Merge from trunk.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21 #include <stdio.h>
22 #include <limits.h> /* For CHAR_BIT. */
23 #include <setjmp.h>
24
25 #include <signal.h>
26
27 #ifdef HAVE_PTHREAD
28 #include <pthread.h>
29 #endif
30
31 /* This file is part of the core Lisp implementation, and thus must
32 deal with the real data structures. If the Lisp implementation is
33 replaced, this file likely will not be used. */
34
35 #undef HIDE_LISP_IMPLEMENTATION
36 #include "lisp.h"
37 #include "process.h"
38 #include "intervals.h"
39 #include "puresize.h"
40 #include "buffer.h"
41 #include "window.h"
42 #include "keyboard.h"
43 #include "frame.h"
44 #include "blockinput.h"
45 #include "character.h"
46 #include "syssignal.h"
47 #include "termhooks.h" /* For struct terminal. */
48 #include <setjmp.h>
49 #include <verify.h>
50
51 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
52 memory. Can do this only if using gmalloc.c. */
53
54 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
55 #undef GC_MALLOC_CHECK
56 #endif
57
58 #include <unistd.h>
59 #ifndef HAVE_UNISTD_H
60 extern POINTER_TYPE *sbrk ();
61 #endif
62
63 #include <fcntl.h>
64
65 #ifdef WINDOWSNT
66 #include "w32.h"
67 #endif
68
69 #ifdef DOUG_LEA_MALLOC
70
71 #include <malloc.h>
72
73 /* Specify maximum number of areas to mmap. It would be nice to use a
74 value that explicitly means "no limit". */
75
76 #define MMAP_MAX_AREAS 100000000
77
78 #else /* not DOUG_LEA_MALLOC */
79
80 /* The following come from gmalloc.c. */
81
82 extern size_t _bytes_used;
83 extern size_t __malloc_extra_blocks;
84
85 #endif /* not DOUG_LEA_MALLOC */
86
87 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
88 #ifdef HAVE_PTHREAD
89
90 /* When GTK uses the file chooser dialog, different backends can be loaded
91 dynamically. One such a backend is the Gnome VFS backend that gets loaded
92 if you run Gnome. That backend creates several threads and also allocates
93 memory with malloc.
94
95 Also, gconf and gsettings may create several threads.
96
97 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
98 functions below are called from malloc, there is a chance that one
99 of these threads preempts the Emacs main thread and the hook variables
100 end up in an inconsistent state. So we have a mutex to prevent that (note
101 that the backend handles concurrent access to malloc within its own threads
102 but Emacs code running in the main thread is not included in that control).
103
104 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
105 happens in one of the backend threads we will have two threads that tries
106 to run Emacs code at once, and the code is not prepared for that.
107 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
108
109 static pthread_mutex_t alloc_mutex;
110
111 #define BLOCK_INPUT_ALLOC \
112 do \
113 { \
114 if (pthread_equal (pthread_self (), main_thread)) \
115 BLOCK_INPUT; \
116 pthread_mutex_lock (&alloc_mutex); \
117 } \
118 while (0)
119 #define UNBLOCK_INPUT_ALLOC \
120 do \
121 { \
122 pthread_mutex_unlock (&alloc_mutex); \
123 if (pthread_equal (pthread_self (), main_thread)) \
124 UNBLOCK_INPUT; \
125 } \
126 while (0)
127
128 #else /* ! defined HAVE_PTHREAD */
129
130 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
131 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
132
133 #endif /* ! defined HAVE_PTHREAD */
134 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
135
136 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
137 to a struct Lisp_String. */
138
139 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
140 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
141 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
142
143 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
144 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
145 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
146
147 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
148 Be careful during GC, because S->size contains the mark bit for
149 strings. */
150
151 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
152
153 /* Global variables. */
154 struct emacs_globals globals;
155
156 /* Number of bytes of consing done since the last gc. */
157
158 EMACS_INT consing_since_gc;
159
160 /* Similar minimum, computed from Vgc_cons_percentage. */
161
162 EMACS_INT gc_relative_threshold;
163
164 /* Minimum number of bytes of consing since GC before next GC,
165 when memory is full. */
166
167 EMACS_INT memory_full_cons_threshold;
168
169 /* Nonzero during GC. */
170
171 int gc_in_progress;
172
173 /* Nonzero means abort if try to GC.
174 This is for code which is written on the assumption that
175 no GC will happen, so as to verify that assumption. */
176
177 int abort_on_gc;
178
179 /* Number of live and free conses etc. */
180
181 static EMACS_INT total_conses, total_markers, total_symbols, total_vector_size;
182 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
183 static EMACS_INT total_free_floats, total_floats;
184
185 /* Points to memory space allocated as "spare", to be freed if we run
186 out of memory. We keep one large block, four cons-blocks, and
187 two string blocks. */
188
189 static char *spare_memory[7];
190
191 /* Amount of spare memory to keep in large reserve block, or to see
192 whether this much is available when malloc fails on a larger request. */
193
194 #define SPARE_MEMORY (1 << 14)
195
196 /* Number of extra blocks malloc should get when it needs more core. */
197
198 static int malloc_hysteresis;
199
200 /* Initialize it to a nonzero value to force it into data space
201 (rather than bss space). That way unexec will remap it into text
202 space (pure), on some systems. We have not implemented the
203 remapping on more recent systems because this is less important
204 nowadays than in the days of small memories and timesharing. */
205
206 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
207 #define PUREBEG (char *) pure
208
209 /* Pointer to the pure area, and its size. */
210
211 static char *purebeg;
212 static ptrdiff_t pure_size;
213
214 /* Number of bytes of pure storage used before pure storage overflowed.
215 If this is non-zero, this implies that an overflow occurred. */
216
217 static ptrdiff_t pure_bytes_used_before_overflow;
218
219 /* Value is non-zero if P points into pure space. */
220
221 #define PURE_POINTER_P(P) \
222 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
223
224 /* Index in pure at which next pure Lisp object will be allocated.. */
225
226 static ptrdiff_t pure_bytes_used_lisp;
227
228 /* Number of bytes allocated for non-Lisp objects in pure storage. */
229
230 static ptrdiff_t pure_bytes_used_non_lisp;
231
232 /* If nonzero, this is a warning delivered by malloc and not yet
233 displayed. */
234
235 const char *pending_malloc_warning;
236
237 /* Maximum amount of C stack to save when a GC happens. */
238
239 #ifndef MAX_SAVE_STACK
240 #define MAX_SAVE_STACK 16000
241 #endif
242
243 /* Buffer in which we save a copy of the C stack at each GC. */
244
245 #if MAX_SAVE_STACK > 0
246 static char *stack_copy;
247 static ptrdiff_t stack_copy_size;
248 #endif
249
250 /* Non-zero means ignore malloc warnings. Set during initialization.
251 Currently not used. */
252
253 static int ignore_warnings;
254
255 static Lisp_Object Qgc_cons_threshold;
256 Lisp_Object Qchar_table_extra_slots;
257
258 /* Hook run after GC has finished. */
259
260 static Lisp_Object Qpost_gc_hook;
261
262 static void mark_buffer (Lisp_Object);
263 static void mark_terminals (void);
264 static void gc_sweep (void);
265 static void mark_glyph_matrix (struct glyph_matrix *);
266 static void mark_face_cache (struct face_cache *);
267
268 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
269 static void refill_memory_reserve (void);
270 #endif
271 static struct Lisp_String *allocate_string (void);
272 static void compact_small_strings (void);
273 static void free_large_strings (void);
274 static void sweep_strings (void);
275 static void free_misc (Lisp_Object);
276 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
277
278 /* When scanning the C stack for live Lisp objects, Emacs keeps track
279 of what memory allocated via lisp_malloc is intended for what
280 purpose. This enumeration specifies the type of memory. */
281
282 enum mem_type
283 {
284 MEM_TYPE_NON_LISP,
285 MEM_TYPE_BUFFER,
286 MEM_TYPE_CONS,
287 MEM_TYPE_STRING,
288 MEM_TYPE_MISC,
289 MEM_TYPE_SYMBOL,
290 MEM_TYPE_FLOAT,
291 /* We used to keep separate mem_types for subtypes of vectors such as
292 process, hash_table, frame, terminal, and window, but we never made
293 use of the distinction, so it only caused source-code complexity
294 and runtime slowdown. Minor but pointless. */
295 MEM_TYPE_VECTORLIKE
296 };
297
298 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
299 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
300
301
302 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
303
304 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
305 #include <stdio.h> /* For fprintf. */
306 #endif
307
308 /* A unique object in pure space used to make some Lisp objects
309 on free lists recognizable in O(1). */
310
311 static Lisp_Object Vdead;
312 #define DEADP(x) EQ (x, Vdead)
313
314 #ifdef GC_MALLOC_CHECK
315
316 enum mem_type allocated_mem_type;
317 static int dont_register_blocks;
318
319 #endif /* GC_MALLOC_CHECK */
320
321 /* A node in the red-black tree describing allocated memory containing
322 Lisp data. Each such block is recorded with its start and end
323 address when it is allocated, and removed from the tree when it
324 is freed.
325
326 A red-black tree is a balanced binary tree with the following
327 properties:
328
329 1. Every node is either red or black.
330 2. Every leaf is black.
331 3. If a node is red, then both of its children are black.
332 4. Every simple path from a node to a descendant leaf contains
333 the same number of black nodes.
334 5. The root is always black.
335
336 When nodes are inserted into the tree, or deleted from the tree,
337 the tree is "fixed" so that these properties are always true.
338
339 A red-black tree with N internal nodes has height at most 2
340 log(N+1). Searches, insertions and deletions are done in O(log N).
341 Please see a text book about data structures for a detailed
342 description of red-black trees. Any book worth its salt should
343 describe them. */
344
345 struct mem_node
346 {
347 /* Children of this node. These pointers are never NULL. When there
348 is no child, the value is MEM_NIL, which points to a dummy node. */
349 struct mem_node *left, *right;
350
351 /* The parent of this node. In the root node, this is NULL. */
352 struct mem_node *parent;
353
354 /* Start and end of allocated region. */
355 void *start, *end;
356
357 /* Node color. */
358 enum {MEM_BLACK, MEM_RED} color;
359
360 /* Memory type. */
361 enum mem_type type;
362 };
363
364 /* Base address of stack. Set in main. */
365
366 Lisp_Object *stack_base;
367
368 /* Root of the tree describing allocated Lisp memory. */
369
370 static struct mem_node *mem_root;
371
372 /* Lowest and highest known address in the heap. */
373
374 static void *min_heap_address, *max_heap_address;
375
376 /* Sentinel node of the tree. */
377
378 static struct mem_node mem_z;
379 #define MEM_NIL &mem_z
380
381 static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
382 static void lisp_free (POINTER_TYPE *);
383 static void mark_stack (void);
384 static int live_vector_p (struct mem_node *, void *);
385 static int live_buffer_p (struct mem_node *, void *);
386 static int live_string_p (struct mem_node *, void *);
387 static int live_cons_p (struct mem_node *, void *);
388 static int live_symbol_p (struct mem_node *, void *);
389 static int live_float_p (struct mem_node *, void *);
390 static int live_misc_p (struct mem_node *, void *);
391 static void mark_maybe_object (Lisp_Object);
392 static void mark_memory (void *, void *);
393 static void mem_init (void);
394 static struct mem_node *mem_insert (void *, void *, enum mem_type);
395 static void mem_insert_fixup (struct mem_node *);
396 static void mem_rotate_left (struct mem_node *);
397 static void mem_rotate_right (struct mem_node *);
398 static void mem_delete (struct mem_node *);
399 static void mem_delete_fixup (struct mem_node *);
400 static inline struct mem_node *mem_find (void *);
401
402
403 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
404 static void check_gcpros (void);
405 #endif
406
407 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
408
409 #ifndef DEADP
410 # define DEADP(x) 0
411 #endif
412
413 /* Recording what needs to be marked for gc. */
414
415 struct gcpro *gcprolist;
416
417 /* Addresses of staticpro'd variables. Initialize it to a nonzero
418 value; otherwise some compilers put it into BSS. */
419
420 #define NSTATICS 0x640
421 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
422
423 /* Index of next unused slot in staticvec. */
424
425 static int staticidx = 0;
426
427 static POINTER_TYPE *pure_alloc (size_t, int);
428
429
430 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
431 ALIGNMENT must be a power of 2. */
432
433 #define ALIGN(ptr, ALIGNMENT) \
434 ((POINTER_TYPE *) ((((uintptr_t) (ptr)) + (ALIGNMENT) - 1) \
435 & ~((ALIGNMENT) - 1)))
436
437
438 \f
439 /************************************************************************
440 Malloc
441 ************************************************************************/
442
443 /* Function malloc calls this if it finds we are near exhausting storage. */
444
445 void
446 malloc_warning (const char *str)
447 {
448 pending_malloc_warning = str;
449 }
450
451
452 /* Display an already-pending malloc warning. */
453
454 void
455 display_malloc_warning (void)
456 {
457 call3 (intern ("display-warning"),
458 intern ("alloc"),
459 build_string (pending_malloc_warning),
460 intern ("emergency"));
461 pending_malloc_warning = 0;
462 }
463 \f
464 /* Called if we can't allocate relocatable space for a buffer. */
465
466 void
467 buffer_memory_full (ptrdiff_t nbytes)
468 {
469 /* If buffers use the relocating allocator, no need to free
470 spare_memory, because we may have plenty of malloc space left
471 that we could get, and if we don't, the malloc that fails will
472 itself cause spare_memory to be freed. If buffers don't use the
473 relocating allocator, treat this like any other failing
474 malloc. */
475
476 #ifndef REL_ALLOC
477 memory_full (nbytes);
478 #endif
479
480 /* This used to call error, but if we've run out of memory, we could
481 get infinite recursion trying to build the string. */
482 xsignal (Qnil, Vmemory_signal_data);
483 }
484
485
486 #ifndef XMALLOC_OVERRUN_CHECK
487 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
488 #else
489
490 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
491 around each block.
492
493 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
494 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
495 block size in little-endian order. The trailer consists of
496 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
497
498 The header is used to detect whether this block has been allocated
499 through these functions, as some low-level libc functions may
500 bypass the malloc hooks. */
501
502 #define XMALLOC_OVERRUN_CHECK_SIZE 16
503 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
504 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
505
506 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
507 hold a size_t value and (2) the header size is a multiple of the
508 alignment that Emacs needs for C types and for USE_LSB_TAG. */
509 #define XMALLOC_BASE_ALIGNMENT \
510 offsetof ( \
511 struct { \
512 union { long double d; intmax_t i; void *p; } u; \
513 char c; \
514 }, \
515 c)
516 #ifdef USE_LSB_TAG
517 /* A common multiple of the positive integers A and B. Ideally this
518 would be the least common multiple, but there's no way to do that
519 as a constant expression in C, so do the best that we can easily do. */
520 # define COMMON_MULTIPLE(a, b) \
521 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
522 # define XMALLOC_HEADER_ALIGNMENT \
523 COMMON_MULTIPLE (1 << GCTYPEBITS, XMALLOC_BASE_ALIGNMENT)
524 #else
525 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
526 #endif
527 #define XMALLOC_OVERRUN_SIZE_SIZE \
528 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
529 + XMALLOC_HEADER_ALIGNMENT - 1) \
530 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
531 - XMALLOC_OVERRUN_CHECK_SIZE)
532
533 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
534 { '\x9a', '\x9b', '\xae', '\xaf',
535 '\xbf', '\xbe', '\xce', '\xcf',
536 '\xea', '\xeb', '\xec', '\xed',
537 '\xdf', '\xde', '\x9c', '\x9d' };
538
539 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
540 { '\xaa', '\xab', '\xac', '\xad',
541 '\xba', '\xbb', '\xbc', '\xbd',
542 '\xca', '\xcb', '\xcc', '\xcd',
543 '\xda', '\xdb', '\xdc', '\xdd' };
544
545 /* Insert and extract the block size in the header. */
546
547 static void
548 xmalloc_put_size (unsigned char *ptr, size_t size)
549 {
550 int i;
551 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
552 {
553 *--ptr = size & ((1 << CHAR_BIT) - 1);
554 size >>= CHAR_BIT;
555 }
556 }
557
558 static size_t
559 xmalloc_get_size (unsigned char *ptr)
560 {
561 size_t size = 0;
562 int i;
563 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
564 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
565 {
566 size <<= CHAR_BIT;
567 size += *ptr++;
568 }
569 return size;
570 }
571
572
573 /* The call depth in overrun_check functions. For example, this might happen:
574 xmalloc()
575 overrun_check_malloc()
576 -> malloc -> (via hook)_-> emacs_blocked_malloc
577 -> overrun_check_malloc
578 call malloc (hooks are NULL, so real malloc is called).
579 malloc returns 10000.
580 add overhead, return 10016.
581 <- (back in overrun_check_malloc)
582 add overhead again, return 10032
583 xmalloc returns 10032.
584
585 (time passes).
586
587 xfree(10032)
588 overrun_check_free(10032)
589 decrease overhead
590 free(10016) <- crash, because 10000 is the original pointer. */
591
592 static ptrdiff_t check_depth;
593
594 /* Like malloc, but wraps allocated block with header and trailer. */
595
596 static POINTER_TYPE *
597 overrun_check_malloc (size_t size)
598 {
599 register unsigned char *val;
600 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
601 if (SIZE_MAX - overhead < size)
602 abort ();
603
604 val = (unsigned char *) malloc (size + overhead);
605 if (val && check_depth == 1)
606 {
607 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
608 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
609 xmalloc_put_size (val, size);
610 memcpy (val + size, xmalloc_overrun_check_trailer,
611 XMALLOC_OVERRUN_CHECK_SIZE);
612 }
613 --check_depth;
614 return (POINTER_TYPE *)val;
615 }
616
617
618 /* Like realloc, but checks old block for overrun, and wraps new block
619 with header and trailer. */
620
621 static POINTER_TYPE *
622 overrun_check_realloc (POINTER_TYPE *block, size_t size)
623 {
624 register unsigned char *val = (unsigned char *) block;
625 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
626 if (SIZE_MAX - overhead < size)
627 abort ();
628
629 if (val
630 && check_depth == 1
631 && memcmp (xmalloc_overrun_check_header,
632 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
633 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
634 {
635 size_t osize = xmalloc_get_size (val);
636 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
637 XMALLOC_OVERRUN_CHECK_SIZE))
638 abort ();
639 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
640 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
641 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
642 }
643
644 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
645
646 if (val && check_depth == 1)
647 {
648 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
649 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
650 xmalloc_put_size (val, size);
651 memcpy (val + size, xmalloc_overrun_check_trailer,
652 XMALLOC_OVERRUN_CHECK_SIZE);
653 }
654 --check_depth;
655 return (POINTER_TYPE *)val;
656 }
657
658 /* Like free, but checks block for overrun. */
659
660 static void
661 overrun_check_free (POINTER_TYPE *block)
662 {
663 unsigned char *val = (unsigned char *) block;
664
665 ++check_depth;
666 if (val
667 && check_depth == 1
668 && memcmp (xmalloc_overrun_check_header,
669 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
670 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
671 {
672 size_t osize = xmalloc_get_size (val);
673 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
674 XMALLOC_OVERRUN_CHECK_SIZE))
675 abort ();
676 #ifdef XMALLOC_CLEAR_FREE_MEMORY
677 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
678 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
679 #else
680 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
681 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
682 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
683 #endif
684 }
685
686 free (val);
687 --check_depth;
688 }
689
690 #undef malloc
691 #undef realloc
692 #undef free
693 #define malloc overrun_check_malloc
694 #define realloc overrun_check_realloc
695 #define free overrun_check_free
696 #endif
697
698 #ifdef SYNC_INPUT
699 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
700 there's no need to block input around malloc. */
701 #define MALLOC_BLOCK_INPUT ((void)0)
702 #define MALLOC_UNBLOCK_INPUT ((void)0)
703 #else
704 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
705 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
706 #endif
707
708 /* Like malloc but check for no memory and block interrupt input.. */
709
710 POINTER_TYPE *
711 xmalloc (size_t size)
712 {
713 register POINTER_TYPE *val;
714
715 MALLOC_BLOCK_INPUT;
716 val = (POINTER_TYPE *) malloc (size);
717 MALLOC_UNBLOCK_INPUT;
718
719 if (!val && size)
720 memory_full (size);
721 return val;
722 }
723
724
725 /* Like realloc but check for no memory and block interrupt input.. */
726
727 POINTER_TYPE *
728 xrealloc (POINTER_TYPE *block, size_t size)
729 {
730 register POINTER_TYPE *val;
731
732 MALLOC_BLOCK_INPUT;
733 /* We must call malloc explicitly when BLOCK is 0, since some
734 reallocs don't do this. */
735 if (! block)
736 val = (POINTER_TYPE *) malloc (size);
737 else
738 val = (POINTER_TYPE *) realloc (block, size);
739 MALLOC_UNBLOCK_INPUT;
740
741 if (!val && size)
742 memory_full (size);
743 return val;
744 }
745
746
747 /* Like free but block interrupt input. */
748
749 void
750 xfree (POINTER_TYPE *block)
751 {
752 if (!block)
753 return;
754 MALLOC_BLOCK_INPUT;
755 free (block);
756 MALLOC_UNBLOCK_INPUT;
757 /* We don't call refill_memory_reserve here
758 because that duplicates doing so in emacs_blocked_free
759 and the criterion should go there. */
760 }
761
762
763 /* Other parts of Emacs pass large int values to allocator functions
764 expecting ptrdiff_t. This is portable in practice, but check it to
765 be safe. */
766 verify (INT_MAX <= PTRDIFF_MAX);
767
768
769 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
770 Signal an error on memory exhaustion, and block interrupt input. */
771
772 void *
773 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
774 {
775 xassert (0 <= nitems && 0 < item_size);
776 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
777 memory_full (SIZE_MAX);
778 return xmalloc (nitems * item_size);
779 }
780
781
782 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
783 Signal an error on memory exhaustion, and block interrupt input. */
784
785 void *
786 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
787 {
788 xassert (0 <= nitems && 0 < item_size);
789 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
790 memory_full (SIZE_MAX);
791 return xrealloc (pa, nitems * item_size);
792 }
793
794
795 /* Grow PA, which points to an array of *NITEMS items, and return the
796 location of the reallocated array, updating *NITEMS to reflect its
797 new size. The new array will contain at least NITEMS_INCR_MIN more
798 items, but will not contain more than NITEMS_MAX items total.
799 ITEM_SIZE is the size of each item, in bytes.
800
801 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
802 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
803 infinity.
804
805 If PA is null, then allocate a new array instead of reallocating
806 the old one. Thus, to grow an array A without saving its old
807 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
808 &NITEMS, ...).
