE_CHAR_MULTIBYTE (c1);
283 }
284
285 if (STRING_MULTIBYTE (str2))
286 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
287 else
288 {
289 c2 = SREF (str2, i2++);
290 MAKE_CHAR_MULTIBYTE (c2);
291 }
292
293 if (c1 == c2)
294 continue;
295
296 if (! NILP (ignore_case))
297 {
298 Lisp_Object tem;
299
300 tem = Fupcase (make_number (c1));
301 c1 = XINT (tem);
302 tem = Fupcase (make_number (c2));
303 c2 = XINT (tem);
304 }
305
306 if (c1 == c2)
307 continue;
308
309 /* Note that I1 has already been incremented
310 past the character that we are comparing;
311 hence we don't add or subtract 1 here. */
312 if (c1 < c2)
313 return make_number (- i1 + XINT (start1));
314 else
315 return make_number (i1 - XINT (start1));
316 }
317
318 if (i1 < end1_char)
319 return make_number (i1 - XINT (start1) + 1);
320 if (i2 < end2_char)
321 return make_number (- i1 + XINT (start1) - 1);
322
323 return Qt;
324 }
325
326 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
327 doc: /* Return t if first arg string is less than second in lexicographic order.
328 Case is significant.
329 Symbols are also allowed; their print names are used instead. */)
330 (register Lisp_Object s1, Lisp_Object s2)
331 {
332 register ptrdiff_t end;
333 register ptrdiff_t i1, i1_byte, i2, i2_byte;
334
335 if (SYMBOLP (s1))
336 s1 = SYMBOL_NAME (s1);
337 if (SYMBOLP (s2))
338 s2 = SYMBOL_NAME (s2);
339 CHECK_STRING (s1);
340 CHECK_STRING (s2);
341
342 i1 = i1_byte = i2 = i2_byte = 0;
343
344 end = SCHARS (s1);
345 if (end > SCHARS (s2))
346 end = SCHARS (s2);
347
348 while (i1 < end)
349 {
350 /* When we find a mismatch, we must compare the
351 characters, not just the bytes. */
352 int c1, c2;
353
354 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
355 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
356
357 if (c1 != c2)
358 return c1 < c2 ? Qt : Qnil;
359 }
360 return i1 < SCHARS (s2) ? Qt : Qnil;
361 }
362 \f
363 static Lisp_Object concat (ptrdiff_t nargs, Lisp_Object *args,
364 enum Lisp_Type target_type, bool last_special);
365
366 /* ARGSUSED */
367 Lisp_Object
368 concat2 (Lisp_Object s1, Lisp_Object s2)
369 {
370 Lisp_Object args[2];
371 args[0] = s1;
372 args[1] = s2;
373 return concat (2, args, Lisp_String, 0);
374 }
375
376 /* ARGSUSED */
377 Lisp_Object
378 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
379 {
380 Lisp_Object args[3];
381 args[0] = s1;
382 args[1] = s2;
383 args[2] = s3;
384 return concat (3, args, Lisp_String, 0);
385 }
386
387 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
388 doc: /* Concatenate all the arguments and make the result a list.
389 The result is a list whose elements are the elements of all the arguments.
390 Each argument may be a list, vector or string.
391 The last argument is not copied, just used as the tail of the new list.
392 usage: (append &rest SEQUENCES) */)
393 (ptrdiff_t nargs, Lisp_Object *args)
394 {
395 return concat (nargs, args, Lisp_Cons, 1);
396 }
397
398 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
399 doc: /* Concatenate all the arguments and make the result a string.
400 The result is a string whose elements are the elements of all the arguments.
401 Each argument may be a string or a list or vector of characters (integers).
402 usage: (concat &rest SEQUENCES) */)
403 (ptrdiff_t nargs, Lisp_Object *args)
404 {
405 return concat (nargs, args, Lisp_String, 0);
406 }
407
408 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
409 doc: /* Concatenate all the arguments and make the result a vector.
410 The result is a vector whose elements are the elements of all the arguments.
411 Each argument may be a list, vector or string.
412 usage: (vconcat &rest SEQUENCES) */)
413 (ptrdiff_t nargs, Lisp_Object *args)
414 {
415 return concat (nargs, args, Lisp_Vectorlike, 0);
416 }
417
418
419 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
420 doc: /* Return a copy of a list, vector, string or char-table.
421 The elements of a list or vector are not copied; they are shared
422 with the original. */)
423 (Lisp_Object arg)
424 {
425 if (NILP (arg)) return arg;
426
427 if (CHAR_TABLE_P (arg))
428 {
429 return copy_char_table (arg);
430 }
431
432 if (BOOL_VECTOR_P (arg))
433 {
434 Lisp_Object val;
435 ptrdiff_t size_in_chars
436 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
437 / BOOL_VECTOR_BITS_PER_CHAR);
438
439 val = Fmake_bool_vector (Flength (arg), Qnil);
440 memcpy (XBOOL_VECTOR (val)->data, XBOOL_VECTOR (arg)->data,
441 size_in_chars);
442 return val;
443 }
444
445 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
446 wrong_type_argument (Qsequencep, arg);
447
448 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
449 }
450
451 /* This structure holds information of an argument of `concat' that is
452 a string and has text properties to be copied. */
453 struct textprop_rec
454 {
455 ptrdiff_t argnum; /* refer to ARGS (arguments of `concat') */
456 ptrdiff_t from; /* refer to ARGS[argnum] (argument string) */
457 ptrdiff_t to; /* refer to VAL (the target string) */
458 };
459
460 static Lisp_Object
461 concat (ptrdiff_t nargs, Lisp_Object *args,
462 enum Lisp_Type target_type, bool last_special)
463 {
464 Lisp_Object val;
465 Lisp_Object tail;
466 Lisp_Object this;
467 ptrdiff_t toindex;
468 ptrdiff_t toindex_byte = 0;
469 EMACS_INT result_len;
470 EMACS_INT result_len_byte;
471 ptrdiff_t argnum;
472 Lisp_Object last_tail;
473 Lisp_Object prev;
474 bool some_multibyte;
475 /* When we make a multibyte string, we can't copy text properties
476 while concatenating each string because the length of resulting
477 string can't be decided until we finish the whole concatenation.
478 So, we record strings that have text properties to be copied
479 here, and copy the text properties after the concatenation. */
480 struct textprop_rec *textprops = NULL;
481 /* Number of elements in textprops. */
482 ptrdiff_t num_textprops = 0;
483 USE_SAFE_ALLOCA;
484
485 tail = Qnil;
486
487 /* In append, the last arg isn't treated like the others */
488 if (last_special && nargs > 0)
489 {
490 nargs--;
491 last_tail = args[nargs];
492 }
493 else
494 last_tail = Qnil;
495
496 /* Check each argument. */
497 for (argnum = 0; argnum < nargs; argnum++)
498 {
499 this = args[argnum];
500 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
501 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
502 wrong_type_argument (Qsequencep, this);
503 }
504
505 /* Compute total length in chars of arguments in RESULT_LEN.
506 If desired output is a string, also compute length in bytes
507 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
508 whether the result should be a multibyte string. */
509 result_len_byte = 0;
510 result_len = 0;
511 some_multibyte = 0;
512 for (argnum = 0; argnum < nargs; argnum++)
513 {
514 EMACS_INT len;
515 this = args[argnum];
516 len = XFASTINT (Flength (this));
517 if (target_type == Lisp_String)
518 {
519 /* We must count the number of bytes needed in the string
520 as well as the number of characters. */
521 ptrdiff_t i;
522 Lisp_Object ch;
523 int c;
524 ptrdiff_t this_len_byte;
525
526 if (VECTORP (this) || COMPILEDP (this))
527 for (i = 0; i < len; i++)
528 {
529 ch = AREF (this, i);
530 CHECK_CHARACTER (ch);
531 c = XFASTINT (ch);
532 this_len_byte = CHAR_BYTES (c);
533 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
534 string_overflow ();
535 result_len_byte += this_len_byte;
536 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
537 some_multibyte = 1;
538 }
539 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
540 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
541 else if (CONSP (this))
542 for (; CONSP (this); this = XCDR (this))
543 {
544 ch = XCAR (this);
545 CHECK_CHARACTER (ch);
546 c = XFASTINT (ch);
547 this_len_byte = CHAR_BYTES (c);
548 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
549 string_overflow ();
550 result_len_byte += this_len_byte;
551 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
552 some_multibyte = 1;
553 }
554 else if (STRINGP (this))
555 {
556 if (STRING_MULTIBYTE (this))
557 {
558 some_multibyte = 1;
559 this_len_byte = SBYTES (this);
560 }
561 else
562 this_len_byte = count_size_as_multibyte (SDATA (this),
563 SCHARS (this));
564 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
565 string_overflow ();
566 result_len_byte += this_len_byte;
567 }
568 }
569
570 result_len += len;
571 if (MOST_POSITIVE_FIXNUM < result_len)
572 memory_full (SIZE_MAX);
573 }
574
575 if (! some_multibyte)
576 result_len_byte = result_len;
577
578 /* Create the output object. */
579 if (target_type == Lisp_Cons)
580 val = Fmake_list (make_number (result_len), Qnil);
581 else if (target_type == Lisp_Vectorlike)
582 val = Fmake_vector (make_number (result_len), Qnil);
583 else if (some_multibyte)
584 val = make_uninit_multibyte_string (result_len, result_len_byte);
585 else
586 val = make_uninit_string (result_len);
587
588 /* In `append', if all but last arg are nil, return last arg. */
589 if (target_type == Lisp_Cons && EQ (val, Qnil))
590 return last_tail;
591
592 /* Copy the contents of the args into the result. */
593 if (CONSP (val))
594 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
595 else
596 toindex = 0, toindex_byte = 0;
597
598 prev = Qnil;
599 if (STRINGP (val))
600 SAFE_NALLOCA (textprops, 1, nargs);
601
602 for (argnum = 0; argnum < nargs; argnum++)
603 {
604 Lisp_Object thislen;
605 ptrdiff_t thisleni = 0;
606 register ptrdiff_t thisindex = 0;
607 register ptrdiff_t thisindex_byte = 0;
608
609 this = args[argnum];
610 if (!CONSP (this))
611 thislen = Flength (this), thisleni = XINT (thislen);
612
613 /* Between strings of the same kind, copy fast. */
614 if (STRINGP (this) && STRINGP (val)
615 && STRING_MULTIBYTE (this) == some_multibyte)
616 {
617 ptrdiff_t thislen_byte = SBYTES (this);
618
619 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
620 if (string_intervals (this))
621 {
622 textprops[num_textprops].argnum = argnum;
623 textprops[num_textprops].from = 0;
624 textprops[num_textprops++].to = toindex;
625 }
626 toindex_byte += thislen_byte;
627 toindex += thisleni;
628 }
629 /* Copy a single-byte string to a multibyte string. */
630 else if (STRINGP (this) && STRINGP (val))
631 {
632 if (string_intervals (this))
633 {
634 textprops[num_textprops].argnum = argnum;
635 textprops[num_textprops].from = 0;
636 textprops[num_textprops++].to = toindex;
637 }
638 toindex_byte += copy_text (SDATA (this),
639 SDATA (val) + toindex_byte,
640 SCHARS (this), 0, 1);
641 toindex += thisleni;
642 }
643 else
644 /* Copy element by element. */
645 while (1)
646 {
647 register Lisp_Object elt;
648
649 /* Fetch next element of `this' arg into `elt', or break if
650 `this' is exhausted. */
651 if (NILP (this)) break;
652 if (CONSP (this))
653 elt = XCAR (this), this = XCDR (this);
654 else if (thisindex >= thisleni)
655 break;
656 else if (STRINGP (this))
657 {
658 int c;
659 if (STRING_MULTIBYTE (this))
660 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
661 thisindex,
662 thisindex_byte);
663 else
664 {
665 c = SREF (this, thisindex); thisindex++;
666 if (some_multibyte && !ASCII_CHAR_P (c))
667 c = BYTE8_TO_CHAR (c);
668 }
669 XSETFASTINT (elt, c);
670 }
671 else if (BOOL_VECTOR_P (this))
672 {
673 int byte;
674 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
675 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
676 elt = Qt;
677 else
678 elt = Qnil;
679 thisindex++;
680 }
681 else
682 {
683 elt = AREF (this, thisindex);
684 thisindex++;
685 }
686
687 /* Store this element into the result. */
688 if (toindex < 0)
689 {
690 XSETCAR (tail, elt);
691 prev = tail;
692 tail = XCDR (tail);
693 }
694 else if (VECTORP (val))
695 {
696 ASET (val, toindex, elt);
697 toindex++;
698 }
699 else
700 {
701 int c;
702 CHECK_CHARACTER (elt);
703 c = XFASTINT (elt);
704 if (some_multibyte)
705 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
706 else
707 SSET (val, toindex_byte++, c);
708 toindex++;
709 }
710 }
711 }
712 if (!NILP (prev))
713 XSETCDR (prev, last_tail);
714
715 if (num_textprops > 0)
716 {
717 Lisp_Object props;
718 ptrdiff_t last_to_end = -1;
719
720 for (argnum = 0; argnum < num_textprops; argnum++)
721 {
722 this = args[textprops[argnum].argnum];
723 props = text_property_list (this,
724 make_number (0),
725 make_number (SCHARS (this)),
726 Qnil);
727 /* If successive arguments have properties, be sure that the
728 value of `composition' property be the copy. */
729 if (last_to_end == textprops[argnum].to)
730 make_composition_value_copy (props);
731 add_text_properties_from_list (val, props,
732 make_number (textprops[argnum].to));
733 last_to_end = textprops[argnum].to + SCHARS (this);
734 }
735 }
736
737 SAFE_FREE ();
738 return val;
739 }
740 \f
741 static Lisp_Object string_char_byte_cache_string;
742 static ptrdiff_t string_char_byte_cache_charpos;
743 static ptrdiff_t string_char_byte_cache_bytepos;
744
745 void
746 clear_string_char_byte_cache (void)
747 {
748 string_char_byte_cache_string = Qnil;
749 }
750
751 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
752
753 ptrdiff_t
754 string_char_to_byte (Lisp_Object string, ptrdiff_t char_index)
755 {
756 ptrdiff_t i_byte;
757 ptrdiff_t best_below, best_below_byte;
758 ptrdiff_t best_above, best_above_byte;
759
760 best_below = best_below_byte = 0;
761 best_above = SCHARS (string);
762 best_above_byte = SBYTES (string);
763 if (best_above == best_above_byte)
764 return char_index;
765
766 if (EQ (string, string_char_byte_cache_string))
767 {
768 if (string_char_byte_cache_charpos < char_index)
769 {
770 best_below = string_char_byte_cache_charpos;
771 best_below_byte = string_char_byte_cache_bytepos;
772 }
773 else
774 {
775 best_above = string_char_byte_cache_charpos;
776 best_above_byte = string_char_byte_cache_bytepos;
777 }
778 }
779
780 if (char_index - best_below < best_above - char_index)
781 {
782 unsigned char *p = SDATA (string) + best_below_byte;
783
784 while (best_below < char_index)
785 {
786 p += BYTES_BY_CHAR_HEAD (*p);
787 best_below++;
788 }
789 i_byte = p - SDATA (string);
790 }
791 else
792 {
793 unsigned char *p = SDATA (string) + best_above_byte;
794
795 while (best_above > char_index)
796 {
797 p--;
798 while (!CHAR_HEAD_P (*p)) p--;
799 best_above--;
800 }
801 i_byte = p - SDATA (string);
802 }
803
804 string_char_byte_cache_bytepos = i_byte;
805 string_char_byte_cache_charpos = char_index;
806 string_char_byte_cache_string = string;
807
808 return i_byte;
809 }
810 \f
811 /* Return the character index corresponding to BYTE_INDEX in STRING. */
812
813 ptrdiff_t
814 string_byte_to_char (Lisp_Object string, ptrdiff_t byte_index)
815 {
816 ptrdiff_t i, i_byte;
817 ptrdiff_t best_below, best_below_byte;
818 ptrdiff_t best_above, best_above_byte;
819
820 best_below = best_below_byte = 0;
821 best_above = SCHARS (string);
822 best_above_byte = SBYTES (string);
823 if (best_above == best_above_byte)
824 return byte_index;
825
826 if (EQ (string, string_char_byte_cache_string))
827 {
828 if (string_char_byte_cache_bytepos < byte_index)
829 {
830 best_below = string_char_byte_cache_charpos;
831 best_below_byte = string_char_byte_cache_bytepos;
832 }
833 else
834 {
835 best_above = string_char_byte_cache_charpos;
836 best_above_byte = string_char_byte_cache_bytepos;
837 }
838 }
839
840 if (byte_index - best_below_byte < best_above_byte - byte_index)
841 {
842 unsigned char *p = SDATA (string) + best_below_byte;
843 unsigned char *pend = SDATA (string) + byte_index;
844
845 while (p < pend)
846 {
847 p += BYTES_BY_CHAR_HEAD (*p);
848 best_below++;
849 }
850 i = best_below;
851 i_byte = p - SDATA (string);
852 }
853 else
854 {
855 unsigned char *p = SDATA (string) + best_above_byte;
856 unsigned char *pbeg = SDATA (string) + byte_index;
857
858 while (p > pbeg)
859 {
860 p--;
861 while (!CHAR_HEAD_P (*p)) p--;
862 best_above--;
863 }
864 i = best_above;
865 i_byte = p - SDATA (string);
866 }
867
868 string_char_byte_cache_bytepos = i_byte;
869 string_char_byte_cache_charpos = i;
870 string_char_byte_cache_string = string;
871
872 return i;
873 }
874 \f
875 /* Convert STRING to a multibyte string. */
876
877 static Lisp_Object
878 string_make_multibyte (Lisp_Object string)
879 {
880 unsigned char *buf;
881 ptrdiff_t nbytes;
882 Lisp_Object ret;
883 USE_SAFE_ALLOCA;
884
885 if (STRING_MULTIBYTE (string))
886 return string;
887
888 nbytes = count_size_as_multibyte (SDATA (string),
889 SCHARS (string));
890 /* If all the chars are ASCII, they won't need any more bytes
891 once converted. In that case, we can return STRING itself. */
892 if (nbytes == SBYTES (string))
893 return string;
894
895 buf = SAFE_ALLOCA (nbytes);
896 copy_text (SDATA (string), buf, SBYTES (string),
897 0, 1);
898
899 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
900 SAFE_FREE ();
901
902 return ret;
903 }
904
905
906 /* Convert STRING (if unibyte) to a multibyte string without changing
907 the number of characters. Characters 0200 trough 0237 are
908 converted to eight-bit characters. */
909
910 Lisp_Object
911 string_to_multibyte (Lisp_Object string)
912 {
913 unsigned char *buf;
914 ptrdiff_t nbytes;
915 Lisp_Object ret;
916 USE_SAFE_ALLOCA;
917
918 if (STRING_MULTIBYTE (string))
919 return string;
920
921 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
922 /* If all the chars are ASCII, they won't need any more bytes once
923 converted. */
924 if (nbytes == SBYTES (string))
925 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
926
927 buf = SAFE_ALLOCA (nbytes);
928 memcpy (buf, SDATA (string), SBYTES (string));
929 str_to_multibyte (buf, nbytes, SBYTES (string));
930
931 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
932 SAFE_FREE ();
933
934 return ret;
935 }
936
937
938 /* Convert STRING to a single-byte string. */
939
940 Lisp_Object
941 string_make_unibyte (Lisp_Object string)
942 {
943 ptrdiff_t nchars;
944 unsigned char *buf;
945 Lisp_Object ret;
946 USE_SAFE_ALLOCA;
947
948 if (! STRING_MULTIBYTE (string))
949 return string;
950
951 nchars = SCHARS (string);
952
953 buf = SAFE_ALLOCA (nchars);
954 copy_text (SDATA (string), buf, SBYTES (string),
955 1, 0);
956
957 ret = make_unibyte_string ((char *) buf, nchars);
958 SAFE_FREE ();
959
960 return ret;
961 }
962
963 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
964 1, 1, 0,
965 doc: /* Return the multibyte equivalent of STRING.
