Utility function to make a list from specified amount of objects.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24 #include <setjmp.h>
25
26 #include <signal.h>
27
28 #ifdef HAVE_PTHREAD
29 #include <pthread.h>
30 #endif
31
32 /* This file is part of the core Lisp implementation, and thus must
33 deal with the real data structures. If the Lisp implementation is
34 replaced, this file likely will not be used. */
35
36 #undef HIDE_LISP_IMPLEMENTATION
37 #include "lisp.h"
38 #include "process.h"
39 #include "intervals.h"
40 #include "puresize.h"
41 #include "character.h"
42 #include "buffer.h"
43 #include "window.h"
44 #include "keyboard.h"
45 #include "frame.h"
46 #include "blockinput.h"
47 #include "syssignal.h"
48 #include "termhooks.h" /* For struct terminal. */
49 #include <setjmp.h>
50 #include <verify.h>
51
52 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
53 Doable only if GC_MARK_STACK. */
54 #if ! GC_MARK_STACK
55 # undef GC_CHECK_MARKED_OBJECTS
56 #endif
57
58 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
59 memory. Can do this only if using gmalloc.c and if not checking
60 marked objects. */
61
62 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
63 || defined GC_CHECK_MARKED_OBJECTS)
64 #undef GC_MALLOC_CHECK
65 #endif
66
67 #include <unistd.h>
68 #ifndef HAVE_UNISTD_H
69 extern void *sbrk ();
70 #endif
71
72 #include <fcntl.h>
73
74 #ifdef WINDOWSNT
75 #include "w32.h"
76 #endif
77
78 #ifdef DOUG_LEA_MALLOC
79
80 #include <malloc.h>
81
82 /* Specify maximum number of areas to mmap. It would be nice to use a
83 value that explicitly means "no limit". */
84
85 #define MMAP_MAX_AREAS 100000000
86
87 #else /* not DOUG_LEA_MALLOC */
88
89 /* The following come from gmalloc.c. */
90
91 extern size_t _bytes_used;
92 extern size_t __malloc_extra_blocks;
93 extern void *_malloc_internal (size_t);
94 extern void _free_internal (void *);
95
96 #endif /* not DOUG_LEA_MALLOC */
97
98 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
99 #ifdef HAVE_PTHREAD
100
101 /* When GTK uses the file chooser dialog, different backends can be loaded
102 dynamically. One such a backend is the Gnome VFS backend that gets loaded
103 if you run Gnome. That backend creates several threads and also allocates
104 memory with malloc.
105
106 Also, gconf and gsettings may create several threads.
107
108 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
109 functions below are called from malloc, there is a chance that one
110 of these threads preempts the Emacs main thread and the hook variables
111 end up in an inconsistent state. So we have a mutex to prevent that (note
112 that the backend handles concurrent access to malloc within its own threads
113 but Emacs code running in the main thread is not included in that control).
114
115 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
116 happens in one of the backend threads we will have two threads that tries
117 to run Emacs code at once, and the code is not prepared for that.
118 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
119
120 static pthread_mutex_t alloc_mutex;
121
122 #define BLOCK_INPUT_ALLOC \
123 do \
124 { \
125 if (pthread_equal (pthread_self (), main_thread)) \
126 BLOCK_INPUT; \
127 pthread_mutex_lock (&alloc_mutex); \
128 } \
129 while (0)
130 #define UNBLOCK_INPUT_ALLOC \
131 do \
132 { \
133 pthread_mutex_unlock (&alloc_mutex); \
134 if (pthread_equal (pthread_self (), main_thread)) \
135 UNBLOCK_INPUT; \
136 } \
137 while (0)
138
139 #else /* ! defined HAVE_PTHREAD */
140
141 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
142 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
143
144 #endif /* ! defined HAVE_PTHREAD */
145 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
146
147 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
148 to a struct Lisp_String. */
149
150 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
151 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
152 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
153
154 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
155 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
156 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
157
158 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
159 Be careful during GC, because S->size contains the mark bit for
160 strings. */
161
162 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
163
164 /* Default value of gc_cons_threshold (see below). */
165
166 #define GC_DEFAULT_THRESHOLD (100000 * sizeof (Lisp_Object))
167
168 /* Global variables. */
169 struct emacs_globals globals;
170
171 /* Number of bytes of consing done since the last gc. */
172
173 EMACS_INT consing_since_gc;
174
175 /* Similar minimum, computed from Vgc_cons_percentage. */
176
177 EMACS_INT gc_relative_threshold;
178
179 /* Minimum number of bytes of consing since GC before next GC,
180 when memory is full. */
181
182 EMACS_INT memory_full_cons_threshold;
183
184 /* Nonzero during GC. */
185
186 int gc_in_progress;
187
188 /* Nonzero means abort if try to GC.
189 This is for code which is written on the assumption that
190 no GC will happen, so as to verify that assumption. */
191
192 int abort_on_gc;
193
194 /* Number of live and free conses etc. */
195
196 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
197 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
198 static EMACS_INT total_free_floats, total_floats;
199
200 /* Points to memory space allocated as "spare", to be freed if we run
201 out of memory. We keep one large block, four cons-blocks, and
202 two string blocks. */
203
204 static char *spare_memory[7];
205
206 /* Amount of spare memory to keep in large reserve block, or to see
207 whether this much is available when malloc fails on a larger request. */
208
209 #define SPARE_MEMORY (1 << 14)
210
211 /* Number of extra blocks malloc should get when it needs more core. */
212
213 static int malloc_hysteresis;
214
215 /* Initialize it to a nonzero value to force it into data space
216 (rather than bss space). That way unexec will remap it into text
217 space (pure), on some systems. We have not implemented the
218 remapping on more recent systems because this is less important
219 nowadays than in the days of small memories and timesharing. */
220
221 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
222 #define PUREBEG (char *) pure
223
224 /* Pointer to the pure area, and its size. */
225
226 static char *purebeg;
227 static ptrdiff_t pure_size;
228
229 /* Number of bytes of pure storage used before pure storage overflowed.
230 If this is non-zero, this implies that an overflow occurred. */
231
232 static ptrdiff_t pure_bytes_used_before_overflow;
233
234 /* Value is non-zero if P points into pure space. */
235
236 #define PURE_POINTER_P(P) \
237 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
238
239 /* Index in pure at which next pure Lisp object will be allocated.. */
240
241 static ptrdiff_t pure_bytes_used_lisp;
242
243 /* Number of bytes allocated for non-Lisp objects in pure storage. */
244
245 static ptrdiff_t pure_bytes_used_non_lisp;
246
247 /* If nonzero, this is a warning delivered by malloc and not yet
248 displayed. */
249
250 const char *pending_malloc_warning;
251
252 /* Maximum amount of C stack to save when a GC happens. */
253
254 #ifndef MAX_SAVE_STACK
255 #define MAX_SAVE_STACK 16000
256 #endif
257
258 /* Buffer in which we save a copy of the C stack at each GC. */
259
260 #if MAX_SAVE_STACK > 0
261 static char *stack_copy;
262 static ptrdiff_t stack_copy_size;
263 #endif
264
265 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
266 static Lisp_Object Qgc_cons_threshold;
267 Lisp_Object Qchar_table_extra_slots;
268
269 /* Hook run after GC has finished. */
270
271 static Lisp_Object Qpost_gc_hook;
272
273 static void mark_terminals (void);
274 static void gc_sweep (void);
275 static Lisp_Object make_pure_vector (ptrdiff_t);
276 static void mark_glyph_matrix (struct glyph_matrix *);
277 static void mark_face_cache (struct face_cache *);
278
279 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
280 static void refill_memory_reserve (void);
281 #endif
282 static struct Lisp_String *allocate_string (void);
283 static void compact_small_strings (void);
284 static void free_large_strings (void);
285 static void sweep_strings (void);
286 static void free_misc (Lisp_Object);
287 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
288
289 /* Handy constants for vectorlike objects. */
290 enum
291 {
292 header_size = offsetof (struct Lisp_Vector, contents),
293 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
294 word_size = sizeof (Lisp_Object)
295 };
296
297 /* When scanning the C stack for live Lisp objects, Emacs keeps track
298 of what memory allocated via lisp_malloc is intended for what
299 purpose. This enumeration specifies the type of memory. */
300
301 enum mem_type
302 {
303 MEM_TYPE_NON_LISP,
304 MEM_TYPE_BUFFER,
305 MEM_TYPE_CONS,
306 MEM_TYPE_STRING,
307 MEM_TYPE_MISC,
308 MEM_TYPE_SYMBOL,
309 MEM_TYPE_FLOAT,
310 /* We used to keep separate mem_types for subtypes of vectors such as
311 process, hash_table, frame, terminal, and window, but we never made
312 use of the distinction, so it only caused source-code complexity
313 and runtime slowdown. Minor but pointless. */
314 MEM_TYPE_VECTORLIKE,
315 /* Special type to denote vector blocks. */
316 MEM_TYPE_VECTOR_BLOCK
317 };
318
319 static void *lisp_malloc (size_t, enum mem_type);
320
321
322 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
323
324 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
325 #include <stdio.h> /* For fprintf. */
326 #endif
327
328 /* A unique object in pure space used to make some Lisp objects
329 on free lists recognizable in O(1). */
330
331 static Lisp_Object Vdead;
332 #define DEADP(x) EQ (x, Vdead)
333
334 #ifdef GC_MALLOC_CHECK
335
336 enum mem_type allocated_mem_type;
337
338 #endif /* GC_MALLOC_CHECK */
339
340 /* A node in the red-black tree describing allocated memory containing
341 Lisp data. Each such block is recorded with its start and end
342 address when it is allocated, and removed from the tree when it
343 is freed.
344
345 A red-black tree is a balanced binary tree with the following
346 properties:
347
348 1. Every node is either red or black.
349 2. Every leaf is black.
350 3. If a node is red, then both of its children are black.
351 4. Every simple path from a node to a descendant leaf contains
352 the same number of black nodes.
353 5. The root is always black.
354
355 When nodes are inserted into the tree, or deleted from the tree,
356 the tree is "fixed" so that these properties are always true.
357
358 A red-black tree with N internal nodes has height at most 2
359 log(N+1). Searches, insertions and deletions are done in O(log N).
360 Please see a text book about data structures for a detailed
361 description of red-black trees. Any book worth its salt should
362 describe them. */
363
364 struct mem_node
365 {
366 /* Children of this node. These pointers are never NULL. When there
367 is no child, the value is MEM_NIL, which points to a dummy node. */
368 struct mem_node *left, *right;
369
370 /* The parent of this node. In the root node, this is NULL. */
371 struct mem_node *parent;
372
373 /* Start and end of allocated region. */
374 void *start, *end;
375
376 /* Node color. */
377 enum {MEM_BLACK, MEM_RED} color;
378
379 /* Memory type. */
380 enum mem_type type;
381 };
382
383 /* Base address of stack. Set in main. */
384
385 Lisp_Object *stack_base;
386
387 /* Root of the tree describing allocated Lisp memory. */
388
389 static struct mem_node *mem_root;
390
391 /* Lowest and highest known address in the heap. */
392
393 static void *min_heap_address, *max_heap_address;
394
395 /* Sentinel node of the tree. */
396
397 static struct mem_node mem_z;
398 #define MEM_NIL &mem_z
399
400 static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
401 static void lisp_free (void *);
402 static void mark_stack (void);
403 static int live_vector_p (struct mem_node *, void *);
404 static int live_buffer_p (struct mem_node *, void *);
405 static int live_string_p (struct mem_node *, void *);
406 static int live_cons_p (struct mem_node *, void *);
407 static int live_symbol_p (struct mem_node *, void *);
408 static int live_float_p (struct mem_node *, void *);
409 static int live_misc_p (struct mem_node *, void *);
410 static void mark_maybe_object (Lisp_Object);
411 static void mark_memory (void *, void *);
412 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
413 static void mem_init (void);
414 static struct mem_node *mem_insert (void *, void *, enum mem_type);
415 static void mem_insert_fixup (struct mem_node *);
416 #endif
417 static void mem_rotate_left (struct mem_node *);
418 static void mem_rotate_right (struct mem_node *);
419 static void mem_delete (struct mem_node *);
420 static void mem_delete_fixup (struct mem_node *);
421 static inline struct mem_node *mem_find (void *);
422
423
424 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
425 static void check_gcpros (void);
426 #endif
427
428 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
429
430 #ifndef DEADP
431 # define DEADP(x) 0
432 #endif
433
434 /* Recording what needs to be marked for gc. */
435
436 struct gcpro *gcprolist;
437
438 /* Addresses of staticpro'd variables. Initialize it to a nonzero
439 value; otherwise some compilers put it into BSS. */
440
441 #define NSTATICS 0x650
442 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
443
444 /* Index of next unused slot in staticvec. */
445
446 static int staticidx;
447
448 static void *pure_alloc (size_t, int);
449
450
451 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
452 ALIGNMENT must be a power of 2. */
453
454 #define ALIGN(ptr, ALIGNMENT) \
455 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
456 & ~ ((ALIGNMENT) - 1)))
457
458
459 \f
460 /************************************************************************
461 Malloc
462 ************************************************************************/
463
464 /* Function malloc calls this if it finds we are near exhausting storage. */
465
466 void
467 malloc_warning (const char *str)
468 {
469 pending_malloc_warning = str;
470 }
471
472
473 /* Display an already-pending malloc warning. */
474
475 void
476 display_malloc_warning (void)
477 {
478 call3 (intern ("display-warning"),
479 intern ("alloc"),
480 build_string (pending_malloc_warning),
481 intern ("emergency"));
482 pending_malloc_warning = 0;
483 }
484 \f
485 /* Called if we can't allocate relocatable space for a buffer. */
486
487 void
488 buffer_memory_full (ptrdiff_t nbytes)
489 {
490 /* If buffers use the relocating allocator, no need to free
491 spare_memory, because we may have plenty of malloc space left
492 that we could get, and if we don't, the malloc that fails will
493 itself cause spare_memory to be freed. If buffers don't use the
494 relocating allocator, treat this like any other failing
495 malloc. */
496
497 #ifndef REL_ALLOC
498 memory_full (nbytes);
499 #endif
500
501 /* This used to call error, but if we've run out of memory, we could
502 get infinite recursion trying to build the string. */
503 xsignal (Qnil, Vmemory_signal_data);
504 }
505
506 /* A common multiple of the positive integers A and B. Ideally this
507 would be the least common multiple, but there's no way to do that
508 as a constant expression in C, so do the best that we can easily do. */
509 #define COMMON_MULTIPLE(a, b) \
510 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
511
512 #ifndef XMALLOC_OVERRUN_CHECK
513 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
514 #else
515
516 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
517 around each block.
518
519 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
520 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
521 block size in little-endian order. The trailer consists of
522 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
523
524 The header is used to detect whether this block has been allocated
525 through these functions, as some low-level libc functions may
526 bypass the malloc hooks. */
527
528 #define XMALLOC_OVERRUN_CHECK_SIZE 16
529 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
530 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
531
532 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
533 hold a size_t value and (2) the header size is a multiple of the
534 alignment that Emacs needs for C types and for USE_LSB_TAG. */
535 #define XMALLOC_BASE_ALIGNMENT \
536 offsetof ( \
537 struct { \
538 union { long double d; intmax_t i; void *p; } u; \
539 char c; \
540 }, \
541 c)
542
543 #if USE_LSB_TAG
544 # define XMALLOC_HEADER_ALIGNMENT \
545 COMMON_MULTIPLE (1 << GCTYPEBITS, XMALLOC_BASE_ALIGNMENT)
546 #else
547 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
548 #endif
549 #define XMALLOC_OVERRUN_SIZE_SIZE \
550 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
551 + XMALLOC_HEADER_ALIGNMENT - 1) \
552 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
553 - XMALLOC_OVERRUN_CHECK_SIZE)
554
555 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
556 { '\x9a', '\x9b', '\xae', '\xaf',
557 '\xbf', '\xbe', '\xce', '\xcf',
558 '\xea', '\xeb', '\xec', '\xed',
559 '\xdf', '\xde', '\x9c', '\x9d' };
560
561 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
562 { '\xaa', '\xab', '\xac', '\xad',
563 '\xba', '\xbb', '\xbc', '\xbd',
564 '\xca', '\xcb', '\xcc', '\xcd',
565 '\xda', '\xdb', '\xdc', '\xdd' };
566
567 /* Insert and extract the block size in the header. */
568
569 static void
570 xmalloc_put_size (unsigned char *ptr, size_t size)
571 {
572 int i;
573 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
574 {
575 *--ptr = size & ((1 << CHAR_BIT) - 1);
576 size >>= CHAR_BIT;
577 }
578 }
579
580 static size_t
581 xmalloc_get_size (unsigned char *ptr)
582 {
583 size_t size = 0;
584 int i;
585 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
586 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
587 {
588 size <<= CHAR_BIT;
589 size += *ptr++;
590 }
591 return size;
592 }
593
594
595 /* The call depth in overrun_check functions. For example, this might happen:
596 xmalloc()
597 overrun_check_malloc()
598 -> malloc -> (via hook)_-> emacs_blocked_malloc
599 -> overrun_check_malloc
600 call malloc (hooks are NULL, so real malloc is called).
601 malloc returns 10000.
602 add overhead, return 10016.
603 <- (back in overrun_check_malloc)
604 add overhead again, return 10032
605 xmalloc returns 10032.
606
607 (time passes).
608
609 xfree(10032)
610 overrun_check_free(10032)
611 decrease overhead
612 free(10016) <- crash, because 10000 is the original pointer. */
613
614 static ptrdiff_t check_depth;
615
616 /* Like malloc, but wraps allocated block with header and trailer. */
617
618 static void *
619 overrun_check_malloc (size_t size)
620 {
621 register unsigned char *val;
622 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
623 if (SIZE_MAX - overhead < size)
624 abort ();
625
626 val = malloc (size + overhead);
627 if (val && check_depth == 1)
628 {
629 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
630 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
631 xmalloc_put_size (val, size);
632 memcpy (val + size, xmalloc_overrun_check_trailer,
633 XMALLOC_OVERRUN_CHECK_SIZE);
634 }
635 --check_depth;
636 return val;
637 }
638
639
640 /* Like realloc, but checks old block for overrun, and wraps new block
641 with header and trailer. */
642
643 static void *
644 overrun_check_realloc (void *block, size_t size)
645 {
646 register unsigned char *val = (unsigned char *) block;
647 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
648 if (SIZE_MAX - overhead < size)
649 abort ();
650
651 if (val
652 && check_depth == 1
653 && memcmp (xmalloc_overrun_check_header,
654 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
655 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
656 {
657 size_t osize = xmalloc_get_size (val);
658 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
659 XMALLOC_OVERRUN_CHECK_SIZE))
660 abort ();
661 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
662 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
663 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
664 }
665
666 val = realloc (val, size + overhead);
667
668 if (val && check_depth == 1)
669 {
670 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
671 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
672 xmalloc_put_size (val, size);
673 memcpy (val + size, xmalloc_overrun_check_trailer,
674 XMALLOC_OVERRUN_CHECK_SIZE);
675 }
676 --check_depth;
677 return val;
678 }
679
680 /* Like free, but checks block for overrun. */
681
682 static void
683 overrun_check_free (void *block)
684 {
685 unsigned char *val = (unsigned char *) block;
686
687 ++check_depth;
688 if (val
689 && check_depth == 1
690 && memcmp (xmalloc_overrun_check_header,
691 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
692 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
693 {
694 size_t osize = xmalloc_get_size (val);
695 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
696 XMALLOC_OVERRUN_CHECK_SIZE))
697 abort ();
698 #ifdef XMALLOC_CLEAR_FREE_MEMORY
699 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
700 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
701 #else
702 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
703 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
704 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
705 #endif
706 }
707
708 free (val);
709 --check_depth;
710 }
711
712 #undef malloc
713 #undef realloc
714 #undef free
715 #define malloc overrun_check_malloc
716 #define realloc overrun_check_realloc
717 #define free overrun_check_free
718 #endif
719
720 #ifdef SYNC_INPUT
721 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
722 there's no need to block input around malloc. */
723 #define MALLOC_BLOCK_INPUT ((void)0)
724 #define MALLOC_UNBLOCK_INPUT ((void)0)
725 #else
726 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
727 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
728 #endif
729
730 /* Like malloc but check for no memory and block interrupt input.. */
731
732 void *
733 xmalloc (size_t size)
734 {
735 void *val;
736
737 MALLOC_BLOCK_INPUT;
738 val = malloc (size);
739 MALLOC_UNBLOCK_INPUT;
740
741 if (!val && size)
742 memory_full (size);
743 return val;
744 }
745
746 /* Like the above, but zeroes out the memory just allocated. */
747
748 void *
749 xzalloc (size_t size)
750 {
751 void *val;
752
753 MALLOC_BLOCK_INPUT;
754 val = malloc (size);
755 MALLOC_UNBLOCK_INPUT;
756
757 if (!val && size)
758 memory_full (size);
759 memset (val, 0, size);
760 return val;
761 }
762
763 /* Like realloc but check for no memory and block interrupt input.. */
764
765 void *
766 xrealloc (void *block, size_t size)
767 {
768 void *val;
769
770 MALLOC_BLOCK_INPUT;
771 /* We must call malloc explicitly when BLOCK is 0, since some
772 reallocs don't do this. */
773 if (! block)
774 val = malloc (size);
775 else
776 val = realloc (block, size);
777 MALLOC_UNBLOCK_INPUT;
778
779 if (!val && size)
780 memory_full (size);
781 return val;
782 }
783
784
785 /* Like free but block interrupt input. */
786
787 void
788 xfree (void *block)
789 {
790 if (!block)
791 return;
792 MALLOC_BLOCK_INPUT;
793 free (block);
794 MALLOC_UNBLOCK_INPUT;
795 /* We don't call refill_memory_reserve here
796 because that duplicates doing so in emacs_blocked_free
797 and the criterion should go there. */
798 }
799
800
801 /* Other parts of Emacs pass large int values to allocator functions
802 expecting ptrdiff_t. This is portable in practice, but check it to
803 be safe. */
804 verify (INT_MAX <= PTRDIFF_MAX);
805
806
807 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
808 Signal an error on memory exhaustion, and block interrupt input. */
809
810 void *
811 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
812 {
813 eassert (0 <= nitems && 0 < item_size);
814 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
815 memory_full (SIZE_MAX);
816 return xmalloc (nitems * item_size);
817 }
818
819
820 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
821 Signal an error on memory exhaustion, and block interrupt input. */
822
823 void *
824 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
825 {
826 eassert (0 <= nitems && 0 < item_size);
827 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
828 memory_full (SIZE_MAX);
829 return xrealloc (pa, nitems * item_size);
830 }
831
832
833 /* Grow PA, which points to an array of *NITEMS items, and return the
834 location of the reallocated array, updating *NITEMS to reflect its
835 new size. The new array will contain at least NITEMS_INCR_MIN more
836 items, but will not contain more than NITEMS_MAX items total.
837 ITEM_SIZE is the size of each item, in bytes.
838
839 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
840 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
841 infinity.
842
843 If PA is null, then allocate a new array instead of reallocating
844 the old one. Thus, to grow an array A without saving its old
845 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
846 &NITEMS, ...).
847
848 Block interrupt input as needed. If memory exhaustion occurs, set
849 *NITEMS to zero if PA is null, and signal an error (i.e., do not
850 return). */
851
852 void *
853 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
854 ptrdiff_t nitems_max, ptrdiff_t item_size)
855 {
856 /* The approximate size to use for initial small allocation
857 requests. This is the largest "small" request for the GNU C
858 library malloc. */
859 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
860
861 /* If the array is tiny, grow it to about (but no greater than)
862 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
863 ptrdiff_t n = *nitems;
864 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
865 ptrdiff_t half_again = n >> 1;
866 ptrdiff_t incr_estimate = max (tiny_max, half_again);
867
868 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
869 NITEMS_MAX, and what the C language can represent safely. */
870 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
871 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
872 ? nitems_max : C_language_max);
873 ptrdiff_t nitems_incr_max = n_max - n;
874 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
875
876 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
877 if (! pa)
878 *nitems = 0;
879 if (nitems_incr_max < incr)
880 memory_full (SIZE_MAX);
881 n += incr;
882 pa = xrealloc (pa, n * item_size);
883 *nitems = n;
884 return pa;
885 }
886
887
888 /* Like strdup, but uses xmalloc. */
889
890 char *
891 xstrdup (const char *s)
892 {
893 size_t len = strlen (s) + 1;
894 char *p = xmalloc (len);
895 memcpy (p, s, len);
896 return p;
897 }
898
899
900 /* Unwind for SAFE_ALLOCA */
901
902 Lisp_Object
903 safe_alloca_unwind (Lisp_Object arg)
904 {
905 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
906
907 p->dogc = 0;
908 xfree (p->pointer);
909 p->pointer = 0;
910 free_misc (arg);
911 return Qnil;
912 }
913
914
915 /* Like malloc but used for allocating Lisp data. NBYTES is the
916 number of bytes to allocate, TYPE describes the intended use of the
917 allocated memory block (for strings, for conses, ...). */
918
919 #if ! USE_LSB_TAG
920 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
921 #endif
922
923 static void *
924 lisp_malloc (size_t nbytes, enum mem_type type)
925 {
926 register void *val;
927
928 MALLOC_BLOCK_INPUT;
929
930 #ifdef GC_MALLOC_CHECK
931 allocated_mem_type = type;
932 #endif
933
934 val = malloc (nbytes);
935
936 #if ! USE_LSB_TAG
937 /* If the memory just allocated cannot be addressed thru a Lisp
938 object's pointer, and it needs to be,
939 that's equivalent to running out of memory. */
940 if (val && type != MEM_TYPE_NON_LISP)
941 {
942 Lisp_Object tem;
943 XSETCONS (tem, (char *) val + nbytes - 1);
944 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
945 {
946 lisp_malloc_loser = val;
947 free (val);
948 val = 0;
949 }
950 }
951 #endif
952
953 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
954 if (val && type != MEM_TYPE_NON_LISP)
955 mem_insert (val, (char *) val + nbytes, type);
956 #endif
957
958 MALLOC_UNBLOCK_INPUT;
959 if (!val && nbytes)
960 memory_full (nbytes);
961 return val;
962 }
963
964 /* Free BLOCK. This must be called to free memory allocated with a
965 call to lisp_malloc. */
966
967 static void
968 lisp_free (void *block)
969 {
970 MALLOC_BLOCK_INPUT;
971 free (block);
972 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
973 mem_delete (mem_find (block));
974 #endif
975 MALLOC_UNBLOCK_INPUT;
976 }
977
978 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
979
980 /* The entry point is lisp_align_malloc which returns blocks of at most
981 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
982
983 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
984 #define USE_POSIX_MEMALIGN 1
985 #endif
986
987 /* BLOCK_ALIGN has to be a power of 2. */
988 #define BLOCK_ALIGN (1 << 10)
989
990 /* Padding to leave at the end of a malloc'd block. This is to give
991 malloc a chance to minimize the amount of memory wasted to alignment.
