Merge changes from emacs-23 branch.
[bpt/emacs.git] / src / editfns.c
1 /* Lisp functions pertaining to editing.
2
3 Copyright (C) 1985, 1986, 1987, 1989, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009, 2010 Free Software Foundation, Inc.
6
7 This file is part of GNU Emacs.
8
9 GNU Emacs is free software: you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation, either version 3 of the License, or
12 (at your option) any later version.
13
14 GNU Emacs is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21
22
23 #include <config.h>
24 #include <sys/types.h>
25 #include <stdio.h>
26 #include <setjmp.h>
27
28 #ifdef HAVE_PWD_H
29 #include <pwd.h>
30 #endif
31
32 #ifdef HAVE_UNISTD_H
33 #include <unistd.h>
34 #endif
35
36 #ifdef HAVE_SYS_UTSNAME_H
37 #include <sys/utsname.h>
38 #endif
39
40 #include "lisp.h"
41
42 /* systime.h includes <sys/time.h> which, on some systems, is required
43 for <sys/resource.h>; thus systime.h must be included before
44 <sys/resource.h> */
45 #include "systime.h"
46
47 #if defined HAVE_SYS_RESOURCE_H
48 #include <sys/resource.h>
49 #endif
50
51 #include <ctype.h>
52
53 #include "intervals.h"
54 #include "buffer.h"
55 #include "character.h"
56 #include "coding.h"
57 #include "frame.h"
58 #include "window.h"
59 #include "blockinput.h"
60
61 #ifdef STDC_HEADERS
62 #include <float.h>
63 #define MAX_10_EXP DBL_MAX_10_EXP
64 #else
65 #define MAX_10_EXP 310
66 #endif
67
68 #ifndef NULL
69 #define NULL 0
70 #endif
71
72 #ifndef USER_FULL_NAME
73 #define USER_FULL_NAME pw->pw_gecos
74 #endif
75
76 #ifndef USE_CRT_DLL
77 extern char **environ;
78 #endif
79
80 #define TM_YEAR_BASE 1900
81
82 /* Nonzero if TM_YEAR is a struct tm's tm_year value that causes
83 asctime to have well-defined behavior. */
84 #ifndef TM_YEAR_IN_ASCTIME_RANGE
85 # define TM_YEAR_IN_ASCTIME_RANGE(tm_year) \
86 (1000 - TM_YEAR_BASE <= (tm_year) && (tm_year) <= 9999 - TM_YEAR_BASE)
87 #endif
88
89 extern size_t emacs_strftimeu (char *, size_t, const char *,
90 const struct tm *, int);
91
92 #ifdef WINDOWSNT
93 extern Lisp_Object w32_get_internal_run_time (void);
94 #endif
95
96 static int tm_diff (struct tm *, struct tm *);
97 static void find_field (Lisp_Object, Lisp_Object, Lisp_Object, int *, Lisp_Object, int *);
98 static void update_buffer_properties (int, int);
99 static Lisp_Object region_limit (int);
100 static size_t emacs_memftimeu (char *, size_t, const char *,
101 size_t, const struct tm *, int);
102 static void general_insert_function (void (*) (const unsigned char *, EMACS_INT),
103 void (*) (Lisp_Object, EMACS_INT,
104 EMACS_INT, EMACS_INT,
105 EMACS_INT, int),
106 int, int, Lisp_Object *);
107 static Lisp_Object subst_char_in_region_unwind (Lisp_Object);
108 static Lisp_Object subst_char_in_region_unwind_1 (Lisp_Object);
109 static void transpose_markers (int, int, int, int, int, int, int, int);
110
111 Lisp_Object Vbuffer_access_fontify_functions;
112 Lisp_Object Qbuffer_access_fontify_functions;
113 Lisp_Object Vbuffer_access_fontified_property;
114
115 Lisp_Object Fuser_full_name (Lisp_Object);
116
117 /* Non-nil means don't stop at field boundary in text motion commands. */
118
119 Lisp_Object Vinhibit_field_text_motion;
120
121 /* Some static data, and a function to initialize it for each run */
122
123 Lisp_Object Vsystem_name;
124 Lisp_Object Vuser_real_login_name; /* login name of current user ID */
125 Lisp_Object Vuser_full_name; /* full name of current user */
126 Lisp_Object Vuser_login_name; /* user name from LOGNAME or USER */
127 Lisp_Object Voperating_system_release; /* Operating System Release */
128
129 /* Symbol for the text property used to mark fields. */
130
131 Lisp_Object Qfield;
132
133 /* A special value for Qfield properties. */
134
135 Lisp_Object Qboundary;
136
137
138 void
139 init_editfns (void)
140 {
141 char *user_name;
142 register unsigned char *p;
143 struct passwd *pw; /* password entry for the current user */
144 Lisp_Object tem;
145
146 /* Set up system_name even when dumping. */
147 init_system_name ();
148
149 #ifndef CANNOT_DUMP
150 /* Don't bother with this on initial start when just dumping out */
151 if (!initialized)
152 return;
153 #endif /* not CANNOT_DUMP */
154
155 pw = (struct passwd *) getpwuid (getuid ());
156 #ifdef MSDOS
157 /* We let the real user name default to "root" because that's quite
158 accurate on MSDOG and because it lets Emacs find the init file.
159 (The DVX libraries override the Djgpp libraries here.) */
160 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
161 #else
162 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
163 #endif
164
165 /* Get the effective user name, by consulting environment variables,
166 or the effective uid if those are unset. */
167 user_name = (char *) getenv ("LOGNAME");
168 if (!user_name)
169 #ifdef WINDOWSNT
170 user_name = (char *) getenv ("USERNAME"); /* it's USERNAME on NT */
171 #else /* WINDOWSNT */
172 user_name = (char *) getenv ("USER");
173 #endif /* WINDOWSNT */
174 if (!user_name)
175 {
176 pw = (struct passwd *) getpwuid (geteuid ());
177 user_name = (char *) (pw ? pw->pw_name : "unknown");
178 }
179 Vuser_login_name = build_string (user_name);
180
181 /* If the user name claimed in the environment vars differs from
182 the real uid, use the claimed name to find the full name. */
183 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
184 Vuser_full_name = Fuser_full_name (NILP (tem)? make_number (geteuid())
185 : Vuser_login_name);
186
187 p = (unsigned char *) getenv ("NAME");
188 if (p)
189 Vuser_full_name = build_string (p);
190 else if (NILP (Vuser_full_name))
191 Vuser_full_name = build_string ("unknown");
192
193 #ifdef HAVE_SYS_UTSNAME_H
194 {
195 struct utsname uts;
196 uname (&uts);
197 Voperating_system_release = build_string (uts.release);
198 }
199 #else
200 Voperating_system_release = Qnil;
201 #endif
202 }
203 \f
204 DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
205 doc: /* Convert arg CHAR to a string containing that character.
206 usage: (char-to-string CHAR) */)
207 (Lisp_Object character)
208 {
209 int len;
210 unsigned char str[MAX_MULTIBYTE_LENGTH];
211
212 CHECK_CHARACTER (character);
213
214 len = CHAR_STRING (XFASTINT (character), str);
215 return make_string_from_bytes (str, 1, len);
216 }
217
218 DEFUN ("byte-to-string", Fbyte_to_string, Sbyte_to_string, 1, 1, 0,
219 doc: /* Convert arg BYTE to a string containing that byte. */)
220 (Lisp_Object byte)
221 {
222 unsigned char b;
223 CHECK_NUMBER (byte);
224 b = XINT (byte);
225 return make_string_from_bytes (&b, 1, 1);
226 }
227
228 DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
229 doc: /* Convert arg STRING to a character, the first character of that string.
230 A multibyte character is handled correctly. */)
231 (register Lisp_Object string)
232 {
233 register Lisp_Object val;
234 CHECK_STRING (string);
235 if (SCHARS (string))
236 {
237 if (STRING_MULTIBYTE (string))
238 XSETFASTINT (val, STRING_CHAR (SDATA (string)));
239 else
240 XSETFASTINT (val, SREF (string, 0));
241 }
242 else
243 XSETFASTINT (val, 0);
244 return val;
245 }
246 \f
247 static Lisp_Object
248 buildmark (int charpos, int bytepos)
249 {
250 register Lisp_Object mark;
251 mark = Fmake_marker ();
252 set_marker_both (mark, Qnil, charpos, bytepos);
253 return mark;
254 }
255
256 DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
257 doc: /* Return value of point, as an integer.
258 Beginning of buffer is position (point-min). */)
259 (void)
260 {
261 Lisp_Object temp;
262 XSETFASTINT (temp, PT);
263 return temp;
264 }
265
266 DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
267 doc: /* Return value of point, as a marker object. */)
268 (void)
269 {
270 return buildmark (PT, PT_BYTE);
271 }
272
273 int
274 clip_to_bounds (int lower, int num, int upper)
275 {
276 if (num < lower)
277 return lower;
278 else if (num > upper)
279 return upper;
280 else
281 return num;
282 }
283
284 DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
285 doc: /* Set point to POSITION, a number or marker.
286 Beginning of buffer is position (point-min), end is (point-max).
287
288 The return value is POSITION. */)
289 (register Lisp_Object position)
290 {
291 int pos;
292
293 if (MARKERP (position)
294 && current_buffer == XMARKER (position)->buffer)
295 {
296 pos = marker_position (position);
297 if (pos < BEGV)
298 SET_PT_BOTH (BEGV, BEGV_BYTE);
299 else if (pos > ZV)
300 SET_PT_BOTH (ZV, ZV_BYTE);
301 else
302 SET_PT_BOTH (pos, marker_byte_position (position));
303
304 return position;
305 }
306
307 CHECK_NUMBER_COERCE_MARKER (position);
308
309 pos = clip_to_bounds (BEGV, XINT (position), ZV);
310 SET_PT (pos);
311 return position;
312 }
313
314
315 /* Return the start or end position of the region.
316 BEGINNINGP non-zero means return the start.
317 If there is no region active, signal an error. */
318
319 static Lisp_Object
320 region_limit (int beginningp)
321 {
322 Lisp_Object m;
323
324 if (!NILP (Vtransient_mark_mode)
325 && NILP (Vmark_even_if_inactive)
326 && NILP (current_buffer->mark_active))
327 xsignal0 (Qmark_inactive);
328
329 m = Fmarker_position (current_buffer->mark);
330 if (NILP (m))
331 error ("The mark is not set now, so there is no region");
332
333 if ((PT < XFASTINT (m)) == (beginningp != 0))
334 m = make_number (PT);
335 return m;
336 }
337
338 DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
339 doc: /* Return the integer value of point or mark, whichever is smaller. */)
340 (void)
341 {
342 return region_limit (1);
343 }
344
345 DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
346 doc: /* Return the integer value of point or mark, whichever is larger. */)
347 (void)
348 {
349 return region_limit (0);
350 }
351
352 DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
353 doc: /* Return this buffer's mark, as a marker object.
354 Watch out! Moving this marker changes the mark position.
355 If you set the marker not to point anywhere, the buffer will have no mark. */)
356 (void)
357 {
358 return current_buffer->mark;
359 }
360
361 \f
362 /* Find all the overlays in the current buffer that touch position POS.
363 Return the number found, and store them in a vector in VEC
364 of length LEN. */
365
366 static int
367 overlays_around (int pos, Lisp_Object *vec, int len)
368 {
369 Lisp_Object overlay, start, end;
370 struct Lisp_Overlay *tail;
371 int startpos, endpos;
372 int idx = 0;
373
374 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
375 {
376 XSETMISC (overlay, tail);
377
378 end = OVERLAY_END (overlay);
379 endpos = OVERLAY_POSITION (end);
380 if (endpos < pos)
381 break;
382 start = OVERLAY_START (overlay);
383 startpos = OVERLAY_POSITION (start);
384 if (startpos <= pos)
385 {
386 if (idx < len)
387 vec[idx] = overlay;
388 /* Keep counting overlays even if we can't return them all. */
389 idx++;
390 }
391 }
392
393 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
394 {
395 XSETMISC (overlay, tail);
396
397 start = OVERLAY_START (overlay);
398 startpos = OVERLAY_POSITION (start);
399 if (pos < startpos)
400 break;
401 end = OVERLAY_END (overlay);
402 endpos = OVERLAY_POSITION (end);
403 if (pos <= endpos)
404 {
405 if (idx < len)
406 vec[idx] = overlay;
407 idx++;
408 }
409 }
410
411 return idx;
412 }
413
414 /* Return the value of property PROP, in OBJECT at POSITION.
415 It's the value of PROP that a char inserted at POSITION would get.
416 OBJECT is optional and defaults to the current buffer.
417 If OBJECT is a buffer, then overlay properties are considered as well as
418 text properties.
419 If OBJECT is a window, then that window's buffer is used, but
420 window-specific overlays are considered only if they are associated
421 with OBJECT. */
422 Lisp_Object
423 get_pos_property (Lisp_Object position, register Lisp_Object prop, Lisp_Object object)
424 {
425 CHECK_NUMBER_COERCE_MARKER (position);
426
427 if (NILP (object))
428 XSETBUFFER (object, current_buffer);
429 else if (WINDOWP (object))
430 object = XWINDOW (object)->buffer;
431
432 if (!BUFFERP (object))
433 /* pos-property only makes sense in buffers right now, since strings
434 have no overlays and no notion of insertion for which stickiness
435 could be obeyed. */
436 return Fget_text_property (position, prop, object);
437 else
438 {
439 int posn = XINT (position);
440 int noverlays;
441 Lisp_Object *overlay_vec, tem;
442 struct buffer *obuf = current_buffer;
443
444 set_buffer_temp (XBUFFER (object));
445
446 /* First try with room for 40 overlays. */
447 noverlays = 40;
448 overlay_vec = (Lisp_Object *) alloca (noverlays * sizeof (Lisp_Object));
449 noverlays = overlays_around (posn, overlay_vec, noverlays);
450
451 /* If there are more than 40,
452 make enough space for all, and try again. */
453 if (noverlays > 40)
454 {
455 overlay_vec = (Lisp_Object *) alloca (noverlays * sizeof (Lisp_Object));
456 noverlays = overlays_around (posn, overlay_vec, noverlays);
457 }
458 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
459
460 set_buffer_temp (obuf);
461
462 /* Now check the overlays in order of decreasing priority. */
463 while (--noverlays >= 0)
464 {
465 Lisp_Object ol = overlay_vec[noverlays];
466 tem = Foverlay_get (ol, prop);
467 if (!NILP (tem))
468 {
469 /* Check the overlay is indeed active at point. */
470 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
471 if ((OVERLAY_POSITION (start) == posn
472 && XMARKER (start)->insertion_type == 1)
473 || (OVERLAY_POSITION (finish) == posn
474 && XMARKER (finish)->insertion_type == 0))
475 ; /* The overlay will not cover a char inserted at point. */
476 else
477 {
478 return tem;
479 }
480 }
481 }
482
483 { /* Now check the text properties. */
484 int stickiness = text_property_stickiness (prop, position, object);
485 if (stickiness > 0)
486 return Fget_text_property (position, prop, object);
487 else if (stickiness < 0
488 && XINT (position) > BUF_BEGV (XBUFFER (object)))
489 return Fget_text_property (make_number (XINT (position) - 1),
490 prop, object);
491 else
492 return Qnil;
493 }
494 }
495 }
496
497 /* Find the field surrounding POS in *BEG and *END. If POS is nil,
498 the value of point is used instead. If BEG or END is null,
499 means don't store the beginning or end of the field.
500
501 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
502 results; they do not effect boundary behavior.
503
504 If MERGE_AT_BOUNDARY is nonzero, then if POS is at the very first
505 position of a field, then the beginning of the previous field is
506 returned instead of the beginning of POS's field (since the end of a
507 field is actually also the beginning of the next input field, this
508 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
509 true case, if two fields are separated by a field with the special
510 value `boundary', and POS lies within it, then the two separated
511 fields are considered to be adjacent, and POS between them, when
512 finding the beginning and ending of the "merged" field.
513
514 Either BEG or END may be 0, in which case the corresponding value
515 is not stored. */
516
517 static void
518 find_field (Lisp_Object pos, Lisp_Object merge_at_boundary, Lisp_Object beg_limit, int *beg, Lisp_Object end_limit, int *end)
519 {
520 /* Fields right before and after the point. */
521 Lisp_Object before_field, after_field;
522 /* 1 if POS counts as the start of a field. */
523 int at_field_start = 0;
524 /* 1 if POS counts as the end of a field. */
525 int at_field_end = 0;
526
527 if (NILP (pos))
528 XSETFASTINT (pos, PT);
529 else
530 CHECK_NUMBER_COERCE_MARKER (pos);
531
532 after_field
533 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
534 before_field
535 = (XFASTINT (pos) > BEGV
536 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
537 Qfield, Qnil, NULL)
538 /* Using nil here would be a more obvious choice, but it would
539 fail when the buffer starts with a non-sticky field. */
540 : after_field);
541
542 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
543 and POS is at beginning of a field, which can also be interpreted
544 as the end of the previous field. Note that the case where if
545 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
546 more natural one; then we avoid treating the beginning of a field
547 specially. */
548 if (NILP (merge_at_boundary))
549 {
550 Lisp_Object field = get_pos_property (pos, Qfield, Qnil);
551 if (!EQ (field, after_field))
552 at_field_end = 1;
553 if (!EQ (field, before_field))
554 at_field_start = 1;
555 if (NILP (field) && at_field_start && at_field_end)
556 /* If an inserted char would have a nil field while the surrounding
557 text is non-nil, we're probably not looking at a
558 zero-length field, but instead at a non-nil field that's
559 not intended for editing (such as comint's prompts). */
560 at_field_end = at_field_start = 0;
561 }
562
563 /* Note about special `boundary' fields:
564
565 Consider the case where the point (`.') is between the fields `x' and `y':
566
567 xxxx.yyyy
568
569 In this situation, if merge_at_boundary is true, we consider the
570 `x' and `y' fields as forming one big merged field, and so the end
571 of the field is the end of `y'.
572
573 However, if `x' and `y' are separated by a special `boundary' field
574 (a field with a `field' char-property of 'boundary), then we ignore
575 this special field when merging adjacent fields. Here's the same
576 situation, but with a `boundary' field between the `x' and `y' fields:
577
578 xxx.BBBByyyy
579
580 Here, if point is at the end of `x', the beginning of `y', or
581 anywhere in-between (within the `boundary' field), we merge all
582 three fields and consider the beginning as being the beginning of
583 the `x' field, and the end as being the end of the `y' field. */
584
585 if (beg)
586 {
587 if (at_field_start)
588 /* POS is at the edge of a field, and we should consider it as
589 the beginning of the following field. */
590 *beg = XFASTINT (pos);
591 else
592 /* Find the previous field boundary. */
593 {
594 Lisp_Object p = pos;
595 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
596 /* Skip a `boundary' field. */
597 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
598 beg_limit);
599
600 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
601 beg_limit);
602 *beg = NILP (p) ? BEGV : XFASTINT (p);
603 }
604 }
605
606 if (end)
607 {
608 if (at_field_end)
609 /* POS is at the edge of a field, and we should consider it as
610 the end of the previous field. */
611 *end = XFASTINT (pos);
612 else
613 /* Find the next field boundary. */
614 {
615 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
616 /* Skip a `boundary' field. */
617 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
618 end_limit);
619
620 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
621 end_limit);
622 *end = NILP (pos) ? ZV : XFASTINT (pos);
623 }
624 }
625 }
626
627 \f
628 DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
629 doc: /* Delete the field surrounding POS.
630 A field is a region of text with the same `field' property.
631 If POS is nil, the value of point is used for POS. */)
632 (Lisp_Object pos)
633 {
634 int beg, end;
635 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
636 if (beg != end)
637 del_range (beg, end);
638 return Qnil;
639 }
640
641 DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
642 doc: /* Return the contents of the field surrounding POS as a string.
643 A field is a region of text with the same `field' property.
644 If POS is nil, the value of point is used for POS. */)
645 (Lisp_Object pos)
646 {
647 int beg, end;
648 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
649 return make_buffer_string (beg, end, 1);
650 }
651
652 DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
653 doc: /* Return the contents of the field around POS, without text properties.
