2011-04-14 Paul Eggert <eggert@cs.ucla.edu>
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21 #include <stdio.h>
22 #include <limits.h> /* For CHAR_BIT. */
23 #include <setjmp.h>
24
25 #ifdef ALLOC_DEBUG
26 #undef INLINE
27 #endif
28
29 #include <signal.h>
30
31 #ifdef HAVE_GTK_AND_PTHREAD
32 #include <pthread.h>
33 #endif
34
35 /* This file is part of the core Lisp implementation, and thus must
36 deal with the real data structures. If the Lisp implementation is
37 replaced, this file likely will not be used. */
38
39 #undef HIDE_LISP_IMPLEMENTATION
40 #include "lisp.h"
41 #include "process.h"
42 #include "intervals.h"
43 #include "puresize.h"
44 #include "buffer.h"
45 #include "window.h"
46 #include "keyboard.h"
47 #include "frame.h"
48 #include "blockinput.h"
49 #include "character.h"
50 #include "syssignal.h"
51 #include "termhooks.h" /* For struct terminal. */
52 #include <setjmp.h>
53
54 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
55 memory. Can do this only if using gmalloc.c. */
56
57 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
58 #undef GC_MALLOC_CHECK
59 #endif
60
61 #include <unistd.h>
62 #ifndef HAVE_UNISTD_H
63 extern POINTER_TYPE *sbrk ();
64 #endif
65
66 #include <fcntl.h>
67
68 #ifdef WINDOWSNT
69 #include "w32.h"
70 #endif
71
72 #ifdef DOUG_LEA_MALLOC
73
74 #include <malloc.h>
75 /* malloc.h #defines this as size_t, at least in glibc2. */
76 #ifndef __malloc_size_t
77 #define __malloc_size_t int
78 #endif
79
80 /* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
82
83 #define MMAP_MAX_AREAS 100000000
84
85 #else /* not DOUG_LEA_MALLOC */
86
87 /* The following come from gmalloc.c. */
88
89 #define __malloc_size_t size_t
90 extern __malloc_size_t _bytes_used;
91 extern __malloc_size_t __malloc_extra_blocks;
92
93 #endif /* not DOUG_LEA_MALLOC */
94
95 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
96 #ifdef HAVE_GTK_AND_PTHREAD
97
98 /* When GTK uses the file chooser dialog, different backends can be loaded
99 dynamically. One such a backend is the Gnome VFS backend that gets loaded
100 if you run Gnome. That backend creates several threads and also allocates
101 memory with malloc.
102
103 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
104 functions below are called from malloc, there is a chance that one
105 of these threads preempts the Emacs main thread and the hook variables
106 end up in an inconsistent state. So we have a mutex to prevent that (note
107 that the backend handles concurrent access to malloc within its own threads
108 but Emacs code running in the main thread is not included in that control).
109
110 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
111 happens in one of the backend threads we will have two threads that tries
112 to run Emacs code at once, and the code is not prepared for that.
113 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
114
115 static pthread_mutex_t alloc_mutex;
116
117 #define BLOCK_INPUT_ALLOC \
118 do \
119 { \
120 if (pthread_equal (pthread_self (), main_thread)) \
121 BLOCK_INPUT; \
122 pthread_mutex_lock (&alloc_mutex); \
123 } \
124 while (0)
125 #define UNBLOCK_INPUT_ALLOC \
126 do \
127 { \
128 pthread_mutex_unlock (&alloc_mutex); \
129 if (pthread_equal (pthread_self (), main_thread)) \
130 UNBLOCK_INPUT; \
131 } \
132 while (0)
133
134 #else /* ! defined HAVE_GTK_AND_PTHREAD */
135
136 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
137 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
138
139 #endif /* ! defined HAVE_GTK_AND_PTHREAD */
140 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
141
142 /* Value of _bytes_used, when spare_memory was freed. */
143
144 static __malloc_size_t bytes_used_when_full;
145
146 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
147 to a struct Lisp_String. */
148
149 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
150 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
151 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
152
153 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
154 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
155 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
156
157 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
158 Be careful during GC, because S->size contains the mark bit for
159 strings. */
160
161 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
162
163 /* Global variables. */
164 struct emacs_globals globals;
165
166 /* Number of bytes of consing done since the last gc. */
167
168 int consing_since_gc;
169
170 /* Similar minimum, computed from Vgc_cons_percentage. */
171
172 EMACS_INT gc_relative_threshold;
173
174 /* Minimum number of bytes of consing since GC before next GC,
175 when memory is full. */
176
177 EMACS_INT memory_full_cons_threshold;
178
179 /* Nonzero during GC. */
180
181 int gc_in_progress;
182
183 /* Nonzero means abort if try to GC.
184 This is for code which is written on the assumption that
185 no GC will happen, so as to verify that assumption. */
186
187 int abort_on_gc;
188
189 /* Number of live and free conses etc. */
190
191 static int total_conses, total_markers, total_symbols, total_vector_size;
192 static int total_free_conses, total_free_markers, total_free_symbols;
193 static int total_free_floats, total_floats;
194
195 /* Points to memory space allocated as "spare", to be freed if we run
196 out of memory. We keep one large block, four cons-blocks, and
197 two string blocks. */
198
199 static char *spare_memory[7];
200
201 /* Amount of spare memory to keep in large reserve block. */
202
203 #define SPARE_MEMORY (1 << 14)
204
205 /* Number of extra blocks malloc should get when it needs more core. */
206
207 static int malloc_hysteresis;
208
209 /* Initialize it to a nonzero value to force it into data space
210 (rather than bss space). That way unexec will remap it into text
211 space (pure), on some systems. We have not implemented the
212 remapping on more recent systems because this is less important
213 nowadays than in the days of small memories and timesharing. */
214
215 #ifndef VIRT_ADDR_VARIES
216 static
217 #endif
218 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
219 #define PUREBEG (char *) pure
220
221 /* Pointer to the pure area, and its size. */
222
223 static char *purebeg;
224 static size_t pure_size;
225
226 /* Number of bytes of pure storage used before pure storage overflowed.
227 If this is non-zero, this implies that an overflow occurred. */
228
229 static size_t pure_bytes_used_before_overflow;
230
231 /* Value is non-zero if P points into pure space. */
232
233 #define PURE_POINTER_P(P) \
234 (((PNTR_COMPARISON_TYPE) (P) \
235 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
236 && ((PNTR_COMPARISON_TYPE) (P) \
237 >= (PNTR_COMPARISON_TYPE) purebeg))
238
239 /* Index in pure at which next pure Lisp object will be allocated.. */
240
241 static EMACS_INT pure_bytes_used_lisp;
242
243 /* Number of bytes allocated for non-Lisp objects in pure storage. */
244
245 static EMACS_INT pure_bytes_used_non_lisp;
246
247 /* If nonzero, this is a warning delivered by malloc and not yet
248 displayed. */
249
250 const char *pending_malloc_warning;
251
252 /* Maximum amount of C stack to save when a GC happens. */
253
254 #ifndef MAX_SAVE_STACK
255 #define MAX_SAVE_STACK 16000
256 #endif
257
258 /* Buffer in which we save a copy of the C stack at each GC. */
259
260 #if MAX_SAVE_STACK > 0
261 static char *stack_copy;
262 static size_t stack_copy_size;
263 #endif
264
265 /* Non-zero means ignore malloc warnings. Set during initialization.
266 Currently not used. */
267
268 static int ignore_warnings;
269
270 static Lisp_Object Qgc_cons_threshold;
271 Lisp_Object Qchar_table_extra_slots;
272
273 /* Hook run after GC has finished. */
274
275 static Lisp_Object Qpost_gc_hook;
276
277 static void mark_buffer (Lisp_Object);
278 static void mark_terminals (void);
279 static void gc_sweep (void);
280 static void mark_glyph_matrix (struct glyph_matrix *);
281 static void mark_face_cache (struct face_cache *);
282
283 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
284 static void refill_memory_reserve (void);
285 #endif
286 static struct Lisp_String *allocate_string (void);
287 static void compact_small_strings (void);
288 static void free_large_strings (void);
289 static void sweep_strings (void);
290 static void free_misc (Lisp_Object);
291
292 /* When scanning the C stack for live Lisp objects, Emacs keeps track
293 of what memory allocated via lisp_malloc is intended for what
294 purpose. This enumeration specifies the type of memory. */
295
296 enum mem_type
297 {
298 MEM_TYPE_NON_LISP,
299 MEM_TYPE_BUFFER,
300 MEM_TYPE_CONS,
301 MEM_TYPE_STRING,
302 MEM_TYPE_MISC,
303 MEM_TYPE_SYMBOL,
304 MEM_TYPE_FLOAT,
305 /* We used to keep separate mem_types for subtypes of vectors such as
306 process, hash_table, frame, terminal, and window, but we never made
307 use of the distinction, so it only caused source-code complexity
308 and runtime slowdown. Minor but pointless. */
309 MEM_TYPE_VECTORLIKE
310 };
311
312 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
313 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
314
315
316 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
317
318 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
319 #include <stdio.h> /* For fprintf. */
320 #endif
321
322 /* A unique object in pure space used to make some Lisp objects
323 on free lists recognizable in O(1). */
324
325 static Lisp_Object Vdead;
326
327 #ifdef GC_MALLOC_CHECK
328
329 enum mem_type allocated_mem_type;
330 static int dont_register_blocks;
331
332 #endif /* GC_MALLOC_CHECK */
333
334 /* A node in the red-black tree describing allocated memory containing
335 Lisp data. Each such block is recorded with its start and end
336 address when it is allocated, and removed from the tree when it
337 is freed.
338
339 A red-black tree is a balanced binary tree with the following
340 properties:
341
342 1. Every node is either red or black.
343 2. Every leaf is black.
344 3. If a node is red, then both of its children are black.
345 4. Every simple path from a node to a descendant leaf contains
346 the same number of black nodes.
347 5. The root is always black.
348
349 When nodes are inserted into the tree, or deleted from the tree,
350 the tree is "fixed" so that these properties are always true.
351
352 A red-black tree with N internal nodes has height at most 2
353 log(N+1). Searches, insertions and deletions are done in O(log N).
354 Please see a text book about data structures for a detailed
355 description of red-black trees. Any book worth its salt should
356 describe them. */
357
358 struct mem_node
359 {
360 /* Children of this node. These pointers are never NULL. When there
361 is no child, the value is MEM_NIL, which points to a dummy node. */
362 struct mem_node *left, *right;
363
364 /* The parent of this node. In the root node, this is NULL. */
365 struct mem_node *parent;
366
367 /* Start and end of allocated region. */
368 void *start, *end;
369
370 /* Node color. */
371 enum {MEM_BLACK, MEM_RED} color;
372
373 /* Memory type. */
374 enum mem_type type;
375 };
376
377 /* Base address of stack. Set in main. */
378
379 Lisp_Object *stack_base;
380
381 /* Root of the tree describing allocated Lisp memory. */
382
383 static struct mem_node *mem_root;
384
385 /* Lowest and highest known address in the heap. */
386
387 static void *min_heap_address, *max_heap_address;
388
389 /* Sentinel node of the tree. */
390
391 static struct mem_node mem_z;
392 #define MEM_NIL &mem_z
393
394 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
395 static void lisp_free (POINTER_TYPE *);
396 static void mark_stack (void);
397 static int live_vector_p (struct mem_node *, void *);
398 static int live_buffer_p (struct mem_node *, void *);
399 static int live_string_p (struct mem_node *, void *);
400 static int live_cons_p (struct mem_node *, void *);
401 static int live_symbol_p (struct mem_node *, void *);
402 static int live_float_p (struct mem_node *, void *);
403 static int live_misc_p (struct mem_node *, void *);
404 static void mark_maybe_object (Lisp_Object);
405 static void mark_memory (void *, void *, int);
406 static void mem_init (void);
407 static struct mem_node *mem_insert (void *, void *, enum mem_type);
408 static void mem_insert_fixup (struct mem_node *);
409 static void mem_rotate_left (struct mem_node *);
410 static void mem_rotate_right (struct mem_node *);
411 static void mem_delete (struct mem_node *);
412 static void mem_delete_fixup (struct mem_node *);
413 static INLINE struct mem_node *mem_find (void *);
414
415
416 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
417 static void check_gcpros (void);
418 #endif
419
420 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
421
422 /* Recording what needs to be marked for gc. */
423
424 struct gcpro *gcprolist;
425
426 /* Addresses of staticpro'd variables. Initialize it to a nonzero
427 value; otherwise some compilers put it into BSS. */
428
429 #define NSTATICS 0x640
430 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
431
432 /* Index of next unused slot in staticvec. */
433
434 static int staticidx = 0;
435
436 static POINTER_TYPE *pure_alloc (size_t, int);
437
438
439 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
440 ALIGNMENT must be a power of 2. */
441
442 #define ALIGN(ptr, ALIGNMENT) \
443 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
444 & ~((ALIGNMENT) - 1)))
445
446
447 \f
448 /************************************************************************
449 Malloc
450 ************************************************************************/
451
452 /* Function malloc calls this if it finds we are near exhausting storage. */
453
454 void
455 malloc_warning (const char *str)
456 {
457 pending_malloc_warning = str;
458 }
459
460
461 /* Display an already-pending malloc warning. */
462
463 void
464 display_malloc_warning (void)
465 {
466 call3 (intern ("display-warning"),
467 intern ("alloc"),
468 build_string (pending_malloc_warning),
469 intern ("emergency"));
470 pending_malloc_warning = 0;
471 }
472
473
474 #ifdef DOUG_LEA_MALLOC
475 # define BYTES_USED (mallinfo ().uordblks)
476 #else
477 # define BYTES_USED _bytes_used
478 #endif
479 \f
480 /* Called if we can't allocate relocatable space for a buffer. */
481
482 void
483 buffer_memory_full (void)
484 {
485 /* If buffers use the relocating allocator, no need to free
486 spare_memory, because we may have plenty of malloc space left
487 that we could get, and if we don't, the malloc that fails will
488 itself cause spare_memory to be freed. If buffers don't use the
489 relocating allocator, treat this like any other failing
490 malloc. */
491
492 #ifndef REL_ALLOC
493 memory_full ();
494 #endif
495
496 /* This used to call error, but if we've run out of memory, we could
497 get infinite recursion trying to build the string. */
498 xsignal (Qnil, Vmemory_signal_data);
499 }
500
501
502 #ifdef XMALLOC_OVERRUN_CHECK
503
504 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
505 and a 16 byte trailer around each block.
506
507 The header consists of 12 fixed bytes + a 4 byte integer contaning the
508 original block size, while the trailer consists of 16 fixed bytes.
509
510 The header is used to detect whether this block has been allocated
511 through these functions -- as it seems that some low-level libc
512 functions may bypass the malloc hooks.
513 */
514
515
516 #define XMALLOC_OVERRUN_CHECK_SIZE 16
517
518 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
519 { 0x9a, 0x9b, 0xae, 0xaf,
520 0xbf, 0xbe, 0xce, 0xcf,
521 0xea, 0xeb, 0xec, 0xed };
522
523 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
524 { 0xaa, 0xab, 0xac, 0xad,
525 0xba, 0xbb, 0xbc, 0xbd,
526 0xca, 0xcb, 0xcc, 0xcd,
527 0xda, 0xdb, 0xdc, 0xdd };
528
529 /* Macros to insert and extract the block size in the header. */
530
531 #define XMALLOC_PUT_SIZE(ptr, size) \
532 (ptr[-1] = (size & 0xff), \
533 ptr[-2] = ((size >> 8) & 0xff), \
534 ptr[-3] = ((size >> 16) & 0xff), \
535 ptr[-4] = ((size >> 24) & 0xff))
536
537 #define XMALLOC_GET_SIZE(ptr) \
538 (size_t)((unsigned)(ptr[-1]) | \
539 ((unsigned)(ptr[-2]) << 8) | \
540 ((unsigned)(ptr[-3]) << 16) | \
541 ((unsigned)(ptr[-4]) << 24))
542
543
544 /* The call depth in overrun_check functions. For example, this might happen:
545 xmalloc()
546 overrun_check_malloc()
547 -> malloc -> (via hook)_-> emacs_blocked_malloc
548 -> overrun_check_malloc
549 call malloc (hooks are NULL, so real malloc is called).
550 malloc returns 10000.
551 add overhead, return 10016.
552 <- (back in overrun_check_malloc)
553 add overhead again, return 10032
554 xmalloc returns 10032.
555
556 (time passes).
557
558 xfree(10032)
559 overrun_check_free(10032)
560 decrease overhed
561 free(10016) <- crash, because 10000 is the original pointer. */
562
563 static int check_depth;
564
565 /* Like malloc, but wraps allocated block with header and trailer. */
566
567 POINTER_TYPE *
568 overrun_check_malloc (size)
569 size_t size;
570 {
571 register unsigned char *val;
572 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
573
574 val = (unsigned char *) malloc (size + overhead);
575 if (val && check_depth == 1)
576 {
577 memcpy (val, xmalloc_overrun_check_header,
578 XMALLOC_OVERRUN_CHECK_SIZE - 4);
579 val += XMALLOC_OVERRUN_CHECK_SIZE;
580 XMALLOC_PUT_SIZE(val, size);
581 memcpy (val + size, xmalloc_overrun_check_trailer,
582 XMALLOC_OVERRUN_CHECK_SIZE);
583 }
584 --check_depth;
585 return (POINTER_TYPE *)val;
586 }
587
588
589 /* Like realloc, but checks old block for overrun, and wraps new block
590 with header and trailer. */
591
592 POINTER_TYPE *
593 overrun_check_realloc (block, size)
594 POINTER_TYPE *block;
595 size_t size;
596 {
597 register unsigned char *val = (unsigned char *)block;
598 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
599
600 if (val
601 && check_depth == 1
602 && memcmp (xmalloc_overrun_check_header,
603 val - XMALLOC_OVERRUN_CHECK_SIZE,
604 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
605 {
606 size_t osize = XMALLOC_GET_SIZE (val);
607 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
608 XMALLOC_OVERRUN_CHECK_SIZE))
609 abort ();
610 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
611 val -= XMALLOC_OVERRUN_CHECK_SIZE;
612 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
613 }
614
615 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
616
617 if (val && check_depth == 1)
618 {
619 memcpy (val, xmalloc_overrun_check_header,
620 XMALLOC_OVERRUN_CHECK_SIZE - 4);
621 val += XMALLOC_OVERRUN_CHECK_SIZE;
622 XMALLOC_PUT_SIZE(val, size);
623 memcpy (val + size, xmalloc_overrun_check_trailer,
624 XMALLOC_OVERRUN_CHECK_SIZE);
625 }
626 --check_depth;
627 return (POINTER_TYPE *)val;
628 }
629
630 /* Like free, but checks block for overrun. */
631
632 void
633 overrun_check_free (block)
634 POINTER_TYPE *block;
635 {
636 unsigned char *val = (unsigned char *)block;
637
638 ++check_depth;
639 if (val
640 && check_depth == 1
641 && memcmp (xmalloc_overrun_check_header,
642 val - XMALLOC_OVERRUN_CHECK_SIZE,
643 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
644 {
645 size_t osize = XMALLOC_GET_SIZE (val);
646 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
647 XMALLOC_OVERRUN_CHECK_SIZE))
648 abort ();
649 #ifdef XMALLOC_CLEAR_FREE_MEMORY
650 val -= XMALLOC_OVERRUN_CHECK_SIZE;
651 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
652 #else
653 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
654 val -= XMALLOC_OVERRUN_CHECK_SIZE;
655 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
656 #endif
657 }
658
659 free (val);
660 --check_depth;
661 }
662
663 #undef malloc
664 #undef realloc
665 #undef free
666 #define malloc overrun_check_malloc
667 #define realloc overrun_check_realloc
668 #define free overrun_check_free
669 #endif
670
671 #ifdef SYNC_INPUT
672 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
673 there's no need to block input around malloc. */
674 #define MALLOC_BLOCK_INPUT ((void)0)
675 #define MALLOC_UNBLOCK_INPUT ((void)0)
676 #else
677 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
678 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
679 #endif
680
681 /* Like malloc but check for no memory and block interrupt input.. */
682
683 POINTER_TYPE *
684 xmalloc (size_t size)
685 {
686 register POINTER_TYPE *val;
687
688 MALLOC_BLOCK_INPUT;
689 val = (POINTER_TYPE *) malloc (size);
690 MALLOC_UNBLOCK_INPUT;
691
692 if (!val && size)
693 memory_full ();
694 return val;
695 }
696
697
698 /* Like realloc but check for no memory and block interrupt input.. */
699
700 POINTER_TYPE *
701 xrealloc (POINTER_TYPE *block, size_t size)
702 {
703 register POINTER_TYPE *val;
704
705 MALLOC_BLOCK_INPUT;
706 /* We must call malloc explicitly when BLOCK is 0, since some
707 reallocs don't do this. */
708 if (! block)
709 val = (POINTER_TYPE *) malloc (size);
710 else
711 val = (POINTER_TYPE *) realloc (block, size);
712 MALLOC_UNBLOCK_INPUT;
713
714 if (!val && size) memory_full ();
715 return val;
716 }
717
718
719 /* Like free but block interrupt input. */
720
721 void
722 xfree (POINTER_TYPE *block)
723 {
724 if (!block)
725 return;
726 MALLOC_BLOCK_INPUT;
727 free (block);
728 MALLOC_UNBLOCK_INPUT;
729 /* We don't call refill_memory_reserve here
730 because that duplicates doing so in emacs_blocked_free
731 and the criterion should go there. */
732 }
733
734
735 /* Like strdup, but uses xmalloc. */
736
737 char *
738 xstrdup (const char *s)
739 {
740 size_t len = strlen (s) + 1;
741 char *p = (char *) xmalloc (len);
742 memcpy (p, s, len);
743 return p;
744 }
745
746
747 /* Unwind for SAFE_ALLOCA */
748
749 Lisp_Object
750 safe_alloca_unwind (Lisp_Object arg)
751 {
752 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
753
754 p->dogc = 0;
755 xfree (p->pointer);
756 p->pointer = 0;
757 free_misc (arg);
758 return Qnil;
759 }
760
761
762 /* Like malloc but used for allocating Lisp data. NBYTES is the
763 number of bytes to allocate, TYPE describes the intended use of the
764 allcated memory block (for strings, for conses, ...). */
765
766 #ifndef USE_LSB_TAG
767 static void *lisp_malloc_loser;
768 #endif
769
770 static POINTER_TYPE *
771 lisp_malloc (size_t nbytes, enum mem_type type)
772 {
773 register void *val;
774
775 MALLOC_BLOCK_INPUT;
776
777 #ifdef GC_MALLOC_CHECK
778 allocated_mem_type = type;
779 #endif
780
781 val = (void *) malloc (nbytes);
782
783 #ifndef USE_LSB_TAG
784 /* If the memory just allocated cannot be addressed thru a Lisp
785 object's pointer, and it needs to be,
786 that's equivalent to running out of memory. */
787 if (val && type != MEM_TYPE_NON_LISP)
788 {
789 Lisp_Object tem;
790 XSETCONS (tem, (char *) val + nbytes - 1);
791 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
792 {
793 lisp_malloc_loser = val;
794 free (val);
795 val = 0;
796 }
797 }
798 #endif
799
800 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
801 if (val && type != MEM_TYPE_NON_LISP)
802 mem_insert (val, (char *) val + nbytes, type);
803 #endif
804
805 MALLOC_UNBLOCK_INPUT;
806 if (!val && nbytes)
807 memory_full ();
808 return val;
809 }
810
811 /* Free BLOCK. This must be called to free memory allocated with a
812 call to lisp_malloc. */
813
814 static void
815 lisp_free (POINTER_TYPE *block)
816 {
817 MALLOC_BLOCK_INPUT;
818 free (block);
819 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
820 mem_delete (mem_find (block));
821 #endif
822 MALLOC_UNBLOCK_INPUT;
823 }
824
825 /* Allocation of aligned blocks of memory to store Lisp data. */
826 /* The entry point is lisp_align_malloc which returns blocks of at most */
827 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
828
829 /* Use posix_memalloc if the system has it and we're using the system's
830 malloc (because our gmalloc.c routines don't have posix_memalign although
831 its memalloc could be used). */
832 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
833 #define USE_POSIX_MEMALIGN 1
834 #endif
835
836 /* BLOCK_ALIGN has to be a power of 2. */
837 #define BLOCK_ALIGN (1 << 10)
838
839 /* Padding to leave at the end of a malloc'd block. This is to give
840 malloc a chance to minimize the amount of memory wasted to alignment.
