Basic functions to set Lisp_Object and pointer slots of intervals.
[bpt/emacs.git] / src / intervals.c
1 /* Code for doing intervals.
2 Copyright (C) 1993-1995, 1997-1998, 2001-2012 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
18
19
20 /* NOTES:
21
22 Have to ensure that we can't put symbol nil on a plist, or some
23 functions may work incorrectly.
24
25 An idea: Have the owner of the tree keep count of splits and/or
26 insertion lengths (in intervals), and balance after every N.
27
28 Need to call *_left_hook when buffer is killed.
29
30 Scan for zero-length, or 0-length to see notes about handling
31 zero length interval-markers.
32
33 There are comments around about freeing intervals. It might be
34 faster to explicitly free them (put them on the free list) than
35 to GC them.
36
37 */
38
39
40 #include <config.h>
41 #include <setjmp.h>
42 #include <intprops.h>
43 #include "lisp.h"
44 #include "intervals.h"
45 #include "character.h"
46 #include "buffer.h"
47 #include "puresize.h"
48 #include "keyboard.h"
49 #include "keymap.h"
50
51 /* Test for membership, allowing for t (actually any non-cons) to mean the
52 universal set. */
53
54 #define TMEM(sym, set) (CONSP (set) ? ! NILP (Fmemq (sym, set)) : ! NILP (set))
55
56 static Lisp_Object merge_properties_sticky (Lisp_Object, Lisp_Object);
57 static INTERVAL merge_interval_right (INTERVAL);
58 static INTERVAL reproduce_tree (INTERVAL, INTERVAL);
59 static INTERVAL reproduce_tree_obj (INTERVAL, Lisp_Object);
60 \f
61 /* Utility functions for intervals. */
62
63
64 /* Create the root interval of some object, a buffer or string. */
65
66 INTERVAL
67 create_root_interval (Lisp_Object parent)
68 {
69 INTERVAL new;
70
71 CHECK_IMPURE (parent);
72
73 new = make_interval ();
74
75 if (BUFFERP (parent))
76 {
77 new->total_length = (BUF_Z (XBUFFER (parent))
78 - BUF_BEG (XBUFFER (parent)));
79 CHECK_TOTAL_LENGTH (new);
80 BUF_INTERVALS (XBUFFER (parent)) = new;
81 new->position = BEG;
82 }
83 else if (STRINGP (parent))
84 {
85 new->total_length = SCHARS (parent);
86 CHECK_TOTAL_LENGTH (new);
87 STRING_SET_INTERVALS (parent, new);
88 new->position = 0;
89 }
90
91 interval_set_object (new, parent);
92
93 return new;
94 }
95
96 /* Make the interval TARGET have exactly the properties of SOURCE */
97
98 void
99 copy_properties (register INTERVAL source, register INTERVAL target)
100 {
101 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
102 return;
103
104 COPY_INTERVAL_CACHE (source, target);
105 interval_set_plist (target, Fcopy_sequence (source->plist));
106 }
107
108 /* Merge the properties of interval SOURCE into the properties
109 of interval TARGET. That is to say, each property in SOURCE
110 is added to TARGET if TARGET has no such property as yet. */
111
112 static void
113 merge_properties (register INTERVAL source, register INTERVAL target)
114 {
115 register Lisp_Object o, sym, val;
116
117 if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
118 return;
119
120 MERGE_INTERVAL_CACHE (source, target);
121
122 o = source->plist;
123 while (CONSP (o))
124 {
125 sym = XCAR (o);
126 o = XCDR (o);
127 CHECK_CONS (o);
128
129 val = target->plist;
130 while (CONSP (val) && !EQ (XCAR (val), sym))
131 {
132 val = XCDR (val);
133 if (!CONSP (val))
134 break;
135 val = XCDR (val);
136 }
137
138 if (NILP (val))
139 {
140 val = XCAR (o);
141 interval_set_plist (target, Fcons (sym, Fcons (val, target->plist)));
142 }
143 o = XCDR (o);
144 }
145 }
146
147 /* Return 1 if the two intervals have the same properties,
148 0 otherwise. */
149
150 int
151 intervals_equal (INTERVAL i0, INTERVAL i1)
152 {
153 register Lisp_Object i0_cdr, i0_sym;
154 register Lisp_Object i1_cdr, i1_val;
155
156 if (DEFAULT_INTERVAL_P (i0) && DEFAULT_INTERVAL_P (i1))
157 return 1;
158
159 if (DEFAULT_INTERVAL_P (i0) || DEFAULT_INTERVAL_P (i1))
160 return 0;
161
162 i0_cdr = i0->plist;
163 i1_cdr = i1->plist;
164 while (CONSP (i0_cdr) && CONSP (i1_cdr))
165 {
166 i0_sym = XCAR (i0_cdr);
167 i0_cdr = XCDR (i0_cdr);
168 if (!CONSP (i0_cdr))
169 return 0; /* abort (); */
170 i1_val = i1->plist;
171 while (CONSP (i1_val) && !EQ (XCAR (i1_val), i0_sym))
172 {
173 i1_val = XCDR (i1_val);
174 if (!CONSP (i1_val))
175 return 0; /* abort (); */
176 i1_val = XCDR (i1_val);
177 }
178
179 /* i0 has something i1 doesn't. */
180 if (EQ (i1_val, Qnil))
181 return 0;
182
183 /* i0 and i1 both have sym, but it has different values in each. */
184 if (!CONSP (i1_val)
185 || (i1_val = XCDR (i1_val), !CONSP (i1_val))
186 || !EQ (XCAR (i1_val), XCAR (i0_cdr)))
187 return 0;
188
189 i0_cdr = XCDR (i0_cdr);
190
191 i1_cdr = XCDR (i1_cdr);
192 if (!CONSP (i1_cdr))
193 return 0; /* abort (); */
194 i1_cdr = XCDR (i1_cdr);
195 }
196
197 /* Lengths of the two plists were equal. */
198 return (NILP (i0_cdr) && NILP (i1_cdr));
199 }
200 \f
201
202 /* Traverse an interval tree TREE, performing FUNCTION on each node.
203 No guarantee is made about the order of traversal.
204 Pass FUNCTION two args: an interval, and ARG. */
205
206 void
207 traverse_intervals_noorder (INTERVAL tree, void (*function) (INTERVAL, Lisp_Object), Lisp_Object arg)
208 {
209 /* Minimize stack usage. */
210 while (!NULL_INTERVAL_P (tree))
211 {
212 (*function) (tree, arg);
213 if (NULL_INTERVAL_P (tree->right))
214 tree = tree->left;
215 else
216 {
217 traverse_intervals_noorder (tree->left, function, arg);
218 tree = tree->right;
219 }
220 }
221 }
222
223 /* Traverse an interval tree TREE, performing FUNCTION on each node.
224 Pass FUNCTION two args: an interval, and ARG. */
225
226 void
227 traverse_intervals (INTERVAL tree, ptrdiff_t position,
228 void (*function) (INTERVAL, Lisp_Object), Lisp_Object arg)
229 {
230 while (!NULL_INTERVAL_P (tree))
231 {
232 traverse_intervals (tree->left, position, function, arg);
233 position += LEFT_TOTAL_LENGTH (tree);
234 tree->position = position;
235 (*function) (tree, arg);
236 position += LENGTH (tree); tree = tree->right;
237 }
238 }
239 \f
240 #if 0
241
242 static int icount;
243 static int idepth;
244 static int zero_length;
245
246 /* These functions are temporary, for debugging purposes only. */
247
248 INTERVAL search_interval, found_interval;
249
250 void
251 check_for_interval (INTERVAL i)
252 {
253 if (i == search_interval)
254 {
255 found_interval = i;
256 icount++;
257 }
258 }
259
260 INTERVAL
261 search_for_interval (INTERVAL i, INTERVAL tree)
262 {
263 icount = 0;
264 search_interval = i;
265 found_interval = NULL_INTERVAL;
266 traverse_intervals_noorder (tree, &check_for_interval, Qnil);
267 return found_interval;
268 }
269
270 static void
271 inc_interval_count (INTERVAL i)
272 {
273 icount++;
274 if (LENGTH (i) == 0)
275 zero_length++;
276 if (depth > idepth)
277 idepth = depth;
278 }
279
280 int
281 count_intervals (INTERVAL i)
282 {
283 icount = 0;
284 idepth = 0;
285 zero_length = 0;
286 traverse_intervals_noorder (i, &inc_interval_count, Qnil);
287
288 return icount;
289 }
290
291 static INTERVAL
292 root_interval (INTERVAL interval)
293 {
294 register INTERVAL i = interval;
295
296 while (! ROOT_INTERVAL_P (i))
297 i = INTERVAL_PARENT (i);
298
299 return i;
300 }
301 #endif
302 \f
303 /* Assuming that a left child exists, perform the following operation:
304
305 A B
306 / \ / \
307 B => A
308 / \ / \
309 c c
310 */
311
312 static inline INTERVAL
313 rotate_right (INTERVAL interval)
314 {
315 INTERVAL i;
316 INTERVAL B = interval->left;
317 ptrdiff_t old_total = interval->total_length;
318
319 /* Deal with any Parent of A; make it point to B. */
320 if (! ROOT_INTERVAL_P (interval))
321 {
322 if (AM_LEFT_CHILD (interval))
323 interval_set_left (INTERVAL_PARENT (interval), B);
324 else
325 interval_set_right (INTERVAL_PARENT (interval), B);
326 }
327 interval_copy_parent (B, interval);
328
329 /* Make B the parent of A */
330 i = B->right;
331 interval_set_right (B, interval);
332 interval_set_parent (interval, B);
333
334 /* Make A point to c */
335 interval_set_left (interval, i);
336 if (! NULL_INTERVAL_P (i))
337 interval_set_parent (i, interval);
338
339 /* A's total length is decreased by the length of B and its left child. */
340 interval->total_length -= B->total_length - LEFT_TOTAL_LENGTH (interval);
341 CHECK_TOTAL_LENGTH (interval);
342
343 /* B must have the same total length of A. */
344 B->total_length = old_total;
345 CHECK_TOTAL_LENGTH (B);
346
347 return B;
348 }
349
350 /* Assuming that a right child exists, perform the following operation:
351
352 A B
353 / \ / \
354 B => A
355 / \ / \
356 c c
357 */
358
359 static inline INTERVAL
360 rotate_left (INTERVAL interval)
361 {
362 INTERVAL i;
363 INTERVAL B = interval->right;
364 ptrdiff_t old_total = interval->total_length;
365
366 /* Deal with any parent of A; make it point to B. */
367 if (! ROOT_INTERVAL_P (interval))
368 {
369 if (AM_LEFT_CHILD (interval))
370 interval_set_left (INTERVAL_PARENT (interval), B);
371 else
372 interval_set_right (INTERVAL_PARENT (interval), B);
373 }
374 interval_copy_parent (B, interval);
375
376 /* Make B the parent of A */
377 i = B->left;
378 interval_set_left (B, interval);
379 interval_set_parent (interval, B);
380
