Sync to HEAD
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985,86,88,93,94,95,97,98,1999,2000,01,02,03,2004
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
29
30 /* Note that this declares bzero on OSF/1. How dumb. */
31
32 #include <signal.h>
33
34 /* This file is part of the core Lisp implementation, and thus must
35 deal with the real data structures. If the Lisp implementation is
36 replaced, this file likely will not be used. */
37
38 #undef HIDE_LISP_IMPLEMENTATION
39 #include "lisp.h"
40 #include "process.h"
41 #include "intervals.h"
42 #include "puresize.h"
43 #include "buffer.h"
44 #include "window.h"
45 #include "keyboard.h"
46 #include "frame.h"
47 #include "blockinput.h"
48 #include "character.h"
49 #include "syssignal.h"
50 #include <setjmp.h>
51
52 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
53 memory. Can do this only if using gmalloc.c. */
54
55 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
56 #undef GC_MALLOC_CHECK
57 #endif
58
59 #ifdef HAVE_UNISTD_H
60 #include <unistd.h>
61 #else
62 extern POINTER_TYPE *sbrk ();
63 #endif
64
65 #ifdef DOUG_LEA_MALLOC
66
67 #include <malloc.h>
68 /* malloc.h #defines this as size_t, at least in glibc2. */
69 #ifndef __malloc_size_t
70 #define __malloc_size_t int
71 #endif
72
73 /* Specify maximum number of areas to mmap. It would be nice to use a
74 value that explicitly means "no limit". */
75
76 #define MMAP_MAX_AREAS 100000000
77
78 #else /* not DOUG_LEA_MALLOC */
79
80 /* The following come from gmalloc.c. */
81
82 #define __malloc_size_t size_t
83 extern __malloc_size_t _bytes_used;
84 extern __malloc_size_t __malloc_extra_blocks;
85
86 #endif /* not DOUG_LEA_MALLOC */
87
88 /* Value of _bytes_used, when spare_memory was freed. */
89
90 static __malloc_size_t bytes_used_when_full;
91
92 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
93 to a struct Lisp_String. */
94
95 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
96 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
97 #define STRING_MARKED_P(S) ((S)->size & ARRAY_MARK_FLAG)
98
99 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
100 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
101 #define VECTOR_MARKED_P(V) ((V)->size & ARRAY_MARK_FLAG)
102
103 /* Value is the number of bytes/chars of S, a pointer to a struct
104 Lisp_String. This must be used instead of STRING_BYTES (S) or
105 S->size during GC, because S->size contains the mark bit for
106 strings. */
107
108 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
109 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
110
111 /* Number of bytes of consing done since the last gc. */
112
113 int consing_since_gc;
114
115 /* Count the amount of consing of various sorts of space. */
116
117 EMACS_INT cons_cells_consed;
118 EMACS_INT floats_consed;
119 EMACS_INT vector_cells_consed;
120 EMACS_INT symbols_consed;
121 EMACS_INT string_chars_consed;
122 EMACS_INT misc_objects_consed;
123 EMACS_INT intervals_consed;
124 EMACS_INT strings_consed;
125
126 /* Number of bytes of consing since GC before another GC should be done. */
127
128 EMACS_INT gc_cons_threshold;
129
130 /* Nonzero during GC. */
131
132 int gc_in_progress;
133
134 /* Nonzero means abort if try to GC.
135 This is for code which is written on the assumption that
136 no GC will happen, so as to verify that assumption. */
137
138 int abort_on_gc;
139
140 /* Nonzero means display messages at beginning and end of GC. */
141
142 int garbage_collection_messages;
143
144 #ifndef VIRT_ADDR_VARIES
145 extern
146 #endif /* VIRT_ADDR_VARIES */
147 int malloc_sbrk_used;
148
149 #ifndef VIRT_ADDR_VARIES
150 extern
151 #endif /* VIRT_ADDR_VARIES */
152 int malloc_sbrk_unused;
153
154 /* Two limits controlling how much undo information to keep. */
155
156 EMACS_INT undo_limit;
157 EMACS_INT undo_strong_limit;
158
159 /* Number of live and free conses etc. */
160
161 static int total_conses, total_markers, total_symbols, total_vector_size;
162 static int total_free_conses, total_free_markers, total_free_symbols;
163 static int total_free_floats, total_floats;
164
165 /* Points to memory space allocated as "spare", to be freed if we run
166 out of memory. */
167
168 static char *spare_memory;
169
170 /* Amount of spare memory to keep in reserve. */
171
172 #define SPARE_MEMORY (1 << 14)
173
174 /* Number of extra blocks malloc should get when it needs more core. */
175
176 static int malloc_hysteresis;
177
178 /* Non-nil means defun should do purecopy on the function definition. */
179
180 Lisp_Object Vpurify_flag;
181
182 /* Non-nil means we are handling a memory-full error. */
183
184 Lisp_Object Vmemory_full;
185
186 #ifndef HAVE_SHM
187
188 /* Force it into data space! Initialize it to a nonzero value;
189 otherwise some compilers put it into BSS. */
190
191 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
192 #define PUREBEG (char *) pure
193
194 #else /* HAVE_SHM */
195
196 #define pure PURE_SEG_BITS /* Use shared memory segment */
197 #define PUREBEG (char *)PURE_SEG_BITS
198
199 #endif /* HAVE_SHM */
200
201 /* Pointer to the pure area, and its size. */
202
203 static char *purebeg;
204 static size_t pure_size;
205
206 /* Number of bytes of pure storage used before pure storage overflowed.
207 If this is non-zero, this implies that an overflow occurred. */
208
209 static size_t pure_bytes_used_before_overflow;
210
211 /* Value is non-zero if P points into pure space. */
212
213 #define PURE_POINTER_P(P) \
214 (((PNTR_COMPARISON_TYPE) (P) \
215 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
216 && ((PNTR_COMPARISON_TYPE) (P) \
217 >= (PNTR_COMPARISON_TYPE) purebeg))
218
219 /* Index in pure at which next pure object will be allocated.. */
220
221 EMACS_INT pure_bytes_used;
222
223 /* If nonzero, this is a warning delivered by malloc and not yet
224 displayed. */
225
226 char *pending_malloc_warning;
227
228 /* Pre-computed signal argument for use when memory is exhausted. */
229
230 Lisp_Object Vmemory_signal_data;
231
232 /* Maximum amount of C stack to save when a GC happens. */
233
234 #ifndef MAX_SAVE_STACK
235 #define MAX_SAVE_STACK 16000
236 #endif
237
238 /* Buffer in which we save a copy of the C stack at each GC. */
239
240 char *stack_copy;
241 int stack_copy_size;
242
243 /* Non-zero means ignore malloc warnings. Set during initialization.
244 Currently not used. */
245
246 int ignore_warnings;
247
248 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
249
250 /* Hook run after GC has finished. */
251
252 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
253
254 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
255 EMACS_INT gcs_done; /* accumulated GCs */
256
257 static void mark_buffer P_ ((Lisp_Object));
258 extern void mark_kboards P_ ((void));
259 static void gc_sweep P_ ((void));
260 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
261 static void mark_face_cache P_ ((struct face_cache *));
262
263 #ifdef HAVE_WINDOW_SYSTEM
264 static void mark_image P_ ((struct image *));
265 static void mark_image_cache P_ ((struct frame *));
266 #endif /* HAVE_WINDOW_SYSTEM */
267
268 static struct Lisp_String *allocate_string P_ ((void));
269 static void compact_small_strings P_ ((void));
270 static void free_large_strings P_ ((void));
271 static void sweep_strings P_ ((void));
272
273 extern int message_enable_multibyte;
274
275 /* When scanning the C stack for live Lisp objects, Emacs keeps track
276 of what memory allocated via lisp_malloc is intended for what
277 purpose. This enumeration specifies the type of memory. */
278
279 enum mem_type
280 {
281 MEM_TYPE_NON_LISP,
282 MEM_TYPE_BUFFER,
283 MEM_TYPE_CONS,
284 MEM_TYPE_STRING,
285 MEM_TYPE_MISC,
286 MEM_TYPE_SYMBOL,
287 MEM_TYPE_FLOAT,
288 /* Keep the following vector-like types together, with
289 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
290 first. Or change the code of live_vector_p, for instance. */
291 MEM_TYPE_VECTOR,
292 MEM_TYPE_PROCESS,
293 MEM_TYPE_HASH_TABLE,
294 MEM_TYPE_FRAME,
295 MEM_TYPE_WINDOW
296 };
297
298 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
299
300 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
301 #include <stdio.h> /* For fprintf. */
302 #endif
303
304 /* A unique object in pure space used to make some Lisp objects
305 on free lists recognizable in O(1). */
306
307 Lisp_Object Vdead;
308
309 #ifdef GC_MALLOC_CHECK
310
311 enum mem_type allocated_mem_type;
312 int dont_register_blocks;
313
314 #endif /* GC_MALLOC_CHECK */
315
316 /* A node in the red-black tree describing allocated memory containing
317 Lisp data. Each such block is recorded with its start and end
318 address when it is allocated, and removed from the tree when it
319 is freed.
320
321 A red-black tree is a balanced binary tree with the following
322 properties:
323
324 1. Every node is either red or black.
325 2. Every leaf is black.
326 3. If a node is red, then both of its children are black.
327 4. Every simple path from a node to a descendant leaf contains
328 the same number of black nodes.
329 5. The root is always black.
330
331 When nodes are inserted into the tree, or deleted from the tree,
332 the tree is "fixed" so that these properties are always true.
333
334 A red-black tree with N internal nodes has height at most 2
335 log(N+1). Searches, insertions and deletions are done in O(log N).
336 Please see a text book about data structures for a detailed
337 description of red-black trees. Any book worth its salt should
338 describe them. */
339
340 struct mem_node
341 {
342 /* Children of this node. These pointers are never NULL. When there
343 is no child, the value is MEM_NIL, which points to a dummy node. */
344 struct mem_node *left, *right;
345
346 /* The parent of this node. In the root node, this is NULL. */
347 struct mem_node *parent;
348
349 /* Start and end of allocated region. */
350 void *start, *end;
351
352 /* Node color. */
353 enum {MEM_BLACK, MEM_RED} color;
354
355 /* Memory type. */
356 enum mem_type type;
357 };
358
359 /* Base address of stack. Set in main. */
360
361 Lisp_Object *stack_base;
362
363 /* Root of the tree describing allocated Lisp memory. */
364
365 static struct mem_node *mem_root;
366
367 /* Lowest and highest known address in the heap. */
368
369 static void *min_heap_address, *max_heap_address;
370
371 /* Sentinel node of the tree. */
372
373 static struct mem_node mem_z;
374 #define MEM_NIL &mem_z
375
376 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
377 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
378 static void lisp_free P_ ((POINTER_TYPE *));
379 static void mark_stack P_ ((void));
380 static int live_vector_p P_ ((struct mem_node *, void *));
381 static int live_buffer_p P_ ((struct mem_node *, void *));
382 static int live_string_p P_ ((struct mem_node *, void *));
383 static int live_cons_p P_ ((struct mem_node *, void *));
384 static int live_symbol_p P_ ((struct mem_node *, void *));
385 static int live_float_p P_ ((struct mem_node *, void *));
386 static int live_misc_p P_ ((struct mem_node *, void *));
387 static void mark_maybe_object P_ ((Lisp_Object));
388 static void mark_memory P_ ((void *, void *));
389 static void mem_init P_ ((void));
390 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
391 static void mem_insert_fixup P_ ((struct mem_node *));
392 static void mem_rotate_left P_ ((struct mem_node *));
393 static void mem_rotate_right P_ ((struct mem_node *));
394 static void mem_delete P_ ((struct mem_node *));
395 static void mem_delete_fixup P_ ((struct mem_node *));
396 static INLINE struct mem_node *mem_find P_ ((void *));
397
398 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
399 static void check_gcpros P_ ((void));
400 #endif
401
402 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
403
404 /* Recording what needs to be marked for gc. */
405
406 struct gcpro *gcprolist;
407
408 /* Addresses of staticpro'd variables. Initialize it to a nonzero
409 value; otherwise some compilers put it into BSS. */
410
411 #define NSTATICS 1280
412 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
413
414 /* Index of next unused slot in staticvec. */
415
416 int staticidx = 0;
417
418 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
419
420
421 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
422 ALIGNMENT must be a power of 2. */
423
424 #define ALIGN(ptr, ALIGNMENT) \
425 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
426 & ~((ALIGNMENT) - 1)))
427
428
429 \f
430 /************************************************************************
431 Malloc
432 ************************************************************************/
433
434 /* Function malloc calls this if it finds we are near exhausting storage. */
435
436 void
437 malloc_warning (str)
438 char *str;
439 {
440 pending_malloc_warning = str;
441 }
442
443
444 /* Display an already-pending malloc warning. */
445
446 void
447 display_malloc_warning ()
448 {
449 call3 (intern ("display-warning"),
450 intern ("alloc"),
451 build_string (pending_malloc_warning),
452 intern ("emergency"));
453 pending_malloc_warning = 0;
454 }
455
456
457 #ifdef DOUG_LEA_MALLOC
458 # define BYTES_USED (mallinfo ().arena)
459 #else
460 # define BYTES_USED _bytes_used
461 #endif
462
463
464 /* Called if malloc returns zero. */
465
466 void
467 memory_full ()
468 {
469 Vmemory_full = Qt;
470
471 #ifndef SYSTEM_MALLOC
472 bytes_used_when_full = BYTES_USED;
473 #endif
474
475 /* The first time we get here, free the spare memory. */
476 if (spare_memory)
477 {
478 free (spare_memory);
479 spare_memory = 0;
480 }
481
482 /* This used to call error, but if we've run out of memory, we could
483 get infinite recursion trying to build the string. */
484 while (1)
485 Fsignal (Qnil, Vmemory_signal_data);
486 }
487
488
489 /* Called if we can't allocate relocatable space for a buffer. */
490
491 void
492 buffer_memory_full ()
493 {
494 /* If buffers use the relocating allocator, no need to free
495 spare_memory, because we may have plenty of malloc space left
496 that we could get, and if we don't, the malloc that fails will
497 itself cause spare_memory to be freed. If buffers don't use the
498 relocating allocator, treat this like any other failing
499 malloc. */
500
501 #ifndef REL_ALLOC
502 memory_full ();
503 #endif
504
505 Vmemory_full = Qt;
506
507 /* This used to call error, but if we've run out of memory, we could
508 get infinite recursion trying to build the string. */
509 while (1)
510 Fsignal (Qnil, Vmemory_signal_data);
511 }
512
513
514 /* Like malloc but check for no memory and block interrupt input.. */
515
516 POINTER_TYPE *
517 xmalloc (size)
518 size_t size;
519 {
520 register POINTER_TYPE *val;
521
522 BLOCK_INPUT;
523 val = (POINTER_TYPE *) malloc (size);
524 UNBLOCK_INPUT;
525
526 if (!val && size)
527 memory_full ();
528 return val;
529 }
530
531
532 /* Like realloc but check for no memory and block interrupt input.. */
533
534 POINTER_TYPE *
535 xrealloc (block, size)
536 POINTER_TYPE *block;
537 size_t size;
538 {
539 register POINTER_TYPE *val;
540
541 BLOCK_INPUT;
542 /* We must call malloc explicitly when BLOCK is 0, since some
543 reallocs don't do this. */
544 if (! block)
545 val = (POINTER_TYPE *) malloc (size);
546 else
547 val = (POINTER_TYPE *) realloc (block, size);
548 UNBLOCK_INPUT;
549
550 if (!val && size) memory_full ();
551 return val;
552 }
553
554
555 /* Like free but block interrupt input. */
556
557 void
558 xfree (block)
559 POINTER_TYPE *block;
560 {
561 BLOCK_INPUT;
562 free (block);
563 UNBLOCK_INPUT;
564 }
565
566
567 /* Like strdup, but uses xmalloc. */
568
569 char *
570 xstrdup (s)
571 const char *s;
572 {
573 size_t len = strlen (s) + 1;
574 char *p = (char *) xmalloc (len);
575 bcopy (s, p, len);
576 return p;
577 }
578
579
580 /* Like malloc but used for allocating Lisp data. NBYTES is the
581 number of bytes to allocate, TYPE describes the intended use of the
582 allcated memory block (for strings, for conses, ...). */
583
584 static void *lisp_malloc_loser;
585
586 static POINTER_TYPE *
587 lisp_malloc (nbytes, type)
588 size_t nbytes;
589 enum mem_type type;
590 {
591 register void *val;
592
593 BLOCK_INPUT;
594
595 #ifdef GC_MALLOC_CHECK
596 allocated_mem_type = type;
597 #endif
598
599 val = (void *) malloc (nbytes);
600
601 #ifndef USE_LSB_TAG
602 /* If the memory just allocated cannot be addressed thru a Lisp
603 object's pointer, and it needs to be,
604 that's equivalent to running out of memory. */
605 if (val && type != MEM_TYPE_NON_LISP)
606 {
607 Lisp_Object tem;
608 XSETCONS (tem, (char *) val + nbytes - 1);
609 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
610 {
611 lisp_malloc_loser = val;
612 free (val);
613 val = 0;
614 }
615 }
616 #endif
617
618 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
619 if (val && type != MEM_TYPE_NON_LISP)
620 mem_insert (val, (char *) val + nbytes, type);
621 #endif
622
623 UNBLOCK_INPUT;
624 if (!val && nbytes)
625 memory_full ();
626 return val;
627 }
628
629 /* Free BLOCK. This must be called to free memory allocated with a
630 call to lisp_malloc. */
631
632 static void
633 lisp_free (block)
634 POINTER_TYPE *block;
635 {
636 BLOCK_INPUT;
637 free (block);
638 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
639 mem_delete (mem_find (block));
640 #endif
641 UNBLOCK_INPUT;
642 }
643
644 /* Allocation of aligned blocks of memory to store Lisp data. */
645 /* The entry point is lisp_align_malloc which returns blocks of at most */
646 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
647
648
649 /* BLOCK_ALIGN has to be a power of 2. */
650 #define BLOCK_ALIGN (1 << 10)
651
652 /* Padding to leave at the end of a malloc'd block. This is to give
653 malloc a chance to minimize the amount of memory wasted to alignment.
654 It should be tuned to the particular malloc library used.
655 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
656 posix_memalign on the other hand would ideally prefer a value of 4
657 because otherwise, there's 1020 bytes wasted between each ablocks.
658 But testing shows that those 1020 will most of the time be efficiently
659 used by malloc to place other objects, so a value of 0 is still preferable
660 unless you have a lot of cons&floats and virtually nothing else. */
661 #define BLOCK_PADDING 0
662 #define BLOCK_BYTES \
663 (BLOCK_ALIGN - sizeof (struct aligned_block *) - BLOCK_PADDING)
664
665 /* Internal data structures and constants. */
666
667 #define ABLOCKS_SIZE 16
668
669 /* An aligned block of memory. */
670 struct ablock
671 {
672 union
673 {
674 char payload[BLOCK_BYTES];
675 struct ablock *next_free;
676 } x;
677 /* `abase' is the aligned base of the ablocks. */
678 /* It is overloaded to hold the virtual `busy' field that counts
679 the number of used ablock in the parent ablocks.
680 The first ablock has the `busy' field, the others have the `abase'
681 field. To tell the difference, we assume that pointers will have
682 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
683 is used to tell whether the real base of the parent ablocks is `abase'
684 (if not, the word before the first ablock holds a pointer to the
685 real base). */
686 struct ablocks *abase;
687 /* The padding of all but the last ablock is unused. The padding of
688 the last ablock in an ablocks is not allocated. */
689 #if BLOCK_PADDING
690 char padding[BLOCK_PADDING];
691 #endif
692 };
693
694 /* A bunch of consecutive aligned blocks. */
695 struct ablocks
696 {
697 struct ablock blocks[ABLOCKS_SIZE];
698 };
699
700 /* Size of the block requested from malloc or memalign. */
701 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
702
703 #define ABLOCK_ABASE(block) \
704 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
705 ? (struct ablocks *)(block) \
706 : (block)->abase)
707
708 /* Virtual `busy' field. */
709 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
710
711 /* Pointer to the (not necessarily aligned) malloc block. */
712 #ifdef HAVE_POSIX_MEMALIGN
713 #define ABLOCKS_BASE(abase) (abase)
714 #else
715 #define ABLOCKS_BASE(abase) \
716 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
717 #endif
718
719 /* The list of free ablock. */
720 static struct ablock *free_ablock;
721
722 /* Allocate an aligned block of nbytes.
