Fix message-box and avoid compilation warnings.
[bpt/emacs.git] / src / editfns.c
1 /* Lisp functions pertaining to editing.
2
3 Copyright (C) 1985-1987, 1989, 1993-2013 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include <config.h>
22 #include <sys/types.h>
23 #include <stdio.h>
24
25 #ifdef HAVE_PWD_H
26 #include <pwd.h>
27 #include <grp.h>
28 #endif
29
30 #include <unistd.h>
31
32 #ifdef HAVE_SYS_UTSNAME_H
33 #include <sys/utsname.h>
34 #endif
35
36 #include "lisp.h"
37
38 /* systime.h includes <sys/time.h> which, on some systems, is required
39 for <sys/resource.h>; thus systime.h must be included before
40 <sys/resource.h> */
41 #include "systime.h"
42
43 #if defined HAVE_SYS_RESOURCE_H
44 #include <sys/resource.h>
45 #endif
46
47 #include <float.h>
48 #include <limits.h>
49 #include <intprops.h>
50 #include <strftime.h>
51 #include <verify.h>
52
53 #include "intervals.h"
54 #include "character.h"
55 #include "buffer.h"
56 #include "coding.h"
57 #include "frame.h"
58 #include "window.h"
59 #include "blockinput.h"
60
61 #define TM_YEAR_BASE 1900
62
63 #ifdef WINDOWSNT
64 extern Lisp_Object w32_get_internal_run_time (void);
65 #endif
66
67 static Lisp_Object format_time_string (char const *, ptrdiff_t, struct timespec,
68 bool, struct tm *);
69 static int tm_diff (struct tm *, struct tm *);
70 static void update_buffer_properties (ptrdiff_t, ptrdiff_t);
71
72 static Lisp_Object Qbuffer_access_fontify_functions;
73
74 /* Symbol for the text property used to mark fields. */
75
76 Lisp_Object Qfield;
77
78 /* A special value for Qfield properties. */
79
80 static Lisp_Object Qboundary;
81
82 /* The startup value of the TZ environment variable so it can be
83 restored if the user calls set-time-zone-rule with a nil
84 argument. If null, the TZ environment variable was unset. */
85 static char const *initial_tz;
86
87 /* True if the static variable tzvalbuf (defined in
88 set_time_zone_rule) is part of 'environ'. */
89 static bool tzvalbuf_in_environ;
90
91
92 void
93 init_editfns (void)
94 {
95 const char *user_name;
96 register char *p;
97 struct passwd *pw; /* password entry for the current user */
98 Lisp_Object tem;
99
100 /* Set up system_name even when dumping. */
101 init_system_name ();
102
103 #ifndef CANNOT_DUMP
104 /* Don't bother with this on initial start when just dumping out */
105 if (!initialized)
106 return;
107 #endif /* not CANNOT_DUMP */
108
109 initial_tz = getenv ("TZ");
110 tzvalbuf_in_environ = 0;
111
112 pw = getpwuid (getuid ());
113 #ifdef MSDOS
114 /* We let the real user name default to "root" because that's quite
115 accurate on MSDOG and because it lets Emacs find the init file.
116 (The DVX libraries override the Djgpp libraries here.) */
117 Vuser_real_login_name = build_string (pw ? pw->pw_name : "root");
118 #else
119 Vuser_real_login_name = build_string (pw ? pw->pw_name : "unknown");
120 #endif
121
122 /* Get the effective user name, by consulting environment variables,
123 or the effective uid if those are unset. */
124 user_name = getenv ("LOGNAME");
125 if (!user_name)
126 #ifdef WINDOWSNT
127 user_name = getenv ("USERNAME"); /* it's USERNAME on NT */
128 #else /* WINDOWSNT */
129 user_name = getenv ("USER");
130 #endif /* WINDOWSNT */
131 if (!user_name)
132 {
133 pw = getpwuid (geteuid ());
134 user_name = pw ? pw->pw_name : "unknown";
135 }
136 Vuser_login_name = build_string (user_name);
137
138 /* If the user name claimed in the environment vars differs from
139 the real uid, use the claimed name to find the full name. */
140 tem = Fstring_equal (Vuser_login_name, Vuser_real_login_name);
141 if (! NILP (tem))
142 tem = Vuser_login_name;
143 else
144 {
145 uid_t euid = geteuid ();
146 tem = make_fixnum_or_float (euid);
147 }
148 Vuser_full_name = Fuser_full_name (tem);
149
150 p = getenv ("NAME");
151 if (p)
152 Vuser_full_name = build_string (p);
153 else if (NILP (Vuser_full_name))
154 Vuser_full_name = build_string ("unknown");
155
156 #ifdef HAVE_SYS_UTSNAME_H
157 {
158 struct utsname uts;
159 uname (&uts);
160 Voperating_system_release = build_string (uts.release);
161 }
162 #else
163 Voperating_system_release = Qnil;
164 #endif
165 }
166 \f
167 DEFUN ("char-to-string", Fchar_to_string, Schar_to_string, 1, 1, 0,
168 doc: /* Convert arg CHAR to a string containing that character.
169 usage: (char-to-string CHAR) */)
170 (Lisp_Object character)
171 {
172 int c, len;
173 unsigned char str[MAX_MULTIBYTE_LENGTH];
174
175 CHECK_CHARACTER (character);
176 c = XFASTINT (character);
177
178 len = CHAR_STRING (c, str);
179 return make_string_from_bytes ((char *) str, 1, len);
180 }
181
182 DEFUN ("byte-to-string", Fbyte_to_string, Sbyte_to_string, 1, 1, 0,
183 doc: /* Convert arg BYTE to a unibyte string containing that byte. */)
184 (Lisp_Object byte)
185 {
186 unsigned char b;
187 CHECK_NUMBER (byte);
188 if (XINT (byte) < 0 || XINT (byte) > 255)
189 error ("Invalid byte");
190 b = XINT (byte);
191 return make_string_from_bytes ((char *) &b, 1, 1);
192 }
193
194 DEFUN ("string-to-char", Fstring_to_char, Sstring_to_char, 1, 1, 0,
195 doc: /* Return the first character in STRING. */)
196 (register Lisp_Object string)
197 {
198 register Lisp_Object val;
199 CHECK_STRING (string);
200 if (SCHARS (string))
201 {
202 if (STRING_MULTIBYTE (string))
203 XSETFASTINT (val, STRING_CHAR (SDATA (string)));
204 else
205 XSETFASTINT (val, SREF (string, 0));
206 }
207 else
208 XSETFASTINT (val, 0);
209 return val;
210 }
211
212 DEFUN ("point", Fpoint, Spoint, 0, 0, 0,
213 doc: /* Return value of point, as an integer.
214 Beginning of buffer is position (point-min). */)
215 (void)
216 {
217 Lisp_Object temp;
218 XSETFASTINT (temp, PT);
219 return temp;
220 }
221
222 DEFUN ("point-marker", Fpoint_marker, Spoint_marker, 0, 0, 0,
223 doc: /* Return value of point, as a marker object. */)
224 (void)
225 {
226 return build_marker (current_buffer, PT, PT_BYTE);
227 }
228
229 DEFUN ("goto-char", Fgoto_char, Sgoto_char, 1, 1, "NGoto char: ",
230 doc: /* Set point to POSITION, a number or marker.
231 Beginning of buffer is position (point-min), end is (point-max).
232
233 The return value is POSITION. */)
234 (register Lisp_Object position)
235 {
236 if (MARKERP (position))
237 set_point_from_marker (position);
238 else if (INTEGERP (position))
239 SET_PT (clip_to_bounds (BEGV, XINT (position), ZV));
240 else
241 wrong_type_argument (Qinteger_or_marker_p, position);
242 return position;
243 }
244
245
246 /* Return the start or end position of the region.
247 BEGINNINGP means return the start.
248 If there is no region active, signal an error. */
249
250 static Lisp_Object
251 region_limit (bool beginningp)
252 {
253 Lisp_Object m;
254
255 if (!NILP (Vtransient_mark_mode)
256 && NILP (Vmark_even_if_inactive)
257 && NILP (BVAR (current_buffer, mark_active)))
258 xsignal0 (Qmark_inactive);
259
260 m = Fmarker_position (BVAR (current_buffer, mark));
261 if (NILP (m))
262 error ("The mark is not set now, so there is no region");
263
264 /* Clip to the current narrowing (bug#11770). */
265 return make_number ((PT < XFASTINT (m)) == beginningp
266 ? PT
267 : clip_to_bounds (BEGV, XFASTINT (m), ZV));
268 }
269
270 DEFUN ("region-beginning", Fregion_beginning, Sregion_beginning, 0, 0, 0,
271 doc: /* Return the integer value of point or mark, whichever is smaller. */)
272 (void)
273 {
274 return region_limit (1);
275 }
276
277 DEFUN ("region-end", Fregion_end, Sregion_end, 0, 0, 0,
278 doc: /* Return the integer value of point or mark, whichever is larger. */)
279 (void)
280 {
281 return region_limit (0);
282 }
283
284 DEFUN ("mark-marker", Fmark_marker, Smark_marker, 0, 0, 0,
285 doc: /* Return this buffer's mark, as a marker object.
286 Watch out! Moving this marker changes the mark position.
287 If you set the marker not to point anywhere, the buffer will have no mark. */)
288 (void)
289 {
290 return BVAR (current_buffer, mark);
291 }
292
293 \f
294 /* Find all the overlays in the current buffer that touch position POS.
295 Return the number found, and store them in a vector in VEC
296 of length LEN. */
297
298 static ptrdiff_t
299 overlays_around (EMACS_INT pos, Lisp_Object *vec, ptrdiff_t len)
300 {
301 Lisp_Object overlay, start, end;
302 struct Lisp_Overlay *tail;
303 ptrdiff_t startpos, endpos;
304 ptrdiff_t idx = 0;
305
306 for (tail = current_buffer->overlays_before; tail; tail = tail->next)
307 {
308 XSETMISC (overlay, tail);
309
310 end = OVERLAY_END (overlay);
311 endpos = OVERLAY_POSITION (end);
312 if (endpos < pos)
313 break;
314 start = OVERLAY_START (overlay);
315 startpos = OVERLAY_POSITION (start);
316 if (startpos <= pos)
317 {
318 if (idx < len)
319 vec[idx] = overlay;
320 /* Keep counting overlays even if we can't return them all. */
321 idx++;
322 }
323 }
324
325 for (tail = current_buffer->overlays_after; tail; tail = tail->next)
326 {
327 XSETMISC (overlay, tail);
328
329 start = OVERLAY_START (overlay);
330 startpos = OVERLAY_POSITION (start);
331 if (pos < startpos)
332 break;
333 end = OVERLAY_END (overlay);
334 endpos = OVERLAY_POSITION (end);
335 if (pos <= endpos)
336 {
337 if (idx < len)
338 vec[idx] = overlay;
339 idx++;
340 }
341 }
342
343 return idx;
344 }
345
346 /* Return the value of property PROP, in OBJECT at POSITION.
347 It's the value of PROP that a char inserted at POSITION would get.
348 OBJECT is optional and defaults to the current buffer.
349 If OBJECT is a buffer, then overlay properties are considered as well as
350 text properties.
351 If OBJECT is a window, then that window's buffer is used, but
352 window-specific overlays are considered only if they are associated
353 with OBJECT. */
354 Lisp_Object
355 get_pos_property (Lisp_Object position, register Lisp_Object prop, Lisp_Object object)
356 {
357 CHECK_NUMBER_COERCE_MARKER (position);
358
359 if (NILP (object))
360 XSETBUFFER (object, current_buffer);
361 else if (WINDOWP (object))
362 object = XWINDOW (object)->contents;
363
364 if (!BUFFERP (object))
365 /* pos-property only makes sense in buffers right now, since strings
366 have no overlays and no notion of insertion for which stickiness
367 could be obeyed. */
368 return Fget_text_property (position, prop, object);
369 else
370 {
371 EMACS_INT posn = XINT (position);
372 ptrdiff_t noverlays;
373 Lisp_Object *overlay_vec, tem;
374 struct buffer *obuf = current_buffer;
375 USE_SAFE_ALLOCA;
376
377 set_buffer_temp (XBUFFER (object));
378
379 /* First try with room for 40 overlays. */
380 noverlays = 40;
381 overlay_vec = alloca (noverlays * sizeof *overlay_vec);
382 noverlays = overlays_around (posn, overlay_vec, noverlays);
383
384 /* If there are more than 40,
385 make enough space for all, and try again. */
386 if (noverlays > 40)
387 {
388 SAFE_ALLOCA_LISP (overlay_vec, noverlays);
389 noverlays = overlays_around (posn, overlay_vec, noverlays);
390 }
391 noverlays = sort_overlays (overlay_vec, noverlays, NULL);
392
393 set_buffer_temp (obuf);
394
395 /* Now check the overlays in order of decreasing priority. */
396 while (--noverlays >= 0)
397 {
398 Lisp_Object ol = overlay_vec[noverlays];
399 tem = Foverlay_get (ol, prop);
400 if (!NILP (tem))
401 {
402 /* Check the overlay is indeed active at point. */
403 Lisp_Object start = OVERLAY_START (ol), finish = OVERLAY_END (ol);
404 if ((OVERLAY_POSITION (start) == posn
405 && XMARKER (start)->insertion_type == 1)
406 || (OVERLAY_POSITION (finish) == posn
407 && XMARKER (finish)->insertion_type == 0))
408 ; /* The overlay will not cover a char inserted at point. */
409 else
410 {
411 SAFE_FREE ();
412 return tem;
413 }
414 }
415 }
416 SAFE_FREE ();
417
418 { /* Now check the text properties. */
419 int stickiness = text_property_stickiness (prop, position, object);
420 if (stickiness > 0)
421 return Fget_text_property (position, prop, object);
422 else if (stickiness < 0
423 && XINT (position) > BUF_BEGV (XBUFFER (object)))
424 return Fget_text_property (make_number (XINT (position) - 1),
425 prop, object);
426 else
427 return Qnil;
428 }
429 }
430 }
431
432 /* Find the field surrounding POS in *BEG and *END. If POS is nil,
433 the value of point is used instead. If BEG or END is null,
434 means don't store the beginning or end of the field.
435
436 BEG_LIMIT and END_LIMIT serve to limit the ranged of the returned
437 results; they do not effect boundary behavior.
438
439 If MERGE_AT_BOUNDARY is non-nil, then if POS is at the very first
440 position of a field, then the beginning of the previous field is
441 returned instead of the beginning of POS's field (since the end of a
442 field is actually also the beginning of the next input field, this
443 behavior is sometimes useful). Additionally in the MERGE_AT_BOUNDARY
444 non-nil case, if two fields are separated by a field with the special
445 value `boundary', and POS lies within it, then the two separated
446 fields are considered to be adjacent, and POS between them, when
447 finding the beginning and ending of the "merged" field.
448
449 Either BEG or END may be 0, in which case the corresponding value
450 is not stored. */
451
452 static void
453 find_field (Lisp_Object pos, Lisp_Object merge_at_boundary,
454 Lisp_Object beg_limit,
455 ptrdiff_t *beg, Lisp_Object end_limit, ptrdiff_t *end)
456 {
457 /* Fields right before and after the point. */
458 Lisp_Object before_field, after_field;
459 /* True if POS counts as the start of a field. */
460 bool at_field_start = 0;
461 /* True if POS counts as the end of a field. */
462 bool at_field_end = 0;
463
464 if (NILP (pos))
465 XSETFASTINT (pos, PT);
466 else
467 CHECK_NUMBER_COERCE_MARKER (pos);
468
469 after_field
470 = get_char_property_and_overlay (pos, Qfield, Qnil, NULL);
471 before_field
472 = (XFASTINT (pos) > BEGV
473 ? get_char_property_and_overlay (make_number (XINT (pos) - 1),
474 Qfield, Qnil, NULL)
475 /* Using nil here would be a more obvious choice, but it would
476 fail when the buffer starts with a non-sticky field. */
477 : after_field);
478
479 /* See if we need to handle the case where MERGE_AT_BOUNDARY is nil
480 and POS is at beginning of a field, which can also be interpreted
481 as the end of the previous field. Note that the case where if
482 MERGE_AT_BOUNDARY is non-nil (see function comment) is actually the
483 more natural one; then we avoid treating the beginning of a field
484 specially. */
485 if (NILP (merge_at_boundary))
486 {
487 Lisp_Object field = get_pos_property (pos, Qfield, Qnil);
488 if (!EQ (field, after_field))
489 at_field_end = 1;
490 if (!EQ (field, before_field))
491 at_field_start = 1;
492 if (NILP (field) && at_field_start && at_field_end)
493 /* If an inserted char would have a nil field while the surrounding
494 text is non-nil, we're probably not looking at a
495 zero-length field, but instead at a non-nil field that's
496 not intended for editing (such as comint's prompts). */
497 at_field_end = at_field_start = 0;
498 }
499
500 /* Note about special `boundary' fields:
501
502 Consider the case where the point (`.') is between the fields `x' and `y':
503
504 xxxx.yyyy
505
506 In this situation, if merge_at_boundary is non-nil, consider the
507 `x' and `y' fields as forming one big merged field, and so the end
508 of the field is the end of `y'.
509
510 However, if `x' and `y' are separated by a special `boundary' field
511 (a field with a `field' char-property of 'boundary), then ignore
512 this special field when merging adjacent fields. Here's the same
513 situation, but with a `boundary' field between the `x' and `y' fields:
514
515 xxx.BBBByyyy
516
517 Here, if point is at the end of `x', the beginning of `y', or
518 anywhere in-between (within the `boundary' field), merge all
519 three fields and consider the beginning as being the beginning of
520 the `x' field, and the end as being the end of the `y' field. */
521
522 if (beg)
523 {
524 if (at_field_start)
525 /* POS is at the edge of a field, and we should consider it as
526 the beginning of the following field. */
527 *beg = XFASTINT (pos);
528 else
529 /* Find the previous field boundary. */
530 {
531 Lisp_Object p = pos;
532 if (!NILP (merge_at_boundary) && EQ (before_field, Qboundary))
533 /* Skip a `boundary' field. */
534 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
535 beg_limit);
536
537 p = Fprevious_single_char_property_change (p, Qfield, Qnil,
538 beg_limit);
539 *beg = NILP (p) ? BEGV : XFASTINT (p);
540 }
541 }
542
543 if (end)
544 {
545 if (at_field_end)
546 /* POS is at the edge of a field, and we should consider it as
547 the end of the previous field. */
548 *end = XFASTINT (pos);
549 else
550 /* Find the next field boundary. */
551 {
552 if (!NILP (merge_at_boundary) && EQ (after_field, Qboundary))
553 /* Skip a `boundary' field. */
554 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
555 end_limit);
556
557 pos = Fnext_single_char_property_change (pos, Qfield, Qnil,
558 end_limit);
559 *end = NILP (pos) ? ZV : XFASTINT (pos);
560 }
561 }
562 }
563
564 \f
565 DEFUN ("delete-field", Fdelete_field, Sdelete_field, 0, 1, 0,
566 doc: /* Delete the field surrounding POS.
567 A field is a region of text with the same `field' property.
568 If POS is nil, the value of point is used for POS. */)
569 (Lisp_Object pos)
570 {
571 ptrdiff_t beg, end;
572 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
573 if (beg != end)
574 del_range (beg, end);
575 return Qnil;
576 }
577
578 DEFUN ("field-string", Ffield_string, Sfield_string, 0, 1, 0,
579 doc: /* Return the contents of the field surrounding POS as a string.
580 A field is a region of text with the same `field' property.
581 If POS is nil, the value of point is used for POS. */)
582 (Lisp_Object pos)
583 {
584 ptrdiff_t beg, end;
585 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
586 return make_buffer_string (beg, end, 1);
587 }
588
589 DEFUN ("field-string-no-properties", Ffield_string_no_properties, Sfield_string_no_properties, 0, 1, 0,
590 doc: /* Return the contents of the field around POS, without text properties.
591 A field is a region of text with the same `field' property.
592 If POS is nil, the value of point is used for POS. */)
593 (Lisp_Object pos)
594 {
595 ptrdiff_t beg, end;
596 find_field (pos, Qnil, Qnil, &beg, Qnil, &end);
597 return make_buffer_string (beg, end, 0);
598 }
599
600 DEFUN ("field-beginning", Ffield_beginning, Sfield_beginning, 0, 3, 0,
601 doc: /* Return the beginning of the field surrounding POS.
602 A field is a region of text with the same `field' property.
603 If POS is nil, the value of point is used for POS.
604 If ESCAPE-FROM-EDGE is non-nil and POS is at the beginning of its
605 field, then the beginning of the *previous* field is returned.
