Sync to HEAD
[bpt/emacs.git] / src / editfns.c
1 /* Lisp functions pertaining to editing.
2 Copyright (C) 1985,86,87,89,93,94,95,96,97,98,1999,2000,01,02,03,2004
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 #include <config.h>
24 #include <sys/types.h>
25
26 #ifdef VMS
27 #include "vms-pwd.h"
28 #else
29 #include <pwd.h>
30 #endif
31
32 #ifdef HAVE_UNISTD_H
33 #include <unistd.h>
34 #endif
35
36 /* Without this, sprintf on Mac OS Classic will produce wrong
37 result. */
38 #ifdef MAC_OS8
39 #include <stdio.h>
40 #endif
41
42 #include <ctype.h>
43
44 #include "lisp.h"
45 #include "intervals.h"
46 #include "buffer.h"
47 #include "character.h"
48 #include "coding.h"
49 #include "frame.h"
50 #include "window.h"
51
52 #include "systime.h"
53
54 #ifdef STDC_HEADERS
55 #include <float.h>
56 #define MAX_10_EXP DBL_MAX_10_EXP
57 #else
58 #define MAX_10_EXP 310
59 #endif
60
61 #ifndef NULL
62 #define NULL 0
63 #endif
64
65 #ifndef USE_CRT_DLL
66 extern char **environ;
67 #endif
68
69 extern Lisp_Object make_time P_ ((time_t));
70 extern size_t emacs_strftimeu P_ ((char *, size_t, const char *,
71 const struct tm *, int));
72 static int tm_diff P_ ((struct tm *, struct tm *));
73 static void find_field P_ ((Lisp_Object, Lisp_Object, Lisp_Object, int *, Lisp_Object, int *));
74 static void update_buffer_properties P_ ((int, int));
75 static Lisp_Object region_limit P_ ((int));
76 static int lisp_time_argument P_ ((Lisp_Object, time_t *, int *));
77 static size_t emacs_memftimeu P_ ((char *, size_t, const char *,
78 size_t, const struct tm *, int));
79 static void general_insert_function P_ ((void (*) (const unsigned char *, int),
80 void (*) (Lisp_Object, int, int, int,
81 int, int),
82 int, int, Lisp_Object *));
83 static Lisp_Object subst_char_in_region_unwind P_ ((Lisp_Object));
84 static Lisp_Object subst_char_in_region_unwind_1 P_ ((Lisp_Object));
85 static void transpose_markers P_ ((int, int, int, int, int, int, int, int));
86
87 #ifdef HAVE_INDEX
88 extern char *index P_ ((const char *, int));
89 #endif
90
91 Lisp_Object Vbuffer_access_fontify_functions;
92 Lisp_Object Qbuffer_access_fontify_functions;
93 Lisp_Object Vbuffer_access_fontified_property;
94
95 Lisp_Object Fuser_full_name P_ ((Lisp_Object));
96
97 /* Non-nil means don't stop at field boundary in text motion commands. */
98
99 Lisp_Object Vinhibit_field_text_motion;
100
101 /* Some static data, and a function to initialize it for each run */
102
103 Lisp_Object Vsystem_name;
104 Lisp_Object Vuser_real_login_name; /* login name of current user ID */
105 Lisp_Object Vuser_full_name; /* full name of current user */
106 Lisp_Object Vuser_login_name; /* user name from LOGNAME or USER */
107
108 /* Symbol for the text property used to mark fields. */
109
110 Lisp_Object Qfield;
111
112 /* A special value for Qfield properties. */
113
114 Lisp_Object Qboundary;
115
116
117 void
118 init_editfns ()
119 {
120 char *user_name;
121 register unsigned char *p;
122 struct passwd *pw; /* password entry for the current user */
123 Lisp_Object tem;
124
125 /* Set up system_name even when dumping. */
126 init_system_name ();
127
128 #ifndef CANNOT_DUMP
129 /* Don't bother with this on initial start when just dumping out */
130 if (!initialized)
131 return;
132 #endif /* not CANNOT_DUMP */
133
134 pw = (struct passwd *) getpwuid (getuid ());
135 #ifdef MSDOS
136 /* We let the real user name default to "root" because that's quite
137 accurate on MSDOG and because it lets Emacs find the init file.
138 (The DVX libraries override the Djgpp libraries here.) */
139 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
140 #else
141 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
142 #endif
143
144 /* Get the effective user name, by consulting environment variables,
145 or the effective uid if those are unset. */
146 user_name = (char *) getenv ("LOGNAME");
147 if (!user_name)
148 #ifdef WINDOWSNT
149 user_name = (char *) getenv ("USERNAME"); /* it's USERNAME on NT */
150 #else /* WINDOWSNT */
151 user_name = (char *) getenv ("USER");
152 #endif /* WINDOWSNT */
153 if (!user_name)
154 {
155 pw = (struct passwd *) getpwuid (geteuid ());
156 user_name = (char *) (pw ? pw->pw_name : "unknown");
157 }
158 Vuser_login_name = build_string (user_name);
159
160 /* If the user name claimed in the environment vars differs from
161 the real uid, use the claimed name to find the full name. */
162 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
163 Vuser_full_name = Fuser_full_name (NILP (tem)? make_number (geteuid())
164 : Vuser_login_name);
165
166 p = (unsigned char *) getenv ("NAME");
167 if (p)
168 Vuser_full_name = build_string (p);
169 else if (NILP (Vuser_full_name))
170 Vuser_full_name = build_string ("unknown");
171 }
172 \f
173 DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
174 doc: /* Convert arg CHAR to a string containing that character.
175 usage: (char-to-string CHAR) */)
176 (character)
177 Lisp_Object character;
178 {
179 int len;
180 unsigned char str[MAX_MULTIBYTE_LENGTH];
181
182 CHECK_NUMBER (character);
183
184 len = CHAR_STRING (XFASTINT (character), str);
185 return make_string_from_bytes (str, 1, len);
186 }
187
188 DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
189 doc: /* Convert arg STRING to a character, the first character of that string.
190 A multibyte character is handled correctly. */)
191 (string)
192 register Lisp_Object string;
193 {
194 register Lisp_Object val;
195 CHECK_STRING (string);
196 if (SCHARS (string))
197 {
198 if (STRING_MULTIBYTE (string))
199 XSETFASTINT (val, STRING_CHAR (SDATA (string), SBYTES (string)));
200 else
201 XSETFASTINT (val, SREF (string, 0));
202 }
203 else
204 XSETFASTINT (val, 0);
205 return val;
206 }
207 \f
208 static Lisp_Object
209 buildmark (charpos, bytepos)
210 int charpos, bytepos;
211 {
212 register Lisp_Object mark;
213 mark = Fmake_marker ();
214 set_marker_both (mark, Qnil, charpos, bytepos);
215 return mark;
216 }
217
218 DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
219 doc: /* Return value of point, as an integer.
220 Beginning of buffer is position (point-min). */)
221 ()
222 {
223 Lisp_Object temp;
224 XSETFASTINT (temp, PT);
225 return temp;
226 }
227
228 DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
229 doc: /* Return value of point, as a marker object. */)
230 ()
231 {
232 return buildmark (PT, PT_BYTE);
233 }
234
235 int
236 clip_to_bounds (lower, num, upper)
237 int lower, num, upper;
238 {
239 if (num < lower)
240 return lower;
241 else if (num > upper)
242 return upper;
243 else
244 return num;
245 }
246
247 DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
248 doc: /* Set point to POSITION, a number or marker.
249 Beginning of buffer is position (point-min), end is (point-max). */)
250 (position)
251 register Lisp_Object position;
252 {
253 int pos;
254
255 if (MARKERP (position)
256 && current_buffer == XMARKER (position)->buffer)
257 {
258 pos = marker_position (position);
259 if (pos < BEGV)
260 SET_PT_BOTH (BEGV, BEGV_BYTE);
261 else if (pos > ZV)
262 SET_PT_BOTH (ZV, ZV_BYTE);
263 else
264 SET_PT_BOTH (pos, marker_byte_position (position));
265
266 return position;
267 }
268
269 CHECK_NUMBER_COERCE_MARKER (position);
270
271 pos = clip_to_bounds (BEGV, XINT (position), ZV);
272 SET_PT (pos);
273 return position;
274 }
275
276
277 /* Return the start or end position of the region.
278 BEGINNINGP non-zero means return the start.
279 If there is no region active, signal an error. */
280
281 static Lisp_Object
282 region_limit (beginningp)
283 int beginningp;
284 {
285 extern Lisp_Object Vmark_even_if_inactive; /* Defined in callint.c. */
286 Lisp_Object m;
287
288 if (!NILP (Vtransient_mark_mode)
289 && NILP (Vmark_even_if_inactive)
290 && NILP (current_buffer->mark_active))
291 Fsignal (Qmark_inactive, Qnil);
292
293 m = Fmarker_position (current_buffer->mark);
294 if (NILP (m))
295 error ("The mark is not set now, so there is no region");
296
297 if ((PT < XFASTINT (m)) == (beginningp != 0))
298 m = make_number (PT);
299 return m;
300 }
301
302 DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
303 doc: /* Return position of beginning of region, as an integer. */)
304 ()
305 {
306 return region_limit (1);
307 }
308
309 DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
310 doc: /* Return position of end of region, as an integer. */)
311 ()
312 {
313 return region_limit (0);
314 }
315
316 DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
317 doc: /* Return this buffer's mark, as a marker object.
318 Watch out! Moving this marker changes the mark position.
319 If you set the marker not to point anywhere, the buffer will have no mark. */)
320 ()
321 {
322 return current_buffer->mark;
323 }
324
325 \f
326 /* Find all the overlays in the current buffer that touch position POS.
327 Return the number found, and store them in a vector in VEC
328 of length LEN. */
329
330 static int
331 overlays_around (pos, vec, len)
332 int pos;
333 Lisp_Object *vec;
334 int len;
335 {
336 Lisp_Object overlay, start, end;
337 struct Lisp_Overlay *tail;
338 int startpos, endpos;
339 int idx = 0;
340
341 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
342 {
343 XSETMISC (overlay, tail);
344
345 end = OVERLAY_END (overlay);
346 endpos = OVERLAY_POSITION (end);
347 if (endpos < pos)
348 break;
349 start = OVERLAY_START (overlay);
350 startpos = OVERLAY_POSITION (start);
351 if (startpos <= pos)
352 {
353 if (idx < len)
354 vec[idx] = overlay;
355 /* Keep counting overlays even if we can't return them all. */
356 idx++;
357 }
358 }
359
360 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
361 {
362 XSETMISC (overlay, tail);
363
364 start = OVERLAY_START (overlay);
365 startpos = OVERLAY_POSITION (start);
366 if (pos < startpos)
367 break;
368 end = OVERLAY_END (overlay);
369 endpos = OVERLAY_POSITION (end);
370 if (pos <= endpos)
371 {
372 if (idx < len)
373 vec[idx] = overlay;
374 idx++;
375 }
376 }
377
378 return idx;
379 }
380
381 /* Return the value of property PROP, in OBJECT at POSITION.
382 It's the value of PROP that a char inserted at POSITION would get.
383 OBJECT is optional and defaults to the current buffer.
384 If OBJECT is a buffer, then overlay properties are considered as well as
385 text properties.
386 If OBJECT is a window, then that window's buffer is used, but
387 window-specific overlays are considered only if they are associated
388 with OBJECT. */
389 Lisp_Object
390 get_pos_property (position, prop, object)
391 Lisp_Object position, object;
392 register Lisp_Object prop;
393 {
394 CHECK_NUMBER_COERCE_MARKER (position);
395
396 if (NILP (object))
397 XSETBUFFER (object, current_buffer);
398 else if (WINDOWP (object))
399 object = XWINDOW (object)->buffer;
400
401 if (!BUFFERP (object))
402 /* pos-property only makes sense in buffers right now, since strings
403 have no overlays and no notion of insertion for which stickiness
404 could be obeyed. */
405 return Fget_text_property (position, prop, object);
406 else
407 {
408 int posn = XINT (position);
409 int noverlays;
410 Lisp_Object *overlay_vec, tem;
411 struct buffer *obuf = current_buffer;
412
413 set_buffer_temp (XBUFFER (object));
414
415 /* First try with room for 40 overlays. */
416 noverlays = 40;
417 overlay_vec = (Lisp_Object *) alloca (noverlays * sizeof (Lisp_Object));
418 noverlays = overlays_around (posn, overlay_vec, noverlays);
419
420 /* If there are more than 40,
421 make enough space for all, and try again. */
422 if (noverlays > 40)
423 {
424 overlay_vec = (Lisp_Object *) alloca (noverlays * sizeof (Lisp_Object));
425 noverlays = overlays_around (posn, overlay_vec, noverlays);
426 }
427 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
428
429 set_buffer_temp (obuf);
430
431 /* Now check the overlays in order of decreasing priority. */
432 while (--noverlays >= 0)
433 {
434 Lisp_Object ol = overlay_vec[noverlays];
435 tem = Foverlay_get (ol, prop);
436 if (!NILP (tem))
437 {
438 /* Check the overlay is indeed active at point. */
439 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
440 if ((OVERLAY_POSITION (start) == posn
441 && XMARKER (start)->insertion_type == 1)
442 || (OVERLAY_POSITION (finish) == posn
443 && XMARKER (finish)->insertion_type == 0))
444 ; /* The overlay will not cover a char inserted at point. */
445 else
446 {
447 return tem;
448 }
449 }
450 }
451
452 { /* Now check the text-properties. */
453 int stickiness = text_property_stickiness (prop, position, object);
454 if (stickiness > 0)
455 return Fget_text_property (position, prop, object);
456 else if (stickiness < 0
457 && XINT (position) > BUF_BEGV (XBUFFER (object)))
458 return Fget_text_property (make_number (XINT (position) - 1),
459 prop, object);
460 else
461 return Qnil;
462 }
463 }
464 }
465
466 /* Find the field surrounding POS in *BEG and *END. If POS is nil,
467 the value of point is used instead. If BEG or END null,
468 means don't store the beginning or end of the field.
469
470 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
471 results; they do not effect boundary behavior.
472
473 If MERGE_AT_BOUNDARY is nonzero, then if POS is at the very first
474 position of a field, then the beginning of the previous field is
475 returned instead of the beginning of POS's field (since the end of a
476 field is actually also the beginning of the next input field, this
477 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
478 true case, if two fields are separated by a field with the special
479 value `boundary', and POS lies within it, then the two separated
480 fields are considered to be adjacent, and POS between them, when
481 finding the beginning and ending of the "merged" field.
482
483 Either BEG or END may be 0, in which case the corresponding value
484 is not stored. */
485
486 static void
487 find_field (pos, merge_at_boundary, beg_limit, beg, end_limit, end)
488 Lisp_Object pos;
489 Lisp_Object merge_at_boundary;
490 Lisp_Object beg_limit, end_limit;
491 int *beg, *end;
492 {
493 /* Fields right before and after the point. */
494 Lisp_Object before_field, after_field;
495 /* 1 if POS counts as the start of a field. */
496 int at_field_start = 0;
497 /* 1 if POS counts as the end of a field. */
498 int at_field_end = 0;
499
500 if (NILP (pos))
501 XSETFASTINT (pos, PT);
502 else
503 CHECK_NUMBER_COERCE_MARKER (pos);
504
505 after_field
506 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
507 before_field
508 = (XFASTINT (pos) > BEGV
509 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
510 Qfield, Qnil, NULL)
511 : Qnil);
512
513 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
514 and POS is at beginning of a field, which can also be interpreted
515 as the end of the previous field. Note that the case where if
516 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
517 more natural one; then we avoid treating the beginning of a field
518 specially. */
519 if (NILP (merge_at_boundary))
520 {
521 Lisp_Object field = get_pos_property (pos, Qfield, Qnil);
522 if (!EQ (field, after_field))
523 at_field_end = 1;
524 if (!EQ (field, before_field))
525 at_field_start = 1;
526 if (NILP (field) && at_field_start && at_field_end)
527 /* If an inserted char would have a nil field while the surrounding
528 text is non-nil, we're probably not looking at a
529 zero-length field, but instead at a non-nil field that's
530 not intended for editing (such as comint's prompts). */
531 at_field_end = at_field_start = 0;
532 }
533
534 /* Note about special `boundary' fields:
535
536 Consider the case where the point (`.') is between the fields `x' and `y':
537
538 xxxx.yyyy
539
540 In this situation, if merge_at_boundary is true, we consider the
541 `x' and `y' fields as forming one big merged field, and so the end
542 of the field is the end of `y'.
543
544 However, if `x' and `y' are separated by a special `boundary' field
545 (a field with a `field' char-property of 'boundary), then we ignore
546 this special field when merging adjacent fields. Here's the same
547 situation, but with a `boundary' field between the `x' and `y' fields:
548
549 xxx.BBBByyyy
550
551 Here, if point is at the end of `x', the beginning of `y', or
552 anywhere in-between (within the `boundary' field), we merge all
553 three fields and consider the beginning as being the beginning of
554 the `x' field, and the end as being the end of the `y' field. */
555
556 if (beg)
557 {
558 if (at_field_start)
559 /* POS is at the edge of a field, and we should consider it as
560 the beginning of the following field. */
561 *beg = XFASTINT (pos);
562 else
563 /* Find the previous field boundary. */
564 {
565 Lisp_Object p = pos;
566 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
567 /* Skip a `boundary' field. */
568 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
569 beg_limit);
570
571 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
572 beg_limit);
573 *beg = NILP (p) ? BEGV : XFASTINT (p);
574 }
575 }
576
577 if (end)
578 {
579 if (at_field_end)
580 /* POS is at the edge of a field, and we should consider it as
581 the end of the previous field. */
582 *end = XFASTINT (pos);
583 else
584 /* Find the next field boundary. */
585 {
586 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
587 /* Skip a `boundary' field. */
588 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
589 end_limit);
590
591 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
592 end_limit);
593 *end = NILP (pos) ? ZV : XFASTINT (pos);
594 }
595 }
596 }
597
598 \f
599 DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
600 doc: /* Delete the field surrounding POS.
601 A field is a region of text with the same `field' property.
602 If POS is nil, the value of point is used for POS. */)
603 (pos)
604 Lisp_Object pos;
605 {
606 int beg, end;
607 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
608 if (beg != end)
609 del_range (beg, end);
610 return Qnil;
611 }
612
613 DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
614 doc: /* Return the contents of the field surrounding POS as a string.
615 A field is a region of text with the same `field' property.
616 If POS is nil, the value of point is used for POS. */)
617 (pos)
618 Lisp_Object pos;
619 {
620 int beg, end;
621 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
622 return make_buffer_string (beg, end, 1);
623 }
624
625 DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
626 doc: /* Return the contents of the field around POS, without text-properties.