723 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
724 smaller or equal to BLOCK_BYTES. */
725 static POINTER_TYPE *
726 lisp_align_malloc (nbytes, type)
727 size_t nbytes;
728 enum mem_type type;
729 {
730 void *base, *val;
731 struct ablocks *abase;
732
733 eassert (nbytes <= BLOCK_BYTES);
734
735 BLOCK_INPUT;
736
737 #ifdef GC_MALLOC_CHECK
738 allocated_mem_type = type;
739 #endif
740
741 if (!free_ablock)
742 {
743 int i;
744 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
745
746 #ifdef DOUG_LEA_MALLOC
747 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
748 because mapped region contents are not preserved in
749 a dumped Emacs. */
750 mallopt (M_MMAP_MAX, 0);
751 #endif
752
753 #ifdef HAVE_POSIX_MEMALIGN
754 {
755 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
756 abase = err ? (base = NULL) : base;
757 }
758 #else
759 base = malloc (ABLOCKS_BYTES);
760 abase = ALIGN (base, BLOCK_ALIGN);
761 if (base == 0)
762 {
763 UNBLOCK_INPUT;
764 memory_full ();
765 }
766 #endif
767
768 aligned = (base == abase);
769 if (!aligned)
770 ((void**)abase)[-1] = base;
771
772 #ifdef DOUG_LEA_MALLOC
773 /* Back to a reasonable maximum of mmap'ed areas. */
774 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
775 #endif
776
777 #ifndef USE_LSB_TAG
778 /* If the memory just allocated cannot be addressed thru a Lisp
779 object's pointer, and it needs to be, that's equivalent to
780 running out of memory. */
781 if (type != MEM_TYPE_NON_LISP)
782 {
783 Lisp_Object tem;
784 char *end = (char *) base + ABLOCKS_BYTES - 1;
785 XSETCONS (tem, end);
786 if ((char *) XCONS (tem) != end)
787 {
788 lisp_malloc_loser = base;
789 free (base);
790 UNBLOCK_INPUT;
791 memory_full ();
792 }
793 }
794 #endif
795
796 /* Initialize the blocks and put them on the free list.
797 Is `base' was not properly aligned, we can't use the last block. */
798 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
799 {
800 abase->blocks[i].abase = abase;
801 abase->blocks[i].x.next_free = free_ablock;
802 free_ablock = &abase->blocks[i];
803 }
804 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
805
806 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
807 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
808 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
809 eassert (ABLOCKS_BASE (abase) == base);
810 eassert (aligned == (long) ABLOCKS_BUSY (abase));
811 }
812
813 abase = ABLOCK_ABASE (free_ablock);
814 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
815 val = free_ablock;
816 free_ablock = free_ablock->x.next_free;
817
818 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
819 if (val && type != MEM_TYPE_NON_LISP)
820 mem_insert (val, (char *) val + nbytes, type);
821 #endif
822
823 UNBLOCK_INPUT;
824 if (!val && nbytes)
825 memory_full ();
826
827 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
828 return val;
829 }
830
831 static void
832 lisp_align_free (block)
833 POINTER_TYPE *block;
834 {
835 struct ablock *ablock = block;
836 struct ablocks *abase = ABLOCK_ABASE (ablock);
837
838 BLOCK_INPUT;
839 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
840 mem_delete (mem_find (block));
841 #endif
842 /* Put on free list. */
843 ablock->x.next_free = free_ablock;
844 free_ablock = ablock;
845 /* Update busy count. */
846 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
847
848 if (2 > (long) ABLOCKS_BUSY (abase))
849 { /* All the blocks are free. */
850 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
851 struct ablock **tem = &free_ablock;
852 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
853
854 while (*tem)
855 {
856 if (*tem >= (struct ablock *) abase && *tem < atop)
857 {
858 i++;
859 *tem = (*tem)->x.next_free;
860 }
861 else
862 tem = &(*tem)->x.next_free;
863 }
864 eassert ((aligned & 1) == aligned);
865 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
866 free (ABLOCKS_BASE (abase));
867 }
868 UNBLOCK_INPUT;
869 }
870
871 /* Return a new buffer structure allocated from the heap with
872 a call to lisp_malloc. */
873
874 struct buffer *
875 allocate_buffer ()
876 {
877 struct buffer *b
878 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
879 MEM_TYPE_BUFFER);
880 return b;
881 }
882
883 \f
884 /* Arranging to disable input signals while we're in malloc.
885
886 This only works with GNU malloc. To help out systems which can't
887 use GNU malloc, all the calls to malloc, realloc, and free
888 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
889 pairs; unfortunately, we have no idea what C library functions
890 might call malloc, so we can't really protect them unless you're
891 using GNU malloc. Fortunately, most of the major operating systems
892 can use GNU malloc. */
893
894 #ifndef SYSTEM_MALLOC
895 #ifndef DOUG_LEA_MALLOC
896 extern void * (*__malloc_hook) P_ ((size_t));
897 extern void * (*__realloc_hook) P_ ((void *, size_t));
898 extern void (*__free_hook) P_ ((void *));
899 /* Else declared in malloc.h, perhaps with an extra arg. */
900 #endif /* DOUG_LEA_MALLOC */
901 static void * (*old_malloc_hook) ();
902 static void * (*old_realloc_hook) ();
903 static void (*old_free_hook) ();
904
905 /* This function is used as the hook for free to call. */
906
907 static void
908 emacs_blocked_free (ptr)
909 void *ptr;
910 {
911 BLOCK_INPUT;
912
913 #ifdef GC_MALLOC_CHECK
914 if (ptr)
915 {
916 struct mem_node *m;
917
918 m = mem_find (ptr);
919 if (m == MEM_NIL || m->start != ptr)
920 {
921 fprintf (stderr,
922 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
923 abort ();
924 }
925 else
926 {
927 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
928 mem_delete (m);
929 }
930 }
931 #endif /* GC_MALLOC_CHECK */
932
933 __free_hook = old_free_hook;
934 free (ptr);
935
936 /* If we released our reserve (due to running out of memory),
937 and we have a fair amount free once again,
938 try to set aside another reserve in case we run out once more. */
939 if (spare_memory == 0
940 /* Verify there is enough space that even with the malloc
941 hysteresis this call won't run out again.
942 The code here is correct as long as SPARE_MEMORY
943 is substantially larger than the block size malloc uses. */
944 && (bytes_used_when_full
945 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
946 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
947
948 __free_hook = emacs_blocked_free;
949 UNBLOCK_INPUT;
950 }
951
952
953 /* If we released our reserve (due to running out of memory),
954 and we have a fair amount free once again,
955 try to set aside another reserve in case we run out once more.
956
957 This is called when a relocatable block is freed in ralloc.c. */
958
959 void
960 refill_memory_reserve ()
961 {
962 if (spare_memory == 0)
963 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
964 }
965
966
967 /* This function is the malloc hook that Emacs uses. */
968
969 static void *
970 emacs_blocked_malloc (size)
971 size_t size;
972 {
973 void *value;
974
975 BLOCK_INPUT;
976 __malloc_hook = old_malloc_hook;
977 #ifdef DOUG_LEA_MALLOC
978 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
979 #else
980 __malloc_extra_blocks = malloc_hysteresis;
981 #endif
982
983 value = (void *) malloc (size);
984
985 #ifdef GC_MALLOC_CHECK
986 {
987 struct mem_node *m = mem_find (value);
988 if (m != MEM_NIL)
989 {
990 fprintf (stderr, "Malloc returned %p which is already in use\n",
991 value);
992 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
993 m->start, m->end, (char *) m->end - (char *) m->start,
994 m->type);
995 abort ();
996 }
997
998 if (!dont_register_blocks)
999 {
1000 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1001 allocated_mem_type = MEM_TYPE_NON_LISP;
1002 }
1003 }
1004 #endif /* GC_MALLOC_CHECK */
1005
1006 __malloc_hook = emacs_blocked_malloc;
1007 UNBLOCK_INPUT;
1008
1009 /* fprintf (stderr, "%p malloc\n", value); */
1010 return value;
1011 }
1012
1013
1014 /* This function is the realloc hook that Emacs uses. */
1015
1016 static void *
1017 emacs_blocked_realloc (ptr, size)
1018 void *ptr;
1019 size_t size;
1020 {
1021 void *value;
1022
1023 BLOCK_INPUT;
1024 __realloc_hook = old_realloc_hook;
1025
1026 #ifdef GC_MALLOC_CHECK
1027 if (ptr)
1028 {
1029 struct mem_node *m = mem_find (ptr);
1030 if (m == MEM_NIL || m->start != ptr)
1031 {
1032 fprintf (stderr,
1033 "Realloc of %p which wasn't allocated with malloc\n",
1034 ptr);
1035 abort ();
1036 }
1037
1038 mem_delete (m);
1039 }
1040
1041 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1042
1043 /* Prevent malloc from registering blocks. */
1044 dont_register_blocks = 1;
1045 #endif /* GC_MALLOC_CHECK */
1046
1047 value = (void *) realloc (ptr, size);
1048
1049 #ifdef GC_MALLOC_CHECK
1050 dont_register_blocks = 0;
1051
1052 {
1053 struct mem_node *m = mem_find (value);
1054 if (m != MEM_NIL)
1055 {
1056 fprintf (stderr, "Realloc returns memory that is already in use\n");
1057 abort ();
1058 }
1059
1060 /* Can't handle zero size regions in the red-black tree. */
1061 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1062 }
1063
1064 /* fprintf (stderr, "%p <- realloc\n", value); */
1065 #endif /* GC_MALLOC_CHECK */
1066
1067 __realloc_hook = emacs_blocked_realloc;
1068 UNBLOCK_INPUT;
1069
1070 return value;
1071 }
1072
1073
1074 /* Called from main to set up malloc to use our hooks. */
1075
1076 void
1077 uninterrupt_malloc ()
1078 {
1079 if (__free_hook != emacs_blocked_free)
1080 old_free_hook = __free_hook;
1081 __free_hook = emacs_blocked_free;
1082
1083 if (__malloc_hook != emacs_blocked_malloc)
1084 old_malloc_hook = __malloc_hook;
1085 __malloc_hook = emacs_blocked_malloc;
1086
1087 if (__realloc_hook != emacs_blocked_realloc)
1088 old_realloc_hook = __realloc_hook;
1089 __realloc_hook = emacs_blocked_realloc;
1090 }
1091
1092 #endif /* not SYSTEM_MALLOC */
1093
1094
1095 \f
1096 /***********************************************************************
1097 Interval Allocation
1098 ***********************************************************************/
1099
1100 /* Number of intervals allocated in an interval_block structure.
1101 The 1020 is 1024 minus malloc overhead. */
1102
1103 #define INTERVAL_BLOCK_SIZE \
1104 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1105
1106 /* Intervals are allocated in chunks in form of an interval_block
1107 structure. */
1108
1109 struct interval_block
1110 {
1111 /* Place `intervals' first, to preserve alignment. */
1112 struct interval intervals[INTERVAL_BLOCK_SIZE];
1113 struct interval_block *next;
1114 };
1115
1116 /* Current interval block. Its `next' pointer points to older
1117 blocks. */
1118
1119 struct interval_block *interval_block;
1120
1121 /* Index in interval_block above of the next unused interval
1122 structure. */
1123
1124 static int interval_block_index;
1125
1126 /* Number of free and live intervals. */
1127
1128 static int total_free_intervals, total_intervals;
1129
1130 /* List of free intervals. */
1131
1132 INTERVAL interval_free_list;
1133
1134 /* Total number of interval blocks now in use. */
1135
1136 int n_interval_blocks;
1137
1138
1139 /* Initialize interval allocation. */
1140
1141 static void
1142 init_intervals ()
1143 {
1144 interval_block = NULL;
1145 interval_block_index = INTERVAL_BLOCK_SIZE;
1146 interval_free_list = 0;
1147 n_interval_blocks = 0;
1148 }
1149
1150
1151 /* Return a new interval. */
1152
1153 INTERVAL
1154 make_interval ()
1155 {
1156 INTERVAL val;
1157
1158 if (interval_free_list)
1159 {
1160 val = interval_free_list;
1161 interval_free_list = INTERVAL_PARENT (interval_free_list);
1162 }
1163 else
1164 {
1165 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1166 {
1167 register struct interval_block *newi;
1168
1169 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1170 MEM_TYPE_NON_LISP);
1171
1172 newi->next = interval_block;
1173 interval_block = newi;
1174 interval_block_index = 0;
1175 n_interval_blocks++;
1176 }
1177 val = &interval_block->intervals[interval_block_index++];
1178 }
1179 consing_since_gc += sizeof (struct interval);
1180 intervals_consed++;
1181 RESET_INTERVAL (val);
1182 val->gcmarkbit = 0;
1183 return val;
1184 }
1185
1186
1187 /* Mark Lisp objects in interval I. */
1188
1189 static void
1190 mark_interval (i, dummy)
1191 register INTERVAL i;
1192 Lisp_Object dummy;
1193 {
1194 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1195 i->gcmarkbit = 1;
1196 mark_object (i->plist);
1197 }
1198
1199
1200 /* Mark the interval tree rooted in TREE. Don't call this directly;
1201 use the macro MARK_INTERVAL_TREE instead. */
1202
1203 static void
1204 mark_interval_tree (tree)
1205 register INTERVAL tree;
1206 {
1207 /* No need to test if this tree has been marked already; this
1208 function is always called through the MARK_INTERVAL_TREE macro,
1209 which takes care of that. */
1210
1211 traverse_intervals_noorder (tree, mark_interval, Qnil);
1212 }
1213
1214
1215 /* Mark the interval tree rooted in I. */
1216
1217 #define MARK_INTERVAL_TREE(i) \
1218 do { \
1219 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1220 mark_interval_tree (i); \
1221 } while (0)
1222
1223
1224 #define UNMARK_BALANCE_INTERVALS(i) \
1225 do { \
1226 if (! NULL_INTERVAL_P (i)) \
1227 (i) = balance_intervals (i); \
1228 } while (0)
1229
1230 \f
1231 /* Number support. If NO_UNION_TYPE isn't in effect, we
1232 can't create number objects in macros. */
1233 #ifndef make_number
1234 Lisp_Object
1235 make_number (n)
1236 int n;
1237 {
1238 Lisp_Object obj;
1239 obj.s.val = n;
1240 obj.s.type = Lisp_Int;
1241 return obj;
1242 }
1243 #endif
1244 \f
1245 /***********************************************************************
1246 String Allocation
1247 ***********************************************************************/
1248
1249 /* Lisp_Strings are allocated in string_block structures. When a new
1250 string_block is allocated, all the Lisp_Strings it contains are
1251 added to a free-list string_free_list. When a new Lisp_String is
1252 needed, it is taken from that list. During the sweep phase of GC,
1253 string_blocks that are entirely free are freed, except two which
1254 we keep.
1255
1256 String data is allocated from sblock structures. Strings larger
1257 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1258 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1259
1260 Sblocks consist internally of sdata structures, one for each
1261 Lisp_String. The sdata structure points to the Lisp_String it
1262 belongs to. The Lisp_String points back to the `u.data' member of
1263 its sdata structure.
1264
1265 When a Lisp_String is freed during GC, it is put back on
1266 string_free_list, and its `data' member and its sdata's `string'
1267 pointer is set to null. The size of the string is recorded in the
1268 `u.nbytes' member of the sdata. So, sdata structures that are no
1269 longer used, can be easily recognized, and it's easy to compact the
1270 sblocks of small strings which we do in compact_small_strings. */
1271
1272 /* Size in bytes of an sblock structure used for small strings. This
1273 is 8192 minus malloc overhead. */
1274
1275 #define SBLOCK_SIZE 8188
1276
1277 /* Strings larger than this are considered large strings. String data
1278 for large strings is allocated from individual sblocks. */
1279
1280 #define LARGE_STRING_BYTES 1024
1281
1282 /* Structure describing string memory sub-allocated from an sblock.
1283 This is where the contents of Lisp strings are stored. */
1284
1285 struct sdata
1286 {
1287 /* Back-pointer to the string this sdata belongs to. If null, this
1288 structure is free, and the NBYTES member of the union below
1289 contains the string's byte size (the same value that STRING_BYTES
1290 would return if STRING were non-null). If non-null, STRING_BYTES
1291 (STRING) is the size of the data, and DATA contains the string's
1292 contents. */
1293 struct Lisp_String *string;
1294
1295 #ifdef GC_CHECK_STRING_BYTES
1296
1297 EMACS_INT nbytes;
1298 unsigned char data[1];
1299
1300 #define SDATA_NBYTES(S) (S)->nbytes
1301 #define SDATA_DATA(S) (S)->data
1302
1303 #else /* not GC_CHECK_STRING_BYTES */
1304
1305 union
1306 {
1307 /* When STRING in non-null. */
1308 unsigned char data[1];
1309
1310 /* When STRING is null. */
1311 EMACS_INT nbytes;
1312 } u;
1313
1314
1315 #define SDATA_NBYTES(S) (S)->u.nbytes
1316 #define SDATA_DATA(S) (S)->u.data
1317
1318 #endif /* not GC_CHECK_STRING_BYTES */
1319 };
1320
1321
1322 /* Structure describing a block of memory which is sub-allocated to
1323 obtain string data memory for strings. Blocks for small strings
1324 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1325 as large as needed. */
1326
1327 struct sblock
1328 {
1329 /* Next in list. */
1330 struct sblock *next;
1331
1332 /* Pointer to the next free sdata block. This points past the end
1333 of the sblock if there isn't any space left in this block. */
1334 struct sdata *next_free;
1335
1336 /* Start of data. */
1337 struct sdata first_data;
1338 };
1339
1340 /* Number of Lisp strings in a string_block structure. The 1020 is
1341 1024 minus malloc overhead. */
1342
1343 #define STRING_BLOCK_SIZE \
1344 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1345
1346 /* Structure describing a block from which Lisp_String structures
1347 are allocated. */
1348
1349 struct string_block
1350 {
1351 /* Place `strings' first, to preserve alignment. */
1352 struct Lisp_String strings[STRING_BLOCK_SIZE];
1353 struct string_block *next;
1354 };
1355
1356 /* Head and tail of the list of sblock structures holding Lisp string
1357 data. We always allocate from current_sblock. The NEXT pointers
1358 in the sblock structures go from oldest_sblock to current_sblock. */
1359
1360 static struct sblock *oldest_sblock, *current_sblock;
1361
1362 /* List of sblocks for large strings. */
1363
1364 static struct sblock *large_sblocks;
1365
1366 /* List of string_block structures, and how many there are. */
1367
1368 static struct string_block *string_blocks;
1369 static int n_string_blocks;
1370
1371 /* Free-list of Lisp_Strings. */
1372
1373 static struct Lisp_String *string_free_list;
1374
1375 /* Number of live and free Lisp_Strings. */
1376
1377 static int total_strings, total_free_strings;
1378
1379 /* Number of bytes used by live strings. */
1380
1381 static int total_string_size;
1382
1383 /* Given a pointer to a Lisp_String S which is on the free-list
1384 string_free_list, return a pointer to its successor in the
1385 free-list. */
1386
1387 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1388
1389 /* Return a pointer to the sdata structure belonging to Lisp string S.