809
810 Block interrupt input as needed. If memory exhaustion occurs, set
811 *NITEMS to zero if PA is null, and signal an error (i.e., do not
812 return). */
813
814 void *
815 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
816 ptrdiff_t nitems_max, ptrdiff_t item_size)
817 {
818 /* The approximate size to use for initial small allocation
819 requests. This is the largest "small" request for the GNU C
820 library malloc. */
821 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
822
823 /* If the array is tiny, grow it to about (but no greater than)
824 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
825 ptrdiff_t n = *nitems;
826 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
827 ptrdiff_t half_again = n >> 1;
828 ptrdiff_t incr_estimate = max (tiny_max, half_again);
829
830 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
831 NITEMS_MAX, and what the C language can represent safely. */
832 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
833 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
834 ? nitems_max : C_language_max);
835 ptrdiff_t nitems_incr_max = n_max - n;
836 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
837
838 xassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
839 if (! pa)
840 *nitems = 0;
841 if (nitems_incr_max < incr)
842 memory_full (SIZE_MAX);
843 n += incr;
844 pa = xrealloc (pa, n * item_size);
845 *nitems = n;
846 return pa;
847 }
848
849
850 /* Like strdup, but uses xmalloc. */
851
852 char *
853 xstrdup (const char *s)
854 {
855 size_t len = strlen (s) + 1;
856 char *p = (char *) xmalloc (len);
857 memcpy (p, s, len);
858 return p;
859 }
860
861
862 /* Unwind for SAFE_ALLOCA */
863
864 Lisp_Object
865 safe_alloca_unwind (Lisp_Object arg)
866 {
867 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
868
869 p->dogc = 0;
870 xfree (p->pointer);
871 p->pointer = 0;
872 free_misc (arg);
873 return Qnil;
874 }
875
876
877 /* Like malloc but used for allocating Lisp data. NBYTES is the
878 number of bytes to allocate, TYPE describes the intended use of the
879 allocated memory block (for strings, for conses, ...). */
880
881 #ifndef USE_LSB_TAG
882 static void *lisp_malloc_loser;
883 #endif
884
885 static POINTER_TYPE *
886 lisp_malloc (size_t nbytes, enum mem_type type)
887 {
888 register void *val;
889
890 MALLOC_BLOCK_INPUT;
891
892 #ifdef GC_MALLOC_CHECK
893 allocated_mem_type = type;
894 #endif
895
896 val = (void *) malloc (nbytes);
897
898 #ifndef USE_LSB_TAG
899 /* If the memory just allocated cannot be addressed thru a Lisp
900 object's pointer, and it needs to be,
901 that's equivalent to running out of memory. */
902 if (val && type != MEM_TYPE_NON_LISP)
903 {
904 Lisp_Object tem;
905 XSETCONS (tem, (char *) val + nbytes - 1);
906 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
907 {
908 lisp_malloc_loser = val;
909 free (val);
910 val = 0;
911 }
912 }
913 #endif
914
915 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
916 if (val && type != MEM_TYPE_NON_LISP)
917 mem_insert (val, (char *) val + nbytes, type);
918 #endif
919
920 MALLOC_UNBLOCK_INPUT;
921 if (!val && nbytes)
922 memory_full (nbytes);
923 return val;
924 }
925
926 /* Free BLOCK. This must be called to free memory allocated with a
927 call to lisp_malloc. */
928
929 static void
930 lisp_free (POINTER_TYPE *block)
931 {
932 MALLOC_BLOCK_INPUT;
933 free (block);
934 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
935 mem_delete (mem_find (block));
936 #endif
937 MALLOC_UNBLOCK_INPUT;
938 }
939
940 /* Allocation of aligned blocks of memory to store Lisp data. */
941 /* The entry point is lisp_align_malloc which returns blocks of at most */
942 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
943
944 /* Use posix_memalloc if the system has it and we're using the system's
945 malloc (because our gmalloc.c routines don't have posix_memalign although
946 its memalloc could be used). */
947 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
948 #define USE_POSIX_MEMALIGN 1
949 #endif
950
951 /* BLOCK_ALIGN has to be a power of 2. */
952 #define BLOCK_ALIGN (1 << 10)
953
954 /* Padding to leave at the end of a malloc'd block. This is to give
955 malloc a chance to minimize the amount of memory wasted to alignment.
956 It should be tuned to the particular malloc library used.
957 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
958 posix_memalign on the other hand would ideally prefer a value of 4
959 because otherwise, there's 1020 bytes wasted between each ablocks.
960 In Emacs, testing shows that those 1020 can most of the time be
961 efficiently used by malloc to place other objects, so a value of 0 can
962 still preferable unless you have a lot of aligned blocks and virtually
963 nothing else. */
964 #define BLOCK_PADDING 0
965 #define BLOCK_BYTES \
966 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
967
968 /* Internal data structures and constants. */
969
970 #define ABLOCKS_SIZE 16
971
972 /* An aligned block of memory. */
973 struct ablock
974 {
975 union
976 {
977 char payload[BLOCK_BYTES];
978 struct ablock *next_free;
979 } x;
980 /* `abase' is the aligned base of the ablocks. */
981 /* It is overloaded to hold the virtual `busy' field that counts
982 the number of used ablock in the parent ablocks.
983 The first ablock has the `busy' field, the others have the `abase'
984 field. To tell the difference, we assume that pointers will have
985 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
986 is used to tell whether the real base of the parent ablocks is `abase'
987 (if not, the word before the first ablock holds a pointer to the
988 real base). */
989 struct ablocks *abase;
990 /* The padding of all but the last ablock is unused. The padding of
991 the last ablock in an ablocks is not allocated. */
992 #if BLOCK_PADDING
993 char padding[BLOCK_PADDING];
994 #endif
995 };
996
997 /* A bunch of consecutive aligned blocks. */
998 struct ablocks
999 {
1000 struct ablock blocks[ABLOCKS_SIZE];
1001 };
1002
1003 /* Size of the block requested from malloc or memalign. */
1004 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1005
1006 #define ABLOCK_ABASE(block) \
1007 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1008 ? (struct ablocks *)(block) \
1009 : (block)->abase)
1010
1011 /* Virtual `busy' field. */
1012 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1013
1014 /* Pointer to the (not necessarily aligned) malloc block. */
1015 #ifdef USE_POSIX_MEMALIGN
1016 #define ABLOCKS_BASE(abase) (abase)
1017 #else
1018 #define ABLOCKS_BASE(abase) \
1019 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
1020 #endif
1021
1022 /* The list of free ablock. */
1023 static struct ablock *free_ablock;
1024
1025 /* Allocate an aligned block of nbytes.
1026 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1027 smaller or equal to BLOCK_BYTES. */
1028 static POINTER_TYPE *
1029 lisp_align_malloc (size_t nbytes, enum mem_type type)
1030 {
1031 void *base, *val;
1032 struct ablocks *abase;
1033
1034 eassert (nbytes <= BLOCK_BYTES);
1035
1036 MALLOC_BLOCK_INPUT;
1037
1038 #ifdef GC_MALLOC_CHECK
1039 allocated_mem_type = type;
1040 #endif
1041
1042 if (!free_ablock)
1043 {
1044 int i;
1045 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1046
1047 #ifdef DOUG_LEA_MALLOC
1048 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1049 because mapped region contents are not preserved in
1050 a dumped Emacs. */
1051 mallopt (M_MMAP_MAX, 0);
1052 #endif
1053
1054 #ifdef USE_POSIX_MEMALIGN
1055 {
1056 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1057 if (err)
1058 base = NULL;
1059 abase = base;
1060 }
1061 #else
1062 base = malloc (ABLOCKS_BYTES);
1063 abase = ALIGN (base, BLOCK_ALIGN);
1064 #endif
1065
1066 if (base == 0)
1067 {
1068 MALLOC_UNBLOCK_INPUT;
1069 memory_full (ABLOCKS_BYTES);
1070 }
1071
1072 aligned = (base == abase);
1073 if (!aligned)
1074 ((void**)abase)[-1] = base;
1075
1076 #ifdef DOUG_LEA_MALLOC
1077 /* Back to a reasonable maximum of mmap'ed areas. */
1078 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1079 #endif
1080
1081 #ifndef USE_LSB_TAG
1082 /* If the memory just allocated cannot be addressed thru a Lisp
1083 object's pointer, and it needs to be, that's equivalent to
1084 running out of memory. */
1085 if (type != MEM_TYPE_NON_LISP)
1086 {
1087 Lisp_Object tem;
1088 char *end = (char *) base + ABLOCKS_BYTES - 1;
1089 XSETCONS (tem, end);
1090 if ((char *) XCONS (tem) != end)
1091 {
1092 lisp_malloc_loser = base;
1093 free (base);
1094 MALLOC_UNBLOCK_INPUT;
1095 memory_full (SIZE_MAX);
1096 }
1097 }
1098 #endif
1099
1100 /* Initialize the blocks and put them on the free list.
1101 Is `base' was not properly aligned, we can't use the last block. */
1102 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1103 {
1104 abase->blocks[i].abase = abase;
1105 abase->blocks[i].x.next_free = free_ablock;
1106 free_ablock = &abase->blocks[i];
1107 }
1108 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1109
1110 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1111 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1112 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1113 eassert (ABLOCKS_BASE (abase) == base);
1114 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1115 }
1116
1117 abase = ABLOCK_ABASE (free_ablock);
1118 ABLOCKS_BUSY (abase) =
1119 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1120 val = free_ablock;
1121 free_ablock = free_ablock->x.next_free;
1122
1123 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1124 if (type != MEM_TYPE_NON_LISP)
1125 mem_insert (val, (char *) val + nbytes, type);
1126 #endif
1127
1128 MALLOC_UNBLOCK_INPUT;
1129
1130 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1131 return val;
1132 }
1133
1134 static void
1135 lisp_align_free (POINTER_TYPE *block)
1136 {
1137 struct ablock *ablock = block;
1138 struct ablocks *abase = ABLOCK_ABASE (ablock);
1139
1140 MALLOC_BLOCK_INPUT;
1141 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1142 mem_delete (mem_find (block));
1143 #endif
1144 /* Put on free list. */
1145 ablock->x.next_free = free_ablock;
1146 free_ablock = ablock;
1147 /* Update busy count. */
1148 ABLOCKS_BUSY (abase) =
1149 (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1150
1151 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1152 { /* All the blocks are free. */
1153 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1154 struct ablock **tem = &free_ablock;
1155 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1156
1157 while (*tem)
1158 {
1159 if (*tem >= (struct ablock *) abase && *tem < atop)
1160 {
1161 i++;
1162 *tem = (*tem)->x.next_free;
1163 }
1164 else
1165 tem = &(*tem)->x.next_free;
1166 }
1167 eassert ((aligned & 1) == aligned);
1168 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1169 #ifdef USE_POSIX_MEMALIGN
1170 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1171 #endif
1172 free (ABLOCKS_BASE (abase));
1173 }
1174 MALLOC_UNBLOCK_INPUT;
1175 }
1176
1177 /* Return a new buffer structure allocated from the heap with
1178 a call to lisp_malloc. */
1179
1180 struct buffer *
1181 allocate_buffer (void)
1182 {
1183 struct buffer *b
1184 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1185 MEM_TYPE_BUFFER);
1186 XSETPVECTYPESIZE (b, PVEC_BUFFER,
1187 ((sizeof (struct buffer) + sizeof (EMACS_INT) - 1)
1188 / sizeof (EMACS_INT)));
1189 return b;
1190 }
1191
1192 \f
1193 #ifndef SYSTEM_MALLOC
1194
1195 /* Arranging to disable input signals while we're in malloc.
1196
1197 This only works with GNU malloc. To help out systems which can't
1198 use GNU malloc, all the calls to malloc, realloc, and free
1199 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1200 pair; unfortunately, we have no idea what C library functions
1201 might call malloc, so we can't really protect them unless you're
1202 using GNU malloc. Fortunately, most of the major operating systems
1203 can use GNU malloc. */
1204
1205 #ifndef SYNC_INPUT
1206 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1207 there's no need to block input around malloc. */
1208
1209 #ifndef DOUG_LEA_MALLOC
1210 extern void * (*__malloc_hook) (size_t, const void *);
1211 extern void * (*__realloc_hook) (void *, size_t, const void *);
1212 extern void (*__free_hook) (void *, const void *);
1213 /* Else declared in malloc.h, perhaps with an extra arg. */
1214 #endif /* DOUG_LEA_MALLOC */
1215 static void * (*old_malloc_hook) (size_t, const void *);
1216 static void * (*old_realloc_hook) (void *, size_t, const void*);
1217 static void (*old_free_hook) (void*, const void*);
1218
1219 #ifdef DOUG_LEA_MALLOC
1220 # define BYTES_USED (mallinfo ().uordblks)
1221 #else
1222 # define BYTES_USED _bytes_used
1223 #endif
1224
1225 static size_t bytes_used_when_reconsidered;
1226
1227 /* Value of _bytes_used, when spare_memory was freed. */
1228
1229 static size_t bytes_used_when_full;
1230
1231 /* This function is used as the hook for free to call. */
1232
1233 static void
1234 emacs_blocked_free (void *ptr, const void *ptr2)
1235 {
1236 BLOCK_INPUT_ALLOC;
1237
1238 #ifdef GC_MALLOC_CHECK
1239 if (ptr)
1240 {
1241 struct mem_node *m;
1242
1243 m = mem_find (ptr);
1244 if (m == MEM_NIL || m->start != ptr)
1245 {
1246 fprintf (stderr,
1247 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1248 abort ();
1249 }
1250 else
1251 {
1252 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1253 mem_delete (m);
1254 }
1255 }
1256 #endif /* GC_MALLOC_CHECK */
1257
1258 __free_hook = old_free_hook;
1259 free (ptr);
1260
1261 /* If we released our reserve (due to running out of memory),
1262 and we have a fair amount free once again,
1263 try to set aside another reserve in case we run out once more. */
1264 if (! NILP (Vmemory_full)
1265 /* Verify there is enough space that even with the malloc
1266 hysteresis this call won't run out again.
1267 The code here is correct as long as SPARE_MEMORY
1268 is substantially larger than the block size malloc uses. */
1269 && (bytes_used_when_full
1270 > ((bytes_used_when_reconsidered = BYTES_USED)
1271 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1272 refill_memory_reserve ();
1273
1274 __free_hook = emacs_blocked_free;
1275 UNBLOCK_INPUT_ALLOC;
1276 }
1277
1278
1279 /* This function is the malloc hook that Emacs uses. */
1280
1281 static void *
1282 emacs_blocked_malloc (size_t size, const void *ptr)
1283 {
1284 void *value;
1285
1286 BLOCK_INPUT_ALLOC;
1287 __malloc_hook = old_malloc_hook;
1288 #ifdef DOUG_LEA_MALLOC
1289 /* Segfaults on my system. --lorentey */
1290 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1291 #else
1292 __malloc_extra_blocks = malloc_hysteresis;
1293 #endif
1294
1295 value = (void *) malloc (size);
1296
1297 #ifdef GC_MALLOC_CHECK
1298 {
1299 struct mem_node *m = mem_find (value);
1300 if (m != MEM_NIL)
1301 {
1302 fprintf (stderr, "Malloc returned %p which is already in use\n",
1303 value);
1304 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1305 m->start, m->end, (char *) m->end - (char *) m->start,
1306 m->type);
1307 abort ();
1308 }
1309
1310 if (!dont_register_blocks)
1311 {
1312 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1313 allocated_mem_type = MEM_TYPE_NON_LISP;
1314 }
1315 }
1316 #endif /* GC_MALLOC_CHECK */
1317
1318 __malloc_hook = emacs_blocked_malloc;
1319 UNBLOCK_INPUT_ALLOC;
1320
1321 /* fprintf (stderr, "%p malloc\n", value); */
1322 return value;
1323 }
1324
1325
1326 /* This function is the realloc hook that Emacs uses. */
1327
1328 static void *
1329 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1330 {
1331 void *value;
1332
1333 BLOCK_INPUT_ALLOC;
1334 __realloc_hook = old_realloc_hook;
1335
1336 #ifdef GC_MALLOC_CHECK
1337 if (ptr)
1338 {
1339 struct mem_node *m = mem_find (ptr);
1340 if (m == MEM_NIL || m->start != ptr)
1341 {
1342 fprintf (stderr,
1343 "Realloc of %p which wasn't allocated with malloc\n",
1344 ptr);
1345 abort ();
1346 }
1347
1348 mem_delete (m);
1349 }
1350
1351 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1352
1353 /* Prevent malloc from registering blocks. */
1354 dont_register_blocks = 1;
1355 #endif /* GC_MALLOC_CHECK */
1356
1357 value = (void *) realloc (ptr, size);
1358
1359 #ifdef GC_MALLOC_CHECK
1360 dont_register_blocks = 0;
1361
1362 {
1363 struct mem_node *m = mem_find (value);
1364 if (m != MEM_NIL)
1365 {
1366 fprintf (stderr, "Realloc returns memory that is already in use\n");
1367 abort ();
1368 }
1369
1370 /* Can't handle zero size regions in the red-black tree. */
1371 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1372 }
1373
1374 /* fprintf (stderr, "%p <- realloc\n", value); */
1375 #endif /* GC_MALLOC_CHECK */
1376
1377 __realloc_hook = emacs_blocked_realloc;
1378 UNBLOCK_INPUT_ALLOC;
1379
1380 return value;
1381 }
1382
1383
1384 #ifdef HAVE_PTHREAD
1385 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1386 normal malloc. Some thread implementations need this as they call
1387 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1388 calls malloc because it is the first call, and we have an endless loop. */
1389
1390 void
1391 reset_malloc_hooks (void)
1392 {
1393 __free_hook = old_free_hook;
1394 __malloc_hook = old_malloc_hook;
1395 __realloc_hook = old_realloc_hook;
1396 }
1397 #endif /* HAVE_PTHREAD */
1398
1399
1400 /* Called from main to set up malloc to use our hooks. */
1401
1402 void
1403 uninterrupt_malloc (void)
1404 {
1405 #ifdef HAVE_PTHREAD
1406 #ifdef DOUG_LEA_MALLOC
1407 pthread_mutexattr_t attr;
1408
1409 /* GLIBC has a faster way to do this, but let's keep it portable.
1410 This is according to the Single UNIX Specification. */
1411 pthread_mutexattr_init (&attr);
1412 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1413 pthread_mutex_init (&alloc_mutex, &attr);
1414 #else /* !DOUG_LEA_MALLOC */
1415 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1416 and the bundled gmalloc.c doesn't require it. */
1417 pthread_mutex_init (&alloc_mutex, NULL);
1418 #endif /* !DOUG_LEA_MALLOC */
1419 #endif /* HAVE_PTHREAD */
1420
1421 if (__free_hook != emacs_blocked_free)
1422 old_free_hook = __free_hook;
1423 __free_hook = emacs_blocked_free;
1424
1425 if (__malloc_hook != emacs_blocked_malloc)
1426 old_malloc_hook = __malloc_hook;
1427 __malloc_hook = emacs_blocked_malloc;
1428
1429 if (__realloc_hook != emacs_blocked_realloc)
1430 old_realloc_hook = __realloc_hook;
1431 __realloc_hook = emacs_blocked_realloc;
1432 }
1433
1434 #endif /* not SYNC_INPUT */
1435 #endif /* not SYSTEM_MALLOC */
1436
1437
1438 \f
1439 /***********************************************************************
1440 Interval Allocation
1441 ***********************************************************************/
1442
1443 /* Number of intervals allocated in an interval_block structure.
1444 The 1020 is 1024 minus malloc overhead. */
1445
1446 #define INTERVAL_BLOCK_SIZE \
1447 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1448
1449 /* Intervals are allocated in chunks in form of an interval_block
1450 structure. */
1451
1452 struct interval_block
1453 {
1454 /* Place `intervals' first, to preserve alignment. */
1455 struct interval intervals[INTERVAL_BLOCK_SIZE];
1456 struct interval_block *next;
1457 };
1458
1459 /* Current interval block. Its `next' pointer points to older
1460 blocks. */
1461
1462 static struct interval_block *interval_block;
1463
1464 /* Index in interval_block above of the next unused interval
1465 structure. */
1466
1467 static int interval_block_index;
1468
1469 /* Number of free and live intervals. */
1470
1471 static EMACS_INT total_free_intervals, total_intervals;
1472
1473 /* List of free intervals. */
1474
1475 static INTERVAL interval_free_list;
1476
1477
1478 /* Initialize interval allocation. */
1479
1480 static void
1481 init_intervals (void)
1482 {
1483 interval_block = NULL;
1484 interval_block_index = INTERVAL_BLOCK_SIZE;
1485 interval_free_list = 0;
1486 }
1487
1488
1489 /* Return a new interval. */
1490
1491 INTERVAL
1492 make_interval (void)
1493 {
1494 INTERVAL val;
1495
1496 /* eassert (!handling_signal); */
1497
1498 MALLOC_BLOCK_INPUT;
1499
1500 if (interval_free_list)
1501 {
1502 val = interval_free_list;
1503 interval_free_list = INTERVAL_PARENT (interval_free_list);
1504 }
1505 else
1506 {
1507 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1508 {
1509 register struct interval_block *newi;
1510
1511 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1512 MEM_TYPE_NON_LISP);
1513
1514 newi->next = interval_block;
1515 interval_block = newi;
1516 interval_block_index = 0;
1517 }
1518 val = &interval_block->intervals[interval_block_index++];
1519 }
1520
1521 MALLOC_UNBLOCK_INPUT;
1522
1523 consing_since_gc += sizeof (struct interval);
1524 intervals_consed++;
1525 RESET_INTERVAL (val);
1526 val->gcmarkbit = 0;
1527 return val;
1528 }
1529
1530
1531 /* Mark Lisp objects in interval I. */
1532
1533 static void
1534 mark_interval (register INTERVAL i, Lisp_Object dummy)
1535 {
1536 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1537 i->gcmarkbit = 1;
1538 mark_object (i->plist);
1539 }
1540
1541
1542 /* Mark the interval tree rooted in TREE. Don't call this directly;
1543 use the macro MARK_INTERVAL_TREE instead. */
1544
1545 static void
1546 mark_interval_tree (register INTERVAL tree)
1547 {
1548 /* No need to test if this tree has been marked already; this
1549 function is always called through the MARK_INTERVAL_TREE macro,
1550 which takes care of that. */
1551
1552 traverse_intervals_noorder (tree, mark_interval, Qnil);
1553 }
1554
1555
1556 /* Mark the interval tree rooted in I. */
1557
1558 #define MARK_INTERVAL_TREE(i) \
1559 do { \
1560 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1561 mark_interval_tree (i); \
1562 } while (0)
1563
1564
1565 #define UNMARK_BALANCE_INTERVALS(i) \
1566 do { \
1567 if (! NULL_INTERVAL_P (i)) \
1568 (i) = balance_intervals (i); \
1569 } while (0)
1570
1571 \f
1572 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1573 can't create number objects in macros. */
1574 #ifndef make_number
1575 Lisp_Object
1576 make_number (EMACS_INT n)
1577 {
1578 Lisp_Object obj;
1579 obj.s.val = n;
1580 obj.s.type = Lisp_Int;
1581 return obj;
1582 }
1583 #endif
1584 \f
1585 /***********************************************************************
1586 String Allocation
1587 ***********************************************************************/
1588
1589 /* Lisp_Strings are allocated in string_block structures. When a new
1590 string_block is allocated, all the Lisp_Strings it contains are
1591 added to a free-list string_free_list. When a new Lisp_String is
1592 needed, it is taken from that list. During the sweep phase of GC,
1593 string_blocks that are entirely free are freed, except two which
1594 we keep.
1595
1596 String data is allocated from sblock structures. Strings larger
1597 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1598 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1599
1600 Sblocks consist internally of sdata structures, one for each
1601 Lisp_String. The sdata structure points to the Lisp_String it
1602 belongs to. The Lisp_String points back to the `u.data' member of
1603 its sdata structure.