627 A field is a region of text with the same `field' property.
628 If POS is nil, the value of point is used for POS. */)
629 (pos)
630 Lisp_Object pos;
631 {
632 int beg, end;
633 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
634 return make_buffer_string (beg, end, 0);
635 }
636
637 DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
638 doc: /* Return the beginning of the field surrounding POS.
639 A field is a region of text with the same `field' property.
640 If POS is nil, the value of point is used for POS.
641 If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
642 field, then the beginning of the *previous* field is returned.
643 If LIMIT is non-nil, it is a buffer position; if the beginning of the field
644 is before LIMIT, then LIMIT will be returned instead. */)
645 (pos, escape_from_edge, limit)
646 Lisp_Object pos, escape_from_edge, limit;
647 {
648 int beg;
649 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
650 return make_number (beg);
651 }
652
653 DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
654 doc: /* Return the end of the field surrounding POS.
655 A field is a region of text with the same `field' property.
656 If POS is nil, the value of point is used for POS.
657 If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
658 then the end of the *following* field is returned.
659 If LIMIT is non-nil, it is a buffer position; if the end of the field
660 is after LIMIT, then LIMIT will be returned instead. */)
661 (pos, escape_from_edge, limit)
662 Lisp_Object pos, escape_from_edge, limit;
663 {
664 int end;
665 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
666 return make_number (end);
667 }
668
669 DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
670 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
671
672 A field is a region of text with the same `field' property.
673 If NEW-POS is nil, then the current point is used instead, and set to the
674 constrained position if that is different.
675
676 If OLD-POS is at the boundary of two fields, then the allowable
677 positions for NEW-POS depends on the value of the optional argument
678 ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
679 constrained to the field that has the same `field' char-property
680 as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
681 is non-nil, NEW-POS is constrained to the union of the two adjacent
682 fields. Additionally, if two fields are separated by another field with
683 the special value `boundary', then any point within this special field is
684 also considered to be `on the boundary'.
685
686 If the optional argument ONLY-IN-LINE is non-nil and constraining
687 NEW-POS would move it to a different line, NEW-POS is returned
688 unconstrained. This useful for commands that move by line, like
689 \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
690 only in the case where they can still move to the right line.
691
692 If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
693 a non-nil property of that name, then any field boundaries are ignored.
694
695 Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
696 (new_pos, old_pos, escape_from_edge, only_in_line, inhibit_capture_property)
697 Lisp_Object new_pos, old_pos;
698 Lisp_Object escape_from_edge, only_in_line, inhibit_capture_property;
699 {
700 /* If non-zero, then the original point, before re-positioning. */
701 int orig_point = 0;
702
703 if (NILP (new_pos))
704 /* Use the current point, and afterwards, set it. */
705 {
706 orig_point = PT;
707 XSETFASTINT (new_pos, PT);
708 }
709
710 if (NILP (Vinhibit_field_text_motion)
711 && !EQ (new_pos, old_pos)
712 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
713 || !NILP (Fget_char_property (old_pos, Qfield, Qnil)))
714 && (NILP (inhibit_capture_property)
715 || NILP (Fget_char_property(old_pos, inhibit_capture_property, Qnil))))
716 /* NEW_POS is not within the same field as OLD_POS; try to
717 move NEW_POS so that it is. */
718 {
719 int fwd, shortage;
720 Lisp_Object field_bound;
721
722 CHECK_NUMBER_COERCE_MARKER (new_pos);
723 CHECK_NUMBER_COERCE_MARKER (old_pos);
724
725 fwd = (XFASTINT (new_pos) > XFASTINT (old_pos));
726
727 if (fwd)
728 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
729 else
730 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
731
732 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
733 other side of NEW_POS, which would mean that NEW_POS is
734 already acceptable, and it's not necessary to constrain it
735 to FIELD_BOUND. */
736 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
737 /* NEW_POS should be constrained, but only if either
738 ONLY_IN_LINE is nil (in which case any constraint is OK),
739 or NEW_POS and FIELD_BOUND are on the same line (in which
740 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
741 && (NILP (only_in_line)
742 /* This is the ONLY_IN_LINE case, check that NEW_POS and
743 FIELD_BOUND are on the same line by seeing whether
744 there's an intervening newline or not. */
745 || (scan_buffer ('\n',
746 XFASTINT (new_pos), XFASTINT (field_bound),
747 fwd ? -1 : 1, &shortage, 1),
748 shortage != 0)))
749 /* Constrain NEW_POS to FIELD_BOUND. */
750 new_pos = field_bound;
751
752 if (orig_point && XFASTINT (new_pos) != orig_point)
753 /* The NEW_POS argument was originally nil, so automatically set PT. */
754 SET_PT (XFASTINT (new_pos));
755 }
756
757 return new_pos;
758 }
759
760 \f
761 DEFUN ("line-beginning-position",
762 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
763 doc: /* Return the character position of the first character on the current line.
764 With argument N not nil or 1, move forward N - 1 lines first.
765 If scan reaches end of buffer, return that position.
766
767 The scan does not cross a field boundary unless doing so would move
768 beyond there to a different line; if N is nil or 1, and scan starts at a
769 field boundary, the scan stops as soon as it starts. To ignore field
770 boundaries bind `inhibit-field-text-motion' to t.
771
772 This function does not move point. */)
773 (n)
774 Lisp_Object n;
775 {
776 int orig, orig_byte, end;
777
778 if (NILP (n))
779 XSETFASTINT (n, 1);
780 else
781 CHECK_NUMBER (n);
782
783 orig = PT;
784 orig_byte = PT_BYTE;
785 Fforward_line (make_number (XINT (n) - 1));
786 end = PT;
787
788 SET_PT_BOTH (orig, orig_byte);
789
790 /* Return END constrained to the current input field. */
791 return Fconstrain_to_field (make_number (end), make_number (orig),
792 XINT (n) != 1 ? Qt : Qnil,
793 Qt, Qnil);
794 }
795
796 DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
797 doc: /* Return the character position of the last character on the current line.
798 With argument N not nil or 1, move forward N - 1 lines first.
799 If scan reaches end of buffer, return that position.
800
801 The scan does not cross a field boundary unless doing so would move
802 beyond there to a different line; if N is nil or 1, and scan starts at a
803 field boundary, the scan stops as soon as it starts. To ignore field
804 boundaries bind `inhibit-field-text-motion' to t.
805
806 This function does not move point. */)
807 (n)
808 Lisp_Object n;
809 {
810 int end_pos;
811 int orig = PT;
812
813 if (NILP (n))
814 XSETFASTINT (n, 1);
815 else
816 CHECK_NUMBER (n);
817
818 end_pos = find_before_next_newline (orig, 0, XINT (n) - (XINT (n) <= 0));
819
820 /* Return END_POS constrained to the current input field. */
821 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
822 Qnil, Qt, Qnil);
823 }
824
825 \f
826 Lisp_Object
827 save_excursion_save ()
828 {
829 int visible = (XBUFFER (XWINDOW (selected_window)->buffer)
830 == current_buffer);
831
832 return Fcons (Fpoint_marker (),
833 Fcons (Fcopy_marker (current_buffer->mark, Qnil),
834 Fcons (visible ? Qt : Qnil,
835 Fcons (current_buffer->mark_active,
836 selected_window))));
837 }
838
839 Lisp_Object
840 save_excursion_restore (info)
841 Lisp_Object info;
842 {
843 Lisp_Object tem, tem1, omark, nmark;
844 struct gcpro gcpro1, gcpro2, gcpro3;
845 int visible_p;
846
847 tem = Fmarker_buffer (XCAR (info));
848 /* If buffer being returned to is now deleted, avoid error */
849 /* Otherwise could get error here while unwinding to top level
850 and crash */
851 /* In that case, Fmarker_buffer returns nil now. */
852 if (NILP (tem))
853 return Qnil;
854
855 omark = nmark = Qnil;
856 GCPRO3 (info, omark, nmark);
857
858 Fset_buffer (tem);
859
860 /* Point marker. */
861 tem = XCAR (info);
862 Fgoto_char (tem);
863 unchain_marker (XMARKER (tem));
864
865 /* Mark marker. */
866 info = XCDR (info);
867 tem = XCAR (info);
868 omark = Fmarker_position (current_buffer->mark);
869 Fset_marker (current_buffer->mark, tem, Fcurrent_buffer ());
870 nmark = Fmarker_position (tem);
871 unchain_marker (XMARKER (tem));
872
873 /* visible */
874 info = XCDR (info);
875 visible_p = !NILP (XCAR (info));
876
877 #if 0 /* We used to make the current buffer visible in the selected window
878 if that was true previously. That avoids some anomalies.
879 But it creates others, and it wasn't documented, and it is simpler
880 and cleaner never to alter the window/buffer connections. */
881 tem1 = Fcar (tem);
882 if (!NILP (tem1)
883 && current_buffer != XBUFFER (XWINDOW (selected_window)->buffer))
884 Fswitch_to_buffer (Fcurrent_buffer (), Qnil);
885 #endif /* 0 */
886
887 /* Mark active */
888 info = XCDR (info);
889 tem = XCAR (info);
890 tem1 = current_buffer->mark_active;
891 current_buffer->mark_active = tem;
892
893 if (!NILP (Vrun_hooks))
894 {
895 /* If mark is active now, and either was not active
896 or was at a different place, run the activate hook. */
897 if (! NILP (current_buffer->mark_active))
898 {
899 if (! EQ (omark, nmark))
900 call1 (Vrun_hooks, intern ("activate-mark-hook"));
901 }
902 /* If mark has ceased to be active, run deactivate hook. */
903 else if (! NILP (tem1))
904 call1 (Vrun_hooks, intern ("deactivate-mark-hook"));
905 }
906
907 /* If buffer was visible in a window, and a different window was
908 selected, and the old selected window is still showing this
909 buffer, restore point in that window. */
910 tem = XCDR (info);
911 if (visible_p
912 && !EQ (tem, selected_window)
913 && (tem1 = XWINDOW (tem)->buffer,
914 (/* Window is live... */
915 BUFFERP (tem1)
916 /* ...and it shows the current buffer. */
917 && XBUFFER (tem1) == current_buffer)))
918 Fset_window_point (tem, make_number (PT));
919
920 UNGCPRO;
921 return Qnil;
922 }
923
924 DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
925 doc: /* Save point, mark, and current buffer; execute BODY; restore those things.
926 Executes BODY just like `progn'.
927 The values of point, mark and the current buffer are restored
928 even in case of abnormal exit (throw or error).
929 The state of activation of the mark is also restored.
930
931 This construct does not save `deactivate-mark', and therefore
932 functions that change the buffer will still cause deactivation
933 of the mark at the end of the command. To prevent that, bind
934 `deactivate-mark' with `let'.
935
936 usage: (save-excursion &rest BODY) */)
937 (args)
938 Lisp_Object args;
939 {
940 register Lisp_Object val;
941 int count = SPECPDL_INDEX ();
942
943 record_unwind_protect (save_excursion_restore, save_excursion_save ());
944
945 val = Fprogn (args);
946 return unbind_to (count, val);
947 }
948
949 DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
950 doc: /* Save the current buffer; execute BODY; restore the current buffer.
951 Executes BODY just like `progn'.
952 usage: (save-current-buffer &rest BODY) */)
953 (args)
954 Lisp_Object args;
955 {
956 Lisp_Object val;
957 int count = SPECPDL_INDEX ();
958
959 record_unwind_protect (set_buffer_if_live, Fcurrent_buffer ());
960
961 val = Fprogn (args);
962 return unbind_to (count, val);
963 }
964 \f
965 DEFUN ("buffer-size", Fbufsize, Sbufsize, 0, 1, 0,
966 doc: /* Return the number of characters in the current buffer.
967 If BUFFER, return the number of characters in that buffer instead. */)
968 (buffer)
969 Lisp_Object buffer;
970 {
971 if (NILP (buffer))
972 return make_number (Z - BEG);
973 else
974 {
975 CHECK_BUFFER (buffer);
976 return make_number (BUF_Z (XBUFFER (buffer))
977 - BUF_BEG (XBUFFER (buffer)));
978 }
979 }
980
981 DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
982 doc: /* Return the minimum permissible value of point in the current buffer.
983 This is 1, unless narrowing (a buffer restriction) is in effect. */)
984 ()
985 {
986 Lisp_Object temp;
987 XSETFASTINT (temp, BEGV);
988 return temp;
989 }
990
991 DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
992 doc: /* Return a marker to the minimum permissible value of point in this buffer.
993 This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
994 ()
995 {
996 return buildmark (BEGV, BEGV_BYTE);
997 }
998
999 DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
1000 doc: /* Return the maximum permissible value of point in the current buffer.
1001 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1002 is in effect, in which case it is less. */)
1003 ()
1004 {
1005 Lisp_Object temp;
1006 XSETFASTINT (temp, ZV);
1007 return temp;
1008 }
1009
1010 DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
1011 doc: /* Return a marker to the maximum permissible value of point in this buffer.
1012 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1013 is in effect, in which case it is less. */)
1014 ()
1015 {
1016 return buildmark (ZV, ZV_BYTE);
1017 }
1018
1019 DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
1020 doc: /* Return the position of the gap, in the current buffer.
1021 See also `gap-size'. */)
1022 ()
1023 {
1024 Lisp_Object temp;
1025 XSETFASTINT (temp, GPT);
1026 return temp;
1027 }
1028
1029 DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
1030 doc: /* Return the size of the current buffer's gap.
1031 See also `gap-position'. */)
1032 ()
1033 {
1034 Lisp_Object temp;
1035 XSETFASTINT (temp, GAP_SIZE);
1036 return temp;
1037 }
1038
1039 DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1040 doc: /* Return the byte position for character position POSITION.
1041 If POSITION is out of range, the value is nil. */)
1042 (position)
1043 Lisp_Object position;
1044 {
1045 CHECK_NUMBER_COERCE_MARKER (position);
1046 if (XINT (position) < BEG || XINT (position) > Z)
1047 return Qnil;
1048 return make_number (CHAR_TO_BYTE (XINT (position)));
1049 }
1050
1051 DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1052 doc: /* Return the character position for byte position BYTEPOS.
1053 If BYTEPOS is out of range, the value is nil. */)
1054 (bytepos)
1055 Lisp_Object bytepos;
1056 {
1057 CHECK_NUMBER (bytepos);
1058 if (XINT (bytepos) < BEG_BYTE || XINT (bytepos) > Z_BYTE)
1059 return Qnil;
1060 return make_number (BYTE_TO_CHAR (XINT (bytepos)));
1061 }
1062 \f
1063 DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1064 doc: /* Return the character following point, as a number.
1065 At the end of the buffer or accessible region, return 0. */)
1066 ()
1067 {
1068 Lisp_Object temp;
1069 if (PT >= ZV)
1070 XSETFASTINT (temp, 0);
1071 else
1072 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1073 return temp;
1074 }
1075
1076 DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1077 doc: /* Return the character preceding point, as a number.
1078 At the beginning of the buffer or accessible region, return 0. */)
1079 ()
1080 {
1081 Lisp_Object temp;
1082 if (PT <= BEGV)
1083 XSETFASTINT (temp, 0);
1084 else if (!NILP (current_buffer->enable_multibyte_characters))
1085 {
1086 int pos = PT_BYTE;
1087 DEC_POS (pos);
1088 XSETFASTINT (temp, FETCH_CHAR (pos));
1089 }
1090 else
1091 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1092 return temp;
1093 }
1094
1095 DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1096 doc: /* Return t if point is at the beginning of the buffer.
1097 If the buffer is narrowed, this means the beginning of the narrowed part. */)
1098 ()
1099 {
1100 if (PT == BEGV)
1101 return Qt;
1102 return Qnil;
1103 }
1104
1105 DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1106 doc: /* Return t if point is at the end of the buffer.
1107 If the buffer is narrowed, this means the end of the narrowed part. */)
1108 ()
1109 {
1110 if (PT == ZV)
1111 return Qt;
1112 return Qnil;
1113 }
1114
1115 DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1116 doc: /* Return t if point is at the beginning of a line. */)
1117 ()
1118 {
1119 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1120 return Qt;
1121 return Qnil;
1122 }
1123
1124 DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1125 doc: /* Return t if point is at the end of a line.
1126 `End of a line' includes point being at the end of the buffer. */)
1127 ()
1128 {
1129 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1130 return Qt;
1131 return Qnil;
1132 }
1133
1134 DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1135 doc: /* Return character in current buffer at position POS.
1136 POS is an integer or a marker and defaults to point.
1137 If POS is out of range, the value is nil. */)
1138 (pos)
1139 Lisp_Object pos;
1140 {
1141 register int pos_byte;
1142
1143 if (NILP (pos))
1144 {
1145 pos_byte = PT_BYTE;
1146 XSETFASTINT (pos, PT);
1147 }
1148
1149 if (MARKERP (pos))
1150 {
1151 pos_byte = marker_byte_position (pos);
1152 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1153 return Qnil;
1154 }
1155 else
1156 {
1157 CHECK_NUMBER_COERCE_MARKER (pos);
1158 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1159 return Qnil;
1160
1161 pos_byte = CHAR_TO_BYTE (XINT (pos));
1162 }
1163
1164 return make_number (FETCH_CHAR (pos_byte));
1165 }
1166
1167 DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1168 doc: /* Return character in current buffer preceding position POS.
1169 POS is an integer or a marker and defaults to point.
1170 If POS is out of range, the value is nil. */)
1171 (pos)
1172 Lisp_Object pos;
1173 {
1174 register Lisp_Object val;
1175 register int pos_byte;
1176
1177 if (NILP (pos))
1178 {
1179 pos_byte = PT_BYTE;
1180 XSETFASTINT (pos, PT);
1181 }
1182
1183 if (MARKERP (pos))
1184 {
1185 pos_byte = marker_byte_position (pos);
1186
1187 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1188 return Qnil;
1189 }
1190 else
1191 {
1192 CHECK_NUMBER_COERCE_MARKER (pos);
1193
1194 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1195 return Qnil;
1196
1197 pos_byte = CHAR_TO_BYTE (XINT (pos));
1198 }
1199
1200 if (!NILP (current_buffer->enable_multibyte_characters))
1201 {
1202 DEC_POS (pos_byte);
1203 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1204 }
1205 else
1206 {
1207 pos_byte--;
1208 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1209 }
1210 return val;
1211 }
1212 \f
1213 DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1214 doc: /* Return the name under which the user logged in, as a string.
1215 This is based on the effective uid, not the real uid.
1216 Also, if the environment variable LOGNAME or USER is set,
1217 that determines the value of this function.
1218
1219 If optional argument UID is an integer, return the login name of the user
1220 with that uid, or nil if there is no such user. */)
1221 (uid)
1222 Lisp_Object uid;
1223 {
1224 struct passwd *pw;
1225
1226 /* Set up the user name info if we didn't do it before.