1390 S must be live, i.e. S->data must not be null. S->data is actually
1391 a pointer to the `u.data' member of its sdata structure; the
1392 structure starts at a constant offset in front of that. */
1393
1394 #ifdef GC_CHECK_STRING_BYTES
1395
1396 #define SDATA_OF_STRING(S) \
1397 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1398 - sizeof (EMACS_INT)))
1399
1400 #else /* not GC_CHECK_STRING_BYTES */
1401
1402 #define SDATA_OF_STRING(S) \
1403 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1404
1405 #endif /* not GC_CHECK_STRING_BYTES */
1406
1407 /* Value is the size of an sdata structure large enough to hold NBYTES
1408 bytes of string data. The value returned includes a terminating
1409 NUL byte, the size of the sdata structure, and padding. */
1410
1411 #ifdef GC_CHECK_STRING_BYTES
1412
1413 #define SDATA_SIZE(NBYTES) \
1414 ((sizeof (struct Lisp_String *) \
1415 + (NBYTES) + 1 \
1416 + sizeof (EMACS_INT) \
1417 + sizeof (EMACS_INT) - 1) \
1418 & ~(sizeof (EMACS_INT) - 1))
1419
1420 #else /* not GC_CHECK_STRING_BYTES */
1421
1422 #define SDATA_SIZE(NBYTES) \
1423 ((sizeof (struct Lisp_String *) \
1424 + (NBYTES) + 1 \
1425 + sizeof (EMACS_INT) - 1) \
1426 & ~(sizeof (EMACS_INT) - 1))
1427
1428 #endif /* not GC_CHECK_STRING_BYTES */
1429
1430 /* Initialize string allocation. Called from init_alloc_once. */
1431
1432 void
1433 init_strings ()
1434 {
1435 total_strings = total_free_strings = total_string_size = 0;
1436 oldest_sblock = current_sblock = large_sblocks = NULL;
1437 string_blocks = NULL;
1438 n_string_blocks = 0;
1439 string_free_list = NULL;
1440 }
1441
1442
1443 #ifdef GC_CHECK_STRING_BYTES
1444
1445 static int check_string_bytes_count;
1446
1447 void check_string_bytes P_ ((int));
1448 void check_sblock P_ ((struct sblock *));
1449
1450 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1451
1452
1453 /* Like GC_STRING_BYTES, but with debugging check. */
1454
1455 int
1456 string_bytes (s)
1457 struct Lisp_String *s;
1458 {
1459 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1460 if (!PURE_POINTER_P (s)
1461 && s->data
1462 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1463 abort ();
1464 return nbytes;
1465 }
1466
1467 /* Check validity of Lisp strings' string_bytes member in B. */
1468
1469 void
1470 check_sblock (b)
1471 struct sblock *b;
1472 {
1473 struct sdata *from, *end, *from_end;
1474
1475 end = b->next_free;
1476
1477 for (from = &b->first_data; from < end; from = from_end)
1478 {
1479 /* Compute the next FROM here because copying below may
1480 overwrite data we need to compute it. */
1481 int nbytes;
1482
1483 /* Check that the string size recorded in the string is the
1484 same as the one recorded in the sdata structure. */
1485 if (from->string)
1486 CHECK_STRING_BYTES (from->string);
1487
1488 if (from->string)
1489 nbytes = GC_STRING_BYTES (from->string);
1490 else
1491 nbytes = SDATA_NBYTES (from);
1492
1493 nbytes = SDATA_SIZE (nbytes);
1494 from_end = (struct sdata *) ((char *) from + nbytes);
1495 }
1496 }
1497
1498
1499 /* Check validity of Lisp strings' string_bytes member. ALL_P
1500 non-zero means check all strings, otherwise check only most
1501 recently allocated strings. Used for hunting a bug. */
1502
1503 void
1504 check_string_bytes (all_p)
1505 int all_p;
1506 {
1507 if (all_p)
1508 {
1509 struct sblock *b;
1510
1511 for (b = large_sblocks; b; b = b->next)
1512 {
1513 struct Lisp_String *s = b->first_data.string;
1514 if (s)
1515 CHECK_STRING_BYTES (s);
1516 }
1517
1518 for (b = oldest_sblock; b; b = b->next)
1519 check_sblock (b);
1520 }
1521 else
1522 check_sblock (current_sblock);
1523 }
1524
1525 #endif /* GC_CHECK_STRING_BYTES */
1526
1527
1528 /* Return a new Lisp_String. */
1529
1530 static struct Lisp_String *
1531 allocate_string ()
1532 {
1533 struct Lisp_String *s;
1534
1535 /* If the free-list is empty, allocate a new string_block, and
1536 add all the Lisp_Strings in it to the free-list. */
1537 if (string_free_list == NULL)
1538 {
1539 struct string_block *b;
1540 int i;
1541
1542 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1543 bzero (b, sizeof *b);
1544 b->next = string_blocks;
1545 string_blocks = b;
1546 ++n_string_blocks;
1547
1548 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1549 {
1550 s = b->strings + i;
1551 NEXT_FREE_LISP_STRING (s) = string_free_list;
1552 string_free_list = s;
1553 }
1554
1555 total_free_strings += STRING_BLOCK_SIZE;
1556 }
1557
1558 /* Pop a Lisp_String off the free-list. */
1559 s = string_free_list;
1560 string_free_list = NEXT_FREE_LISP_STRING (s);
1561
1562 /* Probably not strictly necessary, but play it safe. */
1563 bzero (s, sizeof *s);
1564
1565 --total_free_strings;
1566 ++total_strings;
1567 ++strings_consed;
1568 consing_since_gc += sizeof *s;
1569
1570 #ifdef GC_CHECK_STRING_BYTES
1571 if (!noninteractive
1572 #ifdef MAC_OS8
1573 && current_sblock
1574 #endif
1575 )
1576 {
1577 if (++check_string_bytes_count == 200)
1578 {
1579 check_string_bytes_count = 0;
1580 check_string_bytes (1);
1581 }
1582 else
1583 check_string_bytes (0);
1584 }
1585 #endif /* GC_CHECK_STRING_BYTES */
1586
1587 return s;
1588 }
1589
1590
1591 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1592 plus a NUL byte at the end. Allocate an sdata structure for S, and
1593 set S->data to its `u.data' member. Store a NUL byte at the end of
1594 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1595 S->data if it was initially non-null. */
1596
1597 void
1598 allocate_string_data (s, nchars, nbytes)
1599 struct Lisp_String *s;
1600 int nchars, nbytes;
1601 {
1602 struct sdata *data, *old_data;
1603 struct sblock *b;
1604 int needed, old_nbytes;
1605
1606 /* Determine the number of bytes needed to store NBYTES bytes
1607 of string data. */
1608 needed = SDATA_SIZE (nbytes);
1609
1610 if (nbytes > LARGE_STRING_BYTES)
1611 {
1612 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1613
1614 #ifdef DOUG_LEA_MALLOC
1615 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1616 because mapped region contents are not preserved in
1617 a dumped Emacs.
1618
1619 In case you think of allowing it in a dumped Emacs at the
1620 cost of not being able to re-dump, there's another reason:
1621 mmap'ed data typically have an address towards the top of the
1622 address space, which won't fit into an EMACS_INT (at least on
1623 32-bit systems with the current tagging scheme). --fx */
1624 mallopt (M_MMAP_MAX, 0);
1625 #endif
1626
1627 b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
1628
1629 #ifdef DOUG_LEA_MALLOC
1630 /* Back to a reasonable maximum of mmap'ed areas. */
1631 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1632 #endif
1633
1634 b->next_free = &b->first_data;
1635 b->first_data.string = NULL;
1636 b->next = large_sblocks;
1637 large_sblocks = b;
1638 }
1639 else if (current_sblock == NULL
1640 || (((char *) current_sblock + SBLOCK_SIZE
1641 - (char *) current_sblock->next_free)
1642 < needed))
1643 {
1644 /* Not enough room in the current sblock. */
1645 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1646 b->next_free = &b->first_data;
1647 b->first_data.string = NULL;
1648 b->next = NULL;
1649
1650 if (current_sblock)
1651 current_sblock->next = b;
1652 else
1653 oldest_sblock = b;
1654 current_sblock = b;
1655 }
1656 else
1657 b = current_sblock;
1658
1659 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1660 old_nbytes = GC_STRING_BYTES (s);
1661
1662 data = b->next_free;
1663 data->string = s;
1664 s->data = SDATA_DATA (data);
1665 #ifdef GC_CHECK_STRING_BYTES
1666 SDATA_NBYTES (data) = nbytes;
1667 #endif
1668 s->size = nchars;
1669 s->size_byte = nbytes;
1670 s->data[nbytes] = '\0';
1671 b->next_free = (struct sdata *) ((char *) data + needed);
1672
1673 /* If S had already data assigned, mark that as free by setting its
1674 string back-pointer to null, and recording the size of the data
1675 in it. */
1676 if (old_data)
1677 {
1678 SDATA_NBYTES (old_data) = old_nbytes;
1679 old_data->string = NULL;
1680 }
1681
1682 consing_since_gc += needed;
1683 }
1684
1685
1686 /* Sweep and compact strings. */
1687
1688 static void
1689 sweep_strings ()
1690 {
1691 struct string_block *b, *next;
1692 struct string_block *live_blocks = NULL;
1693
1694 string_free_list = NULL;
1695 total_strings = total_free_strings = 0;
1696 total_string_size = 0;
1697
1698 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1699 for (b = string_blocks; b; b = next)
1700 {
1701 int i, nfree = 0;
1702 struct Lisp_String *free_list_before = string_free_list;
1703
1704 next = b->next;
1705
1706 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1707 {
1708 struct Lisp_String *s = b->strings + i;
1709
1710 if (s->data)
1711 {
1712 /* String was not on free-list before. */
1713 if (STRING_MARKED_P (s))
1714 {
1715 /* String is live; unmark it and its intervals. */
1716 UNMARK_STRING (s);
1717
1718 if (!NULL_INTERVAL_P (s->intervals))
1719 UNMARK_BALANCE_INTERVALS (s->intervals);
1720
1721 ++total_strings;
1722 total_string_size += STRING_BYTES (s);
1723 }
1724 else
1725 {
1726 /* String is dead. Put it on the free-list. */
1727 struct sdata *data = SDATA_OF_STRING (s);
1728
1729 /* Save the size of S in its sdata so that we know
1730 how large that is. Reset the sdata's string
1731 back-pointer so that we know it's free. */
1732 #ifdef GC_CHECK_STRING_BYTES
1733 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
1734 abort ();
1735 #else
1736 data->u.nbytes = GC_STRING_BYTES (s);
1737 #endif
1738 data->string = NULL;
1739
1740 /* Reset the strings's `data' member so that we
1741 know it's free. */
1742 s->data = NULL;
1743
1744 /* Put the string on the free-list. */
1745 NEXT_FREE_LISP_STRING (s) = string_free_list;
1746 string_free_list = s;
1747 ++nfree;
1748 }
1749 }
1750 else
1751 {
1752 /* S was on the free-list before. Put it there again. */
1753 NEXT_FREE_LISP_STRING (s) = string_free_list;
1754 string_free_list = s;
1755 ++nfree;
1756 }
1757 }
1758
1759 /* Free blocks that contain free Lisp_Strings only, except
1760 the first two of them. */
1761 if (nfree == STRING_BLOCK_SIZE
1762 && total_free_strings > STRING_BLOCK_SIZE)
1763 {
1764 lisp_free (b);
1765 --n_string_blocks;
1766 string_free_list = free_list_before;
1767 }
1768 else
1769 {
1770 total_free_strings += nfree;
1771 b->next = live_blocks;
1772 live_blocks = b;
1773 }
1774 }
1775
1776 string_blocks = live_blocks;
1777 free_large_strings ();
1778 compact_small_strings ();
1779 }
1780
1781
1782 /* Free dead large strings. */
1783
1784 static void
1785 free_large_strings ()
1786 {
1787 struct sblock *b, *next;
1788 struct sblock *live_blocks = NULL;
1789
1790 for (b = large_sblocks; b; b = next)
1791 {
1792 next = b->next;
1793
1794 if (b->first_data.string == NULL)
1795 lisp_free (b);
1796 else
1797 {
1798 b->next = live_blocks;
1799 live_blocks = b;
1800 }
1801 }
1802
1803 large_sblocks = live_blocks;
1804 }
1805
1806
1807 /* Compact data of small strings. Free sblocks that don't contain
1808 data of live strings after compaction. */
1809
1810 static void
1811 compact_small_strings ()
1812 {
1813 struct sblock *b, *tb, *next;
1814 struct sdata *from, *to, *end, *tb_end;
1815 struct sdata *to_end, *from_end;
1816
1817 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1818 to, and TB_END is the end of TB. */
1819 tb = oldest_sblock;
1820 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1821 to = &tb->first_data;
1822
1823 /* Step through the blocks from the oldest to the youngest. We
1824 expect that old blocks will stabilize over time, so that less
1825 copying will happen this way. */
1826 for (b = oldest_sblock; b; b = b->next)
1827 {
1828 end = b->next_free;
1829 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1830
1831 for (from = &b->first_data; from < end; from = from_end)
1832 {
1833 /* Compute the next FROM here because copying below may
1834 overwrite data we need to compute it. */
1835 int nbytes;
1836
1837 #ifdef GC_CHECK_STRING_BYTES
1838 /* Check that the string size recorded in the string is the
1839 same as the one recorded in the sdata structure. */
1840 if (from->string
1841 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
1842 abort ();
1843 #endif /* GC_CHECK_STRING_BYTES */
1844
1845 if (from->string)
1846 nbytes = GC_STRING_BYTES (from->string);
1847 else
1848 nbytes = SDATA_NBYTES (from);
1849
1850 nbytes = SDATA_SIZE (nbytes);
1851 from_end = (struct sdata *) ((char *) from + nbytes);
1852
1853 /* FROM->string non-null means it's alive. Copy its data. */
1854 if (from->string)
1855 {
1856 /* If TB is full, proceed with the next sblock. */
1857 to_end = (struct sdata *) ((char *) to + nbytes);
1858 if (to_end > tb_end)
1859 {
1860 tb->next_free = to;
1861 tb = tb->next;
1862 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1863 to = &tb->first_data;
1864 to_end = (struct sdata *) ((char *) to + nbytes);
1865 }
1866
1867 /* Copy, and update the string's `data' pointer. */
1868 if (from != to)
1869 {
1870 xassert (tb != b || to <= from);
1871 safe_bcopy ((char *) from, (char *) to, nbytes);
1872 to->string->data = SDATA_DATA (to);
1873 }
1874
1875 /* Advance past the sdata we copied to. */
1876 to = to_end;
1877 }
1878 }
1879 }
1880
1881 /* The rest of the sblocks following TB don't contain live data, so
1882 we can free them. */
1883 for (b = tb->next; b; b = next)
1884 {
1885 next = b->next;
1886 lisp_free (b);
1887 }
1888
1889 tb->next_free = to;
1890 tb->next = NULL;
1891 current_sblock = tb;
1892 }
1893
1894
1895 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1896 doc: /* Return a newly created string of length LENGTH, with each element being INIT.
1897 Both LENGTH and INIT must be numbers. */)
1898 (length, init)
1899 Lisp_Object length, init;
1900 {
1901 register Lisp_Object val;
1902 register unsigned char *p, *end;
1903 int c, nbytes;
1904
1905 CHECK_NATNUM (length);
1906 CHECK_NUMBER (init);
1907
1908 c = XINT (init);
1909 if (ASCII_CHAR_P (c))
1910 {
1911 nbytes = XINT (length);
1912 val = make_uninit_string (nbytes);
1913 p = SDATA (val);
1914 end = p + SCHARS (val);
1915 while (p != end)
1916 *p++ = c;
1917 }
1918 else
1919 {
1920 unsigned char str[MAX_MULTIBYTE_LENGTH];
1921 int len = CHAR_STRING (c, str);
1922
1923 nbytes = len * XINT (length);
1924 val = make_uninit_multibyte_string (XINT (length), nbytes);
1925 p = SDATA (val);
1926 end = p + nbytes;
1927 while (p != end)
1928 {
1929 bcopy (str, p, len);
1930 p += len;
1931 }
1932 }
1933
1934 *p = 0;
1935 return val;
1936 }
1937
1938
1939 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
1940 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
1941 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
1942 (length, init)
1943 Lisp_Object length, init;
1944 {
1945 register Lisp_Object val;
1946 struct Lisp_Bool_Vector *p;
1947 int real_init, i;
1948 int length_in_chars, length_in_elts, bits_per_value;
1949
1950 CHECK_NATNUM (length);
1951
1952 bits_per_value = sizeof (EMACS_INT) * BITS_PER_CHAR;
1953
1954 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
1955 length_in_chars = ((XFASTINT (length) + BITS_PER_CHAR - 1) / BITS_PER_CHAR);
1956
1957 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1958 slot `size' of the struct Lisp_Bool_Vector. */
1959 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1960 p = XBOOL_VECTOR (val);
1961
1962 /* Get rid of any bits that would cause confusion. */
1963 p->vector_size = 0;
1964 XSETBOOL_VECTOR (val, p);
1965 p->size = XFASTINT (length);
1966
1967 real_init = (NILP (init) ? 0 : -1);
1968 for (i = 0; i < length_in_chars ; i++)
1969 p->data[i] = real_init;
1970
1971 /* Clear the extraneous bits in the last byte. */
1972 if (XINT (length) != length_in_chars * BITS_PER_CHAR)
1973 XBOOL_VECTOR (val)->data[length_in_chars - 1]
1974 &= (1 << (XINT (length) % BITS_PER_CHAR)) - 1;
1975
1976 return val;
1977 }
1978
1979
1980 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
1981 of characters from the contents. This string may be unibyte or
1982 multibyte, depending on the contents. */
1983
1984 Lisp_Object
1985 make_string (contents, nbytes)
1986 const char *contents;
1987 int nbytes;
1988 {
1989 register Lisp_Object val;
1990 int nchars, multibyte_nbytes;
1991
1992 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
1993 if (nbytes == nchars || nbytes != multibyte_nbytes)
1994 /* CONTENTS contains no multibyte sequences or contains an invalid
1995 multibyte sequence. We must make unibyte string. */
1996 val = make_unibyte_string (contents, nbytes);
1997 else
1998 val = make_multibyte_string (contents, nchars, nbytes);
1999 return val;
2000 }
2001
2002
2003 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2004
2005 Lisp_Object
2006 make_unibyte_string (contents, length)
2007 const char *contents;
2008 int length;
2009 {
2010 register Lisp_Object val;
2011 val = make_uninit_string (length);
2012 bcopy (contents, SDATA (val), length);
2013 STRING_SET_UNIBYTE (val);
2014 return val;
2015 }
2016
2017
2018 /* Make a multibyte string from NCHARS characters occupying NBYTES
2019 bytes at CONTENTS. */
2020
2021 Lisp_Object
2022 make_multibyte_string (contents, nchars, nbytes)
2023 const char *contents;
2024 int nchars, nbytes;
2025 {
2026 register Lisp_Object val;
2027 val = make_uninit_multibyte_string (nchars, nbytes);
2028 bcopy (contents, SDATA (val), nbytes);
2029 return val;
2030 }
2031
2032
2033 /* Make a string from NCHARS characters occupying NBYTES bytes at
2034 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2035
2036 Lisp_Object
2037 make_string_from_bytes (contents, nchars, nbytes)
2038 const char *contents;
2039 int nchars, nbytes;
2040 {
2041 register Lisp_Object val;
2042 val = make_uninit_multibyte_string (nchars, nbytes);
2043 bcopy (contents, SDATA (val), nbytes);
2044 if (SBYTES (val) == SCHARS (val))
2045 STRING_SET_UNIBYTE (val);
2046 return val;
2047 }
2048
2049
2050 /* Make a string from NCHARS characters occupying NBYTES bytes at
2051 CONTENTS. The argument MULTIBYTE controls whether to label the
2052 string as multibyte. If NCHARS is negative, it counts the number of
2053 characters by itself. */
2054
2055 Lisp_Object
2056 make_specified_string (contents, nchars, nbytes, multibyte)
2057 const char *contents;
2058 int nchars, nbytes;
2059 int multibyte;
2060 {
2061 register Lisp_Object val;
2062
2063 if (nchars < 0)
2064 {
2065 if (multibyte)
2066 nchars = multibyte_chars_in_text (contents, nbytes);
2067 else
2068 nchars = nbytes;
2069 }
2070 val = make_uninit_multibyte_string (nchars, nbytes);
2071 bcopy (contents, SDATA (val), nbytes);
2072 if (!multibyte)
2073 STRING_SET_UNIBYTE (val);
2074 return val;
2075 }
2076
2077
2078 /* Make a string from the data at STR, treating it as multibyte if the
2079 data warrants. */
2080
2081 Lisp_Object
2082 build_string (str)
2083 const char *str;
2084 {
2085 return make_string (str, strlen (str));
2086 }
2087
2088
2089 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2090 occupying LENGTH bytes. */
2091
2092 Lisp_Object
2093 make_uninit_string (length)
2094 int length;
2095 {
2096 Lisp_Object val;
2097 val = make_uninit_multibyte_string (length, length);
2098 STRING_SET_UNIBYTE (val);
2099 return val;
2100 }
2101
2102
2103 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2104 which occupy NBYTES bytes. */
2105
2106 Lisp_Object
2107 make_uninit_multibyte_string (nchars, nbytes)
2108 int nchars, nbytes;
2109 {
2110 Lisp_Object string;
2111 struct Lisp_String *s;
2112
2113 if (nchars < 0)
2114 abort ();
2115
2116 s = allocate_string ();
2117 allocate_string_data (s, nchars, nbytes);
2118 XSETSTRING (string, s);
2119 string_chars_consed += nbytes;
2120 return string;
2121 }
2122
2123
2124 \f
2125 /***********************************************************************
2126 Float Allocation
2127 ***********************************************************************/
2128
2129 /* We store float cells inside of float_blocks, allocating a new
2130 float_block with malloc whenever necessary. Float cells reclaimed
2131 by GC are put on a free list to be reallocated before allocating
2132 any new float cells from the latest float_block. */
2133
2134 #define FLOAT_BLOCK_SIZE \
2135 (((BLOCK_BYTES - sizeof (struct float_block *) \
2136 /* The compiler might add padding at the end. */ \
2137 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2138 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2139
2140 #define GETMARKBIT(block,n) \