966 If STRING is unibyte and contains non-ASCII characters, the function
967 `unibyte-char-to-multibyte' is used to convert each unibyte character
968 to a multibyte character. In this case, the returned string is a
969 newly created string with no text properties. If STRING is multibyte
970 or entirely ASCII, it is returned unchanged. In particular, when
971 STRING is unibyte and entirely ASCII, the returned string is unibyte.
972 \(When the characters are all ASCII, Emacs primitives will treat the
973 string the same way whether it is unibyte or multibyte.) */)
974 (Lisp_Object string)
975 {
976 CHECK_STRING (string);
977
978 return string_make_multibyte (string);
979 }
980
981 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
982 1, 1, 0,
983 doc: /* Return the unibyte equivalent of STRING.
984 Multibyte character codes are converted to unibyte according to
985 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
986 If the lookup in the translation table fails, this function takes just
987 the low 8 bits of each character. */)
988 (Lisp_Object string)
989 {
990 CHECK_STRING (string);
991
992 return string_make_unibyte (string);
993 }
994
995 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
996 1, 1, 0,
997 doc: /* Return a unibyte string with the same individual bytes as STRING.
998 If STRING is unibyte, the result is STRING itself.
999 Otherwise it is a newly created string, with no text properties.
1000 If STRING is multibyte and contains a character of charset
1001 `eight-bit', it is converted to the corresponding single byte. */)
1002 (Lisp_Object string)
1003 {
1004 CHECK_STRING (string);
1005
1006 if (STRING_MULTIBYTE (string))
1007 {
1008 ptrdiff_t bytes = SBYTES (string);
1009 unsigned char *str = xmalloc (bytes);
1010
1011 memcpy (str, SDATA (string), bytes);
1012 bytes = str_as_unibyte (str, bytes);
1013 string = make_unibyte_string ((char *) str, bytes);
1014 xfree (str);
1015 }
1016 return string;
1017 }
1018
1019 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1020 1, 1, 0,
1021 doc: /* Return a multibyte string with the same individual bytes as STRING.
1022 If STRING is multibyte, the result is STRING itself.
1023 Otherwise it is a newly created string, with no text properties.
1024
1025 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1026 part of a correct utf-8 sequence), it is converted to the corresponding
1027 multibyte character of charset `eight-bit'.
1028 See also `string-to-multibyte'.
1029
1030 Beware, this often doesn't really do what you think it does.
1031 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1032 If you're not sure, whether to use `string-as-multibyte' or
1033 `string-to-multibyte', use `string-to-multibyte'. */)
1034 (Lisp_Object string)
1035 {
1036 CHECK_STRING (string);
1037
1038 if (! STRING_MULTIBYTE (string))
1039 {
1040 Lisp_Object new_string;
1041 ptrdiff_t nchars, nbytes;
1042
1043 parse_str_as_multibyte (SDATA (string),
1044 SBYTES (string),
1045 &nchars, &nbytes);
1046 new_string = make_uninit_multibyte_string (nchars, nbytes);
1047 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1048 if (nbytes != SBYTES (string))
1049 str_as_multibyte (SDATA (new_string), nbytes,
1050 SBYTES (string), NULL);
1051 string = new_string;
1052 set_string_intervals (string, NULL);
1053 }
1054 return string;
1055 }
1056
1057 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1058 1, 1, 0,
1059 doc: /* Return a multibyte string with the same individual chars as STRING.
1060 If STRING is multibyte, the result is STRING itself.
1061 Otherwise it is a newly created string, with no text properties.
1062
1063 If STRING is unibyte and contains an 8-bit byte, it is converted to
1064 the corresponding multibyte character of charset `eight-bit'.
1065
1066 This differs from `string-as-multibyte' by converting each byte of a correct
1067 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1068 correct sequence. */)
1069 (Lisp_Object string)
1070 {
1071 CHECK_STRING (string);
1072
1073 return string_to_multibyte (string);
1074 }
1075
1076 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1077 1, 1, 0,
1078 doc: /* Return a unibyte string with the same individual chars as STRING.
1079 If STRING is unibyte, the result is STRING itself.
1080 Otherwise it is a newly created string, with no text properties,
1081 where each `eight-bit' character is converted to the corresponding byte.
1082 If STRING contains a non-ASCII, non-`eight-bit' character,
1083 an error is signaled. */)
1084 (Lisp_Object string)
1085 {
1086 CHECK_STRING (string);
1087
1088 if (STRING_MULTIBYTE (string))
1089 {
1090 ptrdiff_t chars = SCHARS (string);
1091 unsigned char *str = xmalloc (chars);
1092 ptrdiff_t converted = str_to_unibyte (SDATA (string), str, chars);
1093
1094 if (converted < chars)
1095 error ("Can't convert the %"pD"dth character to unibyte", converted);
1096 string = make_unibyte_string ((char *) str, chars);
1097 xfree (str);
1098 }
1099 return string;
1100 }
1101
1102 \f
1103 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1104 doc: /* Return a copy of ALIST.
1105 This is an alist which represents the same mapping from objects to objects,
1106 but does not share the alist structure with ALIST.
1107 The objects mapped (cars and cdrs of elements of the alist)
1108 are shared, however.
1109 Elements of ALIST that are not conses are also shared. */)
1110 (Lisp_Object alist)
1111 {
1112 register Lisp_Object tem;
1113
1114 CHECK_LIST (alist);
1115 if (NILP (alist))
1116 return alist;
1117 alist = concat (1, &alist, Lisp_Cons, 0);
1118 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1119 {
1120 register Lisp_Object car;
1121 car = XCAR (tem);
1122
1123 if (CONSP (car))
1124 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1125 }
1126 return alist;
1127 }
1128
1129 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1130 doc: /* Return a new string whose contents are a substring of STRING.
1131 The returned string consists of the characters between index FROM
1132 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1133 zero-indexed: 0 means the first character of STRING. Negative values
1134 are counted from the end of STRING. If TO is nil, the substring runs
1135 to the end of STRING.
1136
1137 The STRING argument may also be a vector. In that case, the return
1138 value is a new vector that contains the elements between index FROM
1139 \(inclusive) and index TO (exclusive) of that vector argument. */)
1140 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1141 {
1142 Lisp_Object res;
1143 ptrdiff_t size;
1144 EMACS_INT from_char, to_char;
1145
1146 CHECK_VECTOR_OR_STRING (string);
1147 CHECK_NUMBER (from);
1148
1149 if (STRINGP (string))
1150 size = SCHARS (string);
1151 else
1152 size = ASIZE (string);
1153
1154 if (NILP (to))
1155 to_char = size;
1156 else
1157 {
1158 CHECK_NUMBER (to);
1159
1160 to_char = XINT (to);
1161 if (to_char < 0)
1162 to_char += size;
1163 }
1164
1165 from_char = XINT (from);
1166 if (from_char < 0)
1167 from_char += size;
1168 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1169 args_out_of_range_3 (string, make_number (from_char),
1170 make_number (to_char));
1171
1172 if (STRINGP (string))
1173 {
1174 ptrdiff_t to_byte =
1175 (NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char));
1176 ptrdiff_t from_byte = string_char_to_byte (string, from_char);
1177 res = make_specified_string (SSDATA (string) + from_byte,
1178 to_char - from_char, to_byte - from_byte,
1179 STRING_MULTIBYTE (string));
1180 copy_text_properties (make_number (from_char), make_number (to_char),
1181 string, make_number (0), res, Qnil);
1182 }
1183 else
1184 res = Fvector (to_char - from_char, aref_addr (string, from_char));
1185
1186 return res;
1187 }
1188
1189
1190 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1191 doc: /* Return a substring of STRING, without text properties.
1192 It starts at index FROM and ends before TO.
1193 TO may be nil or omitted; then the substring runs to the end of STRING.
1194 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1195 If FROM or TO is negative, it counts from the end.
1196
1197 With one argument, just copy STRING without its properties. */)
1198 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1199 {
1200 ptrdiff_t size;
1201 EMACS_INT from_char, to_char;
1202 ptrdiff_t from_byte, to_byte;
1203
1204 CHECK_STRING (string);
1205
1206 size = SCHARS (string);
1207
1208 if (NILP (from))
1209 from_char = 0;
1210 else
1211 {
1212 CHECK_NUMBER (from);
1213 from_char = XINT (from);
1214 if (from_char < 0)
1215 from_char += size;
1216 }
1217
1218 if (NILP (to))
1219 to_char = size;
1220 else
1221 {
1222 CHECK_NUMBER (to);
1223 to_char = XINT (to);
1224 if (to_char < 0)
1225 to_char += size;
1226 }
1227
1228 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1229 args_out_of_range_3 (string, make_number (from_char),
1230 make_number (to_char));
1231
1232 from_byte = NILP (from) ? 0 : string_char_to_byte (string, from_char);
1233 to_byte =
1234 NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char);
1235 return make_specified_string (SSDATA (string) + from_byte,
1236 to_char - from_char, to_byte - from_byte,
1237 STRING_MULTIBYTE (string));
1238 }
1239
1240 /* Extract a substring of STRING, giving start and end positions
1241 both in characters and in bytes. */
1242
1243 Lisp_Object
1244 substring_both (Lisp_Object string, ptrdiff_t from, ptrdiff_t from_byte,
1245 ptrdiff_t to, ptrdiff_t to_byte)
1246 {
1247 Lisp_Object res;
1248 ptrdiff_t size;
1249
1250 CHECK_VECTOR_OR_STRING (string);
1251
1252 size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
1253
1254 if (!(0 <= from && from <= to && to <= size))
1255 args_out_of_range_3 (string, make_number (from), make_number (to));
1256
1257 if (STRINGP (string))
1258 {
1259 res = make_specified_string (SSDATA (string) + from_byte,
1260 to - from, to_byte - from_byte,
1261 STRING_MULTIBYTE (string));
1262 copy_text_properties (make_number (from), make_number (to),
1263 string, make_number (0), res, Qnil);
1264 }
1265 else
1266 res = Fvector (to - from, aref_addr (string, from));
1267
1268 return res;
1269 }
1270 \f
1271 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1272 doc: /* Take cdr N times on LIST, return the result. */)
1273 (Lisp_Object n, Lisp_Object list)
1274 {
1275 EMACS_INT i, num;
1276 CHECK_NUMBER (n);
1277 num = XINT (n);
1278 for (i = 0; i < num && !NILP (list); i++)
1279 {
1280 QUIT;
1281 CHECK_LIST_CONS (list, list);
1282 list = XCDR (list);
1283 }
1284 return list;
1285 }
1286
1287 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1288 doc: /* Return the Nth element of LIST.
1289 N counts from zero. If LIST is not that long, nil is returned. */)
1290 (Lisp_Object n, Lisp_Object list)
1291 {
1292 return Fcar (Fnthcdr (n, list));
1293 }
1294
1295 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1296 doc: /* Return element of SEQUENCE at index N. */)
1297 (register Lisp_Object sequence, Lisp_Object n)
1298 {
1299 CHECK_NUMBER (n);
1300 if (CONSP (sequence) || NILP (sequence))
1301 return Fcar (Fnthcdr (n, sequence));
1302
1303 /* Faref signals a "not array" error, so check here. */
1304 CHECK_ARRAY (sequence, Qsequencep);
1305 return Faref (sequence, n);
1306 }
1307
1308 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1309 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1310 The value is actually the tail of LIST whose car is ELT. */)
1311 (register Lisp_Object elt, Lisp_Object list)
1312 {
1313 register Lisp_Object tail;
1314 for (tail = list; CONSP (tail); tail = XCDR (tail))
1315 {
1316 register Lisp_Object tem;
1317 CHECK_LIST_CONS (tail, list);
1318 tem = XCAR (tail);
1319 if (! NILP (Fequal (elt, tem)))
1320 return tail;
1321 QUIT;
1322 }
1323 return Qnil;
1324 }
1325
1326 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1327 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1328 The value is actually the tail of LIST whose car is ELT. */)
1329 (register Lisp_Object elt, Lisp_Object list)
1330 {
1331 while (1)
1332 {
1333 if (!CONSP (list) || EQ (XCAR (list), elt))
1334 break;
1335
1336 list = XCDR (list);
1337 if (!CONSP (list) || EQ (XCAR (list), elt))
1338 break;
1339
1340 list = XCDR (list);
1341 if (!CONSP (list) || EQ (XCAR (list), elt))
1342 break;
1343
1344 list = XCDR (list);
1345 QUIT;
1346 }
1347
1348 CHECK_LIST (list);
1349 return list;
1350 }
1351
1352 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1353 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1354 The value is actually the tail of LIST whose car is ELT. */)
1355 (register Lisp_Object elt, Lisp_Object list)
1356 {
1357 register Lisp_Object tail;
1358
1359 if (!FLOATP (elt))
1360 return Fmemq (elt, list);
1361
1362 for (tail = list; CONSP (tail); tail = XCDR (tail))
1363 {
1364 register Lisp_Object tem;
1365 CHECK_LIST_CONS (tail, list);
1366 tem = XCAR (tail);
1367 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1368 return tail;
1369 QUIT;
1370 }
1371 return Qnil;
1372 }
1373
1374 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1375 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1376 The value is actually the first element of LIST whose car is KEY.
1377 Elements of LIST that are not conses are ignored. */)
1378 (Lisp_Object key, Lisp_Object list)
1379 {
1380 while (1)
1381 {
1382 if (!CONSP (list)
1383 || (CONSP (XCAR (list))
1384 && EQ (XCAR (XCAR (list)), key)))
1385 break;
1386
1387 list = XCDR (list);
1388 if (!CONSP (list)
1389 || (CONSP (XCAR (list))
1390 && EQ (XCAR (XCAR (list)), key)))
1391 break;
1392
1393 list = XCDR (list);
1394 if (!CONSP (list)
1395 || (CONSP (XCAR (list))
1396 && EQ (XCAR (XCAR (list)), key)))
1397 break;
1398
1399 list = XCDR (list);
1400 QUIT;
1401 }
1402
1403 return CAR (list);
1404 }
1405
1406 /* Like Fassq but never report an error and do not allow quits.
1407 Use only on lists known never to be circular. */
1408
1409 Lisp_Object
1410 assq_no_quit (Lisp_Object key, Lisp_Object list)
1411 {
1412 while (CONSP (list)
1413 && (!CONSP (XCAR (list))
1414 || !EQ (XCAR (XCAR (list)), key)))
1415 list = XCDR (list);
1416
1417 return CAR_SAFE (list);
1418 }
1419
1420 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1421 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1422 The value is actually the first element of LIST whose car equals KEY. */)
1423 (Lisp_Object key, Lisp_Object list)
1424 {
1425 Lisp_Object car;
1426
1427 while (1)
1428 {
1429 if (!CONSP (list)
1430 || (CONSP (XCAR (list))
1431 && (car = XCAR (XCAR (list)),
1432 EQ (car, key) || !NILP (Fequal (car, key)))))
1433 break;
1434
1435 list = XCDR (list);
1436 if (!CONSP (list)
1437 || (CONSP (XCAR (list))
1438 && (car = XCAR (XCAR (list)),
1439 EQ (car, key) || !NILP (Fequal (car, key)))))
1440 break;
1441
1442 list = XCDR (list);
1443 if (!CONSP (list)
1444 || (CONSP (XCAR (list))
1445 && (car = XCAR (XCAR (list)),
1446 EQ (car, key) || !NILP (Fequal (car, key)))))
1447 break;
1448
1449 list = XCDR (list);
1450 QUIT;
1451 }
1452
1453 return CAR (list);
1454 }
1455
1456 /* Like Fassoc but never report an error and do not allow quits.
1457 Use only on lists known never to be circular. */
1458
1459 Lisp_Object
1460 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1461 {
1462 while (CONSP (list)
1463 && (!CONSP (XCAR (list))
1464 || (!EQ (XCAR (XCAR (list)), key)
1465 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1466 list = XCDR (list);
1467
1468 return CONSP (list) ? XCAR (list) : Qnil;
1469 }
1470
1471 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1472 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1473 The value is actually the first element of LIST whose cdr is KEY. */)
1474 (register Lisp_Object key, Lisp_Object list)
1475 {
1476 while (1)
1477 {
1478 if (!CONSP (list)
1479 || (CONSP (XCAR (list))
1480 && EQ (XCDR (XCAR (list)), key)))
1481 break;
1482
1483 list = XCDR (list);
1484 if (!CONSP (list)
1485 || (CONSP (XCAR (list))
1486 && EQ (XCDR (XCAR (list)), key)))
1487 break;
1488
1489 list = XCDR (list);
1490 if (!CONSP (list)
1491 || (CONSP (XCAR (list))
1492 && EQ (XCDR (XCAR (list)), key)))
1493 break;
1494
1495 list = XCDR (list);
1496 QUIT;
1497 }
1498
1499 return CAR (list);
1500 }
1501
1502 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1503 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1504 The value is actually the first element of LIST whose cdr equals KEY. */)
1505 (Lisp_Object key, Lisp_Object list)
1506 {
1507 Lisp_Object cdr;
1508
1509 while (1)
1510 {
1511 if (!CONSP (list)
1512 || (CONSP (XCAR (list))
1513 && (cdr = XCDR (XCAR (list)),
1514 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1515 break;
1516
1517 list = XCDR (list);
1518 if (!CONSP (list)
1519 || (CONSP (XCAR (list))
1520 && (cdr = XCDR (XCAR (list)),
1521 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1522 break;
1523
1524 list = XCDR (list);
1525 if (!CONSP (list)
1526 || (CONSP (XCAR (list))
1527 && (cdr = XCDR (XCAR (list)),
1528 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1529 break;
1530
1531 list = XCDR (list);
1532 QUIT;
1533 }
1534
1535 return CAR (list);
1536 }
1537 \f
1538 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1539 doc: /* Delete members of LIST which are `eq' to ELT, and return the result.
