Avoid some more compiler warnings.
[bpt/emacs.git] / src / keymap.c
1 /* Manipulation of keymaps
2 Copyright (C) 1985, 86,87,88,93,94,95,98,99 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 #include <config.h>
23 #include <stdio.h>
24 #undef NULL
25 #include "lisp.h"
26 #include "commands.h"
27 #include "buffer.h"
28 #include "charset.h"
29 #include "keyboard.h"
30 #include "termhooks.h"
31 #include "blockinput.h"
32 #include "puresize.h"
33 #include "intervals.h"
34
35 #define min(a, b) ((a) < (b) ? (a) : (b))
36 #define KEYMAPP(m) (!NILP (Fkeymapp (m)))
37
38 /* The number of elements in keymap vectors. */
39 #define DENSE_TABLE_SIZE (0200)
40
41 /* Actually allocate storage for these variables */
42
43 Lisp_Object current_global_map; /* Current global keymap */
44
45 Lisp_Object global_map; /* default global key bindings */
46
47 Lisp_Object meta_map; /* The keymap used for globally bound
48 ESC-prefixed default commands */
49
50 Lisp_Object control_x_map; /* The keymap used for globally bound
51 C-x-prefixed default commands */
52
53 /* was MinibufLocalMap */
54 Lisp_Object Vminibuffer_local_map;
55 /* The keymap used by the minibuf for local
56 bindings when spaces are allowed in the
57 minibuf */
58
59 /* was MinibufLocalNSMap */
60 Lisp_Object Vminibuffer_local_ns_map;
61 /* The keymap used by the minibuf for local
62 bindings when spaces are not encouraged
63 in the minibuf */
64
65 /* keymap used for minibuffers when doing completion */
66 /* was MinibufLocalCompletionMap */
67 Lisp_Object Vminibuffer_local_completion_map;
68
69 /* keymap used for minibuffers when doing completion and require a match */
70 /* was MinibufLocalMustMatchMap */
71 Lisp_Object Vminibuffer_local_must_match_map;
72
73 /* Alist of minor mode variables and keymaps. */
74 Lisp_Object Vminor_mode_map_alist;
75
76 /* Alist of major-mode-specific overrides for
77 minor mode variables and keymaps. */
78 Lisp_Object Vminor_mode_overriding_map_alist;
79
80 /* Keymap mapping ASCII function key sequences onto their preferred forms.
81 Initialized by the terminal-specific lisp files. See DEFVAR for more
82 documentation. */
83 Lisp_Object Vfunction_key_map;
84
85 /* Keymap mapping ASCII function key sequences onto their preferred forms. */
86 Lisp_Object Vkey_translation_map;
87
88 /* A list of all commands given new bindings since a certain time
89 when nil was stored here.
90 This is used to speed up recomputation of menu key equivalents
91 when Emacs starts up. t means don't record anything here. */
92 Lisp_Object Vdefine_key_rebound_commands;
93
94 Lisp_Object Qkeymapp, Qkeymap, Qnon_ascii, Qmenu_item;
95
96 /* A char with the CHAR_META bit set in a vector or the 0200 bit set
97 in a string key sequence is equivalent to prefixing with this
98 character. */
99 extern Lisp_Object meta_prefix_char;
100
101 extern Lisp_Object Voverriding_local_map;
102
103 static Lisp_Object store_in_keymap P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
104 static void fix_submap_inheritance P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
105
106 static Lisp_Object define_as_prefix P_ ((Lisp_Object, Lisp_Object));
107 static Lisp_Object describe_buffer_bindings P_ ((Lisp_Object));
108 static void describe_command P_ ((Lisp_Object));
109 static void describe_translation P_ ((Lisp_Object));
110 static void describe_map P_ ((Lisp_Object, Lisp_Object,
111 void (*) P_ ((Lisp_Object)),
112 int, Lisp_Object, Lisp_Object*, int));
113 \f
114 /* Keymap object support - constructors and predicates. */
115
116 DEFUN ("make-keymap", Fmake_keymap, Smake_keymap, 0, 1, 0,
117 "Construct and return a new keymap, of the form (keymap CHARTABLE . ALIST).\n\
118 CHARTABLE is a char-table that holds the bindings for the ASCII\n\
119 characters. ALIST is an assoc-list which holds bindings for function keys,\n\
120 mouse events, and any other things that appear in the input stream.\n\
121 All entries in it are initially nil, meaning \"command undefined\".\n\n\
122 The optional arg STRING supplies a menu name for the keymap\n\
123 in case you use it as a menu with `x-popup-menu'.")
124 (string)
125 Lisp_Object string;
126 {
127 Lisp_Object tail;
128 if (!NILP (string))
129 tail = Fcons (string, Qnil);
130 else
131 tail = Qnil;
132 return Fcons (Qkeymap,
133 Fcons (Fmake_char_table (Qkeymap, Qnil), tail));
134 }
135
136 DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, Smake_sparse_keymap, 0, 1, 0,
137 "Construct and return a new sparse-keymap list.\n\
138 Its car is `keymap' and its cdr is an alist of (CHAR . DEFINITION),\n\
139 which binds the character CHAR to DEFINITION, or (SYMBOL . DEFINITION),\n\
140 which binds the function key or mouse event SYMBOL to DEFINITION.\n\
141 Initially the alist is nil.\n\n\
142 The optional arg STRING supplies a menu name for the keymap\n\
143 in case you use it as a menu with `x-popup-menu'.")
144 (string)
145 Lisp_Object string;
146 {
147 if (!NILP (string))
148 return Fcons (Qkeymap, Fcons (string, Qnil));
149 return Fcons (Qkeymap, Qnil);
150 }
151
152 /* This function is used for installing the standard key bindings
153 at initialization time.
154
155 For example:
156
157 initial_define_key (control_x_map, Ctl('X'), "exchange-point-and-mark"); */
158
159 void
160 initial_define_key (keymap, key, defname)
161 Lisp_Object keymap;
162 int key;
163 char *defname;
164 {
165 store_in_keymap (keymap, make_number (key), intern (defname));
166 }
167
168 void
169 initial_define_lispy_key (keymap, keyname, defname)
170 Lisp_Object keymap;
171 char *keyname;
172 char *defname;
173 {
174 store_in_keymap (keymap, intern (keyname), intern (defname));
175 }
176
177 /* Define character fromchar in map frommap as an alias for character
178 tochar in map tomap. Subsequent redefinitions of the latter WILL
179 affect the former. */
180
181 #if 0
182 void
183 synkey (frommap, fromchar, tomap, tochar)
184 struct Lisp_Vector *frommap, *tomap;
185 int fromchar, tochar;
186 {
187 Lisp_Object v, c;
188 XSETVECTOR (v, tomap);
189 XSETFASTINT (c, tochar);
190 frommap->contents[fromchar] = Fcons (v, c);
191 }
192 #endif /* 0 */
193
194 DEFUN ("keymapp", Fkeymapp, Skeymapp, 1, 1, 0,
195 "Return t if OBJECT is a keymap.\n\
196 \n\
197 A keymap is a list (keymap . ALIST),\n\
198 or a symbol whose function definition is itself a keymap.\n\
199 ALIST elements look like (CHAR . DEFN) or (SYMBOL . DEFN);\n\
200 a vector of densely packed bindings for small character codes\n\
201 is also allowed as an element.")
202 (object)
203 Lisp_Object object;
204 {
205 /* FIXME: Maybe this should return t for autoloaded keymaps? -sm */
206 return (NILP (get_keymap_1 (object, 0, 0)) ? Qnil : Qt);
207 }
208
209 /* Check that OBJECT is a keymap (after dereferencing through any
210 symbols). If it is, return it.
211
212 If AUTOLOAD is non-zero and OBJECT is a symbol whose function value
213 is an autoload form, do the autoload and try again.
214 If AUTOLOAD is nonzero, callers must assume GC is possible.
215
216 ERROR controls how we respond if OBJECT isn't a keymap.
217 If ERROR is non-zero, signal an error; otherwise, just return Qnil.
218
219 Note that most of the time, we don't want to pursue autoloads.
220 Functions like Faccessible_keymaps which scan entire keymap trees
221 shouldn't load every autoloaded keymap. I'm not sure about this,
222 but it seems to me that only read_key_sequence, Flookup_key, and
223 Fdefine_key should cause keymaps to be autoloaded.
224
225 This function can GC when AUTOLOAD is non-zero, because it calls
226 do_autoload which can GC. */
227
228 Lisp_Object
229 get_keymap_1 (object, error, autoload)
230 Lisp_Object object;
231 int error, autoload;
232 {
233 Lisp_Object tem;
234
235 autoload_retry:
236 if (NILP (object))
237 goto end;
238 if (CONSP (object) && EQ (XCAR (object), Qkeymap))
239 return object;
240 else
241 {
242 tem = indirect_function (object);
243 if (CONSP (tem) && EQ (XCAR (tem), Qkeymap))
244 return tem;
245 }
246
247 /* Should we do an autoload? Autoload forms for keymaps have
248 Qkeymap as their fifth element. */
249 if (autoload
250 && SYMBOLP (object)
251 && CONSP (tem)
252 && EQ (XCAR (tem), Qautoload))
253 {
254 Lisp_Object tail;
255
256 tail = Fnth (make_number (4), tem);
257 if (EQ (tail, Qkeymap))
258 {
259 struct gcpro gcpro1, gcpro2;
260
261 GCPRO2 (tem, object);
262 do_autoload (tem, object);
263 UNGCPRO;
264
265 goto autoload_retry;
266 }
267 }
268
269 end:
270 if (error)
271 wrong_type_argument (Qkeymapp, object);
272 return Qnil;
273 }
274
275
276 /* Follow any symbol chaining, and return the keymap denoted by OBJECT.
277 If OBJECT doesn't denote a keymap at all, signal an error. */
278 Lisp_Object
279 get_keymap (object)
280 Lisp_Object object;
281 {
282 return get_keymap_1 (object, 1, 0);
283 }
284 \f
285 /* Return the parent map of the keymap MAP, or nil if it has none.
286 We assume that MAP is a valid keymap. */
287
288 DEFUN ("keymap-parent", Fkeymap_parent, Skeymap_parent, 1, 1, 0,
289 "Return the parent keymap of KEYMAP.")
290 (keymap)
291 Lisp_Object keymap;
292 {
293 Lisp_Object list;
294
295 keymap = get_keymap_1 (keymap, 1, 1);
296
297 /* Skip past the initial element `keymap'. */
298 list = XCDR (keymap);
299 for (; CONSP (list); list = XCDR (list))
300 {
301 /* See if there is another `keymap'. */
302 if (KEYMAPP (list))
303 return list;
304 }
305
306 return Qnil;
307 }
308
309
310 /* Set the parent keymap of MAP to PARENT. */
311
312 DEFUN ("set-keymap-parent", Fset_keymap_parent, Sset_keymap_parent, 2, 2, 0,
313 "Modify KEYMAP to set its parent map to PARENT.\n\
314 PARENT should be nil or another keymap.")
315 (keymap, parent)
316 Lisp_Object keymap, parent;
317 {
318 Lisp_Object list, prev;
319 struct gcpro gcpro1;
320 int i;
321
322 keymap = get_keymap_1 (keymap, 1, 1);
323 GCPRO1 (keymap);
324
325 if (!NILP (parent))
326 {
327 Lisp_Object k;
328
329 parent = get_keymap_1 (parent, 1, 1);
330
331 /* Check for cycles. */
332 k = parent;
333 while (KEYMAPP (k) && !EQ (keymap, k))
334 k = Fkeymap_parent (k);
335 if (EQ (keymap, k))
336 error ("Cyclic keymap inheritance");
337 }
338
339 /* Skip past the initial element `keymap'. */
340 prev = keymap;
341 while (1)
342 {
343 list = XCDR (prev);
344 /* If there is a parent keymap here, replace it.
345 If we came to the end, add the parent in PREV. */
346 if (! CONSP (list) || KEYMAPP (list))
347 {
348 /* If we already have the right parent, return now
349 so that we avoid the loops below. */
350 if (EQ (XCDR (prev), parent))
351 RETURN_UNGCPRO (parent);
352
353 XCDR (prev) = parent;
354 break;
355 }
356 prev = list;
357 }
358
359 /* Scan through for submaps, and set their parents too. */
360
361 for (list = XCDR (keymap); CONSP (list); list = XCDR (list))
362 {
363 /* Stop the scan when we come to the parent. */
364 if (EQ (XCAR (list), Qkeymap))
365 break;
366
367 /* If this element holds a prefix map, deal with it. */
368 if (CONSP (XCAR (list))
369 && CONSP (XCDR (XCAR (list))))
370 fix_submap_inheritance (keymap, XCAR (XCAR (list)),
371 XCDR (XCAR (list)));
372
373 if (VECTORP (XCAR (list)))
374 for (i = 0; i < XVECTOR (XCAR (list))->size; i++)
375 if (CONSP (XVECTOR (XCAR (list))->contents[i]))
376 fix_submap_inheritance (keymap, make_number (i),
377 XVECTOR (XCAR (list))->contents[i]);
378
379 if (CHAR_TABLE_P (XCAR (list)))
380 {
381 Lisp_Object indices[3];
382
383 map_char_table (fix_submap_inheritance, Qnil, XCAR (list),
384 keymap, 0, indices);
385 }
386 }
387
388 RETURN_UNGCPRO (parent);
389 }
390
391 /* EVENT is defined in MAP as a prefix, and SUBMAP is its definition.
392 if EVENT is also a prefix in MAP's parent,
393 make sure that SUBMAP inherits that definition as its own parent. */
394
395 static void
396 fix_submap_inheritance (map, event, submap)
397 Lisp_Object map, event, submap;
398 {
399 Lisp_Object map_parent, parent_entry;
400
401 /* SUBMAP is a cons that we found as a key binding.
402 Discard the other things found in a menu key binding. */
403
404 if (CONSP (submap))
405 {
406 /* May be an old format menu item */
407 if (STRINGP (XCAR (submap)))
408 {
409 submap = XCDR (submap);
410 /* Also remove a menu help string, if any,
411 following the menu item name. */
412 if (CONSP (submap) && STRINGP (XCAR (submap)))
413 submap = XCDR (submap);
414 /* Also remove the sublist that caches key equivalences, if any. */
415 if (CONSP (submap)
416 && CONSP (XCAR (submap)))
417 {
418 Lisp_Object carcar;
419 carcar = XCAR (XCAR (submap));
420 if (NILP (carcar) || VECTORP (carcar))
421 submap = XCDR (submap);
422 }
423 }
424
425 /* Or a new format menu item */
426 else if (EQ (XCAR (submap), Qmenu_item)
427 && CONSP (XCDR (submap)))
428 {
429 submap = XCDR (XCDR (submap));
430 if (CONSP (submap))
431 submap = XCAR (submap);
432 }
433 }
434
435 /* If it isn't a keymap now, there's no work to do. */
436 if (! CONSP (submap)
437 || ! EQ (XCAR (submap), Qkeymap))
438 return;
439
440 map_parent = Fkeymap_parent (map);
441 if (! NILP (map_parent))
442 parent_entry = access_keymap (map_parent, event, 0, 0);
443 else
444 parent_entry = Qnil;
445
446 /* If MAP's parent has something other than a keymap,
447 our own submap shadows it completely, so use nil as SUBMAP's parent. */
448 if (! (CONSP (parent_entry) && EQ (XCAR (parent_entry), Qkeymap)))
449 parent_entry = Qnil;
450
451 if (! EQ (parent_entry, submap))
452 {
453 Lisp_Object submap_parent;
454 submap_parent = submap;
455 while (1)
456 {
457 Lisp_Object tem;
458 tem = Fkeymap_parent (submap_parent);
459 if (EQ (tem, parent_entry))
460 return;
461 if (CONSP (tem)
462 && EQ (XCAR (tem), Qkeymap))
463 submap_parent = tem;
464 else
465 break;
466 }
467 Fset_keymap_parent (submap_parent, parent_entry);
468 }
469 }
470 \f
471 /* Look up IDX in MAP. IDX may be any sort of event.