2141 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2142 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2143 & 1)
2144
2145 #define SETMARKBIT(block,n) \
2146 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2147 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2148
2149 #define UNSETMARKBIT(block,n) \
2150 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2151 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2152
2153 #define FLOAT_BLOCK(fptr) \
2154 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2155
2156 #define FLOAT_INDEX(fptr) \
2157 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2158
2159 struct float_block
2160 {
2161 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2162 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2163 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2164 struct float_block *next;
2165 };
2166
2167 #define FLOAT_MARKED_P(fptr) \
2168 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2169
2170 #define FLOAT_MARK(fptr) \
2171 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2172
2173 #define FLOAT_UNMARK(fptr) \
2174 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2175
2176 /* Current float_block. */
2177
2178 struct float_block *float_block;
2179
2180 /* Index of first unused Lisp_Float in the current float_block. */
2181
2182 int float_block_index;
2183
2184 /* Total number of float blocks now in use. */
2185
2186 int n_float_blocks;
2187
2188 /* Free-list of Lisp_Floats. */
2189
2190 struct Lisp_Float *float_free_list;
2191
2192
2193 /* Initialize float allocation. */
2194
2195 void
2196 init_float ()
2197 {
2198 float_block = NULL;
2199 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2200 float_free_list = 0;
2201 n_float_blocks = 0;
2202 }
2203
2204
2205 /* Explicitly free a float cell by putting it on the free-list. */
2206
2207 void
2208 free_float (ptr)
2209 struct Lisp_Float *ptr;
2210 {
2211 *(struct Lisp_Float **)&ptr->data = float_free_list;
2212 float_free_list = ptr;
2213 }
2214
2215
2216 /* Return a new float object with value FLOAT_VALUE. */
2217
2218 Lisp_Object
2219 make_float (float_value)
2220 double float_value;
2221 {
2222 register Lisp_Object val;
2223
2224 if (float_free_list)
2225 {
2226 /* We use the data field for chaining the free list
2227 so that we won't use the same field that has the mark bit. */
2228 XSETFLOAT (val, float_free_list);
2229 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2230 }
2231 else
2232 {
2233 if (float_block_index == FLOAT_BLOCK_SIZE)
2234 {
2235 register struct float_block *new;
2236
2237 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2238 MEM_TYPE_FLOAT);
2239 new->next = float_block;
2240 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2241 float_block = new;
2242 float_block_index = 0;
2243 n_float_blocks++;
2244 }
2245 XSETFLOAT (val, &float_block->floats[float_block_index]);
2246 float_block_index++;
2247 }
2248
2249 XFLOAT_DATA (val) = float_value;
2250 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2251 consing_since_gc += sizeof (struct Lisp_Float);
2252 floats_consed++;
2253 return val;
2254 }
2255
2256
2257 \f
2258 /***********************************************************************
2259 Cons Allocation
2260 ***********************************************************************/
2261
2262 /* We store cons cells inside of cons_blocks, allocating a new
2263 cons_block with malloc whenever necessary. Cons cells reclaimed by
2264 GC are put on a free list to be reallocated before allocating
2265 any new cons cells from the latest cons_block. */
2266
2267 #define CONS_BLOCK_SIZE \
2268 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2269 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2270
2271 #define CONS_BLOCK(fptr) \
2272 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2273
2274 #define CONS_INDEX(fptr) \
2275 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2276
2277 struct cons_block
2278 {
2279 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2280 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2281 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2282 struct cons_block *next;
2283 };
2284
2285 #define CONS_MARKED_P(fptr) \
2286 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2287
2288 #define CONS_MARK(fptr) \
2289 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2290
2291 #define CONS_UNMARK(fptr) \
2292 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2293
2294 /* Current cons_block. */
2295
2296 struct cons_block *cons_block;
2297
2298 /* Index of first unused Lisp_Cons in the current block. */
2299
2300 int cons_block_index;
2301
2302 /* Free-list of Lisp_Cons structures. */
2303
2304 struct Lisp_Cons *cons_free_list;
2305
2306 /* Total number of cons blocks now in use. */
2307
2308 int n_cons_blocks;
2309
2310
2311 /* Initialize cons allocation. */
2312
2313 void
2314 init_cons ()
2315 {
2316 cons_block = NULL;
2317 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2318 cons_free_list = 0;
2319 n_cons_blocks = 0;
2320 }
2321
2322
2323 /* Explicitly free a cons cell by putting it on the free-list. */
2324
2325 void
2326 free_cons (ptr)
2327 struct Lisp_Cons *ptr;
2328 {
2329 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2330 #if GC_MARK_STACK
2331 ptr->car = Vdead;
2332 #endif
2333 cons_free_list = ptr;
2334 }
2335
2336
2337 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2338 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2339 (car, cdr)
2340 Lisp_Object car, cdr;
2341 {
2342 register Lisp_Object val;
2343
2344 if (cons_free_list)
2345 {
2346 /* We use the cdr for chaining the free list
2347 so that we won't use the same field that has the mark bit. */
2348 XSETCONS (val, cons_free_list);
2349 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2350 }
2351 else
2352 {
2353 if (cons_block_index == CONS_BLOCK_SIZE)
2354 {
2355 register struct cons_block *new;
2356 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2357 MEM_TYPE_CONS);
2358 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2359 new->next = cons_block;
2360 cons_block = new;
2361 cons_block_index = 0;
2362 n_cons_blocks++;
2363 }
2364 XSETCONS (val, &cons_block->conses[cons_block_index]);
2365 cons_block_index++;
2366 }
2367
2368 XSETCAR (val, car);
2369 XSETCDR (val, cdr);
2370 eassert (!CONS_MARKED_P (XCONS (val)));
2371 consing_since_gc += sizeof (struct Lisp_Cons);
2372 cons_cells_consed++;
2373 return val;
2374 }
2375
2376
2377 /* Make a list of 2, 3, 4 or 5 specified objects. */
2378
2379 Lisp_Object
2380 list2 (arg1, arg2)
2381 Lisp_Object arg1, arg2;
2382 {
2383 return Fcons (arg1, Fcons (arg2, Qnil));
2384 }
2385
2386
2387 Lisp_Object
2388 list3 (arg1, arg2, arg3)
2389 Lisp_Object arg1, arg2, arg3;
2390 {
2391 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2392 }
2393
2394
2395 Lisp_Object
2396 list4 (arg1, arg2, arg3, arg4)
2397 Lisp_Object arg1, arg2, arg3, arg4;
2398 {
2399 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2400 }
2401
2402
2403 Lisp_Object
2404 list5 (arg1, arg2, arg3, arg4, arg5)
2405 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2406 {
2407 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2408 Fcons (arg5, Qnil)))));
2409 }
2410
2411
2412 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2413 doc: /* Return a newly created list with specified arguments as elements.
2414 Any number of arguments, even zero arguments, are allowed.
2415 usage: (list &rest OBJECTS) */)
2416 (nargs, args)
2417 int nargs;
2418 register Lisp_Object *args;
2419 {
2420 register Lisp_Object val;
2421 val = Qnil;
2422
2423 while (nargs > 0)
2424 {
2425 nargs--;
2426 val = Fcons (args[nargs], val);
2427 }
2428 return val;
2429 }
2430
2431
2432 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2433 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2434 (length, init)
2435 register Lisp_Object length, init;
2436 {
2437 register Lisp_Object val;
2438 register int size;
2439
2440 CHECK_NATNUM (length);
2441 size = XFASTINT (length);
2442
2443 val = Qnil;
2444 while (size > 0)
2445 {
2446 val = Fcons (init, val);
2447 --size;
2448
2449 if (size > 0)
2450 {
2451 val = Fcons (init, val);
2452 --size;
2453
2454 if (size > 0)
2455 {
2456 val = Fcons (init, val);
2457 --size;
2458
2459 if (size > 0)
2460 {
2461 val = Fcons (init, val);
2462 --size;
2463
2464 if (size > 0)
2465 {
2466 val = Fcons (init, val);
2467 --size;
2468 }
2469 }
2470 }
2471 }
2472
2473 QUIT;
2474 }
2475
2476 return val;
2477 }
2478
2479
2480 \f
2481 /***********************************************************************
2482 Vector Allocation
2483 ***********************************************************************/
2484
2485 /* Singly-linked list of all vectors. */
2486
2487 struct Lisp_Vector *all_vectors;
2488
2489 /* Total number of vector-like objects now in use. */
2490
2491 int n_vectors;
2492
2493
2494 /* Value is a pointer to a newly allocated Lisp_Vector structure
2495 with room for LEN Lisp_Objects. */
2496
2497 static struct Lisp_Vector *
2498 allocate_vectorlike (len, type)
2499 EMACS_INT len;
2500 enum mem_type type;
2501 {
2502 struct Lisp_Vector *p;
2503 size_t nbytes;
2504
2505 #ifdef DOUG_LEA_MALLOC
2506 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2507 because mapped region contents are not preserved in
2508 a dumped Emacs. */
2509 BLOCK_INPUT;
2510 mallopt (M_MMAP_MAX, 0);
2511 UNBLOCK_INPUT;
2512 #endif
2513
2514 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2515 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2516
2517 #ifdef DOUG_LEA_MALLOC
2518 /* Back to a reasonable maximum of mmap'ed areas. */
2519 BLOCK_INPUT;
2520 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2521 UNBLOCK_INPUT;
2522 #endif
2523
2524 consing_since_gc += nbytes;
2525 vector_cells_consed += len;
2526
2527 p->next = all_vectors;
2528 all_vectors = p;
2529 ++n_vectors;
2530 return p;
2531 }
2532
2533
2534 /* Allocate a vector with NSLOTS slots. */
2535
2536 struct Lisp_Vector *
2537 allocate_vector (nslots)
2538 EMACS_INT nslots;
2539 {
2540 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2541 v->size = nslots;
2542 return v;
2543 }
2544
2545
2546 /* Allocate other vector-like structures. */
2547
2548 struct Lisp_Hash_Table *
2549 allocate_hash_table ()
2550 {
2551 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2552 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2553 EMACS_INT i;
2554
2555 v->size = len;
2556 for (i = 0; i < len; ++i)
2557 v->contents[i] = Qnil;
2558
2559 return (struct Lisp_Hash_Table *) v;
2560 }
2561
2562
2563 struct window *
2564 allocate_window ()
2565 {
2566 EMACS_INT len = VECSIZE (struct window);
2567 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2568 EMACS_INT i;
2569
2570 for (i = 0; i < len; ++i)
2571 v->contents[i] = Qnil;
2572 v->size = len;
2573
2574 return (struct window *) v;
2575 }
2576
2577
2578 struct frame *
2579 allocate_frame ()
2580 {
2581 EMACS_INT len = VECSIZE (struct frame);
2582 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2583 EMACS_INT i;
2584
2585 for (i = 0; i < len; ++i)
2586 v->contents[i] = make_number (0);
2587 v->size = len;
2588 return (struct frame *) v;
2589 }
2590
2591
2592 struct Lisp_Process *
2593 allocate_process ()
2594 {
2595 EMACS_INT len = VECSIZE (struct Lisp_Process);
2596 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2597 EMACS_INT i;
2598
2599 for (i = 0; i < len; ++i)
2600 v->contents[i] = Qnil;
2601 v->size = len;
2602
2603 return (struct Lisp_Process *) v;
2604 }
2605
2606
2607 struct Lisp_Vector *
2608 allocate_other_vector (len)
2609 EMACS_INT len;
2610 {
2611 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2612 EMACS_INT i;
2613
2614 for (i = 0; i < len; ++i)
2615 v->contents[i] = Qnil;
2616 v->size = len;
2617
2618 return v;
2619 }
2620
2621
2622 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2623 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2624 See also the function `vector'. */)
2625 (length, init)
2626 register Lisp_Object length, init;
2627 {
2628 Lisp_Object vector;
2629 register EMACS_INT sizei;
2630 register int index;
2631 register struct Lisp_Vector *p;
2632
2633 CHECK_NATNUM (length);
2634 sizei = XFASTINT (length);
2635
2636 p = allocate_vector (sizei);
2637 for (index = 0; index < sizei; index++)
2638 p->contents[index] = init;
2639
2640 XSETVECTOR (vector, p);
2641 return vector;
2642 }
2643
2644
2645 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2646 doc: /* Return a newly created vector with specified arguments as elements.
2647 Any number of arguments, even zero arguments, are allowed.
2648 usage: (vector &rest OBJECTS) */)
2649 (nargs, args)
2650 register int nargs;
2651 Lisp_Object *args;
2652 {
2653 register Lisp_Object len, val;
2654 register int index;
2655 register struct Lisp_Vector *p;
2656
2657 XSETFASTINT (len, nargs);
2658 val = Fmake_vector (len, Qnil);
2659 p = XVECTOR (val);
2660 for (index = 0; index < nargs; index++)
2661 p->contents[index] = args[index];
2662 return val;
2663 }
2664
2665
2666 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2667 doc: /* Create a byte-code object with specified arguments as elements.
2668 The arguments should be the arglist, bytecode-string, constant vector,
2669 stack size, (optional) doc string, and (optional) interactive spec.
2670 The first four arguments are required; at most six have any
2671 significance.
2672 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2673 (nargs, args)
2674 register int nargs;
2675 Lisp_Object *args;
2676 {
2677 register Lisp_Object len, val;
2678 register int index;
2679 register struct Lisp_Vector *p;
2680
2681 XSETFASTINT (len, nargs);
2682 if (!NILP (Vpurify_flag))
2683 val = make_pure_vector ((EMACS_INT) nargs);
2684 else
2685 val = Fmake_vector (len, Qnil);
2686
2687 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2688 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2689 earlier because they produced a raw 8-bit string for byte-code
2690 and now such a byte-code string is loaded as multibyte while
2691 raw 8-bit characters converted to multibyte form. Thus, now we
2692 must convert them back to the original unibyte form. */
2693 args[1] = Fstring_as_unibyte (args[1]);
2694
2695 p = XVECTOR (val);
2696 for (index = 0; index < nargs; index++)
2697 {
2698 if (!NILP (Vpurify_flag))
2699 args[index] = Fpurecopy (args[index]);
2700 p->contents[index] = args[index];
2701 }
2702 XSETCOMPILED (val, p);
2703 return val;
2704 }
2705
2706
2707 \f
2708 /***********************************************************************
2709 Symbol Allocation
2710 ***********************************************************************/
2711
2712 /* Each symbol_block is just under 1020 bytes long, since malloc
2713 really allocates in units of powers of two and uses 4 bytes for its
2714 own overhead. */
2715
2716 #define SYMBOL_BLOCK_SIZE \
2717 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2718
2719 struct symbol_block
2720 {
2721 /* Place `symbols' first, to preserve alignment. */
2722 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
2723 struct symbol_block *next;
2724 };
2725
2726 /* Current symbol block and index of first unused Lisp_Symbol
2727 structure in it. */
2728
2729 struct symbol_block *symbol_block;
2730 int symbol_block_index;
2731
2732 /* List of free symbols. */
2733
2734 struct Lisp_Symbol *symbol_free_list;
2735
2736 /* Total number of symbol blocks now in use. */
2737
2738 int n_symbol_blocks;
2739
2740
2741 /* Initialize symbol allocation. */
2742
2743 void
2744 init_symbol ()
2745 {
2746 symbol_block = NULL;
2747 symbol_block_index = SYMBOL_BLOCK_SIZE;
2748 symbol_free_list = 0;
2749 n_symbol_blocks = 0;
2750 }
2751
2752
2753 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
2754 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
2755 Its value and function definition are void, and its property list is nil. */)
2756 (name)
2757 Lisp_Object name;
2758 {
2759 register Lisp_Object val;
2760 register struct Lisp_Symbol *p;
2761
2762 CHECK_STRING (name);
2763
2764 if (symbol_free_list)
2765 {
2766 XSETSYMBOL (val, symbol_free_list);
2767 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
2768 }
2769 else
2770 {
2771 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
2772 {
2773 struct symbol_block *new;
2774 new = (struct symbol_block *) lisp_malloc (sizeof *new,
2775 MEM_TYPE_SYMBOL);
2776 new->next = symbol_block;
2777 symbol_block = new;
2778 symbol_block_index = 0;
2779 n_symbol_blocks++;
2780 }
2781 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
2782 symbol_block_index++;
2783 }
2784
2785 p = XSYMBOL (val);
2786 p->xname = name;
2787 p->plist = Qnil;
2788 p->value = Qunbound;
2789 p->function = Qunbound;
2790 p->next = NULL;
2791 p->gcmarkbit = 0;
2792 p->interned = SYMBOL_UNINTERNED;
2793 p->constant = 0;
2794 p->indirect_variable = 0;
2795 consing_since_gc += sizeof (struct Lisp_Symbol);
2796 symbols_consed++;
2797 return val;
2798 }
2799
2800
2801 \f
2802 /***********************************************************************
2803 Marker (Misc) Allocation
2804 ***********************************************************************/
2805
2806 /* Allocation of markers and other objects that share that structure.
2807 Works like allocation of conses. */
2808
2809 #define MARKER_BLOCK_SIZE \
2810 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2811
2812 struct marker_block
2813 {
2814 /* Place `markers' first, to preserve alignment. */
2815 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
2816 struct marker_block *next;
2817 };
2818
2819 struct marker_block *marker_block;
2820 int marker_block_index;
2821
2822 union Lisp_Misc *marker_free_list;
2823
2824 /* Total number of marker blocks now in use. */
2825
2826 int n_marker_blocks;
2827
2828 void
2829 init_marker ()
2830 {
2831 marker_block = NULL;
2832 marker_block_index = MARKER_BLOCK_SIZE;
2833 marker_free_list = 0;
2834 n_marker_blocks = 0;
2835 }
2836
2837 /* Return a newly allocated Lisp_Misc object, with no substructure. */
2838
2839 Lisp_Object
2840 allocate_misc ()
2841 {
2842 Lisp_Object val;
2843
2844 if (marker_free_list)
2845 {
2846 XSETMISC (val, marker_free_list);
2847 marker_free_list = marker_free_list->u_free.chain;
2848 }
2849 else
2850 {
2851 if (marker_block_index == MARKER_BLOCK_SIZE)
2852 {
2853 struct marker_block *new;
2854 new = (struct marker_block *) lisp_malloc (sizeof *new,
2855 MEM_TYPE_MISC);
2856 new->next = marker_block;
2857 marker_block = new;
2858 marker_block_index = 0;
2859 n_marker_blocks++;
2860 }
2861 XSETMISC (val, &marker_block->markers[marker_block_index]);
2862 marker_block_index++;
2863 }
2864
2865 consing_since_gc += sizeof (union Lisp_Misc);
2866 misc_objects_consed++;
2867 XMARKER (val)->gcmarkbit = 0;
2868 return val;
2869 }
2870
2871 /* Return a Lisp_Misc_Save_Value object containing POINTER and
2872 INTEGER. This is used to package C values to call record_unwind_protect.
2873 The unwind function can get the C values back using XSAVE_VALUE. */
2874
2875 Lisp_Object
2876 make_save_value (pointer, integer)
2877 void *pointer;
2878 int integer;
2879 {
2880 register Lisp_Object val;
2881 register struct Lisp_Save_Value *p;
2882
2883 val = allocate_misc ();
2884 XMISCTYPE (val) = Lisp_Misc_Save_Value;
2885 p = XSAVE_VALUE (val);
2886 p->pointer = pointer;
2887 p->integer = integer;
2888 return val;
2889 }
2890
2891 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
2892 doc: /* Return a newly allocated marker which does not point at any place. */)
2893 ()
2894 {
2895 register Lisp_Object val;
2896 register struct Lisp_Marker *p;
2897
2898 val = allocate_misc ();
2899 XMISCTYPE (val) = Lisp_Misc_Marker;
2900 p = XMARKER (val);
2901 p->buffer = 0;
2902 p->bytepos = 0;
2903 p->charpos = 0;
2904 p->next = NULL;
2905 p->insertion_type = 0;
2906 return val;
2907 }
2908
2909 /* Put MARKER back on the free list after using it temporarily. */
2910
2911 void
2912 free_marker (marker)
2913 Lisp_Object marker;
2914 {
2915 unchain_marker (XMARKER (marker));
2916
2917 XMISC (marker)->u_marker.type = Lisp_Misc_Free;
2918 XMISC (marker)->u_free.chain = marker_free_list;
2919 marker_free_list = XMISC (marker);
2920
2921 total_free_markers++;
2922 }
2923
2924 \f
2925 /* Return a newly created vector or string with specified arguments as
2926 elements. If all the arguments are characters that can fit
2927 in a string of events, make a string; otherwise, make a vector.