841 It should be tuned to the particular malloc library used.
842 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
843 posix_memalign on the other hand would ideally prefer a value of 4
844 because otherwise, there's 1020 bytes wasted between each ablocks.
845 In Emacs, testing shows that those 1020 can most of the time be
846 efficiently used by malloc to place other objects, so a value of 0 can
847 still preferable unless you have a lot of aligned blocks and virtually
848 nothing else. */
849 #define BLOCK_PADDING 0
850 #define BLOCK_BYTES \
851 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
852
853 /* Internal data structures and constants. */
854
855 #define ABLOCKS_SIZE 16
856
857 /* An aligned block of memory. */
858 struct ablock
859 {
860 union
861 {
862 char payload[BLOCK_BYTES];
863 struct ablock *next_free;
864 } x;
865 /* `abase' is the aligned base of the ablocks. */
866 /* It is overloaded to hold the virtual `busy' field that counts
867 the number of used ablock in the parent ablocks.
868 The first ablock has the `busy' field, the others have the `abase'
869 field. To tell the difference, we assume that pointers will have
870 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
871 is used to tell whether the real base of the parent ablocks is `abase'
872 (if not, the word before the first ablock holds a pointer to the
873 real base). */
874 struct ablocks *abase;
875 /* The padding of all but the last ablock is unused. The padding of
876 the last ablock in an ablocks is not allocated. */
877 #if BLOCK_PADDING
878 char padding[BLOCK_PADDING];
879 #endif
880 };
881
882 /* A bunch of consecutive aligned blocks. */
883 struct ablocks
884 {
885 struct ablock blocks[ABLOCKS_SIZE];
886 };
887
888 /* Size of the block requested from malloc or memalign. */
889 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
890
891 #define ABLOCK_ABASE(block) \
892 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
893 ? (struct ablocks *)(block) \
894 : (block)->abase)
895
896 /* Virtual `busy' field. */
897 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
898
899 /* Pointer to the (not necessarily aligned) malloc block. */
900 #ifdef USE_POSIX_MEMALIGN
901 #define ABLOCKS_BASE(abase) (abase)
902 #else
903 #define ABLOCKS_BASE(abase) \
904 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
905 #endif
906
907 /* The list of free ablock. */
908 static struct ablock *free_ablock;
909
910 /* Allocate an aligned block of nbytes.
911 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
912 smaller or equal to BLOCK_BYTES. */
913 static POINTER_TYPE *
914 lisp_align_malloc (size_t nbytes, enum mem_type type)
915 {
916 void *base, *val;
917 struct ablocks *abase;
918
919 eassert (nbytes <= BLOCK_BYTES);
920
921 MALLOC_BLOCK_INPUT;
922
923 #ifdef GC_MALLOC_CHECK
924 allocated_mem_type = type;
925 #endif
926
927 if (!free_ablock)
928 {
929 int i;
930 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
931
932 #ifdef DOUG_LEA_MALLOC
933 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
934 because mapped region contents are not preserved in
935 a dumped Emacs. */
936 mallopt (M_MMAP_MAX, 0);
937 #endif
938
939 #ifdef USE_POSIX_MEMALIGN
940 {
941 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
942 if (err)
943 base = NULL;
944 abase = base;
945 }
946 #else
947 base = malloc (ABLOCKS_BYTES);
948 abase = ALIGN (base, BLOCK_ALIGN);
949 #endif
950
951 if (base == 0)
952 {
953 MALLOC_UNBLOCK_INPUT;
954 memory_full ();
955 }
956
957 aligned = (base == abase);
958 if (!aligned)
959 ((void**)abase)[-1] = base;
960
961 #ifdef DOUG_LEA_MALLOC
962 /* Back to a reasonable maximum of mmap'ed areas. */
963 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
964 #endif
965
966 #ifndef USE_LSB_TAG
967 /* If the memory just allocated cannot be addressed thru a Lisp
968 object's pointer, and it needs to be, that's equivalent to
969 running out of memory. */
970 if (type != MEM_TYPE_NON_LISP)
971 {
972 Lisp_Object tem;
973 char *end = (char *) base + ABLOCKS_BYTES - 1;
974 XSETCONS (tem, end);
975 if ((char *) XCONS (tem) != end)
976 {
977 lisp_malloc_loser = base;
978 free (base);
979 MALLOC_UNBLOCK_INPUT;
980 memory_full ();
981 }
982 }
983 #endif
984
985 /* Initialize the blocks and put them on the free list.
986 Is `base' was not properly aligned, we can't use the last block. */
987 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
988 {
989 abase->blocks[i].abase = abase;
990 abase->blocks[i].x.next_free = free_ablock;
991 free_ablock = &abase->blocks[i];
992 }
993 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
994
995 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
996 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
997 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
998 eassert (ABLOCKS_BASE (abase) == base);
999 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1000 }
1001
1002 abase = ABLOCK_ABASE (free_ablock);
1003 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1004 val = free_ablock;
1005 free_ablock = free_ablock->x.next_free;
1006
1007 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1008 if (val && type != MEM_TYPE_NON_LISP)
1009 mem_insert (val, (char *) val + nbytes, type);
1010 #endif
1011
1012 MALLOC_UNBLOCK_INPUT;
1013 if (!val && nbytes)
1014 memory_full ();
1015
1016 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1017 return val;
1018 }
1019
1020 static void
1021 lisp_align_free (POINTER_TYPE *block)
1022 {
1023 struct ablock *ablock = block;
1024 struct ablocks *abase = ABLOCK_ABASE (ablock);
1025
1026 MALLOC_BLOCK_INPUT;
1027 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1028 mem_delete (mem_find (block));
1029 #endif
1030 /* Put on free list. */
1031 ablock->x.next_free = free_ablock;
1032 free_ablock = ablock;
1033 /* Update busy count. */
1034 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1035
1036 if (2 > (long) ABLOCKS_BUSY (abase))
1037 { /* All the blocks are free. */
1038 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1039 struct ablock **tem = &free_ablock;
1040 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1041
1042 while (*tem)
1043 {
1044 if (*tem >= (struct ablock *) abase && *tem < atop)
1045 {
1046 i++;
1047 *tem = (*tem)->x.next_free;
1048 }
1049 else
1050 tem = &(*tem)->x.next_free;
1051 }
1052 eassert ((aligned & 1) == aligned);
1053 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1054 #ifdef USE_POSIX_MEMALIGN
1055 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1056 #endif
1057 free (ABLOCKS_BASE (abase));
1058 }
1059 MALLOC_UNBLOCK_INPUT;
1060 }
1061
1062 /* Return a new buffer structure allocated from the heap with
1063 a call to lisp_malloc. */
1064
1065 struct buffer *
1066 allocate_buffer (void)
1067 {
1068 struct buffer *b
1069 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1070 MEM_TYPE_BUFFER);
1071 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1072 XSETPVECTYPE (b, PVEC_BUFFER);
1073 return b;
1074 }
1075
1076 \f
1077 #ifndef SYSTEM_MALLOC
1078
1079 /* Arranging to disable input signals while we're in malloc.
1080
1081 This only works with GNU malloc. To help out systems which can't
1082 use GNU malloc, all the calls to malloc, realloc, and free
1083 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1084 pair; unfortunately, we have no idea what C library functions
1085 might call malloc, so we can't really protect them unless you're
1086 using GNU malloc. Fortunately, most of the major operating systems
1087 can use GNU malloc. */
1088
1089 #ifndef SYNC_INPUT
1090 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1091 there's no need to block input around malloc. */
1092
1093 #ifndef DOUG_LEA_MALLOC
1094 extern void * (*__malloc_hook) (size_t, const void *);
1095 extern void * (*__realloc_hook) (void *, size_t, const void *);
1096 extern void (*__free_hook) (void *, const void *);
1097 /* Else declared in malloc.h, perhaps with an extra arg. */
1098 #endif /* DOUG_LEA_MALLOC */
1099 static void * (*old_malloc_hook) (size_t, const void *);
1100 static void * (*old_realloc_hook) (void *, size_t, const void*);
1101 static void (*old_free_hook) (void*, const void*);
1102
1103 static __malloc_size_t bytes_used_when_reconsidered;
1104
1105 /* This function is used as the hook for free to call. */
1106
1107 static void
1108 emacs_blocked_free (void *ptr, const void *ptr2)
1109 {
1110 BLOCK_INPUT_ALLOC;
1111
1112 #ifdef GC_MALLOC_CHECK
1113 if (ptr)
1114 {
1115 struct mem_node *m;
1116
1117 m = mem_find (ptr);
1118 if (m == MEM_NIL || m->start != ptr)
1119 {
1120 fprintf (stderr,
1121 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1122 abort ();
1123 }
1124 else
1125 {
1126 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1127 mem_delete (m);
1128 }
1129 }
1130 #endif /* GC_MALLOC_CHECK */
1131
1132 __free_hook = old_free_hook;
1133 free (ptr);
1134
1135 /* If we released our reserve (due to running out of memory),
1136 and we have a fair amount free once again,
1137 try to set aside another reserve in case we run out once more. */
1138 if (! NILP (Vmemory_full)
1139 /* Verify there is enough space that even with the malloc
1140 hysteresis this call won't run out again.
1141 The code here is correct as long as SPARE_MEMORY
1142 is substantially larger than the block size malloc uses. */
1143 && (bytes_used_when_full
1144 > ((bytes_used_when_reconsidered = BYTES_USED)
1145 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1146 refill_memory_reserve ();
1147
1148 __free_hook = emacs_blocked_free;
1149 UNBLOCK_INPUT_ALLOC;
1150 }
1151
1152
1153 /* This function is the malloc hook that Emacs uses. */
1154
1155 static void *
1156 emacs_blocked_malloc (size_t size, const void *ptr)
1157 {
1158 void *value;
1159
1160 BLOCK_INPUT_ALLOC;
1161 __malloc_hook = old_malloc_hook;
1162 #ifdef DOUG_LEA_MALLOC
1163 /* Segfaults on my system. --lorentey */
1164 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1165 #else
1166 __malloc_extra_blocks = malloc_hysteresis;
1167 #endif
1168
1169 value = (void *) malloc (size);
1170
1171 #ifdef GC_MALLOC_CHECK
1172 {
1173 struct mem_node *m = mem_find (value);
1174 if (m != MEM_NIL)
1175 {
1176 fprintf (stderr, "Malloc returned %p which is already in use\n",
1177 value);
1178 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1179 m->start, m->end, (char *) m->end - (char *) m->start,
1180 m->type);
1181 abort ();
1182 }
1183
1184 if (!dont_register_blocks)
1185 {
1186 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1187 allocated_mem_type = MEM_TYPE_NON_LISP;
1188 }
1189 }
1190 #endif /* GC_MALLOC_CHECK */
1191
1192 __malloc_hook = emacs_blocked_malloc;
1193 UNBLOCK_INPUT_ALLOC;
1194
1195 /* fprintf (stderr, "%p malloc\n", value); */
1196 return value;
1197 }
1198
1199
1200 /* This function is the realloc hook that Emacs uses. */
1201
1202 static void *
1203 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1204 {
1205 void *value;
1206
1207 BLOCK_INPUT_ALLOC;
1208 __realloc_hook = old_realloc_hook;
1209
1210 #ifdef GC_MALLOC_CHECK
1211 if (ptr)
1212 {
1213 struct mem_node *m = mem_find (ptr);
1214 if (m == MEM_NIL || m->start != ptr)
1215 {
1216 fprintf (stderr,
1217 "Realloc of %p which wasn't allocated with malloc\n",
1218 ptr);
1219 abort ();
1220 }
1221
1222 mem_delete (m);
1223 }
1224
1225 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1226
1227 /* Prevent malloc from registering blocks. */
1228 dont_register_blocks = 1;
1229 #endif /* GC_MALLOC_CHECK */
1230
1231 value = (void *) realloc (ptr, size);
1232
1233 #ifdef GC_MALLOC_CHECK
1234 dont_register_blocks = 0;
1235
1236 {
1237 struct mem_node *m = mem_find (value);
1238 if (m != MEM_NIL)
1239 {
1240 fprintf (stderr, "Realloc returns memory that is already in use\n");
1241 abort ();
1242 }
1243
1244 /* Can't handle zero size regions in the red-black tree. */
1245 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1246 }
1247
1248 /* fprintf (stderr, "%p <- realloc\n", value); */
1249 #endif /* GC_MALLOC_CHECK */
1250
1251 __realloc_hook = emacs_blocked_realloc;
1252 UNBLOCK_INPUT_ALLOC;
1253
1254 return value;
1255 }
1256
1257
1258 #ifdef HAVE_GTK_AND_PTHREAD
1259 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1260 normal malloc. Some thread implementations need this as they call
1261 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1262 calls malloc because it is the first call, and we have an endless loop. */
1263
1264 void
1265 reset_malloc_hooks ()
1266 {
1267 __free_hook = old_free_hook;
1268 __malloc_hook = old_malloc_hook;
1269 __realloc_hook = old_realloc_hook;
1270 }
1271 #endif /* HAVE_GTK_AND_PTHREAD */
1272
1273
1274 /* Called from main to set up malloc to use our hooks. */
1275
1276 void
1277 uninterrupt_malloc (void)
1278 {
1279 #ifdef HAVE_GTK_AND_PTHREAD
1280 #ifdef DOUG_LEA_MALLOC
1281 pthread_mutexattr_t attr;
1282
1283 /* GLIBC has a faster way to do this, but lets keep it portable.
1284 This is according to the Single UNIX Specification. */
1285 pthread_mutexattr_init (&attr);
1286 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1287 pthread_mutex_init (&alloc_mutex, &attr);
1288 #else /* !DOUG_LEA_MALLOC */
1289 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1290 and the bundled gmalloc.c doesn't require it. */
1291 pthread_mutex_init (&alloc_mutex, NULL);
1292 #endif /* !DOUG_LEA_MALLOC */
1293 #endif /* HAVE_GTK_AND_PTHREAD */
1294
1295 if (__free_hook != emacs_blocked_free)
1296 old_free_hook = __free_hook;
1297 __free_hook = emacs_blocked_free;
1298
1299 if (__malloc_hook != emacs_blocked_malloc)
1300 old_malloc_hook = __malloc_hook;
1301 __malloc_hook = emacs_blocked_malloc;
1302
1303 if (__realloc_hook != emacs_blocked_realloc)
1304 old_realloc_hook = __realloc_hook;
1305 __realloc_hook = emacs_blocked_realloc;
1306 }
1307
1308 #endif /* not SYNC_INPUT */
1309 #endif /* not SYSTEM_MALLOC */
1310
1311
1312 \f
1313 /***********************************************************************
1314 Interval Allocation
1315 ***********************************************************************/
1316
1317 /* Number of intervals allocated in an interval_block structure.
1318 The 1020 is 1024 minus malloc overhead. */
1319
1320 #define INTERVAL_BLOCK_SIZE \
1321 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1322
1323 /* Intervals are allocated in chunks in form of an interval_block
1324 structure. */
1325
1326 struct interval_block
1327 {
1328 /* Place `intervals' first, to preserve alignment. */
1329 struct interval intervals[INTERVAL_BLOCK_SIZE];
1330 struct interval_block *next;
1331 };
1332
1333 /* Current interval block. Its `next' pointer points to older
1334 blocks. */
1335
1336 static struct interval_block *interval_block;
1337
1338 /* Index in interval_block above of the next unused interval
1339 structure. */
1340
1341 static int interval_block_index;
1342
1343 /* Number of free and live intervals. */
1344
1345 static int total_free_intervals, total_intervals;
1346
1347 /* List of free intervals. */
1348
1349 static INTERVAL interval_free_list;
1350
1351 /* Total number of interval blocks now in use. */
1352
1353 static int n_interval_blocks;
1354
1355
1356 /* Initialize interval allocation. */
1357
1358 static void
1359 init_intervals (void)
1360 {
1361 interval_block = NULL;
1362 interval_block_index = INTERVAL_BLOCK_SIZE;
1363 interval_free_list = 0;
1364 n_interval_blocks = 0;
1365 }
1366
1367
1368 /* Return a new interval. */
1369
1370 INTERVAL
1371 make_interval (void)
1372 {
1373 INTERVAL val;
1374
1375 /* eassert (!handling_signal); */
1376
1377 MALLOC_BLOCK_INPUT;
1378
1379 if (interval_free_list)
1380 {
1381 val = interval_free_list;
1382 interval_free_list = INTERVAL_PARENT (interval_free_list);
1383 }
1384 else
1385 {
1386 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1387 {
1388 register struct interval_block *newi;
1389
1390 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1391 MEM_TYPE_NON_LISP);
1392
1393 newi->next = interval_block;
1394 interval_block = newi;
1395 interval_block_index = 0;
1396 n_interval_blocks++;
1397 }
1398 val = &interval_block->intervals[interval_block_index++];
1399 }
1400
1401 MALLOC_UNBLOCK_INPUT;
1402
1403 consing_since_gc += sizeof (struct interval);
1404 intervals_consed++;
1405 RESET_INTERVAL (val);
1406 val->gcmarkbit = 0;
1407 return val;
1408 }
1409
1410
1411 /* Mark Lisp objects in interval I. */
1412
1413 static void
1414 mark_interval (register INTERVAL i, Lisp_Object dummy)
1415 {
1416 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1417 i->gcmarkbit = 1;
1418 mark_object (i->plist);
1419 }
1420
1421
1422 /* Mark the interval tree rooted in TREE. Don't call this directly;
1423 use the macro MARK_INTERVAL_TREE instead. */
1424
1425 static void
1426 mark_interval_tree (register INTERVAL tree)
1427 {
1428 /* No need to test if this tree has been marked already; this
1429 function is always called through the MARK_INTERVAL_TREE macro,
1430 which takes care of that. */
1431
1432 traverse_intervals_noorder (tree, mark_interval, Qnil);
1433 }
1434
1435
1436 /* Mark the interval tree rooted in I. */
1437
1438 #define MARK_INTERVAL_TREE(i) \
1439 do { \
1440 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1441 mark_interval_tree (i); \
1442 } while (0)
1443
1444
1445 #define UNMARK_BALANCE_INTERVALS(i) \
1446 do { \
1447 if (! NULL_INTERVAL_P (i)) \
1448 (i) = balance_intervals (i); \
1449 } while (0)
1450
1451 \f
1452 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1453 can't create number objects in macros. */
1454 #ifndef make_number
1455 Lisp_Object
1456 make_number (EMACS_INT n)
1457 {
1458 Lisp_Object obj;
1459 obj.s.val = n;
1460 obj.s.type = Lisp_Int;
1461 return obj;
1462 }
1463 #endif
1464 \f
1465 /***********************************************************************
1466 String Allocation
1467 ***********************************************************************/
1468
1469 /* Lisp_Strings are allocated in string_block structures. When a new
1470 string_block is allocated, all the Lisp_Strings it contains are
1471 added to a free-list string_free_list. When a new Lisp_String is
1472 needed, it is taken from that list. During the sweep phase of GC,
1473 string_blocks that are entirely free are freed, except two which
1474 we keep.
1475
1476 String data is allocated from sblock structures. Strings larger
1477 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1478 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1479
1480 Sblocks consist internally of sdata structures, one for each
1481 Lisp_String. The sdata structure points to the Lisp_String it
1482 belongs to. The Lisp_String points back to the `u.data' member of
1483 its sdata structure.
1484
1485 When a Lisp_String is freed during GC, it is put back on
1486 string_free_list, and its `data' member and its sdata's `string'
1487 pointer is set to null. The size of the string is recorded in the
1488 `u.nbytes' member of the sdata. So, sdata structures that are no
1489 longer used, can be easily recognized, and it's easy to compact the
1490 sblocks of small strings which we do in compact_small_strings. */
1491
1492 /* Size in bytes of an sblock structure used for small strings. This
1493 is 8192 minus malloc overhead. */
1494
1495 #define SBLOCK_SIZE 8188
1496
1497 /* Strings larger than this are considered large strings. String data
1498 for large strings is allocated from individual sblocks. */
1499
1500 #define LARGE_STRING_BYTES 1024
1501
1502 /* Structure describing string memory sub-allocated from an sblock.