606 If LIMIT is non-nil, it is a buffer position; if the beginning of the field
607 is before LIMIT, then LIMIT will be returned instead. */)
608 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
609 {
610 ptrdiff_t beg;
611 find_field (pos, escape_from_edge, limit, &beg, Qnil, 0);
612 return make_number (beg);
613 }
614
615 DEFUN ("field-end", Ffield_end, Sfield_end, 0, 3, 0,
616 doc: /* Return the end of the field surrounding POS.
617 A field is a region of text with the same `field' property.
618 If POS is nil, the value of point is used for POS.
619 If ESCAPE-FROM-EDGE is non-nil and POS is at the end of its field,
620 then the end of the *following* field is returned.
621 If LIMIT is non-nil, it is a buffer position; if the end of the field
622 is after LIMIT, then LIMIT will be returned instead. */)
623 (Lisp_Object pos, Lisp_Object escape_from_edge, Lisp_Object limit)
624 {
625 ptrdiff_t end;
626 find_field (pos, escape_from_edge, Qnil, 0, limit, &end);
627 return make_number (end);
628 }
629
630 DEFUN ("constrain-to-field", Fconstrain_to_field, Sconstrain_to_field, 2, 5, 0,
631 doc: /* Return the position closest to NEW-POS that is in the same field as OLD-POS.
632 A field is a region of text with the same `field' property.
633
634 If NEW-POS is nil, then use the current point instead, and move point
635 to the resulting constrained position, in addition to returning that
636 position.
637
638 If OLD-POS is at the boundary of two fields, then the allowable
639 positions for NEW-POS depends on the value of the optional argument
640 ESCAPE-FROM-EDGE: If ESCAPE-FROM-EDGE is nil, then NEW-POS is
641 constrained to the field that has the same `field' char-property
642 as any new characters inserted at OLD-POS, whereas if ESCAPE-FROM-EDGE
643 is non-nil, NEW-POS is constrained to the union of the two adjacent
644 fields. Additionally, if two fields are separated by another field with
645 the special value `boundary', then any point within this special field is
646 also considered to be `on the boundary'.
647
648 If the optional argument ONLY-IN-LINE is non-nil and constraining
649 NEW-POS would move it to a different line, NEW-POS is returned
650 unconstrained. This useful for commands that move by line, like
651 \\[next-line] or \\[beginning-of-line], which should generally respect field boundaries
652 only in the case where they can still move to the right line.
653
654 If the optional argument INHIBIT-CAPTURE-PROPERTY is non-nil, and OLD-POS has
655 a non-nil property of that name, then any field boundaries are ignored.
656
657 Field boundaries are not noticed if `inhibit-field-text-motion' is non-nil. */)
658 (Lisp_Object new_pos, Lisp_Object old_pos, Lisp_Object escape_from_edge,
659 Lisp_Object only_in_line, Lisp_Object inhibit_capture_property)
660 {
661 /* If non-zero, then the original point, before re-positioning. */
662 ptrdiff_t orig_point = 0;
663 bool fwd;
664 Lisp_Object prev_old, prev_new;
665
666 if (NILP (new_pos))
667 /* Use the current point, and afterwards, set it. */
668 {
669 orig_point = PT;
670 XSETFASTINT (new_pos, PT);
671 }
672
673 CHECK_NUMBER_COERCE_MARKER (new_pos);
674 CHECK_NUMBER_COERCE_MARKER (old_pos);
675
676 fwd = (XINT (new_pos) > XINT (old_pos));
677
678 prev_old = make_number (XINT (old_pos) - 1);
679 prev_new = make_number (XINT (new_pos) - 1);
680
681 if (NILP (Vinhibit_field_text_motion)
682 && !EQ (new_pos, old_pos)
683 && (!NILP (Fget_char_property (new_pos, Qfield, Qnil))
684 || !NILP (Fget_char_property (old_pos, Qfield, Qnil))
685 /* To recognize field boundaries, we must also look at the
686 previous positions; we could use `get_pos_property'
687 instead, but in itself that would fail inside non-sticky
688 fields (like comint prompts). */
689 || (XFASTINT (new_pos) > BEGV
690 && !NILP (Fget_char_property (prev_new, Qfield, Qnil)))
691 || (XFASTINT (old_pos) > BEGV
692 && !NILP (Fget_char_property (prev_old, Qfield, Qnil))))
693 && (NILP (inhibit_capture_property)
694 /* Field boundaries are again a problem; but now we must
695 decide the case exactly, so we need to call
696 `get_pos_property' as well. */
697 || (NILP (get_pos_property (old_pos, inhibit_capture_property, Qnil))
698 && (XFASTINT (old_pos) <= BEGV
699 || NILP (Fget_char_property (old_pos, inhibit_capture_property, Qnil))
700 || NILP (Fget_char_property (prev_old, inhibit_capture_property, Qnil))))))
701 /* It is possible that NEW_POS is not within the same field as
702 OLD_POS; try to move NEW_POS so that it is. */
703 {
704 ptrdiff_t shortage;
705 Lisp_Object field_bound;
706
707 if (fwd)
708 field_bound = Ffield_end (old_pos, escape_from_edge, new_pos);
709 else
710 field_bound = Ffield_beginning (old_pos, escape_from_edge, new_pos);
711
712 if (/* See if ESCAPE_FROM_EDGE caused FIELD_BOUND to jump to the
713 other side of NEW_POS, which would mean that NEW_POS is
714 already acceptable, and it's not necessary to constrain it
715 to FIELD_BOUND. */
716 ((XFASTINT (field_bound) < XFASTINT (new_pos)) ? fwd : !fwd)
717 /* NEW_POS should be constrained, but only if either
718 ONLY_IN_LINE is nil (in which case any constraint is OK),
719 or NEW_POS and FIELD_BOUND are on the same line (in which
720 case the constraint is OK even if ONLY_IN_LINE is non-nil). */
721 && (NILP (only_in_line)
722 /* This is the ONLY_IN_LINE case, check that NEW_POS and
723 FIELD_BOUND are on the same line by seeing whether
724 there's an intervening newline or not. */
725 || (find_newline (XFASTINT (new_pos), -1,
726 XFASTINT (field_bound), -1,
727 fwd ? -1 : 1, &shortage, NULL, 1),
728 shortage != 0)))
729 /* Constrain NEW_POS to FIELD_BOUND. */
730 new_pos = field_bound;
731
732 if (orig_point && XFASTINT (new_pos) != orig_point)
733 /* The NEW_POS argument was originally nil, so automatically set PT. */
734 SET_PT (XFASTINT (new_pos));
735 }
736
737 return new_pos;
738 }
739
740 \f
741 DEFUN ("line-beginning-position",
742 Fline_beginning_position, Sline_beginning_position, 0, 1, 0,
743 doc: /* Return the character position of the first character on the current line.
744 With optional argument N, scan forward N - 1 lines first.
745 If the scan reaches the end of the buffer, return that position.
746
747 This function ignores text display directionality; it returns the
748 position of the first character in logical order, i.e. the smallest
749 character position on the line.
750
751 This function constrains the returned position to the current field
752 unless that position would be on a different line than the original,
753 unconstrained result. If N is nil or 1, and a front-sticky field
754 starts at point, the scan stops as soon as it starts. To ignore field
755 boundaries, bind `inhibit-field-text-motion' to t.
756
757 This function does not move point. */)
758 (Lisp_Object n)
759 {
760 ptrdiff_t orig, orig_byte, end;
761 ptrdiff_t count = SPECPDL_INDEX ();
762 specbind (Qinhibit_point_motion_hooks, Qt);
763
764 if (NILP (n))
765 XSETFASTINT (n, 1);
766 else
767 CHECK_NUMBER (n);
768
769 orig = PT;
770 orig_byte = PT_BYTE;
771 Fforward_line (make_number (XINT (n) - 1));
772 end = PT;
773
774 SET_PT_BOTH (orig, orig_byte);
775
776 unbind_to (count, Qnil);
777
778 /* Return END constrained to the current input field. */
779 return Fconstrain_to_field (make_number (end), make_number (orig),
780 XINT (n) != 1 ? Qt : Qnil,
781 Qt, Qnil);
782 }
783
784 DEFUN ("line-end-position", Fline_end_position, Sline_end_position, 0, 1, 0,
785 doc: /* Return the character position of the last character on the current line.
786 With argument N not nil or 1, move forward N - 1 lines first.
787 If scan reaches end of buffer, return that position.
788
789 This function ignores text display directionality; it returns the
790 position of the last character in logical order, i.e. the largest
791 character position on the line.
792
793 This function constrains the returned position to the current field
794 unless that would be on a different line than the original,
795 unconstrained result. If N is nil or 1, and a rear-sticky field ends
796 at point, the scan stops as soon as it starts. To ignore field
797 boundaries bind `inhibit-field-text-motion' to t.
798
799 This function does not move point. */)
800 (Lisp_Object n)
801 {
802 ptrdiff_t clipped_n;
803 ptrdiff_t end_pos;
804 ptrdiff_t orig = PT;
805
806 if (NILP (n))
807 XSETFASTINT (n, 1);
808 else
809 CHECK_NUMBER (n);
810
811 clipped_n = clip_to_bounds (PTRDIFF_MIN + 1, XINT (n), PTRDIFF_MAX);
812 end_pos = find_before_next_newline (orig, 0, clipped_n - (clipped_n <= 0),
813 NULL);
814
815 /* Return END_POS constrained to the current input field. */
816 return Fconstrain_to_field (make_number (end_pos), make_number (orig),
817 Qnil, Qt, Qnil);
818 }
819
820 /* Save current buffer state for `save-excursion' special form.
821 We (ab)use Lisp_Misc_Save_Value to allow explicit free and so
822 offload some work from GC. */
823
824 Lisp_Object
825 save_excursion_save (void)
826 {
827 return make_save_obj_obj_obj_obj
828 (Fpoint_marker (),
829 /* Do not copy the mark if it points to nowhere. */
830 (XMARKER (BVAR (current_buffer, mark))->buffer
831 ? Fcopy_marker (BVAR (current_buffer, mark), Qnil)
832 : Qnil),
833 /* Selected window if current buffer is shown in it, nil otherwise. */
834 (EQ (XWINDOW (selected_window)->contents, Fcurrent_buffer ())
835 ? selected_window : Qnil),
836 BVAR (current_buffer, mark_active));
837 }
838
839 /* Restore saved buffer before leaving `save-excursion' special form. */
840
841 void
842 save_excursion_restore (Lisp_Object info)
843 {
844 Lisp_Object tem, tem1, omark, nmark;
845 struct gcpro gcpro1, gcpro2, gcpro3;
846
847 tem = Fmarker_buffer (XSAVE_OBJECT (info, 0));
848 /* If we're unwinding to top level, saved buffer may be deleted. This
849 means that all of its markers are unchained and so tem is nil. */
850 if (NILP (tem))
851 goto out;
852
853 omark = nmark = Qnil;
854 GCPRO3 (info, omark, nmark);
855
856 Fset_buffer (tem);
857
858 /* Point marker. */
859 tem = XSAVE_OBJECT (info, 0);
860 Fgoto_char (tem);
861 unchain_marker (XMARKER (tem));
862
863 /* Mark marker. */
864 tem = XSAVE_OBJECT (info, 1);
865 omark = Fmarker_position (BVAR (current_buffer, mark));
866 if (NILP (tem))
867 unchain_marker (XMARKER (BVAR (current_buffer, mark)));
868 else
869 {
870 Fset_marker (BVAR (current_buffer, mark), tem, Fcurrent_buffer ());
871 nmark = Fmarker_position (tem);
872 unchain_marker (XMARKER (tem));
873 }
874
875 /* Mark active. */
876 tem = XSAVE_OBJECT (info, 3);
877 tem1 = BVAR (current_buffer, mark_active);
878 bset_mark_active (current_buffer, tem);
879
880 /* If mark is active now, and either was not active
881 or was at a different place, run the activate hook. */
882 if (! NILP (tem))
883 {
884 if (! EQ (omark, nmark))
885 {
886 tem = intern ("activate-mark-hook");
887 Frun_hooks (1, &tem);
888 }
889 }
890 /* If mark has ceased to be active, run deactivate hook. */
891 else if (! NILP (tem1))
892 {
893 tem = intern ("deactivate-mark-hook");
894 Frun_hooks (1, &tem);
895 }
896
897 /* If buffer was visible in a window, and a different window was
898 selected, and the old selected window is still showing this
899 buffer, restore point in that window. */
900 tem = XSAVE_OBJECT (info, 2);
901 if (WINDOWP (tem)
902 && !EQ (tem, selected_window)
903 && (tem1 = XWINDOW (tem)->contents,
904 (/* Window is live... */
905 BUFFERP (tem1)
906 /* ...and it shows the current buffer. */
907 && XBUFFER (tem1) == current_buffer)))
908 Fset_window_point (tem, make_number (PT));
909
910 UNGCPRO;
911
912 out:
913
914 free_misc (info);
915 }
916
917 DEFUN ("save-excursion", Fsave_excursion, Ssave_excursion, 0, UNEVALLED, 0,
918 doc: /* Save point, mark, and current buffer; execute BODY; restore those things.
919 Executes BODY just like `progn'.
920 The values of point, mark and the current buffer are restored
921 even in case of abnormal exit (throw or error).
922 The state of activation of the mark is also restored.
923
924 This construct does not save `deactivate-mark', and therefore
925 functions that change the buffer will still cause deactivation
926 of the mark at the end of the command. To prevent that, bind
927 `deactivate-mark' with `let'.
928
929 If you only want to save the current buffer but not point nor mark,
930 then just use `save-current-buffer', or even `with-current-buffer'.
931
932 usage: (save-excursion &rest BODY) */)
933 (Lisp_Object args)
934 {
935 register Lisp_Object val;
936 ptrdiff_t count = SPECPDL_INDEX ();
937
938 record_unwind_protect (save_excursion_restore, save_excursion_save ());
939
940 val = Fprogn (args);
941 return unbind_to (count, val);
942 }
943
944 DEFUN ("save-current-buffer", Fsave_current_buffer, Ssave_current_buffer, 0, UNEVALLED, 0,
945 doc: /* Record which buffer is current; execute BODY; make that buffer current.
946 BODY is executed just like `progn'.
947 usage: (save-current-buffer &rest BODY) */)
948 (Lisp_Object args)
949 {
950 ptrdiff_t count = SPECPDL_INDEX ();
951
952 record_unwind_current_buffer ();
953 return unbind_to (count, Fprogn (args));
954 }
955 \f
956 DEFUN ("buffer-size", Fbuffer_size, Sbuffer_size, 0, 1, 0,
957 doc: /* Return the number of characters in the current buffer.
958 If BUFFER, return the number of characters in that buffer instead. */)
959 (Lisp_Object buffer)
960 {
961 if (NILP (buffer))
962 return make_number (Z - BEG);
963 else
964 {
965 CHECK_BUFFER (buffer);
966 return make_number (BUF_Z (XBUFFER (buffer))
967 - BUF_BEG (XBUFFER (buffer)));
968 }
969 }
970
971 DEFUN ("point-min", Fpoint_min, Spoint_min, 0, 0, 0,
972 doc: /* Return the minimum permissible value of point in the current buffer.
973 This is 1, unless narrowing (a buffer restriction) is in effect. */)
974 (void)
975 {
976 Lisp_Object temp;
977 XSETFASTINT (temp, BEGV);
978 return temp;
979 }
980
981 DEFUN ("point-min-marker", Fpoint_min_marker, Spoint_min_marker, 0, 0, 0,
982 doc: /* Return a marker to the minimum permissible value of point in this buffer.
983 This is the beginning, unless narrowing (a buffer restriction) is in effect. */)
984 (void)
985 {
986 return build_marker (current_buffer, BEGV, BEGV_BYTE);
987 }
988
989 DEFUN ("point-max", Fpoint_max, Spoint_max, 0, 0, 0,
990 doc: /* Return the maximum permissible value of point in the current buffer.
991 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
992 is in effect, in which case it is less. */)
993 (void)
994 {
995 Lisp_Object temp;
996 XSETFASTINT (temp, ZV);
997 return temp;
998 }
999
1000 DEFUN ("point-max-marker", Fpoint_max_marker, Spoint_max_marker, 0, 0, 0,
1001 doc: /* Return a marker to the maximum permissible value of point in this buffer.
1002 This is (1+ (buffer-size)), unless narrowing (a buffer restriction)
1003 is in effect, in which case it is less. */)
1004 (void)
1005 {
1006 return build_marker (current_buffer, ZV, ZV_BYTE);
1007 }
1008
1009 DEFUN ("gap-position", Fgap_position, Sgap_position, 0, 0, 0,
1010 doc: /* Return the position of the gap, in the current buffer.
1011 See also `gap-size'. */)
1012 (void)
1013 {
1014 Lisp_Object temp;
1015 XSETFASTINT (temp, GPT);
1016 return temp;
1017 }
1018
1019 DEFUN ("gap-size", Fgap_size, Sgap_size, 0, 0, 0,
1020 doc: /* Return the size of the current buffer's gap.
1021 See also `gap-position'. */)
1022 (void)
1023 {
1024 Lisp_Object temp;
1025 XSETFASTINT (temp, GAP_SIZE);
1026 return temp;
1027 }
1028
1029 DEFUN ("position-bytes", Fposition_bytes, Sposition_bytes, 1, 1, 0,
1030 doc: /* Return the byte position for character position POSITION.
1031 If POSITION is out of range, the value is nil. */)
1032 (Lisp_Object position)
1033 {
1034 CHECK_NUMBER_COERCE_MARKER (position);
1035 if (XINT (position) < BEG || XINT (position) > Z)
1036 return Qnil;
1037 return make_number (CHAR_TO_BYTE (XINT (position)));
1038 }
1039
1040 DEFUN ("byte-to-position", Fbyte_to_position, Sbyte_to_position, 1, 1, 0,
1041 doc: /* Return the character position for byte position BYTEPOS.
1042 If BYTEPOS is out of range, the value is nil. */)
1043 (Lisp_Object bytepos)
1044 {
1045 CHECK_NUMBER (bytepos);
1046 if (XINT (bytepos) < BEG_BYTE || XINT (bytepos) > Z_BYTE)
1047 return Qnil;
1048 return make_number (BYTE_TO_CHAR (XINT (bytepos)));
1049 }
1050 \f
1051 DEFUN ("following-char", Ffollowing_char, Sfollowing_char, 0, 0, 0,
1052 doc: /* Return the character following point, as a number.
1053 At the end of the buffer or accessible region, return 0. */)
1054 (void)
1055 {
1056 Lisp_Object temp;
1057 if (PT >= ZV)
1058 XSETFASTINT (temp, 0);
1059 else
1060 XSETFASTINT (temp, FETCH_CHAR (PT_BYTE));
1061 return temp;
1062 }
1063
1064 DEFUN ("preceding-char", Fprevious_char, Sprevious_char, 0, 0, 0,
1065 doc: /* Return the character preceding point, as a number.
1066 At the beginning of the buffer or accessible region, return 0. */)
1067 (void)
1068 {
1069 Lisp_Object temp;
1070 if (PT <= BEGV)
1071 XSETFASTINT (temp, 0);
1072 else if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1073 {
1074 ptrdiff_t pos = PT_BYTE;
1075 DEC_POS (pos);
1076 XSETFASTINT (temp, FETCH_CHAR (pos));
1077 }
1078 else
1079 XSETFASTINT (temp, FETCH_BYTE (PT_BYTE - 1));
1080 return temp;
1081 }
1082
1083 DEFUN ("bobp", Fbobp, Sbobp, 0, 0, 0,
1084 doc: /* Return t if point is at the beginning of the buffer.
1085 If the buffer is narrowed, this means the beginning of the narrowed part. */)
1086 (void)
1087 {
1088 if (PT == BEGV)
1089 return Qt;
1090 return Qnil;
1091 }
1092
1093 DEFUN ("eobp", Feobp, Seobp, 0, 0, 0,
1094 doc: /* Return t if point is at the end of the buffer.
1095 If the buffer is narrowed, this means the end of the narrowed part. */)
1096 (void)
1097 {
1098 if (PT == ZV)
1099 return Qt;
1100 return Qnil;
1101 }
1102
1103 DEFUN ("bolp", Fbolp, Sbolp, 0, 0, 0,
1104 doc: /* Return t if point is at the beginning of a line. */)
1105 (void)
1106 {
1107 if (PT == BEGV || FETCH_BYTE (PT_BYTE - 1) == '\n')
1108 return Qt;
1109 return Qnil;
1110 }
1111
1112 DEFUN ("eolp", Feolp, Seolp, 0, 0, 0,
1113 doc: /* Return t if point is at the end of a line.