1604
1605 When a Lisp_String is freed during GC, it is put back on
1606 string_free_list, and its `data' member and its sdata's `string'
1607 pointer is set to null. The size of the string is recorded in the
1608 `u.nbytes' member of the sdata. So, sdata structures that are no
1609 longer used, can be easily recognized, and it's easy to compact the
1610 sblocks of small strings which we do in compact_small_strings. */
1611
1612 /* Size in bytes of an sblock structure used for small strings. This
1613 is 8192 minus malloc overhead. */
1614
1615 #define SBLOCK_SIZE 8188
1616
1617 /* Strings larger than this are considered large strings. String data
1618 for large strings is allocated from individual sblocks. */
1619
1620 #define LARGE_STRING_BYTES 1024
1621
1622 /* Structure describing string memory sub-allocated from an sblock.
1623 This is where the contents of Lisp strings are stored. */
1624
1625 struct sdata
1626 {
1627 /* Back-pointer to the string this sdata belongs to. If null, this
1628 structure is free, and the NBYTES member of the union below
1629 contains the string's byte size (the same value that STRING_BYTES
1630 would return if STRING were non-null). If non-null, STRING_BYTES
1631 (STRING) is the size of the data, and DATA contains the string's
1632 contents. */
1633 struct Lisp_String *string;
1634
1635 #ifdef GC_CHECK_STRING_BYTES
1636
1637 ptrdiff_t nbytes;
1638 unsigned char data[1];
1639
1640 #define SDATA_NBYTES(S) (S)->nbytes
1641 #define SDATA_DATA(S) (S)->data
1642 #define SDATA_SELECTOR(member) member
1643
1644 #else /* not GC_CHECK_STRING_BYTES */
1645
1646 union
1647 {
1648 /* When STRING is non-null. */
1649 unsigned char data[1];
1650
1651 /* When STRING is null. */
1652 ptrdiff_t nbytes;
1653 } u;
1654
1655 #define SDATA_NBYTES(S) (S)->u.nbytes
1656 #define SDATA_DATA(S) (S)->u.data
1657 #define SDATA_SELECTOR(member) u.member
1658
1659 #endif /* not GC_CHECK_STRING_BYTES */
1660
1661 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1662 };
1663
1664
1665 /* Structure describing a block of memory which is sub-allocated to
1666 obtain string data memory for strings. Blocks for small strings
1667 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1668 as large as needed. */
1669
1670 struct sblock
1671 {
1672 /* Next in list. */
1673 struct sblock *next;
1674
1675 /* Pointer to the next free sdata block. This points past the end
1676 of the sblock if there isn't any space left in this block. */
1677 struct sdata *next_free;
1678
1679 /* Start of data. */
1680 struct sdata first_data;
1681 };
1682
1683 /* Number of Lisp strings in a string_block structure. The 1020 is
1684 1024 minus malloc overhead. */
1685
1686 #define STRING_BLOCK_SIZE \
1687 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1688
1689 /* Structure describing a block from which Lisp_String structures
1690 are allocated. */
1691
1692 struct string_block
1693 {
1694 /* Place `strings' first, to preserve alignment. */
1695 struct Lisp_String strings[STRING_BLOCK_SIZE];
1696 struct string_block *next;
1697 };
1698
1699 /* Head and tail of the list of sblock structures holding Lisp string
1700 data. We always allocate from current_sblock. The NEXT pointers
1701 in the sblock structures go from oldest_sblock to current_sblock. */
1702
1703 static struct sblock *oldest_sblock, *current_sblock;
1704
1705 /* List of sblocks for large strings. */
1706
1707 static struct sblock *large_sblocks;
1708
1709 /* List of string_block structures. */
1710
1711 static struct string_block *string_blocks;
1712
1713 /* Free-list of Lisp_Strings. */
1714
1715 static struct Lisp_String *string_free_list;
1716
1717 /* Number of live and free Lisp_Strings. */
1718
1719 static EMACS_INT total_strings, total_free_strings;
1720
1721 /* Number of bytes used by live strings. */
1722
1723 static EMACS_INT total_string_size;
1724
1725 /* Given a pointer to a Lisp_String S which is on the free-list
1726 string_free_list, return a pointer to its successor in the
1727 free-list. */
1728
1729 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1730
1731 /* Return a pointer to the sdata structure belonging to Lisp string S.
1732 S must be live, i.e. S->data must not be null. S->data is actually
1733 a pointer to the `u.data' member of its sdata structure; the
1734 structure starts at a constant offset in front of that. */
1735
1736 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1737
1738
1739 #ifdef GC_CHECK_STRING_OVERRUN
1740
1741 /* We check for overrun in string data blocks by appending a small
1742 "cookie" after each allocated string data block, and check for the
1743 presence of this cookie during GC. */
1744
1745 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1746 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1747 { '\xde', '\xad', '\xbe', '\xef' };
1748
1749 #else
1750 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1751 #endif
1752
1753 /* Value is the size of an sdata structure large enough to hold NBYTES
1754 bytes of string data. The value returned includes a terminating
1755 NUL byte, the size of the sdata structure, and padding. */
1756
1757 #ifdef GC_CHECK_STRING_BYTES
1758
1759 #define SDATA_SIZE(NBYTES) \
1760 ((SDATA_DATA_OFFSET \
1761 + (NBYTES) + 1 \
1762 + sizeof (ptrdiff_t) - 1) \
1763 & ~(sizeof (ptrdiff_t) - 1))
1764
1765 #else /* not GC_CHECK_STRING_BYTES */
1766
1767 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1768 less than the size of that member. The 'max' is not needed when
1769 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1770 alignment code reserves enough space. */
1771
1772 #define SDATA_SIZE(NBYTES) \
1773 ((SDATA_DATA_OFFSET \
1774 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1775 ? NBYTES \
1776 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1777 + 1 \
1778 + sizeof (ptrdiff_t) - 1) \
1779 & ~(sizeof (ptrdiff_t) - 1))
1780
1781 #endif /* not GC_CHECK_STRING_BYTES */
1782
1783 /* Extra bytes to allocate for each string. */
1784
1785 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1786
1787 /* Exact bound on the number of bytes in a string, not counting the
1788 terminating null. A string cannot contain more bytes than
1789 STRING_BYTES_BOUND, nor can it be so long that the size_t
1790 arithmetic in allocate_string_data would overflow while it is
1791 calculating a value to be passed to malloc. */
1792 #define STRING_BYTES_MAX \
1793 min (STRING_BYTES_BOUND, \
1794 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD \
1795 - GC_STRING_EXTRA \
1796 - offsetof (struct sblock, first_data) \
1797 - SDATA_DATA_OFFSET) \
1798 & ~(sizeof (EMACS_INT) - 1)))
1799
1800 /* Initialize string allocation. Called from init_alloc_once. */
1801
1802 static void
1803 init_strings (void)
1804 {
1805 total_strings = total_free_strings = total_string_size = 0;
1806 oldest_sblock = current_sblock = large_sblocks = NULL;
1807 string_blocks = NULL;
1808 string_free_list = NULL;
1809 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1810 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1811 }
1812
1813
1814 #ifdef GC_CHECK_STRING_BYTES
1815
1816 static int check_string_bytes_count;
1817
1818 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1819
1820
1821 /* Like GC_STRING_BYTES, but with debugging check. */
1822
1823 ptrdiff_t
1824 string_bytes (struct Lisp_String *s)
1825 {
1826 ptrdiff_t nbytes =
1827 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1828
1829 if (!PURE_POINTER_P (s)
1830 && s->data
1831 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1832 abort ();
1833 return nbytes;
1834 }
1835
1836 /* Check validity of Lisp strings' string_bytes member in B. */
1837
1838 static void
1839 check_sblock (struct sblock *b)
1840 {
1841 struct sdata *from, *end, *from_end;
1842
1843 end = b->next_free;
1844
1845 for (from = &b->first_data; from < end; from = from_end)
1846 {
1847 /* Compute the next FROM here because copying below may
1848 overwrite data we need to compute it. */
1849 ptrdiff_t nbytes;
1850
1851 /* Check that the string size recorded in the string is the
1852 same as the one recorded in the sdata structure. */
1853 if (from->string)
1854 CHECK_STRING_BYTES (from->string);
1855
1856 if (from->string)
1857 nbytes = GC_STRING_BYTES (from->string);
1858 else
1859 nbytes = SDATA_NBYTES (from);
1860
1861 nbytes = SDATA_SIZE (nbytes);
1862 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1863 }
1864 }
1865
1866
1867 /* Check validity of Lisp strings' string_bytes member. ALL_P
1868 non-zero means check all strings, otherwise check only most
1869 recently allocated strings. Used for hunting a bug. */
1870
1871 static void
1872 check_string_bytes (int all_p)
1873 {
1874 if (all_p)
1875 {
1876 struct sblock *b;
1877
1878 for (b = large_sblocks; b; b = b->next)
1879 {
1880 struct Lisp_String *s = b->first_data.string;
1881 if (s)
1882 CHECK_STRING_BYTES (s);
1883 }
1884
1885 for (b = oldest_sblock; b; b = b->next)
1886 check_sblock (b);
1887 }
1888 else
1889 check_sblock (current_sblock);
1890 }
1891
1892 #endif /* GC_CHECK_STRING_BYTES */
1893
1894 #ifdef GC_CHECK_STRING_FREE_LIST
1895
1896 /* Walk through the string free list looking for bogus next pointers.
1897 This may catch buffer overrun from a previous string. */
1898
1899 static void
1900 check_string_free_list (void)
1901 {
1902 struct Lisp_String *s;
1903
1904 /* Pop a Lisp_String off the free-list. */
1905 s = string_free_list;
1906 while (s != NULL)
1907 {
1908 if ((uintptr_t) s < 1024)
1909 abort ();
1910 s = NEXT_FREE_LISP_STRING (s);
1911 }
1912 }
1913 #else
1914 #define check_string_free_list()
1915 #endif
1916
1917 /* Return a new Lisp_String. */
1918
1919 static struct Lisp_String *
1920 allocate_string (void)
1921 {
1922 struct Lisp_String *s;
1923
1924 /* eassert (!handling_signal); */
1925
1926 MALLOC_BLOCK_INPUT;
1927
1928 /* If the free-list is empty, allocate a new string_block, and
1929 add all the Lisp_Strings in it to the free-list. */
1930 if (string_free_list == NULL)
1931 {
1932 struct string_block *b;
1933 int i;
1934
1935 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1936 memset (b, 0, sizeof *b);
1937 b->next = string_blocks;
1938 string_blocks = b;
1939
1940 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1941 {
1942 s = b->strings + i;
1943 NEXT_FREE_LISP_STRING (s) = string_free_list;
1944 string_free_list = s;
1945 }
1946
1947 total_free_strings += STRING_BLOCK_SIZE;
1948 }
1949
1950 check_string_free_list ();
1951
1952 /* Pop a Lisp_String off the free-list. */
1953 s = string_free_list;
1954 string_free_list = NEXT_FREE_LISP_STRING (s);
1955
1956 MALLOC_UNBLOCK_INPUT;
1957
1958 /* Probably not strictly necessary, but play it safe. */
1959 memset (s, 0, sizeof *s);
1960
1961 --total_free_strings;
1962 ++total_strings;
1963 ++strings_consed;
1964 consing_since_gc += sizeof *s;
1965
1966 #ifdef GC_CHECK_STRING_BYTES
1967 if (!noninteractive)
1968 {
1969 if (++check_string_bytes_count == 200)
1970 {
1971 check_string_bytes_count = 0;
1972 check_string_bytes (1);
1973 }
1974 else
1975 check_string_bytes (0);
1976 }
1977 #endif /* GC_CHECK_STRING_BYTES */
1978
1979 return s;
1980 }
1981
1982
1983 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1984 plus a NUL byte at the end. Allocate an sdata structure for S, and
1985 set S->data to its `u.data' member. Store a NUL byte at the end of
1986 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1987 S->data if it was initially non-null. */
1988
1989 void
1990 allocate_string_data (struct Lisp_String *s,
1991 EMACS_INT nchars, EMACS_INT nbytes)
1992 {
1993 struct sdata *data, *old_data;
1994 struct sblock *b;
1995 ptrdiff_t needed, old_nbytes;
1996
1997 if (STRING_BYTES_MAX < nbytes)
1998 string_overflow ();
1999
2000 /* Determine the number of bytes needed to store NBYTES bytes
2001 of string data. */
2002 needed = SDATA_SIZE (nbytes);
2003 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
2004 old_nbytes = GC_STRING_BYTES (s);
2005
2006 MALLOC_BLOCK_INPUT;
2007
2008 if (nbytes > LARGE_STRING_BYTES)
2009 {
2010 size_t size = offsetof (struct sblock, first_data) + needed;
2011
2012 #ifdef DOUG_LEA_MALLOC
2013 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2014 because mapped region contents are not preserved in
2015 a dumped Emacs.
2016
2017 In case you think of allowing it in a dumped Emacs at the
2018 cost of not being able to re-dump, there's another reason:
2019 mmap'ed data typically have an address towards the top of the
2020 address space, which won't fit into an EMACS_INT (at least on
2021 32-bit systems with the current tagging scheme). --fx */
2022 mallopt (M_MMAP_MAX, 0);
2023 #endif
2024
2025 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
2026
2027 #ifdef DOUG_LEA_MALLOC
2028 /* Back to a reasonable maximum of mmap'ed areas. */
2029 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2030 #endif
2031
2032 b->next_free = &b->first_data;
2033 b->first_data.string = NULL;
2034 b->next = large_sblocks;
2035 large_sblocks = b;
2036 }
2037 else if (current_sblock == NULL
2038 || (((char *) current_sblock + SBLOCK_SIZE
2039 - (char *) current_sblock->next_free)
2040 < (needed + GC_STRING_EXTRA)))
2041 {
2042 /* Not enough room in the current sblock. */
2043 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2044 b->next_free = &b->first_data;
2045 b->first_data.string = NULL;
2046 b->next = NULL;
2047
2048 if (current_sblock)
2049 current_sblock->next = b;
2050 else
2051 oldest_sblock = b;
2052 current_sblock = b;
2053 }
2054 else
2055 b = current_sblock;
2056
2057 data = b->next_free;
2058 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2059
2060 MALLOC_UNBLOCK_INPUT;
2061
2062 data->string = s;
2063 s->data = SDATA_DATA (data);
2064 #ifdef GC_CHECK_STRING_BYTES
2065 SDATA_NBYTES (data) = nbytes;
2066 #endif
2067 s->size = nchars;
2068 s->size_byte = nbytes;
2069 s->data[nbytes] = '\0';
2070 #ifdef GC_CHECK_STRING_OVERRUN
2071 memcpy ((char *) data + needed, string_overrun_cookie,
2072 GC_STRING_OVERRUN_COOKIE_SIZE);
2073 #endif
2074
2075 /* If S had already data assigned, mark that as free by setting its
2076 string back-pointer to null, and recording the size of the data
2077 in it. */
2078 if (old_data)
2079 {
2080 SDATA_NBYTES (old_data) = old_nbytes;
2081 old_data->string = NULL;
2082 }
2083
2084 consing_since_gc += needed;
2085 }
2086
2087
2088 /* Sweep and compact strings. */
2089
2090 static void
2091 sweep_strings (void)
2092 {
2093 struct string_block *b, *next;
2094 struct string_block *live_blocks = NULL;
2095
2096 string_free_list = NULL;
2097 total_strings = total_free_strings = 0;
2098 total_string_size = 0;
2099
2100 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2101 for (b = string_blocks; b; b = next)
2102 {
2103 int i, nfree = 0;
2104 struct Lisp_String *free_list_before = string_free_list;
2105
2106 next = b->next;
2107
2108 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2109 {
2110 struct Lisp_String *s = b->strings + i;
2111
2112 if (s->data)
2113 {
2114 /* String was not on free-list before. */
2115 if (STRING_MARKED_P (s))
2116 {
2117 /* String is live; unmark it and its intervals. */
2118 UNMARK_STRING (s);
2119
2120 if (!NULL_INTERVAL_P (s->intervals))
2121 UNMARK_BALANCE_INTERVALS (s->intervals);
2122
2123 ++total_strings;
2124 total_string_size += STRING_BYTES (s);
2125 }
2126 else
2127 {
2128 /* String is dead. Put it on the free-list. */
2129 struct sdata *data = SDATA_OF_STRING (s);
2130
2131 /* Save the size of S in its sdata so that we know
2132 how large that is. Reset the sdata's string
2133 back-pointer so that we know it's free. */
2134 #ifdef GC_CHECK_STRING_BYTES
2135 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2136 abort ();
2137 #else
2138 data->u.nbytes = GC_STRING_BYTES (s);
2139 #endif
2140 data->string = NULL;
2141
2142 /* Reset the strings's `data' member so that we
2143 know it's free. */
2144 s->data = NULL;
2145
2146 /* Put the string on the free-list. */
2147 NEXT_FREE_LISP_STRING (s) = string_free_list;
2148 string_free_list = s;
2149 ++nfree;
2150 }
2151 }
2152 else
2153 {
2154 /* S was on the free-list before. Put it there again. */
2155 NEXT_FREE_LISP_STRING (s) = string_free_list;
2156 string_free_list = s;
2157 ++nfree;
2158 }
2159 }
2160
2161 /* Free blocks that contain free Lisp_Strings only, except
2162 the first two of them. */
2163 if (nfree == STRING_BLOCK_SIZE
2164 && total_free_strings > STRING_BLOCK_SIZE)
2165 {
2166 lisp_free (b);
2167 string_free_list = free_list_before;
2168 }
2169 else
2170 {
2171 total_free_strings += nfree;
2172 b->next = live_blocks;
2173 live_blocks = b;
2174 }
2175 }
2176
2177 check_string_free_list ();
2178
2179 string_blocks = live_blocks;
2180 free_large_strings ();
2181 compact_small_strings ();
2182
2183 check_string_free_list ();
2184 }
2185
2186
2187 /* Free dead large strings. */
2188
2189 static void
2190 free_large_strings (void)
2191 {
2192 struct sblock *b, *next;
2193 struct sblock *live_blocks = NULL;
2194
2195 for (b = large_sblocks; b; b = next)
2196 {
2197 next = b->next;
2198
2199 if (b->first_data.string == NULL)
2200 lisp_free (b);
2201 else
2202 {
2203 b->next = live_blocks;
2204 live_blocks = b;
2205 }
2206 }
2207
2208 large_sblocks = live_blocks;
2209 }
2210
2211
2212 /* Compact data of small strings. Free sblocks that don't contain
2213 data of live strings after compaction. */
2214
2215 static void
2216 compact_small_strings (void)
2217 {
2218 struct sblock *b, *tb, *next;
2219 struct sdata *from, *to, *end, *tb_end;
2220 struct sdata *to_end, *from_end;
2221
2222 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2223 to, and TB_END is the end of TB. */
2224 tb = oldest_sblock;
2225 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2226 to = &tb->first_data;
2227
2228 /* Step through the blocks from the oldest to the youngest. We
2229 expect that old blocks will stabilize over time, so that less
2230 copying will happen this way. */
2231 for (b = oldest_sblock; b; b = b->next)
2232 {
2233 end = b->next_free;
2234 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2235
2236 for (from = &b->first_data; from < end; from = from_end)
2237 {
2238 /* Compute the next FROM here because copying below may
2239 overwrite data we need to compute it. */
2240 ptrdiff_t nbytes;
2241
2242 #ifdef GC_CHECK_STRING_BYTES
2243 /* Check that the string size recorded in the string is the
2244 same as the one recorded in the sdata structure. */
2245 if (from->string
2246 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2247 abort ();
2248 #endif /* GC_CHECK_STRING_BYTES */
2249
2250 if (from->string)
2251 nbytes = GC_STRING_BYTES (from->string);
2252 else
2253 nbytes = SDATA_NBYTES (from);
2254
2255 if (nbytes > LARGE_STRING_BYTES)
2256 abort ();
2257
2258 nbytes = SDATA_SIZE (nbytes);
2259 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2260
2261 #ifdef GC_CHECK_STRING_OVERRUN
2262 if (memcmp (string_overrun_cookie,
2263 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2264 GC_STRING_OVERRUN_COOKIE_SIZE))
2265 abort ();
2266 #endif
2267
2268 /* FROM->string non-null means it's alive. Copy its data. */
2269 if (from->string)
2270 {
2271 /* If TB is full, proceed with the next sblock. */
2272 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2273 if (to_end > tb_end)
2274 {
2275 tb->next_free = to;
2276 tb = tb->next;
2277 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2278 to = &tb->first_data;
2279 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2280 }
2281
2282 /* Copy, and update the string's `data' pointer. */
2283 if (from != to)
2284 {
2285 xassert (tb != b || to < from);
2286 memmove (to, from, nbytes + GC_STRING_EXTRA);
2287 to->string->data = SDATA_DATA (to);
2288 }
2289
2290 /* Advance past the sdata we copied to. */
2291 to = to_end;
2292 }
2293 }
2294 }
2295
2296 /* The rest of the sblocks following TB don't contain live data, so
2297 we can free them. */
2298 for (b = tb->next; b; b = next)
2299 {
2300 next = b->next;
2301 lisp_free (b);
2302 }
2303
2304 tb->next_free = to;
2305 tb->next = NULL;
2306 current_sblock = tb;
2307 }
2308
2309 void
2310 string_overflow (void)
2311 {
2312 error ("Maximum string size exceeded");
2313 }
2314
2315 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2316 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2317 LENGTH must be an integer.