472 Note that this does only one level of lookup; IDX must be a single
473 event, not a sequence.
474
475 If T_OK is non-zero, bindings for Qt are treated as default
476 bindings; any key left unmentioned by other tables and bindings is
477 given the binding of Qt.
478
479 If T_OK is zero, bindings for Qt are not treated specially.
480
481 If NOINHERIT, don't accept a subkeymap found in an inherited keymap. */
482
483 Lisp_Object
484 access_keymap (map, idx, t_ok, noinherit)
485 Lisp_Object map;
486 Lisp_Object idx;
487 int t_ok;
488 int noinherit;
489 {
490 int noprefix = 0;
491 Lisp_Object val;
492
493 /* If idx is a list (some sort of mouse click, perhaps?),
494 the index we want to use is the car of the list, which
495 ought to be a symbol. */
496 idx = EVENT_HEAD (idx);
497
498 /* If idx is a symbol, it might have modifiers, which need to
499 be put in the canonical order. */
500 if (SYMBOLP (idx))
501 idx = reorder_modifiers (idx);
502 else if (INTEGERP (idx))
503 /* Clobber the high bits that can be present on a machine
504 with more than 24 bits of integer. */
505 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
506
507 {
508 Lisp_Object tail;
509 Lisp_Object t_binding;
510
511 t_binding = Qnil;
512 for (tail = map; CONSP (tail); tail = XCDR (tail))
513 {
514 Lisp_Object binding;
515
516 binding = XCAR (tail);
517 if (SYMBOLP (binding))
518 {
519 /* If NOINHERIT, stop finding prefix definitions
520 after we pass a second occurrence of the `keymap' symbol. */
521 if (noinherit && EQ (binding, Qkeymap) && ! EQ (tail, map))
522 noprefix = 1;
523 }
524 else if (CONSP (binding))
525 {
526 if (EQ (XCAR (binding), idx))
527 {
528 val = XCDR (binding);
529 if (noprefix && CONSP (val) && EQ (XCAR (val), Qkeymap))
530 return Qnil;
531 if (CONSP (val))
532 fix_submap_inheritance (map, idx, val);
533 return val;
534 }
535 if (t_ok && EQ (XCAR (binding), Qt))
536 t_binding = XCDR (binding);
537 }
538 else if (VECTORP (binding))
539 {
540 if (NATNUMP (idx) && XFASTINT (idx) < XVECTOR (binding)->size)
541 {
542 val = XVECTOR (binding)->contents[XFASTINT (idx)];
543 if (noprefix && CONSP (val) && EQ (XCAR (val), Qkeymap))
544 return Qnil;
545 if (CONSP (val))
546 fix_submap_inheritance (map, idx, val);
547 return val;
548 }
549 }
550 else if (CHAR_TABLE_P (binding))
551 {
552 /* Character codes with modifiers
553 are not included in a char-table.
554 All character codes without modifiers are included. */
555 if (NATNUMP (idx)
556 && ! (XFASTINT (idx)
557 & (CHAR_ALT | CHAR_SUPER | CHAR_HYPER
558 | CHAR_SHIFT | CHAR_CTL | CHAR_META)))
559 {
560 val = Faref (binding, idx);
561 if (noprefix && CONSP (val) && EQ (XCAR (val), Qkeymap))
562 return Qnil;
563 if (CONSP (val))
564 fix_submap_inheritance (map, idx, val);
565 return val;
566 }
567 }
568
569 QUIT;
570 }
571
572 return t_binding;
573 }
574 }
575
576 /* Given OBJECT which was found in a slot in a keymap,
577 trace indirect definitions to get the actual definition of that slot.
578 An indirect definition is a list of the form
579 (KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one
580 and INDEX is the object to look up in KEYMAP to yield the definition.
581
582 Also if OBJECT has a menu string as the first element,
583 remove that. Also remove a menu help string as second element.
584
585 If AUTOLOAD is nonzero, load autoloadable keymaps
586 that are referred to with indirection. */
587
588 Lisp_Object
589 get_keyelt (object, autoload)
590 register Lisp_Object object;
591 int autoload;
592 {
593 while (1)
594 {
595 if (!(CONSP (object)))
596 /* This is really the value. */
597 return object;
598
599 /* If the keymap contents looks like (keymap ...) or (lambda ...)
600 then use itself. */
601 else if (EQ (XCAR (object), Qkeymap) || EQ (XCAR (object), Qlambda))
602 return object;
603
604 /* If the keymap contents looks like (menu-item name . DEFN)
605 or (menu-item name DEFN ...) then use DEFN.
606 This is a new format menu item. */
607 else if (EQ (XCAR (object), Qmenu_item))
608 {
609 if (CONSP (XCDR (object)))
610 {
611 Lisp_Object tem;
612
613 object = XCDR (XCDR (object));
614 tem = object;
615 if (CONSP (object))
616 object = XCAR (object);
617
618 /* If there's a `:filter FILTER', apply FILTER to the
619 menu-item's definition to get the real definition to
620 use. Temporarily inhibit GC while evaluating FILTER,
621 because not functions calling get_keyelt are prepared
622 for a GC. */
623 for (; CONSP (tem) && CONSP (XCDR (tem)); tem = XCDR (tem))
624 if (EQ (XCAR (tem), QCfilter))
625 {
626 int count = inhibit_garbage_collection ();
627 Lisp_Object filter;
628 filter = XCAR (XCDR (tem));
629 filter = list2 (filter, list2 (Qquote, object));
630 object = menu_item_eval_property (filter);
631 unbind_to (count, Qnil);
632 break;
633 }
634 }
635 else
636 /* Invalid keymap */
637 return object;
638 }
639
640 /* If the keymap contents looks like (STRING . DEFN), use DEFN.
641 Keymap alist elements like (CHAR MENUSTRING . DEFN)
642 will be used by HierarKey menus. */
643 else if (STRINGP (XCAR (object)))
644 {
645 object = XCDR (object);
646 /* Also remove a menu help string, if any,
647 following the menu item name. */
648 if (CONSP (object) && STRINGP (XCAR (object)))
649 object = XCDR (object);
650 /* Also remove the sublist that caches key equivalences, if any. */
651 if (CONSP (object) && CONSP (XCAR (object)))
652 {
653 Lisp_Object carcar;
654 carcar = XCAR (XCAR (object));
655 if (NILP (carcar) || VECTORP (carcar))
656 object = XCDR (object);
657 }
658 }
659
660 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
661 else
662 {
663 Lisp_Object map;
664
665 map = get_keymap_1 (Fcar_safe (object), 0, autoload);
666 if (NILP (map))
667 /* Invalid keymap */
668 return object;
669 else
670 {
671 Lisp_Object key;
672 key = Fcdr (object);
673 if (INTEGERP (key) && (XUINT (key) & meta_modifier))
674 {
675 object = access_keymap (map, meta_prefix_char, 0, 0);
676 map = get_keymap_1 (object, 0, autoload);
677 object = access_keymap (map, make_number (XINT (key)
678 & ~meta_modifier),
679 0, 0);
680 }
681 else
682 object = access_keymap (map, key, 0, 0);
683 }
684 }
685 }
686 }
687
688 static Lisp_Object
689 store_in_keymap (keymap, idx, def)
690 Lisp_Object keymap;
691 register Lisp_Object idx;
692 register Lisp_Object def;
693 {
694 /* If we are preparing to dump, and DEF is a menu element
695 with a menu item indicator, copy it to ensure it is not pure. */
696 if (CONSP (def) && PURE_P (def)
697 && (EQ (XCAR (def), Qmenu_item) || STRINGP (XCAR (def))))
698 def = Fcons (XCAR (def), XCDR (def));
699
700 if (!CONSP (keymap) || ! EQ (XCAR (keymap), Qkeymap))
701 error ("attempt to define a key in a non-keymap");
702
703 /* If idx is a list (some sort of mouse click, perhaps?),
704 the index we want to use is the car of the list, which
705 ought to be a symbol. */
706 idx = EVENT_HEAD (idx);
707
708 /* If idx is a symbol, it might have modifiers, which need to
709 be put in the canonical order. */
710 if (SYMBOLP (idx))
711 idx = reorder_modifiers (idx);
712 else if (INTEGERP (idx))
713 /* Clobber the high bits that can be present on a machine
714 with more than 24 bits of integer. */
715 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
716
717 /* Scan the keymap for a binding of idx. */
718 {
719 Lisp_Object tail;
720
721 /* The cons after which we should insert new bindings. If the
722 keymap has a table element, we record its position here, so new
723 bindings will go after it; this way, the table will stay
724 towards the front of the alist and character lookups in dense
725 keymaps will remain fast. Otherwise, this just points at the
726 front of the keymap. */
727 Lisp_Object insertion_point;
728
729 insertion_point = keymap;
730 for (tail = XCDR (keymap); CONSP (tail); tail = XCDR (tail))
731 {
732 Lisp_Object elt;
733
734 elt = XCAR (tail);
735 if (VECTORP (elt))
736 {
737 if (NATNUMP (idx) && XFASTINT (idx) < XVECTOR (elt)->size)
738 {
739 XVECTOR (elt)->contents[XFASTINT (idx)] = def;
740 return def;
741 }
742 insertion_point = tail;
743 }
744 else if (CHAR_TABLE_P (elt))
745 {
746 /* Character codes with modifiers
747 are not included in a char-table.
748 All character codes without modifiers are included. */
749 if (NATNUMP (idx)
750 && ! (XFASTINT (idx)
751 & (CHAR_ALT | CHAR_SUPER | CHAR_HYPER
752 | CHAR_SHIFT | CHAR_CTL | CHAR_META)))
753 {
754 Faset (elt, idx, def);
755 return def;
756 }
757 insertion_point = tail;
758 }
759 else if (CONSP (elt))
760 {
761 if (EQ (idx, XCAR (elt)))
762 {
763 XCDR (elt) = def;
764 return def;
765 }
766 }
767 else if (SYMBOLP (elt))
768 {
769 /* If we find a 'keymap' symbol in the spine of KEYMAP,
770 then we must have found the start of a second keymap
771 being used as the tail of KEYMAP, and a binding for IDX
772 should be inserted before it. */
773 if (EQ (elt, Qkeymap))
774 goto keymap_end;
775 }
776
777 QUIT;
778 }
779
780 keymap_end:
781 /* We have scanned the entire keymap, and not found a binding for
782 IDX. Let's add one. */
783 XCDR (insertion_point)
784 = Fcons (Fcons (idx, def), XCDR (insertion_point));
785 }
786
787 return def;
788 }
789
790 void
791 copy_keymap_1 (chartable, idx, elt)
792 Lisp_Object chartable, idx, elt;
793 {
794 if (!SYMBOLP (elt) && ! NILP (Fkeymapp (elt)))
795 Faset (chartable, idx, Fcopy_keymap (elt));
796 }
797
798 DEFUN ("copy-keymap", Fcopy_keymap, Scopy_keymap, 1, 1, 0,
799 "Return a copy of the keymap KEYMAP.\n\
800 The copy starts out with the same definitions of KEYMAP,\n\
801 but changing either the copy or KEYMAP does not affect the other.\n\
802 Any key definitions that are subkeymaps are recursively copied.\n\
803 However, a key definition which is a symbol whose definition is a keymap\n\
804 is not copied.")
805 (keymap)
806 Lisp_Object keymap;
807 {
808 register Lisp_Object copy, tail;
809
810 copy = Fcopy_alist (get_keymap (keymap));
811
812 for (tail = copy; CONSP (tail); tail = XCDR (tail))
813 {
814 Lisp_Object elt;
815
816 elt = XCAR (tail);
817 if (CHAR_TABLE_P (elt))
818 {
819 Lisp_Object indices[3];
820
821 elt = Fcopy_sequence (elt);
822 XCAR (tail) = elt;
823
824 map_char_table (copy_keymap_1, Qnil, elt, elt, 0, indices);
825 }
826 else if (VECTORP (elt))
827 {
828 int i;
829
830 elt = Fcopy_sequence (elt);
831 XCAR (tail) = elt;
832
833 for (i = 0; i < XVECTOR (elt)->size; i++)
834 if (!SYMBOLP (XVECTOR (elt)->contents[i])
835 && ! NILP (Fkeymapp (XVECTOR (elt)->contents[i])))
836 XVECTOR (elt)->contents[i]
837 = Fcopy_keymap (XVECTOR (elt)->contents[i]);
838 }
839 else if (CONSP (elt) && CONSP (XCDR (elt)))
840 {
841 Lisp_Object tem;
842 tem = XCDR (elt);
843
844 /* Is this a new format menu item. */
845 if (EQ (XCAR (tem),Qmenu_item))
846 {
847 /* Copy cell with menu-item marker. */
848 XCDR (elt)
849 = Fcons (XCAR (tem), XCDR (tem));
850 elt = XCDR (elt);
851 tem = XCDR (elt);
852 if (CONSP (tem))
853 {
854 /* Copy cell with menu-item name. */
855 XCDR (elt)
856 = Fcons (XCAR (tem), XCDR (tem));
857 elt = XCDR (elt);
858 tem = XCDR (elt);
859 };
860 if (CONSP (tem))
861 {
862 /* Copy cell with binding and if the binding is a keymap,
863 copy that. */
864 XCDR (elt)
865 = Fcons (XCAR (tem), XCDR (tem));
866 elt = XCDR (elt);
867 tem = XCAR (elt);
868 if (!(SYMBOLP (tem) || NILP (Fkeymapp (tem))))
869 XCAR (elt) = Fcopy_keymap (tem);
870 tem = XCDR (elt);
871 if (CONSP (tem) && CONSP (XCAR (tem)))
872 /* Delete cache for key equivalences. */
873 XCDR (elt) = XCDR (tem);
874 }
875 }
876 else
877 {
878 /* It may be an old fomat menu item.
879 Skip the optional menu string.
880 */
881 if (STRINGP (XCAR (tem)))
882 {
883 /* Copy the cell, since copy-alist didn't go this deep. */
884 XCDR (elt)
885 = Fcons (XCAR (tem), XCDR (tem));
886 elt = XCDR (elt);
887 tem = XCDR (elt);
888 /* Also skip the optional menu help string. */
889 if (CONSP (tem) && STRINGP (XCAR (tem)))
890 {
891 XCDR (elt)
892 = Fcons (XCAR (tem), XCDR (tem));
893 elt = XCDR (elt);
894 tem = XCDR (elt);
895 }
896 /* There may also be a list that caches key equivalences.