1114 `End of a line' includes point being at the end of the buffer. */)
1115 (void)
1116 {
1117 if (PT == ZV || FETCH_BYTE (PT_BYTE) == '\n')
1118 return Qt;
1119 return Qnil;
1120 }
1121
1122 DEFUN ("char-after", Fchar_after, Schar_after, 0, 1, 0,
1123 doc: /* Return character in current buffer at position POS.
1124 POS is an integer or a marker and defaults to point.
1125 If POS is out of range, the value is nil. */)
1126 (Lisp_Object pos)
1127 {
1128 register ptrdiff_t pos_byte;
1129
1130 if (NILP (pos))
1131 {
1132 pos_byte = PT_BYTE;
1133 XSETFASTINT (pos, PT);
1134 }
1135
1136 if (MARKERP (pos))
1137 {
1138 pos_byte = marker_byte_position (pos);
1139 if (pos_byte < BEGV_BYTE || pos_byte >= ZV_BYTE)
1140 return Qnil;
1141 }
1142 else
1143 {
1144 CHECK_NUMBER_COERCE_MARKER (pos);
1145 if (XINT (pos) < BEGV || XINT (pos) >= ZV)
1146 return Qnil;
1147
1148 pos_byte = CHAR_TO_BYTE (XINT (pos));
1149 }
1150
1151 return make_number (FETCH_CHAR (pos_byte));
1152 }
1153
1154 DEFUN ("char-before", Fchar_before, Schar_before, 0, 1, 0,
1155 doc: /* Return character in current buffer preceding position POS.
1156 POS is an integer or a marker and defaults to point.
1157 If POS is out of range, the value is nil. */)
1158 (Lisp_Object pos)
1159 {
1160 register Lisp_Object val;
1161 register ptrdiff_t pos_byte;
1162
1163 if (NILP (pos))
1164 {
1165 pos_byte = PT_BYTE;
1166 XSETFASTINT (pos, PT);
1167 }
1168
1169 if (MARKERP (pos))
1170 {
1171 pos_byte = marker_byte_position (pos);
1172
1173 if (pos_byte <= BEGV_BYTE || pos_byte > ZV_BYTE)
1174 return Qnil;
1175 }
1176 else
1177 {
1178 CHECK_NUMBER_COERCE_MARKER (pos);
1179
1180 if (XINT (pos) <= BEGV || XINT (pos) > ZV)
1181 return Qnil;
1182
1183 pos_byte = CHAR_TO_BYTE (XINT (pos));
1184 }
1185
1186 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
1187 {
1188 DEC_POS (pos_byte);
1189 XSETFASTINT (val, FETCH_CHAR (pos_byte));
1190 }
1191 else
1192 {
1193 pos_byte--;
1194 XSETFASTINT (val, FETCH_BYTE (pos_byte));
1195 }
1196 return val;
1197 }
1198 \f
1199 DEFUN ("user-login-name", Fuser_login_name, Suser_login_name, 0, 1, 0,
1200 doc: /* Return the name under which the user logged in, as a string.
1201 This is based on the effective uid, not the real uid.
1202 Also, if the environment variables LOGNAME or USER are set,
1203 that determines the value of this function.
1204
1205 If optional argument UID is an integer or a float, return the login name
1206 of the user with that uid, or nil if there is no such user. */)
1207 (Lisp_Object uid)
1208 {
1209 struct passwd *pw;
1210 uid_t id;
1211
1212 /* Set up the user name info if we didn't do it before.
1213 (That can happen if Emacs is dumpable
1214 but you decide to run `temacs -l loadup' and not dump. */
1215 if (INTEGERP (Vuser_login_name))
1216 init_editfns ();
1217
1218 if (NILP (uid))
1219 return Vuser_login_name;
1220
1221 CONS_TO_INTEGER (uid, uid_t, id);
1222 block_input ();
1223 pw = getpwuid (id);
1224 unblock_input ();
1225 return (pw ? build_string (pw->pw_name) : Qnil);
1226 }
1227
1228 DEFUN ("user-real-login-name", Fuser_real_login_name, Suser_real_login_name,
1229 0, 0, 0,
1230 doc: /* Return the name of the user's real uid, as a string.
1231 This ignores the environment variables LOGNAME and USER, so it differs from
1232 `user-login-name' when running under `su'. */)
1233 (void)
1234 {
1235 /* Set up the user name info if we didn't do it before.
1236 (That can happen if Emacs is dumpable
1237 but you decide to run `temacs -l loadup' and not dump. */
1238 if (INTEGERP (Vuser_login_name))
1239 init_editfns ();
1240 return Vuser_real_login_name;
1241 }
1242
1243 DEFUN ("user-uid", Fuser_uid, Suser_uid, 0, 0, 0,
1244 doc: /* Return the effective uid of Emacs.
1245 Value is an integer or a float, depending on the value. */)
1246 (void)
1247 {
1248 uid_t euid = geteuid ();
1249 return make_fixnum_or_float (euid);
1250 }
1251
1252 DEFUN ("user-real-uid", Fuser_real_uid, Suser_real_uid, 0, 0, 0,
1253 doc: /* Return the real uid of Emacs.
1254 Value is an integer or a float, depending on the value. */)
1255 (void)
1256 {
1257 uid_t uid = getuid ();
1258 return make_fixnum_or_float (uid);
1259 }
1260
1261 DEFUN ("group-gid", Fgroup_gid, Sgroup_gid, 0, 0, 0,
1262 doc: /* Return the effective gid of Emacs.
1263 Value is an integer or a float, depending on the value. */)
1264 (void)
1265 {
1266 gid_t egid = getegid ();
1267 return make_fixnum_or_float (egid);
1268 }
1269
1270 DEFUN ("group-real-gid", Fgroup_real_gid, Sgroup_real_gid, 0, 0, 0,
1271 doc: /* Return the real gid of Emacs.
1272 Value is an integer or a float, depending on the value. */)
1273 (void)
1274 {
1275 gid_t gid = getgid ();
1276 return make_fixnum_or_float (gid);
1277 }
1278
1279 DEFUN ("user-full-name", Fuser_full_name, Suser_full_name, 0, 1, 0,
1280 doc: /* Return the full name of the user logged in, as a string.
1281 If the full name corresponding to Emacs's userid is not known,
1282 return "unknown".
1283
1284 If optional argument UID is an integer or float, return the full name
1285 of the user with that uid, or nil if there is no such user.
1286 If UID is a string, return the full name of the user with that login
1287 name, or nil if there is no such user. */)
1288 (Lisp_Object uid)
1289 {
1290 struct passwd *pw;
1291 register char *p, *q;
1292 Lisp_Object full;
1293
1294 if (NILP (uid))
1295 return Vuser_full_name;
1296 else if (NUMBERP (uid))
1297 {
1298 uid_t u;
1299 CONS_TO_INTEGER (uid, uid_t, u);
1300 block_input ();
1301 pw = getpwuid (u);
1302 unblock_input ();
1303 }
1304 else if (STRINGP (uid))
1305 {
1306 block_input ();
1307 pw = getpwnam (SSDATA (uid));
1308 unblock_input ();
1309 }
1310 else
1311 error ("Invalid UID specification");
1312
1313 if (!pw)
1314 return Qnil;
1315
1316 p = USER_FULL_NAME;
1317 /* Chop off everything after the first comma. */
1318 q = strchr (p, ',');
1319 full = make_string (p, q ? q - p : strlen (p));
1320
1321 #ifdef AMPERSAND_FULL_NAME
1322 p = SSDATA (full);
1323 q = strchr (p, '&');
1324 /* Substitute the login name for the &, upcasing the first character. */
1325 if (q)
1326 {
1327 register char *r;
1328 Lisp_Object login;
1329
1330 login = Fuser_login_name (make_number (pw->pw_uid));
1331 r = alloca (strlen (p) + SCHARS (login) + 1);
1332 memcpy (r, p, q - p);
1333 r[q - p] = 0;
1334 strcat (r, SSDATA (login));
1335 r[q - p] = upcase ((unsigned char) r[q - p]);
1336 strcat (r, q + 1);
1337 full = build_string (r);
1338 }
1339 #endif /* AMPERSAND_FULL_NAME */
1340
1341 return full;
1342 }
1343
1344 DEFUN ("system-name", Fsystem_name, Ssystem_name, 0, 0, 0,
1345 doc: /* Return the host name of the machine you are running on, as a string. */)
1346 (void)
1347 {
1348 return Vsystem_name;
1349 }
1350
1351 DEFUN ("emacs-pid", Femacs_pid, Semacs_pid, 0, 0, 0,
1352 doc: /* Return the process ID of Emacs, as a number. */)
1353 (void)
1354 {
1355 pid_t pid = getpid ();
1356 return make_fixnum_or_float (pid);
1357 }
1358
1359 \f
1360
1361 #ifndef TIME_T_MIN
1362 # define TIME_T_MIN TYPE_MINIMUM (time_t)
1363 #endif
1364 #ifndef TIME_T_MAX
1365 # define TIME_T_MAX TYPE_MAXIMUM (time_t)
1366 #endif
1367
1368 /* Report that a time value is out of range for Emacs. */
1369 void
1370 time_overflow (void)
1371 {
1372 error ("Specified time is not representable");
1373 }
1374
1375 /* Return the upper part of the time T (everything but the bottom 16 bits). */
1376 static EMACS_INT
1377 hi_time (time_t t)
1378 {
1379 time_t hi = t >> 16;
1380
1381 /* Check for overflow, helping the compiler for common cases where
1382 no runtime check is needed, and taking care not to convert
1383 negative numbers to unsigned before comparing them. */
1384 if (! ((! TYPE_SIGNED (time_t)
1385 || MOST_NEGATIVE_FIXNUM <= TIME_T_MIN >> 16
1386 || MOST_NEGATIVE_FIXNUM <= hi)
1387 && (TIME_T_MAX >> 16 <= MOST_POSITIVE_FIXNUM
1388 || hi <= MOST_POSITIVE_FIXNUM)))
1389 time_overflow ();
1390
1391 return hi;
1392 }
1393
1394 /* Return the bottom 16 bits of the time T. */
1395 static int
1396 lo_time (time_t t)
1397 {
1398 return t & ((1 << 16) - 1);
1399 }
1400
1401 DEFUN ("current-time", Fcurrent_time, Scurrent_time, 0, 0, 0,
1402 doc: /* Return the current time, as the number of seconds since 1970-01-01 00:00:00.
1403 The time is returned as a list of integers (HIGH LOW USEC PSEC).
1404 HIGH has the most significant bits of the seconds, while LOW has the
1405 least significant 16 bits. USEC and PSEC are the microsecond and
1406 picosecond counts. */)
1407 (void)
1408 {
1409 return make_lisp_time (current_timespec ());
1410 }
1411
1412 DEFUN ("get-internal-run-time", Fget_internal_run_time, Sget_internal_run_time,
1413 0, 0, 0,
1414 doc: /* Return the current run time used by Emacs.
1415 The time is returned as a list (HIGH LOW USEC PSEC), using the same
1416 style as (current-time).
1417
1418 On systems that can't determine the run time, `get-internal-run-time'
1419 does the same thing as `current-time'. */)
1420 (void)
1421 {
1422 #ifdef HAVE_GETRUSAGE
1423 struct rusage usage;
1424 time_t secs;
1425 int usecs;
1426
1427 if (getrusage (RUSAGE_SELF, &usage) < 0)
1428 /* This shouldn't happen. What action is appropriate? */
1429 xsignal0 (Qerror);
1430
1431 /* Sum up user time and system time. */
1432 secs = usage.ru_utime.tv_sec + usage.ru_stime.tv_sec;
1433 usecs = usage.ru_utime.tv_usec + usage.ru_stime.tv_usec;
1434 if (usecs >= 1000000)
1435 {
1436 usecs -= 1000000;
1437 secs++;
1438 }
1439 return make_lisp_time (make_timespec (secs, usecs * 1000));
1440 #else /* ! HAVE_GETRUSAGE */
1441 #ifdef WINDOWSNT
1442 return w32_get_internal_run_time ();
1443 #else /* ! WINDOWSNT */
1444 return Fcurrent_time ();
1445 #endif /* WINDOWSNT */
1446 #endif /* HAVE_GETRUSAGE */
1447 }
1448 \f
1449
1450 /* Make a Lisp list that represents the time T with fraction TAIL. */
1451 static Lisp_Object
1452 make_time_tail (time_t t, Lisp_Object tail)
1453 {
1454 return Fcons (make_number (hi_time (t)),
1455 Fcons (make_number (lo_time (t)), tail));
1456 }
1457
1458 /* Make a Lisp list that represents the system time T. */
1459 static Lisp_Object
1460 make_time (time_t t)
1461 {
1462 return make_time_tail (t, Qnil);
1463 }
1464
1465 /* Make a Lisp list that represents the Emacs time T. T may be an
1466 invalid time, with a slightly negative tv_nsec value such as
1467 UNKNOWN_MODTIME_NSECS; in that case, the Lisp list contains a
1468 correspondingly negative picosecond count. */
1469 Lisp_Object
1470 make_lisp_time (struct timespec t)
1471 {
1472 int ns = t.tv_nsec;
1473 return make_time_tail (t.tv_sec, list2i (ns / 1000, ns % 1000 * 1000));
1474 }
1475
1476 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1477 Set *PHIGH, *PLOW, *PUSEC, *PPSEC to its parts; do not check their values.
1478 Return true if successful. */
1479 static bool
1480 disassemble_lisp_time (Lisp_Object specified_time, Lisp_Object *phigh,
1481 Lisp_Object *plow, Lisp_Object *pusec,
1482 Lisp_Object *ppsec)
1483 {
1484 if (CONSP (specified_time))
1485 {
1486 Lisp_Object low = XCDR (specified_time);
1487 Lisp_Object usec = make_number (0);
1488 Lisp_Object psec = make_number (0);
1489 if (CONSP (low))
1490 {
1491 Lisp_Object low_tail = XCDR (low);
1492 low = XCAR (low);
1493 if (CONSP (low_tail))
1494 {
1495 usec = XCAR (low_tail);
1496 low_tail = XCDR (low_tail);
1497 if (CONSP (low_tail))
1498 psec = XCAR (low_tail);
1499 }
1500 else if (!NILP (low_tail))
1501 usec = low_tail;
1502 }
1503
1504 *phigh = XCAR (specified_time);
1505 *plow = low;
1506 *pusec = usec;
1507 *ppsec = psec;
1508 return 1;
1509 }
1510
1511 return 0;
1512 }
1513
1514 /* From the time components HIGH, LOW, USEC and PSEC taken from a Lisp
1515 list, generate the corresponding time value.
1516
1517 If RESULT is not null, store into *RESULT the converted time;
1518 this can fail if the converted time does not fit into struct timespec.
1519 If *DRESULT is not null, store into *DRESULT the number of
1520 seconds since the start of the POSIX Epoch.
1521
1522 Return true if successful. */
1523 bool
1524 decode_time_components (Lisp_Object high, Lisp_Object low, Lisp_Object usec,
1525 Lisp_Object psec,
1526 struct timespec *result, double *dresult)
1527 {
1528 EMACS_INT hi, lo, us, ps;
1529 if (! (INTEGERP (high) && INTEGERP (low)
1530 && INTEGERP (usec) && INTEGERP (psec)))
1531 return 0;
1532 hi = XINT (high);
1533 lo = XINT (low);
1534 us = XINT (usec);
1535 ps = XINT (psec);
1536
1537 /* Normalize out-of-range lower-order components by carrying
1538 each overflow into the next higher-order component. */
1539 us += ps / 1000000 - (ps % 1000000 < 0);
1540 lo += us / 1000000 - (us % 1000000 < 0);
1541 hi += lo >> 16;
1542 ps = ps % 1000000 + 1000000 * (ps % 1000000 < 0);
1543 us = us % 1000000 + 1000000 * (us % 1000000 < 0);
1544 lo &= (1 << 16) - 1;
1545
1546 if (result)
1547 {
1548 if ((TYPE_SIGNED (time_t) ? TIME_T_MIN >> 16 <= hi : 0 <= hi)
1549 && hi <= TIME_T_MAX >> 16)
1550 {
1551 /* Return the greatest representable time that is not greater
1552 than the requested time. */
1553 time_t sec = hi;
1554 *result = make_timespec ((sec << 16) + lo, us * 1000 + ps / 1000);
1555 }
1556 else
1557 {
1558 /* Overflow in the highest-order component. */
1559 return 0;
1560 }
1561 }
1562
1563 if (dresult)
1564 *dresult = (us * 1e6 + ps) / 1e12 + lo + hi * 65536.0;
1565
1566 return 1;
1567 }
1568
1569 /* Decode a Lisp list SPECIFIED_TIME that represents a time.
1570 If SPECIFIED_TIME is nil, use the current time.
1571
1572 Round the time down to the nearest struct timespec value.
1573 Return seconds since the Epoch.
1574 Signal an error if unsuccessful. */
1575 struct timespec
1576 lisp_time_argument (Lisp_Object specified_time)
1577 {
1578 struct timespec t;
1579 if (NILP (specified_time))
1580 t = current_timespec ();
1581 else
1582 {
1583 Lisp_Object high, low, usec, psec;
1584 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1585 && decode_time_components (high, low, usec, psec, &t, 0)))
1586 error ("Invalid time specification");
1587 }
1588 return t;
1589 }
1590
1591 /* Like lisp_time_argument, except decode only the seconds part,
1592 do not allow out-of-range time stamps, do not check the subseconds part,
1593 and always round down. */
1594 static time_t
1595 lisp_seconds_argument (Lisp_Object specified_time)
1596 {
1597 if (NILP (specified_time))
1598 return time (NULL);
1599 else
1600 {
1601 Lisp_Object high, low, usec, psec;
1602 struct timespec t;
1603 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1604 && decode_time_components (high, low, make_number (0),
1605 make_number (0), &t, 0)))
1606 error ("Invalid time specification");
1607 return t.tv_sec;
1608 }
1609 }
1610
1611 DEFUN ("float-time", Ffloat_time, Sfloat_time, 0, 1, 0,
1612 doc: /* Return the current time, as a float number of seconds since the epoch.
1613 If SPECIFIED-TIME is given, it is the time to convert to float
1614 instead of the current time. The argument should have the form
1615 (HIGH LOW) or (HIGH LOW USEC) or (HIGH LOW USEC PSEC). Thus,
1616 you can use times from `current-time' and from `file-attributes'.
1617 SPECIFIED-TIME can also have the form (HIGH . LOW), but this is
1618 considered obsolete.
1619
1620 WARNING: Since the result is floating point, it may not be exact.
1621 If precise time stamps are required, use either `current-time',
1622 or (if you need time as a string) `format-time-string'. */)
1623 (Lisp_Object specified_time)
1624 {
1625 double t;
1626 if (NILP (specified_time))
1627 {
1628 struct timespec now = current_timespec ();
1629 t = now.tv_sec + now.tv_nsec / 1e9;
1630 }
1631 else
1632 {
1633 Lisp_Object high, low, usec, psec;
1634 if (! (disassemble_lisp_time (specified_time, &high, &low, &usec, &psec)
1635 && decode_time_components (high, low, usec, psec, 0, &t)))
1636 error ("Invalid time specification");
1637 }
1638 return make_float (t);
1639 }
1640
1641 /* Write information into buffer S of size MAXSIZE, according to the
1642 FORMAT of length FORMAT_LEN, using time information taken from *TP.
1643 Default to Universal Time if UT, local time otherwise.
1644 Use NS as the number of nanoseconds in the %N directive.
1645 Return the number of bytes written, not including the terminating
1646 '\0'. If S is NULL, nothing will be written anywhere; so to
1647 determine how many bytes would be written, use NULL for S and
1648 ((size_t) -1) for MAXSIZE.