2318 INIT must be an integer that represents a character. */)
2319 (Lisp_Object length, Lisp_Object init)
2320 {
2321 register Lisp_Object val;
2322 register unsigned char *p, *end;
2323 int c;
2324 EMACS_INT nbytes;
2325
2326 CHECK_NATNUM (length);
2327 CHECK_CHARACTER (init);
2328
2329 c = XFASTINT (init);
2330 if (ASCII_CHAR_P (c))
2331 {
2332 nbytes = XINT (length);
2333 val = make_uninit_string (nbytes);
2334 p = SDATA (val);
2335 end = p + SCHARS (val);
2336 while (p != end)
2337 *p++ = c;
2338 }
2339 else
2340 {
2341 unsigned char str[MAX_MULTIBYTE_LENGTH];
2342 int len = CHAR_STRING (c, str);
2343 EMACS_INT string_len = XINT (length);
2344
2345 if (string_len > STRING_BYTES_MAX / len)
2346 string_overflow ();
2347 nbytes = len * string_len;
2348 val = make_uninit_multibyte_string (string_len, nbytes);
2349 p = SDATA (val);
2350 end = p + nbytes;
2351 while (p != end)
2352 {
2353 memcpy (p, str, len);
2354 p += len;
2355 }
2356 }
2357
2358 *p = 0;
2359 return val;
2360 }
2361
2362
2363 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2364 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2365 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2366 (Lisp_Object length, Lisp_Object init)
2367 {
2368 register Lisp_Object val;
2369 struct Lisp_Bool_Vector *p;
2370 ptrdiff_t length_in_chars;
2371 EMACS_INT length_in_elts;
2372 int bits_per_value;
2373
2374 CHECK_NATNUM (length);
2375
2376 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2377
2378 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2379
2380 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2381 slot `size' of the struct Lisp_Bool_Vector. */
2382 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2383
2384 /* No Lisp_Object to trace in there. */
2385 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2386
2387 p = XBOOL_VECTOR (val);
2388 p->size = XFASTINT (length);
2389
2390 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2391 / BOOL_VECTOR_BITS_PER_CHAR);
2392 if (length_in_chars)
2393 {
2394 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2395
2396 /* Clear any extraneous bits in the last byte. */
2397 p->data[length_in_chars - 1]
2398 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2399 }
2400
2401 return val;
2402 }
2403
2404
2405 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2406 of characters from the contents. This string may be unibyte or
2407 multibyte, depending on the contents. */
2408
2409 Lisp_Object
2410 make_string (const char *contents, ptrdiff_t nbytes)
2411 {
2412 register Lisp_Object val;
2413 ptrdiff_t nchars, multibyte_nbytes;
2414
2415 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2416 &nchars, &multibyte_nbytes);
2417 if (nbytes == nchars || nbytes != multibyte_nbytes)
2418 /* CONTENTS contains no multibyte sequences or contains an invalid
2419 multibyte sequence. We must make unibyte string. */
2420 val = make_unibyte_string (contents, nbytes);
2421 else
2422 val = make_multibyte_string (contents, nchars, nbytes);
2423 return val;
2424 }
2425
2426
2427 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2428
2429 Lisp_Object
2430 make_unibyte_string (const char *contents, ptrdiff_t length)
2431 {
2432 register Lisp_Object val;
2433 val = make_uninit_string (length);
2434 memcpy (SDATA (val), contents, length);
2435 return val;
2436 }
2437
2438
2439 /* Make a multibyte string from NCHARS characters occupying NBYTES
2440 bytes at CONTENTS. */
2441
2442 Lisp_Object
2443 make_multibyte_string (const char *contents,
2444 ptrdiff_t nchars, ptrdiff_t nbytes)
2445 {
2446 register Lisp_Object val;
2447 val = make_uninit_multibyte_string (nchars, nbytes);
2448 memcpy (SDATA (val), contents, nbytes);
2449 return val;
2450 }
2451
2452
2453 /* Make a string from NCHARS characters occupying NBYTES bytes at
2454 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2455
2456 Lisp_Object
2457 make_string_from_bytes (const char *contents,
2458 ptrdiff_t nchars, ptrdiff_t nbytes)
2459 {
2460 register Lisp_Object val;
2461 val = make_uninit_multibyte_string (nchars, nbytes);
2462 memcpy (SDATA (val), contents, nbytes);
2463 if (SBYTES (val) == SCHARS (val))
2464 STRING_SET_UNIBYTE (val);
2465 return val;
2466 }
2467
2468
2469 /* Make a string from NCHARS characters occupying NBYTES bytes at
2470 CONTENTS. The argument MULTIBYTE controls whether to label the
2471 string as multibyte. If NCHARS is negative, it counts the number of
2472 characters by itself. */
2473
2474 Lisp_Object
2475 make_specified_string (const char *contents,
2476 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
2477 {
2478 register Lisp_Object val;
2479
2480 if (nchars < 0)
2481 {
2482 if (multibyte)
2483 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2484 nbytes);
2485 else
2486 nchars = nbytes;
2487 }
2488 val = make_uninit_multibyte_string (nchars, nbytes);
2489 memcpy (SDATA (val), contents, nbytes);
2490 if (!multibyte)
2491 STRING_SET_UNIBYTE (val);
2492 return val;
2493 }
2494
2495
2496 /* Make a string from the data at STR, treating it as multibyte if the
2497 data warrants. */
2498
2499 Lisp_Object
2500 build_string (const char *str)
2501 {
2502 return make_string (str, strlen (str));
2503 }
2504
2505
2506 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2507 occupying LENGTH bytes. */
2508
2509 Lisp_Object
2510 make_uninit_string (EMACS_INT length)
2511 {
2512 Lisp_Object val;
2513
2514 if (!length)
2515 return empty_unibyte_string;
2516 val = make_uninit_multibyte_string (length, length);
2517 STRING_SET_UNIBYTE (val);
2518 return val;
2519 }
2520
2521
2522 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2523 which occupy NBYTES bytes. */
2524
2525 Lisp_Object
2526 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2527 {
2528 Lisp_Object string;
2529 struct Lisp_String *s;
2530
2531 if (nchars < 0)
2532 abort ();
2533 if (!nbytes)
2534 return empty_multibyte_string;
2535
2536 s = allocate_string ();
2537 allocate_string_data (s, nchars, nbytes);
2538 XSETSTRING (string, s);
2539 string_chars_consed += nbytes;
2540 return string;
2541 }
2542
2543
2544 \f
2545 /***********************************************************************
2546 Float Allocation
2547 ***********************************************************************/
2548
2549 /* We store float cells inside of float_blocks, allocating a new
2550 float_block with malloc whenever necessary. Float cells reclaimed
2551 by GC are put on a free list to be reallocated before allocating
2552 any new float cells from the latest float_block. */
2553
2554 #define FLOAT_BLOCK_SIZE \
2555 (((BLOCK_BYTES - sizeof (struct float_block *) \
2556 /* The compiler might add padding at the end. */ \
2557 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2558 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2559
2560 #define GETMARKBIT(block,n) \
2561 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2562 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2563 & 1)
2564
2565 #define SETMARKBIT(block,n) \
2566 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2567 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2568
2569 #define UNSETMARKBIT(block,n) \
2570 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2571 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2572
2573 #define FLOAT_BLOCK(fptr) \
2574 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2575
2576 #define FLOAT_INDEX(fptr) \
2577 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2578
2579 struct float_block
2580 {
2581 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2582 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2583 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2584 struct float_block *next;
2585 };
2586
2587 #define FLOAT_MARKED_P(fptr) \
2588 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2589
2590 #define FLOAT_MARK(fptr) \
2591 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2592
2593 #define FLOAT_UNMARK(fptr) \
2594 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2595
2596 /* Current float_block. */
2597
2598 static struct float_block *float_block;
2599
2600 /* Index of first unused Lisp_Float in the current float_block. */
2601
2602 static int float_block_index;
2603
2604 /* Free-list of Lisp_Floats. */
2605
2606 static struct Lisp_Float *float_free_list;
2607
2608
2609 /* Initialize float allocation. */
2610
2611 static void
2612 init_float (void)
2613 {
2614 float_block = NULL;
2615 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2616 float_free_list = 0;
2617 }
2618
2619
2620 /* Return a new float object with value FLOAT_VALUE. */
2621
2622 Lisp_Object
2623 make_float (double float_value)
2624 {
2625 register Lisp_Object val;
2626
2627 /* eassert (!handling_signal); */
2628
2629 MALLOC_BLOCK_INPUT;
2630
2631 if (float_free_list)
2632 {
2633 /* We use the data field for chaining the free list
2634 so that we won't use the same field that has the mark bit. */
2635 XSETFLOAT (val, float_free_list);
2636 float_free_list = float_free_list->u.chain;
2637 }
2638 else
2639 {
2640 if (float_block_index == FLOAT_BLOCK_SIZE)
2641 {
2642 register struct float_block *new;
2643
2644 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2645 MEM_TYPE_FLOAT);
2646 new->next = float_block;
2647 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2648 float_block = new;
2649 float_block_index = 0;
2650 }
2651 XSETFLOAT (val, &float_block->floats[float_block_index]);
2652 float_block_index++;
2653 }
2654
2655 MALLOC_UNBLOCK_INPUT;
2656
2657 XFLOAT_INIT (val, float_value);
2658 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2659 consing_since_gc += sizeof (struct Lisp_Float);
2660 floats_consed++;
2661 return val;
2662 }
2663
2664
2665 \f
2666 /***********************************************************************
2667 Cons Allocation
2668 ***********************************************************************/
2669
2670 /* We store cons cells inside of cons_blocks, allocating a new
2671 cons_block with malloc whenever necessary. Cons cells reclaimed by
2672 GC are put on a free list to be reallocated before allocating
2673 any new cons cells from the latest cons_block. */
2674
2675 #define CONS_BLOCK_SIZE \
2676 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2677 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2678
2679 #define CONS_BLOCK(fptr) \
2680 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2681
2682 #define CONS_INDEX(fptr) \
2683 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2684
2685 struct cons_block
2686 {
2687 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2688 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2689 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2690 struct cons_block *next;
2691 };
2692
2693 #define CONS_MARKED_P(fptr) \
2694 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2695
2696 #define CONS_MARK(fptr) \
2697 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2698
2699 #define CONS_UNMARK(fptr) \
2700 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2701
2702 /* Current cons_block. */
2703
2704 static struct cons_block *cons_block;
2705
2706 /* Index of first unused Lisp_Cons in the current block. */
2707
2708 static int cons_block_index;
2709
2710 /* Free-list of Lisp_Cons structures. */
2711
2712 static struct Lisp_Cons *cons_free_list;
2713
2714
2715 /* Initialize cons allocation. */
2716
2717 static void
2718 init_cons (void)
2719 {
2720 cons_block = NULL;
2721 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2722 cons_free_list = 0;
2723 }
2724
2725
2726 /* Explicitly free a cons cell by putting it on the free-list. */
2727
2728 void
2729 free_cons (struct Lisp_Cons *ptr)
2730 {
2731 ptr->u.chain = cons_free_list;
2732 #if GC_MARK_STACK
2733 ptr->car = Vdead;
2734 #endif
2735 cons_free_list = ptr;
2736 }
2737
2738 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2739 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2740 (Lisp_Object car, Lisp_Object cdr)
2741 {
2742 register Lisp_Object val;
2743
2744 /* eassert (!handling_signal); */
2745
2746 MALLOC_BLOCK_INPUT;
2747
2748 if (cons_free_list)
2749 {
2750 /* We use the cdr for chaining the free list
2751 so that we won't use the same field that has the mark bit. */
2752 XSETCONS (val, cons_free_list);
2753 cons_free_list = cons_free_list->u.chain;
2754 }
2755 else
2756 {
2757 if (cons_block_index == CONS_BLOCK_SIZE)
2758 {
2759 register struct cons_block *new;
2760 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2761 MEM_TYPE_CONS);
2762 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2763 new->next = cons_block;
2764 cons_block = new;
2765 cons_block_index = 0;
2766 }
2767 XSETCONS (val, &cons_block->conses[cons_block_index]);
2768 cons_block_index++;
2769 }
2770
2771 MALLOC_UNBLOCK_INPUT;
2772
2773 XSETCAR (val, car);
2774 XSETCDR (val, cdr);
2775 eassert (!CONS_MARKED_P (XCONS (val)));
2776 consing_since_gc += sizeof (struct Lisp_Cons);
2777 cons_cells_consed++;
2778 return val;
2779 }
2780
2781 #ifdef GC_CHECK_CONS_LIST
2782 /* Get an error now if there's any junk in the cons free list. */
2783 void
2784 check_cons_list (void)
2785 {
2786 struct Lisp_Cons *tail = cons_free_list;
2787
2788 while (tail)
2789 tail = tail->u.chain;
2790 }
2791 #endif
2792
2793 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2794
2795 Lisp_Object
2796 list1 (Lisp_Object arg1)
2797 {
2798 return Fcons (arg1, Qnil);
2799 }
2800
2801 Lisp_Object
2802 list2 (Lisp_Object arg1, Lisp_Object arg2)
2803 {
2804 return Fcons (arg1, Fcons (arg2, Qnil));
2805 }
2806
2807
2808 Lisp_Object
2809 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2810 {
2811 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2812 }
2813
2814
2815 Lisp_Object
2816 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2817 {
2818 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2819 }
2820
2821
2822 Lisp_Object
2823 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2824 {
2825 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2826 Fcons (arg5, Qnil)))));
2827 }
2828
2829
2830 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2831 doc: /* Return a newly created list with specified arguments as elements.
2832 Any number of arguments, even zero arguments, are allowed.
2833 usage: (list &rest OBJECTS) */)
2834 (ptrdiff_t nargs, Lisp_Object *args)
2835 {
2836 register Lisp_Object val;
2837 val = Qnil;
2838
2839 while (nargs > 0)
2840 {
2841 nargs--;
2842 val = Fcons (args[nargs], val);
2843 }
2844 return val;
2845 }
2846
2847
2848 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2849 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2850 (register Lisp_Object length, Lisp_Object init)
2851 {
2852 register Lisp_Object val;
2853 register EMACS_INT size;
2854
2855 CHECK_NATNUM (length);
2856 size = XFASTINT (length);
2857
2858 val = Qnil;
2859 while (size > 0)
2860 {
2861 val = Fcons (init, val);
2862 --size;
2863
2864 if (size > 0)
2865 {
2866 val = Fcons (init, val);
2867 --size;
2868
2869 if (size > 0)
2870 {
2871 val = Fcons (init, val);
2872 --size;
2873
2874 if (size > 0)
2875 {
2876 val = Fcons (init, val);
2877 --size;
2878
2879 if (size > 0)
2880 {
2881 val = Fcons (init, val);
2882 --size;
2883 }
2884 }
2885 }
2886 }
2887
2888 QUIT;
2889 }
2890
2891 return val;
2892 }
2893
2894
2895 \f
2896 /***********************************************************************
2897 Vector Allocation
2898 ***********************************************************************/
2899
2900 /* Singly-linked list of all vectors. */
2901
2902 static struct Lisp_Vector *all_vectors;
2903
2904 /* Handy constants for vectorlike objects. */
2905 enum
2906 {
2907 header_size = offsetof (struct Lisp_Vector, contents),
2908 word_size = sizeof (Lisp_Object)
2909 };
2910
2911 /* Value is a pointer to a newly allocated Lisp_Vector structure
2912 with room for LEN Lisp_Objects. */
2913
2914 static struct Lisp_Vector *
2915 allocate_vectorlike (ptrdiff_t len)
2916 {
2917 struct Lisp_Vector *p;
2918 size_t nbytes;
2919
2920 MALLOC_BLOCK_INPUT;
2921
2922 #ifdef DOUG_LEA_MALLOC
2923 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2924 because mapped region contents are not preserved in
2925 a dumped Emacs. */
2926 mallopt (M_MMAP_MAX, 0);
2927 #endif
2928
2929 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2930 /* eassert (!handling_signal); */
2931
2932 nbytes = header_size + len * word_size;
2933 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2934
2935 #ifdef DOUG_LEA_MALLOC
2936 /* Back to a reasonable maximum of mmap'ed areas. */
2937 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2938 #endif
2939
2940 consing_since_gc += nbytes;
2941 vector_cells_consed += len;
2942
2943 p->header.next.vector = all_vectors;
2944 all_vectors = p;
2945
2946 MALLOC_UNBLOCK_INPUT;
2947
2948 return p;
2949 }
2950
2951
2952 /* Allocate a vector with LEN slots. */
2953
2954 struct Lisp_Vector *
2955 allocate_vector (EMACS_INT len)
2956 {
2957 struct Lisp_Vector *v;
2958 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
2959
2960 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
2961 memory_full (SIZE_MAX);
2962 v = allocate_vectorlike (len);
2963 v->header.size = len;
2964 return v;
2965 }
2966
2967
2968 /* Allocate other vector-like structures. */
2969
2970 struct Lisp_Vector *
2971 allocate_pseudovector (int memlen, int lisplen, int tag)
2972 {
2973 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2974 int i;
2975
2976 /* Only the first lisplen slots will be traced normally by the GC. */
2977 for (i = 0; i < lisplen; ++i)
2978 v->contents[i] = Qnil;
2979
2980 XSETPVECTYPESIZE (v, tag, lisplen);
2981 return v;
2982 }
2983
2984 struct Lisp_Hash_Table *
2985 allocate_hash_table (void)
2986 {
2987 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2988 }
2989
2990
2991 struct window *
2992 allocate_window (void)
2993 {
2994 return ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
2995 }
2996
2997
2998 struct terminal *
2999 allocate_terminal (void)
3000 {
3001 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
3002 next_terminal, PVEC_TERMINAL);
3003 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3004 memset (&t->next_terminal, 0,
3005 (char*) (t + 1) - (char*) &t->next_terminal);
3006
3007 return t;
3008 }
3009
3010 struct frame *
3011 allocate_frame (void)
3012 {
3013 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
3014 face_cache, PVEC_FRAME);
3015 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3016 memset (&f->face_cache, 0,
3017 (char *) (f + 1) - (char *) &f->face_cache);
3018 return f;
3019 }
3020
3021
3022 struct Lisp_Process *
3023 allocate_process (void)
3024 {
3025 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3026 }
3027
3028
3029 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3030 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3031 See also the function `vector'. */)
3032 (register Lisp_Object length, Lisp_Object init)
3033 {
3034 Lisp_Object vector;
3035 register ptrdiff_t sizei;
3036 register ptrdiff_t i;
3037 register struct Lisp_Vector *p;
3038
3039 CHECK_NATNUM (length);
3040
3041 p = allocate_vector (XFASTINT (length));
3042 sizei = XFASTINT (length);
3043 for (i = 0; i < sizei; i++)
3044 p->contents[i] = init;
3045
3046 XSETVECTOR (vector, p);
3047 return vector;
3048 }
3049
3050
3051 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3052 doc: /* Return a newly created vector with specified arguments as elements.
3053 Any number of arguments, even zero arguments, are allowed.
3054 usage: (vector &rest OBJECTS) */)
3055 (ptrdiff_t nargs, Lisp_Object *args)
3056 {
3057 register Lisp_Object len, val;
3058 ptrdiff_t i;
3059 register struct Lisp_Vector *p;
3060
3061 XSETFASTINT (len, nargs);
3062 val = Fmake_vector (len, Qnil);
3063 p = XVECTOR (val);
3064 for (i = 0; i < nargs; i++)
3065 p->contents[i] = args[i];
3066 return val;
3067 }
3068
3069
3070 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3071 doc: /* Create a byte-code object with specified arguments as elements.
3072 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3073 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3074 and (optional) INTERACTIVE-SPEC.
3075 The first four arguments are required; at most six have any
3076 significance.
3077 The ARGLIST can be either like the one of `lambda', in which case the arguments
3078 will be dynamically bound before executing the byte code, or it can be an
3079 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3080 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3081 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3082 argument to catch the left-over arguments. If such an integer is used, the
3083 arguments will not be dynamically bound but will be instead pushed on the
3084 stack before executing the byte-code.
3085 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3086 (ptrdiff_t nargs, Lisp_Object *args)
3087 {
3088 register Lisp_Object len, val;
3089 ptrdiff_t i;
3090 register struct Lisp_Vector *p;
3091
3092 XSETFASTINT (len, nargs);
3093 if (!NILP (Vpurify_flag))
3094 val = make_pure_vector (nargs);
3095 else
3096 val = Fmake_vector (len, Qnil);
3097
3098 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3099 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3100 earlier because they produced a raw 8-bit string for byte-code
3101 and now such a byte-code string is loaded as multibyte while
3102 raw 8-bit characters converted to multibyte form. Thus, now we
3103 must convert them back to the original unibyte form. */
3104 args[1] = Fstring_as_unibyte (args[1]);
3105
3106 p = XVECTOR (val);
3107 for (i = 0; i < nargs; i++)
3108 {
3109 if (!NILP (Vpurify_flag))
3110 args[i] = Fpurecopy (args[i]);
3111 p->contents[i] = args[i];
3112 }
3113 XSETPVECTYPE (p, PVEC_COMPILED);
3114 XSETCOMPILED (val, p);
3115 return val;
3116 }
3117
3118
3119 \f
3120 /***********************************************************************
3121 Symbol Allocation
3122 ***********************************************************************/
3123
3124 /* Each symbol_block is just under 1020 bytes long, since malloc
3125 really allocates in units of powers of two and uses 4 bytes for its
3126 own overhead. */
3127
3128 #define SYMBOL_BLOCK_SIZE \
3129 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3130
3131 struct symbol_block
3132 {
3133 /* Place `symbols' first, to preserve alignment. */
3134 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3135 struct symbol_block *next;
3136 };
3137
3138 /* Current symbol block and index of first unused Lisp_Symbol
3139 structure in it. */
3140
3141 static struct symbol_block *symbol_block;
3142 static int symbol_block_index;
3143
3144 /* List of free symbols. */
3145
3146 static struct Lisp_Symbol *symbol_free_list;
3147
3148
3149 /* Initialize symbol allocation. */
3150
3151 static void
3152 init_symbol (void)
3153 {
3154 symbol_block = NULL;
3155 symbol_block_index = SYMBOL_BLOCK_SIZE;
3156 symbol_free_list = 0;
3157 }
3158
3159
3160 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3161 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3162 Its value and function definition are void, and its property list is nil. */)
3163 (Lisp_Object name)
3164 {
3165 register Lisp_Object val;
3166 register struct Lisp_Symbol *p;
3167
3168 CHECK_STRING (name);
3169
3170 /* eassert (!handling_signal); */
3171
3172 MALLOC_BLOCK_INPUT;
3173
3174 if (symbol_free_list)
3175 {
3176 XSETSYMBOL (val, symbol_free_list);
3177 symbol_free_list = symbol_free_list->next;
3178 }
3179 else
3180 {
3181 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3182 {
3183 struct symbol_block *new;
3184 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3185 MEM_TYPE_SYMBOL);
3186 new->next = symbol_block;
3187 symbol_block = new;
3188 symbol_block_index = 0;
3189 }
3190 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3191 symbol_block_index++;
3192 }
3193
3194 MALLOC_UNBLOCK_INPUT;
3195
3196 p = XSYMBOL (val);
3197 p->xname = name;
3198 p->plist = Qnil;
3199 p->redirect = SYMBOL_PLAINVAL;
3200 SET_SYMBOL_VAL (p, Qunbound);
3201 p->function = Qunbound;
3202 p->next = NULL;
3203 p->gcmarkbit = 0;
3204 p->interned = SYMBOL_UNINTERNED;
3205 p->constant = 0;
3206 p->declared_special = 0;
3207 consing_since_gc += sizeof (struct Lisp_Symbol);
3208 symbols_consed++;
3209 return val;
3210 }
3211
3212
3213 \f
3214 /***********************************************************************
3215 Marker (Misc) Allocation
3216 ***********************************************************************/
3217
3218 /* Allocation of markers and other objects that share that structure.
3219 Works like allocation of conses. */
3220
3221 #define MARKER_BLOCK_SIZE \
3222 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3223
3224 struct marker_block
3225 {
3226 /* Place `markers' first, to preserve alignment. */
3227 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3228 struct marker_block *next;
3229 };
3230
3231 static struct marker_block *marker_block;
3232 static int marker_block_index;
3233
3234 static union Lisp_Misc *marker_free_list;
3235
3236 static void
3237 init_marker (void)
3238 {
3239 marker_block = NULL;
3240 marker_block_index = MARKER_BLOCK_SIZE;
3241 marker_free_list = 0;
3242 }
3243
3244 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3245
3246 Lisp_Object
3247 allocate_misc (void)
3248 {
3249 Lisp_Object val;
3250
3251 /* eassert (!handling_signal); */
3252
3253 MALLOC_BLOCK_INPUT;
3254
3255 if (marker_free_list)
3256 {
3257 XSETMISC (val, marker_free_list);
3258 marker_free_list = marker_free_list->u_free.chain;
3259 }
3260 else
3261 {
3262 if (marker_block_index == MARKER_BLOCK_SIZE)
3263 {
3264 struct marker_block *new;
3265 new = (struct marker_block *) lisp_malloc (sizeof *new,
3266 MEM_TYPE_MISC);
3267 new->next = marker_block;
3268 marker_block = new;
3269 marker_block_index = 0;
3270 total_free_markers += MARKER_BLOCK_SIZE;
3271 }
3272 XSETMISC (val, &marker_block->markers[marker_block_index]);
3273 marker_block_index++;
3274 }
3275
3276 MALLOC_UNBLOCK_INPUT;
3277
3278 --total_free_markers;
3279 consing_since_gc += sizeof (union Lisp_Misc);
3280 misc_objects_consed++;
3281 XMISCANY (val)->gcmarkbit = 0;
3282 return val;
3283 }
3284
3285 /* Free a Lisp_Misc object */
3286
3287 static void
3288 free_misc (Lisp_Object misc)
3289 {
3290 XMISCTYPE (misc) = Lisp_Misc_Free;
3291 XMISC (misc)->u_free.chain = marker_free_list;
3292 marker_free_list = XMISC (misc);
3293
3294 total_free_markers++;
3295 }
3296
3297 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3298 INTEGER. This is used to package C values to call record_unwind_protect.