1503 This is where the contents of Lisp strings are stored. */
1504
1505 struct sdata
1506 {
1507 /* Back-pointer to the string this sdata belongs to. If null, this
1508 structure is free, and the NBYTES member of the union below
1509 contains the string's byte size (the same value that STRING_BYTES
1510 would return if STRING were non-null). If non-null, STRING_BYTES
1511 (STRING) is the size of the data, and DATA contains the string's
1512 contents. */
1513 struct Lisp_String *string;
1514
1515 #ifdef GC_CHECK_STRING_BYTES
1516
1517 EMACS_INT nbytes;
1518 unsigned char data[1];
1519
1520 #define SDATA_NBYTES(S) (S)->nbytes
1521 #define SDATA_DATA(S) (S)->data
1522
1523 #else /* not GC_CHECK_STRING_BYTES */
1524
1525 union
1526 {
1527 /* When STRING in non-null. */
1528 unsigned char data[1];
1529
1530 /* When STRING is null. */
1531 EMACS_INT nbytes;
1532 } u;
1533
1534
1535 #define SDATA_NBYTES(S) (S)->u.nbytes
1536 #define SDATA_DATA(S) (S)->u.data
1537
1538 #endif /* not GC_CHECK_STRING_BYTES */
1539 };
1540
1541
1542 /* Structure describing a block of memory which is sub-allocated to
1543 obtain string data memory for strings. Blocks for small strings
1544 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1545 as large as needed. */
1546
1547 struct sblock
1548 {
1549 /* Next in list. */
1550 struct sblock *next;
1551
1552 /* Pointer to the next free sdata block. This points past the end
1553 of the sblock if there isn't any space left in this block. */
1554 struct sdata *next_free;
1555
1556 /* Start of data. */
1557 struct sdata first_data;
1558 };
1559
1560 /* Number of Lisp strings in a string_block structure. The 1020 is
1561 1024 minus malloc overhead. */
1562
1563 #define STRING_BLOCK_SIZE \
1564 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1565
1566 /* Structure describing a block from which Lisp_String structures
1567 are allocated. */
1568
1569 struct string_block
1570 {
1571 /* Place `strings' first, to preserve alignment. */
1572 struct Lisp_String strings[STRING_BLOCK_SIZE];
1573 struct string_block *next;
1574 };
1575
1576 /* Head and tail of the list of sblock structures holding Lisp string
1577 data. We always allocate from current_sblock. The NEXT pointers
1578 in the sblock structures go from oldest_sblock to current_sblock. */
1579
1580 static struct sblock *oldest_sblock, *current_sblock;
1581
1582 /* List of sblocks for large strings. */
1583
1584 static struct sblock *large_sblocks;
1585
1586 /* List of string_block structures, and how many there are. */
1587
1588 static struct string_block *string_blocks;
1589 static int n_string_blocks;
1590
1591 /* Free-list of Lisp_Strings. */
1592
1593 static struct Lisp_String *string_free_list;
1594
1595 /* Number of live and free Lisp_Strings. */
1596
1597 static int total_strings, total_free_strings;
1598
1599 /* Number of bytes used by live strings. */
1600
1601 static EMACS_INT total_string_size;
1602
1603 /* Given a pointer to a Lisp_String S which is on the free-list
1604 string_free_list, return a pointer to its successor in the
1605 free-list. */
1606
1607 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1608
1609 /* Return a pointer to the sdata structure belonging to Lisp string S.
1610 S must be live, i.e. S->data must not be null. S->data is actually
1611 a pointer to the `u.data' member of its sdata structure; the
1612 structure starts at a constant offset in front of that. */
1613
1614 #ifdef GC_CHECK_STRING_BYTES
1615
1616 #define SDATA_OF_STRING(S) \
1617 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1618 - sizeof (EMACS_INT)))
1619
1620 #else /* not GC_CHECK_STRING_BYTES */
1621
1622 #define SDATA_OF_STRING(S) \
1623 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1624
1625 #endif /* not GC_CHECK_STRING_BYTES */
1626
1627
1628 #ifdef GC_CHECK_STRING_OVERRUN
1629
1630 /* We check for overrun in string data blocks by appending a small
1631 "cookie" after each allocated string data block, and check for the
1632 presence of this cookie during GC. */
1633
1634 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1635 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1636 { 0xde, 0xad, 0xbe, 0xef };
1637
1638 #else
1639 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1640 #endif
1641
1642 /* Value is the size of an sdata structure large enough to hold NBYTES
1643 bytes of string data. The value returned includes a terminating
1644 NUL byte, the size of the sdata structure, and padding. */
1645
1646 #ifdef GC_CHECK_STRING_BYTES
1647
1648 #define SDATA_SIZE(NBYTES) \
1649 ((sizeof (struct Lisp_String *) \
1650 + (NBYTES) + 1 \
1651 + sizeof (EMACS_INT) \
1652 + sizeof (EMACS_INT) - 1) \
1653 & ~(sizeof (EMACS_INT) - 1))
1654
1655 #else /* not GC_CHECK_STRING_BYTES */
1656
1657 #define SDATA_SIZE(NBYTES) \
1658 ((sizeof (struct Lisp_String *) \
1659 + (NBYTES) + 1 \
1660 + sizeof (EMACS_INT) - 1) \
1661 & ~(sizeof (EMACS_INT) - 1))
1662
1663 #endif /* not GC_CHECK_STRING_BYTES */
1664
1665 /* Extra bytes to allocate for each string. */
1666
1667 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1668
1669 /* Initialize string allocation. Called from init_alloc_once. */
1670
1671 static void
1672 init_strings (void)
1673 {
1674 total_strings = total_free_strings = total_string_size = 0;
1675 oldest_sblock = current_sblock = large_sblocks = NULL;
1676 string_blocks = NULL;
1677 n_string_blocks = 0;
1678 string_free_list = NULL;
1679 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1680 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1681 }
1682
1683
1684 #ifdef GC_CHECK_STRING_BYTES
1685
1686 static int check_string_bytes_count;
1687
1688 static void check_string_bytes (int);
1689 static void check_sblock (struct sblock *);
1690
1691 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1692
1693
1694 /* Like GC_STRING_BYTES, but with debugging check. */
1695
1696 EMACS_INT
1697 string_bytes (struct Lisp_String *s)
1698 {
1699 EMACS_INT nbytes =
1700 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1701
1702 if (!PURE_POINTER_P (s)
1703 && s->data
1704 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1705 abort ();
1706 return nbytes;
1707 }
1708
1709 /* Check validity of Lisp strings' string_bytes member in B. */
1710
1711 static void
1712 check_sblock (b)
1713 struct sblock *b;
1714 {
1715 struct sdata *from, *end, *from_end;
1716
1717 end = b->next_free;
1718
1719 for (from = &b->first_data; from < end; from = from_end)
1720 {
1721 /* Compute the next FROM here because copying below may
1722 overwrite data we need to compute it. */
1723 EMACS_INT nbytes;
1724
1725 /* Check that the string size recorded in the string is the
1726 same as the one recorded in the sdata structure. */
1727 if (from->string)
1728 CHECK_STRING_BYTES (from->string);
1729
1730 if (from->string)
1731 nbytes = GC_STRING_BYTES (from->string);
1732 else
1733 nbytes = SDATA_NBYTES (from);
1734
1735 nbytes = SDATA_SIZE (nbytes);
1736 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1737 }
1738 }
1739
1740
1741 /* Check validity of Lisp strings' string_bytes member. ALL_P
1742 non-zero means check all strings, otherwise check only most
1743 recently allocated strings. Used for hunting a bug. */
1744
1745 static void
1746 check_string_bytes (all_p)
1747 int all_p;
1748 {
1749 if (all_p)
1750 {
1751 struct sblock *b;
1752
1753 for (b = large_sblocks; b; b = b->next)
1754 {
1755 struct Lisp_String *s = b->first_data.string;
1756 if (s)
1757 CHECK_STRING_BYTES (s);
1758 }
1759
1760 for (b = oldest_sblock; b; b = b->next)
1761 check_sblock (b);
1762 }
1763 else
1764 check_sblock (current_sblock);
1765 }
1766
1767 #endif /* GC_CHECK_STRING_BYTES */
1768
1769 #ifdef GC_CHECK_STRING_FREE_LIST
1770
1771 /* Walk through the string free list looking for bogus next pointers.
1772 This may catch buffer overrun from a previous string. */
1773
1774 static void
1775 check_string_free_list ()
1776 {
1777 struct Lisp_String *s;
1778
1779 /* Pop a Lisp_String off the free-list. */
1780 s = string_free_list;
1781 while (s != NULL)
1782 {
1783 if ((unsigned long)s < 1024)
1784 abort();
1785 s = NEXT_FREE_LISP_STRING (s);
1786 }
1787 }
1788 #else
1789 #define check_string_free_list()
1790 #endif
1791
1792 /* Return a new Lisp_String. */
1793
1794 static struct Lisp_String *
1795 allocate_string (void)
1796 {
1797 struct Lisp_String *s;
1798
1799 /* eassert (!handling_signal); */
1800
1801 MALLOC_BLOCK_INPUT;
1802
1803 /* If the free-list is empty, allocate a new string_block, and
1804 add all the Lisp_Strings in it to the free-list. */
1805 if (string_free_list == NULL)
1806 {
1807 struct string_block *b;
1808 int i;
1809
1810 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1811 memset (b, 0, sizeof *b);
1812 b->next = string_blocks;
1813 string_blocks = b;
1814 ++n_string_blocks;
1815
1816 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1817 {
1818 s = b->strings + i;
1819 NEXT_FREE_LISP_STRING (s) = string_free_list;
1820 string_free_list = s;
1821 }
1822
1823 total_free_strings += STRING_BLOCK_SIZE;
1824 }
1825
1826 check_string_free_list ();
1827
1828 /* Pop a Lisp_String off the free-list. */
1829 s = string_free_list;
1830 string_free_list = NEXT_FREE_LISP_STRING (s);
1831
1832 MALLOC_UNBLOCK_INPUT;
1833
1834 /* Probably not strictly necessary, but play it safe. */
1835 memset (s, 0, sizeof *s);
1836
1837 --total_free_strings;
1838 ++total_strings;
1839 ++strings_consed;
1840 consing_since_gc += sizeof *s;
1841
1842 #ifdef GC_CHECK_STRING_BYTES
1843 if (!noninteractive)
1844 {
1845 if (++check_string_bytes_count == 200)
1846 {
1847 check_string_bytes_count = 0;
1848 check_string_bytes (1);
1849 }
1850 else
1851 check_string_bytes (0);
1852 }
1853 #endif /* GC_CHECK_STRING_BYTES */
1854
1855 return s;
1856 }
1857
1858
1859 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1860 plus a NUL byte at the end. Allocate an sdata structure for S, and
1861 set S->data to its `u.data' member. Store a NUL byte at the end of
1862 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1863 S->data if it was initially non-null. */
1864
1865 void
1866 allocate_string_data (struct Lisp_String *s,
1867 EMACS_INT nchars, EMACS_INT nbytes)
1868 {
1869 struct sdata *data, *old_data;
1870 struct sblock *b;
1871 EMACS_INT needed, old_nbytes;
1872
1873 /* Determine the number of bytes needed to store NBYTES bytes
1874 of string data. */
1875 needed = SDATA_SIZE (nbytes);
1876 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1877 old_nbytes = GC_STRING_BYTES (s);
1878
1879 MALLOC_BLOCK_INPUT;
1880
1881 if (nbytes > LARGE_STRING_BYTES)
1882 {
1883 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1884
1885 #ifdef DOUG_LEA_MALLOC
1886 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1887 because mapped region contents are not preserved in
1888 a dumped Emacs.
1889
1890 In case you think of allowing it in a dumped Emacs at the
1891 cost of not being able to re-dump, there's another reason:
1892 mmap'ed data typically have an address towards the top of the
1893 address space, which won't fit into an EMACS_INT (at least on
1894 32-bit systems with the current tagging scheme). --fx */
1895 mallopt (M_MMAP_MAX, 0);
1896 #endif
1897
1898 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1899
1900 #ifdef DOUG_LEA_MALLOC
1901 /* Back to a reasonable maximum of mmap'ed areas. */
1902 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1903 #endif
1904
1905 b->next_free = &b->first_data;
1906 b->first_data.string = NULL;
1907 b->next = large_sblocks;
1908 large_sblocks = b;
1909 }
1910 else if (current_sblock == NULL
1911 || (((char *) current_sblock + SBLOCK_SIZE
1912 - (char *) current_sblock->next_free)
1913 < (needed + GC_STRING_EXTRA)))
1914 {
1915 /* Not enough room in the current sblock. */
1916 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1917 b->next_free = &b->first_data;
1918 b->first_data.string = NULL;
1919 b->next = NULL;
1920
1921 if (current_sblock)
1922 current_sblock->next = b;
1923 else
1924 oldest_sblock = b;
1925 current_sblock = b;
1926 }
1927 else
1928 b = current_sblock;
1929
1930 data = b->next_free;
1931 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1932
1933 MALLOC_UNBLOCK_INPUT;
1934
1935 data->string = s;
1936 s->data = SDATA_DATA (data);
1937 #ifdef GC_CHECK_STRING_BYTES
1938 SDATA_NBYTES (data) = nbytes;
1939 #endif
1940 s->size = nchars;
1941 s->size_byte = nbytes;
1942 s->data[nbytes] = '\0';
1943 #ifdef GC_CHECK_STRING_OVERRUN
1944 memcpy (data + needed, string_overrun_cookie, GC_STRING_OVERRUN_COOKIE_SIZE);
1945 #endif
1946
1947 /* If S had already data assigned, mark that as free by setting its
1948 string back-pointer to null, and recording the size of the data
1949 in it. */
1950 if (old_data)
1951 {
1952 SDATA_NBYTES (old_data) = old_nbytes;
1953 old_data->string = NULL;
1954 }
1955
1956 consing_since_gc += needed;
1957 }
1958
1959
1960 /* Sweep and compact strings. */
1961
1962 static void
1963 sweep_strings (void)
1964 {
1965 struct string_block *b, *next;
1966 struct string_block *live_blocks = NULL;
1967
1968 string_free_list = NULL;
1969 total_strings = total_free_strings = 0;
1970 total_string_size = 0;
1971
1972 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1973 for (b = string_blocks; b; b = next)
1974 {
1975 int i, nfree = 0;
1976 struct Lisp_String *free_list_before = string_free_list;
1977
1978 next = b->next;
1979
1980 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1981 {
1982 struct Lisp_String *s = b->strings + i;
1983
1984 if (s->data)
1985 {
1986 /* String was not on free-list before. */
1987 if (STRING_MARKED_P (s))
1988 {
1989 /* String is live; unmark it and its intervals. */
1990 UNMARK_STRING (s);
1991
1992 if (!NULL_INTERVAL_P (s->intervals))
1993 UNMARK_BALANCE_INTERVALS (s->intervals);
1994
1995 ++total_strings;
1996 total_string_size += STRING_BYTES (s);
1997 }
1998 else
1999 {
2000 /* String is dead. Put it on the free-list. */
2001 struct sdata *data = SDATA_OF_STRING (s);
2002
2003 /* Save the size of S in its sdata so that we know
2004 how large that is. Reset the sdata's string
2005 back-pointer so that we know it's free. */
2006 #ifdef GC_CHECK_STRING_BYTES
2007 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2008 abort ();
2009 #else
2010 data->u.nbytes = GC_STRING_BYTES (s);
2011 #endif
2012 data->string = NULL;
2013
2014 /* Reset the strings's `data' member so that we
2015 know it's free. */
2016 s->data = NULL;
2017
2018 /* Put the string on the free-list. */
2019 NEXT_FREE_LISP_STRING (s) = string_free_list;
2020 string_free_list = s;
2021 ++nfree;
2022 }
2023 }
2024 else
2025 {
2026 /* S was on the free-list before. Put it there again. */
2027 NEXT_FREE_LISP_STRING (s) = string_free_list;
2028 string_free_list = s;
2029 ++nfree;
2030 }
2031 }
2032
2033 /* Free blocks that contain free Lisp_Strings only, except
2034 the first two of them. */
2035 if (nfree == STRING_BLOCK_SIZE
2036 && total_free_strings > STRING_BLOCK_SIZE)
2037 {
2038 lisp_free (b);
2039 --n_string_blocks;
2040 string_free_list = free_list_before;
2041 }
2042 else
2043 {
2044 total_free_strings += nfree;
2045 b->next = live_blocks;
2046 live_blocks = b;
2047 }
2048 }
2049
2050 check_string_free_list ();
2051
2052 string_blocks = live_blocks;
2053 free_large_strings ();
2054 compact_small_strings ();
2055
2056 check_string_free_list ();
2057 }
2058
2059
2060 /* Free dead large strings. */
2061
2062 static void
2063 free_large_strings (void)
2064 {
2065 struct sblock *b, *next;
2066 struct sblock *live_blocks = NULL;
2067
2068 for (b = large_sblocks; b; b = next)
2069 {
2070 next = b->next;
2071
2072 if (b->first_data.string == NULL)
2073 lisp_free (b);
2074 else
2075 {
2076 b->next = live_blocks;
2077 live_blocks = b;
2078 }
2079 }
2080
2081 large_sblocks = live_blocks;
2082 }
2083
2084
2085 /* Compact data of small strings. Free sblocks that don't contain
2086 data of live strings after compaction. */
2087
2088 static void
2089 compact_small_strings (void)
2090 {
2091 struct sblock *b, *tb, *next;
2092 struct sdata *from, *to, *end, *tb_end;
2093 struct sdata *to_end, *from_end;
2094
2095 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2096 to, and TB_END is the end of TB. */
2097 tb = oldest_sblock;
2098 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2099 to = &tb->first_data;
2100
2101 /* Step through the blocks from the oldest to the youngest. We
2102 expect that old blocks will stabilize over time, so that less
2103 copying will happen this way. */
2104 for (b = oldest_sblock; b; b = b->next)
2105 {
2106 end = b->next_free;
2107 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2108
2109 for (from = &b->first_data; from < end; from = from_end)
2110 {
2111 /* Compute the next FROM here because copying below may
2112 overwrite data we need to compute it. */
2113 EMACS_INT nbytes;
2114
2115 #ifdef GC_CHECK_STRING_BYTES
2116 /* Check that the string size recorded in the string is the
2117 same as the one recorded in the sdata structure. */
2118 if (from->string
2119 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2120 abort ();
2121 #endif /* GC_CHECK_STRING_BYTES */
2122
2123 if (from->string)
2124 nbytes = GC_STRING_BYTES (from->string);
2125 else
2126 nbytes = SDATA_NBYTES (from);
2127
2128 if (nbytes > LARGE_STRING_BYTES)
2129 abort ();
2130
2131 nbytes = SDATA_SIZE (nbytes);
2132 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2133
2134 #ifdef GC_CHECK_STRING_OVERRUN
2135 if (memcmp (string_overrun_cookie,
2136 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2137 GC_STRING_OVERRUN_COOKIE_SIZE))
2138 abort ();
2139 #endif
2140
2141 /* FROM->string non-null means it's alive. Copy its data. */
2142 if (from->string)
2143 {
2144 /* If TB is full, proceed with the next sblock. */
2145 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2146 if (to_end > tb_end)
2147 {
2148 tb->next_free = to;
2149 tb = tb->next;
2150 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2151 to = &tb->first_data;
2152 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2153 }
2154
2155 /* Copy, and update the string's `data' pointer. */
2156 if (from != to)
2157 {
2158 xassert (tb != b || to <= from);
2159 memmove (to, from, nbytes + GC_STRING_EXTRA);
2160 to->string->data = SDATA_DATA (to);
2161 }
2162
2163 /* Advance past the sdata we copied to. */
2164 to = to_end;
2165 }
2166 }
2167 }
2168
2169 /* The rest of the sblocks following TB don't contain live data, so
2170 we can free them. */
2171 for (b = tb->next; b; b = next)
2172 {
2173 next = b->next;
2174 lisp_free (b);
2175 }
2176
2177 tb->next_free = to;
2178 tb->next = NULL;
2179 current_sblock = tb;
2180 }
2181
2182
2183 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2184 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2185 LENGTH must be an integer.