1649
1650 This function behaves like nstrftime, except it allows null
1651 bytes in FORMAT and it does not support nanoseconds. */
1652 static size_t
1653 emacs_nmemftime (char *s, size_t maxsize, const char *format,
1654 size_t format_len, const struct tm *tp, bool ut, int ns)
1655 {
1656 size_t total = 0;
1657
1658 /* Loop through all the null-terminated strings in the format
1659 argument. Normally there's just one null-terminated string, but
1660 there can be arbitrarily many, concatenated together, if the
1661 format contains '\0' bytes. nstrftime stops at the first
1662 '\0' byte so we must invoke it separately for each such string. */
1663 for (;;)
1664 {
1665 size_t len;
1666 size_t result;
1667
1668 if (s)
1669 s[0] = '\1';
1670
1671 result = nstrftime (s, maxsize, format, tp, ut, ns);
1672
1673 if (s)
1674 {
1675 if (result == 0 && s[0] != '\0')
1676 return 0;
1677 s += result + 1;
1678 }
1679
1680 maxsize -= result + 1;
1681 total += result;
1682 len = strlen (format);
1683 if (len == format_len)
1684 return total;
1685 total++;
1686 format += len + 1;
1687 format_len -= len + 1;
1688 }
1689 }
1690
1691 DEFUN ("format-time-string", Fformat_time_string, Sformat_time_string, 1, 3, 0,
1692 doc: /* Use FORMAT-STRING to format the time TIME, or now if omitted.
1693 TIME is specified as (HIGH LOW USEC PSEC), as returned by
1694 `current-time' or `file-attributes'. The obsolete form (HIGH . LOW)
1695 is also still accepted.
1696 The third, optional, argument UNIVERSAL, if non-nil, means describe TIME
1697 as Universal Time; nil means describe TIME in the local time zone.
1698 The value is a copy of FORMAT-STRING, but with certain constructs replaced
1699 by text that describes the specified date and time in TIME:
1700
1701 %Y is the year, %y within the century, %C the century.
1702 %G is the year corresponding to the ISO week, %g within the century.
1703 %m is the numeric month.
1704 %b and %h are the locale's abbreviated month name, %B the full name.
1705 %d is the day of the month, zero-padded, %e is blank-padded.
1706 %u is the numeric day of week from 1 (Monday) to 7, %w from 0 (Sunday) to 6.
1707 %a is the locale's abbreviated name of the day of week, %A the full name.
1708 %U is the week number starting on Sunday, %W starting on Monday,
1709 %V according to ISO 8601.
1710 %j is the day of the year.
1711
1712 %H is the hour on a 24-hour clock, %I is on a 12-hour clock, %k is like %H
1713 only blank-padded, %l is like %I blank-padded.
1714 %p is the locale's equivalent of either AM or PM.
1715 %M is the minute.
1716 %S is the second.
1717 %N is the nanosecond, %6N the microsecond, %3N the millisecond, etc.
1718 %Z is the time zone name, %z is the numeric form.
1719 %s is the number of seconds since 1970-01-01 00:00:00 +0000.
1720
1721 %c is the locale's date and time format.
1722 %x is the locale's "preferred" date format.
1723 %D is like "%m/%d/%y".
1724
1725 %R is like "%H:%M", %T is like "%H:%M:%S", %r is like "%I:%M:%S %p".
1726 %X is the locale's "preferred" time format.
1727
1728 Finally, %n is a newline, %t is a tab, %% is a literal %.
1729
1730 Certain flags and modifiers are available with some format controls.
1731 The flags are `_', `-', `^' and `#'. For certain characters X,
1732 %_X is like %X, but padded with blanks; %-X is like %X,
1733 but without padding. %^X is like %X, but with all textual
1734 characters up-cased; %#X is like %X, but with letter-case of
1735 all textual characters reversed.
1736 %NX (where N stands for an integer) is like %X,
1737 but takes up at least N (a number) positions.
1738 The modifiers are `E' and `O'. For certain characters X,
1739 %EX is a locale's alternative version of %X;
1740 %OX is like %X, but uses the locale's number symbols.
1741
1742 For example, to produce full ISO 8601 format, use "%Y-%m-%dT%T%z".
1743
1744 usage: (format-time-string FORMAT-STRING &optional TIME UNIVERSAL) */)
1745 (Lisp_Object format_string, Lisp_Object timeval, Lisp_Object universal)
1746 {
1747 struct timespec t = lisp_time_argument (timeval);
1748 struct tm tm;
1749
1750 CHECK_STRING (format_string);
1751 format_string = code_convert_string_norecord (format_string,
1752 Vlocale_coding_system, 1);
1753 return format_time_string (SSDATA (format_string), SBYTES (format_string),
1754 t, ! NILP (universal), &tm);
1755 }
1756
1757 static Lisp_Object
1758 format_time_string (char const *format, ptrdiff_t formatlen,
1759 struct timespec t, bool ut, struct tm *tmp)
1760 {
1761 char buffer[4000];
1762 char *buf = buffer;
1763 ptrdiff_t size = sizeof buffer;
1764 size_t len;
1765 Lisp_Object bufstring;
1766 int ns = t.tv_nsec;
1767 struct tm *tm;
1768 USE_SAFE_ALLOCA;
1769
1770 while (1)
1771 {
1772 time_t *taddr = &t.tv_sec;
1773 block_input ();
1774
1775 synchronize_system_time_locale ();
1776
1777 tm = ut ? gmtime (taddr) : localtime (taddr);
1778 if (! tm)
1779 {
1780 unblock_input ();
1781 time_overflow ();
1782 }
1783 *tmp = *tm;
1784
1785 buf[0] = '\1';
1786 len = emacs_nmemftime (buf, size, format, formatlen, tm, ut, ns);
1787 if ((0 < len && len < size) || (len == 0 && buf[0] == '\0'))
1788 break;
1789
1790 /* Buffer was too small, so make it bigger and try again. */
1791 len = emacs_nmemftime (NULL, SIZE_MAX, format, formatlen, tm, ut, ns);
1792 unblock_input ();
1793 if (STRING_BYTES_BOUND <= len)
1794 string_overflow ();
1795 size = len + 1;
1796 buf = SAFE_ALLOCA (size);
1797 }
1798
1799 unblock_input ();
1800 bufstring = make_unibyte_string (buf, len);
1801 SAFE_FREE ();
1802 return code_convert_string_norecord (bufstring, Vlocale_coding_system, 0);
1803 }
1804
1805 DEFUN ("decode-time", Fdecode_time, Sdecode_time, 0, 1, 0,
1806 doc: /* Decode a time value as (SEC MINUTE HOUR DAY MONTH YEAR DOW DST ZONE).
1807 The optional SPECIFIED-TIME should be a list of (HIGH LOW . IGNORED),
1808 as from `current-time' and `file-attributes', or nil to use the
1809 current time. The obsolete form (HIGH . LOW) is also still accepted.
1810 The list has the following nine members: SEC is an integer between 0
1811 and 60; SEC is 60 for a leap second, which only some operating systems
1812 support. MINUTE is an integer between 0 and 59. HOUR is an integer
1813 between 0 and 23. DAY is an integer between 1 and 31. MONTH is an
1814 integer between 1 and 12. YEAR is an integer indicating the
1815 four-digit year. DOW is the day of week, an integer between 0 and 6,
1816 where 0 is Sunday. DST is t if daylight saving time is in effect,
1817 otherwise nil. ZONE is an integer indicating the number of seconds
1818 east of Greenwich. (Note that Common Lisp has different meanings for
1819 DOW and ZONE.) */)
1820 (Lisp_Object specified_time)
1821 {
1822 time_t time_spec = lisp_seconds_argument (specified_time);
1823 struct tm save_tm;
1824 struct tm *decoded_time;
1825 Lisp_Object list_args[9];
1826
1827 block_input ();
1828 decoded_time = localtime (&time_spec);
1829 if (decoded_time)
1830 save_tm = *decoded_time;
1831 unblock_input ();
1832 if (! (decoded_time
1833 && MOST_NEGATIVE_FIXNUM - TM_YEAR_BASE <= save_tm.tm_year
1834 && save_tm.tm_year <= MOST_POSITIVE_FIXNUM - TM_YEAR_BASE))
1835 time_overflow ();
1836 XSETFASTINT (list_args[0], save_tm.tm_sec);
1837 XSETFASTINT (list_args[1], save_tm.tm_min);
1838 XSETFASTINT (list_args[2], save_tm.tm_hour);
1839 XSETFASTINT (list_args[3], save_tm.tm_mday);
1840 XSETFASTINT (list_args[4], save_tm.tm_mon + 1);
1841 /* On 64-bit machines an int is narrower than EMACS_INT, thus the
1842 cast below avoids overflow in int arithmetics. */
1843 XSETINT (list_args[5], TM_YEAR_BASE + (EMACS_INT) save_tm.tm_year);
1844 XSETFASTINT (list_args[6], save_tm.tm_wday);
1845 list_args[7] = save_tm.tm_isdst ? Qt : Qnil;
1846
1847 block_input ();
1848 decoded_time = gmtime (&time_spec);
1849 if (decoded_time == 0)
1850 list_args[8] = Qnil;
1851 else
1852 XSETINT (list_args[8], tm_diff (&save_tm, decoded_time));
1853 unblock_input ();
1854 return Flist (9, list_args);
1855 }
1856
1857 /* Return OBJ - OFFSET, checking that OBJ is a valid fixnum and that
1858 the result is representable as an int. Assume OFFSET is small and
1859 nonnegative. */
1860 static int
1861 check_tm_member (Lisp_Object obj, int offset)
1862 {
1863 EMACS_INT n;
1864 CHECK_NUMBER (obj);
1865 n = XINT (obj);
1866 if (! (INT_MIN + offset <= n && n - offset <= INT_MAX))
1867 time_overflow ();
1868 return n - offset;
1869 }
1870
1871 DEFUN ("encode-time", Fencode_time, Sencode_time, 6, MANY, 0,
1872 doc: /* Convert SECOND, MINUTE, HOUR, DAY, MONTH, YEAR and ZONE to internal time.
1873 This is the reverse operation of `decode-time', which see.
1874 ZONE defaults to the current time zone rule. This can
1875 be a string or t (as from `set-time-zone-rule'), or it can be a list
1876 \(as from `current-time-zone') or an integer (as from `decode-time')
1877 applied without consideration for daylight saving time.
1878
1879 You can pass more than 7 arguments; then the first six arguments
1880 are used as SECOND through YEAR, and the *last* argument is used as ZONE.
1881 The intervening arguments are ignored.
1882 This feature lets (apply 'encode-time (decode-time ...)) work.
1883
1884 Out-of-range values for SECOND, MINUTE, HOUR, DAY, or MONTH are allowed;
1885 for example, a DAY of 0 means the day preceding the given month.
1886 Year numbers less than 100 are treated just like other year numbers.
1887 If you want them to stand for years in this century, you must do that yourself.
1888
1889 Years before 1970 are not guaranteed to work. On some systems,
1890 year values as low as 1901 do work.
1891
1892 usage: (encode-time SECOND MINUTE HOUR DAY MONTH YEAR &optional ZONE) */)
1893 (ptrdiff_t nargs, Lisp_Object *args)
1894 {
1895 time_t value;
1896 struct tm tm;
1897 Lisp_Object zone = (nargs > 6 ? args[nargs - 1] : Qnil);
1898
1899 tm.tm_sec = check_tm_member (args[0], 0);
1900 tm.tm_min = check_tm_member (args[1], 0);
1901 tm.tm_hour = check_tm_member (args[2], 0);
1902 tm.tm_mday = check_tm_member (args[3], 0);
1903 tm.tm_mon = check_tm_member (args[4], 1);
1904 tm.tm_year = check_tm_member (args[5], TM_YEAR_BASE);
1905 tm.tm_isdst = -1;
1906
1907 if (CONSP (zone))
1908 zone = XCAR (zone);
1909 if (NILP (zone))
1910 {
1911 block_input ();
1912 value = mktime (&tm);
1913 unblock_input ();
1914 }
1915 else
1916 {
1917 static char const tzbuf_format[] = "XXX%s%"pI"d:%02d:%02d";
1918 char tzbuf[sizeof tzbuf_format + INT_STRLEN_BOUND (EMACS_INT)];
1919 char *old_tzstring;
1920 const char *tzstring;
1921 USE_SAFE_ALLOCA;
1922
1923 if (EQ (zone, Qt))
1924 tzstring = "UTC0";
1925 else if (STRINGP (zone))
1926 tzstring = SSDATA (zone);
1927 else if (INTEGERP (zone))
1928 {
1929 EMACS_INT abszone = eabs (XINT (zone));
1930 EMACS_INT zone_hr = abszone / (60*60);
1931 int zone_min = (abszone/60) % 60;
1932 int zone_sec = abszone % 60;
1933 sprintf (tzbuf, tzbuf_format, &"-"[XINT (zone) < 0],
1934 zone_hr, zone_min, zone_sec);
1935 tzstring = tzbuf;
1936 }
1937 else
1938 error ("Invalid time zone specification");
1939
1940 old_tzstring = getenv ("TZ");
1941 if (old_tzstring)
1942 {
1943 char *buf = SAFE_ALLOCA (strlen (old_tzstring) + 1);
1944 old_tzstring = strcpy (buf, old_tzstring);
1945 }
1946
1947 block_input ();
1948
1949 /* Set TZ before calling mktime; merely adjusting mktime's returned
1950 value doesn't suffice, since that would mishandle leap seconds. */
1951 set_time_zone_rule (tzstring);
1952
1953 value = mktime (&tm);
1954
1955 set_time_zone_rule (old_tzstring);
1956 #ifdef LOCALTIME_CACHE
1957 tzset ();
1958 #endif
1959 unblock_input ();
1960 SAFE_FREE ();
1961 }
1962
1963 if (value == (time_t) -1)
1964 time_overflow ();
1965
1966 return make_time (value);
1967 }
1968
1969 DEFUN ("current-time-string", Fcurrent_time_string, Scurrent_time_string, 0, 1, 0,
1970 doc: /* Return the current local time, as a human-readable string.
1971 Programs can use this function to decode a time,
1972 since the number of columns in each field is fixed
1973 if the year is in the range 1000-9999.
1974 The format is `Sun Sep 16 01:03:52 1973'.
1975 However, see also the functions `decode-time' and `format-time-string'
1976 which provide a much more powerful and general facility.
1977
1978 If SPECIFIED-TIME is given, it is a time to format instead of the
1979 current time. The argument should have the form (HIGH LOW . IGNORED).
1980 Thus, you can use times obtained from `current-time' and from
1981 `file-attributes'. SPECIFIED-TIME can also have the form (HIGH . LOW),
1982 but this is considered obsolete. */)
1983 (Lisp_Object specified_time)
1984 {
1985 time_t value = lisp_seconds_argument (specified_time);
1986 struct tm *tm;
1987 char buf[sizeof "Mon Apr 30 12:49:17 " + INT_STRLEN_BOUND (int) + 1];
1988 int len IF_LINT (= 0);
1989
1990 /* Convert to a string in ctime format, except without the trailing
1991 newline, and without the 4-digit year limit. Don't use asctime
1992 or ctime, as they might dump core if the year is outside the
1993 range -999 .. 9999. */
1994 block_input ();
1995 tm = localtime (&value);
1996 if (tm)
1997 {
1998 static char const wday_name[][4] =
1999 { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
2000 static char const mon_name[][4] =
2001 { "Jan", "Feb", "Mar", "Apr", "May", "Jun",
2002 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
2003 printmax_t year_base = TM_YEAR_BASE;
2004
2005 len = sprintf (buf, "%s %s%3d %02d:%02d:%02d %"pMd,
2006 wday_name[tm->tm_wday], mon_name[tm->tm_mon], tm->tm_mday,
2007 tm->tm_hour, tm->tm_min, tm->tm_sec,
2008 tm->tm_year + year_base);
2009 }
2010 unblock_input ();
2011 if (! tm)
2012 time_overflow ();
2013
2014 return make_unibyte_string (buf, len);
2015 }
2016
2017 /* Yield A - B, measured in seconds.
2018 This function is copied from the GNU C Library. */
2019 static int
2020 tm_diff (struct tm *a, struct tm *b)
2021 {
2022 /* Compute intervening leap days correctly even if year is negative.
2023 Take care to avoid int overflow in leap day calculations,
2024 but it's OK to assume that A and B are close to each other. */
2025 int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
2026 int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
2027 int a100 = a4 / 25 - (a4 % 25 < 0);
2028 int b100 = b4 / 25 - (b4 % 25 < 0);
2029 int a400 = a100 >> 2;
2030 int b400 = b100 >> 2;
2031 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
2032 int years = a->tm_year - b->tm_year;
2033 int days = (365 * years + intervening_leap_days
2034 + (a->tm_yday - b->tm_yday));
2035 return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
2036 + (a->tm_min - b->tm_min))
2037 + (a->tm_sec - b->tm_sec));
2038 }
2039
2040 DEFUN ("current-time-zone", Fcurrent_time_zone, Scurrent_time_zone, 0, 1, 0,
2041 doc: /* Return the offset and name for the local time zone.
2042 This returns a list of the form (OFFSET NAME).
2043 OFFSET is an integer number of seconds ahead of UTC (east of Greenwich).
2044 A negative value means west of Greenwich.
2045 NAME is a string giving the name of the time zone.
2046 If SPECIFIED-TIME is given, the time zone offset is determined from it
2047 instead of using the current time. The argument should have the form
2048 (HIGH LOW . IGNORED). Thus, you can use times obtained from
2049 `current-time' and from `file-attributes'. SPECIFIED-TIME can also
2050 have the form (HIGH . LOW), but this is considered obsolete.
2051
2052 Some operating systems cannot provide all this information to Emacs;
2053 in this case, `current-time-zone' returns a list containing nil for
2054 the data it can't find. */)
2055 (Lisp_Object specified_time)
2056 {
2057 struct timespec value;
2058 int offset;
2059 struct tm *t;
2060 struct tm localtm;
2061 Lisp_Object zone_offset, zone_name;
2062
2063 zone_offset = Qnil;
2064 value = make_timespec (lisp_seconds_argument (specified_time), 0);
2065 zone_name = format_time_string ("%Z", sizeof "%Z" - 1, value, 0, &localtm);
2066 block_input ();
2067 t = gmtime (&value.tv_sec);
2068 if (t)
2069 offset = tm_diff (&localtm, t);
2070 unblock_input ();
2071
2072 if (t)
2073 {
2074 zone_offset = make_number (offset);
2075 if (SCHARS (zone_name) == 0)
2076 {
2077 /* No local time zone name is available; use "+-NNNN" instead. */
2078 int m = offset / 60;
2079 int am = offset < 0 ? - m : m;
2080 char buf[sizeof "+00" + INT_STRLEN_BOUND (int)];
2081 zone_name = make_formatted_string (buf, "%c%02d%02d",
2082 (offset < 0 ? '-' : '+'),
2083 am / 60, am % 60);
2084 }
2085 }
2086
2087 return list2 (zone_offset, zone_name);
2088 }
2089
2090 DEFUN ("set-time-zone-rule", Fset_time_zone_rule, Sset_time_zone_rule, 1, 1, 0,
2091 doc: /* Set the local time zone using TZ, a string specifying a time zone rule.
2092 If TZ is nil, use implementation-defined default time zone information.
2093 If TZ is t, use Universal Time.
2094
2095 Instead of calling this function, you typically want (setenv "TZ" TZ).
2096 That changes both the environment of the Emacs process and the
2097 variable `process-environment', whereas `set-time-zone-rule' affects
2098 only the former. */)
2099 (Lisp_Object tz)
2100 {
2101 const char *tzstring;
2102
2103 if (! (NILP (tz) || EQ (tz, Qt)))
2104 CHECK_STRING (tz);
2105
2106 if (NILP (tz))
2107 tzstring = initial_tz;
2108 else if (EQ (tz, Qt))
2109 tzstring = "UTC0";
2110 else
2111 tzstring = SSDATA (tz);
2112
2113 block_input ();
2114 set_time_zone_rule (tzstring);
2115 unblock_input ();
2116
2117 return Qnil;
2118 }
2119
2120 /* Set the local time zone rule to TZSTRING.
2121
2122 This function is not thread-safe, partly because putenv, unsetenv
2123 and tzset are not, and partly because of the static storage it
2124 updates. Other threads that invoke localtime etc. may be adversely
2125 affected while this function is executing. */
2126
2127 void
2128 set_time_zone_rule (const char *tzstring)
2129 {
2130 /* A buffer holding a string of the form "TZ=value", intended
2131 to be part of the environment. */
2132 static char *tzvalbuf;
2133 static ptrdiff_t tzvalbufsize;
2134
2135 int tzeqlen = sizeof "TZ=" - 1;
2136
2137 #ifdef LOCALTIME_CACHE
2138 /* These two values are known to load tz files in buggy implementations,
2139 i.e., Solaris 1 executables running under either Solaris 1 or Solaris 2.
2140 Their values shouldn't matter in non-buggy implementations.
2141 We don't use string literals for these strings,
2142 since if a string in the environment is in readonly
2143 storage, it runs afoul of bugs in SVR4 and Solaris 2.3.