1540 More precisely, this function skips any members `eq' to ELT at the
1541 front of LIST, then removes members `eq' to ELT from the remaining
1542 sublist by modifying its list structure, then returns the resulting
1543 list.
1544
1545 Write `(setq foo (delq element foo))' to be sure of correctly changing
1546 the value of a list `foo'. */)
1547 (register Lisp_Object elt, Lisp_Object list)
1548 {
1549 register Lisp_Object tail, prev;
1550 register Lisp_Object tem;
1551
1552 tail = list;
1553 prev = Qnil;
1554 while (!NILP (tail))
1555 {
1556 CHECK_LIST_CONS (tail, list);
1557 tem = XCAR (tail);
1558 if (EQ (elt, tem))
1559 {
1560 if (NILP (prev))
1561 list = XCDR (tail);
1562 else
1563 Fsetcdr (prev, XCDR (tail));
1564 }
1565 else
1566 prev = tail;
1567 tail = XCDR (tail);
1568 QUIT;
1569 }
1570 return list;
1571 }
1572
1573 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1574 doc: /* Delete members of SEQ which are `equal' to ELT, and return the result.
1575 SEQ must be a sequence (i.e. a list, a vector, or a string).
1576 The return value is a sequence of the same type.
1577
1578 If SEQ is a list, this behaves like `delq', except that it compares
1579 with `equal' instead of `eq'. In particular, it may remove elements
1580 by altering the list structure.
1581
1582 If SEQ is not a list, deletion is never performed destructively;
1583 instead this function creates and returns a new vector or string.
1584
1585 Write `(setq foo (delete element foo))' to be sure of correctly
1586 changing the value of a sequence `foo'. */)
1587 (Lisp_Object elt, Lisp_Object seq)
1588 {
1589 if (VECTORP (seq))
1590 {
1591 ptrdiff_t i, n;
1592
1593 for (i = n = 0; i < ASIZE (seq); ++i)
1594 if (NILP (Fequal (AREF (seq, i), elt)))
1595 ++n;
1596
1597 if (n != ASIZE (seq))
1598 {
1599 struct Lisp_Vector *p = allocate_vector (n);
1600
1601 for (i = n = 0; i < ASIZE (seq); ++i)
1602 if (NILP (Fequal (AREF (seq, i), elt)))
1603 p->contents[n++] = AREF (seq, i);
1604
1605 XSETVECTOR (seq, p);
1606 }
1607 }
1608 else if (STRINGP (seq))
1609 {
1610 ptrdiff_t i, ibyte, nchars, nbytes, cbytes;
1611 int c;
1612
1613 for (i = nchars = nbytes = ibyte = 0;
1614 i < SCHARS (seq);
1615 ++i, ibyte += cbytes)
1616 {
1617 if (STRING_MULTIBYTE (seq))
1618 {
1619 c = STRING_CHAR (SDATA (seq) + ibyte);
1620 cbytes = CHAR_BYTES (c);
1621 }
1622 else
1623 {
1624 c = SREF (seq, i);
1625 cbytes = 1;
1626 }
1627
1628 if (!INTEGERP (elt) || c != XINT (elt))
1629 {
1630 ++nchars;
1631 nbytes += cbytes;
1632 }
1633 }
1634
1635 if (nchars != SCHARS (seq))
1636 {
1637 Lisp_Object tem;
1638
1639 tem = make_uninit_multibyte_string (nchars, nbytes);
1640 if (!STRING_MULTIBYTE (seq))
1641 STRING_SET_UNIBYTE (tem);
1642
1643 for (i = nchars = nbytes = ibyte = 0;
1644 i < SCHARS (seq);
1645 ++i, ibyte += cbytes)
1646 {
1647 if (STRING_MULTIBYTE (seq))
1648 {
1649 c = STRING_CHAR (SDATA (seq) + ibyte);
1650 cbytes = CHAR_BYTES (c);
1651 }
1652 else
1653 {
1654 c = SREF (seq, i);
1655 cbytes = 1;
1656 }
1657
1658 if (!INTEGERP (elt) || c != XINT (elt))
1659 {
1660 unsigned char *from = SDATA (seq) + ibyte;
1661 unsigned char *to = SDATA (tem) + nbytes;
1662 ptrdiff_t n;
1663
1664 ++nchars;
1665 nbytes += cbytes;
1666
1667 for (n = cbytes; n--; )
1668 *to++ = *from++;
1669 }
1670 }
1671
1672 seq = tem;
1673 }
1674 }
1675 else
1676 {
1677 Lisp_Object tail, prev;
1678
1679 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1680 {
1681 CHECK_LIST_CONS (tail, seq);
1682
1683 if (!NILP (Fequal (elt, XCAR (tail))))
1684 {
1685 if (NILP (prev))
1686 seq = XCDR (tail);
1687 else
1688 Fsetcdr (prev, XCDR (tail));
1689 }
1690 else
1691 prev = tail;
1692 QUIT;
1693 }
1694 }
1695
1696 return seq;
1697 }
1698
1699 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1700 doc: /* Reverse LIST by modifying cdr pointers.
1701 Return the reversed list. Expects a properly nil-terminated list. */)
1702 (Lisp_Object list)
1703 {
1704 register Lisp_Object prev, tail, next;
1705
1706 if (NILP (list)) return list;
1707 prev = Qnil;
1708 tail = list;
1709 while (!NILP (tail))
1710 {
1711 QUIT;
1712 CHECK_LIST_CONS (tail, tail);
1713 next = XCDR (tail);
1714 Fsetcdr (tail, prev);
1715 prev = tail;
1716 tail = next;
1717 }
1718 return prev;
1719 }
1720
1721 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1722 doc: /* Reverse LIST, copying. Return the reversed list.
1723 See also the function `nreverse', which is used more often. */)
1724 (Lisp_Object list)
1725 {
1726 Lisp_Object new;
1727
1728 for (new = Qnil; CONSP (list); list = XCDR (list))
1729 {
1730 QUIT;
1731 new = Fcons (XCAR (list), new);
1732 }
1733 CHECK_LIST_END (list, list);
1734 return new;
1735 }
1736 \f
1737 Lisp_Object merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred);
1738
1739 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1740 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1741 Returns the sorted list. LIST is modified by side effects.
1742 PREDICATE is called with two elements of LIST, and should return non-nil
1743 if the first element should sort before the second. */)
1744 (Lisp_Object list, Lisp_Object predicate)
1745 {
1746 Lisp_Object front, back;
1747 register Lisp_Object len, tem;
1748 struct gcpro gcpro1, gcpro2;
1749 EMACS_INT length;
1750
1751 front = list;
1752 len = Flength (list);
1753 length = XINT (len);
1754 if (length < 2)
1755 return list;
1756
1757 XSETINT (len, (length / 2) - 1);
1758 tem = Fnthcdr (len, list);
1759 back = Fcdr (tem);
1760 Fsetcdr (tem, Qnil);
1761
1762 GCPRO2 (front, back);
1763 front = Fsort (front, predicate);
1764 back = Fsort (back, predicate);
1765 UNGCPRO;
1766 return merge (front, back, predicate);
1767 }
1768
1769 Lisp_Object
1770 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1771 {
1772 Lisp_Object value;
1773 register Lisp_Object tail;
1774 Lisp_Object tem;
1775 register Lisp_Object l1, l2;
1776 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1777
1778 l1 = org_l1;
1779 l2 = org_l2;
1780 tail = Qnil;
1781 value = Qnil;
1782
1783 /* It is sufficient to protect org_l1 and org_l2.
1784 When l1 and l2 are updated, we copy the new values
1785 back into the org_ vars. */
1786 GCPRO4 (org_l1, org_l2, pred, value);
1787
1788 while (1)
1789 {
1790 if (NILP (l1))
1791 {
1792 UNGCPRO;
1793 if (NILP (tail))
1794 return l2;
1795 Fsetcdr (tail, l2);
1796 return value;
1797 }
1798 if (NILP (l2))
1799 {
1800 UNGCPRO;
1801 if (NILP (tail))
1802 return l1;
1803 Fsetcdr (tail, l1);
1804 return value;
1805 }
1806 tem = call2 (pred, Fcar (l2), Fcar (l1));
1807 if (NILP (tem))
1808 {
1809 tem = l1;
1810 l1 = Fcdr (l1);
1811 org_l1 = l1;
1812 }
1813 else
1814 {
1815 tem = l2;
1816 l2 = Fcdr (l2);
1817 org_l2 = l2;
1818 }
1819 if (NILP (tail))
1820 value = tem;
1821 else
1822 Fsetcdr (tail, tem);
1823 tail = tem;
1824 }
1825 }
1826
1827 \f
1828 /* This does not check for quits. That is safe since it must terminate. */
1829
1830 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1831 doc: /* Extract a value from a property list.
1832 PLIST is a property list, which is a list of the form
1833 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1834 corresponding to the given PROP, or nil if PROP is not one of the
1835 properties on the list. This function never signals an error. */)
1836 (Lisp_Object plist, Lisp_Object prop)
1837 {
1838 Lisp_Object tail, halftail;
1839
1840 /* halftail is used to detect circular lists. */
1841 tail = halftail = plist;
1842 while (CONSP (tail) && CONSP (XCDR (tail)))
1843 {
1844 if (EQ (prop, XCAR (tail)))
1845 return XCAR (XCDR (tail));
1846
1847 tail = XCDR (XCDR (tail));
1848 halftail = XCDR (halftail);
1849 if (EQ (tail, halftail))
1850 break;
1851 }
1852
1853 return Qnil;
1854 }
1855
1856 DEFUN ("get", Fget, Sget, 2, 2, 0,
1857 doc: /* Return the value of SYMBOL's PROPNAME property.
1858 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1859 (Lisp_Object symbol, Lisp_Object propname)
1860 {
1861 CHECK_SYMBOL (symbol);
1862 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1863 }
1864
1865 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1866 doc: /* Change value in PLIST of PROP to VAL.
1867 PLIST is a property list, which is a list of the form
1868 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1869 If PROP is already a property on the list, its value is set to VAL,
1870 otherwise the new PROP VAL pair is added. The new plist is returned;
1871 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1872 The PLIST is modified by side effects. */)
1873 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1874 {
1875 register Lisp_Object tail, prev;
1876 Lisp_Object newcell;
1877 prev = Qnil;
1878 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1879 tail = XCDR (XCDR (tail)))
1880 {
1881 if (EQ (prop, XCAR (tail)))
1882 {
1883 Fsetcar (XCDR (tail), val);
1884 return plist;
1885 }
1886
1887 prev = tail;
1888 QUIT;
1889 }
1890 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1891 if (NILP (prev))
1892 return newcell;
1893 else
1894 Fsetcdr (XCDR (prev), newcell);
1895 return plist;
1896 }
1897
1898 DEFUN ("put", Fput, Sput, 3, 3, 0,
1899 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1900 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1901 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1902 {
1903 CHECK_SYMBOL (symbol);
1904 set_symbol_plist
1905 (symbol, Fplist_put (XSYMBOL (symbol)->plist, propname, value));
1906 return value;
1907 }
1908 \f
1909 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1910 doc: /* Extract a value from a property list, comparing with `equal'.
1911 PLIST is a property list, which is a list of the form
1912 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1913 corresponding to the given PROP, or nil if PROP is not
1914 one of the properties on the list. */)
1915 (Lisp_Object plist, Lisp_Object prop)
1916 {
1917 Lisp_Object tail;
1918
1919 for (tail = plist;
1920 CONSP (tail) && CONSP (XCDR (tail));
1921 tail = XCDR (XCDR (tail)))
1922 {
1923 if (! NILP (Fequal (prop, XCAR (tail))))
1924 return XCAR (XCDR (tail));
1925
1926 QUIT;
1927 }
1928
1929 CHECK_LIST_END (tail, prop);
1930
1931 return Qnil;
1932 }
1933
1934 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1935 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1936 PLIST is a property list, which is a list of the form
1937 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1938 If PROP is already a property on the list, its value is set to VAL,
1939 otherwise the new PROP VAL pair is added. The new plist is returned;
1940 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1941 The PLIST is modified by side effects. */)
1942 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1943 {
1944 register Lisp_Object tail, prev;
1945 Lisp_Object newcell;
1946 prev = Qnil;
1947 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1948 tail = XCDR (XCDR (tail)))
1949 {
1950 if (! NILP (Fequal (prop, XCAR (tail))))
1951 {
1952 Fsetcar (XCDR (tail), val);
1953 return plist;
1954 }
1955
1956 prev = tail;
1957 QUIT;
1958 }
1959 newcell = Fcons (prop, Fcons (val, Qnil));
1960 if (NILP (prev))
1961 return newcell;
1962 else
1963 Fsetcdr (XCDR (prev), newcell);
1964 return plist;
1965 }
1966 \f
1967 DEFUN ("eql", Feql, Seql, 2, 2, 0,
1968 doc: /* Return t if the two args are the same Lisp object.
1969 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1970 (Lisp_Object obj1, Lisp_Object obj2)
1971 {
1972 if (FLOATP (obj1))
1973 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
1974 else
1975 return EQ (obj1, obj2) ? Qt : Qnil;
1976 }
1977
1978 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1979 doc: /* Return t if two Lisp objects have similar structure and contents.
1980 They must have the same data type.
1981 Conses are compared by comparing the cars and the cdrs.
1982 Vectors and strings are compared element by element.
1983 Numbers are compared by value, but integers cannot equal floats.
1984 (Use `=' if you want integers and floats to be able to be equal.)
1985 Symbols must match exactly. */)
1986 (register Lisp_Object o1, Lisp_Object o2)
1987 {
1988 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
1989 }
1990
1991 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
1992 doc: /* Return t if two Lisp objects have similar structure and contents.
1993 This is like `equal' except that it compares the text properties
1994 of strings. (`equal' ignores text properties.) */)
1995 (register Lisp_Object o1, Lisp_Object o2)
1996 {
1997 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
1998 }
1999
2000 /* DEPTH is current depth of recursion. Signal an error if it
2001 gets too deep.
2002 PROPS means compare string text properties too. */
2003
2004 static bool
2005 internal_equal (Lisp_Object o1, Lisp_Object o2, int depth, bool props)
2006 {
2007 if (depth > 200)
2008 error ("Stack overflow in equal");
2009
2010 tail_recurse:
2011 QUIT;
2012 if (EQ (o1, o2))
2013 return 1;
2014 if (XTYPE (o1) != XTYPE (o2))
2015 return 0;
2016
2017 switch (XTYPE (o1))
2018 {
2019 case Lisp_Float:
2020 {
2021 double d1, d2;
2022
2023 d1 = extract_float (o1);
2024 d2 = extract_float (o2);
2025 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2026 though they are not =. */
2027 return d1 == d2 || (d1 != d1 && d2 != d2);
2028 }
2029
2030 case Lisp_Cons:
2031 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2032 return 0;
2033 o1 = XCDR (o1);
2034 o2 = XCDR (o2);
2035 goto tail_recurse;
2036
2037 case Lisp_Misc:
2038 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2039 return 0;
2040 if (OVERLAYP (o1))
2041 {
2042 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2043 depth + 1, props)
2044 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2045 depth + 1, props))
2046 return 0;
2047 o1 = XOVERLAY (o1)->plist;
2048 o2 = XOVERLAY (o2)->plist;
2049 goto tail_recurse;
2050 }
2051 if (MARKERP (o1))
2052 {
2053 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2054 && (XMARKER (o1)->buffer == 0
2055 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2056 }
2057 break;
2058
2059 case Lisp_Vectorlike:
2060 {
2061 register int i;
2062 ptrdiff_t size = ASIZE (o1);
2063 /* Pseudovectors have the type encoded in the size field, so this test
2064 actually checks that the objects have the same type as well as the
2065 same size. */
2066 if (ASIZE (o2) != size)
2067 return 0;
2068 /* Boolvectors are compared much like strings. */
2069 if (BOOL_VECTOR_P (o1))
2070 {
2071 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2072 return 0;
2073 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2074 ((XBOOL_VECTOR (o1)->size
2075 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2076 / BOOL_VECTOR_BITS_PER_CHAR)))
2077 return 0;
2078 return 1;
2079 }
2080 if (WINDOW_CONFIGURATIONP (o1))
2081 return compare_window_configurations (o1, o2, 0);
2082
2083 /* Aside from them, only true vectors, char-tables, compiled
2084 functions, and fonts (font-spec, font-entity, font-object)
2085 are sensible to compare, so eliminate the others now. */
2086 if (size & PSEUDOVECTOR_FLAG)
2087 {
2088 if (((size & PVEC_TYPE_MASK) >> PSEUDOVECTOR_AREA_BITS)
2089 < PVEC_COMPILED)
2090 return 0;
2091 size &= PSEUDOVECTOR_SIZE_MASK;
2092 }
2093 for (i = 0; i < size; i++)
2094 {
2095 Lisp_Object v1, v2;
2096 v1 = AREF (o1, i);
2097 v2 = AREF (o2, i);
2098 if (!internal_equal (v1, v2, depth + 1, props))
2099 return 0;
2100 }
2101 return 1;
2102 }
2103 break;
2104
2105 case Lisp_String:
2106 if (SCHARS (o1) != SCHARS (o2))
2107 return 0;
2108 if (SBYTES (o1) != SBYTES (o2))
2109 return 0;
2110 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2111 return 0;
2112 if (props && !compare_string_intervals (o1, o2))
2113 return 0;
2114 return 1;
2115
2116 default:
2117 break;
2118 }
2119
2120 return 0;
2121 }
2122 \f
2123
2124 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2125 doc: /* Store each element of ARRAY with ITEM.