654 A field is a region of text with the same `field' property.
655 If POS is nil, the value of point is used for POS. */)
656 (Lisp_Object pos)
657 {
658 int beg, end;
659 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
660 return make_buffer_string (beg, end, 0);
661 }
662
663 DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
664 doc: /* Return the beginning of the field surrounding POS.
665 A field is a region of text with the same `field' property.
666 If POS is nil, the value of point is used for POS.
667 If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
668 field, then the beginning of the *previous* field is returned.
669 If LIMIT is non-nil, it is a buffer position; if the beginning of the field
670 is before LIMIT, then LIMIT will be returned instead. */)
671 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
672 {
673 int beg;
674 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
675 return make_number (beg);
676 }
677
678 DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
679 doc: /* Return the end of the field surrounding POS.
680 A field is a region of text with the same `field' property.
681 If POS is nil, the value of point is used for POS.
682 If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
683 then the end of the *following* field is returned.
684 If LIMIT is non-nil, it is a buffer position; if the end of the field
685 is after LIMIT, then LIMIT will be returned instead. */)
686 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
687 {
688 int end;
689 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
690 return make_number (end);
691 }
692
693 DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
694 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
695
696 A field is a region of text with the same `field' property.
697 If NEW-POS is nil, then the current point is used instead, and set to the
698 constrained position if that is different.
699
700 If OLD-POS is at the boundary of two fields, then the allowable
701 positions for NEW-POS depends on the value of the optional argument
702 ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
703 constrained to the field that has the same `field' char-property
704 as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
705 is non-nil, NEW-POS is constrained to the union of the two adjacent
706 fields. Additionally, if two fields are separated by another field with
707 the special value `boundary', then any point within this special field is
708 also considered to be `on the boundary'.
709
710 If the optional argument ONLY-IN-LINE is non-nil and constraining
711 NEW-POS would move it to a different line, NEW-POS is returned
712 unconstrained. This useful for commands that move by line, like
713 \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
714 only in the case where they can still move to the right line.
715
716 If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
717 a non-nil property of that name, then any field boundaries are ignored.
718
719 Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
720 (Lisp_Object new_pos, Lisp_Object old_pos, Lisp_Object escape_from_edge, Lisp_Object only_in_line, Lisp_Object inhibit_capture_property)
721 {
722 /* If non-zero, then the original point, before re-positioning. */
723 int orig_point = 0;
724 int fwd;
725 Lisp_Object prev_old, prev_new;
726
727 if (NILP (new_pos))
728 /* Use the current point, and afterwards, set it. */
729 {
730 orig_point = PT;
731 XSETFASTINT (new_pos, PT);
732 }
733
734 CHECK_NUMBER_COERCE_MARKER (new_pos);
735 CHECK_NUMBER_COERCE_MARKER (old_pos);
736
737 fwd = (XFASTINT (new_pos) > XFASTINT (old_pos));
738
739 prev_old = make_number (XFASTINT (old_pos) - 1);
740 prev_new = make_number (XFASTINT (new_pos) - 1);
741
742 if (NILP (Vinhibit_field_text_motion)
743 && !EQ (new_pos, old_pos)
744 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
745 || !NILP (Fget_char_property (old_pos, Qfield, Qnil))
746 /* To recognize field boundaries, we must also look at the
747 previous positions; we could use `get_pos_property'
748 instead, but in itself that would fail inside non-sticky
749 fields (like comint prompts). */
750 || (XFASTINT (new_pos) > BEGV
751 && !NILP (Fget_char_property (prev_new, Qfield, Qnil)))
752 || (XFASTINT (old_pos) > BEGV
753 && !NILP (Fget_char_property (prev_old, Qfield, Qnil))))
754 && (NILP (inhibit_capture_property)
755 /* Field boundaries are again a problem; but now we must
756 decide the case exactly, so we need to call
757 `get_pos_property' as well. */
758 || (NILP (get_pos_property (old_pos, inhibit_capture_property, Qnil))
759 && (XFASTINT (old_pos) <= BEGV
760 || NILP (Fget_char_property (old_pos, inhibit_capture_property, Qnil))
761 || NILP (Fget_char_property (prev_old, inhibit_capture_property, Qnil))))))
762 /* It is possible that NEW_POS is not within the same field as
763 OLD_POS; try to move NEW_POS so that it is. */
764 {
765 int shortage;
766 Lisp_Object field_bound;
767
768 if (fwd)
769 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
770 else
771 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
772
773 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
774 other side of NEW_POS, which would mean that NEW_POS is
775 already acceptable, and it's not necessary to constrain it
776 to FIELD_BOUND. */
777 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
778 /* NEW_POS should be constrained, but only if either
779 ONLY_IN_LINE is nil (in which case any constraint is OK),
780 or NEW_POS and FIELD_BOUND are on the same line (in which
781 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
782 && (NILP (only_in_line)
783 /* This is the ONLY_IN_LINE case, check that NEW_POS and
784 FIELD_BOUND are on the same line by seeing whether
785 there's an intervening newline or not. */
786 || (scan_buffer ('\n',
787 XFASTINT (new_pos), XFASTINT (field_bound),
788 fwd ? -1 : 1, &shortage, 1),
789 shortage != 0)))
790 /* Constrain NEW_POS to FIELD_BOUND. */
791 new_pos = field_bound;
792
793 if (orig_point && XFASTINT (new_pos) != orig_point)
794 /* The NEW_POS argument was originally nil, so automatically set PT. */
795 SET_PT (XFASTINT (new_pos));
796 }
797
798 return new_pos;
799 }
800
801 \f
802 DEFUN ("line-beginning-position",
803 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
804 doc: /* Return the character position of the first character on the current line.
805 With argument N not nil or 1, move forward N - 1 lines first.
806 If scan reaches end of buffer, return that position.
807
808 The returned position is of the first character in the logical order,
809 i.e. the one that has the smallest character position.
810
811 This function constrains the returned position to the current field
812 unless that would be on a different line than the original,
813 unconstrained result. If N is nil or 1, and a front-sticky field
814 starts at point, the scan stops as soon as it starts. To ignore field
815 boundaries bind `inhibit-field-text-motion' to t.
816
817 This function does not move point. */)
818 (Lisp_Object n)
819 {
820 int orig, orig_byte, end;
821 int count = SPECPDL_INDEX ();
822 specbind (Qinhibit_point_motion_hooks, Qt);
823
824 if (NILP (n))
825 XSETFASTINT (n, 1);
826 else
827 CHECK_NUMBER (n);
828
829 orig = PT;
830 orig_byte = PT_BYTE;
831 Fforward_line (make_number (XINT (n) - 1));
832 end = PT;
833
834 SET_PT_BOTH (orig, orig_byte);
835
836 unbind_to (count, Qnil);
837
838 /* Return END constrained to the current input field. */
839 return Fconstrain_to_field (make_number (end), make_number (orig),
840 XINT (n) != 1 ? Qt : Qnil,
841 Qt, Qnil);
842 }
843
844 DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
845 doc: /* Return the character position of the last character on the current line.
846 With argument N not nil or 1, move forward N - 1 lines first.
847 If scan reaches end of buffer, return that position.
848
849 The returned position is of the last character in the logical order,
850 i.e. the character whose buffer position is the largest one.
851
852 This function constrains the returned position to the current field
853 unless that would be on a different line than the original,
854 unconstrained result. If N is nil or 1, and a rear-sticky field ends
855 at point, the scan stops as soon as it starts. To ignore field
856 boundaries bind `inhibit-field-text-motion' to t.
857
858 This function does not move point. */)
859 (Lisp_Object n)
860 {
861 int end_pos;
862 int orig = PT;
863
864 if (NILP (n))
865 XSETFASTINT (n, 1);
866 else
867 CHECK_NUMBER (n);
868
869 end_pos = find_before_next_newline (orig, 0, XINT (n) - (XINT (n) <= 0));
870
871 /* Return END_POS constrained to the current input field. */
872 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
873 Qnil, Qt, Qnil);
874 }
875
876 \f
877 Lisp_Object
878 save_excursion_save (void)
879 {
880 int visible = (XBUFFER (XWINDOW (selected_window)->buffer)
881 == current_buffer);
882
883 return Fcons (Fpoint_marker (),
884 Fcons (Fcopy_marker (current_buffer->mark, Qnil),
885 Fcons (visible ? Qt : Qnil,
886 Fcons (current_buffer->mark_active,
887 selected_window))));
888 }
889
890 Lisp_Object
891 save_excursion_restore (Lisp_Object info)
892 {
893 Lisp_Object tem, tem1, omark, nmark;
894 struct gcpro gcpro1, gcpro2, gcpro3;
895 int visible_p;
896
897 tem = Fmarker_buffer (XCAR (info));
898 /* If buffer being returned to is now deleted, avoid error */
899 /* Otherwise could get error here while unwinding to top level
900 and crash */
901 /* In that case, Fmarker_buffer returns nil now. */
902 if (NILP (tem))
903 return Qnil;
904
905 omark = nmark = Qnil;
906 GCPRO3 (info, omark, nmark);
907
908 Fset_buffer (tem);
909
910 /* Point marker. */
911 tem = XCAR (info);
912 Fgoto_char (tem);
913 unchain_marker (XMARKER (tem));
914
915 /* Mark marker. */
916 info = XCDR (info);
917 tem = XCAR (info);
918 omark = Fmarker_position (current_buffer->mark);
919 Fset_marker (current_buffer->mark, tem, Fcurrent_buffer ());
920 nmark = Fmarker_position (tem);
921 unchain_marker (XMARKER (tem));
922
923 /* visible */
924 info = XCDR (info);
925 visible_p = !NILP (XCAR (info));
926
927 #if 0 /* We used to make the current buffer visible in the selected window
928 if that was true previously. That avoids some anomalies.
929 But it creates others, and it wasn't documented, and it is simpler
930 and cleaner never to alter the window/buffer connections. */
931 tem1 = Fcar (tem);
932 if (!NILP (tem1)
933 && current_buffer != XBUFFER (XWINDOW (selected_window)->buffer))
934 Fswitch_to_buffer (Fcurrent_buffer (), Qnil);
935 #endif /* 0 */
936
937 /* Mark active */
938 info = XCDR (info);
939 tem = XCAR (info);
940 tem1 = current_buffer->mark_active;
941 current_buffer->mark_active = tem;
942
943 if (!NILP (Vrun_hooks))
944 {
945 /* If mark is active now, and either was not active
946 or was at a different place, run the activate hook. */
947 if (! NILP (current_buffer->mark_active))
948 {
949 if (! EQ (omark, nmark))
950 call1 (Vrun_hooks, intern ("activate-mark-hook"));
951 }
952 /* If mark has ceased to be active, run deactivate hook. */
953 else if (! NILP (tem1))
954 call1 (Vrun_hooks, intern ("deactivate-mark-hook"));
955 }
956
957 /* If buffer was visible in a window, and a different window was
958 selected, and the old selected window is still showing this
959 buffer, restore point in that window. */
960 tem = XCDR (info);
961 if (visible_p
962 && !EQ (tem, selected_window)
963 && (tem1 = XWINDOW (tem)->buffer,
964 (/* Window is live... */
965 BUFFERP (tem1)
966 /* ...and it shows the current buffer. */
967 && XBUFFER (tem1) == current_buffer)))
968 Fset_window_point (tem, make_number (PT));
969
970 UNGCPRO;
971 return Qnil;
972 }
973
974 DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
975 doc: /* Save point, mark, and current buffer; execute BODY; restore those things.
976 Executes BODY just like `progn'.
977 The values of point, mark and the current buffer are restored
978 even in case of abnormal exit (throw or error).
979 The state of activation of the mark is also restored.
980
981 This construct does not save `deactivate-mark', and therefore
982 functions that change the buffer will still cause deactivation
983 of the mark at the end of the command. To prevent that, bind
984 `deactivate-mark' with `let'.
985
986 If you only want to save the current buffer but not point nor mark,
987 then just use `save-current-buffer', or even `with-current-buffer'.
988
989 usage: (save-excursion &rest BODY) */)
990 (Lisp_Object args)
991 {
992 register Lisp_Object val;
993 int count = SPECPDL_INDEX ();
994
995 record_unwind_protect (save_excursion_restore, save_excursion_save ());
996
997 val = Fprogn (args);
998 return unbind_to (count, val);
999 }
1000
1001 DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
1002 doc: /* Save the current buffer; execute BODY; restore the current buffer.
1003 Executes BODY just like `progn'.
1004 usage: (save-current-buffer &rest BODY) */)
1005 (Lisp_Object args)
1006 {
1007 Lisp_Object val;
1008 int count = SPECPDL_INDEX ();
1009
1010 record_unwind_protect (set_buffer_if_live, Fcurrent_buffer ());
1011
1012 val = Fprogn (args);
1013 return unbind_to (count, val);
1014 }
1015 \f
1016 DEFUN ("buffer-size", Fbufsize, Sbufsize, 0, 1, 0,
1017 doc: /* Return the number of characters in the current buffer.
1018 If BUFFER, return the number of characters in that buffer instead. */)
1019 (Lisp_Object buffer)
1020 {
1021 if (NILP (buffer))
1022 return make_number (Z - BEG);
1023 else
1024 {
1025 CHECK_BUFFER (buffer);
1026 return make_number (BUF_Z (XBUFFER (buffer))
1027 - BUF_BEG (XBUFFER (buffer)));
1028 }
1029 }
1030
1031 DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
1032 doc: /* Return the minimum permissible value of point in the current buffer.
1033 This is 1, unless narrowing (a buffer restriction) is in effect. */)
1034 (void)
1035 {
1036 Lisp_Object temp;
1037 XSETFASTINT (temp, BEGV);
1038 return temp;
1039 }
1040
1041 DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
1042 doc: /* Return a marker to the minimum permissible value of point in this buffer.
1043 This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
1044 (void)
1045 {
1046 return buildmark (BEGV, BEGV_BYTE);
1047 }
1048
1049 DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
1050 doc: /* Return the maximum permissible value of point in the current buffer.
1051 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1052 is in effect, in which case it is less. */)
1053 (void)
1054 {
1055 Lisp_Object temp;
1056 XSETFASTINT (temp, ZV);
1057 return temp;
1058 }
1059
1060 DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
1061 doc: /* Return a marker to the maximum permissible value of point in this buffer.
1062 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1063 is in effect, in which case it is less. */)
1064 (void)
1065 {
1066 return buildmark (ZV, ZV_BYTE);
1067 }
1068
1069 DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
1070 doc: /* Return the position of the gap, in the current buffer.
1071 See also `gap-size'. */)
1072 (void)
1073 {
1074 Lisp_Object temp;
1075 XSETFASTINT (temp, GPT);
1076 return temp;
1077 }
1078
1079 DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
1080 doc: /* Return the size of the current buffer's gap.
1081 See also `gap-position'. */)
1082 (void)
1083 {
1084 Lisp_Object temp;
1085 XSETFASTINT (temp, GAP_SIZE);
1086 return temp;
1087 }
1088
1089 DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1090 doc: /* Return the byte position for character position POSITION.
1091 If POSITION is out of range, the value is nil. */)
1092 (Lisp_Object position)
1093 {
1094 CHECK_NUMBER_COERCE_MARKER (position);
1095 if (XINT (position) < BEG || XINT (position) > Z)
1096 return Qnil;
1097 return make_number (CHAR_TO_BYTE (XINT (position)));
1098 }
1099
1100 DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1101 doc: /* Return the character position for byte position BYTEPOS.
1102 If BYTEPOS is out of range, the value is nil. */)
1103 (Lisp_Object bytepos)
1104 {
1105 CHECK_NUMBER (bytepos);
1106 if (XINT (bytepos) < BEG_BYTE || XINT (bytepos) > Z_BYTE)
1107 return Qnil;
1108 return make_number (BYTE_TO_CHAR (XINT (bytepos)));
1109 }
1110 \f
1111 DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1112 doc: /* Return the character following point, as a number.
1113 At the end of the buffer or accessible region, return 0. */)
1114 (void)
1115 {
1116 Lisp_Object temp;
1117 if (PT >= ZV)
1118 XSETFASTINT (temp, 0);
1119 else
1120 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1121 return temp;
1122 }
1123
1124 DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1125 doc: /* Return the character preceding point, as a number.
1126 At the beginning of the buffer or accessible region, return 0. */)
1127 (void)
1128 {
1129 Lisp_Object temp;
1130 if (PT <= BEGV)
1131 XSETFASTINT (temp, 0);
1132 else if (!NILP (current_buffer->enable_multibyte_characters))
1133 {
1134 int pos = PT_BYTE;
1135 DEC_POS (pos);
1136 XSETFASTINT (temp, FETCH_CHAR (pos));
1137 }
1138 else
1139 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1140 return temp;
1141 }
1142
1143 DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1144 doc: /* Return t if point is at the beginning of the buffer.
1145 If the buffer is narrowed, this means the beginning of the narrowed part. */)
1146 (void)
1147 {
1148 if (PT == BEGV)
1149 return Qt;
1150 return Qnil;
1151 }
1152
1153 DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1154 doc: /* Return t if point is at the end of the buffer.
1155 If the buffer is narrowed, this means the end of the narrowed part. */)
1156 (void)
1157 {
1158 if (PT == ZV)
1159 return Qt;
1160 return Qnil;
1161 }
1162
1163 DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1164 doc: /* Return t if point is at the beginning of a line. */)
1165 (void)
1166 {
1167 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1168 return Qt;
1169 return Qnil;
1170 }
1171
1172 DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1173 doc: /* Return t if point is at the end of a line.
1174 `End of a line' includes point being at the end of the buffer. */)
1175 (void)
1176 {
1177 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1178 return Qt;
1179 return Qnil;
1180 }
1181
1182 DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1183 doc: /* Return character in current buffer at position POS.
1184 POS is an integer or a marker and defaults to point.
1185 If POS is out of range, the value is nil. */)
1186 (Lisp_Object pos)
1187 {
1188 register int pos_byte;
1189
1190 if (NILP (pos))
1191 {
1192 pos_byte = PT_BYTE;
1193 XSETFASTINT (pos, PT);
1194 }
1195
1196 if (MARKERP (pos))
1197 {
1198 pos_byte = marker_byte_position (pos);
1199 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1200 return Qnil;
1201 }
1202 else
1203 {
1204 CHECK_NUMBER_COERCE_MARKER (pos);
1205 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1206 return Qnil;
1207
1208 pos_byte = CHAR_TO_BYTE (XINT (pos));
1209 }
1210
1211 return make_number (FETCH_CHAR (pos_byte));
1212 }
1213
1214 DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1215 doc: /* Return character in current buffer preceding position POS.
1216 POS is an integer or a marker and defaults to point.
1217 If POS is out of range, the value is nil. */)
1218 (Lisp_Object pos)
1219 {
1220 register Lisp_Object val;
1221 register int pos_byte;
1222
1223 if (NILP (pos))
1224 {
1225 pos_byte = PT_BYTE;
1226 XSETFASTINT (pos, PT);
1227 }
1228
1229 if (MARKERP (pos))
1230 {
1231 pos_byte = marker_byte_position (pos);
1232
1233 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1234 return Qnil;
1235 }
1236 else
1237 {
1238 CHECK_NUMBER_COERCE_MARKER (pos);
1239
1240 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1241 return Qnil;
1242
1243 pos_byte = CHAR_TO_BYTE (XINT (pos));
1244 }
1245
1246 if (!NILP (current_buffer->enable_multibyte_characters))
1247 {
1248 DEC_POS (pos_byte);
1249 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1250 }
1251 else
1252 {
1253 pos_byte--;
1254 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1255 }
1256 return val;
1257 }
1258 \f
1259 DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1260 doc: /* Return the name under which the user logged in, as a string.
1261 This is based on the effective uid, not the real uid.
1262 Also, if the environment variables LOGNAME or USER are set,
1263 that determines the value of this function.
1264
1265 If optional argument UID is an integer or a float, return the login name
1266 of the user with that uid, or nil if there is no such user. */)
1267 (Lisp_Object uid)
1268 {
1269 struct passwd *pw;
1270 uid_t id;
1271
1272 /* Set up the user name info if we didn't do it before.