2144 See Sun bugs 1113095 and 1114114, ``Timezone routines
2145 improperly modify environment''. */
2146
2147 static char set_time_zone_rule_tz[][sizeof "TZ=GMT+0"]
2148 = { "TZ=GMT+0", "TZ=GMT+1" };
2149
2150 /* In SunOS 4.1.3_U1 and 4.1.4, if TZ has a value like
2151 "US/Pacific" that loads a tz file, then changes to a value like
2152 "XXX0" that does not load a tz file, and then changes back to
2153 its original value, the last change is (incorrectly) ignored.
2154 Also, if TZ changes twice in succession to values that do
2155 not load a tz file, tzset can dump core (see Sun bug#1225179).
2156 The following code works around these bugs. */
2157
2158 if (tzstring)
2159 {
2160 /* Temporarily set TZ to a value that loads a tz file
2161 and that differs from tzstring. */
2162 bool eq0 = strcmp (tzstring, set_time_zone_rule_tz[0] + tzeqlen) == 0;
2163 xputenv (set_time_zone_rule_tz[eq0]);
2164 }
2165 else
2166 {
2167 /* The implied tzstring is unknown, so temporarily set TZ to
2168 two different values that each load a tz file. */
2169 xputenv (set_time_zone_rule_tz[0]);
2170 tzset ();
2171 xputenv (set_time_zone_rule_tz[1]);
2172 }
2173 tzset ();
2174 tzvalbuf_in_environ = 0;
2175 #endif
2176
2177 if (!tzstring)
2178 {
2179 unsetenv ("TZ");
2180 tzvalbuf_in_environ = 0;
2181 }
2182 else
2183 {
2184 ptrdiff_t tzstringlen = strlen (tzstring);
2185
2186 if (tzvalbufsize <= tzeqlen + tzstringlen)
2187 {
2188 unsetenv ("TZ");
2189 tzvalbuf_in_environ = 0;
2190 tzvalbuf = xpalloc (tzvalbuf, &tzvalbufsize,
2191 tzeqlen + tzstringlen - tzvalbufsize + 1, -1, 1);
2192 memcpy (tzvalbuf, "TZ=", tzeqlen);
2193 }
2194
2195 strcpy (tzvalbuf + tzeqlen, tzstring);
2196
2197 if (!tzvalbuf_in_environ)
2198 {
2199 xputenv (tzvalbuf);
2200 tzvalbuf_in_environ = 1;
2201 }
2202 }
2203
2204 #ifdef LOCALTIME_CACHE
2205 tzset ();
2206 #endif
2207 }
2208 \f
2209 /* Insert NARGS Lisp objects in the array ARGS by calling INSERT_FUNC
2210 (if a type of object is Lisp_Int) or INSERT_FROM_STRING_FUNC (if a
2211 type of object is Lisp_String). INHERIT is passed to
2212 INSERT_FROM_STRING_FUNC as the last argument. */
2213
2214 static void
2215 general_insert_function (void (*insert_func)
2216 (const char *, ptrdiff_t),
2217 void (*insert_from_string_func)
2218 (Lisp_Object, ptrdiff_t, ptrdiff_t,
2219 ptrdiff_t, ptrdiff_t, bool),
2220 bool inherit, ptrdiff_t nargs, Lisp_Object *args)
2221 {
2222 ptrdiff_t argnum;
2223 Lisp_Object val;
2224
2225 for (argnum = 0; argnum < nargs; argnum++)
2226 {
2227 val = args[argnum];
2228 if (CHARACTERP (val))
2229 {
2230 int c = XFASTINT (val);
2231 unsigned char str[MAX_MULTIBYTE_LENGTH];
2232 int len;
2233
2234 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2235 len = CHAR_STRING (c, str);
2236 else
2237 {
2238 str[0] = ASCII_CHAR_P (c) ? c : multibyte_char_to_unibyte (c);
2239 len = 1;
2240 }
2241 (*insert_func) ((char *) str, len);
2242 }
2243 else if (STRINGP (val))
2244 {
2245 (*insert_from_string_func) (val, 0, 0,
2246 SCHARS (val),
2247 SBYTES (val),
2248 inherit);
2249 }
2250 else
2251 wrong_type_argument (Qchar_or_string_p, val);
2252 }
2253 }
2254
2255 void
2256 insert1 (Lisp_Object arg)
2257 {
2258 Finsert (1, &arg);
2259 }
2260
2261
2262 /* Callers passing one argument to Finsert need not gcpro the
2263 argument "array", since the only element of the array will
2264 not be used after calling insert or insert_from_string, so
2265 we don't care if it gets trashed. */
2266
2267 DEFUN ("insert", Finsert, Sinsert, 0, MANY, 0,
2268 doc: /* Insert the arguments, either strings or characters, at point.
2269 Point and before-insertion markers move forward to end up
2270 after the inserted text.
2271 Any other markers at the point of insertion remain before the text.
2272
2273 If the current buffer is multibyte, unibyte strings are converted
2274 to multibyte for insertion (see `string-make-multibyte').
2275 If the current buffer is unibyte, multibyte strings are converted
2276 to unibyte for insertion (see `string-make-unibyte').
2277
2278 When operating on binary data, it may be necessary to preserve the
2279 original bytes of a unibyte string when inserting it into a multibyte
2280 buffer; to accomplish this, apply `string-as-multibyte' to the string
2281 and insert the result.
2282
2283 usage: (insert &rest ARGS) */)
2284 (ptrdiff_t nargs, Lisp_Object *args)
2285 {
2286 general_insert_function (insert, insert_from_string, 0, nargs, args);
2287 return Qnil;
2288 }
2289
2290 DEFUN ("insert-and-inherit", Finsert_and_inherit, Sinsert_and_inherit,
2291 0, MANY, 0,
2292 doc: /* Insert the arguments at point, inheriting properties from adjoining text.
2293 Point and before-insertion markers move forward to end up
2294 after the inserted text.
2295 Any other markers at the point of insertion remain before the text.
2296
2297 If the current buffer is multibyte, unibyte strings are converted
2298 to multibyte for insertion (see `unibyte-char-to-multibyte').
2299 If the current buffer is unibyte, multibyte strings are converted
2300 to unibyte for insertion.
2301
2302 usage: (insert-and-inherit &rest ARGS) */)
2303 (ptrdiff_t nargs, Lisp_Object *args)
2304 {
2305 general_insert_function (insert_and_inherit, insert_from_string, 1,
2306 nargs, args);
2307 return Qnil;
2308 }
2309
2310 DEFUN ("insert-before-markers", Finsert_before_markers, Sinsert_before_markers, 0, MANY, 0,
2311 doc: /* Insert strings or characters at point, relocating markers after the text.
2312 Point and markers move forward to end up after the inserted text.
2313
2314 If the current buffer is multibyte, unibyte strings are converted
2315 to multibyte for insertion (see `unibyte-char-to-multibyte').
2316 If the current buffer is unibyte, multibyte strings are converted
2317 to unibyte for insertion.
2318
2319 If an overlay begins at the insertion point, the inserted text falls
2320 outside the overlay; if a nonempty overlay ends at the insertion
2321 point, the inserted text falls inside that overlay.
2322
2323 usage: (insert-before-markers &rest ARGS) */)
2324 (ptrdiff_t nargs, Lisp_Object *args)
2325 {
2326 general_insert_function (insert_before_markers,
2327 insert_from_string_before_markers, 0,
2328 nargs, args);
2329 return Qnil;
2330 }
2331
2332 DEFUN ("insert-before-markers-and-inherit", Finsert_and_inherit_before_markers,
2333 Sinsert_and_inherit_before_markers, 0, MANY, 0,
2334 doc: /* Insert text at point, relocating markers and inheriting properties.
2335 Point and markers move forward to end up after the inserted text.
2336
2337 If the current buffer is multibyte, unibyte strings are converted
2338 to multibyte for insertion (see `unibyte-char-to-multibyte').
2339 If the current buffer is unibyte, multibyte strings are converted
2340 to unibyte for insertion.
2341
2342 usage: (insert-before-markers-and-inherit &rest ARGS) */)
2343 (ptrdiff_t nargs, Lisp_Object *args)
2344 {
2345 general_insert_function (insert_before_markers_and_inherit,
2346 insert_from_string_before_markers, 1,
2347 nargs, args);
2348 return Qnil;
2349 }
2350 \f
2351 DEFUN ("insert-char", Finsert_char, Sinsert_char, 1, 3,
2352 "(list (read-char-by-name \"Insert character (Unicode name or hex): \")\
2353 (prefix-numeric-value current-prefix-arg)\
2354 t))",
2355 doc: /* Insert COUNT copies of CHARACTER.
2356 Interactively, prompt for CHARACTER. You can specify CHARACTER in one
2357 of these ways:
2358
2359 - As its Unicode character name, e.g. \"LATIN SMALL LETTER A\".
2360 Completion is available; if you type a substring of the name
2361 preceded by an asterisk `*', Emacs shows all names which include
2362 that substring, not necessarily at the beginning of the name.
2363
2364 - As a hexadecimal code point, e.g. 263A. Note that code points in
2365 Emacs are equivalent to Unicode up to 10FFFF (which is the limit of
2366 the Unicode code space).
2367
2368 - As a code point with a radix specified with #, e.g. #o21430
2369 (octal), #x2318 (hex), or #10r8984 (decimal).
2370
2371 If called interactively, COUNT is given by the prefix argument. If
2372 omitted or nil, it defaults to 1.
2373
2374 Inserting the character(s) relocates point and before-insertion
2375 markers in the same ways as the function `insert'.
2376
2377 The optional third argument INHERIT, if non-nil, says to inherit text
2378 properties from adjoining text, if those properties are sticky. If
2379 called interactively, INHERIT is t. */)
2380 (Lisp_Object character, Lisp_Object count, Lisp_Object inherit)
2381 {
2382 int i, stringlen;
2383 register ptrdiff_t n;
2384 int c, len;
2385 unsigned char str[MAX_MULTIBYTE_LENGTH];
2386 char string[4000];
2387
2388 CHECK_CHARACTER (character);
2389 if (NILP (count))
2390 XSETFASTINT (count, 1);
2391 CHECK_NUMBER (count);
2392 c = XFASTINT (character);
2393
2394 if (!NILP (BVAR (current_buffer, enable_multibyte_characters)))
2395 len = CHAR_STRING (c, str);
2396 else
2397 str[0] = c, len = 1;
2398 if (XINT (count) <= 0)
2399 return Qnil;
2400 if (BUF_BYTES_MAX / len < XINT (count))
2401 buffer_overflow ();
2402 n = XINT (count) * len;
2403 stringlen = min (n, sizeof string - sizeof string % len);
2404 for (i = 0; i < stringlen; i++)
2405 string[i] = str[i % len];
2406 while (n > stringlen)
2407 {
2408 QUIT;
2409 if (!NILP (inherit))
2410 insert_and_inherit (string, stringlen);
2411 else
2412 insert (string, stringlen);
2413 n -= stringlen;
2414 }
2415 if (!NILP (inherit))
2416 insert_and_inherit (string, n);
2417 else
2418 insert (string, n);
2419 return Qnil;
2420 }
2421
2422 DEFUN ("insert-byte", Finsert_byte, Sinsert_byte, 2, 3, 0,
2423 doc: /* Insert COUNT (second arg) copies of BYTE (first arg).
2424 Both arguments are required.
2425 BYTE is a number of the range 0..255.
2426
2427 If BYTE is 128..255 and the current buffer is multibyte, the
2428 corresponding eight-bit character is inserted.
2429
2430 Point, and before-insertion markers, are relocated as in the function `insert'.
2431 The optional third arg INHERIT, if non-nil, says to inherit text properties
2432 from adjoining text, if those properties are sticky. */)
2433 (Lisp_Object byte, Lisp_Object count, Lisp_Object inherit)
2434 {
2435 CHECK_NUMBER (byte);
2436 if (XINT (byte) < 0 || XINT (byte) > 255)
2437 args_out_of_range_3 (byte, make_number (0), make_number (255));
2438 if (XINT (byte) >= 128
2439 && ! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2440 XSETFASTINT (byte, BYTE8_TO_CHAR (XINT (byte)));
2441 return Finsert_char (byte, count, inherit);
2442 }
2443
2444 \f
2445 /* Making strings from buffer contents. */
2446
2447 /* Return a Lisp_String containing the text of the current buffer from
2448 START to END. If text properties are in use and the current buffer
2449 has properties in the range specified, the resulting string will also
2450 have them, if PROPS is true.
2451
2452 We don't want to use plain old make_string here, because it calls
2453 make_uninit_string, which can cause the buffer arena to be
2454 compacted. make_string has no way of knowing that the data has
2455 been moved, and thus copies the wrong data into the string. This
2456 doesn't effect most of the other users of make_string, so it should
2457 be left as is. But we should use this function when conjuring
2458 buffer substrings. */
2459
2460 Lisp_Object
2461 make_buffer_string (ptrdiff_t start, ptrdiff_t end, bool props)
2462 {
2463 ptrdiff_t start_byte = CHAR_TO_BYTE (start);
2464 ptrdiff_t end_byte = CHAR_TO_BYTE (end);
2465
2466 return make_buffer_string_both (start, start_byte, end, end_byte, props);
2467 }
2468
2469 /* Return a Lisp_String containing the text of the current buffer from
2470 START / START_BYTE to END / END_BYTE.
2471
2472 If text properties are in use and the current buffer
2473 has properties in the range specified, the resulting string will also
2474 have them, if PROPS is true.
2475
2476 We don't want to use plain old make_string here, because it calls
2477 make_uninit_string, which can cause the buffer arena to be
2478 compacted. make_string has no way of knowing that the data has
2479 been moved, and thus copies the wrong data into the string. This
2480 doesn't effect most of the other users of make_string, so it should
2481 be left as is. But we should use this function when conjuring
2482 buffer substrings. */
2483
2484 Lisp_Object
2485 make_buffer_string_both (ptrdiff_t start, ptrdiff_t start_byte,
2486 ptrdiff_t end, ptrdiff_t end_byte, bool props)
2487 {
2488 Lisp_Object result, tem, tem1;
2489
2490 if (start < GPT && GPT < end)
2491 move_gap_both (start, start_byte);
2492
2493 if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
2494 result = make_uninit_multibyte_string (end - start, end_byte - start_byte);
2495 else
2496 result = make_uninit_string (end - start);
2497 memcpy (SDATA (result), BYTE_POS_ADDR (start_byte), end_byte - start_byte);
2498
2499 /* If desired, update and copy the text properties. */
2500 if (props)
2501 {
2502 update_buffer_properties (start, end);
2503
2504 tem = Fnext_property_change (make_number (start), Qnil, make_number (end));
2505 tem1 = Ftext_properties_at (make_number (start), Qnil);
2506
2507 if (XINT (tem) != end || !NILP (tem1))
2508 copy_intervals_to_string (result, current_buffer, start,
2509 end - start);
2510 }
2511
2512 return result;
2513 }
2514
2515 /* Call Vbuffer_access_fontify_functions for the range START ... END
2516 in the current buffer, if necessary. */
2517
2518 static void
2519 update_buffer_properties (ptrdiff_t start, ptrdiff_t end)
2520 {
2521 /* If this buffer has some access functions,
2522 call them, specifying the range of the buffer being accessed. */
2523 if (!NILP (Vbuffer_access_fontify_functions))
2524 {
2525 Lisp_Object args[3];
2526 Lisp_Object tem;
2527
2528 args[0] = Qbuffer_access_fontify_functions;
2529 XSETINT (args[1], start);
2530 XSETINT (args[2], end);
2531
2532 /* But don't call them if we can tell that the work
2533 has already been done. */
2534 if (!NILP (Vbuffer_access_fontified_property))
2535 {
2536 tem = Ftext_property_any (args[1], args[2],
2537 Vbuffer_access_fontified_property,
2538 Qnil, Qnil);
2539 if (! NILP (tem))
2540 Frun_hook_with_args (3, args);
2541 }
2542 else
2543 Frun_hook_with_args (3, args);
2544 }
2545 }
2546
2547 DEFUN ("buffer-substring", Fbuffer_substring, Sbuffer_substring, 2, 2, 0,
2548 doc: /* Return the contents of part of the current buffer as a string.
2549 The two arguments START and END are character positions;
2550 they can be in either order.
2551 The string returned is multibyte if the buffer is multibyte.
2552
2553 This function copies the text properties of that part of the buffer
2554 into the result string; if you don't want the text properties,
2555 use `buffer-substring-no-properties' instead. */)
2556 (Lisp_Object start, Lisp_Object end)
2557 {
2558 register ptrdiff_t b, e;
2559
2560 validate_region (&start, &end);
2561 b = XINT (start);
2562 e = XINT (end);
2563
2564 return make_buffer_string (b, e, 1);
2565 }
2566
2567 DEFUN ("buffer-substring-no-properties", Fbuffer_substring_no_properties,
2568 Sbuffer_substring_no_properties, 2, 2, 0,
2569 doc: /* Return the characters of part of the buffer, without the text properties.
2570 The two arguments START and END are character positions;
2571 they can be in either order. */)
2572 (Lisp_Object start, Lisp_Object end)
2573 {
2574 register ptrdiff_t b, e;
2575
2576 validate_region (&start, &end);
2577 b = XINT (start);
2578 e = XINT (end);
2579
2580 return make_buffer_string (b, e, 0);
2581 }
2582
2583 DEFUN ("buffer-string", Fbuffer_string, Sbuffer_string, 0, 0, 0,
2584 doc: /* Return the contents of the current buffer as a string.
2585 If narrowing is in effect, this function returns only the visible part
2586 of the buffer. */)
2587 (void)
2588 {
2589 return make_buffer_string_both (BEGV, BEGV_BYTE, ZV, ZV_BYTE, 1);
2590 }
2591
2592 DEFUN ("insert-buffer-substring", Finsert_buffer_substring, Sinsert_buffer_substring,
2593 1, 3, 0,
2594 doc: /* Insert before point a substring of the contents of BUFFER.
2595 BUFFER may be a buffer or a buffer name.
2596 Arguments START and END are character positions specifying the substring.
2597 They default to the values of (point-min) and (point-max) in BUFFER. */)
2598 (Lisp_Object buffer, Lisp_Object start, Lisp_Object end)
2599 {
2600 register EMACS_INT b, e, temp;
2601 register struct buffer *bp, *obuf;
2602 Lisp_Object buf;
2603
2604 buf = Fget_buffer (buffer);
2605 if (NILP (buf))
2606 nsberror (buffer);
2607 bp = XBUFFER (buf);
2608 if (!BUFFER_LIVE_P (bp))
2609 error ("Selecting deleted buffer");
2610
2611 if (NILP (start))
2612 b = BUF_BEGV (bp);
2613 else
2614 {
2615 CHECK_NUMBER_COERCE_MARKER (start);
2616 b = XINT (start);
2617 }
2618 if (NILP (end))
2619 e = BUF_ZV (bp);
2620 else
2621 {
2622 CHECK_NUMBER_COERCE_MARKER (end);
2623 e = XINT (end);
2624 }
2625
2626 if (b > e)
2627 temp = b, b = e, e = temp;
2628
2629 if (!(BUF_BEGV (bp) <= b && e <= BUF_ZV (bp)))
2630 args_out_of_range (start, end);
2631
2632 obuf = current_buffer;
2633 set_buffer_internal_1 (bp);
2634 update_buffer_properties (b, e);
2635 set_buffer_internal_1 (obuf);
2636
2637 insert_from_buffer (bp, b, e - b, 0);
2638 return Qnil;
2639 }
2640
2641 DEFUN ("compare-buffer-substrings", Fcompare_buffer_substrings, Scompare_buffer_substrings,
2642 6, 6, 0,
2643 doc: /* Compare two substrings of two buffers; return result as number.
2644 Return -N if first string is less after N-1 chars, +N if first string is
2645 greater after N-1 chars, or 0 if strings match. Each substring is
2646 represented as three arguments: BUFFER, START and END. That makes six
2647 args in all, three for each substring.