381 /* Make A point to c */
382 interval_set_right (interval, i);
383 if (! NULL_INTERVAL_P (i))
384 interval_set_parent (i, interval);
385
386 /* A's total length is decreased by the length of B and its right child. */
387 interval->total_length -= B->total_length - RIGHT_TOTAL_LENGTH (interval);
388 CHECK_TOTAL_LENGTH (interval);
389
390 /* B must have the same total length of A. */
391 B->total_length = old_total;
392 CHECK_TOTAL_LENGTH (B);
393
394 return B;
395 }
396 \f
397 /* Balance an interval tree with the assumption that the subtrees
398 themselves are already balanced. */
399
400 static INTERVAL
401 balance_an_interval (INTERVAL i)
402 {
403 register ptrdiff_t old_diff, new_diff;
404
405 while (1)
406 {
407 old_diff = LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i);
408 if (old_diff > 0)
409 {
410 /* Since the left child is longer, there must be one. */
411 new_diff = i->total_length - i->left->total_length
412 + RIGHT_TOTAL_LENGTH (i->left) - LEFT_TOTAL_LENGTH (i->left);
413 if (eabs (new_diff) >= old_diff)
414 break;
415 i = rotate_right (i);
416 balance_an_interval (i->right);
417 }
418 else if (old_diff < 0)
419 {
420 /* Since the right child is longer, there must be one. */
421 new_diff = i->total_length - i->right->total_length
422 + LEFT_TOTAL_LENGTH (i->right) - RIGHT_TOTAL_LENGTH (i->right);
423 if (eabs (new_diff) >= -old_diff)
424 break;
425 i = rotate_left (i);
426 balance_an_interval (i->left);
427 }
428 else
429 break;
430 }
431 return i;
432 }
433
434 /* Balance INTERVAL, potentially stuffing it back into its parent
435 Lisp Object. */
436
437 static inline INTERVAL
438 balance_possible_root_interval (register INTERVAL interval)
439 {
440 Lisp_Object parent;
441 int have_parent = 0;
442
443 if (!INTERVAL_HAS_OBJECT (interval) && !INTERVAL_HAS_PARENT (interval))
444 return interval;
445
446 if (INTERVAL_HAS_OBJECT (interval))
447 {
448 have_parent = 1;
449 GET_INTERVAL_OBJECT (parent, interval);
450 }
451 interval = balance_an_interval (interval);
452
453 if (have_parent)
454 {
455 if (BUFFERP (parent))
456 BUF_INTERVALS (XBUFFER (parent)) = interval;
457 else if (STRINGP (parent))
458 STRING_SET_INTERVALS (parent, interval);
459 }
460
461 return interval;
462 }
463
464 /* Balance the interval tree TREE. Balancing is by weight
465 (the amount of text). */
466
467 static INTERVAL
468 balance_intervals_internal (register INTERVAL tree)
469 {
470 /* Balance within each side. */
471 if (tree->left)
472 balance_intervals_internal (tree->left);
473 if (tree->right)
474 balance_intervals_internal (tree->right);
475 return balance_an_interval (tree);
476 }
477
478 /* Advertised interface to balance intervals. */
479
480 INTERVAL
481 balance_intervals (INTERVAL tree)
482 {
483 if (tree == NULL_INTERVAL)
484 return NULL_INTERVAL;
485
486 return balance_intervals_internal (tree);
487 }
488 \f
489 /* Split INTERVAL into two pieces, starting the second piece at
490 character position OFFSET (counting from 0), relative to INTERVAL.
491 INTERVAL becomes the left-hand piece, and the right-hand piece
492 (second, lexicographically) is returned.
493
494 The size and position fields of the two intervals are set based upon
495 those of the original interval. The property list of the new interval
496 is reset, thus it is up to the caller to do the right thing with the
497 result.
498
499 Note that this does not change the position of INTERVAL; if it is a root,
500 it is still a root after this operation. */
501
502 INTERVAL
503 split_interval_right (INTERVAL interval, ptrdiff_t offset)
504 {
505 INTERVAL new = make_interval ();
506 ptrdiff_t position = interval->position;
507 ptrdiff_t new_length = LENGTH (interval) - offset;
508
509 new->position = position + offset;
510 interval_set_parent (new, interval);
511
512 if (NULL_RIGHT_CHILD (interval))
513 {
514 interval_set_right (interval, new);
515 new->total_length = new_length;
516 CHECK_TOTAL_LENGTH (new);
517 }
518 else
519 {
520 /* Insert the new node between INTERVAL and its right child. */
521 interval_set_right (new, interval->right);
522 interval_set_parent (interval->right, new);
523 interval_set_right (interval, new);
524 new->total_length = new_length + new->right->total_length;
525 CHECK_TOTAL_LENGTH (new);
526 balance_an_interval (new);
527 }
528
529 balance_possible_root_interval (interval);
530
531 return new;
532 }
533
534 /* Split INTERVAL into two pieces, starting the second piece at
535 character position OFFSET (counting from 0), relative to INTERVAL.
536 INTERVAL becomes the right-hand piece, and the left-hand piece
537 (first, lexicographically) is returned.
538
539 The size and position fields of the two intervals are set based upon
540 those of the original interval. The property list of the new interval
541 is reset, thus it is up to the caller to do the right thing with the
542 result.
543
544 Note that this does not change the position of INTERVAL; if it is a root,
545 it is still a root after this operation. */
546
547 INTERVAL
548 split_interval_left (INTERVAL interval, ptrdiff_t offset)
549 {
550 INTERVAL new = make_interval ();
551 ptrdiff_t new_length = offset;
552
553 new->position = interval->position;
554 interval->position = interval->position + offset;
555 interval_set_parent (new, interval);
556
557 if (NULL_LEFT_CHILD (interval))
558 {
559 interval_set_left (interval, new);
560 new->total_length = new_length;
561 CHECK_TOTAL_LENGTH (new);
562 }
563 else
564 {
565 /* Insert the new node between INTERVAL and its left child. */
566 interval_set_left (new, interval->left);
567 interval_set_parent (new->left, new);
568 interval_set_left (interval, new);
569 new->total_length = new_length + new->left->total_length;
570 CHECK_TOTAL_LENGTH (new);
571 balance_an_interval (new);
572 }
573
574 balance_possible_root_interval (interval);
575
576 return new;
577 }
578 \f
579 /* Return the proper position for the first character
580 described by the interval tree SOURCE.
581 This is 1 if the parent is a buffer,
582 0 if the parent is a string or if there is no parent.
583
584 Don't use this function on an interval which is the child
585 of another interval! */
586
587 static int
588 interval_start_pos (INTERVAL source)
589 {
590 Lisp_Object parent;
591
592 if (NULL_INTERVAL_P (source))
593 return 0;
594
595 if (! INTERVAL_HAS_OBJECT (source))
596 return 0;
597 GET_INTERVAL_OBJECT (parent, source);
598 if (BUFFERP (parent))
599 return BUF_BEG (XBUFFER (parent));
600 return 0;
601 }
602
603 /* Find the interval containing text position POSITION in the text
604 represented by the interval tree TREE. POSITION is a buffer
605 position (starting from 1) or a string index (starting from 0).
606 If POSITION is at the end of the buffer or string,
607 return the interval containing the last character.
608
609 The `position' field, which is a cache of an interval's position,
610 is updated in the interval found. Other functions (e.g., next_interval)
611 will update this cache based on the result of find_interval. */
612
613 INTERVAL
614 find_interval (register INTERVAL tree, register ptrdiff_t position)
615 {
616 /* The distance from the left edge of the subtree at TREE
617 to POSITION. */
618 register ptrdiff_t relative_position;
619
620 if (NULL_INTERVAL_P (tree))
621 return NULL_INTERVAL;
622
623 relative_position = position;
624 if (INTERVAL_HAS_OBJECT (tree))
625 {
626 Lisp_Object parent;
627 GET_INTERVAL_OBJECT (parent, tree);
628 if (BUFFERP (parent))
629 relative_position -= BUF_BEG (XBUFFER (parent));
630 }
631
632 eassert (relative_position <= TOTAL_LENGTH (tree));
633
634 if (!handling_signal)
635 tree = balance_possible_root_interval (tree);
636
637 while (1)
638 {
639 if (relative_position < LEFT_TOTAL_LENGTH (tree))
640 {
641 tree = tree->left;
642 }
643 else if (! NULL_RIGHT_CHILD (tree)
644 && relative_position >= (TOTAL_LENGTH (tree)
645 - RIGHT_TOTAL_LENGTH (tree)))
646 {
647 relative_position -= (TOTAL_LENGTH (tree)
648 - RIGHT_TOTAL_LENGTH (tree));
649 tree = tree->right;
650 }
651 else
652 {
653 tree->position
654 = (position - relative_position /* left edge of *tree. */
655 + LEFT_TOTAL_LENGTH (tree)); /* left edge of this interval. */
656
657 return tree;
658 }
659 }
660 }
661 \f
662 /* Find the succeeding interval (lexicographically) to INTERVAL.
663 Sets the `position' field based on that of INTERVAL (see
664 find_interval). */
665
666 INTERVAL
667 next_interval (register INTERVAL interval)
668 {
669 register INTERVAL i = interval;
670 register ptrdiff_t next_position;
671
672 if (NULL_INTERVAL_P (i))
673 return NULL_INTERVAL;
674 next_position = interval->position + LENGTH (interval);
675
676 if (! NULL_RIGHT_CHILD (i))
677 {
678 i = i->right;
679 while (! NULL_LEFT_CHILD (i))
680 i = i->left;
681
682 i->position = next_position;
683 return i;
684 }
685
686 while (! NULL_PARENT (i))
687 {
688 if (AM_LEFT_CHILD (i))
689 {
690 i = INTERVAL_PARENT (i);
691 i->position = next_position;
692 return i;
693 }
694
695 i = INTERVAL_PARENT (i);
696 }
697
698 return NULL_INTERVAL;
699 }
700
701 /* Find the preceding interval (lexicographically) to INTERVAL.