1227 (That can happen if Emacs is dumpable
1228 but you decide to run `temacs -l loadup' and not dump. */
1229 if (INTEGERP (Vuser_login_name))
1230 init_editfns ();
1231
1232 if (NILP (uid))
1233 return Vuser_login_name;
1234
1235 CHECK_NUMBER (uid);
1236 pw = (struct passwd *) getpwuid (XINT (uid));
1237 return (pw ? build_string (pw->pw_name) : Qnil);
1238 }
1239
1240 DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1241 0, 0, 0,
1242 doc: /* Return the name of the user's real uid, as a string.
1243 This ignores the environment variables LOGNAME and USER, so it differs from
1244 `user-login-name' when running under `su'. */)
1245 ()
1246 {
1247 /* Set up the user name info if we didn't do it before.
1248 (That can happen if Emacs is dumpable
1249 but you decide to run `temacs -l loadup' and not dump. */
1250 if (INTEGERP (Vuser_login_name))
1251 init_editfns ();
1252 return Vuser_real_login_name;
1253 }
1254
1255 DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1256 doc: /* Return the effective uid of Emacs.
1257 Value is an integer or float, depending on the value. */)
1258 ()
1259 {
1260 return make_fixnum_or_float (geteuid ());
1261 }
1262
1263 DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1264 doc: /* Return the real uid of Emacs.
1265 Value is an integer or float, depending on the value. */)
1266 ()
1267 {
1268 return make_fixnum_or_float (getuid ());
1269 }
1270
1271 DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1272 doc: /* Return the full name of the user logged in, as a string.
1273 If the full name corresponding to Emacs's userid is not known,
1274 return "unknown".
1275
1276 If optional argument UID is an integer or float, return the full name
1277 of the user with that uid, or nil if there is no such user.
1278 If UID is a string, return the full name of the user with that login
1279 name, or nil if there is no such user. */)
1280 (uid)
1281 Lisp_Object uid;
1282 {
1283 struct passwd *pw;
1284 register unsigned char *p, *q;
1285 Lisp_Object full;
1286
1287 if (NILP (uid))
1288 return Vuser_full_name;
1289 else if (NUMBERP (uid))
1290 pw = (struct passwd *) getpwuid ((uid_t) XFLOATINT (uid));
1291 else if (STRINGP (uid))
1292 pw = (struct passwd *) getpwnam (SDATA (uid));
1293 else
1294 error ("Invalid UID specification");
1295
1296 if (!pw)
1297 return Qnil;
1298
1299 p = (unsigned char *) USER_FULL_NAME;
1300 /* Chop off everything after the first comma. */
1301 q = (unsigned char *) index (p, ',');
1302 full = make_string (p, q ? q - p : strlen (p));
1303
1304 #ifdef AMPERSAND_FULL_NAME
1305 p = SDATA (full);
1306 q = (unsigned char *) index (p, '&');
1307 /* Substitute the login name for the &, upcasing the first character. */
1308 if (q)
1309 {
1310 register unsigned char *r;
1311 Lisp_Object login;
1312
1313 login = Fuser_login_name (make_number (pw->pw_uid));
1314 r = (unsigned char *) alloca (strlen (p) + SCHARS (login) + 1);
1315 bcopy (p, r, q - p);
1316 r[q - p] = 0;
1317 strcat (r, SDATA (login));
1318 r[q - p] = UPCASE (r[q - p]);
1319 strcat (r, q + 1);
1320 full = build_string (r);
1321 }
1322 #endif /* AMPERSAND_FULL_NAME */
1323
1324 return full;
1325 }
1326
1327 DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1328 doc: /* Return the name of the machine you are running on, as a string. */)
1329 ()
1330 {
1331 return Vsystem_name;
1332 }
1333
1334 /* For the benefit of callers who don't want to include lisp.h */
1335
1336 char *
1337 get_system_name ()
1338 {
1339 if (STRINGP (Vsystem_name))
1340 return (char *) SDATA (Vsystem_name);
1341 else
1342 return "";
1343 }
1344
1345 DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1346 doc: /* Return the process ID of Emacs, as an integer. */)
1347 ()
1348 {
1349 return make_number (getpid ());
1350 }
1351
1352 DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1353 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1354 The time is returned as a list of three integers. The first has the
1355 most significant 16 bits of the seconds, while the second has the
1356 least significant 16 bits. The third integer gives the microsecond
1357 count.
1358
1359 The microsecond count is zero on systems that do not provide
1360 resolution finer than a second. */)
1361 ()
1362 {
1363 EMACS_TIME t;
1364 Lisp_Object result[3];
1365
1366 EMACS_GET_TIME (t);
1367 XSETINT (result[0], (EMACS_SECS (t) >> 16) & 0xffff);
1368 XSETINT (result[1], (EMACS_SECS (t) >> 0) & 0xffff);
1369 XSETINT (result[2], EMACS_USECS (t));
1370
1371 return Flist (3, result);
1372 }
1373 \f
1374
1375 static int
1376 lisp_time_argument (specified_time, result, usec)
1377 Lisp_Object specified_time;
1378 time_t *result;
1379 int *usec;
1380 {
1381 if (NILP (specified_time))
1382 {
1383 if (usec)
1384 {
1385 EMACS_TIME t;
1386
1387 EMACS_GET_TIME (t);
1388 *usec = EMACS_USECS (t);
1389 *result = EMACS_SECS (t);
1390 return 1;
1391 }
1392 else
1393 return time (result) != -1;
1394 }
1395 else
1396 {
1397 Lisp_Object high, low;
1398 high = Fcar (specified_time);
1399 CHECK_NUMBER (high);
1400 low = Fcdr (specified_time);
1401 if (CONSP (low))
1402 {
1403 if (usec)
1404 {
1405 Lisp_Object usec_l = Fcdr (low);
1406 if (CONSP (usec_l))
1407 usec_l = Fcar (usec_l);
1408 if (NILP (usec_l))
1409 *usec = 0;
1410 else
1411 {
1412 CHECK_NUMBER (usec_l);
1413 *usec = XINT (usec_l);
1414 }
1415 }
1416 low = Fcar (low);
1417 }
1418 else if (usec)
1419 *usec = 0;
1420 CHECK_NUMBER (low);
1421 *result = (XINT (high) << 16) + (XINT (low) & 0xffff);
1422 return *result >> 16 == XINT (high);
1423 }
1424 }
1425
1426 DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1427 doc: /* Return the current time, as a float number of seconds since the epoch.
1428 If an argument is given, it specifies a time to convert to float
1429 instead of the current time. The argument should have the forms:
1430 (HIGH . LOW) or (HIGH LOW USEC) or (HIGH LOW . USEC).
1431 Thus, you can use times obtained from `current-time'
1432 and from `file-attributes'.
1433
1434 WARNING: Since the result is floating point, it may not be exact.
1435 Do not use this function if precise time stamps are required. */)
1436 (specified_time)
1437 Lisp_Object specified_time;
1438 {
1439 time_t sec;
1440 int usec;
1441
1442 if (! lisp_time_argument (specified_time, &sec, &usec))
1443 error ("Invalid time specification");
1444
1445 return make_float ((sec * 1e6 + usec) / 1e6);
1446 }
1447
1448 /* Write information into buffer S of size MAXSIZE, according to the
1449 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1450 Default to Universal Time if UT is nonzero, local time otherwise.
1451 Return the number of bytes written, not including the terminating
1452 '\0'. If S is NULL, nothing will be written anywhere; so to
1453 determine how many bytes would be written, use NULL for S and
1454 ((size_t) -1) for MAXSIZE.
1455
1456 This function behaves like emacs_strftimeu, except it allows null
1457 bytes in FORMAT. */
1458 static size_t
1459 emacs_memftimeu (s, maxsize, format, format_len, tp, ut)
1460 char *s;
1461 size_t maxsize;
1462 const char *format;
1463 size_t format_len;
1464 const struct tm *tp;
1465 int ut;
1466 {
1467 size_t total = 0;
1468
1469 /* Loop through all the null-terminated strings in the format
1470 argument. Normally there's just one null-terminated string, but
1471 there can be arbitrarily many, concatenated together, if the
1472 format contains '\0' bytes. emacs_strftimeu stops at the first
1473 '\0' byte so we must invoke it separately for each such string. */
1474 for (;;)
1475 {
1476 size_t len;
1477 size_t result;
1478
1479 if (s)
1480 s[0] = '\1';
1481
1482 result = emacs_strftimeu (s, maxsize, format, tp, ut);
1483
1484 if (s)
1485 {
1486 if (result == 0 && s[0] != '\0')
1487 return 0;
1488 s += result + 1;
1489 }
1490
1491 maxsize -= result + 1;
1492 total += result;
1493 len = strlen (format);
1494 if (len == format_len)
1495 return total;
1496 total++;
1497 format += len + 1;
1498 format_len -= len + 1;
1499 }
1500 }
1501
1502 DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
1503 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
1504 TIME is specified as (HIGH LOW . IGNORED) or (HIGH . LOW), as returned by
1505 `current-time' or `file-attributes'.
1506 The third, optional, argument UNIVERSAL, if non-nil, means describe TIME
1507 as Universal Time; nil means describe TIME in the local time zone.
1508 The value is a copy of FORMAT-STRING, but with certain constructs replaced
1509 by text that describes the specified date and time in TIME:
1510
1511 %Y is the year, %y within the century, %C the century.
1512 %G is the year corresponding to the ISO week, %g within the century.
1513 %m is the numeric month.
1514 %b and %h are the locale's abbreviated month name, %B the full name.
1515 %d is the day of the month, zero-padded, %e is blank-padded.
1516 %u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
1517 %a is the locale's abbreviated name of the day of week, %A the full name.
1518 %U is the week number starting on Sunday, %W starting on Monday,
1519 %V according to ISO 8601.
1520 %j is the day of the year.
1521
1522 %H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
1523 only blank-padded, %l is like %I blank-padded.
1524 %p is the locale's equivalent of either AM or PM.
1525 %M is the minute.
1526 %S is the second.
1527 %Z is the time zone name, %z is the numeric form.
1528 %s is the number of seconds since 1970-01-01 00:00:00 +0000.
1529
1530 %c is the locale's date and time format.
1531 %x is the locale's "preferred" date format.
1532 %D is like "%m/%d/%y".
1533
1534 %R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
1535 %X is the locale's "preferred" time format.
1536
1537 Finally, %n is a newline, %t is a tab, %% is a literal %.
1538
1539 Certain flags and modifiers are available with some format controls.
1540 The flags are `_', `-', `^' and `#'. For certain characters X,
1541 %_X is like %X, but padded with blanks; %-X is like %X,
1542 but without padding. %^X is like %X, but with all textual
1543 characters up-cased; %#X is like %X, but with letter-case of
1544 all textual characters reversed.
1545 %NX (where N stands for an integer) is like %X,
1546 but takes up at least N (a number) positions.
1547 The modifiers are `E' and `O'. For certain characters X,
1548 %EX is a locale's alternative version of %X;
1549 %OX is like %X, but uses the locale's number symbols.
1550
1551 For example, to produce full ISO 8601 format, use "%Y-%m-%dT%T%z". */)
1552 (format_string, time, universal)
1553 Lisp_Object format_string, time, universal;
1554 {
1555 time_t value;
1556 int size;
1557 struct tm *tm;
1558 int ut = ! NILP (universal);
1559
1560 CHECK_STRING (format_string);
1561
1562 if (! lisp_time_argument (time, &value, NULL))
1563 error ("Invalid time specification");
1564
1565 format_string = code_convert_string_norecord (format_string,
1566 Vlocale_coding_system, 1);
1567
1568 /* This is probably enough. */
1569 size = SBYTES (format_string) * 6 + 50;
1570
1571 tm = ut ? gmtime (&value) : localtime (&value);
1572 if (! tm)
1573 error ("Specified time is not representable");
1574
1575 synchronize_system_time_locale ();
1576
1577 while (1)
1578 {
1579 char *buf = (char *) alloca (size + 1);
1580 int result;
1581
1582 buf[0] = '\1';
1583 result = emacs_memftimeu (buf, size, SDATA (format_string),
1584 SBYTES (format_string),
1585 tm, ut);
1586 if ((result > 0 && result < size) || (result == 0 && buf[0] == '\0'))
1587 return code_convert_string_norecord (make_string (buf, result),
1588 Vlocale_coding_system, 0);
1589
1590 /* If buffer was too small, make it bigger and try again. */
1591 result = emacs_memftimeu (NULL, (size_t) -1,
1592 SDATA (format_string),
1593 SBYTES (format_string),
1594 tm, ut);
1595 size = result + 1;
1596 }
1597 }
1598
1599 DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 1, 0,
1600 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST ZONE).
1601 The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED)
1602 or (HIGH . LOW), as from `current-time' and `file-attributes', or `nil'
1603 to use the current time. The list has the following nine members:
1604 SEC is an integer between 0 and 60; SEC is 60 for a leap second, which
1605 only some operating systems support. MINUTE is an integer between 0 and 59.
1606 HOUR is an integer between 0 and 23. DAY is an integer between 1 and 31.
1607 MONTH is an integer between 1 and 12. YEAR is an integer indicating the
1608 four-digit year. DOW is the day of week, an integer between 0 and 6, where
1609 0 is Sunday. DST is t if daylight savings time is effect, otherwise nil.
1610 ZONE is an integer indicating the number of seconds east of Greenwich.
1611 (Note that Common Lisp has different meanings for DOW and ZONE.) */)
1612 (specified_time)
1613 Lisp_Object specified_time;
1614 {
1615 time_t time_spec;
1616 struct tm save_tm;
1617 struct tm *decoded_time;
1618 Lisp_Object list_args[9];
1619
1620 if (! lisp_time_argument (specified_time, &time_spec, NULL))
1621 error ("Invalid time specification");
1622
1623 decoded_time = localtime (&time_spec);
1624 if (! decoded_time)
1625 error ("Specified time is not representable");
1626 XSETFASTINT (list_args[0], decoded_time->tm_sec);
1627 XSETFASTINT (list_args[1], decoded_time->tm_min);
1628 XSETFASTINT (list_args[2], decoded_time->tm_hour);
1629 XSETFASTINT (list_args[3], decoded_time->tm_mday);
1630 XSETFASTINT (list_args[4], decoded_time->tm_mon + 1);
1631 XSETINT (list_args[5], decoded_time->tm_year + 1900);
1632 XSETFASTINT (list_args[6], decoded_time->tm_wday);
1633 list_args[7] = (decoded_time->tm_isdst)? Qt : Qnil;
1634
1635 /* Make a copy, in case gmtime modifies the struct. */
1636 save_tm = *decoded_time;
1637 decoded_time = gmtime (&time_spec);
1638 if (decoded_time == 0)
1639 list_args[8] = Qnil;
1640 else
1641 XSETINT (list_args[8], tm_diff (&save_tm, decoded_time));
1642 return Flist (9, list_args);
1643 }
1644
1645 DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
1646 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
1647 This is the reverse operation of `decode-time', which see.
1648 ZONE defaults to the current time zone rule. This can
1649 be a string or t (as from `set-time-zone-rule'), or it can be a list
1650 \(as from `current-time-zone') or an integer (as from `decode-time')
1651 applied without consideration for daylight savings time.
1652
1653 You can pass more than 7 arguments; then the first six arguments
1654 are used as SECOND through YEAR, and the *last* argument is used as ZONE.
1655 The intervening arguments are ignored.
1656 This feature lets (apply 'encode-time (decode-time ...)) work.
1657
1658 Out-of-range values for SEC, MINUTE, HOUR, DAY, or MONTH are allowed;
1659 for example, a DAY of 0 means the day preceding the given month.
1660 Year numbers less than 100 are treated just like other year numbers.
1661 If you want them to stand for years in this century, you must do that yourself.
1662
1663 Years before 1970 are not guaranteed to work. On some systems,
1664 year values as low as 1901 do work.
1665
1666 usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
1667 (nargs, args)
1668 int nargs;
1669 register Lisp_Object *args;
1670 {
1671 time_t time;
1672 struct tm tm;
1673 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
1674
1675 CHECK_NUMBER (args[0]); /* second */
1676 CHECK_NUMBER (args[1]); /* minute */
1677 CHECK_NUMBER (args[2]); /* hour */
1678 CHECK_NUMBER (args[3]); /* day */
1679 CHECK_NUMBER (args[4]); /* month */
1680 CHECK_NUMBER (args[5]); /* year */
1681
1682 tm.tm_sec = XINT (args[0]);
1683 tm.tm_min = XINT (args[1]);
1684 tm.tm_hour = XINT (args[2]);
1685 tm.tm_mday = XINT (args[3]);
1686 tm.tm_mon = XINT (args[4]) - 1;
1687 tm.tm_year = XINT (args[5]) - 1900;
1688 tm.tm_isdst = -1;
1689
1690 if (CONSP (zone))
1691 zone = Fcar (zone);
1692 if (NILP (zone))
1693 time = mktime (&tm);
1694 else
1695 {
1696 char tzbuf[100];
1697 char *tzstring;
1698 char **oldenv = environ, **newenv;
1699
1700 if (EQ (zone, Qt))
1701 tzstring = "UTC0";
1702 else if (STRINGP (zone))
1703 tzstring = (char *) SDATA (zone);
1704 else if (INTEGERP (zone))
1705 {
1706 int abszone = abs (XINT (zone));
1707 sprintf (tzbuf, "XXX%s%d:%02d:%02d", "-" + (XINT (zone) < 0),
1708 abszone / (60*60), (abszone/60) % 60, abszone % 60);
1709 tzstring = tzbuf;
1710 }
1711 else
1712 error ("Invalid time zone specification");
1713
1714 /* Set TZ before calling mktime; merely adjusting mktime's returned
1715 value doesn't suffice, since that would mishandle leap seconds. */
1716 set_time_zone_rule (tzstring);
1717
1718 time = mktime (&tm);
1719
1720 /* Restore TZ to previous value. */
1721 newenv = environ;
1722 environ = oldenv;
1723 xfree (newenv);
1724 #ifdef LOCALTIME_CACHE
1725 tzset ();
1726 #endif
1727 }
1728
1729 if (time == (time_t) -1)
1730 error ("Specified time is not representable");
1731
1732 return make_time (time);
1733 }
1734
1735 DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string, 0, 1, 0,
1736 doc: /* Return the current time, as a human-readable string.
1737 Programs can use this function to decode a time,
1738 since the number of columns in each field is fixed.
1739 The format is `Sun Sep 16 01:03:52 1973'.
1740 However, see also the functions `decode-time' and `format-time-string'
1741 which provide a much more powerful and general facility.
1742
1743 If an argument is given, it specifies a time to format
1744 instead of the current time. The argument should have the form:
1745 (HIGH . LOW)
1746 or the form:
1747 (HIGH LOW . IGNORED).
1748 Thus, you can use times obtained from `current-time'
1749 and from `file-attributes'. */)
1750 (specified_time)
1751 Lisp_Object specified_time;
1752 {
1753 time_t value;
1754 char buf[30];
1755 register char *tem;
1756
1757 if (! lisp_time_argument (specified_time, &value, NULL))
1758 value = -1;
1759 tem = (char *) ctime (&value);
1760
1761 strncpy (buf, tem, 24);
1762 buf[24] = 0;
1763
1764 return build_string (buf);
1765 }
1766
1767 #define TM_YEAR_BASE 1900
1768
1769 /* Yield A - B, measured in seconds.