2648
2649 The value of `case-fold-search' in the current buffer
2650 determines whether case is significant or ignored. */)
2651 (Lisp_Object buffer1, Lisp_Object start1, Lisp_Object end1, Lisp_Object buffer2, Lisp_Object start2, Lisp_Object end2)
2652 {
2653 register EMACS_INT begp1, endp1, begp2, endp2, temp;
2654 register struct buffer *bp1, *bp2;
2655 register Lisp_Object trt
2656 = (!NILP (BVAR (current_buffer, case_fold_search))
2657 ? BVAR (current_buffer, case_canon_table) : Qnil);
2658 ptrdiff_t chars = 0;
2659 ptrdiff_t i1, i2, i1_byte, i2_byte;
2660
2661 /* Find the first buffer and its substring. */
2662
2663 if (NILP (buffer1))
2664 bp1 = current_buffer;
2665 else
2666 {
2667 Lisp_Object buf1;
2668 buf1 = Fget_buffer (buffer1);
2669 if (NILP (buf1))
2670 nsberror (buffer1);
2671 bp1 = XBUFFER (buf1);
2672 if (!BUFFER_LIVE_P (bp1))
2673 error ("Selecting deleted buffer");
2674 }
2675
2676 if (NILP (start1))
2677 begp1 = BUF_BEGV (bp1);
2678 else
2679 {
2680 CHECK_NUMBER_COERCE_MARKER (start1);
2681 begp1 = XINT (start1);
2682 }
2683 if (NILP (end1))
2684 endp1 = BUF_ZV (bp1);
2685 else
2686 {
2687 CHECK_NUMBER_COERCE_MARKER (end1);
2688 endp1 = XINT (end1);
2689 }
2690
2691 if (begp1 > endp1)
2692 temp = begp1, begp1 = endp1, endp1 = temp;
2693
2694 if (!(BUF_BEGV (bp1) <= begp1
2695 && begp1 <= endp1
2696 && endp1 <= BUF_ZV (bp1)))
2697 args_out_of_range (start1, end1);
2698
2699 /* Likewise for second substring. */
2700
2701 if (NILP (buffer2))
2702 bp2 = current_buffer;
2703 else
2704 {
2705 Lisp_Object buf2;
2706 buf2 = Fget_buffer (buffer2);
2707 if (NILP (buf2))
2708 nsberror (buffer2);
2709 bp2 = XBUFFER (buf2);
2710 if (!BUFFER_LIVE_P (bp2))
2711 error ("Selecting deleted buffer");
2712 }
2713
2714 if (NILP (start2))
2715 begp2 = BUF_BEGV (bp2);
2716 else
2717 {
2718 CHECK_NUMBER_COERCE_MARKER (start2);
2719 begp2 = XINT (start2);
2720 }
2721 if (NILP (end2))
2722 endp2 = BUF_ZV (bp2);
2723 else
2724 {
2725 CHECK_NUMBER_COERCE_MARKER (end2);
2726 endp2 = XINT (end2);
2727 }
2728
2729 if (begp2 > endp2)
2730 temp = begp2, begp2 = endp2, endp2 = temp;
2731
2732 if (!(BUF_BEGV (bp2) <= begp2
2733 && begp2 <= endp2
2734 && endp2 <= BUF_ZV (bp2)))
2735 args_out_of_range (start2, end2);
2736
2737 i1 = begp1;
2738 i2 = begp2;
2739 i1_byte = buf_charpos_to_bytepos (bp1, i1);
2740 i2_byte = buf_charpos_to_bytepos (bp2, i2);
2741
2742 while (i1 < endp1 && i2 < endp2)
2743 {
2744 /* When we find a mismatch, we must compare the
2745 characters, not just the bytes. */
2746 int c1, c2;
2747
2748 QUIT;
2749
2750 if (! NILP (BVAR (bp1, enable_multibyte_characters)))
2751 {
2752 c1 = BUF_FETCH_MULTIBYTE_CHAR (bp1, i1_byte);
2753 BUF_INC_POS (bp1, i1_byte);
2754 i1++;
2755 }
2756 else
2757 {
2758 c1 = BUF_FETCH_BYTE (bp1, i1);
2759 MAKE_CHAR_MULTIBYTE (c1);
2760 i1++;
2761 }
2762
2763 if (! NILP (BVAR (bp2, enable_multibyte_characters)))
2764 {
2765 c2 = BUF_FETCH_MULTIBYTE_CHAR (bp2, i2_byte);
2766 BUF_INC_POS (bp2, i2_byte);
2767 i2++;
2768 }
2769 else
2770 {
2771 c2 = BUF_FETCH_BYTE (bp2, i2);
2772 MAKE_CHAR_MULTIBYTE (c2);
2773 i2++;
2774 }
2775
2776 if (!NILP (trt))
2777 {
2778 c1 = char_table_translate (trt, c1);
2779 c2 = char_table_translate (trt, c2);
2780 }
2781 if (c1 < c2)
2782 return make_number (- 1 - chars);
2783 if (c1 > c2)
2784 return make_number (chars + 1);
2785
2786 chars++;
2787 }
2788
2789 /* The strings match as far as they go.
2790 If one is shorter, that one is less. */
2791 if (chars < endp1 - begp1)
2792 return make_number (chars + 1);
2793 else if (chars < endp2 - begp2)
2794 return make_number (- chars - 1);
2795
2796 /* Same length too => they are equal. */
2797 return make_number (0);
2798 }
2799 \f
2800 static void
2801 subst_char_in_region_unwind (Lisp_Object arg)
2802 {
2803 bset_undo_list (current_buffer, arg);
2804 }
2805
2806 static void
2807 subst_char_in_region_unwind_1 (Lisp_Object arg)
2808 {
2809 bset_filename (current_buffer, arg);
2810 }
2811
2812 DEFUN ("subst-char-in-region", Fsubst_char_in_region,
2813 Ssubst_char_in_region, 4, 5, 0,
2814 doc: /* From START to END, replace FROMCHAR with TOCHAR each time it occurs.
2815 If optional arg NOUNDO is non-nil, don't record this change for undo
2816 and don't mark the buffer as really changed.
2817 Both characters must have the same length of multi-byte form. */)
2818 (Lisp_Object start, Lisp_Object end, Lisp_Object fromchar, Lisp_Object tochar, Lisp_Object noundo)
2819 {
2820 register ptrdiff_t pos, pos_byte, stop, i, len, end_byte;
2821 /* Keep track of the first change in the buffer:
2822 if 0 we haven't found it yet.
2823 if < 0 we've found it and we've run the before-change-function.
2824 if > 0 we've actually performed it and the value is its position. */
2825 ptrdiff_t changed = 0;
2826 unsigned char fromstr[MAX_MULTIBYTE_LENGTH], tostr[MAX_MULTIBYTE_LENGTH];
2827 unsigned char *p;
2828 ptrdiff_t count = SPECPDL_INDEX ();
2829 #define COMBINING_NO 0
2830 #define COMBINING_BEFORE 1
2831 #define COMBINING_AFTER 2
2832 #define COMBINING_BOTH (COMBINING_BEFORE | COMBINING_AFTER)
2833 int maybe_byte_combining = COMBINING_NO;
2834 ptrdiff_t last_changed = 0;
2835 bool multibyte_p
2836 = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2837 int fromc, toc;
2838
2839 restart:
2840
2841 validate_region (&start, &end);
2842 CHECK_CHARACTER (fromchar);
2843 CHECK_CHARACTER (tochar);
2844 fromc = XFASTINT (fromchar);
2845 toc = XFASTINT (tochar);
2846
2847 if (multibyte_p)
2848 {
2849 len = CHAR_STRING (fromc, fromstr);
2850 if (CHAR_STRING (toc, tostr) != len)
2851 error ("Characters in `subst-char-in-region' have different byte-lengths");
2852 if (!ASCII_BYTE_P (*tostr))
2853 {
2854 /* If *TOSTR is in the range 0x80..0x9F and TOCHAR is not a
2855 complete multibyte character, it may be combined with the
2856 after bytes. If it is in the range 0xA0..0xFF, it may be
2857 combined with the before and after bytes. */
2858 if (!CHAR_HEAD_P (*tostr))
2859 maybe_byte_combining = COMBINING_BOTH;
2860 else if (BYTES_BY_CHAR_HEAD (*tostr) > len)
2861 maybe_byte_combining = COMBINING_AFTER;
2862 }
2863 }
2864 else
2865 {
2866 len = 1;
2867 fromstr[0] = fromc;
2868 tostr[0] = toc;
2869 }
2870
2871 pos = XINT (start);
2872 pos_byte = CHAR_TO_BYTE (pos);
2873 stop = CHAR_TO_BYTE (XINT (end));
2874 end_byte = stop;
2875
2876 /* If we don't want undo, turn off putting stuff on the list.
2877 That's faster than getting rid of things,
2878 and it prevents even the entry for a first change.
2879 Also inhibit locking the file. */
2880 if (!changed && !NILP (noundo))
2881 {
2882 record_unwind_protect (subst_char_in_region_unwind,
2883 BVAR (current_buffer, undo_list));
2884 bset_undo_list (current_buffer, Qt);
2885 /* Don't do file-locking. */
2886 record_unwind_protect (subst_char_in_region_unwind_1,
2887 BVAR (current_buffer, filename));
2888 bset_filename (current_buffer, Qnil);
2889 }
2890
2891 if (pos_byte < GPT_BYTE)
2892 stop = min (stop, GPT_BYTE);
2893 while (1)
2894 {
2895 ptrdiff_t pos_byte_next = pos_byte;
2896
2897 if (pos_byte >= stop)
2898 {
2899 if (pos_byte >= end_byte) break;
2900 stop = end_byte;
2901 }
2902 p = BYTE_POS_ADDR (pos_byte);
2903 if (multibyte_p)
2904 INC_POS (pos_byte_next);
2905 else
2906 ++pos_byte_next;
2907 if (pos_byte_next - pos_byte == len
2908 && p[0] == fromstr[0]
2909 && (len == 1
2910 || (p[1] == fromstr[1]
2911 && (len == 2 || (p[2] == fromstr[2]
2912 && (len == 3 || p[3] == fromstr[3]))))))
2913 {
2914 if (changed < 0)
2915 /* We've already seen this and run the before-change-function;
2916 this time we only need to record the actual position. */
2917 changed = pos;
2918 else if (!changed)
2919 {
2920 changed = -1;
2921 modify_text (pos, XINT (end));
2922
2923 if (! NILP (noundo))
2924 {
2925 if (MODIFF - 1 == SAVE_MODIFF)
2926 SAVE_MODIFF++;
2927 if (MODIFF - 1 == BUF_AUTOSAVE_MODIFF (current_buffer))
2928 BUF_AUTOSAVE_MODIFF (current_buffer)++;
2929 }
2930
2931 /* The before-change-function may have moved the gap
2932 or even modified the buffer so we should start over. */
2933 goto restart;
2934 }
2935
2936 /* Take care of the case where the new character
2937 combines with neighboring bytes. */
2938 if (maybe_byte_combining
2939 && (maybe_byte_combining == COMBINING_AFTER
2940 ? (pos_byte_next < Z_BYTE
2941 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2942 : ((pos_byte_next < Z_BYTE
2943 && ! CHAR_HEAD_P (FETCH_BYTE (pos_byte_next)))
2944 || (pos_byte > BEG_BYTE
2945 && ! ASCII_BYTE_P (FETCH_BYTE (pos_byte - 1))))))
2946 {
2947 Lisp_Object tem, string;
2948
2949 struct gcpro gcpro1;
2950
2951 tem = BVAR (current_buffer, undo_list);
2952 GCPRO1 (tem);
2953
2954 /* Make a multibyte string containing this single character. */
2955 string = make_multibyte_string ((char *) tostr, 1, len);
2956 /* replace_range is less efficient, because it moves the gap,
2957 but it handles combining correctly. */
2958 replace_range (pos, pos + 1, string,
2959 0, 0, 1);
2960 pos_byte_next = CHAR_TO_BYTE (pos);
2961 if (pos_byte_next > pos_byte)
2962 /* Before combining happened. We should not increment
2963 POS. So, to cancel the later increment of POS,
2964 decrease it now. */
2965 pos--;
2966 else
2967 INC_POS (pos_byte_next);
2968
2969 if (! NILP (noundo))
2970 bset_undo_list (current_buffer, tem);
2971
2972 UNGCPRO;
2973 }
2974 else
2975 {
2976 if (NILP (noundo))
2977 record_change (pos, 1);
2978 for (i = 0; i < len; i++) *p++ = tostr[i];
2979 }
2980 last_changed = pos + 1;
2981 }
2982 pos_byte = pos_byte_next;
2983 pos++;
2984 }
2985
2986 if (changed > 0)
2987 {
2988 signal_after_change (changed,
2989 last_changed - changed, last_changed - changed);
2990 update_compositions (changed, last_changed, CHECK_ALL);
2991 }
2992
2993 unbind_to (count, Qnil);
2994 return Qnil;
2995 }
2996
2997
2998 static Lisp_Object check_translation (ptrdiff_t, ptrdiff_t, ptrdiff_t,
2999 Lisp_Object);
3000
3001 /* Helper function for Ftranslate_region_internal.
3002
3003 Check if a character sequence at POS (POS_BYTE) matches an element
3004 of VAL. VAL is a list (([FROM-CHAR ...] . TO) ...). If a matching
3005 element is found, return it. Otherwise return Qnil. */
3006
3007 static Lisp_Object
3008 check_translation (ptrdiff_t pos, ptrdiff_t pos_byte, ptrdiff_t end,
3009 Lisp_Object val)
3010 {
3011 int buf_size = 16, buf_used = 0;
3012 int *buf = alloca (sizeof (int) * buf_size);
3013
3014 for (; CONSP (val); val = XCDR (val))
3015 {
3016 Lisp_Object elt;
3017 ptrdiff_t len, i;
3018
3019 elt = XCAR (val);
3020 if (! CONSP (elt))
3021 continue;
3022 elt = XCAR (elt);
3023 if (! VECTORP (elt))
3024 continue;
3025 len = ASIZE (elt);
3026 if (len <= end - pos)
3027 {
3028 for (i = 0; i < len; i++)
3029 {
3030 if (buf_used <= i)
3031 {
3032 unsigned char *p = BYTE_POS_ADDR (pos_byte);
3033 int len1;
3034
3035 if (buf_used == buf_size)
3036 {
3037 int *newbuf;
3038
3039 buf_size += 16;
3040 newbuf = alloca (sizeof (int) * buf_size);
3041 memcpy (newbuf, buf, sizeof (int) * buf_used);
3042 buf = newbuf;
3043 }
3044 buf[buf_used++] = STRING_CHAR_AND_LENGTH (p, len1);
3045 pos_byte += len1;
3046 }
3047 if (XINT (AREF (elt, i)) != buf[i])
3048 break;
3049 }
3050 if (i == len)
3051 return XCAR (val);
3052 }
3053 }
3054 return Qnil;
3055 }
3056
3057
3058 DEFUN ("translate-region-internal", Ftranslate_region_internal,
3059 Stranslate_region_internal, 3, 3, 0,
3060 doc: /* Internal use only.
3061 From START to END, translate characters according to TABLE.
3062 TABLE is a string or a char-table; the Nth character in it is the
3063 mapping for the character with code N.
3064 It returns the number of characters changed. */)
3065 (Lisp_Object start, Lisp_Object end, register Lisp_Object table)
3066 {
3067 register unsigned char *tt; /* Trans table. */
3068 register int nc; /* New character. */
3069 int cnt; /* Number of changes made. */
3070 ptrdiff_t size; /* Size of translate table. */
3071 ptrdiff_t pos, pos_byte, end_pos;
3072 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3073 bool string_multibyte IF_LINT (= 0);
3074
3075 validate_region (&start, &end);
3076 if (CHAR_TABLE_P (table))
3077 {
3078 if (! EQ (XCHAR_TABLE (table)->purpose, Qtranslation_table))
3079 error ("Not a translation table");
3080 size = MAX_CHAR;
3081 tt = NULL;
3082 }
3083 else
3084 {
3085 CHECK_STRING (table);
3086
3087 if (! multibyte && (SCHARS (table) < SBYTES (table)))
3088 table = string_make_unibyte (table);
3089 string_multibyte = SCHARS (table) < SBYTES (table);
3090 size = SBYTES (table);
3091 tt = SDATA (table);
3092 }
3093
3094 pos = XINT (start);
3095 pos_byte = CHAR_TO_BYTE (pos);
3096 end_pos = XINT (end);
3097 modify_text (pos, end_pos);
3098
3099 cnt = 0;
3100 for (; pos < end_pos; )
3101 {
3102 register unsigned char *p = BYTE_POS_ADDR (pos_byte);
3103 unsigned char *str, buf[MAX_MULTIBYTE_LENGTH];
3104 int len, str_len;
3105 int oc;
3106 Lisp_Object val;
3107
3108 if (multibyte)
3109 oc = STRING_CHAR_AND_LENGTH (p, len);
3110 else
3111 oc = *p, len = 1;
3112 if (oc < size)
3113 {
3114 if (tt)
3115 {
3116 /* Reload as signal_after_change in last iteration may GC. */
3117 tt = SDATA (table);
3118 if (string_multibyte)
3119 {
3120 str = tt + string_char_to_byte (table, oc);
3121 nc = STRING_CHAR_AND_LENGTH (str, str_len);
3122 }
3123 else
3124 {
3125 nc = tt[oc];
3126 if (! ASCII_BYTE_P (nc) && multibyte)
3127 {
3128 str_len = BYTE8_STRING (nc, buf);
3129 str = buf;
3130 }
3131 else
3132 {
3133 str_len = 1;
3134 str = tt + oc;
3135 }
3136 }
3137 }
3138 else
3139 {
3140 nc = oc;
3141 val = CHAR_TABLE_REF (table, oc);
3142 if (CHARACTERP (val))
3143 {
3144 nc = XFASTINT (val);
3145 str_len = CHAR_STRING (nc, buf);
3146 str = buf;
3147 }
3148 else if (VECTORP (val) || (CONSP (val)))
3149 {
3150 /* VAL is [TO_CHAR ...] or (([FROM-CHAR ...] . TO) ...)
3151 where TO is TO-CHAR or [TO-CHAR ...]. */
3152 nc = -1;
3153 }
3154 }
3155
3156 if (nc != oc && nc >= 0)
3157 {
3158 /* Simple one char to one char translation. */
3159 if (len != str_len)
3160 {
3161 Lisp_Object string;
3162
3163 /* This is less efficient, because it moves the gap,
3164 but it should handle multibyte characters correctly. */
3165 string = make_multibyte_string ((char *) str, 1, str_len);
3166 replace_range (pos, pos + 1, string, 1, 0, 1);
3167 len = str_len;
3168 }
3169 else
3170 {
3171 record_change (pos, 1);
3172 while (str_len-- > 0)
3173 *p++ = *str++;
3174 signal_after_change (pos, 1, 1);
3175 update_compositions (pos, pos + 1, CHECK_BORDER);
3176 }
3177 ++cnt;
3178 }
3179 else if (nc < 0)
3180 {
3181 Lisp_Object string;
3182
3183 if (CONSP (val))
3184 {
3185 val = check_translation (pos, pos_byte, end_pos, val);
3186 if (NILP (val))
3187 {
3188 pos_byte += len;
3189 pos++;
3190 continue;
3191 }
3192 /* VAL is ([FROM-CHAR ...] . TO). */
3193 len = ASIZE (XCAR (val));
3194 val = XCDR (val);
3195 }
3196 else
3197 len = 1;
3198
3199 if (VECTORP (val))
3200 {
3201 string = Fconcat (1, &val);
3202 }
3203 else
3204 {
3205 string = Fmake_string (make_number (1), val);
3206 }
3207 replace_range (pos, pos + len, string, 1, 0, 1);
3208 pos_byte += SBYTES (string);
3209 pos += SCHARS (string);
3210 cnt += SCHARS (string);
3211 end_pos += SCHARS (string) - len;
3212 continue;
3213 }
3214 }
3215 pos_byte += len;
3216 pos++;
3217 }
3218
3219 return make_number (cnt);
3220 }
3221
3222 DEFUN ("delete-region", Fdelete_region, Sdelete_region, 2, 2, "r",
3223 doc: /* Delete the text between START and END.
3224 If called interactively, delete the region between point and mark.
3225 This command deletes buffer text without modifying the kill ring. */)
3226 (Lisp_Object start, Lisp_Object end)
3227 {
3228 validate_region (&start, &end);
3229 del_range (XINT (start), XINT (end));
3230 return Qnil;
3231 }
3232
3233 DEFUN ("delete-and-extract-region", Fdelete_and_extract_region,
3234 Sdelete_and_extract_region, 2, 2, 0,
3235 doc: /* Delete the text between START and END and return it. */)
3236 (Lisp_Object start, Lisp_Object end)
3237 {
3238 validate_region (&start, &end);
3239 if (XINT (start) == XINT (end))
3240 return empty_unibyte_string;
3241 return del_range_1 (XINT (start), XINT (end), 1, 1);
3242 }
3243 \f
3244 DEFUN ("widen", Fwiden, Swiden, 0, 0, "",
3245 doc: /* Remove restrictions (narrowing) from current buffer.