2186 INIT must be an integer that represents a character. */)
2187 (Lisp_Object length, Lisp_Object init)
2188 {
2189 register Lisp_Object val;
2190 register unsigned char *p, *end;
2191 int c;
2192 EMACS_INT nbytes;
2193
2194 CHECK_NATNUM (length);
2195 CHECK_NUMBER (init);
2196
2197 c = XINT (init);
2198 if (ASCII_CHAR_P (c))
2199 {
2200 nbytes = XINT (length);
2201 val = make_uninit_string (nbytes);
2202 p = SDATA (val);
2203 end = p + SCHARS (val);
2204 while (p != end)
2205 *p++ = c;
2206 }
2207 else
2208 {
2209 unsigned char str[MAX_MULTIBYTE_LENGTH];
2210 int len = CHAR_STRING (c, str);
2211 EMACS_INT string_len = XINT (length);
2212
2213 if (string_len > MOST_POSITIVE_FIXNUM / len)
2214 error ("Maximum string size exceeded");
2215 nbytes = len * string_len;
2216 val = make_uninit_multibyte_string (string_len, nbytes);
2217 p = SDATA (val);
2218 end = p + nbytes;
2219 while (p != end)
2220 {
2221 memcpy (p, str, len);
2222 p += len;
2223 }
2224 }
2225
2226 *p = 0;
2227 return val;
2228 }
2229
2230
2231 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2232 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2233 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2234 (Lisp_Object length, Lisp_Object init)
2235 {
2236 register Lisp_Object val;
2237 struct Lisp_Bool_Vector *p;
2238 int real_init, i;
2239 EMACS_INT length_in_chars, length_in_elts;
2240 int bits_per_value;
2241
2242 CHECK_NATNUM (length);
2243
2244 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2245
2246 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2247 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2248 / BOOL_VECTOR_BITS_PER_CHAR);
2249
2250 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2251 slot `size' of the struct Lisp_Bool_Vector. */
2252 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2253
2254 /* Get rid of any bits that would cause confusion. */
2255 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2256 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2257 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2258
2259 p = XBOOL_VECTOR (val);
2260 p->size = XFASTINT (length);
2261
2262 real_init = (NILP (init) ? 0 : -1);
2263 for (i = 0; i < length_in_chars ; i++)
2264 p->data[i] = real_init;
2265
2266 /* Clear the extraneous bits in the last byte. */
2267 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2268 p->data[length_in_chars - 1]
2269 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2270
2271 return val;
2272 }
2273
2274
2275 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2276 of characters from the contents. This string may be unibyte or
2277 multibyte, depending on the contents. */
2278
2279 Lisp_Object
2280 make_string (const char *contents, EMACS_INT nbytes)
2281 {
2282 register Lisp_Object val;
2283 EMACS_INT nchars, multibyte_nbytes;
2284
2285 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2286 &nchars, &multibyte_nbytes);
2287 if (nbytes == nchars || nbytes != multibyte_nbytes)
2288 /* CONTENTS contains no multibyte sequences or contains an invalid
2289 multibyte sequence. We must make unibyte string. */
2290 val = make_unibyte_string (contents, nbytes);
2291 else
2292 val = make_multibyte_string (contents, nchars, nbytes);
2293 return val;
2294 }
2295
2296
2297 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2298
2299 Lisp_Object
2300 make_unibyte_string (const char *contents, EMACS_INT length)
2301 {
2302 register Lisp_Object val;
2303 val = make_uninit_string (length);
2304 memcpy (SDATA (val), contents, length);
2305 return val;
2306 }
2307
2308
2309 /* Make a multibyte string from NCHARS characters occupying NBYTES
2310 bytes at CONTENTS. */
2311
2312 Lisp_Object
2313 make_multibyte_string (const char *contents,
2314 EMACS_INT nchars, EMACS_INT nbytes)
2315 {
2316 register Lisp_Object val;
2317 val = make_uninit_multibyte_string (nchars, nbytes);
2318 memcpy (SDATA (val), contents, nbytes);
2319 return val;
2320 }
2321
2322
2323 /* Make a string from NCHARS characters occupying NBYTES bytes at
2324 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2325
2326 Lisp_Object
2327 make_string_from_bytes (const char *contents,
2328 EMACS_INT nchars, EMACS_INT nbytes)
2329 {
2330 register Lisp_Object val;
2331 val = make_uninit_multibyte_string (nchars, nbytes);
2332 memcpy (SDATA (val), contents, nbytes);
2333 if (SBYTES (val) == SCHARS (val))
2334 STRING_SET_UNIBYTE (val);
2335 return val;
2336 }
2337
2338
2339 /* Make a string from NCHARS characters occupying NBYTES bytes at
2340 CONTENTS. The argument MULTIBYTE controls whether to label the
2341 string as multibyte. If NCHARS is negative, it counts the number of
2342 characters by itself. */
2343
2344 Lisp_Object
2345 make_specified_string (const char *contents,
2346 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2347 {
2348 register Lisp_Object val;
2349
2350 if (nchars < 0)
2351 {
2352 if (multibyte)
2353 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2354 nbytes);
2355 else
2356 nchars = nbytes;
2357 }
2358 val = make_uninit_multibyte_string (nchars, nbytes);
2359 memcpy (SDATA (val), contents, nbytes);
2360 if (!multibyte)
2361 STRING_SET_UNIBYTE (val);
2362 return val;
2363 }
2364
2365
2366 /* Make a string from the data at STR, treating it as multibyte if the
2367 data warrants. */
2368
2369 Lisp_Object
2370 build_string (const char *str)
2371 {
2372 return make_string (str, strlen (str));
2373 }
2374
2375
2376 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2377 occupying LENGTH bytes. */
2378
2379 Lisp_Object
2380 make_uninit_string (EMACS_INT length)
2381 {
2382 Lisp_Object val;
2383
2384 if (!length)
2385 return empty_unibyte_string;
2386 val = make_uninit_multibyte_string (length, length);
2387 STRING_SET_UNIBYTE (val);
2388 return val;
2389 }
2390
2391
2392 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2393 which occupy NBYTES bytes. */
2394
2395 Lisp_Object
2396 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2397 {
2398 Lisp_Object string;
2399 struct Lisp_String *s;
2400
2401 if (nchars < 0)
2402 abort ();
2403 if (!nbytes)
2404 return empty_multibyte_string;
2405
2406 s = allocate_string ();
2407 allocate_string_data (s, nchars, nbytes);
2408 XSETSTRING (string, s);
2409 string_chars_consed += nbytes;
2410 return string;
2411 }
2412
2413
2414 \f
2415 /***********************************************************************
2416 Float Allocation
2417 ***********************************************************************/
2418
2419 /* We store float cells inside of float_blocks, allocating a new
2420 float_block with malloc whenever necessary. Float cells reclaimed
2421 by GC are put on a free list to be reallocated before allocating
2422 any new float cells from the latest float_block. */
2423
2424 #define FLOAT_BLOCK_SIZE \
2425 (((BLOCK_BYTES - sizeof (struct float_block *) \
2426 /* The compiler might add padding at the end. */ \
2427 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2428 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2429
2430 #define GETMARKBIT(block,n) \
2431 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2432 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2433 & 1)
2434
2435 #define SETMARKBIT(block,n) \
2436 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2437 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2438
2439 #define UNSETMARKBIT(block,n) \
2440 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2441 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2442
2443 #define FLOAT_BLOCK(fptr) \
2444 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2445
2446 #define FLOAT_INDEX(fptr) \
2447 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2448
2449 struct float_block
2450 {
2451 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2452 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2453 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2454 struct float_block *next;
2455 };
2456
2457 #define FLOAT_MARKED_P(fptr) \
2458 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2459
2460 #define FLOAT_MARK(fptr) \
2461 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2462
2463 #define FLOAT_UNMARK(fptr) \
2464 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2465
2466 /* Current float_block. */
2467
2468 static struct float_block *float_block;
2469
2470 /* Index of first unused Lisp_Float in the current float_block. */
2471
2472 static int float_block_index;
2473
2474 /* Total number of float blocks now in use. */
2475
2476 static int n_float_blocks;
2477
2478 /* Free-list of Lisp_Floats. */
2479
2480 static struct Lisp_Float *float_free_list;
2481
2482
2483 /* Initialize float allocation. */
2484
2485 static void
2486 init_float (void)
2487 {
2488 float_block = NULL;
2489 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2490 float_free_list = 0;
2491 n_float_blocks = 0;
2492 }
2493
2494
2495 /* Return a new float object with value FLOAT_VALUE. */
2496
2497 Lisp_Object
2498 make_float (double float_value)
2499 {
2500 register Lisp_Object val;
2501
2502 /* eassert (!handling_signal); */
2503
2504 MALLOC_BLOCK_INPUT;
2505
2506 if (float_free_list)
2507 {
2508 /* We use the data field for chaining the free list
2509 so that we won't use the same field that has the mark bit. */
2510 XSETFLOAT (val, float_free_list);
2511 float_free_list = float_free_list->u.chain;
2512 }
2513 else
2514 {
2515 if (float_block_index == FLOAT_BLOCK_SIZE)
2516 {
2517 register struct float_block *new;
2518
2519 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2520 MEM_TYPE_FLOAT);
2521 new->next = float_block;
2522 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2523 float_block = new;
2524 float_block_index = 0;
2525 n_float_blocks++;
2526 }
2527 XSETFLOAT (val, &float_block->floats[float_block_index]);
2528 float_block_index++;
2529 }
2530
2531 MALLOC_UNBLOCK_INPUT;
2532
2533 XFLOAT_INIT (val, float_value);
2534 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2535 consing_since_gc += sizeof (struct Lisp_Float);
2536 floats_consed++;
2537 return val;
2538 }
2539
2540
2541 \f
2542 /***********************************************************************
2543 Cons Allocation
2544 ***********************************************************************/
2545
2546 /* We store cons cells inside of cons_blocks, allocating a new
2547 cons_block with malloc whenever necessary. Cons cells reclaimed by
2548 GC are put on a free list to be reallocated before allocating
2549 any new cons cells from the latest cons_block. */
2550
2551 #define CONS_BLOCK_SIZE \
2552 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2553 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2554
2555 #define CONS_BLOCK(fptr) \
2556 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2557
2558 #define CONS_INDEX(fptr) \
2559 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2560
2561 struct cons_block
2562 {
2563 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2564 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2565 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2566 struct cons_block *next;
2567 };
2568
2569 #define CONS_MARKED_P(fptr) \
2570 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2571
2572 #define CONS_MARK(fptr) \
2573 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2574
2575 #define CONS_UNMARK(fptr) \
2576 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2577
2578 /* Current cons_block. */
2579
2580 static struct cons_block *cons_block;
2581
2582 /* Index of first unused Lisp_Cons in the current block. */
2583
2584 static int cons_block_index;
2585
2586 /* Free-list of Lisp_Cons structures. */
2587
2588 static struct Lisp_Cons *cons_free_list;
2589
2590 /* Total number of cons blocks now in use. */
2591
2592 static int n_cons_blocks;
2593
2594
2595 /* Initialize cons allocation. */
2596
2597 static void
2598 init_cons (void)
2599 {
2600 cons_block = NULL;
2601 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2602 cons_free_list = 0;
2603 n_cons_blocks = 0;
2604 }
2605
2606
2607 /* Explicitly free a cons cell by putting it on the free-list. */
2608
2609 void
2610 free_cons (struct Lisp_Cons *ptr)
2611 {
2612 ptr->u.chain = cons_free_list;
2613 #if GC_MARK_STACK
2614 ptr->car = Vdead;
2615 #endif
2616 cons_free_list = ptr;
2617 }
2618
2619 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2620 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2621 (Lisp_Object car, Lisp_Object cdr)
2622 {
2623 register Lisp_Object val;
2624
2625 /* eassert (!handling_signal); */
2626
2627 MALLOC_BLOCK_INPUT;
2628
2629 if (cons_free_list)
2630 {
2631 /* We use the cdr for chaining the free list
2632 so that we won't use the same field that has the mark bit. */
2633 XSETCONS (val, cons_free_list);
2634 cons_free_list = cons_free_list->u.chain;
2635 }
2636 else
2637 {
2638 if (cons_block_index == CONS_BLOCK_SIZE)
2639 {
2640 register struct cons_block *new;
2641 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2642 MEM_TYPE_CONS);
2643 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2644 new->next = cons_block;
2645 cons_block = new;
2646 cons_block_index = 0;
2647 n_cons_blocks++;
2648 }
2649 XSETCONS (val, &cons_block->conses[cons_block_index]);
2650 cons_block_index++;
2651 }
2652
2653 MALLOC_UNBLOCK_INPUT;
2654
2655 XSETCAR (val, car);
2656 XSETCDR (val, cdr);
2657 eassert (!CONS_MARKED_P (XCONS (val)));
2658 consing_since_gc += sizeof (struct Lisp_Cons);
2659 cons_cells_consed++;
2660 return val;
2661 }
2662
2663 #ifdef GC_CHECK_CONS_LIST
2664 /* Get an error now if there's any junk in the cons free list. */
2665 void
2666 check_cons_list (void)
2667 {
2668 struct Lisp_Cons *tail = cons_free_list;
2669
2670 while (tail)
2671 tail = tail->u.chain;
2672 }
2673 #endif
2674
2675 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2676
2677 Lisp_Object
2678 list1 (Lisp_Object arg1)
2679 {
2680 return Fcons (arg1, Qnil);
2681 }
2682
2683 Lisp_Object
2684 list2 (Lisp_Object arg1, Lisp_Object arg2)
2685 {
2686 return Fcons (arg1, Fcons (arg2, Qnil));
2687 }
2688
2689
2690 Lisp_Object
2691 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2692 {
2693 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2694 }
2695
2696
2697 Lisp_Object
2698 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2699 {
2700 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2701 }
2702
2703
2704 Lisp_Object
2705 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2706 {
2707 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2708 Fcons (arg5, Qnil)))));
2709 }
2710
2711
2712 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2713 doc: /* Return a newly created list with specified arguments as elements.
2714 Any number of arguments, even zero arguments, are allowed.
2715 usage: (list &rest OBJECTS) */)
2716 (size_t nargs, register Lisp_Object *args)
2717 {
2718 register Lisp_Object val;
2719 val = Qnil;
2720
2721 while (nargs > 0)
2722 {
2723 nargs--;
2724 val = Fcons (args[nargs], val);
2725 }
2726 return val;
2727 }
2728
2729
2730 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2731 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2732 (register Lisp_Object length, Lisp_Object init)
2733 {
2734 register Lisp_Object val;
2735 register EMACS_INT size;
2736
2737 CHECK_NATNUM (length);
2738 size = XFASTINT (length);
2739
2740 val = Qnil;
2741 while (size > 0)
2742 {
2743 val = Fcons (init, val);
2744 --size;
2745
2746 if (size > 0)
2747 {
2748 val = Fcons (init, val);
2749 --size;
2750
2751 if (size > 0)
2752 {
2753 val = Fcons (init, val);
2754 --size;
2755
2756 if (size > 0)
2757 {
2758 val = Fcons (init, val);
2759 --size;
2760
2761 if (size > 0)
2762 {
2763 val = Fcons (init, val);
2764 --size;
2765 }
2766 }
2767 }
2768 }
2769
2770 QUIT;
2771 }
2772
2773 return val;
2774 }
2775
2776
2777 \f
2778 /***********************************************************************
2779 Vector Allocation
2780 ***********************************************************************/
2781
2782 /* Singly-linked list of all vectors. */
2783
2784 static struct Lisp_Vector *all_vectors;
2785
2786 /* Total number of vector-like objects now in use. */
2787
2788 static int n_vectors;
2789
2790
2791 /* Value is a pointer to a newly allocated Lisp_Vector structure
2792 with room for LEN Lisp_Objects. */
2793
2794 static struct Lisp_Vector *
2795 allocate_vectorlike (EMACS_INT len)
2796 {
2797 struct Lisp_Vector *p;
2798 size_t nbytes;
2799
2800 MALLOC_BLOCK_INPUT;
2801
2802 #ifdef DOUG_LEA_MALLOC
2803 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2804 because mapped region contents are not preserved in
2805 a dumped Emacs. */
2806 mallopt (M_MMAP_MAX, 0);
2807 #endif
2808
2809 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2810 /* eassert (!handling_signal); */
2811
2812 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2813 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2814
2815 #ifdef DOUG_LEA_MALLOC
2816 /* Back to a reasonable maximum of mmap'ed areas. */
2817 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2818 #endif
2819
2820 consing_since_gc += nbytes;
2821 vector_cells_consed += len;
2822
2823 p->next = all_vectors;
2824 all_vectors = p;
2825
2826 MALLOC_UNBLOCK_INPUT;
2827
2828 ++n_vectors;
2829 return p;
2830 }
2831
2832
2833 /* Allocate a vector with NSLOTS slots. */
2834
2835 struct Lisp_Vector *
2836 allocate_vector (EMACS_INT nslots)
2837 {
2838 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2839 v->size = nslots;
2840 return v;
2841 }
2842
2843
2844 /* Allocate other vector-like structures. */
2845
2846 struct Lisp_Vector *
2847 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2848 {
2849 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2850 EMACS_INT i;
2851
2852 /* Only the first lisplen slots will be traced normally by the GC. */
2853 v->size = lisplen;
2854 for (i = 0; i < lisplen; ++i)
2855 v->contents[i] = Qnil;
2856
2857 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2858 return v;
2859 }
2860
2861 struct Lisp_Hash_Table *
2862 allocate_hash_table (void)
2863 {
2864 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2865 }
2866
2867
2868 struct window *
2869 allocate_window (void)
2870 {
2871 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2872 }
2873
2874
2875 struct terminal *
2876 allocate_terminal (void)
2877 {
2878 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2879 next_terminal, PVEC_TERMINAL);
2880 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2881 memset (&t->next_terminal, 0,
2882 (char*) (t + 1) - (char*) &t->next_terminal);
2883
2884 return t;
2885 }
2886
2887 struct frame *
2888 allocate_frame (void)
2889 {
2890 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2891 face_cache, PVEC_FRAME);
2892 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2893 memset (&f->face_cache, 0,
2894 (char *) (f + 1) - (char *) &f->face_cache);
2895 return f;
2896 }
2897
2898
2899 struct Lisp_Process *
2900 allocate_process (void)
2901 {
2902 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
2903 }
2904
2905
2906 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2907 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2908 See also the function `vector'. */)
2909 (register Lisp_Object length, Lisp_Object init)
2910 {
2911 Lisp_Object vector;
2912 register EMACS_INT sizei;
2913 register EMACS_INT i;
2914 register struct Lisp_Vector *p;
2915
2916 CHECK_NATNUM (length);
2917 sizei = XFASTINT (length);
2918
2919 p = allocate_vector (sizei);
2920 for (i = 0; i < sizei; i++)
2921 p->contents[i] = init;
2922
2923 XSETVECTOR (vector, p);
2924 return vector;
2925 }
2926
2927
2928 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2929 doc: /* Return a newly created vector with specified arguments as elements.
2930 Any number of arguments, even zero arguments, are allowed.
2931 usage: (vector &rest OBJECTS) */)
2932 (register size_t nargs, Lisp_Object *args)
2933 {
2934 register Lisp_Object len, val;
2935 register size_t i;
2936 register struct Lisp_Vector *p;
2937
2938 XSETFASTINT (len, nargs);
2939 val = Fmake_vector (len, Qnil);
2940 p = XVECTOR (val);
2941 for (i = 0; i < nargs; i++)
2942 p->contents[i] = args[i];
2943 return val;
2944 }
2945
2946
2947 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2948 doc: /* Create a byte-code object with specified arguments as elements.
2949 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
2950 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
2951 and (optional) INTERACTIVE-SPEC.
2952 The first four arguments are required; at most six have any
2953 significance.
2954 The ARGLIST can be either like the one of `lambda', in which case the arguments
2955 will be dynamically bound before executing the byte code, or it can be an
2956 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
2957 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
2958 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
2959 argument to catch the left-over arguments. If such an integer is used, the
2960 arguments will not be dynamically bound but will be instead pushed on the
2961 stack before executing the byte-code.
2962 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2963 (register size_t nargs, Lisp_Object *args)
2964 {
2965 register Lisp_Object len, val;
2966 register size_t i;
2967 register struct Lisp_Vector *p;
2968
2969 XSETFASTINT (len, nargs);
2970 if (!NILP (Vpurify_flag))
2971 val = make_pure_vector ((EMACS_INT) nargs);
2972 else
2973 val = Fmake_vector (len, Qnil);
2974
2975 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2976 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2977 earlier because they produced a raw 8-bit string for byte-code
2978 and now such a byte-code string is loaded as multibyte while
2979 raw 8-bit characters converted to multibyte form. Thus, now we
2980 must convert them back to the original unibyte form. */
2981 args[1] = Fstring_as_unibyte (args[1]);
2982
2983 p = XVECTOR (val);
2984 for (i = 0; i < nargs; i++)
2985 {
2986 if (!NILP (Vpurify_flag))
2987 args[i] = Fpurecopy (args[i]);
2988 p->contents[i] = args[i];
2989 }
2990 XSETPVECTYPE (p, PVEC_COMPILED);
2991 XSETCOMPILED (val, p);
2992 return val;
2993 }
2994
2995
2996 \f
2997 /***********************************************************************
2998 Symbol Allocation
2999 ***********************************************************************/
3000
3001 /* Each symbol_block is just under 1020 bytes long, since malloc
3002 really allocates in units of powers of two and uses 4 bytes for its
3003 own overhead. */
3004
3005 #define SYMBOL_BLOCK_SIZE \
3006 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3007
3008 struct symbol_block
3009 {
3010 /* Place `symbols' first, to preserve alignment. */
3011 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3012 struct symbol_block *next;
3013 };
3014
3015 /* Current symbol block and index of first unused Lisp_Symbol
3016 structure in it. */
3017
3018 static struct symbol_block *symbol_block;
3019 static int symbol_block_index;
3020
3021 /* List of free symbols. */
3022
3023 static struct Lisp_Symbol *symbol_free_list;
3024
3025 /* Total number of symbol blocks now in use. */
3026
3027 static int n_symbol_blocks;
3028
3029
3030 /* Initialize symbol allocation. */
3031
3032 static void
3033 init_symbol (void)
3034 {
3035 symbol_block = NULL;
3036 symbol_block_index = SYMBOL_BLOCK_SIZE;
3037 symbol_free_list = 0;
3038 n_symbol_blocks = 0;
3039 }
3040
3041
3042 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3043 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3044 Its value and function definition are void, and its property list is nil. */)
3045 (Lisp_Object name)
3046 {
3047 register Lisp_Object val;
3048 register struct Lisp_Symbol *p;
3049
3050 CHECK_STRING (name);
3051
3052 /* eassert (!handling_signal); */
3053
3054 MALLOC_BLOCK_INPUT;
3055
3056 if (symbol_free_list)
3057 {
3058 XSETSYMBOL (val, symbol_free_list);
3059 symbol_free_list = symbol_free_list->next;
3060 }
3061 else
3062 {
3063 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3064 {
3065 struct symbol_block *new;
3066 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3067 MEM_TYPE_SYMBOL);
3068 new->next = symbol_block;
3069 symbol_block = new;
3070 symbol_block_index = 0;
3071 n_symbol_blocks++;
3072 }
3073 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3074 symbol_block_index++;
3075 }
3076
3077 MALLOC_UNBLOCK_INPUT;
3078
3079 p = XSYMBOL (val);
3080 p->xname = name;
3081 p->plist = Qnil;
3082 p->redirect = SYMBOL_PLAINVAL;
3083 SET_SYMBOL_VAL (p, Qunbound);
3084 p->function = Qunbound;
3085 p->next = NULL;
3086 p->gcmarkbit = 0;
3087 p->interned = SYMBOL_UNINTERNED;
3088 p->constant = 0;
3089 p->declared_special = 0;
3090 consing_since_gc += sizeof (struct Lisp_Symbol);
3091 symbols_consed++;
3092 return val;
3093 }
3094
3095
3096 \f
3097 /***********************************************************************
3098 Marker (Misc) Allocation
3099 ***********************************************************************/
3100
3101 /* Allocation of markers and other objects that share that structure.
3102 Works like allocation of conses. */
3103
3104 #define MARKER_BLOCK_SIZE \
3105 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3106
3107 struct marker_block
3108 {
3109 /* Place `markers' first, to preserve alignment. */
3110 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3111 struct marker_block *next;
3112 };
3113
3114 static struct marker_block *marker_block;
3115 static int marker_block_index;
3116
3117 static union Lisp_Misc *marker_free_list;
3118
3119 /* Total number of marker blocks now in use. */
3120
3121 static int n_marker_blocks;
3122
3123 static void
3124 init_marker (void)
3125 {
3126 marker_block = NULL;
3127 marker_block_index = MARKER_BLOCK_SIZE;
3128 marker_free_list = 0;
3129 n_marker_blocks = 0;
3130 }
3131
3132 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3133
3134 Lisp_Object
3135 allocate_misc (void)
3136 {
3137 Lisp_Object val;
3138
3139 /* eassert (!handling_signal); */
3140
3141 MALLOC_BLOCK_INPUT;
3142
3143 if (marker_free_list)
3144 {
3145 XSETMISC (val, marker_free_list);
3146 marker_free_list = marker_free_list->u_free.chain;
3147 }
3148 else
3149 {
3150 if (marker_block_index == MARKER_BLOCK_SIZE)
3151 {
3152 struct marker_block *new;
3153 new = (struct marker_block *) lisp_malloc (sizeof *new,
3154 MEM_TYPE_MISC);
3155 new->next = marker_block;
3156 marker_block = new;
3157 marker_block_index = 0;
3158 n_marker_blocks++;
3159 total_free_markers += MARKER_BLOCK_SIZE;
3160 }
3161 XSETMISC (val, &marker_block->markers[marker_block_index]);
3162 marker_block_index++;
3163 }
3164
3165 MALLOC_UNBLOCK_INPUT;
3166
3167 --total_free_markers;
3168 consing_since_gc += sizeof (union Lisp_Misc);
3169 misc_objects_consed++;
3170 XMISCANY (val)->gcmarkbit = 0;
3171 return val;
3172 }
3173
3174 /* Free a Lisp_Misc object */
3175
3176 static void
3177 free_misc (Lisp_Object misc)
3178 {
3179 XMISCTYPE (misc) = Lisp_Misc_Free;
3180 XMISC (misc)->u_free.chain = marker_free_list;
3181 marker_free_list = XMISC (misc);
3182
3183 total_free_markers++;
3184 }
3185
3186 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3187 INTEGER. This is used to package C values to call record_unwind_protect.