992 It should be tuned to the particular malloc library used.
993 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
994 posix_memalign on the other hand would ideally prefer a value of 4
995 because otherwise, there's 1020 bytes wasted between each ablocks.
996 In Emacs, testing shows that those 1020 can most of the time be
997 efficiently used by malloc to place other objects, so a value of 0 can
998 still preferable unless you have a lot of aligned blocks and virtually
999 nothing else. */
1000 #define BLOCK_PADDING 0
1001 #define BLOCK_BYTES \
1002 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1003
1004 /* Internal data structures and constants. */
1005
1006 #define ABLOCKS_SIZE 16
1007
1008 /* An aligned block of memory. */
1009 struct ablock
1010 {
1011 union
1012 {
1013 char payload[BLOCK_BYTES];
1014 struct ablock *next_free;
1015 } x;
1016 /* `abase' is the aligned base of the ablocks. */
1017 /* It is overloaded to hold the virtual `busy' field that counts
1018 the number of used ablock in the parent ablocks.
1019 The first ablock has the `busy' field, the others have the `abase'
1020 field. To tell the difference, we assume that pointers will have
1021 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1022 is used to tell whether the real base of the parent ablocks is `abase'
1023 (if not, the word before the first ablock holds a pointer to the
1024 real base). */
1025 struct ablocks *abase;
1026 /* The padding of all but the last ablock is unused. The padding of
1027 the last ablock in an ablocks is not allocated. */
1028 #if BLOCK_PADDING
1029 char padding[BLOCK_PADDING];
1030 #endif
1031 };
1032
1033 /* A bunch of consecutive aligned blocks. */
1034 struct ablocks
1035 {
1036 struct ablock blocks[ABLOCKS_SIZE];
1037 };
1038
1039 /* Size of the block requested from malloc or posix_memalign. */
1040 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1041
1042 #define ABLOCK_ABASE(block) \
1043 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1044 ? (struct ablocks *)(block) \
1045 : (block)->abase)
1046
1047 /* Virtual `busy' field. */
1048 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1049
1050 /* Pointer to the (not necessarily aligned) malloc block. */
1051 #ifdef USE_POSIX_MEMALIGN
1052 #define ABLOCKS_BASE(abase) (abase)
1053 #else
1054 #define ABLOCKS_BASE(abase) \
1055 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
1056 #endif
1057
1058 /* The list of free ablock. */
1059 static struct ablock *free_ablock;
1060
1061 /* Allocate an aligned block of nbytes.
1062 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1063 smaller or equal to BLOCK_BYTES. */
1064 static void *
1065 lisp_align_malloc (size_t nbytes, enum mem_type type)
1066 {
1067 void *base, *val;
1068 struct ablocks *abase;
1069
1070 eassert (nbytes <= BLOCK_BYTES);
1071
1072 MALLOC_BLOCK_INPUT;
1073
1074 #ifdef GC_MALLOC_CHECK
1075 allocated_mem_type = type;
1076 #endif
1077
1078 if (!free_ablock)
1079 {
1080 int i;
1081 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1082
1083 #ifdef DOUG_LEA_MALLOC
1084 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1085 because mapped region contents are not preserved in
1086 a dumped Emacs. */
1087 mallopt (M_MMAP_MAX, 0);
1088 #endif
1089
1090 #ifdef USE_POSIX_MEMALIGN
1091 {
1092 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1093 if (err)
1094 base = NULL;
1095 abase = base;
1096 }
1097 #else
1098 base = malloc (ABLOCKS_BYTES);
1099 abase = ALIGN (base, BLOCK_ALIGN);
1100 #endif
1101
1102 if (base == 0)
1103 {
1104 MALLOC_UNBLOCK_INPUT;
1105 memory_full (ABLOCKS_BYTES);
1106 }
1107
1108 aligned = (base == abase);
1109 if (!aligned)
1110 ((void**)abase)[-1] = base;
1111
1112 #ifdef DOUG_LEA_MALLOC
1113 /* Back to a reasonable maximum of mmap'ed areas. */
1114 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1115 #endif
1116
1117 #if ! USE_LSB_TAG
1118 /* If the memory just allocated cannot be addressed thru a Lisp
1119 object's pointer, and it needs to be, that's equivalent to
1120 running out of memory. */
1121 if (type != MEM_TYPE_NON_LISP)
1122 {
1123 Lisp_Object tem;
1124 char *end = (char *) base + ABLOCKS_BYTES - 1;
1125 XSETCONS (tem, end);
1126 if ((char *) XCONS (tem) != end)
1127 {
1128 lisp_malloc_loser = base;
1129 free (base);
1130 MALLOC_UNBLOCK_INPUT;
1131 memory_full (SIZE_MAX);
1132 }
1133 }
1134 #endif
1135
1136 /* Initialize the blocks and put them on the free list.
1137 If `base' was not properly aligned, we can't use the last block. */
1138 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1139 {
1140 abase->blocks[i].abase = abase;
1141 abase->blocks[i].x.next_free = free_ablock;
1142 free_ablock = &abase->blocks[i];
1143 }
1144 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1145
1146 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1147 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1148 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1149 eassert (ABLOCKS_BASE (abase) == base);
1150 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1151 }
1152
1153 abase = ABLOCK_ABASE (free_ablock);
1154 ABLOCKS_BUSY (abase) =
1155 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1156 val = free_ablock;
1157 free_ablock = free_ablock->x.next_free;
1158
1159 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1160 if (type != MEM_TYPE_NON_LISP)
1161 mem_insert (val, (char *) val + nbytes, type);
1162 #endif
1163
1164 MALLOC_UNBLOCK_INPUT;
1165
1166 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1167 return val;
1168 }
1169
1170 static void
1171 lisp_align_free (void *block)
1172 {
1173 struct ablock *ablock = block;
1174 struct ablocks *abase = ABLOCK_ABASE (ablock);
1175
1176 MALLOC_BLOCK_INPUT;
1177 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1178 mem_delete (mem_find (block));
1179 #endif
1180 /* Put on free list. */
1181 ablock->x.next_free = free_ablock;
1182 free_ablock = ablock;
1183 /* Update busy count. */
1184 ABLOCKS_BUSY (abase)
1185 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1186
1187 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1188 { /* All the blocks are free. */
1189 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1190 struct ablock **tem = &free_ablock;
1191 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1192
1193 while (*tem)
1194 {
1195 if (*tem >= (struct ablock *) abase && *tem < atop)
1196 {
1197 i++;
1198 *tem = (*tem)->x.next_free;
1199 }
1200 else
1201 tem = &(*tem)->x.next_free;
1202 }
1203 eassert ((aligned & 1) == aligned);
1204 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1205 #ifdef USE_POSIX_MEMALIGN
1206 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1207 #endif
1208 free (ABLOCKS_BASE (abase));
1209 }
1210 MALLOC_UNBLOCK_INPUT;
1211 }
1212
1213 \f
1214 #ifndef SYSTEM_MALLOC
1215
1216 /* Arranging to disable input signals while we're in malloc.
1217
1218 This only works with GNU malloc. To help out systems which can't
1219 use GNU malloc, all the calls to malloc, realloc, and free
1220 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1221 pair; unfortunately, we have no idea what C library functions
1222 might call malloc, so we can't really protect them unless you're
1223 using GNU malloc. Fortunately, most of the major operating systems
1224 can use GNU malloc. */
1225
1226 #ifndef SYNC_INPUT
1227 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1228 there's no need to block input around malloc. */
1229
1230 #ifndef DOUG_LEA_MALLOC
1231 extern void * (*__malloc_hook) (size_t, const void *);
1232 extern void * (*__realloc_hook) (void *, size_t, const void *);
1233 extern void (*__free_hook) (void *, const void *);
1234 /* Else declared in malloc.h, perhaps with an extra arg. */
1235 #endif /* DOUG_LEA_MALLOC */
1236 static void * (*old_malloc_hook) (size_t, const void *);
1237 static void * (*old_realloc_hook) (void *, size_t, const void*);
1238 static void (*old_free_hook) (void*, const void*);
1239
1240 #ifdef DOUG_LEA_MALLOC
1241 # define BYTES_USED (mallinfo ().uordblks)
1242 #else
1243 # define BYTES_USED _bytes_used
1244 #endif
1245
1246 #ifdef GC_MALLOC_CHECK
1247 static int dont_register_blocks;
1248 #endif
1249
1250 static size_t bytes_used_when_reconsidered;
1251
1252 /* Value of _bytes_used, when spare_memory was freed. */
1253
1254 static size_t bytes_used_when_full;
1255
1256 /* This function is used as the hook for free to call. */
1257
1258 static void
1259 emacs_blocked_free (void *ptr, const void *ptr2)
1260 {
1261 BLOCK_INPUT_ALLOC;
1262
1263 #ifdef GC_MALLOC_CHECK
1264 if (ptr)
1265 {
1266 struct mem_node *m;
1267
1268 m = mem_find (ptr);
1269 if (m == MEM_NIL || m->start != ptr)
1270 {
1271 fprintf (stderr,
1272 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1273 abort ();
1274 }
1275 else
1276 {
1277 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1278 mem_delete (m);
1279 }
1280 }
1281 #endif /* GC_MALLOC_CHECK */
1282
1283 __free_hook = old_free_hook;
1284 free (ptr);
1285
1286 /* If we released our reserve (due to running out of memory),
1287 and we have a fair amount free once again,
1288 try to set aside another reserve in case we run out once more. */
1289 if (! NILP (Vmemory_full)
1290 /* Verify there is enough space that even with the malloc
1291 hysteresis this call won't run out again.
1292 The code here is correct as long as SPARE_MEMORY
1293 is substantially larger than the block size malloc uses. */
1294 && (bytes_used_when_full
1295 > ((bytes_used_when_reconsidered = BYTES_USED)
1296 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1297 refill_memory_reserve ();
1298
1299 __free_hook = emacs_blocked_free;
1300 UNBLOCK_INPUT_ALLOC;
1301 }
1302
1303
1304 /* This function is the malloc hook that Emacs uses. */
1305
1306 static void *
1307 emacs_blocked_malloc (size_t size, const void *ptr)
1308 {
1309 void *value;
1310
1311 BLOCK_INPUT_ALLOC;
1312 __malloc_hook = old_malloc_hook;
1313 #ifdef DOUG_LEA_MALLOC
1314 /* Segfaults on my system. --lorentey */
1315 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1316 #else
1317 __malloc_extra_blocks = malloc_hysteresis;
1318 #endif
1319
1320 value = malloc (size);
1321
1322 #ifdef GC_MALLOC_CHECK
1323 {
1324 struct mem_node *m = mem_find (value);
1325 if (m != MEM_NIL)
1326 {
1327 fprintf (stderr, "Malloc returned %p which is already in use\n",
1328 value);
1329 fprintf (stderr, "Region in use is %p...%p, %td bytes, type %d\n",
1330 m->start, m->end, (char *) m->end - (char *) m->start,
1331 m->type);
1332 abort ();
1333 }
1334
1335 if (!dont_register_blocks)
1336 {
1337 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1338 allocated_mem_type = MEM_TYPE_NON_LISP;
1339 }
1340 }
1341 #endif /* GC_MALLOC_CHECK */
1342
1343 __malloc_hook = emacs_blocked_malloc;
1344 UNBLOCK_INPUT_ALLOC;
1345
1346 /* fprintf (stderr, "%p malloc\n", value); */
1347 return value;
1348 }
1349
1350
1351 /* This function is the realloc hook that Emacs uses. */
1352
1353 static void *
1354 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1355 {
1356 void *value;
1357
1358 BLOCK_INPUT_ALLOC;
1359 __realloc_hook = old_realloc_hook;
1360
1361 #ifdef GC_MALLOC_CHECK
1362 if (ptr)
1363 {
1364 struct mem_node *m = mem_find (ptr);
1365 if (m == MEM_NIL || m->start != ptr)
1366 {
1367 fprintf (stderr,
1368 "Realloc of %p which wasn't allocated with malloc\n",
1369 ptr);
1370 abort ();
1371 }
1372
1373 mem_delete (m);
1374 }
1375
1376 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1377
1378 /* Prevent malloc from registering blocks. */
1379 dont_register_blocks = 1;
1380 #endif /* GC_MALLOC_CHECK */
1381
1382 value = realloc (ptr, size);
1383
1384 #ifdef GC_MALLOC_CHECK
1385 dont_register_blocks = 0;
1386
1387 {
1388 struct mem_node *m = mem_find (value);
1389 if (m != MEM_NIL)
1390 {
1391 fprintf (stderr, "Realloc returns memory that is already in use\n");
1392 abort ();
1393 }
1394
1395 /* Can't handle zero size regions in the red-black tree. */
1396 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1397 }
1398
1399 /* fprintf (stderr, "%p <- realloc\n", value); */
1400 #endif /* GC_MALLOC_CHECK */
1401
1402 __realloc_hook = emacs_blocked_realloc;
1403 UNBLOCK_INPUT_ALLOC;
1404
1405 return value;
1406 }
1407
1408
1409 #ifdef HAVE_PTHREAD
1410 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1411 normal malloc. Some thread implementations need this as they call
1412 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1413 calls malloc because it is the first call, and we have an endless loop. */
1414
1415 void
1416 reset_malloc_hooks (void)
1417 {
1418 __free_hook = old_free_hook;
1419 __malloc_hook = old_malloc_hook;
1420 __realloc_hook = old_realloc_hook;
1421 }
1422 #endif /* HAVE_PTHREAD */
1423
1424
1425 /* Called from main to set up malloc to use our hooks. */
1426
1427 void
1428 uninterrupt_malloc (void)
1429 {
1430 #ifdef HAVE_PTHREAD
1431 #ifdef DOUG_LEA_MALLOC
1432 pthread_mutexattr_t attr;
1433
1434 /* GLIBC has a faster way to do this, but let's keep it portable.
1435 This is according to the Single UNIX Specification. */
1436 pthread_mutexattr_init (&attr);
1437 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1438 pthread_mutex_init (&alloc_mutex, &attr);
1439 #else /* !DOUG_LEA_MALLOC */
1440 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1441 and the bundled gmalloc.c doesn't require it. */
1442 pthread_mutex_init (&alloc_mutex, NULL);
1443 #endif /* !DOUG_LEA_MALLOC */
1444 #endif /* HAVE_PTHREAD */
1445
1446 if (__free_hook != emacs_blocked_free)
1447 old_free_hook = __free_hook;
1448 __free_hook = emacs_blocked_free;
1449
1450 if (__malloc_hook != emacs_blocked_malloc)
1451 old_malloc_hook = __malloc_hook;
1452 __malloc_hook = emacs_blocked_malloc;
1453
1454 if (__realloc_hook != emacs_blocked_realloc)
1455 old_realloc_hook = __realloc_hook;
1456 __realloc_hook = emacs_blocked_realloc;
1457 }
1458
1459 #endif /* not SYNC_INPUT */
1460 #endif /* not SYSTEM_MALLOC */
1461
1462
1463 \f
1464 /***********************************************************************
1465 Interval Allocation
1466 ***********************************************************************/
1467
1468 /* Number of intervals allocated in an interval_block structure.
1469 The 1020 is 1024 minus malloc overhead. */
1470
1471 #define INTERVAL_BLOCK_SIZE \
1472 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1473
1474 /* Intervals are allocated in chunks in form of an interval_block
1475 structure. */
1476
1477 struct interval_block
1478 {
1479 /* Place `intervals' first, to preserve alignment. */
1480 struct interval intervals[INTERVAL_BLOCK_SIZE];
1481 struct interval_block *next;
1482 };
1483
1484 /* Current interval block. Its `next' pointer points to older
1485 blocks. */
1486
1487 static struct interval_block *interval_block;
1488
1489 /* Index in interval_block above of the next unused interval
1490 structure. */
1491
1492 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1493
1494 /* Number of free and live intervals. */
1495
1496 static EMACS_INT total_free_intervals, total_intervals;
1497
1498 /* List of free intervals. */
1499
1500 static INTERVAL interval_free_list;
1501
1502 /* Return a new interval. */
1503
1504 INTERVAL
1505 make_interval (void)
1506 {
1507 INTERVAL val;
1508
1509 /* eassert (!handling_signal); */
1510
1511 MALLOC_BLOCK_INPUT;
1512
1513 if (interval_free_list)
1514 {
1515 val = interval_free_list;
1516 interval_free_list = INTERVAL_PARENT (interval_free_list);
1517 }
1518 else
1519 {
1520 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1521 {
1522 struct interval_block *newi
1523 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1524
1525 newi->next = interval_block;
1526 interval_block = newi;
1527 interval_block_index = 0;
1528 total_free_intervals += INTERVAL_BLOCK_SIZE;
1529 }
1530 val = &interval_block->intervals[interval_block_index++];
1531 }
1532
1533 MALLOC_UNBLOCK_INPUT;
1534
1535 consing_since_gc += sizeof (struct interval);
1536 intervals_consed++;
1537 total_free_intervals--;
1538 RESET_INTERVAL (val);
1539 val->gcmarkbit = 0;
1540 return val;
1541 }
1542
1543
1544 /* Mark Lisp objects in interval I. */
1545
1546 static void
1547 mark_interval (register INTERVAL i, Lisp_Object dummy)
1548 {
1549 /* Intervals should never be shared. So, if extra internal checking is
1550 enabled, GC aborts if it seems to have visited an interval twice. */
1551 eassert (!i->gcmarkbit);
1552 i->gcmarkbit = 1;
1553 mark_object (i->plist);
1554 }
1555
1556
1557 /* Mark the interval tree rooted in TREE. Don't call this directly;
1558 use the macro MARK_INTERVAL_TREE instead. */
1559
1560 static void
1561 mark_interval_tree (register INTERVAL tree)
1562 {
1563 /* No need to test if this tree has been marked already; this
1564 function is always called through the MARK_INTERVAL_TREE macro,
1565 which takes care of that. */
1566
1567 traverse_intervals_noorder (tree, mark_interval, Qnil);
1568 }
1569
1570
1571 /* Mark the interval tree rooted in I. */
1572
1573 #define MARK_INTERVAL_TREE(i) \
1574 do { \
1575 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1576 mark_interval_tree (i); \
1577 } while (0)
1578
1579
1580 #define UNMARK_BALANCE_INTERVALS(i) \
1581 do { \
1582 if (! NULL_INTERVAL_P (i)) \
1583 (i) = balance_intervals (i); \
1584 } while (0)
1585 \f
1586 /***********************************************************************
1587 String Allocation
1588 ***********************************************************************/
1589
1590 /* Lisp_Strings are allocated in string_block structures. When a new
1591 string_block is allocated, all the Lisp_Strings it contains are
1592 added to a free-list string_free_list. When a new Lisp_String is
1593 needed, it is taken from that list. During the sweep phase of GC,
1594 string_blocks that are entirely free are freed, except two which
1595 we keep.
1596
1597 String data is allocated from sblock structures. Strings larger
1598 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1599 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1600
1601 Sblocks consist internally of sdata structures, one for each
1602 Lisp_String. The sdata structure points to the Lisp_String it
1603 belongs to. The Lisp_String points back to the `u.data' member of
1604 its sdata structure.
1605
1606 When a Lisp_String is freed during GC, it is put back on
1607 string_free_list, and its `data' member and its sdata's `string'
1608 pointer is set to null. The size of the string is recorded in the
1609 `u.nbytes' member of the sdata. So, sdata structures that are no
1610 longer used, can be easily recognized, and it's easy to compact the
1611 sblocks of small strings which we do in compact_small_strings. */
1612
1613 /* Size in bytes of an sblock structure used for small strings. This
1614 is 8192 minus malloc overhead. */
1615
1616 #define SBLOCK_SIZE 8188
1617
1618 /* Strings larger than this are considered large strings. String data
1619 for large strings is allocated from individual sblocks. */
1620
1621 #define LARGE_STRING_BYTES 1024
1622
1623 /* Structure describing string memory sub-allocated from an sblock.
1624 This is where the contents of Lisp strings are stored. */
1625
1626 struct sdata
1627 {
1628 /* Back-pointer to the string this sdata belongs to. If null, this
1629 structure is free, and the NBYTES member of the union below
1630 contains the string's byte size (the same value that STRING_BYTES
1631 would return if STRING were non-null). If non-null, STRING_BYTES
1632 (STRING) is the size of the data, and DATA contains the string's
1633 contents. */
1634 struct Lisp_String *string;
1635
1636 #ifdef GC_CHECK_STRING_BYTES
1637
1638 ptrdiff_t nbytes;
1639 unsigned char data[1];
1640
1641 #define SDATA_NBYTES(S) (S)->nbytes
1642 #define SDATA_DATA(S) (S)->data
1643 #define SDATA_SELECTOR(member) member
1644
1645 #else /* not GC_CHECK_STRING_BYTES */
1646
1647 union
1648 {
1649 /* When STRING is non-null. */
1650 unsigned char data[1];
1651
1652 /* When STRING is null. */
1653 ptrdiff_t nbytes;
1654 } u;
1655
1656 #define SDATA_NBYTES(S) (S)->u.nbytes
1657 #define SDATA_DATA(S) (S)->u.data
1658 #define SDATA_SELECTOR(member) u.member
1659
1660 #endif /* not GC_CHECK_STRING_BYTES */
1661
1662 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1663 };
1664
1665
1666 /* Structure describing a block of memory which is sub-allocated to
1667 obtain string data memory for strings. Blocks for small strings
1668 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1669 as large as needed. */
1670
1671 struct sblock
1672 {
1673 /* Next in list. */
1674 struct sblock *next;
1675
1676 /* Pointer to the next free sdata block. This points past the end
1677 of the sblock if there isn't any space left in this block. */
1678 struct sdata *next_free;
1679
1680 /* Start of data. */
1681 struct sdata first_data;
1682 };
1683
1684 /* Number of Lisp strings in a string_block structure. The 1020 is
1685 1024 minus malloc overhead. */
1686
1687 #define STRING_BLOCK_SIZE \
1688 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1689
1690 /* Structure describing a block from which Lisp_String structures
1691 are allocated. */
1692
1693 struct string_block
1694 {
1695 /* Place `strings' first, to preserve alignment. */
1696 struct Lisp_String strings[STRING_BLOCK_SIZE];
1697 struct string_block *next;
1698 };
1699
1700 /* Head and tail of the list of sblock structures holding Lisp string
1701 data. We always allocate from current_sblock. The NEXT pointers
1702 in the sblock structures go from oldest_sblock to current_sblock. */
1703
1704 static struct sblock *oldest_sblock, *current_sblock;
1705
1706 /* List of sblocks for large strings. */
1707
1708 static struct sblock *large_sblocks;
1709
1710 /* List of string_block structures. */
1711
1712 static struct string_block *string_blocks;
1713
1714 /* Free-list of Lisp_Strings. */
1715
1716 static struct Lisp_String *string_free_list;
1717
1718 /* Number of live and free Lisp_Strings. */
1719
1720 static EMACS_INT total_strings, total_free_strings;
1721
1722 /* Number of bytes used by live strings. */
1723
1724 static EMACS_INT total_string_bytes;
1725
1726 /* Given a pointer to a Lisp_String S which is on the free-list
1727 string_free_list, return a pointer to its successor in the
1728 free-list. */
1729
1730 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1731
1732 /* Return a pointer to the sdata structure belonging to Lisp string S.