1770 This function is copied from the GNU C Library. */
1771 static int
1772 tm_diff (a, b)
1773 struct tm *a, *b;
1774 {
1775 /* Compute intervening leap days correctly even if year is negative.
1776 Take care to avoid int overflow in leap day calculations,
1777 but it's OK to assume that A and B are close to each other. */
1778 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
1779 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
1780 int a100 = a4 / 25 - (a4 % 25 < 0);
1781 int b100 = b4 / 25 - (b4 % 25 < 0);
1782 int a400 = a100 >> 2;
1783 int b400 = b100 >> 2;
1784 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
1785 int years = a->tm_year - b->tm_year;
1786 int days = (365 * years + intervening_leap_days
1787 + (a->tm_yday - b->tm_yday));
1788 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
1789 + (a->tm_min - b->tm_min))
1790 + (a->tm_sec - b->tm_sec));
1791 }
1792
1793 DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 1, 0,
1794 doc: /* Return the offset and name for the local time zone.
1795 This returns a list of the form (OFFSET NAME).
1796 OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
1797 A negative value means west of Greenwich.
1798 NAME is a string giving the name of the time zone.
1799 If an argument is given, it specifies when the time zone offset is determined
1800 instead of using the current time. The argument should have the form:
1801 (HIGH . LOW)
1802 or the form:
1803 (HIGH LOW . IGNORED).
1804 Thus, you can use times obtained from `current-time'
1805 and from `file-attributes'.
1806
1807 Some operating systems cannot provide all this information to Emacs;
1808 in this case, `current-time-zone' returns a list containing nil for
1809 the data it can't find. */)
1810 (specified_time)
1811 Lisp_Object specified_time;
1812 {
1813 time_t value;
1814 struct tm *t;
1815 struct tm gmt;
1816
1817 if (lisp_time_argument (specified_time, &value, NULL)
1818 && (t = gmtime (&value)) != 0
1819 && (gmt = *t, t = localtime (&value)) != 0)
1820 {
1821 int offset = tm_diff (t, &gmt);
1822 char *s = 0;
1823 char buf[6];
1824 #ifdef HAVE_TM_ZONE
1825 if (t->tm_zone)
1826 s = (char *)t->tm_zone;
1827 #else /* not HAVE_TM_ZONE */
1828 #ifdef HAVE_TZNAME
1829 if (t->tm_isdst == 0 || t->tm_isdst == 1)
1830 s = tzname[t->tm_isdst];
1831 #endif
1832 #endif /* not HAVE_TM_ZONE */
1833
1834 #if defined HAVE_TM_ZONE || defined HAVE_TZNAME
1835 if (s)
1836 {
1837 /* On Japanese w32, we can get a Japanese string as time
1838 zone name. Don't accept that. */
1839 char *p;
1840 for (p = s; *p && (isalnum ((unsigned char)*p) || *p == ' '); ++p)
1841 ;
1842 if (p == s || *p)
1843 s = NULL;
1844 }
1845 #endif
1846
1847 if (!s)
1848 {
1849 /* No local time zone name is available; use "+-NNNN" instead. */
1850 int am = (offset < 0 ? -offset : offset) / 60;
1851 sprintf (buf, "%c%02d%02d", (offset < 0 ? '-' : '+'), am/60, am%60);
1852 s = buf;
1853 }
1854 return Fcons (make_number (offset), Fcons (build_string (s), Qnil));
1855 }
1856 else
1857 return Fmake_list (make_number (2), Qnil);
1858 }
1859
1860 /* This holds the value of `environ' produced by the previous
1861 call to Fset_time_zone_rule, or 0 if Fset_time_zone_rule
1862 has never been called. */
1863 static char **environbuf;
1864
1865 DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
1866 doc: /* Set the local time zone using TZ, a string specifying a time zone rule.
1867 If TZ is nil, use implementation-defined default time zone information.
1868 If TZ is t, use Universal Time. */)
1869 (tz)
1870 Lisp_Object tz;
1871 {
1872 char *tzstring;
1873
1874 if (NILP (tz))
1875 tzstring = 0;
1876 else if (EQ (tz, Qt))
1877 tzstring = "UTC0";
1878 else
1879 {
1880 CHECK_STRING (tz);
1881 tzstring = (char *) SDATA (tz);
1882 }
1883
1884 set_time_zone_rule (tzstring);
1885 if (environbuf)
1886 free (environbuf);
1887 environbuf = environ;
1888
1889 return Qnil;
1890 }
1891
1892 #ifdef LOCALTIME_CACHE
1893
1894 /* These two values are known to load tz files in buggy implementations,
1895 i.e. Solaris 1 executables running under either Solaris 1 or Solaris 2.
1896 Their values shouldn't matter in non-buggy implementations.
1897 We don't use string literals for these strings,
1898 since if a string in the environment is in readonly
1899 storage, it runs afoul of bugs in SVR4 and Solaris 2.3.
1900 See Sun bugs 1113095 and 1114114, ``Timezone routines
1901 improperly modify environment''. */
1902
1903 static char set_time_zone_rule_tz1[] = "TZ=GMT+0";
1904 static char set_time_zone_rule_tz2[] = "TZ=GMT+1";
1905
1906 #endif
1907
1908 /* Set the local time zone rule to TZSTRING.
1909 This allocates memory into `environ', which it is the caller's
1910 responsibility to free. */
1911
1912 void
1913 set_time_zone_rule (tzstring)
1914 char *tzstring;
1915 {
1916 int envptrs;
1917 char **from, **to, **newenv;
1918
1919 /* Make the ENVIRON vector longer with room for TZSTRING. */
1920 for (from = environ; *from; from++)
1921 continue;
1922 envptrs = from - environ + 2;
1923 newenv = to = (char **) xmalloc (envptrs * sizeof (char *)
1924 + (tzstring ? strlen (tzstring) + 4 : 0));
1925
1926 /* Add TZSTRING to the end of environ, as a value for TZ. */
1927 if (tzstring)
1928 {
1929 char *t = (char *) (to + envptrs);
1930 strcpy (t, "TZ=");
1931 strcat (t, tzstring);
1932 *to++ = t;
1933 }
1934
1935 /* Copy the old environ vector elements into NEWENV,
1936 but don't copy the TZ variable.
1937 So we have only one definition of TZ, which came from TZSTRING. */
1938 for (from = environ; *from; from++)
1939 if (strncmp (*from, "TZ=", 3) != 0)
1940 *to++ = *from;
1941 *to = 0;
1942
1943 environ = newenv;
1944
1945 /* If we do have a TZSTRING, NEWENV points to the vector slot where
1946 the TZ variable is stored. If we do not have a TZSTRING,
1947 TO points to the vector slot which has the terminating null. */
1948
1949 #ifdef LOCALTIME_CACHE
1950 {
1951 /* In SunOS 4.1.3_U1 and 4.1.4, if TZ has a value like
1952 "US/Pacific" that loads a tz file, then changes to a value like
1953 "XXX0" that does not load a tz file, and then changes back to
1954 its original value, the last change is (incorrectly) ignored.
1955 Also, if TZ changes twice in succession to values that do
1956 not load a tz file, tzset can dump core (see Sun bug#1225179).
1957 The following code works around these bugs. */
1958
1959 if (tzstring)
1960 {
1961 /* Temporarily set TZ to a value that loads a tz file
1962 and that differs from tzstring. */
1963 char *tz = *newenv;
1964 *newenv = (strcmp (tzstring, set_time_zone_rule_tz1 + 3) == 0
1965 ? set_time_zone_rule_tz2 : set_time_zone_rule_tz1);
1966 tzset ();
1967 *newenv = tz;
1968 }
1969 else
1970 {
1971 /* The implied tzstring is unknown, so temporarily set TZ to
1972 two different values that each load a tz file. */
1973 *to = set_time_zone_rule_tz1;
1974 to[1] = 0;
1975 tzset ();
1976 *to = set_time_zone_rule_tz2;
1977 tzset ();
1978 *to = 0;
1979 }
1980
1981 /* Now TZ has the desired value, and tzset can be invoked safely. */
1982 }
1983
1984 tzset ();
1985 #endif
1986 }
1987 \f
1988 /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
1989 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
1990 type of object is Lisp_String). INHERIT is passed to
1991 INSERT_FROM_STRING_FUNC as the last argument. */
1992
1993 static void
1994 general_insert_function (insert_func, insert_from_string_func,
1995 inherit, nargs, args)
1996 void (*insert_func) P_ ((const unsigned char *, int));
1997 void (*insert_from_string_func) P_ ((Lisp_Object, int, int, int, int, int));
1998 int inherit, nargs;
1999 register Lisp_Object *args;
2000 {
2001 register int argnum;
2002 register Lisp_Object val;
2003
2004 for (argnum = 0; argnum < nargs; argnum++)
2005 {
2006 val = args[argnum];
2007 retry:
2008 if (INTEGERP (val))
2009 {
2010 unsigned char str[MAX_MULTIBYTE_LENGTH];
2011 int len;
2012
2013 if (!NILP (current_buffer->enable_multibyte_characters))
2014 len = CHAR_STRING (XFASTINT (val), str);
2015 else
2016 {
2017 str[0] = (ASCII_CHAR_P (XINT (val))
2018 ? XINT (val)
2019 : multibyte_char_to_unibyte (XINT (val), Qnil));
2020 len = 1;
2021 }
2022 (*insert_func) (str, len);
2023 }
2024 else if (STRINGP (val))
2025 {
2026 (*insert_from_string_func) (val, 0, 0,
2027 SCHARS (val),
2028 SBYTES (val),
2029 inherit);
2030 }
2031 else
2032 {
2033 val = wrong_type_argument (Qchar_or_string_p, val);
2034 goto retry;
2035 }
2036 }
2037 }
2038
2039 void
2040 insert1 (arg)
2041 Lisp_Object arg;
2042 {
2043 Finsert (1, &arg);
2044 }
2045
2046
2047 /* Callers passing one argument to Finsert need not gcpro the
2048 argument "array", since the only element of the array will
2049 not be used after calling insert or insert_from_string, so
2050 we don't care if it gets trashed. */
2051
2052 DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2053 doc: /* Insert the arguments, either strings or characters, at point.
2054 Point and before-insertion markers move forward to end up
2055 after the inserted text.
2056 Any other markers at the point of insertion remain before the text.
2057
2058 If the current buffer is multibyte, unibyte strings are converted
2059 to multibyte for insertion (see `string-make-multibyte').
2060 If the current buffer is unibyte, multibyte strings are converted
2061 to unibyte for insertion (see `string-make-unibyte').
2062
2063 When operating on binary data, it may be necessary to preserve the
2064 original bytes of a unibyte string when inserting it into a multibyte
2065 buffer; to accomplish this, apply `string-as-multibyte' to the string
2066 and insert the result.
2067
2068 usage: (insert &rest ARGS) */)
2069 (nargs, args)
2070 int nargs;
2071 register Lisp_Object *args;
2072 {
2073 general_insert_function (insert, insert_from_string, 0, nargs, args);
2074 return Qnil;
2075 }
2076
2077 DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2078 0, MANY, 0,
2079 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2080 Point and before-insertion markers move forward to end up
2081 after the inserted text.
2082 Any other markers at the point of insertion remain before the text.
2083
2084 If the current buffer is multibyte, unibyte strings are converted
2085 to multibyte for insertion (see `unibyte-char-to-multibyte').
2086 If the current buffer is unibyte, multibyte strings are converted
2087 to unibyte for insertion.
2088
2089 usage: (insert-and-inherit &rest ARGS) */)
2090 (nargs, args)
2091 int nargs;
2092 register Lisp_Object *args;
2093 {
2094 general_insert_function (insert_and_inherit, insert_from_string, 1,
2095 nargs, args);
2096 return Qnil;
2097 }
2098
2099 DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2100 doc: /* Insert strings or characters at point, relocating markers after the text.
2101 Point and markers move forward to end up after the inserted text.
2102
2103 If the current buffer is multibyte, unibyte strings are converted
2104 to multibyte for insertion (see `unibyte-char-to-multibyte').
2105 If the current buffer is unibyte, multibyte strings are converted
2106 to unibyte for insertion.
2107
2108 usage: (insert-before-markers &rest ARGS) */)
2109 (nargs, args)
2110 int nargs;
2111 register Lisp_Object *args;
2112 {
2113 general_insert_function (insert_before_markers,
2114 insert_from_string_before_markers, 0,
2115 nargs, args);
2116 return Qnil;
2117 }
2118
2119 DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2120 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2121 doc: /* Insert text at point, relocating markers and inheriting properties.
2122 Point and markers move forward to end up after the inserted text.
2123
2124 If the current buffer is multibyte, unibyte strings are converted
2125 to multibyte for insertion (see `unibyte-char-to-multibyte').
2126 If the current buffer is unibyte, multibyte strings are converted
2127 to unibyte for insertion.
2128
2129 usage: (insert-before-markers-and-inherit &rest ARGS) */)
2130 (nargs, args)
2131 int nargs;
2132 register Lisp_Object *args;
2133 {
2134 general_insert_function (insert_before_markers_and_inherit,
2135 insert_from_string_before_markers, 1,
2136 nargs, args);
2137 return Qnil;
2138 }
2139 \f
2140 DEFUN ("insert-char", Finsert_char, Sinsert_char, 2, 3, 0,
2141 doc: /* Insert COUNT (second arg) copies of CHARACTER (first arg).
2142 Both arguments are required.
2143 Point, and before-insertion markers, are relocated as in the function `insert'.
2144 The optional third arg INHERIT, if non-nil, says to inherit text properties
2145 from adjoining text, if those properties are sticky. */)
2146 (character, count, inherit)
2147 Lisp_Object character, count, inherit;
2148 {
2149 register unsigned char *string;
2150 register int strlen;
2151 register int i, n;
2152 int len;
2153 unsigned char str[MAX_MULTIBYTE_LENGTH];
2154
2155 CHECK_NUMBER (character);
2156 CHECK_NUMBER (count);
2157
2158 if (!NILP (current_buffer->enable_multibyte_characters))
2159 len = CHAR_STRING (XFASTINT (character), str);
2160 else
2161 str[0] = XFASTINT (character), len = 1;
2162 n = XINT (count) * len;
2163 if (n <= 0)
2164 return Qnil;
2165 strlen = min (n, 256 * len);
2166 string = (unsigned char *) alloca (strlen);
2167 for (i = 0; i < strlen; i++)
2168 string[i] = str[i % len];
2169 while (n >= strlen)
2170 {
2171 QUIT;
2172 if (!NILP (inherit))
2173 insert_and_inherit (string, strlen);
2174 else
2175 insert (string, strlen);
2176 n -= strlen;
2177 }
2178 if (n > 0)
2179 {
2180 if (!NILP (inherit))
2181 insert_and_inherit (string, n);
2182 else
2183 insert (string, n);
2184 }
2185 return Qnil;
2186 }
2187
2188 DEFUN ("insert-byte", Finsert_byte, Sinsert_byte, 2, 3, 0,
2189 doc: /* Insert COUNT (second arg) copies of BYTE (first arg).
2190 Both arguments are required.
2191 BYTE is a number of the range 0..255.
2192
2193 If BYTE is 128..255 and the current buffer is multibyte, the
2194 corresponding eight-bit character is inserted.
2195
2196 Point, and before-insertion markers, are relocated as in the function `insert'.
2197 The optional third arg INHERIT, if non-nil, says to inherit text properties
2198 from adjoining text, if those properties are sticky. */)
2199 (byte, count, inherit)
2200 Lisp_Object byte, count, inherit;
2201 {
2202 CHECK_NUMBER (byte);
2203 if (XINT (byte) < 0 || XINT (byte) > 255)
2204 args_out_of_range_3 (byte, make_number (0), make_number (255));
2205 if (XINT (byte) >= 128
2206 && ! NILP (current_buffer->enable_multibyte_characters))
2207 XSETFASTINT (byte, BYTE8_TO_CHAR (XINT (byte)));
2208 return Finsert_char (byte, count, inherit);
2209 }
2210
2211 \f
2212 /* Making strings from buffer contents. */
2213
2214 /* Return a Lisp_String containing the text of the current buffer from
2215 START to END. If text properties are in use and the current buffer
2216 has properties in the range specified, the resulting string will also
2217 have them, if PROPS is nonzero.
2218
2219 We don't want to use plain old make_string here, because it calls
2220 make_uninit_string, which can cause the buffer arena to be
2221 compacted. make_string has no way of knowing that the data has
2222 been moved, and thus copies the wrong data into the string. This
2223 doesn't effect most of the other users of make_string, so it should
2224 be left as is. But we should use this function when conjuring
2225 buffer substrings. */
2226
2227 Lisp_Object
2228 make_buffer_string (start, end, props)
2229 int start, end;
2230 int props;
2231 {
2232 int start_byte = CHAR_TO_BYTE (start);
2233 int end_byte = CHAR_TO_BYTE (end);
2234
2235 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2236 }
2237
2238 /* Return a Lisp_String containing the text of the current buffer from
2239 START / START_BYTE to END / END_BYTE.
2240
2241 If text properties are in use and the current buffer
2242 has properties in the range specified, the resulting string will also
2243 have them, if PROPS is nonzero.
2244
2245 We don't want to use plain old make_string here, because it calls
2246 make_uninit_string, which can cause the buffer arena to be
2247 compacted. make_string has no way of knowing that the data has
2248 been moved, and thus copies the wrong data into the string. This
2249 doesn't effect most of the other users of make_string, so it should
2250 be left as is. But we should use this function when conjuring
2251 buffer substrings. */
2252
2253 Lisp_Object
2254 make_buffer_string_both (start, start_byte, end, end_byte, props)
2255 int start, start_byte, end, end_byte;
2256 int props;
2257 {
2258 Lisp_Object result, tem, tem1;
2259
2260 if (start < GPT && GPT < end)
2261 move_gap (start);
2262
2263 if (! NILP (current_buffer->enable_multibyte_characters))
2264 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2265 else
2266 result = make_uninit_string (end - start);
2267 bcopy (BYTE_POS_ADDR (start_byte), SDATA (result),
2268 end_byte - start_byte);
2269
2270 /* If desired, update and copy the text properties. */
2271 if (props)
2272 {
2273 update_buffer_properties (start, end);
2274
2275 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2276 tem1 = Ftext_properties_at (make_number (start), Qnil);
2277
2278 if (XINT (tem) != end || !NILP (tem1))
2279 copy_intervals_to_string (result, current_buffer, start,
2280 end - start);
2281 }
2282
2283 return result;
2284 }
2285
2286 /* Call Vbuffer_access_fontify_functions for the range START ... END
2287 in the current buffer, if necessary. */
2288
2289 static void
2290 update_buffer_properties (start, end)
2291 int start, end;
2292 {
2293 /* If this buffer has some access functions,
2294 call them, specifying the range of the buffer being accessed. */
2295 if (!NILP (Vbuffer_access_fontify_functions))
2296 {
2297 Lisp_Object args[3];
2298 Lisp_Object tem;
2299
2300 args[0] = Qbuffer_access_fontify_functions;
2301 XSETINT (args[1], start);
2302 XSETINT (args[2], end);
2303
2304 /* But don't call them if we can tell that the work
2305 has already been done. */
2306 if (!NILP (Vbuffer_access_fontified_property))
2307 {
2308 tem = Ftext_property_any (args[1], args[2],
2309 Vbuffer_access_fontified_property,
2310 Qnil, Qnil);
2311 if (! NILP (tem))
2312 Frun_hook_with_args (3, args);
2313 }
2314 else
2315 Frun_hook_with_args (3, args);
2316 }
2317 }
2318
2319 DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2320 doc: /* Return the contents of part of the current buffer as a string.