3188 The unwind function can get the C values back using XSAVE_VALUE. */
3189
3190 Lisp_Object
3191 make_save_value (void *pointer, int integer)
3192 {
3193 register Lisp_Object val;
3194 register struct Lisp_Save_Value *p;
3195
3196 val = allocate_misc ();
3197 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3198 p = XSAVE_VALUE (val);
3199 p->pointer = pointer;
3200 p->integer = integer;
3201 p->dogc = 0;
3202 return val;
3203 }
3204
3205 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3206 doc: /* Return a newly allocated marker which does not point at any place. */)
3207 (void)
3208 {
3209 register Lisp_Object val;
3210 register struct Lisp_Marker *p;
3211
3212 val = allocate_misc ();
3213 XMISCTYPE (val) = Lisp_Misc_Marker;
3214 p = XMARKER (val);
3215 p->buffer = 0;
3216 p->bytepos = 0;
3217 p->charpos = 0;
3218 p->next = NULL;
3219 p->insertion_type = 0;
3220 return val;
3221 }
3222
3223 /* Put MARKER back on the free list after using it temporarily. */
3224
3225 void
3226 free_marker (Lisp_Object marker)
3227 {
3228 unchain_marker (XMARKER (marker));
3229 free_misc (marker);
3230 }
3231
3232 \f
3233 /* Return a newly created vector or string with specified arguments as
3234 elements. If all the arguments are characters that can fit
3235 in a string of events, make a string; otherwise, make a vector.
3236
3237 Any number of arguments, even zero arguments, are allowed. */
3238
3239 Lisp_Object
3240 make_event_array (register int nargs, Lisp_Object *args)
3241 {
3242 int i;
3243
3244 for (i = 0; i < nargs; i++)
3245 /* The things that fit in a string
3246 are characters that are in 0...127,
3247 after discarding the meta bit and all the bits above it. */
3248 if (!INTEGERP (args[i])
3249 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3250 return Fvector (nargs, args);
3251
3252 /* Since the loop exited, we know that all the things in it are
3253 characters, so we can make a string. */
3254 {
3255 Lisp_Object result;
3256
3257 result = Fmake_string (make_number (nargs), make_number (0));
3258 for (i = 0; i < nargs; i++)
3259 {
3260 SSET (result, i, XINT (args[i]));
3261 /* Move the meta bit to the right place for a string char. */
3262 if (XINT (args[i]) & CHAR_META)
3263 SSET (result, i, SREF (result, i) | 0x80);
3264 }
3265
3266 return result;
3267 }
3268 }
3269
3270
3271 \f
3272 /************************************************************************
3273 Memory Full Handling
3274 ************************************************************************/
3275
3276
3277 /* Called if malloc returns zero. */
3278
3279 void
3280 memory_full (void)
3281 {
3282 int i;
3283
3284 Vmemory_full = Qt;
3285
3286 memory_full_cons_threshold = sizeof (struct cons_block);
3287
3288 /* The first time we get here, free the spare memory. */
3289 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3290 if (spare_memory[i])
3291 {
3292 if (i == 0)
3293 free (spare_memory[i]);
3294 else if (i >= 1 && i <= 4)
3295 lisp_align_free (spare_memory[i]);
3296 else
3297 lisp_free (spare_memory[i]);
3298 spare_memory[i] = 0;
3299 }
3300
3301 /* Record the space now used. When it decreases substantially,
3302 we can refill the memory reserve. */
3303 #ifndef SYSTEM_MALLOC
3304 bytes_used_when_full = BYTES_USED;
3305 #endif
3306
3307 /* This used to call error, but if we've run out of memory, we could
3308 get infinite recursion trying to build the string. */
3309 xsignal (Qnil, Vmemory_signal_data);
3310 }
3311
3312 /* If we released our reserve (due to running out of memory),
3313 and we have a fair amount free once again,
3314 try to set aside another reserve in case we run out once more.
3315
3316 This is called when a relocatable block is freed in ralloc.c,
3317 and also directly from this file, in case we're not using ralloc.c. */
3318
3319 void
3320 refill_memory_reserve (void)
3321 {
3322 #ifndef SYSTEM_MALLOC
3323 if (spare_memory[0] == 0)
3324 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3325 if (spare_memory[1] == 0)
3326 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3327 MEM_TYPE_CONS);
3328 if (spare_memory[2] == 0)
3329 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3330 MEM_TYPE_CONS);
3331 if (spare_memory[3] == 0)
3332 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3333 MEM_TYPE_CONS);
3334 if (spare_memory[4] == 0)
3335 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3336 MEM_TYPE_CONS);
3337 if (spare_memory[5] == 0)
3338 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3339 MEM_TYPE_STRING);
3340 if (spare_memory[6] == 0)
3341 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3342 MEM_TYPE_STRING);
3343 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3344 Vmemory_full = Qnil;
3345 #endif
3346 }
3347 \f
3348 /************************************************************************
3349 C Stack Marking
3350 ************************************************************************/
3351
3352 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3353
3354 /* Conservative C stack marking requires a method to identify possibly
3355 live Lisp objects given a pointer value. We do this by keeping
3356 track of blocks of Lisp data that are allocated in a red-black tree
3357 (see also the comment of mem_node which is the type of nodes in
3358 that tree). Function lisp_malloc adds information for an allocated
3359 block to the red-black tree with calls to mem_insert, and function
3360 lisp_free removes it with mem_delete. Functions live_string_p etc
3361 call mem_find to lookup information about a given pointer in the
3362 tree, and use that to determine if the pointer points to a Lisp
3363 object or not. */
3364
3365 /* Initialize this part of alloc.c. */
3366
3367 static void
3368 mem_init (void)
3369 {
3370 mem_z.left = mem_z.right = MEM_NIL;
3371 mem_z.parent = NULL;
3372 mem_z.color = MEM_BLACK;
3373 mem_z.start = mem_z.end = NULL;
3374 mem_root = MEM_NIL;
3375 }
3376
3377
3378 /* Value is a pointer to the mem_node containing START. Value is
3379 MEM_NIL if there is no node in the tree containing START. */
3380
3381 static INLINE struct mem_node *
3382 mem_find (void *start)
3383 {
3384 struct mem_node *p;
3385
3386 if (start < min_heap_address || start > max_heap_address)
3387 return MEM_NIL;
3388
3389 /* Make the search always successful to speed up the loop below. */
3390 mem_z.start = start;
3391 mem_z.end = (char *) start + 1;
3392
3393 p = mem_root;
3394 while (start < p->start || start >= p->end)
3395 p = start < p->start ? p->left : p->right;
3396 return p;
3397 }
3398
3399
3400 /* Insert a new node into the tree for a block of memory with start
3401 address START, end address END, and type TYPE. Value is a
3402 pointer to the node that was inserted. */
3403
3404 static struct mem_node *
3405 mem_insert (void *start, void *end, enum mem_type type)
3406 {
3407 struct mem_node *c, *parent, *x;
3408
3409 if (min_heap_address == NULL || start < min_heap_address)
3410 min_heap_address = start;
3411 if (max_heap_address == NULL || end > max_heap_address)
3412 max_heap_address = end;
3413
3414 /* See where in the tree a node for START belongs. In this
3415 particular application, it shouldn't happen that a node is already
3416 present. For debugging purposes, let's check that. */
3417 c = mem_root;
3418 parent = NULL;
3419
3420 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3421
3422 while (c != MEM_NIL)
3423 {
3424 if (start >= c->start && start < c->end)
3425 abort ();
3426 parent = c;
3427 c = start < c->start ? c->left : c->right;
3428 }
3429
3430 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3431
3432 while (c != MEM_NIL)
3433 {
3434 parent = c;
3435 c = start < c->start ? c->left : c->right;
3436 }
3437
3438 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3439
3440 /* Create a new node. */
3441 #ifdef GC_MALLOC_CHECK
3442 x = (struct mem_node *) _malloc_internal (sizeof *x);
3443 if (x == NULL)
3444 abort ();
3445 #else
3446 x = (struct mem_node *) xmalloc (sizeof *x);
3447 #endif
3448 x->start = start;
3449 x->end = end;
3450 x->type = type;
3451 x->parent = parent;
3452 x->left = x->right = MEM_NIL;
3453 x->color = MEM_RED;
3454
3455 /* Insert it as child of PARENT or install it as root. */
3456 if (parent)
3457 {
3458 if (start < parent->start)
3459 parent->left = x;
3460 else
3461 parent->right = x;
3462 }
3463 else
3464 mem_root = x;
3465
3466 /* Re-establish red-black tree properties. */
3467 mem_insert_fixup (x);
3468
3469 return x;
3470 }
3471
3472
3473 /* Re-establish the red-black properties of the tree, and thereby
3474 balance the tree, after node X has been inserted; X is always red. */
3475
3476 static void
3477 mem_insert_fixup (struct mem_node *x)
3478 {
3479 while (x != mem_root && x->parent->color == MEM_RED)
3480 {
3481 /* X is red and its parent is red. This is a violation of
3482 red-black tree property #3. */
3483
3484 if (x->parent == x->parent->parent->left)
3485 {
3486 /* We're on the left side of our grandparent, and Y is our
3487 "uncle". */
3488 struct mem_node *y = x->parent->parent->right;
3489
3490 if (y->color == MEM_RED)
3491 {
3492 /* Uncle and parent are red but should be black because
3493 X is red. Change the colors accordingly and proceed
3494 with the grandparent. */
3495 x->parent->color = MEM_BLACK;
3496 y->color = MEM_BLACK;
3497 x->parent->parent->color = MEM_RED;
3498 x = x->parent->parent;
3499 }
3500 else
3501 {
3502 /* Parent and uncle have different colors; parent is
3503 red, uncle is black. */
3504 if (x == x->parent->right)
3505 {
3506 x = x->parent;
3507 mem_rotate_left (x);
3508 }
3509
3510 x->parent->color = MEM_BLACK;
3511 x->parent->parent->color = MEM_RED;
3512 mem_rotate_right (x->parent->parent);
3513 }
3514 }
3515 else
3516 {
3517 /* This is the symmetrical case of above. */
3518 struct mem_node *y = x->parent->parent->left;
3519
3520 if (y->color == MEM_RED)
3521 {
3522 x->parent->color = MEM_BLACK;
3523 y->color = MEM_BLACK;
3524 x->parent->parent->color = MEM_RED;
3525 x = x->parent->parent;
3526 }
3527 else
3528 {
3529 if (x == x->parent->left)
3530 {
3531 x = x->parent;
3532 mem_rotate_right (x);
3533 }
3534
3535 x->parent->color = MEM_BLACK;
3536 x->parent->parent->color = MEM_RED;
3537 mem_rotate_left (x->parent->parent);
3538 }
3539 }
3540 }
3541
3542 /* The root may have been changed to red due to the algorithm. Set
3543 it to black so that property #5 is satisfied. */
3544 mem_root->color = MEM_BLACK;
3545 }
3546
3547
3548 /* (x) (y)
3549 / \ / \
3550 a (y) ===> (x) c
3551 / \ / \
3552 b c a b */
3553
3554 static void
3555 mem_rotate_left (struct mem_node *x)
3556 {
3557 struct mem_node *y;
3558
3559 /* Turn y's left sub-tree into x's right sub-tree. */
3560 y = x->right;
3561 x->right = y->left;
3562 if (y->left != MEM_NIL)
3563 y->left->parent = x;
3564
3565 /* Y's parent was x's parent. */
3566 if (y != MEM_NIL)
3567 y->parent = x->parent;
3568
3569 /* Get the parent to point to y instead of x. */
3570 if (x->parent)
3571 {
3572 if (x == x->parent->left)
3573 x->parent->left = y;
3574 else
3575 x->parent->right = y;
3576 }
3577 else
3578 mem_root = y;
3579
3580 /* Put x on y's left. */
3581 y->left = x;
3582 if (x != MEM_NIL)
3583 x->parent = y;
3584 }
3585
3586
3587 /* (x) (Y)
3588 / \ / \
3589 (y) c ===> a (x)
3590 / \ / \
3591 a b b c */
3592
3593 static void
3594 mem_rotate_right (struct mem_node *x)
3595 {
3596 struct mem_node *y = x->left;
3597
3598 x->left = y->right;
3599 if (y->right != MEM_NIL)
3600 y->right->parent = x;
3601
3602 if (y != MEM_NIL)
3603 y->parent = x->parent;
3604 if (x->parent)
3605 {
3606 if (x == x->parent->right)
3607 x->parent->right = y;
3608 else
3609 x->parent->left = y;
3610 }
3611 else
3612 mem_root = y;
3613
3614 y->right = x;
3615 if (x != MEM_NIL)
3616 x->parent = y;
3617 }
3618
3619
3620 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3621
3622 static void
3623 mem_delete (struct mem_node *z)
3624 {
3625 struct mem_node *x, *y;
3626
3627 if (!z || z == MEM_NIL)
3628 return;
3629
3630 if (z->left == MEM_NIL || z->right == MEM_NIL)
3631 y = z;
3632 else
3633 {
3634 y = z->right;
3635 while (y->left != MEM_NIL)
3636 y = y->left;
3637 }
3638
3639 if (y->left != MEM_NIL)
3640 x = y->left;
3641 else
3642 x = y->right;
3643
3644 x->parent = y->parent;
3645 if (y->parent)
3646 {
3647 if (y == y->parent->left)
3648 y->parent->left = x;
3649 else
3650 y->parent->right = x;
3651 }
3652 else
3653 mem_root = x;
3654
3655 if (y != z)
3656 {
3657 z->start = y->start;
3658 z->end = y->end;
3659 z->type = y->type;
3660 }
3661
3662 if (y->color == MEM_BLACK)
3663 mem_delete_fixup (x);
3664
3665 #ifdef GC_MALLOC_CHECK
3666 _free_internal (y);
3667 #else
3668 xfree (y);
3669 #endif
3670 }
3671
3672
3673 /* Re-establish the red-black properties of the tree, after a
3674 deletion. */
3675
3676 static void
3677 mem_delete_fixup (struct mem_node *x)
3678 {
3679 while (x != mem_root && x->color == MEM_BLACK)
3680 {
3681 if (x == x->parent->left)
3682 {
3683 struct mem_node *w = x->parent->right;
3684
3685 if (w->color == MEM_RED)
3686 {
3687 w->color = MEM_BLACK;
3688 x->parent->color = MEM_RED;
3689 mem_rotate_left (x->parent);
3690 w = x->parent->right;
3691 }
3692
3693 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3694 {
3695 w->color = MEM_RED;
3696 x = x->parent;
3697 }
3698 else
3699 {
3700 if (w->right->color == MEM_BLACK)
3701 {
3702 w->left->color = MEM_BLACK;
3703 w->color = MEM_RED;
3704 mem_rotate_right (w);
3705 w = x->parent->right;
3706 }
3707 w->color = x->parent->color;
3708 x->parent->color = MEM_BLACK;
3709 w->right->color = MEM_BLACK;
3710 mem_rotate_left (x->parent);
3711 x = mem_root;
3712 }
3713 }
3714 else
3715 {
3716 struct mem_node *w = x->parent->left;
3717
3718 if (w->color == MEM_RED)
3719 {
3720 w->color = MEM_BLACK;
3721 x->parent->color = MEM_RED;
3722 mem_rotate_right (x->parent);
3723 w = x->parent->left;
3724 }
3725
3726 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3727 {
3728 w->color = MEM_RED;
3729 x = x->parent;
3730 }
3731 else
3732 {
3733 if (w->left->color == MEM_BLACK)
3734 {
3735 w->right->color = MEM_BLACK;
3736 w->color = MEM_RED;
3737 mem_rotate_left (w);
3738 w = x->parent->left;
3739 }
3740
3741 w->color = x->parent->color;
3742 x->parent->color = MEM_BLACK;
3743 w->left->color = MEM_BLACK;
3744 mem_rotate_right (x->parent);
3745 x = mem_root;
3746 }
3747 }
3748 }
3749
3750 x->color = MEM_BLACK;
3751 }
3752
3753
3754 /* Value is non-zero if P is a pointer to a live Lisp string on
3755 the heap. M is a pointer to the mem_block for P. */
3756
3757 static INLINE int
3758 live_string_p (struct mem_node *m, void *p)
3759 {
3760 if (m->type == MEM_TYPE_STRING)
3761 {
3762 struct string_block *b = (struct string_block *) m->start;
3763 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3764
3765 /* P must point to the start of a Lisp_String structure, and it
3766 must not be on the free-list. */
3767 return (offset >= 0
3768 && offset % sizeof b->strings[0] == 0
3769 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3770 && ((struct Lisp_String *) p)->data != NULL);
3771 }
3772 else
3773 return 0;
3774 }
3775
3776
3777 /* Value is non-zero if P is a pointer to a live Lisp cons on
3778 the heap. M is a pointer to the mem_block for P. */
3779
3780 static INLINE int
3781 live_cons_p (struct mem_node *m, void *p)
3782 {
3783 if (m->type == MEM_TYPE_CONS)
3784 {
3785 struct cons_block *b = (struct cons_block *) m->start;
3786 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
3787
3788 /* P must point to the start of a Lisp_Cons, not be
3789 one of the unused cells in the current cons block,
3790 and not be on the free-list. */
3791 return (offset >= 0
3792 && offset % sizeof b->conses[0] == 0
3793 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3794 && (b != cons_block
3795 || offset / sizeof b->conses[0] < cons_block_index)
3796 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3797 }
3798 else
3799 return 0;
3800 }
3801
3802
3803 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3804 the heap. M is a pointer to the mem_block for P. */
3805
3806 static INLINE int
3807 live_symbol_p (struct mem_node *m, void *p)
3808 {
3809 if (m->type == MEM_TYPE_SYMBOL)
3810 {
3811 struct symbol_block *b = (struct symbol_block *) m->start;
3812 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
3813
3814 /* P must point to the start of a Lisp_Symbol, not be
3815 one of the unused cells in the current symbol block,
3816 and not be on the free-list. */
3817 return (offset >= 0
3818 && offset % sizeof b->symbols[0] == 0
3819 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3820 && (b != symbol_block
3821 || offset / sizeof b->symbols[0] < symbol_block_index)
3822 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3823 }
3824 else
3825 return 0;
3826 }
3827
3828
3829 /* Value is non-zero if P is a pointer to a live Lisp float on
3830 the heap. M is a pointer to the mem_block for P. */
3831
3832 static INLINE int
3833 live_float_p (struct mem_node *m, void *p)
3834 {
3835 if (m->type == MEM_TYPE_FLOAT)
3836 {
3837 struct float_block *b = (struct float_block *) m->start;
3838 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
3839
3840 /* P must point to the start of a Lisp_Float and not be
3841 one of the unused cells in the current float block. */
3842 return (offset >= 0
3843 && offset % sizeof b->floats[0] == 0
3844 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3845 && (b != float_block
3846 || offset / sizeof b->floats[0] < float_block_index));
3847 }
3848 else
3849 return 0;
3850 }
3851
3852
3853 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3854 the heap. M is a pointer to the mem_block for P. */
3855
3856 static INLINE int
3857 live_misc_p (struct mem_node *m, void *p)
3858 {
3859 if (m->type == MEM_TYPE_MISC)
3860 {
3861 struct marker_block *b = (struct marker_block *) m->start;
3862 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
3863
3864 /* P must point to the start of a Lisp_Misc, not be
3865 one of the unused cells in the current misc block,
3866 and not be on the free-list. */
3867 return (offset >= 0
3868 && offset % sizeof b->markers[0] == 0
3869 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3870 && (b != marker_block
3871 || offset / sizeof b->markers[0] < marker_block_index)
3872 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
3873 }
3874 else
3875 return 0;
3876 }
3877
3878
3879 /* Value is non-zero if P is a pointer to a live vector-like object.