702 Sets the `position' field based on that of INTERVAL (see
703 find_interval). */
704
705 INTERVAL
706 previous_interval (register INTERVAL interval)
707 {
708 register INTERVAL i;
709
710 if (NULL_INTERVAL_P (interval))
711 return NULL_INTERVAL;
712
713 if (! NULL_LEFT_CHILD (interval))
714 {
715 i = interval->left;
716 while (! NULL_RIGHT_CHILD (i))
717 i = i->right;
718
719 i->position = interval->position - LENGTH (i);
720 return i;
721 }
722
723 i = interval;
724 while (! NULL_PARENT (i))
725 {
726 if (AM_RIGHT_CHILD (i))
727 {
728 i = INTERVAL_PARENT (i);
729
730 i->position = interval->position - LENGTH (i);
731 return i;
732 }
733 i = INTERVAL_PARENT (i);
734 }
735
736 return NULL_INTERVAL;
737 }
738
739 /* Find the interval containing POS given some non-NULL INTERVAL
740 in the same tree. Note that we need to update interval->position
741 if we go down the tree.
742 To speed up the process, we assume that the ->position of
743 I and all its parents is already uptodate. */
744 INTERVAL
745 update_interval (register INTERVAL i, ptrdiff_t pos)
746 {
747 if (NULL_INTERVAL_P (i))
748 return NULL_INTERVAL;
749
750 while (1)
751 {
752 if (pos < i->position)
753 {
754 /* Move left. */
755 if (pos >= i->position - TOTAL_LENGTH (i->left))
756 {
757 i->left->position = i->position - TOTAL_LENGTH (i->left)
758 + LEFT_TOTAL_LENGTH (i->left);
759 i = i->left; /* Move to the left child */
760 }
761 else if (NULL_PARENT (i))
762 error ("Point before start of properties");
763 else
764 i = INTERVAL_PARENT (i);
765 continue;
766 }
767 else if (pos >= INTERVAL_LAST_POS (i))
768 {
769 /* Move right. */
770 if (pos < INTERVAL_LAST_POS (i) + TOTAL_LENGTH (i->right))
771 {
772 i->right->position = INTERVAL_LAST_POS (i)
773 + LEFT_TOTAL_LENGTH (i->right);
774 i = i->right; /* Move to the right child */
775 }
776 else if (NULL_PARENT (i))
777 error ("Point %"pD"d after end of properties", pos);
778 else
779 i = INTERVAL_PARENT (i);
780 continue;
781 }
782 else
783 return i;
784 }
785 }
786
787 /* Effect an adjustment corresponding to the addition of LENGTH characters
788 of text. Do this by finding the interval containing POSITION in the
789 interval tree TREE, and then adjusting all of its ancestors by adding
790 LENGTH to them.
791
792 If POSITION is the first character of an interval, meaning that point
793 is actually between the two intervals, make the new text belong to
794 the interval which is "sticky".
795
796 If both intervals are "sticky", then make them belong to the left-most
797 interval. Another possibility would be to create a new interval for
798 this text, and make it have the merged properties of both ends. */
799
800 static INTERVAL
801 adjust_intervals_for_insertion (INTERVAL tree,
802 ptrdiff_t position, ptrdiff_t length)
803 {
804 register INTERVAL i;
805 register INTERVAL temp;
806 int eobp = 0;
807 Lisp_Object parent;
808 ptrdiff_t offset;
809
810 eassert (TOTAL_LENGTH (tree) > 0);
811
812 GET_INTERVAL_OBJECT (parent, tree);
813 offset = (BUFFERP (parent) ? BUF_BEG (XBUFFER (parent)) : 0);
814
815 /* If inserting at point-max of a buffer, that position will be out
816 of range. Remember that buffer positions are 1-based. */
817 if (position >= TOTAL_LENGTH (tree) + offset)
818 {
819 position = TOTAL_LENGTH (tree) + offset;
820 eobp = 1;
821 }
822
823 i = find_interval (tree, position);
824
825 /* If in middle of an interval which is not sticky either way,
826 we must not just give its properties to the insertion.
827 So split this interval at the insertion point.
828
829 Originally, the if condition here was this:
830 (! (position == i->position || eobp)
831 && END_NONSTICKY_P (i)
832 && FRONT_NONSTICKY_P (i))
833 But, these macros are now unreliable because of introduction of
834 Vtext_property_default_nonsticky. So, we always check properties
835 one by one if POSITION is in middle of an interval. */
836 if (! (position == i->position || eobp))
837 {
838 Lisp_Object tail;
839 Lisp_Object front, rear;
840
841 tail = i->plist;
842
843 /* Properties font-sticky and rear-nonsticky override
844 Vtext_property_default_nonsticky. So, if they are t, we can
845 skip one by one checking of properties. */
846 rear = textget (i->plist, Qrear_nonsticky);
847 if (! CONSP (rear) && ! NILP (rear))
848 {
849 /* All properties are nonsticky. We split the interval. */
850 goto check_done;
851 }
852 front = textget (i->plist, Qfront_sticky);
853 if (! CONSP (front) && ! NILP (front))
854 {
855 /* All properties are sticky. We don't split the interval. */
856 tail = Qnil;
857 goto check_done;
858 }
859
860 /* Does any actual property pose an actual problem? We break
861 the loop if we find a nonsticky property. */
862 for (; CONSP (tail); tail = Fcdr (XCDR (tail)))
863 {
864 Lisp_Object prop, tmp;
865 prop = XCAR (tail);
866
867 /* Is this particular property front-sticky? */
868 if (CONSP (front) && ! NILP (Fmemq (prop, front)))
869 continue;
870
871 /* Is this particular property rear-nonsticky? */
872 if (CONSP (rear) && ! NILP (Fmemq (prop, rear)))
873 break;
874
875 /* Is this particular property recorded as sticky or
876 nonsticky in Vtext_property_default_nonsticky? */
877 tmp = Fassq (prop, Vtext_property_default_nonsticky);
878 if (CONSP (tmp))
879 {
880 if (NILP (tmp))
881 continue;
882 break;
883 }
884
885 /* By default, a text property is rear-sticky, thus we
886 continue the loop. */
887 }
888
889 check_done:
890 /* If any property is a real problem, split the interval. */
891 if (! NILP (tail))
892 {
893 temp = split_interval_right (i, position - i->position);
894 copy_properties (i, temp);
895 i = temp;
896 }
897 }
898
899 /* If we are positioned between intervals, check the stickiness of
900 both of them. We have to do this too, if we are at BEG or Z. */
901 if (position == i->position || eobp)
902 {
903 register INTERVAL prev;
904
905 if (position == BEG)
906 prev = 0;
907 else if (eobp)
908 {
909 prev = i;
910 i = 0;
911 }
912 else
913 prev = previous_interval (i);
914
915 /* Even if we are positioned between intervals, we default
916 to the left one if it exists. We extend it now and split
917 off a part later, if stickiness demands it. */
918 for (temp = prev ? prev : i; temp; temp = INTERVAL_PARENT_OR_NULL (temp))
919 {
920 temp->total_length += length;
921 CHECK_TOTAL_LENGTH (temp);
922 temp = balance_possible_root_interval (temp);
923 }
924
925 /* If at least one interval has sticky properties,
926 we check the stickiness property by property.
927
928 Originally, the if condition here was this:
929 (END_NONSTICKY_P (prev) || FRONT_STICKY_P (i))
930 But, these macros are now unreliable because of introduction
931 of Vtext_property_default_nonsticky. So, we always have to
932 check stickiness of properties one by one. If cache of
933 stickiness is implemented in the future, we may be able to
934 use those macros again. */
935 if (1)
936 {
937 Lisp_Object pleft, pright;
938 struct interval newi;
939
940 RESET_INTERVAL (&newi);
941 pleft = NULL_INTERVAL_P (prev) ? Qnil : prev->plist;
942 pright = NULL_INTERVAL_P (i) ? Qnil : i->plist;
943 interval_set_plist (&newi, merge_properties_sticky (pleft, pright));
944
945 if (! prev) /* i.e. position == BEG */
946 {
947 if (! intervals_equal (i, &newi))
948 {
949 i = split_interval_left (i, length);
950 interval_set_plist (i, newi.plist);
951 }
952 }
953 else if (! intervals_equal (prev, &newi))
954 {
955 prev = split_interval_right (prev, position - prev->position);
956 interval_set_plist (prev, newi.plist);
957 if (! NULL_INTERVAL_P (i)
958 && intervals_equal (prev, i))
959 merge_interval_right (prev);
960 }
961
962 /* We will need to update the cache here later. */
963 }
964 else if (! prev && ! NILP (i->plist))
965 {
966 /* Just split off a new interval at the left.
967 Since I wasn't front-sticky, the empty plist is ok. */
968 i = split_interval_left (i, length);
969 }
970 }
971
972 /* Otherwise just extend the interval. */
973 else
974 {
975 for (temp = i; temp; temp = INTERVAL_PARENT_OR_NULL (temp))
976 {
977 temp->total_length += length;
978 CHECK_TOTAL_LENGTH (temp);
979 temp = balance_possible_root_interval (temp);
980 }
981 }
982
983 return tree;
984 }
985
986 /* Any property might be front-sticky on the left, rear-sticky on the left,
987 front-sticky on the right, or rear-sticky on the right; the 16 combinations
988 can be arranged in a matrix with rows denoting the left conditions and
989 columns denoting the right conditions:
990 _ __ _
991 _ FR FR FR FR
992 FR__ 0 1 2 3
993 _FR 4 5 6 7
994 FR 8 9 A B
995 FR C D E F
996
997 left-props = '(front-sticky (p8 p9 pa pb pc pd pe pf)
998 rear-nonsticky (p4 p5 p6 p7 p8 p9 pa pb)
999 p0 L p1 L p2 L p3 L p4 L p5 L p6 L p7 L
1000 p8 L p9 L pa L pb L pc L pd L pe L pf L)
1001 right-props = '(front-sticky (p2 p3 p6 p7 pa pb pe pf)
1002 rear-nonsticky (p1 p2 p5 p6 p9 pa pd pe)
1003 p0 R p1 R p2 R p3 R p4 R p5 R p6 R p7 R
1004 p8 R p9 R pa R pb R pc R pd R pe R pf R)
1005
1006 We inherit from whoever has a sticky side facing us. If both sides
1007 do (cases 2, 3, E, and F), then we inherit from whichever side has a
1008 non-nil value for the current property. If both sides do, then we take
1009 from the left.