2928
2929 Any number of arguments, even zero arguments, are allowed. */
2930
2931 Lisp_Object
2932 make_event_array (nargs, args)
2933 register int nargs;
2934 Lisp_Object *args;
2935 {
2936 int i;
2937
2938 for (i = 0; i < nargs; i++)
2939 /* The things that fit in a string
2940 are characters that are in 0...127,
2941 after discarding the meta bit and all the bits above it. */
2942 if (!INTEGERP (args[i])
2943 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
2944 return Fvector (nargs, args);
2945
2946 /* Since the loop exited, we know that all the things in it are
2947 characters, so we can make a string. */
2948 {
2949 Lisp_Object result;
2950
2951 result = Fmake_string (make_number (nargs), make_number (0));
2952 for (i = 0; i < nargs; i++)
2953 {
2954 SSET (result, i, XINT (args[i]));
2955 /* Move the meta bit to the right place for a string char. */
2956 if (XINT (args[i]) & CHAR_META)
2957 SSET (result, i, SREF (result, i) | 0x80);
2958 }
2959
2960 return result;
2961 }
2962 }
2963
2964
2965 \f
2966 /************************************************************************
2967 C Stack Marking
2968 ************************************************************************/
2969
2970 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
2971
2972 /* Conservative C stack marking requires a method to identify possibly
2973 live Lisp objects given a pointer value. We do this by keeping
2974 track of blocks of Lisp data that are allocated in a red-black tree
2975 (see also the comment of mem_node which is the type of nodes in
2976 that tree). Function lisp_malloc adds information for an allocated
2977 block to the red-black tree with calls to mem_insert, and function
2978 lisp_free removes it with mem_delete. Functions live_string_p etc
2979 call mem_find to lookup information about a given pointer in the
2980 tree, and use that to determine if the pointer points to a Lisp
2981 object or not. */
2982
2983 /* Initialize this part of alloc.c. */
2984
2985 static void
2986 mem_init ()
2987 {
2988 mem_z.left = mem_z.right = MEM_NIL;
2989 mem_z.parent = NULL;
2990 mem_z.color = MEM_BLACK;
2991 mem_z.start = mem_z.end = NULL;
2992 mem_root = MEM_NIL;
2993 }
2994
2995
2996 /* Value is a pointer to the mem_node containing START. Value is
2997 MEM_NIL if there is no node in the tree containing START. */
2998
2999 static INLINE struct mem_node *
3000 mem_find (start)
3001 void *start;
3002 {
3003 struct mem_node *p;
3004
3005 if (start < min_heap_address || start > max_heap_address)
3006 return MEM_NIL;
3007
3008 /* Make the search always successful to speed up the loop below. */
3009 mem_z.start = start;
3010 mem_z.end = (char *) start + 1;
3011
3012 p = mem_root;
3013 while (start < p->start || start >= p->end)
3014 p = start < p->start ? p->left : p->right;
3015 return p;
3016 }
3017
3018
3019 /* Insert a new node into the tree for a block of memory with start
3020 address START, end address END, and type TYPE. Value is a
3021 pointer to the node that was inserted. */
3022
3023 static struct mem_node *
3024 mem_insert (start, end, type)
3025 void *start, *end;
3026 enum mem_type type;
3027 {
3028 struct mem_node *c, *parent, *x;
3029
3030 if (start < min_heap_address)
3031 min_heap_address = start;
3032 if (end > max_heap_address)
3033 max_heap_address = end;
3034
3035 /* See where in the tree a node for START belongs. In this
3036 particular application, it shouldn't happen that a node is already
3037 present. For debugging purposes, let's check that. */
3038 c = mem_root;
3039 parent = NULL;
3040
3041 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3042
3043 while (c != MEM_NIL)
3044 {
3045 if (start >= c->start && start < c->end)
3046 abort ();
3047 parent = c;
3048 c = start < c->start ? c->left : c->right;
3049 }
3050
3051 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3052
3053 while (c != MEM_NIL)
3054 {
3055 parent = c;
3056 c = start < c->start ? c->left : c->right;
3057 }
3058
3059 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3060
3061 /* Create a new node. */
3062 #ifdef GC_MALLOC_CHECK
3063 x = (struct mem_node *) _malloc_internal (sizeof *x);
3064 if (x == NULL)
3065 abort ();
3066 #else
3067 x = (struct mem_node *) xmalloc (sizeof *x);
3068 #endif
3069 x->start = start;
3070 x->end = end;
3071 x->type = type;
3072 x->parent = parent;
3073 x->left = x->right = MEM_NIL;
3074 x->color = MEM_RED;
3075
3076 /* Insert it as child of PARENT or install it as root. */
3077 if (parent)
3078 {
3079 if (start < parent->start)
3080 parent->left = x;
3081 else
3082 parent->right = x;
3083 }
3084 else
3085 mem_root = x;
3086
3087 /* Re-establish red-black tree properties. */
3088 mem_insert_fixup (x);
3089
3090 return x;
3091 }
3092
3093
3094 /* Re-establish the red-black properties of the tree, and thereby
3095 balance the tree, after node X has been inserted; X is always red. */
3096
3097 static void
3098 mem_insert_fixup (x)
3099 struct mem_node *x;
3100 {
3101 while (x != mem_root && x->parent->color == MEM_RED)
3102 {
3103 /* X is red and its parent is red. This is a violation of
3104 red-black tree property #3. */
3105
3106 if (x->parent == x->parent->parent->left)
3107 {
3108 /* We're on the left side of our grandparent, and Y is our
3109 "uncle". */
3110 struct mem_node *y = x->parent->parent->right;
3111
3112 if (y->color == MEM_RED)
3113 {
3114 /* Uncle and parent are red but should be black because
3115 X is red. Change the colors accordingly and proceed
3116 with the grandparent. */
3117 x->parent->color = MEM_BLACK;
3118 y->color = MEM_BLACK;
3119 x->parent->parent->color = MEM_RED;
3120 x = x->parent->parent;
3121 }
3122 else
3123 {
3124 /* Parent and uncle have different colors; parent is
3125 red, uncle is black. */
3126 if (x == x->parent->right)
3127 {
3128 x = x->parent;
3129 mem_rotate_left (x);
3130 }
3131
3132 x->parent->color = MEM_BLACK;
3133 x->parent->parent->color = MEM_RED;
3134 mem_rotate_right (x->parent->parent);
3135 }
3136 }
3137 else
3138 {
3139 /* This is the symmetrical case of above. */
3140 struct mem_node *y = x->parent->parent->left;
3141
3142 if (y->color == MEM_RED)
3143 {
3144 x->parent->color = MEM_BLACK;
3145 y->color = MEM_BLACK;
3146 x->parent->parent->color = MEM_RED;
3147 x = x->parent->parent;
3148 }
3149 else
3150 {
3151 if (x == x->parent->left)
3152 {
3153 x = x->parent;
3154 mem_rotate_right (x);
3155 }
3156
3157 x->parent->color = MEM_BLACK;
3158 x->parent->parent->color = MEM_RED;
3159 mem_rotate_left (x->parent->parent);
3160 }
3161 }
3162 }
3163
3164 /* The root may have been changed to red due to the algorithm. Set
3165 it to black so that property #5 is satisfied. */
3166 mem_root->color = MEM_BLACK;
3167 }
3168
3169
3170 /* (x) (y)
3171 / \ / \
3172 a (y) ===> (x) c
3173 / \ / \
3174 b c a b */
3175
3176 static void
3177 mem_rotate_left (x)
3178 struct mem_node *x;
3179 {
3180 struct mem_node *y;
3181
3182 /* Turn y's left sub-tree into x's right sub-tree. */
3183 y = x->right;
3184 x->right = y->left;
3185 if (y->left != MEM_NIL)
3186 y->left->parent = x;
3187
3188 /* Y's parent was x's parent. */
3189 if (y != MEM_NIL)
3190 y->parent = x->parent;
3191
3192 /* Get the parent to point to y instead of x. */
3193 if (x->parent)
3194 {
3195 if (x == x->parent->left)
3196 x->parent->left = y;
3197 else
3198 x->parent->right = y;
3199 }
3200 else
3201 mem_root = y;
3202
3203 /* Put x on y's left. */
3204 y->left = x;
3205 if (x != MEM_NIL)
3206 x->parent = y;
3207 }
3208
3209
3210 /* (x) (Y)
3211 / \ / \
3212 (y) c ===> a (x)
3213 / \ / \
3214 a b b c */
3215
3216 static void
3217 mem_rotate_right (x)
3218 struct mem_node *x;
3219 {
3220 struct mem_node *y = x->left;
3221
3222 x->left = y->right;
3223 if (y->right != MEM_NIL)
3224 y->right->parent = x;
3225
3226 if (y != MEM_NIL)
3227 y->parent = x->parent;
3228 if (x->parent)
3229 {
3230 if (x == x->parent->right)
3231 x->parent->right = y;
3232 else
3233 x->parent->left = y;
3234 }
3235 else
3236 mem_root = y;
3237
3238 y->right = x;
3239 if (x != MEM_NIL)
3240 x->parent = y;
3241 }
3242
3243
3244 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3245
3246 static void
3247 mem_delete (z)
3248 struct mem_node *z;
3249 {
3250 struct mem_node *x, *y;
3251
3252 if (!z || z == MEM_NIL)
3253 return;
3254
3255 if (z->left == MEM_NIL || z->right == MEM_NIL)
3256 y = z;
3257 else
3258 {
3259 y = z->right;
3260 while (y->left != MEM_NIL)
3261 y = y->left;
3262 }
3263
3264 if (y->left != MEM_NIL)
3265 x = y->left;
3266 else
3267 x = y->right;
3268
3269 x->parent = y->parent;
3270 if (y->parent)
3271 {
3272 if (y == y->parent->left)
3273 y->parent->left = x;
3274 else
3275 y->parent->right = x;
3276 }
3277 else
3278 mem_root = x;
3279
3280 if (y != z)
3281 {
3282 z->start = y->start;
3283 z->end = y->end;
3284 z->type = y->type;
3285 }
3286
3287 if (y->color == MEM_BLACK)
3288 mem_delete_fixup (x);
3289
3290 #ifdef GC_MALLOC_CHECK
3291 _free_internal (y);
3292 #else
3293 xfree (y);
3294 #endif
3295 }
3296
3297
3298 /* Re-establish the red-black properties of the tree, after a
3299 deletion. */
3300
3301 static void
3302 mem_delete_fixup (x)
3303 struct mem_node *x;
3304 {
3305 while (x != mem_root && x->color == MEM_BLACK)
3306 {
3307 if (x == x->parent->left)
3308 {
3309 struct mem_node *w = x->parent->right;
3310
3311 if (w->color == MEM_RED)
3312 {
3313 w->color = MEM_BLACK;
3314 x->parent->color = MEM_RED;
3315 mem_rotate_left (x->parent);
3316 w = x->parent->right;
3317 }
3318
3319 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3320 {
3321 w->color = MEM_RED;
3322 x = x->parent;
3323 }
3324 else
3325 {
3326 if (w->right->color == MEM_BLACK)
3327 {
3328 w->left->color = MEM_BLACK;
3329 w->color = MEM_RED;
3330 mem_rotate_right (w);
3331 w = x->parent->right;
3332 }
3333 w->color = x->parent->color;
3334 x->parent->color = MEM_BLACK;
3335 w->right->color = MEM_BLACK;
3336 mem_rotate_left (x->parent);
3337 x = mem_root;
3338 }
3339 }
3340 else
3341 {
3342 struct mem_node *w = x->parent->left;
3343
3344 if (w->color == MEM_RED)
3345 {
3346 w->color = MEM_BLACK;
3347 x->parent->color = MEM_RED;
3348 mem_rotate_right (x->parent);
3349 w = x->parent->left;
3350 }
3351
3352 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3353 {
3354 w->color = MEM_RED;
3355 x = x->parent;
3356 }
3357 else
3358 {
3359 if (w->left->color == MEM_BLACK)
3360 {
3361 w->right->color = MEM_BLACK;
3362 w->color = MEM_RED;
3363 mem_rotate_left (w);
3364 w = x->parent->left;
3365 }
3366
3367 w->color = x->parent->color;
3368 x->parent->color = MEM_BLACK;
3369 w->left->color = MEM_BLACK;
3370 mem_rotate_right (x->parent);
3371 x = mem_root;
3372 }
3373 }
3374 }
3375
3376 x->color = MEM_BLACK;
3377 }
3378
3379
3380 /* Value is non-zero if P is a pointer to a live Lisp string on
3381 the heap. M is a pointer to the mem_block for P. */
3382
3383 static INLINE int
3384 live_string_p (m, p)
3385 struct mem_node *m;
3386 void *p;
3387 {
3388 if (m->type == MEM_TYPE_STRING)
3389 {
3390 struct string_block *b = (struct string_block *) m->start;
3391 int offset = (char *) p - (char *) &b->strings[0];
3392
3393 /* P must point to the start of a Lisp_String structure, and it
3394 must not be on the free-list. */
3395 return (offset >= 0
3396 && offset % sizeof b->strings[0] == 0
3397 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3398 && ((struct Lisp_String *) p)->data != NULL);
3399 }
3400 else
3401 return 0;
3402 }
3403
3404
3405 /* Value is non-zero if P is a pointer to a live Lisp cons on
3406 the heap. M is a pointer to the mem_block for P. */
3407
3408 static INLINE int
3409 live_cons_p (m, p)
3410 struct mem_node *m;
3411 void *p;
3412 {
3413 if (m->type == MEM_TYPE_CONS)
3414 {
3415 struct cons_block *b = (struct cons_block *) m->start;
3416 int offset = (char *) p - (char *) &b->conses[0];
3417
3418 /* P must point to the start of a Lisp_Cons, not be
3419 one of the unused cells in the current cons block,
3420 and not be on the free-list. */
3421 return (offset >= 0
3422 && offset % sizeof b->conses[0] == 0
3423 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3424 && (b != cons_block
3425 || offset / sizeof b->conses[0] < cons_block_index)
3426 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3427 }
3428 else
3429 return 0;
3430 }
3431
3432
3433 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3434 the heap. M is a pointer to the mem_block for P. */
3435
3436 static INLINE int
3437 live_symbol_p (m, p)
3438 struct mem_node *m;
3439 void *p;
3440 {
3441 if (m->type == MEM_TYPE_SYMBOL)
3442 {
3443 struct symbol_block *b = (struct symbol_block *) m->start;
3444 int offset = (char *) p - (char *) &b->symbols[0];
3445
3446 /* P must point to the start of a Lisp_Symbol, not be
3447 one of the unused cells in the current symbol block,
3448 and not be on the free-list. */
3449 return (offset >= 0
3450 && offset % sizeof b->symbols[0] == 0
3451 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3452 && (b != symbol_block
3453 || offset / sizeof b->symbols[0] < symbol_block_index)
3454 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3455 }
3456 else
3457 return 0;
3458 }
3459
3460
3461 /* Value is non-zero if P is a pointer to a live Lisp float on
3462 the heap. M is a pointer to the mem_block for P. */
3463
3464 static INLINE int
3465 live_float_p (m, p)
3466 struct mem_node *m;
3467 void *p;
3468 {
3469 if (m->type == MEM_TYPE_FLOAT)
3470 {
3471 struct float_block *b = (struct float_block *) m->start;
3472 int offset = (char *) p - (char *) &b->floats[0];
3473
3474 /* P must point to the start of a Lisp_Float and not be
3475 one of the unused cells in the current float block. */
3476 return (offset >= 0
3477 && offset % sizeof b->floats[0] == 0
3478 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3479 && (b != float_block
3480 || offset / sizeof b->floats[0] < float_block_index));
3481 }
3482 else
3483 return 0;
3484 }
3485
3486
3487 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3488 the heap. M is a pointer to the mem_block for P. */
3489
3490 static INLINE int
3491 live_misc_p (m, p)
3492 struct mem_node *m;
3493 void *p;
3494 {
3495 if (m->type == MEM_TYPE_MISC)
3496 {
3497 struct marker_block *b = (struct marker_block *) m->start;
3498 int offset = (char *) p - (char *) &b->markers[0];
3499
3500 /* P must point to the start of a Lisp_Misc, not be
3501 one of the unused cells in the current misc block,
3502 and not be on the free-list. */
3503 return (offset >= 0
3504 && offset % sizeof b->markers[0] == 0
3505 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3506 && (b != marker_block
3507 || offset / sizeof b->markers[0] < marker_block_index)
3508 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3509 }
3510 else
3511 return 0;
3512 }
3513
3514
3515 /* Value is non-zero if P is a pointer to a live vector-like object.