3880 M is a pointer to the mem_block for P. */
3881
3882 static INLINE int
3883 live_vector_p (struct mem_node *m, void *p)
3884 {
3885 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
3886 }
3887
3888
3889 /* Value is non-zero if P is a pointer to a live buffer. M is a
3890 pointer to the mem_block for P. */
3891
3892 static INLINE int
3893 live_buffer_p (struct mem_node *m, void *p)
3894 {
3895 /* P must point to the start of the block, and the buffer
3896 must not have been killed. */
3897 return (m->type == MEM_TYPE_BUFFER
3898 && p == m->start
3899 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
3900 }
3901
3902 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3903
3904 #if GC_MARK_STACK
3905
3906 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3907
3908 /* Array of objects that are kept alive because the C stack contains
3909 a pattern that looks like a reference to them . */
3910
3911 #define MAX_ZOMBIES 10
3912 static Lisp_Object zombies[MAX_ZOMBIES];
3913
3914 /* Number of zombie objects. */
3915
3916 static int nzombies;
3917
3918 /* Number of garbage collections. */
3919
3920 static int ngcs;
3921
3922 /* Average percentage of zombies per collection. */
3923
3924 static double avg_zombies;
3925
3926 /* Max. number of live and zombie objects. */
3927
3928 static int max_live, max_zombies;
3929
3930 /* Average number of live objects per GC. */
3931
3932 static double avg_live;
3933
3934 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3935 doc: /* Show information about live and zombie objects. */)
3936 (void)
3937 {
3938 Lisp_Object args[8], zombie_list = Qnil;
3939 int i;
3940 for (i = 0; i < nzombies; i++)
3941 zombie_list = Fcons (zombies[i], zombie_list);
3942 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3943 args[1] = make_number (ngcs);
3944 args[2] = make_float (avg_live);
3945 args[3] = make_float (avg_zombies);
3946 args[4] = make_float (avg_zombies / avg_live / 100);
3947 args[5] = make_number (max_live);
3948 args[6] = make_number (max_zombies);
3949 args[7] = zombie_list;
3950 return Fmessage (8, args);
3951 }
3952
3953 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3954
3955
3956 /* Mark OBJ if we can prove it's a Lisp_Object. */
3957
3958 static INLINE void
3959 mark_maybe_object (Lisp_Object obj)
3960 {
3961 void *po;
3962 struct mem_node *m;
3963
3964 if (INTEGERP (obj))
3965 return;
3966
3967 po = (void *) XPNTR (obj);
3968 m = mem_find (po);
3969
3970 if (m != MEM_NIL)
3971 {
3972 int mark_p = 0;
3973
3974 switch (XTYPE (obj))
3975 {
3976 case Lisp_String:
3977 mark_p = (live_string_p (m, po)
3978 && !STRING_MARKED_P ((struct Lisp_String *) po));
3979 break;
3980
3981 case Lisp_Cons:
3982 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3983 break;
3984
3985 case Lisp_Symbol:
3986 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3987 break;
3988
3989 case Lisp_Float:
3990 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3991 break;
3992
3993 case Lisp_Vectorlike:
3994 /* Note: can't check BUFFERP before we know it's a
3995 buffer because checking that dereferences the pointer
3996 PO which might point anywhere. */
3997 if (live_vector_p (m, po))
3998 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3999 else if (live_buffer_p (m, po))
4000 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4001 break;
4002
4003 case Lisp_Misc:
4004 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4005 break;
4006
4007 default:
4008 break;
4009 }
4010
4011 if (mark_p)
4012 {
4013 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4014 if (nzombies < MAX_ZOMBIES)
4015 zombies[nzombies] = obj;
4016 ++nzombies;
4017 #endif
4018 mark_object (obj);
4019 }
4020 }
4021 }
4022
4023
4024 /* If P points to Lisp data, mark that as live if it isn't already
4025 marked. */
4026
4027 static INLINE void
4028 mark_maybe_pointer (void *p)
4029 {
4030 struct mem_node *m;
4031
4032 /* Quickly rule out some values which can't point to Lisp data. */
4033 if ((EMACS_INT) p %
4034 #ifdef USE_LSB_TAG
4035 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4036 #else
4037 2 /* We assume that Lisp data is aligned on even addresses. */
4038 #endif
4039 )
4040 return;
4041
4042 m = mem_find (p);
4043 if (m != MEM_NIL)
4044 {
4045 Lisp_Object obj = Qnil;
4046
4047 switch (m->type)
4048 {
4049 case MEM_TYPE_NON_LISP:
4050 /* Nothing to do; not a pointer to Lisp memory. */
4051 break;
4052
4053 case MEM_TYPE_BUFFER:
4054 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4055 XSETVECTOR (obj, p);
4056 break;
4057
4058 case MEM_TYPE_CONS:
4059 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4060 XSETCONS (obj, p);
4061 break;
4062
4063 case MEM_TYPE_STRING:
4064 if (live_string_p (m, p)
4065 && !STRING_MARKED_P ((struct Lisp_String *) p))
4066 XSETSTRING (obj, p);
4067 break;
4068
4069 case MEM_TYPE_MISC:
4070 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4071 XSETMISC (obj, p);
4072 break;
4073
4074 case MEM_TYPE_SYMBOL:
4075 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4076 XSETSYMBOL (obj, p);
4077 break;
4078
4079 case MEM_TYPE_FLOAT:
4080 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4081 XSETFLOAT (obj, p);
4082 break;
4083
4084 case MEM_TYPE_VECTORLIKE:
4085 if (live_vector_p (m, p))
4086 {
4087 Lisp_Object tem;
4088 XSETVECTOR (tem, p);
4089 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4090 obj = tem;
4091 }
4092 break;
4093
4094 default:
4095 abort ();
4096 }
4097
4098 if (!NILP (obj))
4099 mark_object (obj);
4100 }
4101 }
4102
4103
4104 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4105 or END+OFFSET..START. */
4106
4107 static void
4108 mark_memory (void *start, void *end, int offset)
4109 {
4110 Lisp_Object *p;
4111 void **pp;
4112
4113 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4114 nzombies = 0;
4115 #endif
4116
4117 /* Make START the pointer to the start of the memory region,
4118 if it isn't already. */
4119 if (end < start)
4120 {
4121 void *tem = start;
4122 start = end;
4123 end = tem;
4124 }
4125
4126 /* Mark Lisp_Objects. */
4127 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4128 mark_maybe_object (*p);
4129
4130 /* Mark Lisp data pointed to. This is necessary because, in some
4131 situations, the C compiler optimizes Lisp objects away, so that
4132 only a pointer to them remains. Example:
4133
4134 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4135 ()
4136 {
4137 Lisp_Object obj = build_string ("test");
4138 struct Lisp_String *s = XSTRING (obj);
4139 Fgarbage_collect ();
4140 fprintf (stderr, "test `%s'\n", s->data);
4141 return Qnil;
4142 }
4143
4144 Here, `obj' isn't really used, and the compiler optimizes it
4145 away. The only reference to the life string is through the
4146 pointer `s'. */
4147
4148 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4149 mark_maybe_pointer (*pp);
4150 }
4151
4152 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4153 the GCC system configuration. In gcc 3.2, the only systems for
4154 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4155 by others?) and ns32k-pc532-min. */
4156
4157 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4158
4159 static int setjmp_tested_p, longjmps_done;
4160
4161 #define SETJMP_WILL_LIKELY_WORK "\
4162 \n\
4163 Emacs garbage collector has been changed to use conservative stack\n\
4164 marking. Emacs has determined that the method it uses to do the\n\
4165 marking will likely work on your system, but this isn't sure.\n\
4166 \n\
4167 If you are a system-programmer, or can get the help of a local wizard\n\
4168 who is, please take a look at the function mark_stack in alloc.c, and\n\
4169 verify that the methods used are appropriate for your system.\n\
4170 \n\
4171 Please mail the result to <emacs-devel@gnu.org>.\n\
4172 "
4173
4174 #define SETJMP_WILL_NOT_WORK "\
4175 \n\
4176 Emacs garbage collector has been changed to use conservative stack\n\
4177 marking. Emacs has determined that the default method it uses to do the\n\
4178 marking will not work on your system. We will need a system-dependent\n\
4179 solution for your system.\n\
4180 \n\
4181 Please take a look at the function mark_stack in alloc.c, and\n\
4182 try to find a way to make it work on your system.\n\
4183 \n\
4184 Note that you may get false negatives, depending on the compiler.\n\
4185 In particular, you need to use -O with GCC for this test.\n\
4186 \n\
4187 Please mail the result to <emacs-devel@gnu.org>.\n\
4188 "
4189
4190
4191 /* Perform a quick check if it looks like setjmp saves registers in a
4192 jmp_buf. Print a message to stderr saying so. When this test
4193 succeeds, this is _not_ a proof that setjmp is sufficient for
4194 conservative stack marking. Only the sources or a disassembly
4195 can prove that. */
4196
4197 static void
4198 test_setjmp (void)
4199 {
4200 char buf[10];
4201 register int x;
4202 jmp_buf jbuf;
4203 int result = 0;
4204
4205 /* Arrange for X to be put in a register. */
4206 sprintf (buf, "1");
4207 x = strlen (buf);
4208 x = 2 * x - 1;
4209
4210 setjmp (jbuf);
4211 if (longjmps_done == 1)
4212 {
4213 /* Came here after the longjmp at the end of the function.
4214
4215 If x == 1, the longjmp has restored the register to its
4216 value before the setjmp, and we can hope that setjmp
4217 saves all such registers in the jmp_buf, although that
4218 isn't sure.
4219
4220 For other values of X, either something really strange is
4221 taking place, or the setjmp just didn't save the register. */
4222
4223 if (x == 1)
4224 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4225 else
4226 {
4227 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4228 exit (1);
4229 }
4230 }
4231
4232 ++longjmps_done;
4233 x = 2;
4234 if (longjmps_done == 1)
4235 longjmp (jbuf, 1);
4236 }
4237
4238 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4239
4240
4241 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4242
4243 /* Abort if anything GCPRO'd doesn't survive the GC. */
4244
4245 static void
4246 check_gcpros (void)
4247 {
4248 struct gcpro *p;
4249 size_t i;
4250
4251 for (p = gcprolist; p; p = p->next)
4252 for (i = 0; i < p->nvars; ++i)
4253 if (!survives_gc_p (p->var[i]))
4254 /* FIXME: It's not necessarily a bug. It might just be that the
4255 GCPRO is unnecessary or should release the object sooner. */
4256 abort ();
4257 }
4258
4259 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4260
4261 static void
4262 dump_zombies (void)
4263 {
4264 int i;
4265
4266 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4267 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4268 {
4269 fprintf (stderr, " %d = ", i);
4270 debug_print (zombies[i]);
4271 }
4272 }
4273
4274 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4275
4276
4277 /* Mark live Lisp objects on the C stack.
4278
4279 There are several system-dependent problems to consider when
4280 porting this to new architectures:
4281
4282 Processor Registers
4283
4284 We have to mark Lisp objects in CPU registers that can hold local
4285 variables or are used to pass parameters.
4286
4287 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4288 something that either saves relevant registers on the stack, or
4289 calls mark_maybe_object passing it each register's contents.
4290
4291 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4292 implementation assumes that calling setjmp saves registers we need
4293 to see in a jmp_buf which itself lies on the stack. This doesn't
4294 have to be true! It must be verified for each system, possibly
4295 by taking a look at the source code of setjmp.
4296
4297 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4298 can use it as a machine independent method to store all registers
4299 to the stack. In this case the macros described in the previous
4300 two paragraphs are not used.
4301
4302 Stack Layout
4303
4304 Architectures differ in the way their processor stack is organized.
4305 For example, the stack might look like this
4306
4307 +----------------+
4308 | Lisp_Object | size = 4
4309 +----------------+
4310 | something else | size = 2
4311 +----------------+
4312 | Lisp_Object | size = 4
4313 +----------------+
4314 | ... |
4315
4316 In such a case, not every Lisp_Object will be aligned equally. To
4317 find all Lisp_Object on the stack it won't be sufficient to walk
4318 the stack in steps of 4 bytes. Instead, two passes will be
4319 necessary, one starting at the start of the stack, and a second
4320 pass starting at the start of the stack + 2. Likewise, if the
4321 minimal alignment of Lisp_Objects on the stack is 1, four passes
4322 would be necessary, each one starting with one byte more offset
4323 from the stack start.
4324
4325 The current code assumes by default that Lisp_Objects are aligned
4326 equally on the stack. */
4327
4328 static void
4329 mark_stack (void)
4330 {
4331 int i;
4332 void *end;
4333
4334 #ifdef HAVE___BUILTIN_UNWIND_INIT
4335 /* Force callee-saved registers and register windows onto the stack.
4336 This is the preferred method if available, obviating the need for
4337 machine dependent methods. */
4338 __builtin_unwind_init ();
4339 end = &end;
4340 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4341 #ifndef GC_SAVE_REGISTERS_ON_STACK
4342 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4343 union aligned_jmpbuf {
4344 Lisp_Object o;
4345 jmp_buf j;
4346 } j;
4347 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4348 #endif
4349 /* This trick flushes the register windows so that all the state of
4350 the process is contained in the stack. */
4351 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4352 needed on ia64 too. See mach_dep.c, where it also says inline
4353 assembler doesn't work with relevant proprietary compilers. */
4354 #ifdef __sparc__
4355 #if defined (__sparc64__) && defined (__FreeBSD__)
4356 /* FreeBSD does not have a ta 3 handler. */
4357 asm ("flushw");
4358 #else
4359 asm ("ta 3");
4360 #endif
4361 #endif
4362
4363 /* Save registers that we need to see on the stack. We need to see
4364 registers used to hold register variables and registers used to
4365 pass parameters. */
4366 #ifdef GC_SAVE_REGISTERS_ON_STACK
4367 GC_SAVE_REGISTERS_ON_STACK (end);
4368 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4369
4370 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4371 setjmp will definitely work, test it
4372 and print a message with the result
4373 of the test. */
4374 if (!setjmp_tested_p)
4375 {
4376 setjmp_tested_p = 1;
4377 test_setjmp ();
4378 }
4379 #endif /* GC_SETJMP_WORKS */
4380
4381 setjmp (j.j);
4382 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4383 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4384 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4385
4386 /* This assumes that the stack is a contiguous region in memory. If
4387 that's not the case, something has to be done here to iterate
4388 over the stack segments. */
4389 #ifndef GC_LISP_OBJECT_ALIGNMENT
4390 #ifdef __GNUC__
4391 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4392 #else
4393 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4394 #endif
4395 #endif
4396 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4397 mark_memory (stack_base, end, i);
4398 /* Allow for marking a secondary stack, like the register stack on the
4399 ia64. */
4400 #ifdef GC_MARK_SECONDARY_STACK
4401 GC_MARK_SECONDARY_STACK ();
4402 #endif
4403
4404 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4405 check_gcpros ();
4406 #endif
4407 }
4408
4409 #endif /* GC_MARK_STACK != 0 */
4410
4411
4412 /* Determine whether it is safe to access memory at address P. */
4413 static int
4414 valid_pointer_p (void *p)
4415 {
4416 #ifdef WINDOWSNT
4417 return w32_valid_pointer_p (p, 16);
4418 #else
4419 int fd;
4420
4421 /* Obviously, we cannot just access it (we would SEGV trying), so we
4422 trick the o/s to tell us whether p is a valid pointer.
4423 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4424 not validate p in that case. */
4425
4426 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4427 {
4428 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4429 emacs_close (fd);
4430 unlink ("__Valid__Lisp__Object__");
4431 return valid;
4432 }
4433
4434 return -1;
4435 #endif
4436 }
4437
4438 /* Return 1 if OBJ is a valid lisp object.
4439 Return 0 if OBJ is NOT a valid lisp object.
4440 Return -1 if we cannot validate OBJ.
4441 This function can be quite slow,
4442 so it should only be used in code for manual debugging. */
4443
4444 int
4445 valid_lisp_object_p (Lisp_Object obj)
4446 {
4447 void *p;
4448 #if GC_MARK_STACK
4449 struct mem_node *m;
4450 #endif
4451
4452 if (INTEGERP (obj))
4453 return 1;
4454
4455 p = (void *) XPNTR (obj);
4456 if (PURE_POINTER_P (p))
4457 return 1;
4458
4459 #if !GC_MARK_STACK
4460 return valid_pointer_p (p);
4461 #else
4462
4463 m = mem_find (p);
4464
4465 if (m == MEM_NIL)
4466 {
4467 int valid = valid_pointer_p (p);
4468 if (valid <= 0)
4469 return valid;
4470
4471 if (SUBRP (obj))
4472 return 1;
4473
4474 return 0;
4475 }
4476
4477 switch (m->type)
4478 {
4479 case MEM_TYPE_NON_LISP:
4480 return 0;
4481
4482 case MEM_TYPE_BUFFER:
4483 return live_buffer_p (m, p);
4484
4485 case MEM_TYPE_CONS:
4486 return live_cons_p (m, p);
4487
4488 case MEM_TYPE_STRING:
4489 return live_string_p (m, p);
4490
4491 case MEM_TYPE_MISC:
4492 return live_misc_p (m, p);
4493
4494 case MEM_TYPE_SYMBOL:
4495 return live_symbol_p (m, p);
4496
4497 case MEM_TYPE_FLOAT:
4498 return live_float_p (m, p);
4499
4500 case MEM_TYPE_VECTORLIKE:
4501 return live_vector_p (m, p);
4502
4503 default:
4504 break;
4505 }
4506
4507 return 0;
4508 #endif
4509 }
4510
4511
4512
4513 \f
4514 /***********************************************************************
4515 Pure Storage Management
4516 ***********************************************************************/
4517
4518 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4519 pointer to it. TYPE is the Lisp type for which the memory is
4520 allocated. TYPE < 0 means it's not used for a Lisp object. */
4521
4522 static POINTER_TYPE *
4523 pure_alloc (size_t size, int type)
4524 {
4525 POINTER_TYPE *result;
4526 #ifdef USE_LSB_TAG
4527 size_t alignment = (1 << GCTYPEBITS);
4528 #else
4529 size_t alignment = sizeof (EMACS_INT);
4530
4531 /* Give Lisp_Floats an extra alignment. */
4532 if (type == Lisp_Float)
4533 {
4534 #if defined __GNUC__ && __GNUC__ >= 2
4535 alignment = __alignof (struct Lisp_Float);
4536 #else
4537 alignment = sizeof (struct Lisp_Float);
4538 #endif
4539 }
4540 #endif
4541
4542 again:
4543 if (type >= 0)
4544 {
4545 /* Allocate space for a Lisp object from the beginning of the free
4546 space with taking account of alignment. */
4547 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4548 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4549 }
4550 else
4551 {
4552 /* Allocate space for a non-Lisp object from the end of the free
4553 space. */
4554 pure_bytes_used_non_lisp += size;
4555 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4556 }
4557 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4558
4559 if (pure_bytes_used <= pure_size)
4560 return result;
4561
4562 /* Don't allocate a large amount here,
4563 because it might get mmap'd and then its address
4564 might not be usable. */
4565 purebeg = (char *) xmalloc (10000);
4566 pure_size = 10000;
4567 pure_bytes_used_before_overflow += pure_bytes_used - size;
4568 pure_bytes_used = 0;
4569 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4570 goto again;
4571 }
4572
4573
4574 /* Print a warning if PURESIZE is too small. */
4575
4576 void
4577 check_pure_size (void)
4578 {
4579 if (pure_bytes_used_before_overflow)
4580 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4581 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4582 }
4583
4584
4585 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4586 the non-Lisp data pool of the pure storage, and return its start
4587 address. Return NULL if not found. */
4588
4589 static char *
4590 find_string_data_in_pure (const char *data, EMACS_INT nbytes)
4591 {
4592 int i;
4593 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4594 const unsigned char *p;
4595 char *non_lisp_beg;
4596
4597 if (pure_bytes_used_non_lisp < nbytes + 1)
4598 return NULL;
4599
4600 /* Set up the Boyer-Moore table. */
4601 skip = nbytes + 1;
4602 for (i = 0; i < 256; i++)
4603 bm_skip[i] = skip;
4604
4605 p = (const unsigned char *) data;
4606 while (--skip > 0)
4607 bm_skip[*p++] = skip;
4608
4609 last_char_skip = bm_skip['\0'];
4610
4611 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4612 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4613
4614 /* See the comments in the function `boyer_moore' (search.c) for the
4615 use of `infinity'. */
4616 infinity = pure_bytes_used_non_lisp + 1;
4617 bm_skip['\0'] = infinity;
4618
4619 p = (const unsigned char *) non_lisp_beg + nbytes;
4620 start = 0;
4621 do
4622 {
4623 /* Check the last character (== '\0'). */
4624 do
4625 {
4626 start += bm_skip[*(p + start)];
4627 }
4628 while (start <= start_max);
4629
4630 if (start < infinity)
4631 /* Couldn't find the last character. */
4632 return NULL;
4633
4634 /* No less than `infinity' means we could find the last
4635 character at `p[start - infinity]'. */
4636 start -= infinity;
4637
4638 /* Check the remaining characters. */
4639 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4640 /* Found. */
4641 return non_lisp_beg + start;
4642
4643 start += last_char_skip;
4644 }
4645 while (start <= start_max);
4646
4647 return NULL;
4648 }
4649
4650
4651 /* Return a string allocated in pure space. DATA is a buffer holding
4652 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4653 non-zero means make the result string multibyte.
4654
4655 Must get an error if pure storage is full, since if it cannot hold
4656 a large string it may be able to hold conses that point to that
4657 string; then the string is not protected from gc. */
4658
4659 Lisp_Object
4660 make_pure_string (const char *data,
4661 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
4662 {
4663 Lisp_Object string;
4664 struct Lisp_String *s;
4665
4666 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4667 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4668 if (s->data == NULL)
4669 {
4670 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4671 memcpy (s->data, data, nbytes);
4672 s->data[nbytes] = '\0';
4673 }
4674 s->size = nchars;
4675 s->size_byte = multibyte ? nbytes : -1;
4676 s->intervals = NULL_INTERVAL;
4677 XSETSTRING (string, s);
4678 return string;
4679 }
4680
4681 /* Return a string a string allocated in pure space. Do not allocate
4682 the string data, just point to DATA. */
4683
4684 Lisp_Object
4685 make_pure_c_string (const char *data)
4686 {
4687 Lisp_Object string;
4688 struct Lisp_String *s;
4689 EMACS_INT nchars = strlen (data);
4690
4691 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4692 s->size = nchars;
4693 s->size_byte = -1;
4694 s->data = (unsigned char *) data;
4695 s->intervals = NULL_INTERVAL;
4696 XSETSTRING (string, s);
4697 return string;
4698 }
4699
4700 /* Return a cons allocated from pure space. Give it pure copies
4701 of CAR as car and CDR as cdr. */
4702
4703 Lisp_Object
4704 pure_cons (Lisp_Object car, Lisp_Object cdr)
4705 {
4706 register Lisp_Object new;
4707 struct Lisp_Cons *p;
4708
4709 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4710 XSETCONS (new, p);
4711 XSETCAR (new, Fpurecopy (car));
4712 XSETCDR (new, Fpurecopy (cdr));
4713 return new;
4714 }
4715
4716
4717 /* Value is a float object with value NUM allocated from pure space. */
4718
4719 static Lisp_Object
4720 make_pure_float (double num)
4721 {
4722 register Lisp_Object new;
4723 struct Lisp_Float *p;
4724
4725 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4726 XSETFLOAT (new, p);
4727 XFLOAT_INIT (new, num);
4728 return new;
4729 }
4730
4731
4732 /* Return a vector with room for LEN Lisp_Objects allocated from
4733 pure space. */
4734
4735 Lisp_Object
4736 make_pure_vector (EMACS_INT len)
4737 {
4738 Lisp_Object new;
4739 struct Lisp_Vector *p;
4740 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4741
4742 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4743 XSETVECTOR (new, p);
4744 XVECTOR (new)->size = len;
4745 return new;
4746 }
4747
4748
4749 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4750 doc: /* Make a copy of object OBJ in pure storage.