1010
1011 When we inherit a property, we get its stickiness as well as its value.
1012 So, when we merge the above two lists, we expect to get this:
1013
1014 result = '(front-sticky (p6 p7 pa pb pc pd pe pf)
1015 rear-nonsticky (p6 pa)
1016 p0 L p1 L p2 L p3 L p6 R p7 R
1017 pa R pb R pc L pd L pe L pf L)
1018
1019 The optimizable special cases are:
1020 left rear-nonsticky = nil, right front-sticky = nil (inherit left)
1021 left rear-nonsticky = t, right front-sticky = t (inherit right)
1022 left rear-nonsticky = t, right front-sticky = nil (inherit none)
1023 */
1024
1025 static Lisp_Object
1026 merge_properties_sticky (Lisp_Object pleft, Lisp_Object pright)
1027 {
1028 register Lisp_Object props, front, rear;
1029 Lisp_Object lfront, lrear, rfront, rrear;
1030 register Lisp_Object tail1, tail2, sym, lval, rval, cat;
1031 int use_left, use_right;
1032 int lpresent;
1033
1034 props = Qnil;
1035 front = Qnil;
1036 rear = Qnil;
1037 lfront = textget (pleft, Qfront_sticky);
1038 lrear = textget (pleft, Qrear_nonsticky);
1039 rfront = textget (pright, Qfront_sticky);
1040 rrear = textget (pright, Qrear_nonsticky);
1041
1042 /* Go through each element of PRIGHT. */
1043 for (tail1 = pright; CONSP (tail1); tail1 = Fcdr (XCDR (tail1)))
1044 {
1045 Lisp_Object tmp;
1046
1047 sym = XCAR (tail1);
1048
1049 /* Sticky properties get special treatment. */
1050 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
1051 continue;
1052
1053 rval = Fcar (XCDR (tail1));
1054 for (tail2 = pleft; CONSP (tail2); tail2 = Fcdr (XCDR (tail2)))
1055 if (EQ (sym, XCAR (tail2)))
1056 break;
1057
1058 /* Indicate whether the property is explicitly defined on the left.
1059 (We know it is defined explicitly on the right
1060 because otherwise we don't get here.) */
1061 lpresent = ! NILP (tail2);
1062 lval = (NILP (tail2) ? Qnil : Fcar (Fcdr (tail2)));
1063
1064 /* Even if lrear or rfront say nothing about the stickiness of
1065 SYM, Vtext_property_default_nonsticky may give default
1066 stickiness to SYM. */
1067 tmp = Fassq (sym, Vtext_property_default_nonsticky);
1068 use_left = (lpresent
1069 && ! (TMEM (sym, lrear)
1070 || (CONSP (tmp) && ! NILP (XCDR (tmp)))));
1071 use_right = (TMEM (sym, rfront)
1072 || (CONSP (tmp) && NILP (XCDR (tmp))));
1073 if (use_left && use_right)
1074 {
1075 if (NILP (lval))
1076 use_left = 0;
1077 else if (NILP (rval))
1078 use_right = 0;
1079 }
1080 if (use_left)
1081 {
1082 /* We build props as (value sym ...) rather than (sym value ...)
1083 because we plan to nreverse it when we're done. */
1084 props = Fcons (lval, Fcons (sym, props));
1085 if (TMEM (sym, lfront))
1086 front = Fcons (sym, front);
1087 if (TMEM (sym, lrear))
1088 rear = Fcons (sym, rear);
1089 }
1090 else if (use_right)
1091 {
1092 props = Fcons (rval, Fcons (sym, props));
1093 if (TMEM (sym, rfront))
1094 front = Fcons (sym, front);
1095 if (TMEM (sym, rrear))
1096 rear = Fcons (sym, rear);
1097 }
1098 }
1099
1100 /* Now go through each element of PLEFT. */
1101 for (tail2 = pleft; CONSP (tail2); tail2 = Fcdr (XCDR (tail2)))
1102 {
1103 Lisp_Object tmp;
1104
1105 sym = XCAR (tail2);
1106
1107 /* Sticky properties get special treatment. */
1108 if (EQ (sym, Qrear_nonsticky) || EQ (sym, Qfront_sticky))
1109 continue;
1110
1111 /* If sym is in PRIGHT, we've already considered it. */
1112 for (tail1 = pright; CONSP (tail1); tail1 = Fcdr (XCDR (tail1)))
1113 if (EQ (sym, XCAR (tail1)))
1114 break;
1115 if (! NILP (tail1))
1116 continue;
1117
1118 lval = Fcar (XCDR (tail2));
1119
1120 /* Even if lrear or rfront say nothing about the stickiness of
1121 SYM, Vtext_property_default_nonsticky may give default
1122 stickiness to SYM. */
1123 tmp = Fassq (sym, Vtext_property_default_nonsticky);
1124
1125 /* Since rval is known to be nil in this loop, the test simplifies. */
1126 if (! (TMEM (sym, lrear) || (CONSP (tmp) && ! NILP (XCDR (tmp)))))
1127 {
1128 props = Fcons (lval, Fcons (sym, props));
1129 if (TMEM (sym, lfront))
1130 front = Fcons (sym, front);
1131 }
1132 else if (TMEM (sym, rfront) || (CONSP (tmp) && NILP (XCDR (tmp))))
1133 {
1134 /* The value is nil, but we still inherit the stickiness
1135 from the right. */
1136 front = Fcons (sym, front);
1137 if (TMEM (sym, rrear))
1138 rear = Fcons (sym, rear);
1139 }
1140 }
1141 props = Fnreverse (props);
1142 if (! NILP (rear))
1143 props = Fcons (Qrear_nonsticky, Fcons (Fnreverse (rear), props));
1144
1145 cat = textget (props, Qcategory);
1146 if (! NILP (front)
1147 &&
1148 /* If we have inherited a front-stick category property that is t,
1149 we don't need to set up a detailed one. */
1150 ! (! NILP (cat) && SYMBOLP (cat)
1151 && EQ (Fget (cat, Qfront_sticky), Qt)))
1152 props = Fcons (Qfront_sticky, Fcons (Fnreverse (front), props));
1153 return props;
1154 }
1155
1156 \f
1157 /* Delete a node I from its interval tree by merging its subtrees
1158 into one subtree which is then returned. Caller is responsible for
1159 storing the resulting subtree into its parent. */
1160
1161 static INTERVAL
1162 delete_node (register INTERVAL i)
1163 {
1164 register INTERVAL migrate, this;
1165 register ptrdiff_t migrate_amt;
1166
1167 if (NULL_INTERVAL_P (i->left))
1168 return i->right;
1169 if (NULL_INTERVAL_P (i->right))
1170 return i->left;
1171
1172 migrate = i->left;
1173 migrate_amt = i->left->total_length;
1174 this = i->right;
1175 this->total_length += migrate_amt;
1176 while (! NULL_INTERVAL_P (this->left))
1177 {
1178 this = this->left;
1179 this->total_length += migrate_amt;
1180 }
1181 CHECK_TOTAL_LENGTH (this);
1182 interval_set_left (this, migrate);
1183 interval_set_parent (migrate, this);
1184
1185 return i->right;
1186 }
1187
1188 /* Delete interval I from its tree by calling `delete_node'
1189 and properly connecting the resultant subtree.
1190
1191 I is presumed to be empty; that is, no adjustments are made
1192 for the length of I. */
1193
1194 static void
1195 delete_interval (register INTERVAL i)
1196 {
1197 register INTERVAL parent;
1198 ptrdiff_t amt = LENGTH (i);
1199
1200 eassert (amt == 0); /* Only used on zero-length intervals now. */
1201
1202 if (ROOT_INTERVAL_P (i))
1203 {
1204 Lisp_Object owner;
1205 GET_INTERVAL_OBJECT (owner, i);
1206 parent = delete_node (i);
1207 if (! NULL_INTERVAL_P (parent))
1208 interval_set_object (parent, owner);
1209
1210 if (BUFFERP (owner))
1211 BUF_INTERVALS (XBUFFER (owner)) = parent;
1212 else if (STRINGP (owner))
1213 STRING_SET_INTERVALS (owner, parent);
1214 else
1215 abort ();
1216
1217 return;
1218 }
1219
1220 parent = INTERVAL_PARENT (i);
1221 if (AM_LEFT_CHILD (i))
1222 {
1223 interval_set_left (parent, delete_node (i));
1224 if (! NULL_INTERVAL_P (parent->left))
1225 interval_set_parent (parent->left, parent);
1226 }
1227 else
1228 {
1229 interval_set_right (parent, delete_node (i));
1230 if (! NULL_INTERVAL_P (parent->right))
1231 interval_set_parent (parent->right, parent);
1232 }
1233 }
1234 \f
1235 /* Find the interval in TREE corresponding to the relative position
1236 FROM and delete as much as possible of AMOUNT from that interval.
1237 Return the amount actually deleted, and if the interval was
1238 zeroed-out, delete that interval node from the tree.
1239
1240 Note that FROM is actually origin zero, aka relative to the
1241 leftmost edge of tree. This is appropriate since we call ourselves
1242 recursively on subtrees.
1243
1244 Do this by recursing down TREE to the interval in question, and
1245 deleting the appropriate amount of text. */
1246
1247 static ptrdiff_t
1248 interval_deletion_adjustment (register INTERVAL tree, register ptrdiff_t from,
1249 register ptrdiff_t amount)
1250 {
1251 register ptrdiff_t relative_position = from;
1252
1253 if (NULL_INTERVAL_P (tree))
1254 return 0;
1255
1256 /* Left branch. */
1257 if (relative_position < LEFT_TOTAL_LENGTH (tree))
1258 {
1259 ptrdiff_t subtract = interval_deletion_adjustment (tree->left,
1260 relative_position,
1261 amount);
1262 tree->total_length -= subtract;
1263 CHECK_TOTAL_LENGTH (tree);
1264 return subtract;
1265 }
1266 /* Right branch. */
1267 else if (relative_position >= (TOTAL_LENGTH (tree)
1268 - RIGHT_TOTAL_LENGTH (tree)))
1269 {
1270 ptrdiff_t subtract;
1271
1272 relative_position -= (tree->total_length
1273 - RIGHT_TOTAL_LENGTH (tree));
1274 subtract = interval_deletion_adjustment (tree->right,
1275 relative_position,
1276 amount);
1277 tree->total_length -= subtract;
1278 CHECK_TOTAL_LENGTH (tree);
1279 return subtract;
1280 }
1281 /* Here -- this node. */
1282 else
1283 {
1284 /* How much can we delete from this interval? */
1285 ptrdiff_t my_amount = ((tree->total_length
1286 - RIGHT_TOTAL_LENGTH (tree))
1287 - relative_position);
1288
1289 if (amount > my_amount)
1290 amount = my_amount;
1291
1292 tree->total_length -= amount;
1293 CHECK_TOTAL_LENGTH (tree);
1294 if (LENGTH (tree) == 0)
1295 delete_interval (tree);
1296
1297 return amount;
1298 }
1299
1300 /* Never reach here. */
1301 }
1302
1303 /* Effect the adjustments necessary to the interval tree of BUFFER to
1304 correspond to the deletion of LENGTH characters from that buffer
1305 text. The deletion is effected at position START (which is a
1306 buffer position, i.e. origin 1). */
1307
1308 static void
1309 adjust_intervals_for_deletion (struct buffer *buffer,
1310 ptrdiff_t start, ptrdiff_t length)
1311 {
1312 register ptrdiff_t left_to_delete = length;
1313 register INTERVAL tree = BUF_INTERVALS (buffer);
1314 Lisp_Object parent;
1315 ptrdiff_t offset;
1316
1317 GET_INTERVAL_OBJECT (parent, tree);
1318 offset = (BUFFERP (parent) ? BUF_BEG (XBUFFER (parent)) : 0);
1319
1320 if (NULL_INTERVAL_P (tree))
1321 return;
1322
1323 eassert (start <= offset + TOTAL_LENGTH (tree)
1324 && start + length <= offset + TOTAL_LENGTH (tree));
1325
1326 if (length == TOTAL_LENGTH (tree))
1327 {
1328 BUF_INTERVALS (buffer) = NULL_INTERVAL;
1329 return;
1330 }
1331
1332 if (ONLY_INTERVAL_P (tree))
1333 {
1334 tree->total_length -= length;
1335 CHECK_TOTAL_LENGTH (tree);
1336 return;
1337 }
1338
1339 if (start > offset + TOTAL_LENGTH (tree))
1340 start = offset + TOTAL_LENGTH (tree);
1341 while (left_to_delete > 0)
1342 {
1343 left_to_delete -= interval_deletion_adjustment (tree, start - offset,
1344 left_to_delete);
1345 tree = BUF_INTERVALS (buffer);
1346 if (left_to_delete == tree->total_length)
1347 {
1348 BUF_INTERVALS (buffer) = NULL_INTERVAL;
1349 return;
1350 }
1351 }
1352 }
1353 \f
1354 /* Make the adjustments necessary to the interval tree of BUFFER to
1355 represent an addition or deletion of LENGTH characters starting
1356 at position START. Addition or deletion is indicated by the sign
1357 of LENGTH.