1733 S must be live, i.e. S->data must not be null. S->data is actually
1734 a pointer to the `u.data' member of its sdata structure; the
1735 structure starts at a constant offset in front of that. */
1736
1737 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1738
1739
1740 #ifdef GC_CHECK_STRING_OVERRUN
1741
1742 /* We check for overrun in string data blocks by appending a small
1743 "cookie" after each allocated string data block, and check for the
1744 presence of this cookie during GC. */
1745
1746 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1747 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1748 { '\xde', '\xad', '\xbe', '\xef' };
1749
1750 #else
1751 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1752 #endif
1753
1754 /* Value is the size of an sdata structure large enough to hold NBYTES
1755 bytes of string data. The value returned includes a terminating
1756 NUL byte, the size of the sdata structure, and padding. */
1757
1758 #ifdef GC_CHECK_STRING_BYTES
1759
1760 #define SDATA_SIZE(NBYTES) \
1761 ((SDATA_DATA_OFFSET \
1762 + (NBYTES) + 1 \
1763 + sizeof (ptrdiff_t) - 1) \
1764 & ~(sizeof (ptrdiff_t) - 1))
1765
1766 #else /* not GC_CHECK_STRING_BYTES */
1767
1768 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1769 less than the size of that member. The 'max' is not needed when
1770 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1771 alignment code reserves enough space. */
1772
1773 #define SDATA_SIZE(NBYTES) \
1774 ((SDATA_DATA_OFFSET \
1775 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1776 ? NBYTES \
1777 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1778 + 1 \
1779 + sizeof (ptrdiff_t) - 1) \
1780 & ~(sizeof (ptrdiff_t) - 1))
1781
1782 #endif /* not GC_CHECK_STRING_BYTES */
1783
1784 /* Extra bytes to allocate for each string. */
1785
1786 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1787
1788 /* Exact bound on the number of bytes in a string, not counting the
1789 terminating null. A string cannot contain more bytes than
1790 STRING_BYTES_BOUND, nor can it be so long that the size_t
1791 arithmetic in allocate_string_data would overflow while it is
1792 calculating a value to be passed to malloc. */
1793 #define STRING_BYTES_MAX \
1794 min (STRING_BYTES_BOUND, \
1795 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD \
1796 - GC_STRING_EXTRA \
1797 - offsetof (struct sblock, first_data) \
1798 - SDATA_DATA_OFFSET) \
1799 & ~(sizeof (EMACS_INT) - 1)))
1800
1801 /* Initialize string allocation. Called from init_alloc_once. */
1802
1803 static void
1804 init_strings (void)
1805 {
1806 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1807 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1808 }
1809
1810
1811 #ifdef GC_CHECK_STRING_BYTES
1812
1813 static int check_string_bytes_count;
1814
1815 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1816
1817
1818 /* Like GC_STRING_BYTES, but with debugging check. */
1819
1820 ptrdiff_t
1821 string_bytes (struct Lisp_String *s)
1822 {
1823 ptrdiff_t nbytes =
1824 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1825
1826 if (!PURE_POINTER_P (s)
1827 && s->data
1828 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1829 abort ();
1830 return nbytes;
1831 }
1832
1833 /* Check validity of Lisp strings' string_bytes member in B. */
1834
1835 static void
1836 check_sblock (struct sblock *b)
1837 {
1838 struct sdata *from, *end, *from_end;
1839
1840 end = b->next_free;
1841
1842 for (from = &b->first_data; from < end; from = from_end)
1843 {
1844 /* Compute the next FROM here because copying below may
1845 overwrite data we need to compute it. */
1846 ptrdiff_t nbytes;
1847
1848 /* Check that the string size recorded in the string is the
1849 same as the one recorded in the sdata structure. */
1850 if (from->string)
1851 CHECK_STRING_BYTES (from->string);
1852
1853 if (from->string)
1854 nbytes = GC_STRING_BYTES (from->string);
1855 else
1856 nbytes = SDATA_NBYTES (from);
1857
1858 nbytes = SDATA_SIZE (nbytes);
1859 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1860 }
1861 }
1862
1863
1864 /* Check validity of Lisp strings' string_bytes member. ALL_P
1865 non-zero means check all strings, otherwise check only most
1866 recently allocated strings. Used for hunting a bug. */
1867
1868 static void
1869 check_string_bytes (int all_p)
1870 {
1871 if (all_p)
1872 {
1873 struct sblock *b;
1874
1875 for (b = large_sblocks; b; b = b->next)
1876 {
1877 struct Lisp_String *s = b->first_data.string;
1878 if (s)
1879 CHECK_STRING_BYTES (s);
1880 }
1881
1882 for (b = oldest_sblock; b; b = b->next)
1883 check_sblock (b);
1884 }
1885 else if (current_sblock)
1886 check_sblock (current_sblock);
1887 }
1888
1889 #endif /* GC_CHECK_STRING_BYTES */
1890
1891 #ifdef GC_CHECK_STRING_FREE_LIST
1892
1893 /* Walk through the string free list looking for bogus next pointers.
1894 This may catch buffer overrun from a previous string. */
1895
1896 static void
1897 check_string_free_list (void)
1898 {
1899 struct Lisp_String *s;
1900
1901 /* Pop a Lisp_String off the free-list. */
1902 s = string_free_list;
1903 while (s != NULL)
1904 {
1905 if ((uintptr_t) s < 1024)
1906 abort ();
1907 s = NEXT_FREE_LISP_STRING (s);
1908 }
1909 }
1910 #else
1911 #define check_string_free_list()
1912 #endif
1913
1914 /* Return a new Lisp_String. */
1915
1916 static struct Lisp_String *
1917 allocate_string (void)
1918 {
1919 struct Lisp_String *s;
1920
1921 /* eassert (!handling_signal); */
1922
1923 MALLOC_BLOCK_INPUT;
1924
1925 /* If the free-list is empty, allocate a new string_block, and
1926 add all the Lisp_Strings in it to the free-list. */
1927 if (string_free_list == NULL)
1928 {
1929 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1930 int i;
1931
1932 b->next = string_blocks;
1933 string_blocks = b;
1934
1935 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1936 {
1937 s = b->strings + i;
1938 /* Every string on a free list should have NULL data pointer. */
1939 s->data = NULL;
1940 NEXT_FREE_LISP_STRING (s) = string_free_list;
1941 string_free_list = s;
1942 }
1943
1944 total_free_strings += STRING_BLOCK_SIZE;
1945 }
1946
1947 check_string_free_list ();
1948
1949 /* Pop a Lisp_String off the free-list. */
1950 s = string_free_list;
1951 string_free_list = NEXT_FREE_LISP_STRING (s);
1952
1953 MALLOC_UNBLOCK_INPUT;
1954
1955 --total_free_strings;
1956 ++total_strings;
1957 ++strings_consed;
1958 consing_since_gc += sizeof *s;
1959
1960 #ifdef GC_CHECK_STRING_BYTES
1961 if (!noninteractive)
1962 {
1963 if (++check_string_bytes_count == 200)
1964 {
1965 check_string_bytes_count = 0;
1966 check_string_bytes (1);
1967 }
1968 else
1969 check_string_bytes (0);
1970 }
1971 #endif /* GC_CHECK_STRING_BYTES */
1972
1973 return s;
1974 }
1975
1976
1977 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1978 plus a NUL byte at the end. Allocate an sdata structure for S, and
1979 set S->data to its `u.data' member. Store a NUL byte at the end of
1980 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1981 S->data if it was initially non-null. */
1982
1983 void
1984 allocate_string_data (struct Lisp_String *s,
1985 EMACS_INT nchars, EMACS_INT nbytes)
1986 {
1987 struct sdata *data, *old_data;
1988 struct sblock *b;
1989 ptrdiff_t needed, old_nbytes;
1990
1991 if (STRING_BYTES_MAX < nbytes)
1992 string_overflow ();
1993
1994 /* Determine the number of bytes needed to store NBYTES bytes
1995 of string data. */
1996 needed = SDATA_SIZE (nbytes);
1997 if (s->data)
1998 {
1999 old_data = SDATA_OF_STRING (s);
2000 old_nbytes = GC_STRING_BYTES (s);
2001 }
2002 else
2003 old_data = NULL;
2004
2005 MALLOC_BLOCK_INPUT;
2006
2007 if (nbytes > LARGE_STRING_BYTES)
2008 {
2009 size_t size = offsetof (struct sblock, first_data) + needed;
2010
2011 #ifdef DOUG_LEA_MALLOC
2012 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2013 because mapped region contents are not preserved in
2014 a dumped Emacs.
2015
2016 In case you think of allowing it in a dumped Emacs at the
2017 cost of not being able to re-dump, there's another reason:
2018 mmap'ed data typically have an address towards the top of the
2019 address space, which won't fit into an EMACS_INT (at least on
2020 32-bit systems with the current tagging scheme). --fx */
2021 mallopt (M_MMAP_MAX, 0);
2022 #endif
2023
2024 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
2025
2026 #ifdef DOUG_LEA_MALLOC
2027 /* Back to a reasonable maximum of mmap'ed areas. */
2028 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2029 #endif
2030
2031 b->next_free = &b->first_data;
2032 b->first_data.string = NULL;
2033 b->next = large_sblocks;
2034 large_sblocks = b;
2035 }
2036 else if (current_sblock == NULL
2037 || (((char *) current_sblock + SBLOCK_SIZE
2038 - (char *) current_sblock->next_free)
2039 < (needed + GC_STRING_EXTRA)))
2040 {
2041 /* Not enough room in the current sblock. */
2042 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2043 b->next_free = &b->first_data;
2044 b->first_data.string = NULL;
2045 b->next = NULL;
2046
2047 if (current_sblock)
2048 current_sblock->next = b;
2049 else
2050 oldest_sblock = b;
2051 current_sblock = b;
2052 }
2053 else
2054 b = current_sblock;
2055
2056 data = b->next_free;
2057 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2058
2059 MALLOC_UNBLOCK_INPUT;
2060
2061 data->string = s;
2062 s->data = SDATA_DATA (data);
2063 #ifdef GC_CHECK_STRING_BYTES
2064 SDATA_NBYTES (data) = nbytes;
2065 #endif
2066 s->size = nchars;
2067 s->size_byte = nbytes;
2068 s->data[nbytes] = '\0';
2069 #ifdef GC_CHECK_STRING_OVERRUN
2070 memcpy ((char *) data + needed, string_overrun_cookie,
2071 GC_STRING_OVERRUN_COOKIE_SIZE);
2072 #endif
2073
2074 /* Note that Faset may call to this function when S has already data
2075 assigned. In this case, mark data as free by setting it's string
2076 back-pointer to null, and record the size of the data in it. */
2077 if (old_data)
2078 {
2079 SDATA_NBYTES (old_data) = old_nbytes;
2080 old_data->string = NULL;
2081 }
2082
2083 consing_since_gc += needed;
2084 }
2085
2086
2087 /* Sweep and compact strings. */
2088
2089 static void
2090 sweep_strings (void)
2091 {
2092 struct string_block *b, *next;
2093 struct string_block *live_blocks = NULL;
2094
2095 string_free_list = NULL;
2096 total_strings = total_free_strings = 0;
2097 total_string_bytes = 0;
2098
2099 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2100 for (b = string_blocks; b; b = next)
2101 {
2102 int i, nfree = 0;
2103 struct Lisp_String *free_list_before = string_free_list;
2104
2105 next = b->next;
2106
2107 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2108 {
2109 struct Lisp_String *s = b->strings + i;
2110
2111 if (s->data)
2112 {
2113 /* String was not on free-list before. */
2114 if (STRING_MARKED_P (s))
2115 {
2116 /* String is live; unmark it and its intervals. */
2117 UNMARK_STRING (s);
2118
2119 if (!NULL_INTERVAL_P (s->intervals))
2120 UNMARK_BALANCE_INTERVALS (s->intervals);
2121
2122 ++total_strings;
2123 total_string_bytes += STRING_BYTES (s);
2124 }
2125 else
2126 {
2127 /* String is dead. Put it on the free-list. */
2128 struct sdata *data = SDATA_OF_STRING (s);
2129
2130 /* Save the size of S in its sdata so that we know
2131 how large that is. Reset the sdata's string
2132 back-pointer so that we know it's free. */
2133 #ifdef GC_CHECK_STRING_BYTES
2134 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2135 abort ();
2136 #else
2137 data->u.nbytes = GC_STRING_BYTES (s);
2138 #endif
2139 data->string = NULL;
2140
2141 /* Reset the strings's `data' member so that we
2142 know it's free. */
2143 s->data = NULL;
2144
2145 /* Put the string on the free-list. */
2146 NEXT_FREE_LISP_STRING (s) = string_free_list;
2147 string_free_list = s;
2148 ++nfree;
2149 }
2150 }
2151 else
2152 {
2153 /* S was on the free-list before. Put it there again. */
2154 NEXT_FREE_LISP_STRING (s) = string_free_list;
2155 string_free_list = s;
2156 ++nfree;
2157 }
2158 }
2159
2160 /* Free blocks that contain free Lisp_Strings only, except
2161 the first two of them. */
2162 if (nfree == STRING_BLOCK_SIZE
2163 && total_free_strings > STRING_BLOCK_SIZE)
2164 {
2165 lisp_free (b);
2166 string_free_list = free_list_before;
2167 }
2168 else
2169 {
2170 total_free_strings += nfree;
2171 b->next = live_blocks;
2172 live_blocks = b;
2173 }
2174 }
2175
2176 check_string_free_list ();
2177
2178 string_blocks = live_blocks;
2179 free_large_strings ();
2180 compact_small_strings ();
2181
2182 check_string_free_list ();
2183 }
2184
2185
2186 /* Free dead large strings. */
2187
2188 static void
2189 free_large_strings (void)
2190 {
2191 struct sblock *b, *next;
2192 struct sblock *live_blocks = NULL;
2193
2194 for (b = large_sblocks; b; b = next)
2195 {
2196 next = b->next;
2197
2198 if (b->first_data.string == NULL)
2199 lisp_free (b);
2200 else
2201 {
2202 b->next = live_blocks;
2203 live_blocks = b;
2204 }
2205 }
2206
2207 large_sblocks = live_blocks;
2208 }
2209
2210
2211 /* Compact data of small strings. Free sblocks that don't contain
2212 data of live strings after compaction. */
2213
2214 static void
2215 compact_small_strings (void)
2216 {
2217 struct sblock *b, *tb, *next;
2218 struct sdata *from, *to, *end, *tb_end;
2219 struct sdata *to_end, *from_end;
2220
2221 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2222 to, and TB_END is the end of TB. */
2223 tb = oldest_sblock;
2224 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2225 to = &tb->first_data;
2226
2227 /* Step through the blocks from the oldest to the youngest. We
2228 expect that old blocks will stabilize over time, so that less
2229 copying will happen this way. */
2230 for (b = oldest_sblock; b; b = b->next)
2231 {
2232 end = b->next_free;
2233 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2234
2235 for (from = &b->first_data; from < end; from = from_end)
2236 {
2237 /* Compute the next FROM here because copying below may
2238 overwrite data we need to compute it. */
2239 ptrdiff_t nbytes;
2240
2241 #ifdef GC_CHECK_STRING_BYTES
2242 /* Check that the string size recorded in the string is the
2243 same as the one recorded in the sdata structure. */
2244 if (from->string
2245 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2246 abort ();
2247 #endif /* GC_CHECK_STRING_BYTES */
2248
2249 if (from->string)
2250 nbytes = GC_STRING_BYTES (from->string);
2251 else
2252 nbytes = SDATA_NBYTES (from);
2253
2254 if (nbytes > LARGE_STRING_BYTES)
2255 abort ();
2256
2257 nbytes = SDATA_SIZE (nbytes);
2258 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2259
2260 #ifdef GC_CHECK_STRING_OVERRUN
2261 if (memcmp (string_overrun_cookie,
2262 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2263 GC_STRING_OVERRUN_COOKIE_SIZE))
2264 abort ();
2265 #endif
2266
2267 /* FROM->string non-null means it's alive. Copy its data. */
2268 if (from->string)
2269 {
2270 /* If TB is full, proceed with the next sblock. */
2271 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2272 if (to_end > tb_end)
2273 {
2274 tb->next_free = to;
2275 tb = tb->next;
2276 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2277 to = &tb->first_data;
2278 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2279 }
2280
2281 /* Copy, and update the string's `data' pointer. */
2282 if (from != to)
2283 {
2284 eassert (tb != b || to < from);
2285 memmove (to, from, nbytes + GC_STRING_EXTRA);
2286 to->string->data = SDATA_DATA (to);
2287 }
2288
2289 /* Advance past the sdata we copied to. */
2290 to = to_end;
2291 }
2292 }
2293 }
2294
2295 /* The rest of the sblocks following TB don't contain live data, so
2296 we can free them. */
2297 for (b = tb->next; b; b = next)
2298 {
2299 next = b->next;
2300 lisp_free (b);
2301 }
2302
2303 tb->next_free = to;
2304 tb->next = NULL;
2305 current_sblock = tb;
2306 }
2307
2308 void
2309 string_overflow (void)
2310 {
2311 error ("Maximum string size exceeded");
2312 }
2313
2314 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2315 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2316 LENGTH must be an integer.
2317 INIT must be an integer that represents a character. */)
2318 (Lisp_Object length, Lisp_Object init)
2319 {
2320 register Lisp_Object val;
2321 register unsigned char *p, *end;
2322 int c;
2323 EMACS_INT nbytes;
2324
2325 CHECK_NATNUM (length);
2326 CHECK_CHARACTER (init);
2327
2328 c = XFASTINT (init);
2329 if (ASCII_CHAR_P (c))
2330 {
2331 nbytes = XINT (length);
2332 val = make_uninit_string (nbytes);
2333 p = SDATA (val);
2334 end = p + SCHARS (val);
2335 while (p != end)
2336 *p++ = c;
2337 }
2338 else
2339 {
2340 unsigned char str[MAX_MULTIBYTE_LENGTH];
2341 int len = CHAR_STRING (c, str);
2342 EMACS_INT string_len = XINT (length);
2343
2344 if (string_len > STRING_BYTES_MAX / len)
2345 string_overflow ();
2346 nbytes = len * string_len;
2347 val = make_uninit_multibyte_string (string_len, nbytes);
2348 p = SDATA (val);
2349 end = p + nbytes;
2350 while (p != end)
2351 {
2352 memcpy (p, str, len);
2353 p += len;
2354 }
2355 }
2356
2357 *p = 0;
2358 return val;
2359 }
2360
2361
2362 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2363 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2364 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2365 (Lisp_Object length, Lisp_Object init)
2366 {
2367 register Lisp_Object val;
2368 struct Lisp_Bool_Vector *p;
2369 ptrdiff_t length_in_chars;
2370 EMACS_INT length_in_elts;
2371 int bits_per_value;
2372 int extra_bool_elts = ((bool_header_size - header_size + word_size - 1)
2373 / word_size);
2374
2375 CHECK_NATNUM (length);
2376
2377 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2378
2379 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2380
2381 val = Fmake_vector (make_number (length_in_elts + extra_bool_elts), Qnil);
2382
2383 /* No Lisp_Object to trace in there. */
2384 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2385
2386 p = XBOOL_VECTOR (val);
2387 p->size = XFASTINT (length);
2388
2389 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2390 / BOOL_VECTOR_BITS_PER_CHAR);
2391 if (length_in_chars)
2392 {
2393 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2394
2395 /* Clear any extraneous bits in the last byte. */
2396 p->data[length_in_chars - 1]
2397 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
2398 }
2399
2400 return val;
2401 }
2402
2403
2404 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2405 of characters from the contents. This string may be unibyte or
2406 multibyte, depending on the contents. */
2407
2408 Lisp_Object
2409 make_string (const char *contents, ptrdiff_t nbytes)
2410 {
2411 register Lisp_Object val;
2412 ptrdiff_t nchars, multibyte_nbytes;
2413
2414 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2415 &nchars, &multibyte_nbytes);
2416 if (nbytes == nchars || nbytes != multibyte_nbytes)
2417 /* CONTENTS contains no multibyte sequences or contains an invalid
2418 multibyte sequence. We must make unibyte string. */
2419 val = make_unibyte_string (contents, nbytes);
2420 else
2421 val = make_multibyte_string (contents, nchars, nbytes);
2422 return val;
2423 }
2424
2425
2426 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2427
2428 Lisp_Object
2429 make_unibyte_string (const char *contents, ptrdiff_t length)
2430 {
2431 register Lisp_Object val;
2432 val = make_uninit_string (length);
2433 memcpy (SDATA (val), contents, length);
2434 return val;
2435 }
2436
2437
2438 /* Make a multibyte string from NCHARS characters occupying NBYTES
2439 bytes at CONTENTS. */
2440
2441 Lisp_Object
2442 make_multibyte_string (const char *contents,
2443 ptrdiff_t nchars, ptrdiff_t nbytes)
2444 {
2445 register Lisp_Object val;
2446 val = make_uninit_multibyte_string (nchars, nbytes);
2447 memcpy (SDATA (val), contents, nbytes);
2448 return val;
2449 }
2450
2451
2452 /* Make a string from NCHARS characters occupying NBYTES bytes at
2453 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2454
2455 Lisp_Object
2456 make_string_from_bytes (const char *contents,
2457 ptrdiff_t nchars, ptrdiff_t nbytes)
2458 {
2459 register Lisp_Object val;
2460 val = make_uninit_multibyte_string (nchars, nbytes);
2461 memcpy (SDATA (val), contents, nbytes);
2462 if (SBYTES (val) == SCHARS (val))
2463 STRING_SET_UNIBYTE (val);
2464 return val;
2465 }
2466
2467
2468 /* Make a string from NCHARS characters occupying NBYTES bytes at
2469 CONTENTS. The argument MULTIBYTE controls whether to label the
2470 string as multibyte. If NCHARS is negative, it counts the number of
2471 characters by itself. */
2472
2473 Lisp_Object
2474 make_specified_string (const char *contents,
2475 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
2476 {
2477 register Lisp_Object val;
2478
2479 if (nchars < 0)
2480 {
2481 if (multibyte)
2482 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2483 nbytes);
2484 else
2485 nchars = nbytes;
2486 }
2487 val = make_uninit_multibyte_string (nchars, nbytes);
2488 memcpy (SDATA (val), contents, nbytes);
2489 if (!multibyte)
2490 STRING_SET_UNIBYTE (val);
2491 return val;
2492 }
2493
2494
2495 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2496 occupying LENGTH bytes. */
2497
2498 Lisp_Object
2499 make_uninit_string (EMACS_INT length)
2500 {
2501 Lisp_Object val;
2502
2503 if (!length)
2504 return empty_unibyte_string;
2505 val = make_uninit_multibyte_string (length, length);
2506 STRING_SET_UNIBYTE (val);
2507 return val;
2508 }
2509
2510
2511 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2512 which occupy NBYTES bytes. */
2513
2514 Lisp_Object
2515 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2516 {
2517 Lisp_Object string;
2518 struct Lisp_String *s;
2519
2520 if (nchars < 0)
2521 abort ();
2522 if (!nbytes)
2523 return empty_multibyte_string;
2524
2525 s = allocate_string ();
2526 s->intervals = NULL_INTERVAL;
2527 allocate_string_data (s, nchars, nbytes);
2528 XSETSTRING (string, s);
2529 string_chars_consed += nbytes;
2530 return string;
2531 }
2532
2533 /* Print arguments to BUF according to a FORMAT, then return
2534 a Lisp_String initialized with the data from BUF. */
2535
2536 Lisp_Object
2537 make_formatted_string (char *buf, const char *format, ...)