897 Just delete it for the new keymap. */
898 if (CONSP (tem)
899 && CONSP (XCAR (tem))
900 && (NILP (XCAR (XCAR (tem)))
901 || VECTORP (XCAR (XCAR (tem)))))
902 XCDR (elt) = XCDR (tem);
903 }
904 if (CONSP (elt)
905 && ! SYMBOLP (XCDR (elt))
906 && ! NILP (Fkeymapp (XCDR (elt))))
907 XCDR (elt) = Fcopy_keymap (XCDR (elt));
908 }
909
910 }
911 }
912
913 return copy;
914 }
915 \f
916 /* Simple Keymap mutators and accessors. */
917
918 /* GC is possible in this function if it autoloads a keymap. */
919
920 DEFUN ("define-key", Fdefine_key, Sdefine_key, 3, 3, 0,
921 "Args KEYMAP, KEY, DEF. Define key sequence KEY, in KEYMAP, as DEF.\n\
922 KEYMAP is a keymap. KEY is a string or a vector of symbols and characters\n\
923 meaning a sequence of keystrokes and events.\n\
924 Non-ASCII characters with codes above 127 (such as ISO Latin-1)\n\
925 can be included if you use a vector.\n\
926 DEF is anything that can be a key's definition:\n\
927 nil (means key is undefined in this keymap),\n\
928 a command (a Lisp function suitable for interactive calling)\n\
929 a string (treated as a keyboard macro),\n\
930 a keymap (to define a prefix key),\n\
931 a symbol. When the key is looked up, the symbol will stand for its\n\
932 function definition, which should at that time be one of the above,\n\
933 or another symbol whose function definition is used, etc.\n\
934 a cons (STRING . DEFN), meaning that DEFN is the definition\n\
935 (DEFN should be a valid definition in its own right),\n\
936 or a cons (KEYMAP . CHAR), meaning use definition of CHAR in map KEYMAP.\n\
937 \n\
938 If KEYMAP is a sparse keymap, the pair binding KEY to DEF is added at\n\
939 the front of KEYMAP.")
940 (keymap, key, def)
941 Lisp_Object keymap;
942 Lisp_Object key;
943 Lisp_Object def;
944 {
945 register int idx;
946 register Lisp_Object c;
947 register Lisp_Object cmd;
948 int metized = 0;
949 int meta_bit;
950 int length;
951 struct gcpro gcpro1, gcpro2, gcpro3;
952
953 keymap = get_keymap_1 (keymap, 1, 1);
954
955 if (!VECTORP (key) && !STRINGP (key))
956 key = wrong_type_argument (Qarrayp, key);
957
958 length = XFASTINT (Flength (key));
959 if (length == 0)
960 return Qnil;
961
962 if (SYMBOLP (def) && !EQ (Vdefine_key_rebound_commands, Qt))
963 Vdefine_key_rebound_commands = Fcons (def, Vdefine_key_rebound_commands);
964
965 GCPRO3 (keymap, key, def);
966
967 if (VECTORP (key))
968 meta_bit = meta_modifier;
969 else
970 meta_bit = 0x80;
971
972 idx = 0;
973 while (1)
974 {
975 c = Faref (key, make_number (idx));
976
977 if (CONSP (c) && lucid_event_type_list_p (c))
978 c = Fevent_convert_list (c);
979
980 if (INTEGERP (c)
981 && (XINT (c) & meta_bit)
982 && !metized)
983 {
984 c = meta_prefix_char;
985 metized = 1;
986 }
987 else
988 {
989 if (INTEGERP (c))
990 XSETINT (c, XINT (c) & ~meta_bit);
991
992 metized = 0;
993 idx++;
994 }
995
996 if (! INTEGERP (c) && ! SYMBOLP (c) && ! CONSP (c))
997 error ("Key sequence contains invalid events");
998
999 if (idx == length)
1000 RETURN_UNGCPRO (store_in_keymap (keymap, c, def));
1001
1002 cmd = get_keyelt (access_keymap (keymap, c, 0, 1), 1);
1003
1004 /* If this key is undefined, make it a prefix. */
1005 if (NILP (cmd))
1006 cmd = define_as_prefix (keymap, c);
1007
1008 keymap = get_keymap_1 (cmd, 0, 1);
1009 if (NILP (keymap))
1010 /* We must use Fkey_description rather than just passing key to
1011 error; key might be a vector, not a string. */
1012 error ("Key sequence %s uses invalid prefix characters",
1013 XSTRING (Fkey_description (key))->data);
1014 }
1015 }
1016
1017 /* Value is number if KEY is too long; NIL if valid but has no definition. */
1018 /* GC is possible in this function if it autoloads a keymap. */
1019
1020 DEFUN ("lookup-key", Flookup_key, Slookup_key, 2, 3, 0,
1021 "In keymap KEYMAP, look up key sequence KEY. Return the definition.\n\
1022 nil means undefined. See doc of `define-key' for kinds of definitions.\n\
1023 \n\
1024 A number as value means KEY is \"too long\";\n\
1025 that is, characters or symbols in it except for the last one\n\
1026 fail to be a valid sequence of prefix characters in KEYMAP.\n\
1027 The number is how many characters at the front of KEY\n\
1028 it takes to reach a non-prefix command.\n\
1029 \n\
1030 Normally, `lookup-key' ignores bindings for t, which act as default\n\
1031 bindings, used when nothing else in the keymap applies; this makes it\n\
1032 usable as a general function for probing keymaps. However, if the\n\
1033 third optional argument ACCEPT-DEFAULT is non-nil, `lookup-key' will\n\
1034 recognize the default bindings, just as `read-key-sequence' does.")
1035 (keymap, key, accept_default)
1036 register Lisp_Object keymap;
1037 Lisp_Object key;
1038 Lisp_Object accept_default;
1039 {
1040 register int idx;
1041 register Lisp_Object cmd;
1042 register Lisp_Object c;
1043 int metized = 0;
1044 int length;
1045 int t_ok = ! NILP (accept_default);
1046 int meta_bit;
1047 struct gcpro gcpro1;
1048
1049 keymap = get_keymap_1 (keymap, 1, 1);
1050
1051 if (!VECTORP (key) && !STRINGP (key))
1052 key = wrong_type_argument (Qarrayp, key);
1053
1054 length = XFASTINT (Flength (key));
1055 if (length == 0)
1056 return keymap;
1057
1058 if (VECTORP (key))
1059 meta_bit = meta_modifier;
1060 else
1061 meta_bit = 0x80;
1062
1063 GCPRO1 (key);
1064
1065 idx = 0;
1066 while (1)
1067 {
1068 c = Faref (key, make_number (idx));
1069
1070 if (CONSP (c) && lucid_event_type_list_p (c))
1071 c = Fevent_convert_list (c);
1072
1073 if (INTEGERP (c)
1074 && (XINT (c) & meta_bit)
1075 && !metized)
1076 {
1077 c = meta_prefix_char;
1078 metized = 1;
1079 }
1080 else
1081 {
1082 if (INTEGERP (c))
1083 XSETINT (c, XINT (c) & ~meta_bit);
1084
1085 metized = 0;
1086 idx++;
1087 }
1088
1089 cmd = get_keyelt (access_keymap (keymap, c, t_ok, 0), 1);
1090 if (idx == length)
1091 RETURN_UNGCPRO (cmd);
1092
1093 keymap = get_keymap_1 (cmd, 0, 1);
1094 if (NILP (keymap))
1095 RETURN_UNGCPRO (make_number (idx));
1096
1097 QUIT;
1098 }
1099 }
1100
1101 /* Make KEYMAP define event C as a keymap (i.e., as a prefix).
1102 Assume that currently it does not define C at all.
1103 Return the keymap. */
1104
1105 static Lisp_Object
1106 define_as_prefix (keymap, c)
1107 Lisp_Object keymap, c;
1108 {
1109 Lisp_Object inherit, cmd;
1110
1111 cmd = Fmake_sparse_keymap (Qnil);
1112 /* If this key is defined as a prefix in an inherited keymap,
1113 make it a prefix in this map, and make its definition
1114 inherit the other prefix definition. */
1115 inherit = access_keymap (keymap, c, 0, 0);
1116 #if 0
1117 /* This code is needed to do the right thing in the following case:
1118 keymap A inherits from B,
1119 you define KEY as a prefix in A,
1120 then later you define KEY as a prefix in B.
1121 We want the old prefix definition in A to inherit from that in B.
1122 It is hard to do that retroactively, so this code
1123 creates the prefix in B right away.
1124
1125 But it turns out that this code causes problems immediately
1126 when the prefix in A is defined: it causes B to define KEY
1127 as a prefix with no subcommands.
1128
1129 So I took out this code. */
1130 if (NILP (inherit))
1131 {
1132 /* If there's an inherited keymap
1133 and it doesn't define this key,
1134 make it define this key. */
1135 Lisp_Object tail;
1136
1137 for (tail = Fcdr (keymap); CONSP (tail); tail = XCDR (tail))
1138 if (EQ (XCAR (tail), Qkeymap))
1139 break;
1140
1141 if (!NILP (tail))
1142 inherit = define_as_prefix (tail, c);
1143 }
1144 #endif
1145
1146 cmd = nconc2 (cmd, inherit);
1147 store_in_keymap (keymap, c, cmd);
1148
1149 return cmd;
1150 }
1151
1152 /* Append a key to the end of a key sequence. We always make a vector. */
1153
1154 Lisp_Object
1155 append_key (key_sequence, key)
1156 Lisp_Object key_sequence, key;
1157 {
1158 Lisp_Object args[2];
1159
1160 args[0] = key_sequence;
1161
1162 args[1] = Fcons (key, Qnil);
1163 return Fvconcat (2, args);
1164 }
1165
1166 \f
1167 /* Global, local, and minor mode keymap stuff. */
1168
1169 /* We can't put these variables inside current_minor_maps, since under
1170 some systems, static gets macro-defined to be the empty string.
1171 Ickypoo. */
1172 static Lisp_Object *cmm_modes, *cmm_maps;
1173 static int cmm_size;
1174
1175 /* Error handler used in current_minor_maps. */
1176 static Lisp_Object
1177 current_minor_maps_error ()
1178 {
1179 return Qnil;
1180 }
1181
1182 /* Store a pointer to an array of the keymaps of the currently active
1183 minor modes in *buf, and return the number of maps it contains.
1184
1185 This function always returns a pointer to the same buffer, and may
1186 free or reallocate it, so if you want to keep it for a long time or
1187 hand it out to lisp code, copy it. This procedure will be called
1188 for every key sequence read, so the nice lispy approach (return a
1189 new assoclist, list, what have you) for each invocation would
1190 result in a lot of consing over time.
1191
1192 If we used xrealloc/xmalloc and ran out of memory, they would throw
1193 back to the command loop, which would try to read a key sequence,
1194 which would call this function again, resulting in an infinite
1195 loop. Instead, we'll use realloc/malloc and silently truncate the
1196 list, let the key sequence be read, and hope some other piece of
1197 code signals the error. */
1198 int
1199 current_minor_maps (modeptr, mapptr)
1200 Lisp_Object **modeptr, **mapptr;
1201 {
1202 int i = 0;
1203 int list_number = 0;
1204 Lisp_Object alist, assoc, var, val;
1205 Lisp_Object lists[2];
1206
1207 lists[0] = Vminor_mode_overriding_map_alist;
1208 lists[1] = Vminor_mode_map_alist;
1209
1210 for (list_number = 0; list_number < 2; list_number++)
1211 for (alist = lists[list_number];
1212 CONSP (alist);
1213 alist = XCDR (alist))
1214 if ((assoc = XCAR (alist), CONSP (assoc))
1215 && (var = XCAR (assoc), SYMBOLP (var))
1216 && (val = find_symbol_value (var), ! EQ (val, Qunbound))
1217 && ! NILP (val))
1218 {
1219 Lisp_Object temp;
1220
1221 /* If a variable has an entry in Vminor_mode_overriding_map_alist,
1222 and also an entry in Vminor_mode_map_alist,
1223 ignore the latter. */
1224 if (list_number == 1)
1225 {
1226 val = assq_no_quit (var, lists[0]);
1227 if (!NILP (val))
1228 break;
1229 }
1230
1231 if (i >= cmm_size)
1232 {
1233 Lisp_Object *newmodes, *newmaps;
1234
1235 if (cmm_maps)
1236 {
1237 BLOCK_INPUT;
1238 cmm_size *= 2;
1239 newmodes
1240 = (Lisp_Object *) realloc (cmm_modes,
1241 cmm_size * sizeof (Lisp_Object));
1242 newmaps
1243 = (Lisp_Object *) realloc (cmm_maps,
1244 cmm_size * sizeof (Lisp_Object));
1245 UNBLOCK_INPUT;
1246 }
1247 else
1248 {
1249 BLOCK_INPUT;
1250 cmm_size = 30;
1251 newmodes
1252 = (Lisp_Object *) xmalloc (cmm_size * sizeof (Lisp_Object));
1253 newmaps
1254 = (Lisp_Object *) xmalloc (cmm_size * sizeof (Lisp_Object));
1255 UNBLOCK_INPUT;
1256 }
1257
1258 if (newmaps && newmodes)
1259 {
1260 cmm_modes = newmodes;
1261 cmm_maps = newmaps;
1262 }
1263 else
1264 break;
1265 }
1266
1267 /* Get the keymap definition--or nil if it is not defined. */
1268 temp = internal_condition_case_1 (Findirect_function,
1269 XCDR (assoc),
1270 Qerror, current_minor_maps_error);
1271 if (!NILP (temp))
1272 {
1273 cmm_modes[i] = var;
1274 cmm_maps [i] = temp;
1275 i++;
1276 }
1277 }
1278
1279 if (modeptr) *modeptr = cmm_modes;
1280 if (mapptr) *mapptr = cmm_maps;
1281 return i;
1282 }
1283
1284 /* GC is possible in this function if it autoloads a keymap. */
1285
1286 DEFUN ("key-binding", Fkey_binding, Skey_binding, 1, 2, 0,
1287 "Return the binding for command KEY in current keymaps.\n\
1288 KEY is a string or vector, a sequence of keystrokes.\n\
1289 The binding is probably a symbol with a function definition.\n\
1290 \n\
1291 Normally, `key-binding' ignores bindings for t, which act as default\n\
1292 bindings, used when nothing else in the keymap applies; this makes it\n\
1293 usable as a general function for probing keymaps. However, if the\n\
1294 optional second argument ACCEPT-DEFAULT is non-nil, `key-binding' does\n\
1295 recognize the default bindings, just as `read-key-sequence' does.")
1296 (key, accept_default)
1297 Lisp_Object key, accept_default;
1298 {
1299 Lisp_Object *maps, value;
1300 int nmaps, i;
1301 struct gcpro gcpro1;
1302
1303 GCPRO1 (key);
1304
1305 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1306 {
1307 value = Flookup_key (current_kboard->Voverriding_terminal_local_map,
1308 key, accept_default);
1309 if (! NILP (value) && !INTEGERP (value))
1310 RETURN_UNGCPRO (value);
1311 }
1312 else if (!NILP (Voverriding_local_map))
1313 {
1314 value = Flookup_key (Voverriding_local_map, key, accept_default);
1315 if (! NILP (value) && !INTEGERP (value))
1316 RETURN_UNGCPRO (value);
1317 }
1318 else
1319 {
1320 Lisp_Object local;
1321
1322 nmaps = current_minor_maps (0, &maps);
1323 /* Note that all these maps are GCPRO'd
1324 in the places where we found them. */
1325
1326 for (i = 0; i < nmaps; i++)
1327 if (! NILP (maps[i]))
1328 {
1329 value = Flookup_key (maps[i], key, accept_default);
1330 if (! NILP (value) && !INTEGERP (value))
1331 RETURN_UNGCPRO (value);
1332 }
1333
1334 local = get_local_map (PT, current_buffer, keymap);
1335 if (! NILP (local))
1336 {
1337 value = Flookup_key (local, key, accept_default);
1338 if (! NILP (value) && !INTEGERP (value))
1339 RETURN_UNGCPRO (value);
1340 }
1341
1342 local = get_local_map (PT, current_buffer, local_map);
1343
1344 if (! NILP (local))
1345 {
1346 value = Flookup_key (local, key, accept_default);
1347 if (! NILP (value) && !INTEGERP (value))
1348 RETURN_UNGCPRO (value);
1349 }
1350 }
1351
1352 value = Flookup_key (current_global_map, key, accept_default);
1353 UNGCPRO;
1354 if (! NILP (value) && !INTEGERP (value))
1355 return value;
1356
1357 return Qnil;
1358 }
1359
1360 /* GC is possible in this function if it autoloads a keymap. */
1361
1362 DEFUN ("local-key-binding", Flocal_key_binding, Slocal_key_binding, 1, 2, 0,
1363 "Return the binding for command KEYS in current local keymap only.\n\
1364 KEYS is a string, a sequence of keystrokes.\n\
1365 The binding is probably a symbol with a function definition.\n\
1366 \n\
1367 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1368 bindings; see the description of `lookup-key' for more details about this.")