1273 (That can happen if Emacs is dumpable
1274 but you decide to run `temacs -l loadup' and not dump. */
1275 if (INTEGERP (Vuser_login_name))
1276 init_editfns ();
1277
1278 if (NILP (uid))
1279 return Vuser_login_name;
1280
1281 id = (uid_t)XFLOATINT (uid);
1282 BLOCK_INPUT;
1283 pw = (struct passwd *) getpwuid (id);
1284 UNBLOCK_INPUT;
1285 return (pw ? build_string (pw->pw_name) : Qnil);
1286 }
1287
1288 DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1289 0, 0, 0,
1290 doc: /* Return the name of the user's real uid, as a string.
1291 This ignores the environment variables LOGNAME and USER, so it differs from
1292 `user-login-name' when running under `su'. */)
1293 (void)
1294 {
1295 /* Set up the user name info if we didn't do it before.
1296 (That can happen if Emacs is dumpable
1297 but you decide to run `temacs -l loadup' and not dump. */
1298 if (INTEGERP (Vuser_login_name))
1299 init_editfns ();
1300 return Vuser_real_login_name;
1301 }
1302
1303 DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1304 doc: /* Return the effective uid of Emacs.
1305 Value is an integer or a float, depending on the value. */)
1306 (void)
1307 {
1308 /* Assignment to EMACS_INT stops GCC whining about limited range of
1309 data type. */
1310 EMACS_INT euid = geteuid ();
1311
1312 /* Make sure we don't produce a negative UID due to signed integer
1313 overflow. */
1314 if (euid < 0)
1315 return make_float ((double)geteuid ());
1316 return make_fixnum_or_float (euid);
1317 }
1318
1319 DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1320 doc: /* Return the real uid of Emacs.
1321 Value is an integer or a float, depending on the value. */)
1322 (void)
1323 {
1324 /* Assignment to EMACS_INT stops GCC whining about limited range of
1325 data type. */
1326 EMACS_INT uid = getuid ();
1327
1328 /* Make sure we don't produce a negative UID due to signed integer
1329 overflow. */
1330 if (uid < 0)
1331 return make_float ((double)getuid ());
1332 return make_fixnum_or_float (uid);
1333 }
1334
1335 DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1336 doc: /* Return the full name of the user logged in, as a string.
1337 If the full name corresponding to Emacs's userid is not known,
1338 return "unknown".
1339
1340 If optional argument UID is an integer or float, return the full name
1341 of the user with that uid, or nil if there is no such user.
1342 If UID is a string, return the full name of the user with that login
1343 name, or nil if there is no such user. */)
1344 (Lisp_Object uid)
1345 {
1346 struct passwd *pw;
1347 register unsigned char *p, *q;
1348 Lisp_Object full;
1349
1350 if (NILP (uid))
1351 return Vuser_full_name;
1352 else if (NUMBERP (uid))
1353 {
1354 BLOCK_INPUT;
1355 pw = (struct passwd *) getpwuid ((uid_t) XFLOATINT (uid));
1356 UNBLOCK_INPUT;
1357 }
1358 else if (STRINGP (uid))
1359 {
1360 BLOCK_INPUT;
1361 pw = (struct passwd *) getpwnam (SDATA (uid));
1362 UNBLOCK_INPUT;
1363 }
1364 else
1365 error ("Invalid UID specification");
1366
1367 if (!pw)
1368 return Qnil;
1369
1370 p = (unsigned char *) USER_FULL_NAME;
1371 /* Chop off everything after the first comma. */
1372 q = (unsigned char *) strchr (p, ',');
1373 full = make_string (p, q ? q - p : strlen (p));
1374
1375 #ifdef AMPERSAND_FULL_NAME
1376 p = SDATA (full);
1377 q = (unsigned char *) strchr (p, '&');
1378 /* Substitute the login name for the &, upcasing the first character. */
1379 if (q)
1380 {
1381 register unsigned char *r;
1382 Lisp_Object login;
1383
1384 login = Fuser_login_name (make_number (pw->pw_uid));
1385 r = (unsigned char *) alloca (strlen (p) + SCHARS (login) + 1);
1386 memcpy (r, p, q - p);
1387 r[q - p] = 0;
1388 strcat (r, SDATA (login));
1389 r[q - p] = UPCASE (r[q - p]);
1390 strcat (r, q + 1);
1391 full = build_string (r);
1392 }
1393 #endif /* AMPERSAND_FULL_NAME */
1394
1395 return full;
1396 }
1397
1398 DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1399 doc: /* Return the host name of the machine you are running on, as a string. */)
1400 (void)
1401 {
1402 return Vsystem_name;
1403 }
1404
1405 /* For the benefit of callers who don't want to include lisp.h */
1406
1407 const char *
1408 get_system_name (void)
1409 {
1410 if (STRINGP (Vsystem_name))
1411 return (const char *) SDATA (Vsystem_name);
1412 else
1413 return "";
1414 }
1415
1416 const char *
1417 get_operating_system_release (void)
1418 {
1419 if (STRINGP (Voperating_system_release))
1420 return (char *) SDATA (Voperating_system_release);
1421 else
1422 return "";
1423 }
1424
1425 DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1426 doc: /* Return the process ID of Emacs, as an integer. */)
1427 (void)
1428 {
1429 return make_number (getpid ());
1430 }
1431
1432 DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1433 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1434 The time is returned as a list of three integers. The first has the
1435 most significant 16 bits of the seconds, while the second has the
1436 least significant 16 bits. The third integer gives the microsecond
1437 count.
1438
1439 The microsecond count is zero on systems that do not provide
1440 resolution finer than a second. */)
1441 (void)
1442 {
1443 EMACS_TIME t;
1444
1445 EMACS_GET_TIME (t);
1446 return list3 (make_number ((EMACS_SECS (t) >> 16) & 0xffff),
1447 make_number ((EMACS_SECS (t) >> 0) & 0xffff),
1448 make_number (EMACS_USECS (t)));
1449 }
1450
1451 DEFUN ("get-internal-run-time", Fget_internal_run_time, Sget_internal_run_time,
1452 0, 0, 0,
1453 doc: /* Return the current run time used by Emacs.
1454 The time is returned as a list of three integers. The first has the
1455 most significant 16 bits of the seconds, while the second has the
1456 least significant 16 bits. The third integer gives the microsecond
1457 count.
1458
1459 On systems that can't determine the run time, `get-internal-run-time'
1460 does the same thing as `current-time'. The microsecond count is zero
1461 on systems that do not provide resolution finer than a second. */)
1462 (void)
1463 {
1464 #ifdef HAVE_GETRUSAGE
1465 struct rusage usage;
1466 int secs, usecs;
1467
1468 if (getrusage (RUSAGE_SELF, &usage) < 0)
1469 /* This shouldn't happen. What action is appropriate? */
1470 xsignal0 (Qerror);
1471
1472 /* Sum up user time and system time. */
1473 secs = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
1474 usecs = usage.ru_utime.tv_usec + usage.ru_stime.tv_usec;
1475 if (usecs >= 1000000)
1476 {
1477 usecs -= 1000000;
1478 secs++;
1479 }
1480
1481 return list3 (make_number ((secs >> 16) & 0xffff),
1482 make_number ((secs >> 0) & 0xffff),
1483 make_number (usecs));
1484 #else /* ! HAVE_GETRUSAGE */
1485 #ifdef WINDOWSNT
1486 return w32_get_internal_run_time ();
1487 #else /* ! WINDOWSNT */
1488 return Fcurrent_time ();
1489 #endif /* WINDOWSNT */
1490 #endif /* HAVE_GETRUSAGE */
1491 }
1492 \f
1493
1494 int
1495 lisp_time_argument (Lisp_Object specified_time, time_t *result, int *usec)
1496 {
1497 if (NILP (specified_time))
1498 {
1499 if (usec)
1500 {
1501 EMACS_TIME t;
1502
1503 EMACS_GET_TIME (t);
1504 *usec = EMACS_USECS (t);
1505 *result = EMACS_SECS (t);
1506 return 1;
1507 }
1508 else
1509 return time (result) != -1;
1510 }
1511 else
1512 {
1513 Lisp_Object high, low;
1514 high = Fcar (specified_time);
1515 CHECK_NUMBER (high);
1516 low = Fcdr (specified_time);
1517 if (CONSP (low))
1518 {
1519 if (usec)
1520 {
1521 Lisp_Object usec_l = Fcdr (low);
1522 if (CONSP (usec_l))
1523 usec_l = Fcar (usec_l);
1524 if (NILP (usec_l))
1525 *usec = 0;
1526 else
1527 {
1528 CHECK_NUMBER (usec_l);
1529 *usec = XINT (usec_l);
1530 }
1531 }
1532 low = Fcar (low);
1533 }
1534 else if (usec)
1535 *usec = 0;
1536 CHECK_NUMBER (low);
1537 *result = (XINT (high) << 16) + (XINT (low) & 0xffff);
1538 return *result >> 16 == XINT (high);
1539 }
1540 }
1541
1542 DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1543 doc: /* Return the current time, as a float number of seconds since the epoch.
1544 If SPECIFIED-TIME is given, it is the time to convert to float
1545 instead of the current time. The argument should have the form
1546 (HIGH LOW) or (HIGH LOW USEC). Thus, you can use times obtained from
1547 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
1548 have the form (HIGH . LOW), but this is considered obsolete.
1549
1550 WARNING: Since the result is floating point, it may not be exact.
1551 If precise time stamps are required, use either `current-time',
1552 or (if you need time as a string) `format-time-string'. */)
1553 (Lisp_Object specified_time)
1554 {
1555 time_t sec;
1556 int usec;
1557
1558 if (! lisp_time_argument (specified_time, &sec, &usec))
1559 error ("Invalid time specification");
1560
1561 return make_float ((sec * 1e6 + usec) / 1e6);
1562 }
1563
1564 /* Write information into buffer S of size MAXSIZE, according to the
1565 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1566 Default to Universal Time if UT is nonzero, local time otherwise.
1567 Return the number of bytes written, not including the terminating
1568 '\0'. If S is NULL, nothing will be written anywhere; so to
1569 determine how many bytes would be written, use NULL for S and
1570 ((size_t) -1) for MAXSIZE.
1571
1572 This function behaves like emacs_strftimeu, except it allows null
1573 bytes in FORMAT. */
1574 static size_t
1575 emacs_memftimeu (char *s, size_t maxsize, const char *format, size_t format_len, const struct tm *tp, int ut)
1576 {
1577 size_t total = 0;
1578
1579 /* Loop through all the null-terminated strings in the format
1580 argument. Normally there's just one null-terminated string, but
1581 there can be arbitrarily many, concatenated together, if the
1582 format contains '\0' bytes. emacs_strftimeu stops at the first
1583 '\0' byte so we must invoke it separately for each such string. */
1584 for (;;)
1585 {
1586 size_t len;
1587 size_t result;
1588
1589 if (s)
1590 s[0] = '\1';
1591
1592 result = emacs_strftimeu (s, maxsize, format, tp, ut);
1593
1594 if (s)
1595 {
1596 if (result == 0 && s[0] != '\0')
1597 return 0;
1598 s += result + 1;
1599 }
1600
1601 maxsize -= result + 1;
1602 total += result;
1603 len = strlen (format);
1604 if (len == format_len)
1605 return total;
1606 total++;
1607 format += len + 1;
1608 format_len -= len + 1;
1609 }
1610 }
1611
1612 DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
1613 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
1614 TIME is specified as (HIGH LOW . IGNORED), as returned by
1615 `current-time' or `file-attributes'. The obsolete form (HIGH . LOW)
1616 is also still accepted.
1617 The third, optional, argument UNIVERSAL, if non-nil, means describe TIME
1618 as Universal Time; nil means describe TIME in the local time zone.
1619 The value is a copy of FORMAT-STRING, but with certain constructs replaced
1620 by text that describes the specified date and time in TIME:
1621
1622 %Y is the year, %y within the century, %C the century.
1623 %G is the year corresponding to the ISO week, %g within the century.
1624 %m is the numeric month.
1625 %b and %h are the locale's abbreviated month name, %B the full name.
1626 %d is the day of the month, zero-padded, %e is blank-padded.
1627 %u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
1628 %a is the locale's abbreviated name of the day of week, %A the full name.
1629 %U is the week number starting on Sunday, %W starting on Monday,
1630 %V according to ISO 8601.
1631 %j is the day of the year.
1632
1633 %H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
1634 only blank-padded, %l is like %I blank-padded.
1635 %p is the locale's equivalent of either AM or PM.
1636 %M is the minute.
1637 %S is the second.
1638 %Z is the time zone name, %z is the numeric form.
1639 %s is the number of seconds since 1970-01-01 00:00:00 +0000.
1640
1641 %c is the locale's date and time format.
1642 %x is the locale's "preferred" date format.
1643 %D is like "%m/%d/%y".
1644
1645 %R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
1646 %X is the locale's "preferred" time format.
1647
1648 Finally, %n is a newline, %t is a tab, %% is a literal %.
1649
1650 Certain flags and modifiers are available with some format controls.
1651 The flags are `_', `-', `^' and `#'. For certain characters X,
1652 %_X is like %X, but padded with blanks; %-X is like %X,
1653 but without padding. %^X is like %X, but with all textual
1654 characters up-cased; %#X is like %X, but with letter-case of
1655 all textual characters reversed.
1656 %NX (where N stands for an integer) is like %X,
1657 but takes up at least N (a number) positions.
1658 The modifiers are `E' and `O'. For certain characters X,
1659 %EX is a locale's alternative version of %X;
1660 %OX is like %X, but uses the locale's number symbols.
1661
1662 For example, to produce full ISO 8601 format, use "%Y-%m-%dT%T%z". */)
1663 (Lisp_Object format_string, Lisp_Object time, Lisp_Object universal)
1664 {
1665 time_t value;
1666 int size;
1667 struct tm *tm;
1668 int ut = ! NILP (universal);
1669
1670 CHECK_STRING (format_string);
1671
1672 if (! lisp_time_argument (time, &value, NULL))
1673 error ("Invalid time specification");
1674
1675 format_string = code_convert_string_norecord (format_string,
1676 Vlocale_coding_system, 1);
1677
1678 /* This is probably enough. */
1679 size = SBYTES (format_string) * 6 + 50;
1680
1681 BLOCK_INPUT;
1682 tm = ut ? gmtime (&value) : localtime (&value);
1683 UNBLOCK_INPUT;
1684 if (! tm)
1685 error ("Specified time is not representable");
1686
1687 synchronize_system_time_locale ();
1688
1689 while (1)
1690 {
1691 char *buf = (char *) alloca (size + 1);
1692 int result;
1693
1694 buf[0] = '\1';
1695 BLOCK_INPUT;
1696 result = emacs_memftimeu (buf, size, SDATA (format_string),
1697 SBYTES (format_string),
1698 tm, ut);
1699 UNBLOCK_INPUT;
1700 if ((result > 0 && result < size) || (result == 0 && buf[0] == '\0'))
1701 return code_convert_string_norecord (make_unibyte_string (buf, result),
1702 Vlocale_coding_system, 0);
1703
1704 /* If buffer was too small, make it bigger and try again. */
1705 BLOCK_INPUT;
1706 result = emacs_memftimeu (NULL, (size_t) -1,
1707 SDATA (format_string),
1708 SBYTES (format_string),
1709 tm, ut);
1710 UNBLOCK_INPUT;
1711 size = result + 1;
1712 }
1713 }
1714
1715 DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 1, 0,
1716 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST ZONE).
1717 The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED),
1718 as from `current-time' and `file-attributes', or nil to use the
1719 current time. The obsolete form (HIGH . LOW) is also still accepted.
1720 The list has the following nine members: SEC is an integer between 0
1721 and 60; SEC is 60 for a leap second, which only some operating systems
1722 support. MINUTE is an integer between 0 and 59. HOUR is an integer
1723 between 0 and 23. DAY is an integer between 1 and 31. MONTH is an
1724 integer between 1 and 12. YEAR is an integer indicating the
1725 four-digit year. DOW is the day of week, an integer between 0 and 6,
1726 where 0 is Sunday. DST is t if daylight saving time is in effect,
1727 otherwise nil. ZONE is an integer indicating the number of seconds
1728 east of Greenwich. (Note that Common Lisp has different meanings for
1729 DOW and ZONE.) */)
1730 (Lisp_Object specified_time)
1731 {
1732 time_t time_spec;
1733 struct tm save_tm;
1734 struct tm *decoded_time;
1735 Lisp_Object list_args[9];
1736
1737 if (! lisp_time_argument (specified_time, &time_spec, NULL))
1738 error ("Invalid time specification");
1739
1740 BLOCK_INPUT;
1741 decoded_time = localtime (&time_spec);
1742 UNBLOCK_INPUT;
1743 if (! decoded_time)
1744 error ("Specified time is not representable");
1745 XSETFASTINT (list_args[0], decoded_time->tm_sec);
1746 XSETFASTINT (list_args[1], decoded_time->tm_min);
1747 XSETFASTINT (list_args[2], decoded_time->tm_hour);
1748 XSETFASTINT (list_args[3], decoded_time->tm_mday);
1749 XSETFASTINT (list_args[4], decoded_time->tm_mon + 1);
1750 /* On 64-bit machines an int is narrower than EMACS_INT, thus the
1751 cast below avoids overflow in int arithmetics. */
1752 XSETINT (list_args[5], TM_YEAR_BASE + (EMACS_INT) decoded_time->tm_year);
1753 XSETFASTINT (list_args[6], decoded_time->tm_wday);
1754 list_args[7] = (decoded_time->tm_isdst)? Qt : Qnil;
1755
1756 /* Make a copy, in case gmtime modifies the struct. */
1757 save_tm = *decoded_time;
1758 BLOCK_INPUT;
1759 decoded_time = gmtime (&time_spec);
1760 UNBLOCK_INPUT;
1761 if (decoded_time == 0)
1762 list_args[8] = Qnil;
1763 else
1764 XSETINT (list_args[8], tm_diff (&save_tm, decoded_time));
1765 return Flist (9, list_args);
1766 }
1767
1768 DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
1769 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
1770 This is the reverse operation of `decode-time', which see.
1771 ZONE defaults to the current time zone rule. This can
1772 be a string or t (as from `set-time-zone-rule'), or it can be a list
1773 \(as from `current-time-zone') or an integer (as from `decode-time')
1774 applied without consideration for daylight saving time.
1775
1776 You can pass more than 7 arguments; then the first six arguments
1777 are used as SECOND through YEAR, and the *last* argument is used as ZONE.
1778 The intervening arguments are ignored.
1779 This feature lets (apply 'encode-time (decode-time ...)) work.
1780
1781 Out-of-range values for SECOND, MINUTE, HOUR, DAY, or MONTH are allowed;
1782 for example, a DAY of 0 means the day preceding the given month.
1783 Year numbers less than 100 are treated just like other year numbers.
1784 If you want them to stand for years in this century, you must do that yourself.
1785
1786 Years before 1970 are not guaranteed to work. On some systems,
1787 year values as low as 1901 do work.
1788
1789 usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
1790 (int nargs, register Lisp_Object *args)
1791 {
1792 time_t time;
1793 struct tm tm;
1794 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
1795
1796 CHECK_NUMBER (args[0]); /* second */
1797 CHECK_NUMBER (args[1]); /* minute */
1798 CHECK_NUMBER (args[2]); /* hour */
1799 CHECK_NUMBER (args[3]); /* day */
1800 CHECK_NUMBER (args[4]); /* month */
1801 CHECK_NUMBER (args[5]); /* year */
1802
1803 tm.tm_sec = XINT (args[0]);
1804 tm.tm_min = XINT (args[1]);
1805 tm.tm_hour = XINT (args[2]);
1806 tm.tm_mday = XINT (args[3]);
1807 tm.tm_mon = XINT (args[4]) - 1;
1808 tm.tm_year = XINT (args[5]) - TM_YEAR_BASE;
1809 tm.tm_isdst = -1;
1810
1811 if (CONSP (zone))
1812 zone = Fcar (zone);
1813 if (NILP (zone))
1814 {
1815 BLOCK_INPUT;
1816 time = mktime (&tm);
1817 UNBLOCK_INPUT;
1818 }
1819 else
1820 {
1821 char tzbuf[100];
1822 const char *tzstring;
1823 char **oldenv = environ, **newenv;
1824
1825 if (EQ (zone, Qt))
1826 tzstring = "UTC0";
1827 else if (STRINGP (zone))
1828 tzstring = (char *) SDATA (zone);
1829 else if (INTEGERP (zone))
1830 {
1831 int abszone = eabs (XINT (zone));
1832 sprintf (tzbuf, "XXX%s%d:%02d:%02d", "-" + (XINT (zone) < 0),
1833 abszone / (60*60), (abszone/60) % 60, abszone % 60);
1834 tzstring = tzbuf;
1835 }
1836 else
1837 error ("Invalid time zone specification");
1838
1839 /* Set TZ before calling mktime; merely adjusting mktime's returned
1840 value doesn't suffice, since that would mishandle leap seconds. */
1841 set_time_zone_rule (tzstring);
1842
1843 BLOCK_INPUT;
1844 time = mktime (&tm);
1845 UNBLOCK_INPUT;
1846
1847 /* Restore TZ to previous value. */
1848 newenv = environ;
1849 environ = oldenv;
1850 xfree (newenv);
1851 #ifdef LOCALTIME_CACHE
1852 tzset ();
1853 #endif
1854 }
1855
1856 if (time == (time_t) -1)
1857 error ("Specified time is not representable");
1858
1859 return make_time (time);
1860 }
1861
1862 DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string, 0, 1, 0,
1863 doc: /* Return the current local time, as a human-readable string.