1358
1359 The two inline functions (one static) pacify Sun C 5.8, a pre-C99
1360 compiler that does not allow calling a static function (here,
1361 adjust_intervals_for_deletion) from a non-static inline function. */
1362
1363 void
1364 offset_intervals (struct buffer *buffer, ptrdiff_t start, ptrdiff_t length)
1365 {
1366 if (NULL_INTERVAL_P (BUF_INTERVALS (buffer)) || length == 0)
1367 return;
1368
1369 if (length > 0)
1370 adjust_intervals_for_insertion (BUF_INTERVALS (buffer), start, length);
1371 else
1372 {
1373 IF_LINT (if (length < - TYPE_MAXIMUM (ptrdiff_t)) abort ();)
1374 adjust_intervals_for_deletion (buffer, start, -length);
1375 }
1376 }
1377 \f
1378 /* Merge interval I with its lexicographic successor. The resulting
1379 interval is returned, and has the properties of the original
1380 successor. The properties of I are lost. I is removed from the
1381 interval tree.
1382
1383 IMPORTANT:
1384 The caller must verify that this is not the last (rightmost)
1385 interval. */
1386
1387 static INTERVAL
1388 merge_interval_right (register INTERVAL i)
1389 {
1390 register ptrdiff_t absorb = LENGTH (i);
1391 register INTERVAL successor;
1392
1393 /* Find the succeeding interval. */
1394 if (! NULL_RIGHT_CHILD (i)) /* It's below us. Add absorb
1395 as we descend. */
1396 {
1397 successor = i->right;
1398 while (! NULL_LEFT_CHILD (successor))
1399 {
1400 successor->total_length += absorb;
1401 CHECK_TOTAL_LENGTH (successor);
1402 successor = successor->left;
1403 }
1404
1405 successor->total_length += absorb;
1406 CHECK_TOTAL_LENGTH (successor);
1407 delete_interval (i);
1408 return successor;
1409 }
1410
1411 /* Zero out this interval. */
1412 i->total_length -= absorb;
1413 CHECK_TOTAL_LENGTH (i);
1414
1415 successor = i;
1416 while (! NULL_PARENT (successor)) /* It's above us. Subtract as
1417 we ascend. */
1418 {
1419 if (AM_LEFT_CHILD (successor))
1420 {
1421 successor = INTERVAL_PARENT (successor);
1422 delete_interval (i);
1423 return successor;
1424 }
1425
1426 successor = INTERVAL_PARENT (successor);
1427 successor->total_length -= absorb;
1428 CHECK_TOTAL_LENGTH (successor);
1429 }
1430
1431 /* This must be the rightmost or last interval and cannot
1432 be merged right. The caller should have known. */
1433 abort ();
1434 }
1435 \f
1436 /* Merge interval I with its lexicographic predecessor. The resulting
1437 interval is returned, and has the properties of the original predecessor.
1438 The properties of I are lost. Interval node I is removed from the tree.
1439
1440 IMPORTANT:
1441 The caller must verify that this is not the first (leftmost) interval. */
1442
1443 INTERVAL
1444 merge_interval_left (register INTERVAL i)
1445 {
1446 register ptrdiff_t absorb = LENGTH (i);
1447 register INTERVAL predecessor;
1448
1449 /* Find the preceding interval. */
1450 if (! NULL_LEFT_CHILD (i)) /* It's below us. Go down,
1451 adding ABSORB as we go. */
1452 {
1453 predecessor = i->left;
1454 while (! NULL_RIGHT_CHILD (predecessor))
1455 {
1456 predecessor->total_length += absorb;
1457 CHECK_TOTAL_LENGTH (predecessor);
1458 predecessor = predecessor->right;
1459 }
1460
1461 predecessor->total_length += absorb;
1462 CHECK_TOTAL_LENGTH (predecessor);
1463 delete_interval (i);
1464 return predecessor;
1465 }
1466
1467 /* Zero out this interval. */
1468 i->total_length -= absorb;
1469 CHECK_TOTAL_LENGTH (i);
1470
1471 predecessor = i;
1472 while (! NULL_PARENT (predecessor)) /* It's above us. Go up,
1473 subtracting ABSORB. */
1474 {
1475 if (AM_RIGHT_CHILD (predecessor))
1476 {
1477 predecessor = INTERVAL_PARENT (predecessor);
1478 delete_interval (i);
1479 return predecessor;
1480 }
1481
1482 predecessor = INTERVAL_PARENT (predecessor);
1483 predecessor->total_length -= absorb;
1484 CHECK_TOTAL_LENGTH (predecessor);
1485 }
1486
1487 /* This must be the leftmost or first interval and cannot
1488 be merged left. The caller should have known. */
1489 abort ();
1490 }
1491 \f
1492 /* Make an exact copy of interval tree SOURCE which descends from
1493 PARENT. This is done by recursing through SOURCE, copying
1494 the current interval and its properties, and then adjusting
1495 the pointers of the copy. */
1496
1497 static INTERVAL
1498 reproduce_tree (INTERVAL source, INTERVAL parent)
1499 {
1500 register INTERVAL t = make_interval ();
1501
1502 memcpy (t, source, sizeof *t);
1503 copy_properties (source, t);
1504 interval_set_parent (t, parent);
1505 if (! NULL_LEFT_CHILD (source))
1506 interval_set_left (t, reproduce_tree (source->left, t));
1507 if (! NULL_RIGHT_CHILD (source))
1508 interval_set_right (t, reproduce_tree (source->right, t));
1509
1510 return t;
1511 }
1512
1513 static INTERVAL
1514 reproduce_tree_obj (INTERVAL source, Lisp_Object parent)
1515 {
1516 register INTERVAL t = make_interval ();
1517
1518 memcpy (t, source, sizeof *t);
1519 copy_properties (source, t);
1520 interval_set_object (t, parent);
1521 if (! NULL_LEFT_CHILD (source))
1522 interval_set_left (t, reproduce_tree (source->left, t));
1523 if (! NULL_RIGHT_CHILD (source))
1524 interval_set_right (t, reproduce_tree (source->right, t));
1525
1526 return t;
1527 }
1528 \f
1529 /* Insert the intervals of SOURCE into BUFFER at POSITION.
1530 LENGTH is the length of the text in SOURCE.
1531
1532 The `position' field of the SOURCE intervals is assumed to be
1533 consistent with its parent; therefore, SOURCE must be an
1534 interval tree made with copy_interval or must be the whole
1535 tree of a buffer or a string.
1536
1537 This is used in insdel.c when inserting Lisp_Strings into the
1538 buffer. The text corresponding to SOURCE is already in the buffer
1539 when this is called. The intervals of new tree are a copy of those
1540 belonging to the string being inserted; intervals are never
1541 shared.
1542
1543 If the inserted text had no intervals associated, and we don't
1544 want to inherit the surrounding text's properties, this function
1545 simply returns -- offset_intervals should handle placing the
1546 text in the correct interval, depending on the sticky bits.
1547
1548 If the inserted text had properties (intervals), then there are two
1549 cases -- either insertion happened in the middle of some interval,
1550 or between two intervals.
1551
1552 If the text goes into the middle of an interval, then new
1553 intervals are created in the middle with only the properties of
1554 the new text, *unless* the macro MERGE_INSERTIONS is true, in
1555 which case the new text has the union of its properties and those
1556 of the text into which it was inserted.
1557
1558 If the text goes between two intervals, then if neither interval
1559 had its appropriate sticky property set (front_sticky, rear_sticky),
1560 the new text has only its properties. If one of the sticky properties
1561 is set, then the new text "sticks" to that region and its properties
1562 depend on merging as above. If both the preceding and succeeding
1563 intervals to the new text are "sticky", then the new text retains
1564 only its properties, as if neither sticky property were set. Perhaps
1565 we should consider merging all three sets of properties onto the new
1566 text... */
1567
1568 void
1569 graft_intervals_into_buffer (INTERVAL source, ptrdiff_t position,
1570 ptrdiff_t length, struct buffer *buffer,
1571 int inherit)
1572 {
1573 register INTERVAL under, over, this;
1574 register INTERVAL tree;
1575 ptrdiff_t over_used;
1576
1577 tree = BUF_INTERVALS (buffer);
1578
1579 /* If the new text has no properties, then with inheritance it
1580 becomes part of whatever interval it was inserted into.