1369 (keys, accept_default)
1370 Lisp_Object keys, accept_default;
1371 {
1372 register Lisp_Object map;
1373 map = current_buffer->keymap;
1374 if (NILP (map))
1375 return Qnil;
1376 return Flookup_key (map, keys, accept_default);
1377 }
1378
1379 /* GC is possible in this function if it autoloads a keymap. */
1380
1381 DEFUN ("global-key-binding", Fglobal_key_binding, Sglobal_key_binding, 1, 2, 0,
1382 "Return the binding for command KEYS in current global keymap only.\n\
1383 KEYS is a string, a sequence of keystrokes.\n\
1384 The binding is probably a symbol with a function definition.\n\
1385 This function's return values are the same as those of lookup-key\n\
1386 \(which see).\n\
1387 \n\
1388 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1389 bindings; see the description of `lookup-key' for more details about this.")
1390 (keys, accept_default)
1391 Lisp_Object keys, accept_default;
1392 {
1393 return Flookup_key (current_global_map, keys, accept_default);
1394 }
1395
1396 /* GC is possible in this function if it autoloads a keymap. */
1397
1398 DEFUN ("minor-mode-key-binding", Fminor_mode_key_binding, Sminor_mode_key_binding, 1, 2, 0,
1399 "Find the visible minor mode bindings of KEY.\n\
1400 Return an alist of pairs (MODENAME . BINDING), where MODENAME is the\n\
1401 the symbol which names the minor mode binding KEY, and BINDING is\n\
1402 KEY's definition in that mode. In particular, if KEY has no\n\
1403 minor-mode bindings, return nil. If the first binding is a\n\
1404 non-prefix, all subsequent bindings will be omitted, since they would\n\
1405 be ignored. Similarly, the list doesn't include non-prefix bindings\n\
1406 that come after prefix bindings.\n\
1407 \n\
1408 If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1409 bindings; see the description of `lookup-key' for more details about this.")
1410 (key, accept_default)
1411 Lisp_Object key, accept_default;
1412 {
1413 Lisp_Object *modes, *maps;
1414 int nmaps;
1415 Lisp_Object binding;
1416 int i, j;
1417 struct gcpro gcpro1, gcpro2;
1418
1419 nmaps = current_minor_maps (&modes, &maps);
1420 /* Note that all these maps are GCPRO'd
1421 in the places where we found them. */
1422
1423 binding = Qnil;
1424 GCPRO2 (key, binding);
1425
1426 for (i = j = 0; i < nmaps; i++)
1427 if (! NILP (maps[i])
1428 && ! NILP (binding = Flookup_key (maps[i], key, accept_default))
1429 && !INTEGERP (binding))
1430 {
1431 if (! NILP (get_keymap (binding)))
1432 maps[j++] = Fcons (modes[i], binding);
1433 else if (j == 0)
1434 RETURN_UNGCPRO (Fcons (Fcons (modes[i], binding), Qnil));
1435 }
1436
1437 UNGCPRO;
1438 return Flist (j, maps);
1439 }
1440
1441 DEFUN ("define-prefix-command", Fdefine_prefix_command, Sdefine_prefix_command, 1, 3, 0,
1442 "Define COMMAND as a prefix command. COMMAND should be a symbol.\n\
1443 A new sparse keymap is stored as COMMAND's function definition and its value.\n\
1444 If a second optional argument MAPVAR is given, the map is stored as\n\
1445 its value instead of as COMMAND's value; but COMMAND is still defined\n\
1446 as a function.\n\
1447 The third optional argument NAME, if given, supplies a menu name\n\
1448 string for the map. This is required to use the keymap as a menu.")
1449 (command, mapvar, name)
1450 Lisp_Object command, mapvar, name;
1451 {
1452 Lisp_Object map;
1453 map = Fmake_sparse_keymap (name);
1454 Ffset (command, map);
1455 if (!NILP (mapvar))
1456 Fset (mapvar, map);
1457 else
1458 Fset (command, map);
1459 return command;
1460 }
1461
1462 DEFUN ("use-global-map", Fuse_global_map, Suse_global_map, 1, 1, 0,
1463 "Select KEYMAP as the global keymap.")
1464 (keymap)
1465 Lisp_Object keymap;
1466 {
1467 keymap = get_keymap (keymap);
1468 current_global_map = keymap;
1469
1470 return Qnil;
1471 }
1472
1473 DEFUN ("use-local-map", Fuse_local_map, Suse_local_map, 1, 1, 0,
1474 "Select KEYMAP as the local keymap.\n\
1475 If KEYMAP is nil, that means no local keymap.")
1476 (keymap)
1477 Lisp_Object keymap;
1478 {
1479 if (!NILP (keymap))
1480 keymap = get_keymap (keymap);
1481
1482 current_buffer->keymap = keymap;
1483
1484 return Qnil;
1485 }
1486
1487 DEFUN ("current-local-map", Fcurrent_local_map, Scurrent_local_map, 0, 0, 0,
1488 "Return current buffer's local keymap, or nil if it has none.")
1489 ()
1490 {
1491 return current_buffer->keymap;
1492 }
1493
1494 DEFUN ("current-global-map", Fcurrent_global_map, Scurrent_global_map, 0, 0, 0,
1495 "Return the current global keymap.")
1496 ()
1497 {
1498 return current_global_map;
1499 }
1500
1501 DEFUN ("current-minor-mode-maps", Fcurrent_minor_mode_maps, Scurrent_minor_mode_maps, 0, 0, 0,
1502 "Return a list of keymaps for the minor modes of the current buffer.")
1503 ()
1504 {
1505 Lisp_Object *maps;
1506 int nmaps = current_minor_maps (0, &maps);
1507
1508 return Flist (nmaps, maps);
1509 }
1510 \f
1511 /* Help functions for describing and documenting keymaps. */
1512
1513 static void accessible_keymaps_char_table ();
1514
1515 /* This function cannot GC. */
1516
1517 DEFUN ("accessible-keymaps", Faccessible_keymaps, Saccessible_keymaps,
1518 1, 2, 0,
1519 "Find all keymaps accessible via prefix characters from KEYMAP.\n\
1520 Returns a list of elements of the form (KEYS . MAP), where the sequence\n\
1521 KEYS starting from KEYMAP gets you to MAP. These elements are ordered\n\
1522 so that the KEYS increase in length. The first element is ([] . KEYMAP).\n\
1523 An optional argument PREFIX, if non-nil, should be a key sequence;\n\
1524 then the value includes only maps for prefixes that start with PREFIX.")
1525 (keymap, prefix)
1526 Lisp_Object keymap, prefix;
1527 {
1528 Lisp_Object maps, good_maps, tail;
1529 int prefixlen = 0;
1530
1531 /* no need for gcpro because we don't autoload any keymaps. */
1532
1533 if (!NILP (prefix))
1534 prefixlen = XINT (Flength (prefix));
1535
1536 if (!NILP (prefix))
1537 {
1538 /* If a prefix was specified, start with the keymap (if any) for
1539 that prefix, so we don't waste time considering other prefixes. */
1540 Lisp_Object tem;
1541 tem = Flookup_key (keymap, prefix, Qt);
1542 /* Flookup_key may give us nil, or a number,
1543 if the prefix is not defined in this particular map.
1544 It might even give us a list that isn't a keymap. */
1545 tem = get_keymap_1 (tem, 0, 0);
1546 if (!NILP (tem))
1547 {
1548 /* Convert PREFIX to a vector now, so that later on
1549 we don't have to deal with the possibility of a string. */
1550 if (STRINGP (prefix))
1551 {
1552 int i, i_byte, c;
1553 Lisp_Object copy;
1554
1555 copy = Fmake_vector (make_number (XSTRING (prefix)->size), Qnil);
1556 for (i = 0, i_byte = 0; i < XSTRING (prefix)->size;)
1557 {
1558 int i_before = i;
1559
1560 FETCH_STRING_CHAR_ADVANCE (c, prefix, i, i_byte);
1561 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
1562 c ^= 0200 | meta_modifier;
1563 XVECTOR (copy)->contents[i_before] = make_number (c);
1564 }
1565 prefix = copy;
1566 }
1567 maps = Fcons (Fcons (prefix, tem), Qnil);
1568 }
1569 else
1570 return Qnil;
1571 }
1572 else
1573 maps = Fcons (Fcons (Fmake_vector (make_number (0), Qnil),
1574 get_keymap (keymap)),
1575 Qnil);
1576
1577 /* For each map in the list maps,
1578 look at any other maps it points to,
1579 and stick them at the end if they are not already in the list.
1580
1581 This is a breadth-first traversal, where tail is the queue of
1582 nodes, and maps accumulates a list of all nodes visited. */
1583
1584 for (tail = maps; CONSP (tail); tail = XCDR (tail))
1585 {
1586 register Lisp_Object thisseq, thismap;
1587 Lisp_Object last;
1588 /* Does the current sequence end in the meta-prefix-char? */
1589 int is_metized;
1590
1591 thisseq = Fcar (Fcar (tail));
1592 thismap = Fcdr (Fcar (tail));
1593 last = make_number (XINT (Flength (thisseq)) - 1);
1594 is_metized = (XINT (last) >= 0
1595 /* Don't metize the last char of PREFIX. */
1596 && XINT (last) >= prefixlen
1597 && EQ (Faref (thisseq, last), meta_prefix_char));
1598
1599 for (; CONSP (thismap); thismap = XCDR (thismap))
1600 {
1601 Lisp_Object elt;
1602
1603 elt = XCAR (thismap);
1604
1605 QUIT;
1606
1607 if (CHAR_TABLE_P (elt))
1608 {
1609 Lisp_Object indices[3];
1610
1611 map_char_table (accessible_keymaps_char_table, Qnil,
1612 elt, Fcons (maps, Fcons (tail, thisseq)),
1613 0, indices);
1614 }
1615 else if (VECTORP (elt))
1616 {
1617 register int i;
1618
1619 /* Vector keymap. Scan all the elements. */
1620 for (i = 0; i < XVECTOR (elt)->size; i++)
1621 {
1622 register Lisp_Object tem;
1623 register Lisp_Object cmd;
1624
1625 cmd = get_keyelt (XVECTOR (elt)->contents[i], 0);
1626 if (NILP (cmd)) continue;
1627 tem = Fkeymapp (cmd);
1628 if (!NILP (tem))
1629 {
1630 cmd = get_keymap (cmd);
1631 /* Ignore keymaps that are already added to maps. */
1632 tem = Frassq (cmd, maps);
1633 if (NILP (tem))
1634 {
1635 /* If the last key in thisseq is meta-prefix-char,
1636 turn it into a meta-ized keystroke. We know
1637 that the event we're about to append is an
1638 ascii keystroke since we're processing a
1639 keymap table. */
1640 if (is_metized)
1641 {
1642 int meta_bit = meta_modifier;
1643 tem = Fcopy_sequence (thisseq);
1644
1645 Faset (tem, last, make_number (i | meta_bit));
1646
1647 /* This new sequence is the same length as
1648 thisseq, so stick it in the list right
1649 after this one. */
1650 XCDR (tail)
1651 = Fcons (Fcons (tem, cmd), XCDR (tail));
1652 }
1653 else
1654 {
1655 tem = append_key (thisseq, make_number (i));
1656 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1657 }
1658 }
1659 }
1660 }
1661 }
1662 else if (CONSP (elt))
1663 {
1664 register Lisp_Object cmd, tem;
1665
1666 cmd = get_keyelt (XCDR (elt), 0);
1667 /* Ignore definitions that aren't keymaps themselves. */
1668 tem = Fkeymapp (cmd);
1669 if (!NILP (tem))
1670 {
1671 /* Ignore keymaps that have been seen already. */
1672 cmd = get_keymap (cmd);
1673 tem = Frassq (cmd, maps);
1674 if (NILP (tem))
1675 {
1676 /* Let elt be the event defined by this map entry. */
1677 elt = XCAR (elt);
1678
1679 /* If the last key in thisseq is meta-prefix-char, and
1680 this entry is a binding for an ascii keystroke,
1681 turn it into a meta-ized keystroke. */
1682 if (is_metized && INTEGERP (elt))
1683 {
1684 Lisp_Object element;
1685
1686 element = thisseq;
1687 tem = Fvconcat (1, &element);
1688 XSETFASTINT (XVECTOR (tem)->contents[XINT (last)],
1689 XINT (elt) | meta_modifier);
1690
1691 /* This new sequence is the same length as
1692 thisseq, so stick it in the list right
1693 after this one. */
1694 XCDR (tail)
1695 = Fcons (Fcons (tem, cmd), XCDR (tail));
1696 }
1697 else
1698 nconc2 (tail,
1699 Fcons (Fcons (append_key (thisseq, elt), cmd),
1700 Qnil));
1701 }
1702 }
1703 }
1704 }
1705 }
1706
1707 if (NILP (prefix))
1708 return maps;
1709
1710 /* Now find just the maps whose access prefixes start with PREFIX. */
1711
1712 good_maps = Qnil;
1713 for (; CONSP (maps); maps = XCDR (maps))
1714 {
1715 Lisp_Object elt, thisseq;
1716 elt = XCAR (maps);
1717 thisseq = XCAR (elt);
1718 /* The access prefix must be at least as long as PREFIX,
1719 and the first elements must match those of PREFIX. */
1720 if (XINT (Flength (thisseq)) >= prefixlen)
1721 {
1722 int i;
1723 for (i = 0; i < prefixlen; i++)
1724 {
1725 Lisp_Object i1;
1726 XSETFASTINT (i1, i);
1727 if (!EQ (Faref (thisseq, i1), Faref (prefix, i1)))
1728 break;
1729 }
1730 if (i == prefixlen)
1731 good_maps = Fcons (elt, good_maps);
1732 }
1733 }
1734
1735 return Fnreverse (good_maps);
1736 }
1737
1738 static void
1739 accessible_keymaps_char_table (args, index, cmd)
1740 Lisp_Object args, index, cmd;
1741 {
1742 Lisp_Object tem;
1743 Lisp_Object maps, tail, thisseq;
1744
1745 if (NILP (cmd))
1746 return;
1747
1748 maps = XCAR (args);
1749 tail = XCAR (XCDR (args));
1750 thisseq = XCDR (XCDR (args));
1751
1752 tem = Fkeymapp (cmd);
1753 if (!NILP (tem))
1754 {
1755 cmd = get_keymap (cmd);
1756 /* Ignore keymaps that are already added to maps. */
1757 tem = Frassq (cmd, maps);
1758 if (NILP (tem))
1759 {
1760 tem = append_key (thisseq, index);
1761 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1762 }
1763 }
1764 }
1765 \f
1766 Lisp_Object Qsingle_key_description, Qkey_description;
1767
1768 /* This function cannot GC. */
1769
1770 DEFUN ("key-description", Fkey_description, Skey_description, 1, 1, 0,
1771 "Return a pretty description of key-sequence KEYS.\n\
1772 Control characters turn into \"C-foo\" sequences, meta into \"M-foo\"\n\
1773 spaces are put between sequence elements, etc.")