1864 Programs can use this function to decode a time,
1865 since the number of columns in each field is fixed
1866 if the year is in the range 1000-9999.
1867 The format is `Sun Sep 16 01:03:52 1973'.
1868 However, see also the functions `decode-time' and `format-time-string'
1869 which provide a much more powerful and general facility.
1870
1871 If SPECIFIED-TIME is given, it is a time to format instead of the
1872 current time. The argument should have the form (HIGH LOW . IGNORED).
1873 Thus, you can use times obtained from `current-time' and from
1874 `file-attributes'. SPECIFIED-TIME can also have the form (HIGH . LOW),
1875 but this is considered obsolete. */)
1876 (Lisp_Object specified_time)
1877 {
1878 time_t value;
1879 struct tm *tm;
1880 register char *tem;
1881
1882 if (! lisp_time_argument (specified_time, &value, NULL))
1883 error ("Invalid time specification");
1884
1885 /* Convert to a string, checking for out-of-range time stamps.
1886 Don't use 'ctime', as that might dump core if VALUE is out of
1887 range. */
1888 BLOCK_INPUT;
1889 tm = localtime (&value);
1890 UNBLOCK_INPUT;
1891 if (! (tm && TM_YEAR_IN_ASCTIME_RANGE (tm->tm_year) && (tem = asctime (tm))))
1892 error ("Specified time is not representable");
1893
1894 /* Remove the trailing newline. */
1895 tem[strlen (tem) - 1] = '\0';
1896
1897 return build_string (tem);
1898 }
1899
1900 /* Yield A - B, measured in seconds.
1901 This function is copied from the GNU C Library. */
1902 static int
1903 tm_diff (struct tm *a, struct tm *b)
1904 {
1905 /* Compute intervening leap days correctly even if year is negative.
1906 Take care to avoid int overflow in leap day calculations,
1907 but it's OK to assume that A and B are close to each other. */
1908 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
1909 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
1910 int a100 = a4 / 25 - (a4 % 25 < 0);
1911 int b100 = b4 / 25 - (b4 % 25 < 0);
1912 int a400 = a100 >> 2;
1913 int b400 = b100 >> 2;
1914 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
1915 int years = a->tm_year - b->tm_year;
1916 int days = (365 * years + intervening_leap_days
1917 + (a->tm_yday - b->tm_yday));
1918 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
1919 + (a->tm_min - b->tm_min))
1920 + (a->tm_sec - b->tm_sec));
1921 }
1922
1923 DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 1, 0,
1924 doc: /* Return the offset and name for the local time zone.
1925 This returns a list of the form (OFFSET NAME).
1926 OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
1927 A negative value means west of Greenwich.
1928 NAME is a string giving the name of the time zone.
1929 If SPECIFIED-TIME is given, the time zone offset is determined from it
1930 instead of using the current time. The argument should have the form
1931 (HIGH LOW . IGNORED). Thus, you can use times obtained from
1932 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
1933 have the form (HIGH . LOW), but this is considered obsolete.
1934
1935 Some operating systems cannot provide all this information to Emacs;
1936 in this case, `current-time-zone' returns a list containing nil for
1937 the data it can't find. */)
1938 (Lisp_Object specified_time)
1939 {
1940 time_t value;
1941 struct tm *t;
1942 struct tm gmt;
1943
1944 if (!lisp_time_argument (specified_time, &value, NULL))
1945 t = NULL;
1946 else
1947 {
1948 BLOCK_INPUT;
1949 t = gmtime (&value);
1950 if (t)
1951 {
1952 gmt = *t;
1953 t = localtime (&value);
1954 }
1955 UNBLOCK_INPUT;
1956 }
1957
1958 if (t)
1959 {
1960 int offset = tm_diff (t, &gmt);
1961 char *s = 0;
1962 char buf[6];
1963
1964 #ifdef HAVE_TM_ZONE
1965 if (t->tm_zone)
1966 s = (char *)t->tm_zone;
1967 #else /* not HAVE_TM_ZONE */
1968 #ifdef HAVE_TZNAME
1969 if (t->tm_isdst == 0 || t->tm_isdst == 1)
1970 s = tzname[t->tm_isdst];
1971 #endif
1972 #endif /* not HAVE_TM_ZONE */
1973
1974 if (!s)
1975 {
1976 /* No local time zone name is available; use "+-NNNN" instead. */
1977 int am = (offset < 0 ? -offset : offset) / 60;
1978 sprintf (buf, "%c%02d%02d", (offset < 0 ? '-' : '+'), am/60, am%60);
1979 s = buf;
1980 }
1981
1982 return Fcons (make_number (offset), Fcons (build_string (s), Qnil));
1983 }
1984 else
1985 return Fmake_list (make_number (2), Qnil);
1986 }
1987
1988 /* This holds the value of `environ' produced by the previous
1989 call to Fset_time_zone_rule, or 0 if Fset_time_zone_rule
1990 has never been called. */
1991 static char **environbuf;
1992
1993 /* This holds the startup value of the TZ environment variable so it
1994 can be restored if the user calls set-time-zone-rule with a nil
1995 argument. */
1996 static char *initial_tz;
1997
1998 DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
1999 doc: /* Set the local time zone using TZ, a string specifying a time zone rule.
2000 If TZ is nil, use implementation-defined default time zone information.
2001 If TZ is t, use Universal Time. */)
2002 (Lisp_Object tz)
2003 {
2004 const char *tzstring;
2005
2006 /* When called for the first time, save the original TZ. */
2007 if (!environbuf)
2008 initial_tz = (char *) getenv ("TZ");
2009
2010 if (NILP (tz))
2011 tzstring = initial_tz;
2012 else if (EQ (tz, Qt))
2013 tzstring = "UTC0";
2014 else
2015 {
2016 CHECK_STRING (tz);
2017 tzstring = (char *) SDATA (tz);
2018 }
2019
2020 set_time_zone_rule (tzstring);
2021 free (environbuf);
2022 environbuf = environ;
2023
2024 return Qnil;
2025 }
2026
2027 #ifdef LOCALTIME_CACHE
2028
2029 /* These two values are known to load tz files in buggy implementations,
2030 i.e. Solaris 1 executables running under either Solaris 1 or Solaris 2.
2031 Their values shouldn't matter in non-buggy implementations.
2032 We don't use string literals for these strings,
2033 since if a string in the environment is in readonly
2034 storage, it runs afoul of bugs in SVR4 and Solaris 2.3.
2035 See Sun bugs 1113095 and 1114114, ``Timezone routines
2036 improperly modify environment''. */
2037
2038 static char set_time_zone_rule_tz1[] = "TZ=GMT+0";
2039 static char set_time_zone_rule_tz2[] = "TZ=GMT+1";
2040
2041 #endif
2042
2043 /* Set the local time zone rule to TZSTRING.
2044 This allocates memory into `environ', which it is the caller's
2045 responsibility to free. */
2046
2047 void
2048 set_time_zone_rule (const char *tzstring)
2049 {
2050 int envptrs;
2051 char **from, **to, **newenv;
2052
2053 /* Make the ENVIRON vector longer with room for TZSTRING. */
2054 for (from = environ; *from; from++)
2055 continue;
2056 envptrs = from - environ + 2;
2057 newenv = to = (char **) xmalloc (envptrs * sizeof (char *)
2058 + (tzstring ? strlen (tzstring) + 4 : 0));
2059
2060 /* Add TZSTRING to the end of environ, as a value for TZ. */
2061 if (tzstring)
2062 {
2063 char *t = (char *) (to + envptrs);
2064 strcpy (t, "TZ=");
2065 strcat (t, tzstring);
2066 *to++ = t;
2067 }
2068
2069 /* Copy the old environ vector elements into NEWENV,
2070 but don't copy the TZ variable.
2071 So we have only one definition of TZ, which came from TZSTRING. */
2072 for (from = environ; *from; from++)
2073 if (strncmp (*from, "TZ=", 3) != 0)
2074 *to++ = *from;
2075 *to = 0;
2076
2077 environ = newenv;
2078
2079 /* If we do have a TZSTRING, NEWENV points to the vector slot where
2080 the TZ variable is stored. If we do not have a TZSTRING,
2081 TO points to the vector slot which has the terminating null. */
2082
2083 #ifdef LOCALTIME_CACHE
2084 {
2085 /* In SunOS 4.1.3_U1 and 4.1.4, if TZ has a value like
2086 "US/Pacific" that loads a tz file, then changes to a value like
2087 "XXX0" that does not load a tz file, and then changes back to
2088 its original value, the last change is (incorrectly) ignored.
2089 Also, if TZ changes twice in succession to values that do
2090 not load a tz file, tzset can dump core (see Sun bug#1225179).
2091 The following code works around these bugs. */
2092
2093 if (tzstring)
2094 {
2095 /* Temporarily set TZ to a value that loads a tz file
2096 and that differs from tzstring. */
2097 char *tz = *newenv;
2098 *newenv = (strcmp (tzstring, set_time_zone_rule_tz1 + 3) == 0
2099 ? set_time_zone_rule_tz2 : set_time_zone_rule_tz1);
2100 tzset ();
2101 *newenv = tz;
2102 }
2103 else
2104 {
2105 /* The implied tzstring is unknown, so temporarily set TZ to
2106 two different values that each load a tz file. */
2107 *to = set_time_zone_rule_tz1;
2108 to[1] = 0;
2109 tzset ();
2110 *to = set_time_zone_rule_tz2;
2111 tzset ();
2112 *to = 0;
2113 }
2114
2115 /* Now TZ has the desired value, and tzset can be invoked safely. */
2116 }
2117
2118 tzset ();
2119 #endif
2120 }
2121 \f
2122 /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
2123 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
2124 type of object is Lisp_String). INHERIT is passed to
2125 INSERT_FROM_STRING_FUNC as the last argument. */
2126
2127 static void
2128 general_insert_function (void (*insert_func)
2129 (const unsigned char *, EMACS_INT),
2130 void (*insert_from_string_func)
2131 (Lisp_Object, EMACS_INT, EMACS_INT,
2132 EMACS_INT, EMACS_INT, int),
2133 int inherit, int nargs, Lisp_Object *args)
2134 {
2135 register int argnum;
2136 register Lisp_Object val;
2137
2138 for (argnum = 0; argnum < nargs; argnum++)
2139 {
2140 val = args[argnum];
2141 if (CHARACTERP (val))
2142 {
2143 unsigned char str[MAX_MULTIBYTE_LENGTH];
2144 int len;
2145
2146 if (!NILP (current_buffer->enable_multibyte_characters))
2147 len = CHAR_STRING (XFASTINT (val), str);
2148 else
2149 {
2150 str[0] = (ASCII_CHAR_P (XINT (val))
2151 ? XINT (val)
2152 : multibyte_char_to_unibyte (XINT (val), Qnil));
2153 len = 1;
2154 }
2155 (*insert_func) (str, len);
2156 }
2157 else if (STRINGP (val))
2158 {
2159 (*insert_from_string_func) (val, 0, 0,
2160 SCHARS (val),
2161 SBYTES (val),
2162 inherit);
2163 }
2164 else
2165 wrong_type_argument (Qchar_or_string_p, val);
2166 }
2167 }
2168
2169 void
2170 insert1 (Lisp_Object arg)
2171 {
2172 Finsert (1, &arg);
2173 }
2174
2175
2176 /* Callers passing one argument to Finsert need not gcpro the
2177 argument "array", since the only element of the array will
2178 not be used after calling insert or insert_from_string, so
2179 we don't care if it gets trashed. */
2180
2181 DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2182 doc: /* Insert the arguments, either strings or characters, at point.
2183 Point and before-insertion markers move forward to end up
2184 after the inserted text.
2185 Any other markers at the point of insertion remain before the text.
2186
2187 If the current buffer is multibyte, unibyte strings are converted
2188 to multibyte for insertion (see `string-make-multibyte').
2189 If the current buffer is unibyte, multibyte strings are converted
2190 to unibyte for insertion (see `string-make-unibyte').
2191
2192 When operating on binary data, it may be necessary to preserve the
2193 original bytes of a unibyte string when inserting it into a multibyte
2194 buffer; to accomplish this, apply `string-as-multibyte' to the string
2195 and insert the result.
2196
2197 usage: (insert &rest ARGS) */)
2198 (int nargs, register Lisp_Object *args)
2199 {
2200 general_insert_function (insert, insert_from_string, 0, nargs, args);
2201 return Qnil;
2202 }
2203
2204 DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2205 0, MANY, 0,
2206 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2207 Point and before-insertion markers move forward to end up
2208 after the inserted text.
2209 Any other markers at the point of insertion remain before the text.
2210
2211 If the current buffer is multibyte, unibyte strings are converted
2212 to multibyte for insertion (see `unibyte-char-to-multibyte').
2213 If the current buffer is unibyte, multibyte strings are converted
2214 to unibyte for insertion.
2215
2216 usage: (insert-and-inherit &rest ARGS) */)
2217 (int nargs, register Lisp_Object *args)
2218 {
2219 general_insert_function (insert_and_inherit, insert_from_string, 1,
2220 nargs, args);
2221 return Qnil;
2222 }
2223
2224 DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2225 doc: /* Insert strings or characters at point, relocating markers after the text.
2226 Point and markers move forward to end up after the inserted text.
2227
2228 If the current buffer is multibyte, unibyte strings are converted
2229 to multibyte for insertion (see `unibyte-char-to-multibyte').
2230 If the current buffer is unibyte, multibyte strings are converted
2231 to unibyte for insertion.
2232
2233 usage: (insert-before-markers &rest ARGS) */)
2234 (int nargs, register Lisp_Object *args)
2235 {
2236 general_insert_function (insert_before_markers,
2237 insert_from_string_before_markers, 0,
2238 nargs, args);
2239 return Qnil;
2240 }
2241
2242 DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2243 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2244 doc: /* Insert text at point, relocating markers and inheriting properties.
2245 Point and markers move forward to end up after the inserted text.
2246
2247 If the current buffer is multibyte, unibyte strings are converted
2248 to multibyte for insertion (see `unibyte-char-to-multibyte').
2249 If the current buffer is unibyte, multibyte strings are converted
2250 to unibyte for insertion.
2251
2252 usage: (insert-before-markers-and-inherit &rest ARGS) */)
2253 (int nargs, register Lisp_Object *args)
2254 {
2255 general_insert_function (insert_before_markers_and_inherit,
2256 insert_from_string_before_markers, 1,
2257 nargs, args);
2258 return Qnil;
2259 }
2260 \f
2261 DEFUN ("insert-char", Finsert_char, Sinsert_char, 2, 3, 0,
2262 doc: /* Insert COUNT copies of CHARACTER.
2263 Point, and before-insertion markers, are relocated as in the function `insert'.
2264 The optional third arg INHERIT, if non-nil, says to inherit text properties
2265 from adjoining text, if those properties are sticky. */)
2266 (Lisp_Object character, Lisp_Object count, Lisp_Object inherit)
2267 {
2268 register unsigned char *string;
2269 register int strlen;
2270 register int i, n;
2271 int len;
2272 unsigned char str[MAX_MULTIBYTE_LENGTH];
2273
2274 CHECK_NUMBER (character);
2275 CHECK_NUMBER (count);
2276
2277 if (!NILP (current_buffer->enable_multibyte_characters))
2278 len = CHAR_STRING (XFASTINT (character), str);
2279 else
2280 str[0] = XFASTINT (character), len = 1;
2281 n = XINT (count) * len;
2282 if (n <= 0)
2283 return Qnil;
2284 strlen = min (n, 256 * len);
2285 string = (unsigned char *) alloca (strlen);
2286 for (i = 0; i < strlen; i++)
2287 string[i] = str[i % len];
2288 while (n >= strlen)
2289 {
2290 QUIT;
2291 if (!NILP (inherit))
2292 insert_and_inherit (string, strlen);
2293 else
2294 insert (string, strlen);
2295 n -= strlen;
2296 }
2297 if (n > 0)
2298 {
2299 if (!NILP (inherit))
2300 insert_and_inherit (string, n);
2301 else
2302 insert (string, n);
2303 }
2304 return Qnil;
2305 }
2306
2307 DEFUN ("insert-byte", Finsert_byte, Sinsert_byte, 2, 3, 0,
2308 doc: /* Insert COUNT (second arg) copies of BYTE (first arg).
2309 Both arguments are required.
2310 BYTE is a number of the range 0..255.
2311
2312 If BYTE is 128..255 and the current buffer is multibyte, the
2313 corresponding eight-bit character is inserted.
2314
2315 Point, and before-insertion markers, are relocated as in the function `insert'.
2316 The optional third arg INHERIT, if non-nil, says to inherit text properties
2317 from adjoining text, if those properties are sticky. */)
2318 (Lisp_Object byte, Lisp_Object count, Lisp_Object inherit)
2319 {
2320 CHECK_NUMBER (byte);
2321 if (XINT (byte) < 0 || XINT (byte) > 255)
2322 args_out_of_range_3 (byte, make_number (0), make_number (255));
2323 if (XINT (byte) >= 128
2324 && ! NILP (current_buffer->enable_multibyte_characters))
2325 XSETFASTINT (byte, BYTE8_TO_CHAR (XINT (byte)));
2326 return Finsert_char (byte, count, inherit);
2327 }
2328
2329 \f
2330 /* Making strings from buffer contents. */
2331
2332 /* Return a Lisp_String containing the text of the current buffer from
2333 START to END. If text properties are in use and the current buffer
2334 has properties in the range specified, the resulting string will also
2335 have them, if PROPS is nonzero.
2336
2337 We don't want to use plain old make_string here, because it calls
2338 make_uninit_string, which can cause the buffer arena to be
2339 compacted. make_string has no way of knowing that the data has
2340 been moved, and thus copies the wrong data into the string. This
2341 doesn't effect most of the other users of make_string, so it should
2342 be left as is. But we should use this function when conjuring
2343 buffer substrings. */
2344
2345 Lisp_Object
2346 make_buffer_string (int start, int end, int props)
2347 {
2348 int start_byte = CHAR_TO_BYTE (start);
2349 int end_byte = CHAR_TO_BYTE (end);
2350
2351 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2352 }
2353
2354 /* Return a Lisp_String containing the text of the current buffer from
2355 START / START_BYTE to END / END_BYTE.
2356
2357 If text properties are in use and the current buffer
2358 has properties in the range specified, the resulting string will also
2359 have them, if PROPS is nonzero.