3299 The unwind function can get the C values back using XSAVE_VALUE. */
3300
3301 Lisp_Object
3302 make_save_value (void *pointer, ptrdiff_t integer)
3303 {
3304 register Lisp_Object val;
3305 register struct Lisp_Save_Value *p;
3306
3307 val = allocate_misc ();
3308 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3309 p = XSAVE_VALUE (val);
3310 p->pointer = pointer;
3311 p->integer = integer;
3312 p->dogc = 0;
3313 return val;
3314 }
3315
3316 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3317 doc: /* Return a newly allocated marker which does not point at any place. */)
3318 (void)
3319 {
3320 register Lisp_Object val;
3321 register struct Lisp_Marker *p;
3322
3323 val = allocate_misc ();
3324 XMISCTYPE (val) = Lisp_Misc_Marker;
3325 p = XMARKER (val);
3326 p->buffer = 0;
3327 p->bytepos = 0;
3328 p->charpos = 0;
3329 p->next = NULL;
3330 p->insertion_type = 0;
3331 return val;
3332 }
3333
3334 /* Put MARKER back on the free list after using it temporarily. */
3335
3336 void
3337 free_marker (Lisp_Object marker)
3338 {
3339 unchain_marker (XMARKER (marker));
3340 free_misc (marker);
3341 }
3342
3343 \f
3344 /* Return a newly created vector or string with specified arguments as
3345 elements. If all the arguments are characters that can fit
3346 in a string of events, make a string; otherwise, make a vector.
3347
3348 Any number of arguments, even zero arguments, are allowed. */
3349
3350 Lisp_Object
3351 make_event_array (register int nargs, Lisp_Object *args)
3352 {
3353 int i;
3354
3355 for (i = 0; i < nargs; i++)
3356 /* The things that fit in a string
3357 are characters that are in 0...127,
3358 after discarding the meta bit and all the bits above it. */
3359 if (!INTEGERP (args[i])
3360 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3361 return Fvector (nargs, args);
3362
3363 /* Since the loop exited, we know that all the things in it are
3364 characters, so we can make a string. */
3365 {
3366 Lisp_Object result;
3367
3368 result = Fmake_string (make_number (nargs), make_number (0));
3369 for (i = 0; i < nargs; i++)
3370 {
3371 SSET (result, i, XINT (args[i]));
3372 /* Move the meta bit to the right place for a string char. */
3373 if (XINT (args[i]) & CHAR_META)
3374 SSET (result, i, SREF (result, i) | 0x80);
3375 }
3376
3377 return result;
3378 }
3379 }
3380
3381
3382 \f
3383 /************************************************************************
3384 Memory Full Handling
3385 ************************************************************************/
3386
3387
3388 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3389 there may have been size_t overflow so that malloc was never
3390 called, or perhaps malloc was invoked successfully but the
3391 resulting pointer had problems fitting into a tagged EMACS_INT. In
3392 either case this counts as memory being full even though malloc did
3393 not fail. */
3394
3395 void
3396 memory_full (size_t nbytes)
3397 {
3398 /* Do not go into hysterics merely because a large request failed. */
3399 int enough_free_memory = 0;
3400 if (SPARE_MEMORY < nbytes)
3401 {
3402 void *p;
3403
3404 MALLOC_BLOCK_INPUT;
3405 p = malloc (SPARE_MEMORY);
3406 if (p)
3407 {
3408 free (p);
3409 enough_free_memory = 1;
3410 }
3411 MALLOC_UNBLOCK_INPUT;
3412 }
3413
3414 if (! enough_free_memory)
3415 {
3416 int i;
3417
3418 Vmemory_full = Qt;
3419
3420 memory_full_cons_threshold = sizeof (struct cons_block);
3421
3422 /* The first time we get here, free the spare memory. */
3423 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3424 if (spare_memory[i])
3425 {
3426 if (i == 0)
3427 free (spare_memory[i]);
3428 else if (i >= 1 && i <= 4)
3429 lisp_align_free (spare_memory[i]);
3430 else
3431 lisp_free (spare_memory[i]);
3432 spare_memory[i] = 0;
3433 }
3434
3435 /* Record the space now used. When it decreases substantially,
3436 we can refill the memory reserve. */
3437 #if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
3438 bytes_used_when_full = BYTES_USED;
3439 #endif
3440 }
3441
3442 /* This used to call error, but if we've run out of memory, we could
3443 get infinite recursion trying to build the string. */
3444 xsignal (Qnil, Vmemory_signal_data);
3445 }
3446
3447 /* If we released our reserve (due to running out of memory),
3448 and we have a fair amount free once again,
3449 try to set aside another reserve in case we run out once more.
3450
3451 This is called when a relocatable block is freed in ralloc.c,
3452 and also directly from this file, in case we're not using ralloc.c. */
3453
3454 void
3455 refill_memory_reserve (void)
3456 {
3457 #ifndef SYSTEM_MALLOC
3458 if (spare_memory[0] == 0)
3459 spare_memory[0] = (char *) malloc (SPARE_MEMORY);
3460 if (spare_memory[1] == 0)
3461 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3462 MEM_TYPE_CONS);
3463 if (spare_memory[2] == 0)
3464 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3465 MEM_TYPE_CONS);
3466 if (spare_memory[3] == 0)
3467 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3468 MEM_TYPE_CONS);
3469 if (spare_memory[4] == 0)
3470 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3471 MEM_TYPE_CONS);
3472 if (spare_memory[5] == 0)
3473 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3474 MEM_TYPE_STRING);
3475 if (spare_memory[6] == 0)
3476 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3477 MEM_TYPE_STRING);
3478 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3479 Vmemory_full = Qnil;
3480 #endif
3481 }
3482 \f
3483 /************************************************************************
3484 C Stack Marking
3485 ************************************************************************/
3486
3487 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3488
3489 /* Conservative C stack marking requires a method to identify possibly
3490 live Lisp objects given a pointer value. We do this by keeping
3491 track of blocks of Lisp data that are allocated in a red-black tree
3492 (see also the comment of mem_node which is the type of nodes in
3493 that tree). Function lisp_malloc adds information for an allocated
3494 block to the red-black tree with calls to mem_insert, and function
3495 lisp_free removes it with mem_delete. Functions live_string_p etc
3496 call mem_find to lookup information about a given pointer in the
3497 tree, and use that to determine if the pointer points to a Lisp
3498 object or not. */
3499
3500 /* Initialize this part of alloc.c. */
3501
3502 static void
3503 mem_init (void)
3504 {
3505 mem_z.left = mem_z.right = MEM_NIL;
3506 mem_z.parent = NULL;
3507 mem_z.color = MEM_BLACK;
3508 mem_z.start = mem_z.end = NULL;
3509 mem_root = MEM_NIL;
3510 }
3511
3512
3513 /* Value is a pointer to the mem_node containing START. Value is
3514 MEM_NIL if there is no node in the tree containing START. */
3515
3516 static inline struct mem_node *
3517 mem_find (void *start)
3518 {
3519 struct mem_node *p;
3520
3521 if (start < min_heap_address || start > max_heap_address)
3522 return MEM_NIL;
3523
3524 /* Make the search always successful to speed up the loop below. */
3525 mem_z.start = start;
3526 mem_z.end = (char *) start + 1;
3527
3528 p = mem_root;
3529 while (start < p->start || start >= p->end)
3530 p = start < p->start ? p->left : p->right;
3531 return p;
3532 }
3533
3534
3535 /* Insert a new node into the tree for a block of memory with start
3536 address START, end address END, and type TYPE. Value is a
3537 pointer to the node that was inserted. */
3538
3539 static struct mem_node *
3540 mem_insert (void *start, void *end, enum mem_type type)
3541 {
3542 struct mem_node *c, *parent, *x;
3543
3544 if (min_heap_address == NULL || start < min_heap_address)
3545 min_heap_address = start;
3546 if (max_heap_address == NULL || end > max_heap_address)
3547 max_heap_address = end;
3548
3549 /* See where in the tree a node for START belongs. In this
3550 particular application, it shouldn't happen that a node is already
3551 present. For debugging purposes, let's check that. */
3552 c = mem_root;
3553 parent = NULL;
3554
3555 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3556
3557 while (c != MEM_NIL)
3558 {
3559 if (start >= c->start && start < c->end)
3560 abort ();
3561 parent = c;
3562 c = start < c->start ? c->left : c->right;
3563 }
3564
3565 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3566
3567 while (c != MEM_NIL)
3568 {
3569 parent = c;
3570 c = start < c->start ? c->left : c->right;
3571 }
3572
3573 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3574
3575 /* Create a new node. */
3576 #ifdef GC_MALLOC_CHECK
3577 x = (struct mem_node *) _malloc_internal (sizeof *x);
3578 if (x == NULL)
3579 abort ();
3580 #else
3581 x = (struct mem_node *) xmalloc (sizeof *x);
3582 #endif
3583 x->start = start;
3584 x->end = end;
3585 x->type = type;
3586 x->parent = parent;
3587 x->left = x->right = MEM_NIL;
3588 x->color = MEM_RED;
3589
3590 /* Insert it as child of PARENT or install it as root. */
3591 if (parent)
3592 {
3593 if (start < parent->start)
3594 parent->left = x;
3595 else
3596 parent->right = x;
3597 }
3598 else
3599 mem_root = x;
3600
3601 /* Re-establish red-black tree properties. */
3602 mem_insert_fixup (x);
3603
3604 return x;
3605 }
3606
3607
3608 /* Re-establish the red-black properties of the tree, and thereby
3609 balance the tree, after node X has been inserted; X is always red. */
3610
3611 static void
3612 mem_insert_fixup (struct mem_node *x)
3613 {
3614 while (x != mem_root && x->parent->color == MEM_RED)
3615 {
3616 /* X is red and its parent is red. This is a violation of
3617 red-black tree property #3. */
3618
3619 if (x->parent == x->parent->parent->left)
3620 {
3621 /* We're on the left side of our grandparent, and Y is our
3622 "uncle". */
3623 struct mem_node *y = x->parent->parent->right;
3624
3625 if (y->color == MEM_RED)
3626 {
3627 /* Uncle and parent are red but should be black because
3628 X is red. Change the colors accordingly and proceed
3629 with the grandparent. */
3630 x->parent->color = MEM_BLACK;
3631 y->color = MEM_BLACK;
3632 x->parent->parent->color = MEM_RED;
3633 x = x->parent->parent;
3634 }
3635 else
3636 {
3637 /* Parent and uncle have different colors; parent is
3638 red, uncle is black. */
3639 if (x == x->parent->right)
3640 {
3641 x = x->parent;
3642 mem_rotate_left (x);
3643 }
3644
3645 x->parent->color = MEM_BLACK;
3646 x->parent->parent->color = MEM_RED;
3647 mem_rotate_right (x->parent->parent);
3648 }
3649 }
3650 else
3651 {
3652 /* This is the symmetrical case of above. */
3653 struct mem_node *y = x->parent->parent->left;
3654
3655 if (y->color == MEM_RED)
3656 {
3657 x->parent->color = MEM_BLACK;
3658 y->color = MEM_BLACK;
3659 x->parent->parent->color = MEM_RED;
3660 x = x->parent->parent;
3661 }
3662 else
3663 {
3664 if (x == x->parent->left)
3665 {
3666 x = x->parent;
3667 mem_rotate_right (x);
3668 }
3669
3670 x->parent->color = MEM_BLACK;
3671 x->parent->parent->color = MEM_RED;
3672 mem_rotate_left (x->parent->parent);
3673 }
3674 }
3675 }
3676
3677 /* The root may have been changed to red due to the algorithm. Set
3678 it to black so that property #5 is satisfied. */
3679 mem_root->color = MEM_BLACK;
3680 }
3681
3682
3683 /* (x) (y)
3684 / \ / \
3685 a (y) ===> (x) c
3686 / \ / \
3687 b c a b */
3688
3689 static void
3690 mem_rotate_left (struct mem_node *x)
3691 {
3692 struct mem_node *y;
3693
3694 /* Turn y's left sub-tree into x's right sub-tree. */
3695 y = x->right;
3696 x->right = y->left;
3697 if (y->left != MEM_NIL)
3698 y->left->parent = x;
3699
3700 /* Y's parent was x's parent. */
3701 if (y != MEM_NIL)
3702 y->parent = x->parent;
3703
3704 /* Get the parent to point to y instead of x. */
3705 if (x->parent)
3706 {
3707 if (x == x->parent->left)
3708 x->parent->left = y;
3709 else
3710 x->parent->right = y;
3711 }
3712 else
3713 mem_root = y;
3714
3715 /* Put x on y's left. */
3716 y->left = x;
3717 if (x != MEM_NIL)
3718 x->parent = y;
3719 }
3720
3721
3722 /* (x) (Y)
3723 / \ / \
3724 (y) c ===> a (x)
3725 / \ / \
3726 a b b c */
3727
3728 static void
3729 mem_rotate_right (struct mem_node *x)
3730 {
3731 struct mem_node *y = x->left;
3732
3733 x->left = y->right;
3734 if (y->right != MEM_NIL)
3735 y->right->parent = x;
3736
3737 if (y != MEM_NIL)
3738 y->parent = x->parent;
3739 if (x->parent)
3740 {
3741 if (x == x->parent->right)
3742 x->parent->right = y;
3743 else
3744 x->parent->left = y;
3745 }
3746 else
3747 mem_root = y;
3748
3749 y->right = x;
3750 if (x != MEM_NIL)
3751 x->parent = y;
3752 }
3753
3754
3755 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3756
3757 static void
3758 mem_delete (struct mem_node *z)
3759 {
3760 struct mem_node *x, *y;
3761
3762 if (!z || z == MEM_NIL)
3763 return;
3764
3765 if (z->left == MEM_NIL || z->right == MEM_NIL)
3766 y = z;
3767 else
3768 {
3769 y = z->right;
3770 while (y->left != MEM_NIL)
3771 y = y->left;
3772 }
3773
3774 if (y->left != MEM_NIL)
3775 x = y->left;
3776 else
3777 x = y->right;
3778
3779 x->parent = y->parent;
3780 if (y->parent)
3781 {
3782 if (y == y->parent->left)
3783 y->parent->left = x;
3784 else
3785 y->parent->right = x;
3786 }
3787 else
3788 mem_root = x;
3789
3790 if (y != z)
3791 {
3792 z->start = y->start;
3793 z->end = y->end;
3794 z->type = y->type;
3795 }
3796
3797 if (y->color == MEM_BLACK)
3798 mem_delete_fixup (x);
3799
3800 #ifdef GC_MALLOC_CHECK
3801 _free_internal (y);
3802 #else
3803 xfree (y);
3804 #endif
3805 }
3806
3807
3808 /* Re-establish the red-black properties of the tree, after a
3809 deletion. */
3810
3811 static void
3812 mem_delete_fixup (struct mem_node *x)
3813 {
3814 while (x != mem_root && x->color == MEM_BLACK)
3815 {
3816 if (x == x->parent->left)
3817 {
3818 struct mem_node *w = x->parent->right;
3819
3820 if (w->color == MEM_RED)
3821 {
3822 w->color = MEM_BLACK;
3823 x->parent->color = MEM_RED;
3824 mem_rotate_left (x->parent);
3825 w = x->parent->right;
3826 }
3827
3828 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3829 {
3830 w->color = MEM_RED;
3831 x = x->parent;
3832 }
3833 else
3834 {
3835 if (w->right->color == MEM_BLACK)
3836 {
3837 w->left->color = MEM_BLACK;
3838 w->color = MEM_RED;
3839 mem_rotate_right (w);
3840 w = x->parent->right;
3841 }
3842 w->color = x->parent->color;
3843 x->parent->color = MEM_BLACK;
3844 w->right->color = MEM_BLACK;
3845 mem_rotate_left (x->parent);
3846 x = mem_root;
3847 }
3848 }
3849 else
3850 {
3851 struct mem_node *w = x->parent->left;
3852
3853 if (w->color == MEM_RED)
3854 {
3855 w->color = MEM_BLACK;
3856 x->parent->color = MEM_RED;
3857 mem_rotate_right (x->parent);
3858 w = x->parent->left;
3859 }
3860
3861 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3862 {
3863 w->color = MEM_RED;
3864 x = x->parent;
3865 }
3866 else
3867 {
3868 if (w->left->color == MEM_BLACK)
3869 {
3870 w->right->color = MEM_BLACK;
3871 w->color = MEM_RED;
3872 mem_rotate_left (w);
3873 w = x->parent->left;
3874 }
3875
3876 w->color = x->parent->color;
3877 x->parent->color = MEM_BLACK;
3878 w->left->color = MEM_BLACK;
3879 mem_rotate_right (x->parent);
3880 x = mem_root;
3881 }
3882 }
3883 }
3884
3885 x->color = MEM_BLACK;
3886 }
3887
3888
3889 /* Value is non-zero if P is a pointer to a live Lisp string on
3890 the heap. M is a pointer to the mem_block for P. */
3891
3892 static inline int
3893 live_string_p (struct mem_node *m, void *p)
3894 {
3895 if (m->type == MEM_TYPE_STRING)
3896 {
3897 struct string_block *b = (struct string_block *) m->start;
3898 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3899
3900 /* P must point to the start of a Lisp_String structure, and it
3901 must not be on the free-list. */
3902 return (offset >= 0
3903 && offset % sizeof b->strings[0] == 0
3904 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3905 && ((struct Lisp_String *) p)->data != NULL);
3906 }
3907 else
3908 return 0;
3909 }
3910
3911
3912 /* Value is non-zero if P is a pointer to a live Lisp cons on
3913 the heap. M is a pointer to the mem_block for P. */
3914
3915 static inline int
3916 live_cons_p (struct mem_node *m, void *p)
3917 {
3918 if (m->type == MEM_TYPE_CONS)
3919 {
3920 struct cons_block *b = (struct cons_block *) m->start;
3921 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
3922
3923 /* P must point to the start of a Lisp_Cons, not be
3924 one of the unused cells in the current cons block,
3925 and not be on the free-list. */
3926 return (offset >= 0
3927 && offset % sizeof b->conses[0] == 0
3928 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3929 && (b != cons_block
3930 || offset / sizeof b->conses[0] < cons_block_index)
3931 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3932 }
3933 else
3934 return 0;
3935 }
3936
3937
3938 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3939 the heap. M is a pointer to the mem_block for P. */
3940
3941 static inline int
3942 live_symbol_p (struct mem_node *m, void *p)
3943 {
3944 if (m->type == MEM_TYPE_SYMBOL)
3945 {
3946 struct symbol_block *b = (struct symbol_block *) m->start;
3947 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
3948
3949 /* P must point to the start of a Lisp_Symbol, not be
3950 one of the unused cells in the current symbol block,
3951 and not be on the free-list. */
3952 return (offset >= 0
3953 && offset % sizeof b->symbols[0] == 0
3954 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3955 && (b != symbol_block
3956 || offset / sizeof b->symbols[0] < symbol_block_index)
3957 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3958 }
3959 else
3960 return 0;
3961 }
3962
3963
3964 /* Value is non-zero if P is a pointer to a live Lisp float on
3965 the heap. M is a pointer to the mem_block for P. */
3966
3967 static inline int
3968 live_float_p (struct mem_node *m, void *p)
3969 {
3970 if (m->type == MEM_TYPE_FLOAT)
3971 {
3972 struct float_block *b = (struct float_block *) m->start;
3973 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
3974
3975 /* P must point to the start of a Lisp_Float and not be
3976 one of the unused cells in the current float block. */
3977 return (offset >= 0
3978 && offset % sizeof b->floats[0] == 0
3979 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3980 && (b != float_block
3981 || offset / sizeof b->floats[0] < float_block_index));
3982 }
3983 else
3984 return 0;
3985 }
3986
3987
3988 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3989 the heap. M is a pointer to the mem_block for P. */
3990
3991 static inline int
3992 live_misc_p (struct mem_node *m, void *p)
3993 {
3994 if (m->type == MEM_TYPE_MISC)
3995 {
3996 struct marker_block *b = (struct marker_block *) m->start;
3997 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
3998
3999 /* P must point to the start of a Lisp_Misc, not be
4000 one of the unused cells in the current misc block,
4001 and not be on the free-list. */
4002 return (offset >= 0
4003 && offset % sizeof b->markers[0] == 0
4004 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4005 && (b != marker_block
4006 || offset / sizeof b->markers[0] < marker_block_index)
4007 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4008 }
4009 else
4010 return 0;
4011 }
4012
4013
4014 /* Value is non-zero if P is a pointer to a live vector-like object.