1774 (keys)
1775 Lisp_Object keys;
1776 {
1777 int len = 0;
1778 int i, i_byte;
1779 Lisp_Object sep;
1780 Lisp_Object *args = NULL;
1781
1782 if (STRINGP (keys))
1783 {
1784 Lisp_Object vector;
1785 vector = Fmake_vector (Flength (keys), Qnil);
1786 for (i = 0, i_byte = 0; i < XSTRING (keys)->size; )
1787 {
1788 int c;
1789 int i_before = i;
1790
1791 FETCH_STRING_CHAR_ADVANCE (c, keys, i, i_byte);
1792 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
1793 c ^= 0200 | meta_modifier;
1794 XSETFASTINT (XVECTOR (vector)->contents[i_before], c);
1795 }
1796 keys = vector;
1797 }
1798
1799 if (VECTORP (keys))
1800 {
1801 /* In effect, this computes
1802 (mapconcat 'single-key-description keys " ")
1803 but we shouldn't use mapconcat because it can do GC. */
1804
1805 len = XVECTOR (keys)->size;
1806 sep = build_string (" ");
1807 /* This has one extra element at the end that we don't pass to Fconcat. */
1808 args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
1809
1810 for (i = 0; i < len; i++)
1811 {
1812 args[i * 2] = Fsingle_key_description (XVECTOR (keys)->contents[i],
1813 Qnil);
1814 args[i * 2 + 1] = sep;
1815 }
1816 }
1817 else if (CONSP (keys))
1818 {
1819 /* In effect, this computes
1820 (mapconcat 'single-key-description keys " ")
1821 but we shouldn't use mapconcat because it can do GC. */
1822
1823 len = XFASTINT (Flength (keys));
1824 sep = build_string (" ");
1825 /* This has one extra element at the end that we don't pass to Fconcat. */
1826 args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
1827
1828 for (i = 0; i < len; i++)
1829 {
1830 args[i * 2] = Fsingle_key_description (XCAR (keys), Qnil);
1831 args[i * 2 + 1] = sep;
1832 keys = XCDR (keys);
1833 }
1834 }
1835 else
1836 keys = wrong_type_argument (Qarrayp, keys);
1837
1838 return Fconcat (len * 2 - 1, args);
1839 }
1840
1841 char *
1842 push_key_description (c, p)
1843 register unsigned int c;
1844 register char *p;
1845 {
1846 unsigned c2;
1847
1848 /* Clear all the meaningless bits above the meta bit. */
1849 c &= meta_modifier | ~ - meta_modifier;
1850 c2 = c & ~(alt_modifier | ctrl_modifier | hyper_modifier
1851 | meta_modifier | shift_modifier | super_modifier);
1852
1853 if (c & alt_modifier)
1854 {
1855 *p++ = 'A';
1856 *p++ = '-';
1857 c -= alt_modifier;
1858 }
1859 if ((c & ctrl_modifier) != 0
1860 || (c2 < ' ' && c2 != 27 && c2 != '\t' && c2 != Ctl ('M')))
1861 {
1862 *p++ = 'C';
1863 *p++ = '-';
1864 c &= ~ctrl_modifier;
1865 }
1866 if (c & hyper_modifier)
1867 {
1868 *p++ = 'H';
1869 *p++ = '-';
1870 c -= hyper_modifier;
1871 }
1872 if (c & meta_modifier)
1873 {
1874 *p++ = 'M';
1875 *p++ = '-';
1876 c -= meta_modifier;
1877 }
1878 if (c & shift_modifier)
1879 {
1880 *p++ = 'S';
1881 *p++ = '-';
1882 c -= shift_modifier;
1883 }
1884 if (c & super_modifier)
1885 {
1886 *p++ = 's';
1887 *p++ = '-';
1888 c -= super_modifier;
1889 }
1890 if (c < 040)
1891 {
1892 if (c == 033)
1893 {
1894 *p++ = 'E';
1895 *p++ = 'S';
1896 *p++ = 'C';
1897 }
1898 else if (c == '\t')
1899 {
1900 *p++ = 'T';
1901 *p++ = 'A';
1902 *p++ = 'B';
1903 }
1904 else if (c == Ctl ('M'))
1905 {
1906 *p++ = 'R';
1907 *p++ = 'E';
1908 *p++ = 'T';
1909 }
1910 else
1911 {
1912 /* `C-' already added above. */
1913 if (c > 0 && c <= Ctl ('Z'))
1914 *p++ = c + 0140;
1915 else
1916 *p++ = c + 0100;
1917 }
1918 }
1919 else if (c == 0177)
1920 {
1921 *p++ = 'D';
1922 *p++ = 'E';
1923 *p++ = 'L';
1924 }
1925 else if (c == ' ')
1926 {
1927 *p++ = 'S';
1928 *p++ = 'P';
1929 *p++ = 'C';
1930 }
1931 else if (c < 128
1932 || (NILP (current_buffer->enable_multibyte_characters)
1933 && SINGLE_BYTE_CHAR_P (c)))
1934 *p++ = c;
1935 else
1936 {
1937 if (! NILP (current_buffer->enable_multibyte_characters))
1938 c = unibyte_char_to_multibyte (c);
1939
1940 if (NILP (current_buffer->enable_multibyte_characters)
1941 || SINGLE_BYTE_CHAR_P (c)
1942 || ! char_valid_p (c, 0))
1943 {
1944 int bit_offset;
1945 *p++ = '\\';
1946 /* The biggest character code uses 19 bits. */
1947 for (bit_offset = 18; bit_offset >= 0; bit_offset -= 3)
1948 {
1949 if (c >= (1 << bit_offset))
1950 *p++ = ((c & (7 << bit_offset)) >> bit_offset) + '0';
1951 }
1952 }
1953 else
1954 {
1955 p += CHAR_STRING (c, p);
1956 }
1957 }
1958
1959 return p;
1960 }
1961
1962 /* This function cannot GC. */
1963
1964 DEFUN ("single-key-description", Fsingle_key_description,
1965 Ssingle_key_description, 1, 2, 0,
1966 "Return a pretty description of command character KEY.\n\
1967 Control characters turn into C-whatever, etc.\n\
1968 Optional argument NO-ANGLES non-nil means don't put angle brackets\n\
1969 around function keys and event symbols.")
1970 (key, no_angles)
1971 Lisp_Object key, no_angles;
1972 {
1973 if (CONSP (key) && lucid_event_type_list_p (key))
1974 key = Fevent_convert_list (key);
1975
1976 key = EVENT_HEAD (key);
1977
1978 if (INTEGERP (key)) /* Normal character */
1979 {
1980 unsigned int charset, c1, c2;
1981 int without_bits = XINT (key) & ~((-1) << CHARACTERBITS);
1982
1983 if (SINGLE_BYTE_CHAR_P (without_bits))
1984 charset = 0;
1985 else
1986 SPLIT_CHAR (without_bits, charset, c1, c2);
1987
1988 if (charset
1989 && CHARSET_DEFINED_P (charset)
1990 && ((c1 >= 0 && c1 < 32)
1991 || (c2 >= 0 && c2 < 32)))
1992 {
1993 /* Handle a generic character. */
1994 Lisp_Object name;
1995 name = CHARSET_TABLE_INFO (charset, CHARSET_LONG_NAME_IDX);
1996 CHECK_STRING (name, 0);
1997 return concat2 (build_string ("Character set "), name);
1998 }
1999 else
2000 {
2001 char tem[KEY_DESCRIPTION_SIZE];
2002
2003 *push_key_description (XUINT (key), tem) = 0;
2004 return build_string (tem);
2005 }
2006 }
2007 else if (SYMBOLP (key)) /* Function key or event-symbol */
2008 {
2009 if (NILP (no_angles))
2010 {
2011 char *buffer
2012 = (char *) alloca (STRING_BYTES (XSYMBOL (key)->name) + 5);
2013 sprintf (buffer, "<%s>", XSYMBOL (key)->name->data);
2014 return build_string (buffer);
2015 }
2016 else
2017 return Fsymbol_name (key);
2018 }
2019 else if (STRINGP (key)) /* Buffer names in the menubar. */
2020 return Fcopy_sequence (key);
2021 else
2022 error ("KEY must be an integer, cons, symbol, or string");
2023 return Qnil;
2024 }
2025
2026 char *
2027 push_text_char_description (c, p)
2028 register unsigned int c;
2029 register char *p;
2030 {
2031 if (c >= 0200)
2032 {
2033 *p++ = 'M';
2034 *p++ = '-';
2035 c -= 0200;
2036 }
2037 if (c < 040)
2038 {
2039 *p++ = '^';
2040 *p++ = c + 64; /* 'A' - 1 */
2041 }
2042 else if (c == 0177)
2043 {
2044 *p++ = '^';
2045 *p++ = '?';
2046 }
2047 else
2048 *p++ = c;
2049 return p;
2050 }
2051
2052 /* This function cannot GC. */
2053
2054 DEFUN ("text-char-description", Ftext_char_description, Stext_char_description, 1, 1, 0,
2055 "Return a pretty description of file-character CHARACTER.\n\
2056 Control characters turn into \"^char\", etc.")
2057 (character)
2058 Lisp_Object character;
2059 {
2060 /* Currently MAX_MULTIBYTE_LENGTH is 4 (< 6). */
2061 unsigned char str[6];
2062 int c;
2063
2064 CHECK_NUMBER (character, 0);
2065
2066 c = XINT (character);
2067 if (!SINGLE_BYTE_CHAR_P (c))
2068 {
2069 int len = CHAR_STRING (c, str);
2070
2071 return make_multibyte_string (str, 1, len);
2072 }
2073
2074 *push_text_char_description (c & 0377, str) = 0;
2075
2076 return build_string (str);
2077 }
2078
2079 /* Return non-zero if SEQ contains only ASCII characters, perhaps with
2080 a meta bit. */
2081 static int
2082 ascii_sequence_p (seq)
2083 Lisp_Object seq;
2084 {
2085 int i;
2086 int len = XINT (Flength (seq));
2087
2088 for (i = 0; i < len; i++)
2089 {
2090 Lisp_Object ii, elt;
2091
2092 XSETFASTINT (ii, i);
2093 elt = Faref (seq, ii);
2094
2095 if (!INTEGERP (elt)
2096 || (XUINT (elt) & ~CHAR_META) >= 0x80)
2097 return 0;
2098 }
2099
2100 return 1;
2101 }
2102
2103 \f
2104 /* where-is - finding a command in a set of keymaps. */
2105
2106 static Lisp_Object where_is_internal_1 ();
2107 static void where_is_internal_2 ();
2108
2109 /* This function can GC if Flookup_key autoloads any keymaps. */
2110
2111 DEFUN ("where-is-internal", Fwhere_is_internal, Swhere_is_internal, 1, 4, 0,
2112 "Return list of keys that invoke DEFINITION.\n\
2113 If KEYMAP is non-nil, search only KEYMAP and the global keymap.\n\
2114 If KEYMAP is nil, search all the currently active keymaps.\n\
2115 \n\
2116 If optional 3rd arg FIRSTONLY is non-nil, return the first key sequence found,\n\
2117 rather than a list of all possible key sequences.\n\
2118 If FIRSTONLY is the symbol `non-ascii', return the first binding found,\n\
2119 no matter what it is.\n\
2120 If FIRSTONLY has another non-nil value, prefer sequences of ASCII characters,\n\
2121 and entirely reject menu bindings.\n\
2122 \n\
2123 If optional 4th arg NOINDIRECT is non-nil, don't follow indirections\n\
2124 to other keymaps or slots. This makes it possible to search for an\n\
2125 indirect definition itself.")
2126 (definition, xkeymap, firstonly, noindirect)
2127 Lisp_Object definition, xkeymap;
2128 Lisp_Object firstonly, noindirect;
2129 {
2130 Lisp_Object maps;
2131 Lisp_Object found, sequences;
2132 Lisp_Object keymap1;
2133 int keymap_specified = !NILP (xkeymap);
2134 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2135 /* 1 means ignore all menu bindings entirely. */
2136 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2137
2138 /* Find keymaps accessible from `keymap' or the current
2139 context. But don't muck with the value of `keymap',
2140 because `where_is_internal_1' uses it to check for
2141 shadowed bindings. */
2142 keymap1 = xkeymap;
2143 if (! keymap_specified)
2144 keymap1 = get_local_map (PT, current_buffer, keymap);
2145
2146 if (!NILP (keymap1))
2147 maps = nconc2 (Faccessible_keymaps (get_keymap (keymap1), Qnil),
2148 Faccessible_keymaps (get_keymap (current_global_map),
2149 Qnil));
2150 else
2151 {
2152 keymap1 = xkeymap;
2153 if (! keymap_specified)
2154 keymap1 = get_local_map (PT, current_buffer, local_map);
2155
2156 if (!NILP (keymap1))
2157 maps = nconc2 (Faccessible_keymaps (get_keymap (keymap1), Qnil),
2158 Faccessible_keymaps (get_keymap (current_global_map),
2159 Qnil));
2160 else
2161 maps = Faccessible_keymaps (get_keymap (current_global_map), Qnil);
2162 }
2163
2164 /* Put the minor mode keymaps on the front. */
2165 if (! keymap_specified)
2166 {
2167 Lisp_Object minors;
2168 minors = Fnreverse (Fcurrent_minor_mode_maps ());
2169 while (!NILP (minors))
2170 {
2171 maps = nconc2 (Faccessible_keymaps (get_keymap (XCAR (minors)),
2172 Qnil),
2173 maps);
2174 minors = XCDR (minors);
2175 }
2176 }
2177
2178 GCPRO5 (definition, xkeymap, maps, found, sequences);
2179 found = Qnil;
2180 sequences = Qnil;
2181
2182 for (; !NILP (maps); maps = Fcdr (maps))
2183 {
2184 /* Key sequence to reach map, and the map that it reaches */
2185 register Lisp_Object this, map;
2186
2187 /* In order to fold [META-PREFIX-CHAR CHAR] sequences into
2188 [M-CHAR] sequences, check if last character of the sequence
2189 is the meta-prefix char. */
2190 Lisp_Object last;
2191 int last_is_meta;
2192
2193 this = Fcar (Fcar (maps));
2194 map = Fcdr (Fcar (maps));
2195 last = make_number (XINT (Flength (this)) - 1);
2196 last_is_meta = (XINT (last) >= 0
2197 && EQ (Faref (this, last), meta_prefix_char));
2198
2199 QUIT;
2200
2201 while (CONSP (map))
2202 {
2203 /* Because the code we want to run on each binding is rather
2204 large, we don't want to have two separate loop bodies for
2205 sparse keymap bindings and tables; we want to iterate one
2206 loop body over both keymap and vector bindings.