2360
2361 We don't want to use plain old make_string here, because it calls
2362 make_uninit_string, which can cause the buffer arena to be
2363 compacted. make_string has no way of knowing that the data has
2364 been moved, and thus copies the wrong data into the string. This
2365 doesn't effect most of the other users of make_string, so it should
2366 be left as is. But we should use this function when conjuring
2367 buffer substrings. */
2368
2369 Lisp_Object
2370 make_buffer_string_both (int start, int start_byte, int end, int end_byte, int props)
2371 {
2372 Lisp_Object result, tem, tem1;
2373
2374 if (start < GPT && GPT < end)
2375 move_gap (start);
2376
2377 if (! NILP (current_buffer->enable_multibyte_characters))
2378 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2379 else
2380 result = make_uninit_string (end - start);
2381 memcpy (SDATA (result), BYTE_POS_ADDR (start_byte), end_byte - start_byte);
2382
2383 /* If desired, update and copy the text properties. */
2384 if (props)
2385 {
2386 update_buffer_properties (start, end);
2387
2388 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2389 tem1 = Ftext_properties_at (make_number (start), Qnil);
2390
2391 if (XINT (tem) != end || !NILP (tem1))
2392 copy_intervals_to_string (result, current_buffer, start,
2393 end - start);
2394 }
2395
2396 return result;
2397 }
2398
2399 /* Call Vbuffer_access_fontify_functions for the range START ... END
2400 in the current buffer, if necessary. */
2401
2402 static void
2403 update_buffer_properties (int start, int end)
2404 {
2405 /* If this buffer has some access functions,
2406 call them, specifying the range of the buffer being accessed. */
2407 if (!NILP (Vbuffer_access_fontify_functions))
2408 {
2409 Lisp_Object args[3];
2410 Lisp_Object tem;
2411
2412 args[0] = Qbuffer_access_fontify_functions;
2413 XSETINT (args[1], start);
2414 XSETINT (args[2], end);
2415
2416 /* But don't call them if we can tell that the work
2417 has already been done. */
2418 if (!NILP (Vbuffer_access_fontified_property))
2419 {
2420 tem = Ftext_property_any (args[1], args[2],
2421 Vbuffer_access_fontified_property,
2422 Qnil, Qnil);
2423 if (! NILP (tem))
2424 Frun_hook_with_args (3, args);
2425 }
2426 else
2427 Frun_hook_with_args (3, args);
2428 }
2429 }
2430
2431 DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2432 doc: /* Return the contents of part of the current buffer as a string.
2433 The two arguments START and END are character positions;
2434 they can be in either order.
2435 The string returned is multibyte if the buffer is multibyte.
2436
2437 This function copies the text properties of that part of the buffer
2438 into the result string; if you don't want the text properties,
2439 use `buffer-substring-no-properties' instead. */)
2440 (Lisp_Object start, Lisp_Object end)
2441 {
2442 register int b, e;
2443
2444 validate_region (&start, &end);
2445 b = XINT (start);
2446 e = XINT (end);
2447
2448 return make_buffer_string (b, e, 1);
2449 }
2450
2451 DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2452 Sbuffer_substring_no_properties, 2, 2, 0,
2453 doc: /* Return the characters of part of the buffer, without the text properties.
2454 The two arguments START and END are character positions;
2455 they can be in either order. */)
2456 (Lisp_Object start, Lisp_Object end)
2457 {
2458 register int b, e;
2459
2460 validate_region (&start, &end);
2461 b = XINT (start);
2462 e = XINT (end);
2463
2464 return make_buffer_string (b, e, 0);
2465 }
2466
2467 DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2468 doc: /* Return the contents of the current buffer as a string.
2469 If narrowing is in effect, this function returns only the visible part
2470 of the buffer. */)
2471 (void)
2472 {
2473 return make_buffer_string (BEGV, ZV, 1);
2474 }
2475
2476 DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2477 1, 3, 0,
2478 doc: /* Insert before point a substring of the contents of BUFFER.
2479 BUFFER may be a buffer or a buffer name.
2480 Arguments START and END are character positions specifying the substring.
2481 They default to the values of (point-min) and (point-max) in BUFFER. */)
2482 (Lisp_Object buffer, Lisp_Object start, Lisp_Object end)
2483 {
2484 register int b, e, temp;
2485 register struct buffer *bp, *obuf;
2486 Lisp_Object buf;
2487
2488 buf = Fget_buffer (buffer);
2489 if (NILP (buf))
2490 nsberror (buffer);
2491 bp = XBUFFER (buf);
2492 if (NILP (bp->name))
2493 error ("Selecting deleted buffer");
2494
2495 if (NILP (start))
2496 b = BUF_BEGV (bp);
2497 else
2498 {
2499 CHECK_NUMBER_COERCE_MARKER (start);
2500 b = XINT (start);
2501 }
2502 if (NILP (end))
2503 e = BUF_ZV (bp);
2504 else
2505 {
2506 CHECK_NUMBER_COERCE_MARKER (end);
2507 e = XINT (end);
2508 }
2509
2510 if (b > e)
2511 temp = b, b = e, e = temp;
2512
2513 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2514 args_out_of_range (start, end);
2515
2516 obuf = current_buffer;
2517 set_buffer_internal_1 (bp);
2518 update_buffer_properties (b, e);
2519 set_buffer_internal_1 (obuf);
2520
2521 insert_from_buffer (bp, b, e - b, 0);
2522 return Qnil;
2523 }
2524
2525 DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2526 6, 6, 0,
2527 doc: /* Compare two substrings of two buffers; return result as number.
2528 the value is -N if first string is less after N-1 chars,
2529 +N if first string is greater after N-1 chars, or 0 if strings match.
2530 Each substring is represented as three arguments: BUFFER, START and END.
2531 That makes six args in all, three for each substring.
2532
2533 The value of `case-fold-search' in the current buffer
2534 determines whether case is significant or ignored. */)
2535 (Lisp_Object buffer1, Lisp_Object start1, Lisp_Object end1, Lisp_Object buffer2, Lisp_Object start2, Lisp_Object end2)
2536 {
2537 register int begp1, endp1, begp2, endp2, temp;
2538 register struct buffer *bp1, *bp2;
2539 register Lisp_Object trt
2540 = (!NILP (current_buffer->case_fold_search)
2541 ? current_buffer->case_canon_table : Qnil);
2542 int chars = 0;
2543 int i1, i2, i1_byte, i2_byte;
2544
2545 /* Find the first buffer and its substring. */
2546
2547 if (NILP (buffer1))
2548 bp1 = current_buffer;
2549 else
2550 {
2551 Lisp_Object buf1;
2552 buf1 = Fget_buffer (buffer1);
2553 if (NILP (buf1))
2554 nsberror (buffer1);
2555 bp1 = XBUFFER (buf1);
2556 if (NILP (bp1->name))
2557 error ("Selecting deleted buffer");
2558 }
2559
2560 if (NILP (start1))
2561 begp1 = BUF_BEGV (bp1);
2562 else
2563 {
2564 CHECK_NUMBER_COERCE_MARKER (start1);
2565 begp1 = XINT (start1);
2566 }
2567 if (NILP (end1))
2568 endp1 = BUF_ZV (bp1);
2569 else
2570 {
2571 CHECK_NUMBER_COERCE_MARKER (end1);
2572 endp1 = XINT (end1);
2573 }
2574
2575 if (begp1 > endp1)
2576 temp = begp1, begp1 = endp1, endp1 = temp;
2577
2578 if (!(BUF_BEGV (bp1) <= begp1
2579 && begp1 <= endp1
2580 && endp1 <= BUF_ZV (bp1)))
2581 args_out_of_range (start1, end1);
2582
2583 /* Likewise for second substring. */
2584
2585 if (NILP (buffer2))
2586 bp2 = current_buffer;
2587 else
2588 {
2589 Lisp_Object buf2;
2590 buf2 = Fget_buffer (buffer2);
2591 if (NILP (buf2))
2592 nsberror (buffer2);
2593 bp2 = XBUFFER (buf2);
2594 if (NILP (bp2->name))
2595 error ("Selecting deleted buffer");
2596 }
2597
2598 if (NILP (start2))
2599 begp2 = BUF_BEGV (bp2);
2600 else
2601 {
2602 CHECK_NUMBER_COERCE_MARKER (start2);
2603 begp2 = XINT (start2);
2604 }
2605 if (NILP (end2))
2606 endp2 = BUF_ZV (bp2);
2607 else
2608 {
2609 CHECK_NUMBER_COERCE_MARKER (end2);
2610 endp2 = XINT (end2);
2611 }
2612
2613 if (begp2 > endp2)
2614 temp = begp2, begp2 = endp2, endp2 = temp;
2615
2616 if (!(BUF_BEGV (bp2) <= begp2
2617 && begp2 <= endp2
2618 && endp2 <= BUF_ZV (bp2)))
2619 args_out_of_range (start2, end2);
2620
2621 i1 = begp1;
2622 i2 = begp2;
2623 i1_byte = buf_charpos_to_bytepos (bp1, i1);
2624 i2_byte = buf_charpos_to_bytepos (bp2, i2);
2625
2626 while (i1 < endp1 && i2 < endp2)
2627 {
2628 /* When we find a mismatch, we must compare the
2629 characters, not just the bytes. */
2630 int c1, c2;
2631
2632 QUIT;
2633
2634 if (! NILP (bp1->enable_multibyte_characters))
2635 {
2636 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
2637 BUF_INC_POS (bp1, i1_byte);
2638 i1++;
2639 }
2640 else
2641 {
2642 c1 = BUF_FETCH_BYTE (bp1, i1);
2643 MAKE_CHAR_MULTIBYTE (c1);
2644 i1++;
2645 }
2646
2647 if (! NILP (bp2->enable_multibyte_characters))
2648 {
2649 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
2650 BUF_INC_POS (bp2, i2_byte);
2651 i2++;
2652 }
2653 else
2654 {
2655 c2 = BUF_FETCH_BYTE (bp2, i2);
2656 MAKE_CHAR_MULTIBYTE (c2);
2657 i2++;
2658 }
2659
2660 if (!NILP (trt))
2661 {
2662 c1 = CHAR_TABLE_TRANSLATE (trt, c1);
2663 c2 = CHAR_TABLE_TRANSLATE (trt, c2);
2664 }
2665 if (c1 < c2)
2666 return make_number (- 1 - chars);
2667 if (c1 > c2)
2668 return make_number (chars + 1);
2669
2670 chars++;
2671 }
2672
2673 /* The strings match as far as they go.
2674 If one is shorter, that one is less. */
2675 if (chars < endp1 - begp1)
2676 return make_number (chars + 1);
2677 else if (chars < endp2 - begp2)
2678 return make_number (- chars - 1);
2679
2680 /* Same length too => they are equal. */
2681 return make_number (0);
2682 }
2683 \f
2684 static Lisp_Object
2685 subst_char_in_region_unwind (Lisp_Object arg)
2686 {
2687 return current_buffer->undo_list = arg;
2688 }
2689
2690 static Lisp_Object
2691 subst_char_in_region_unwind_1 (Lisp_Object arg)
2692 {
2693 return current_buffer->filename = arg;
2694 }
2695
2696 DEFUN ("subst-char-in-region", Fsubst_char_in_region,
2697 Ssubst_char_in_region, 4, 5, 0,
2698 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
2699 If optional arg NOUNDO is non-nil, don't record this change for undo
2700 and don't mark the buffer as really changed.
2701 Both characters must have the same length of multi-byte form. */)
2702 (Lisp_Object start, Lisp_Object end, Lisp_Object fromchar, Lisp_Object tochar, Lisp_Object noundo)
2703 {
2704 register int pos, pos_byte, stop, i, len, end_byte;
2705 /* Keep track of the first change in the buffer:
2706 if 0 we haven't found it yet.
2707 if < 0 we've found it and we've run the before-change-function.
2708 if > 0 we've actually performed it and the value is its position. */
2709 int changed = 0;
2710 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
2711 unsigned char *p;
2712 int count = SPECPDL_INDEX ();
2713 #define COMBINING_NO 0
2714 #define COMBINING_BEFORE 1
2715 #define COMBINING_AFTER 2
2716 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
2717 int maybe_byte_combining = COMBINING_NO;
2718 int last_changed = 0;
2719 int multibyte_p = !NILP (current_buffer->enable_multibyte_characters);
2720
2721 restart:
2722
2723 validate_region (&start, &end);
2724 CHECK_NUMBER (fromchar);
2725 CHECK_NUMBER (tochar);
2726
2727 if (multibyte_p)
2728 {
2729 len = CHAR_STRING (XFASTINT (fromchar), fromstr);
2730 if (CHAR_STRING (XFASTINT (tochar), tostr) != len)
2731 error ("Characters in `subst-char-in-region' have different byte-lengths");
2732 if (!ASCII_BYTE_P (*tostr))
2733 {
2734 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
2735 complete multibyte character, it may be combined with the
2736 after bytes. If it is in the range 0xA0..0xFF, it may be
2737 combined with the before and after bytes. */
2738 if (!CHAR_HEAD_P (*tostr))
2739 maybe_byte_combining = COMBINING_BOTH;
2740 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
2741 maybe_byte_combining = COMBINING_AFTER;
2742 }
2743 }
2744 else
2745 {
2746 len = 1;
2747 fromstr[0] = XFASTINT (fromchar);
2748 tostr[0] = XFASTINT (tochar);
2749 }
2750
2751 pos = XINT (start);
2752 pos_byte = CHAR_TO_BYTE (pos);
2753 stop = CHAR_TO_BYTE (XINT (end));
2754 end_byte = stop;
2755
2756 /* If we don't want undo, turn off putting stuff on the list.
2757 That's faster than getting rid of things,
2758 and it prevents even the entry for a first change.
2759 Also inhibit locking the file. */
2760 if (!changed && !NILP (noundo))
2761 {
2762 record_unwind_protect (subst_char_in_region_unwind,
2763 current_buffer->undo_list);
2764 current_buffer->undo_list = Qt;
2765 /* Don't do file-locking. */
2766 record_unwind_protect (subst_char_in_region_unwind_1,
2767 current_buffer->filename);
2768 current_buffer->filename = Qnil;
2769 }
2770
2771 if (pos_byte < GPT_BYTE)
2772 stop = min (stop, GPT_BYTE);
2773 while (1)
2774 {
2775 int pos_byte_next = pos_byte;
2776
2777 if (pos_byte >= stop)
2778 {
2779 if (pos_byte >= end_byte) break;
2780 stop = end_byte;
2781 }
2782 p = BYTE_POS_ADDR (pos_byte);
2783 if (multibyte_p)
2784 INC_POS (pos_byte_next);
2785 else
2786 ++pos_byte_next;
2787 if (pos_byte_next - pos_byte == len
2788 && p[0] == fromstr[0]
2789 && (len == 1
2790 || (p[1] == fromstr[1]
2791 && (len == 2 || (p[2] == fromstr[2]
2792 && (len == 3 || p[3] == fromstr[3]))))))
2793 {
2794 if (changed < 0)
2795 /* We've already seen this and run the before-change-function;
2796 this time we only need to record the actual position. */
2797 changed = pos;
2798 else if (!changed)
2799 {
2800 changed = -1;
2801 modify_region (current_buffer, pos, XINT (end), 0);
2802
2803 if (! NILP (noundo))
2804 {
2805 if (MODIFF - 1 == SAVE_MODIFF)
2806 SAVE_MODIFF++;
2807 if (MODIFF - 1 == BUF_AUTOSAVE_MODIFF (current_buffer))
2808 BUF_AUTOSAVE_MODIFF (current_buffer)++;
2809 }
2810
2811 /* The before-change-function may have moved the gap
2812 or even modified the buffer so we should start over. */
2813 goto restart;
2814 }
2815
2816 /* Take care of the case where the new character
2817 combines with neighboring bytes. */
2818 if (maybe_byte_combining
2819 && (maybe_byte_combining == COMBINING_AFTER
2820 ? (pos_byte_next < Z_BYTE
2821 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2822 : ((pos_byte_next < Z_BYTE
2823 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2824 || (pos_byte > BEG_BYTE
2825 && ! ASCII_BYTE_P (FETCH_BYTE (pos_byte - 1))))))
2826 {
2827 Lisp_Object tem, string;
2828
2829 struct gcpro gcpro1;
2830
2831 tem = current_buffer->undo_list;
2832 GCPRO1 (tem);
2833
2834 /* Make a multibyte string containing this single character. */
2835 string = make_multibyte_string (tostr, 1, len);
2836 /* replace_range is less efficient, because it moves the gap,
2837 but it handles combining correctly. */
2838 replace_range (pos, pos + 1, string,
2839 0, 0, 1);
2840 pos_byte_next = CHAR_TO_BYTE (pos);
2841 if (pos_byte_next > pos_byte)
2842 /* Before combining happened. We should not increment
2843 POS. So, to cancel the later increment of POS,
2844 decrease it now. */
2845 pos--;
2846 else
2847 INC_POS (pos_byte_next);
2848
2849 if (! NILP (noundo))
2850 current_buffer->undo_list = tem;
2851
2852 UNGCPRO;
2853 }
2854 else
2855 {
2856 if (NILP (noundo))
2857 record_change (pos, 1);
2858 for (i = 0; i < len; i++) *p++ = tostr[i];
2859 }
2860 last_changed = pos + 1;
2861 }
2862 pos_byte = pos_byte_next;
2863 pos++;
2864 }
2865
2866 if (changed > 0)
2867 {
2868 signal_after_change (changed,
2869 last_changed - changed, last_changed - changed);
2870 update_compositions (changed, last_changed, CHECK_ALL);
2871 }
2872
2873 unbind_to (count, Qnil);
2874 return Qnil;
2875 }
2876
2877
2878 static Lisp_Object check_translation (int, int, int, Lisp_Object);
2879
2880 /* Helper function for Ftranslate_region_internal.
2881
2882 Check if a character sequence at POS (POS_BYTE) matches an element
2883 of VAL. VAL is a list (([FROM-CHAR ...] . TO) ...). If a matching
2884 element is found, return it. Otherwise return Qnil. */
2885
2886 static Lisp_Object
2887 check_translation (int pos, int pos_byte, int end, Lisp_Object val)
2888 {
2889 int buf_size = 16, buf_used = 0;
2890 int *buf = alloca (sizeof (int) * buf_size);
2891
2892 for (; CONSP (val); val = XCDR (val))
2893 {
2894 Lisp_Object elt;
2895 int len, i;
2896
2897 elt = XCAR (val);
2898 if (! CONSP (elt))
2899 continue;
2900 elt = XCAR (elt);
2901 if (! VECTORP (elt))
2902 continue;
2903 len = ASIZE (elt);
2904 if (len <= end - pos)
2905 {
2906 for (i = 0; i < len; i++)
2907 {
2908 if (buf_used <= i)
2909 {
2910 unsigned char *p = BYTE_POS_ADDR (pos_byte);
2911 int len;
2912
2913 if (buf_used == buf_size)
2914 {
2915 int *newbuf;
2916
2917 buf_size += 16;
2918 newbuf = alloca (sizeof (int) * buf_size);
2919 memcpy (newbuf, buf, sizeof (int) * buf_used);
2920 buf = newbuf;
2921 }
2922 buf[buf_used++] = STRING_CHAR_AND_LENGTH (p, len);
2923 pos_byte += len;
2924 }
2925 if (XINT (AREF (elt, i)) != buf[i])
2926 break;
2927 }
2928 if (i == len)
2929 return XCAR (val);
2930 }
2931 }
2932 return Qnil;
2933 }
2934
2935
2936 DEFUN ("translate-region-internal", Ftranslate_region_internal,
2937 Stranslate_region_internal, 3, 3, 0,
2938 doc: /* Internal use only.
2939 From START to END, translate characters according to TABLE.
2940 TABLE is a string or a char-table; the Nth character in it is the
2941 mapping for the character with code N.