2321 The two arguments START and END are character positions;
2322 they can be in either order.
2323 The string returned is multibyte if the buffer is multibyte.
2324
2325 This function copies the text properties of that part of the buffer
2326 into the result string; if you don't want the text properties,
2327 use `buffer-substring-no-properties' instead. */)
2328 (start, end)
2329 Lisp_Object start, end;
2330 {
2331 register int b, e;
2332
2333 validate_region (&start, &end);
2334 b = XINT (start);
2335 e = XINT (end);
2336
2337 return make_buffer_string (b, e, 1);
2338 }
2339
2340 DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2341 Sbuffer_substring_no_properties, 2, 2, 0,
2342 doc: /* Return the characters of part of the buffer, without the text properties.
2343 The two arguments START and END are character positions;
2344 they can be in either order. */)
2345 (start, end)
2346 Lisp_Object start, end;
2347 {
2348 register int b, e;
2349
2350 validate_region (&start, &end);
2351 b = XINT (start);
2352 e = XINT (end);
2353
2354 return make_buffer_string (b, e, 0);
2355 }
2356
2357 DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2358 doc: /* Return the contents of the current buffer as a string.
2359 If narrowing is in effect, this function returns only the visible part
2360 of the buffer. */)
2361 ()
2362 {
2363 return make_buffer_string (BEGV, ZV, 1);
2364 }
2365
2366 DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2367 1, 3, 0,
2368 doc: /* Insert before point a substring of the contents of buffer BUFFER.
2369 BUFFER may be a buffer or a buffer name.
2370 Arguments START and END are character numbers specifying the substring.
2371 They default to the beginning and the end of BUFFER. */)
2372 (buf, start, end)
2373 Lisp_Object buf, start, end;
2374 {
2375 register int b, e, temp;
2376 register struct buffer *bp, *obuf;
2377 Lisp_Object buffer;
2378
2379 buffer = Fget_buffer (buf);
2380 if (NILP (buffer))
2381 nsberror (buf);
2382 bp = XBUFFER (buffer);
2383 if (NILP (bp->name))
2384 error ("Selecting deleted buffer");
2385
2386 if (NILP (start))
2387 b = BUF_BEGV (bp);
2388 else
2389 {
2390 CHECK_NUMBER_COERCE_MARKER (start);
2391 b = XINT (start);
2392 }
2393 if (NILP (end))
2394 e = BUF_ZV (bp);
2395 else
2396 {
2397 CHECK_NUMBER_COERCE_MARKER (end);
2398 e = XINT (end);
2399 }
2400
2401 if (b > e)
2402 temp = b, b = e, e = temp;
2403
2404 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2405 args_out_of_range (start, end);
2406
2407 obuf = current_buffer;
2408 set_buffer_internal_1 (bp);
2409 update_buffer_properties (b, e);
2410 set_buffer_internal_1 (obuf);
2411
2412 insert_from_buffer (bp, b, e - b, 0);
2413 return Qnil;
2414 }
2415
2416 DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2417 6, 6, 0,
2418 doc: /* Compare two substrings of two buffers; return result as number.
2419 the value is -N if first string is less after N-1 chars,
2420 +N if first string is greater after N-1 chars, or 0 if strings match.
2421 Each substring is represented as three arguments: BUFFER, START and END.
2422 That makes six args in all, three for each substring.
2423
2424 The value of `case-fold-search' in the current buffer
2425 determines whether case is significant or ignored. */)
2426 (buffer1, start1, end1, buffer2, start2, end2)
2427 Lisp_Object buffer1, start1, end1, buffer2, start2, end2;
2428 {
2429 register int begp1, endp1, begp2, endp2, temp;
2430 register struct buffer *bp1, *bp2;
2431 register Lisp_Object *trt
2432 = (!NILP (current_buffer->case_fold_search)
2433 ? XCHAR_TABLE (current_buffer->case_canon_table)->contents : 0);
2434 int chars = 0;
2435 int i1, i2, i1_byte, i2_byte;
2436
2437 /* Find the first buffer and its substring. */
2438
2439 if (NILP (buffer1))
2440 bp1 = current_buffer;
2441 else
2442 {
2443 Lisp_Object buf1;
2444 buf1 = Fget_buffer (buffer1);
2445 if (NILP (buf1))
2446 nsberror (buffer1);
2447 bp1 = XBUFFER (buf1);
2448 if (NILP (bp1->name))
2449 error ("Selecting deleted buffer");
2450 }
2451
2452 if (NILP (start1))
2453 begp1 = BUF_BEGV (bp1);
2454 else
2455 {
2456 CHECK_NUMBER_COERCE_MARKER (start1);
2457 begp1 = XINT (start1);
2458 }
2459 if (NILP (end1))
2460 endp1 = BUF_ZV (bp1);
2461 else
2462 {
2463 CHECK_NUMBER_COERCE_MARKER (end1);
2464 endp1 = XINT (end1);
2465 }
2466
2467 if (begp1 > endp1)
2468 temp = begp1, begp1 = endp1, endp1 = temp;
2469
2470 if (!(BUF_BEGV (bp1) <= begp1
2471 && begp1 <= endp1
2472 && endp1 <= BUF_ZV (bp1)))
2473 args_out_of_range (start1, end1);
2474
2475 /* Likewise for second substring. */
2476
2477 if (NILP (buffer2))
2478 bp2 = current_buffer;
2479 else
2480 {
2481 Lisp_Object buf2;
2482 buf2 = Fget_buffer (buffer2);
2483 if (NILP (buf2))
2484 nsberror (buffer2);
2485 bp2 = XBUFFER (buf2);
2486 if (NILP (bp2->name))
2487 error ("Selecting deleted buffer");
2488 }
2489
2490 if (NILP (start2))
2491 begp2 = BUF_BEGV (bp2);
2492 else
2493 {
2494 CHECK_NUMBER_COERCE_MARKER (start2);
2495 begp2 = XINT (start2);
2496 }
2497 if (NILP (end2))
2498 endp2 = BUF_ZV (bp2);
2499 else
2500 {
2501 CHECK_NUMBER_COERCE_MARKER (end2);
2502 endp2 = XINT (end2);
2503 }
2504
2505 if (begp2 > endp2)
2506 temp = begp2, begp2 = endp2, endp2 = temp;
2507
2508 if (!(BUF_BEGV (bp2) <= begp2
2509 && begp2 <= endp2
2510 && endp2 <= BUF_ZV (bp2)))
2511 args_out_of_range (start2, end2);
2512
2513 i1 = begp1;
2514 i2 = begp2;
2515 i1_byte = buf_charpos_to_bytepos (bp1, i1);
2516 i2_byte = buf_charpos_to_bytepos (bp2, i2);
2517
2518 while (i1 < endp1 && i2 < endp2)
2519 {
2520 /* When we find a mismatch, we must compare the
2521 characters, not just the bytes. */
2522 int c1, c2;
2523
2524 QUIT;
2525
2526 if (! NILP (bp1->enable_multibyte_characters))
2527 {
2528 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
2529 BUF_INC_POS (bp1, i1_byte);
2530 i1++;
2531 }
2532 else
2533 {
2534 c1 = BUF_FETCH_BYTE (bp1, i1);
2535 c1 = unibyte_char_to_multibyte (c1);
2536 i1++;
2537 }
2538
2539 if (! NILP (bp2->enable_multibyte_characters))
2540 {
2541 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
2542 BUF_INC_POS (bp2, i2_byte);
2543 i2++;
2544 }
2545 else
2546 {
2547 c2 = BUF_FETCH_BYTE (bp2, i2);
2548 c2 = unibyte_char_to_multibyte (c2);
2549 i2++;
2550 }
2551
2552 if (trt)
2553 {
2554 c1 = XINT (trt[c1]);
2555 c2 = XINT (trt[c2]);
2556 }
2557 if (c1 < c2)
2558 return make_number (- 1 - chars);
2559 if (c1 > c2)
2560 return make_number (chars + 1);
2561
2562 chars++;
2563 }
2564
2565 /* The strings match as far as they go.
2566 If one is shorter, that one is less. */
2567 if (chars < endp1 - begp1)
2568 return make_number (chars + 1);
2569 else if (chars < endp2 - begp2)
2570 return make_number (- chars - 1);
2571
2572 /* Same length too => they are equal. */
2573 return make_number (0);
2574 }
2575 \f
2576 static Lisp_Object
2577 subst_char_in_region_unwind (arg)
2578 Lisp_Object arg;
2579 {
2580 return current_buffer->undo_list = arg;
2581 }
2582
2583 static Lisp_Object
2584 subst_char_in_region_unwind_1 (arg)
2585 Lisp_Object arg;
2586 {
2587 return current_buffer->filename = arg;
2588 }
2589
2590 DEFUN ("subst-char-in-region", Fsubst_char_in_region,
2591 Ssubst_char_in_region, 4, 5, 0,
2592 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
2593 If optional arg NOUNDO is non-nil, don't record this change for undo
2594 and don't mark the buffer as really changed.
2595 Both characters must have the same length of multi-byte form. */)
2596 (start, end, fromchar, tochar, noundo)
2597 Lisp_Object start, end, fromchar, tochar, noundo;
2598 {
2599 register int pos, pos_byte, stop, i, len, end_byte;
2600 int changed = 0;
2601 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
2602 unsigned char *p;
2603 int count = SPECPDL_INDEX ();
2604 #define COMBINING_NO 0
2605 #define COMBINING_BEFORE 1
2606 #define COMBINING_AFTER 2
2607 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
2608 int maybe_byte_combining = COMBINING_NO;
2609 int last_changed = 0;
2610 int multibyte_p = !NILP (current_buffer->enable_multibyte_characters);
2611
2612 validate_region (&start, &end);
2613 CHECK_NUMBER (fromchar);
2614 CHECK_NUMBER (tochar);
2615
2616 if (multibyte_p)
2617 {
2618 len = CHAR_STRING (XFASTINT (fromchar), fromstr);
2619 if (CHAR_STRING (XFASTINT (tochar), tostr) != len)
2620 error ("Characters in subst-char-in-region have different byte-lengths");
2621 if (!ASCII_BYTE_P (*tostr))
2622 {
2623 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
2624 complete multibyte character, it may be combined with the
2625 after bytes. If it is in the range 0xA0..0xFF, it may be
2626 combined with the before and after bytes. */
2627 if (!CHAR_HEAD_P (*tostr))
2628 maybe_byte_combining = COMBINING_BOTH;
2629 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
2630 maybe_byte_combining = COMBINING_AFTER;
2631 }
2632 }
2633 else
2634 {
2635 len = 1;
2636 fromstr[0] = XFASTINT (fromchar);
2637 tostr[0] = XFASTINT (tochar);
2638 }
2639
2640 pos = XINT (start);
2641 pos_byte = CHAR_TO_BYTE (pos);
2642 stop = CHAR_TO_BYTE (XINT (end));
2643 end_byte = stop;
2644
2645 /* If we don't want undo, turn off putting stuff on the list.
2646 That's faster than getting rid of things,
2647 and it prevents even the entry for a first change.
2648 Also inhibit locking the file. */
2649 if (!NILP (noundo))
2650 {
2651 record_unwind_protect (subst_char_in_region_unwind,
2652 current_buffer->undo_list);
2653 current_buffer->undo_list = Qt;
2654 /* Don't do file-locking. */
2655 record_unwind_protect (subst_char_in_region_unwind_1,
2656 current_buffer->filename);
2657 current_buffer->filename = Qnil;
2658 }
2659
2660 if (pos_byte < GPT_BYTE)
2661 stop = min (stop, GPT_BYTE);
2662 while (1)
2663 {
2664 int pos_byte_next = pos_byte;
2665
2666 if (pos_byte >= stop)
2667 {
2668 if (pos_byte >= end_byte) break;
2669 stop = end_byte;
2670 }
2671 p = BYTE_POS_ADDR (pos_byte);
2672 if (multibyte_p)
2673 INC_POS (pos_byte_next);
2674 else
2675 ++pos_byte_next;
2676 if (pos_byte_next - pos_byte == len
2677 && p[0] == fromstr[0]
2678 && (len == 1
2679 || (p[1] == fromstr[1]
2680 && (len == 2 || (p[2] == fromstr[2]
2681 && (len == 3 || p[3] == fromstr[3]))))))
2682 {
2683 if (! changed)
2684 {
2685 changed = pos;
2686 modify_region (current_buffer, changed, XINT (end));
2687
2688 if (! NILP (noundo))
2689 {
2690 if (MODIFF - 1 == SAVE_MODIFF)
2691 SAVE_MODIFF++;
2692 if (MODIFF - 1 == current_buffer->auto_save_modified)
2693 current_buffer->auto_save_modified++;
2694 }
2695 }
2696
2697 /* Take care of the case where the new character
2698 combines with neighboring bytes. */
2699 if (maybe_byte_combining
2700 && (maybe_byte_combining == COMBINING_AFTER
2701 ? (pos_byte_next < Z_BYTE
2702 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2703 : ((pos_byte_next < Z_BYTE
2704 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2705 || (pos_byte > BEG_BYTE
2706 && ! ASCII_BYTE_P (FETCH_BYTE (pos_byte - 1))))))
2707 {
2708 Lisp_Object tem, string;
2709
2710 struct gcpro gcpro1;
2711
2712 tem = current_buffer->undo_list;
2713 GCPRO1 (tem);
2714
2715 /* Make a multibyte string containing this single character. */
2716 string = make_multibyte_string (tostr, 1, len);
2717 /* replace_range is less efficient, because it moves the gap,
2718 but it handles combining correctly. */
2719 replace_range (pos, pos + 1, string,
2720 0, 0, 1);
2721 pos_byte_next = CHAR_TO_BYTE (pos);
2722 if (pos_byte_next > pos_byte)
2723 /* Before combining happened. We should not increment
2724 POS. So, to cancel the later increment of POS,
2725 decrease it now. */
2726 pos--;
2727 else
2728 INC_POS (pos_byte_next);
2729
2730 if (! NILP (noundo))
2731 current_buffer->undo_list = tem;
2732
2733 UNGCPRO;
2734 }
2735 else
2736 {
2737 if (NILP (noundo))
2738 record_change (pos, 1);
2739 for (i = 0; i < len; i++) *p++ = tostr[i];
2740 }
2741 last_changed = pos + 1;
2742 }
2743 pos_byte = pos_byte_next;
2744 pos++;
2745 }
2746
2747 if (changed)
2748 {
2749 signal_after_change (changed,
2750 last_changed - changed, last_changed - changed);
2751 update_compositions (changed, last_changed, CHECK_ALL);
2752 }
2753
2754 unbind_to (count, Qnil);
2755 return Qnil;
2756 }
2757
2758
2759 static Lisp_Object check_translation P_ ((int, int, int, Lisp_Object));
2760
2761 /* Helper function for Ftranslate_region_internal.
2762
2763 Check if a character sequence at POS (POS_BYTE) matches an element
2764 of VAL. VAL is a list (([FROM-CHAR ...] . TO) ...). If a matching
2765 element is found, return it. Otherwise return Qnil. */
2766
2767 static Lisp_Object
2768 check_translation (pos, pos_byte, end, val)
2769 int pos, pos_byte, end;
2770 Lisp_Object val;
2771 {
2772 int buf_size = 16, buf_used = 0;
2773 int *buf = alloca (sizeof (int) * buf_size);
2774
2775 for (; CONSP (val); val = XCDR (val))
2776 {
2777 Lisp_Object elt;
2778 int len, i;
2779
2780 elt = XCAR (val);
2781 if (! CONSP (elt))
2782 continue;
2783 elt = XCAR (elt);
2784 if (! VECTORP (elt))
2785 continue;
2786 len = ASIZE (elt);
2787 if (len <= end - pos)
2788 {
2789 for (i = 0; i < len; i++)
2790 {
2791 if (buf_used <= i)
2792 {
2793 unsigned char *p = BYTE_POS_ADDR (pos_byte);
2794 int len;
2795
2796 if (buf_used == buf_size)
2797 {
2798 int *newbuf;
2799
2800 buf_size += 16;
2801 newbuf = alloca (sizeof (int) * buf_size);
2802 memcpy (newbuf, buf, sizeof (int) * buf_used);
2803 buf = newbuf;
2804 }
2805 buf[buf_used++] = STRING_CHAR_AND_LENGTH (p, 0, len);
2806 pos_byte += len;
2807 }
2808 if (XINT (AREF (elt, i)) != buf[i])
2809 break;
2810 }
2811 if (i == len)
2812 return XCAR (val);
2813 }
2814 }
2815 return Qnil;
2816 }
2817
2818
2819 DEFUN ("translate-region-internal", Ftranslate_region_internal,
2820 Stranslate_region_internal, 3, 3, 0,
2821 doc: /* Internal use only.
2822 From START to END, translate characters according to TABLE.
2823 TABLE is a string or a char-table; the Nth character in it is the
2824 mapping for the character with code N.