2207
2208 For this reason, if Fcar (map) is a vector, we don't
2209 advance map to the next element until i indicates that we
2210 have finished off the vector. */
2211 Lisp_Object elt, key, binding;
2212 elt = XCAR (map);
2213 map = XCDR (map);
2214
2215 sequences = Qnil;
2216
2217 QUIT;
2218
2219 /* Set key and binding to the current key and binding, and
2220 advance map and i to the next binding. */
2221 if (VECTORP (elt))
2222 {
2223 Lisp_Object sequence;
2224 int i;
2225 /* In a vector, look at each element. */
2226 for (i = 0; i < XVECTOR (elt)->size; i++)
2227 {
2228 binding = XVECTOR (elt)->contents[i];
2229 XSETFASTINT (key, i);
2230 sequence = where_is_internal_1 (binding, key, definition,
2231 noindirect, xkeymap, this,
2232 last, nomenus, last_is_meta);
2233 if (!NILP (sequence))
2234 sequences = Fcons (sequence, sequences);
2235 }
2236 }
2237 else if (CHAR_TABLE_P (elt))
2238 {
2239 Lisp_Object indices[3];
2240 Lisp_Object args;
2241
2242 args = Fcons (Fcons (Fcons (definition, noindirect),
2243 Fcons (xkeymap, Qnil)),
2244 Fcons (Fcons (this, last),
2245 Fcons (make_number (nomenus),
2246 make_number (last_is_meta))));
2247 map_char_table (where_is_internal_2, Qnil, elt, args,
2248 0, indices);
2249 sequences = XCDR (XCDR (XCAR (args)));
2250 }
2251 else if (CONSP (elt))
2252 {
2253 Lisp_Object sequence;
2254
2255 key = XCAR (elt);
2256 binding = XCDR (elt);
2257
2258 sequence = where_is_internal_1 (binding, key, definition,
2259 noindirect, xkeymap, this,
2260 last, nomenus, last_is_meta);
2261 if (!NILP (sequence))
2262 sequences = Fcons (sequence, sequences);
2263 }
2264
2265
2266 for (; ! NILP (sequences); sequences = XCDR (sequences))
2267 {
2268 Lisp_Object sequence;
2269
2270 sequence = XCAR (sequences);
2271
2272 /* It is a true unshadowed match. Record it, unless it's already
2273 been seen (as could happen when inheriting keymaps). */
2274 if (NILP (Fmember (sequence, found)))
2275 found = Fcons (sequence, found);
2276
2277 /* If firstonly is Qnon_ascii, then we can return the first
2278 binding we find. If firstonly is not Qnon_ascii but not
2279 nil, then we should return the first ascii-only binding
2280 we find. */
2281 if (EQ (firstonly, Qnon_ascii))
2282 RETURN_UNGCPRO (sequence);
2283 else if (! NILP (firstonly) && ascii_sequence_p (sequence))
2284 RETURN_UNGCPRO (sequence);
2285 }
2286 }
2287 }
2288
2289 UNGCPRO;
2290
2291 found = Fnreverse (found);
2292
2293 /* firstonly may have been t, but we may have gone all the way through
2294 the keymaps without finding an all-ASCII key sequence. So just
2295 return the best we could find. */
2296 if (! NILP (firstonly))
2297 return Fcar (found);
2298
2299 return found;
2300 }
2301
2302 /* This is the function that Fwhere_is_internal calls using map_char_table.
2303 ARGS has the form
2304 (((DEFINITION . NOINDIRECT) . (KEYMAP . RESULT))
2305 .
2306 ((THIS . LAST) . (NOMENUS . LAST_IS_META)))
2307 Since map_char_table doesn't really use the return value from this function,
2308 we the result append to RESULT, the slot in ARGS.
2309
2310 This function can GC because it calls where_is_internal_1 which can
2311 GC. */
2312
2313 static void
2314 where_is_internal_2 (args, key, binding)
2315 Lisp_Object args, key, binding;
2316 {
2317 Lisp_Object definition, noindirect, keymap, this, last;
2318 Lisp_Object result, sequence;
2319 int nomenus, last_is_meta;
2320 struct gcpro gcpro1, gcpro2, gcpro3;
2321
2322 GCPRO3 (args, key, binding);
2323 result = XCDR (XCDR (XCAR (args)));
2324 definition = XCAR (XCAR (XCAR (args)));
2325 noindirect = XCDR (XCAR (XCAR (args)));
2326 keymap = XCAR (XCDR (XCAR (args)));
2327 this = XCAR (XCAR (XCDR (args)));
2328 last = XCDR (XCAR (XCDR (args)));
2329 nomenus = XFASTINT (XCAR (XCDR (XCDR (args))));
2330 last_is_meta = XFASTINT (XCDR (XCDR (XCDR (args))));
2331
2332 sequence = where_is_internal_1 (binding, key, definition, noindirect, keymap,
2333 this, last, nomenus, last_is_meta);
2334
2335 if (!NILP (sequence))
2336 XCDR (XCDR (XCAR (args))) = Fcons (sequence, result);
2337
2338 UNGCPRO;
2339 }
2340
2341
2342 /* This function can GC.because Flookup_key calls get_keymap_1 with
2343 non-zero argument AUTOLOAD. */
2344
2345 static Lisp_Object
2346 where_is_internal_1 (binding, key, definition, noindirect, keymap, this, last,
2347 nomenus, last_is_meta)
2348 Lisp_Object binding, key, definition, noindirect, keymap, this, last;
2349 int nomenus, last_is_meta;
2350 {
2351 Lisp_Object sequence;
2352 int keymap_specified = !NILP (keymap);
2353 struct gcpro gcpro1, gcpro2;
2354
2355 /* Search through indirections unless that's not wanted. */
2356 if (NILP (noindirect))
2357 {
2358 if (nomenus)
2359 {
2360 while (1)
2361 {
2362 Lisp_Object map, tem;
2363 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
2364 map = get_keymap_1 (Fcar_safe (definition), 0, 0);
2365 tem = Fkeymapp (map);
2366 if (!NILP (tem))
2367 definition = access_keymap (map, Fcdr (definition), 0, 0);
2368 else
2369 break;
2370 }
2371 /* If the contents are (menu-item ...) or (STRING ...), reject. */
2372 if (CONSP (definition)
2373 && (EQ (XCAR (definition),Qmenu_item)
2374 || STRINGP (XCAR (definition))))
2375 return Qnil;
2376 }
2377 else
2378 binding = get_keyelt (binding, 0);
2379 }
2380
2381 /* End this iteration if this element does not match
2382 the target. */
2383
2384 if (CONSP (definition))
2385 {
2386 Lisp_Object tem;
2387 tem = Fequal (binding, definition);
2388 if (NILP (tem))
2389 return Qnil;
2390 }
2391 else
2392 if (!EQ (binding, definition))
2393 return Qnil;
2394
2395 /* We have found a match.
2396 Construct the key sequence where we found it. */
2397 if (INTEGERP (key) && last_is_meta)
2398 {
2399 sequence = Fcopy_sequence (this);
2400 Faset (sequence, last, make_number (XINT (key) | meta_modifier));
2401 }
2402 else
2403 sequence = append_key (this, key);
2404
2405 /* Verify that this key binding is not shadowed by another
2406 binding for the same key, before we say it exists.
2407
2408 Mechanism: look for local definition of this key and if
2409 it is defined and does not match what we found then
2410 ignore this key.
2411
2412 Either nil or number as value from Flookup_key
2413 means undefined. */
2414 GCPRO2 (sequence, binding);
2415 if (keymap_specified)
2416 {
2417 binding = Flookup_key (keymap, sequence, Qnil);
2418 if (!NILP (binding) && !INTEGERP (binding))
2419 {
2420 if (CONSP (definition))
2421 {
2422 Lisp_Object tem;
2423 tem = Fequal (binding, definition);
2424 if (NILP (tem))
2425 RETURN_UNGCPRO (Qnil);
2426 }
2427 else
2428 if (!EQ (binding, definition))
2429 RETURN_UNGCPRO (Qnil);
2430 }
2431 }
2432 else
2433 {
2434 binding = Fkey_binding (sequence, Qnil);
2435 if (!EQ (binding, definition))
2436 RETURN_UNGCPRO (Qnil);
2437 }
2438
2439 RETURN_UNGCPRO (sequence);
2440 }
2441 \f
2442 /* describe-bindings - summarizing all the bindings in a set of keymaps. */
2443
2444 DEFUN ("describe-bindings-internal", Fdescribe_bindings_internal, Sdescribe_bindings_internal, 0, 2, "",
2445 "Show a list of all defined keys, and their definitions.\n\
2446 We put that list in a buffer, and display the buffer.\n\
2447 \n\
2448 The optional argument MENUS, if non-nil, says to mention menu bindings.\n\
2449 \(Ordinarily these are omitted from the output.)\n\
2450 The optional argument PREFIX, if non-nil, should be a key sequence;\n\
2451 then we display only bindings that start with that prefix.")
2452 (menus, prefix)
2453 Lisp_Object menus, prefix;
2454 {
2455 register Lisp_Object thisbuf;
2456 XSETBUFFER (thisbuf, current_buffer);
2457 internal_with_output_to_temp_buffer ("*Help*",
2458 describe_buffer_bindings,
2459 list3 (thisbuf, prefix, menus));
2460 return Qnil;
2461 }
2462
2463 /* ARG is (BUFFER PREFIX MENU-FLAG). */
2464
2465 static Lisp_Object
2466 describe_buffer_bindings (arg)
2467 Lisp_Object arg;
2468 {
2469 Lisp_Object descbuf, prefix, shadow;
2470 int nomenu;
2471 register Lisp_Object start1;
2472 struct gcpro gcpro1;
2473
2474 char *alternate_heading
2475 = "\
2476 Keyboard translations:\n\n\
2477 You type Translation\n\
2478 -------- -----------\n";
2479
2480 descbuf = XCAR (arg);
2481 arg = XCDR (arg);
2482 prefix = XCAR (arg);
2483 arg = XCDR (arg);
2484 nomenu = NILP (XCAR (arg));
2485
2486 shadow = Qnil;
2487 GCPRO1 (shadow);
2488
2489 Fset_buffer (Vstandard_output);
2490
2491 /* Report on alternates for keys. */
2492 if (STRINGP (Vkeyboard_translate_table) && !NILP (prefix))
2493 {
2494 int c;
2495 unsigned char *translate = XSTRING (Vkeyboard_translate_table)->data;
2496 int translate_len = XSTRING (Vkeyboard_translate_table)->size;
2497
2498 for (c = 0; c < translate_len; c++)
2499 if (translate[c] != c)
2500 {
2501 char buf[KEY_DESCRIPTION_SIZE];
2502 char *bufend;
2503
2504 if (alternate_heading)
2505 {
2506 insert_string (alternate_heading);
2507 alternate_heading = 0;
2508 }
2509
2510 bufend = push_key_description (translate[c], buf);
2511 insert (buf, bufend - buf);
2512 Findent_to (make_number (16), make_number (1));
2513 bufend = push_key_description (c, buf);
2514 insert (buf, bufend - buf);
2515
2516 insert ("\n", 1);
2517 }
2518
2519 insert ("\n", 1);
2520 }
2521
2522 if (!NILP (Vkey_translation_map))
2523 describe_map_tree (Vkey_translation_map, 0, Qnil, prefix,
2524 "Key translations", nomenu, 1, 0);
2525
2526 {
2527 int i, nmaps;
2528 Lisp_Object *modes, *maps;
2529
2530 /* Temporarily switch to descbuf, so that we can get that buffer's
2531 minor modes correctly. */
2532 Fset_buffer (descbuf);
2533
2534 if (!NILP (current_kboard->Voverriding_terminal_local_map)
2535 || !NILP (Voverriding_local_map))
2536 nmaps = 0;
2537 else
2538 nmaps = current_minor_maps (&modes, &maps);
2539 Fset_buffer (Vstandard_output);
2540
2541 /* Print the minor mode maps. */
2542 for (i = 0; i < nmaps; i++)
2543 {
2544 /* The title for a minor mode keymap
2545 is constructed at run time.
2546 We let describe_map_tree do the actual insertion
2547 because it takes care of other features when doing so. */
2548 char *title, *p;
2549
2550 if (!SYMBOLP (modes[i]))
2551 abort();
2552
2553 p = title = (char *) alloca (42 + XSYMBOL (modes[i])->name->size);
2554 *p++ = '\f';
2555 *p++ = '\n';
2556 *p++ = '`';
2557 bcopy (XSYMBOL (modes[i])->name->data, p,
2558 XSYMBOL (modes[i])->name->size);
2559 p += XSYMBOL (modes[i])->name->size;
2560 *p++ = '\'';
2561 bcopy (" Minor Mode Bindings", p, sizeof (" Minor Mode Bindings") - 1);
2562 p += sizeof (" Minor Mode Bindings") - 1;
2563 *p = 0;
2564
2565 describe_map_tree (maps[i], 1, shadow, prefix, title, nomenu, 0, 0);
2566 shadow = Fcons (maps[i], shadow);
2567 }
2568 }
2569
2570 /* Print the (major mode) local map. */
2571 if (!NILP (current_kboard->Voverriding_terminal_local_map))
2572 start1 = current_kboard->Voverriding_terminal_local_map;
2573 else if (!NILP (Voverriding_local_map))
2574 start1 = Voverriding_local_map;
2575 else
2576 start1 = XBUFFER (descbuf)->keymap;
2577
2578 if (!NILP (start1))
2579 {
2580 describe_map_tree (start1, 1, shadow, prefix,
2581 "\f\nMajor Mode Bindings", nomenu, 0, 0);
2582 shadow = Fcons (start1, shadow);
2583 }
2584
2585 describe_map_tree (current_global_map, 1, shadow, prefix,
2586 "\f\nGlobal Bindings", nomenu, 0, 1);
2587
2588 /* Print the function-key-map translations under this prefix. */
2589 if (!NILP (Vfunction_key_map))
2590 describe_map_tree (Vfunction_key_map, 0, Qnil, prefix,
2591 "\f\nFunction key map translations", nomenu, 1, 0);
2592
2593 call0 (intern ("help-mode"));
2594 Fset_buffer (descbuf);
2595 UNGCPRO;
2596 return Qnil;
2597 }
2598
2599 /* Insert a description of the key bindings in STARTMAP,
2600 followed by those of all maps reachable through STARTMAP.
2601 If PARTIAL is nonzero, omit certain "uninteresting" commands
2602 (such as `undefined').
2603 If SHADOW is non-nil, it is a list of maps;
2604 don't mention keys which would be shadowed by any of them.
2605 PREFIX, if non-nil, says mention only keys that start with PREFIX.
2606 TITLE, if not 0, is a string to insert at the beginning.
2607 TITLE should not end with a colon or a newline; we supply that.
2608 If NOMENU is not 0, then omit menu-bar commands.
2609
2610 If TRANSL is nonzero, the definitions are actually key translations
2611 so print strings and vectors differently.