2538 {
2539 va_list ap;
2540 int length;
2541
2542 va_start (ap, format);
2543 length = vsprintf (buf, format, ap);
2544 va_end (ap);
2545 return make_string (buf, length);
2546 }
2547
2548 \f
2549 /***********************************************************************
2550 Float Allocation
2551 ***********************************************************************/
2552
2553 /* We store float cells inside of float_blocks, allocating a new
2554 float_block with malloc whenever necessary. Float cells reclaimed
2555 by GC are put on a free list to be reallocated before allocating
2556 any new float cells from the latest float_block. */
2557
2558 #define FLOAT_BLOCK_SIZE \
2559 (((BLOCK_BYTES - sizeof (struct float_block *) \
2560 /* The compiler might add padding at the end. */ \
2561 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2562 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2563
2564 #define GETMARKBIT(block,n) \
2565 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2566 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2567 & 1)
2568
2569 #define SETMARKBIT(block,n) \
2570 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2571 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2572
2573 #define UNSETMARKBIT(block,n) \
2574 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2575 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2576
2577 #define FLOAT_BLOCK(fptr) \
2578 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2579
2580 #define FLOAT_INDEX(fptr) \
2581 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2582
2583 struct float_block
2584 {
2585 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2586 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2587 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2588 struct float_block *next;
2589 };
2590
2591 #define FLOAT_MARKED_P(fptr) \
2592 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2593
2594 #define FLOAT_MARK(fptr) \
2595 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2596
2597 #define FLOAT_UNMARK(fptr) \
2598 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2599
2600 /* Current float_block. */
2601
2602 static struct float_block *float_block;
2603
2604 /* Index of first unused Lisp_Float in the current float_block. */
2605
2606 static int float_block_index = FLOAT_BLOCK_SIZE;
2607
2608 /* Free-list of Lisp_Floats. */
2609
2610 static struct Lisp_Float *float_free_list;
2611
2612 /* Return a new float object with value FLOAT_VALUE. */
2613
2614 Lisp_Object
2615 make_float (double float_value)
2616 {
2617 register Lisp_Object val;
2618
2619 /* eassert (!handling_signal); */
2620
2621 MALLOC_BLOCK_INPUT;
2622
2623 if (float_free_list)
2624 {
2625 /* We use the data field for chaining the free list
2626 so that we won't use the same field that has the mark bit. */
2627 XSETFLOAT (val, float_free_list);
2628 float_free_list = float_free_list->u.chain;
2629 }
2630 else
2631 {
2632 if (float_block_index == FLOAT_BLOCK_SIZE)
2633 {
2634 struct float_block *new
2635 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2636 new->next = float_block;
2637 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2638 float_block = new;
2639 float_block_index = 0;
2640 total_free_floats += FLOAT_BLOCK_SIZE;
2641 }
2642 XSETFLOAT (val, &float_block->floats[float_block_index]);
2643 float_block_index++;
2644 }
2645
2646 MALLOC_UNBLOCK_INPUT;
2647
2648 XFLOAT_INIT (val, float_value);
2649 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2650 consing_since_gc += sizeof (struct Lisp_Float);
2651 floats_consed++;
2652 total_free_floats--;
2653 return val;
2654 }
2655
2656
2657 \f
2658 /***********************************************************************
2659 Cons Allocation
2660 ***********************************************************************/
2661
2662 /* We store cons cells inside of cons_blocks, allocating a new
2663 cons_block with malloc whenever necessary. Cons cells reclaimed by
2664 GC are put on a free list to be reallocated before allocating
2665 any new cons cells from the latest cons_block. */
2666
2667 #define CONS_BLOCK_SIZE \
2668 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2669 /* The compiler might add padding at the end. */ \
2670 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2671 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2672
2673 #define CONS_BLOCK(fptr) \
2674 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2675
2676 #define CONS_INDEX(fptr) \
2677 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2678
2679 struct cons_block
2680 {
2681 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2682 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2683 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2684 struct cons_block *next;
2685 };
2686
2687 #define CONS_MARKED_P(fptr) \
2688 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2689
2690 #define CONS_MARK(fptr) \
2691 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2692
2693 #define CONS_UNMARK(fptr) \
2694 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2695
2696 /* Current cons_block. */
2697
2698 static struct cons_block *cons_block;
2699
2700 /* Index of first unused Lisp_Cons in the current block. */
2701
2702 static int cons_block_index = CONS_BLOCK_SIZE;
2703
2704 /* Free-list of Lisp_Cons structures. */
2705
2706 static struct Lisp_Cons *cons_free_list;
2707
2708 /* Explicitly free a cons cell by putting it on the free-list. */
2709
2710 void
2711 free_cons (struct Lisp_Cons *ptr)
2712 {
2713 ptr->u.chain = cons_free_list;
2714 #if GC_MARK_STACK
2715 ptr->car = Vdead;
2716 #endif
2717 cons_free_list = ptr;
2718 consing_since_gc -= sizeof *ptr;
2719 total_free_conses++;
2720 }
2721
2722 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2723 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2724 (Lisp_Object car, Lisp_Object cdr)
2725 {
2726 register Lisp_Object val;
2727
2728 /* eassert (!handling_signal); */
2729
2730 MALLOC_BLOCK_INPUT;
2731
2732 if (cons_free_list)
2733 {
2734 /* We use the cdr for chaining the free list
2735 so that we won't use the same field that has the mark bit. */
2736 XSETCONS (val, cons_free_list);
2737 cons_free_list = cons_free_list->u.chain;
2738 }
2739 else
2740 {
2741 if (cons_block_index == CONS_BLOCK_SIZE)
2742 {
2743 struct cons_block *new
2744 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2745 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2746 new->next = cons_block;
2747 cons_block = new;
2748 cons_block_index = 0;
2749 total_free_conses += CONS_BLOCK_SIZE;
2750 }
2751 XSETCONS (val, &cons_block->conses[cons_block_index]);
2752 cons_block_index++;
2753 }
2754
2755 MALLOC_UNBLOCK_INPUT;
2756
2757 XSETCAR (val, car);
2758 XSETCDR (val, cdr);
2759 eassert (!CONS_MARKED_P (XCONS (val)));
2760 consing_since_gc += sizeof (struct Lisp_Cons);
2761 total_free_conses--;
2762 cons_cells_consed++;
2763 return val;
2764 }
2765
2766 #ifdef GC_CHECK_CONS_LIST
2767 /* Get an error now if there's any junk in the cons free list. */
2768 void
2769 check_cons_list (void)
2770 {
2771 struct Lisp_Cons *tail = cons_free_list;
2772
2773 while (tail)
2774 tail = tail->u.chain;
2775 }
2776 #endif
2777
2778 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2779
2780 Lisp_Object
2781 list1 (Lisp_Object arg1)
2782 {
2783 return Fcons (arg1, Qnil);
2784 }
2785
2786 Lisp_Object
2787 list2 (Lisp_Object arg1, Lisp_Object arg2)
2788 {
2789 return Fcons (arg1, Fcons (arg2, Qnil));
2790 }
2791
2792
2793 Lisp_Object
2794 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2795 {
2796 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2797 }
2798
2799
2800 Lisp_Object
2801 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2802 {
2803 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2804 }
2805
2806
2807 Lisp_Object
2808 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2809 {
2810 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2811 Fcons (arg5, Qnil)))));
2812 }
2813
2814 /* Make a list of COUNT Lisp_Objects, where ARG is the
2815 first one. Allocate conses from pure space if TYPE
2816 is PURE, or allocate as usual if type is HEAP. */
2817
2818 Lisp_Object
2819 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2820 {
2821 va_list ap;
2822 ptrdiff_t i;
2823 Lisp_Object val, *objp;
2824
2825 /* Change to SAFE_ALLOCA if you hit this eassert. */
2826 eassert (count <= MAX_ALLOCA / sizeof (Lisp_Object));
2827
2828 objp = alloca (count * sizeof (Lisp_Object));
2829 objp[0] = arg;
2830 va_start (ap, arg);
2831 for (i = 1; i < count; i++)
2832 objp[i] = va_arg (ap, Lisp_Object);
2833 va_end (ap);
2834
2835 for (i = 0, val = Qnil; i < count; i++)
2836 {
2837 if (type == PURE)
2838 val = pure_cons (objp[i], val);
2839 else if (type == HEAP)
2840 val = Fcons (objp[i], val);
2841 else
2842 abort ();
2843 }
2844 return val;
2845 }
2846
2847 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2848 doc: /* Return a newly created list with specified arguments as elements.
2849 Any number of arguments, even zero arguments, are allowed.
2850 usage: (list &rest OBJECTS) */)
2851 (ptrdiff_t nargs, Lisp_Object *args)
2852 {
2853 register Lisp_Object val;
2854 val = Qnil;
2855
2856 while (nargs > 0)
2857 {
2858 nargs--;
2859 val = Fcons (args[nargs], val);
2860 }
2861 return val;
2862 }
2863
2864
2865 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2866 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2867 (register Lisp_Object length, Lisp_Object init)
2868 {
2869 register Lisp_Object val;
2870 register EMACS_INT size;
2871
2872 CHECK_NATNUM (length);
2873 size = XFASTINT (length);
2874
2875 val = Qnil;
2876 while (size > 0)
2877 {
2878 val = Fcons (init, val);
2879 --size;
2880
2881 if (size > 0)
2882 {
2883 val = Fcons (init, val);
2884 --size;
2885
2886 if (size > 0)
2887 {
2888 val = Fcons (init, val);
2889 --size;
2890
2891 if (size > 0)
2892 {
2893 val = Fcons (init, val);
2894 --size;
2895
2896 if (size > 0)
2897 {
2898 val = Fcons (init, val);
2899 --size;
2900 }
2901 }
2902 }
2903 }
2904
2905 QUIT;
2906 }
2907
2908 return val;
2909 }
2910
2911
2912 \f
2913 /***********************************************************************
2914 Vector Allocation
2915 ***********************************************************************/
2916
2917 /* This value is balanced well enough to avoid too much internal overhead
2918 for the most common cases; it's not required to be a power of two, but
2919 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2920
2921 #define VECTOR_BLOCK_SIZE 4096
2922
2923 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2924 enum
2925 {
2926 roundup_size = COMMON_MULTIPLE (word_size,
2927 USE_LSB_TAG ? 1 << GCTYPEBITS : 1)
2928 };
2929
2930 /* ROUNDUP_SIZE must be a power of 2. */
2931 verify ((roundup_size & (roundup_size - 1)) == 0);
2932
2933 /* Verify assumptions described above. */
2934 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2935 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2936
2937 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2938
2939 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2940
2941 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2942
2943 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2944
2945 /* Size of the minimal vector allocated from block. */
2946
2947 #define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2948
2949 /* Size of the largest vector allocated from block. */
2950
2951 #define VBLOCK_BYTES_MAX \
2952 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2953
2954 /* We maintain one free list for each possible block-allocated
2955 vector size, and this is the number of free lists we have. */
2956
2957 #define VECTOR_MAX_FREE_LIST_INDEX \
2958 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2959
2960 /* Common shortcut to advance vector pointer over a block data. */
2961
2962 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2963
2964 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2965
2966 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2967
2968 /* Common shortcut to setup vector on a free list. */
2969
2970 #define SETUP_ON_FREE_LIST(v, nbytes, index) \
2971 do { \
2972 XSETPVECTYPESIZE (v, PVEC_FREE, nbytes); \
2973 eassert ((nbytes) % roundup_size == 0); \
2974 (index) = VINDEX (nbytes); \
2975 eassert ((index) < VECTOR_MAX_FREE_LIST_INDEX); \
2976 (v)->header.next.vector = vector_free_lists[index]; \
2977 vector_free_lists[index] = (v); \
2978 total_free_vector_slots += (nbytes) / word_size; \
2979 } while (0)
2980
2981 struct vector_block
2982 {
2983 char data[VECTOR_BLOCK_BYTES];
2984 struct vector_block *next;
2985 };
2986
2987 /* Chain of vector blocks. */
2988
2989 static struct vector_block *vector_blocks;
2990
2991 /* Vector free lists, where NTH item points to a chain of free
2992 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2993
2994 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2995
2996 /* Singly-linked list of large vectors. */
2997
2998 static struct Lisp_Vector *large_vectors;
2999
3000 /* The only vector with 0 slots, allocated from pure space. */
3001
3002 Lisp_Object zero_vector;
3003
3004 /* Number of live vectors. */
3005
3006 static EMACS_INT total_vectors;
3007
3008 /* Total size of live and free vectors, in Lisp_Object units. */
3009
3010 static EMACS_INT total_vector_slots, total_free_vector_slots;
3011
3012 /* Get a new vector block. */
3013
3014 static struct vector_block *
3015 allocate_vector_block (void)
3016 {
3017 struct vector_block *block = xmalloc (sizeof *block);
3018
3019 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3020 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
3021 MEM_TYPE_VECTOR_BLOCK);
3022 #endif
3023
3024 block->next = vector_blocks;
3025 vector_blocks = block;
3026 return block;
3027 }
3028
3029 /* Called once to initialize vector allocation. */
3030
3031 static void
3032 init_vectors (void)
3033 {
3034 zero_vector = make_pure_vector (0);
3035 }
3036
3037 /* Allocate vector from a vector block. */
3038
3039 static struct Lisp_Vector *
3040 allocate_vector_from_block (size_t nbytes)
3041 {
3042 struct Lisp_Vector *vector, *rest;
3043 struct vector_block *block;
3044 size_t index, restbytes;
3045
3046 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3047 eassert (nbytes % roundup_size == 0);
3048
3049 /* First, try to allocate from a free list
3050 containing vectors of the requested size. */
3051 index = VINDEX (nbytes);
3052 if (vector_free_lists[index])
3053 {
3054 vector = vector_free_lists[index];
3055 vector_free_lists[index] = vector->header.next.vector;
3056 vector->header.next.nbytes = nbytes;
3057 total_free_vector_slots -= nbytes / word_size;
3058 return vector;
3059 }
3060
3061 /* Next, check free lists containing larger vectors. Since
3062 we will split the result, we should have remaining space
3063 large enough to use for one-slot vector at least. */
3064 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3065 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3066 if (vector_free_lists[index])
3067 {
3068 /* This vector is larger than requested. */
3069 vector = vector_free_lists[index];
3070 vector_free_lists[index] = vector->header.next.vector;
3071 vector->header.next.nbytes = nbytes;
3072 total_free_vector_slots -= nbytes / word_size;
3073
3074 /* Excess bytes are used for the smaller vector,
3075 which should be set on an appropriate free list. */
3076 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3077 eassert (restbytes % roundup_size == 0);
3078 rest = ADVANCE (vector, nbytes);
3079 SETUP_ON_FREE_LIST (rest, restbytes, index);
3080 return vector;
3081 }
3082
3083 /* Finally, need a new vector block. */
3084 block = allocate_vector_block ();
3085
3086 /* New vector will be at the beginning of this block. */
3087 vector = (struct Lisp_Vector *) block->data;
3088 vector->header.next.nbytes = nbytes;
3089
3090 /* If the rest of space from this block is large enough
3091 for one-slot vector at least, set up it on a free list. */
3092 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3093 if (restbytes >= VBLOCK_BYTES_MIN)
3094 {
3095 eassert (restbytes % roundup_size == 0);
3096 rest = ADVANCE (vector, nbytes);
3097 SETUP_ON_FREE_LIST (rest, restbytes, index);
3098 }
3099 return vector;
3100 }
3101
3102 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3103
3104 #define VECTOR_IN_BLOCK(vector, block) \
3105 ((char *) (vector) <= (block)->data \
3106 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3107
3108 /* Number of bytes used by vector-block-allocated object. This is the only
3109 place where we actually use the `nbytes' field of the vector-header.
3110 I.e. we could get rid of the `nbytes' field by computing it based on the
3111 vector-type. */
3112
3113 #define PSEUDOVECTOR_NBYTES(vector) \
3114 (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) \
3115 ? vector->header.size & PSEUDOVECTOR_SIZE_MASK \
3116 : vector->header.next.nbytes)
3117
3118 /* Reclaim space used by unmarked vectors. */
3119
3120 static void
3121 sweep_vectors (void)
3122 {
3123 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
3124 struct Lisp_Vector *vector, *next, **vprev = &large_vectors;
3125
3126 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3127 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3128
3129 /* Looking through vector blocks. */
3130
3131 for (block = vector_blocks; block; block = *bprev)
3132 {
3133 int free_this_block = 0;
3134
3135 for (vector = (struct Lisp_Vector *) block->data;
3136 VECTOR_IN_BLOCK (vector, block); vector = next)
3137 {
3138 if (VECTOR_MARKED_P (vector))
3139 {
3140 VECTOR_UNMARK (vector);
3141 total_vectors++;
3142 total_vector_slots += vector->header.next.nbytes / word_size;
3143 next = ADVANCE (vector, vector->header.next.nbytes);
3144 }
3145 else
3146 {
3147 ptrdiff_t nbytes = PSEUDOVECTOR_NBYTES (vector);
3148 ptrdiff_t total_bytes = nbytes;
3149
3150 next = ADVANCE (vector, nbytes);
3151
3152 /* While NEXT is not marked, try to coalesce with VECTOR,
3153 thus making VECTOR of the largest possible size. */
3154
3155 while (VECTOR_IN_BLOCK (next, block))
3156 {
3157 if (VECTOR_MARKED_P (next))
3158 break;
3159 nbytes = PSEUDOVECTOR_NBYTES (next);
3160 total_bytes += nbytes;
3161 next = ADVANCE (next, nbytes);
3162 }
3163
3164 eassert (total_bytes % roundup_size == 0);
3165
3166 if (vector == (struct Lisp_Vector *) block->data
3167 && !VECTOR_IN_BLOCK (next, block))
3168 /* This block should be freed because all of it's
3169 space was coalesced into the only free vector. */
3170 free_this_block = 1;
3171 else
3172 {
3173 int tmp;
3174 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3175 }
3176 }
3177 }
3178
3179 if (free_this_block)
3180 {
3181 *bprev = block->next;
3182 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3183 mem_delete (mem_find (block->data));
3184 #endif
3185 xfree (block);
3186 }
3187 else
3188 bprev = &block->next;
3189 }
3190
3191 /* Sweep large vectors. */
3192
3193 for (vector = large_vectors; vector; vector = *vprev)
3194 {
3195 if (VECTOR_MARKED_P (vector))
3196 {
3197 VECTOR_UNMARK (vector);
3198 total_vectors++;
3199 if (vector->header.size & PSEUDOVECTOR_FLAG)
3200 {
3201 struct Lisp_Bool_Vector *b = (struct Lisp_Bool_Vector *) vector;
3202
3203 /* All non-bool pseudovectors are small enough to be allocated
3204 from vector blocks. This code should be redesigned if some
3205 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3206 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3207
3208 total_vector_slots
3209 += (bool_header_size
3210 + ((b->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
3211 / BOOL_VECTOR_BITS_PER_CHAR)) / word_size;
3212 }
3213 else
3214 total_vector_slots
3215 += header_size / word_size + vector->header.size;
3216 vprev = &vector->header.next.vector;
3217 }
3218 else
3219 {
3220 *vprev = vector->header.next.vector;
3221 lisp_free (vector);
3222 }
3223 }
3224 }
3225
3226 /* Value is a pointer to a newly allocated Lisp_Vector structure
3227 with room for LEN Lisp_Objects. */
3228
3229 static struct Lisp_Vector *
3230 allocate_vectorlike (ptrdiff_t len)
3231 {
3232 struct Lisp_Vector *p;
3233
3234 MALLOC_BLOCK_INPUT;
3235
3236 /* This gets triggered by code which I haven't bothered to fix. --Stef */
3237 /* eassert (!handling_signal); */
3238
3239 if (len == 0)
3240 p = XVECTOR (zero_vector);
3241 else
3242 {
3243 size_t nbytes = header_size + len * word_size;
3244
3245 #ifdef DOUG_LEA_MALLOC
3246 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3247 because mapped region contents are not preserved in
3248 a dumped Emacs. */
3249 mallopt (M_MMAP_MAX, 0);
3250 #endif
3251
3252 if (nbytes <= VBLOCK_BYTES_MAX)
3253 p = allocate_vector_from_block (vroundup (nbytes));
3254 else
3255 {
3256 p = lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
3257 p->header.next.vector = large_vectors;
3258 large_vectors = p;
3259 }
3260
3261 #ifdef DOUG_LEA_MALLOC
3262 /* Back to a reasonable maximum of mmap'ed areas. */
3263 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3264 #endif
3265
3266 consing_since_gc += nbytes;
3267 vector_cells_consed += len;
3268 }
3269
3270 MALLOC_UNBLOCK_INPUT;
3271
3272 return p;
3273 }
3274
3275
3276 /* Allocate a vector with LEN slots. */
3277
3278 struct Lisp_Vector *
3279 allocate_vector (EMACS_INT len)
3280 {
3281 struct Lisp_Vector *v;
3282 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3283
3284 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3285 memory_full (SIZE_MAX);
3286 v = allocate_vectorlike (len);
3287 v->header.size = len;
3288 return v;
3289 }
3290
3291
3292 /* Allocate other vector-like structures. */
3293
3294 struct Lisp_Vector *
3295 allocate_pseudovector (int memlen, int lisplen, int tag)
3296 {
3297 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3298 int i;
3299
3300 /* Only the first lisplen slots will be traced normally by the GC. */
3301 for (i = 0; i < lisplen; ++i)
3302 v->contents[i] = Qnil;
3303
3304 XSETPVECTYPESIZE (v, tag, lisplen);
3305 return v;
3306 }
3307
3308 struct buffer *
3309 allocate_buffer (void)
3310 {
3311 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3312
3313 XSETPVECTYPESIZE (b, PVEC_BUFFER, (offsetof (struct buffer, own_text)
3314 - header_size) / word_size);
3315 /* Note that the fields of B are not initialized. */
3316 return b;
3317 }
3318
3319 struct Lisp_Hash_Table *
3320 allocate_hash_table (void)
3321 {
3322 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3323 }
3324
3325 struct window *
3326 allocate_window (void)
3327 {
3328 struct window *w;
3329
3330 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3331 /* Users assumes that non-Lisp data is zeroed. */
3332 memset (&w->current_matrix, 0,
3333 sizeof (*w) - offsetof (struct window, current_matrix));
3334 return w;
3335 }
3336
3337 struct terminal *
3338 allocate_terminal (void)
3339 {
3340 struct terminal *t;
3341
3342 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3343 /* Users assumes that non-Lisp data is zeroed. */
3344 memset (&t->next_terminal, 0,
3345 sizeof (*t) - offsetof (struct terminal, next_terminal));
3346 return t;
3347 }
3348
3349 struct frame *
3350 allocate_frame (void)
3351 {
3352 struct frame *f;
3353
3354 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3355 /* Users assumes that non-Lisp data is zeroed. */
3356 memset (&f->face_cache, 0,
3357 sizeof (*f) - offsetof (struct frame, face_cache));
3358 return f;
3359 }
3360
3361 struct Lisp_Process *
3362 allocate_process (void)
3363 {
3364 struct Lisp_Process *p;
3365
3366 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3367 /* Users assumes that non-Lisp data is zeroed. */
3368 memset (&p->pid, 0,
3369 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3370 return p;
3371 }
3372
3373 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3374 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3375 See also the function `vector'. */)
3376 (register Lisp_Object length, Lisp_Object init)
3377 {
3378 Lisp_Object vector;
3379 register ptrdiff_t sizei;
3380 register ptrdiff_t i;
3381 register struct Lisp_Vector *p;
3382
3383 CHECK_NATNUM (length);
3384
3385 p = allocate_vector (XFASTINT (length));
3386 sizei = XFASTINT (length);
3387 for (i = 0; i < sizei; i++)
3388 p->contents[i] = init;
3389
3390 XSETVECTOR (vector, p);
3391 return vector;
3392 }
3393
3394
3395 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3396 doc: /* Return a newly created vector with specified arguments as elements.
3397 Any number of arguments, even zero arguments, are allowed.
3398 usage: (vector &rest OBJECTS) */)
3399 (ptrdiff_t nargs, Lisp_Object *args)
3400 {
3401 register Lisp_Object len, val;
3402 ptrdiff_t i;
3403 register struct Lisp_Vector *p;
3404
3405 XSETFASTINT (len, nargs);
3406 val = Fmake_vector (len, Qnil);
3407 p = XVECTOR (val);
3408 for (i = 0; i < nargs; i++)
3409 p->contents[i] = args[i];
3410 return val;
3411 }
3412
3413 void
3414 make_byte_code (struct Lisp_Vector *v)
3415 {
3416 if (v->header.size > 1 && STRINGP (v->contents[1])
3417 && STRING_MULTIBYTE (v->contents[1]))
3418 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3419 earlier because they produced a raw 8-bit string for byte-code
3420 and now such a byte-code string is loaded as multibyte while
3421 raw 8-bit characters converted to multibyte form. Thus, now we
3422 must convert them back to the original unibyte form. */
3423 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3424 XSETPVECTYPE (v, PVEC_COMPILED);
3425 }
3426
3427 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3428 doc: /* Create a byte-code object with specified arguments as elements.
3429 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3430 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3431 and (optional) INTERACTIVE-SPEC.
3432 The first four arguments are required; at most six have any
3433 significance.
3434 The ARGLIST can be either like the one of `lambda', in which case the arguments
3435 will be dynamically bound before executing the byte code, or it can be an
3436 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3437 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3438 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3439 argument to catch the left-over arguments. If such an integer is used, the
3440 arguments will not be dynamically bound but will be instead pushed on the
3441 stack before executing the byte-code.
3442 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3443 (ptrdiff_t nargs, Lisp_Object *args)
3444 {
3445 register Lisp_Object len, val;
3446 ptrdiff_t i;
3447 register struct Lisp_Vector *p;
3448
3449 /* We used to purecopy everything here, if purify-flga was set. This worked
3450 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3451 dangerous, since make-byte-code is used during execution to build
3452 closures, so any closure built during the preload phase would end up
3453 copied into pure space, including its free variables, which is sometimes
3454 just wasteful and other times plainly wrong (e.g. those free vars may want
3455 to be setcar'd). */
3456
3457 XSETFASTINT (len, nargs);
3458 val = Fmake_vector (len, Qnil);
3459
3460 p = XVECTOR (val);
3461 for (i = 0; i < nargs; i++)
3462 p->contents[i] = args[i];
3463 make_byte_code (p);
3464 XSETCOMPILED (val, p);
3465 return val;
3466 }
3467
3468
3469 \f
3470 /***********************************************************************
3471 Symbol Allocation
3472 ***********************************************************************/
3473
3474 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3475 of the required alignment if LSB tags are used. */
3476
3477 union aligned_Lisp_Symbol
3478 {
3479 struct Lisp_Symbol s;
3480 #if USE_LSB_TAG
3481 unsigned char c[(sizeof (struct Lisp_Symbol) + (1 << GCTYPEBITS) - 1)
3482 & -(1 << GCTYPEBITS)];
3483 #endif
3484 };
3485
3486 /* Each symbol_block is just under 1020 bytes long, since malloc
3487 really allocates in units of powers of two and uses 4 bytes for its
3488 own overhead. */
3489
3490 #define SYMBOL_BLOCK_SIZE \
3491 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3492
3493 struct symbol_block
3494 {
3495 /* Place `symbols' first, to preserve alignment. */
3496 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3497 struct symbol_block *next;
3498 };
3499
3500 /* Current symbol block and index of first unused Lisp_Symbol
3501 structure in it. */
3502
3503 static struct symbol_block *symbol_block;
3504 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3505
3506 /* List of free symbols. */
3507
3508 static struct Lisp_Symbol *symbol_free_list;
3509
3510 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3511 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3512 Its value and function definition are void, and its property list is nil. */)
3513 (Lisp_Object name)
3514 {
3515 register Lisp_Object val;
3516 register struct Lisp_Symbol *p;
3517
3518 CHECK_STRING (name);
3519
3520 /* eassert (!handling_signal); */
3521
3522 MALLOC_BLOCK_INPUT;
3523
3524 if (symbol_free_list)
3525 {
3526 XSETSYMBOL (val, symbol_free_list);
3527 symbol_free_list = symbol_free_list->next;
3528 }
3529 else
3530 {
3531 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3532 {
3533 struct symbol_block *new
3534 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3535 new->next = symbol_block;
3536 symbol_block = new;
3537 symbol_block_index = 0;
3538 total_free_symbols += SYMBOL_BLOCK_SIZE;
3539 }
3540 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3541 symbol_block_index++;
3542 }
3543
3544 MALLOC_UNBLOCK_INPUT;
3545
3546 p = XSYMBOL (val);
3547 p->xname = name;
3548 p->plist = Qnil;
3549 p->redirect = SYMBOL_PLAINVAL;
3550 SET_SYMBOL_VAL (p, Qunbound);
3551 p->function = Qunbound;
3552 p->next = NULL;
3553 p->gcmarkbit = 0;
3554 p->interned = SYMBOL_UNINTERNED;
3555 p->constant = 0;
3556 p->declared_special = 0;
3557 consing_since_gc += sizeof (struct Lisp_Symbol);
3558 symbols_consed++;
3559 total_free_symbols--;
3560 return val;
3561 }
3562
3563
3564 \f
3565 /***********************************************************************
3566 Marker (Misc) Allocation
3567 ***********************************************************************/
3568
3569 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3570 the required alignment when LSB tags are used. */
3571
3572 union aligned_Lisp_Misc
3573 {
3574 union Lisp_Misc m;
3575 #if USE_LSB_TAG
3576 unsigned char c[(sizeof (union Lisp_Misc) + (1 << GCTYPEBITS) - 1)
3577 & -(1 << GCTYPEBITS)];
3578 #endif
3579 };
3580
3581 /* Allocation of markers and other objects that share that structure.