4751 Recursively copies contents of vectors and cons cells.
4752 Does not copy symbols. Copies strings without text properties. */)
4753 (register Lisp_Object obj)
4754 {
4755 if (NILP (Vpurify_flag))
4756 return obj;
4757
4758 if (PURE_POINTER_P (XPNTR (obj)))
4759 return obj;
4760
4761 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4762 {
4763 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4764 if (!NILP (tmp))
4765 return tmp;
4766 }
4767
4768 if (CONSP (obj))
4769 obj = pure_cons (XCAR (obj), XCDR (obj));
4770 else if (FLOATP (obj))
4771 obj = make_pure_float (XFLOAT_DATA (obj));
4772 else if (STRINGP (obj))
4773 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
4774 SBYTES (obj),
4775 STRING_MULTIBYTE (obj));
4776 else if (COMPILEDP (obj) || VECTORP (obj))
4777 {
4778 register struct Lisp_Vector *vec;
4779 register EMACS_INT i;
4780 EMACS_INT size;
4781
4782 size = XVECTOR (obj)->size;
4783 if (size & PSEUDOVECTOR_FLAG)
4784 size &= PSEUDOVECTOR_SIZE_MASK;
4785 vec = XVECTOR (make_pure_vector (size));
4786 for (i = 0; i < size; i++)
4787 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4788 if (COMPILEDP (obj))
4789 {
4790 XSETPVECTYPE (vec, PVEC_COMPILED);
4791 XSETCOMPILED (obj, vec);
4792 }
4793 else
4794 XSETVECTOR (obj, vec);
4795 }
4796 else if (MARKERP (obj))
4797 error ("Attempt to copy a marker to pure storage");
4798 else
4799 /* Not purified, don't hash-cons. */
4800 return obj;
4801
4802 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4803 Fputhash (obj, obj, Vpurify_flag);
4804
4805 return obj;
4806 }
4807
4808
4809 \f
4810 /***********************************************************************
4811 Protection from GC
4812 ***********************************************************************/
4813
4814 /* Put an entry in staticvec, pointing at the variable with address
4815 VARADDRESS. */
4816
4817 void
4818 staticpro (Lisp_Object *varaddress)
4819 {
4820 staticvec[staticidx++] = varaddress;
4821 if (staticidx >= NSTATICS)
4822 abort ();
4823 }
4824
4825 \f
4826 /***********************************************************************
4827 Protection from GC
4828 ***********************************************************************/
4829
4830 /* Temporarily prevent garbage collection. */
4831
4832 int
4833 inhibit_garbage_collection (void)
4834 {
4835 int count = SPECPDL_INDEX ();
4836 int nbits = min (VALBITS, BITS_PER_INT);
4837
4838 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4839 return count;
4840 }
4841
4842
4843 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4844 doc: /* Reclaim storage for Lisp objects no longer needed.
4845 Garbage collection happens automatically if you cons more than
4846 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4847 `garbage-collect' normally returns a list with info on amount of space in use:
4848 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4849 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4850 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4851 (USED-STRINGS . FREE-STRINGS))
4852 However, if there was overflow in pure space, `garbage-collect'
4853 returns nil, because real GC can't be done. */)
4854 (void)
4855 {
4856 register struct specbinding *bind;
4857 char stack_top_variable;
4858 register size_t i;
4859 int message_p;
4860 Lisp_Object total[8];
4861 int count = SPECPDL_INDEX ();
4862 EMACS_TIME t1, t2, t3;
4863
4864 if (abort_on_gc)
4865 abort ();
4866
4867 /* Can't GC if pure storage overflowed because we can't determine
4868 if something is a pure object or not. */
4869 if (pure_bytes_used_before_overflow)
4870 return Qnil;
4871
4872 CHECK_CONS_LIST ();
4873
4874 /* Don't keep undo information around forever.
4875 Do this early on, so it is no problem if the user quits. */
4876 {
4877 register struct buffer *nextb = all_buffers;
4878
4879 while (nextb)
4880 {
4881 /* If a buffer's undo list is Qt, that means that undo is
4882 turned off in that buffer. Calling truncate_undo_list on
4883 Qt tends to return NULL, which effectively turns undo back on.
4884 So don't call truncate_undo_list if undo_list is Qt. */
4885 if (! NILP (nextb->BUFFER_INTERNAL_FIELD (name)) && ! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
4886 truncate_undo_list (nextb);
4887
4888 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4889 if (nextb->base_buffer == 0 && !NILP (nextb->BUFFER_INTERNAL_FIELD (name))
4890 && ! nextb->text->inhibit_shrinking)
4891 {
4892 /* If a buffer's gap size is more than 10% of the buffer
4893 size, or larger than 2000 bytes, then shrink it
4894 accordingly. Keep a minimum size of 20 bytes. */
4895 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4896
4897 if (nextb->text->gap_size > size)
4898 {
4899 struct buffer *save_current = current_buffer;
4900 current_buffer = nextb;
4901 make_gap (-(nextb->text->gap_size - size));
4902 current_buffer = save_current;
4903 }
4904 }
4905
4906 nextb = nextb->next;
4907 }
4908 }
4909
4910 EMACS_GET_TIME (t1);
4911
4912 /* In case user calls debug_print during GC,
4913 don't let that cause a recursive GC. */
4914 consing_since_gc = 0;
4915
4916 /* Save what's currently displayed in the echo area. */
4917 message_p = push_message ();
4918 record_unwind_protect (pop_message_unwind, Qnil);
4919
4920 /* Save a copy of the contents of the stack, for debugging. */
4921 #if MAX_SAVE_STACK > 0
4922 if (NILP (Vpurify_flag))
4923 {
4924 char *stack;
4925 size_t stack_size;
4926 if (&stack_top_variable < stack_bottom)
4927 {
4928 stack = &stack_top_variable;
4929 stack_size = stack_bottom - &stack_top_variable;
4930 }
4931 else
4932 {
4933 stack = stack_bottom;
4934 stack_size = &stack_top_variable - stack_bottom;
4935 }
4936 if (stack_size <= MAX_SAVE_STACK)
4937 {
4938 if (stack_copy_size < stack_size)
4939 {
4940 stack_copy = (char *) xrealloc (stack_copy, stack_size);
4941 stack_copy_size = stack_size;
4942 }
4943 memcpy (stack_copy, stack, stack_size);
4944 }
4945 }
4946 #endif /* MAX_SAVE_STACK > 0 */
4947
4948 if (garbage_collection_messages)
4949 message1_nolog ("Garbage collecting...");
4950
4951 BLOCK_INPUT;
4952
4953 shrink_regexp_cache ();
4954
4955 gc_in_progress = 1;
4956
4957 /* clear_marks (); */
4958
4959 /* Mark all the special slots that serve as the roots of accessibility. */
4960
4961 for (i = 0; i < staticidx; i++)
4962 mark_object (*staticvec[i]);
4963
4964 for (bind = specpdl; bind != specpdl_ptr; bind++)
4965 {
4966 mark_object (bind->symbol);
4967 mark_object (bind->old_value);
4968 }
4969 mark_terminals ();
4970 mark_kboards ();
4971 mark_ttys ();
4972
4973 #ifdef USE_GTK
4974 {
4975 extern void xg_mark_data (void);
4976 xg_mark_data ();
4977 }
4978 #endif
4979
4980 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4981 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4982 mark_stack ();
4983 #else
4984 {
4985 register struct gcpro *tail;
4986 for (tail = gcprolist; tail; tail = tail->next)
4987 for (i = 0; i < tail->nvars; i++)
4988 mark_object (tail->var[i]);
4989 }
4990 mark_byte_stack ();
4991 {
4992 struct catchtag *catch;
4993 struct handler *handler;
4994
4995 for (catch = catchlist; catch; catch = catch->next)
4996 {
4997 mark_object (catch->tag);
4998 mark_object (catch->val);
4999 }
5000 for (handler = handlerlist; handler; handler = handler->next)
5001 {
5002 mark_object (handler->handler);
5003 mark_object (handler->var);
5004 }
5005 }
5006 mark_backtrace ();
5007 #endif
5008
5009 #ifdef HAVE_WINDOW_SYSTEM
5010 mark_fringe_data ();
5011 #endif
5012
5013 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5014 mark_stack ();
5015 #endif
5016
5017 /* Everything is now marked, except for the things that require special
5018 finalization, i.e. the undo_list.
5019 Look thru every buffer's undo list
5020 for elements that update markers that were not marked,
5021 and delete them. */
5022 {
5023 register struct buffer *nextb = all_buffers;
5024
5025 while (nextb)
5026 {
5027 /* If a buffer's undo list is Qt, that means that undo is
5028 turned off in that buffer. Calling truncate_undo_list on
5029 Qt tends to return NULL, which effectively turns undo back on.
5030 So don't call truncate_undo_list if undo_list is Qt. */
5031 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5032 {
5033 Lisp_Object tail, prev;
5034 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5035 prev = Qnil;
5036 while (CONSP (tail))
5037 {
5038 if (CONSP (XCAR (tail))
5039 && MARKERP (XCAR (XCAR (tail)))
5040 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5041 {
5042 if (NILP (prev))
5043 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5044 else
5045 {
5046 tail = XCDR (tail);
5047 XSETCDR (prev, tail);
5048 }
5049 }
5050 else
5051 {
5052 prev = tail;
5053 tail = XCDR (tail);
5054 }
5055 }
5056 }
5057 /* Now that we have stripped the elements that need not be in the
5058 undo_list any more, we can finally mark the list. */
5059 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5060
5061 nextb = nextb->next;
5062 }
5063 }
5064
5065 gc_sweep ();
5066
5067 /* Clear the mark bits that we set in certain root slots. */
5068
5069 unmark_byte_stack ();
5070 VECTOR_UNMARK (&buffer_defaults);
5071 VECTOR_UNMARK (&buffer_local_symbols);
5072
5073 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5074 dump_zombies ();
5075 #endif
5076
5077 UNBLOCK_INPUT;
5078
5079 CHECK_CONS_LIST ();
5080
5081 /* clear_marks (); */
5082 gc_in_progress = 0;
5083
5084 consing_since_gc = 0;
5085 if (gc_cons_threshold < 10000)
5086 gc_cons_threshold = 10000;
5087
5088 if (FLOATP (Vgc_cons_percentage))
5089 { /* Set gc_cons_combined_threshold. */
5090 EMACS_INT tot = 0;
5091
5092 tot += total_conses * sizeof (struct Lisp_Cons);
5093 tot += total_symbols * sizeof (struct Lisp_Symbol);
5094 tot += total_markers * sizeof (union Lisp_Misc);
5095 tot += total_string_size;
5096 tot += total_vector_size * sizeof (Lisp_Object);
5097 tot += total_floats * sizeof (struct Lisp_Float);
5098 tot += total_intervals * sizeof (struct interval);
5099 tot += total_strings * sizeof (struct Lisp_String);
5100
5101 gc_relative_threshold = tot * XFLOAT_DATA (Vgc_cons_percentage);
5102 }
5103 else
5104 gc_relative_threshold = 0;
5105
5106 if (garbage_collection_messages)
5107 {
5108 if (message_p || minibuf_level > 0)
5109 restore_message ();
5110 else
5111 message1_nolog ("Garbage collecting...done");
5112 }
5113
5114 unbind_to (count, Qnil);
5115
5116 total[0] = Fcons (make_number (total_conses),
5117 make_number (total_free_conses));
5118 total[1] = Fcons (make_number (total_symbols),
5119 make_number (total_free_symbols));
5120 total[2] = Fcons (make_number (total_markers),
5121 make_number (total_free_markers));
5122 total[3] = make_number (total_string_size);
5123 total[4] = make_number (total_vector_size);
5124 total[5] = Fcons (make_number (total_floats),
5125 make_number (total_free_floats));
5126 total[6] = Fcons (make_number (total_intervals),
5127 make_number (total_free_intervals));
5128 total[7] = Fcons (make_number (total_strings),
5129 make_number (total_free_strings));
5130
5131 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5132 {
5133 /* Compute average percentage of zombies. */
5134 double nlive = 0;
5135
5136 for (i = 0; i < 7; ++i)
5137 if (CONSP (total[i]))
5138 nlive += XFASTINT (XCAR (total[i]));
5139
5140 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5141 max_live = max (nlive, max_live);
5142 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5143 max_zombies = max (nzombies, max_zombies);
5144 ++ngcs;
5145 }
5146 #endif
5147
5148 if (!NILP (Vpost_gc_hook))
5149 {
5150 int gc_count = inhibit_garbage_collection ();
5151 safe_run_hooks (Qpost_gc_hook);
5152 unbind_to (gc_count, Qnil);
5153 }
5154
5155 /* Accumulate statistics. */
5156 EMACS_GET_TIME (t2);
5157 EMACS_SUB_TIME (t3, t2, t1);
5158 if (FLOATP (Vgc_elapsed))
5159 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5160 EMACS_SECS (t3) +
5161 EMACS_USECS (t3) * 1.0e-6);
5162 gcs_done++;
5163
5164 return Flist (sizeof total / sizeof *total, total);
5165 }
5166
5167
5168 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5169 only interesting objects referenced from glyphs are strings. */
5170
5171 static void
5172 mark_glyph_matrix (struct glyph_matrix *matrix)
5173 {
5174 struct glyph_row *row = matrix->rows;
5175 struct glyph_row *end = row + matrix->nrows;
5176
5177 for (; row < end; ++row)
5178 if (row->enabled_p)
5179 {
5180 int area;
5181 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5182 {
5183 struct glyph *glyph = row->glyphs[area];
5184 struct glyph *end_glyph = glyph + row->used[area];
5185
5186 for (; glyph < end_glyph; ++glyph)
5187 if (STRINGP (glyph->object)
5188 && !STRING_MARKED_P (XSTRING (glyph->object)))
5189 mark_object (glyph->object);
5190 }
5191 }
5192 }
5193
5194
5195 /* Mark Lisp faces in the face cache C. */
5196
5197 static void
5198 mark_face_cache (struct face_cache *c)
5199 {
5200 if (c)
5201 {
5202 int i, j;
5203 for (i = 0; i < c->used; ++i)
5204 {
5205 struct face *face = FACE_FROM_ID (c->f, i);
5206
5207 if (face)
5208 {
5209 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5210 mark_object (face->lface[j]);
5211 }
5212 }
5213 }
5214 }
5215
5216
5217 \f
5218 /* Mark reference to a Lisp_Object.
5219 If the object referred to has not been seen yet, recursively mark
5220 all the references contained in it. */
5221
5222 #define LAST_MARKED_SIZE 500
5223 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5224 static int last_marked_index;
5225
5226 /* For debugging--call abort when we cdr down this many
5227 links of a list, in mark_object. In debugging,
5228 the call to abort will hit a breakpoint.
5229 Normally this is zero and the check never goes off. */
5230 static size_t mark_object_loop_halt;
5231
5232 static void
5233 mark_vectorlike (struct Lisp_Vector *ptr)
5234 {
5235 register EMACS_UINT size = ptr->size;
5236 register EMACS_UINT i;
5237
5238 eassert (!VECTOR_MARKED_P (ptr));
5239 VECTOR_MARK (ptr); /* Else mark it */
5240 if (size & PSEUDOVECTOR_FLAG)
5241 size &= PSEUDOVECTOR_SIZE_MASK;
5242
5243 /* Note that this size is not the memory-footprint size, but only
5244 the number of Lisp_Object fields that we should trace.
5245 The distinction is used e.g. by Lisp_Process which places extra
5246 non-Lisp_Object fields at the end of the structure. */
5247 for (i = 0; i < size; i++) /* and then mark its elements */
5248 mark_object (ptr->contents[i]);
5249 }
5250
5251 /* Like mark_vectorlike but optimized for char-tables (and
5252 sub-char-tables) assuming that the contents are mostly integers or
5253 symbols. */
5254
5255 static void
5256 mark_char_table (struct Lisp_Vector *ptr)
5257 {
5258 register EMACS_UINT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5259 register EMACS_UINT i;
5260
5261 eassert (!VECTOR_MARKED_P (ptr));
5262 VECTOR_MARK (ptr);
5263 for (i = 0; i < size; i++)
5264 {
5265 Lisp_Object val = ptr->contents[i];
5266
5267 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5268 continue;
5269 if (SUB_CHAR_TABLE_P (val))
5270 {
5271 if (! VECTOR_MARKED_P (XVECTOR (val)))
5272 mark_char_table (XVECTOR (val));
5273 }
5274 else
5275 mark_object (val);
5276 }
5277 }
5278
5279 void
5280 mark_object (Lisp_Object arg)
5281 {
5282 register Lisp_Object obj = arg;
5283 #ifdef GC_CHECK_MARKED_OBJECTS
5284 void *po;
5285 struct mem_node *m;
5286 #endif
5287 size_t cdr_count = 0;
5288
5289 loop:
5290
5291 if (PURE_POINTER_P (XPNTR (obj)))
5292 return;
5293
5294 last_marked[last_marked_index++] = obj;
5295 if (last_marked_index == LAST_MARKED_SIZE)
5296 last_marked_index = 0;
5297
5298 /* Perform some sanity checks on the objects marked here. Abort if
5299 we encounter an object we know is bogus. This increases GC time
5300 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5301 #ifdef GC_CHECK_MARKED_OBJECTS
5302
5303 po = (void *) XPNTR (obj);
5304
5305 /* Check that the object pointed to by PO is known to be a Lisp
5306 structure allocated from the heap. */
5307 #define CHECK_ALLOCATED() \
5308 do { \
5309 m = mem_find (po); \
5310 if (m == MEM_NIL) \
5311 abort (); \
5312 } while (0)
5313
5314 /* Check that the object pointed to by PO is live, using predicate
5315 function LIVEP. */
5316 #define CHECK_LIVE(LIVEP) \
5317 do { \
5318 if (!LIVEP (m, po)) \
5319 abort (); \
5320 } while (0)
5321
5322 /* Check both of the above conditions. */
5323 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5324 do { \
5325 CHECK_ALLOCATED (); \
5326 CHECK_LIVE (LIVEP); \
5327 } while (0) \
5328
5329 #else /* not GC_CHECK_MARKED_OBJECTS */
5330
5331 #define CHECK_LIVE(LIVEP) (void) 0
5332 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5333
5334 #endif /* not GC_CHECK_MARKED_OBJECTS */
5335
5336 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5337 {
5338 case Lisp_String:
5339 {
5340 register struct Lisp_String *ptr = XSTRING (obj);
5341 if (STRING_MARKED_P (ptr))
5342 break;
5343 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5344 MARK_INTERVAL_TREE (ptr->intervals);
5345 MARK_STRING (ptr);
5346 #ifdef GC_CHECK_STRING_BYTES
5347 /* Check that the string size recorded in the string is the
5348 same as the one recorded in the sdata structure. */
5349 CHECK_STRING_BYTES (ptr);
5350 #endif /* GC_CHECK_STRING_BYTES */
5351 }
5352 break;
5353
5354 case Lisp_Vectorlike:
5355 if (VECTOR_MARKED_P (XVECTOR (obj)))
5356 break;
5357 #ifdef GC_CHECK_MARKED_OBJECTS
5358 m = mem_find (po);
5359 if (m == MEM_NIL && !SUBRP (obj)
5360 && po != &buffer_defaults
5361 && po != &buffer_local_symbols)
5362 abort ();
5363 #endif /* GC_CHECK_MARKED_OBJECTS */
5364
5365 if (BUFFERP (obj))
5366 {
5367 #ifdef GC_CHECK_MARKED_OBJECTS
5368 if (po != &buffer_defaults && po != &buffer_local_symbols)
5369 {
5370 struct buffer *b;
5371 for (b = all_buffers; b && b != po; b = b->next)
5372 ;
5373 if (b == NULL)
5374 abort ();
5375 }
5376 #endif /* GC_CHECK_MARKED_OBJECTS */
5377 mark_buffer (obj);
5378 }
5379 else if (SUBRP (obj))
5380 break;
5381 else if (COMPILEDP (obj))
5382 /* We could treat this just like a vector, but it is better to
5383 save the COMPILED_CONSTANTS element for last and avoid
5384 recursion there. */
5385 {
5386 register struct Lisp_Vector *ptr = XVECTOR (obj);
5387 register EMACS_UINT size = ptr->size;
5388 register EMACS_UINT i;
5389
5390 CHECK_LIVE (live_vector_p);
5391 VECTOR_MARK (ptr); /* Else mark it */
5392 size &= PSEUDOVECTOR_SIZE_MASK;
5393 for (i = 0; i < size; i++) /* and then mark its elements */
5394 {
5395 if (i != COMPILED_CONSTANTS)
5396 mark_object (ptr->contents[i]);
5397 }
5398 obj = ptr->contents[COMPILED_CONSTANTS];
5399 goto loop;
5400 }
5401 else if (FRAMEP (obj))
5402 {
5403 register struct frame *ptr = XFRAME (obj);
5404 mark_vectorlike (XVECTOR (obj));
5405 mark_face_cache (ptr->face_cache);
5406 }
5407 else if (WINDOWP (obj))
5408 {
5409 register struct Lisp_Vector *ptr = XVECTOR (obj);
5410 struct window *w = XWINDOW (obj);
5411 mark_vectorlike (ptr);
5412 /* Mark glyphs for leaf windows. Marking window matrices is
5413 sufficient because frame matrices use the same glyph
5414 memory. */
5415 if (NILP (w->hchild)
5416 && NILP (w->vchild)
5417 && w->current_matrix)
5418 {
5419 mark_glyph_matrix (w->current_matrix);
5420 mark_glyph_matrix (w->desired_matrix);
5421 }
5422 }
5423 else if (HASH_TABLE_P (obj))
5424 {
5425 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5426 mark_vectorlike ((struct Lisp_Vector *)h);
5427 /* If hash table is not weak, mark all keys and values.
5428 For weak tables, mark only the vector. */
5429 if (NILP (h->weak))
5430 mark_object (h->key_and_value);
5431 else
5432 VECTOR_MARK (XVECTOR (h->key_and_value));
5433 }
5434 else if (CHAR_TABLE_P (obj))
5435 mark_char_table (XVECTOR (obj));
5436 else
5437 mark_vectorlike (XVECTOR (obj));
5438 break;
5439
5440 case Lisp_Symbol:
5441 {
5442 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5443 struct Lisp_Symbol *ptrx;
5444
5445 if (ptr->gcmarkbit)
5446 break;
5447 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5448 ptr->gcmarkbit = 1;
5449 mark_object (ptr->function);
5450 mark_object (ptr->plist);
5451 switch (ptr->redirect)
5452 {
5453 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5454 case SYMBOL_VARALIAS:
5455 {
5456 Lisp_Object tem;
5457 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5458 mark_object (tem);
5459 break;
5460 }
5461 case SYMBOL_LOCALIZED:
5462 {
5463 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5464 /* If the value is forwarded to a buffer or keyboard field,
5465 these are marked when we see the corresponding object.
5466 And if it's forwarded to a C variable, either it's not
5467 a Lisp_Object var, or it's staticpro'd already. */
5468 mark_object (blv->where);
5469 mark_object (blv->valcell);
5470 mark_object (blv->defcell);
5471 break;
5472 }
5473 case SYMBOL_FORWARDED:
5474 /* If the value is forwarded to a buffer or keyboard field,
5475 these are marked when we see the corresponding object.
5476 And if it's forwarded to a C variable, either it's not
5477 a Lisp_Object var, or it's staticpro'd already. */
5478 break;
5479 default: abort ();
5480 }
5481 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5482 MARK_STRING (XSTRING (ptr->xname));
5483 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5484
5485 ptr = ptr->next;
5486 if (ptr)
5487 {
5488 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5489 XSETSYMBOL (obj, ptrx);
5490 goto loop;
5491 }
5492 }
5493 break;
5494
5495 case Lisp_Misc:
5496 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5497 if (XMISCANY (obj)->gcmarkbit)
5498 break;
5499 XMISCANY (obj)->gcmarkbit = 1;
5500
5501 switch (XMISCTYPE (obj))
5502 {
5503
5504 case Lisp_Misc_Marker:
5505 /* DO NOT mark thru the marker's chain.