3516 M is a pointer to the mem_block for P. */
3517
3518 static INLINE int
3519 live_vector_p (m, p)
3520 struct mem_node *m;
3521 void *p;
3522 {
3523 return (p == m->start
3524 && m->type >= MEM_TYPE_VECTOR
3525 && m->type <= MEM_TYPE_WINDOW);
3526 }
3527
3528
3529 /* Value is non-zero if P is a pointer to a live buffer. M is a
3530 pointer to the mem_block for P. */
3531
3532 static INLINE int
3533 live_buffer_p (m, p)
3534 struct mem_node *m;
3535 void *p;
3536 {
3537 /* P must point to the start of the block, and the buffer
3538 must not have been killed. */
3539 return (m->type == MEM_TYPE_BUFFER
3540 && p == m->start
3541 && !NILP (((struct buffer *) p)->name));
3542 }
3543
3544 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3545
3546 #if GC_MARK_STACK
3547
3548 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3549
3550 /* Array of objects that are kept alive because the C stack contains
3551 a pattern that looks like a reference to them . */
3552
3553 #define MAX_ZOMBIES 10
3554 static Lisp_Object zombies[MAX_ZOMBIES];
3555
3556 /* Number of zombie objects. */
3557
3558 static int nzombies;
3559
3560 /* Number of garbage collections. */
3561
3562 static int ngcs;
3563
3564 /* Average percentage of zombies per collection. */
3565
3566 static double avg_zombies;
3567
3568 /* Max. number of live and zombie objects. */
3569
3570 static int max_live, max_zombies;
3571
3572 /* Average number of live objects per GC. */
3573
3574 static double avg_live;
3575
3576 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3577 doc: /* Show information about live and zombie objects. */)
3578 ()
3579 {
3580 Lisp_Object args[8], zombie_list = Qnil;
3581 int i;
3582 for (i = 0; i < nzombies; i++)
3583 zombie_list = Fcons (zombies[i], zombie_list);
3584 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3585 args[1] = make_number (ngcs);
3586 args[2] = make_float (avg_live);
3587 args[3] = make_float (avg_zombies);
3588 args[4] = make_float (avg_zombies / avg_live / 100);
3589 args[5] = make_number (max_live);
3590 args[6] = make_number (max_zombies);
3591 args[7] = zombie_list;
3592 return Fmessage (8, args);
3593 }
3594
3595 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3596
3597
3598 /* Mark OBJ if we can prove it's a Lisp_Object. */
3599
3600 static INLINE void
3601 mark_maybe_object (obj)
3602 Lisp_Object obj;
3603 {
3604 void *po = (void *) XPNTR (obj);
3605 struct mem_node *m = mem_find (po);
3606
3607 if (m != MEM_NIL)
3608 {
3609 int mark_p = 0;
3610
3611 switch (XGCTYPE (obj))
3612 {
3613 case Lisp_String:
3614 mark_p = (live_string_p (m, po)
3615 && !STRING_MARKED_P ((struct Lisp_String *) po));
3616 break;
3617
3618 case Lisp_Cons:
3619 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3620 break;
3621
3622 case Lisp_Symbol:
3623 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3624 break;
3625
3626 case Lisp_Float:
3627 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3628 break;
3629
3630 case Lisp_Vectorlike:
3631 /* Note: can't check GC_BUFFERP before we know it's a
3632 buffer because checking that dereferences the pointer
3633 PO which might point anywhere. */
3634 if (live_vector_p (m, po))
3635 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3636 else if (live_buffer_p (m, po))
3637 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3638 break;
3639
3640 case Lisp_Misc:
3641 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
3642 break;
3643
3644 case Lisp_Int:
3645 case Lisp_Type_Limit:
3646 break;
3647 }
3648
3649 if (mark_p)
3650 {
3651 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3652 if (nzombies < MAX_ZOMBIES)
3653 zombies[nzombies] = obj;
3654 ++nzombies;
3655 #endif
3656 mark_object (obj);
3657 }
3658 }
3659 }
3660
3661
3662 /* If P points to Lisp data, mark that as live if it isn't already
3663 marked. */
3664
3665 static INLINE void
3666 mark_maybe_pointer (p)
3667 void *p;
3668 {
3669 struct mem_node *m;
3670
3671 /* Quickly rule out some values which can't point to Lisp data. We
3672 assume that Lisp data is aligned on even addresses. */
3673 if ((EMACS_INT) p & 1)
3674 return;
3675
3676 m = mem_find (p);
3677 if (m != MEM_NIL)
3678 {
3679 Lisp_Object obj = Qnil;
3680
3681 switch (m->type)
3682 {
3683 case MEM_TYPE_NON_LISP:
3684 /* Nothing to do; not a pointer to Lisp memory. */
3685 break;
3686
3687 case MEM_TYPE_BUFFER:
3688 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
3689 XSETVECTOR (obj, p);
3690 break;
3691
3692 case MEM_TYPE_CONS:
3693 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
3694 XSETCONS (obj, p);
3695 break;
3696
3697 case MEM_TYPE_STRING:
3698 if (live_string_p (m, p)
3699 && !STRING_MARKED_P ((struct Lisp_String *) p))
3700 XSETSTRING (obj, p);
3701 break;
3702
3703 case MEM_TYPE_MISC:
3704 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
3705 XSETMISC (obj, p);
3706 break;
3707
3708 case MEM_TYPE_SYMBOL:
3709 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
3710 XSETSYMBOL (obj, p);
3711 break;
3712
3713 case MEM_TYPE_FLOAT:
3714 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
3715 XSETFLOAT (obj, p);
3716 break;
3717
3718 case MEM_TYPE_VECTOR:
3719 case MEM_TYPE_PROCESS:
3720 case MEM_TYPE_HASH_TABLE:
3721 case MEM_TYPE_FRAME:
3722 case MEM_TYPE_WINDOW:
3723 if (live_vector_p (m, p))
3724 {
3725 Lisp_Object tem;
3726 XSETVECTOR (tem, p);
3727 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
3728 obj = tem;
3729 }
3730 break;
3731
3732 default:
3733 abort ();
3734 }
3735
3736 if (!GC_NILP (obj))
3737 mark_object (obj);
3738 }
3739 }
3740
3741
3742 /* Mark Lisp objects referenced from the address range START..END. */
3743
3744 static void
3745 mark_memory (start, end)
3746 void *start, *end;
3747 {
3748 Lisp_Object *p;
3749 void **pp;
3750
3751 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3752 nzombies = 0;
3753 #endif
3754
3755 /* Make START the pointer to the start of the memory region,
3756 if it isn't already. */
3757 if (end < start)
3758 {
3759 void *tem = start;
3760 start = end;
3761 end = tem;
3762 }
3763
3764 /* Mark Lisp_Objects. */
3765 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
3766 mark_maybe_object (*p);
3767
3768 /* Mark Lisp data pointed to. This is necessary because, in some
3769 situations, the C compiler optimizes Lisp objects away, so that
3770 only a pointer to them remains. Example:
3771
3772 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
3773 ()
3774 {
3775 Lisp_Object obj = build_string ("test");
3776 struct Lisp_String *s = XSTRING (obj);
3777 Fgarbage_collect ();
3778 fprintf (stderr, "test `%s'\n", s->data);
3779 return Qnil;
3780 }
3781
3782 Here, `obj' isn't really used, and the compiler optimizes it
3783 away. The only reference to the life string is through the
3784 pointer `s'. */
3785
3786 for (pp = (void **) start; (void *) pp < end; ++pp)
3787 mark_maybe_pointer (*pp);
3788 }
3789
3790 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
3791 the GCC system configuration. In gcc 3.2, the only systems for
3792 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
3793 by others?) and ns32k-pc532-min. */
3794
3795 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3796
3797 static int setjmp_tested_p, longjmps_done;
3798
3799 #define SETJMP_WILL_LIKELY_WORK "\
3800 \n\
3801 Emacs garbage collector has been changed to use conservative stack\n\
3802 marking. Emacs has determined that the method it uses to do the\n\
3803 marking will likely work on your system, but this isn't sure.\n\
3804 \n\
3805 If you are a system-programmer, or can get the help of a local wizard\n\
3806 who is, please take a look at the function mark_stack in alloc.c, and\n\
3807 verify that the methods used are appropriate for your system.\n\
3808 \n\
3809 Please mail the result to <emacs-devel@gnu.org>.\n\
3810 "
3811
3812 #define SETJMP_WILL_NOT_WORK "\
3813 \n\
3814 Emacs garbage collector has been changed to use conservative stack\n\
3815 marking. Emacs has determined that the default method it uses to do the\n\
3816 marking will not work on your system. We will need a system-dependent\n\
3817 solution for your system.\n\
3818 \n\
3819 Please take a look at the function mark_stack in alloc.c, and\n\
3820 try to find a way to make it work on your system.\n\
3821 \n\
3822 Note that you may get false negatives, depending on the compiler.\n\
3823 In particular, you need to use -O with GCC for this test.\n\
3824 \n\
3825 Please mail the result to <emacs-devel@gnu.org>.\n\
3826 "
3827
3828
3829 /* Perform a quick check if it looks like setjmp saves registers in a
3830 jmp_buf. Print a message to stderr saying so. When this test
3831 succeeds, this is _not_ a proof that setjmp is sufficient for
3832 conservative stack marking. Only the sources or a disassembly
3833 can prove that. */
3834
3835 static void
3836 test_setjmp ()
3837 {
3838 char buf[10];
3839 register int x;
3840 jmp_buf jbuf;
3841 int result = 0;
3842
3843 /* Arrange for X to be put in a register. */
3844 sprintf (buf, "1");
3845 x = strlen (buf);
3846 x = 2 * x - 1;
3847
3848 setjmp (jbuf);
3849 if (longjmps_done == 1)
3850 {
3851 /* Came here after the longjmp at the end of the function.
3852
3853 If x == 1, the longjmp has restored the register to its
3854 value before the setjmp, and we can hope that setjmp
3855 saves all such registers in the jmp_buf, although that
3856 isn't sure.
3857
3858 For other values of X, either something really strange is
3859 taking place, or the setjmp just didn't save the register. */
3860
3861 if (x == 1)
3862 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
3863 else
3864 {
3865 fprintf (stderr, SETJMP_WILL_NOT_WORK);
3866 exit (1);
3867 }
3868 }
3869
3870 ++longjmps_done;
3871 x = 2;
3872 if (longjmps_done == 1)
3873 longjmp (jbuf, 1);
3874 }
3875
3876 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3877
3878
3879 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3880
3881 /* Abort if anything GCPRO'd doesn't survive the GC. */
3882
3883 static void
3884 check_gcpros ()
3885 {
3886 struct gcpro *p;
3887 int i;
3888
3889 for (p = gcprolist; p; p = p->next)
3890 for (i = 0; i < p->nvars; ++i)
3891 if (!survives_gc_p (p->var[i]))
3892 /* FIXME: It's not necessarily a bug. It might just be that the
3893 GCPRO is unnecessary or should release the object sooner. */
3894 abort ();
3895 }
3896
3897 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3898
3899 static void
3900 dump_zombies ()
3901 {
3902 int i;
3903
3904 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
3905 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
3906 {
3907 fprintf (stderr, " %d = ", i);
3908 debug_print (zombies[i]);
3909 }
3910 }
3911
3912 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3913
3914
3915 /* Mark live Lisp objects on the C stack.
3916
3917 There are several system-dependent problems to consider when
3918 porting this to new architectures:
3919
3920 Processor Registers
3921
3922 We have to mark Lisp objects in CPU registers that can hold local
3923 variables or are used to pass parameters.
3924
3925 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
3926 something that either saves relevant registers on the stack, or
3927 calls mark_maybe_object passing it each register's contents.
3928
3929 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
3930 implementation assumes that calling setjmp saves registers we need
3931 to see in a jmp_buf which itself lies on the stack. This doesn't
3932 have to be true! It must be verified for each system, possibly
3933 by taking a look at the source code of setjmp.
3934
3935 Stack Layout
3936
3937 Architectures differ in the way their processor stack is organized.
3938 For example, the stack might look like this
3939
3940 +----------------+
3941 | Lisp_Object | size = 4
3942 +----------------+
3943 | something else | size = 2
3944 +----------------+
3945 | Lisp_Object | size = 4
3946 +----------------+
3947 | ... |
3948
3949 In such a case, not every Lisp_Object will be aligned equally. To
3950 find all Lisp_Object on the stack it won't be sufficient to walk
3951 the stack in steps of 4 bytes. Instead, two passes will be
3952 necessary, one starting at the start of the stack, and a second
3953 pass starting at the start of the stack + 2. Likewise, if the
3954 minimal alignment of Lisp_Objects on the stack is 1, four passes
3955 would be necessary, each one starting with one byte more offset
3956 from the stack start.
3957
3958 The current code assumes by default that Lisp_Objects are aligned
3959 equally on the stack. */
3960
3961 static void
3962 mark_stack ()
3963 {
3964 int i;
3965 jmp_buf j;
3966 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
3967 void *end;
3968
3969 /* This trick flushes the register windows so that all the state of
3970 the process is contained in the stack. */
3971 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
3972 needed on ia64 too. See mach_dep.c, where it also says inline
3973 assembler doesn't work with relevant proprietary compilers. */
3974 #ifdef sparc
3975 asm ("ta 3");
3976 #endif
3977
3978 /* Save registers that we need to see on the stack. We need to see
3979 registers used to hold register variables and registers used to
3980 pass parameters. */
3981 #ifdef GC_SAVE_REGISTERS_ON_STACK
3982 GC_SAVE_REGISTERS_ON_STACK (end);
3983 #else /* not GC_SAVE_REGISTERS_ON_STACK */
3984
3985 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
3986 setjmp will definitely work, test it
3987 and print a message with the result
3988 of the test. */
3989 if (!setjmp_tested_p)
3990 {
3991 setjmp_tested_p = 1;
3992 test_setjmp ();
3993 }
3994 #endif /* GC_SETJMP_WORKS */
3995
3996 setjmp (j);
3997 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
3998 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
3999
4000 /* This assumes that the stack is a contiguous region in memory. If
4001 that's not the case, something has to be done here to iterate
4002 over the stack segments. */
4003 #ifndef GC_LISP_OBJECT_ALIGNMENT
4004 #ifdef __GNUC__
4005 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4006 #else
4007 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4008 #endif
4009 #endif
4010 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4011 mark_memory ((char *) stack_base + i, end);
4012
4013 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4014 check_gcpros ();
4015 #endif
4016 }
4017
4018
4019 #endif /* GC_MARK_STACK != 0 */
4020
4021
4022 \f
4023 /***********************************************************************
4024 Pure Storage Management
4025 ***********************************************************************/
4026
4027 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4028 pointer to it. TYPE is the Lisp type for which the memory is
4029 allocated. TYPE < 0 means it's not used for a Lisp object.
4030
4031 If store_pure_type_info is set and TYPE is >= 0, the type of
4032 the allocated object is recorded in pure_types. */
4033
4034 static POINTER_TYPE *
4035 pure_alloc (size, type)
4036 size_t size;
4037 int type;
4038 {
4039 POINTER_TYPE *result;
4040 #ifdef USE_LSB_TAG
4041 size_t alignment = (1 << GCTYPEBITS);
4042 #else
4043 size_t alignment = sizeof (EMACS_INT);
4044
4045 /* Give Lisp_Floats an extra alignment. */
4046 if (type == Lisp_Float)
4047 {
4048 #if defined __GNUC__ && __GNUC__ >= 2
4049 alignment = __alignof (struct Lisp_Float);
4050 #else
4051 alignment = sizeof (struct Lisp_Float);
4052 #endif
4053 }
4054 #endif
4055
4056 again:
4057 result = ALIGN (purebeg + pure_bytes_used, alignment);
4058 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4059
4060 if (pure_bytes_used <= pure_size)
4061 return result;
4062
4063 /* Don't allocate a large amount here,
4064 because it might get mmap'd and then its address
4065 might not be usable. */
4066 purebeg = (char *) xmalloc (10000);
4067 pure_size = 10000;
4068 pure_bytes_used_before_overflow += pure_bytes_used - size;
4069 pure_bytes_used = 0;
4070 goto again;
4071 }
4072
4073
4074 /* Print a warning if PURESIZE is too small. */
4075
4076 void
4077 check_pure_size ()
4078 {
4079 if (pure_bytes_used_before_overflow)
4080 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4081 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4082 }
4083
4084
4085 /* Return a string allocated in pure space. DATA is a buffer holding
4086 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4087 non-zero means make the result string multibyte.
4088
4089 Must get an error if pure storage is full, since if it cannot hold
4090 a large string it may be able to hold conses that point to that
4091 string; then the string is not protected from gc. */
4092
4093 Lisp_Object
4094 make_pure_string (data, nchars, nbytes, multibyte)
4095 char *data;
4096 int nchars, nbytes;
4097 int multibyte;
4098 {
4099 Lisp_Object string;
4100 struct Lisp_String *s;
4101
4102 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4103 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4104 s->size = nchars;
4105 s->size_byte = multibyte ? nbytes : -1;
4106 bcopy (data, s->data, nbytes);
4107 s->data[nbytes] = '\0';
4108 s->intervals = NULL_INTERVAL;
4109 XSETSTRING (string, s);
4110 return string;
4111 }
4112
4113
4114 /* Return a cons allocated from pure space. Give it pure copies
4115 of CAR as car and CDR as cdr. */
4116
4117 Lisp_Object
4118 pure_cons (car, cdr)
4119 Lisp_Object car, cdr;
4120 {
4121 register Lisp_Object new;
4122 struct Lisp_Cons *p;
4123
4124 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4125 XSETCONS (new, p);
4126 XSETCAR (new, Fpurecopy (car));
4127 XSETCDR (new, Fpurecopy (cdr));
4128 return new;
4129 }
4130
4131
4132 /* Value is a float object with value NUM allocated from pure space. */
4133
4134 Lisp_Object
4135 make_pure_float (num)
4136 double num;
4137 {
4138 register Lisp_Object new;
4139 struct Lisp_Float *p;
4140
4141 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4142 XSETFLOAT (new, p);
4143 XFLOAT_DATA (new) = num;
4144 return new;
4145 }
4146
4147
4148 /* Return a vector with room for LEN Lisp_Objects allocated from
4149 pure space. */
4150
4151 Lisp_Object
4152 make_pure_vector (len)
4153 EMACS_INT len;
4154 {
4155 Lisp_Object new;
4156 struct Lisp_Vector *p;
4157 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4158
4159 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4160 XSETVECTOR (new, p);
4161 XVECTOR (new)->size = len;
4162 return new;
4163 }
4164
4165
4166 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4167 doc: /* Make a copy of OBJECT in pure storage.
4168 Recursively copies contents of vectors and cons cells.
4169 Does not copy symbols. Copies strings without text properties. */)
4170 (obj)
4171 register Lisp_Object obj;
4172 {
4173 if (NILP (Vpurify_flag))
4174 return obj;
4175
4176 if (PURE_POINTER_P (XPNTR (obj)))
4177 return obj;
4178
4179 if (CONSP (obj))
4180 return pure_cons (XCAR (obj), XCDR (obj));
4181 else if (FLOATP (obj))
4182 return make_pure_float (XFLOAT_DATA (obj));
4183 else if (STRINGP (obj))
4184 return make_pure_string (SDATA (obj), SCHARS (obj),
4185 SBYTES (obj),
4186 STRING_MULTIBYTE (obj));
4187 else if (COMPILEDP (obj) || VECTORP (obj))
4188 {
4189 register struct Lisp_Vector *vec;
4190 register int i;
4191 EMACS_INT size;
4192
4193 size = XVECTOR (obj)->size;
4194 if (size & PSEUDOVECTOR_FLAG)
4195 size &= PSEUDOVECTOR_SIZE_MASK;
4196 vec = XVECTOR (make_pure_vector (size));
4197 for (i = 0; i < size; i++)
4198 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4199 if (COMPILEDP (obj))
4200 XSETCOMPILED (obj, vec);
4201 else
4202 XSETVECTOR (obj, vec);
4203 return obj;
4204 }
4205 else if (MARKERP (obj))
4206 error ("Attempt to copy a marker to pure storage");
4207
4208 return obj;
4209 }
4210
4211
4212 \f
4213 /***********************************************************************
4214 Protection from GC
4215 ***********************************************************************/
4216
4217 /* Put an entry in staticvec, pointing at the variable with address
4218 VARADDRESS. */
4219
4220 void
4221 staticpro (varaddress)
4222 Lisp_Object *varaddress;
4223 {
4224 staticvec[staticidx++] = varaddress;
4225 if (staticidx >= NSTATICS)
4226 abort ();
4227 }
4228
4229 struct catchtag
4230 {
4231 Lisp_Object tag;
4232 Lisp_Object val;
4233 struct catchtag *next;
4234 };
4235
4236 struct backtrace
4237 {
4238 struct backtrace *next;
4239 Lisp_Object *function;
4240 Lisp_Object *args; /* Points to vector of args. */
4241 int nargs; /* Length of vector. */
4242 /* If nargs is UNEVALLED, args points to slot holding list of
4243 unevalled args. */
4244 char evalargs;
4245 };
4246
4247
4248 \f
4249 /***********************************************************************
4250 Protection from GC
4251 ***********************************************************************/
4252
4253 /* Temporarily prevent garbage collection. */
4254
4255 int
4256 inhibit_garbage_collection ()
4257 {
4258 int count = SPECPDL_INDEX ();
4259 int nbits = min (VALBITS, BITS_PER_INT);
4260
4261 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4262 return count;
4263 }
4264
4265
4266 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4267 doc: /* Reclaim storage for Lisp objects no longer needed.
4268 Garbage collection happens automatically if you cons more than
4269 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4270 `garbage-collect' normally returns a list with info on amount of space in use:
4271 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4272 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4273 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4274 (USED-STRINGS . FREE-STRINGS))
4275 However, if there was overflow in pure space, `garbage-collect'
4276 returns nil, because real GC can't be done. */)
4277 ()
4278 {
4279 register struct specbinding *bind;
4280 struct catchtag *catch;
4281 struct handler *handler;
4282 register struct backtrace *backlist;
4283 char stack_top_variable;
4284 register int i;
4285 int message_p;
4286 Lisp_Object total[8];
4287 int count = SPECPDL_INDEX ();
4288 EMACS_TIME t1, t2, t3;
4289
4290 if (abort_on_gc)
4291 abort ();
4292
4293 EMACS_GET_TIME (t1);
4294
4295 /* Can't GC if pure storage overflowed because we can't determine
4296 if something is a pure object or not. */
4297 if (pure_bytes_used_before_overflow)
4298 return Qnil;
4299
4300 /* In case user calls debug_print during GC,
4301 don't let that cause a recursive GC. */
4302 consing_since_gc = 0;
4303
4304 /* Save what's currently displayed in the echo area. */
4305 message_p = push_message ();
4306 record_unwind_protect (pop_message_unwind, Qnil);
4307
4308 /* Save a copy of the contents of the stack, for debugging. */
4309 #if MAX_SAVE_STACK > 0
4310 if (NILP (Vpurify_flag))
4311 {
4312 i = &stack_top_variable - stack_bottom;
4313 if (i < 0) i = -i;
4314 if (i < MAX_SAVE_STACK)
4315 {
4316 if (stack_copy == 0)
4317 stack_copy = (char *) xmalloc (stack_copy_size = i);
4318 else if (stack_copy_size < i)
4319 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4320 if (stack_copy)
4321 {
4322 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4323 bcopy (stack_bottom, stack_copy, i);
4324 else
4325 bcopy (&stack_top_variable, stack_copy, i);
4326 }
4327 }
4328 }
4329 #endif /* MAX_SAVE_STACK > 0 */
4330
4331 if (garbage_collection_messages)
4332 message1_nolog ("Garbage collecting...");
4333
4334 BLOCK_INPUT;
4335
4336 shrink_regexp_cache ();
4337
4338 /* Don't keep undo information around forever. */
4339 {
4340 register struct buffer *nextb = all_buffers;
4341
4342 while (nextb)