2825 It returns the number of characters changed. */)
2826 (start, end, table)
2827 Lisp_Object start;
2828 Lisp_Object end;
2829 register Lisp_Object table;
2830 {
2831 register unsigned char *tt; /* Trans table. */
2832 register int nc; /* New character. */
2833 int cnt; /* Number of changes made. */
2834 int size; /* Size of translate table. */
2835 int pos, pos_byte, end_pos;
2836 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
2837 int string_multibyte;
2838 Lisp_Object val;
2839
2840 validate_region (&start, &end);
2841 if (CHAR_TABLE_P (table))
2842 {
2843 if (! EQ (XCHAR_TABLE (table)->purpose, Qtranslation_table))
2844 error ("Not a translation table");
2845 tt = NULL;
2846 }
2847 else
2848 {
2849 CHECK_STRING (table);
2850
2851 if (multibyte != (SCHARS (table) < SBYTES (table)))
2852 table = (multibyte
2853 ? string_make_multibyte (table)
2854 : string_make_unibyte (table));
2855 string_multibyte = SCHARS (table) < SBYTES (table);
2856 size = SBYTES (table);
2857 tt = SDATA (table);
2858 }
2859
2860 pos = XINT (start);
2861 pos_byte = CHAR_TO_BYTE (pos);
2862 end_pos = XINT (end);
2863 modify_region (current_buffer, pos, end_pos);
2864
2865 cnt = 0;
2866 for (; pos < end_pos; )
2867 {
2868 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
2869 unsigned char *str, buf[MAX_MULTIBYTE_LENGTH];
2870 int len, str_len;
2871 int oc;
2872 Lisp_Object val;
2873
2874 if (multibyte)
2875 nc = oc = STRING_CHAR_AND_LENGTH (p, 0, len);
2876 else
2877 nc = oc = *p, len = 1;
2878 if (tt)
2879 {
2880 if (oc < size)
2881 {
2882 if (string_multibyte)
2883 {
2884 str = tt + string_char_to_byte (table, oc);
2885 nc = STRING_CHAR_AND_LENGTH (str, 0, str_len);
2886 }
2887 else
2888 {
2889 str = tt + oc;
2890 nc = tt[oc], str_len = 1;
2891 }
2892 }
2893 }
2894 else
2895 {
2896 val = CHAR_TABLE_REF (table, oc);
2897 if (CHARACTERP (val))
2898 {
2899 nc = XFASTINT (val);
2900 str_len = CHAR_STRING (nc, buf);
2901 str = buf;
2902 }
2903 else if (VECTORP (val) || (CONSP (val)))
2904 {
2905 /* VAL is [TO_CHAR ...] or (([FROM-CHAR ...] . TO) ...)
2906 where TO is TO-CHAR or [TO-CHAR ...]. */
2907 nc = -1;
2908 }
2909 }
2910
2911 if (nc != oc)
2912 {
2913 if (nc >= 0)
2914 {
2915 /* Simple one char to one char translation. */
2916 if (len != str_len)
2917 {
2918 Lisp_Object string;
2919
2920 /* This is less efficient, because it moves the gap,
2921 but it should handle multibyte characters correctly. */
2922 string = make_multibyte_string (str, 1, str_len);
2923 replace_range (pos, pos + 1, string, 1, 0, 1);
2924 len = str_len;
2925 }
2926 else
2927 {
2928 record_change (pos, 1);
2929 while (str_len-- > 0)
2930 *p++ = *str++;
2931 signal_after_change (pos, 1, 1);
2932 update_compositions (pos, pos + 1, CHECK_BORDER);
2933 }
2934 ++cnt;
2935 }
2936 else
2937 {
2938 Lisp_Object string;
2939
2940 if (CONSP (val))
2941 {
2942 val = check_translation (pos, pos_byte, end_pos, val);
2943 if (NILP (val))
2944 {
2945 pos_byte += len;
2946 pos++;
2947 continue;
2948 }
2949 /* VAL is ([FROM-CHAR ...] . TO). */
2950 len = ASIZE (XCAR (val));
2951 val = XCDR (val);
2952 }
2953 else
2954 len = 1;
2955
2956 if (VECTORP (val))
2957 {
2958 int i;
2959
2960 string = Fmake_string (make_number (ASIZE (val)),
2961 AREF (val, 0));
2962 for (i = 1; i < ASIZE (val); i++)
2963 Faset (string, make_number (i), AREF (val, i));
2964 }
2965 else
2966 {
2967 string = Fmake_string (make_number (1), val);
2968 }
2969 replace_range (pos, pos + len, string, 1, 0, 1);
2970 pos_byte += SBYTES (string);
2971 pos += SCHARS (string);
2972 cnt += SCHARS (string);
2973 end_pos += SCHARS (string) - len;
2974 continue;
2975 }
2976 }
2977 pos_byte += len;
2978 pos++;
2979 }
2980
2981 return make_number (cnt);
2982 }
2983
2984 DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
2985 doc: /* Delete the text between point and mark.
2986 When called from a program, expects two arguments,
2987 positions (integers or markers) specifying the stretch to be deleted. */)
2988 (start, end)
2989 Lisp_Object start, end;
2990 {
2991 validate_region (&start, &end);
2992 del_range (XINT (start), XINT (end));
2993 return Qnil;
2994 }
2995
2996 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
2997 Sdelete_and_extract_region, 2, 2, 0,
2998 doc: /* Delete the text between START and END and return it. */)
2999 (start, end)
3000 Lisp_Object start, end;
3001 {
3002 validate_region (&start, &end);
3003 return del_range_1 (XINT (start), XINT (end), 1, 1);
3004 }
3005 \f
3006 DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
3007 doc: /* Remove restrictions (narrowing) from current buffer.
3008 This allows the buffer's full text to be seen and edited. */)
3009 ()
3010 {
3011 if (BEG != BEGV || Z != ZV)
3012 current_buffer->clip_changed = 1;
3013 BEGV = BEG;
3014 BEGV_BYTE = BEG_BYTE;
3015 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
3016 /* Changing the buffer bounds invalidates any recorded current column. */
3017 invalidate_current_column ();
3018 return Qnil;
3019 }
3020
3021 DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
3022 doc: /* Restrict editing in this buffer to the current region.
3023 The rest of the text becomes temporarily invisible and untouchable
3024 but is not deleted; if you save the buffer in a file, the invisible
3025 text is included in the file. \\[widen] makes all visible again.
3026 See also `save-restriction'.
3027
3028 When calling from a program, pass two arguments; positions (integers
3029 or markers) bounding the text that should remain visible. */)
3030 (start, end)
3031 register Lisp_Object start, end;
3032 {
3033 CHECK_NUMBER_COERCE_MARKER (start);
3034 CHECK_NUMBER_COERCE_MARKER (end);
3035
3036 if (XINT (start) > XINT (end))
3037 {
3038 Lisp_Object tem;
3039 tem = start; start = end; end = tem;
3040 }
3041
3042 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
3043 args_out_of_range (start, end);
3044
3045 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
3046 current_buffer->clip_changed = 1;
3047
3048 SET_BUF_BEGV (current_buffer, XFASTINT (start));
3049 SET_BUF_ZV (current_buffer, XFASTINT (end));
3050 if (PT < XFASTINT (start))
3051 SET_PT (XFASTINT (start));
3052 if (PT > XFASTINT (end))
3053 SET_PT (XFASTINT (end));
3054 /* Changing the buffer bounds invalidates any recorded current column. */
3055 invalidate_current_column ();
3056 return Qnil;
3057 }
3058
3059 Lisp_Object
3060 save_restriction_save ()
3061 {
3062 if (BEGV == BEG && ZV == Z)
3063 /* The common case that the buffer isn't narrowed.
3064 We return just the buffer object, which save_restriction_restore
3065 recognizes as meaning `no restriction'. */
3066 return Fcurrent_buffer ();
3067 else
3068 /* We have to save a restriction, so return a pair of markers, one
3069 for the beginning and one for the end. */
3070 {
3071 Lisp_Object beg, end;
3072
3073 beg = buildmark (BEGV, BEGV_BYTE);
3074 end = buildmark (ZV, ZV_BYTE);
3075
3076 /* END must move forward if text is inserted at its exact location. */
3077 XMARKER(end)->insertion_type = 1;
3078
3079 return Fcons (beg, end);
3080 }
3081 }
3082
3083 Lisp_Object
3084 save_restriction_restore (data)
3085 Lisp_Object data;
3086 {
3087 if (CONSP (data))
3088 /* A pair of marks bounding a saved restriction. */
3089 {
3090 struct Lisp_Marker *beg = XMARKER (XCAR (data));
3091 struct Lisp_Marker *end = XMARKER (XCDR (data));
3092 struct buffer *buf = beg->buffer; /* END should have the same buffer. */
3093
3094 if (buf /* Verify marker still points to a buffer. */
3095 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
3096 /* The restriction has changed from the saved one, so restore
3097 the saved restriction. */
3098 {
3099 int pt = BUF_PT (buf);
3100
3101 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
3102 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
3103
3104 if (pt < beg->charpos || pt > end->charpos)
3105 /* The point is outside the new visible range, move it inside. */
3106 SET_BUF_PT_BOTH (buf,
3107 clip_to_bounds (beg->charpos, pt, end->charpos),
3108 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
3109 end->bytepos));
3110
3111 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3112 }
3113 }
3114 else
3115 /* A buffer, which means that there was no old restriction. */
3116 {
3117 struct buffer *buf = XBUFFER (data);
3118
3119 if (buf /* Verify marker still points to a buffer. */
3120 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
3121 /* The buffer has been narrowed, get rid of the narrowing. */
3122 {
3123 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
3124 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
3125
3126 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3127 }
3128 }
3129
3130 return Qnil;
3131 }
3132
3133 DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
3134 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
3135 The buffer's restrictions make parts of the beginning and end invisible.
3136 (They are set up with `narrow-to-region' and eliminated with `widen'.)
3137 This special form, `save-restriction', saves the current buffer's restrictions
3138 when it is entered, and restores them when it is exited.
3139 So any `narrow-to-region' within BODY lasts only until the end of the form.
3140 The old restrictions settings are restored
3141 even in case of abnormal exit (throw or error).
3142
3143 The value returned is the value of the last form in BODY.
3144
3145 Note: if you are using both `save-excursion' and `save-restriction',
3146 use `save-excursion' outermost:
3147 (save-excursion (save-restriction ...))
3148
3149 usage: (save-restriction &rest BODY) */)
3150 (body)
3151 Lisp_Object body;
3152 {
3153 register Lisp_Object val;
3154 int count = SPECPDL_INDEX ();
3155
3156 record_unwind_protect (save_restriction_restore, save_restriction_save ());
3157 val = Fprogn (body);
3158 return unbind_to (count, val);
3159 }
3160 \f
3161 /* Buffer for the most recent text displayed by Fmessage_box. */
3162 static char *message_text;
3163
3164 /* Allocated length of that buffer. */
3165 static int message_length;
3166
3167 DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3168 doc: /* Print a one-line message at the bottom of the screen.
3169 The first argument is a format control string, and the rest are data
3170 to be formatted under control of the string. See `format' for details.
3171
3172 If the first argument is nil, clear any existing message; let the
3173 minibuffer contents show.
3174
3175 usage: (message STRING &rest ARGS) */)
3176 (nargs, args)
3177 int nargs;
3178 Lisp_Object *args;
3179 {
3180 if (NILP (args[0])
3181 || (STRINGP (args[0])
3182 && SBYTES (args[0]) == 0))
3183 {
3184 message (0);
3185 return Qnil;
3186 }
3187 else
3188 {
3189 register Lisp_Object val;
3190 val = Fformat (nargs, args);
3191 message3 (val, SBYTES (val), STRING_MULTIBYTE (val));
3192 return val;
3193 }
3194 }
3195
3196 DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3197 doc: /* Display a message, in a dialog box if possible.
3198 If a dialog box is not available, use the echo area.
3199 The first argument is a format control string, and the rest are data
3200 to be formatted under control of the string. See `format' for details.
3201
3202 If the first argument is nil, clear any existing message; let the
3203 minibuffer contents show.
3204
3205 usage: (message-box STRING &rest ARGS) */)
3206 (nargs, args)
3207 int nargs;
3208 Lisp_Object *args;
3209 {
3210 if (NILP (args[0]))
3211 {
3212 message (0);
3213 return Qnil;
3214 }
3215 else
3216 {
3217 register Lisp_Object val;
3218 val = Fformat (nargs, args);
3219 #ifdef HAVE_MENUS
3220 /* The MS-DOS frames support popup menus even though they are
3221 not FRAME_WINDOW_P. */
3222 if (FRAME_WINDOW_P (XFRAME (selected_frame))
3223 || FRAME_MSDOS_P (XFRAME (selected_frame)))
3224 {
3225 Lisp_Object pane, menu, obj;
3226 struct gcpro gcpro1;
3227 pane = Fcons (Fcons (build_string ("OK"), Qt), Qnil);
3228 GCPRO1 (pane);
3229 menu = Fcons (val, pane);
3230 obj = Fx_popup_dialog (Qt, menu);
3231 UNGCPRO;
3232 return val;
3233 }
3234 #endif /* HAVE_MENUS */
3235 /* Copy the data so that it won't move when we GC. */
3236 if (! message_text)
3237 {
3238 message_text = (char *)xmalloc (80);
3239 message_length = 80;
3240 }
3241 if (SBYTES (val) > message_length)
3242 {
3243 message_length = SBYTES (val);
3244 message_text = (char *)xrealloc (message_text, message_length);
3245 }
3246 bcopy (SDATA (val), message_text, SBYTES (val));
3247 message2 (message_text, SBYTES (val),
3248 STRING_MULTIBYTE (val));
3249 return val;
3250 }
3251 }
3252 #ifdef HAVE_MENUS
3253 extern Lisp_Object last_nonmenu_event;
3254 #endif
3255
3256 DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3257 doc: /* Display a message in a dialog box or in the echo area.
3258 If this command was invoked with the mouse, use a dialog box if
3259 `use-dialog-box' is non-nil.
3260 Otherwise, use the echo area.
3261 The first argument is a format control string, and the rest are data
3262 to be formatted under control of the string. See `format' for details.
3263
3264 If the first argument is nil, clear any existing message; let the
3265 minibuffer contents show.
3266
3267 usage: (message-or-box STRING &rest ARGS) */)
3268 (nargs, args)
3269 int nargs;
3270 Lisp_Object *args;
3271 {
3272 #ifdef HAVE_MENUS
3273 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3274 && use_dialog_box)
3275 return Fmessage_box (nargs, args);
3276 #endif
3277 return Fmessage (nargs, args);
3278 }
3279
3280 DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3281 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3282 ()
3283 {
3284 return current_message ();
3285 }
3286
3287
3288 DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3289 doc: /* Return a copy of STRING with text properties added.
3290 First argument is the string to copy.
3291 Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3292 properties to add to the result.
3293 usage: (propertize STRING &rest PROPERTIES) */)
3294 (nargs, args)
3295 int nargs;
3296 Lisp_Object *args;
3297 {
3298 Lisp_Object properties, string;
3299 struct gcpro gcpro1, gcpro2;
3300 int i;
3301
3302 /* Number of args must be odd. */
3303 if ((nargs & 1) == 0 || nargs < 1)
3304 error ("Wrong number of arguments");
3305
3306 properties = string = Qnil;
3307 GCPRO2 (properties, string);
3308
3309 /* First argument must be a string. */
3310 CHECK_STRING (args[0]);
3311 string = Fcopy_sequence (args[0]);
3312
3313 for (i = 1; i < nargs; i += 2)
3314 {
3315 CHECK_SYMBOL (args[i]);
3316 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3317 }
3318
3319 Fadd_text_properties (make_number (0),
3320 make_number (SCHARS (string)),
3321 properties, string);
3322 RETURN_UNGCPRO (string);
3323 }
3324
3325
3326 /* Number of bytes that STRING will occupy when put into the result.
3327 MULTIBYTE is nonzero if the result should be multibyte. */
3328
3329 #define CONVERTED_BYTE_SIZE(MULTIBYTE, STRING) \
3330 (((MULTIBYTE) && ! STRING_MULTIBYTE (STRING)) \
3331 ? count_size_as_multibyte (SDATA (STRING), SBYTES (STRING)) \
3332 : SBYTES (STRING))
3333
3334 DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3335 doc: /* Format a string out of a control-string and arguments.
3336 The first argument is a control string.
3337 The other arguments are substituted into it to make the result, a string.
3338 It may contain %-sequences meaning to substitute the next argument.
3339 %s means print a string argument. Actually, prints any object, with `princ'.
3340 %d means print as number in decimal (%o octal, %x hex).
3341 %X is like %x, but uses upper case.
3342 %e means print a number in exponential notation.
3343 %f means print a number in decimal-point notation.
3344 %g means print a number in exponential notation
3345 or decimal-point notation, whichever uses fewer characters.
3346 %c means print a number as a single character.
3347 %S means print any object as an s-expression (using `prin1').
3348 The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3349 Use %% to put a single % into the output.
3350
3351 The basic structure of a %-sequence is
3352 % <flags> <width> <precision> character
3353 where flags is [- #0]+, width is [0-9]+, and precision is .[0-9]+
3354
3355 usage: (format STRING &rest OBJECTS) */)
3356 (nargs, args)
3357 int nargs;
3358 register Lisp_Object *args;
3359 {
3360 register int n; /* The number of the next arg to substitute */
3361 register int total; /* An estimate of the final length */
3362 char *buf, *p;
3363 register unsigned char *format, *end, *format_start;
3364 int nchars;
3365 /* Nonzero if the output should be a multibyte string,
3366 which is true if any of the inputs is one. */
3367 int multibyte = 0;
3368 /* When we make a multibyte string, we must pay attention to the
3369 byte combining problem, i.e., a byte may be combined with a
3370 multibyte charcter of the previous string. This flag tells if we
3371 must consider such a situation or not. */
3372 int maybe_combine_byte;
3373 unsigned char *this_format;
3374 /* Precision for each spec, or -1, a flag value meaning no precision
3375 was given in that spec. Element 0, corresonding to the format
3376 string itself, will not be used. Element NARGS, corresponding to
3377 no argument, *will* be assigned to in the case that a `%' and `.'
3378 occur after the final format specifier. */
3379 int *precision = (int *) (alloca((nargs + 1) * sizeof (int)));
3380 int longest_format;
3381 Lisp_Object val;
3382 int arg_intervals = 0;
3383
3384 /* discarded[I] is 1 if byte I of the format
3385 string was not copied into the output.
3386 It is 2 if byte I was not the first byte of its character. */
3387 char *discarded;
3388
3389 /* Each element records, for one argument,
3390 the start and end bytepos in the output string,
3391 and whether the argument is a string with intervals.
3392 info[0] is unused. Unused elements have -1 for start. */
3393 struct info
3394 {
3395 int start, end, intervals;
3396 } *info = 0;
3397
3398 /* It should not be necessary to GCPRO ARGS, because
3399 the caller in the interpreter should take care of that. */
3400
3401 /* Try to determine whether the result should be multibyte.
3402 This is not always right; sometimes the result needs to be multibyte
3403 because of an object that we will pass through prin1,
3404 and in that case, we won't know it here. */
3405 for (n = 0; n < nargs; n++)
3406 {
3407 if (STRINGP (args[n]) && STRING_MULTIBYTE (args[n]))
3408 multibyte = 1;
3409 /* Piggyback on this loop to initialize precision[N]. */
3410 precision[n] = -1;
3411 }
3412
3413 CHECK_STRING (args[0]);
3414 /* We may have to change "%S" to "%s". */
3415 args[0] = Fcopy_sequence (args[0]);
3416
3417 /* GC should never happen here, so abort if it does. */
3418 abort_on_gc++;
3419
3420 /* If we start out planning a unibyte result,
3421 then discover it has to be multibyte, we jump back to retry.