1581 To prevent inheritance, we must clear out the properties
1582 of the newly inserted text. */
1583 if (NULL_INTERVAL_P (source))
1584 {
1585 Lisp_Object buf;
1586 if (!inherit && !NULL_INTERVAL_P (tree) && length > 0)
1587 {
1588 XSETBUFFER (buf, buffer);
1589 set_text_properties_1 (make_number (position),
1590 make_number (position + length),
1591 Qnil, buf, 0);
1592 }
1593 if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer)))
1594 /* Shouldn't be necessary. --Stef */
1595 BUF_INTERVALS (buffer) = balance_an_interval (BUF_INTERVALS (buffer));
1596 return;
1597 }
1598
1599 eassert (length == TOTAL_LENGTH (source));
1600
1601 if ((BUF_Z (buffer) - BUF_BEG (buffer)) == length)
1602 { /* The inserted text constitutes the whole buffer, so
1603 simply copy over the interval structure. */
1604 Lisp_Object buf;
1605 XSETBUFFER (buf, buffer);
1606 BUF_INTERVALS (buffer) = reproduce_tree_obj (source, buf);
1607 BUF_INTERVALS (buffer)->position = BUF_BEG (buffer);
1608 eassert (BUF_INTERVALS (buffer)->up_obj == 1);
1609 return;
1610 }
1611 else if (NULL_INTERVAL_P (tree))
1612 { /* Create an interval tree in which to place a copy
1613 of the intervals of the inserted string. */
1614 Lisp_Object buf;
1615 XSETBUFFER (buf, buffer);
1616 tree = create_root_interval (buf);
1617 }
1618 /* Paranoia -- the text has already been added, so
1619 this buffer should be of non-zero length. */
1620 eassert (TOTAL_LENGTH (tree) > 0);
1621
1622 this = under = find_interval (tree, position);
1623 eassert (!NULL_INTERVAL_P (under));
1624 over = find_interval (source, interval_start_pos (source));
1625
1626 /* Here for insertion in the middle of an interval.
1627 Split off an equivalent interval to the right,
1628 then don't bother with it any more. */
1629
1630 if (position > under->position)
1631 {
1632 INTERVAL end_unchanged
1633 = split_interval_left (this, position - under->position);
1634 copy_properties (under, end_unchanged);
1635 under->position = position;
1636 }
1637 else
1638 {
1639 /* This call may have some effect because previous_interval may
1640 update `position' fields of intervals. Thus, don't ignore it
1641 for the moment. Someone please tell me the truth (K.Handa). */
1642 INTERVAL prev = previous_interval (under);
1643 (void) prev;
1644 #if 0
1645 /* But, this code surely has no effect. And, anyway,
1646 END_NONSTICKY_P is unreliable now. */
1647 if (prev && !END_NONSTICKY_P (prev))
1648 prev = 0;
1649 #endif /* 0 */
1650 }
1651
1652 /* Insertion is now at beginning of UNDER. */
1653
1654 /* The inserted text "sticks" to the interval `under',
1655 which means it gets those properties.
1656 The properties of under are the result of
1657 adjust_intervals_for_insertion, so stickiness has
1658 already been taken care of. */
1659
1660 /* OVER is the interval we are copying from next.
1661 OVER_USED says how many characters' worth of OVER
1662 have already been copied into target intervals.
1663 UNDER is the next interval in the target. */
1664 over_used = 0;
1665 while (! NULL_INTERVAL_P (over))
1666 {
1667 /* If UNDER is longer than OVER, split it. */
1668 if (LENGTH (over) - over_used < LENGTH (under))
1669 {
1670 this = split_interval_left (under, LENGTH (over) - over_used);
1671 copy_properties (under, this);
1672 }
1673 else
1674 this = under;
1675
1676 /* THIS is now the interval to copy or merge into.
1677 OVER covers all of it. */
1678 if (inherit)
1679 merge_properties (over, this);
1680 else
1681 copy_properties (over, this);
1682
1683 /* If THIS and OVER end at the same place,
1684 advance OVER to a new source interval. */
1685 if (LENGTH (this) == LENGTH (over) - over_used)
1686 {
1687 over = next_interval (over);
1688 over_used = 0;
1689 }
1690 else
1691 /* Otherwise just record that more of OVER has been used. */
1692 over_used += LENGTH (this);
1693
1694 /* Always advance to a new target interval. */
1695 under = next_interval (this);
1696 }
1697
1698 if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer)))
1699 BUF_INTERVALS (buffer) = balance_an_interval (BUF_INTERVALS (buffer));
1700 return;
1701 }
1702
1703 /* Get the value of property PROP from PLIST,
1704 which is the plist of an interval.
1705 We check for direct properties, for categories with property PROP,
1706 and for PROP appearing on the default-text-properties list. */
1707
1708 Lisp_Object
1709 textget (Lisp_Object plist, register Lisp_Object prop)
1710 {
1711 return lookup_char_property (plist, prop, 1);
1712 }
1713
1714 Lisp_Object
1715 lookup_char_property (Lisp_Object plist, register Lisp_Object prop, int textprop)
1716 {
1717 register Lisp_Object tail, fallback = Qnil;
1718
1719 for (tail = plist; CONSP (tail); tail = Fcdr (XCDR (tail)))
1720 {
1721 register Lisp_Object tem;
1722 tem = XCAR (tail);
1723 if (EQ (prop, tem))
1724 return Fcar (XCDR (tail));
1725 if (EQ (tem, Qcategory))
1726 {
1727 tem = Fcar (XCDR (tail));
1728 if (SYMBOLP (tem))
1729 fallback = Fget (tem, prop);
1730 }
1731 }
1732
1733 if (! NILP (fallback))
1734 return fallback;
1735 /* Check for alternative properties */
1736 tail = Fassq (prop, Vchar_property_alias_alist);
1737 if (! NILP (tail))
1738 {
1739 tail = XCDR (tail);
1740 for (; NILP (fallback) && CONSP (tail); tail = XCDR (tail))
1741 fallback = Fplist_get (plist, XCAR (tail));
1742 }
1743
1744 if (textprop && NILP (fallback) && CONSP (Vdefault_text_properties))
1745 fallback = Fplist_get (Vdefault_text_properties, prop);
1746 return fallback;
1747 }
1748
1749 \f
1750 /* Set point in BUFFER "temporarily" to CHARPOS, which corresponds to
1751 byte position BYTEPOS. */
1752
1753 void
1754 temp_set_point_both (struct buffer *buffer,
1755 ptrdiff_t charpos, ptrdiff_t bytepos)
1756 {
1757 /* In a single-byte buffer, the two positions must be equal. */
1758 if (BUF_ZV (buffer) == BUF_ZV_BYTE (buffer))
1759 eassert (charpos == bytepos);
1760
1761 eassert (charpos <= bytepos);
1762 eassert (charpos <= BUF_ZV (buffer) || BUF_BEGV (buffer) <= charpos);
1763
1764 SET_BUF_PT_BOTH (buffer, charpos, bytepos);
1765 }
1766
1767 /* Set point "temporarily", without checking any text properties. */
1768
1769 void
1770 temp_set_point (struct buffer *buffer, ptrdiff_t charpos)
1771 {
1772 temp_set_point_both (buffer, charpos,
1773 buf_charpos_to_bytepos (buffer, charpos));
1774 }
1775
1776 /* Set point in BUFFER to CHARPOS. If the target position is
1777 before an intangible character, move to an ok place. */
1778
1779 void
1780 set_point (ptrdiff_t charpos)
1781 {
1782 set_point_both (charpos, buf_charpos_to_bytepos (current_buffer, charpos));
1783 }
1784
1785 /* If there's an invisible character at position POS + TEST_OFFS in the
1786 current buffer, and the invisible property has a `stickiness' such that
1787 inserting a character at position POS would inherit the property it,
1788 return POS + ADJ, otherwise return POS. If TEST_INTANG is non-zero,
1789 then intangibility is required as well as invisibility.
1790
1791 TEST_OFFS should be either 0 or -1, and ADJ should be either 1 or -1.
1792
1793 Note that `stickiness' is determined by overlay marker insertion types,
1794 if the invisible property comes from an overlay. */
1795
1796 static ptrdiff_t
1797 adjust_for_invis_intang (ptrdiff_t pos, ptrdiff_t test_offs, ptrdiff_t adj,
1798 int test_intang)
1799 {
1800 Lisp_Object invis_propval, invis_overlay;
1801 Lisp_Object test_pos;
1802
1803 if ((adj < 0 && pos + adj < BEGV) || (adj > 0 && pos + adj > ZV))
1804 /* POS + ADJ would be beyond the buffer bounds, so do no adjustment. */
1805 return pos;
1806
1807 test_pos = make_number (pos + test_offs);
1808
1809 invis_propval
1810 = get_char_property_and_overlay (test_pos, Qinvisible, Qnil,
1811 &invis_overlay);
1812
1813 if ((!test_intang
1814 || ! NILP (Fget_char_property (test_pos, Qintangible, Qnil)))
1815 && TEXT_PROP_MEANS_INVISIBLE (invis_propval)
1816 /* This next test is true if the invisible property has a stickiness
1817 such that an insertion at POS would inherit it. */
1818 && (NILP (invis_overlay)
1819 /* Invisible property is from a text-property. */
1820 ? (text_property_stickiness (Qinvisible, make_number (pos), Qnil)
1821 == (test_offs == 0 ? 1 : -1))
1822 /* Invisible property is from an overlay. */
1823 : (test_offs == 0
1824 ? XMARKER (OVERLAY_START (invis_overlay))->insertion_type == 0
1825 : XMARKER (OVERLAY_END (invis_overlay))->insertion_type == 1)))
1826 pos += adj;
1827
1828 return pos;
1829 }
1830
1831 /* Set point in BUFFER to CHARPOS, which corresponds to byte
1832 position BYTEPOS. If the target position is
1833 before an intangible character, move to an ok place. */
1834
1835 void
1836 set_point_both (ptrdiff_t charpos, ptrdiff_t bytepos)
1837 {
1838 register INTERVAL to, from, toprev, fromprev;
1839 ptrdiff_t buffer_point;
1840 ptrdiff_t old_position = PT;
1841 /* This ensures that we move forward past intangible text when the
1842 initial position is the same as the destination, in the rare
1843 instances where this is important, e.g. in line-move-finish
1844 (simple.el). */
1845 int backwards = (charpos < old_position ? 1 : 0);
1846 int have_overlays;
1847 ptrdiff_t original_position;
1848
1849 BVAR (current_buffer, point_before_scroll) = Qnil;
1850
1851 if (charpos == PT)
1852 return;
1853
1854 /* In a single-byte buffer, the two positions must be equal. */
1855 eassert (ZV != ZV_BYTE || charpos == bytepos);
1856
1857 /* Check this now, before checking if the buffer has any intervals.
1858 That way, we can catch conditions which break this sanity check
1859 whether or not there are intervals in the buffer. */
1860 eassert (charpos <= ZV && charpos >= BEGV);
1861
1862 have_overlays = (current_buffer->overlays_before
1863 || current_buffer->overlays_after);
1864
1865 /* If we have no text properties and overlays,
1866 then we can do it quickly. */
1867 if (NULL_INTERVAL_P (BUF_INTERVALS (current_buffer)) && ! have_overlays)
1868 {
1869 temp_set_point_both (current_buffer, charpos, bytepos);
1870 return;
1871 }
1872
1873 /* Set TO to the interval containing the char after CHARPOS,
1874 and TOPREV to the interval containing the char before CHARPOS.