2942 It returns the number of characters changed. */)
2943 (Lisp_Object start, Lisp_Object end, register Lisp_Object table)
2944 {
2945 register unsigned char *tt; /* Trans table. */
2946 register int nc; /* New character. */
2947 int cnt; /* Number of changes made. */
2948 int size; /* Size of translate table. */
2949 int pos, pos_byte, end_pos;
2950 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
2951 int string_multibyte;
2952 Lisp_Object val;
2953
2954 validate_region (&start, &end);
2955 if (CHAR_TABLE_P (table))
2956 {
2957 if (! EQ (XCHAR_TABLE (table)->purpose, Qtranslation_table))
2958 error ("Not a translation table");
2959 size = MAX_CHAR;
2960 tt = NULL;
2961 }
2962 else
2963 {
2964 CHECK_STRING (table);
2965
2966 if (! multibyte && (SCHARS (table) < SBYTES (table)))
2967 table = string_make_unibyte (table);
2968 string_multibyte = SCHARS (table) < SBYTES (table);
2969 size = SBYTES (table);
2970 tt = SDATA (table);
2971 }
2972
2973 pos = XINT (start);
2974 pos_byte = CHAR_TO_BYTE (pos);
2975 end_pos = XINT (end);
2976 modify_region (current_buffer, pos, end_pos, 0);
2977
2978 cnt = 0;
2979 for (; pos < end_pos; )
2980 {
2981 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
2982 unsigned char *str, buf[MAX_MULTIBYTE_LENGTH];
2983 int len, str_len;
2984 int oc;
2985 Lisp_Object val;
2986
2987 if (multibyte)
2988 oc = STRING_CHAR_AND_LENGTH (p, len);
2989 else
2990 oc = *p, len = 1;
2991 if (oc < size)
2992 {
2993 if (tt)
2994 {
2995 /* Reload as signal_after_change in last iteration may GC. */
2996 tt = SDATA (table);
2997 if (string_multibyte)
2998 {
2999 str = tt + string_char_to_byte (table, oc);
3000 nc = STRING_CHAR_AND_LENGTH (str, str_len);
3001 }
3002 else
3003 {
3004 nc = tt[oc];
3005 if (! ASCII_BYTE_P (nc) && multibyte)
3006 {
3007 str_len = BYTE8_STRING (nc, buf);
3008 str = buf;
3009 }
3010 else
3011 {
3012 str_len = 1;
3013 str = tt + oc;
3014 }
3015 }
3016 }
3017 else
3018 {
3019 int c;
3020
3021 nc = oc;
3022 val = CHAR_TABLE_REF (table, oc);
3023 if (CHARACTERP (val)
3024 && (c = XINT (val), CHAR_VALID_P (c, 0)))
3025 {
3026 nc = c;
3027 str_len = CHAR_STRING (nc, buf);
3028 str = buf;
3029 }
3030 else if (VECTORP (val) || (CONSP (val)))
3031 {
3032 /* VAL is [TO_CHAR ...] or (([FROM-CHAR ...] . TO) ...)
3033 where TO is TO-CHAR or [TO-CHAR ...]. */
3034 nc = -1;
3035 }
3036 }
3037
3038 if (nc != oc && nc >= 0)
3039 {
3040 /* Simple one char to one char translation. */
3041 if (len != str_len)
3042 {
3043 Lisp_Object string;
3044
3045 /* This is less efficient, because it moves the gap,
3046 but it should handle multibyte characters correctly. */
3047 string = make_multibyte_string (str, 1, str_len);
3048 replace_range (pos, pos + 1, string, 1, 0, 1);
3049 len = str_len;
3050 }
3051 else
3052 {
3053 record_change (pos, 1);
3054 while (str_len-- > 0)
3055 *p++ = *str++;
3056 signal_after_change (pos, 1, 1);
3057 update_compositions (pos, pos + 1, CHECK_BORDER);
3058 }
3059 ++cnt;
3060 }
3061 else if (nc < 0)
3062 {
3063 Lisp_Object string;
3064
3065 if (CONSP (val))
3066 {
3067 val = check_translation (pos, pos_byte, end_pos, val);
3068 if (NILP (val))
3069 {
3070 pos_byte += len;
3071 pos++;
3072 continue;
3073 }
3074 /* VAL is ([FROM-CHAR ...] . TO). */
3075 len = ASIZE (XCAR (val));
3076 val = XCDR (val);
3077 }
3078 else
3079 len = 1;
3080
3081 if (VECTORP (val))
3082 {
3083 string = Fconcat (1, &val);
3084 }
3085 else
3086 {
3087 string = Fmake_string (make_number (1), val);
3088 }
3089 replace_range (pos, pos + len, string, 1, 0, 1);
3090 pos_byte += SBYTES (string);
3091 pos += SCHARS (string);
3092 cnt += SCHARS (string);
3093 end_pos += SCHARS (string) - len;
3094 continue;
3095 }
3096 }
3097 pos_byte += len;
3098 pos++;
3099 }
3100
3101 return make_number (cnt);
3102 }
3103
3104 DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
3105 doc: /* Delete the text between point and mark.
3106
3107 When called from a program, expects two arguments,
3108 positions (integers or markers) specifying the stretch to be deleted. */)
3109 (Lisp_Object start, Lisp_Object end)
3110 {
3111 validate_region (&start, &end);
3112 del_range (XINT (start), XINT (end));
3113 return Qnil;
3114 }
3115
3116 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
3117 Sdelete_and_extract_region, 2, 2, 0,
3118 doc: /* Delete the text between START and END and return it. */)
3119 (Lisp_Object start, Lisp_Object end)
3120 {
3121 validate_region (&start, &end);
3122 if (XINT (start) == XINT (end))
3123 return empty_unibyte_string;
3124 return del_range_1 (XINT (start), XINT (end), 1, 1);
3125 }
3126 \f
3127 DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
3128 doc: /* Remove restrictions (narrowing) from current buffer.
3129 This allows the buffer's full text to be seen and edited. */)
3130 (void)
3131 {
3132 if (BEG != BEGV || Z != ZV)
3133 current_buffer->clip_changed = 1;
3134 BEGV = BEG;
3135 BEGV_BYTE = BEG_BYTE;
3136 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
3137 /* Changing the buffer bounds invalidates any recorded current column. */
3138 invalidate_current_column ();
3139 return Qnil;
3140 }
3141
3142 DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
3143 doc: /* Restrict editing in this buffer to the current region.
3144 The rest of the text becomes temporarily invisible and untouchable
3145 but is not deleted; if you save the buffer in a file, the invisible
3146 text is included in the file. \\[widen] makes all visible again.
3147 See also `save-restriction'.
3148
3149 When calling from a program, pass two arguments; positions (integers
3150 or markers) bounding the text that should remain visible. */)
3151 (register Lisp_Object start, Lisp_Object end)
3152 {
3153 CHECK_NUMBER_COERCE_MARKER (start);
3154 CHECK_NUMBER_COERCE_MARKER (end);
3155
3156 if (XINT (start) > XINT (end))
3157 {
3158 Lisp_Object tem;
3159 tem = start; start = end; end = tem;
3160 }
3161
3162 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
3163 args_out_of_range (start, end);
3164
3165 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
3166 current_buffer->clip_changed = 1;
3167
3168 SET_BUF_BEGV (current_buffer, XFASTINT (start));
3169 SET_BUF_ZV (current_buffer, XFASTINT (end));
3170 if (PT < XFASTINT (start))
3171 SET_PT (XFASTINT (start));
3172 if (PT > XFASTINT (end))
3173 SET_PT (XFASTINT (end));
3174 /* Changing the buffer bounds invalidates any recorded current column. */
3175 invalidate_current_column ();
3176 return Qnil;
3177 }
3178
3179 Lisp_Object
3180 save_restriction_save (void)
3181 {
3182 if (BEGV == BEG && ZV == Z)
3183 /* The common case that the buffer isn't narrowed.
3184 We return just the buffer object, which save_restriction_restore
3185 recognizes as meaning `no restriction'. */
3186 return Fcurrent_buffer ();
3187 else
3188 /* We have to save a restriction, so return a pair of markers, one
3189 for the beginning and one for the end. */
3190 {
3191 Lisp_Object beg, end;
3192
3193 beg = buildmark (BEGV, BEGV_BYTE);
3194 end = buildmark (ZV, ZV_BYTE);
3195
3196 /* END must move forward if text is inserted at its exact location. */
3197 XMARKER(end)->insertion_type = 1;
3198
3199 return Fcons (beg, end);
3200 }
3201 }
3202
3203 Lisp_Object
3204 save_restriction_restore (Lisp_Object data)
3205 {
3206 struct buffer *cur = NULL;
3207 struct buffer *buf = (CONSP (data)
3208 ? XMARKER (XCAR (data))->buffer
3209 : XBUFFER (data));
3210
3211 if (buf && buf != current_buffer && !NILP (buf->pt_marker))
3212 { /* If `buf' uses markers to keep track of PT, BEGV, and ZV (as
3213 is the case if it is or has an indirect buffer), then make
3214 sure it is current before we update BEGV, so
3215 set_buffer_internal takes care of managing those markers. */
3216 cur = current_buffer;
3217 set_buffer_internal (buf);
3218 }
3219
3220 if (CONSP (data))
3221 /* A pair of marks bounding a saved restriction. */
3222 {
3223 struct Lisp_Marker *beg = XMARKER (XCAR (data));
3224 struct Lisp_Marker *end = XMARKER (XCDR (data));
3225 eassert (buf == end->buffer);
3226
3227 if (buf /* Verify marker still points to a buffer. */
3228 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
3229 /* The restriction has changed from the saved one, so restore
3230 the saved restriction. */
3231 {
3232 int pt = BUF_PT (buf);
3233
3234 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
3235 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
3236
3237 if (pt < beg->charpos || pt > end->charpos)
3238 /* The point is outside the new visible range, move it inside. */
3239 SET_BUF_PT_BOTH (buf,
3240 clip_to_bounds (beg->charpos, pt, end->charpos),
3241 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
3242 end->bytepos));
3243
3244 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3245 }
3246 }
3247 else
3248 /* A buffer, which means that there was no old restriction. */
3249 {
3250 if (buf /* Verify marker still points to a buffer. */
3251 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
3252 /* The buffer has been narrowed, get rid of the narrowing. */
3253 {
3254 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
3255 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
3256
3257 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3258 }
3259 }
3260
3261 if (cur)
3262 set_buffer_internal (cur);
3263
3264 return Qnil;
3265 }
3266
3267 DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
3268 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
3269 The buffer's restrictions make parts of the beginning and end invisible.
3270 \(They are set up with `narrow-to-region' and eliminated with `widen'.)
3271 This special form, `save-restriction', saves the current buffer's restrictions
3272 when it is entered, and restores them when it is exited.
3273 So any `narrow-to-region' within BODY lasts only until the end of the form.
3274 The old restrictions settings are restored
3275 even in case of abnormal exit (throw or error).
3276
3277 The value returned is the value of the last form in BODY.
3278
3279 Note: if you are using both `save-excursion' and `save-restriction',
3280 use `save-excursion' outermost:
3281 (save-excursion (save-restriction ...))
3282
3283 usage: (save-restriction &rest BODY) */)
3284 (Lisp_Object body)
3285 {
3286 register Lisp_Object val;
3287 int count = SPECPDL_INDEX ();
3288
3289 record_unwind_protect (save_restriction_restore, save_restriction_save ());
3290 val = Fprogn (body);
3291 return unbind_to (count, val);
3292 }
3293 \f
3294 /* Buffer for the most recent text displayed by Fmessage_box. */
3295 static char *message_text;
3296
3297 /* Allocated length of that buffer. */
3298 static int message_length;
3299
3300 DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3301 doc: /* Display a message at the bottom of the screen.
3302 The message also goes into the `*Messages*' buffer.
3303 \(In keyboard macros, that's all it does.)
3304 Return the message.
3305
3306 The first argument is a format control string, and the rest are data
3307 to be formatted under control of the string. See `format' for details.
3308
3309 Note: Use (message "%s" VALUE) to print the value of expressions and
3310 variables to avoid accidentally interpreting `%' as format specifiers.
3311
3312 If the first argument is nil or the empty string, the function clears
3313 any existing message; this lets the minibuffer contents show. See
3314 also `current-message'.
3315
3316 usage: (message FORMAT-STRING &rest ARGS) */)
3317 (int nargs, Lisp_Object *args)
3318 {
3319 if (NILP (args[0])
3320 || (STRINGP (args[0])
3321 && SBYTES (args[0]) == 0))
3322 {
3323 message (0);
3324 return args[0];
3325 }
3326 else
3327 {
3328 register Lisp_Object val;
3329 val = Fformat (nargs, args);
3330 message3 (val, SBYTES (val), STRING_MULTIBYTE (val));
3331 return val;
3332 }
3333 }
3334
3335 DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3336 doc: /* Display a message, in a dialog box if possible.
3337 If a dialog box is not available, use the echo area.
3338 The first argument is a format control string, and the rest are data
3339 to be formatted under control of the string. See `format' for details.
3340
3341 If the first argument is nil or the empty string, clear any existing
3342 message; let the minibuffer contents show.
3343
3344 usage: (message-box FORMAT-STRING &rest ARGS) */)
3345 (int nargs, Lisp_Object *args)
3346 {
3347 if (NILP (args[0]))
3348 {
3349 message (0);
3350 return Qnil;
3351 }
3352 else
3353 {
3354 register Lisp_Object val;
3355 val = Fformat (nargs, args);
3356 #ifdef HAVE_MENUS
3357 /* The MS-DOS frames support popup menus even though they are
3358 not FRAME_WINDOW_P. */
3359 if (FRAME_WINDOW_P (XFRAME (selected_frame))
3360 || FRAME_MSDOS_P (XFRAME (selected_frame)))
3361 {
3362 Lisp_Object pane, menu, obj;
3363 struct gcpro gcpro1;
3364 pane = Fcons (Fcons (build_string ("OK"), Qt), Qnil);
3365 GCPRO1 (pane);
3366 menu = Fcons (val, pane);
3367 obj = Fx_popup_dialog (Qt, menu, Qt);
3368 UNGCPRO;
3369 return val;
3370 }
3371 #endif /* HAVE_MENUS */
3372 /* Copy the data so that it won't move when we GC. */
3373 if (! message_text)
3374 {
3375 message_text = (char *)xmalloc (80);
3376 message_length = 80;
3377 }
3378 if (SBYTES (val) > message_length)
3379 {
3380 message_length = SBYTES (val);
3381 message_text = (char *)xrealloc (message_text, message_length);
3382 }
3383 memcpy (message_text, SDATA (val), SBYTES (val));
3384 message2 (message_text, SBYTES (val),
3385 STRING_MULTIBYTE (val));
3386 return val;
3387 }
3388 }
3389
3390 DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3391 doc: /* Display a message in a dialog box or in the echo area.
3392 If this command was invoked with the mouse, use a dialog box if
3393 `use-dialog-box' is non-nil.
3394 Otherwise, use the echo area.
3395 The first argument is a format control string, and the rest are data
3396 to be formatted under control of the string. See `format' for details.
3397
3398 If the first argument is nil or the empty string, clear any existing
3399 message; let the minibuffer contents show.
3400
3401 usage: (message-or-box FORMAT-STRING &rest ARGS) */)
3402 (int nargs, Lisp_Object *args)
3403 {
3404 #ifdef HAVE_MENUS
3405 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3406 && use_dialog_box)
3407 return Fmessage_box (nargs, args);
3408 #endif
3409 return Fmessage (nargs, args);
3410 }
3411
3412 DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3413 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3414 (void)
3415 {
3416 return current_message ();
3417 }
3418
3419
3420 DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3421 doc: /* Return a copy of STRING with text properties added.
3422 First argument is the string to copy.
3423 Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3424 properties to add to the result.
3425 usage: (propertize STRING &rest PROPERTIES) */)
3426 (int nargs, Lisp_Object *args)
3427 {
3428 Lisp_Object properties, string;
3429 struct gcpro gcpro1, gcpro2;
3430 int i;
3431
3432 /* Number of args must be odd. */
3433 if ((nargs & 1) == 0 || nargs < 1)
3434 error ("Wrong number of arguments");
3435
3436 properties = string = Qnil;
3437 GCPRO2 (properties, string);
3438
3439 /* First argument must be a string. */
3440 CHECK_STRING (args[0]);
3441 string = Fcopy_sequence (args[0]);
3442
3443 for (i = 1; i < nargs; i += 2)
3444 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3445
3446 Fadd_text_properties (make_number (0),
3447 make_number (SCHARS (string)),
3448 properties, string);
3449 RETURN_UNGCPRO (string);
3450 }
3451
3452
3453 /* Number of bytes that STRING will occupy when put into the result.
3454 MULTIBYTE is nonzero if the result should be multibyte. */
3455
3456 #define CONVERTED_BYTE_SIZE(MULTIBYTE, STRING) \
3457 (((MULTIBYTE) && ! STRING_MULTIBYTE (STRING)) \
3458 ? count_size_as_multibyte (SDATA (STRING), SBYTES (STRING)) \
3459 : SBYTES (STRING))
3460
3461 DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3462 doc: /* Format a string out of a format-string and arguments.
3463 The first argument is a format control string.
3464 The other arguments are substituted into it to make the result, a string.
3465
3466 The format control string may contain %-sequences meaning to substitute
3467 the next available argument:
3468
3469 %s means print a string argument. Actually, prints any object, with `princ'.
3470 %d means print as number in decimal (%o octal, %x hex).
3471 %X is like %x, but uses upper case.
3472 %e means print a number in exponential notation.
3473 %f means print a number in decimal-point notation.
3474 %g means print a number in exponential notation
3475 or decimal-point notation, whichever uses fewer characters.
3476 %c means print a number as a single character.
3477 %S means print any object as an s-expression (using `prin1').
3478
3479 The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3480 Use %% to put a single % into the output.
3481
3482 A %-sequence may contain optional flag, width, and precision
3483 specifiers, as follows:
3484
3485 %<flags><width><precision>character
3486
3487 where flags is [+ #-0]+, width is [0-9]+, and precision is .[0-9]+
3488
3489 The + flag character inserts a + before any positive number, while a
3490 space inserts a space before any positive number; these flags only
3491 affect %d, %e, %f, and %g sequences, and the + flag takes precedence.
3492 The # flag means to use an alternate display form for %o, %x, %X, %e,
3493 %f, and %g sequences. The - and 0 flags affect the width specifier,
3494 as described below.
3495
3496 The width specifier supplies a lower limit for the length of the
3497 printed representation. The padding, if any, normally goes on the
3498 left, but it goes on the right if the - flag is present. The padding
3499 character is normally a space, but it is 0 if the 0 flag is present.
3500 The - flag takes precedence over the 0 flag.
3501
3502 For %e, %f, and %g sequences, the number after the "." in the
3503 precision specifier says how many decimal places to show; if zero, the
3504 decimal point itself is omitted. For %s and %S, the precision
3505 specifier truncates the string to the given width.
3506
3507 usage: (format STRING &rest OBJECTS) */)
3508 (int nargs, register Lisp_Object *args)
3509 {
3510 register int n; /* The number of the next arg to substitute */
3511 register int total; /* An estimate of the final length */
3512 char *buf, *p;
3513 register unsigned char *format, *end, *format_start;
3514 int nchars;
3515 /* Nonzero if the output should be a multibyte string,
3516 which is true if any of the inputs is one. */
3517 int multibyte = 0;
3518 /* When we make a multibyte string, we must pay attention to the
3519 byte combining problem, i.e., a byte may be combined with a
3520 multibyte charcter of the previous string. This flag tells if we
3521 must consider such a situation or not. */
3522 int maybe_combine_byte;
3523 unsigned char *this_format;
3524 /* Precision for each spec, or -1, a flag value meaning no precision
3525 was given in that spec. Element 0, corresonding to the format
3526 string itself, will not be used. Element NARGS, corresponding to
3527 no argument, *will* be assigned to in the case that a `%' and `.'
3528 occur after the final format specifier. */
3529 int *precision = (int *) (alloca ((nargs + 1) * sizeof (int)));
3530 int longest_format;
3531 Lisp_Object val;
3532 int arg_intervals = 0;
3533 USE_SAFE_ALLOCA;
3534
3535 /* discarded[I] is 1 if byte I of the format
3536 string was not copied into the output.
3537 It is 2 if byte I was not the first byte of its character. */
3538 char *discarded = 0;
3539
3540 /* Each element records, for one argument,
3541 the start and end bytepos in the output string,
3542 and whether the argument is a string with intervals.
3543 info[0] is unused. Unused elements have -1 for start. */
3544 struct info
3545 {
3546 int start, end, intervals;
3547 } *info = 0;
3548
3549 /* It should not be necessary to GCPRO ARGS, because
3550 the caller in the interpreter should take care of that. */
3551
3552 /* Try to determine whether the result should be multibyte.
3553 This is not always right; sometimes the result needs to be multibyte
3554 because of an object that we will pass through prin1,
3555 and in that case, we won't know it here. */
3556 for (n = 0; n < nargs; n++)
3557 {
3558 if (STRINGP (args[n]) && STRING_MULTIBYTE (args[n]))
3559 multibyte = 1;
3560 /* Piggyback on this loop to initialize precision[N]. */
3561 precision[n] = -1;
3562 }
3563 precision[nargs] = -1;
3564
3565 CHECK_STRING (args[0]);
3566 /* We may have to change "%S" to "%s". */
3567 args[0] = Fcopy_sequence (args[0]);
3568
3569 /* GC should never happen here, so abort if it does. */
3570 abort_on_gc++;
3571
3572 /* If we start out planning a unibyte result,
3573 then discover it has to be multibyte, we jump back to retry.