3422 That can only happen from the first large while loop below. */
3423 retry:
3424
3425 format = SDATA (args[0]);
3426 format_start = format;
3427 end = format + SBYTES (args[0]);
3428 longest_format = 0;
3429
3430 /* Make room in result for all the non-%-codes in the control string. */
3431 total = 5 + CONVERTED_BYTE_SIZE (multibyte, args[0]);
3432
3433 /* Allocate the info and discarded tables. */
3434 {
3435 int nbytes = nargs * sizeof *info;
3436 int i;
3437 info = (struct info *) alloca (nbytes);
3438 bzero (info, nbytes);
3439 for (i = 0; i < nargs; i++)
3440 info[i].start = -1;
3441 discarded = (char *) alloca (SBYTES (args[0]));
3442 bzero (discarded, SBYTES (args[0]));
3443 }
3444
3445 /* Add to TOTAL enough space to hold the converted arguments. */
3446
3447 n = 0;
3448 while (format != end)
3449 if (*format++ == '%')
3450 {
3451 int thissize = 0;
3452 int actual_width = 0;
3453 unsigned char *this_format_start = format - 1;
3454 int field_width = 0;
3455
3456 /* General format specifications look like
3457
3458 '%' [flags] [field-width] [precision] format
3459
3460 where
3461
3462 flags ::= [- #0]+
3463 field-width ::= [0-9]+
3464 precision ::= '.' [0-9]*
3465
3466 If a field-width is specified, it specifies to which width
3467 the output should be padded with blanks, iff the output
3468 string is shorter than field-width.
3469
3470 If precision is specified, it specifies the number of
3471 digits to print after the '.' for floats, or the max.
3472 number of chars to print from a string. */
3473
3474 while (index ("-0# ", *format))
3475 ++format;
3476
3477 if (*format >= '0' && *format <= '9')
3478 {
3479 for (field_width = 0; *format >= '0' && *format <= '9'; ++format)
3480 field_width = 10 * field_width + *format - '0';
3481 }
3482
3483 /* N is not incremented for another few lines below, so refer to
3484 element N+1 (which might be precision[NARGS]). */
3485 if (*format == '.')
3486 {
3487 ++format;
3488 for (precision[n+1] = 0; *format >= '0' && *format <= '9'; ++format)
3489 precision[n+1] = 10 * precision[n+1] + *format - '0';
3490 }
3491
3492 if (format - this_format_start + 1 > longest_format)
3493 longest_format = format - this_format_start + 1;
3494
3495 if (format == end)
3496 error ("Format string ends in middle of format specifier");
3497 if (*format == '%')
3498 format++;
3499 else if (++n >= nargs)
3500 error ("Not enough arguments for format string");
3501 else if (*format == 'S')
3502 {
3503 /* For `S', prin1 the argument and then treat like a string. */
3504 register Lisp_Object tem;
3505 tem = Fprin1_to_string (args[n], Qnil);
3506 if (STRING_MULTIBYTE (tem) && ! multibyte)
3507 {
3508 multibyte = 1;
3509 goto retry;
3510 }
3511 args[n] = tem;
3512 /* If we restart the loop, we should not come here again
3513 because args[n] is now a string and calling
3514 Fprin1_to_string on it produces superflous double
3515 quotes. So, change "%S" to "%s" now. */
3516 *format = 's';
3517 goto string;
3518 }
3519 else if (SYMBOLP (args[n]))
3520 {
3521 args[n] = SYMBOL_NAME (args[n]);
3522 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3523 {
3524 multibyte = 1;
3525 goto retry;
3526 }
3527 goto string;
3528 }
3529 else if (STRINGP (args[n]))
3530 {
3531 string:
3532 if (*format != 's' && *format != 'S')
3533 error ("Format specifier doesn't match argument type");
3534 /* In the case (PRECISION[N] > 0), THISSIZE may not need
3535 to be as large as is calculated here. Easy check for
3536 the case PRECISION = 0. */
3537 thissize = precision[n] ? CONVERTED_BYTE_SIZE (multibyte, args[n]) : 0;
3538 actual_width = lisp_string_width (args[n], -1, NULL, NULL);
3539 }
3540 /* Would get MPV otherwise, since Lisp_Int's `point' to low memory. */
3541 else if (INTEGERP (args[n]) && *format != 's')
3542 {
3543 /* The following loop assumes the Lisp type indicates
3544 the proper way to pass the argument.
3545 So make sure we have a flonum if the argument should
3546 be a double. */
3547 if (*format == 'e' || *format == 'f' || *format == 'g')
3548 args[n] = Ffloat (args[n]);
3549 else
3550 if (*format != 'd' && *format != 'o' && *format != 'x'
3551 && *format != 'i' && *format != 'X' && *format != 'c')
3552 error ("Invalid format operation %%%c", *format);
3553
3554 thissize = 30;
3555 if (*format == 'c')
3556 {
3557 if (! ASCII_CHAR_P (XINT (args[n]))
3558 /* Note: No one can remeber why we have to treat
3559 the character 0 as a multibyte character here.
3560 But, until it causes a real problem, let's
3561 don't change it. */
3562 || XINT (args[n]) == 0)
3563 {
3564 if (! multibyte)
3565 {
3566 multibyte = 1;
3567 goto retry;
3568 }
3569 args[n] = Fchar_to_string (args[n]);
3570 thissize = SBYTES (args[n]);
3571 }
3572 else if (! ASCII_BYTE_P (XINT (args[n])) && multibyte)
3573 {
3574 args[n]
3575 = Fchar_to_string (Funibyte_char_to_multibyte (args[n]));
3576 thissize = SBYTES (args[n]);
3577 }
3578 }
3579 }
3580 else if (FLOATP (args[n]) && *format != 's')
3581 {
3582 if (! (*format == 'e' || *format == 'f' || *format == 'g'))
3583 {
3584 if (*format != 'd' && *format != 'o' && *format != 'x'
3585 && *format != 'i' && *format != 'X' && *format != 'c')
3586 error ("Invalid format operation %%%c", *format);
3587 args[n] = Ftruncate (args[n], Qnil);
3588 }
3589
3590 /* Note that we're using sprintf to print floats,
3591 so we have to take into account what that function
3592 prints. */
3593 /* Filter out flag value of -1. */
3594 thissize = (MAX_10_EXP + 100
3595 + (precision[n] > 0 ? precision[n] : 0));
3596 }
3597 else
3598 {
3599 /* Anything but a string, convert to a string using princ. */
3600 register Lisp_Object tem;
3601 tem = Fprin1_to_string (args[n], Qt);
3602 if (STRING_MULTIBYTE (tem) && ! multibyte)
3603 {
3604 multibyte = 1;
3605 goto retry;
3606 }
3607 args[n] = tem;
3608 goto string;
3609 }
3610
3611 thissize += max (0, field_width - actual_width);
3612 total += thissize + 4;
3613 }
3614
3615 abort_on_gc--;
3616
3617 /* Now we can no longer jump to retry.
3618 TOTAL and LONGEST_FORMAT are known for certain. */
3619
3620 this_format = (unsigned char *) alloca (longest_format + 1);
3621
3622 /* Allocate the space for the result.
3623 Note that TOTAL is an overestimate. */
3624 if (total < 1000)
3625 buf = (char *) alloca (total + 1);
3626 else
3627 buf = (char *) xmalloc (total + 1);
3628
3629 p = buf;
3630 nchars = 0;
3631 n = 0;
3632
3633 /* Scan the format and store result in BUF. */
3634 format = SDATA (args[0]);
3635 format_start = format;
3636 end = format + SBYTES (args[0]);
3637 maybe_combine_byte = 0;
3638 while (format != end)
3639 {
3640 if (*format == '%')
3641 {
3642 int minlen;
3643 int negative = 0;
3644 unsigned char *this_format_start = format;
3645
3646 discarded[format - format_start] = 1;
3647 format++;
3648
3649 while (index("-0# ", *format))
3650 {
3651 if (*format == '-')
3652 {
3653 negative = 1;
3654 }
3655 discarded[format - format_start] = 1;
3656 ++format;
3657 }
3658
3659 minlen = atoi (format);
3660
3661 while ((*format >= '0' && *format <= '9') || *format == '.')
3662 {
3663 discarded[format - format_start] = 1;
3664 format++;
3665 }
3666
3667 if (*format++ == '%')
3668 {
3669 *p++ = '%';
3670 nchars++;
3671 continue;
3672 }
3673
3674 ++n;
3675
3676 discarded[format - format_start - 1] = 1;
3677 info[n].start = nchars;
3678
3679 if (STRINGP (args[n]))
3680 {
3681 /* handle case (precision[n] >= 0) */
3682
3683 int width, padding;
3684 int nbytes, start, end;
3685 int nchars_string;
3686
3687 /* lisp_string_width ignores a precision of 0, but GNU
3688 libc functions print 0 characters when the precision
3689 is 0. Imitate libc behavior here. Changing
3690 lisp_string_width is the right thing, and will be
3691 done, but meanwhile we work with it. */
3692
3693 if (precision[n] == 0)
3694 width = nchars_string = nbytes = 0;
3695 else if (precision[n] > 0)
3696 width = lisp_string_width (args[n], precision[n], &nchars_string, &nbytes);
3697 else
3698 { /* no precision spec given for this argument */
3699 width = lisp_string_width (args[n], -1, NULL, NULL);
3700 nbytes = SBYTES (args[n]);
3701 nchars_string = SCHARS (args[n]);
3702 }
3703
3704 /* If spec requires it, pad on right with spaces. */
3705 padding = minlen - width;
3706 if (! negative)
3707 while (padding-- > 0)
3708 {
3709 *p++ = ' ';
3710 ++nchars;
3711 }
3712
3713 start = nchars;
3714 nchars += nchars_string;
3715 end = nchars;
3716
3717 if (p > buf
3718 && multibyte
3719 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3720 && STRING_MULTIBYTE (args[n])
3721 && !CHAR_HEAD_P (SREF (args[n], 0)))
3722 maybe_combine_byte = 1;
3723
3724 p += copy_text (SDATA (args[n]), p,
3725 nbytes,
3726 STRING_MULTIBYTE (args[n]), multibyte);
3727
3728 if (negative)
3729 while (padding-- > 0)
3730 {
3731 *p++ = ' ';
3732 nchars++;
3733 }
3734
3735 /* If this argument has text properties, record where
3736 in the result string it appears. */
3737 if (STRING_INTERVALS (args[n]))
3738 info[n].intervals = arg_intervals = 1;
3739 }
3740 else if (INTEGERP (args[n]) || FLOATP (args[n]))
3741 {
3742 int this_nchars;
3743
3744 bcopy (this_format_start, this_format,
3745 format - this_format_start);
3746 this_format[format - this_format_start] = 0;
3747
3748 if (INTEGERP (args[n]))
3749 sprintf (p, this_format, XINT (args[n]));
3750 else
3751 sprintf (p, this_format, XFLOAT_DATA (args[n]));
3752
3753 if (p > buf
3754 && multibyte
3755 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3756 && !CHAR_HEAD_P (*((unsigned char *) p)))
3757 maybe_combine_byte = 1;
3758 this_nchars = strlen (p);
3759 if (multibyte)
3760 p += str_to_multibyte (p, buf + total - p, this_nchars);
3761 else
3762 p += this_nchars;
3763 nchars += this_nchars;
3764 }
3765
3766 info[n].end = nchars;
3767 }
3768 else if (STRING_MULTIBYTE (args[0]))
3769 {
3770 /* Copy a whole multibyte character. */
3771 if (p > buf
3772 && multibyte
3773 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3774 && !CHAR_HEAD_P (*format))
3775 maybe_combine_byte = 1;
3776 *p++ = *format++;
3777 while (! CHAR_HEAD_P (*format))
3778 {
3779 discarded[format - format_start] = 2;
3780 *p++ = *format++;
3781 }
3782 nchars++;
3783 }
3784 else if (multibyte)
3785 {
3786 /* Convert a single-byte character to multibyte. */
3787 int len = copy_text (format, p, 1, 0, 1);
3788
3789 p += len;
3790 format++;
3791 nchars++;
3792 }
3793 else
3794 *p++ = *format++, nchars++;
3795 }
3796
3797 if (p > buf + total + 1)
3798 abort ();
3799
3800 if (maybe_combine_byte)
3801 nchars = multibyte_chars_in_text (buf, p - buf);
3802 val = make_specified_string (buf, nchars, p - buf, multibyte);
3803
3804 /* If we allocated BUF with malloc, free it too. */
3805 if (total >= 1000)
3806 xfree (buf);
3807
3808 /* If the format string has text properties, or any of the string
3809 arguments has text properties, set up text properties of the
3810 result string. */
3811
3812 if (STRING_INTERVALS (args[0]) || arg_intervals)
3813 {
3814 Lisp_Object len, new_len, props;
3815 struct gcpro gcpro1;
3816
3817 /* Add text properties from the format string. */
3818 len = make_number (SCHARS (args[0]));
3819 props = text_property_list (args[0], make_number (0), len, Qnil);
3820 GCPRO1 (props);
3821
3822 if (CONSP (props))
3823 {
3824 int bytepos = 0, position = 0, translated = 0, argn = 1;
3825 Lisp_Object list;
3826
3827 /* Adjust the bounds of each text property
3828 to the proper start and end in the output string. */
3829 /* We take advantage of the fact that the positions in PROPS
3830 are in increasing order, so that we can do (effectively)
3831 one scan through the position space of the format string.
3832
3833 BYTEPOS is the byte position in the format string,
3834 POSITION is the untranslated char position in it,
3835 TRANSLATED is the translated char position in BUF,
3836 and ARGN is the number of the next arg we will come to. */
3837 for (list = props; CONSP (list); list = XCDR (list))
3838 {
3839 Lisp_Object item;
3840 int pos;
3841
3842 item = XCAR (list);
3843
3844 /* First adjust the property start position. */
3845 pos = XINT (XCAR (item));
3846
3847 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
3848 up to this position. */
3849 for (; position < pos; bytepos++)
3850 {
3851 if (! discarded[bytepos])
3852 position++, translated++;
3853 else if (discarded[bytepos] == 1)
3854 {
3855 position++;
3856 if (translated == info[argn].start)
3857 {
3858 translated += info[argn].end - info[argn].start;
3859 argn++;
3860 }
3861 }
3862 }
3863
3864 XSETCAR (item, make_number (translated));
3865
3866 /* Likewise adjust the property end position. */
3867 pos = XINT (XCAR (XCDR (item)));
3868
3869 for (; bytepos < pos; bytepos++)
3870 {
3871 if (! discarded[bytepos])
3872 position++, translated++;
3873 else if (discarded[bytepos] == 1)
3874 {
3875 position++;
3876 if (translated == info[argn].start)
3877 {
3878 translated += info[argn].end - info[argn].start;
3879 argn++;
3880 }
3881 }
3882 }
3883
3884 XSETCAR (XCDR (item), make_number (translated));
3885 }
3886
3887 add_text_properties_from_list (val, props, make_number (0));
3888 }
3889
3890 /* Add text properties from arguments. */
3891 if (arg_intervals)
3892 for (n = 1; n < nargs; ++n)
3893 if (info[n].intervals)
3894 {
3895 len = make_number (SCHARS (args[n]));
3896 new_len = make_number (info[n].end - info[n].start);
3897 props = text_property_list (args[n], make_number (0), len, Qnil);
3898 extend_property_ranges (props, len, new_len);
3899 /* If successive arguments have properites, be sure that
3900 the value of `composition' property be the copy. */
3901 if (n > 1 && info[n - 1].end)
3902 make_composition_value_copy (props);
3903 add_text_properties_from_list (val, props,
3904 make_number (info[n].start));
3905 }
3906
3907 UNGCPRO;
3908 }
3909
3910 return val;
3911 }
3912
3913 Lisp_Object
3914 format2 (string1, arg0, arg1)
3915 char *string1;
3916 Lisp_Object arg0, arg1;
3917 {
3918 Lisp_Object args[3];
3919 args[0] = build_string (string1);
3920 args[1] = arg0;
3921 args[2] = arg1;
3922 return Fformat (3, args);
3923 }
3924 \f
3925 DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
3926 doc: /* Return t if two characters match, optionally ignoring case.
3927 Both arguments must be characters (i.e. integers).
3928 Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
3929 (c1, c2)
3930 register Lisp_Object c1, c2;
3931 {
3932 int i1, i2;
3933 CHECK_NUMBER (c1);
3934 CHECK_NUMBER (c2);
3935
3936 if (XINT (c1) == XINT (c2))
3937 return Qt;
3938 if (NILP (current_buffer->case_fold_search))
3939 return Qnil;
3940
3941 /* Do these in separate statements,
3942 then compare the variables.
3943 because of the way DOWNCASE uses temp variables. */
3944 i1 = XFASTINT (c1);
3945 if (NILP (current_buffer->enable_multibyte_characters)
3946 && ! ASCII_CHAR_P (i1))
3947 {
3948 MAKE_CHAR_MULTIBYTE (i1);
3949 }
3950 i2 = XFASTINT (c2);
3951 if (NILP (current_buffer->enable_multibyte_characters)
3952 && ! ASCII_CHAR_P (i2))
3953 {
3954 MAKE_CHAR_MULTIBYTE (i2);
3955 }
3956 i1 = DOWNCASE (i1);
3957 i2 = DOWNCASE (i2);
3958 return (i1 == i2 ? Qt : Qnil);
3959 }
3960 \f
3961 /* Transpose the markers in two regions of the current buffer, and
3962 adjust the ones between them if necessary (i.e.: if the regions
3963 differ in size).
3964
3965 START1, END1 are the character positions of the first region.
3966 START1_BYTE, END1_BYTE are the byte positions.
3967 START2, END2 are the character positions of the second region.
3968 START2_BYTE, END2_BYTE are the byte positions.
3969
3970 Traverses the entire marker list of the buffer to do so, adding an
3971 appropriate amount to some, subtracting from some, and leaving the
3972 rest untouched. Most of this is copied from adjust_markers in insdel.c.