3246 This allows the buffer's full text to be seen and edited. */)
3247 (void)
3248 {
3249 if (BEG != BEGV || Z != ZV)
3250 current_buffer->clip_changed = 1;
3251 BEGV = BEG;
3252 BEGV_BYTE = BEG_BYTE;
3253 SET_BUF_ZV_BOTH (current_buffer, Z, Z_BYTE);
3254 /* Changing the buffer bounds invalidates any recorded current column. */
3255 invalidate_current_column ();
3256 return Qnil;
3257 }
3258
3259 DEFUN ("narrow-to-region", Fnarrow_to_region, Snarrow_to_region, 2, 2, "r",
3260 doc: /* Restrict editing in this buffer to the current region.
3261 The rest of the text becomes temporarily invisible and untouchable
3262 but is not deleted; if you save the buffer in a file, the invisible
3263 text is included in the file. \\[widen] makes all visible again.
3264 See also `save-restriction'.
3265
3266 When calling from a program, pass two arguments; positions (integers
3267 or markers) bounding the text that should remain visible. */)
3268 (register Lisp_Object start, Lisp_Object end)
3269 {
3270 CHECK_NUMBER_COERCE_MARKER (start);
3271 CHECK_NUMBER_COERCE_MARKER (end);
3272
3273 if (XINT (start) > XINT (end))
3274 {
3275 Lisp_Object tem;
3276 tem = start; start = end; end = tem;
3277 }
3278
3279 if (!(BEG <= XINT (start) && XINT (start) <= XINT (end) && XINT (end) <= Z))
3280 args_out_of_range (start, end);
3281
3282 if (BEGV != XFASTINT (start) || ZV != XFASTINT (end))
3283 current_buffer->clip_changed = 1;
3284
3285 SET_BUF_BEGV (current_buffer, XFASTINT (start));
3286 SET_BUF_ZV (current_buffer, XFASTINT (end));
3287 if (PT < XFASTINT (start))
3288 SET_PT (XFASTINT (start));
3289 if (PT > XFASTINT (end))
3290 SET_PT (XFASTINT (end));
3291 /* Changing the buffer bounds invalidates any recorded current column. */
3292 invalidate_current_column ();
3293 return Qnil;
3294 }
3295
3296 Lisp_Object
3297 save_restriction_save (void)
3298 {
3299 if (BEGV == BEG && ZV == Z)
3300 /* The common case that the buffer isn't narrowed.
3301 We return just the buffer object, which save_restriction_restore
3302 recognizes as meaning `no restriction'. */
3303 return Fcurrent_buffer ();
3304 else
3305 /* We have to save a restriction, so return a pair of markers, one
3306 for the beginning and one for the end. */
3307 {
3308 Lisp_Object beg, end;
3309
3310 beg = build_marker (current_buffer, BEGV, BEGV_BYTE);
3311 end = build_marker (current_buffer, ZV, ZV_BYTE);
3312
3313 /* END must move forward if text is inserted at its exact location. */
3314 XMARKER (end)->insertion_type = 1;
3315
3316 return Fcons (beg, end);
3317 }
3318 }
3319
3320 void
3321 save_restriction_restore (Lisp_Object data)
3322 {
3323 struct buffer *cur = NULL;
3324 struct buffer *buf = (CONSP (data)
3325 ? XMARKER (XCAR (data))->buffer
3326 : XBUFFER (data));
3327
3328 if (buf && buf != current_buffer && !NILP (BVAR (buf, pt_marker)))
3329 { /* If `buf' uses markers to keep track of PT, BEGV, and ZV (as
3330 is the case if it is or has an indirect buffer), then make
3331 sure it is current before we update BEGV, so
3332 set_buffer_internal takes care of managing those markers. */
3333 cur = current_buffer;
3334 set_buffer_internal (buf);
3335 }
3336
3337 if (CONSP (data))
3338 /* A pair of marks bounding a saved restriction. */
3339 {
3340 struct Lisp_Marker *beg = XMARKER (XCAR (data));
3341 struct Lisp_Marker *end = XMARKER (XCDR (data));
3342 eassert (buf == end->buffer);
3343
3344 if (buf /* Verify marker still points to a buffer. */
3345 && (beg->charpos != BUF_BEGV (buf) || end->charpos != BUF_ZV (buf)))
3346 /* The restriction has changed from the saved one, so restore
3347 the saved restriction. */
3348 {
3349 ptrdiff_t pt = BUF_PT (buf);
3350
3351 SET_BUF_BEGV_BOTH (buf, beg->charpos, beg->bytepos);
3352 SET_BUF_ZV_BOTH (buf, end->charpos, end->bytepos);
3353
3354 if (pt < beg->charpos || pt > end->charpos)
3355 /* The point is outside the new visible range, move it inside. */
3356 SET_BUF_PT_BOTH (buf,
3357 clip_to_bounds (beg->charpos, pt, end->charpos),
3358 clip_to_bounds (beg->bytepos, BUF_PT_BYTE (buf),
3359 end->bytepos));
3360
3361 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3362 }
3363 /* These aren't needed anymore, so don't wait for GC. */
3364 free_marker (XCAR (data));
3365 free_marker (XCDR (data));
3366 free_cons (XCONS (data));
3367 }
3368 else
3369 /* A buffer, which means that there was no old restriction. */
3370 {
3371 if (buf /* Verify marker still points to a buffer. */
3372 && (BUF_BEGV (buf) != BUF_BEG (buf) || BUF_ZV (buf) != BUF_Z (buf)))
3373 /* The buffer has been narrowed, get rid of the narrowing. */
3374 {
3375 SET_BUF_BEGV_BOTH (buf, BUF_BEG (buf), BUF_BEG_BYTE (buf));
3376 SET_BUF_ZV_BOTH (buf, BUF_Z (buf), BUF_Z_BYTE (buf));
3377
3378 buf->clip_changed = 1; /* Remember that the narrowing changed. */
3379 }
3380 }
3381
3382 /* Changing the buffer bounds invalidates any recorded current column. */
3383 invalidate_current_column ();
3384
3385 if (cur)
3386 set_buffer_internal (cur);
3387 }
3388
3389 DEFUN ("save-restriction", Fsave_restriction, Ssave_restriction, 0, UNEVALLED, 0,
3390 doc: /* Execute BODY, saving and restoring current buffer's restrictions.
3391 The buffer's restrictions make parts of the beginning and end invisible.
3392 \(They are set up with `narrow-to-region' and eliminated with `widen'.)
3393 This special form, `save-restriction', saves the current buffer's restrictions
3394 when it is entered, and restores them when it is exited.
3395 So any `narrow-to-region' within BODY lasts only until the end of the form.
3396 The old restrictions settings are restored
3397 even in case of abnormal exit (throw or error).
3398
3399 The value returned is the value of the last form in BODY.
3400
3401 Note: if you are using both `save-excursion' and `save-restriction',
3402 use `save-excursion' outermost:
3403 (save-excursion (save-restriction ...))
3404
3405 usage: (save-restriction &rest BODY) */)
3406 (Lisp_Object body)
3407 {
3408 register Lisp_Object val;
3409 ptrdiff_t count = SPECPDL_INDEX ();
3410
3411 record_unwind_protect (save_restriction_restore, save_restriction_save ());
3412 val = Fprogn (body);
3413 return unbind_to (count, val);
3414 }
3415 \f
3416 DEFUN ("message", Fmessage, Smessage, 1, MANY, 0,
3417 doc: /* Display a message at the bottom of the screen.
3418 The message also goes into the `*Messages*' buffer, if `message-log-max'
3419 is non-nil. (In keyboard macros, that's all it does.)
3420 Return the message.
3421
3422 The first argument is a format control string, and the rest are data
3423 to be formatted under control of the string. See `format' for details.
3424
3425 Note: Use (message "%s" VALUE) to print the value of expressions and
3426 variables to avoid accidentally interpreting `%' as format specifiers.
3427
3428 If the first argument is nil or the empty string, the function clears
3429 any existing message; this lets the minibuffer contents show. See
3430 also `current-message'.
3431
3432 usage: (message FORMAT-STRING &rest ARGS) */)
3433 (ptrdiff_t nargs, Lisp_Object *args)
3434 {
3435 if (NILP (args[0])
3436 || (STRINGP (args[0])
3437 && SBYTES (args[0]) == 0))
3438 {
3439 message1 (0);
3440 return args[0];
3441 }
3442 else
3443 {
3444 register Lisp_Object val;
3445 val = Fformat (nargs, args);
3446 message3 (val);
3447 return val;
3448 }
3449 }
3450
3451 DEFUN ("message-box", Fmessage_box, Smessage_box, 1, MANY, 0,
3452 doc: /* Display a message, in a dialog box if possible.
3453 If a dialog box is not available, use the echo area.
3454 The first argument is a format control string, and the rest are data
3455 to be formatted under control of the string. See `format' for details.
3456
3457 If the first argument is nil or the empty string, clear any existing
3458 message; let the minibuffer contents show.
3459
3460 usage: (message-box FORMAT-STRING &rest ARGS) */)
3461 (ptrdiff_t nargs, Lisp_Object *args)
3462 {
3463 if (NILP (args[0]))
3464 {
3465 message1 (0);
3466 return Qnil;
3467 }
3468 else
3469 {
3470 Lisp_Object val = Fformat (nargs, args);
3471 #ifdef HAVE_MENUS
3472 Lisp_Object pane, menu;
3473 struct gcpro gcpro1;
3474
3475 pane = list1 (Fcons (build_string ("OK"), Qt));
3476 GCPRO1 (pane);
3477 menu = Fcons (val, pane);
3478 Fx_popup_dialog (Qt, menu, Qt);
3479 UNGCPRO;
3480 #else /* !HAVE_MENUS */
3481 message3 (val);
3482 #endif
3483 return val;
3484 }
3485 }
3486
3487 DEFUN ("message-or-box", Fmessage_or_box, Smessage_or_box, 1, MANY, 0,
3488 doc: /* Display a message in a dialog box or in the echo area.
3489 If this command was invoked with the mouse, use a dialog box if
3490 `use-dialog-box' is non-nil.
3491 Otherwise, use the echo area.
3492 The first argument is a format control string, and the rest are data
3493 to be formatted under control of the string. See `format' for details.
3494
3495 If the first argument is nil or the empty string, clear any existing
3496 message; let the minibuffer contents show.
3497
3498 usage: (message-or-box FORMAT-STRING &rest ARGS) */)
3499 (ptrdiff_t nargs, Lisp_Object *args)
3500 {
3501 #ifdef HAVE_MENUS
3502 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
3503 && use_dialog_box)
3504 return Fmessage_box (nargs, args);
3505 #endif
3506 return Fmessage (nargs, args);
3507 }
3508
3509 DEFUN ("current-message", Fcurrent_message, Scurrent_message, 0, 0, 0,
3510 doc: /* Return the string currently displayed in the echo area, or nil if none. */)
3511 (void)
3512 {
3513 return current_message ();
3514 }
3515
3516
3517 DEFUN ("propertize", Fpropertize, Spropertize, 1, MANY, 0,
3518 doc: /* Return a copy of STRING with text properties added.
3519 First argument is the string to copy.
3520 Remaining arguments form a sequence of PROPERTY VALUE pairs for text
3521 properties to add to the result.
3522 usage: (propertize STRING &rest PROPERTIES) */)
3523 (ptrdiff_t nargs, Lisp_Object *args)
3524 {
3525 Lisp_Object properties, string;
3526 struct gcpro gcpro1, gcpro2;
3527 ptrdiff_t i;
3528
3529 /* Number of args must be odd. */
3530 if ((nargs & 1) == 0)
3531 error ("Wrong number of arguments");
3532
3533 properties = string = Qnil;
3534 GCPRO2 (properties, string);
3535
3536 /* First argument must be a string. */
3537 CHECK_STRING (args[0]);
3538 string = Fcopy_sequence (args[0]);
3539
3540 for (i = 1; i < nargs; i += 2)
3541 properties = Fcons (args[i], Fcons (args[i + 1], properties));
3542
3543 Fadd_text_properties (make_number (0),
3544 make_number (SCHARS (string)),
3545 properties, string);
3546 RETURN_UNGCPRO (string);
3547 }
3548
3549 DEFUN ("format", Fformat, Sformat, 1, MANY, 0,
3550 doc: /* Format a string out of a format-string and arguments.
3551 The first argument is a format control string.
3552 The other arguments are substituted into it to make the result, a string.
3553
3554 The format control string may contain %-sequences meaning to substitute
3555 the next available argument:
3556
3557 %s means print a string argument. Actually, prints any object, with `princ'.
3558 %d means print as number in decimal (%o octal, %x hex).
3559 %X is like %x, but uses upper case.
3560 %e means print a number in exponential notation.
3561 %f means print a number in decimal-point notation.
3562 %g means print a number in exponential notation
3563 or decimal-point notation, whichever uses fewer characters.
3564 %c means print a number as a single character.
3565 %S means print any object as an s-expression (using `prin1').
3566
3567 The argument used for %d, %o, %x, %e, %f, %g or %c must be a number.
3568 Use %% to put a single % into the output.
3569
3570 A %-sequence may contain optional flag, width, and precision
3571 specifiers, as follows:
3572
3573 %<flags><width><precision>character
3574
3575 where flags is [+ #-0]+, width is [0-9]+, and precision is .[0-9]+
3576
3577 The + flag character inserts a + before any positive number, while a
3578 space inserts a space before any positive number; these flags only
3579 affect %d, %e, %f, and %g sequences, and the + flag takes precedence.
3580 The - and 0 flags affect the width specifier, as described below.
3581
3582 The # flag means to use an alternate display form for %o, %x, %X, %e,
3583 %f, and %g sequences: for %o, it ensures that the result begins with
3584 \"0\"; for %x and %X, it prefixes the result with \"0x\" or \"0X\";
3585 for %e, %f, and %g, it causes a decimal point to be included even if
3586 the precision is zero.
3587
3588 The width specifier supplies a lower limit for the length of the
3589 printed representation. The padding, if any, normally goes on the
3590 left, but it goes on the right if the - flag is present. The padding
3591 character is normally a space, but it is 0 if the 0 flag is present.
3592 The 0 flag is ignored if the - flag is present, or the format sequence
3593 is something other than %d, %e, %f, and %g.
3594
3595 For %e, %f, and %g sequences, the number after the "." in the
3596 precision specifier says how many decimal places to show; if zero, the
3597 decimal point itself is omitted. For %s and %S, the precision
3598 specifier truncates the string to the given width.
3599
3600 usage: (format STRING &rest OBJECTS) */)
3601 (ptrdiff_t nargs, Lisp_Object *args)
3602 {
3603 ptrdiff_t n; /* The number of the next arg to substitute */
3604 char initial_buffer[4000];
3605 char *buf = initial_buffer;
3606 ptrdiff_t bufsize = sizeof initial_buffer;
3607 ptrdiff_t max_bufsize = STRING_BYTES_BOUND + 1;
3608 char *p;
3609 ptrdiff_t buf_save_value_index IF_LINT (= 0);
3610 char *format, *end, *format_start;
3611 ptrdiff_t formatlen, nchars;
3612 /* True if the format is multibyte. */
3613 bool multibyte_format = 0;
3614 /* True if the output should be a multibyte string,
3615 which is true if any of the inputs is one. */
3616 bool multibyte = 0;
3617 /* When we make a multibyte string, we must pay attention to the
3618 byte combining problem, i.e., a byte may be combined with a
3619 multibyte character of the previous string. This flag tells if we
3620 must consider such a situation or not. */
3621 bool maybe_combine_byte;
3622 Lisp_Object val;
3623 bool arg_intervals = 0;
3624 USE_SAFE_ALLOCA;
3625
3626 /* discarded[I] is 1 if byte I of the format
3627 string was not copied into the output.
3628 It is 2 if byte I was not the first byte of its character. */
3629 char *discarded;
3630
3631 /* Each element records, for one argument,
3632 the start and end bytepos in the output string,
3633 whether the argument has been converted to string (e.g., due to "%S"),
3634 and whether the argument is a string with intervals.
3635 info[0] is unused. Unused elements have -1 for start. */
3636 struct info
3637 {
3638 ptrdiff_t start, end;
3639 unsigned converted_to_string : 1;
3640 unsigned intervals : 1;
3641 } *info = 0;
3642
3643 /* It should not be necessary to GCPRO ARGS, because
3644 the caller in the interpreter should take care of that. */
3645
3646 CHECK_STRING (args[0]);
3647 format_start = SSDATA (args[0]);
3648 formatlen = SBYTES (args[0]);
3649
3650 /* Allocate the info and discarded tables. */
3651 {
3652 ptrdiff_t i;
3653 if ((SIZE_MAX - formatlen) / sizeof (struct info) <= nargs)
3654 memory_full (SIZE_MAX);
3655 info = SAFE_ALLOCA ((nargs + 1) * sizeof *info + formatlen);
3656 discarded = (char *) &info[nargs + 1];
3657 for (i = 0; i < nargs + 1; i++)
3658 {
3659 info[i].start = -1;
3660 info[i].intervals = info[i].converted_to_string = 0;
3661 }
3662 memset (discarded, 0, formatlen);
3663 }
3664
3665 /* Try to determine whether the result should be multibyte.
3666 This is not always right; sometimes the result needs to be multibyte
3667 because of an object that we will pass through prin1,
3668 and in that case, we won't know it here. */
3669 multibyte_format = STRING_MULTIBYTE (args[0]);
3670 multibyte = multibyte_format;
3671 for (n = 1; !multibyte && n < nargs; n++)
3672 if (STRINGP (args[n]) && STRING_MULTIBYTE (args[n]))
3673 multibyte = 1;
3674
3675 /* If we start out planning a unibyte result,
3676 then discover it has to be multibyte, we jump back to retry. */
3677 retry:
3678
3679 p = buf;
3680 nchars = 0;
3681 n = 0;
3682
3683 /* Scan the format and store result in BUF. */
3684 format = format_start;
3685 end = format + formatlen;
3686 maybe_combine_byte = 0;
3687
3688 while (format != end)
3689 {
3690 /* The values of N and FORMAT when the loop body is entered. */
3691 ptrdiff_t n0 = n;
3692 char *format0 = format;
3693
3694 /* Bytes needed to represent the output of this conversion. */
3695 ptrdiff_t convbytes;
3696
3697 if (*format == '%')
3698 {
3699 /* General format specifications look like
3700
3701 '%' [flags] [field-width] [precision] format
3702
3703 where
3704
3705 flags ::= [-+0# ]+
3706 field-width ::= [0-9]+
3707 precision ::= '.' [0-9]*
3708
3709 If a field-width is specified, it specifies to which width
3710 the output should be padded with blanks, if the output
3711 string is shorter than field-width.
3712
3713 If precision is specified, it specifies the number of
3714 digits to print after the '.' for floats, or the max.
3715 number of chars to print from a string. */
3716
3717 bool minus_flag = 0;
3718 bool plus_flag = 0;
3719 bool space_flag = 0;
3720 bool sharp_flag = 0;
3721 bool zero_flag = 0;
3722 ptrdiff_t field_width;
3723 bool precision_given;
3724 uintmax_t precision = UINTMAX_MAX;
3725 char *num_end;
3726 char conversion;
3727
3728 while (1)
3729 {
3730 switch (*++format)
3731 {
3732 case '-': minus_flag = 1; continue;
3733 case '+': plus_flag = 1; continue;
3734 case ' ': space_flag = 1; continue;
3735 case '#': sharp_flag = 1; continue;
3736 case '0': zero_flag = 1; continue;
3737 }
3738 break;
3739 }
3740
3741 /* Ignore flags when sprintf ignores them. */
3742 space_flag &= ~ plus_flag;
3743 zero_flag &= ~ minus_flag;
3744
3745 {
3746 uintmax_t w = strtoumax (format, &num_end, 10);
3747 if (max_bufsize <= w)
3748 string_overflow ();
3749 field_width = w;
3750 }
3751 precision_given = *num_end == '.';
3752 if (precision_given)
3753 precision = strtoumax (num_end + 1, &num_end, 10);
3754 format = num_end;
3755
3756 if (format == end)
3757 error ("Format string ends in middle of format specifier");
3758
3759 memset (&discarded[format0 - format_start], 1, format - format0);
3760 conversion = *format;
3761 if (conversion == '%')
3762 goto copy_char;
3763 discarded[format - format_start] = 1;
3764 format++;
3765
3766 ++n;
3767 if (! (n < nargs))
3768 error ("Not enough arguments for format string");
3769
3770 /* For 'S', prin1 the argument, and then treat like 's'.