3582 Works like allocation of conses. */
3583
3584 #define MARKER_BLOCK_SIZE \
3585 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3586
3587 struct marker_block
3588 {
3589 /* Place `markers' first, to preserve alignment. */
3590 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3591 struct marker_block *next;
3592 };
3593
3594 static struct marker_block *marker_block;
3595 static int marker_block_index = MARKER_BLOCK_SIZE;
3596
3597 static union Lisp_Misc *marker_free_list;
3598
3599 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3600
3601 static Lisp_Object
3602 allocate_misc (enum Lisp_Misc_Type type)
3603 {
3604 Lisp_Object val;
3605
3606 /* eassert (!handling_signal); */
3607
3608 MALLOC_BLOCK_INPUT;
3609
3610 if (marker_free_list)
3611 {
3612 XSETMISC (val, marker_free_list);
3613 marker_free_list = marker_free_list->u_free.chain;
3614 }
3615 else
3616 {
3617 if (marker_block_index == MARKER_BLOCK_SIZE)
3618 {
3619 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3620 new->next = marker_block;
3621 marker_block = new;
3622 marker_block_index = 0;
3623 total_free_markers += MARKER_BLOCK_SIZE;
3624 }
3625 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3626 marker_block_index++;
3627 }
3628
3629 MALLOC_UNBLOCK_INPUT;
3630
3631 --total_free_markers;
3632 consing_since_gc += sizeof (union Lisp_Misc);
3633 misc_objects_consed++;
3634 XMISCTYPE (val) = type;
3635 XMISCANY (val)->gcmarkbit = 0;
3636 return val;
3637 }
3638
3639 /* Free a Lisp_Misc object */
3640
3641 static void
3642 free_misc (Lisp_Object misc)
3643 {
3644 XMISCTYPE (misc) = Lisp_Misc_Free;
3645 XMISC (misc)->u_free.chain = marker_free_list;
3646 marker_free_list = XMISC (misc);
3647 consing_since_gc -= sizeof (union Lisp_Misc);
3648 total_free_markers++;
3649 }
3650
3651 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3652 INTEGER. This is used to package C values to call record_unwind_protect.
3653 The unwind function can get the C values back using XSAVE_VALUE. */
3654
3655 Lisp_Object
3656 make_save_value (void *pointer, ptrdiff_t integer)
3657 {
3658 register Lisp_Object val;
3659 register struct Lisp_Save_Value *p;
3660
3661 val = allocate_misc (Lisp_Misc_Save_Value);
3662 p = XSAVE_VALUE (val);
3663 p->pointer = pointer;
3664 p->integer = integer;
3665 p->dogc = 0;
3666 return val;
3667 }
3668
3669 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3670
3671 Lisp_Object
3672 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3673 {
3674 register Lisp_Object overlay;
3675
3676 overlay = allocate_misc (Lisp_Misc_Overlay);
3677 OVERLAY_START (overlay) = start;
3678 OVERLAY_END (overlay) = end;
3679 OVERLAY_PLIST (overlay) = plist;
3680 XOVERLAY (overlay)->next = NULL;
3681 return overlay;
3682 }
3683
3684 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3685 doc: /* Return a newly allocated marker which does not point at any place. */)
3686 (void)
3687 {
3688 register Lisp_Object marker = allocate_misc (Lisp_Misc_Marker);
3689
3690 init_marker (XMARKER (marker), NULL, 0, 0, 0);
3691 return marker;
3692 }
3693
3694 /* Return a newly allocated marker which points into BUF
3695 at character position CHARPOS and byte position BYTEPOS. */
3696
3697 Lisp_Object
3698 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3699 {
3700 register Lisp_Object marker = allocate_misc (Lisp_Misc_Marker);
3701
3702 /* Use Fmake_marker to create marker points to nowhere. */
3703 eassert (buf != NULL);
3704
3705 /* No dead buffers here. */
3706 eassert (!NILP (BVAR (buf, name)));
3707
3708 /* In a single-byte buffer, two positions must be equal.
3709 Otherwise, every character is at least one byte. */
3710 if (BUF_Z (buf) == BUF_Z_BYTE (buf))
3711 eassert (charpos == bytepos);
3712 else
3713 eassert (charpos <= bytepos);
3714
3715 init_marker (XMARKER (marker), buf, charpos, bytepos, 0);
3716 return marker;
3717 }
3718
3719 /* Put MARKER back on the free list after using it temporarily. */
3720
3721 void
3722 free_marker (Lisp_Object marker)
3723 {
3724 unchain_marker (XMARKER (marker));
3725 free_misc (marker);
3726 }
3727
3728 \f
3729 /* Return a newly created vector or string with specified arguments as
3730 elements. If all the arguments are characters that can fit
3731 in a string of events, make a string; otherwise, make a vector.
3732
3733 Any number of arguments, even zero arguments, are allowed. */
3734
3735 Lisp_Object
3736 make_event_array (register int nargs, Lisp_Object *args)
3737 {
3738 int i;
3739
3740 for (i = 0; i < nargs; i++)
3741 /* The things that fit in a string
3742 are characters that are in 0...127,
3743 after discarding the meta bit and all the bits above it. */
3744 if (!INTEGERP (args[i])
3745 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3746 return Fvector (nargs, args);
3747
3748 /* Since the loop exited, we know that all the things in it are
3749 characters, so we can make a string. */
3750 {
3751 Lisp_Object result;
3752
3753 result = Fmake_string (make_number (nargs), make_number (0));
3754 for (i = 0; i < nargs; i++)
3755 {
3756 SSET (result, i, XINT (args[i]));
3757 /* Move the meta bit to the right place for a string char. */
3758 if (XINT (args[i]) & CHAR_META)
3759 SSET (result, i, SREF (result, i) | 0x80);
3760 }
3761
3762 return result;
3763 }
3764 }
3765
3766
3767 \f
3768 /************************************************************************
3769 Memory Full Handling
3770 ************************************************************************/
3771
3772
3773 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3774 there may have been size_t overflow so that malloc was never
3775 called, or perhaps malloc was invoked successfully but the
3776 resulting pointer had problems fitting into a tagged EMACS_INT. In
3777 either case this counts as memory being full even though malloc did
3778 not fail. */
3779
3780 void
3781 memory_full (size_t nbytes)
3782 {
3783 /* Do not go into hysterics merely because a large request failed. */
3784 int enough_free_memory = 0;
3785 if (SPARE_MEMORY < nbytes)
3786 {
3787 void *p;
3788
3789 MALLOC_BLOCK_INPUT;
3790 p = malloc (SPARE_MEMORY);
3791 if (p)
3792 {
3793 free (p);
3794 enough_free_memory = 1;
3795 }
3796 MALLOC_UNBLOCK_INPUT;
3797 }
3798
3799 if (! enough_free_memory)
3800 {
3801 int i;
3802
3803 Vmemory_full = Qt;
3804
3805 memory_full_cons_threshold = sizeof (struct cons_block);
3806
3807 /* The first time we get here, free the spare memory. */
3808 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3809 if (spare_memory[i])
3810 {
3811 if (i == 0)
3812 free (spare_memory[i]);
3813 else if (i >= 1 && i <= 4)
3814 lisp_align_free (spare_memory[i]);
3815 else
3816 lisp_free (spare_memory[i]);
3817 spare_memory[i] = 0;
3818 }
3819
3820 /* Record the space now used. When it decreases substantially,
3821 we can refill the memory reserve. */
3822 #if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
3823 bytes_used_when_full = BYTES_USED;
3824 #endif
3825 }
3826
3827 /* This used to call error, but if we've run out of memory, we could
3828 get infinite recursion trying to build the string. */
3829 xsignal (Qnil, Vmemory_signal_data);
3830 }
3831
3832 /* If we released our reserve (due to running out of memory),
3833 and we have a fair amount free once again,
3834 try to set aside another reserve in case we run out once more.
3835
3836 This is called when a relocatable block is freed in ralloc.c,
3837 and also directly from this file, in case we're not using ralloc.c. */
3838
3839 void
3840 refill_memory_reserve (void)
3841 {
3842 #ifndef SYSTEM_MALLOC
3843 if (spare_memory[0] == 0)
3844 spare_memory[0] = malloc (SPARE_MEMORY);
3845 if (spare_memory[1] == 0)
3846 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3847 MEM_TYPE_CONS);
3848 if (spare_memory[2] == 0)
3849 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3850 MEM_TYPE_CONS);
3851 if (spare_memory[3] == 0)
3852 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3853 MEM_TYPE_CONS);
3854 if (spare_memory[4] == 0)
3855 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3856 MEM_TYPE_CONS);
3857 if (spare_memory[5] == 0)
3858 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3859 MEM_TYPE_STRING);
3860 if (spare_memory[6] == 0)
3861 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3862 MEM_TYPE_STRING);
3863 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3864 Vmemory_full = Qnil;
3865 #endif
3866 }
3867 \f
3868 /************************************************************************
3869 C Stack Marking
3870 ************************************************************************/
3871
3872 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3873
3874 /* Conservative C stack marking requires a method to identify possibly
3875 live Lisp objects given a pointer value. We do this by keeping
3876 track of blocks of Lisp data that are allocated in a red-black tree
3877 (see also the comment of mem_node which is the type of nodes in
3878 that tree). Function lisp_malloc adds information for an allocated
3879 block to the red-black tree with calls to mem_insert, and function
3880 lisp_free removes it with mem_delete. Functions live_string_p etc
3881 call mem_find to lookup information about a given pointer in the
3882 tree, and use that to determine if the pointer points to a Lisp
3883 object or not. */
3884
3885 /* Initialize this part of alloc.c. */
3886
3887 static void
3888 mem_init (void)
3889 {
3890 mem_z.left = mem_z.right = MEM_NIL;
3891 mem_z.parent = NULL;
3892 mem_z.color = MEM_BLACK;
3893 mem_z.start = mem_z.end = NULL;
3894 mem_root = MEM_NIL;
3895 }
3896
3897
3898 /* Value is a pointer to the mem_node containing START. Value is
3899 MEM_NIL if there is no node in the tree containing START. */
3900
3901 static inline struct mem_node *
3902 mem_find (void *start)
3903 {
3904 struct mem_node *p;
3905
3906 if (start < min_heap_address || start > max_heap_address)
3907 return MEM_NIL;
3908
3909 /* Make the search always successful to speed up the loop below. */
3910 mem_z.start = start;
3911 mem_z.end = (char *) start + 1;
3912
3913 p = mem_root;
3914 while (start < p->start || start >= p->end)
3915 p = start < p->start ? p->left : p->right;
3916 return p;
3917 }
3918
3919
3920 /* Insert a new node into the tree for a block of memory with start
3921 address START, end address END, and type TYPE. Value is a
3922 pointer to the node that was inserted. */
3923
3924 static struct mem_node *
3925 mem_insert (void *start, void *end, enum mem_type type)
3926 {
3927 struct mem_node *c, *parent, *x;
3928
3929 if (min_heap_address == NULL || start < min_heap_address)
3930 min_heap_address = start;
3931 if (max_heap_address == NULL || end > max_heap_address)
3932 max_heap_address = end;
3933
3934 /* See where in the tree a node for START belongs. In this
3935 particular application, it shouldn't happen that a node is already
3936 present. For debugging purposes, let's check that. */
3937 c = mem_root;
3938 parent = NULL;
3939
3940 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3941
3942 while (c != MEM_NIL)
3943 {
3944 if (start >= c->start && start < c->end)
3945 abort ();
3946 parent = c;
3947 c = start < c->start ? c->left : c->right;
3948 }
3949
3950 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3951
3952 while (c != MEM_NIL)
3953 {
3954 parent = c;
3955 c = start < c->start ? c->left : c->right;
3956 }
3957
3958 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3959
3960 /* Create a new node. */
3961 #ifdef GC_MALLOC_CHECK
3962 x = _malloc_internal (sizeof *x);
3963 if (x == NULL)
3964 abort ();
3965 #else
3966 x = xmalloc (sizeof *x);
3967 #endif
3968 x->start = start;
3969 x->end = end;
3970 x->type = type;
3971 x->parent = parent;
3972 x->left = x->right = MEM_NIL;
3973 x->color = MEM_RED;
3974
3975 /* Insert it as child of PARENT or install it as root. */
3976 if (parent)
3977 {
3978 if (start < parent->start)
3979 parent->left = x;
3980 else
3981 parent->right = x;
3982 }
3983 else
3984 mem_root = x;
3985
3986 /* Re-establish red-black tree properties. */
3987 mem_insert_fixup (x);
3988
3989 return x;
3990 }
3991
3992
3993 /* Re-establish the red-black properties of the tree, and thereby
3994 balance the tree, after node X has been inserted; X is always red. */
3995
3996 static void
3997 mem_insert_fixup (struct mem_node *x)
3998 {
3999 while (x != mem_root && x->parent->color == MEM_RED)
4000 {
4001 /* X is red and its parent is red. This is a violation of
4002 red-black tree property #3. */
4003
4004 if (x->parent == x->parent->parent->left)
4005 {
4006 /* We're on the left side of our grandparent, and Y is our
4007 "uncle". */
4008 struct mem_node *y = x->parent->parent->right;
4009
4010 if (y->color == MEM_RED)
4011 {
4012 /* Uncle and parent are red but should be black because
4013 X is red. Change the colors accordingly and proceed
4014 with the grandparent. */
4015 x->parent->color = MEM_BLACK;
4016 y->color = MEM_BLACK;
4017 x->parent->parent->color = MEM_RED;
4018 x = x->parent->parent;
4019 }
4020 else
4021 {
4022 /* Parent and uncle have different colors; parent is
4023 red, uncle is black. */
4024 if (x == x->parent->right)
4025 {
4026 x = x->parent;
4027 mem_rotate_left (x);
4028 }
4029
4030 x->parent->color = MEM_BLACK;
4031 x->parent->parent->color = MEM_RED;
4032 mem_rotate_right (x->parent->parent);
4033 }
4034 }
4035 else
4036 {
4037 /* This is the symmetrical case of above. */
4038 struct mem_node *y = x->parent->parent->left;
4039
4040 if (y->color == MEM_RED)
4041 {
4042 x->parent->color = MEM_BLACK;
4043 y->color = MEM_BLACK;
4044 x->parent->parent->color = MEM_RED;
4045 x = x->parent->parent;
4046 }
4047 else
4048 {
4049 if (x == x->parent->left)
4050 {
4051 x = x->parent;
4052 mem_rotate_right (x);
4053 }
4054
4055 x->parent->color = MEM_BLACK;
4056 x->parent->parent->color = MEM_RED;
4057 mem_rotate_left (x->parent->parent);
4058 }
4059 }
4060 }
4061
4062 /* The root may have been changed to red due to the algorithm. Set
4063 it to black so that property #5 is satisfied. */
4064 mem_root->color = MEM_BLACK;
4065 }
4066
4067
4068 /* (x) (y)
4069 / \ / \
4070 a (y) ===> (x) c
4071 / \ / \
4072 b c a b */
4073
4074 static void
4075 mem_rotate_left (struct mem_node *x)
4076 {
4077 struct mem_node *y;
4078
4079 /* Turn y's left sub-tree into x's right sub-tree. */
4080 y = x->right;
4081 x->right = y->left;
4082 if (y->left != MEM_NIL)
4083 y->left->parent = x;
4084
4085 /* Y's parent was x's parent. */
4086 if (y != MEM_NIL)
4087 y->parent = x->parent;
4088
4089 /* Get the parent to point to y instead of x. */
4090 if (x->parent)
4091 {
4092 if (x == x->parent->left)
4093 x->parent->left = y;
4094 else
4095 x->parent->right = y;
4096 }
4097 else
4098 mem_root = y;
4099
4100 /* Put x on y's left. */
4101 y->left = x;
4102 if (x != MEM_NIL)
4103 x->parent = y;
4104 }
4105
4106
4107 /* (x) (Y)
4108 / \ / \
4109 (y) c ===> a (x)
4110 / \ / \
4111 a b b c */
4112
4113 static void
4114 mem_rotate_right (struct mem_node *x)
4115 {
4116 struct mem_node *y = x->left;
4117
4118 x->left = y->right;
4119 if (y->right != MEM_NIL)
4120 y->right->parent = x;
4121
4122 if (y != MEM_NIL)
4123 y->parent = x->parent;
4124 if (x->parent)
4125 {
4126 if (x == x->parent->right)
4127 x->parent->right = y;
4128 else
4129 x->parent->left = y;
4130 }
4131 else
4132 mem_root = y;
4133
4134 y->right = x;
4135 if (x != MEM_NIL)
4136 x->parent = y;
4137 }
4138
4139
4140 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4141
4142 static void
4143 mem_delete (struct mem_node *z)
4144 {
4145 struct mem_node *x, *y;
4146
4147 if (!z || z == MEM_NIL)
4148 return;
4149
4150 if (z->left == MEM_NIL || z->right == MEM_NIL)
4151 y = z;
4152 else
4153 {
4154 y = z->right;
4155 while (y->left != MEM_NIL)
4156 y = y->left;
4157 }
4158
4159 if (y->left != MEM_NIL)
4160 x = y->left;
4161 else
4162 x = y->right;
4163
4164 x->parent = y->parent;
4165 if (y->parent)
4166 {
4167 if (y == y->parent->left)
4168 y->parent->left = x;
4169 else
4170 y->parent->right = x;
4171 }
4172 else
4173 mem_root = x;
4174
4175 if (y != z)
4176 {
4177 z->start = y->start;
4178 z->end = y->end;
4179 z->type = y->type;
4180 }
4181
4182 if (y->color == MEM_BLACK)
4183 mem_delete_fixup (x);
4184
4185 #ifdef GC_MALLOC_CHECK
4186 _free_internal (y);
4187 #else
4188 xfree (y);
4189 #endif
4190 }
4191
4192
4193 /* Re-establish the red-black properties of the tree, after a
4194 deletion. */
4195
4196 static void
4197 mem_delete_fixup (struct mem_node *x)
4198 {
4199 while (x != mem_root && x->color == MEM_BLACK)
4200 {
4201 if (x == x->parent->left)
4202 {
4203 struct mem_node *w = x->parent->right;
4204
4205 if (w->color == MEM_RED)
4206 {
4207 w->color = MEM_BLACK;
4208 x->parent->color = MEM_RED;
4209 mem_rotate_left (x->parent);
4210 w = x->parent->right;
4211 }
4212
4213 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4214 {
4215 w->color = MEM_RED;
4216 x = x->parent;
4217 }
4218 else
4219 {
4220 if (w->right->color == MEM_BLACK)
4221 {
4222 w->left->color = MEM_BLACK;
4223 w->color = MEM_RED;
4224 mem_rotate_right (w);
4225 w = x->parent->right;
4226 }
4227 w->color = x->parent->color;
4228 x->parent->color = MEM_BLACK;
4229 w->right->color = MEM_BLACK;
4230 mem_rotate_left (x->parent);
4231 x = mem_root;
4232 }
4233 }
4234 else
4235 {
4236 struct mem_node *w = x->parent->left;
4237
4238 if (w->color == MEM_RED)
4239 {
4240 w->color = MEM_BLACK;
4241 x->parent->color = MEM_RED;
4242 mem_rotate_right (x->parent);
4243 w = x->parent->left;
4244 }
4245
4246 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4247 {
4248 w->color = MEM_RED;
4249 x = x->parent;
4250 }
4251 else
4252 {
4253 if (w->left->color == MEM_BLACK)
4254 {
4255 w->right->color = MEM_BLACK;
4256 w->color = MEM_RED;
4257 mem_rotate_left (w);
4258 w = x->parent->left;
4259 }
4260
4261 w->color = x->parent->color;
4262 x->parent->color = MEM_BLACK;
4263 w->left->color = MEM_BLACK;
4264 mem_rotate_right (x->parent);
4265 x = mem_root;
4266 }
4267 }
4268 }
4269
4270 x->color = MEM_BLACK;
4271 }
4272
4273
4274 /* Value is non-zero if P is a pointer to a live Lisp string on
4275 the heap. M is a pointer to the mem_block for P. */
4276
4277 static inline int
4278 live_string_p (struct mem_node *m, void *p)
4279 {
4280 if (m->type == MEM_TYPE_STRING)
4281 {
4282 struct string_block *b = (struct string_block *) m->start;
4283 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4284
4285 /* P must point to the start of a Lisp_String structure, and it
4286 must not be on the free-list. */
4287 return (offset >= 0
4288 && offset % sizeof b->strings[0] == 0
4289 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4290 && ((struct Lisp_String *) p)->data != NULL);
4291 }
4292 else
4293 return 0;
4294 }
4295
4296
4297 /* Value is non-zero if P is a pointer to a live Lisp cons on
4298 the heap. M is a pointer to the mem_block for P. */
4299
4300 static inline int
4301 live_cons_p (struct mem_node *m, void *p)
4302 {
4303 if (m->type == MEM_TYPE_CONS)
4304 {
4305 struct cons_block *b = (struct cons_block *) m->start;
4306 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4307
4308 /* P must point to the start of a Lisp_Cons, not be
4309 one of the unused cells in the current cons block,
4310 and not be on the free-list. */
4311 return (offset >= 0
4312 && offset % sizeof b->conses[0] == 0
4313 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4314 && (b != cons_block
4315 || offset / sizeof b->conses[0] < cons_block_index)
4316 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4317 }
4318 else
4319 return 0;
4320 }
4321
4322
4323 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4324 the heap. M is a pointer to the mem_block for P. */
4325
4326 static inline int
4327 live_symbol_p (struct mem_node *m, void *p)
4328 {
4329 if (m->type == MEM_TYPE_SYMBOL)
4330 {
4331 struct symbol_block *b = (struct symbol_block *) m->start;
4332 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4333
4334 /* P must point to the start of a Lisp_Symbol, not be
4335 one of the unused cells in the current symbol block,
4336 and not be on the free-list. */
4337 return (offset >= 0
4338 && offset % sizeof b->symbols[0] == 0
4339 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4340 && (b != symbol_block
4341 || offset / sizeof b->symbols[0] < symbol_block_index)
4342 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4343 }
4344 else
4345 return 0;
4346 }
4347
4348
4349 /* Value is non-zero if P is a pointer to a live Lisp float on
4350 the heap. M is a pointer to the mem_block for P. */
4351
4352 static inline int
4353 live_float_p (struct mem_node *m, void *p)
4354 {
4355 if (m->type == MEM_TYPE_FLOAT)
4356 {
4357 struct float_block *b = (struct float_block *) m->start;
4358 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4359
4360 /* P must point to the start of a Lisp_Float and not be
4361 one of the unused cells in the current float block. */
4362 return (offset >= 0
4363 && offset % sizeof b->floats[0] == 0
4364 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4365 && (b != float_block
4366 || offset / sizeof b->floats[0] < float_block_index));
4367 }
4368 else
4369 return 0;
4370 }
4371
4372
4373 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4374 the heap. M is a pointer to the mem_block for P. */
4375
4376 static inline int
4377 live_misc_p (struct mem_node *m, void *p)
4378 {
4379 if (m->type == MEM_TYPE_MISC)
4380 {
4381 struct marker_block *b = (struct marker_block *) m->start;
4382 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4383
4384 /* P must point to the start of a Lisp_Misc, not be
4385 one of the unused cells in the current misc block,
4386 and not be on the free-list. */
4387 return (offset >= 0
4388 && offset % sizeof b->markers[0] == 0
4389 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4390 && (b != marker_block
4391 || offset / sizeof b->markers[0] < marker_block_index)
4392 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4393 }
4394 else
4395 return 0;
4396 }
4397
4398
4399 /* Value is non-zero if P is a pointer to a live vector-like object.