3973
3974 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
3975
3976 static void
3977 transpose_markers (start1, end1, start2, end2,
3978 start1_byte, end1_byte, start2_byte, end2_byte)
3979 register int start1, end1, start2, end2;
3980 register int start1_byte, end1_byte, start2_byte, end2_byte;
3981 {
3982 register int amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
3983 register struct Lisp_Marker *marker;
3984
3985 /* Update point as if it were a marker. */
3986 if (PT < start1)
3987 ;
3988 else if (PT < end1)
3989 TEMP_SET_PT_BOTH (PT + (end2 - end1),
3990 PT_BYTE + (end2_byte - end1_byte));
3991 else if (PT < start2)
3992 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
3993 (PT_BYTE + (end2_byte - start2_byte)
3994 - (end1_byte - start1_byte)));
3995 else if (PT < end2)
3996 TEMP_SET_PT_BOTH (PT - (start2 - start1),
3997 PT_BYTE - (start2_byte - start1_byte));
3998
3999 /* We used to adjust the endpoints here to account for the gap, but that
4000 isn't good enough. Even if we assume the caller has tried to move the
4001 gap out of our way, it might still be at start1 exactly, for example;
4002 and that places it `inside' the interval, for our purposes. The amount
4003 of adjustment is nontrivial if there's a `denormalized' marker whose
4004 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
4005 the dirty work to Fmarker_position, below. */
4006
4007 /* The difference between the region's lengths */
4008 diff = (end2 - start2) - (end1 - start1);
4009 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
4010
4011 /* For shifting each marker in a region by the length of the other
4012 region plus the distance between the regions. */
4013 amt1 = (end2 - start2) + (start2 - end1);
4014 amt2 = (end1 - start1) + (start2 - end1);
4015 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
4016 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
4017
4018 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
4019 {
4020 mpos = marker->bytepos;
4021 if (mpos >= start1_byte && mpos < end2_byte)
4022 {
4023 if (mpos < end1_byte)
4024 mpos += amt1_byte;
4025 else if (mpos < start2_byte)
4026 mpos += diff_byte;
4027 else
4028 mpos -= amt2_byte;
4029 marker->bytepos = mpos;
4030 }
4031 mpos = marker->charpos;
4032 if (mpos >= start1 && mpos < end2)
4033 {
4034 if (mpos < end1)
4035 mpos += amt1;
4036 else if (mpos < start2)
4037 mpos += diff;
4038 else
4039 mpos -= amt2;
4040 }
4041 marker->charpos = mpos;
4042 }
4043 }
4044
4045 DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
4046 doc: /* Transpose region START1 to END1 with START2 to END2.
4047 The regions may not be overlapping, because the size of the buffer is
4048 never changed in a transposition.
4049
4050 Optional fifth arg LEAVE_MARKERS, if non-nil, means don't update
4051 any markers that happen to be located in the regions.
4052
4053 Transposing beyond buffer boundaries is an error. */)
4054 (startr1, endr1, startr2, endr2, leave_markers)
4055 Lisp_Object startr1, endr1, startr2, endr2, leave_markers;
4056 {
4057 register int start1, end1, start2, end2;
4058 int start1_byte, start2_byte, len1_byte, len2_byte;
4059 int gap, len1, len_mid, len2;
4060 unsigned char *start1_addr, *start2_addr, *temp;
4061
4062 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2;
4063 cur_intv = BUF_INTERVALS (current_buffer);
4064
4065 validate_region (&startr1, &endr1);
4066 validate_region (&startr2, &endr2);
4067
4068 start1 = XFASTINT (startr1);
4069 end1 = XFASTINT (endr1);
4070 start2 = XFASTINT (startr2);
4071 end2 = XFASTINT (endr2);
4072 gap = GPT;
4073
4074 /* Swap the regions if they're reversed. */
4075 if (start2 < end1)
4076 {
4077 register int glumph = start1;
4078 start1 = start2;
4079 start2 = glumph;
4080 glumph = end1;
4081 end1 = end2;
4082 end2 = glumph;
4083 }
4084
4085 len1 = end1 - start1;
4086 len2 = end2 - start2;
4087
4088 if (start2 < end1)
4089 error ("Transposed regions overlap");
4090 else if (start1 == end1 || start2 == end2)
4091 error ("Transposed region has length 0");
4092
4093 /* The possibilities are:
4094 1. Adjacent (contiguous) regions, or separate but equal regions
4095 (no, really equal, in this case!), or
4096 2. Separate regions of unequal size.
4097
4098 The worst case is usually No. 2. It means that (aside from
4099 potential need for getting the gap out of the way), there also
4100 needs to be a shifting of the text between the two regions. So
4101 if they are spread far apart, we are that much slower... sigh. */
4102
4103 /* It must be pointed out that the really studly thing to do would
4104 be not to move the gap at all, but to leave it in place and work
4105 around it if necessary. This would be extremely efficient,
4106 especially considering that people are likely to do
4107 transpositions near where they are working interactively, which
4108 is exactly where the gap would be found. However, such code
4109 would be much harder to write and to read. So, if you are
4110 reading this comment and are feeling squirrely, by all means have
4111 a go! I just didn't feel like doing it, so I will simply move
4112 the gap the minimum distance to get it out of the way, and then
4113 deal with an unbroken array. */
4114
4115 /* Make sure the gap won't interfere, by moving it out of the text
4116 we will operate on. */
4117 if (start1 < gap && gap < end2)
4118 {
4119 if (gap - start1 < end2 - gap)
4120 move_gap (start1);
4121 else
4122 move_gap (end2);
4123 }
4124
4125 start1_byte = CHAR_TO_BYTE (start1);
4126 start2_byte = CHAR_TO_BYTE (start2);
4127 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
4128 len2_byte = CHAR_TO_BYTE (end2) - start2_byte;
4129
4130 #ifdef BYTE_COMBINING_DEBUG
4131 if (end1 == start2)
4132 {
4133 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4134 len2_byte, start1, start1_byte)
4135 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4136 len1_byte, end2, start2_byte + len2_byte)
4137 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4138 len1_byte, end2, start2_byte + len2_byte))
4139 abort ();
4140 }
4141 else
4142 {
4143 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4144 len2_byte, start1, start1_byte)
4145 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4146 len1_byte, start2, start2_byte)
4147 || count_combining_after (BYTE_POS_ADDR (start2_byte),
4148 len2_byte, end1, start1_byte + len1_byte)
4149 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4150 len1_byte, end2, start2_byte + len2_byte))
4151 abort ();
4152 }
4153 #endif
4154
4155 /* Hmmm... how about checking to see if the gap is large
4156 enough to use as the temporary storage? That would avoid an
4157 allocation... interesting. Later, don't fool with it now. */
4158
4159 /* Working without memmove, for portability (sigh), so must be
4160 careful of overlapping subsections of the array... */
4161
4162 if (end1 == start2) /* adjacent regions */
4163 {
4164 modify_region (current_buffer, start1, end2);
4165 record_change (start1, len1 + len2);
4166
4167 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4168 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4169 Fset_text_properties (make_number (start1), make_number (end2),
4170 Qnil, Qnil);
4171
4172 /* First region smaller than second. */
4173 if (len1_byte < len2_byte)
4174 {
4175 /* We use alloca only if it is small,
4176 because we want to avoid stack overflow. */
4177 if (len2_byte > 20000)
4178 temp = (unsigned char *) xmalloc (len2_byte);
4179 else
4180 temp = (unsigned char *) alloca (len2_byte);
4181
4182 /* Don't precompute these addresses. We have to compute them
4183 at the last minute, because the relocating allocator might
4184 have moved the buffer around during the xmalloc. */
4185 start1_addr = BYTE_POS_ADDR (start1_byte);
4186 start2_addr = BYTE_POS_ADDR (start2_byte);
4187
4188 bcopy (start2_addr, temp, len2_byte);
4189 bcopy (start1_addr, start1_addr + len2_byte, len1_byte);
4190 bcopy (temp, start1_addr, len2_byte);
4191 if (len2_byte > 20000)
4192 xfree (temp);
4193 }
4194 else
4195 /* First region not smaller than second. */
4196 {
4197 if (len1_byte > 20000)
4198 temp = (unsigned char *) xmalloc (len1_byte);
4199 else
4200 temp = (unsigned char *) alloca (len1_byte);
4201 start1_addr = BYTE_POS_ADDR (start1_byte);
4202 start2_addr = BYTE_POS_ADDR (start2_byte);
4203 bcopy (start1_addr, temp, len1_byte);
4204 bcopy (start2_addr, start1_addr, len2_byte);
4205 bcopy (temp, start1_addr + len2_byte, len1_byte);
4206 if (len1_byte > 20000)
4207 xfree (temp);
4208 }
4209 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4210 len1, current_buffer, 0);
4211 graft_intervals_into_buffer (tmp_interval2, start1,
4212 len2, current_buffer, 0);
4213 update_compositions (start1, start1 + len2, CHECK_BORDER);
4214 update_compositions (start1 + len2, end2, CHECK_TAIL);
4215 }
4216 /* Non-adjacent regions, because end1 != start2, bleagh... */
4217 else
4218 {
4219 len_mid = start2_byte - (start1_byte + len1_byte);
4220
4221 if (len1_byte == len2_byte)
4222 /* Regions are same size, though, how nice. */
4223 {
4224 modify_region (current_buffer, start1, end1);
4225 modify_region (current_buffer, start2, end2);
4226 record_change (start1, len1);
4227 record_change (start2, len2);
4228 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4229 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4230 Fset_text_properties (make_number (start1), make_number (end1),
4231 Qnil, Qnil);
4232 Fset_text_properties (make_number (start2), make_number (end2),
4233 Qnil, Qnil);
4234
4235 if (len1_byte > 20000)
4236 temp = (unsigned char *) xmalloc (len1_byte);
4237 else
4238 temp = (unsigned char *) alloca (len1_byte);
4239 start1_addr = BYTE_POS_ADDR (start1_byte);
4240 start2_addr = BYTE_POS_ADDR (start2_byte);
4241 bcopy (start1_addr, temp, len1_byte);
4242 bcopy (start2_addr, start1_addr, len2_byte);
4243 bcopy (temp, start2_addr, len1_byte);
4244 if (len1_byte > 20000)
4245 xfree (temp);
4246 graft_intervals_into_buffer (tmp_interval1, start2,
4247 len1, current_buffer, 0);
4248 graft_intervals_into_buffer (tmp_interval2, start1,
4249 len2, current_buffer, 0);
4250 }
4251
4252 else if (len1_byte < len2_byte) /* Second region larger than first */
4253 /* Non-adjacent & unequal size, area between must also be shifted. */
4254 {
4255 modify_region (current_buffer, start1, end2);
4256 record_change (start1, (end2 - start1));
4257 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4258 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4259 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4260 Fset_text_properties (make_number (start1), make_number (end2),
4261 Qnil, Qnil);
4262
4263 /* holds region 2 */
4264 if (len2_byte > 20000)
4265 temp = (unsigned char *) xmalloc (len2_byte);
4266 else
4267 temp = (unsigned char *) alloca (len2_byte);
4268 start1_addr = BYTE_POS_ADDR (start1_byte);
4269 start2_addr = BYTE_POS_ADDR (start2_byte);
4270 bcopy (start2_addr, temp, len2_byte);
4271 bcopy (start1_addr, start1_addr + len_mid + len2_byte, len1_byte);
4272 safe_bcopy (start1_addr + len1_byte, start1_addr + len2_byte, len_mid);
4273 bcopy (temp, start1_addr, len2_byte);
4274 if (len2_byte > 20000)
4275 xfree (temp);
4276 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4277 len1, current_buffer, 0);
4278 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4279 len_mid, current_buffer, 0);
4280 graft_intervals_into_buffer (tmp_interval2, start1,
4281 len2, current_buffer, 0);
4282 }
4283 else
4284 /* Second region smaller than first. */
4285 {
4286 record_change (start1, (end2 - start1));
4287 modify_region (current_buffer, start1, end2);
4288
4289 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4290 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4291 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4292 Fset_text_properties (make_number (start1), make_number (end2),
4293 Qnil, Qnil);
4294
4295 /* holds region 1 */
4296 if (len1_byte > 20000)
4297 temp = (unsigned char *) xmalloc (len1_byte);
4298 else
4299 temp = (unsigned char *) alloca (len1_byte);
4300 start1_addr = BYTE_POS_ADDR (start1_byte);
4301 start2_addr = BYTE_POS_ADDR (start2_byte);
4302 bcopy (start1_addr, temp, len1_byte);
4303 bcopy (start2_addr, start1_addr, len2_byte);
4304 bcopy (start1_addr + len1_byte, start1_addr + len2_byte, len_mid);
4305 bcopy (temp, start1_addr + len2_byte + len_mid, len1_byte);
4306 if (len1_byte > 20000)
4307 xfree (temp);
4308 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4309 len1, current_buffer, 0);
4310 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4311 len_mid, current_buffer, 0);
4312 graft_intervals_into_buffer (tmp_interval2, start1,
4313 len2, current_buffer, 0);
4314 }
4315
4316 update_compositions (start1, start1 + len2, CHECK_BORDER);
4317 update_compositions (end2 - len1, end2, CHECK_BORDER);
4318 }
4319
4320 /* When doing multiple transpositions, it might be nice
4321 to optimize this. Perhaps the markers in any one buffer
4322 should be organized in some sorted data tree. */
4323 if (NILP (leave_markers))
4324 {
4325 transpose_markers (start1, end1, start2, end2,
4326 start1_byte, start1_byte + len1_byte,
4327 start2_byte, start2_byte + len2_byte);
4328 fix_start_end_in_overlays (start1, end2);
4329 }
4330
4331 return Qnil;
4332 }
4333
4334 \f
4335 void
4336 syms_of_editfns ()
4337 {
4338 environbuf = 0;
4339
4340 Qbuffer_access_fontify_functions
4341 = intern ("buffer-access-fontify-functions");
4342 staticpro (&Qbuffer_access_fontify_functions);
4343
4344 DEFVAR_LISP ("inhibit-field-text-motion", &Vinhibit_field_text_motion,
4345 doc: /* Non-nil means text motion commands don't notice fields. */);
4346 Vinhibit_field_text_motion = Qnil;
4347
4348 DEFVAR_LISP ("buffer-access-fontify-functions",
4349 &Vbuffer_access_fontify_functions,
4350 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
4351 Each function is called with two arguments which specify the range
4352 of the buffer being accessed. */);
4353 Vbuffer_access_fontify_functions = Qnil;
4354
4355 {
4356 Lisp_Object obuf;
4357 extern Lisp_Object Vprin1_to_string_buffer;
4358 obuf = Fcurrent_buffer ();
4359 /* Do this here, because init_buffer_once is too early--it won't work. */
4360 Fset_buffer (Vprin1_to_string_buffer);
4361 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
4362 Fset (Fmake_local_variable (intern ("buffer-access-fontify-functions")),
4363 Qnil);
4364 Fset_buffer (obuf);
4365 }
4366
4367 DEFVAR_LISP ("buffer-access-fontified-property",
4368 &Vbuffer_access_fontified_property,
4369 doc: /* Property which (if non-nil) indicates text has been fontified.
4370 `buffer-substring' need not call the `buffer-access-fontify-functions'
4371 functions if all the text being accessed has this property. */);
4372 Vbuffer_access_fontified_property = Qnil;
4373
4374 DEFVAR_LISP ("system-name", &Vsystem_name,
4375 doc: /* The name of the machine Emacs is running on. */);
4376
4377 DEFVAR_LISP ("user-full-name", &Vuser_full_name,
4378 doc: /* The full name of the user logged in. */);
4379
4380 DEFVAR_LISP ("user-login-name", &Vuser_login_name,
4381 doc: /* The user's name, taken from environment variables if possible. */);
4382
4383 DEFVAR_LISP ("user-real-login-name", &Vuser_real_login_name,
4384 doc: /* The user's name, based upon the real uid only. */);
4385
4386 defsubr (&Spropertize);
4387 defsubr (&Schar_equal);
4388 defsubr (&Sgoto_char);
4389 defsubr (&Sstring_to_char);
4390 defsubr (&Schar_to_string);
4391 defsubr (&Sbuffer_substring);
4392 defsubr (&Sbuffer_substring_no_properties);
4393 defsubr (&Sbuffer_string);
4394
4395 defsubr (&Spoint_marker);
4396 defsubr (&Smark_marker);
4397 defsubr (&Spoint);
4398 defsubr (&Sregion_beginning);
4399 defsubr (&Sregion_end);
4400
4401 staticpro (&Qfield);
4402 Qfield = intern ("field");
4403 staticpro (&Qboundary);
4404 Qboundary = intern ("boundary");
4405 defsubr (&Sfield_beginning);
4406 defsubr (&Sfield_end);
4407 defsubr (&Sfield_string);
4408 defsubr (&Sfield_string_no_properties);
4409 defsubr (&Sdelete_field);
4410 defsubr (&Sconstrain_to_field);
4411
4412 defsubr (&Sline_beginning_position);
4413 defsubr (&Sline_end_position);
4414
4415 /* defsubr (&Smark); */
4416 /* defsubr (&Sset_mark); */
4417 defsubr (&Ssave_excursion);
4418 defsubr (&Ssave_current_buffer);
4419
4420 defsubr (&Sbufsize);
4421 defsubr (&Spoint_max);
4422 defsubr (&Spoint_min);
4423 defsubr (&Spoint_min_marker);
4424 defsubr (&Spoint_max_marker);
4425 defsubr (&Sgap_position);
4426 defsubr (&Sgap_size);
4427 defsubr (&Sposition_bytes);
4428 defsubr (&Sbyte_to_position);
4429
4430 defsubr (&Sbobp);
4431 defsubr (&Seobp);
4432 defsubr (&Sbolp);
4433 defsubr (&Seolp);
4434 defsubr (&Sfollowing_char);
4435 defsubr (&Sprevious_char);
4436 defsubr (&Schar_after);
4437 defsubr (&Schar_before);
4438 defsubr (&Sinsert);
4439 defsubr (&Sinsert_before_markers);
4440 defsubr (&Sinsert_and_inherit);
4441 defsubr (&Sinsert_and_inherit_before_markers);
4442 defsubr (&Sinsert_char);
4443 defsubr (&Sinsert_byte);
4444
4445 defsubr (&Suser_login_name);
4446 defsubr (&Suser_real_login_name);
4447 defsubr (&Suser_uid);
4448 defsubr (&Suser_real_uid);
4449 defsubr (&Suser_full_name);
4450 defsubr (&Semacs_pid);
4451 defsubr (&Scurrent_time);
4452 defsubr (&Sformat_time_string);
4453 defsubr (&Sfloat_time);
4454 defsubr (&Sdecode_time);
4455 defsubr (&Sencode_time);
4456 defsubr (&Scurrent_time_string);
4457 defsubr (&Scurrent_time_zone);
4458 defsubr (&Sset_time_zone_rule);
4459 defsubr (&Ssystem_name);
4460 defsubr (&Smessage);
4461 defsubr (&Smessage_box);
4462 defsubr (&Smessage_or_box);
4463 defsubr (&Scurrent_message);
4464 defsubr (&Sformat);
4465
4466 defsubr (&Sinsert_buffer_substring);
4467 defsubr (&Scompare_buffer_substrings);
4468 defsubr (&Ssubst_char_in_region);
4469 defsubr (&Stranslate_region_internal);
4470 defsubr (&Sdelete_region);
4471 defsubr (&Sdelete_and_extract_region);
4472 defsubr (&Swiden);
4473 defsubr (&Snarrow_to_region);
4474 defsubr (&Ssave_restriction);
4475 defsubr (&Stranspose_regions);
4476 }
4477
4478 /* arch-tag: fc3827d8-6f60-4067-b11e-c3218031b018
4479 (do not change this comment) */