2126 ARRAY is a vector, string, char-table, or bool-vector. */)
2127 (Lisp_Object array, Lisp_Object item)
2128 {
2129 register ptrdiff_t size, idx;
2130
2131 if (VECTORP (array))
2132 for (idx = 0, size = ASIZE (array); idx < size; idx++)
2133 ASET (array, idx, item);
2134 else if (CHAR_TABLE_P (array))
2135 {
2136 int i;
2137
2138 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2139 set_char_table_contents (array, i, item);
2140 set_char_table_defalt (array, item);
2141 }
2142 else if (STRINGP (array))
2143 {
2144 register unsigned char *p = SDATA (array);
2145 int charval;
2146 CHECK_CHARACTER (item);
2147 charval = XFASTINT (item);
2148 size = SCHARS (array);
2149 if (STRING_MULTIBYTE (array))
2150 {
2151 unsigned char str[MAX_MULTIBYTE_LENGTH];
2152 int len = CHAR_STRING (charval, str);
2153 ptrdiff_t size_byte = SBYTES (array);
2154
2155 if (INT_MULTIPLY_OVERFLOW (SCHARS (array), len)
2156 || SCHARS (array) * len != size_byte)
2157 error ("Attempt to change byte length of a string");
2158 for (idx = 0; idx < size_byte; idx++)
2159 *p++ = str[idx % len];
2160 }
2161 else
2162 for (idx = 0; idx < size; idx++)
2163 p[idx] = charval;
2164 }
2165 else if (BOOL_VECTOR_P (array))
2166 {
2167 register unsigned char *p = XBOOL_VECTOR (array)->data;
2168 size =
2169 ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2170 / BOOL_VECTOR_BITS_PER_CHAR);
2171
2172 if (size)
2173 {
2174 memset (p, ! NILP (item) ? -1 : 0, size);
2175
2176 /* Clear any extraneous bits in the last byte. */
2177 p[size - 1] &= (1 << (size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2178 }
2179 }
2180 else
2181 wrong_type_argument (Qarrayp, array);
2182 return array;
2183 }
2184
2185 DEFUN ("clear-string", Fclear_string, Sclear_string,
2186 1, 1, 0,
2187 doc: /* Clear the contents of STRING.
2188 This makes STRING unibyte and may change its length. */)
2189 (Lisp_Object string)
2190 {
2191 ptrdiff_t len;
2192 CHECK_STRING (string);
2193 len = SBYTES (string);
2194 memset (SDATA (string), 0, len);
2195 STRING_SET_CHARS (string, len);
2196 STRING_SET_UNIBYTE (string);
2197 return Qnil;
2198 }
2199 \f
2200 /* ARGSUSED */
2201 Lisp_Object
2202 nconc2 (Lisp_Object s1, Lisp_Object s2)
2203 {
2204 Lisp_Object args[2];
2205 args[0] = s1;
2206 args[1] = s2;
2207 return Fnconc (2, args);
2208 }
2209
2210 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2211 doc: /* Concatenate any number of lists by altering them.
2212 Only the last argument is not altered, and need not be a list.
2213 usage: (nconc &rest LISTS) */)
2214 (ptrdiff_t nargs, Lisp_Object *args)
2215 {
2216 ptrdiff_t argnum;
2217 register Lisp_Object tail, tem, val;
2218
2219 val = tail = Qnil;
2220
2221 for (argnum = 0; argnum < nargs; argnum++)
2222 {
2223 tem = args[argnum];
2224 if (NILP (tem)) continue;
2225
2226 if (NILP (val))
2227 val = tem;
2228
2229 if (argnum + 1 == nargs) break;
2230
2231 CHECK_LIST_CONS (tem, tem);
2232
2233 while (CONSP (tem))
2234 {
2235 tail = tem;
2236 tem = XCDR (tail);
2237 QUIT;
2238 }
2239
2240 tem = args[argnum + 1];
2241 Fsetcdr (tail, tem);
2242 if (NILP (tem))
2243 args[argnum + 1] = tail;
2244 }
2245
2246 return val;
2247 }
2248 \f
2249 /* This is the guts of all mapping functions.
2250 Apply FN to each element of SEQ, one by one,
2251 storing the results into elements of VALS, a C vector of Lisp_Objects.
2252 LENI is the length of VALS, which should also be the length of SEQ. */
2253
2254 static void
2255 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2256 {
2257 register Lisp_Object tail;
2258 Lisp_Object dummy;
2259 register EMACS_INT i;
2260 struct gcpro gcpro1, gcpro2, gcpro3;
2261
2262 if (vals)
2263 {
2264 /* Don't let vals contain any garbage when GC happens. */
2265 for (i = 0; i < leni; i++)
2266 vals[i] = Qnil;
2267
2268 GCPRO3 (dummy, fn, seq);
2269 gcpro1.var = vals;
2270 gcpro1.nvars = leni;
2271 }
2272 else
2273 GCPRO2 (fn, seq);
2274 /* We need not explicitly protect `tail' because it is used only on lists, and
2275 1) lists are not relocated and 2) the list is marked via `seq' so will not
2276 be freed */
2277
2278 if (VECTORP (seq) || COMPILEDP (seq))
2279 {
2280 for (i = 0; i < leni; i++)
2281 {
2282 dummy = call1 (fn, AREF (seq, i));
2283 if (vals)
2284 vals[i] = dummy;
2285 }
2286 }
2287 else if (BOOL_VECTOR_P (seq))
2288 {
2289 for (i = 0; i < leni; i++)
2290 {
2291 unsigned char byte;
2292 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2293 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2294 dummy = call1 (fn, dummy);
2295 if (vals)
2296 vals[i] = dummy;
2297 }
2298 }
2299 else if (STRINGP (seq))
2300 {
2301 ptrdiff_t i_byte;
2302
2303 for (i = 0, i_byte = 0; i < leni;)
2304 {
2305 int c;
2306 ptrdiff_t i_before = i;
2307
2308 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2309 XSETFASTINT (dummy, c);
2310 dummy = call1 (fn, dummy);
2311 if (vals)
2312 vals[i_before] = dummy;
2313 }
2314 }
2315 else /* Must be a list, since Flength did not get an error */
2316 {
2317 tail = seq;
2318 for (i = 0; i < leni && CONSP (tail); i++)
2319 {
2320 dummy = call1 (fn, XCAR (tail));
2321 if (vals)
2322 vals[i] = dummy;
2323 tail = XCDR (tail);
2324 }
2325 }
2326
2327 UNGCPRO;
2328 }
2329
2330 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2331 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2332 In between each pair of results, stick in SEPARATOR. Thus, " " as
2333 SEPARATOR results in spaces between the values returned by FUNCTION.
2334 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2335 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2336 {
2337 Lisp_Object len;
2338 register EMACS_INT leni;
2339 EMACS_INT nargs;
2340 ptrdiff_t i;
2341 register Lisp_Object *args;
2342 struct gcpro gcpro1;
2343 Lisp_Object ret;
2344 USE_SAFE_ALLOCA;
2345
2346 len = Flength (sequence);
2347 if (CHAR_TABLE_P (sequence))
2348 wrong_type_argument (Qlistp, sequence);
2349 leni = XINT (len);
2350 nargs = leni + leni - 1;
2351 if (nargs < 0) return empty_unibyte_string;
2352
2353 SAFE_ALLOCA_LISP (args, nargs);
2354
2355 GCPRO1 (separator);
2356 mapcar1 (leni, args, function, sequence);
2357 UNGCPRO;
2358
2359 for (i = leni - 1; i > 0; i--)
2360 args[i + i] = args[i];
2361
2362 for (i = 1; i < nargs; i += 2)
2363 args[i] = separator;
2364
2365 ret = Fconcat (nargs, args);
2366 SAFE_FREE ();
2367
2368 return ret;
2369 }
2370
2371 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2372 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2373 The result is a list just as long as SEQUENCE.
2374 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2375 (Lisp_Object function, Lisp_Object sequence)
2376 {
2377 register Lisp_Object len;
2378 register EMACS_INT leni;
2379 register Lisp_Object *args;
2380 Lisp_Object ret;
2381 USE_SAFE_ALLOCA;
2382
2383 len = Flength (sequence);
2384 if (CHAR_TABLE_P (sequence))
2385 wrong_type_argument (Qlistp, sequence);
2386 leni = XFASTINT (len);
2387
2388 SAFE_ALLOCA_LISP (args, leni);
2389
2390 mapcar1 (leni, args, function, sequence);
2391
2392 ret = Flist (leni, args);
2393 SAFE_FREE ();
2394
2395 return ret;
2396 }
2397
2398 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2399 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2400 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2401 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2402 (Lisp_Object function, Lisp_Object sequence)
2403 {
2404 register EMACS_INT leni;
2405
2406 leni = XFASTINT (Flength (sequence));
2407 if (CHAR_TABLE_P (sequence))
2408 wrong_type_argument (Qlistp, sequence);
2409 mapcar1 (leni, 0, function, sequence);
2410
2411 return sequence;
2412 }
2413 \f
2414 /* This is how C code calls `yes-or-no-p' and allows the user
2415 to redefined it.
2416
2417 Anything that calls this function must protect from GC! */
2418
2419 Lisp_Object
2420 do_yes_or_no_p (Lisp_Object prompt)
2421 {
2422 return call1 (intern ("yes-or-no-p"), prompt);
2423 }
2424
2425 /* Anything that calls this function must protect from GC! */
2426
2427 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2428 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2429 PROMPT is the string to display to ask the question. It should end in
2430 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2431
2432 The user must confirm the answer with RET, and can edit it until it
2433 has been confirmed.
2434
2435 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2436 is nil, and `use-dialog-box' is non-nil. */)
2437 (Lisp_Object prompt)
2438 {
2439 register Lisp_Object ans;
2440 Lisp_Object args[2];
2441 struct gcpro gcpro1;
2442
2443 CHECK_STRING (prompt);
2444
2445 #ifdef HAVE_MENUS
2446 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2447 && use_dialog_box
2448 && window_system_available (SELECTED_FRAME ()))
2449 {
2450 Lisp_Object pane, menu, obj;
2451 redisplay_preserve_echo_area (4);
2452 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2453 Fcons (Fcons (build_string ("No"), Qnil),
2454 Qnil));
2455 GCPRO1 (pane);
2456 menu = Fcons (prompt, pane);
2457 obj = Fx_popup_dialog (Qt, menu, Qnil);
2458 UNGCPRO;
2459 return obj;
2460 }
2461 #endif /* HAVE_MENUS */
2462
2463 args[0] = prompt;
2464 args[1] = build_string ("(yes or no) ");
2465 prompt = Fconcat (2, args);
2466
2467 GCPRO1 (prompt);
2468
2469 while (1)
2470 {
2471 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2472 Qyes_or_no_p_history, Qnil,
2473 Qnil));
2474 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2475 {
2476 UNGCPRO;
2477 return Qt;
2478 }
2479 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2480 {
2481 UNGCPRO;
2482 return Qnil;
2483 }
2484
2485 Fding (Qnil);
2486 Fdiscard_input ();
2487 message1 ("Please answer yes or no.");
2488 Fsleep_for (make_number (2), Qnil);
2489 }
2490 }
2491 \f
2492 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2493 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2494
2495 Each of the three load averages is multiplied by 100, then converted
2496 to integer.
2497
2498 When USE-FLOATS is non-nil, floats will be used instead of integers.
2499 These floats are not multiplied by 100.
2500
2501 If the 5-minute or 15-minute load averages are not available, return a
2502 shortened list, containing only those averages which are available.
2503
2504 An error is thrown if the load average can't be obtained. In some
2505 cases making it work would require Emacs being installed setuid or
2506 setgid so that it can read kernel information, and that usually isn't
2507 advisable. */)
2508 (Lisp_Object use_floats)
2509 {
2510 double load_ave[3];
2511 int loads = getloadavg (load_ave, 3);
2512 Lisp_Object ret = Qnil;
2513
2514 if (loads < 0)
2515 error ("load-average not implemented for this operating system");
2516
2517 while (loads-- > 0)
2518 {
2519 Lisp_Object load = (NILP (use_floats)
2520 ? make_number (100.0 * load_ave[loads])
2521 : make_float (load_ave[loads]));
2522 ret = Fcons (load, ret);
2523 }
2524
2525 return ret;
2526 }
2527 \f
2528 static Lisp_Object Qsubfeatures;
2529
2530 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2531 doc: /* Return t if FEATURE is present in this Emacs.
2532
2533 Use this to conditionalize execution of lisp code based on the
2534 presence or absence of Emacs or environment extensions.
2535 Use `provide' to declare that a feature is available. This function
2536 looks at the value of the variable `features'. The optional argument
2537 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2538 (Lisp_Object feature, Lisp_Object subfeature)
2539 {
2540 register Lisp_Object tem;
2541 CHECK_SYMBOL (feature);
2542 tem = Fmemq (feature, Vfeatures);
2543 if (!NILP (tem) && !NILP (subfeature))
2544 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2545 return (NILP (tem)) ? Qnil : Qt;
2546 }
2547
2548 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2549 doc: /* Announce that FEATURE is a feature of the current Emacs.
2550 The optional argument SUBFEATURES should be a list of symbols listing
2551 particular subfeatures supported in this version of FEATURE. */)
2552 (Lisp_Object feature, Lisp_Object subfeatures)
2553 {
2554 register Lisp_Object tem;
2555 CHECK_SYMBOL (feature);
2556 CHECK_LIST (subfeatures);
2557 if (!NILP (Vautoload_queue))
2558 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2559 Vautoload_queue);
2560 tem = Fmemq (feature, Vfeatures);
2561 if (NILP (tem))
2562 Vfeatures = Fcons (feature, Vfeatures);
2563 if (!NILP (subfeatures))
2564 Fput (feature, Qsubfeatures, subfeatures);
2565 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2566
2567 /* Run any load-hooks for this file. */
2568 tem = Fassq (feature, Vafter_load_alist);
2569 if (CONSP (tem))
2570 Fprogn (XCDR (tem));
2571
2572 return feature;
2573 }
2574 \f
2575 /* `require' and its subroutines. */
2576
2577 /* List of features currently being require'd, innermost first. */
2578
2579 static Lisp_Object require_nesting_list;
2580
2581 static Lisp_Object
2582 require_unwind (Lisp_Object old_value)
2583 {
2584 return require_nesting_list = old_value;
2585 }
2586
2587 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2588 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2589 If FEATURE is not a member of the list `features', then the feature
2590 is not loaded; so load the file FILENAME.
2591 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2592 and `load' will try to load this name appended with the suffix `.elc' or
2593 `.el', in that order. The name without appended suffix will not be used.
2594 See `get-load-suffixes' for the complete list of suffixes.
2595 If the optional third argument NOERROR is non-nil,
2596 then return nil if the file is not found instead of signaling an error.
2597 Normally the return value is FEATURE.
2598 The normal messages at start and end of loading FILENAME are suppressed. */)
2599 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2600 {
2601 Lisp_Object tem;
2602 struct gcpro gcpro1, gcpro2;
2603 bool from_file = load_in_progress;
2604
2605 CHECK_SYMBOL (feature);
2606
2607 /* Record the presence of `require' in this file
2608 even if the feature specified is already loaded.
2609 But not more than once in any file,
2610 and not when we aren't loading or reading from a file. */
2611 if (!from_file)
2612 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2613 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2614 from_file = 1;
2615
2616 if (from_file)
2617 {
2618 tem = Fcons (Qrequire, feature);
2619 if (NILP (Fmember (tem, Vcurrent_load_list)))
2620 LOADHIST_ATTACH (tem);
2621 }
2622 tem = Fmemq (feature, Vfeatures);
2623
2624 if (NILP (tem))
2625 {
2626 ptrdiff_t count = SPECPDL_INDEX ();
2627 int nesting = 0;
2628
2629 /* This is to make sure that loadup.el gives a clear picture
2630 of what files are preloaded and when. */
2631 if (! NILP (Vpurify_flag))
2632 error ("(require %s) while preparing to dump",
2633 SDATA (SYMBOL_NAME (feature)));
2634
2635 /* A certain amount of recursive `require' is legitimate,
2636 but if we require the same feature recursively 3 times,
2637 signal an error. */
2638 tem = require_nesting_list;
2639 while (! NILP (tem))
2640 {
2641 if (! NILP (Fequal (feature, XCAR (tem))))
2642 nesting++;
2643 tem = XCDR (tem);
2644 }
2645 if (nesting > 3)
2646 error ("Recursive `require' for feature `%s'",
2647 SDATA (SYMBOL_NAME (feature)));
2648
2649 /* Update the list for any nested `require's that occur. */
2650 record_unwind_protect (require_unwind, require_nesting_list);
2651 require_nesting_list = Fcons (feature, require_nesting_list);
2652
2653 /* Value saved here is to be restored into Vautoload_queue */
2654 record_unwind_protect (un_autoload, Vautoload_queue);
2655 Vautoload_queue = Qt;
2656
2657 /* Load the file. */
2658 GCPRO2 (feature, filename);
2659 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2660 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2661 UNGCPRO;
2662
2663 /* If load failed entirely, return nil. */
2664 if (NILP (tem))
2665 return unbind_to (count, Qnil);
2666
2667 tem = Fmemq (feature, Vfeatures);
2668 if (NILP (tem))
2669 error ("Required feature `%s' was not provided",
2670 SDATA (SYMBOL_NAME (feature)));
2671
2672 /* Once loading finishes, don't undo it. */
2673 Vautoload_queue = Qt;
2674 feature = unbind_to (count, feature);
2675 }
2676
2677 return feature;
2678 }
2679 \f
2680 /* Primitives for work of the "widget" library.
2681 In an ideal world, this section would not have been necessary.
2682 However, lisp function calls being as slow as they are, it turns
2683 out that some functions in the widget library (wid-edit.el) are the
2684 bottleneck of Widget operation. Here is their translation to C,
2685 for the sole reason of efficiency. */
2686
2687 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2688 doc: /* Return non-nil if PLIST has the property PROP.
2689 PLIST is a property list, which is a list of the form
2690 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2691 Unlike `plist-get', this allows you to distinguish between a missing
2692 property and a property with the value nil.