4015 M is a pointer to the mem_block for P. */
4016
4017 static inline int
4018 live_vector_p (struct mem_node *m, void *p)
4019 {
4020 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
4021 }
4022
4023
4024 /* Value is non-zero if P is a pointer to a live buffer. M is a
4025 pointer to the mem_block for P. */
4026
4027 static inline int
4028 live_buffer_p (struct mem_node *m, void *p)
4029 {
4030 /* P must point to the start of the block, and the buffer
4031 must not have been killed. */
4032 return (m->type == MEM_TYPE_BUFFER
4033 && p == m->start
4034 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
4035 }
4036
4037 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4038
4039 #if GC_MARK_STACK
4040
4041 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4042
4043 /* Array of objects that are kept alive because the C stack contains
4044 a pattern that looks like a reference to them . */
4045
4046 #define MAX_ZOMBIES 10
4047 static Lisp_Object zombies[MAX_ZOMBIES];
4048
4049 /* Number of zombie objects. */
4050
4051 static EMACS_INT nzombies;
4052
4053 /* Number of garbage collections. */
4054
4055 static EMACS_INT ngcs;
4056
4057 /* Average percentage of zombies per collection. */
4058
4059 static double avg_zombies;
4060
4061 /* Max. number of live and zombie objects. */
4062
4063 static EMACS_INT max_live, max_zombies;
4064
4065 /* Average number of live objects per GC. */
4066
4067 static double avg_live;
4068
4069 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4070 doc: /* Show information about live and zombie objects. */)
4071 (void)
4072 {
4073 Lisp_Object args[8], zombie_list = Qnil;
4074 EMACS_INT i;
4075 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4076 zombie_list = Fcons (zombies[i], zombie_list);
4077 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4078 args[1] = make_number (ngcs);
4079 args[2] = make_float (avg_live);
4080 args[3] = make_float (avg_zombies);
4081 args[4] = make_float (avg_zombies / avg_live / 100);
4082 args[5] = make_number (max_live);
4083 args[6] = make_number (max_zombies);
4084 args[7] = zombie_list;
4085 return Fmessage (8, args);
4086 }
4087
4088 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4089
4090
4091 /* Mark OBJ if we can prove it's a Lisp_Object. */
4092
4093 static inline void
4094 mark_maybe_object (Lisp_Object obj)
4095 {
4096 void *po;
4097 struct mem_node *m;
4098
4099 if (INTEGERP (obj))
4100 return;
4101
4102 po = (void *) XPNTR (obj);
4103 m = mem_find (po);
4104
4105 if (m != MEM_NIL)
4106 {
4107 int mark_p = 0;
4108
4109 switch (XTYPE (obj))
4110 {
4111 case Lisp_String:
4112 mark_p = (live_string_p (m, po)
4113 && !STRING_MARKED_P ((struct Lisp_String *) po));
4114 break;
4115
4116 case Lisp_Cons:
4117 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4118 break;
4119
4120 case Lisp_Symbol:
4121 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4122 break;
4123
4124 case Lisp_Float:
4125 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4126 break;
4127
4128 case Lisp_Vectorlike:
4129 /* Note: can't check BUFFERP before we know it's a
4130 buffer because checking that dereferences the pointer
4131 PO which might point anywhere. */
4132 if (live_vector_p (m, po))
4133 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4134 else if (live_buffer_p (m, po))
4135 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4136 break;
4137
4138 case Lisp_Misc:
4139 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4140 break;
4141
4142 default:
4143 break;
4144 }
4145
4146 if (mark_p)
4147 {
4148 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4149 if (nzombies < MAX_ZOMBIES)
4150 zombies[nzombies] = obj;
4151 ++nzombies;
4152 #endif
4153 mark_object (obj);
4154 }
4155 }
4156 }
4157
4158
4159 /* If P points to Lisp data, mark that as live if it isn't already
4160 marked. */
4161
4162 static inline void
4163 mark_maybe_pointer (void *p)
4164 {
4165 struct mem_node *m;
4166
4167 /* Quickly rule out some values which can't point to Lisp data. */
4168 if ((intptr_t) p %
4169 #ifdef USE_LSB_TAG
4170 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4171 #else
4172 2 /* We assume that Lisp data is aligned on even addresses. */
4173 #endif
4174 )
4175 return;
4176
4177 m = mem_find (p);
4178 if (m != MEM_NIL)
4179 {
4180 Lisp_Object obj = Qnil;
4181
4182 switch (m->type)
4183 {
4184 case MEM_TYPE_NON_LISP:
4185 /* Nothing to do; not a pointer to Lisp memory. */
4186 break;
4187
4188 case MEM_TYPE_BUFFER:
4189 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4190 XSETVECTOR (obj, p);
4191 break;
4192
4193 case MEM_TYPE_CONS:
4194 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4195 XSETCONS (obj, p);
4196 break;
4197
4198 case MEM_TYPE_STRING:
4199 if (live_string_p (m, p)
4200 && !STRING_MARKED_P ((struct Lisp_String *) p))
4201 XSETSTRING (obj, p);
4202 break;
4203
4204 case MEM_TYPE_MISC:
4205 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4206 XSETMISC (obj, p);
4207 break;
4208
4209 case MEM_TYPE_SYMBOL:
4210 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4211 XSETSYMBOL (obj, p);
4212 break;
4213
4214 case MEM_TYPE_FLOAT:
4215 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4216 XSETFLOAT (obj, p);
4217 break;
4218
4219 case MEM_TYPE_VECTORLIKE:
4220 if (live_vector_p (m, p))
4221 {
4222 Lisp_Object tem;
4223 XSETVECTOR (tem, p);
4224 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4225 obj = tem;
4226 }
4227 break;
4228
4229 default:
4230 abort ();
4231 }
4232
4233 if (!NILP (obj))
4234 mark_object (obj);
4235 }
4236 }
4237
4238
4239 /* Alignment of Lisp_Object and pointer values. Use offsetof, as it
4240 sometimes returns a smaller alignment than GCC's __alignof__ and
4241 mark_memory might miss objects if __alignof__ were used. For
4242 example, on x86 with WIDE_EMACS_INT, __alignof__ (Lisp_Object) is 8
4243 but GC_LISP_OBJECT_ALIGNMENT should be 4. */
4244 #ifndef GC_LISP_OBJECT_ALIGNMENT
4245 # define GC_LISP_OBJECT_ALIGNMENT offsetof (struct {char a; Lisp_Object b;}, b)
4246 #endif
4247 #define GC_POINTER_ALIGNMENT offsetof (struct {char a; void *b;}, b)
4248
4249 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4250 or END+OFFSET..START. */
4251
4252 static void
4253 mark_memory (void *start, void *end)
4254 {
4255 Lisp_Object *p;
4256 void **pp;
4257 int i;
4258
4259 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4260 nzombies = 0;
4261 #endif
4262
4263 /* Make START the pointer to the start of the memory region,
4264 if it isn't already. */
4265 if (end < start)
4266 {
4267 void *tem = start;
4268 start = end;
4269 end = tem;
4270 }
4271
4272 /* Mark Lisp_Objects. */
4273 for (p = start; (void *) p < end; p++)
4274 for (i = 0; i < sizeof *p; i += GC_LISP_OBJECT_ALIGNMENT)
4275 mark_maybe_object (*(Lisp_Object *) ((char *) p + i));
4276
4277 /* Mark Lisp data pointed to. This is necessary because, in some
4278 situations, the C compiler optimizes Lisp objects away, so that
4279 only a pointer to them remains. Example:
4280
4281 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4282 ()
4283 {
4284 Lisp_Object obj = build_string ("test");
4285 struct Lisp_String *s = XSTRING (obj);
4286 Fgarbage_collect ();
4287 fprintf (stderr, "test `%s'\n", s->data);
4288 return Qnil;
4289 }
4290
4291 Here, `obj' isn't really used, and the compiler optimizes it
4292 away. The only reference to the life string is through the
4293 pointer `s'. */
4294
4295 for (pp = start; (void *) pp < end; pp++)
4296 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4297 mark_maybe_pointer (*(void **) ((char *) pp + i));
4298 }
4299
4300 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4301 the GCC system configuration. In gcc 3.2, the only systems for
4302 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4303 by others?) and ns32k-pc532-min. */
4304
4305 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4306
4307 static int setjmp_tested_p, longjmps_done;
4308
4309 #define SETJMP_WILL_LIKELY_WORK "\
4310 \n\
4311 Emacs garbage collector has been changed to use conservative stack\n\
4312 marking. Emacs has determined that the method it uses to do the\n\
4313 marking will likely work on your system, but this isn't sure.\n\
4314 \n\
4315 If you are a system-programmer, or can get the help of a local wizard\n\
4316 who is, please take a look at the function mark_stack in alloc.c, and\n\
4317 verify that the methods used are appropriate for your system.\n\
4318 \n\
4319 Please mail the result to <emacs-devel@gnu.org>.\n\
4320 "
4321
4322 #define SETJMP_WILL_NOT_WORK "\
4323 \n\
4324 Emacs garbage collector has been changed to use conservative stack\n\
4325 marking. Emacs has determined that the default method it uses to do the\n\
4326 marking will not work on your system. We will need a system-dependent\n\
4327 solution for your system.\n\
4328 \n\
4329 Please take a look at the function mark_stack in alloc.c, and\n\
4330 try to find a way to make it work on your system.\n\
4331 \n\
4332 Note that you may get false negatives, depending on the compiler.\n\
4333 In particular, you need to use -O with GCC for this test.\n\
4334 \n\
4335 Please mail the result to <emacs-devel@gnu.org>.\n\
4336 "
4337
4338
4339 /* Perform a quick check if it looks like setjmp saves registers in a
4340 jmp_buf. Print a message to stderr saying so. When this test
4341 succeeds, this is _not_ a proof that setjmp is sufficient for
4342 conservative stack marking. Only the sources or a disassembly
4343 can prove that. */
4344
4345 static void
4346 test_setjmp (void)
4347 {
4348 char buf[10];
4349 register int x;
4350 jmp_buf jbuf;
4351 int result = 0;
4352
4353 /* Arrange for X to be put in a register. */
4354 sprintf (buf, "1");
4355 x = strlen (buf);
4356 x = 2 * x - 1;
4357
4358 setjmp (jbuf);
4359 if (longjmps_done == 1)
4360 {
4361 /* Came here after the longjmp at the end of the function.
4362
4363 If x == 1, the longjmp has restored the register to its
4364 value before the setjmp, and we can hope that setjmp
4365 saves all such registers in the jmp_buf, although that
4366 isn't sure.
4367
4368 For other values of X, either something really strange is
4369 taking place, or the setjmp just didn't save the register. */
4370
4371 if (x == 1)
4372 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4373 else
4374 {
4375 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4376 exit (1);
4377 }
4378 }
4379
4380 ++longjmps_done;
4381 x = 2;
4382 if (longjmps_done == 1)
4383 longjmp (jbuf, 1);
4384 }
4385
4386 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4387
4388
4389 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4390
4391 /* Abort if anything GCPRO'd doesn't survive the GC. */
4392
4393 static void
4394 check_gcpros (void)
4395 {
4396 struct gcpro *p;
4397 ptrdiff_t i;
4398
4399 for (p = gcprolist; p; p = p->next)
4400 for (i = 0; i < p->nvars; ++i)
4401 if (!survives_gc_p (p->var[i]))
4402 /* FIXME: It's not necessarily a bug. It might just be that the
4403 GCPRO is unnecessary or should release the object sooner. */
4404 abort ();
4405 }
4406
4407 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4408
4409 static void
4410 dump_zombies (void)
4411 {
4412 int i;
4413
4414 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4415 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4416 {
4417 fprintf (stderr, " %d = ", i);
4418 debug_print (zombies[i]);
4419 }
4420 }
4421
4422 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4423
4424
4425 /* Mark live Lisp objects on the C stack.
4426
4427 There are several system-dependent problems to consider when
4428 porting this to new architectures:
4429
4430 Processor Registers
4431
4432 We have to mark Lisp objects in CPU registers that can hold local
4433 variables or are used to pass parameters.
4434
4435 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4436 something that either saves relevant registers on the stack, or
4437 calls mark_maybe_object passing it each register's contents.
4438
4439 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4440 implementation assumes that calling setjmp saves registers we need
4441 to see in a jmp_buf which itself lies on the stack. This doesn't
4442 have to be true! It must be verified for each system, possibly
4443 by taking a look at the source code of setjmp.
4444
4445 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4446 can use it as a machine independent method to store all registers
4447 to the stack. In this case the macros described in the previous
4448 two paragraphs are not used.
4449
4450 Stack Layout
4451
4452 Architectures differ in the way their processor stack is organized.
4453 For example, the stack might look like this
4454
4455 +----------------+
4456 | Lisp_Object | size = 4
4457 +----------------+
4458 | something else | size = 2
4459 +----------------+
4460 | Lisp_Object | size = 4
4461 +----------------+
4462 | ... |
4463
4464 In such a case, not every Lisp_Object will be aligned equally. To
4465 find all Lisp_Object on the stack it won't be sufficient to walk
4466 the stack in steps of 4 bytes. Instead, two passes will be
4467 necessary, one starting at the start of the stack, and a second
4468 pass starting at the start of the stack + 2. Likewise, if the
4469 minimal alignment of Lisp_Objects on the stack is 1, four passes
4470 would be necessary, each one starting with one byte more offset
4471 from the stack start. */
4472
4473 static void
4474 mark_stack (void)
4475 {
4476 void *end;
4477
4478 #ifdef HAVE___BUILTIN_UNWIND_INIT
4479 /* Force callee-saved registers and register windows onto the stack.
4480 This is the preferred method if available, obviating the need for
4481 machine dependent methods. */
4482 __builtin_unwind_init ();
4483 end = &end;
4484 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4485 #ifndef GC_SAVE_REGISTERS_ON_STACK
4486 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4487 union aligned_jmpbuf {
4488 Lisp_Object o;
4489 jmp_buf j;
4490 } j;
4491 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4492 #endif
4493 /* This trick flushes the register windows so that all the state of
4494 the process is contained in the stack. */
4495 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4496 needed on ia64 too. See mach_dep.c, where it also says inline
4497 assembler doesn't work with relevant proprietary compilers. */
4498 #ifdef __sparc__
4499 #if defined (__sparc64__) && defined (__FreeBSD__)
4500 /* FreeBSD does not have a ta 3 handler. */
4501 asm ("flushw");
4502 #else
4503 asm ("ta 3");
4504 #endif
4505 #endif
4506
4507 /* Save registers that we need to see on the stack. We need to see
4508 registers used to hold register variables and registers used to
4509 pass parameters. */
4510 #ifdef GC_SAVE_REGISTERS_ON_STACK
4511 GC_SAVE_REGISTERS_ON_STACK (end);
4512 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4513
4514 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4515 setjmp will definitely work, test it
4516 and print a message with the result
4517 of the test. */
4518 if (!setjmp_tested_p)
4519 {
4520 setjmp_tested_p = 1;
4521 test_setjmp ();
4522 }
4523 #endif /* GC_SETJMP_WORKS */
4524
4525 setjmp (j.j);
4526 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4527 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4528 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4529
4530 /* This assumes that the stack is a contiguous region in memory. If
4531 that's not the case, something has to be done here to iterate
4532 over the stack segments. */
4533 mark_memory (stack_base, end);
4534
4535 /* Allow for marking a secondary stack, like the register stack on the
4536 ia64. */
4537 #ifdef GC_MARK_SECONDARY_STACK
4538 GC_MARK_SECONDARY_STACK ();
4539 #endif
4540
4541 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4542 check_gcpros ();
4543 #endif
4544 }
4545
4546 #endif /* GC_MARK_STACK != 0 */
4547
4548
4549 /* Determine whether it is safe to access memory at address P. */
4550 static int
4551 valid_pointer_p (void *p)
4552 {
4553 #ifdef WINDOWSNT
4554 return w32_valid_pointer_p (p, 16);
4555 #else
4556 int fd[2];
4557
4558 /* Obviously, we cannot just access it (we would SEGV trying), so we
4559 trick the o/s to tell us whether p is a valid pointer.
4560 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4561 not validate p in that case. */
4562
4563 if (pipe (fd) == 0)
4564 {
4565 int valid = (emacs_write (fd[1], (char *) p, 16) == 16);
4566 emacs_close (fd[1]);
4567 emacs_close (fd[0]);
4568 return valid;
4569 }
4570
4571 return -1;
4572 #endif
4573 }
4574
4575 /* Return 1 if OBJ is a valid lisp object.
4576 Return 0 if OBJ is NOT a valid lisp object.
4577 Return -1 if we cannot validate OBJ.
4578 This function can be quite slow,
4579 so it should only be used in code for manual debugging. */
4580
4581 int
4582 valid_lisp_object_p (Lisp_Object obj)
4583 {
4584 void *p;
4585 #if GC_MARK_STACK
4586 struct mem_node *m;
4587 #endif
4588
4589 if (INTEGERP (obj))
4590 return 1;
4591
4592 p = (void *) XPNTR (obj);
4593 if (PURE_POINTER_P (p))
4594 return 1;
4595
4596 #if !GC_MARK_STACK
4597 return valid_pointer_p (p);
4598 #else
4599
4600 m = mem_find (p);
4601
4602 if (m == MEM_NIL)
4603 {
4604 int valid = valid_pointer_p (p);
4605 if (valid <= 0)
4606 return valid;
4607
4608 if (SUBRP (obj))
4609 return 1;
4610
4611 return 0;
4612 }
4613
4614 switch (m->type)
4615 {
4616 case MEM_TYPE_NON_LISP:
4617 return 0;
4618
4619 case MEM_TYPE_BUFFER:
4620 return live_buffer_p (m, p);
4621
4622 case MEM_TYPE_CONS:
4623 return live_cons_p (m, p);
4624
4625 case MEM_TYPE_STRING:
4626 return live_string_p (m, p);
4627
4628 case MEM_TYPE_MISC:
4629 return live_misc_p (m, p);
4630
4631 case MEM_TYPE_SYMBOL:
4632 return live_symbol_p (m, p);
4633
4634 case MEM_TYPE_FLOAT:
4635 return live_float_p (m, p);
4636
4637 case MEM_TYPE_VECTORLIKE:
4638 return live_vector_p (m, p);
4639
4640 default:
4641 break;
4642 }
4643
4644 return 0;
4645 #endif
4646 }
4647
4648
4649
4650 \f
4651 /***********************************************************************
4652 Pure Storage Management
4653 ***********************************************************************/
4654
4655 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4656 pointer to it. TYPE is the Lisp type for which the memory is
4657 allocated. TYPE < 0 means it's not used for a Lisp object. */
4658
4659 static POINTER_TYPE *
4660 pure_alloc (size_t size, int type)
4661 {
4662 POINTER_TYPE *result;
4663 #ifdef USE_LSB_TAG
4664 size_t alignment = (1 << GCTYPEBITS);
4665 #else
4666 size_t alignment = sizeof (EMACS_INT);
4667
4668 /* Give Lisp_Floats an extra alignment. */
4669 if (type == Lisp_Float)
4670 {
4671 #if defined __GNUC__ && __GNUC__ >= 2
4672 alignment = __alignof (struct Lisp_Float);
4673 #else
4674 alignment = sizeof (struct Lisp_Float);
4675 #endif
4676 }
4677 #endif
4678
4679 again:
4680 if (type >= 0)
4681 {
4682 /* Allocate space for a Lisp object from the beginning of the free
4683 space with taking account of alignment. */
4684 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4685 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4686 }
4687 else
4688 {
4689 /* Allocate space for a non-Lisp object from the end of the free
4690 space. */
4691 pure_bytes_used_non_lisp += size;
4692 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4693 }
4694 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4695
4696 if (pure_bytes_used <= pure_size)
4697 return result;
4698
4699 /* Don't allocate a large amount here,
4700 because it might get mmap'd and then its address
4701 might not be usable. */
4702 purebeg = (char *) xmalloc (10000);
4703 pure_size = 10000;
4704 pure_bytes_used_before_overflow += pure_bytes_used - size;
4705 pure_bytes_used = 0;
4706 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4707 goto again;
4708 }
4709
4710
4711 /* Print a warning if PURESIZE is too small. */
4712
4713 void
4714 check_pure_size (void)
4715 {
4716 if (pure_bytes_used_before_overflow)
4717 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4718 " bytes needed)"),
4719 pure_bytes_used + pure_bytes_used_before_overflow);
4720 }
4721
4722
4723 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4724 the non-Lisp data pool of the pure storage, and return its start
4725 address. Return NULL if not found. */
4726
4727 static char *
4728 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
4729 {
4730 int i;
4731 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4732 const unsigned char *p;
4733 char *non_lisp_beg;
4734
4735 if (pure_bytes_used_non_lisp <= nbytes)
4736 return NULL;
4737
4738 /* Set up the Boyer-Moore table. */
4739 skip = nbytes + 1;
4740 for (i = 0; i < 256; i++)
4741 bm_skip[i] = skip;
4742
4743 p = (const unsigned char *) data;
4744 while (--skip > 0)
4745 bm_skip[*p++] = skip;
4746
4747 last_char_skip = bm_skip['\0'];
4748
4749 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4750 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4751
4752 /* See the comments in the function `boyer_moore' (search.c) for the
4753 use of `infinity'. */
4754 infinity = pure_bytes_used_non_lisp + 1;
4755 bm_skip['\0'] = infinity;
4756
4757 p = (const unsigned char *) non_lisp_beg + nbytes;
4758 start = 0;
4759 do
4760 {
4761 /* Check the last character (== '\0'). */
4762 do
4763 {
4764 start += bm_skip[*(p + start)];
4765 }
4766 while (start <= start_max);
4767
4768 if (start < infinity)
4769 /* Couldn't find the last character. */
4770 return NULL;
4771
4772 /* No less than `infinity' means we could find the last
4773 character at `p[start - infinity]'. */
4774 start -= infinity;
4775
4776 /* Check the remaining characters. */
4777 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4778 /* Found. */
4779 return non_lisp_beg + start;
4780
4781 start += last_char_skip;
4782 }
4783 while (start <= start_max);
4784
4785 return NULL;
4786 }
4787
4788
4789 /* Return a string allocated in pure space. DATA is a buffer holding
4790 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4791 non-zero means make the result string multibyte.
4792
4793 Must get an error if pure storage is full, since if it cannot hold
4794 a large string it may be able to hold conses that point to that
4795 string; then the string is not protected from gc. */
4796
4797 Lisp_Object
4798 make_pure_string (const char *data,
4799 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
4800 {
4801 Lisp_Object string;
4802 struct Lisp_String *s;
4803
4804 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4805 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4806 if (s->data == NULL)
4807 {
4808 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4809 memcpy (s->data, data, nbytes);
4810 s->data[nbytes] = '\0';
4811 }
4812 s->size = nchars;
4813 s->size_byte = multibyte ? nbytes : -1;
4814 s->intervals = NULL_INTERVAL;
4815 XSETSTRING (string, s);
4816 return string;
4817 }
4818
4819 /* Return a string a string allocated in pure space. Do not allocate
4820 the string data, just point to DATA. */
4821
4822 Lisp_Object
4823 make_pure_c_string (const char *data)
4824 {
4825 Lisp_Object string;
4826 struct Lisp_String *s;
4827 ptrdiff_t nchars = strlen (data);
4828
4829 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4830 s->size = nchars;
4831 s->size_byte = -1;
4832 s->data = (unsigned char *) data;
4833 s->intervals = NULL_INTERVAL;
4834 XSETSTRING (string, s);
4835 return string;
4836 }
4837
4838 /* Return a cons allocated from pure space. Give it pure copies
4839 of CAR as car and CDR as cdr. */
4840
4841 Lisp_Object
4842 pure_cons (Lisp_Object car, Lisp_Object cdr)
4843 {
4844 register Lisp_Object new;
4845 struct Lisp_Cons *p;
4846
4847 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4848 XSETCONS (new, p);
4849 XSETCAR (new, Fpurecopy (car));
4850 XSETCDR (new, Fpurecopy (cdr));
4851 return new;
4852 }
4853
4854
4855 /* Value is a float object with value NUM allocated from pure space. */
4856
4857 static Lisp_Object
4858 make_pure_float (double num)
4859 {
4860 register Lisp_Object new;
4861 struct Lisp_Float *p;
4862
4863 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4864 XSETFLOAT (new, p);
4865 XFLOAT_INIT (new, num);
4866 return new;
4867 }
4868
4869
4870 /* Return a vector with room for LEN Lisp_Objects allocated from
4871 pure space. */
4872
4873 Lisp_Object
4874 make_pure_vector (ptrdiff_t len)
4875 {
4876 Lisp_Object new;
4877 struct Lisp_Vector *p;
4878 size_t size = (offsetof (struct Lisp_Vector, contents)
4879 + len * sizeof (Lisp_Object));
4880
4881 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4882 XSETVECTOR (new, p);
4883 XVECTOR (new)->header.size = len;
4884 return new;
4885 }
4886
4887
4888 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4889 doc: /* Make a copy of object OBJ in pure storage.