4400 M is a pointer to the mem_block for P. */
4401
4402 static inline int
4403 live_vector_p (struct mem_node *m, void *p)
4404 {
4405 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4406 {
4407 /* This memory node corresponds to a vector block. */
4408 struct vector_block *block = (struct vector_block *) m->start;
4409 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4410
4411 /* P is in the block's allocation range. Scan the block
4412 up to P and see whether P points to the start of some
4413 vector which is not on a free list. FIXME: check whether
4414 some allocation patterns (probably a lot of short vectors)
4415 may cause a substantial overhead of this loop. */
4416 while (VECTOR_IN_BLOCK (vector, block)
4417 && vector <= (struct Lisp_Vector *) p)
4418 {
4419 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE))
4420 vector = ADVANCE (vector, (vector->header.size
4421 & PSEUDOVECTOR_SIZE_MASK));
4422 else if (vector == p)
4423 return 1;
4424 else
4425 vector = ADVANCE (vector, vector->header.next.nbytes);
4426 }
4427 }
4428 else if (m->type == MEM_TYPE_VECTORLIKE && p == m->start)
4429 /* This memory node corresponds to a large vector. */
4430 return 1;
4431 return 0;
4432 }
4433
4434
4435 /* Value is non-zero if P is a pointer to a live buffer. M is a
4436 pointer to the mem_block for P. */
4437
4438 static inline int
4439 live_buffer_p (struct mem_node *m, void *p)
4440 {
4441 /* P must point to the start of the block, and the buffer
4442 must not have been killed. */
4443 return (m->type == MEM_TYPE_BUFFER
4444 && p == m->start
4445 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
4446 }
4447
4448 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4449
4450 #if GC_MARK_STACK
4451
4452 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4453
4454 /* Array of objects that are kept alive because the C stack contains
4455 a pattern that looks like a reference to them . */
4456
4457 #define MAX_ZOMBIES 10
4458 static Lisp_Object zombies[MAX_ZOMBIES];
4459
4460 /* Number of zombie objects. */
4461
4462 static EMACS_INT nzombies;
4463
4464 /* Number of garbage collections. */
4465
4466 static EMACS_INT ngcs;
4467
4468 /* Average percentage of zombies per collection. */
4469
4470 static double avg_zombies;
4471
4472 /* Max. number of live and zombie objects. */
4473
4474 static EMACS_INT max_live, max_zombies;
4475
4476 /* Average number of live objects per GC. */
4477
4478 static double avg_live;
4479
4480 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4481 doc: /* Show information about live and zombie objects. */)
4482 (void)
4483 {
4484 Lisp_Object args[8], zombie_list = Qnil;
4485 EMACS_INT i;
4486 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4487 zombie_list = Fcons (zombies[i], zombie_list);
4488 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4489 args[1] = make_number (ngcs);
4490 args[2] = make_float (avg_live);
4491 args[3] = make_float (avg_zombies);
4492 args[4] = make_float (avg_zombies / avg_live / 100);
4493 args[5] = make_number (max_live);
4494 args[6] = make_number (max_zombies);
4495 args[7] = zombie_list;
4496 return Fmessage (8, args);
4497 }
4498
4499 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4500
4501
4502 /* Mark OBJ if we can prove it's a Lisp_Object. */
4503
4504 static inline void
4505 mark_maybe_object (Lisp_Object obj)
4506 {
4507 void *po;
4508 struct mem_node *m;
4509
4510 if (INTEGERP (obj))
4511 return;
4512
4513 po = (void *) XPNTR (obj);
4514 m = mem_find (po);
4515
4516 if (m != MEM_NIL)
4517 {
4518 int mark_p = 0;
4519
4520 switch (XTYPE (obj))
4521 {
4522 case Lisp_String:
4523 mark_p = (live_string_p (m, po)
4524 && !STRING_MARKED_P ((struct Lisp_String *) po));
4525 break;
4526
4527 case Lisp_Cons:
4528 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4529 break;
4530
4531 case Lisp_Symbol:
4532 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4533 break;
4534
4535 case Lisp_Float:
4536 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4537 break;
4538
4539 case Lisp_Vectorlike:
4540 /* Note: can't check BUFFERP before we know it's a
4541 buffer because checking that dereferences the pointer
4542 PO which might point anywhere. */
4543 if (live_vector_p (m, po))
4544 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4545 else if (live_buffer_p (m, po))
4546 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4547 break;
4548
4549 case Lisp_Misc:
4550 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4551 break;
4552
4553 default:
4554 break;
4555 }
4556
4557 if (mark_p)
4558 {
4559 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4560 if (nzombies < MAX_ZOMBIES)
4561 zombies[nzombies] = obj;
4562 ++nzombies;
4563 #endif
4564 mark_object (obj);
4565 }
4566 }
4567 }
4568
4569
4570 /* If P points to Lisp data, mark that as live if it isn't already
4571 marked. */
4572
4573 static inline void
4574 mark_maybe_pointer (void *p)
4575 {
4576 struct mem_node *m;
4577
4578 /* Quickly rule out some values which can't point to Lisp data.
4579 USE_LSB_TAG needs Lisp data to be aligned on multiples of 1 << GCTYPEBITS.
4580 Otherwise, assume that Lisp data is aligned on even addresses. */
4581 if ((intptr_t) p % (USE_LSB_TAG ? 1 << GCTYPEBITS : 2))
4582 return;
4583
4584 m = mem_find (p);
4585 if (m != MEM_NIL)
4586 {
4587 Lisp_Object obj = Qnil;
4588
4589 switch (m->type)
4590 {
4591 case MEM_TYPE_NON_LISP:
4592 /* Nothing to do; not a pointer to Lisp memory. */
4593 break;
4594
4595 case MEM_TYPE_BUFFER:
4596 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4597 XSETVECTOR (obj, p);
4598 break;
4599
4600 case MEM_TYPE_CONS:
4601 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4602 XSETCONS (obj, p);
4603 break;
4604
4605 case MEM_TYPE_STRING:
4606 if (live_string_p (m, p)
4607 && !STRING_MARKED_P ((struct Lisp_String *) p))
4608 XSETSTRING (obj, p);
4609 break;
4610
4611 case MEM_TYPE_MISC:
4612 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4613 XSETMISC (obj, p);
4614 break;
4615
4616 case MEM_TYPE_SYMBOL:
4617 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4618 XSETSYMBOL (obj, p);
4619 break;
4620
4621 case MEM_TYPE_FLOAT:
4622 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4623 XSETFLOAT (obj, p);
4624 break;
4625
4626 case MEM_TYPE_VECTORLIKE:
4627 case MEM_TYPE_VECTOR_BLOCK:
4628 if (live_vector_p (m, p))
4629 {
4630 Lisp_Object tem;
4631 XSETVECTOR (tem, p);
4632 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4633 obj = tem;
4634 }
4635 break;
4636
4637 default:
4638 abort ();
4639 }
4640
4641 if (!NILP (obj))
4642 mark_object (obj);
4643 }
4644 }
4645
4646
4647 /* Alignment of pointer values. Use offsetof, as it sometimes returns
4648 a smaller alignment than GCC's __alignof__ and mark_memory might
4649 miss objects if __alignof__ were used. */
4650 #define GC_POINTER_ALIGNMENT offsetof (struct {char a; void *b;}, b)
4651
4652 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4653 not suffice, which is the typical case. A host where a Lisp_Object is
4654 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4655 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4656 suffice to widen it to to a Lisp_Object and check it that way. */
4657 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4658 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4659 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4660 nor mark_maybe_object can follow the pointers. This should not occur on
4661 any practical porting target. */
4662 # error "MSB type bits straddle pointer-word boundaries"
4663 # endif
4664 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4665 pointer words that hold pointers ORed with type bits. */
4666 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4667 #else
4668 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4669 words that hold unmodified pointers. */
4670 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4671 #endif
4672
4673 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4674 or END+OFFSET..START. */
4675
4676 static void
4677 mark_memory (void *start, void *end)
4678 #if defined (__clang__) && defined (__has_feature)
4679 #if __has_feature(address_sanitizer)
4680 /* Do not allow -faddress-sanitizer to check this function, since it
4681 crosses the function stack boundary, and thus would yield many
4682 false positives. */
4683 __attribute__((no_address_safety_analysis))
4684 #endif
4685 #endif
4686 {
4687 void **pp;
4688 int i;
4689
4690 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4691 nzombies = 0;
4692 #endif
4693
4694 /* Make START the pointer to the start of the memory region,
4695 if it isn't already. */
4696 if (end < start)
4697 {
4698 void *tem = start;
4699 start = end;
4700 end = tem;
4701 }
4702
4703 /* Mark Lisp data pointed to. This is necessary because, in some
4704 situations, the C compiler optimizes Lisp objects away, so that
4705 only a pointer to them remains. Example:
4706
4707 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4708 ()
4709 {
4710 Lisp_Object obj = build_string ("test");
4711 struct Lisp_String *s = XSTRING (obj);
4712 Fgarbage_collect ();
4713 fprintf (stderr, "test `%s'\n", s->data);
4714 return Qnil;
4715 }
4716
4717 Here, `obj' isn't really used, and the compiler optimizes it
4718 away. The only reference to the life string is through the
4719 pointer `s'. */
4720
4721 for (pp = start; (void *) pp < end; pp++)
4722 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4723 {
4724 void *p = *(void **) ((char *) pp + i);
4725 mark_maybe_pointer (p);
4726 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4727 mark_maybe_object (XIL ((intptr_t) p));
4728 }
4729 }
4730
4731 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4732 the GCC system configuration. In gcc 3.2, the only systems for
4733 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4734 by others?) and ns32k-pc532-min. */
4735
4736 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4737
4738 static int setjmp_tested_p, longjmps_done;
4739
4740 #define SETJMP_WILL_LIKELY_WORK "\
4741 \n\
4742 Emacs garbage collector has been changed to use conservative stack\n\
4743 marking. Emacs has determined that the method it uses to do the\n\
4744 marking will likely work on your system, but this isn't sure.\n\
4745 \n\
4746 If you are a system-programmer, or can get the help of a local wizard\n\
4747 who is, please take a look at the function mark_stack in alloc.c, and\n\
4748 verify that the methods used are appropriate for your system.\n\
4749 \n\
4750 Please mail the result to <emacs-devel@gnu.org>.\n\
4751 "
4752
4753 #define SETJMP_WILL_NOT_WORK "\
4754 \n\
4755 Emacs garbage collector has been changed to use conservative stack\n\
4756 marking. Emacs has determined that the default method it uses to do the\n\
4757 marking will not work on your system. We will need a system-dependent\n\
4758 solution for your system.\n\
4759 \n\
4760 Please take a look at the function mark_stack in alloc.c, and\n\
4761 try to find a way to make it work on your system.\n\
4762 \n\
4763 Note that you may get false negatives, depending on the compiler.\n\
4764 In particular, you need to use -O with GCC for this test.\n\
4765 \n\
4766 Please mail the result to <emacs-devel@gnu.org>.\n\
4767 "
4768
4769
4770 /* Perform a quick check if it looks like setjmp saves registers in a
4771 jmp_buf. Print a message to stderr saying so. When this test
4772 succeeds, this is _not_ a proof that setjmp is sufficient for
4773 conservative stack marking. Only the sources or a disassembly
4774 can prove that. */
4775
4776 static void
4777 test_setjmp (void)
4778 {
4779 char buf[10];
4780 register int x;
4781 jmp_buf jbuf;
4782 int result = 0;
4783
4784 /* Arrange for X to be put in a register. */
4785 sprintf (buf, "1");
4786 x = strlen (buf);
4787 x = 2 * x - 1;
4788
4789 setjmp (jbuf);
4790 if (longjmps_done == 1)
4791 {
4792 /* Came here after the longjmp at the end of the function.
4793
4794 If x == 1, the longjmp has restored the register to its
4795 value before the setjmp, and we can hope that setjmp
4796 saves all such registers in the jmp_buf, although that
4797 isn't sure.
4798
4799 For other values of X, either something really strange is
4800 taking place, or the setjmp just didn't save the register. */
4801
4802 if (x == 1)
4803 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4804 else
4805 {
4806 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4807 exit (1);
4808 }
4809 }
4810
4811 ++longjmps_done;
4812 x = 2;
4813 if (longjmps_done == 1)
4814 longjmp (jbuf, 1);
4815 }
4816
4817 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4818
4819
4820 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4821
4822 /* Abort if anything GCPRO'd doesn't survive the GC. */
4823
4824 static void
4825 check_gcpros (void)
4826 {
4827 struct gcpro *p;
4828 ptrdiff_t i;
4829
4830 for (p = gcprolist; p; p = p->next)
4831 for (i = 0; i < p->nvars; ++i)
4832 if (!survives_gc_p (p->var[i]))
4833 /* FIXME: It's not necessarily a bug. It might just be that the
4834 GCPRO is unnecessary or should release the object sooner. */
4835 abort ();
4836 }
4837
4838 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4839
4840 static void
4841 dump_zombies (void)
4842 {
4843 int i;
4844
4845 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4846 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4847 {
4848 fprintf (stderr, " %d = ", i);
4849 debug_print (zombies[i]);
4850 }
4851 }
4852
4853 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4854
4855
4856 /* Mark live Lisp objects on the C stack.
4857
4858 There are several system-dependent problems to consider when
4859 porting this to new architectures:
4860
4861 Processor Registers
4862
4863 We have to mark Lisp objects in CPU registers that can hold local
4864 variables or are used to pass parameters.
4865
4866 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4867 something that either saves relevant registers on the stack, or
4868 calls mark_maybe_object passing it each register's contents.
4869
4870 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4871 implementation assumes that calling setjmp saves registers we need
4872 to see in a jmp_buf which itself lies on the stack. This doesn't
4873 have to be true! It must be verified for each system, possibly
4874 by taking a look at the source code of setjmp.
4875
4876 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4877 can use it as a machine independent method to store all registers
4878 to the stack. In this case the macros described in the previous
4879 two paragraphs are not used.
4880
4881 Stack Layout
4882
4883 Architectures differ in the way their processor stack is organized.
4884 For example, the stack might look like this
4885
4886 +----------------+
4887 | Lisp_Object | size = 4
4888 +----------------+
4889 | something else | size = 2
4890 +----------------+
4891 | Lisp_Object | size = 4
4892 +----------------+
4893 | ... |
4894
4895 In such a case, not every Lisp_Object will be aligned equally. To
4896 find all Lisp_Object on the stack it won't be sufficient to walk
4897 the stack in steps of 4 bytes. Instead, two passes will be
4898 necessary, one starting at the start of the stack, and a second
4899 pass starting at the start of the stack + 2. Likewise, if the
4900 minimal alignment of Lisp_Objects on the stack is 1, four passes
4901 would be necessary, each one starting with one byte more offset
4902 from the stack start. */
4903
4904 static void
4905 mark_stack (void)
4906 {
4907 void *end;
4908
4909 #ifdef HAVE___BUILTIN_UNWIND_INIT
4910 /* Force callee-saved registers and register windows onto the stack.
4911 This is the preferred method if available, obviating the need for
4912 machine dependent methods. */
4913 __builtin_unwind_init ();
4914 end = &end;
4915 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4916 #ifndef GC_SAVE_REGISTERS_ON_STACK
4917 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4918 union aligned_jmpbuf {
4919 Lisp_Object o;
4920 jmp_buf j;
4921 } j;
4922 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4923 #endif
4924 /* This trick flushes the register windows so that all the state of
4925 the process is contained in the stack. */
4926 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4927 needed on ia64 too. See mach_dep.c, where it also says inline
4928 assembler doesn't work with relevant proprietary compilers. */
4929 #ifdef __sparc__
4930 #if defined (__sparc64__) && defined (__FreeBSD__)
4931 /* FreeBSD does not have a ta 3 handler. */
4932 asm ("flushw");
4933 #else
4934 asm ("ta 3");
4935 #endif
4936 #endif
4937
4938 /* Save registers that we need to see on the stack. We need to see
4939 registers used to hold register variables and registers used to
4940 pass parameters. */
4941 #ifdef GC_SAVE_REGISTERS_ON_STACK
4942 GC_SAVE_REGISTERS_ON_STACK (end);
4943 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4944
4945 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4946 setjmp will definitely work, test it
4947 and print a message with the result
4948 of the test. */
4949 if (!setjmp_tested_p)
4950 {
4951 setjmp_tested_p = 1;
4952 test_setjmp ();
4953 }
4954 #endif /* GC_SETJMP_WORKS */
4955
4956 setjmp (j.j);
4957 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4958 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4959 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4960
4961 /* This assumes that the stack is a contiguous region in memory. If
4962 that's not the case, something has to be done here to iterate
4963 over the stack segments. */
4964 mark_memory (stack_base, end);
4965
4966 /* Allow for marking a secondary stack, like the register stack on the
4967 ia64. */
4968 #ifdef GC_MARK_SECONDARY_STACK
4969 GC_MARK_SECONDARY_STACK ();
4970 #endif
4971
4972 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4973 check_gcpros ();
4974 #endif
4975 }
4976
4977 #endif /* GC_MARK_STACK != 0 */
4978
4979
4980 /* Determine whether it is safe to access memory at address P. */
4981 static int
4982 valid_pointer_p (void *p)
4983 {
4984 #ifdef WINDOWSNT
4985 return w32_valid_pointer_p (p, 16);
4986 #else
4987 int fd[2];
4988
4989 /* Obviously, we cannot just access it (we would SEGV trying), so we
4990 trick the o/s to tell us whether p is a valid pointer.
4991 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4992 not validate p in that case. */
4993
4994 if (pipe (fd) == 0)
4995 {
4996 int valid = (emacs_write (fd[1], (char *) p, 16) == 16);
4997 emacs_close (fd[1]);
4998 emacs_close (fd[0]);
4999 return valid;
5000 }
5001
5002 return -1;
5003 #endif
5004 }
5005
5006 /* Return 1 if OBJ is a valid lisp object.
5007 Return 0 if OBJ is NOT a valid lisp object.
5008 Return -1 if we cannot validate OBJ.
5009 This function can be quite slow,
5010 so it should only be used in code for manual debugging. */
5011
5012 int
5013 valid_lisp_object_p (Lisp_Object obj)
5014 {
5015 void *p;
5016 #if GC_MARK_STACK
5017 struct mem_node *m;
5018 #endif
5019
5020 if (INTEGERP (obj))
5021 return 1;
5022
5023 p = (void *) XPNTR (obj);
5024 if (PURE_POINTER_P (p))
5025 return 1;
5026
5027 #if !GC_MARK_STACK
5028 return valid_pointer_p (p);
5029 #else
5030
5031 m = mem_find (p);
5032
5033 if (m == MEM_NIL)
5034 {
5035 int valid = valid_pointer_p (p);
5036 if (valid <= 0)
5037 return valid;
5038
5039 if (SUBRP (obj))
5040 return 1;
5041
5042 return 0;
5043 }
5044
5045 switch (m->type)
5046 {
5047 case MEM_TYPE_NON_LISP:
5048 return 0;
5049
5050 case MEM_TYPE_BUFFER:
5051 return live_buffer_p (m, p);
5052
5053 case MEM_TYPE_CONS:
5054 return live_cons_p (m, p);
5055
5056 case MEM_TYPE_STRING:
5057 return live_string_p (m, p);
5058
5059 case MEM_TYPE_MISC:
5060 return live_misc_p (m, p);
5061
5062 case MEM_TYPE_SYMBOL:
5063 return live_symbol_p (m, p);
5064
5065 case MEM_TYPE_FLOAT:
5066 return live_float_p (m, p);
5067
5068 case MEM_TYPE_VECTORLIKE:
5069 case MEM_TYPE_VECTOR_BLOCK:
5070 return live_vector_p (m, p);
5071
5072 default:
5073 break;
5074 }
5075
5076 return 0;
5077 #endif
5078 }
5079
5080
5081
5082 \f
5083 /***********************************************************************
5084 Pure Storage Management
5085 ***********************************************************************/
5086
5087 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5088 pointer to it. TYPE is the Lisp type for which the memory is
5089 allocated. TYPE < 0 means it's not used for a Lisp object. */
5090
5091 static void *
5092 pure_alloc (size_t size, int type)
5093 {
5094 void *result;
5095 #if USE_LSB_TAG
5096 size_t alignment = (1 << GCTYPEBITS);
5097 #else
5098 size_t alignment = sizeof (EMACS_INT);
5099
5100 /* Give Lisp_Floats an extra alignment. */
5101 if (type == Lisp_Float)
5102 {
5103 #if defined __GNUC__ && __GNUC__ >= 2
5104 alignment = __alignof (struct Lisp_Float);
5105 #else
5106 alignment = sizeof (struct Lisp_Float);
5107 #endif
5108 }
5109 #endif
5110
5111 again:
5112 if (type >= 0)
5113 {
5114 /* Allocate space for a Lisp object from the beginning of the free
5115 space with taking account of alignment. */
5116 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5117 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5118 }
5119 else
5120 {
5121 /* Allocate space for a non-Lisp object from the end of the free
5122 space. */
5123 pure_bytes_used_non_lisp += size;
5124 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5125 }
5126 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5127
5128 if (pure_bytes_used <= pure_size)
5129 return result;
5130
5131 /* Don't allocate a large amount here,
5132 because it might get mmap'd and then its address
5133 might not be usable. */
5134 purebeg = xmalloc (10000);
5135 pure_size = 10000;
5136 pure_bytes_used_before_overflow += pure_bytes_used - size;
5137 pure_bytes_used = 0;
5138 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5139 goto again;
5140 }
5141
5142
5143 /* Print a warning if PURESIZE is too small. */
5144
5145 void
5146 check_pure_size (void)
5147 {
5148 if (pure_bytes_used_before_overflow)
5149 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5150 " bytes needed)"),
5151 pure_bytes_used + pure_bytes_used_before_overflow);
5152 }
5153
5154
5155 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5156 the non-Lisp data pool of the pure storage, and return its start
5157 address. Return NULL if not found. */
5158
5159 static char *
5160 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5161 {
5162 int i;
5163 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5164 const unsigned char *p;
5165 char *non_lisp_beg;
5166
5167 if (pure_bytes_used_non_lisp <= nbytes)
5168 return NULL;
5169
5170 /* Set up the Boyer-Moore table. */
5171 skip = nbytes + 1;
5172 for (i = 0; i < 256; i++)
5173 bm_skip[i] = skip;
5174
5175 p = (const unsigned char *) data;
5176 while (--skip > 0)
5177 bm_skip[*p++] = skip;
5178
5179 last_char_skip = bm_skip['\0'];
5180
5181 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5182 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5183
5184 /* See the comments in the function `boyer_moore' (search.c) for the
5185 use of `infinity'. */
5186 infinity = pure_bytes_used_non_lisp + 1;
5187 bm_skip['\0'] = infinity;
5188
5189 p = (const unsigned char *) non_lisp_beg + nbytes;
5190 start = 0;
5191 do
5192 {
5193 /* Check the last character (== '\0'). */
5194 do
5195 {
5196 start += bm_skip[*(p + start)];
5197 }
5198 while (start <= start_max);
5199
5200 if (start < infinity)
5201 /* Couldn't find the last character. */
5202 return NULL;
5203
5204 /* No less than `infinity' means we could find the last
5205 character at `p[start - infinity]'. */
5206 start -= infinity;
5207
5208 /* Check the remaining characters. */
5209 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5210 /* Found. */
5211 return non_lisp_beg + start;
5212
5213 start += last_char_skip;
5214 }
5215 while (start <= start_max);
5216
5217 return NULL;
5218 }
5219
5220
5221 /* Return a string allocated in pure space. DATA is a buffer holding
5222 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5223 non-zero means make the result string multibyte.
5224
5225 Must get an error if pure storage is full, since if it cannot hold
5226 a large string it may be able to hold conses that point to that
5227 string; then the string is not protected from gc. */
5228
5229 Lisp_Object
5230 make_pure_string (const char *data,
5231 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
5232 {
5233 Lisp_Object string;
5234 struct Lisp_String *s;
5235
5236 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5237 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5238 if (s->data == NULL)
5239 {
5240 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
5241 memcpy (s->data, data, nbytes);
5242 s->data[nbytes] = '\0';
5243 }
5244 s->size = nchars;
5245 s->size_byte = multibyte ? nbytes : -1;
5246 s->intervals = NULL_INTERVAL;
5247 XSETSTRING (string, s);
5248 return string;
5249 }
5250
5251 /* Return a string allocated in pure space. Do not
5252 allocate the string data, just point to DATA. */
5253
5254 Lisp_Object
5255 make_pure_c_string (const char *data, ptrdiff_t nchars)
5256 {
5257 Lisp_Object string;
5258 struct Lisp_String *s;
5259
5260 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5261 s->size = nchars;
5262 s->size_byte = -1;
5263 s->data = (unsigned char *) data;
5264 s->intervals = NULL_INTERVAL;
5265 XSETSTRING (string, s);
5266 return string;
5267 }
5268
5269 /* Return a cons allocated from pure space. Give it pure copies
5270 of CAR as car and CDR as cdr. */
5271
5272 Lisp_Object
5273 pure_cons (Lisp_Object car, Lisp_Object cdr)
5274 {
5275 register Lisp_Object new;
5276 struct Lisp_Cons *p;
5277
5278 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
5279 XSETCONS (new, p);
5280 XSETCAR (new, Fpurecopy (car));
5281 XSETCDR (new, Fpurecopy (cdr));
5282 return new;
5283 }
5284
5285
5286 /* Value is a float object with value NUM allocated from pure space. */
5287
5288 static Lisp_Object
5289 make_pure_float (double num)
5290 {
5291 register Lisp_Object new;
5292 struct Lisp_Float *p;
5293
5294 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
5295 XSETFLOAT (new, p);
5296 XFLOAT_INIT (new, num);
5297 return new;
5298 }
5299
5300
5301 /* Return a vector with room for LEN Lisp_Objects allocated from
5302 pure space. */
5303
5304 static Lisp_Object
5305 make_pure_vector (ptrdiff_t len)
5306 {
5307 Lisp_Object new;
5308 struct Lisp_Vector *p;
5309 size_t size = header_size + len * word_size;
5310
5311 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
5312 XSETVECTOR (new, p);
5313 XVECTOR (new)->header.size = len;
5314 return new;
5315 }
5316
5317
5318 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5319 doc: /* Make a copy of object OBJ in pure storage.