2693 The value is actually the tail of PLIST whose car is PROP. */)
2694 (Lisp_Object plist, Lisp_Object prop)
2695 {
2696 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2697 {
2698 QUIT;
2699 plist = XCDR (plist);
2700 plist = CDR (plist);
2701 }
2702 return plist;
2703 }
2704
2705 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2706 doc: /* In WIDGET, set PROPERTY to VALUE.
2707 The value can later be retrieved with `widget-get'. */)
2708 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2709 {
2710 CHECK_CONS (widget);
2711 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2712 return value;
2713 }
2714
2715 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2716 doc: /* In WIDGET, get the value of PROPERTY.
2717 The value could either be specified when the widget was created, or
2718 later with `widget-put'. */)
2719 (Lisp_Object widget, Lisp_Object property)
2720 {
2721 Lisp_Object tmp;
2722
2723 while (1)
2724 {
2725 if (NILP (widget))
2726 return Qnil;
2727 CHECK_CONS (widget);
2728 tmp = Fplist_member (XCDR (widget), property);
2729 if (CONSP (tmp))
2730 {
2731 tmp = XCDR (tmp);
2732 return CAR (tmp);
2733 }
2734 tmp = XCAR (widget);
2735 if (NILP (tmp))
2736 return Qnil;
2737 widget = Fget (tmp, Qwidget_type);
2738 }
2739 }
2740
2741 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2742 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2743 ARGS are passed as extra arguments to the function.
2744 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2745 (ptrdiff_t nargs, Lisp_Object *args)
2746 {
2747 /* This function can GC. */
2748 Lisp_Object newargs[3];
2749 struct gcpro gcpro1, gcpro2;
2750 Lisp_Object result;
2751
2752 newargs[0] = Fwidget_get (args[0], args[1]);
2753 newargs[1] = args[0];
2754 newargs[2] = Flist (nargs - 2, args + 2);
2755 GCPRO2 (newargs[0], newargs[2]);
2756 result = Fapply (3, newargs);
2757 UNGCPRO;
2758 return result;
2759 }
2760
2761 #ifdef HAVE_LANGINFO_CODESET
2762 #include <langinfo.h>
2763 #endif
2764
2765 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2766 doc: /* Access locale data ITEM for the current C locale, if available.
2767 ITEM should be one of the following:
2768
2769 `codeset', returning the character set as a string (locale item CODESET);
2770
2771 `days', returning a 7-element vector of day names (locale items DAY_n);
2772
2773 `months', returning a 12-element vector of month names (locale items MON_n);
2774
2775 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2776 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2777
2778 If the system can't provide such information through a call to
2779 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2780
2781 See also Info node `(libc)Locales'.
2782
2783 The data read from the system are decoded using `locale-coding-system'. */)
2784 (Lisp_Object item)
2785 {
2786 char *str = NULL;
2787 #ifdef HAVE_LANGINFO_CODESET
2788 Lisp_Object val;
2789 if (EQ (item, Qcodeset))
2790 {
2791 str = nl_langinfo (CODESET);
2792 return build_string (str);
2793 }
2794 #ifdef DAY_1
2795 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2796 {
2797 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2798 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2799 int i;
2800 struct gcpro gcpro1;
2801 GCPRO1 (v);
2802 synchronize_system_time_locale ();
2803 for (i = 0; i < 7; i++)
2804 {
2805 str = nl_langinfo (days[i]);
2806 val = build_unibyte_string (str);
2807 /* Fixme: Is this coding system necessarily right, even if
2808 it is consistent with CODESET? If not, what to do? */
2809 ASET (v, i, code_convert_string_norecord (val, Vlocale_coding_system,
2810 0));
2811 }
2812 UNGCPRO;
2813 return v;
2814 }
2815 #endif /* DAY_1 */
2816 #ifdef MON_1
2817 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2818 {
2819 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2820 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2821 MON_8, MON_9, MON_10, MON_11, MON_12};
2822 int i;
2823 struct gcpro gcpro1;
2824 GCPRO1 (v);
2825 synchronize_system_time_locale ();
2826 for (i = 0; i < 12; i++)
2827 {
2828 str = nl_langinfo (months[i]);
2829 val = build_unibyte_string (str);
2830 ASET (v, i, code_convert_string_norecord (val, Vlocale_coding_system,
2831 0));
2832 }
2833 UNGCPRO;
2834 return v;
2835 }
2836 #endif /* MON_1 */
2837 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2838 but is in the locale files. This could be used by ps-print. */
2839 #ifdef PAPER_WIDTH
2840 else if (EQ (item, Qpaper))
2841 return list2i (nl_langinfo (PAPER_WIDTH), nl_langinfo (PAPER_HEIGHT));
2842 #endif /* PAPER_WIDTH */
2843 #endif /* HAVE_LANGINFO_CODESET*/
2844 return Qnil;
2845 }
2846 \f
2847 /* base64 encode/decode functions (RFC 2045).
2848 Based on code from GNU recode. */
2849
2850 #define MIME_LINE_LENGTH 76
2851
2852 #define IS_ASCII(Character) \
2853 ((Character) < 128)
2854 #define IS_BASE64(Character) \
2855 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2856 #define IS_BASE64_IGNORABLE(Character) \
2857 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2858 || (Character) == '\f' || (Character) == '\r')
2859
2860 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2861 character or return retval if there are no characters left to
2862 process. */
2863 #define READ_QUADRUPLET_BYTE(retval) \
2864 do \
2865 { \
2866 if (i == length) \
2867 { \
2868 if (nchars_return) \
2869 *nchars_return = nchars; \
2870 return (retval); \
2871 } \
2872 c = from[i++]; \
2873 } \
2874 while (IS_BASE64_IGNORABLE (c))
2875
2876 /* Table of characters coding the 64 values. */
2877 static const char base64_value_to_char[64] =
2878 {
2879 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2880 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2881 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2882 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2883 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2884 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2885 '8', '9', '+', '/' /* 60-63 */
2886 };
2887
2888 /* Table of base64 values for first 128 characters. */
2889 static const short base64_char_to_value[128] =
2890 {
2891 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2892 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2893 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2894 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2895 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2896 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2897 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2898 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2899 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2900 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2901 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2902 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2903 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2904 };
2905
2906 /* The following diagram shows the logical steps by which three octets
2907 get transformed into four base64 characters.
2908
2909 .--------. .--------. .--------.
2910 |aaaaaabb| |bbbbcccc| |ccdddddd|
2911 `--------' `--------' `--------'
2912 6 2 4 4 2 6
2913 .--------+--------+--------+--------.
2914 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2915 `--------+--------+--------+--------'
2916
2917 .--------+--------+--------+--------.
2918 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2919 `--------+--------+--------+--------'
2920
2921 The octets are divided into 6 bit chunks, which are then encoded into
2922 base64 characters. */
2923
2924
2925 static ptrdiff_t base64_encode_1 (const char *, char *, ptrdiff_t, bool, bool);
2926 static ptrdiff_t base64_decode_1 (const char *, char *, ptrdiff_t, bool,
2927 ptrdiff_t *);
2928
2929 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2930 2, 3, "r",
2931 doc: /* Base64-encode the region between BEG and END.
2932 Return the length of the encoded text.
2933 Optional third argument NO-LINE-BREAK means do not break long lines
2934 into shorter lines. */)
2935 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2936 {
2937 char *encoded;
2938 ptrdiff_t allength, length;
2939 ptrdiff_t ibeg, iend, encoded_length;
2940 ptrdiff_t old_pos = PT;
2941 USE_SAFE_ALLOCA;
2942
2943 validate_region (&beg, &end);
2944
2945 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2946 iend = CHAR_TO_BYTE (XFASTINT (end));
2947 move_gap_both (XFASTINT (beg), ibeg);
2948
2949 /* We need to allocate enough room for encoding the text.
2950 We need 33 1/3% more space, plus a newline every 76
2951 characters, and then we round up. */
2952 length = iend - ibeg;
2953 allength = length + length/3 + 1;
2954 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2955
2956 encoded = SAFE_ALLOCA (allength);
2957 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
2958 encoded, length, NILP (no_line_break),
2959 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
2960 if (encoded_length > allength)
2961 emacs_abort ();
2962
2963 if (encoded_length < 0)
2964 {
2965 /* The encoding wasn't possible. */
2966 SAFE_FREE ();
2967 error ("Multibyte character in data for base64 encoding");
2968 }
2969
2970 /* Now we have encoded the region, so we insert the new contents
2971 and delete the old. (Insert first in order to preserve markers.) */
2972 SET_PT_BOTH (XFASTINT (beg), ibeg);
2973 insert (encoded, encoded_length);
2974 SAFE_FREE ();
2975 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
2976
2977 /* If point was outside of the region, restore it exactly; else just
2978 move to the beginning of the region. */
2979 if (old_pos >= XFASTINT (end))
2980 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
2981 else if (old_pos > XFASTINT (beg))
2982 old_pos = XFASTINT (beg);
2983 SET_PT (old_pos);
2984
2985 /* We return the length of the encoded text. */
2986 return make_number (encoded_length);
2987 }
2988
2989 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
2990 1, 2, 0,
2991 doc: /* Base64-encode STRING and return the result.
2992 Optional second argument NO-LINE-BREAK means do not break long lines
2993 into shorter lines. */)
2994 (Lisp_Object string, Lisp_Object no_line_break)
2995 {
2996 ptrdiff_t allength, length, encoded_length;
2997 char *encoded;
2998 Lisp_Object encoded_string;
2999 USE_SAFE_ALLOCA;
3000
3001 CHECK_STRING (string);
3002
3003 /* We need to allocate enough room for encoding the text.
3004 We need 33 1/3% more space, plus a newline every 76
3005 characters, and then we round up. */
3006 length = SBYTES (string);
3007 allength = length + length/3 + 1;
3008 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3009
3010 /* We need to allocate enough room for decoding the text. */
3011 encoded = SAFE_ALLOCA (allength);
3012
3013 encoded_length = base64_encode_1 (SSDATA (string),
3014 encoded, length, NILP (no_line_break),
3015 STRING_MULTIBYTE (string));
3016 if (encoded_length > allength)
3017 emacs_abort ();
3018
3019 if (encoded_length < 0)
3020 {
3021 /* The encoding wasn't possible. */
3022 SAFE_FREE ();
3023 error ("Multibyte character in data for base64 encoding");
3024 }
3025
3026 encoded_string = make_unibyte_string (encoded, encoded_length);
3027 SAFE_FREE ();
3028
3029 return encoded_string;
3030 }
3031
3032 static ptrdiff_t
3033 base64_encode_1 (const char *from, char *to, ptrdiff_t length,
3034 bool line_break, bool multibyte)
3035 {
3036 int counter = 0;
3037 ptrdiff_t i = 0;
3038 char *e = to;
3039 int c;
3040 unsigned int value;
3041 int bytes;
3042
3043 while (i < length)
3044 {
3045 if (multibyte)
3046 {
3047 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3048 if (CHAR_BYTE8_P (c))
3049 c = CHAR_TO_BYTE8 (c);
3050 else if (c >= 256)
3051 return -1;
3052 i += bytes;
3053 }
3054 else
3055 c = from[i++];
3056
3057 /* Wrap line every 76 characters. */
3058
3059 if (line_break)
3060 {
3061 if (counter < MIME_LINE_LENGTH / 4)
3062 counter++;
3063 else
3064 {
3065 *e++ = '\n';
3066 counter = 1;
3067 }
3068 }
3069
3070 /* Process first byte of a triplet. */
3071
3072 *e++ = base64_value_to_char[0x3f & c >> 2];
3073 value = (0x03 & c) << 4;
3074
3075 /* Process second byte of a triplet. */
3076
3077 if (i == length)
3078 {
3079 *e++ = base64_value_to_char[value];
3080 *e++ = '=';
3081 *e++ = '=';
3082 break;
3083 }
3084
3085 if (multibyte)
3086 {
3087 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3088 if (CHAR_BYTE8_P (c))
3089 c = CHAR_TO_BYTE8 (c);
3090 else if (c >= 256)
3091 return -1;
3092 i += bytes;
3093 }
3094 else
3095 c = from[i++];
3096
3097 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3098 value = (0x0f & c) << 2;
3099
3100 /* Process third byte of a triplet. */
3101
3102 if (i == length)
3103 {
3104 *e++ = base64_value_to_char[value];
3105 *e++ = '=';
3106 break;
3107 }
3108
3109 if (multibyte)
3110 {
3111 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3112 if (CHAR_BYTE8_P (c))
3113 c = CHAR_TO_BYTE8 (c);
3114 else if (c >= 256)
3115 return -1;
3116 i += bytes;
3117 }
3118 else
3119 c = from[i++];
3120
3121 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3122 *e++ = base64_value_to_char[0x3f & c];
3123 }
3124
3125 return e - to;
3126 }
3127
3128
3129 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3130 2, 2, "r",
3131 doc: /* Base64-decode the region between BEG and END.
3132 Return the length of the decoded text.
3133 If the region can't be decoded, signal an error and don't modify the buffer. */)
3134 (Lisp_Object beg, Lisp_Object end)
3135 {
3136 ptrdiff_t ibeg, iend, length, allength;
3137 char *decoded;
3138 ptrdiff_t old_pos = PT;
3139 ptrdiff_t decoded_length;
3140 ptrdiff_t inserted_chars;
3141 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3142 USE_SAFE_ALLOCA;
3143
3144 validate_region (&beg, &end);
3145
3146 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3147 iend = CHAR_TO_BYTE (XFASTINT (end));
3148
3149 length = iend - ibeg;
3150
3151 /* We need to allocate enough room for decoding the text. If we are
3152 working on a multibyte buffer, each decoded code may occupy at
3153 most two bytes. */
3154 allength = multibyte ? length * 2 : length;
3155 decoded = SAFE_ALLOCA (allength);
3156
3157 move_gap_both (XFASTINT (beg), ibeg);
3158 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3159 decoded, length,
3160 multibyte, &inserted_chars);
3161 if (decoded_length > allength)
3162 emacs_abort ();
3163
3164 if (decoded_length < 0)
3165 {
3166 /* The decoding wasn't possible. */
3167 SAFE_FREE ();
3168 error ("Invalid base64 data");
3169 }
3170
3171 /* Now we have decoded the region, so we insert the new contents
3172 and delete the old. (Insert first in order to preserve markers.) */
3173 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3174 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3175 SAFE_FREE ();
3176
3177 /* Delete the original text. */
3178 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3179 iend + decoded_length, 1);
3180
3181 /* If point was outside of the region, restore it exactly; else just
3182 move to the beginning of the region. */
3183 if (old_pos >= XFASTINT (end))
3184 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3185 else if (old_pos > XFASTINT (beg))
3186 old_pos = XFASTINT (beg);
3187 SET_PT (old_pos > ZV ? ZV : old_pos);
3188
3189 return make_number (inserted_chars);
3190 }
3191
3192 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3193 1, 1, 0,
3194 doc: /* Base64-decode STRING and return the result. */)
3195 (Lisp_Object string)
3196 {
3197 char *decoded;
3198 ptrdiff_t length, decoded_length;
3199 Lisp_Object decoded_string;
3200 USE_SAFE_ALLOCA;
3201
3202 CHECK_STRING (string);
3203
3204 length = SBYTES (string);
3205 /* We need to allocate enough room for decoding the text. */
3206 decoded = SAFE_ALLOCA (length);
3207
3208 /* The decoded result should be unibyte. */
3209 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3210 0, NULL);
3211 if (decoded_length > length)
3212 emacs_abort ();
3213 else if (decoded_length >= 0)
3214 decoded_string = make_unibyte_string (decoded, decoded_length);
3215 else
3216 decoded_string = Qnil;
3217
3218 SAFE_FREE ();
3219 if (!STRINGP (decoded_string))
3220 error ("Invalid base64 data");
3221
3222 return decoded_string;
3223 }
3224
3225 /* Base64-decode the data at FROM of LENGTH bytes into TO. If
3226 MULTIBYTE, the decoded result should be in multibyte
3227 form. If NCHARS_RETURN is not NULL, store the number of produced
3228 characters in *NCHARS_RETURN. */
3229
3230 static ptrdiff_t
3231 base64_decode_1 (const char *from, char *to, ptrdiff_t length,
3232 bool multibyte, ptrdiff_t *nchars_return)
3233 {
3234 ptrdiff_t i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3235 char *e = to;
3236 unsigned char c;
3237 unsigned long value;
3238 ptrdiff_t nchars = 0;
3239
3240 while (1)
3241 {
3242 /* Process first byte of a quadruplet. */
3243
3244 READ_QUADRUPLET_BYTE (e-to);
3245
3246 if (!IS_BASE64 (c))
3247 return -1;
3248 value = base64_char_to_value[c] << 18;
3249
3250 /* Process second byte of a quadruplet. */
3251
3252 READ_QUADRUPLET_BYTE (-1);
3253
3254 if (!IS_BASE64 (c))
3255 return -1;
3256 value |= base64_char_to_value[c] << 12;
3257
3258 c = (unsigned char) (value >> 16);
3259 if (multibyte && c >= 128)
3260 e += BYTE8_STRING (c, e);
3261 else
3262 *e++ = c;
3263 nchars++;
3264
3265 /* Process third byte of a quadruplet. */
3266
3267 READ_QUADRUPLET_BYTE (-1);
3268
3269 if (c == '=')
3270 {
3271 READ_QUADRUPLET_BYTE (-1);
3272
3273 if (c != '=')
3274 return -1;
3275 continue;
3276 }
3277
3278 if (!IS_BASE64 (c))
3279 return -1;
3280 value |= base64_char_to_value[c] << 6;
3281
3282 c = (unsigned char) (0xff & value >> 8);
3283 if (multibyte && c >= 128)
3284 e += BYTE8_STRING (c, e);
3285 else
3286 *e++ = c;
3287 nchars++;
3288
3289 /* Process fourth byte of a quadruplet. */
3290
3291 READ_QUADRUPLET_BYTE (-1);
3292
3293 if (c == '=')
3294 continue;
3295
3296 if (!IS_BASE64 (c))
3297 return -1;
3298 value |= base64_char_to_value[c];
3299
3300 c = (unsigned char) (0xff & value);
3301 if (multibyte && c >= 128)
3302 e += BYTE8_STRING (c, e);
3303 else
3304 *e++ = c;
3305 nchars++;
3306 }
3307 }
3308
3309
3310 \f
3311 /***********************************************************************
3312 ***** *****
3313 ***** Hash Tables *****
3314 ***** *****
3315 ***********************************************************************/
3316
3317 /* Implemented by gerd@gnu.org. This hash table implementation was
3318 inspired by CMUCL hash tables. */
3319
3320 /* Ideas:
3321
3322 1. For small tables, association lists are probably faster than
3323 hash tables because they have lower overhead.