4890 Recursively copies contents of vectors and cons cells.
4891 Does not copy symbols. Copies strings without text properties. */)
4892 (register Lisp_Object obj)
4893 {
4894 if (NILP (Vpurify_flag))
4895 return obj;
4896
4897 if (PURE_POINTER_P (XPNTR (obj)))
4898 return obj;
4899
4900 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4901 {
4902 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4903 if (!NILP (tmp))
4904 return tmp;
4905 }
4906
4907 if (CONSP (obj))
4908 obj = pure_cons (XCAR (obj), XCDR (obj));
4909 else if (FLOATP (obj))
4910 obj = make_pure_float (XFLOAT_DATA (obj));
4911 else if (STRINGP (obj))
4912 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
4913 SBYTES (obj),
4914 STRING_MULTIBYTE (obj));
4915 else if (COMPILEDP (obj) || VECTORP (obj))
4916 {
4917 register struct Lisp_Vector *vec;
4918 register ptrdiff_t i;
4919 ptrdiff_t size;
4920
4921 size = ASIZE (obj);
4922 if (size & PSEUDOVECTOR_FLAG)
4923 size &= PSEUDOVECTOR_SIZE_MASK;
4924 vec = XVECTOR (make_pure_vector (size));
4925 for (i = 0; i < size; i++)
4926 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4927 if (COMPILEDP (obj))
4928 {
4929 XSETPVECTYPE (vec, PVEC_COMPILED);
4930 XSETCOMPILED (obj, vec);
4931 }
4932 else
4933 XSETVECTOR (obj, vec);
4934 }
4935 else if (MARKERP (obj))
4936 error ("Attempt to copy a marker to pure storage");
4937 else
4938 /* Not purified, don't hash-cons. */
4939 return obj;
4940
4941 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4942 Fputhash (obj, obj, Vpurify_flag);
4943
4944 return obj;
4945 }
4946
4947
4948 \f
4949 /***********************************************************************
4950 Protection from GC
4951 ***********************************************************************/
4952
4953 /* Put an entry in staticvec, pointing at the variable with address
4954 VARADDRESS. */
4955
4956 void
4957 staticpro (Lisp_Object *varaddress)
4958 {
4959 staticvec[staticidx++] = varaddress;
4960 if (staticidx >= NSTATICS)
4961 abort ();
4962 }
4963
4964 \f
4965 /***********************************************************************
4966 Protection from GC
4967 ***********************************************************************/
4968
4969 /* Temporarily prevent garbage collection. */
4970
4971 ptrdiff_t
4972 inhibit_garbage_collection (void)
4973 {
4974 ptrdiff_t count = SPECPDL_INDEX ();
4975
4976 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
4977 return count;
4978 }
4979
4980
4981 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4982 doc: /* Reclaim storage for Lisp objects no longer needed.
4983 Garbage collection happens automatically if you cons more than
4984 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4985 `garbage-collect' normally returns a list with info on amount of space in use:
4986 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4987 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4988 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4989 (USED-STRINGS . FREE-STRINGS))
4990 However, if there was overflow in pure space, `garbage-collect'
4991 returns nil, because real GC can't be done. */)
4992 (void)
4993 {
4994 register struct specbinding *bind;
4995 char stack_top_variable;
4996 ptrdiff_t i;
4997 int message_p;
4998 Lisp_Object total[8];
4999 ptrdiff_t count = SPECPDL_INDEX ();
5000 EMACS_TIME t1, t2, t3;
5001
5002 if (abort_on_gc)
5003 abort ();
5004
5005 /* Can't GC if pure storage overflowed because we can't determine
5006 if something is a pure object or not. */
5007 if (pure_bytes_used_before_overflow)
5008 return Qnil;
5009
5010 CHECK_CONS_LIST ();
5011
5012 /* Don't keep undo information around forever.
5013 Do this early on, so it is no problem if the user quits. */
5014 {
5015 register struct buffer *nextb = all_buffers;
5016
5017 while (nextb)
5018 {
5019 /* If a buffer's undo list is Qt, that means that undo is
5020 turned off in that buffer. Calling truncate_undo_list on
5021 Qt tends to return NULL, which effectively turns undo back on.
5022 So don't call truncate_undo_list if undo_list is Qt. */
5023 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5024 truncate_undo_list (nextb);
5025
5026 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5027 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
5028 && ! nextb->text->inhibit_shrinking)
5029 {
5030 /* If a buffer's gap size is more than 10% of the buffer
5031 size, or larger than 2000 bytes, then shrink it
5032 accordingly. Keep a minimum size of 20 bytes. */
5033 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5034
5035 if (nextb->text->gap_size > size)
5036 {
5037 struct buffer *save_current = current_buffer;
5038 current_buffer = nextb;
5039 make_gap (-(nextb->text->gap_size - size));
5040 current_buffer = save_current;
5041 }
5042 }
5043
5044 nextb = nextb->header.next.buffer;
5045 }
5046 }
5047
5048 EMACS_GET_TIME (t1);
5049
5050 /* In case user calls debug_print during GC,
5051 don't let that cause a recursive GC. */
5052 consing_since_gc = 0;
5053
5054 /* Save what's currently displayed in the echo area. */
5055 message_p = push_message ();
5056 record_unwind_protect (pop_message_unwind, Qnil);
5057
5058 /* Save a copy of the contents of the stack, for debugging. */
5059 #if MAX_SAVE_STACK > 0
5060 if (NILP (Vpurify_flag))
5061 {
5062 char *stack;
5063 ptrdiff_t stack_size;
5064 if (&stack_top_variable < stack_bottom)
5065 {
5066 stack = &stack_top_variable;
5067 stack_size = stack_bottom - &stack_top_variable;
5068 }
5069 else
5070 {
5071 stack = stack_bottom;
5072 stack_size = &stack_top_variable - stack_bottom;
5073 }
5074 if (stack_size <= MAX_SAVE_STACK)
5075 {
5076 if (stack_copy_size < stack_size)
5077 {
5078 stack_copy = (char *) xrealloc (stack_copy, stack_size);
5079 stack_copy_size = stack_size;
5080 }
5081 memcpy (stack_copy, stack, stack_size);
5082 }
5083 }
5084 #endif /* MAX_SAVE_STACK > 0 */
5085
5086 if (garbage_collection_messages)
5087 message1_nolog ("Garbage collecting...");
5088
5089 BLOCK_INPUT;
5090
5091 shrink_regexp_cache ();
5092
5093 gc_in_progress = 1;
5094
5095 /* clear_marks (); */
5096
5097 /* Mark all the special slots that serve as the roots of accessibility. */
5098
5099 for (i = 0; i < staticidx; i++)
5100 mark_object (*staticvec[i]);
5101
5102 for (bind = specpdl; bind != specpdl_ptr; bind++)
5103 {
5104 mark_object (bind->symbol);
5105 mark_object (bind->old_value);
5106 }
5107 mark_terminals ();
5108 mark_kboards ();
5109 mark_ttys ();
5110
5111 #ifdef USE_GTK
5112 {
5113 extern void xg_mark_data (void);
5114 xg_mark_data ();
5115 }
5116 #endif
5117
5118 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5119 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5120 mark_stack ();
5121 #else
5122 {
5123 register struct gcpro *tail;
5124 for (tail = gcprolist; tail; tail = tail->next)
5125 for (i = 0; i < tail->nvars; i++)
5126 mark_object (tail->var[i]);
5127 }
5128 mark_byte_stack ();
5129 {
5130 struct catchtag *catch;
5131 struct handler *handler;
5132
5133 for (catch = catchlist; catch; catch = catch->next)
5134 {
5135 mark_object (catch->tag);
5136 mark_object (catch->val);
5137 }
5138 for (handler = handlerlist; handler; handler = handler->next)
5139 {
5140 mark_object (handler->handler);
5141 mark_object (handler->var);
5142 }
5143 }
5144 mark_backtrace ();
5145 #endif
5146
5147 #ifdef HAVE_WINDOW_SYSTEM
5148 mark_fringe_data ();
5149 #endif
5150
5151 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5152 mark_stack ();
5153 #endif
5154
5155 /* Everything is now marked, except for the things that require special
5156 finalization, i.e. the undo_list.
5157 Look thru every buffer's undo list
5158 for elements that update markers that were not marked,
5159 and delete them. */
5160 {
5161 register struct buffer *nextb = all_buffers;
5162
5163 while (nextb)
5164 {
5165 /* If a buffer's undo list is Qt, that means that undo is
5166 turned off in that buffer. Calling truncate_undo_list on
5167 Qt tends to return NULL, which effectively turns undo back on.
5168 So don't call truncate_undo_list if undo_list is Qt. */
5169 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5170 {
5171 Lisp_Object tail, prev;
5172 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5173 prev = Qnil;
5174 while (CONSP (tail))
5175 {
5176 if (CONSP (XCAR (tail))
5177 && MARKERP (XCAR (XCAR (tail)))
5178 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5179 {
5180 if (NILP (prev))
5181 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5182 else
5183 {
5184 tail = XCDR (tail);
5185 XSETCDR (prev, tail);
5186 }
5187 }
5188 else
5189 {
5190 prev = tail;
5191 tail = XCDR (tail);
5192 }
5193 }
5194 }
5195 /* Now that we have stripped the elements that need not be in the
5196 undo_list any more, we can finally mark the list. */
5197 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5198
5199 nextb = nextb->header.next.buffer;
5200 }
5201 }
5202
5203 gc_sweep ();
5204
5205 /* Clear the mark bits that we set in certain root slots. */
5206
5207 unmark_byte_stack ();
5208 VECTOR_UNMARK (&buffer_defaults);
5209 VECTOR_UNMARK (&buffer_local_symbols);
5210
5211 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5212 dump_zombies ();
5213 #endif
5214
5215 UNBLOCK_INPUT;
5216
5217 CHECK_CONS_LIST ();
5218
5219 /* clear_marks (); */
5220 gc_in_progress = 0;
5221
5222 consing_since_gc = 0;
5223 if (gc_cons_threshold < 10000)
5224 gc_cons_threshold = 10000;
5225
5226 gc_relative_threshold = 0;
5227 if (FLOATP (Vgc_cons_percentage))
5228 { /* Set gc_cons_combined_threshold. */
5229 double tot = 0;
5230
5231 tot += total_conses * sizeof (struct Lisp_Cons);
5232 tot += total_symbols * sizeof (struct Lisp_Symbol);
5233 tot += total_markers * sizeof (union Lisp_Misc);
5234 tot += total_string_size;
5235 tot += total_vector_size * sizeof (Lisp_Object);
5236 tot += total_floats * sizeof (struct Lisp_Float);
5237 tot += total_intervals * sizeof (struct interval);
5238 tot += total_strings * sizeof (struct Lisp_String);
5239
5240 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5241 if (0 < tot)
5242 {
5243 if (tot < TYPE_MAXIMUM (EMACS_INT))
5244 gc_relative_threshold = tot;
5245 else
5246 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5247 }
5248 }
5249
5250 if (garbage_collection_messages)
5251 {
5252 if (message_p || minibuf_level > 0)
5253 restore_message ();
5254 else
5255 message1_nolog ("Garbage collecting...done");
5256 }
5257
5258 unbind_to (count, Qnil);
5259
5260 total[0] = Fcons (make_number (total_conses),
5261 make_number (total_free_conses));
5262 total[1] = Fcons (make_number (total_symbols),
5263 make_number (total_free_symbols));
5264 total[2] = Fcons (make_number (total_markers),
5265 make_number (total_free_markers));
5266 total[3] = make_number (total_string_size);
5267 total[4] = make_number (total_vector_size);
5268 total[5] = Fcons (make_number (total_floats),
5269 make_number (total_free_floats));
5270 total[6] = Fcons (make_number (total_intervals),
5271 make_number (total_free_intervals));
5272 total[7] = Fcons (make_number (total_strings),
5273 make_number (total_free_strings));
5274
5275 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5276 {
5277 /* Compute average percentage of zombies. */
5278 double nlive = 0;
5279
5280 for (i = 0; i < 7; ++i)
5281 if (CONSP (total[i]))
5282 nlive += XFASTINT (XCAR (total[i]));
5283
5284 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5285 max_live = max (nlive, max_live);
5286 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5287 max_zombies = max (nzombies, max_zombies);
5288 ++ngcs;
5289 }
5290 #endif
5291
5292 if (!NILP (Vpost_gc_hook))
5293 {
5294 ptrdiff_t gc_count = inhibit_garbage_collection ();
5295 safe_run_hooks (Qpost_gc_hook);
5296 unbind_to (gc_count, Qnil);
5297 }
5298
5299 /* Accumulate statistics. */
5300 EMACS_GET_TIME (t2);
5301 EMACS_SUB_TIME (t3, t2, t1);
5302 if (FLOATP (Vgc_elapsed))
5303 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5304 EMACS_SECS (t3) +
5305 EMACS_USECS (t3) * 1.0e-6);
5306 gcs_done++;
5307
5308 return Flist (sizeof total / sizeof *total, total);
5309 }
5310
5311
5312 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5313 only interesting objects referenced from glyphs are strings. */
5314
5315 static void
5316 mark_glyph_matrix (struct glyph_matrix *matrix)
5317 {
5318 struct glyph_row *row = matrix->rows;
5319 struct glyph_row *end = row + matrix->nrows;
5320
5321 for (; row < end; ++row)
5322 if (row->enabled_p)
5323 {
5324 int area;
5325 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5326 {
5327 struct glyph *glyph = row->glyphs[area];
5328 struct glyph *end_glyph = glyph + row->used[area];
5329
5330 for (; glyph < end_glyph; ++glyph)
5331 if (STRINGP (glyph->object)
5332 && !STRING_MARKED_P (XSTRING (glyph->object)))
5333 mark_object (glyph->object);
5334 }
5335 }
5336 }
5337
5338
5339 /* Mark Lisp faces in the face cache C. */
5340
5341 static void
5342 mark_face_cache (struct face_cache *c)
5343 {
5344 if (c)
5345 {
5346 int i, j;
5347 for (i = 0; i < c->used; ++i)
5348 {
5349 struct face *face = FACE_FROM_ID (c->f, i);
5350
5351 if (face)
5352 {
5353 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5354 mark_object (face->lface[j]);
5355 }
5356 }
5357 }
5358 }
5359
5360
5361 \f
5362 /* Mark reference to a Lisp_Object.
5363 If the object referred to has not been seen yet, recursively mark
5364 all the references contained in it. */
5365
5366 #define LAST_MARKED_SIZE 500
5367 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5368 static int last_marked_index;
5369
5370 /* For debugging--call abort when we cdr down this many
5371 links of a list, in mark_object. In debugging,
5372 the call to abort will hit a breakpoint.
5373 Normally this is zero and the check never goes off. */
5374 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5375
5376 static void
5377 mark_vectorlike (struct Lisp_Vector *ptr)
5378 {
5379 ptrdiff_t size = ptr->header.size;
5380 ptrdiff_t i;
5381
5382 eassert (!VECTOR_MARKED_P (ptr));
5383 VECTOR_MARK (ptr); /* Else mark it */
5384 if (size & PSEUDOVECTOR_FLAG)
5385 size &= PSEUDOVECTOR_SIZE_MASK;
5386
5387 /* Note that this size is not the memory-footprint size, but only
5388 the number of Lisp_Object fields that we should trace.
5389 The distinction is used e.g. by Lisp_Process which places extra
5390 non-Lisp_Object fields at the end of the structure. */
5391 for (i = 0; i < size; i++) /* and then mark its elements */
5392 mark_object (ptr->contents[i]);
5393 }
5394
5395 /* Like mark_vectorlike but optimized for char-tables (and
5396 sub-char-tables) assuming that the contents are mostly integers or
5397 symbols. */
5398
5399 static void
5400 mark_char_table (struct Lisp_Vector *ptr)
5401 {
5402 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5403 int i;
5404
5405 eassert (!VECTOR_MARKED_P (ptr));
5406 VECTOR_MARK (ptr);
5407 for (i = 0; i < size; i++)
5408 {
5409 Lisp_Object val = ptr->contents[i];
5410
5411 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5412 continue;
5413 if (SUB_CHAR_TABLE_P (val))
5414 {
5415 if (! VECTOR_MARKED_P (XVECTOR (val)))
5416 mark_char_table (XVECTOR (val));
5417 }
5418 else
5419 mark_object (val);
5420 }
5421 }
5422
5423 void
5424 mark_object (Lisp_Object arg)
5425 {
5426 register Lisp_Object obj = arg;
5427 #ifdef GC_CHECK_MARKED_OBJECTS
5428 void *po;
5429 struct mem_node *m;
5430 #endif
5431 ptrdiff_t cdr_count = 0;
5432
5433 loop:
5434
5435 if (PURE_POINTER_P (XPNTR (obj)))
5436 return;
5437
5438 last_marked[last_marked_index++] = obj;
5439 if (last_marked_index == LAST_MARKED_SIZE)
5440 last_marked_index = 0;
5441
5442 /* Perform some sanity checks on the objects marked here. Abort if
5443 we encounter an object we know is bogus. This increases GC time
5444 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5445 #ifdef GC_CHECK_MARKED_OBJECTS
5446
5447 po = (void *) XPNTR (obj);
5448
5449 /* Check that the object pointed to by PO is known to be a Lisp
5450 structure allocated from the heap. */
5451 #define CHECK_ALLOCATED() \
5452 do { \
5453 m = mem_find (po); \
5454 if (m == MEM_NIL) \
5455 abort (); \
5456 } while (0)
5457
5458 /* Check that the object pointed to by PO is live, using predicate
5459 function LIVEP. */
5460 #define CHECK_LIVE(LIVEP) \
5461 do { \
5462 if (!LIVEP (m, po)) \
5463 abort (); \
5464 } while (0)
5465
5466 /* Check both of the above conditions. */
5467 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5468 do { \
5469 CHECK_ALLOCATED (); \
5470 CHECK_LIVE (LIVEP); \
5471 } while (0) \
5472
5473 #else /* not GC_CHECK_MARKED_OBJECTS */
5474
5475 #define CHECK_LIVE(LIVEP) (void) 0
5476 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5477
5478 #endif /* not GC_CHECK_MARKED_OBJECTS */
5479
5480 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5481 {
5482 case Lisp_String:
5483 {
5484 register struct Lisp_String *ptr = XSTRING (obj);
5485 if (STRING_MARKED_P (ptr))
5486 break;
5487 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5488 MARK_INTERVAL_TREE (ptr->intervals);
5489 MARK_STRING (ptr);
5490 #ifdef GC_CHECK_STRING_BYTES
5491 /* Check that the string size recorded in the string is the
5492 same as the one recorded in the sdata structure. */
5493 CHECK_STRING_BYTES (ptr);
5494 #endif /* GC_CHECK_STRING_BYTES */
5495 }
5496 break;
5497
5498 case Lisp_Vectorlike:
5499 if (VECTOR_MARKED_P (XVECTOR (obj)))
5500 break;
5501 #ifdef GC_CHECK_MARKED_OBJECTS
5502 m = mem_find (po);
5503 if (m == MEM_NIL && !SUBRP (obj)
5504 && po != &buffer_defaults
5505 && po != &buffer_local_symbols)
5506 abort ();
5507 #endif /* GC_CHECK_MARKED_OBJECTS */
5508
5509 if (BUFFERP (obj))
5510 {
5511 #ifdef GC_CHECK_MARKED_OBJECTS
5512 if (po != &buffer_defaults && po != &buffer_local_symbols)
5513 {
5514 struct buffer *b;
5515 for (b = all_buffers; b && b != po; b = b->header.next.buffer)
5516 ;
5517 if (b == NULL)
5518 abort ();
5519 }
5520 #endif /* GC_CHECK_MARKED_OBJECTS */
5521 mark_buffer (obj);
5522 }
5523 else if (SUBRP (obj))
5524 break;
5525 else if (COMPILEDP (obj))
5526 /* We could treat this just like a vector, but it is better to
5527 save the COMPILED_CONSTANTS element for last and avoid
5528 recursion there. */
5529 {
5530 register struct Lisp_Vector *ptr = XVECTOR (obj);
5531 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5532 int i;
5533
5534 CHECK_LIVE (live_vector_p);
5535 VECTOR_MARK (ptr); /* Else mark it */
5536 for (i = 0; i < size; i++) /* and then mark its elements */
5537 {
5538 if (i != COMPILED_CONSTANTS)
5539 mark_object (ptr->contents[i]);
5540 }
5541 obj = ptr->contents[COMPILED_CONSTANTS];
5542 goto loop;
5543 }
5544 else if (FRAMEP (obj))
5545 {
5546 register struct frame *ptr = XFRAME (obj);
5547 mark_vectorlike (XVECTOR (obj));
5548 mark_face_cache (ptr->face_cache);
5549 }
5550 else if (WINDOWP (obj))
5551 {
5552 register struct Lisp_Vector *ptr = XVECTOR (obj);
5553 struct window *w = XWINDOW (obj);
5554 mark_vectorlike (ptr);
5555 /* Mark glyphs for leaf windows. Marking window matrices is
5556 sufficient because frame matrices use the same glyph
5557 memory. */
5558 if (NILP (w->hchild)
5559 && NILP (w->vchild)
5560 && w->current_matrix)
5561 {
5562 mark_glyph_matrix (w->current_matrix);
5563 mark_glyph_matrix (w->desired_matrix);
5564 }
5565 }
5566 else if (HASH_TABLE_P (obj))
5567 {
5568 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5569 mark_vectorlike ((struct Lisp_Vector *)h);
5570 /* If hash table is not weak, mark all keys and values.
5571 For weak tables, mark only the vector. */
5572 if (NILP (h->weak))
5573 mark_object (h->key_and_value);
5574 else
5575 VECTOR_MARK (XVECTOR (h->key_and_value));
5576 }
5577 else if (CHAR_TABLE_P (obj))
5578 mark_char_table (XVECTOR (obj));
5579 else
5580 mark_vectorlike (XVECTOR (obj));
5581 break;
5582
5583 case Lisp_Symbol:
5584 {
5585 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5586 struct Lisp_Symbol *ptrx;
5587
5588 if (ptr->gcmarkbit)
5589 break;
5590 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5591 ptr->gcmarkbit = 1;
5592 mark_object (ptr->function);
5593 mark_object (ptr->plist);
5594 switch (ptr->redirect)
5595 {
5596 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5597 case SYMBOL_VARALIAS:
5598 {
5599 Lisp_Object tem;
5600 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5601 mark_object (tem);
5602 break;
5603 }
5604 case SYMBOL_LOCALIZED:
5605 {
5606 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5607 /* If the value is forwarded to a buffer or keyboard field,
5608 these are marked when we see the corresponding object.
5609 And if it's forwarded to a C variable, either it's not
5610 a Lisp_Object var, or it's staticpro'd already. */
5611 mark_object (blv->where);
5612 mark_object (blv->valcell);
5613 mark_object (blv->defcell);
5614 break;
5615 }
5616 case SYMBOL_FORWARDED:
5617 /* If the value is forwarded to a buffer or keyboard field,
5618 these are marked when we see the corresponding object.
5619 And if it's forwarded to a C variable, either it's not
5620 a Lisp_Object var, or it's staticpro'd already. */
5621 break;
5622 default: abort ();
5623 }
5624 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5625 MARK_STRING (XSTRING (ptr->xname));
5626 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5627
5628 ptr = ptr->next;
5629 if (ptr)
5630 {
5631 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5632 XSETSYMBOL (obj, ptrx);
5633 goto loop;
5634 }
5635 }
5636 break;
5637
5638 case Lisp_Misc:
5639 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5640 if (XMISCANY (obj)->gcmarkbit)
5641 break;
5642 XMISCANY (obj)->gcmarkbit = 1;
5643
5644 switch (XMISCTYPE (obj))
5645 {
5646
5647 case Lisp_Misc_Marker:
5648 /* DO NOT mark thru the marker's chain.