4343 {
4344 /* If a buffer's undo list is Qt, that means that undo is
4345 turned off in that buffer. Calling truncate_undo_list on
4346 Qt tends to return NULL, which effectively turns undo back on.
4347 So don't call truncate_undo_list if undo_list is Qt. */
4348 if (! EQ (nextb->undo_list, Qt))
4349 nextb->undo_list
4350 = truncate_undo_list (nextb->undo_list, undo_limit,
4351 undo_strong_limit);
4352
4353 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4354 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4355 {
4356 /* If a buffer's gap size is more than 10% of the buffer
4357 size, or larger than 2000 bytes, then shrink it
4358 accordingly. Keep a minimum size of 20 bytes. */
4359 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4360
4361 if (nextb->text->gap_size > size)
4362 {
4363 struct buffer *save_current = current_buffer;
4364 current_buffer = nextb;
4365 make_gap (-(nextb->text->gap_size - size));
4366 current_buffer = save_current;
4367 }
4368 }
4369
4370 nextb = nextb->next;
4371 }
4372 }
4373
4374 gc_in_progress = 1;
4375
4376 /* clear_marks (); */
4377
4378 /* Mark all the special slots that serve as the roots of accessibility. */
4379
4380 for (i = 0; i < staticidx; i++)
4381 mark_object (*staticvec[i]);
4382
4383 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4384 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4385 mark_stack ();
4386 #else
4387 {
4388 register struct gcpro *tail;
4389 for (tail = gcprolist; tail; tail = tail->next)
4390 for (i = 0; i < tail->nvars; i++)
4391 mark_object (tail->var[i]);
4392 }
4393 #endif
4394
4395 mark_byte_stack ();
4396 for (bind = specpdl; bind != specpdl_ptr; bind++)
4397 {
4398 mark_object (bind->symbol);
4399 mark_object (bind->old_value);
4400 }
4401 for (catch = catchlist; catch; catch = catch->next)
4402 {
4403 mark_object (catch->tag);
4404 mark_object (catch->val);
4405 }
4406 for (handler = handlerlist; handler; handler = handler->next)
4407 {
4408 mark_object (handler->handler);
4409 mark_object (handler->var);
4410 }
4411 for (backlist = backtrace_list; backlist; backlist = backlist->next)
4412 {
4413 mark_object (*backlist->function);
4414
4415 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
4416 i = 0;
4417 else
4418 i = backlist->nargs - 1;
4419 for (; i >= 0; i--)
4420 mark_object (backlist->args[i]);
4421 }
4422 mark_kboards ();
4423
4424 /* Look thru every buffer's undo list
4425 for elements that update markers that were not marked,
4426 and delete them. */
4427 {
4428 register struct buffer *nextb = all_buffers;
4429
4430 while (nextb)
4431 {
4432 /* If a buffer's undo list is Qt, that means that undo is
4433 turned off in that buffer. Calling truncate_undo_list on
4434 Qt tends to return NULL, which effectively turns undo back on.
4435 So don't call truncate_undo_list if undo_list is Qt. */
4436 if (! EQ (nextb->undo_list, Qt))
4437 {
4438 Lisp_Object tail, prev;
4439 tail = nextb->undo_list;
4440 prev = Qnil;
4441 while (CONSP (tail))
4442 {
4443 if (GC_CONSP (XCAR (tail))
4444 && GC_MARKERP (XCAR (XCAR (tail)))
4445 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4446 {
4447 if (NILP (prev))
4448 nextb->undo_list = tail = XCDR (tail);
4449 else
4450 {
4451 tail = XCDR (tail);
4452 XSETCDR (prev, tail);
4453 }
4454 }
4455 else
4456 {
4457 prev = tail;
4458 tail = XCDR (tail);
4459 }
4460 }
4461 }
4462
4463 nextb = nextb->next;
4464 }
4465 }
4466
4467 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4468 mark_stack ();
4469 #endif
4470
4471 #ifdef USE_GTK
4472 {
4473 extern void xg_mark_data ();
4474 xg_mark_data ();
4475 }
4476 #endif
4477
4478 gc_sweep ();
4479
4480 /* Clear the mark bits that we set in certain root slots. */
4481
4482 unmark_byte_stack ();
4483 VECTOR_UNMARK (&buffer_defaults);
4484 VECTOR_UNMARK (&buffer_local_symbols);
4485
4486 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4487 dump_zombies ();
4488 #endif
4489
4490 UNBLOCK_INPUT;
4491
4492 /* clear_marks (); */
4493 gc_in_progress = 0;
4494
4495 consing_since_gc = 0;
4496 if (gc_cons_threshold < 10000)
4497 gc_cons_threshold = 10000;
4498
4499 if (garbage_collection_messages)
4500 {
4501 if (message_p || minibuf_level > 0)
4502 restore_message ();
4503 else
4504 message1_nolog ("Garbage collecting...done");
4505 }
4506
4507 unbind_to (count, Qnil);
4508
4509 total[0] = Fcons (make_number (total_conses),
4510 make_number (total_free_conses));
4511 total[1] = Fcons (make_number (total_symbols),
4512 make_number (total_free_symbols));
4513 total[2] = Fcons (make_number (total_markers),
4514 make_number (total_free_markers));
4515 total[3] = make_number (total_string_size);
4516 total[4] = make_number (total_vector_size);
4517 total[5] = Fcons (make_number (total_floats),
4518 make_number (total_free_floats));
4519 total[6] = Fcons (make_number (total_intervals),
4520 make_number (total_free_intervals));
4521 total[7] = Fcons (make_number (total_strings),
4522 make_number (total_free_strings));
4523
4524 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4525 {
4526 /* Compute average percentage of zombies. */
4527 double nlive = 0;
4528
4529 for (i = 0; i < 7; ++i)
4530 if (CONSP (total[i]))
4531 nlive += XFASTINT (XCAR (total[i]));
4532
4533 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4534 max_live = max (nlive, max_live);
4535 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4536 max_zombies = max (nzombies, max_zombies);
4537 ++ngcs;
4538 }
4539 #endif
4540
4541 if (!NILP (Vpost_gc_hook))
4542 {
4543 int count = inhibit_garbage_collection ();
4544 safe_run_hooks (Qpost_gc_hook);
4545 unbind_to (count, Qnil);
4546 }
4547
4548 /* Accumulate statistics. */
4549 EMACS_GET_TIME (t2);
4550 EMACS_SUB_TIME (t3, t2, t1);
4551 if (FLOATP (Vgc_elapsed))
4552 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4553 EMACS_SECS (t3) +
4554 EMACS_USECS (t3) * 1.0e-6);
4555 gcs_done++;
4556
4557 return Flist (sizeof total / sizeof *total, total);
4558 }
4559
4560
4561 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4562 only interesting objects referenced from glyphs are strings. */
4563
4564 static void
4565 mark_glyph_matrix (matrix)
4566 struct glyph_matrix *matrix;
4567 {
4568 struct glyph_row *row = matrix->rows;
4569 struct glyph_row *end = row + matrix->nrows;
4570
4571 for (; row < end; ++row)
4572 if (row->enabled_p)
4573 {
4574 int area;
4575 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4576 {
4577 struct glyph *glyph = row->glyphs[area];
4578 struct glyph *end_glyph = glyph + row->used[area];
4579
4580 for (; glyph < end_glyph; ++glyph)
4581 if (GC_STRINGP (glyph->object)
4582 && !STRING_MARKED_P (XSTRING (glyph->object)))
4583 mark_object (glyph->object);
4584 }
4585 }
4586 }
4587
4588
4589 /* Mark Lisp faces in the face cache C. */
4590
4591 static void
4592 mark_face_cache (c)
4593 struct face_cache *c;
4594 {
4595 if (c)
4596 {
4597 int i, j;
4598 for (i = 0; i < c->used; ++i)
4599 {
4600 struct face *face = FACE_FROM_ID (c->f, i);
4601
4602 if (face)
4603 {
4604 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
4605 mark_object (face->lface[j]);
4606 }
4607 }
4608 }
4609 }
4610
4611
4612 #ifdef HAVE_WINDOW_SYSTEM
4613
4614 /* Mark Lisp objects in image IMG. */
4615
4616 static void
4617 mark_image (img)
4618 struct image *img;
4619 {
4620 mark_object (img->spec);
4621
4622 if (!NILP (img->data.lisp_val))
4623 mark_object (img->data.lisp_val);
4624 }
4625
4626
4627 /* Mark Lisp objects in image cache of frame F. It's done this way so
4628 that we don't have to include xterm.h here. */
4629
4630 static void
4631 mark_image_cache (f)
4632 struct frame *f;
4633 {
4634 forall_images_in_image_cache (f, mark_image);
4635 }
4636
4637 #endif /* HAVE_X_WINDOWS */
4638
4639
4640 \f
4641 /* Mark reference to a Lisp_Object.
4642 If the object referred to has not been seen yet, recursively mark
4643 all the references contained in it. */
4644
4645 #define LAST_MARKED_SIZE 500
4646 Lisp_Object last_marked[LAST_MARKED_SIZE];
4647 int last_marked_index;
4648
4649 /* For debugging--call abort when we cdr down this many
4650 links of a list, in mark_object. In debugging,
4651 the call to abort will hit a breakpoint.
4652 Normally this is zero and the check never goes off. */
4653 int mark_object_loop_halt;
4654
4655 void
4656 mark_object (arg)
4657 Lisp_Object arg;
4658 {
4659 register Lisp_Object obj = arg;
4660 #ifdef GC_CHECK_MARKED_OBJECTS
4661 void *po;
4662 struct mem_node *m;
4663 #endif
4664 int cdr_count = 0;
4665
4666 loop:
4667
4668 if (PURE_POINTER_P (XPNTR (obj)))
4669 return;
4670
4671 last_marked[last_marked_index++] = obj;
4672 if (last_marked_index == LAST_MARKED_SIZE)
4673 last_marked_index = 0;
4674
4675 /* Perform some sanity checks on the objects marked here. Abort if
4676 we encounter an object we know is bogus. This increases GC time
4677 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4678 #ifdef GC_CHECK_MARKED_OBJECTS
4679
4680 po = (void *) XPNTR (obj);
4681
4682 /* Check that the object pointed to by PO is known to be a Lisp
4683 structure allocated from the heap. */
4684 #define CHECK_ALLOCATED() \
4685 do { \
4686 m = mem_find (po); \
4687 if (m == MEM_NIL) \
4688 abort (); \
4689 } while (0)
4690
4691 /* Check that the object pointed to by PO is live, using predicate
4692 function LIVEP. */
4693 #define CHECK_LIVE(LIVEP) \
4694 do { \
4695 if (!LIVEP (m, po)) \
4696 abort (); \
4697 } while (0)
4698
4699 /* Check both of the above conditions. */
4700 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4701 do { \
4702 CHECK_ALLOCATED (); \
4703 CHECK_LIVE (LIVEP); \
4704 } while (0) \
4705
4706 #else /* not GC_CHECK_MARKED_OBJECTS */
4707
4708 #define CHECK_ALLOCATED() (void) 0
4709 #define CHECK_LIVE(LIVEP) (void) 0
4710 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
4711
4712 #endif /* not GC_CHECK_MARKED_OBJECTS */
4713
4714 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
4715 {
4716 case Lisp_String:
4717 {
4718 register struct Lisp_String *ptr = XSTRING (obj);
4719 CHECK_ALLOCATED_AND_LIVE (live_string_p);
4720 MARK_INTERVAL_TREE (ptr->intervals);
4721 MARK_STRING (ptr);
4722 #ifdef GC_CHECK_STRING_BYTES
4723 /* Check that the string size recorded in the string is the
4724 same as the one recorded in the sdata structure. */
4725 CHECK_STRING_BYTES (ptr);
4726 #endif /* GC_CHECK_STRING_BYTES */
4727 }
4728 break;
4729
4730 case Lisp_Vectorlike:
4731 #ifdef GC_CHECK_MARKED_OBJECTS
4732 m = mem_find (po);
4733 if (m == MEM_NIL && !GC_SUBRP (obj)
4734 && po != &buffer_defaults
4735 && po != &buffer_local_symbols)
4736 abort ();
4737 #endif /* GC_CHECK_MARKED_OBJECTS */
4738
4739 if (GC_BUFFERP (obj))
4740 {
4741 if (!VECTOR_MARKED_P (XBUFFER (obj)))
4742 {
4743 #ifdef GC_CHECK_MARKED_OBJECTS
4744 if (po != &buffer_defaults && po != &buffer_local_symbols)
4745 {
4746 struct buffer *b;
4747 for (b = all_buffers; b && b != po; b = b->next)
4748 ;
4749 if (b == NULL)
4750 abort ();
4751 }
4752 #endif /* GC_CHECK_MARKED_OBJECTS */
4753 mark_buffer (obj);
4754 }
4755 }
4756 else if (GC_SUBRP (obj))
4757 break;
4758 else if (GC_COMPILEDP (obj))
4759 /* We could treat this just like a vector, but it is better to
4760 save the COMPILED_CONSTANTS element for last and avoid
4761 recursion there. */
4762 {
4763 register struct Lisp_Vector *ptr = XVECTOR (obj);
4764 register EMACS_INT size = ptr->size;
4765 register int i;
4766
4767 if (VECTOR_MARKED_P (ptr))
4768 break; /* Already marked */
4769
4770 CHECK_LIVE (live_vector_p);
4771 VECTOR_MARK (ptr); /* Else mark it */
4772 size &= PSEUDOVECTOR_SIZE_MASK;
4773 for (i = 0; i < size; i++) /* and then mark its elements */
4774 {
4775 if (i != COMPILED_CONSTANTS)
4776 mark_object (ptr->contents[i]);
4777 }
4778 obj = ptr->contents[COMPILED_CONSTANTS];
4779 goto loop;
4780 }
4781 else if (GC_FRAMEP (obj))
4782 {
4783 register struct frame *ptr = XFRAME (obj);
4784
4785 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4786 VECTOR_MARK (ptr); /* Else mark it */
4787
4788 CHECK_LIVE (live_vector_p);
4789 mark_object (ptr->name);
4790 mark_object (ptr->icon_name);
4791 mark_object (ptr->title);
4792 mark_object (ptr->focus_frame);
4793 mark_object (ptr->selected_window);
4794 mark_object (ptr->minibuffer_window);
4795 mark_object (ptr->param_alist);
4796 mark_object (ptr->scroll_bars);
4797 mark_object (ptr->condemned_scroll_bars);
4798 mark_object (ptr->menu_bar_items);
4799 mark_object (ptr->face_alist);
4800 mark_object (ptr->menu_bar_vector);
4801 mark_object (ptr->buffer_predicate);
4802 mark_object (ptr->buffer_list);
4803 mark_object (ptr->menu_bar_window);
4804 mark_object (ptr->tool_bar_window);
4805 mark_face_cache (ptr->face_cache);
4806 #ifdef HAVE_WINDOW_SYSTEM
4807 mark_image_cache (ptr);
4808 mark_object (ptr->tool_bar_items);
4809 mark_object (ptr->desired_tool_bar_string);
4810 mark_object (ptr->current_tool_bar_string);
4811 #endif /* HAVE_WINDOW_SYSTEM */
4812 }
4813 else if (GC_BOOL_VECTOR_P (obj))
4814 {
4815 register struct Lisp_Vector *ptr = XVECTOR (obj);
4816
4817 if (VECTOR_MARKED_P (ptr))
4818 break; /* Already marked */
4819 CHECK_LIVE (live_vector_p);
4820 VECTOR_MARK (ptr); /* Else mark it */
4821 }
4822 else if (GC_WINDOWP (obj))
4823 {
4824 register struct Lisp_Vector *ptr = XVECTOR (obj);
4825 struct window *w = XWINDOW (obj);
4826 register int i;
4827
4828 /* Stop if already marked. */
4829 if (VECTOR_MARKED_P (ptr))
4830 break;
4831
4832 /* Mark it. */
4833 CHECK_LIVE (live_vector_p);
4834 VECTOR_MARK (ptr);
4835
4836 /* There is no Lisp data above The member CURRENT_MATRIX in
4837 struct WINDOW. Stop marking when that slot is reached. */
4838 for (i = 0;
4839 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
4840 i++)
4841 mark_object (ptr->contents[i]);
4842
4843 /* Mark glyphs for leaf windows. Marking window matrices is
4844 sufficient because frame matrices use the same glyph
4845 memory. */
4846 if (NILP (w->hchild)
4847 && NILP (w->vchild)
4848 && w->current_matrix)
4849 {
4850 mark_glyph_matrix (w->current_matrix);
4851 mark_glyph_matrix (w->desired_matrix);
4852 }
4853 }
4854 else if (GC_HASH_TABLE_P (obj))
4855 {
4856 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
4857
4858 /* Stop if already marked. */
4859 if (VECTOR_MARKED_P (h))
4860 break;
4861
4862 /* Mark it. */
4863 CHECK_LIVE (live_vector_p);
4864 VECTOR_MARK (h);
4865
4866 /* Mark contents. */
4867 /* Do not mark next_free or next_weak.
4868 Being in the next_weak chain
4869 should not keep the hash table alive.
4870 No need to mark `count' since it is an integer. */
4871 mark_object (h->test);
4872 mark_object (h->weak);
4873 mark_object (h->rehash_size);
4874 mark_object (h->rehash_threshold);
4875 mark_object (h->hash);
4876 mark_object (h->next);
4877 mark_object (h->index);
4878 mark_object (h->user_hash_function);
4879 mark_object (h->user_cmp_function);
4880
4881 /* If hash table is not weak, mark all keys and values.
4882 For weak tables, mark only the vector. */
4883 if (GC_NILP (h->weak))
4884 mark_object (h->key_and_value);
4885 else
4886 VECTOR_MARK (XVECTOR (h->key_and_value));
4887 }
4888 else
4889 {
4890 register struct Lisp_Vector *ptr = XVECTOR (obj);
4891 register EMACS_INT size = ptr->size;
4892 register int i;
4893
4894 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4895 CHECK_LIVE (live_vector_p);
4896 VECTOR_MARK (ptr); /* Else mark it */
4897 if (size & PSEUDOVECTOR_FLAG)
4898 size &= PSEUDOVECTOR_SIZE_MASK;
4899
4900 for (i = 0; i < size; i++) /* and then mark its elements */
4901 mark_object (ptr->contents[i]);
4902 }
4903 break;
4904
4905 case Lisp_Symbol:
4906 {
4907 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
4908 struct Lisp_Symbol *ptrx;
4909
4910 if (ptr->gcmarkbit) break;
4911 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
4912 ptr->gcmarkbit = 1;
4913 mark_object (ptr->value);
4914 mark_object (ptr->function);
4915 mark_object (ptr->plist);
4916
4917 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
4918 MARK_STRING (XSTRING (ptr->xname));
4919 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
4920
4921 /* Note that we do not mark the obarray of the symbol.
4922 It is safe not to do so because nothing accesses that
4923 slot except to check whether it is nil. */
4924 ptr = ptr->next;
4925 if (ptr)
4926 {
4927 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
4928 XSETSYMBOL (obj, ptrx);
4929 goto loop;
4930 }
4931 }
4932 break;
4933
4934 case Lisp_Misc:
4935 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
4936 if (XMARKER (obj)->gcmarkbit)
4937 break;
4938 XMARKER (obj)->gcmarkbit = 1;
4939 switch (XMISCTYPE (obj))
4940 {
4941 case Lisp_Misc_Buffer_Local_Value:
4942 case Lisp_Misc_Some_Buffer_Local_Value:
4943 {
4944 register struct Lisp_Buffer_Local_Value *ptr
4945 = XBUFFER_LOCAL_VALUE (obj);
4946 /* If the cdr is nil, avoid recursion for the car. */
4947 if (EQ (ptr->cdr, Qnil))
4948 {
4949 obj = ptr->realvalue;
4950 goto loop;
4951 }
4952 mark_object (ptr->realvalue);
4953 mark_object (ptr->buffer);
4954 mark_object (ptr->frame);
4955 obj = ptr->cdr;
4956 goto loop;
4957 }
4958
4959 case Lisp_Misc_Marker:
4960 /* DO NOT mark thru the marker's chain.