1875 Either one may be null. They may be equal. */
1876 to = find_interval (BUF_INTERVALS (current_buffer), charpos);
1877 if (charpos == BEGV)
1878 toprev = 0;
1879 else if (to && to->position == charpos)
1880 toprev = previous_interval (to);
1881 else
1882 toprev = to;
1883
1884 buffer_point = (PT == ZV ? ZV - 1 : PT);
1885
1886 /* Set FROM to the interval containing the char after PT,
1887 and FROMPREV to the interval containing the char before PT.
1888 Either one may be null. They may be equal. */
1889 /* We could cache this and save time. */
1890 from = find_interval (BUF_INTERVALS (current_buffer), buffer_point);
1891 if (buffer_point == BEGV)
1892 fromprev = 0;
1893 else if (from && from->position == PT)
1894 fromprev = previous_interval (from);
1895 else if (buffer_point != PT)
1896 fromprev = from, from = 0;
1897 else
1898 fromprev = from;
1899
1900 /* Moving within an interval. */
1901 if (to == from && toprev == fromprev && INTERVAL_VISIBLE_P (to)
1902 && ! have_overlays)
1903 {
1904 temp_set_point_both (current_buffer, charpos, bytepos);
1905 return;
1906 }
1907
1908 original_position = charpos;
1909
1910 /* If the new position is between two intangible characters
1911 with the same intangible property value,
1912 move forward or backward until a change in that property. */
1913 if (NILP (Vinhibit_point_motion_hooks)
1914 && ((! NULL_INTERVAL_P (to) && ! NULL_INTERVAL_P (toprev))
1915 || have_overlays)
1916 /* Intangibility never stops us from positioning at the beginning
1917 or end of the buffer, so don't bother checking in that case. */
1918 && charpos != BEGV && charpos != ZV)
1919 {
1920 Lisp_Object pos;
1921 Lisp_Object intangible_propval;
1922
1923 if (backwards)
1924 {
1925 /* If the preceding character is both intangible and invisible,
1926 and the invisible property is `rear-sticky', perturb it so
1927 that the search starts one character earlier -- this ensures
1928 that point can never move to the end of an invisible/
1929 intangible/rear-sticky region. */
1930 charpos = adjust_for_invis_intang (charpos, -1, -1, 1);
1931
1932 XSETINT (pos, charpos);
1933
1934 /* If following char is intangible,
1935 skip back over all chars with matching intangible property. */
1936
1937 intangible_propval = Fget_char_property (pos, Qintangible, Qnil);
1938
1939 if (! NILP (intangible_propval))
1940 {
1941 while (XINT (pos) > BEGV
1942 && EQ (Fget_char_property (make_number (XINT (pos) - 1),
1943 Qintangible, Qnil),
1944 intangible_propval))
1945 pos = Fprevious_char_property_change (pos, Qnil);
1946
1947 /* Set CHARPOS from POS, and if the final intangible character
1948 that we skipped over is also invisible, and the invisible
1949 property is `front-sticky', perturb it to be one character
1950 earlier -- this ensures that point can never move to the
1951 beginning of an invisible/intangible/front-sticky region. */
1952 charpos = adjust_for_invis_intang (XINT (pos), 0, -1, 0);
1953 }
1954 }
1955 else
1956 {
1957 /* If the following character is both intangible and invisible,
1958 and the invisible property is `front-sticky', perturb it so
1959 that the search starts one character later -- this ensures
1960 that point can never move to the beginning of an
1961 invisible/intangible/front-sticky region. */
1962 charpos = adjust_for_invis_intang (charpos, 0, 1, 1);
1963
1964 XSETINT (pos, charpos);
1965
1966 /* If preceding char is intangible,
1967 skip forward over all chars with matching intangible property. */
1968
1969 intangible_propval = Fget_char_property (make_number (charpos - 1),
1970 Qintangible, Qnil);
1971
1972 if (! NILP (intangible_propval))
1973 {
1974 while (XINT (pos) < ZV
1975 && EQ (Fget_char_property (pos, Qintangible, Qnil),
1976 intangible_propval))
1977 pos = Fnext_char_property_change (pos, Qnil);
1978
1979 /* Set CHARPOS from POS, and if the final intangible character
1980 that we skipped over is also invisible, and the invisible
1981 property is `rear-sticky', perturb it to be one character
1982 later -- this ensures that point can never move to the
1983 end of an invisible/intangible/rear-sticky region. */
1984 charpos = adjust_for_invis_intang (XINT (pos), -1, 1, 0);
1985 }
1986 }
1987
1988 bytepos = buf_charpos_to_bytepos (current_buffer, charpos);
1989 }
1990
1991 if (charpos != original_position)
1992 {
1993 /* Set TO to the interval containing the char after CHARPOS,
1994 and TOPREV to the interval containing the char before CHARPOS.
1995 Either one may be null. They may be equal. */
1996 to = find_interval (BUF_INTERVALS (current_buffer), charpos);
1997 if (charpos == BEGV)
1998 toprev = 0;
1999 else if (to && to->position == charpos)
2000 toprev = previous_interval (to);
2001 else
2002 toprev = to;
2003 }
2004
2005 /* Here TO is the interval after the stopping point
2006 and TOPREV is the interval before the stopping point.
2007 One or the other may be null. */
2008
2009 temp_set_point_both (current_buffer, charpos, bytepos);
2010
2011 /* We run point-left and point-entered hooks here, if the
2012 two intervals are not equivalent. These hooks take
2013 (old_point, new_point) as arguments. */
2014 if (NILP (Vinhibit_point_motion_hooks)
2015 && (! intervals_equal (from, to)
2016 || ! intervals_equal (fromprev, toprev)))
2017 {
2018 Lisp_Object leave_after, leave_before, enter_after, enter_before;
2019
2020 if (fromprev)
2021 leave_before = textget (fromprev->plist, Qpoint_left);
2022 else
2023 leave_before = Qnil;
2024
2025 if (from)
2026 leave_after = textget (from->plist, Qpoint_left);
2027 else
2028 leave_after = Qnil;
2029
2030 if (toprev)
2031 enter_before = textget (toprev->plist, Qpoint_entered);
2032 else
2033 enter_before = Qnil;
2034
2035 if (to)
2036 enter_after = textget (to->plist, Qpoint_entered);
2037 else
2038 enter_after = Qnil;
2039
2040 if (! EQ (leave_before, enter_before) && !NILP (leave_before))
2041 call2 (leave_before, make_number (old_position),
2042 make_number (charpos));
2043 if (! EQ (leave_after, enter_after) && !NILP (leave_after))
2044 call2 (leave_after, make_number (old_position),
2045 make_number (charpos));
2046
2047 if (! EQ (enter_before, leave_before) && !NILP (enter_before))
2048 call2 (enter_before, make_number (old_position),
2049 make_number (charpos));
2050 if (! EQ (enter_after, leave_after) && !NILP (enter_after))
2051 call2 (enter_after, make_number (old_position),
2052 make_number (charpos));
2053 }
2054 }
2055 \f
2056 /* Move point to POSITION, unless POSITION is inside an intangible
2057 segment that reaches all the way to point. */
2058
2059 void
2060 move_if_not_intangible (ptrdiff_t position)
2061 {
2062 Lisp_Object pos;
2063 Lisp_Object intangible_propval;
2064
2065 XSETINT (pos, position);
2066
2067 if (! NILP (Vinhibit_point_motion_hooks))
2068 /* If intangible is inhibited, always move point to POSITION. */
2069 ;
2070 else if (PT < position && XINT (pos) < ZV)
2071 {
2072 /* We want to move forward, so check the text before POSITION. */
2073
2074 intangible_propval = Fget_char_property (pos,
2075 Qintangible, Qnil);
2076
2077 /* If following char is intangible,
2078 skip back over all chars with matching intangible property. */
2079 if (! NILP (intangible_propval))
2080 while (XINT (pos) > BEGV
2081 && EQ (Fget_char_property (make_number (XINT (pos) - 1),
2082 Qintangible, Qnil),
2083 intangible_propval))
2084 pos = Fprevious_char_property_change (pos, Qnil);
2085 }
2086 else if (XINT (pos) > BEGV)
2087 {
2088 /* We want to move backward, so check the text after POSITION. */
2089
2090 intangible_propval = Fget_char_property (make_number (XINT (pos) - 1),
2091 Qintangible, Qnil);
2092
2093 /* If following char is intangible,
2094 skip forward over all chars with matching intangible property. */
2095 if (! NILP (intangible_propval))
2096 while (XINT (pos) < ZV
2097 && EQ (Fget_char_property (pos, Qintangible, Qnil),
2098 intangible_propval))
2099 pos = Fnext_char_property_change (pos, Qnil);
2100
2101 }
2102 else if (position < BEGV)
2103 position = BEGV;
2104 else if (position > ZV)
2105 position = ZV;
2106
2107 /* If the whole stretch between PT and POSITION isn't intangible,
2108 try moving to POSITION (which means we actually move farther
2109 if POSITION is inside of intangible text). */
2110
2111 if (XINT (pos) != PT)
2112 SET_PT (position);
2113 }
2114 \f
2115 /* If text at position POS has property PROP, set *VAL to the property
2116 value, *START and *END to the beginning and end of a region that
2117 has the same property, and return 1. Otherwise return 0.
2118
2119 OBJECT is the string or buffer to look for the property in;
2120 nil means the current buffer. */
2121
2122 int
2123 get_property_and_range (ptrdiff_t pos, Lisp_Object prop, Lisp_Object *val,
2124 ptrdiff_t *start, ptrdiff_t *end, Lisp_Object object)
2125 {
2126 INTERVAL i, prev, next;
2127
2128 if (NILP (object))
2129 i = find_interval (BUF_INTERVALS (current_buffer), pos);
2130 else if (BUFFERP (object))
2131 i = find_interval (BUF_INTERVALS (XBUFFER (object)), pos);
2132 else if (STRINGP (object))
2133 i = find_interval (STRING_INTERVALS (object), pos);
2134 else
2135 abort ();
2136
2137 if (NULL_INTERVAL_P (i) || (i->position + LENGTH (i) <= pos))
2138 return 0;
2139 *val = textget (i->plist, prop);
2140 if (NILP (*val))
2141 return 0;
2142
2143 next = i; /* remember it in advance */
2144 prev = previous_interval (i);
2145 while (! NULL_INTERVAL_P (prev)
2146 && EQ (*val, textget (prev->plist, prop)))
2147 i = prev, prev = previous_interval (prev);
2148 *start = i->position;
2149
2150 next = next_interval (i);
2151 while (! NULL_INTERVAL_P (next)
2152 && EQ (*val, textget (next->plist, prop)))
2153 i = next, next = next_interval (next);
2154 *end = i->position + LENGTH (i);
2155
2156 return 1;
2157 }
2158 \f
2159 /* Return the proper local keymap TYPE for position POSITION in
2160 BUFFER; TYPE should be one of `keymap' or `local-map'. Use the map
2161 specified by the PROP property, if any. Otherwise, if TYPE is
2162 `local-map' use BUFFER's local map.