3324
3325 For uses of hash tables where the O(1) behavior of table
3326 operations is not a requirement, it might therefore be a good idea
3327 not to hash. Instead, we could just do a linear search in the
3328 key_and_value vector of the hash table. This could be done
3329 if a `:linear-search t' argument is given to make-hash-table. */
3330
3331
3332 /* The list of all weak hash tables. Don't staticpro this one. */
3333
3334 static struct Lisp_Hash_Table *weak_hash_tables;
3335
3336 /* Various symbols. */
3337
3338 static Lisp_Object Qhash_table_p, Qkey, Qvalue, Qeql;
3339 Lisp_Object Qeq, Qequal;
3340 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3341 static Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3342
3343 \f
3344 /***********************************************************************
3345 Utilities
3346 ***********************************************************************/
3347
3348 /* If OBJ is a Lisp hash table, return a pointer to its struct
3349 Lisp_Hash_Table. Otherwise, signal an error. */
3350
3351 static struct Lisp_Hash_Table *
3352 check_hash_table (Lisp_Object obj)
3353 {
3354 CHECK_HASH_TABLE (obj);
3355 return XHASH_TABLE (obj);
3356 }
3357
3358
3359 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3360 number. A number is "almost" a prime number if it is not divisible
3361 by any integer in the range 2 .. (NEXT_ALMOST_PRIME_LIMIT - 1). */
3362
3363 EMACS_INT
3364 next_almost_prime (EMACS_INT n)
3365 {
3366 verify (NEXT_ALMOST_PRIME_LIMIT == 11);
3367 for (n |= 1; ; n += 2)
3368 if (n % 3 != 0 && n % 5 != 0 && n % 7 != 0)
3369 return n;
3370 }
3371
3372
3373 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3374 which USED[I] is non-zero. If found at index I in ARGS, set
3375 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3376 0. This function is used to extract a keyword/argument pair from
3377 a DEFUN parameter list. */
3378
3379 static ptrdiff_t
3380 get_key_arg (Lisp_Object key, ptrdiff_t nargs, Lisp_Object *args, char *used)
3381 {
3382 ptrdiff_t i;
3383
3384 for (i = 1; i < nargs; i++)
3385 if (!used[i - 1] && EQ (args[i - 1], key))
3386 {
3387 used[i - 1] = 1;
3388 used[i] = 1;
3389 return i;
3390 }
3391
3392 return 0;
3393 }
3394
3395
3396 /* Return a Lisp vector which has the same contents as VEC but has
3397 at least INCR_MIN more entries, where INCR_MIN is positive.
3398 If NITEMS_MAX is not -1, do not grow the vector to be any larger
3399 than NITEMS_MAX. Entries in the resulting
3400 vector that are not copied from VEC are set to nil. */
3401
3402 Lisp_Object
3403 larger_vector (Lisp_Object vec, ptrdiff_t incr_min, ptrdiff_t nitems_max)
3404 {
3405 struct Lisp_Vector *v;
3406 ptrdiff_t i, incr, incr_max, old_size, new_size;
3407 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / sizeof *v->contents;
3408 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
3409 ? nitems_max : C_language_max);
3410 eassert (VECTORP (vec));
3411 eassert (0 < incr_min && -1 <= nitems_max);
3412 old_size = ASIZE (vec);
3413 incr_max = n_max - old_size;
3414 incr = max (incr_min, min (old_size >> 1, incr_max));
3415 if (incr_max < incr)
3416 memory_full (SIZE_MAX);
3417 new_size = old_size + incr;
3418 v = allocate_vector (new_size);
3419 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3420 for (i = old_size; i < new_size; ++i)
3421 v->contents[i] = Qnil;
3422 XSETVECTOR (vec, v);
3423 return vec;
3424 }
3425
3426
3427 /***********************************************************************
3428 Low-level Functions
3429 ***********************************************************************/
3430
3431 static struct hash_table_test hashtest_eq;
3432 struct hash_table_test hashtest_eql, hashtest_equal;
3433
3434 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3435 HASH2 in hash table H using `eql'. Value is true if KEY1 and
3436 KEY2 are the same. */
3437
3438 static bool
3439 cmpfn_eql (struct hash_table_test *ht,
3440 Lisp_Object key1,
3441 Lisp_Object key2)
3442 {
3443 return (FLOATP (key1)
3444 && FLOATP (key2)
3445 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3446 }
3447
3448
3449 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3450 HASH2 in hash table H using `equal'. Value is true if KEY1 and
3451 KEY2 are the same. */
3452
3453 static bool
3454 cmpfn_equal (struct hash_table_test *ht,
3455 Lisp_Object key1,
3456 Lisp_Object key2)
3457 {
3458 return !NILP (Fequal (key1, key2));
3459 }
3460
3461
3462 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3463 HASH2 in hash table H using H->user_cmp_function. Value is true
3464 if KEY1 and KEY2 are the same. */
3465
3466 static bool
3467 cmpfn_user_defined (struct hash_table_test *ht,
3468 Lisp_Object key1,
3469 Lisp_Object key2)
3470 {
3471 Lisp_Object args[3];
3472
3473 args[0] = ht->user_cmp_function;
3474 args[1] = key1;
3475 args[2] = key2;
3476 return !NILP (Ffuncall (3, args));
3477 }
3478
3479
3480 /* Value is a hash code for KEY for use in hash table H which uses
3481 `eq' to compare keys. The hash code returned is guaranteed to fit
3482 in a Lisp integer. */
3483
3484 static EMACS_UINT
3485 hashfn_eq (struct hash_table_test *ht, Lisp_Object key)
3486 {
3487 EMACS_UINT hash = XHASH (key) ^ XTYPE (key);
3488 return hash;
3489 }
3490
3491 /* Value is a hash code for KEY for use in hash table H which uses
3492 `eql' to compare keys. The hash code returned is guaranteed to fit
3493 in a Lisp integer. */
3494
3495 static EMACS_UINT
3496 hashfn_eql (struct hash_table_test *ht, Lisp_Object key)
3497 {
3498 EMACS_UINT hash;
3499 if (FLOATP (key))
3500 hash = sxhash (key, 0);
3501 else
3502 hash = XHASH (key) ^ XTYPE (key);
3503 return hash;
3504 }
3505
3506 /* Value is a hash code for KEY for use in hash table H which uses
3507 `equal' to compare keys. The hash code returned is guaranteed to fit
3508 in a Lisp integer. */
3509
3510 static EMACS_UINT
3511 hashfn_equal (struct hash_table_test *ht, Lisp_Object key)
3512 {
3513 EMACS_UINT hash = sxhash (key, 0);
3514 return hash;
3515 }
3516
3517 /* Value is a hash code for KEY for use in hash table H which uses as
3518 user-defined function to compare keys. The hash code returned is
3519 guaranteed to fit in a Lisp integer. */
3520
3521 static EMACS_UINT
3522 hashfn_user_defined (struct hash_table_test *ht, Lisp_Object key)
3523 {
3524 Lisp_Object args[2], hash;
3525
3526 args[0] = ht->user_hash_function;
3527 args[1] = key;
3528 hash = Ffuncall (2, args);
3529 if (!INTEGERP (hash))
3530 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3531 return XUINT (hash);
3532 }
3533
3534 /* An upper bound on the size of a hash table index. It must fit in
3535 ptrdiff_t and be a valid Emacs fixnum. */
3536 #define INDEX_SIZE_BOUND \
3537 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, PTRDIFF_MAX / word_size))
3538
3539 /* Create and initialize a new hash table.
3540
3541 TEST specifies the test the hash table will use to compare keys.
3542 It must be either one of the predefined tests `eq', `eql' or
3543 `equal' or a symbol denoting a user-defined test named TEST with
3544 test and hash functions USER_TEST and USER_HASH.
3545
3546 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3547
3548 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3549 new size when it becomes full is computed by adding REHASH_SIZE to
3550 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3551 table's new size is computed by multiplying its old size with
3552 REHASH_SIZE.
3553
3554 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3555 be resized when the ratio of (number of entries in the table) /
3556 (table size) is >= REHASH_THRESHOLD.
3557
3558 WEAK specifies the weakness of the table. If non-nil, it must be
3559 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3560
3561 Lisp_Object
3562 make_hash_table (struct hash_table_test test,
3563 Lisp_Object size, Lisp_Object rehash_size,
3564 Lisp_Object rehash_threshold, Lisp_Object weak)
3565 {
3566 struct Lisp_Hash_Table *h;
3567 Lisp_Object table;
3568 EMACS_INT index_size, sz;
3569 ptrdiff_t i;
3570 double index_float;
3571
3572 /* Preconditions. */
3573 eassert (SYMBOLP (test.name));
3574 eassert (INTEGERP (size) && XINT (size) >= 0);
3575 eassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3576 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
3577 eassert (FLOATP (rehash_threshold)
3578 && 0 < XFLOAT_DATA (rehash_threshold)
3579 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3580
3581 if (XFASTINT (size) == 0)
3582 size = make_number (1);
3583
3584 sz = XFASTINT (size);
3585 index_float = sz / XFLOAT_DATA (rehash_threshold);
3586 index_size = (index_float < INDEX_SIZE_BOUND + 1
3587 ? next_almost_prime (index_float)
3588 : INDEX_SIZE_BOUND + 1);
3589 if (INDEX_SIZE_BOUND < max (index_size, 2 * sz))
3590 error ("Hash table too large");
3591
3592 /* Allocate a table and initialize it. */
3593 h = allocate_hash_table ();
3594
3595 /* Initialize hash table slots. */
3596 h->test = test;
3597 h->weak = weak;
3598 h->rehash_threshold = rehash_threshold;
3599 h->rehash_size = rehash_size;
3600 h->count = 0;
3601 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3602 h->hash = Fmake_vector (size, Qnil);
3603 h->next = Fmake_vector (size, Qnil);
3604 h->index = Fmake_vector (make_number (index_size), Qnil);
3605
3606 /* Set up the free list. */
3607 for (i = 0; i < sz - 1; ++i)
3608 set_hash_next_slot (h, i, make_number (i + 1));
3609 h->next_free = make_number (0);
3610
3611 XSET_HASH_TABLE (table, h);
3612 eassert (HASH_TABLE_P (table));
3613 eassert (XHASH_TABLE (table) == h);
3614
3615 /* Maybe add this hash table to the list of all weak hash tables. */
3616 if (NILP (h->weak))
3617 h->next_weak = NULL;
3618 else
3619 {
3620 h->next_weak = weak_hash_tables;
3621 weak_hash_tables = h;
3622 }
3623
3624 return table;
3625 }
3626
3627
3628 /* Return a copy of hash table H1. Keys and values are not copied,
3629 only the table itself is. */
3630
3631 static Lisp_Object
3632 copy_hash_table (struct Lisp_Hash_Table *h1)
3633 {
3634 Lisp_Object table;
3635 struct Lisp_Hash_Table *h2;
3636
3637 h2 = allocate_hash_table ();
3638 *h2 = *h1;
3639 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3640 h2->hash = Fcopy_sequence (h1->hash);
3641 h2->next = Fcopy_sequence (h1->next);
3642 h2->index = Fcopy_sequence (h1->index);
3643 XSET_HASH_TABLE (table, h2);
3644
3645 /* Maybe add this hash table to the list of all weak hash tables. */
3646 if (!NILP (h2->weak))
3647 {
3648 h2->next_weak = weak_hash_tables;
3649 weak_hash_tables = h2;
3650 }
3651
3652 return table;
3653 }
3654
3655
3656 /* Resize hash table H if it's too full. If H cannot be resized
3657 because it's already too large, throw an error. */
3658
3659 static void
3660 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3661 {
3662 if (NILP (h->next_free))
3663 {
3664 ptrdiff_t old_size = HASH_TABLE_SIZE (h);
3665 EMACS_INT new_size, index_size, nsize;
3666 ptrdiff_t i;
3667 double index_float;
3668
3669 if (INTEGERP (h->rehash_size))
3670 new_size = old_size + XFASTINT (h->rehash_size);
3671 else
3672 {
3673 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3674 if (float_new_size < INDEX_SIZE_BOUND + 1)
3675 {
3676 new_size = float_new_size;
3677 if (new_size <= old_size)
3678 new_size = old_size + 1;
3679 }
3680 else
3681 new_size = INDEX_SIZE_BOUND + 1;
3682 }
3683 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3684 index_size = (index_float < INDEX_SIZE_BOUND + 1
3685 ? next_almost_prime (index_float)
3686 : INDEX_SIZE_BOUND + 1);
3687 nsize = max (index_size, 2 * new_size);
3688 if (INDEX_SIZE_BOUND < nsize)
3689 error ("Hash table too large to resize");
3690
3691 #ifdef ENABLE_CHECKING
3692 if (HASH_TABLE_P (Vpurify_flag)
3693 && XHASH_TABLE (Vpurify_flag) == h)
3694 {
3695 Lisp_Object args[2];
3696 args[0] = build_string ("Growing hash table to: %d");
3697 args[1] = make_number (new_size);
3698 Fmessage (2, args);
3699 }
3700 #endif
3701
3702 set_hash_key_and_value (h, larger_vector (h->key_and_value,
3703 2 * (new_size - old_size), -1));
3704 set_hash_next (h, larger_vector (h->next, new_size - old_size, -1));
3705 set_hash_hash (h, larger_vector (h->hash, new_size - old_size, -1));
3706 set_hash_index (h, Fmake_vector (make_number (index_size), Qnil));
3707
3708 /* Update the free list. Do it so that new entries are added at
3709 the end of the free list. This makes some operations like
3710 maphash faster. */
3711 for (i = old_size; i < new_size - 1; ++i)
3712 set_hash_next_slot (h, i, make_number (i + 1));
3713
3714 if (!NILP (h->next_free))
3715 {
3716 Lisp_Object last, next;
3717
3718 last = h->next_free;
3719 while (next = HASH_NEXT (h, XFASTINT (last)),
3720 !NILP (next))
3721 last = next;
3722
3723 set_hash_next_slot (h, XFASTINT (last), make_number (old_size));
3724 }
3725 else
3726 XSETFASTINT (h->next_free, old_size);
3727
3728 /* Rehash. */
3729 for (i = 0; i < old_size; ++i)
3730 if (!NILP (HASH_HASH (h, i)))
3731 {
3732 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3733 ptrdiff_t start_of_bucket = hash_code % ASIZE (h->index);
3734 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3735 set_hash_index_slot (h, start_of_bucket, make_number (i));
3736 }
3737 }
3738 }
3739
3740
3741 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3742 the hash code of KEY. Value is the index of the entry in H
3743 matching KEY, or -1 if not found. */
3744
3745 ptrdiff_t
3746 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3747 {
3748 EMACS_UINT hash_code;
3749 ptrdiff_t start_of_bucket;
3750 Lisp_Object idx;
3751
3752 hash_code = h->test.hashfn (&h->test, key);
3753 eassert ((hash_code & ~INTMASK) == 0);
3754 if (hash)
3755 *hash = hash_code;
3756
3757 start_of_bucket = hash_code % ASIZE (h->index);
3758 idx = HASH_INDEX (h, start_of_bucket);
3759
3760 /* We need not gcpro idx since it's either an integer or nil. */
3761 while (!NILP (idx))
3762 {
3763 ptrdiff_t i = XFASTINT (idx);
3764 if (EQ (key, HASH_KEY (h, i))
3765 || (h->test.cmpfn
3766 && hash_code == XUINT (HASH_HASH (h, i))
3767 && h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
3768 break;
3769 idx = HASH_NEXT (h, i);
3770 }
3771
3772 return NILP (idx) ? -1 : XFASTINT (idx);
3773 }
3774
3775
3776 /* Put an entry into hash table H that associates KEY with VALUE.
3777 HASH is a previously computed hash code of KEY.
3778 Value is the index of the entry in H matching KEY. */
3779
3780 ptrdiff_t
3781 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
3782 EMACS_UINT hash)
3783 {
3784 ptrdiff_t start_of_bucket, i;
3785
3786 eassert ((hash & ~INTMASK) == 0);
3787
3788 /* Increment count after resizing because resizing may fail. */
3789 maybe_resize_hash_table (h);
3790 h->count++;
3791
3792 /* Store key/value in the key_and_value vector. */
3793 i = XFASTINT (h->next_free);
3794 h->next_free = HASH_NEXT (h, i);
3795 set_hash_key_slot (h, i, key);
3796 set_hash_value_slot (h, i, value);
3797
3798 /* Remember its hash code. */
3799 set_hash_hash_slot (h, i, make_number (hash));
3800
3801 /* Add new entry to its collision chain. */
3802 start_of_bucket = hash % ASIZE (h->index);
3803 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3804 set_hash_index_slot (h, start_of_bucket, make_number (i));
3805 return i;
3806 }
3807
3808
3809 /* Remove the entry matching KEY from hash table H, if there is one. */
3810
3811 static void
3812 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3813 {
3814 EMACS_UINT hash_code;
3815 ptrdiff_t start_of_bucket;
3816 Lisp_Object idx, prev;
3817
3818 hash_code = h->test.hashfn (&h->test, key);
3819 eassert ((hash_code & ~INTMASK) == 0);
3820 start_of_bucket = hash_code % ASIZE (h->index);
3821 idx = HASH_INDEX (h, start_of_bucket);
3822 prev = Qnil;
3823
3824 /* We need not gcpro idx, prev since they're either integers or nil. */
3825 while (!NILP (idx))
3826 {
3827 ptrdiff_t i = XFASTINT (idx);
3828
3829 if (EQ (key, HASH_KEY (h, i))
3830 || (h->test.cmpfn
3831 && hash_code == XUINT (HASH_HASH (h, i))
3832 && h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
3833 {
3834 /* Take entry out of collision chain. */
3835 if (NILP (prev))
3836 set_hash_index_slot (h, start_of_bucket, HASH_NEXT (h, i));
3837 else
3838 set_hash_next_slot (h, XFASTINT (prev), HASH_NEXT (h, i));
3839
3840 /* Clear slots in key_and_value and add the slots to
3841 the free list. */
3842 set_hash_key_slot (h, i, Qnil);
3843 set_hash_value_slot (h, i, Qnil);
3844 set_hash_hash_slot (h, i, Qnil);
3845 set_hash_next_slot (h, i, h->next_free);
3846 h->next_free = make_number (i);
3847 h->count--;
3848 eassert (h->count >= 0);
3849 break;
3850 }
3851 else
3852 {
3853 prev = idx;
3854 idx = HASH_NEXT (h, i);
3855 }
3856 }
3857 }
3858
3859
3860 /* Clear hash table H. */
3861
3862 static void
3863 hash_clear (struct Lisp_Hash_Table *h)
3864 {
3865 if (h->count > 0)
3866 {
3867 ptrdiff_t i, size = HASH_TABLE_SIZE (h);
3868
3869 for (i = 0; i < size; ++i)
3870 {
3871 set_hash_next_slot (h, i, i < size - 1 ? make_number (i + 1) : Qnil);
3872 set_hash_key_slot (h, i, Qnil);
3873 set_hash_value_slot (h, i, Qnil);
3874 set_hash_hash_slot (h, i, Qnil);
3875 }
3876
3877 for (i = 0; i < ASIZE (h->index); ++i)
3878 ASET (h->index, i, Qnil);
3879
3880 h->next_free = make_number (0);
3881 h->count = 0;
3882 }
3883 }
3884
3885
3886 \f
3887 /************************************************************************
3888 Weak Hash Tables
3889 ************************************************************************/
3890
3891 /* Sweep weak hash table H. REMOVE_ENTRIES_P means remove
3892 entries from the table that don't survive the current GC.