4961 The buffer's markers chain does not preserve markers from gc;
4962 instead, markers are removed from the chain when freed by gc. */
4963 case Lisp_Misc_Intfwd:
4964 case Lisp_Misc_Boolfwd:
4965 case Lisp_Misc_Objfwd:
4966 case Lisp_Misc_Buffer_Objfwd:
4967 case Lisp_Misc_Kboard_Objfwd:
4968 /* Don't bother with Lisp_Buffer_Objfwd,
4969 since all markable slots in current buffer marked anyway. */
4970 /* Don't need to do Lisp_Objfwd, since the places they point
4971 are protected with staticpro. */
4972 case Lisp_Misc_Save_Value:
4973 break;
4974
4975 case Lisp_Misc_Overlay:
4976 {
4977 struct Lisp_Overlay *ptr = XOVERLAY (obj);
4978 mark_object (ptr->start);
4979 mark_object (ptr->end);
4980 mark_object (ptr->plist);
4981 if (ptr->next)
4982 {
4983 XSETMISC (obj, ptr->next);
4984 goto loop;
4985 }
4986 }
4987 break;
4988
4989 default:
4990 abort ();
4991 }
4992 break;
4993
4994 case Lisp_Cons:
4995 {
4996 register struct Lisp_Cons *ptr = XCONS (obj);
4997 if (CONS_MARKED_P (ptr)) break;
4998 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
4999 CONS_MARK (ptr);
5000 /* If the cdr is nil, avoid recursion for the car. */
5001 if (EQ (ptr->cdr, Qnil))
5002 {
5003 obj = ptr->car;
5004 cdr_count = 0;
5005 goto loop;
5006 }
5007 mark_object (ptr->car);
5008 obj = ptr->cdr;
5009 cdr_count++;
5010 if (cdr_count == mark_object_loop_halt)
5011 abort ();
5012 goto loop;
5013 }
5014
5015 case Lisp_Float:
5016 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5017 FLOAT_MARK (XFLOAT (obj));
5018 break;
5019
5020 case Lisp_Int:
5021 break;
5022
5023 default:
5024 abort ();
5025 }
5026
5027 #undef CHECK_LIVE
5028 #undef CHECK_ALLOCATED
5029 #undef CHECK_ALLOCATED_AND_LIVE
5030 }
5031
5032 /* Mark the pointers in a buffer structure. */
5033
5034 static void
5035 mark_buffer (buf)
5036 Lisp_Object buf;
5037 {
5038 register struct buffer *buffer = XBUFFER (buf);
5039 register Lisp_Object *ptr, tmp;
5040 Lisp_Object base_buffer;
5041
5042 VECTOR_MARK (buffer);
5043
5044 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5045
5046 if (CONSP (buffer->undo_list))
5047 {
5048 Lisp_Object tail;
5049 tail = buffer->undo_list;
5050
5051 /* We mark the undo list specially because
5052 its pointers to markers should be weak. */
5053
5054 while (CONSP (tail))
5055 {
5056 register struct Lisp_Cons *ptr = XCONS (tail);
5057
5058 if (CONS_MARKED_P (ptr))
5059 break;
5060 CONS_MARK (ptr);
5061 if (GC_CONSP (ptr->car)
5062 && !CONS_MARKED_P (XCONS (ptr->car))
5063 && GC_MARKERP (XCAR (ptr->car)))
5064 {
5065 CONS_MARK (XCONS (ptr->car));
5066 mark_object (XCDR (ptr->car));
5067 }
5068 else
5069 mark_object (ptr->car);
5070
5071 if (CONSP (ptr->cdr))
5072 tail = ptr->cdr;
5073 else
5074 break;
5075 }
5076
5077 mark_object (XCDR (tail));
5078 }
5079 else
5080 mark_object (buffer->undo_list);
5081
5082 if (buffer->overlays_before)
5083 {
5084 XSETMISC (tmp, buffer->overlays_before);
5085 mark_object (tmp);
5086 }
5087 if (buffer->overlays_after)
5088 {
5089 XSETMISC (tmp, buffer->overlays_after);
5090 mark_object (tmp);
5091 }
5092
5093 for (ptr = &buffer->name;
5094 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5095 ptr++)
5096 mark_object (*ptr);
5097
5098 /* If this is an indirect buffer, mark its base buffer. */
5099 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5100 {
5101 XSETBUFFER (base_buffer, buffer->base_buffer);
5102 mark_buffer (base_buffer);
5103 }
5104 }
5105
5106
5107 /* Value is non-zero if OBJ will survive the current GC because it's
5108 either marked or does not need to be marked to survive. */
5109
5110 int
5111 survives_gc_p (obj)
5112 Lisp_Object obj;
5113 {
5114 int survives_p;
5115
5116 switch (XGCTYPE (obj))
5117 {
5118 case Lisp_Int:
5119 survives_p = 1;
5120 break;
5121
5122 case Lisp_Symbol:
5123 survives_p = XSYMBOL (obj)->gcmarkbit;
5124 break;
5125
5126 case Lisp_Misc:
5127 survives_p = XMARKER (obj)->gcmarkbit;
5128 break;
5129
5130 case Lisp_String:
5131 survives_p = STRING_MARKED_P (XSTRING (obj));
5132 break;
5133
5134 case Lisp_Vectorlike:
5135 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5136 break;
5137
5138 case Lisp_Cons:
5139 survives_p = CONS_MARKED_P (XCONS (obj));
5140 break;
5141
5142 case Lisp_Float:
5143 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5144 break;
5145
5146 default:
5147 abort ();
5148 }
5149
5150 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5151 }
5152
5153
5154 \f
5155 /* Sweep: find all structures not marked, and free them. */
5156
5157 static void
5158 gc_sweep ()
5159 {
5160 /* Remove or mark entries in weak hash tables.
5161 This must be done before any object is unmarked. */
5162 sweep_weak_hash_tables ();
5163
5164 sweep_strings ();
5165 #ifdef GC_CHECK_STRING_BYTES
5166 if (!noninteractive)
5167 check_string_bytes (1);
5168 #endif
5169
5170 /* Put all unmarked conses on free list */
5171 {
5172 register struct cons_block *cblk;
5173 struct cons_block **cprev = &cons_block;
5174 register int lim = cons_block_index;
5175 register int num_free = 0, num_used = 0;
5176
5177 cons_free_list = 0;
5178
5179 for (cblk = cons_block; cblk; cblk = *cprev)
5180 {
5181 register int i;
5182 int this_free = 0;
5183 for (i = 0; i < lim; i++)
5184 if (!CONS_MARKED_P (&cblk->conses[i]))
5185 {
5186 this_free++;
5187 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
5188 cons_free_list = &cblk->conses[i];
5189 #if GC_MARK_STACK
5190 cons_free_list->car = Vdead;
5191 #endif
5192 }
5193 else
5194 {
5195 num_used++;
5196 CONS_UNMARK (&cblk->conses[i]);
5197 }
5198 lim = CONS_BLOCK_SIZE;
5199 /* If this block contains only free conses and we have already
5200 seen more than two blocks worth of free conses then deallocate
5201 this block. */
5202 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5203 {
5204 *cprev = cblk->next;
5205 /* Unhook from the free list. */
5206 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5207 lisp_align_free (cblk);
5208 n_cons_blocks--;
5209 }
5210 else
5211 {
5212 num_free += this_free;
5213 cprev = &cblk->next;
5214 }
5215 }
5216 total_conses = num_used;
5217 total_free_conses = num_free;
5218 }
5219
5220 /* Put all unmarked floats on free list */
5221 {
5222 register struct float_block *fblk;
5223 struct float_block **fprev = &float_block;
5224 register int lim = float_block_index;
5225 register int num_free = 0, num_used = 0;
5226
5227 float_free_list = 0;
5228
5229 for (fblk = float_block; fblk; fblk = *fprev)
5230 {
5231 register int i;
5232 int this_free = 0;
5233 for (i = 0; i < lim; i++)
5234 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5235 {
5236 this_free++;
5237 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5238 float_free_list = &fblk->floats[i];
5239 }
5240 else
5241 {
5242 num_used++;
5243 FLOAT_UNMARK (&fblk->floats[i]);
5244 }
5245 lim = FLOAT_BLOCK_SIZE;
5246 /* If this block contains only free floats and we have already
5247 seen more than two blocks worth of free floats then deallocate
5248 this block. */
5249 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5250 {
5251 *fprev = fblk->next;
5252 /* Unhook from the free list. */
5253 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5254 lisp_align_free (fblk);
5255 n_float_blocks--;
5256 }
5257 else
5258 {
5259 num_free += this_free;
5260 fprev = &fblk->next;
5261 }
5262 }
5263 total_floats = num_used;
5264 total_free_floats = num_free;
5265 }
5266
5267 /* Put all unmarked intervals on free list */
5268 {
5269 register struct interval_block *iblk;
5270 struct interval_block **iprev = &interval_block;
5271 register int lim = interval_block_index;
5272 register int num_free = 0, num_used = 0;
5273
5274 interval_free_list = 0;
5275
5276 for (iblk = interval_block; iblk; iblk = *iprev)
5277 {
5278 register int i;
5279 int this_free = 0;
5280
5281 for (i = 0; i < lim; i++)
5282 {
5283 if (!iblk->intervals[i].gcmarkbit)
5284 {
5285 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5286 interval_free_list = &iblk->intervals[i];
5287 this_free++;
5288 }
5289 else
5290 {
5291 num_used++;
5292 iblk->intervals[i].gcmarkbit = 0;
5293 }
5294 }
5295 lim = INTERVAL_BLOCK_SIZE;
5296 /* If this block contains only free intervals and we have already
5297 seen more than two blocks worth of free intervals then
5298 deallocate this block. */
5299 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5300 {
5301 *iprev = iblk->next;
5302 /* Unhook from the free list. */
5303 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5304 lisp_free (iblk);
5305 n_interval_blocks--;
5306 }
5307 else
5308 {
5309 num_free += this_free;
5310 iprev = &iblk->next;
5311 }
5312 }
5313 total_intervals = num_used;
5314 total_free_intervals = num_free;
5315 }
5316
5317 /* Put all unmarked symbols on free list */
5318 {
5319 register struct symbol_block *sblk;
5320 struct symbol_block **sprev = &symbol_block;
5321 register int lim = symbol_block_index;
5322 register int num_free = 0, num_used = 0;
5323
5324 symbol_free_list = NULL;
5325
5326 for (sblk = symbol_block; sblk; sblk = *sprev)
5327 {
5328 int this_free = 0;
5329 struct Lisp_Symbol *sym = sblk->symbols;
5330 struct Lisp_Symbol *end = sym + lim;
5331
5332 for (; sym < end; ++sym)
5333 {
5334 /* Check if the symbol was created during loadup. In such a case
5335 it might be pointed to by pure bytecode which we don't trace,
5336 so we conservatively assume that it is live. */
5337 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5338
5339 if (!sym->gcmarkbit && !pure_p)
5340 {
5341 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5342 symbol_free_list = sym;
5343 #if GC_MARK_STACK
5344 symbol_free_list->function = Vdead;
5345 #endif
5346 ++this_free;
5347 }
5348 else
5349 {
5350 ++num_used;
5351 if (!pure_p)
5352 UNMARK_STRING (XSTRING (sym->xname));
5353 sym->gcmarkbit = 0;
5354 }
5355 }
5356
5357 lim = SYMBOL_BLOCK_SIZE;
5358 /* If this block contains only free symbols and we have already
5359 seen more than two blocks worth of free symbols then deallocate
5360 this block. */
5361 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5362 {
5363 *sprev = sblk->next;
5364 /* Unhook from the free list. */
5365 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5366 lisp_free (sblk);
5367 n_symbol_blocks--;
5368 }
5369 else
5370 {
5371 num_free += this_free;
5372 sprev = &sblk->next;
5373 }
5374 }
5375 total_symbols = num_used;
5376 total_free_symbols = num_free;
5377 }
5378
5379 /* Put all unmarked misc's on free list.
5380 For a marker, first unchain it from the buffer it points into. */
5381 {
5382 register struct marker_block *mblk;
5383 struct marker_block **mprev = &marker_block;
5384 register int lim = marker_block_index;
5385 register int num_free = 0, num_used = 0;
5386
5387 marker_free_list = 0;
5388
5389 for (mblk = marker_block; mblk; mblk = *mprev)
5390 {
5391 register int i;
5392 int this_free = 0;
5393
5394 for (i = 0; i < lim; i++)
5395 {
5396 if (!mblk->markers[i].u_marker.gcmarkbit)
5397 {
5398 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5399 unchain_marker (&mblk->markers[i].u_marker);
5400 /* Set the type of the freed object to Lisp_Misc_Free.
5401 We could leave the type alone, since nobody checks it,
5402 but this might catch bugs faster. */
5403 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5404 mblk->markers[i].u_free.chain = marker_free_list;
5405 marker_free_list = &mblk->markers[i];
5406 this_free++;
5407 }
5408 else
5409 {
5410 num_used++;
5411 mblk->markers[i].u_marker.gcmarkbit = 0;
5412 }
5413 }
5414 lim = MARKER_BLOCK_SIZE;
5415 /* If this block contains only free markers and we have already
5416 seen more than two blocks worth of free markers then deallocate
5417 this block. */
5418 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5419 {
5420 *mprev = mblk->next;
5421 /* Unhook from the free list. */
5422 marker_free_list = mblk->markers[0].u_free.chain;
5423 lisp_free (mblk);
5424 n_marker_blocks--;
5425 }
5426 else
5427 {
5428 num_free += this_free;
5429 mprev = &mblk->next;
5430 }
5431 }
5432
5433 total_markers = num_used;
5434 total_free_markers = num_free;
5435 }
5436
5437 /* Free all unmarked buffers */
5438 {
5439 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5440
5441 while (buffer)
5442 if (!VECTOR_MARKED_P (buffer))
5443 {
5444 if (prev)
5445 prev->next = buffer->next;
5446 else
5447 all_buffers = buffer->next;
5448 next = buffer->next;
5449 lisp_free (buffer);
5450 buffer = next;
5451 }
5452 else
5453 {
5454 VECTOR_UNMARK (buffer);
5455 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5456 prev = buffer, buffer = buffer->next;
5457 }
5458 }
5459
5460 /* Free all unmarked vectors */
5461 {
5462 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5463 total_vector_size = 0;
5464
5465 while (vector)
5466 if (!VECTOR_MARKED_P (vector))
5467 {
5468 if (prev)
5469 prev->next = vector->next;
5470 else
5471 all_vectors = vector->next;
5472 next = vector->next;
5473 lisp_free (vector);
5474 n_vectors--;
5475 vector = next;
5476
5477 }
5478 else
5479 {
5480 VECTOR_UNMARK (vector);
5481 if (vector->size & PSEUDOVECTOR_FLAG)
5482 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5483 else
5484 total_vector_size += vector->size;
5485 prev = vector, vector = vector->next;
5486 }
5487 }
5488
5489 #ifdef GC_CHECK_STRING_BYTES
5490 if (!noninteractive)
5491 check_string_bytes (1);
5492 #endif
5493 }
5494
5495
5496
5497 \f
5498 /* Debugging aids. */
5499
5500 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5501 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5502 This may be helpful in debugging Emacs's memory usage.
5503 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5504 ()
5505 {
5506 Lisp_Object end;
5507
5508 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5509
5510 return end;
5511 }
5512
5513 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5514 doc: /* Return a list of counters that measure how much consing there has been.
5515 Each of these counters increments for a certain kind of object.
5516 The counters wrap around from the largest positive integer to zero.
5517 Garbage collection does not decrease them.
5518 The elements of the value are as follows:
5519 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5520 All are in units of 1 = one object consed
5521 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5522 objects consed.
5523 MISCS include overlays, markers, and some internal types.
5524 Frames, windows, buffers, and subprocesses count as vectors
5525 (but the contents of a buffer's text do not count here). */)
5526 ()
5527 {
5528 Lisp_Object consed[8];
5529
5530 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5531 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5532 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5533 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5534 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5535 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5536 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5537 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5538
5539 return Flist (8, consed);
5540 }
5541
5542 int suppress_checking;
5543 void
5544 die (msg, file, line)
5545 const char *msg;
5546 const char *file;
5547 int line;
5548 {
5549 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5550 file, line, msg);
5551 abort ();
5552 }
5553 \f
5554 /* Initialization */
5555
5556 void
5557 init_alloc_once ()
5558 {
5559 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5560 purebeg = PUREBEG;
5561 pure_size = PURESIZE;
5562 pure_bytes_used = 0;
5563 pure_bytes_used_before_overflow = 0;
5564
5565 /* Initialize the list of free aligned blocks. */
5566 free_ablock = NULL;
5567
5568 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5569 mem_init ();
5570 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5571 #endif
5572
5573 all_vectors = 0;
5574 ignore_warnings = 1;
5575 #ifdef DOUG_LEA_MALLOC
5576 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5577 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5578 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5579 #endif
5580 init_strings ();
5581 init_cons ();
5582 init_symbol ();
5583 init_marker ();
5584 init_float ();
5585 init_intervals ();
5586
5587 #ifdef REL_ALLOC
5588 malloc_hysteresis = 32;
5589 #else
5590 malloc_hysteresis = 0;
5591 #endif
5592
5593 spare_memory = (char *) malloc (SPARE_MEMORY);
5594
5595 ignore_warnings = 0;
5596 gcprolist = 0;
5597 byte_stack_list = 0;
5598 staticidx = 0;
5599 consing_since_gc = 0;
5600 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
5601 #ifdef VIRT_ADDR_VARIES
5602 malloc_sbrk_unused = 1<<22; /* A large number */
5603 malloc_sbrk_used = 100000; /* as reasonable as any number */
5604 #endif /* VIRT_ADDR_VARIES */
5605 }
5606
5607 void
5608 init_alloc ()
5609 {
5610 gcprolist = 0;
5611 byte_stack_list = 0;
5612 #if GC_MARK_STACK
5613 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5614 setjmp_tested_p = longjmps_done = 0;
5615 #endif
5616 #endif
5617 Vgc_elapsed = make_float (0.0);
5618 gcs_done = 0;
5619 }
5620
5621 void
5622 syms_of_alloc ()
5623 {
5624 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
5625 doc: /* *Number of bytes of consing between garbage collections.
5626 Garbage collection can happen automatically once this many bytes have been
5627 allocated since the last garbage collection. All data types count.
5628
5629 Garbage collection happens automatically only when `eval' is called.
5630
5631 By binding this temporarily to a large number, you can effectively
5632 prevent garbage collection during a part of the program. */);
5633
5634 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
5635 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
5636
5637 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
5638 doc: /* Number of cons cells that have been consed so far. */);
5639
5640 DEFVAR_INT ("floats-consed", &floats_consed,
5641 doc: /* Number of floats that have been consed so far. */);
5642
5643 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
5644 doc: /* Number of vector cells that have been consed so far. */);
5645
5646 DEFVAR_INT ("symbols-consed", &symbols_consed,
5647 doc: /* Number of symbols that have been consed so far. */);
5648
5649 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
5650 doc: /* Number of string characters that have been consed so far. */);
5651
5652 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
5653 doc: /* Number of miscellaneous objects that have been consed so far. */);
5654
5655 DEFVAR_INT ("intervals-consed", &intervals_consed,
5656 doc: /* Number of intervals that have been consed so far. */);
5657
5658 DEFVAR_INT ("strings-consed", &strings_consed,
5659 doc: /* Number of strings that have been consed so far. */);
5660
5661 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
5662 doc: /* Non-nil means loading Lisp code in order to dump an executable.
5663 This means that certain objects should be allocated in shared (pure) space. */);
5664
5665 DEFVAR_INT ("undo-limit", &undo_limit,
5666 doc: /* Keep no more undo information once it exceeds this size.
5667 This limit is applied when garbage collection happens.
5668 The size is counted as the number of bytes occupied,
5669 which includes both saved text and other data. */);
5670 undo_limit = 20000;
5671
5672 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
5673 doc: /* Don't keep more than this much size of undo information.
5674 A command which pushes past this size is itself forgotten.
5675 This limit is applied when garbage collection happens.
5676 The size is counted as the number of bytes occupied,
5677 which includes both saved text and other data. */);
5678 undo_strong_limit = 30000;
5679
5680 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
5681 doc: /* Non-nil means display messages at start and end of garbage collection. */);
5682 garbage_collection_messages = 0;
5683
5684 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
5685 doc: /* Hook run after garbage collection has finished. */);
5686 Vpost_gc_hook = Qnil;
5687 Qpost_gc_hook = intern ("post-gc-hook");
5688 staticpro (&Qpost_gc_hook);
5689
5690 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
5691 doc: /* Precomputed `signal' argument for memory-full error. */);
5692 /* We build this in advance because if we wait until we need it, we might
5693 not be able to allocate the memory to hold it. */
5694 Vmemory_signal_data
5695 = list2 (Qerror,
5696 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
5697
5698 DEFVAR_LISP ("memory-full", &Vmemory_full,
5699 doc: /* Non-nil means we are handling a memory-full error. */);
5700 Vmemory_full = Qnil;
5701
5702 staticpro (&Qgc_cons_threshold);
5703 Qgc_cons_threshold = intern ("gc-cons-threshold");
5704
5705 staticpro (&Qchar_table_extra_slots);
5706 Qchar_table_extra_slots = intern ("char-table-extra-slots");
5707
5708 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
5709 doc: /* Accumulated time elapsed in garbage collections.
5710 The time is in seconds as a floating point value. */);
5711 DEFVAR_INT ("gcs-done", &gcs_done,
5712 doc: /* Accumulated number of garbage collections done. */);
5713
5714 defsubr (&Scons);
5715 defsubr (&Slist);
5716 defsubr (&Svector);
5717 defsubr (&Smake_byte_code);
5718 defsubr (&Smake_list);
5719 defsubr (&Smake_vector);
5720 defsubr (&Smake_string);
5721 defsubr (&Smake_bool_vector);
5722 defsubr (&Smake_symbol);
5723 defsubr (&Smake_marker);
5724 defsubr (&Spurecopy);
5725 defsubr (&Sgarbage_collect);
5726 defsubr (&Smemory_limit);
5727 defsubr (&Smemory_use_counts);
5728
5729 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5730 defsubr (&Sgc_status);
5731 #endif
5732 }
5733
5734 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
5735 (do not change this comment) */