5506 The buffer's markers chain does not preserve markers from gc;
5507 instead, markers are removed from the chain when freed by gc. */
5508 break;
5509
5510 case Lisp_Misc_Save_Value:
5511 #if GC_MARK_STACK
5512 {
5513 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5514 /* If DOGC is set, POINTER is the address of a memory
5515 area containing INTEGER potential Lisp_Objects. */
5516 if (ptr->dogc)
5517 {
5518 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5519 int nelt;
5520 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5521 mark_maybe_object (*p);
5522 }
5523 }
5524 #endif
5525 break;
5526
5527 case Lisp_Misc_Overlay:
5528 {
5529 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5530 mark_object (ptr->start);
5531 mark_object (ptr->end);
5532 mark_object (ptr->plist);
5533 if (ptr->next)
5534 {
5535 XSETMISC (obj, ptr->next);
5536 goto loop;
5537 }
5538 }
5539 break;
5540
5541 default:
5542 abort ();
5543 }
5544 break;
5545
5546 case Lisp_Cons:
5547 {
5548 register struct Lisp_Cons *ptr = XCONS (obj);
5549 if (CONS_MARKED_P (ptr))
5550 break;
5551 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5552 CONS_MARK (ptr);
5553 /* If the cdr is nil, avoid recursion for the car. */
5554 if (EQ (ptr->u.cdr, Qnil))
5555 {
5556 obj = ptr->car;
5557 cdr_count = 0;
5558 goto loop;
5559 }
5560 mark_object (ptr->car);
5561 obj = ptr->u.cdr;
5562 cdr_count++;
5563 if (cdr_count == mark_object_loop_halt)
5564 abort ();
5565 goto loop;
5566 }
5567
5568 case Lisp_Float:
5569 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5570 FLOAT_MARK (XFLOAT (obj));
5571 break;
5572
5573 case_Lisp_Int:
5574 break;
5575
5576 default:
5577 abort ();
5578 }
5579
5580 #undef CHECK_LIVE
5581 #undef CHECK_ALLOCATED
5582 #undef CHECK_ALLOCATED_AND_LIVE
5583 }
5584
5585 /* Mark the pointers in a buffer structure. */
5586
5587 static void
5588 mark_buffer (Lisp_Object buf)
5589 {
5590 register struct buffer *buffer = XBUFFER (buf);
5591 register Lisp_Object *ptr, tmp;
5592 Lisp_Object base_buffer;
5593
5594 eassert (!VECTOR_MARKED_P (buffer));
5595 VECTOR_MARK (buffer);
5596
5597 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5598
5599 /* For now, we just don't mark the undo_list. It's done later in
5600 a special way just before the sweep phase, and after stripping
5601 some of its elements that are not needed any more. */
5602
5603 if (buffer->overlays_before)
5604 {
5605 XSETMISC (tmp, buffer->overlays_before);
5606 mark_object (tmp);
5607 }
5608 if (buffer->overlays_after)
5609 {
5610 XSETMISC (tmp, buffer->overlays_after);
5611 mark_object (tmp);
5612 }
5613
5614 /* buffer-local Lisp variables start at `undo_list',
5615 tho only the ones from `name' on are GC'd normally. */
5616 for (ptr = &buffer->BUFFER_INTERNAL_FIELD (name);
5617 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5618 ptr++)
5619 mark_object (*ptr);
5620
5621 /* If this is an indirect buffer, mark its base buffer. */
5622 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5623 {
5624 XSETBUFFER (base_buffer, buffer->base_buffer);
5625 mark_buffer (base_buffer);
5626 }
5627 }
5628
5629 /* Mark the Lisp pointers in the terminal objects.
5630 Called by the Fgarbage_collector. */
5631
5632 static void
5633 mark_terminals (void)
5634 {
5635 struct terminal *t;
5636 for (t = terminal_list; t; t = t->next_terminal)
5637 {
5638 eassert (t->name != NULL);
5639 #ifdef HAVE_WINDOW_SYSTEM
5640 /* If a terminal object is reachable from a stacpro'ed object,
5641 it might have been marked already. Make sure the image cache
5642 gets marked. */
5643 mark_image_cache (t->image_cache);
5644 #endif /* HAVE_WINDOW_SYSTEM */
5645 if (!VECTOR_MARKED_P (t))
5646 mark_vectorlike ((struct Lisp_Vector *)t);
5647 }
5648 }
5649
5650
5651
5652 /* Value is non-zero if OBJ will survive the current GC because it's
5653 either marked or does not need to be marked to survive. */
5654
5655 int
5656 survives_gc_p (Lisp_Object obj)
5657 {
5658 int survives_p;
5659
5660 switch (XTYPE (obj))
5661 {
5662 case_Lisp_Int:
5663 survives_p = 1;
5664 break;
5665
5666 case Lisp_Symbol:
5667 survives_p = XSYMBOL (obj)->gcmarkbit;
5668 break;
5669
5670 case Lisp_Misc:
5671 survives_p = XMISCANY (obj)->gcmarkbit;
5672 break;
5673
5674 case Lisp_String:
5675 survives_p = STRING_MARKED_P (XSTRING (obj));
5676 break;
5677
5678 case Lisp_Vectorlike:
5679 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5680 break;
5681
5682 case Lisp_Cons:
5683 survives_p = CONS_MARKED_P (XCONS (obj));
5684 break;
5685
5686 case Lisp_Float:
5687 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5688 break;
5689
5690 default:
5691 abort ();
5692 }
5693
5694 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5695 }
5696
5697
5698 \f
5699 /* Sweep: find all structures not marked, and free them. */
5700
5701 static void
5702 gc_sweep (void)
5703 {
5704 /* Remove or mark entries in weak hash tables.
5705 This must be done before any object is unmarked. */
5706 sweep_weak_hash_tables ();
5707
5708 sweep_strings ();
5709 #ifdef GC_CHECK_STRING_BYTES
5710 if (!noninteractive)
5711 check_string_bytes (1);
5712 #endif
5713
5714 /* Put all unmarked conses on free list */
5715 {
5716 register struct cons_block *cblk;
5717 struct cons_block **cprev = &cons_block;
5718 register int lim = cons_block_index;
5719 register int num_free = 0, num_used = 0;
5720
5721 cons_free_list = 0;
5722
5723 for (cblk = cons_block; cblk; cblk = *cprev)
5724 {
5725 register int i = 0;
5726 int this_free = 0;
5727 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5728
5729 /* Scan the mark bits an int at a time. */
5730 for (i = 0; i <= ilim; i++)
5731 {
5732 if (cblk->gcmarkbits[i] == -1)
5733 {
5734 /* Fast path - all cons cells for this int are marked. */
5735 cblk->gcmarkbits[i] = 0;
5736 num_used += BITS_PER_INT;
5737 }
5738 else
5739 {
5740 /* Some cons cells for this int are not marked.
5741 Find which ones, and free them. */
5742 int start, pos, stop;
5743
5744 start = i * BITS_PER_INT;
5745 stop = lim - start;
5746 if (stop > BITS_PER_INT)
5747 stop = BITS_PER_INT;
5748 stop += start;
5749
5750 for (pos = start; pos < stop; pos++)
5751 {
5752 if (!CONS_MARKED_P (&cblk->conses[pos]))
5753 {
5754 this_free++;
5755 cblk->conses[pos].u.chain = cons_free_list;
5756 cons_free_list = &cblk->conses[pos];
5757 #if GC_MARK_STACK
5758 cons_free_list->car = Vdead;
5759 #endif
5760 }
5761 else
5762 {
5763 num_used++;
5764 CONS_UNMARK (&cblk->conses[pos]);
5765 }
5766 }
5767 }
5768 }
5769
5770 lim = CONS_BLOCK_SIZE;
5771 /* If this block contains only free conses and we have already
5772 seen more than two blocks worth of free conses then deallocate
5773 this block. */
5774 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5775 {
5776 *cprev = cblk->next;
5777 /* Unhook from the free list. */
5778 cons_free_list = cblk->conses[0].u.chain;
5779 lisp_align_free (cblk);
5780 n_cons_blocks--;
5781 }
5782 else
5783 {
5784 num_free += this_free;
5785 cprev = &cblk->next;
5786 }
5787 }
5788 total_conses = num_used;
5789 total_free_conses = num_free;
5790 }
5791
5792 /* Put all unmarked floats on free list */
5793 {
5794 register struct float_block *fblk;
5795 struct float_block **fprev = &float_block;
5796 register int lim = float_block_index;
5797 register int num_free = 0, num_used = 0;
5798
5799 float_free_list = 0;
5800
5801 for (fblk = float_block; fblk; fblk = *fprev)
5802 {
5803 register int i;
5804 int this_free = 0;
5805 for (i = 0; i < lim; i++)
5806 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5807 {
5808 this_free++;
5809 fblk->floats[i].u.chain = float_free_list;
5810 float_free_list = &fblk->floats[i];
5811 }
5812 else
5813 {
5814 num_used++;
5815 FLOAT_UNMARK (&fblk->floats[i]);
5816 }
5817 lim = FLOAT_BLOCK_SIZE;
5818 /* If this block contains only free floats and we have already
5819 seen more than two blocks worth of free floats then deallocate
5820 this block. */
5821 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5822 {
5823 *fprev = fblk->next;
5824 /* Unhook from the free list. */
5825 float_free_list = fblk->floats[0].u.chain;
5826 lisp_align_free (fblk);
5827 n_float_blocks--;
5828 }
5829 else
5830 {
5831 num_free += this_free;
5832 fprev = &fblk->next;
5833 }
5834 }
5835 total_floats = num_used;
5836 total_free_floats = num_free;
5837 }
5838
5839 /* Put all unmarked intervals on free list */
5840 {
5841 register struct interval_block *iblk;
5842 struct interval_block **iprev = &interval_block;
5843 register int lim = interval_block_index;
5844 register int num_free = 0, num_used = 0;
5845
5846 interval_free_list = 0;
5847
5848 for (iblk = interval_block; iblk; iblk = *iprev)
5849 {
5850 register int i;
5851 int this_free = 0;
5852
5853 for (i = 0; i < lim; i++)
5854 {
5855 if (!iblk->intervals[i].gcmarkbit)
5856 {
5857 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5858 interval_free_list = &iblk->intervals[i];
5859 this_free++;
5860 }
5861 else
5862 {
5863 num_used++;
5864 iblk->intervals[i].gcmarkbit = 0;
5865 }
5866 }
5867 lim = INTERVAL_BLOCK_SIZE;
5868 /* If this block contains only free intervals and we have already
5869 seen more than two blocks worth of free intervals then
5870 deallocate this block. */
5871 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5872 {
5873 *iprev = iblk->next;
5874 /* Unhook from the free list. */
5875 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5876 lisp_free (iblk);
5877 n_interval_blocks--;
5878 }
5879 else
5880 {
5881 num_free += this_free;
5882 iprev = &iblk->next;
5883 }
5884 }
5885 total_intervals = num_used;
5886 total_free_intervals = num_free;
5887 }
5888
5889 /* Put all unmarked symbols on free list */
5890 {
5891 register struct symbol_block *sblk;
5892 struct symbol_block **sprev = &symbol_block;
5893 register int lim = symbol_block_index;
5894 register int num_free = 0, num_used = 0;
5895
5896 symbol_free_list = NULL;
5897
5898 for (sblk = symbol_block; sblk; sblk = *sprev)
5899 {
5900 int this_free = 0;
5901 struct Lisp_Symbol *sym = sblk->symbols;
5902 struct Lisp_Symbol *end = sym + lim;
5903
5904 for (; sym < end; ++sym)
5905 {
5906 /* Check if the symbol was created during loadup. In such a case
5907 it might be pointed to by pure bytecode which we don't trace,
5908 so we conservatively assume that it is live. */
5909 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5910
5911 if (!sym->gcmarkbit && !pure_p)
5912 {
5913 if (sym->redirect == SYMBOL_LOCALIZED)
5914 xfree (SYMBOL_BLV (sym));
5915 sym->next = symbol_free_list;
5916 symbol_free_list = sym;
5917 #if GC_MARK_STACK
5918 symbol_free_list->function = Vdead;
5919 #endif
5920 ++this_free;
5921 }
5922 else
5923 {
5924 ++num_used;
5925 if (!pure_p)
5926 UNMARK_STRING (XSTRING (sym->xname));
5927 sym->gcmarkbit = 0;
5928 }
5929 }
5930
5931 lim = SYMBOL_BLOCK_SIZE;
5932 /* If this block contains only free symbols and we have already
5933 seen more than two blocks worth of free symbols then deallocate
5934 this block. */
5935 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5936 {
5937 *sprev = sblk->next;
5938 /* Unhook from the free list. */
5939 symbol_free_list = sblk->symbols[0].next;
5940 lisp_free (sblk);
5941 n_symbol_blocks--;
5942 }
5943 else
5944 {
5945 num_free += this_free;
5946 sprev = &sblk->next;
5947 }
5948 }
5949 total_symbols = num_used;
5950 total_free_symbols = num_free;
5951 }
5952
5953 /* Put all unmarked misc's on free list.
5954 For a marker, first unchain it from the buffer it points into. */
5955 {
5956 register struct marker_block *mblk;
5957 struct marker_block **mprev = &marker_block;
5958 register int lim = marker_block_index;
5959 register int num_free = 0, num_used = 0;
5960
5961 marker_free_list = 0;
5962
5963 for (mblk = marker_block; mblk; mblk = *mprev)
5964 {
5965 register int i;
5966 int this_free = 0;
5967
5968 for (i = 0; i < lim; i++)
5969 {
5970 if (!mblk->markers[i].u_any.gcmarkbit)
5971 {
5972 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
5973 unchain_marker (&mblk->markers[i].u_marker);
5974 /* Set the type of the freed object to Lisp_Misc_Free.
5975 We could leave the type alone, since nobody checks it,
5976 but this might catch bugs faster. */
5977 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5978 mblk->markers[i].u_free.chain = marker_free_list;
5979 marker_free_list = &mblk->markers[i];
5980 this_free++;
5981 }
5982 else
5983 {
5984 num_used++;
5985 mblk->markers[i].u_any.gcmarkbit = 0;
5986 }
5987 }
5988 lim = MARKER_BLOCK_SIZE;
5989 /* If this block contains only free markers and we have already
5990 seen more than two blocks worth of free markers then deallocate
5991 this block. */
5992 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5993 {
5994 *mprev = mblk->next;
5995 /* Unhook from the free list. */
5996 marker_free_list = mblk->markers[0].u_free.chain;
5997 lisp_free (mblk);
5998 n_marker_blocks--;
5999 }
6000 else
6001 {
6002 num_free += this_free;
6003 mprev = &mblk->next;
6004 }
6005 }
6006
6007 total_markers = num_used;
6008 total_free_markers = num_free;
6009 }
6010
6011 /* Free all unmarked buffers */
6012 {
6013 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6014
6015 while (buffer)
6016 if (!VECTOR_MARKED_P (buffer))
6017 {
6018 if (prev)
6019 prev->next = buffer->next;
6020 else
6021 all_buffers = buffer->next;
6022 next = buffer->next;
6023 lisp_free (buffer);
6024 buffer = next;
6025 }
6026 else
6027 {
6028 VECTOR_UNMARK (buffer);
6029 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6030 prev = buffer, buffer = buffer->next;
6031 }
6032 }
6033
6034 /* Free all unmarked vectors */
6035 {
6036 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6037 total_vector_size = 0;
6038
6039 while (vector)
6040 if (!VECTOR_MARKED_P (vector))
6041 {
6042 if (prev)
6043 prev->next = vector->next;
6044 else
6045 all_vectors = vector->next;
6046 next = vector->next;
6047 lisp_free (vector);
6048 n_vectors--;
6049 vector = next;
6050
6051 }
6052 else
6053 {
6054 VECTOR_UNMARK (vector);
6055 if (vector->size & PSEUDOVECTOR_FLAG)
6056 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6057 else
6058 total_vector_size += vector->size;
6059 prev = vector, vector = vector->next;
6060 }
6061 }
6062
6063 #ifdef GC_CHECK_STRING_BYTES
6064 if (!noninteractive)
6065 check_string_bytes (1);
6066 #endif
6067 }
6068
6069
6070
6071 \f
6072 /* Debugging aids. */
6073
6074 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6075 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6076 This may be helpful in debugging Emacs's memory usage.
6077 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6078 (void)
6079 {
6080 Lisp_Object end;
6081
6082 XSETINT (end, (EMACS_INT) (char *) sbrk (0) / 1024);
6083
6084 return end;
6085 }
6086
6087 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6088 doc: /* Return a list of counters that measure how much consing there has been.
6089 Each of these counters increments for a certain kind of object.
6090 The counters wrap around from the largest positive integer to zero.
6091 Garbage collection does not decrease them.
6092 The elements of the value are as follows:
6093 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6094 All are in units of 1 = one object consed
6095 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6096 objects consed.
6097 MISCS include overlays, markers, and some internal types.
6098 Frames, windows, buffers, and subprocesses count as vectors
6099 (but the contents of a buffer's text do not count here). */)
6100 (void)
6101 {
6102 Lisp_Object consed[8];
6103
6104 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6105 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6106 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6107 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6108 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6109 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6110 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6111 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6112
6113 return Flist (8, consed);
6114 }
6115
6116 #ifdef ENABLE_CHECKING
6117 int suppress_checking;
6118
6119 void
6120 die (const char *msg, const char *file, int line)
6121 {
6122 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6123 file, line, msg);
6124 abort ();
6125 }
6126 #endif
6127 \f
6128 /* Initialization */
6129
6130 void
6131 init_alloc_once (void)
6132 {
6133 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6134 purebeg = PUREBEG;
6135 pure_size = PURESIZE;
6136 pure_bytes_used = 0;
6137 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6138 pure_bytes_used_before_overflow = 0;
6139
6140 /* Initialize the list of free aligned blocks. */
6141 free_ablock = NULL;
6142
6143 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6144 mem_init ();
6145 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6146 #endif
6147
6148 all_vectors = 0;
6149 ignore_warnings = 1;
6150 #ifdef DOUG_LEA_MALLOC
6151 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6152 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6153 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6154 #endif
6155 init_strings ();
6156 init_cons ();
6157 init_symbol ();
6158 init_marker ();
6159 init_float ();
6160 init_intervals ();
6161 init_weak_hash_tables ();
6162
6163 #ifdef REL_ALLOC
6164 malloc_hysteresis = 32;
6165 #else
6166 malloc_hysteresis = 0;
6167 #endif
6168
6169 refill_memory_reserve ();
6170
6171 ignore_warnings = 0;
6172 gcprolist = 0;
6173 byte_stack_list = 0;
6174 staticidx = 0;
6175 consing_since_gc = 0;
6176 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6177 gc_relative_threshold = 0;
6178 }
6179
6180 void
6181 init_alloc (void)
6182 {
6183 gcprolist = 0;
6184 byte_stack_list = 0;
6185 #if GC_MARK_STACK
6186 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6187 setjmp_tested_p = longjmps_done = 0;
6188 #endif
6189 #endif
6190 Vgc_elapsed = make_float (0.0);
6191 gcs_done = 0;
6192 }
6193
6194 void
6195 syms_of_alloc (void)
6196 {
6197 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6198 doc: /* *Number of bytes of consing between garbage collections.
6199 Garbage collection can happen automatically once this many bytes have been
6200 allocated since the last garbage collection. All data types count.
6201
6202 Garbage collection happens automatically only when `eval' is called.
6203
6204 By binding this temporarily to a large number, you can effectively
6205 prevent garbage collection during a part of the program.
6206 See also `gc-cons-percentage'. */);
6207
6208 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6209 doc: /* *Portion of the heap used for allocation.
6210 Garbage collection can happen automatically once this portion of the heap
6211 has been allocated since the last garbage collection.
6212 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6213 Vgc_cons_percentage = make_float (0.1);
6214
6215 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6216 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6217
6218 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6219 doc: /* Number of cons cells that have been consed so far. */);
6220
6221 DEFVAR_INT ("floats-consed", floats_consed,
6222 doc: /* Number of floats that have been consed so far. */);
6223
6224 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6225 doc: /* Number of vector cells that have been consed so far. */);
6226
6227 DEFVAR_INT ("symbols-consed", symbols_consed,
6228 doc: /* Number of symbols that have been consed so far. */);
6229
6230 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6231 doc: /* Number of string characters that have been consed so far. */);
6232
6233 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6234 doc: /* Number of miscellaneous objects that have been consed so far. */);
6235
6236 DEFVAR_INT ("intervals-consed", intervals_consed,
6237 doc: /* Number of intervals that have been consed so far. */);
6238
6239 DEFVAR_INT ("strings-consed", strings_consed,
6240 doc: /* Number of strings that have been consed so far. */);
6241
6242 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6243 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6244 This means that certain objects should be allocated in shared (pure) space.
6245 It can also be set to a hash-table, in which case this table is used to
6246 do hash-consing of the objects allocated to pure space. */);
6247
6248 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6249 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6250 garbage_collection_messages = 0;
6251
6252 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6253 doc: /* Hook run after garbage collection has finished. */);
6254 Vpost_gc_hook = Qnil;
6255 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6256 staticpro (&Qpost_gc_hook);
6257
6258 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6259 doc: /* Precomputed `signal' argument for memory-full error. */);
6260 /* We build this in advance because if we wait until we need it, we might
6261 not be able to allocate the memory to hold it. */
6262 Vmemory_signal_data
6263 = pure_cons (Qerror,
6264 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6265
6266 DEFVAR_LISP ("memory-full", Vmemory_full,
6267 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6268 Vmemory_full = Qnil;
6269
6270 staticpro (&Qgc_cons_threshold);
6271 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6272
6273 staticpro (&Qchar_table_extra_slots);
6274 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6275
6276 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6277 doc: /* Accumulated time elapsed in garbage collections.
6278 The time is in seconds as a floating point value. */);
6279 DEFVAR_INT ("gcs-done", gcs_done,
6280 doc: /* Accumulated number of garbage collections done. */);
6281
6282 defsubr (&Scons);
6283 defsubr (&Slist);
6284 defsubr (&Svector);
6285 defsubr (&Smake_byte_code);
6286 defsubr (&Smake_list);
6287 defsubr (&Smake_vector);
6288 defsubr (&Smake_string);
6289 defsubr (&Smake_bool_vector);
6290 defsubr (&Smake_symbol);
6291 defsubr (&Smake_marker);
6292 defsubr (&Spurecopy);
6293 defsubr (&Sgarbage_collect);
6294 defsubr (&Smemory_limit);
6295 defsubr (&Smemory_use_counts);
6296
6297 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6298 defsubr (&Sgc_status);
6299 #endif
6300 }