3893 !REMOVE_ENTRIES_P means mark entries that are in use. Value is
3894 true if anything was marked. */
3895
3896 static bool
3897 sweep_weak_table (struct Lisp_Hash_Table *h, bool remove_entries_p)
3898 {
3899 ptrdiff_t bucket, n;
3900 bool marked;
3901
3902 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3903 marked = 0;
3904
3905 for (bucket = 0; bucket < n; ++bucket)
3906 {
3907 Lisp_Object idx, next, prev;
3908
3909 /* Follow collision chain, removing entries that
3910 don't survive this garbage collection. */
3911 prev = Qnil;
3912 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3913 {
3914 ptrdiff_t i = XFASTINT (idx);
3915 bool key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3916 bool value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3917 bool remove_p;
3918
3919 if (EQ (h->weak, Qkey))
3920 remove_p = !key_known_to_survive_p;
3921 else if (EQ (h->weak, Qvalue))
3922 remove_p = !value_known_to_survive_p;
3923 else if (EQ (h->weak, Qkey_or_value))
3924 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3925 else if (EQ (h->weak, Qkey_and_value))
3926 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3927 else
3928 emacs_abort ();
3929
3930 next = HASH_NEXT (h, i);
3931
3932 if (remove_entries_p)
3933 {
3934 if (remove_p)
3935 {
3936 /* Take out of collision chain. */
3937 if (NILP (prev))
3938 set_hash_index_slot (h, bucket, next);
3939 else
3940 set_hash_next_slot (h, XFASTINT (prev), next);
3941
3942 /* Add to free list. */
3943 set_hash_next_slot (h, i, h->next_free);
3944 h->next_free = idx;
3945
3946 /* Clear key, value, and hash. */
3947 set_hash_key_slot (h, i, Qnil);
3948 set_hash_value_slot (h, i, Qnil);
3949 set_hash_hash_slot (h, i, Qnil);
3950
3951 h->count--;
3952 }
3953 else
3954 {
3955 prev = idx;
3956 }
3957 }
3958 else
3959 {
3960 if (!remove_p)
3961 {
3962 /* Make sure key and value survive. */
3963 if (!key_known_to_survive_p)
3964 {
3965 mark_object (HASH_KEY (h, i));
3966 marked = 1;
3967 }
3968
3969 if (!value_known_to_survive_p)
3970 {
3971 mark_object (HASH_VALUE (h, i));
3972 marked = 1;
3973 }
3974 }
3975 }
3976 }
3977 }
3978
3979 return marked;
3980 }
3981
3982 /* Remove elements from weak hash tables that don't survive the
3983 current garbage collection. Remove weak tables that don't survive
3984 from Vweak_hash_tables. Called from gc_sweep. */
3985
3986 void
3987 sweep_weak_hash_tables (void)
3988 {
3989 struct Lisp_Hash_Table *h, *used, *next;
3990 bool marked;
3991
3992 /* Mark all keys and values that are in use. Keep on marking until
3993 there is no more change. This is necessary for cases like
3994 value-weak table A containing an entry X -> Y, where Y is used in a
3995 key-weak table B, Z -> Y. If B comes after A in the list of weak
3996 tables, X -> Y might be removed from A, although when looking at B
3997 one finds that it shouldn't. */
3998 do
3999 {
4000 marked = 0;
4001 for (h = weak_hash_tables; h; h = h->next_weak)
4002 {
4003 if (h->header.size & ARRAY_MARK_FLAG)
4004 marked |= sweep_weak_table (h, 0);
4005 }
4006 }
4007 while (marked);
4008
4009 /* Remove tables and entries that aren't used. */
4010 for (h = weak_hash_tables, used = NULL; h; h = next)
4011 {
4012 next = h->next_weak;
4013
4014 if (h->header.size & ARRAY_MARK_FLAG)
4015 {
4016 /* TABLE is marked as used. Sweep its contents. */
4017 if (h->count > 0)
4018 sweep_weak_table (h, 1);
4019
4020 /* Add table to the list of used weak hash tables. */
4021 h->next_weak = used;
4022 used = h;
4023 }
4024 }
4025
4026 weak_hash_tables = used;
4027 }
4028
4029
4030 \f
4031 /***********************************************************************
4032 Hash Code Computation
4033 ***********************************************************************/
4034
4035 /* Maximum depth up to which to dive into Lisp structures. */
4036
4037 #define SXHASH_MAX_DEPTH 3
4038
4039 /* Maximum length up to which to take list and vector elements into
4040 account. */
4041
4042 #define SXHASH_MAX_LEN 7
4043
4044 /* Return a hash for string PTR which has length LEN. The hash value
4045 can be any EMACS_UINT value. */
4046
4047 EMACS_UINT
4048 hash_string (char const *ptr, ptrdiff_t len)
4049 {
4050 char const *p = ptr;
4051 char const *end = p + len;
4052 unsigned char c;
4053 EMACS_UINT hash = 0;
4054
4055 while (p != end)
4056 {
4057 c = *p++;
4058 hash = sxhash_combine (hash, c);
4059 }
4060
4061 return hash;
4062 }
4063
4064 /* Return a hash for string PTR which has length LEN. The hash
4065 code returned is guaranteed to fit in a Lisp integer. */
4066
4067 static EMACS_UINT
4068 sxhash_string (char const *ptr, ptrdiff_t len)
4069 {
4070 EMACS_UINT hash = hash_string (ptr, len);
4071 return SXHASH_REDUCE (hash);
4072 }
4073
4074 /* Return a hash for the floating point value VAL. */
4075
4076 static EMACS_UINT
4077 sxhash_float (double val)
4078 {
4079 EMACS_UINT hash = 0;
4080 enum {
4081 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
4082 + (sizeof val % sizeof hash != 0))
4083 };
4084 union {
4085 double val;
4086 EMACS_UINT word[WORDS_PER_DOUBLE];
4087 } u;
4088 int i;
4089 u.val = val;
4090 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
4091 for (i = 0; i < WORDS_PER_DOUBLE; i++)
4092 hash = sxhash_combine (hash, u.word[i]);
4093 return SXHASH_REDUCE (hash);
4094 }
4095
4096 /* Return a hash for list LIST. DEPTH is the current depth in the
4097 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4098
4099 static EMACS_UINT
4100 sxhash_list (Lisp_Object list, int depth)
4101 {
4102 EMACS_UINT hash = 0;
4103 int i;
4104
4105 if (depth < SXHASH_MAX_DEPTH)
4106 for (i = 0;
4107 CONSP (list) && i < SXHASH_MAX_LEN;
4108 list = XCDR (list), ++i)
4109 {
4110 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
4111 hash = sxhash_combine (hash, hash2);
4112 }
4113
4114 if (!NILP (list))
4115 {
4116 EMACS_UINT hash2 = sxhash (list, depth + 1);
4117 hash = sxhash_combine (hash, hash2);
4118 }
4119
4120 return SXHASH_REDUCE (hash);
4121 }
4122
4123
4124 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4125 the Lisp structure. */
4126
4127 static EMACS_UINT
4128 sxhash_vector (Lisp_Object vec, int depth)
4129 {
4130 EMACS_UINT hash = ASIZE (vec);
4131 int i, n;
4132
4133 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4134 for (i = 0; i < n; ++i)
4135 {
4136 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4137 hash = sxhash_combine (hash, hash2);
4138 }
4139
4140 return SXHASH_REDUCE (hash);
4141 }
4142
4143 /* Return a hash for bool-vector VECTOR. */
4144
4145 static EMACS_UINT
4146 sxhash_bool_vector (Lisp_Object vec)
4147 {
4148 EMACS_UINT hash = XBOOL_VECTOR (vec)->size;
4149 int i, n;
4150
4151 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->header.size);
4152 for (i = 0; i < n; ++i)
4153 hash = sxhash_combine (hash, XBOOL_VECTOR (vec)->data[i]);
4154
4155 return SXHASH_REDUCE (hash);
4156 }
4157
4158
4159 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4160 structure. Value is an unsigned integer clipped to INTMASK. */
4161
4162 EMACS_UINT
4163 sxhash (Lisp_Object obj, int depth)
4164 {
4165 EMACS_UINT hash;
4166
4167 if (depth > SXHASH_MAX_DEPTH)
4168 return 0;
4169
4170 switch (XTYPE (obj))
4171 {
4172 case_Lisp_Int:
4173 hash = XUINT (obj);
4174 break;
4175
4176 case Lisp_Misc:
4177 hash = XHASH (obj);
4178 break;
4179
4180 case Lisp_Symbol:
4181 obj = SYMBOL_NAME (obj);
4182 /* Fall through. */
4183
4184 case Lisp_String:
4185 hash = sxhash_string (SSDATA (obj), SBYTES (obj));
4186 break;
4187
4188 /* This can be everything from a vector to an overlay. */
4189 case Lisp_Vectorlike:
4190 if (VECTORP (obj))
4191 /* According to the CL HyperSpec, two arrays are equal only if
4192 they are `eq', except for strings and bit-vectors. In
4193 Emacs, this works differently. We have to compare element
4194 by element. */
4195 hash = sxhash_vector (obj, depth);
4196 else if (BOOL_VECTOR_P (obj))
4197 hash = sxhash_bool_vector (obj);
4198 else
4199 /* Others are `equal' if they are `eq', so let's take their
4200 address as hash. */
4201 hash = XHASH (obj);
4202 break;
4203
4204 case Lisp_Cons:
4205 hash = sxhash_list (obj, depth);
4206 break;
4207
4208 case Lisp_Float:
4209 hash = sxhash_float (XFLOAT_DATA (obj));
4210 break;
4211
4212 default:
4213 emacs_abort ();
4214 }
4215
4216 return hash;
4217 }
4218
4219
4220 \f
4221 /***********************************************************************
4222 Lisp Interface
4223 ***********************************************************************/
4224
4225
4226 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4227 doc: /* Compute a hash code for OBJ and return it as integer. */)
4228 (Lisp_Object obj)
4229 {
4230 EMACS_UINT hash = sxhash (obj, 0);
4231 return make_number (hash);
4232 }
4233
4234
4235 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4236 doc: /* Create and return a new hash table.
4237
4238 Arguments are specified as keyword/argument pairs. The following
4239 arguments are defined:
4240
4241 :test TEST -- TEST must be a symbol that specifies how to compare
4242 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4243 `equal'. User-supplied test and hash functions can be specified via
4244 `define-hash-table-test'.
4245
4246 :size SIZE -- A hint as to how many elements will be put in the table.
4247 Default is 65.
4248
4249 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4250 fills up. If REHASH-SIZE is an integer, increase the size by that
4251 amount. If it is a float, it must be > 1.0, and the new size is the
4252 old size multiplied by that factor. Default is 1.5.
4253
4254 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4255 Resize the hash table when the ratio (number of entries / table size)
4256 is greater than or equal to THRESHOLD. Default is 0.8.
4257
4258 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4259 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4260 returned is a weak table. Key/value pairs are removed from a weak
4261 hash table when there are no non-weak references pointing to their
4262 key, value, one of key or value, or both key and value, depending on
4263 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4264 is nil.
4265
4266 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4267 (ptrdiff_t nargs, Lisp_Object *args)
4268 {
4269 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4270 struct hash_table_test testdesc;
4271 char *used;
4272 ptrdiff_t i;
4273
4274 /* The vector `used' is used to keep track of arguments that
4275 have been consumed. */
4276 used = alloca (nargs * sizeof *used);
4277 memset (used, 0, nargs * sizeof *used);
4278
4279 /* See if there's a `:test TEST' among the arguments. */
4280 i = get_key_arg (QCtest, nargs, args, used);
4281 test = i ? args[i] : Qeql;
4282 if (EQ (test, Qeq))
4283 testdesc = hashtest_eq;
4284 else if (EQ (test, Qeql))
4285 testdesc = hashtest_eql;
4286 else if (EQ (test, Qequal))
4287 testdesc = hashtest_equal;
4288 else
4289 {
4290 /* See if it is a user-defined test. */
4291 Lisp_Object prop;
4292
4293 prop = Fget (test, Qhash_table_test);
4294 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4295 signal_error ("Invalid hash table test", test);
4296 testdesc.name = test;
4297 testdesc.user_cmp_function = XCAR (prop);
4298 testdesc.user_hash_function = XCAR (XCDR (prop));
4299 testdesc.hashfn = hashfn_user_defined;
4300 testdesc.cmpfn = cmpfn_user_defined;
4301 }
4302
4303 /* See if there's a `:size SIZE' argument. */
4304 i = get_key_arg (QCsize, nargs, args, used);
4305 size = i ? args[i] : Qnil;
4306 if (NILP (size))
4307 size = make_number (DEFAULT_HASH_SIZE);
4308 else if (!INTEGERP (size) || XINT (size) < 0)
4309 signal_error ("Invalid hash table size", size);
4310
4311 /* Look for `:rehash-size SIZE'. */
4312 i = get_key_arg (QCrehash_size, nargs, args, used);
4313 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4314 if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
4315 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
4316 signal_error ("Invalid hash table rehash size", rehash_size);
4317
4318 /* Look for `:rehash-threshold THRESHOLD'. */
4319 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4320 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4321 if (! (FLOATP (rehash_threshold)
4322 && 0 < XFLOAT_DATA (rehash_threshold)
4323 && XFLOAT_DATA (rehash_threshold) <= 1))
4324 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4325
4326 /* Look for `:weakness WEAK'. */
4327 i = get_key_arg (QCweakness, nargs, args, used);
4328 weak = i ? args[i] : Qnil;
4329 if (EQ (weak, Qt))
4330 weak = Qkey_and_value;
4331 if (!NILP (weak)
4332 && !EQ (weak, Qkey)
4333 && !EQ (weak, Qvalue)
4334 && !EQ (weak, Qkey_or_value)
4335 && !EQ (weak, Qkey_and_value))
4336 signal_error ("Invalid hash table weakness", weak);
4337
4338 /* Now, all args should have been used up, or there's a problem. */
4339 for (i = 0; i < nargs; ++i)
4340 if (!used[i])
4341 signal_error ("Invalid argument list", args[i]);
4342
4343 return make_hash_table (testdesc, size, rehash_size, rehash_threshold, weak);
4344 }
4345
4346
4347 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4348 doc: /* Return a copy of hash table TABLE. */)
4349 (Lisp_Object table)
4350 {
4351 return copy_hash_table (check_hash_table (table));
4352 }
4353
4354
4355 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4356 doc: /* Return the number of elements in TABLE. */)
4357 (Lisp_Object table)
4358 {
4359 return make_number (check_hash_table (table)->count);
4360 }
4361
4362
4363 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4364 Shash_table_rehash_size, 1, 1, 0,
4365 doc: /* Return the current rehash size of TABLE. */)
4366 (Lisp_Object table)
4367 {
4368 return check_hash_table (table)->rehash_size;
4369 }
4370
4371
4372 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4373 Shash_table_rehash_threshold, 1, 1, 0,
4374 doc: /* Return the current rehash threshold of TABLE. */)
4375 (Lisp_Object table)
4376 {
4377 return check_hash_table (table)->rehash_threshold;
4378 }
4379
4380
4381 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4382 doc: /* Return the size of TABLE.
4383 The size can be used as an argument to `make-hash-table' to create
4384 a hash table than can hold as many elements as TABLE holds
4385 without need for resizing. */)
4386 (Lisp_Object table)
4387 {
4388 struct Lisp_Hash_Table *h = check_hash_table (table);
4389 return make_number (HASH_TABLE_SIZE (h));
4390 }
4391
4392
4393 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4394 doc: /* Return the test TABLE uses. */)
4395 (Lisp_Object table)
4396 {
4397 return check_hash_table (table)->test.name;
4398 }
4399
4400
4401 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4402 1, 1, 0,
4403 doc: /* Return the weakness of TABLE. */)
4404 (Lisp_Object table)
4405 {
4406 return check_hash_table (table)->weak;
4407 }
4408
4409
4410 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4411 doc: /* Return t if OBJ is a Lisp hash table object. */)
4412 (Lisp_Object obj)
4413 {
4414 return HASH_TABLE_P (obj) ? Qt : Qnil;
4415 }
4416
4417
4418 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4419 doc: /* Clear hash table TABLE and return it. */)
4420 (Lisp_Object table)
4421 {
4422 hash_clear (check_hash_table (table));
4423 /* Be compatible with XEmacs. */
4424 return table;
4425 }
4426
4427
4428 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4429 doc: /* Look up KEY in TABLE and return its associated value.
4430 If KEY is not found, return DFLT which defaults to nil. */)
4431 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4432 {
4433 struct Lisp_Hash_Table *h = check_hash_table (table);
4434 ptrdiff_t i = hash_lookup (h, key, NULL);
4435 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4436 }
4437
4438
4439 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4440 doc: /* Associate KEY with VALUE in hash table TABLE.