2612
2613 If ALWAYS_TITLE is nonzero, print the title even if there are no maps
2614 to look through. */
2615
2616 void
2617 describe_map_tree (startmap, partial, shadow, prefix, title, nomenu, transl,
2618 always_title)
2619 Lisp_Object startmap, shadow, prefix;
2620 int partial;
2621 char *title;
2622 int nomenu;
2623 int transl;
2624 int always_title;
2625 {
2626 Lisp_Object maps, orig_maps, seen, sub_shadows;
2627 struct gcpro gcpro1, gcpro2, gcpro3;
2628 int something = 0;
2629 char *key_heading
2630 = "\
2631 key binding\n\
2632 --- -------\n";
2633
2634 orig_maps = maps = Faccessible_keymaps (startmap, prefix);
2635 seen = Qnil;
2636 sub_shadows = Qnil;
2637 GCPRO3 (maps, seen, sub_shadows);
2638
2639 if (nomenu)
2640 {
2641 Lisp_Object list;
2642
2643 /* Delete from MAPS each element that is for the menu bar. */
2644 for (list = maps; !NILP (list); list = XCDR (list))
2645 {
2646 Lisp_Object elt, prefix, tem;
2647
2648 elt = Fcar (list);
2649 prefix = Fcar (elt);
2650 if (XVECTOR (prefix)->size >= 1)
2651 {
2652 tem = Faref (prefix, make_number (0));
2653 if (EQ (tem, Qmenu_bar))
2654 maps = Fdelq (elt, maps);
2655 }
2656 }
2657 }
2658
2659 if (!NILP (maps) || always_title)
2660 {
2661 if (title)
2662 {
2663 insert_string (title);
2664 if (!NILP (prefix))
2665 {
2666 insert_string (" Starting With ");
2667 insert1 (Fkey_description (prefix));
2668 }
2669 insert_string (":\n");
2670 }
2671 insert_string (key_heading);
2672 something = 1;
2673 }
2674
2675 for (; !NILP (maps); maps = Fcdr (maps))
2676 {
2677 register Lisp_Object elt, prefix, tail;
2678
2679 elt = Fcar (maps);
2680 prefix = Fcar (elt);
2681
2682 sub_shadows = Qnil;
2683
2684 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
2685 {
2686 Lisp_Object shmap;
2687
2688 shmap = XCAR (tail);
2689
2690 /* If the sequence by which we reach this keymap is zero-length,
2691 then the shadow map for this keymap is just SHADOW. */
2692 if ((STRINGP (prefix) && XSTRING (prefix)->size == 0)
2693 || (VECTORP (prefix) && XVECTOR (prefix)->size == 0))
2694 ;
2695 /* If the sequence by which we reach this keymap actually has
2696 some elements, then the sequence's definition in SHADOW is
2697 what we should use. */
2698 else
2699 {
2700 shmap = Flookup_key (shmap, Fcar (elt), Qt);
2701 if (INTEGERP (shmap))
2702 shmap = Qnil;
2703 }
2704
2705 /* If shmap is not nil and not a keymap,
2706 it completely shadows this map, so don't
2707 describe this map at all. */
2708 if (!NILP (shmap) && NILP (Fkeymapp (shmap)))
2709 goto skip;
2710
2711 if (!NILP (shmap))
2712 sub_shadows = Fcons (shmap, sub_shadows);
2713 }
2714
2715 /* Maps we have already listed in this loop shadow this map. */
2716 for (tail = orig_maps; ! EQ (tail, maps); tail = XCDR (tail))
2717 {
2718 Lisp_Object tem;
2719 tem = Fequal (Fcar (XCAR (tail)), prefix);
2720 if (! NILP (tem))
2721 sub_shadows = Fcons (XCDR (XCAR (tail)), sub_shadows);
2722 }
2723
2724 describe_map (Fcdr (elt), prefix,
2725 transl ? describe_translation : describe_command,
2726 partial, sub_shadows, &seen, nomenu);
2727
2728 skip: ;
2729 }
2730
2731 if (something)
2732 insert_string ("\n");
2733
2734 UNGCPRO;
2735 }
2736
2737 static int previous_description_column;
2738
2739 static void
2740 describe_command (definition)
2741 Lisp_Object definition;
2742 {
2743 register Lisp_Object tem1;
2744 int column = current_column ();
2745 int description_column;
2746
2747 /* If column 16 is no good, go to col 32;
2748 but don't push beyond that--go to next line instead. */
2749 if (column > 30)
2750 {
2751 insert_char ('\n');
2752 description_column = 32;
2753 }
2754 else if (column > 14 || (column > 10 && previous_description_column == 32))
2755 description_column = 32;
2756 else
2757 description_column = 16;
2758
2759 Findent_to (make_number (description_column), make_number (1));
2760 previous_description_column = description_column;
2761
2762 if (SYMBOLP (definition))
2763 {
2764 XSETSTRING (tem1, XSYMBOL (definition)->name);
2765 insert1 (tem1);
2766 insert_string ("\n");
2767 }
2768 else if (STRINGP (definition) || VECTORP (definition))
2769 insert_string ("Keyboard Macro\n");
2770 else
2771 {
2772 tem1 = Fkeymapp (definition);
2773 if (!NILP (tem1))
2774 insert_string ("Prefix Command\n");
2775 else
2776 insert_string ("??\n");
2777 }
2778 }
2779
2780 static void
2781 describe_translation (definition)
2782 Lisp_Object definition;
2783 {
2784 register Lisp_Object tem1;
2785
2786 Findent_to (make_number (16), make_number (1));
2787
2788 if (SYMBOLP (definition))
2789 {
2790 XSETSTRING (tem1, XSYMBOL (definition)->name);
2791 insert1 (tem1);
2792 insert_string ("\n");
2793 }
2794 else if (STRINGP (definition) || VECTORP (definition))
2795 {
2796 insert1 (Fkey_description (definition));
2797 insert_string ("\n");
2798 }
2799 else
2800 {
2801 tem1 = Fkeymapp (definition);
2802 if (!NILP (tem1))
2803 insert_string ("Prefix Command\n");
2804 else
2805 insert_string ("??\n");
2806 }
2807 }
2808
2809 /* Like Flookup_key, but uses a list of keymaps SHADOW instead of a single map.
2810 Returns the first non-nil binding found in any of those maps. */
2811
2812 static Lisp_Object
2813 shadow_lookup (shadow, key, flag)
2814 Lisp_Object shadow, key, flag;
2815 {
2816 Lisp_Object tail, value;
2817
2818 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
2819 {
2820 value = Flookup_key (XCAR (tail), key, flag);
2821 if (!NILP (value))
2822 return value;
2823 }
2824 return Qnil;
2825 }
2826
2827 /* Describe the contents of map MAP, assuming that this map itself is
2828 reached by the sequence of prefix keys KEYS (a string or vector).
2829 PARTIAL, SHADOW, NOMENU are as in `describe_map_tree' above. */
2830
2831 static void
2832 describe_map (map, keys, elt_describer, partial, shadow, seen, nomenu)
2833 register Lisp_Object map;
2834 Lisp_Object keys;
2835 void (*elt_describer) P_ ((Lisp_Object));
2836 int partial;
2837 Lisp_Object shadow;
2838 Lisp_Object *seen;
2839 int nomenu;
2840 {
2841 Lisp_Object elt_prefix;
2842 Lisp_Object tail, definition, event;
2843 Lisp_Object tem;
2844 Lisp_Object suppress;
2845 Lisp_Object kludge;
2846 int first = 1;
2847 struct gcpro gcpro1, gcpro2, gcpro3;
2848
2849 suppress = Qnil;
2850
2851 if (!NILP (keys) && XFASTINT (Flength (keys)) > 0)
2852 {
2853 /* Call Fkey_description first, to avoid GC bug for the other string. */
2854 tem = Fkey_description (keys);
2855 elt_prefix = concat2 (tem, build_string (" "));
2856 }
2857 else
2858 elt_prefix = Qnil;
2859
2860 if (partial)
2861 suppress = intern ("suppress-keymap");
2862
2863 /* This vector gets used to present single keys to Flookup_key. Since
2864 that is done once per keymap element, we don't want to cons up a
2865 fresh vector every time. */
2866 kludge = Fmake_vector (make_number (1), Qnil);
2867 definition = Qnil;
2868
2869 GCPRO3 (elt_prefix, definition, kludge);
2870
2871 for (tail = map; CONSP (tail); tail = XCDR (tail))
2872 {
2873 QUIT;
2874
2875 if (VECTORP (XCAR (tail))
2876 || CHAR_TABLE_P (XCAR (tail)))
2877 describe_vector (XCAR (tail),
2878 elt_prefix, elt_describer, partial, shadow, map,
2879 (int *)0, 0);
2880 else if (CONSP (XCAR (tail)))
2881 {
2882 event = XCAR (XCAR (tail));
2883
2884 /* Ignore bindings whose "keys" are not really valid events.
2885 (We get these in the frames and buffers menu.) */
2886 if (! (SYMBOLP (event) || INTEGERP (event)))
2887 continue;
2888
2889 if (nomenu && EQ (event, Qmenu_bar))
2890 continue;
2891
2892 definition = get_keyelt (XCDR (XCAR (tail)), 0);
2893
2894 /* Don't show undefined commands or suppressed commands. */
2895 if (NILP (definition)) continue;
2896 if (SYMBOLP (definition) && partial)
2897 {
2898 tem = Fget (definition, suppress);
2899 if (!NILP (tem))
2900 continue;
2901 }
2902
2903 /* Don't show a command that isn't really visible
2904 because a local definition of the same key shadows it. */
2905
2906 XVECTOR (kludge)->contents[0] = event;
2907 if (!NILP (shadow))
2908 {
2909 tem = shadow_lookup (shadow, kludge, Qt);
2910 if (!NILP (tem)) continue;
2911 }
2912
2913 tem = Flookup_key (map, kludge, Qt);
2914 if (! EQ (tem, definition)) continue;
2915
2916 if (first)
2917 {
2918 previous_description_column = 0;
2919 insert ("\n", 1);
2920 first = 0;
2921 }
2922
2923 if (!NILP (elt_prefix))
2924 insert1 (elt_prefix);
2925
2926 /* THIS gets the string to describe the character EVENT. */
2927 insert1 (Fsingle_key_description (event, Qnil));
2928
2929 /* Print a description of the definition of this character.
2930 elt_describer will take care of spacing out far enough
2931 for alignment purposes. */
2932 (*elt_describer) (definition);
2933 }
2934 else if (EQ (XCAR (tail), Qkeymap))
2935 {
2936 /* The same keymap might be in the structure twice, if we're
2937 using an inherited keymap. So skip anything we've already
2938 encountered. */
2939 tem = Fassq (tail, *seen);
2940 if (CONSP (tem) && !NILP (Fequal (XCAR (tem), keys)))
2941 break;
2942 *seen = Fcons (Fcons (tail, keys), *seen);
2943 }
2944 }
2945
2946 UNGCPRO;
2947 }
2948
2949 static void
2950 describe_vector_princ (elt)
2951 Lisp_Object elt;
2952 {
2953 Findent_to (make_number (16), make_number (1));
2954 Fprinc (elt, Qnil);
2955 Fterpri (Qnil);
2956 }
2957
2958 DEFUN ("describe-vector", Fdescribe_vector, Sdescribe_vector, 1, 1, 0,
2959 "Insert a description of contents of VECTOR.\n\
2960 This is text showing the elements of vector matched against indices.")
2961 (vector)
2962 Lisp_Object vector;
2963 {
2964 int count = specpdl_ptr - specpdl;
2965
2966 specbind (Qstandard_output, Fcurrent_buffer ());
2967 CHECK_VECTOR_OR_CHAR_TABLE (vector, 0);
2968 describe_vector (vector, Qnil, describe_vector_princ, 0,
2969 Qnil, Qnil, (int *)0, 0);
2970
2971 return unbind_to (count, Qnil);
2972 }
2973
2974 /* Insert in the current buffer a description of the contents of VECTOR.
2975 We call ELT_DESCRIBER to insert the description of one value found
2976 in VECTOR.
2977
2978 ELT_PREFIX describes what "comes before" the keys or indices defined
2979 by this vector. This is a human-readable string whose size
2980 is not necessarily related to the situation.
2981
2982 If the vector is in a keymap, ELT_PREFIX is a prefix key which
2983 leads to this keymap.
2984
2985 If the vector is a chartable, ELT_PREFIX is the vector
2986 of bytes that lead to the character set or portion of a character
2987 set described by this chartable.
2988
2989 If PARTIAL is nonzero, it means do not mention suppressed commands
2990 (that assumes the vector is in a keymap).
2991
2992 SHADOW is a list of keymaps that shadow this map.
2993 If it is non-nil, then we look up the key in those maps
2994 and we don't mention it now if it is defined by any of them.
2995
2996 ENTIRE_MAP is the keymap in which this vector appears.
2997 If the definition in effect in the whole map does not match
2998 the one in this vector, we ignore this one.
2999
3000 When describing a sub-char-table, INDICES is a list of
3001 indices at higher levels in this char-table,
3002 and CHAR_TABLE_DEPTH says how many levels down we have gone. */
3003
3004 void
3005 describe_vector (vector, elt_prefix, elt_describer,
3006 partial, shadow, entire_map,
3007 indices, char_table_depth)
3008 register Lisp_Object vector;
3009 Lisp_Object elt_prefix;
3010 void (*elt_describer) P_ ((Lisp_Object));
3011 int partial;
3012 Lisp_Object shadow;
3013 Lisp_Object entire_map;
3014 int *indices;
3015 int char_table_depth;
3016 {
3017 Lisp_Object definition;
3018 Lisp_Object tem2;
3019 register int i;
3020 Lisp_Object suppress;
3021 Lisp_Object kludge;
3022 int first = 1;
3023 struct gcpro gcpro1, gcpro2, gcpro3;
3024 /* Range of elements to be handled. */
3025 int from, to;
3026 /* A flag to tell if a leaf in this level of char-table is not a
3027 generic character (i.e. a complete multibyte character). */
3028 int complete_char;
3029 int character;
3030 int starting_i;
3031
3032 suppress = Qnil;
3033
3034 if (indices == 0)
3035 indices = (int *) alloca (3 * sizeof (int));
3036
3037 definition = Qnil;
3038
3039 /* This vector gets used to present single keys to Flookup_key. Since
3040 that is done once per vector element, we don't want to cons up a
3041 fresh vector every time. */
3042 kludge = Fmake_vector (make_number (1), Qnil);
3043 GCPRO3 (elt_prefix, definition, kludge);
3044
3045 if (partial)
3046 suppress = intern ("suppress-keymap");
3047
3048 if (CHAR_TABLE_P (vector))
3049 {
3050 if (char_table_depth == 0)
3051 {
3052 /* VECTOR is a top level char-table. */
3053 complete_char = 1;
3054 from = 0;
3055 to = CHAR_TABLE_ORDINARY_SLOTS;
3056 }
3057 else
3058 {
3059 /* VECTOR is a sub char-table. */
3060 if (char_table_depth >= 3)
3061 /* A char-table is never that deep. */
3062 error ("Too deep char table");
3063
3064 complete_char
3065 = (CHARSET_VALID_P (indices[0])
3066 && ((CHARSET_DIMENSION (indices[0]) == 1
3067 && char_table_depth == 1)
3068 || char_table_depth == 2));
3069
3070 /* Meaningful elements are from 32th to 127th. */
3071 from = 32;
3072 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
3073 }
3074 }
3075 else
3076 {
3077 /* This does the right thing for ordinary vectors. */
3078
3079 complete_char = 1;
3080 from = 0;
3081 to = XVECTOR (vector)->size;
3082 }
3083
3084 for (i = from; i < to; i++)
3085 {
3086 QUIT;
3087
3088 if (CHAR_TABLE_P (vector))
3089 {
3090 if (char_table_depth == 0 && i >= CHAR_TABLE_SINGLE_BYTE_SLOTS)
3091 complete_char = 0;
3092
3093 if (i >= CHAR_TABLE_SINGLE_BYTE_SLOTS
3094 && !CHARSET_DEFINED_P (i - 128))
3095 continue;
3096
3097 definition
3098 = get_keyelt (XCHAR_TABLE (vector)->contents[i], 0);
3099 }
3100 else
3101 definition = get_keyelt (XVECTOR (vector)->contents[i], 0);
3102
3103 if (NILP (definition)) continue;
3104
3105 /* Don't mention suppressed commands. */
3106 if (SYMBOLP (definition) && partial)
3107 {
3108 Lisp_Object tem;
3109
3110 tem = Fget (definition, suppress);
3111
3112 if (!NILP (tem)) continue;
3113 }
3114
3115 /* Set CHARACTER to the character this entry describes, if any.