5320 Recursively copies contents of vectors and cons cells.
5321 Does not copy symbols. Copies strings without text properties. */)
5322 (register Lisp_Object obj)
5323 {
5324 if (NILP (Vpurify_flag))
5325 return obj;
5326
5327 if (PURE_POINTER_P (XPNTR (obj)))
5328 return obj;
5329
5330 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5331 {
5332 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5333 if (!NILP (tmp))
5334 return tmp;
5335 }
5336
5337 if (CONSP (obj))
5338 obj = pure_cons (XCAR (obj), XCDR (obj));
5339 else if (FLOATP (obj))
5340 obj = make_pure_float (XFLOAT_DATA (obj));
5341 else if (STRINGP (obj))
5342 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5343 SBYTES (obj),
5344 STRING_MULTIBYTE (obj));
5345 else if (COMPILEDP (obj) || VECTORP (obj))
5346 {
5347 register struct Lisp_Vector *vec;
5348 register ptrdiff_t i;
5349 ptrdiff_t size;
5350
5351 size = ASIZE (obj);
5352 if (size & PSEUDOVECTOR_FLAG)
5353 size &= PSEUDOVECTOR_SIZE_MASK;
5354 vec = XVECTOR (make_pure_vector (size));
5355 for (i = 0; i < size; i++)
5356 vec->contents[i] = Fpurecopy (AREF (obj, i));
5357 if (COMPILEDP (obj))
5358 {
5359 XSETPVECTYPE (vec, PVEC_COMPILED);
5360 XSETCOMPILED (obj, vec);
5361 }
5362 else
5363 XSETVECTOR (obj, vec);
5364 }
5365 else if (MARKERP (obj))
5366 error ("Attempt to copy a marker to pure storage");
5367 else
5368 /* Not purified, don't hash-cons. */
5369 return obj;
5370
5371 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5372 Fputhash (obj, obj, Vpurify_flag);
5373
5374 return obj;
5375 }
5376
5377
5378 \f
5379 /***********************************************************************
5380 Protection from GC
5381 ***********************************************************************/
5382
5383 /* Put an entry in staticvec, pointing at the variable with address
5384 VARADDRESS. */
5385
5386 void
5387 staticpro (Lisp_Object *varaddress)
5388 {
5389 staticvec[staticidx++] = varaddress;
5390 if (staticidx >= NSTATICS)
5391 abort ();
5392 }
5393
5394 \f
5395 /***********************************************************************
5396 Protection from GC
5397 ***********************************************************************/
5398
5399 /* Temporarily prevent garbage collection. */
5400
5401 ptrdiff_t
5402 inhibit_garbage_collection (void)
5403 {
5404 ptrdiff_t count = SPECPDL_INDEX ();
5405
5406 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5407 return count;
5408 }
5409
5410 /* Used to avoid possible overflows when
5411 converting from C to Lisp integers. */
5412
5413 static inline Lisp_Object
5414 bounded_number (EMACS_INT number)
5415 {
5416 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5417 }
5418
5419 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5420 doc: /* Reclaim storage for Lisp objects no longer needed.
5421 Garbage collection happens automatically if you cons more than
5422 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5423 `garbage-collect' normally returns a list with info on amount of space in use,
5424 where each entry has the form (NAME SIZE USED FREE), where:
5425 - NAME is a symbol describing the kind of objects this entry represents,
5426 - SIZE is the number of bytes used by each one,
5427 - USED is the number of those objects that were found live in the heap,
5428 - FREE is the number of those objects that are not live but that Emacs
5429 keeps around for future allocations (maybe because it does not know how
5430 to return them to the OS).
5431 However, if there was overflow in pure space, `garbage-collect'
5432 returns nil, because real GC can't be done.
5433 See Info node `(elisp)Garbage Collection'. */)
5434 (void)
5435 {
5436 register struct specbinding *bind;
5437 register struct buffer *nextb;
5438 char stack_top_variable;
5439 ptrdiff_t i;
5440 int message_p;
5441 Lisp_Object total[11];
5442 ptrdiff_t count = SPECPDL_INDEX ();
5443 EMACS_TIME t1;
5444
5445 if (abort_on_gc)
5446 abort ();
5447
5448 /* Can't GC if pure storage overflowed because we can't determine
5449 if something is a pure object or not. */
5450 if (pure_bytes_used_before_overflow)
5451 return Qnil;
5452
5453 CHECK_CONS_LIST ();
5454
5455 /* Don't keep undo information around forever.
5456 Do this early on, so it is no problem if the user quits. */
5457 FOR_EACH_BUFFER (nextb)
5458 compact_buffer (nextb);
5459
5460 t1 = current_emacs_time ();
5461
5462 /* In case user calls debug_print during GC,
5463 don't let that cause a recursive GC. */
5464 consing_since_gc = 0;
5465
5466 /* Save what's currently displayed in the echo area. */
5467 message_p = push_message ();
5468 record_unwind_protect (pop_message_unwind, Qnil);
5469
5470 /* Save a copy of the contents of the stack, for debugging. */
5471 #if MAX_SAVE_STACK > 0
5472 if (NILP (Vpurify_flag))
5473 {
5474 char *stack;
5475 ptrdiff_t stack_size;
5476 if (&stack_top_variable < stack_bottom)
5477 {
5478 stack = &stack_top_variable;
5479 stack_size = stack_bottom - &stack_top_variable;
5480 }
5481 else
5482 {
5483 stack = stack_bottom;
5484 stack_size = &stack_top_variable - stack_bottom;
5485 }
5486 if (stack_size <= MAX_SAVE_STACK)
5487 {
5488 if (stack_copy_size < stack_size)
5489 {
5490 stack_copy = xrealloc (stack_copy, stack_size);
5491 stack_copy_size = stack_size;
5492 }
5493 memcpy (stack_copy, stack, stack_size);
5494 }
5495 }
5496 #endif /* MAX_SAVE_STACK > 0 */
5497
5498 if (garbage_collection_messages)
5499 message1_nolog ("Garbage collecting...");
5500
5501 BLOCK_INPUT;
5502
5503 shrink_regexp_cache ();
5504
5505 gc_in_progress = 1;
5506
5507 /* Mark all the special slots that serve as the roots of accessibility. */
5508
5509 for (i = 0; i < staticidx; i++)
5510 mark_object (*staticvec[i]);
5511
5512 for (bind = specpdl; bind != specpdl_ptr; bind++)
5513 {
5514 mark_object (bind->symbol);
5515 mark_object (bind->old_value);
5516 }
5517 mark_terminals ();
5518 mark_kboards ();
5519 mark_ttys ();
5520
5521 #ifdef USE_GTK
5522 {
5523 extern void xg_mark_data (void);
5524 xg_mark_data ();
5525 }
5526 #endif
5527
5528 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5529 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5530 mark_stack ();
5531 #else
5532 {
5533 register struct gcpro *tail;
5534 for (tail = gcprolist; tail; tail = tail->next)
5535 for (i = 0; i < tail->nvars; i++)
5536 mark_object (tail->var[i]);
5537 }
5538 mark_byte_stack ();
5539 {
5540 struct catchtag *catch;
5541 struct handler *handler;
5542
5543 for (catch = catchlist; catch; catch = catch->next)
5544 {
5545 mark_object (catch->tag);
5546 mark_object (catch->val);
5547 }
5548 for (handler = handlerlist; handler; handler = handler->next)
5549 {
5550 mark_object (handler->handler);
5551 mark_object (handler->var);
5552 }
5553 }
5554 mark_backtrace ();
5555 #endif
5556
5557 #ifdef HAVE_WINDOW_SYSTEM
5558 mark_fringe_data ();
5559 #endif
5560
5561 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5562 mark_stack ();
5563 #endif
5564
5565 /* Everything is now marked, except for the things that require special
5566 finalization, i.e. the undo_list.
5567 Look thru every buffer's undo list
5568 for elements that update markers that were not marked,
5569 and delete them. */
5570 FOR_EACH_BUFFER (nextb)
5571 {
5572 /* If a buffer's undo list is Qt, that means that undo is
5573 turned off in that buffer. Calling truncate_undo_list on
5574 Qt tends to return NULL, which effectively turns undo back on.
5575 So don't call truncate_undo_list if undo_list is Qt. */
5576 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5577 {
5578 Lisp_Object tail, prev;
5579 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5580 prev = Qnil;
5581 while (CONSP (tail))
5582 {
5583 if (CONSP (XCAR (tail))
5584 && MARKERP (XCAR (XCAR (tail)))
5585 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5586 {
5587 if (NILP (prev))
5588 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5589 else
5590 {
5591 tail = XCDR (tail);
5592 XSETCDR (prev, tail);
5593 }
5594 }
5595 else
5596 {
5597 prev = tail;
5598 tail = XCDR (tail);
5599 }
5600 }
5601 }
5602 /* Now that we have stripped the elements that need not be in the
5603 undo_list any more, we can finally mark the list. */
5604 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5605 }
5606
5607 gc_sweep ();
5608
5609 /* Clear the mark bits that we set in certain root slots. */
5610
5611 unmark_byte_stack ();
5612 VECTOR_UNMARK (&buffer_defaults);
5613 VECTOR_UNMARK (&buffer_local_symbols);
5614
5615 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5616 dump_zombies ();
5617 #endif
5618
5619 UNBLOCK_INPUT;
5620
5621 CHECK_CONS_LIST ();
5622
5623 gc_in_progress = 0;
5624
5625 consing_since_gc = 0;
5626 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5627 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5628
5629 gc_relative_threshold = 0;
5630 if (FLOATP (Vgc_cons_percentage))
5631 { /* Set gc_cons_combined_threshold. */
5632 double tot = 0;
5633
5634 tot += total_conses * sizeof (struct Lisp_Cons);
5635 tot += total_symbols * sizeof (struct Lisp_Symbol);
5636 tot += total_markers * sizeof (union Lisp_Misc);
5637 tot += total_string_bytes;
5638 tot += total_vector_slots * word_size;
5639 tot += total_floats * sizeof (struct Lisp_Float);
5640 tot += total_intervals * sizeof (struct interval);
5641 tot += total_strings * sizeof (struct Lisp_String);
5642
5643 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5644 if (0 < tot)
5645 {
5646 if (tot < TYPE_MAXIMUM (EMACS_INT))
5647 gc_relative_threshold = tot;
5648 else
5649 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5650 }
5651 }
5652
5653 if (garbage_collection_messages)
5654 {
5655 if (message_p || minibuf_level > 0)
5656 restore_message ();
5657 else
5658 message1_nolog ("Garbage collecting...done");
5659 }
5660
5661 unbind_to (count, Qnil);
5662
5663 total[0] = list4 (Qcons, make_number (sizeof (struct Lisp_Cons)),
5664 bounded_number (total_conses),
5665 bounded_number (total_free_conses));
5666
5667 total[1] = list4 (Qsymbol, make_number (sizeof (struct Lisp_Symbol)),
5668 bounded_number (total_symbols),
5669 bounded_number (total_free_symbols));
5670
5671 total[2] = list4 (Qmisc, make_number (sizeof (union Lisp_Misc)),
5672 bounded_number (total_markers),
5673 bounded_number (total_free_markers));
5674
5675 total[3] = list4 (Qstring, make_number (sizeof (struct Lisp_String)),
5676 bounded_number (total_strings),
5677 bounded_number (total_free_strings));
5678
5679 total[4] = list3 (Qstring_bytes, make_number (1),
5680 bounded_number (total_string_bytes));
5681
5682 total[5] = list3 (Qvector, make_number (sizeof (struct Lisp_Vector)),
5683 bounded_number (total_vectors));
5684
5685 total[6] = list4 (Qvector_slots, make_number (word_size),
5686 bounded_number (total_vector_slots),
5687 bounded_number (total_free_vector_slots));
5688
5689 total[7] = list4 (Qfloat, make_number (sizeof (struct Lisp_Float)),
5690 bounded_number (total_floats),
5691 bounded_number (total_free_floats));
5692
5693 total[8] = list4 (Qinterval, make_number (sizeof (struct interval)),
5694 bounded_number (total_intervals),
5695 bounded_number (total_free_intervals));
5696
5697 total[9] = list3 (Qbuffer, make_number (sizeof (struct buffer)),
5698 bounded_number (total_buffers));
5699
5700 total[10] = list4 (Qheap, make_number (1024),
5701 #ifdef DOUG_LEA_MALLOC
5702 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5703 bounded_number ((mallinfo ().fordblks + 1023) >> 10)
5704 #else
5705 Qnil, Qnil
5706 #endif
5707 );
5708
5709 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5710 {
5711 /* Compute average percentage of zombies. */
5712 double nlive = 0;
5713
5714 for (i = 0; i < 7; ++i)
5715 if (CONSP (total[i]))
5716 nlive += XFASTINT (XCAR (total[i]));
5717
5718 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5719 max_live = max (nlive, max_live);
5720 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5721 max_zombies = max (nzombies, max_zombies);
5722 ++ngcs;
5723 }
5724 #endif
5725
5726 if (!NILP (Vpost_gc_hook))
5727 {
5728 ptrdiff_t gc_count = inhibit_garbage_collection ();
5729 safe_run_hooks (Qpost_gc_hook);
5730 unbind_to (gc_count, Qnil);
5731 }
5732
5733 /* Accumulate statistics. */
5734 if (FLOATP (Vgc_elapsed))
5735 {
5736 EMACS_TIME t2 = current_emacs_time ();
5737 EMACS_TIME t3 = sub_emacs_time (t2, t1);
5738 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5739 + EMACS_TIME_TO_DOUBLE (t3));
5740 }
5741
5742 gcs_done++;
5743
5744 return Flist (sizeof total / sizeof *total, total);
5745 }
5746
5747
5748 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5749 only interesting objects referenced from glyphs are strings. */
5750
5751 static void
5752 mark_glyph_matrix (struct glyph_matrix *matrix)
5753 {
5754 struct glyph_row *row = matrix->rows;
5755 struct glyph_row *end = row + matrix->nrows;
5756
5757 for (; row < end; ++row)
5758 if (row->enabled_p)
5759 {
5760 int area;
5761 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5762 {
5763 struct glyph *glyph = row->glyphs[area];
5764 struct glyph *end_glyph = glyph + row->used[area];
5765
5766 for (; glyph < end_glyph; ++glyph)
5767 if (STRINGP (glyph->object)
5768 && !STRING_MARKED_P (XSTRING (glyph->object)))
5769 mark_object (glyph->object);
5770 }
5771 }
5772 }
5773
5774
5775 /* Mark Lisp faces in the face cache C. */
5776
5777 static void
5778 mark_face_cache (struct face_cache *c)
5779 {
5780 if (c)
5781 {
5782 int i, j;
5783 for (i = 0; i < c->used; ++i)
5784 {
5785 struct face *face = FACE_FROM_ID (c->f, i);
5786
5787 if (face)
5788 {
5789 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5790 mark_object (face->lface[j]);
5791 }
5792 }
5793 }
5794 }
5795
5796
5797 \f
5798 /* Mark reference to a Lisp_Object.
5799 If the object referred to has not been seen yet, recursively mark
5800 all the references contained in it. */
5801
5802 #define LAST_MARKED_SIZE 500
5803 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5804 static int last_marked_index;
5805
5806 /* For debugging--call abort when we cdr down this many
5807 links of a list, in mark_object. In debugging,
5808 the call to abort will hit a breakpoint.
5809 Normally this is zero and the check never goes off. */
5810 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5811
5812 static void
5813 mark_vectorlike (struct Lisp_Vector *ptr)
5814 {
5815 ptrdiff_t size = ptr->header.size;
5816 ptrdiff_t i;
5817
5818 eassert (!VECTOR_MARKED_P (ptr));
5819 VECTOR_MARK (ptr); /* Else mark it. */
5820 if (size & PSEUDOVECTOR_FLAG)
5821 size &= PSEUDOVECTOR_SIZE_MASK;
5822
5823 /* Note that this size is not the memory-footprint size, but only
5824 the number of Lisp_Object fields that we should trace.
5825 The distinction is used e.g. by Lisp_Process which places extra
5826 non-Lisp_Object fields at the end of the structure... */
5827 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5828 mark_object (ptr->contents[i]);
5829 }
5830
5831 /* Like mark_vectorlike but optimized for char-tables (and
5832 sub-char-tables) assuming that the contents are mostly integers or
5833 symbols. */
5834
5835 static void
5836 mark_char_table (struct Lisp_Vector *ptr)
5837 {
5838 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5839 int i;
5840
5841 eassert (!VECTOR_MARKED_P (ptr));
5842 VECTOR_MARK (ptr);
5843 for (i = 0; i < size; i++)
5844 {
5845 Lisp_Object val = ptr->contents[i];
5846
5847 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5848 continue;
5849 if (SUB_CHAR_TABLE_P (val))
5850 {
5851 if (! VECTOR_MARKED_P (XVECTOR (val)))
5852 mark_char_table (XVECTOR (val));
5853 }
5854 else
5855 mark_object (val);
5856 }
5857 }
5858
5859 /* Mark the chain of overlays starting at PTR. */
5860
5861 static void
5862 mark_overlay (struct Lisp_Overlay *ptr)
5863 {
5864 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5865 {
5866 ptr->gcmarkbit = 1;
5867 mark_object (ptr->start);
5868 mark_object (ptr->end);
5869 mark_object (ptr->plist);
5870 }
5871 }
5872
5873 /* Mark Lisp_Objects and special pointers in BUFFER. */
5874
5875 static void
5876 mark_buffer (struct buffer *buffer)
5877 {
5878 /* This is handled much like other pseudovectors... */
5879 mark_vectorlike ((struct Lisp_Vector *) buffer);
5880
5881 /* ...but there are some buffer-specific things. */
5882
5883 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5884
5885 /* For now, we just don't mark the undo_list. It's done later in
5886 a special way just before the sweep phase, and after stripping
5887 some of its elements that are not needed any more. */
5888
5889 mark_overlay (buffer->overlays_before);
5890 mark_overlay (buffer->overlays_after);
5891
5892 /* If this is an indirect buffer, mark its base buffer. */
5893 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5894 mark_buffer (buffer->base_buffer);
5895 }
5896
5897 /* Determine type of generic Lisp_Object and mark it accordingly. */
5898
5899 void
5900 mark_object (Lisp_Object arg)
5901 {
5902 register Lisp_Object obj = arg;
5903 #ifdef GC_CHECK_MARKED_OBJECTS
5904 void *po;
5905 struct mem_node *m;
5906 #endif
5907 ptrdiff_t cdr_count = 0;
5908
5909 loop:
5910
5911 if (PURE_POINTER_P (XPNTR (obj)))
5912 return;
5913
5914 last_marked[last_marked_index++] = obj;
5915 if (last_marked_index == LAST_MARKED_SIZE)
5916 last_marked_index = 0;
5917
5918 /* Perform some sanity checks on the objects marked here. Abort if
5919 we encounter an object we know is bogus. This increases GC time
5920 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5921 #ifdef GC_CHECK_MARKED_OBJECTS
5922
5923 po = (void *) XPNTR (obj);
5924
5925 /* Check that the object pointed to by PO is known to be a Lisp
5926 structure allocated from the heap. */
5927 #define CHECK_ALLOCATED() \
5928 do { \
5929 m = mem_find (po); \
5930 if (m == MEM_NIL) \
5931 abort (); \
5932 } while (0)
5933
5934 /* Check that the object pointed to by PO is live, using predicate
5935 function LIVEP. */
5936 #define CHECK_LIVE(LIVEP) \
5937 do { \
5938 if (!LIVEP (m, po)) \
5939 abort (); \
5940 } while (0)
5941
5942 /* Check both of the above conditions. */
5943 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5944 do { \
5945 CHECK_ALLOCATED (); \
5946 CHECK_LIVE (LIVEP); \
5947 } while (0) \
5948
5949 #else /* not GC_CHECK_MARKED_OBJECTS */
5950
5951 #define CHECK_LIVE(LIVEP) (void) 0
5952 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5953
5954 #endif /* not GC_CHECK_MARKED_OBJECTS */
5955
5956 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5957 {
5958 case Lisp_String:
5959 {
5960 register struct Lisp_String *ptr = XSTRING (obj);
5961 if (STRING_MARKED_P (ptr))
5962 break;
5963 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5964 MARK_STRING (ptr);
5965 MARK_INTERVAL_TREE (ptr->intervals);
5966 #ifdef GC_CHECK_STRING_BYTES
5967 /* Check that the string size recorded in the string is the
5968 same as the one recorded in the sdata structure. */
5969 CHECK_STRING_BYTES (ptr);
5970 #endif /* GC_CHECK_STRING_BYTES */
5971 }
5972 break;
5973
5974 case Lisp_Vectorlike:
5975 {
5976 register struct Lisp_Vector *ptr = XVECTOR (obj);
5977 register ptrdiff_t pvectype;
5978
5979 if (VECTOR_MARKED_P (ptr))
5980 break;
5981
5982 #ifdef GC_CHECK_MARKED_OBJECTS
5983 m = mem_find (po);
5984 if (m == MEM_NIL && !SUBRP (obj)
5985 && po != &buffer_defaults
5986 && po != &buffer_local_symbols)
5987 abort ();
5988 #endif /* GC_CHECK_MARKED_OBJECTS */
5989
5990 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5991 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5992 >> PSEUDOVECTOR_SIZE_BITS);
5993 else
5994 pvectype = 0;
5995
5996 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5997 CHECK_LIVE (live_vector_p);
5998
5999 switch (pvectype)
6000 {
6001 case PVEC_BUFFER:
6002 #ifdef GC_CHECK_MARKED_OBJECTS
6003 if (po != &buffer_defaults && po != &buffer_local_symbols)
6004 {
6005 struct buffer *b;
6006 FOR_EACH_BUFFER (b)
6007 if (b == po)
6008 break;
6009 if (b == NULL)
6010 abort ();
6011 }
6012 #endif /* GC_CHECK_MARKED_OBJECTS */
6013 mark_buffer ((struct buffer *) ptr);
6014 break;
6015
6016 case PVEC_COMPILED:
6017 { /* We could treat this just like a vector, but it is better
6018 to save the COMPILED_CONSTANTS element for last and avoid
6019 recursion there. */
6020 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6021 int i;
6022
6023 VECTOR_MARK (ptr);
6024 for (i = 0; i < size; i++)
6025 if (i != COMPILED_CONSTANTS)
6026 mark_object (ptr->contents[i]);
6027 if (size > COMPILED_CONSTANTS)
6028 {
6029 obj = ptr->contents[COMPILED_CONSTANTS];
6030 goto loop;
6031 }
6032 }
6033 break;
6034
6035 case PVEC_FRAME:
6036 {
6037 mark_vectorlike (ptr);
6038 mark_face_cache (((struct frame *) ptr)->face_cache);
6039 }
6040 break;
6041
6042 case PVEC_WINDOW:
6043 {
6044 struct window *w = (struct window *) ptr;
6045
6046 mark_vectorlike (ptr);
6047 /* Mark glyphs for leaf windows. Marking window
6048 matrices is sufficient because frame matrices
6049 use the same glyph memory. */
6050 if (NILP (w->hchild) && NILP (w->vchild) && w->current_matrix)
6051 {
6052 mark_glyph_matrix (w->current_matrix);
6053 mark_glyph_matrix (w->desired_matrix);
6054 }
6055 }
6056 break;
6057
6058 case PVEC_HASH_TABLE:
6059 {
6060 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6061
6062 mark_vectorlike (ptr);
6063 /* If hash table is not weak, mark all keys and values.