4441 If KEY is already present in table, replace its current value with
4442 VALUE. In any case, return VALUE. */)
4443 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4444 {
4445 struct Lisp_Hash_Table *h = check_hash_table (table);
4446 ptrdiff_t i;
4447 EMACS_UINT hash;
4448
4449 i = hash_lookup (h, key, &hash);
4450 if (i >= 0)
4451 set_hash_value_slot (h, i, value);
4452 else
4453 hash_put (h, key, value, hash);
4454
4455 return value;
4456 }
4457
4458
4459 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4460 doc: /* Remove KEY from TABLE. */)
4461 (Lisp_Object key, Lisp_Object table)
4462 {
4463 struct Lisp_Hash_Table *h = check_hash_table (table);
4464 hash_remove_from_table (h, key);
4465 return Qnil;
4466 }
4467
4468
4469 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4470 doc: /* Call FUNCTION for all entries in hash table TABLE.
4471 FUNCTION is called with two arguments, KEY and VALUE. */)
4472 (Lisp_Object function, Lisp_Object table)
4473 {
4474 struct Lisp_Hash_Table *h = check_hash_table (table);
4475 Lisp_Object args[3];
4476 ptrdiff_t i;
4477
4478 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4479 if (!NILP (HASH_HASH (h, i)))
4480 {
4481 args[0] = function;
4482 args[1] = HASH_KEY (h, i);
4483 args[2] = HASH_VALUE (h, i);
4484 Ffuncall (3, args);
4485 }
4486
4487 return Qnil;
4488 }
4489
4490
4491 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4492 Sdefine_hash_table_test, 3, 3, 0,
4493 doc: /* Define a new hash table test with name NAME, a symbol.
4494
4495 In hash tables created with NAME specified as test, use TEST to
4496 compare keys, and HASH for computing hash codes of keys.
4497
4498 TEST must be a function taking two arguments and returning non-nil if
4499 both arguments are the same. HASH must be a function taking one
4500 argument and return an integer that is the hash code of the argument.
4501 Hash code computation should use the whole value range of integers,
4502 including negative integers. */)
4503 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4504 {
4505 return Fput (name, Qhash_table_test, list2 (test, hash));
4506 }
4507
4508
4509 \f
4510 /************************************************************************
4511 MD5, SHA-1, and SHA-2
4512 ************************************************************************/
4513
4514 #include "md5.h"
4515 #include "sha1.h"
4516 #include "sha256.h"
4517 #include "sha512.h"
4518
4519 /* ALGORITHM is a symbol: md5, sha1, sha224 and so on. */
4520
4521 static Lisp_Object
4522 secure_hash (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror, Lisp_Object binary)
4523 {
4524 int i;
4525 ptrdiff_t size;
4526 EMACS_INT start_char = 0, end_char = 0;
4527 ptrdiff_t start_byte, end_byte;
4528 register EMACS_INT b, e;
4529 register struct buffer *bp;
4530 EMACS_INT temp;
4531 int digest_size;
4532 void *(*hash_func) (const char *, size_t, void *);
4533 Lisp_Object digest;
4534
4535 CHECK_SYMBOL (algorithm);
4536
4537 if (STRINGP (object))
4538 {
4539 if (NILP (coding_system))
4540 {
4541 /* Decide the coding-system to encode the data with. */
4542
4543 if (STRING_MULTIBYTE (object))
4544 /* use default, we can't guess correct value */
4545 coding_system = preferred_coding_system ();
4546 else
4547 coding_system = Qraw_text;
4548 }
4549
4550 if (NILP (Fcoding_system_p (coding_system)))
4551 {
4552 /* Invalid coding system. */
4553
4554 if (!NILP (noerror))
4555 coding_system = Qraw_text;
4556 else
4557 xsignal1 (Qcoding_system_error, coding_system);
4558 }
4559
4560 if (STRING_MULTIBYTE (object))
4561 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4562
4563 size = SCHARS (object);
4564
4565 if (!NILP (start))
4566 {
4567 CHECK_NUMBER (start);
4568
4569 start_char = XINT (start);
4570
4571 if (start_char < 0)
4572 start_char += size;
4573 }
4574
4575 if (NILP (end))
4576 end_char = size;
4577 else
4578 {
4579 CHECK_NUMBER (end);
4580
4581 end_char = XINT (end);
4582
4583 if (end_char < 0)
4584 end_char += size;
4585 }
4586
4587 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4588 args_out_of_range_3 (object, make_number (start_char),
4589 make_number (end_char));
4590
4591 start_byte = NILP (start) ? 0 : string_char_to_byte (object, start_char);
4592 end_byte =
4593 NILP (end) ? SBYTES (object) : string_char_to_byte (object, end_char);
4594 }
4595 else
4596 {
4597 struct buffer *prev = current_buffer;
4598
4599 record_unwind_current_buffer ();
4600
4601 CHECK_BUFFER (object);
4602
4603 bp = XBUFFER (object);
4604 set_buffer_internal (bp);
4605
4606 if (NILP (start))
4607 b = BEGV;
4608 else
4609 {
4610 CHECK_NUMBER_COERCE_MARKER (start);
4611 b = XINT (start);
4612 }
4613
4614 if (NILP (end))
4615 e = ZV;
4616 else
4617 {
4618 CHECK_NUMBER_COERCE_MARKER (end);
4619 e = XINT (end);
4620 }
4621
4622 if (b > e)
4623 temp = b, b = e, e = temp;
4624
4625 if (!(BEGV <= b && e <= ZV))
4626 args_out_of_range (start, end);
4627
4628 if (NILP (coding_system))
4629 {
4630 /* Decide the coding-system to encode the data with.
4631 See fileio.c:Fwrite-region */
4632
4633 if (!NILP (Vcoding_system_for_write))
4634 coding_system = Vcoding_system_for_write;
4635 else
4636 {
4637 bool force_raw_text = 0;
4638
4639 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4640 if (NILP (coding_system)
4641 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4642 {
4643 coding_system = Qnil;
4644 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4645 force_raw_text = 1;
4646 }
4647
4648 if (NILP (coding_system) && !NILP (Fbuffer_file_name (object)))
4649 {
4650 /* Check file-coding-system-alist. */
4651 Lisp_Object args[4], val;
4652
4653 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4654 args[3] = Fbuffer_file_name (object);
4655 val = Ffind_operation_coding_system (4, args);
4656 if (CONSP (val) && !NILP (XCDR (val)))
4657 coding_system = XCDR (val);
4658 }
4659
4660 if (NILP (coding_system)
4661 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4662 {
4663 /* If we still have not decided a coding system, use the
4664 default value of buffer-file-coding-system. */
4665 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4666 }
4667
4668 if (!force_raw_text
4669 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4670 /* Confirm that VAL can surely encode the current region. */
4671 coding_system = call4 (Vselect_safe_coding_system_function,
4672 make_number (b), make_number (e),
4673 coding_system, Qnil);
4674
4675 if (force_raw_text)
4676 coding_system = Qraw_text;
4677 }
4678
4679 if (NILP (Fcoding_system_p (coding_system)))
4680 {
4681 /* Invalid coding system. */
4682
4683 if (!NILP (noerror))
4684 coding_system = Qraw_text;
4685 else
4686 xsignal1 (Qcoding_system_error, coding_system);
4687 }
4688 }
4689
4690 object = make_buffer_string (b, e, 0);
4691 set_buffer_internal (prev);
4692 /* Discard the unwind protect for recovering the current
4693 buffer. */
4694 specpdl_ptr--;
4695
4696 if (STRING_MULTIBYTE (object))
4697 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4698 start_byte = 0;
4699 end_byte = SBYTES (object);
4700 }
4701
4702 if (EQ (algorithm, Qmd5))
4703 {
4704 digest_size = MD5_DIGEST_SIZE;
4705 hash_func = md5_buffer;
4706 }
4707 else if (EQ (algorithm, Qsha1))
4708 {
4709 digest_size = SHA1_DIGEST_SIZE;
4710 hash_func = sha1_buffer;
4711 }
4712 else if (EQ (algorithm, Qsha224))
4713 {
4714 digest_size = SHA224_DIGEST_SIZE;
4715 hash_func = sha224_buffer;
4716 }
4717 else if (EQ (algorithm, Qsha256))
4718 {
4719 digest_size = SHA256_DIGEST_SIZE;
4720 hash_func = sha256_buffer;
4721 }
4722 else if (EQ (algorithm, Qsha384))
4723 {
4724 digest_size = SHA384_DIGEST_SIZE;
4725 hash_func = sha384_buffer;
4726 }
4727 else if (EQ (algorithm, Qsha512))
4728 {
4729 digest_size = SHA512_DIGEST_SIZE;
4730 hash_func = sha512_buffer;
4731 }
4732 else
4733 error ("Invalid algorithm arg: %s", SDATA (Fsymbol_name (algorithm)));
4734
4735 /* allocate 2 x digest_size so that it can be re-used to hold the
4736 hexified value */
4737 digest = make_uninit_string (digest_size * 2);
4738
4739 hash_func (SSDATA (object) + start_byte,
4740 end_byte - start_byte,
4741 SSDATA (digest));
4742
4743 if (NILP (binary))
4744 {
4745 unsigned char *p = SDATA (digest);
4746 for (i = digest_size - 1; i >= 0; i--)
4747 {
4748 static char const hexdigit[16] = "0123456789abcdef";
4749 int p_i = p[i];
4750 p[2 * i] = hexdigit[p_i >> 4];
4751 p[2 * i + 1] = hexdigit[p_i & 0xf];
4752 }
4753 return digest;
4754 }
4755 else
4756 return make_unibyte_string (SSDATA (digest), digest_size);
4757 }
4758
4759 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4760 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4761
4762 A message digest is a cryptographic checksum of a document, and the
4763 algorithm to calculate it is defined in RFC 1321.
4764
4765 The two optional arguments START and END are character positions
4766 specifying for which part of OBJECT the message digest should be
4767 computed. If nil or omitted, the digest is computed for the whole
4768 OBJECT.
4769
4770 The MD5 message digest is computed from the result of encoding the
4771 text in a coding system, not directly from the internal Emacs form of
4772 the text. The optional fourth argument CODING-SYSTEM specifies which
4773 coding system to encode the text with. It should be the same coding
4774 system that you used or will use when actually writing the text into a
4775 file.
4776
4777 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4778 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4779 system would be chosen by default for writing this text into a file.
4780
4781 If OBJECT is a string, the most preferred coding system (see the
4782 command `prefer-coding-system') is used.
4783
4784 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4785 guesswork fails. Normally, an error is signaled in such case. */)
4786 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4787 {
4788 return secure_hash (Qmd5, object, start, end, coding_system, noerror, Qnil);
4789 }
4790
4791 DEFUN ("secure-hash", Fsecure_hash, Ssecure_hash, 2, 5, 0,
4792 doc: /* Return the secure hash of OBJECT, a buffer or string.
4793 ALGORITHM is a symbol specifying the hash to use:
4794 md5, sha1, sha224, sha256, sha384 or sha512.
4795
4796 The two optional arguments START and END are positions specifying for
4797 which part of OBJECT to compute the hash. If nil or omitted, uses the
4798 whole OBJECT.
4799
4800 If BINARY is non-nil, returns a string in binary form. */)
4801 (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
4802 {
4803 return secure_hash (algorithm, object, start, end, Qnil, Qnil, binary);
4804 }
4805 \f
4806 void
4807 syms_of_fns (void)
4808 {
4809 DEFSYM (Qmd5, "md5");
4810 DEFSYM (Qsha1, "sha1");
4811 DEFSYM (Qsha224, "sha224");
4812 DEFSYM (Qsha256, "sha256");
4813 DEFSYM (Qsha384, "sha384");
4814 DEFSYM (Qsha512, "sha512");
4815
4816 /* Hash table stuff. */
4817 DEFSYM (Qhash_table_p, "hash-table-p");
4818 DEFSYM (Qeq, "eq");
4819 DEFSYM (Qeql, "eql");
4820 DEFSYM (Qequal, "equal");
4821 DEFSYM (QCtest, ":test");
4822 DEFSYM (QCsize, ":size");
4823 DEFSYM (QCrehash_size, ":rehash-size");
4824 DEFSYM (QCrehash_threshold, ":rehash-threshold");
4825 DEFSYM (QCweakness, ":weakness");
4826 DEFSYM (Qkey, "key");
4827 DEFSYM (Qvalue, "value");
4828 DEFSYM (Qhash_table_test, "hash-table-test");
4829 DEFSYM (Qkey_or_value, "key-or-value");
4830 DEFSYM (Qkey_and_value, "key-and-value");
4831
4832 defsubr (&Ssxhash);
4833 defsubr (&Smake_hash_table);
4834 defsubr (&Scopy_hash_table);
4835 defsubr (&Shash_table_count);
4836 defsubr (&Shash_table_rehash_size);
4837 defsubr (&Shash_table_rehash_threshold);
4838 defsubr (&Shash_table_size);
4839 defsubr (&Shash_table_test);
4840 defsubr (&Shash_table_weakness);
4841 defsubr (&Shash_table_p);
4842 defsubr (&Sclrhash);
4843 defsubr (&Sgethash);
4844 defsubr (&Sputhash);
4845 defsubr (&Sremhash);
4846 defsubr (&Smaphash);
4847 defsubr (&Sdefine_hash_table_test);
4848
4849 DEFSYM (Qstring_lessp, "string-lessp");
4850 DEFSYM (Qprovide, "provide");
4851 DEFSYM (Qrequire, "require");
4852 DEFSYM (Qyes_or_no_p_history, "yes-or-no-p-history");
4853 DEFSYM (Qcursor_in_echo_area, "cursor-in-echo-area");
4854 DEFSYM (Qwidget_type, "widget-type");
4855
4856 staticpro (&string_char_byte_cache_string);
4857 string_char_byte_cache_string = Qnil;
4858
4859 require_nesting_list = Qnil;
4860 staticpro (&require_nesting_list);
4861
4862 Fset (Qyes_or_no_p_history, Qnil);
4863
4864 DEFVAR_LISP ("features", Vfeatures,
4865 doc: /* A list of symbols which are the features of the executing Emacs.
4866 Used by `featurep' and `require', and altered by `provide'. */);
4867 Vfeatures = Fcons (intern_c_string ("emacs"), Qnil);
4868 DEFSYM (Qsubfeatures, "subfeatures");
4869
4870 #ifdef HAVE_LANGINFO_CODESET
4871 DEFSYM (Qcodeset, "codeset");
4872 DEFSYM (Qdays, "days");
4873 DEFSYM (Qmonths, "months");
4874 DEFSYM (Qpaper, "paper");
4875 #endif /* HAVE_LANGINFO_CODESET */
4876
4877 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4878 doc: /* Non-nil means mouse commands use dialog boxes to ask questions.
4879 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4880 invoked by mouse clicks and mouse menu items.
4881
4882 On some platforms, file selection dialogs are also enabled if this is
4883 non-nil. */);
4884 use_dialog_box = 1;
4885
4886 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4887 doc: /* Non-nil means mouse commands use a file dialog to ask for files.
4888 This applies to commands from menus and tool bar buttons even when
4889 they are initiated from the keyboard. If `use-dialog-box' is nil,
4890 that disables the use of a file dialog, regardless of the value of
4891 this variable. */);
4892 use_file_dialog = 1;
4893
4894 defsubr (&Sidentity);
4895 defsubr (&Srandom);
4896 defsubr (&Slength);
4897 defsubr (&Ssafe_length);
4898 defsubr (&Sstring_bytes);
4899 defsubr (&Sstring_equal);
4900 defsubr (&Scompare_strings);
4901 defsubr (&Sstring_lessp);
4902 defsubr (&Sappend);
4903 defsubr (&Sconcat);
4904 defsubr (&Svconcat);
4905 defsubr (&Scopy_sequence);
4906 defsubr (&Sstring_make_multibyte);
4907 defsubr (&Sstring_make_unibyte);
4908 defsubr (&Sstring_as_multibyte);
4909 defsubr (&Sstring_as_unibyte);
4910 defsubr (&Sstring_to_multibyte);
4911 defsubr (&Sstring_to_unibyte);
4912 defsubr (&Scopy_alist);
4913 defsubr (&Ssubstring);
4914 defsubr (&Ssubstring_no_properties);
4915 defsubr (&Snthcdr);
4916 defsubr (&Snth);
4917 defsubr (&Selt);
4918 defsubr (&Smember);
4919 defsubr (&Smemq);
4920 defsubr (&Smemql);
4921 defsubr (&Sassq);
4922 defsubr (&Sassoc);
4923 defsubr (&Srassq);
4924 defsubr (&Srassoc);
4925 defsubr (&Sdelq);
4926 defsubr (&Sdelete);
4927 defsubr (&Snreverse);
4928 defsubr (&Sreverse);
4929 defsubr (&Ssort);
4930 defsubr (&Splist_get);
4931 defsubr (&Sget);
4932 defsubr (&Splist_put);
4933 defsubr (&Sput);
4934 defsubr (&Slax_plist_get);
4935 defsubr (&Slax_plist_put);
4936 defsubr (&Seql);
4937 defsubr (&Sequal);
4938 defsubr (&Sequal_including_properties);
4939 defsubr (&Sfillarray);
4940 defsubr (&Sclear_string);
4941 defsubr (&Snconc);
4942 defsubr (&Smapcar);
4943 defsubr (&Smapc);
4944 defsubr (&Smapconcat);
4945 defsubr (&Syes_or_no_p);
4946 defsubr (&Sload_average);
4947 defsubr (&Sfeaturep);
4948 defsubr (&Srequire);
4949 defsubr (&Sprovide);
4950 defsubr (&Splist_member);
4951 defsubr (&Swidget_put);
4952 defsubr (&Swidget_get);
4953 defsubr (&Swidget_apply);
4954 defsubr (&Sbase64_encode_region);
4955 defsubr (&Sbase64_decode_region);
4956 defsubr (&Sbase64_encode_string);
4957 defsubr (&Sbase64_decode_string);
4958 defsubr (&Smd5);
4959 defsubr (&Ssecure_hash);
4960 defsubr (&Slocale_info);
4961
4962 {
4963 struct hash_table_test
4964 eq = { Qeq, Qnil, Qnil, NULL, hashfn_eq },
4965 eql = { Qeql, Qnil, Qnil, cmpfn_eql, hashfn_eql },
4966 equal = { Qequal, Qnil, Qnil, cmpfn_equal, hashfn_equal };
4967 hashtest_eq = eq;
4968 hashtest_eql = eql;
4969 hashtest_equal = equal;
4970 }
4971 }