2163
2164 POSITION must be in the accessible part of BUFFER. */
2165
2166 Lisp_Object
2167 get_local_map (register ptrdiff_t position, register struct buffer *buffer,
2168 Lisp_Object type)
2169 {
2170 Lisp_Object prop, lispy_position, lispy_buffer;
2171 ptrdiff_t old_begv, old_zv, old_begv_byte, old_zv_byte;
2172
2173 /* Perhaps we should just change `position' to the limit. */
2174 if (position > BUF_ZV (buffer) || position < BUF_BEGV (buffer))
2175 abort ();
2176
2177 /* Ignore narrowing, so that a local map continues to be valid even if
2178 the visible region contains no characters and hence no properties. */
2179 old_begv = BUF_BEGV (buffer);
2180 old_zv = BUF_ZV (buffer);
2181 old_begv_byte = BUF_BEGV_BYTE (buffer);
2182 old_zv_byte = BUF_ZV_BYTE (buffer);
2183
2184 SET_BUF_BEGV_BOTH (buffer, BUF_BEG (buffer), BUF_BEG_BYTE (buffer));
2185 SET_BUF_ZV_BOTH (buffer, BUF_Z (buffer), BUF_Z_BYTE (buffer));
2186
2187 XSETFASTINT (lispy_position, position);
2188 XSETBUFFER (lispy_buffer, buffer);
2189 /* First check if the CHAR has any property. This is because when
2190 we click with the mouse, the mouse pointer is really pointing
2191 to the CHAR after POS. */
2192 prop = Fget_char_property (lispy_position, type, lispy_buffer);
2193 /* If not, look at the POS's properties. This is necessary because when
2194 editing a field with a `local-map' property, we want insertion at the end
2195 to obey the `local-map' property. */
2196 if (NILP (prop))
2197 prop = get_pos_property (lispy_position, type, lispy_buffer);
2198
2199 SET_BUF_BEGV_BOTH (buffer, old_begv, old_begv_byte);
2200 SET_BUF_ZV_BOTH (buffer, old_zv, old_zv_byte);
2201
2202 /* Use the local map only if it is valid. */
2203 prop = get_keymap (prop, 0, 0);
2204 if (CONSP (prop))
2205 return prop;
2206
2207 if (EQ (type, Qkeymap))
2208 return Qnil;
2209 else
2210 return BVAR (buffer, keymap);
2211 }
2212 \f
2213 /* Produce an interval tree reflecting the intervals in
2214 TREE from START to START + LENGTH.
2215 The new interval tree has no parent and has a starting-position of 0. */
2216
2217 INTERVAL
2218 copy_intervals (INTERVAL tree, ptrdiff_t start, ptrdiff_t length)
2219 {
2220 register INTERVAL i, new, t;
2221 register ptrdiff_t got, prevlen;
2222
2223 if (NULL_INTERVAL_P (tree) || length <= 0)
2224 return NULL_INTERVAL;
2225
2226 i = find_interval (tree, start);
2227 eassert (!NULL_INTERVAL_P (i) && LENGTH (i) > 0);
2228
2229 /* If there is only one interval and it's the default, return nil. */
2230 if ((start - i->position + 1 + length) < LENGTH (i)
2231 && DEFAULT_INTERVAL_P (i))
2232 return NULL_INTERVAL;
2233
2234 new = make_interval ();
2235 new->position = 0;
2236 got = (LENGTH (i) - (start - i->position));
2237 new->total_length = length;
2238 CHECK_TOTAL_LENGTH (new);
2239 copy_properties (i, new);
2240
2241 t = new;
2242 prevlen = got;
2243 while (got < length)
2244 {
2245 i = next_interval (i);
2246 t = split_interval_right (t, prevlen);
2247 copy_properties (i, t);
2248 prevlen = LENGTH (i);
2249 got += prevlen;
2250 }
2251
2252 return balance_an_interval (new);
2253 }
2254
2255 /* Give STRING the properties of BUFFER from POSITION to LENGTH. */
2256
2257 void
2258 copy_intervals_to_string (Lisp_Object string, struct buffer *buffer,
2259 ptrdiff_t position, ptrdiff_t length)
2260 {
2261 INTERVAL interval_copy = copy_intervals (BUF_INTERVALS (buffer),
2262 position, length);
2263 if (NULL_INTERVAL_P (interval_copy))
2264 return;
2265
2266 interval_set_object (interval_copy, string);
2267 STRING_SET_INTERVALS (string, interval_copy);
2268 }
2269 \f
2270 /* Return 1 if strings S1 and S2 have identical properties; 0 otherwise.
2271 Assume they have identical characters. */
2272
2273 int
2274 compare_string_intervals (Lisp_Object s1, Lisp_Object s2)
2275 {
2276 INTERVAL i1, i2;
2277 ptrdiff_t pos = 0;
2278 ptrdiff_t end = SCHARS (s1);
2279
2280 i1 = find_interval (STRING_INTERVALS (s1), 0);
2281 i2 = find_interval (STRING_INTERVALS (s2), 0);
2282
2283 while (pos < end)
2284 {
2285 /* Determine how far we can go before we reach the end of I1 or I2. */
2286 ptrdiff_t len1 = (i1 != 0 ? INTERVAL_LAST_POS (i1) : end) - pos;
2287 ptrdiff_t len2 = (i2 != 0 ? INTERVAL_LAST_POS (i2) : end) - pos;
2288 ptrdiff_t distance = min (len1, len2);
2289
2290 /* If we ever find a mismatch between the strings,
2291 they differ. */
2292 if (! intervals_equal (i1, i2))
2293 return 0;
2294
2295 /* Advance POS till the end of the shorter interval,
2296 and advance one or both interval pointers for the new position. */
2297 pos += distance;
2298 if (len1 == distance)
2299 i1 = next_interval (i1);
2300 if (len2 == distance)
2301 i2 = next_interval (i2);
2302 }
2303 return 1;
2304 }
2305 \f
2306 /* Recursively adjust interval I in the current buffer
2307 for setting enable_multibyte_characters to MULTI_FLAG.
2308 The range of interval I is START ... END in characters,
2309 START_BYTE ... END_BYTE in bytes. */
2310
2311 static void
2312 set_intervals_multibyte_1 (INTERVAL i, int multi_flag,
2313 ptrdiff_t start, ptrdiff_t start_byte,
2314 ptrdiff_t end, ptrdiff_t end_byte)
2315 {
2316 /* Fix the length of this interval. */
2317 if (multi_flag)
2318 i->total_length = end - start;
2319 else
2320 i->total_length = end_byte - start_byte;
2321 CHECK_TOTAL_LENGTH (i);
2322
2323 if (TOTAL_LENGTH (i) == 0)
2324 {
2325 delete_interval (i);
2326 return;
2327 }
2328
2329 /* Recursively fix the length of the subintervals. */
2330 if (i->left)
2331 {
2332 ptrdiff_t left_end, left_end_byte;
2333
2334 if (multi_flag)
2335 {
2336 ptrdiff_t temp;
2337 left_end_byte = start_byte + LEFT_TOTAL_LENGTH (i);
2338 left_end = BYTE_TO_CHAR (left_end_byte);
2339
2340 temp = CHAR_TO_BYTE (left_end);
2341
2342 /* If LEFT_END_BYTE is in the middle of a character,
2343 adjust it and LEFT_END to a char boundary. */
2344 if (left_end_byte > temp)
2345 {
2346 left_end_byte = temp;
2347 }
2348 if (left_end_byte < temp)
2349 {
2350 left_end--;
2351 left_end_byte = CHAR_TO_BYTE (left_end);
2352 }
2353 }
2354 else
2355 {
2356 left_end = start + LEFT_TOTAL_LENGTH (i);
2357 left_end_byte = CHAR_TO_BYTE (left_end);
2358 }
2359
2360 set_intervals_multibyte_1 (i->left, multi_flag, start, start_byte,
2361 left_end, left_end_byte);
2362 }
2363 if (i->right)
2364 {
2365 ptrdiff_t right_start_byte, right_start;
2366
2367 if (multi_flag)
2368 {
2369 ptrdiff_t temp;
2370
2371 right_start_byte = end_byte - RIGHT_TOTAL_LENGTH (i);
2372 right_start = BYTE_TO_CHAR (right_start_byte);
2373
2374 /* If RIGHT_START_BYTE is in the middle of a character,
2375 adjust it and RIGHT_START to a char boundary. */
2376 temp = CHAR_TO_BYTE (right_start);
2377
2378 if (right_start_byte < temp)
2379 {
2380 right_start_byte = temp;
2381 }
2382 if (right_start_byte > temp)
2383 {
2384 right_start++;
2385 right_start_byte = CHAR_TO_BYTE (right_start);
2386 }
2387 }
2388 else
2389 {
2390 right_start = end - RIGHT_TOTAL_LENGTH (i);
2391 right_start_byte = CHAR_TO_BYTE (right_start);
2392 }
2393
2394 set_intervals_multibyte_1 (i->right, multi_flag,
2395 right_start, right_start_byte,
2396 end, end_byte);
2397 }
2398
2399 /* Rounding to char boundaries can theoretically ake this interval
2400 spurious. If so, delete one child, and copy its property list
2401 to this interval. */
2402 if (LEFT_TOTAL_LENGTH (i) + RIGHT_TOTAL_LENGTH (i) >= TOTAL_LENGTH (i))
2403 {
2404 if ((i)->left)
2405 {
2406 interval_set_plist (i, i->left->plist);
2407 (i)->left->total_length = 0;
2408 delete_interval ((i)->left);
2409 }
2410 else
2411 {
2412 interval_set_plist (i, i->right->plist);
2413 (i)->right->total_length = 0;
2414 delete_interval ((i)->right);
2415 }
2416 }
2417 }
2418
2419 /* Update the intervals of the current buffer
2420 to fit the contents as multibyte (if MULTI_FLAG is 1)
2421 or to fit them as non-multibyte (if MULTI_FLAG is 0). */
2422
2423 void
2424 set_intervals_multibyte (int multi_flag)
2425 {
2426 if (BUF_INTERVALS (current_buffer))
2427 set_intervals_multibyte_1 (BUF_INTERVALS (current_buffer), multi_flag,
2428 BEG, BEG_BYTE, Z, Z_BYTE);
2429 }