3574 That can only happen from the first large while loop below. */
3575 retry:
3576
3577 format = SDATA (args[0]);
3578 format_start = format;
3579 end = format + SBYTES (args[0]);
3580 longest_format = 0;
3581
3582 /* Make room in result for all the non-%-codes in the control string. */
3583 total = 5 + CONVERTED_BYTE_SIZE (multibyte, args[0]) + 1;
3584
3585 /* Allocate the info and discarded tables. */
3586 {
3587 int nbytes = (nargs+1) * sizeof *info;
3588 int i;
3589 if (!info)
3590 info = (struct info *) alloca (nbytes);
3591 memset (info, 0, nbytes);
3592 for (i = 0; i <= nargs; i++)
3593 info[i].start = -1;
3594 if (!discarded)
3595 SAFE_ALLOCA (discarded, char *, SBYTES (args[0]));
3596 memset (discarded, 0, SBYTES (args[0]));
3597 }
3598
3599 /* Add to TOTAL enough space to hold the converted arguments. */
3600
3601 n = 0;
3602 while (format != end)
3603 if (*format++ == '%')
3604 {
3605 int thissize = 0;
3606 int actual_width = 0;
3607 unsigned char *this_format_start = format - 1;
3608 int field_width = 0;
3609
3610 /* General format specifications look like
3611
3612 '%' [flags] [field-width] [precision] format
3613
3614 where
3615
3616 flags ::= [-+ #0]+
3617 field-width ::= [0-9]+
3618 precision ::= '.' [0-9]*
3619
3620 If a field-width is specified, it specifies to which width
3621 the output should be padded with blanks, if the output
3622 string is shorter than field-width.
3623
3624 If precision is specified, it specifies the number of
3625 digits to print after the '.' for floats, or the max.
3626 number of chars to print from a string. */
3627
3628 while (format != end
3629 && (*format == '-' || *format == '0' || *format == '#'
3630 || * format == ' ' || *format == '+'))
3631 ++format;
3632
3633 if (*format >= '0' && *format <= '9')
3634 {
3635 for (field_width = 0; *format >= '0' && *format <= '9'; ++format)
3636 field_width = 10 * field_width + *format - '0';
3637 }
3638
3639 /* N is not incremented for another few lines below, so refer to
3640 element N+1 (which might be precision[NARGS]). */
3641 if (*format == '.')
3642 {
3643 ++format;
3644 for (precision[n+1] = 0; *format >= '0' && *format <= '9'; ++format)
3645 precision[n+1] = 10 * precision[n+1] + *format - '0';
3646 }
3647
3648 /* Extra +1 for 'l' that we may need to insert into the
3649 format. */
3650 if (format - this_format_start + 2 > longest_format)
3651 longest_format = format - this_format_start + 2;
3652
3653 if (format == end)
3654 error ("Format string ends in middle of format specifier");
3655 if (*format == '%')
3656 format++;
3657 else if (++n >= nargs)
3658 error ("Not enough arguments for format string");
3659 else if (*format == 'S')
3660 {
3661 /* For `S', prin1 the argument and then treat like a string. */
3662 register Lisp_Object tem;
3663 tem = Fprin1_to_string (args[n], Qnil);
3664 if (STRING_MULTIBYTE (tem) && ! multibyte)
3665 {
3666 multibyte = 1;
3667 goto retry;
3668 }
3669 args[n] = tem;
3670 /* If we restart the loop, we should not come here again
3671 because args[n] is now a string and calling
3672 Fprin1_to_string on it produces superflous double
3673 quotes. So, change "%S" to "%s" now. */
3674 *format = 's';
3675 goto string;
3676 }
3677 else if (SYMBOLP (args[n]))
3678 {
3679 args[n] = SYMBOL_NAME (args[n]);
3680 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3681 {
3682 multibyte = 1;
3683 goto retry;
3684 }
3685 goto string;
3686 }
3687 else if (STRINGP (args[n]))
3688 {
3689 string:
3690 if (*format != 's' && *format != 'S')
3691 error ("Format specifier doesn't match argument type");
3692 /* In the case (PRECISION[N] > 0), THISSIZE may not need
3693 to be as large as is calculated here. Easy check for
3694 the case PRECISION = 0. */
3695 thissize = precision[n] ? CONVERTED_BYTE_SIZE (multibyte, args[n]) : 0;
3696 /* The precision also constrains how much of the argument
3697 string will finally appear (Bug#5710). */
3698 actual_width = lisp_string_width (args[n], -1, NULL, NULL);
3699 if (precision[n] != -1)
3700 actual_width = min (actual_width, precision[n]);
3701 }
3702 /* Would get MPV otherwise, since Lisp_Int's `point' to low memory. */
3703 else if (INTEGERP (args[n]) && *format != 's')
3704 {
3705 /* The following loop assumes the Lisp type indicates
3706 the proper way to pass the argument.
3707 So make sure we have a flonum if the argument should
3708 be a double. */
3709 if (*format == 'e' || *format == 'f' || *format == 'g')
3710 args[n] = Ffloat (args[n]);
3711 else
3712 if (*format != 'd' && *format != 'o' && *format != 'x'
3713 && *format != 'i' && *format != 'X' && *format != 'c')
3714 error ("Invalid format operation %%%c", *format);
3715
3716 thissize = 30 + (precision[n] > 0 ? precision[n] : 0);
3717 if (*format == 'c')
3718 {
3719 if (! ASCII_CHAR_P (XINT (args[n]))
3720 /* Note: No one can remeber why we have to treat
3721 the character 0 as a multibyte character here.
3722 But, until it causes a real problem, let's
3723 don't change it. */
3724 || XINT (args[n]) == 0)
3725 {
3726 if (! multibyte)
3727 {
3728 multibyte = 1;
3729 goto retry;
3730 }
3731 args[n] = Fchar_to_string (args[n]);
3732 thissize = SBYTES (args[n]);
3733 }
3734 else if (! ASCII_BYTE_P (XINT (args[n])) && multibyte)
3735 {
3736 args[n]
3737 = Fchar_to_string (Funibyte_char_to_multibyte (args[n]));
3738 thissize = SBYTES (args[n]);
3739 }
3740 }
3741 }
3742 else if (FLOATP (args[n]) && *format != 's')
3743 {
3744 if (! (*format == 'e' || *format == 'f' || *format == 'g'))
3745 {
3746 if (*format != 'd' && *format != 'o' && *format != 'x'
3747 && *format != 'i' && *format != 'X' && *format != 'c')
3748 error ("Invalid format operation %%%c", *format);
3749 /* This fails unnecessarily if args[n] is bigger than
3750 most-positive-fixnum but smaller than MAXINT.
3751 These cases are important because we sometimes use floats
3752 to represent such integer values (typically such values
3753 come from UIDs or PIDs). */
3754 /* args[n] = Ftruncate (args[n], Qnil); */
3755 }
3756
3757 /* Note that we're using sprintf to print floats,
3758 so we have to take into account what that function
3759 prints. */
3760 /* Filter out flag value of -1. */
3761 thissize = (MAX_10_EXP + 100
3762 + (precision[n] > 0 ? precision[n] : 0));
3763 }
3764 else
3765 {
3766 /* Anything but a string, convert to a string using princ. */
3767 register Lisp_Object tem;
3768 tem = Fprin1_to_string (args[n], Qt);
3769 if (STRING_MULTIBYTE (tem) && ! multibyte)
3770 {
3771 multibyte = 1;
3772 goto retry;
3773 }
3774 args[n] = tem;
3775 goto string;
3776 }
3777
3778 thissize += max (0, field_width - actual_width);
3779 total += thissize + 4;
3780 }
3781
3782 abort_on_gc--;
3783
3784 /* Now we can no longer jump to retry.
3785 TOTAL and LONGEST_FORMAT are known for certain. */
3786
3787 this_format = (unsigned char *) alloca (longest_format + 1);
3788
3789 /* Allocate the space for the result.
3790 Note that TOTAL is an overestimate. */
3791 SAFE_ALLOCA (buf, char *, total);
3792
3793 p = buf;
3794 nchars = 0;
3795 n = 0;
3796
3797 /* Scan the format and store result in BUF. */
3798 format = SDATA (args[0]);
3799 format_start = format;
3800 end = format + SBYTES (args[0]);
3801 maybe_combine_byte = 0;
3802 while (format != end)
3803 {
3804 if (*format == '%')
3805 {
3806 int minlen;
3807 int negative = 0;
3808 unsigned char *this_format_start = format;
3809
3810 discarded[format - format_start] = 1;
3811 format++;
3812
3813 while (strchr ("-+0# ", *format))
3814 {
3815 if (*format == '-')
3816 {
3817 negative = 1;
3818 }
3819 discarded[format - format_start] = 1;
3820 ++format;
3821 }
3822
3823 minlen = atoi (format);
3824
3825 while ((*format >= '0' && *format <= '9') || *format == '.')
3826 {
3827 discarded[format - format_start] = 1;
3828 format++;
3829 }
3830
3831 if (*format++ == '%')
3832 {
3833 *p++ = '%';
3834 nchars++;
3835 continue;
3836 }
3837
3838 ++n;
3839
3840 discarded[format - format_start - 1] = 1;
3841 info[n].start = nchars;
3842
3843 if (STRINGP (args[n]))
3844 {
3845 /* handle case (precision[n] >= 0) */
3846
3847 int width, padding;
3848 int nbytes, start, end;
3849 int nchars_string;
3850
3851 /* lisp_string_width ignores a precision of 0, but GNU
3852 libc functions print 0 characters when the precision
3853 is 0. Imitate libc behavior here. Changing
3854 lisp_string_width is the right thing, and will be
3855 done, but meanwhile we work with it. */
3856
3857 if (precision[n] == 0)
3858 width = nchars_string = nbytes = 0;
3859 else if (precision[n] > 0)
3860 width = lisp_string_width (args[n], precision[n], &nchars_string, &nbytes);
3861 else
3862 { /* no precision spec given for this argument */
3863 width = lisp_string_width (args[n], -1, NULL, NULL);
3864 nbytes = SBYTES (args[n]);
3865 nchars_string = SCHARS (args[n]);
3866 }
3867
3868 /* If spec requires it, pad on right with spaces. */
3869 padding = minlen - width;
3870 if (! negative)
3871 while (padding-- > 0)
3872 {
3873 *p++ = ' ';
3874 ++nchars;
3875 }
3876
3877 info[n].start = start = nchars;
3878 nchars += nchars_string;
3879 end = nchars;
3880
3881 if (p > buf
3882 && multibyte
3883 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3884 && STRING_MULTIBYTE (args[n])
3885 && !CHAR_HEAD_P (SREF (args[n], 0)))
3886 maybe_combine_byte = 1;
3887
3888 p += copy_text (SDATA (args[n]), p,
3889 nbytes,
3890 STRING_MULTIBYTE (args[n]), multibyte);
3891
3892 info[n].end = nchars;
3893
3894 if (negative)
3895 while (padding-- > 0)
3896 {
3897 *p++ = ' ';
3898 nchars++;
3899 }
3900
3901 /* If this argument has text properties, record where
3902 in the result string it appears. */
3903 if (STRING_INTERVALS (args[n]))
3904 info[n].intervals = arg_intervals = 1;
3905 }
3906 else if (INTEGERP (args[n]) || FLOATP (args[n]))
3907 {
3908 int this_nchars;
3909
3910 memcpy (this_format, this_format_start,
3911 format - this_format_start);
3912 this_format[format - this_format_start] = 0;
3913
3914 if (format[-1] == 'e' || format[-1] == 'f' || format[-1] == 'g')
3915 sprintf (p, this_format, XFLOAT_DATA (args[n]));
3916 else
3917 {
3918 if (sizeof (EMACS_INT) > sizeof (int)
3919 && format[-1] != 'c')
3920 {
3921 /* Insert 'l' before format spec. */
3922 this_format[format - this_format_start]
3923 = this_format[format - this_format_start - 1];
3924 this_format[format - this_format_start - 1] = 'l';
3925 this_format[format - this_format_start + 1] = 0;
3926 }
3927
3928 if (INTEGERP (args[n]))
3929 {
3930 if (format[-1] == 'c')
3931 sprintf (p, this_format, (int) XINT (args[n]));
3932 else if (format[-1] == 'd')
3933 sprintf (p, this_format, XINT (args[n]));
3934 /* Don't sign-extend for octal or hex printing. */
3935 else
3936 sprintf (p, this_format, XUINT (args[n]));
3937 }
3938 else if (format[-1] == 'c')
3939 sprintf (p, this_format, (int) XFLOAT_DATA (args[n]));
3940 else if (format[-1] == 'd')
3941 /* Maybe we should use "%1.0f" instead so it also works
3942 for values larger than MAXINT. */
3943 sprintf (p, this_format, (EMACS_INT) XFLOAT_DATA (args[n]));
3944 else
3945 /* Don't sign-extend for octal or hex printing. */
3946 sprintf (p, this_format, (EMACS_UINT) XFLOAT_DATA (args[n]));
3947 }
3948
3949 if (p > buf
3950 && multibyte
3951 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3952 && !CHAR_HEAD_P (*((unsigned char *) p)))
3953 maybe_combine_byte = 1;
3954 this_nchars = strlen (p);
3955 if (multibyte)
3956 p += str_to_multibyte (p, buf + total - 1 - p, this_nchars);
3957 else
3958 p += this_nchars;
3959 nchars += this_nchars;
3960 info[n].end = nchars;
3961 }
3962
3963 }
3964 else if (STRING_MULTIBYTE (args[0]))
3965 {
3966 /* Copy a whole multibyte character. */
3967 if (p > buf
3968 && multibyte
3969 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3970 && !CHAR_HEAD_P (*format))
3971 maybe_combine_byte = 1;
3972 *p++ = *format++;
3973 while (! CHAR_HEAD_P (*format))
3974 {
3975 discarded[format - format_start] = 2;
3976 *p++ = *format++;
3977 }
3978 nchars++;
3979 }
3980 else if (multibyte)
3981 {
3982 /* Convert a single-byte character to multibyte. */
3983 int len = copy_text (format, p, 1, 0, 1);
3984
3985 p += len;
3986 format++;
3987 nchars++;
3988 }
3989 else
3990 *p++ = *format++, nchars++;
3991 }
3992
3993 if (p > buf + total)
3994 abort ();
3995
3996 if (maybe_combine_byte)
3997 nchars = multibyte_chars_in_text (buf, p - buf);
3998 val = make_specified_string (buf, nchars, p - buf, multibyte);
3999
4000 /* If we allocated BUF with malloc, free it too. */
4001 SAFE_FREE ();
4002
4003 /* If the format string has text properties, or any of the string
4004 arguments has text properties, set up text properties of the
4005 result string. */
4006
4007 if (STRING_INTERVALS (args[0]) || arg_intervals)
4008 {
4009 Lisp_Object len, new_len, props;
4010 struct gcpro gcpro1;
4011
4012 /* Add text properties from the format string. */
4013 len = make_number (SCHARS (args[0]));
4014 props = text_property_list (args[0], make_number (0), len, Qnil);
4015 GCPRO1 (props);
4016
4017 if (CONSP (props))
4018 {
4019 int bytepos = 0, position = 0, translated = 0, argn = 1;
4020 Lisp_Object list;
4021
4022 /* Adjust the bounds of each text property
4023 to the proper start and end in the output string. */
4024
4025 /* Put the positions in PROPS in increasing order, so that
4026 we can do (effectively) one scan through the position
4027 space of the format string. */
4028 props = Fnreverse (props);
4029
4030 /* BYTEPOS is the byte position in the format string,
4031 POSITION is the untranslated char position in it,
4032 TRANSLATED is the translated char position in BUF,
4033 and ARGN is the number of the next arg we will come to. */
4034 for (list = props; CONSP (list); list = XCDR (list))
4035 {
4036 Lisp_Object item;
4037 int pos;
4038
4039 item = XCAR (list);
4040
4041 /* First adjust the property start position. */
4042 pos = XINT (XCAR (item));
4043
4044 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
4045 up to this position. */
4046 for (; position < pos; bytepos++)
4047 {
4048 if (! discarded[bytepos])
4049 position++, translated++;
4050 else if (discarded[bytepos] == 1)
4051 {
4052 position++;
4053 if (translated == info[argn].start)
4054 {
4055 translated += info[argn].end - info[argn].start;
4056 argn++;
4057 }
4058 }
4059 }
4060
4061 XSETCAR (item, make_number (translated));
4062
4063 /* Likewise adjust the property end position. */
4064 pos = XINT (XCAR (XCDR (item)));
4065
4066 for (; position < pos; bytepos++)
4067 {
4068 if (! discarded[bytepos])
4069 position++, translated++;
4070 else if (discarded[bytepos] == 1)
4071 {
4072 position++;
4073 if (translated == info[argn].start)
4074 {
4075 translated += info[argn].end - info[argn].start;
4076 argn++;
4077 }
4078 }
4079 }
4080
4081 XSETCAR (XCDR (item), make_number (translated));
4082 }
4083
4084 add_text_properties_from_list (val, props, make_number (0));
4085 }
4086
4087 /* Add text properties from arguments. */
4088 if (arg_intervals)
4089 for (n = 1; n < nargs; ++n)
4090 if (info[n].intervals)
4091 {
4092 len = make_number (SCHARS (args[n]));
4093 new_len = make_number (info[n].end - info[n].start);
4094 props = text_property_list (args[n], make_number (0), len, Qnil);
4095 props = extend_property_ranges (props, new_len);
4096 /* If successive arguments have properties, be sure that
4097 the value of `composition' property be the copy. */
4098 if (n > 1 && info[n - 1].end)
4099 make_composition_value_copy (props);
4100 add_text_properties_from_list (val, props,
4101 make_number (info[n].start));
4102 }
4103
4104 UNGCPRO;
4105 }
4106
4107 return val;
4108 }
4109
4110 Lisp_Object
4111 format2 (const char *string1, Lisp_Object arg0, Lisp_Object arg1)
4112 {
4113 Lisp_Object args[3];
4114 args[0] = build_string (string1);
4115 args[1] = arg0;
4116 args[2] = arg1;
4117 return Fformat (3, args);
4118 }
4119 \f
4120 DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
4121 doc: /* Return t if two characters match, optionally ignoring case.
4122 Both arguments must be characters (i.e. integers).
4123 Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
4124 (register Lisp_Object c1, Lisp_Object c2)
4125 {
4126 int i1, i2;
4127 /* Check they're chars, not just integers, otherwise we could get array
4128 bounds violations in DOWNCASE. */
4129 CHECK_CHARACTER (c1);
4130 CHECK_CHARACTER (c2);
4131
4132 if (XINT (c1) == XINT (c2))
4133 return Qt;
4134 if (NILP (current_buffer->case_fold_search))
4135 return Qnil;
4136
4137 /* Do these in separate statements,
4138 then compare the variables.
4139 because of the way DOWNCASE uses temp variables. */
4140 i1 = XFASTINT (c1);
4141 if (NILP (current_buffer->enable_multibyte_characters)
4142 && ! ASCII_CHAR_P (i1))
4143 {
4144 MAKE_CHAR_MULTIBYTE (i1);
4145 }
4146 i2 = XFASTINT (c2);
4147 if (NILP (current_buffer->enable_multibyte_characters)
4148 && ! ASCII_CHAR_P (i2))
4149 {
4150 MAKE_CHAR_MULTIBYTE (i2);
4151 }
4152 i1 = DOWNCASE (i1);
4153 i2 = DOWNCASE (i2);
4154 return (i1 == i2 ? Qt : Qnil);
4155 }
4156 \f
4157 /* Transpose the markers in two regions of the current buffer, and
4158 adjust the ones between them if necessary (i.e.: if the regions
4159 differ in size).
4160
4161 START1, END1 are the character positions of the first region.
4162 START1_BYTE, END1_BYTE are the byte positions.
4163 START2, END2 are the character positions of the second region.
4164 START2_BYTE, END2_BYTE are the byte positions.
4165
4166 Traverses the entire marker list of the buffer to do so, adding an
4167 appropriate amount to some, subtracting from some, and leaving the
4168 rest untouched. Most of this is copied from adjust_markers in insdel.c.