3116 Also update *INDICES. */
3117 if (CHAR_TABLE_P (vector))
3118 {
3119 indices[char_table_depth] = i;
3120
3121 if (char_table_depth == 0)
3122 {
3123 character = i;
3124 indices[0] = i - 128;
3125 }
3126 else if (complete_char)
3127 {
3128 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3129 }
3130 else
3131 character = 0;
3132 }
3133 else
3134 character = i;
3135
3136 /* If this binding is shadowed by some other map, ignore it. */
3137 if (!NILP (shadow) && complete_char)
3138 {
3139 Lisp_Object tem;
3140
3141 XVECTOR (kludge)->contents[0] = make_number (character);
3142 tem = shadow_lookup (shadow, kludge, Qt);
3143
3144 if (!NILP (tem)) continue;
3145 }
3146
3147 /* Ignore this definition if it is shadowed by an earlier
3148 one in the same keymap. */
3149 if (!NILP (entire_map) && complete_char)
3150 {
3151 Lisp_Object tem;
3152
3153 XVECTOR (kludge)->contents[0] = make_number (character);
3154 tem = Flookup_key (entire_map, kludge, Qt);
3155
3156 if (! EQ (tem, definition))
3157 continue;
3158 }
3159
3160 if (first)
3161 {
3162 if (char_table_depth == 0)
3163 insert ("\n", 1);
3164 first = 0;
3165 }
3166
3167 /* For a sub char-table, show the depth by indentation.
3168 CHAR_TABLE_DEPTH can be greater than 0 only for a char-table. */
3169 if (char_table_depth > 0)
3170 insert (" ", char_table_depth * 2); /* depth is 1 or 2. */
3171
3172 /* Output the prefix that applies to every entry in this map. */
3173 if (!NILP (elt_prefix))
3174 insert1 (elt_prefix);
3175
3176 /* Insert or describe the character this slot is for,
3177 or a description of what it is for. */
3178 if (SUB_CHAR_TABLE_P (vector))
3179 {
3180 if (complete_char)
3181 insert_char (character);
3182 else
3183 {
3184 /* We need an octal representation for this block of
3185 characters. */
3186 char work[16];
3187 sprintf (work, "(row %d)", i);
3188 insert (work, strlen (work));
3189 }
3190 }
3191 else if (CHAR_TABLE_P (vector))
3192 {
3193 if (complete_char)
3194 insert1 (Fsingle_key_description (make_number (character), Qnil));
3195 else
3196 {
3197 /* Print the information for this character set. */
3198 insert_string ("<");
3199 tem2 = CHARSET_TABLE_INFO (i - 128, CHARSET_SHORT_NAME_IDX);
3200 if (STRINGP (tem2))
3201 insert_from_string (tem2, 0, 0, XSTRING (tem2)->size,
3202 STRING_BYTES (XSTRING (tem2)), 0);
3203 else
3204 insert ("?", 1);
3205 insert (">", 1);
3206 }
3207 }
3208 else
3209 {
3210 insert1 (Fsingle_key_description (make_number (character), Qnil));
3211 }
3212
3213 /* If we find a sub char-table within a char-table,
3214 scan it recursively; it defines the details for
3215 a character set or a portion of a character set. */
3216 if (CHAR_TABLE_P (vector) && SUB_CHAR_TABLE_P (definition))
3217 {
3218 insert ("\n", 1);
3219 describe_vector (definition, elt_prefix, elt_describer,
3220 partial, shadow, entire_map,
3221 indices, char_table_depth + 1);
3222 continue;
3223 }
3224
3225 starting_i = i;
3226
3227 /* Find all consecutive characters or rows that have the same
3228 definition. But, for elements of a top level char table, if
3229 they are for charsets, we had better describe one by one even
3230 if they have the same definition. */
3231 if (CHAR_TABLE_P (vector))
3232 {
3233 int limit = to;
3234
3235 if (char_table_depth == 0)
3236 limit = CHAR_TABLE_SINGLE_BYTE_SLOTS;
3237
3238 while (i + 1 < limit
3239 && (tem2 = get_keyelt (XCHAR_TABLE (vector)->contents[i + 1], 0),
3240 !NILP (tem2))
3241 && !NILP (Fequal (tem2, definition)))
3242 i++;
3243 }
3244 else
3245 while (i + 1 < to
3246 && (tem2 = get_keyelt (XVECTOR (vector)->contents[i + 1], 0),
3247 !NILP (tem2))
3248 && !NILP (Fequal (tem2, definition)))
3249 i++;
3250
3251
3252 /* If we have a range of more than one character,
3253 print where the range reaches to. */
3254
3255 if (i != starting_i)
3256 {
3257 insert (" .. ", 4);
3258
3259 if (!NILP (elt_prefix))
3260 insert1 (elt_prefix);
3261
3262 if (CHAR_TABLE_P (vector))
3263 {
3264 if (char_table_depth == 0)
3265 {
3266 insert1 (Fsingle_key_description (make_number (i), Qnil));
3267 }
3268 else if (complete_char)
3269 {
3270 indices[char_table_depth] = i;
3271 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3272 insert_char (character);
3273 }
3274 else
3275 {
3276 /* We need an octal representation for this block of
3277 characters. */
3278 char work[16];
3279 sprintf (work, "(row %d)", i);
3280 insert (work, strlen (work));
3281 }
3282 }
3283 else
3284 {
3285 insert1 (Fsingle_key_description (make_number (i), Qnil));
3286 }
3287 }
3288
3289 /* Print a description of the definition of this character.
3290 elt_describer will take care of spacing out far enough
3291 for alignment purposes. */
3292 (*elt_describer) (definition);
3293 }
3294
3295 /* For (sub) char-table, print `defalt' slot at last. */
3296 if (CHAR_TABLE_P (vector) && !NILP (XCHAR_TABLE (vector)->defalt))
3297 {
3298 insert (" ", char_table_depth * 2);
3299 insert_string ("<<default>>");
3300 (*elt_describer) (XCHAR_TABLE (vector)->defalt);
3301 }
3302
3303 UNGCPRO;
3304 }
3305 \f
3306 /* Apropos - finding all symbols whose names match a regexp. */
3307 Lisp_Object apropos_predicate;
3308 Lisp_Object apropos_accumulate;
3309
3310 static void
3311 apropos_accum (symbol, string)
3312 Lisp_Object symbol, string;
3313 {
3314 register Lisp_Object tem;
3315
3316 tem = Fstring_match (string, Fsymbol_name (symbol), Qnil);
3317 if (!NILP (tem) && !NILP (apropos_predicate))
3318 tem = call1 (apropos_predicate, symbol);
3319 if (!NILP (tem))
3320 apropos_accumulate = Fcons (symbol, apropos_accumulate);
3321 }
3322
3323 DEFUN ("apropos-internal", Fapropos_internal, Sapropos_internal, 1, 2, 0,
3324 "Show all symbols whose names contain match for REGEXP.\n\
3325 If optional 2nd arg PREDICATE is non-nil, (funcall PREDICATE SYMBOL) is done\n\
3326 for each symbol and a symbol is mentioned only if that returns non-nil.\n\
3327 Return list of symbols found.")
3328 (regexp, predicate)
3329 Lisp_Object regexp, predicate;
3330 {
3331 struct gcpro gcpro1, gcpro2;
3332 CHECK_STRING (regexp, 0);
3333 apropos_predicate = predicate;
3334 GCPRO2 (apropos_predicate, apropos_accumulate);
3335 apropos_accumulate = Qnil;
3336 map_obarray (Vobarray, apropos_accum, regexp);
3337 apropos_accumulate = Fsort (apropos_accumulate, Qstring_lessp);
3338 UNGCPRO;
3339 return apropos_accumulate;
3340 }
3341 \f
3342 void
3343 syms_of_keymap ()
3344 {
3345 Qkeymap = intern ("keymap");
3346 staticpro (&Qkeymap);
3347
3348 /* Now we are ready to set up this property, so we can
3349 create char tables. */
3350 Fput (Qkeymap, Qchar_table_extra_slots, make_number (0));
3351
3352 /* Initialize the keymaps standardly used.
3353 Each one is the value of a Lisp variable, and is also
3354 pointed to by a C variable */
3355
3356 global_map = Fmake_keymap (Qnil);
3357 Fset (intern ("global-map"), global_map);
3358
3359 current_global_map = global_map;
3360 staticpro (&global_map);
3361 staticpro (&current_global_map);
3362
3363 meta_map = Fmake_keymap (Qnil);
3364 Fset (intern ("esc-map"), meta_map);
3365 Ffset (intern ("ESC-prefix"), meta_map);
3366
3367 control_x_map = Fmake_keymap (Qnil);
3368 Fset (intern ("ctl-x-map"), control_x_map);
3369 Ffset (intern ("Control-X-prefix"), control_x_map);
3370
3371 DEFVAR_LISP ("define-key-rebound-commands", &Vdefine_key_rebound_commands,
3372 "List of commands given new key bindings recently.\n\
3373 This is used for internal purposes during Emacs startup;\n\
3374 don't alter it yourself.");
3375 Vdefine_key_rebound_commands = Qt;
3376
3377 DEFVAR_LISP ("minibuffer-local-map", &Vminibuffer_local_map,
3378 "Default keymap to use when reading from the minibuffer.");
3379 Vminibuffer_local_map = Fmake_sparse_keymap (Qnil);
3380
3381 DEFVAR_LISP ("minibuffer-local-ns-map", &Vminibuffer_local_ns_map,
3382 "Local keymap for the minibuffer when spaces are not allowed.");
3383 Vminibuffer_local_ns_map = Fmake_sparse_keymap (Qnil);
3384
3385 DEFVAR_LISP ("minibuffer-local-completion-map", &Vminibuffer_local_completion_map,
3386 "Local keymap for minibuffer input with completion.");
3387 Vminibuffer_local_completion_map = Fmake_sparse_keymap (Qnil);
3388
3389 DEFVAR_LISP ("minibuffer-local-must-match-map", &Vminibuffer_local_must_match_map,
3390 "Local keymap for minibuffer input with completion, for exact match.");
3391 Vminibuffer_local_must_match_map = Fmake_sparse_keymap (Qnil);
3392
3393 DEFVAR_LISP ("minor-mode-map-alist", &Vminor_mode_map_alist,
3394 "Alist of keymaps to use for minor modes.\n\
3395 Each element looks like (VARIABLE . KEYMAP); KEYMAP is used to read\n\
3396 key sequences and look up bindings iff VARIABLE's value is non-nil.\n\
3397 If two active keymaps bind the same key, the keymap appearing earlier\n\
3398 in the list takes precedence.");
3399 Vminor_mode_map_alist = Qnil;
3400
3401 DEFVAR_LISP ("minor-mode-overriding-map-alist", &Vminor_mode_overriding_map_alist,
3402 "Alist of keymaps to use for minor modes, in current major mode.\n\
3403 This variable is a alist just like `minor-mode-map-alist', and it is\n\
3404 used the same way (and before `minor-mode-map-alist'); however,\n\
3405 it is provided for major modes to bind locally.");
3406 Vminor_mode_overriding_map_alist = Qnil;
3407
3408 DEFVAR_LISP ("function-key-map", &Vfunction_key_map,
3409 "Keymap mapping ASCII function key sequences onto their preferred forms.\n\
3410 This allows Emacs to recognize function keys sent from ASCII\n\
3411 terminals at any point in a key sequence.\n\
3412 \n\
3413 The `read-key-sequence' function replaces any subsequence bound by\n\
3414 `function-key-map' with its binding. More precisely, when the active\n\
3415 keymaps have no binding for the current key sequence but\n\
3416 `function-key-map' binds a suffix of the sequence to a vector or string,\n\
3417 `read-key-sequence' replaces the matching suffix with its binding, and\n\
3418 continues with the new sequence.\n\
3419 \n\
3420 The events that come from bindings in `function-key-map' are not\n\
3421 themselves looked up in `function-key-map'.\n\
3422 \n\
3423 For example, suppose `function-key-map' binds `ESC O P' to [f1].\n\
3424 Typing `ESC O P' to `read-key-sequence' would return [f1]. Typing\n\
3425 `C-x ESC O P' would return [?\\C-x f1]. If [f1] were a prefix\n\
3426 key, typing `ESC O P x' would return [f1 x].");
3427 Vfunction_key_map = Fmake_sparse_keymap (Qnil);
3428
3429 DEFVAR_LISP ("key-translation-map", &Vkey_translation_map,
3430 "Keymap of key translations that can override keymaps.\n\
3431 This keymap works like `function-key-map', but comes after that,\n\
3432 and applies even for keys that have ordinary bindings.");
3433 Vkey_translation_map = Qnil;
3434
3435 Qsingle_key_description = intern ("single-key-description");
3436 staticpro (&Qsingle_key_description);
3437
3438 Qkey_description = intern ("key-description");
3439 staticpro (&Qkey_description);
3440
3441 Qkeymapp = intern ("keymapp");
3442 staticpro (&Qkeymapp);
3443
3444 Qnon_ascii = intern ("non-ascii");
3445 staticpro (&Qnon_ascii);
3446
3447 Qmenu_item = intern ("menu-item");
3448 staticpro (&Qmenu_item);
3449
3450 defsubr (&Skeymapp);
3451 defsubr (&Skeymap_parent);
3452 defsubr (&Sset_keymap_parent);
3453 defsubr (&Smake_keymap);
3454 defsubr (&Smake_sparse_keymap);
3455 defsubr (&Scopy_keymap);
3456 defsubr (&Skey_binding);
3457 defsubr (&Slocal_key_binding);
3458 defsubr (&Sglobal_key_binding);
3459 defsubr (&Sminor_mode_key_binding);
3460 defsubr (&Sdefine_key);
3461 defsubr (&Slookup_key);
3462 defsubr (&Sdefine_prefix_command);
3463 defsubr (&Suse_global_map);
3464 defsubr (&Suse_local_map);
3465 defsubr (&Scurrent_local_map);
3466 defsubr (&Scurrent_global_map);
3467 defsubr (&Scurrent_minor_mode_maps);
3468 defsubr (&Saccessible_keymaps);
3469 defsubr (&Skey_description);
3470 defsubr (&Sdescribe_vector);
3471 defsubr (&Ssingle_key_description);
3472 defsubr (&Stext_char_description);
3473 defsubr (&Swhere_is_internal);
3474 defsubr (&Sdescribe_bindings_internal);
3475 defsubr (&Sapropos_internal);
3476 }
3477
3478 void
3479 keys_of_keymap ()
3480 {
3481 initial_define_key (global_map, 033, "ESC-prefix");
3482 initial_define_key (global_map, Ctl('X'), "Control-X-prefix");
3483 }