6064 For weak tables, mark only the vector. */
6065 if (NILP (h->weak))
6066 mark_object (h->key_and_value);
6067 else
6068 VECTOR_MARK (XVECTOR (h->key_and_value));
6069 }
6070 break;
6071
6072 case PVEC_CHAR_TABLE:
6073 mark_char_table (ptr);
6074 break;
6075
6076 case PVEC_BOOL_VECTOR:
6077 /* No Lisp_Objects to mark in a bool vector. */
6078 VECTOR_MARK (ptr);
6079 break;
6080
6081 case PVEC_SUBR:
6082 break;
6083
6084 case PVEC_EXCURSION:
6085 {
6086 struct Lisp_Excursion *e = (struct Lisp_Excursion *) ptr;
6087 /* No Lisp_Objects but two special pointers to mark here. */
6088 eassert (e->buffer != NULL);
6089 eassert (e->window != NULL);
6090 if (!VECTOR_MARKED_P (e->buffer))
6091 mark_buffer (e->buffer);
6092 if (!VECTOR_MARKED_P (e->window))
6093 mark_vectorlike ((struct Lisp_Vector *) e->window);
6094 }
6095 break;
6096
6097 case PVEC_FREE:
6098 abort ();
6099
6100 default:
6101 mark_vectorlike (ptr);
6102 }
6103 }
6104 break;
6105
6106 case Lisp_Symbol:
6107 {
6108 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6109 struct Lisp_Symbol *ptrx;
6110
6111 if (ptr->gcmarkbit)
6112 break;
6113 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6114 ptr->gcmarkbit = 1;
6115 mark_object (ptr->function);
6116 mark_object (ptr->plist);
6117 switch (ptr->redirect)
6118 {
6119 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6120 case SYMBOL_VARALIAS:
6121 {
6122 Lisp_Object tem;
6123 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6124 mark_object (tem);
6125 break;
6126 }
6127 case SYMBOL_LOCALIZED:
6128 {
6129 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6130 /* If the value is forwarded to a buffer or keyboard field,
6131 these are marked when we see the corresponding object.
6132 And if it's forwarded to a C variable, either it's not
6133 a Lisp_Object var, or it's staticpro'd already. */
6134 mark_object (blv->where);
6135 mark_object (blv->valcell);
6136 mark_object (blv->defcell);
6137 break;
6138 }
6139 case SYMBOL_FORWARDED:
6140 /* If the value is forwarded to a buffer or keyboard field,
6141 these are marked when we see the corresponding object.
6142 And if it's forwarded to a C variable, either it's not
6143 a Lisp_Object var, or it's staticpro'd already. */
6144 break;
6145 default: abort ();
6146 }
6147 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
6148 MARK_STRING (XSTRING (ptr->xname));
6149 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
6150
6151 ptr = ptr->next;
6152 if (ptr)
6153 {
6154 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
6155 XSETSYMBOL (obj, ptrx);
6156 goto loop;
6157 }
6158 }
6159 break;
6160
6161 case Lisp_Misc:
6162 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6163
6164 if (XMISCANY (obj)->gcmarkbit)
6165 break;
6166
6167 switch (XMISCTYPE (obj))
6168 {
6169 case Lisp_Misc_Marker:
6170 /* DO NOT mark thru the marker's chain.
6171 The buffer's markers chain does not preserve markers from gc;
6172 instead, markers are removed from the chain when freed by gc. */
6173 XMISCANY (obj)->gcmarkbit = 1;
6174 break;
6175
6176 case Lisp_Misc_Save_Value:
6177 XMISCANY (obj)->gcmarkbit = 1;
6178 #if GC_MARK_STACK
6179 {
6180 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6181 /* If DOGC is set, POINTER is the address of a memory
6182 area containing INTEGER potential Lisp_Objects. */
6183 if (ptr->dogc)
6184 {
6185 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
6186 ptrdiff_t nelt;
6187 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
6188 mark_maybe_object (*p);
6189 }
6190 }
6191 #endif
6192 break;
6193
6194 case Lisp_Misc_Overlay:
6195 mark_overlay (XOVERLAY (obj));
6196 break;
6197
6198 default:
6199 abort ();
6200 }
6201 break;
6202
6203 case Lisp_Cons:
6204 {
6205 register struct Lisp_Cons *ptr = XCONS (obj);
6206 if (CONS_MARKED_P (ptr))
6207 break;
6208 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6209 CONS_MARK (ptr);
6210 /* If the cdr is nil, avoid recursion for the car. */
6211 if (EQ (ptr->u.cdr, Qnil))
6212 {
6213 obj = ptr->car;
6214 cdr_count = 0;
6215 goto loop;
6216 }
6217 mark_object (ptr->car);
6218 obj = ptr->u.cdr;
6219 cdr_count++;
6220 if (cdr_count == mark_object_loop_halt)
6221 abort ();
6222 goto loop;
6223 }
6224
6225 case Lisp_Float:
6226 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6227 FLOAT_MARK (XFLOAT (obj));
6228 break;
6229
6230 case_Lisp_Int:
6231 break;
6232
6233 default:
6234 abort ();
6235 }
6236
6237 #undef CHECK_LIVE
6238 #undef CHECK_ALLOCATED
6239 #undef CHECK_ALLOCATED_AND_LIVE
6240 }
6241 /* Mark the Lisp pointers in the terminal objects.
6242 Called by Fgarbage_collect. */
6243
6244 static void
6245 mark_terminals (void)
6246 {
6247 struct terminal *t;
6248 for (t = terminal_list; t; t = t->next_terminal)
6249 {
6250 eassert (t->name != NULL);
6251 #ifdef HAVE_WINDOW_SYSTEM
6252 /* If a terminal object is reachable from a stacpro'ed object,
6253 it might have been marked already. Make sure the image cache
6254 gets marked. */
6255 mark_image_cache (t->image_cache);
6256 #endif /* HAVE_WINDOW_SYSTEM */
6257 if (!VECTOR_MARKED_P (t))
6258 mark_vectorlike ((struct Lisp_Vector *)t);
6259 }
6260 }
6261
6262
6263
6264 /* Value is non-zero if OBJ will survive the current GC because it's
6265 either marked or does not need to be marked to survive. */
6266
6267 int
6268 survives_gc_p (Lisp_Object obj)
6269 {
6270 int survives_p;
6271
6272 switch (XTYPE (obj))
6273 {
6274 case_Lisp_Int:
6275 survives_p = 1;
6276 break;
6277
6278 case Lisp_Symbol:
6279 survives_p = XSYMBOL (obj)->gcmarkbit;
6280 break;
6281
6282 case Lisp_Misc:
6283 survives_p = XMISCANY (obj)->gcmarkbit;
6284 break;
6285
6286 case Lisp_String:
6287 survives_p = STRING_MARKED_P (XSTRING (obj));
6288 break;
6289
6290 case Lisp_Vectorlike:
6291 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6292 break;
6293
6294 case Lisp_Cons:
6295 survives_p = CONS_MARKED_P (XCONS (obj));
6296 break;
6297
6298 case Lisp_Float:
6299 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6300 break;
6301
6302 default:
6303 abort ();
6304 }
6305
6306 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6307 }
6308
6309
6310 \f
6311 /* Sweep: find all structures not marked, and free them. */
6312
6313 static void
6314 gc_sweep (void)
6315 {
6316 /* Remove or mark entries in weak hash tables.
6317 This must be done before any object is unmarked. */
6318 sweep_weak_hash_tables ();
6319
6320 sweep_strings ();
6321 #ifdef GC_CHECK_STRING_BYTES
6322 if (!noninteractive)
6323 check_string_bytes (1);
6324 #endif
6325
6326 /* Put all unmarked conses on free list */
6327 {
6328 register struct cons_block *cblk;
6329 struct cons_block **cprev = &cons_block;
6330 register int lim = cons_block_index;
6331 EMACS_INT num_free = 0, num_used = 0;
6332
6333 cons_free_list = 0;
6334
6335 for (cblk = cons_block; cblk; cblk = *cprev)
6336 {
6337 register int i = 0;
6338 int this_free = 0;
6339 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6340
6341 /* Scan the mark bits an int at a time. */
6342 for (i = 0; i < ilim; i++)
6343 {
6344 if (cblk->gcmarkbits[i] == -1)
6345 {
6346 /* Fast path - all cons cells for this int are marked. */
6347 cblk->gcmarkbits[i] = 0;
6348 num_used += BITS_PER_INT;
6349 }
6350 else
6351 {
6352 /* Some cons cells for this int are not marked.
6353 Find which ones, and free them. */
6354 int start, pos, stop;
6355
6356 start = i * BITS_PER_INT;
6357 stop = lim - start;
6358 if (stop > BITS_PER_INT)
6359 stop = BITS_PER_INT;
6360 stop += start;
6361
6362 for (pos = start; pos < stop; pos++)
6363 {
6364 if (!CONS_MARKED_P (&cblk->conses[pos]))
6365 {
6366 this_free++;
6367 cblk->conses[pos].u.chain = cons_free_list;
6368 cons_free_list = &cblk->conses[pos];
6369 #if GC_MARK_STACK
6370 cons_free_list->car = Vdead;
6371 #endif
6372 }
6373 else
6374 {
6375 num_used++;
6376 CONS_UNMARK (&cblk->conses[pos]);
6377 }
6378 }
6379 }
6380 }
6381
6382 lim = CONS_BLOCK_SIZE;
6383 /* If this block contains only free conses and we have already
6384 seen more than two blocks worth of free conses then deallocate
6385 this block. */
6386 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6387 {
6388 *cprev = cblk->next;
6389 /* Unhook from the free list. */
6390 cons_free_list = cblk->conses[0].u.chain;
6391 lisp_align_free (cblk);
6392 }
6393 else
6394 {
6395 num_free += this_free;
6396 cprev = &cblk->next;
6397 }
6398 }
6399 total_conses = num_used;
6400 total_free_conses = num_free;
6401 }
6402
6403 /* Put all unmarked floats on free list */
6404 {
6405 register struct float_block *fblk;
6406 struct float_block **fprev = &float_block;
6407 register int lim = float_block_index;
6408 EMACS_INT num_free = 0, num_used = 0;
6409
6410 float_free_list = 0;
6411
6412 for (fblk = float_block; fblk; fblk = *fprev)
6413 {
6414 register int i;
6415 int this_free = 0;
6416 for (i = 0; i < lim; i++)
6417 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6418 {
6419 this_free++;
6420 fblk->floats[i].u.chain = float_free_list;
6421 float_free_list = &fblk->floats[i];
6422 }
6423 else
6424 {
6425 num_used++;
6426 FLOAT_UNMARK (&fblk->floats[i]);
6427 }
6428 lim = FLOAT_BLOCK_SIZE;
6429 /* If this block contains only free floats and we have already
6430 seen more than two blocks worth of free floats then deallocate
6431 this block. */
6432 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6433 {
6434 *fprev = fblk->next;
6435 /* Unhook from the free list. */
6436 float_free_list = fblk->floats[0].u.chain;
6437 lisp_align_free (fblk);
6438 }
6439 else
6440 {
6441 num_free += this_free;
6442 fprev = &fblk->next;
6443 }
6444 }
6445 total_floats = num_used;
6446 total_free_floats = num_free;
6447 }
6448
6449 /* Put all unmarked intervals on free list */
6450 {
6451 register struct interval_block *iblk;
6452 struct interval_block **iprev = &interval_block;
6453 register int lim = interval_block_index;
6454 EMACS_INT num_free = 0, num_used = 0;
6455
6456 interval_free_list = 0;
6457
6458 for (iblk = interval_block; iblk; iblk = *iprev)
6459 {
6460 register int i;
6461 int this_free = 0;
6462
6463 for (i = 0; i < lim; i++)
6464 {
6465 if (!iblk->intervals[i].gcmarkbit)
6466 {
6467 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
6468 interval_free_list = &iblk->intervals[i];
6469 this_free++;
6470 }
6471 else
6472 {
6473 num_used++;
6474 iblk->intervals[i].gcmarkbit = 0;
6475 }
6476 }
6477 lim = INTERVAL_BLOCK_SIZE;
6478 /* If this block contains only free intervals and we have already
6479 seen more than two blocks worth of free intervals then
6480 deallocate this block. */
6481 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6482 {
6483 *iprev = iblk->next;
6484 /* Unhook from the free list. */
6485 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6486 lisp_free (iblk);
6487 }
6488 else
6489 {
6490 num_free += this_free;
6491 iprev = &iblk->next;
6492 }
6493 }
6494 total_intervals = num_used;
6495 total_free_intervals = num_free;
6496 }
6497
6498 /* Put all unmarked symbols on free list */
6499 {
6500 register struct symbol_block *sblk;
6501 struct symbol_block **sprev = &symbol_block;
6502 register int lim = symbol_block_index;
6503 EMACS_INT num_free = 0, num_used = 0;
6504
6505 symbol_free_list = NULL;
6506
6507 for (sblk = symbol_block; sblk; sblk = *sprev)
6508 {
6509 int this_free = 0;
6510 union aligned_Lisp_Symbol *sym = sblk->symbols;
6511 union aligned_Lisp_Symbol *end = sym + lim;
6512
6513 for (; sym < end; ++sym)
6514 {
6515 /* Check if the symbol was created during loadup. In such a case
6516 it might be pointed to by pure bytecode which we don't trace,
6517 so we conservatively assume that it is live. */
6518 int pure_p = PURE_POINTER_P (XSTRING (sym->s.xname));
6519
6520 if (!sym->s.gcmarkbit && !pure_p)
6521 {
6522 if (sym->s.redirect == SYMBOL_LOCALIZED)
6523 xfree (SYMBOL_BLV (&sym->s));
6524 sym->s.next = symbol_free_list;
6525 symbol_free_list = &sym->s;
6526 #if GC_MARK_STACK
6527 symbol_free_list->function = Vdead;
6528 #endif
6529 ++this_free;
6530 }
6531 else
6532 {
6533 ++num_used;
6534 if (!pure_p)
6535 UNMARK_STRING (XSTRING (sym->s.xname));
6536 sym->s.gcmarkbit = 0;
6537 }
6538 }
6539
6540 lim = SYMBOL_BLOCK_SIZE;
6541 /* If this block contains only free symbols and we have already
6542 seen more than two blocks worth of free symbols then deallocate
6543 this block. */
6544 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6545 {
6546 *sprev = sblk->next;
6547 /* Unhook from the free list. */
6548 symbol_free_list = sblk->symbols[0].s.next;
6549 lisp_free (sblk);
6550 }
6551 else
6552 {
6553 num_free += this_free;
6554 sprev = &sblk->next;
6555 }
6556 }
6557 total_symbols = num_used;
6558 total_free_symbols = num_free;
6559 }
6560
6561 /* Put all unmarked misc's on free list.
6562 For a marker, first unchain it from the buffer it points into. */
6563 {
6564 register struct marker_block *mblk;
6565 struct marker_block **mprev = &marker_block;
6566 register int lim = marker_block_index;
6567 EMACS_INT num_free = 0, num_used = 0;
6568
6569 marker_free_list = 0;
6570
6571 for (mblk = marker_block; mblk; mblk = *mprev)
6572 {
6573 register int i;
6574 int this_free = 0;
6575
6576 for (i = 0; i < lim; i++)
6577 {
6578 if (!mblk->markers[i].m.u_any.gcmarkbit)
6579 {
6580 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6581 unchain_marker (&mblk->markers[i].m.u_marker);
6582 /* Set the type of the freed object to Lisp_Misc_Free.
6583 We could leave the type alone, since nobody checks it,
6584 but this might catch bugs faster. */
6585 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6586 mblk->markers[i].m.u_free.chain = marker_free_list;
6587 marker_free_list = &mblk->markers[i].m;
6588 this_free++;
6589 }
6590 else
6591 {
6592 num_used++;
6593 mblk->markers[i].m.u_any.gcmarkbit = 0;
6594 }
6595 }
6596 lim = MARKER_BLOCK_SIZE;
6597 /* If this block contains only free markers and we have already
6598 seen more than two blocks worth of free markers then deallocate
6599 this block. */
6600 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6601 {
6602 *mprev = mblk->next;
6603 /* Unhook from the free list. */
6604 marker_free_list = mblk->markers[0].m.u_free.chain;
6605 lisp_free (mblk);
6606 }
6607 else
6608 {
6609 num_free += this_free;
6610 mprev = &mblk->next;
6611 }
6612 }
6613
6614 total_markers = num_used;
6615 total_free_markers = num_free;
6616 }
6617
6618 /* Free all unmarked buffers */
6619 {
6620 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6621
6622 total_buffers = 0;
6623 while (buffer)
6624 if (!VECTOR_MARKED_P (buffer))
6625 {
6626 if (prev)
6627 prev->header.next = buffer->header.next;
6628 else
6629 all_buffers = buffer->header.next.buffer;
6630 next = buffer->header.next.buffer;
6631 lisp_free (buffer);
6632 buffer = next;
6633 }
6634 else
6635 {
6636 VECTOR_UNMARK (buffer);
6637 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6638 total_buffers++;
6639 prev = buffer, buffer = buffer->header.next.buffer;
6640 }
6641 }
6642
6643 sweep_vectors ();
6644
6645 #ifdef GC_CHECK_STRING_BYTES
6646 if (!noninteractive)
6647 check_string_bytes (1);
6648 #endif
6649 }
6650
6651
6652
6653 \f
6654 /* Debugging aids. */
6655
6656 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6657 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6658 This may be helpful in debugging Emacs's memory usage.
6659 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6660 (void)
6661 {
6662 Lisp_Object end;
6663
6664 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6665
6666 return end;
6667 }
6668
6669 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6670 doc: /* Return a list of counters that measure how much consing there has been.
6671 Each of these counters increments for a certain kind of object.
6672 The counters wrap around from the largest positive integer to zero.
6673 Garbage collection does not decrease them.
6674 The elements of the value are as follows:
6675 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6676 All are in units of 1 = one object consed
6677 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6678 objects consed.
6679 MISCS include overlays, markers, and some internal types.
6680 Frames, windows, buffers, and subprocesses count as vectors
6681 (but the contents of a buffer's text do not count here). */)
6682 (void)
6683 {
6684 return listn (HEAP, 8,
6685 bounded_number (cons_cells_consed),
6686 bounded_number (floats_consed),
6687 bounded_number (vector_cells_consed),
6688 bounded_number (symbols_consed),
6689 bounded_number (string_chars_consed),
6690 bounded_number (misc_objects_consed),
6691 bounded_number (intervals_consed),
6692 bounded_number (strings_consed));
6693 }
6694
6695 /* Find at most FIND_MAX symbols which have OBJ as their value or
6696 function. This is used in gdbinit's `xwhichsymbols' command. */
6697
6698 Lisp_Object
6699 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6700 {
6701 struct symbol_block *sblk;
6702 ptrdiff_t gc_count = inhibit_garbage_collection ();
6703 Lisp_Object found = Qnil;
6704
6705 if (! DEADP (obj))
6706 {
6707 for (sblk = symbol_block; sblk; sblk = sblk->next)
6708 {
6709 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6710 int bn;
6711
6712 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6713 {
6714 struct Lisp_Symbol *sym = &aligned_sym->s;
6715 Lisp_Object val;
6716 Lisp_Object tem;
6717
6718 if (sblk == symbol_block && bn >= symbol_block_index)
6719 break;
6720
6721 XSETSYMBOL (tem, sym);
6722 val = find_symbol_value (tem);
6723 if (EQ (val, obj)
6724 || EQ (sym->function, obj)
6725 || (!NILP (sym->function)
6726 && COMPILEDP (sym->function)
6727 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6728 || (!NILP (val)
6729 && COMPILEDP (val)
6730 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6731 {
6732 found = Fcons (tem, found);
6733 if (--find_max == 0)
6734 goto out;
6735 }
6736 }
6737 }
6738 }
6739
6740 out:
6741 unbind_to (gc_count, Qnil);
6742 return found;
6743 }
6744
6745 #ifdef ENABLE_CHECKING
6746 int suppress_checking;
6747
6748 void
6749 die (const char *msg, const char *file, int line)
6750 {
6751 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6752 file, line, msg);
6753 abort ();
6754 }
6755 #endif
6756 \f
6757 /* Initialization */
6758
6759 void
6760 init_alloc_once (void)
6761 {
6762 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6763 purebeg = PUREBEG;
6764 pure_size = PURESIZE;
6765
6766 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6767 mem_init ();
6768 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6769 #endif
6770
6771 #ifdef DOUG_LEA_MALLOC
6772 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6773 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6774 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6775 #endif
6776 init_strings ();
6777 init_vectors ();
6778
6779 #ifdef REL_ALLOC
6780 malloc_hysteresis = 32;
6781 #else
6782 malloc_hysteresis = 0;
6783 #endif
6784
6785 refill_memory_reserve ();
6786 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6787 }
6788
6789 void
6790 init_alloc (void)
6791 {
6792 gcprolist = 0;
6793 byte_stack_list = 0;
6794 #if GC_MARK_STACK
6795 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6796 setjmp_tested_p = longjmps_done = 0;
6797 #endif
6798 #endif
6799 Vgc_elapsed = make_float (0.0);
6800 gcs_done = 0;
6801 }
6802
6803 void
6804 syms_of_alloc (void)
6805 {
6806 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6807 doc: /* Number of bytes of consing between garbage collections.
6808 Garbage collection can happen automatically once this many bytes have been
6809 allocated since the last garbage collection. All data types count.
6810
6811 Garbage collection happens automatically only when `eval' is called.
6812
6813 By binding this temporarily to a large number, you can effectively
6814 prevent garbage collection during a part of the program.
6815 See also `gc-cons-percentage'. */);
6816
6817 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6818 doc: /* Portion of the heap used for allocation.
6819 Garbage collection can happen automatically once this portion of the heap
6820 has been allocated since the last garbage collection.
6821 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6822 Vgc_cons_percentage = make_float (0.1);
6823
6824 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6825 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6826
6827 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6828 doc: /* Number of cons cells that have been consed so far. */);
6829
6830 DEFVAR_INT ("floats-consed", floats_consed,
6831 doc: /* Number of floats that have been consed so far. */);
6832
6833 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6834 doc: /* Number of vector cells that have been consed so far. */);
6835
6836 DEFVAR_INT ("symbols-consed", symbols_consed,
6837 doc: /* Number of symbols that have been consed so far. */);
6838
6839 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6840 doc: /* Number of string characters that have been consed so far. */);
6841
6842 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6843 doc: /* Number of miscellaneous objects that have been consed so far.
6844 These include markers and overlays, plus certain objects not visible
6845 to users. */);
6846
6847 DEFVAR_INT ("intervals-consed", intervals_consed,
6848 doc: /* Number of intervals that have been consed so far. */);
6849
6850 DEFVAR_INT ("strings-consed", strings_consed,
6851 doc: /* Number of strings that have been consed so far. */);
6852
6853 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6854 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6855 This means that certain objects should be allocated in shared (pure) space.
6856 It can also be set to a hash-table, in which case this table is used to
6857 do hash-consing of the objects allocated to pure space. */);
6858
6859 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6860 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6861 garbage_collection_messages = 0;
6862
6863 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6864 doc: /* Hook run after garbage collection has finished. */);
6865 Vpost_gc_hook = Qnil;
6866 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6867
6868 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6869 doc: /* Precomputed `signal' argument for memory-full error. */);
6870 /* We build this in advance because if we wait until we need it, we might
6871 not be able to allocate the memory to hold it. */
6872 Vmemory_signal_data
6873 = listn (PURE, 2, Qerror,
6874 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6875
6876 DEFVAR_LISP ("memory-full", Vmemory_full,
6877 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6878 Vmemory_full = Qnil;
6879
6880 DEFSYM (Qstring_bytes, "string-bytes");
6881 DEFSYM (Qvector_slots, "vector-slots");
6882 DEFSYM (Qheap, "heap");
6883
6884 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6885 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6886
6887 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6888 doc: /* Accumulated time elapsed in garbage collections.
6889 The time is in seconds as a floating point value. */);
6890 DEFVAR_INT ("gcs-done", gcs_done,
6891 doc: /* Accumulated number of garbage collections done. */);
6892
6893 defsubr (&Scons);
6894 defsubr (&Slist);
6895 defsubr (&Svector);
6896 defsubr (&Smake_byte_code);
6897 defsubr (&Smake_list);
6898 defsubr (&Smake_vector);
6899 defsubr (&Smake_string);
6900 defsubr (&Smake_bool_vector);
6901 defsubr (&Smake_symbol);
6902 defsubr (&Smake_marker);
6903 defsubr (&Spurecopy);
6904 defsubr (&Sgarbage_collect);
6905 defsubr (&Smemory_limit);
6906 defsubr (&Smemory_use_counts);
6907
6908 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6909 defsubr (&Sgc_status);
6910 #endif
6911 }
6912
6913 /* Make some symbols visible to GDB. These cannot be done as enums, like
6914 GCTYPEBITS or USE_LSB_TAG, since values might not be in 'int' range.
6915 Each symbol X has a corresponding X_VAL symbol, verified to have
6916 the correct value.
6917
6918 This is last, so that the #undef lines don't mess up later code. */
6919
6920 #define ARRAY_MARK_FLAG_VAL PTRDIFF_MIN
6921 #define PSEUDOVECTOR_FLAG_VAL (PTRDIFF_MAX - PTRDIFF_MAX / 2)
6922 #define VALMASK_VAL (USE_LSB_TAG ? -1 << GCTYPEBITS : VAL_MAX)
6923
6924 verify (ARRAY_MARK_FLAG_VAL == ARRAY_MARK_FLAG);
6925 verify (PSEUDOVECTOR_FLAG_VAL == PSEUDOVECTOR_FLAG);
6926 verify (VALMASK_VAL == VALMASK);
6927
6928 #undef ARRAY_MARK_FLAG
6929 #undef PSEUDOVECTOR_FLAG
6930 #undef VALMASK
6931
6932 ptrdiff_t const EXTERNALLY_VISIBLE
6933 ARRAY_MARK_FLAG = ARRAY_MARK_FLAG_VAL,
6934 PSEUDOVECTOR_FLAG = PSEUDOVECTOR_FLAG_VAL;
6935
6936 EMACS_INT const EXTERNALLY_VISIBLE
6937 VALMASK = VALMASK_VAL;