4169
4170 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
4171
4172 static void
4173 transpose_markers (int start1, int end1, int start2, int end2,
4174 int start1_byte, int end1_byte,
4175 int start2_byte, int end2_byte)
4176 {
4177 register int amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
4178 register struct Lisp_Marker *marker;
4179
4180 /* Update point as if it were a marker. */
4181 if (PT < start1)
4182 ;
4183 else if (PT < end1)
4184 TEMP_SET_PT_BOTH (PT + (end2 - end1),
4185 PT_BYTE + (end2_byte - end1_byte));
4186 else if (PT < start2)
4187 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
4188 (PT_BYTE + (end2_byte - start2_byte)
4189 - (end1_byte - start1_byte)));
4190 else if (PT < end2)
4191 TEMP_SET_PT_BOTH (PT - (start2 - start1),
4192 PT_BYTE - (start2_byte - start1_byte));
4193
4194 /* We used to adjust the endpoints here to account for the gap, but that
4195 isn't good enough. Even if we assume the caller has tried to move the
4196 gap out of our way, it might still be at start1 exactly, for example;
4197 and that places it `inside' the interval, for our purposes. The amount
4198 of adjustment is nontrivial if there's a `denormalized' marker whose
4199 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
4200 the dirty work to Fmarker_position, below. */
4201
4202 /* The difference between the region's lengths */
4203 diff = (end2 - start2) - (end1 - start1);
4204 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
4205
4206 /* For shifting each marker in a region by the length of the other
4207 region plus the distance between the regions. */
4208 amt1 = (end2 - start2) + (start2 - end1);
4209 amt2 = (end1 - start1) + (start2 - end1);
4210 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
4211 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
4212
4213 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
4214 {
4215 mpos = marker->bytepos;
4216 if (mpos >= start1_byte && mpos < end2_byte)
4217 {
4218 if (mpos < end1_byte)
4219 mpos += amt1_byte;
4220 else if (mpos < start2_byte)
4221 mpos += diff_byte;
4222 else
4223 mpos -= amt2_byte;
4224 marker->bytepos = mpos;
4225 }
4226 mpos = marker->charpos;
4227 if (mpos >= start1 && mpos < end2)
4228 {
4229 if (mpos < end1)
4230 mpos += amt1;
4231 else if (mpos < start2)
4232 mpos += diff;
4233 else
4234 mpos -= amt2;
4235 }
4236 marker->charpos = mpos;
4237 }
4238 }
4239
4240 DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
4241 doc: /* Transpose region STARTR1 to ENDR1 with STARTR2 to ENDR2.
4242 The regions should not be overlapping, because the size of the buffer is
4243 never changed in a transposition.
4244
4245 Optional fifth arg LEAVE-MARKERS, if non-nil, means don't update
4246 any markers that happen to be located in the regions.
4247
4248 Transposing beyond buffer boundaries is an error. */)
4249 (Lisp_Object startr1, Lisp_Object endr1, Lisp_Object startr2, Lisp_Object endr2, Lisp_Object leave_markers)
4250 {
4251 register EMACS_INT start1, end1, start2, end2;
4252 EMACS_INT start1_byte, start2_byte, len1_byte, len2_byte;
4253 EMACS_INT gap, len1, len_mid, len2;
4254 unsigned char *start1_addr, *start2_addr, *temp;
4255
4256 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2, tmp_interval3;
4257 Lisp_Object buf;
4258
4259 XSETBUFFER (buf, current_buffer);
4260 cur_intv = BUF_INTERVALS (current_buffer);
4261
4262 validate_region (&startr1, &endr1);
4263 validate_region (&startr2, &endr2);
4264
4265 start1 = XFASTINT (startr1);
4266 end1 = XFASTINT (endr1);
4267 start2 = XFASTINT (startr2);
4268 end2 = XFASTINT (endr2);
4269 gap = GPT;
4270
4271 /* Swap the regions if they're reversed. */
4272 if (start2 < end1)
4273 {
4274 register int glumph = start1;
4275 start1 = start2;
4276 start2 = glumph;
4277 glumph = end1;
4278 end1 = end2;
4279 end2 = glumph;
4280 }
4281
4282 len1 = end1 - start1;
4283 len2 = end2 - start2;
4284
4285 if (start2 < end1)
4286 error ("Transposed regions overlap");
4287 else if (start1 == end1 || start2 == end2)
4288 error ("Transposed region has length 0");
4289
4290 /* The possibilities are:
4291 1. Adjacent (contiguous) regions, or separate but equal regions
4292 (no, really equal, in this case!), or
4293 2. Separate regions of unequal size.
4294
4295 The worst case is usually No. 2. It means that (aside from
4296 potential need for getting the gap out of the way), there also
4297 needs to be a shifting of the text between the two regions. So
4298 if they are spread far apart, we are that much slower... sigh. */
4299
4300 /* It must be pointed out that the really studly thing to do would
4301 be not to move the gap at all, but to leave it in place and work
4302 around it if necessary. This would be extremely efficient,
4303 especially considering that people are likely to do
4304 transpositions near where they are working interactively, which
4305 is exactly where the gap would be found. However, such code
4306 would be much harder to write and to read. So, if you are
4307 reading this comment and are feeling squirrely, by all means have
4308 a go! I just didn't feel like doing it, so I will simply move
4309 the gap the minimum distance to get it out of the way, and then
4310 deal with an unbroken array. */
4311
4312 /* Make sure the gap won't interfere, by moving it out of the text
4313 we will operate on. */
4314 if (start1 < gap && gap < end2)
4315 {
4316 if (gap - start1 < end2 - gap)
4317 move_gap (start1);
4318 else
4319 move_gap (end2);
4320 }
4321
4322 start1_byte = CHAR_TO_BYTE (start1);
4323 start2_byte = CHAR_TO_BYTE (start2);
4324 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
4325 len2_byte = CHAR_TO_BYTE (end2) - start2_byte;
4326
4327 #ifdef BYTE_COMBINING_DEBUG
4328 if (end1 == start2)
4329 {
4330 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4331 len2_byte, start1, start1_byte)
4332 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4333 len1_byte, end2, start2_byte + len2_byte)
4334 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4335 len1_byte, end2, start2_byte + len2_byte))
4336 abort ();
4337 }
4338 else
4339 {
4340 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4341 len2_byte, start1, start1_byte)
4342 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4343 len1_byte, start2, start2_byte)
4344 || count_combining_after (BYTE_POS_ADDR (start2_byte),
4345 len2_byte, end1, start1_byte + len1_byte)
4346 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4347 len1_byte, end2, start2_byte + len2_byte))
4348 abort ();
4349 }
4350 #endif
4351
4352 /* Hmmm... how about checking to see if the gap is large
4353 enough to use as the temporary storage? That would avoid an
4354 allocation... interesting. Later, don't fool with it now. */
4355
4356 /* Working without memmove, for portability (sigh), so must be
4357 careful of overlapping subsections of the array... */
4358
4359 if (end1 == start2) /* adjacent regions */
4360 {
4361 modify_region (current_buffer, start1, end2, 0);
4362 record_change (start1, len1 + len2);
4363
4364 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4365 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4366 /* Don't use Fset_text_properties: that can cause GC, which can
4367 clobber objects stored in the tmp_intervals. */
4368 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4369 if (!NULL_INTERVAL_P (tmp_interval3))
4370 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4371
4372 /* First region smaller than second. */
4373 if (len1_byte < len2_byte)
4374 {
4375 USE_SAFE_ALLOCA;
4376
4377 SAFE_ALLOCA (temp, unsigned char *, len2_byte);
4378
4379 /* Don't precompute these addresses. We have to compute them
4380 at the last minute, because the relocating allocator might
4381 have moved the buffer around during the xmalloc. */
4382 start1_addr = BYTE_POS_ADDR (start1_byte);
4383 start2_addr = BYTE_POS_ADDR (start2_byte);
4384
4385 memcpy (temp, start2_addr, len2_byte);
4386 memcpy (start1_addr + len2_byte, start1_addr, len1_byte);
4387 memcpy (start1_addr, temp, len2_byte);
4388 SAFE_FREE ();
4389 }
4390 else
4391 /* First region not smaller than second. */
4392 {
4393 USE_SAFE_ALLOCA;
4394
4395 SAFE_ALLOCA (temp, unsigned char *, len1_byte);
4396 start1_addr = BYTE_POS_ADDR (start1_byte);
4397 start2_addr = BYTE_POS_ADDR (start2_byte);
4398 memcpy (temp, start1_addr, len1_byte);
4399 memcpy (start1_addr, start2_addr, len2_byte);
4400 memcpy (start1_addr + len2_byte, temp, len1_byte);
4401 SAFE_FREE ();
4402 }
4403 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4404 len1, current_buffer, 0);
4405 graft_intervals_into_buffer (tmp_interval2, start1,
4406 len2, current_buffer, 0);
4407 update_compositions (start1, start1 + len2, CHECK_BORDER);
4408 update_compositions (start1 + len2, end2, CHECK_TAIL);
4409 }
4410 /* Non-adjacent regions, because end1 != start2, bleagh... */
4411 else
4412 {
4413 len_mid = start2_byte - (start1_byte + len1_byte);
4414
4415 if (len1_byte == len2_byte)
4416 /* Regions are same size, though, how nice. */
4417 {
4418 USE_SAFE_ALLOCA;
4419
4420 modify_region (current_buffer, start1, end1, 0);
4421 modify_region (current_buffer, start2, end2, 0);
4422 record_change (start1, len1);
4423 record_change (start2, len2);
4424 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4425 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4426
4427 tmp_interval3 = validate_interval_range (buf, &startr1, &endr1, 0);
4428 if (!NULL_INTERVAL_P (tmp_interval3))
4429 set_text_properties_1 (startr1, endr1, Qnil, buf, tmp_interval3);
4430
4431 tmp_interval3 = validate_interval_range (buf, &startr2, &endr2, 0);
4432 if (!NULL_INTERVAL_P (tmp_interval3))
4433 set_text_properties_1 (startr2, endr2, Qnil, buf, tmp_interval3);
4434
4435 SAFE_ALLOCA (temp, unsigned char *, len1_byte);
4436 start1_addr = BYTE_POS_ADDR (start1_byte);
4437 start2_addr = BYTE_POS_ADDR (start2_byte);
4438 memcpy (temp, start1_addr, len1_byte);
4439 memcpy (start1_addr, start2_addr, len2_byte);
4440 memcpy (start2_addr, temp, len1_byte);
4441 SAFE_FREE ();
4442
4443 graft_intervals_into_buffer (tmp_interval1, start2,
4444 len1, current_buffer, 0);
4445 graft_intervals_into_buffer (tmp_interval2, start1,
4446 len2, current_buffer, 0);
4447 }
4448
4449 else if (len1_byte < len2_byte) /* Second region larger than first */
4450 /* Non-adjacent & unequal size, area between must also be shifted. */
4451 {
4452 USE_SAFE_ALLOCA;
4453
4454 modify_region (current_buffer, start1, end2, 0);
4455 record_change (start1, (end2 - start1));
4456 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4457 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4458 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4459
4460 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4461 if (!NULL_INTERVAL_P (tmp_interval3))
4462 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4463
4464 /* holds region 2 */
4465 SAFE_ALLOCA (temp, unsigned char *, len2_byte);
4466 start1_addr = BYTE_POS_ADDR (start1_byte);
4467 start2_addr = BYTE_POS_ADDR (start2_byte);
4468 memcpy (temp, start2_addr, len2_byte);
4469 memcpy (start1_addr + len_mid + len2_byte, start1_addr, len1_byte);
4470 memmove (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4471 memcpy (start1_addr, temp, len2_byte);
4472 SAFE_FREE ();
4473
4474 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4475 len1, current_buffer, 0);
4476 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4477 len_mid, current_buffer, 0);
4478 graft_intervals_into_buffer (tmp_interval2, start1,
4479 len2, current_buffer, 0);
4480 }
4481 else
4482 /* Second region smaller than first. */
4483 {
4484 USE_SAFE_ALLOCA;
4485
4486 record_change (start1, (end2 - start1));
4487 modify_region (current_buffer, start1, end2, 0);
4488
4489 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4490 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4491 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4492
4493 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4494 if (!NULL_INTERVAL_P (tmp_interval3))
4495 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4496
4497 /* holds region 1 */
4498 SAFE_ALLOCA (temp, unsigned char *, len1_byte);
4499 start1_addr = BYTE_POS_ADDR (start1_byte);
4500 start2_addr = BYTE_POS_ADDR (start2_byte);
4501 memcpy (temp, start1_addr, len1_byte);
4502 memcpy (start1_addr, start2_addr, len2_byte);
4503 memcpy (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4504 memcpy (start1_addr + len2_byte + len_mid, temp, len1_byte);
4505 SAFE_FREE ();
4506
4507 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4508 len1, current_buffer, 0);
4509 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4510 len_mid, current_buffer, 0);
4511 graft_intervals_into_buffer (tmp_interval2, start1,
4512 len2, current_buffer, 0);
4513 }
4514
4515 update_compositions (start1, start1 + len2, CHECK_BORDER);
4516 update_compositions (end2 - len1, end2, CHECK_BORDER);
4517 }
4518
4519 /* When doing multiple transpositions, it might be nice
4520 to optimize this. Perhaps the markers in any one buffer
4521 should be organized in some sorted data tree. */
4522 if (NILP (leave_markers))
4523 {
4524 transpose_markers (start1, end1, start2, end2,
4525 start1_byte, start1_byte + len1_byte,
4526 start2_byte, start2_byte + len2_byte);
4527 fix_start_end_in_overlays (start1, end2);
4528 }
4529
4530 signal_after_change (start1, end2 - start1, end2 - start1);
4531 return Qnil;
4532 }
4533
4534 \f
4535 void
4536 syms_of_editfns (void)
4537 {
4538 environbuf = 0;
4539 initial_tz = 0;
4540
4541 Qbuffer_access_fontify_functions
4542 = intern_c_string ("buffer-access-fontify-functions");
4543 staticpro (&Qbuffer_access_fontify_functions);
4544
4545 DEFVAR_LISP ("inhibit-field-text-motion", &Vinhibit_field_text_motion,
4546 doc: /* Non-nil means text motion commands don't notice fields. */);
4547 Vinhibit_field_text_motion = Qnil;
4548
4549 DEFVAR_LISP ("buffer-access-fontify-functions",
4550 &Vbuffer_access_fontify_functions,
4551 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
4552 Each function is called with two arguments which specify the range
4553 of the buffer being accessed. */);
4554 Vbuffer_access_fontify_functions = Qnil;
4555
4556 {
4557 Lisp_Object obuf;
4558 obuf = Fcurrent_buffer ();
4559 /* Do this here, because init_buffer_once is too early--it won't work. */
4560 Fset_buffer (Vprin1_to_string_buffer);
4561 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
4562 Fset (Fmake_local_variable (intern_c_string ("buffer-access-fontify-functions")),
4563 Qnil);
4564 Fset_buffer (obuf);
4565 }
4566
4567 DEFVAR_LISP ("buffer-access-fontified-property",
4568 &Vbuffer_access_fontified_property,
4569 doc: /* Property which (if non-nil) indicates text has been fontified.
4570 `buffer-substring' need not call the `buffer-access-fontify-functions'
4571 functions if all the text being accessed has this property. */);
4572 Vbuffer_access_fontified_property = Qnil;
4573
4574 DEFVAR_LISP ("system-name", &Vsystem_name,
4575 doc: /* The host name of the machine Emacs is running on. */);
4576
4577 DEFVAR_LISP ("user-full-name", &Vuser_full_name,
4578 doc: /* The full name of the user logged in. */);
4579
4580 DEFVAR_LISP ("user-login-name", &Vuser_login_name,
4581 doc: /* The user's name, taken from environment variables if possible. */);
4582
4583 DEFVAR_LISP ("user-real-login-name", &Vuser_real_login_name,
4584 doc: /* The user's name, based upon the real uid only. */);
4585
4586 DEFVAR_LISP ("operating-system-release", &Voperating_system_release,
4587 doc: /* The release of the operating system Emacs is running on. */);
4588
4589 defsubr (&Spropertize);
4590 defsubr (&Schar_equal);
4591 defsubr (&Sgoto_char);
4592 defsubr (&Sstring_to_char);
4593 defsubr (&Schar_to_string);
4594 defsubr (&Sbyte_to_string);
4595 defsubr (&Sbuffer_substring);
4596 defsubr (&Sbuffer_substring_no_properties);
4597 defsubr (&Sbuffer_string);
4598
4599 defsubr (&Spoint_marker);
4600 defsubr (&Smark_marker);
4601 defsubr (&Spoint);
4602 defsubr (&Sregion_beginning);
4603 defsubr (&Sregion_end);
4604
4605 staticpro (&Qfield);
4606 Qfield = intern_c_string ("field");
4607 staticpro (&Qboundary);
4608 Qboundary = intern_c_string ("boundary");
4609 defsubr (&Sfield_beginning);
4610 defsubr (&Sfield_end);
4611 defsubr (&Sfield_string);
4612 defsubr (&Sfield_string_no_properties);
4613 defsubr (&Sdelete_field);
4614 defsubr (&Sconstrain_to_field);
4615
4616 defsubr (&Sline_beginning_position);
4617 defsubr (&Sline_end_position);
4618
4619 /* defsubr (&Smark); */
4620 /* defsubr (&Sset_mark); */
4621 defsubr (&Ssave_excursion);
4622 defsubr (&Ssave_current_buffer);
4623
4624 defsubr (&Sbufsize);
4625 defsubr (&Spoint_max);
4626 defsubr (&Spoint_min);
4627 defsubr (&Spoint_min_marker);
4628 defsubr (&Spoint_max_marker);
4629 defsubr (&Sgap_position);
4630 defsubr (&Sgap_size);
4631 defsubr (&Sposition_bytes);
4632 defsubr (&Sbyte_to_position);
4633
4634 defsubr (&Sbobp);
4635 defsubr (&Seobp);
4636 defsubr (&Sbolp);
4637 defsubr (&Seolp);
4638 defsubr (&Sfollowing_char);
4639 defsubr (&Sprevious_char);
4640 defsubr (&Schar_after);
4641 defsubr (&Schar_before);
4642 defsubr (&Sinsert);
4643 defsubr (&Sinsert_before_markers);
4644 defsubr (&Sinsert_and_inherit);
4645 defsubr (&Sinsert_and_inherit_before_markers);
4646 defsubr (&Sinsert_char);
4647 defsubr (&Sinsert_byte);
4648
4649 defsubr (&Suser_login_name);
4650 defsubr (&Suser_real_login_name);
4651 defsubr (&Suser_uid);
4652 defsubr (&Suser_real_uid);
4653 defsubr (&Suser_full_name);
4654 defsubr (&Semacs_pid);
4655 defsubr (&Scurrent_time);
4656 defsubr (&Sget_internal_run_time);
4657 defsubr (&Sformat_time_string);
4658 defsubr (&Sfloat_time);
4659 defsubr (&Sdecode_time);
4660 defsubr (&Sencode_time);
4661 defsubr (&Scurrent_time_string);
4662 defsubr (&Scurrent_time_zone);
4663 defsubr (&Sset_time_zone_rule);
4664 defsubr (&Ssystem_name);
4665 defsubr (&Smessage);
4666 defsubr (&Smessage_box);
4667 defsubr (&Smessage_or_box);
4668 defsubr (&Scurrent_message);
4669 defsubr (&Sformat);
4670
4671 defsubr (&Sinsert_buffer_substring);
4672 defsubr (&Scompare_buffer_substrings);
4673 defsubr (&Ssubst_char_in_region);
4674 defsubr (&Stranslate_region_internal);
4675 defsubr (&Sdelete_region);
4676 defsubr (&Sdelete_and_extract_region);
4677 defsubr (&Swiden);
4678 defsubr (&Snarrow_to_region);
4679 defsubr (&Ssave_restriction);
4680 defsubr (&Stranspose_regions);
4681 }
4682
4683 /* arch-tag: fc3827d8-6f60-4067-b11e-c3218031b018
4684 (do not change this comment) */