5649 The buffer's markers chain does not preserve markers from gc;
5650 instead, markers are removed from the chain when freed by gc. */
5651 break;
5652
5653 case Lisp_Misc_Save_Value:
5654 #if GC_MARK_STACK
5655 {
5656 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5657 /* If DOGC is set, POINTER is the address of a memory
5658 area containing INTEGER potential Lisp_Objects. */
5659 if (ptr->dogc)
5660 {
5661 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5662 ptrdiff_t nelt;
5663 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5664 mark_maybe_object (*p);
5665 }
5666 }
5667 #endif
5668 break;
5669
5670 case Lisp_Misc_Overlay:
5671 {
5672 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5673 mark_object (ptr->start);
5674 mark_object (ptr->end);
5675 mark_object (ptr->plist);
5676 if (ptr->next)
5677 {
5678 XSETMISC (obj, ptr->next);
5679 goto loop;
5680 }
5681 }
5682 break;
5683
5684 default:
5685 abort ();
5686 }
5687 break;
5688
5689 case Lisp_Cons:
5690 {
5691 register struct Lisp_Cons *ptr = XCONS (obj);
5692 if (CONS_MARKED_P (ptr))
5693 break;
5694 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5695 CONS_MARK (ptr);
5696 /* If the cdr is nil, avoid recursion for the car. */
5697 if (EQ (ptr->u.cdr, Qnil))
5698 {
5699 obj = ptr->car;
5700 cdr_count = 0;
5701 goto loop;
5702 }
5703 mark_object (ptr->car);
5704 obj = ptr->u.cdr;
5705 cdr_count++;
5706 if (cdr_count == mark_object_loop_halt)
5707 abort ();
5708 goto loop;
5709 }
5710
5711 case Lisp_Float:
5712 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5713 FLOAT_MARK (XFLOAT (obj));
5714 break;
5715
5716 case_Lisp_Int:
5717 break;
5718
5719 default:
5720 abort ();
5721 }
5722
5723 #undef CHECK_LIVE
5724 #undef CHECK_ALLOCATED
5725 #undef CHECK_ALLOCATED_AND_LIVE
5726 }
5727
5728 /* Mark the pointers in a buffer structure. */
5729
5730 static void
5731 mark_buffer (Lisp_Object buf)
5732 {
5733 register struct buffer *buffer = XBUFFER (buf);
5734 register Lisp_Object *ptr, tmp;
5735 Lisp_Object base_buffer;
5736
5737 eassert (!VECTOR_MARKED_P (buffer));
5738 VECTOR_MARK (buffer);
5739
5740 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5741
5742 /* For now, we just don't mark the undo_list. It's done later in
5743 a special way just before the sweep phase, and after stripping
5744 some of its elements that are not needed any more. */
5745
5746 if (buffer->overlays_before)
5747 {
5748 XSETMISC (tmp, buffer->overlays_before);
5749 mark_object (tmp);
5750 }
5751 if (buffer->overlays_after)
5752 {
5753 XSETMISC (tmp, buffer->overlays_after);
5754 mark_object (tmp);
5755 }
5756
5757 /* buffer-local Lisp variables start at `undo_list',
5758 tho only the ones from `name' on are GC'd normally. */
5759 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
5760 ptr <= &PER_BUFFER_VALUE (buffer,
5761 PER_BUFFER_VAR_OFFSET (LAST_FIELD_PER_BUFFER));
5762 ptr++)
5763 mark_object (*ptr);
5764
5765 /* If this is an indirect buffer, mark its base buffer. */
5766 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5767 {
5768 XSETBUFFER (base_buffer, buffer->base_buffer);
5769 mark_buffer (base_buffer);
5770 }
5771 }
5772
5773 /* Mark the Lisp pointers in the terminal objects.
5774 Called by the Fgarbage_collector. */
5775
5776 static void
5777 mark_terminals (void)
5778 {
5779 struct terminal *t;
5780 for (t = terminal_list; t; t = t->next_terminal)
5781 {
5782 eassert (t->name != NULL);
5783 #ifdef HAVE_WINDOW_SYSTEM
5784 /* If a terminal object is reachable from a stacpro'ed object,
5785 it might have been marked already. Make sure the image cache
5786 gets marked. */
5787 mark_image_cache (t->image_cache);
5788 #endif /* HAVE_WINDOW_SYSTEM */
5789 if (!VECTOR_MARKED_P (t))
5790 mark_vectorlike ((struct Lisp_Vector *)t);
5791 }
5792 }
5793
5794
5795
5796 /* Value is non-zero if OBJ will survive the current GC because it's
5797 either marked or does not need to be marked to survive. */
5798
5799 int
5800 survives_gc_p (Lisp_Object obj)
5801 {
5802 int survives_p;
5803
5804 switch (XTYPE (obj))
5805 {
5806 case_Lisp_Int:
5807 survives_p = 1;
5808 break;
5809
5810 case Lisp_Symbol:
5811 survives_p = XSYMBOL (obj)->gcmarkbit;
5812 break;
5813
5814 case Lisp_Misc:
5815 survives_p = XMISCANY (obj)->gcmarkbit;
5816 break;
5817
5818 case Lisp_String:
5819 survives_p = STRING_MARKED_P (XSTRING (obj));
5820 break;
5821
5822 case Lisp_Vectorlike:
5823 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5824 break;
5825
5826 case Lisp_Cons:
5827 survives_p = CONS_MARKED_P (XCONS (obj));
5828 break;
5829
5830 case Lisp_Float:
5831 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5832 break;
5833
5834 default:
5835 abort ();
5836 }
5837
5838 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5839 }
5840
5841
5842 \f
5843 /* Sweep: find all structures not marked, and free them. */
5844
5845 static void
5846 gc_sweep (void)
5847 {
5848 /* Remove or mark entries in weak hash tables.
5849 This must be done before any object is unmarked. */
5850 sweep_weak_hash_tables ();
5851
5852 sweep_strings ();
5853 #ifdef GC_CHECK_STRING_BYTES
5854 if (!noninteractive)
5855 check_string_bytes (1);
5856 #endif
5857
5858 /* Put all unmarked conses on free list */
5859 {
5860 register struct cons_block *cblk;
5861 struct cons_block **cprev = &cons_block;
5862 register int lim = cons_block_index;
5863 EMACS_INT num_free = 0, num_used = 0;
5864
5865 cons_free_list = 0;
5866
5867 for (cblk = cons_block; cblk; cblk = *cprev)
5868 {
5869 register int i = 0;
5870 int this_free = 0;
5871 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5872
5873 /* Scan the mark bits an int at a time. */
5874 for (i = 0; i < ilim; i++)
5875 {
5876 if (cblk->gcmarkbits[i] == -1)
5877 {
5878 /* Fast path - all cons cells for this int are marked. */
5879 cblk->gcmarkbits[i] = 0;
5880 num_used += BITS_PER_INT;
5881 }
5882 else
5883 {
5884 /* Some cons cells for this int are not marked.
5885 Find which ones, and free them. */
5886 int start, pos, stop;
5887
5888 start = i * BITS_PER_INT;
5889 stop = lim - start;
5890 if (stop > BITS_PER_INT)
5891 stop = BITS_PER_INT;
5892 stop += start;
5893
5894 for (pos = start; pos < stop; pos++)
5895 {
5896 if (!CONS_MARKED_P (&cblk->conses[pos]))
5897 {
5898 this_free++;
5899 cblk->conses[pos].u.chain = cons_free_list;
5900 cons_free_list = &cblk->conses[pos];
5901 #if GC_MARK_STACK
5902 cons_free_list->car = Vdead;
5903 #endif
5904 }
5905 else
5906 {
5907 num_used++;
5908 CONS_UNMARK (&cblk->conses[pos]);
5909 }
5910 }
5911 }
5912 }
5913
5914 lim = CONS_BLOCK_SIZE;
5915 /* If this block contains only free conses and we have already
5916 seen more than two blocks worth of free conses then deallocate
5917 this block. */
5918 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5919 {
5920 *cprev = cblk->next;
5921 /* Unhook from the free list. */
5922 cons_free_list = cblk->conses[0].u.chain;
5923 lisp_align_free (cblk);
5924 }
5925 else
5926 {
5927 num_free += this_free;
5928 cprev = &cblk->next;
5929 }
5930 }
5931 total_conses = num_used;
5932 total_free_conses = num_free;
5933 }
5934
5935 /* Put all unmarked floats on free list */
5936 {
5937 register struct float_block *fblk;
5938 struct float_block **fprev = &float_block;
5939 register int lim = float_block_index;
5940 EMACS_INT num_free = 0, num_used = 0;
5941
5942 float_free_list = 0;
5943
5944 for (fblk = float_block; fblk; fblk = *fprev)
5945 {
5946 register int i;
5947 int this_free = 0;
5948 for (i = 0; i < lim; i++)
5949 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5950 {
5951 this_free++;
5952 fblk->floats[i].u.chain = float_free_list;
5953 float_free_list = &fblk->floats[i];
5954 }
5955 else
5956 {
5957 num_used++;
5958 FLOAT_UNMARK (&fblk->floats[i]);
5959 }
5960 lim = FLOAT_BLOCK_SIZE;
5961 /* If this block contains only free floats and we have already
5962 seen more than two blocks worth of free floats then deallocate
5963 this block. */
5964 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5965 {
5966 *fprev = fblk->next;
5967 /* Unhook from the free list. */
5968 float_free_list = fblk->floats[0].u.chain;
5969 lisp_align_free (fblk);
5970 }
5971 else
5972 {
5973 num_free += this_free;
5974 fprev = &fblk->next;
5975 }
5976 }
5977 total_floats = num_used;
5978 total_free_floats = num_free;
5979 }
5980
5981 /* Put all unmarked intervals on free list */
5982 {
5983 register struct interval_block *iblk;
5984 struct interval_block **iprev = &interval_block;
5985 register int lim = interval_block_index;
5986 EMACS_INT num_free = 0, num_used = 0;
5987
5988 interval_free_list = 0;
5989
5990 for (iblk = interval_block; iblk; iblk = *iprev)
5991 {
5992 register int i;
5993 int this_free = 0;
5994
5995 for (i = 0; i < lim; i++)
5996 {
5997 if (!iblk->intervals[i].gcmarkbit)
5998 {
5999 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
6000 interval_free_list = &iblk->intervals[i];
6001 this_free++;
6002 }
6003 else
6004 {
6005 num_used++;
6006 iblk->intervals[i].gcmarkbit = 0;
6007 }
6008 }
6009 lim = INTERVAL_BLOCK_SIZE;
6010 /* If this block contains only free intervals and we have already
6011 seen more than two blocks worth of free intervals then
6012 deallocate this block. */
6013 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6014 {
6015 *iprev = iblk->next;
6016 /* Unhook from the free list. */
6017 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6018 lisp_free (iblk);
6019 }
6020 else
6021 {
6022 num_free += this_free;
6023 iprev = &iblk->next;
6024 }
6025 }
6026 total_intervals = num_used;
6027 total_free_intervals = num_free;
6028 }
6029
6030 /* Put all unmarked symbols on free list */
6031 {
6032 register struct symbol_block *sblk;
6033 struct symbol_block **sprev = &symbol_block;
6034 register int lim = symbol_block_index;
6035 EMACS_INT num_free = 0, num_used = 0;
6036
6037 symbol_free_list = NULL;
6038
6039 for (sblk = symbol_block; sblk; sblk = *sprev)
6040 {
6041 int this_free = 0;
6042 struct Lisp_Symbol *sym = sblk->symbols;
6043 struct Lisp_Symbol *end = sym + lim;
6044
6045 for (; sym < end; ++sym)
6046 {
6047 /* Check if the symbol was created during loadup. In such a case
6048 it might be pointed to by pure bytecode which we don't trace,
6049 so we conservatively assume that it is live. */
6050 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
6051
6052 if (!sym->gcmarkbit && !pure_p)
6053 {
6054 if (sym->redirect == SYMBOL_LOCALIZED)
6055 xfree (SYMBOL_BLV (sym));
6056 sym->next = symbol_free_list;
6057 symbol_free_list = sym;
6058 #if GC_MARK_STACK
6059 symbol_free_list->function = Vdead;
6060 #endif
6061 ++this_free;
6062 }
6063 else
6064 {
6065 ++num_used;
6066 if (!pure_p)
6067 UNMARK_STRING (XSTRING (sym->xname));
6068 sym->gcmarkbit = 0;
6069 }
6070 }
6071
6072 lim = SYMBOL_BLOCK_SIZE;
6073 /* If this block contains only free symbols and we have already
6074 seen more than two blocks worth of free symbols then deallocate
6075 this block. */
6076 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6077 {
6078 *sprev = sblk->next;
6079 /* Unhook from the free list. */
6080 symbol_free_list = sblk->symbols[0].next;
6081 lisp_free (sblk);
6082 }
6083 else
6084 {
6085 num_free += this_free;
6086 sprev = &sblk->next;
6087 }
6088 }
6089 total_symbols = num_used;
6090 total_free_symbols = num_free;
6091 }
6092
6093 /* Put all unmarked misc's on free list.
6094 For a marker, first unchain it from the buffer it points into. */
6095 {
6096 register struct marker_block *mblk;
6097 struct marker_block **mprev = &marker_block;
6098 register int lim = marker_block_index;
6099 EMACS_INT num_free = 0, num_used = 0;
6100
6101 marker_free_list = 0;
6102
6103 for (mblk = marker_block; mblk; mblk = *mprev)
6104 {
6105 register int i;
6106 int this_free = 0;
6107
6108 for (i = 0; i < lim; i++)
6109 {
6110 if (!mblk->markers[i].u_any.gcmarkbit)
6111 {
6112 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
6113 unchain_marker (&mblk->markers[i].u_marker);
6114 /* Set the type of the freed object to Lisp_Misc_Free.
6115 We could leave the type alone, since nobody checks it,
6116 but this might catch bugs faster. */
6117 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6118 mblk->markers[i].u_free.chain = marker_free_list;
6119 marker_free_list = &mblk->markers[i];
6120 this_free++;
6121 }
6122 else
6123 {
6124 num_used++;
6125 mblk->markers[i].u_any.gcmarkbit = 0;
6126 }
6127 }
6128 lim = MARKER_BLOCK_SIZE;
6129 /* If this block contains only free markers and we have already
6130 seen more than two blocks worth of free markers then deallocate
6131 this block. */
6132 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6133 {
6134 *mprev = mblk->next;
6135 /* Unhook from the free list. */
6136 marker_free_list = mblk->markers[0].u_free.chain;
6137 lisp_free (mblk);
6138 }
6139 else
6140 {
6141 num_free += this_free;
6142 mprev = &mblk->next;
6143 }
6144 }
6145
6146 total_markers = num_used;
6147 total_free_markers = num_free;
6148 }
6149
6150 /* Free all unmarked buffers */
6151 {
6152 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6153
6154 while (buffer)
6155 if (!VECTOR_MARKED_P (buffer))
6156 {
6157 if (prev)
6158 prev->header.next = buffer->header.next;
6159 else
6160 all_buffers = buffer->header.next.buffer;
6161 next = buffer->header.next.buffer;
6162 lisp_free (buffer);
6163 buffer = next;
6164 }
6165 else
6166 {
6167 VECTOR_UNMARK (buffer);
6168 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6169 prev = buffer, buffer = buffer->header.next.buffer;
6170 }
6171 }
6172
6173 /* Free all unmarked vectors */
6174 {
6175 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6176 total_vector_size = 0;
6177
6178 while (vector)
6179 if (!VECTOR_MARKED_P (vector))
6180 {
6181 if (prev)
6182 prev->header.next = vector->header.next;
6183 else
6184 all_vectors = vector->header.next.vector;
6185 next = vector->header.next.vector;
6186 lisp_free (vector);
6187 vector = next;
6188
6189 }
6190 else
6191 {
6192 VECTOR_UNMARK (vector);
6193 if (vector->header.size & PSEUDOVECTOR_FLAG)
6194 total_vector_size += PSEUDOVECTOR_SIZE_MASK & vector->header.size;
6195 else
6196 total_vector_size += vector->header.size;
6197 prev = vector, vector = vector->header.next.vector;
6198 }
6199 }
6200
6201 #ifdef GC_CHECK_STRING_BYTES
6202 if (!noninteractive)
6203 check_string_bytes (1);
6204 #endif
6205 }
6206
6207
6208
6209 \f
6210 /* Debugging aids. */
6211
6212 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6213 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6214 This may be helpful in debugging Emacs's memory usage.
6215 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6216 (void)
6217 {
6218 Lisp_Object end;
6219
6220 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6221
6222 return end;
6223 }
6224
6225 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6226 doc: /* Return a list of counters that measure how much consing there has been.
6227 Each of these counters increments for a certain kind of object.
6228 The counters wrap around from the largest positive integer to zero.
6229 Garbage collection does not decrease them.
6230 The elements of the value are as follows:
6231 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6232 All are in units of 1 = one object consed
6233 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6234 objects consed.
6235 MISCS include overlays, markers, and some internal types.
6236 Frames, windows, buffers, and subprocesses count as vectors
6237 (but the contents of a buffer's text do not count here). */)
6238 (void)
6239 {
6240 Lisp_Object consed[8];
6241
6242 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6243 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6244 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6245 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6246 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6247 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6248 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6249 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6250
6251 return Flist (8, consed);
6252 }
6253
6254 /* Find at most FIND_MAX symbols which have OBJ as their value or
6255 function. This is used in gdbinit's `xwhichsymbols' command. */
6256
6257 Lisp_Object
6258 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6259 {
6260 struct symbol_block *sblk;
6261 ptrdiff_t gc_count = inhibit_garbage_collection ();
6262 Lisp_Object found = Qnil;
6263
6264 if (! DEADP (obj))
6265 {
6266 for (sblk = symbol_block; sblk; sblk = sblk->next)
6267 {
6268 struct Lisp_Symbol *sym = sblk->symbols;
6269 int bn;
6270
6271 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, sym++)
6272 {
6273 Lisp_Object val;
6274 Lisp_Object tem;
6275
6276 if (sblk == symbol_block && bn >= symbol_block_index)
6277 break;
6278
6279 XSETSYMBOL (tem, sym);
6280 val = find_symbol_value (tem);
6281 if (EQ (val, obj)
6282 || EQ (sym->function, obj)
6283 || (!NILP (sym->function)
6284 && COMPILEDP (sym->function)
6285 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6286 || (!NILP (val)
6287 && COMPILEDP (val)
6288 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6289 {
6290 found = Fcons (tem, found);
6291 if (--find_max == 0)
6292 goto out;
6293 }
6294 }
6295 }
6296 }
6297
6298 out:
6299 unbind_to (gc_count, Qnil);
6300 return found;
6301 }
6302
6303 #ifdef ENABLE_CHECKING
6304 int suppress_checking;
6305
6306 void
6307 die (const char *msg, const char *file, int line)
6308 {
6309 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6310 file, line, msg);
6311 abort ();
6312 }
6313 #endif
6314 \f
6315 /* Initialization */
6316
6317 void
6318 init_alloc_once (void)
6319 {
6320 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6321 purebeg = PUREBEG;
6322 pure_size = PURESIZE;
6323 pure_bytes_used = 0;
6324 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6325 pure_bytes_used_before_overflow = 0;
6326
6327 /* Initialize the list of free aligned blocks. */
6328 free_ablock = NULL;
6329
6330 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6331 mem_init ();
6332 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6333 #endif
6334
6335 all_vectors = 0;
6336 ignore_warnings = 1;
6337 #ifdef DOUG_LEA_MALLOC
6338 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6339 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6340 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6341 #endif
6342 init_strings ();
6343 init_cons ();
6344 init_symbol ();
6345 init_marker ();
6346 init_float ();
6347 init_intervals ();
6348 init_weak_hash_tables ();
6349
6350 #ifdef REL_ALLOC
6351 malloc_hysteresis = 32;
6352 #else
6353 malloc_hysteresis = 0;
6354 #endif
6355
6356 refill_memory_reserve ();
6357
6358 ignore_warnings = 0;
6359 gcprolist = 0;
6360 byte_stack_list = 0;
6361 staticidx = 0;
6362 consing_since_gc = 0;
6363 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6364 gc_relative_threshold = 0;
6365 }
6366
6367 void
6368 init_alloc (void)
6369 {
6370 gcprolist = 0;
6371 byte_stack_list = 0;
6372 #if GC_MARK_STACK
6373 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6374 setjmp_tested_p = longjmps_done = 0;
6375 #endif
6376 #endif
6377 Vgc_elapsed = make_float (0.0);
6378 gcs_done = 0;
6379 }
6380
6381 void
6382 syms_of_alloc (void)
6383 {
6384 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6385 doc: /* *Number of bytes of consing between garbage collections.
6386 Garbage collection can happen automatically once this many bytes have been
6387 allocated since the last garbage collection. All data types count.
6388
6389 Garbage collection happens automatically only when `eval' is called.
6390
6391 By binding this temporarily to a large number, you can effectively
6392 prevent garbage collection during a part of the program.
6393 See also `gc-cons-percentage'. */);
6394
6395 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6396 doc: /* *Portion of the heap used for allocation.
6397 Garbage collection can happen automatically once this portion of the heap
6398 has been allocated since the last garbage collection.
6399 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6400 Vgc_cons_percentage = make_float (0.1);
6401
6402 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6403 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6404
6405 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6406 doc: /* Number of cons cells that have been consed so far. */);
6407
6408 DEFVAR_INT ("floats-consed", floats_consed,
6409 doc: /* Number of floats that have been consed so far. */);
6410
6411 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6412 doc: /* Number of vector cells that have been consed so far. */);
6413
6414 DEFVAR_INT ("symbols-consed", symbols_consed,
6415 doc: /* Number of symbols that have been consed so far. */);
6416
6417 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6418 doc: /* Number of string characters that have been consed so far. */);
6419
6420 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6421 doc: /* Number of miscellaneous objects that have been consed so far. */);
6422
6423 DEFVAR_INT ("intervals-consed", intervals_consed,
6424 doc: /* Number of intervals that have been consed so far. */);
6425
6426 DEFVAR_INT ("strings-consed", strings_consed,
6427 doc: /* Number of strings that have been consed so far. */);
6428
6429 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6430 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6431 This means that certain objects should be allocated in shared (pure) space.
6432 It can also be set to a hash-table, in which case this table is used to
6433 do hash-consing of the objects allocated to pure space. */);
6434
6435 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6436 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6437 garbage_collection_messages = 0;
6438
6439 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6440 doc: /* Hook run after garbage collection has finished. */);
6441 Vpost_gc_hook = Qnil;
6442 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6443
6444 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6445 doc: /* Precomputed `signal' argument for memory-full error. */);
6446 /* We build this in advance because if we wait until we need it, we might
6447 not be able to allocate the memory to hold it. */
6448 Vmemory_signal_data
6449 = pure_cons (Qerror,
6450 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6451
6452 DEFVAR_LISP ("memory-full", Vmemory_full,
6453 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6454 Vmemory_full = Qnil;
6455
6456 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6457 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6458
6459 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6460 doc: /* Accumulated time elapsed in garbage collections.
6461 The time is in seconds as a floating point value. */);
6462 DEFVAR_INT ("gcs-done", gcs_done,
6463 doc: /* Accumulated number of garbage collections done. */);
6464
6465 defsubr (&Scons);
6466 defsubr (&Slist);
6467 defsubr (&Svector);
6468 defsubr (&Smake_byte_code);
6469 defsubr (&Smake_list);
6470 defsubr (&Smake_vector);
6471 defsubr (&Smake_string);
6472 defsubr (&Smake_bool_vector);
6473 defsubr (&Smake_symbol);
6474 defsubr (&Smake_marker);
6475 defsubr (&Spurecopy);
6476 defsubr (&Sgarbage_collect);
6477 defsubr (&Smemory_limit);
6478 defsubr (&Smemory_use_counts);
6479
6480 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6481 defsubr (&Sgc_status);
6482 #endif
6483 }