3771 For 's', princ any argument that is not a string or
3772 symbol. But don't do this conversion twice, which might
3773 happen after retrying. */
3774 if ((conversion == 'S'
3775 || (conversion == 's'
3776 && ! STRINGP (args[n]) && ! SYMBOLP (args[n]))))
3777 {
3778 if (! info[n].converted_to_string)
3779 {
3780 Lisp_Object noescape = conversion == 'S' ? Qnil : Qt;
3781 args[n] = Fprin1_to_string (args[n], noescape);
3782 info[n].converted_to_string = 1;
3783 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3784 {
3785 multibyte = 1;
3786 goto retry;
3787 }
3788 }
3789 conversion = 's';
3790 }
3791 else if (conversion == 'c')
3792 {
3793 if (FLOATP (args[n]))
3794 {
3795 double d = XFLOAT_DATA (args[n]);
3796 args[n] = make_number (FIXNUM_OVERFLOW_P (d) ? -1 : d);
3797 }
3798
3799 if (INTEGERP (args[n]) && ! ASCII_CHAR_P (XINT (args[n])))
3800 {
3801 if (!multibyte)
3802 {
3803 multibyte = 1;
3804 goto retry;
3805 }
3806 args[n] = Fchar_to_string (args[n]);
3807 info[n].converted_to_string = 1;
3808 }
3809
3810 if (info[n].converted_to_string)
3811 conversion = 's';
3812 zero_flag = 0;
3813 }
3814
3815 if (SYMBOLP (args[n]))
3816 {
3817 args[n] = SYMBOL_NAME (args[n]);
3818 if (STRING_MULTIBYTE (args[n]) && ! multibyte)
3819 {
3820 multibyte = 1;
3821 goto retry;
3822 }
3823 }
3824
3825 if (conversion == 's')
3826 {
3827 /* handle case (precision[n] >= 0) */
3828
3829 ptrdiff_t width, padding, nbytes;
3830 ptrdiff_t nchars_string;
3831
3832 ptrdiff_t prec = -1;
3833 if (precision_given && precision <= TYPE_MAXIMUM (ptrdiff_t))
3834 prec = precision;
3835
3836 /* lisp_string_width ignores a precision of 0, but GNU
3837 libc functions print 0 characters when the precision
3838 is 0. Imitate libc behavior here. Changing
3839 lisp_string_width is the right thing, and will be
3840 done, but meanwhile we work with it. */
3841
3842 if (prec == 0)
3843 width = nchars_string = nbytes = 0;
3844 else
3845 {
3846 ptrdiff_t nch, nby;
3847 width = lisp_string_width (args[n], prec, &nch, &nby);
3848 if (prec < 0)
3849 {
3850 nchars_string = SCHARS (args[n]);
3851 nbytes = SBYTES (args[n]);
3852 }
3853 else
3854 {
3855 nchars_string = nch;
3856 nbytes = nby;
3857 }
3858 }
3859
3860 convbytes = nbytes;
3861 if (convbytes && multibyte && ! STRING_MULTIBYTE (args[n]))
3862 convbytes = count_size_as_multibyte (SDATA (args[n]), nbytes);
3863
3864 padding = width < field_width ? field_width - width : 0;
3865
3866 if (max_bufsize - padding <= convbytes)
3867 string_overflow ();
3868 convbytes += padding;
3869 if (convbytes <= buf + bufsize - p)
3870 {
3871 if (! minus_flag)
3872 {
3873 memset (p, ' ', padding);
3874 p += padding;
3875 nchars += padding;
3876 }
3877
3878 if (p > buf
3879 && multibyte
3880 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
3881 && STRING_MULTIBYTE (args[n])
3882 && !CHAR_HEAD_P (SREF (args[n], 0)))
3883 maybe_combine_byte = 1;
3884
3885 p += copy_text (SDATA (args[n]), (unsigned char *) p,
3886 nbytes,
3887 STRING_MULTIBYTE (args[n]), multibyte);
3888
3889 info[n].start = nchars;
3890 nchars += nchars_string;
3891 info[n].end = nchars;
3892
3893 if (minus_flag)
3894 {
3895 memset (p, ' ', padding);
3896 p += padding;
3897 nchars += padding;
3898 }
3899
3900 /* If this argument has text properties, record where
3901 in the result string it appears. */
3902 if (string_intervals (args[n]))
3903 info[n].intervals = arg_intervals = 1;
3904
3905 continue;
3906 }
3907 }
3908 else if (! (conversion == 'c' || conversion == 'd'
3909 || conversion == 'e' || conversion == 'f'
3910 || conversion == 'g' || conversion == 'i'
3911 || conversion == 'o' || conversion == 'x'
3912 || conversion == 'X'))
3913 error ("Invalid format operation %%%c",
3914 STRING_CHAR ((unsigned char *) format - 1));
3915 else if (! (INTEGERP (args[n]) || FLOATP (args[n])))
3916 error ("Format specifier doesn't match argument type");
3917 else
3918 {
3919 enum
3920 {
3921 /* Maximum precision for a %f conversion such that the
3922 trailing output digit might be nonzero. Any precision
3923 larger than this will not yield useful information. */
3924 USEFUL_PRECISION_MAX =
3925 ((1 - DBL_MIN_EXP)
3926 * (FLT_RADIX == 2 || FLT_RADIX == 10 ? 1
3927 : FLT_RADIX == 16 ? 4
3928 : -1)),
3929
3930 /* Maximum number of bytes generated by any format, if
3931 precision is no more than USEFUL_PRECISION_MAX.
3932 On all practical hosts, %f is the worst case. */
3933 SPRINTF_BUFSIZE =
3934 sizeof "-." + (DBL_MAX_10_EXP + 1) + USEFUL_PRECISION_MAX,
3935
3936 /* Length of pM (that is, of pMd without the
3937 trailing "d"). */
3938 pMlen = sizeof pMd - 2
3939 };
3940 verify (USEFUL_PRECISION_MAX > 0);
3941
3942 int prec;
3943 ptrdiff_t padding, sprintf_bytes;
3944 uintmax_t excess_precision, numwidth;
3945 uintmax_t leading_zeros = 0, trailing_zeros = 0;
3946
3947 char sprintf_buf[SPRINTF_BUFSIZE];
3948
3949 /* Copy of conversion specification, modified somewhat.
3950 At most three flags F can be specified at once. */
3951 char convspec[sizeof "%FFF.*d" + pMlen];
3952
3953 /* Avoid undefined behavior in underlying sprintf. */
3954 if (conversion == 'd' || conversion == 'i')
3955 sharp_flag = 0;
3956
3957 /* Create the copy of the conversion specification, with
3958 any width and precision removed, with ".*" inserted,
3959 and with pM inserted for integer formats. */
3960 {
3961 char *f = convspec;
3962 *f++ = '%';
3963 *f = '-'; f += minus_flag;
3964 *f = '+'; f += plus_flag;
3965 *f = ' '; f += space_flag;
3966 *f = '#'; f += sharp_flag;
3967 *f = '0'; f += zero_flag;
3968 *f++ = '.';
3969 *f++ = '*';
3970 if (conversion == 'd' || conversion == 'i'
3971 || conversion == 'o' || conversion == 'x'
3972 || conversion == 'X')
3973 {
3974 memcpy (f, pMd, pMlen);
3975 f += pMlen;
3976 zero_flag &= ~ precision_given;
3977 }
3978 *f++ = conversion;
3979 *f = '\0';
3980 }
3981
3982 prec = -1;
3983 if (precision_given)
3984 prec = min (precision, USEFUL_PRECISION_MAX);
3985
3986 /* Use sprintf to format this number into sprintf_buf. Omit
3987 padding and excess precision, though, because sprintf limits
3988 output length to INT_MAX.
3989
3990 There are four types of conversion: double, unsigned
3991 char (passed as int), wide signed int, and wide
3992 unsigned int. Treat them separately because the
3993 sprintf ABI is sensitive to which type is passed. Be
3994 careful about integer overflow, NaNs, infinities, and
3995 conversions; for example, the min and max macros are
3996 not suitable here. */
3997 if (conversion == 'e' || conversion == 'f' || conversion == 'g')
3998 {
3999 double x = (INTEGERP (args[n])
4000 ? XINT (args[n])
4001 : XFLOAT_DATA (args[n]));
4002 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4003 }
4004 else if (conversion == 'c')
4005 {
4006 /* Don't use sprintf here, as it might mishandle prec. */
4007 sprintf_buf[0] = XINT (args[n]);
4008 sprintf_bytes = prec != 0;
4009 }
4010 else if (conversion == 'd')
4011 {
4012 /* For float, maybe we should use "%1.0f"
4013 instead so it also works for values outside
4014 the integer range. */
4015 printmax_t x;
4016 if (INTEGERP (args[n]))
4017 x = XINT (args[n]);
4018 else
4019 {
4020 double d = XFLOAT_DATA (args[n]);
4021 if (d < 0)
4022 {
4023 x = TYPE_MINIMUM (printmax_t);
4024 if (x < d)
4025 x = d;
4026 }
4027 else
4028 {
4029 x = TYPE_MAXIMUM (printmax_t);
4030 if (d < x)
4031 x = d;
4032 }
4033 }
4034 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4035 }
4036 else
4037 {
4038 /* Don't sign-extend for octal or hex printing. */
4039 uprintmax_t x;
4040 if (INTEGERP (args[n]))
4041 x = XUINT (args[n]);
4042 else
4043 {
4044 double d = XFLOAT_DATA (args[n]);
4045 if (d < 0)
4046 x = 0;
4047 else
4048 {
4049 x = TYPE_MAXIMUM (uprintmax_t);
4050 if (d < x)
4051 x = d;
4052 }
4053 }
4054 sprintf_bytes = sprintf (sprintf_buf, convspec, prec, x);
4055 }
4056
4057 /* Now the length of the formatted item is known, except it omits
4058 padding and excess precision. Deal with excess precision
4059 first. This happens only when the format specifies
4060 ridiculously large precision. */
4061 excess_precision = precision - prec;
4062 if (excess_precision)
4063 {
4064 if (conversion == 'e' || conversion == 'f'
4065 || conversion == 'g')
4066 {
4067 if ((conversion == 'g' && ! sharp_flag)
4068 || ! ('0' <= sprintf_buf[sprintf_bytes - 1]
4069 && sprintf_buf[sprintf_bytes - 1] <= '9'))
4070 excess_precision = 0;
4071 else
4072 {
4073 if (conversion == 'g')
4074 {
4075 char *dot = strchr (sprintf_buf, '.');
4076 if (!dot)
4077 excess_precision = 0;
4078 }
4079 }
4080 trailing_zeros = excess_precision;
4081 }
4082 else
4083 leading_zeros = excess_precision;
4084 }
4085
4086 /* Compute the total bytes needed for this item, including
4087 excess precision and padding. */
4088 numwidth = sprintf_bytes + excess_precision;
4089 padding = numwidth < field_width ? field_width - numwidth : 0;
4090 if (max_bufsize - sprintf_bytes <= excess_precision
4091 || max_bufsize - padding <= numwidth)
4092 string_overflow ();
4093 convbytes = numwidth + padding;
4094
4095 if (convbytes <= buf + bufsize - p)
4096 {
4097 /* Copy the formatted item from sprintf_buf into buf,
4098 inserting padding and excess-precision zeros. */
4099
4100 char *src = sprintf_buf;
4101 char src0 = src[0];
4102 int exponent_bytes = 0;
4103 bool signedp = src0 == '-' || src0 == '+' || src0 == ' ';
4104 int significand_bytes;
4105 if (zero_flag
4106 && ((src[signedp] >= '0' && src[signedp] <= '9')
4107 || (src[signedp] >= 'a' && src[signedp] <= 'f')
4108 || (src[signedp] >= 'A' && src[signedp] <= 'F')))
4109 {
4110 leading_zeros += padding;
4111 padding = 0;
4112 }
4113
4114 if (excess_precision
4115 && (conversion == 'e' || conversion == 'g'))
4116 {
4117 char *e = strchr (src, 'e');
4118 if (e)
4119 exponent_bytes = src + sprintf_bytes - e;
4120 }
4121
4122 if (! minus_flag)
4123 {
4124 memset (p, ' ', padding);
4125 p += padding;
4126 nchars += padding;
4127 }
4128
4129 *p = src0;
4130 src += signedp;
4131 p += signedp;
4132 memset (p, '0', leading_zeros);
4133 p += leading_zeros;
4134 significand_bytes = sprintf_bytes - signedp - exponent_bytes;
4135 memcpy (p, src, significand_bytes);
4136 p += significand_bytes;
4137 src += significand_bytes;
4138 memset (p, '0', trailing_zeros);
4139 p += trailing_zeros;
4140 memcpy (p, src, exponent_bytes);
4141 p += exponent_bytes;
4142
4143 info[n].start = nchars;
4144 nchars += leading_zeros + sprintf_bytes + trailing_zeros;
4145 info[n].end = nchars;
4146
4147 if (minus_flag)
4148 {
4149 memset (p, ' ', padding);
4150 p += padding;
4151 nchars += padding;
4152 }
4153
4154 continue;
4155 }
4156 }
4157 }
4158 else
4159 copy_char:
4160 {
4161 /* Copy a single character from format to buf. */
4162
4163 char *src = format;
4164 unsigned char str[MAX_MULTIBYTE_LENGTH];
4165
4166 if (multibyte_format)
4167 {
4168 /* Copy a whole multibyte character. */
4169 if (p > buf
4170 && !ASCII_BYTE_P (*((unsigned char *) p - 1))
4171 && !CHAR_HEAD_P (*format))
4172 maybe_combine_byte = 1;
4173
4174 do
4175 format++;
4176 while (! CHAR_HEAD_P (*format));
4177
4178 convbytes = format - src;
4179 memset (&discarded[src + 1 - format_start], 2, convbytes - 1);
4180 }
4181 else
4182 {
4183 unsigned char uc = *format++;
4184 if (! multibyte || ASCII_BYTE_P (uc))
4185 convbytes = 1;
4186 else
4187 {
4188 int c = BYTE8_TO_CHAR (uc);
4189 convbytes = CHAR_STRING (c, str);
4190 src = (char *) str;
4191 }
4192 }
4193
4194 if (convbytes <= buf + bufsize - p)
4195 {
4196 memcpy (p, src, convbytes);
4197 p += convbytes;
4198 nchars++;
4199 continue;
4200 }
4201 }
4202
4203 /* There wasn't enough room to store this conversion or single
4204 character. CONVBYTES says how much room is needed. Allocate
4205 enough room (and then some) and do it again. */
4206 {
4207 ptrdiff_t used = p - buf;
4208
4209 if (max_bufsize - used < convbytes)
4210 string_overflow ();
4211 bufsize = used + convbytes;
4212 bufsize = bufsize < max_bufsize / 2 ? bufsize * 2 : max_bufsize;
4213
4214 if (buf == initial_buffer)
4215 {
4216 buf = xmalloc (bufsize);
4217 sa_must_free = 1;
4218 buf_save_value_index = SPECPDL_INDEX ();
4219 record_unwind_protect_ptr (xfree, buf);
4220 memcpy (buf, initial_buffer, used);
4221 }
4222 else
4223 {
4224 buf = xrealloc (buf, bufsize);
4225 set_unwind_protect_ptr (buf_save_value_index, xfree, buf);
4226 }
4227
4228 p = buf + used;
4229 }
4230
4231 format = format0;
4232 n = n0;
4233 }
4234
4235 if (bufsize < p - buf)
4236 emacs_abort ();
4237
4238 if (maybe_combine_byte)
4239 nchars = multibyte_chars_in_text ((unsigned char *) buf, p - buf);
4240 val = make_specified_string (buf, nchars, p - buf, multibyte);
4241
4242 /* If we allocated BUF with malloc, free it too. */
4243 SAFE_FREE ();
4244
4245 /* If the format string has text properties, or any of the string
4246 arguments has text properties, set up text properties of the
4247 result string. */
4248
4249 if (string_intervals (args[0]) || arg_intervals)
4250 {
4251 Lisp_Object len, new_len, props;
4252 struct gcpro gcpro1;
4253
4254 /* Add text properties from the format string. */
4255 len = make_number (SCHARS (args[0]));
4256 props = text_property_list (args[0], make_number (0), len, Qnil);
4257 GCPRO1 (props);
4258
4259 if (CONSP (props))
4260 {
4261 ptrdiff_t bytepos = 0, position = 0, translated = 0;
4262 ptrdiff_t argn = 1;
4263 Lisp_Object list;
4264
4265 /* Adjust the bounds of each text property
4266 to the proper start and end in the output string. */
4267
4268 /* Put the positions in PROPS in increasing order, so that
4269 we can do (effectively) one scan through the position
4270 space of the format string. */
4271 props = Fnreverse (props);
4272
4273 /* BYTEPOS is the byte position in the format string,
4274 POSITION is the untranslated char position in it,
4275 TRANSLATED is the translated char position in BUF,
4276 and ARGN is the number of the next arg we will come to. */
4277 for (list = props; CONSP (list); list = XCDR (list))
4278 {
4279 Lisp_Object item;
4280 ptrdiff_t pos;
4281
4282 item = XCAR (list);
4283
4284 /* First adjust the property start position. */
4285 pos = XINT (XCAR (item));
4286
4287 /* Advance BYTEPOS, POSITION, TRANSLATED and ARGN
4288 up to this position. */
4289 for (; position < pos; bytepos++)
4290 {
4291 if (! discarded[bytepos])
4292 position++, translated++;
4293 else if (discarded[bytepos] == 1)
4294 {
4295 position++;
4296 if (translated == info[argn].start)
4297 {
4298 translated += info[argn].end - info[argn].start;
4299 argn++;
4300 }
4301 }
4302 }
4303
4304 XSETCAR (item, make_number (translated));
4305
4306 /* Likewise adjust the property end position. */
4307 pos = XINT (XCAR (XCDR (item)));
4308
4309 for (; position < pos; bytepos++)
4310 {
4311 if (! discarded[bytepos])
4312 position++, translated++;
4313 else if (discarded[bytepos] == 1)
4314 {
4315 position++;
4316 if (translated == info[argn].start)
4317 {
4318 translated += info[argn].end - info[argn].start;
4319 argn++;
4320 }
4321 }
4322 }
4323
4324 XSETCAR (XCDR (item), make_number (translated));
4325 }
4326
4327 add_text_properties_from_list (val, props, make_number (0));
4328 }
4329
4330 /* Add text properties from arguments. */
4331 if (arg_intervals)
4332 for (n = 1; n < nargs; ++n)
4333 if (info[n].intervals)
4334 {
4335 len = make_number (SCHARS (args[n]));
4336 new_len = make_number (info[n].end - info[n].start);
4337 props = text_property_list (args[n], make_number (0), len, Qnil);
4338 props = extend_property_ranges (props, new_len);
4339 /* If successive arguments have properties, be sure that
4340 the value of `composition' property be the copy. */
4341 if (n > 1 && info[n - 1].end)
4342 make_composition_value_copy (props);
4343 add_text_properties_from_list (val, props,
4344 make_number (info[n].start));
4345 }
4346
4347 UNGCPRO;
4348 }
4349
4350 return val;
4351 }
4352
4353 Lisp_Object
4354 format2 (const char *string1, Lisp_Object arg0, Lisp_Object arg1)
4355 {
4356 Lisp_Object args[3];
4357 args[0] = build_string (string1);
4358 args[1] = arg0;
4359 args[2] = arg1;
4360 return Fformat (3, args);
4361 }
4362 \f
4363 DEFUN ("char-equal", Fchar_equal, Schar_equal, 2, 2, 0,
4364 doc: /* Return t if two characters match, optionally ignoring case.
4365 Both arguments must be characters (i.e. integers).
4366 Case is ignored if `case-fold-search' is non-nil in the current buffer. */)
4367 (register Lisp_Object c1, Lisp_Object c2)
4368 {
4369 int i1, i2;
4370 /* Check they're chars, not just integers, otherwise we could get array
4371 bounds violations in downcase. */
4372 CHECK_CHARACTER (c1);
4373 CHECK_CHARACTER (c2);
4374
4375 if (XINT (c1) == XINT (c2))
4376 return Qt;
4377 if (NILP (BVAR (current_buffer, case_fold_search)))
4378 return Qnil;
4379
4380 i1 = XFASTINT (c1);
4381 if (NILP (BVAR (current_buffer, enable_multibyte_characters))
4382 && ! ASCII_CHAR_P (i1))
4383 {
4384 MAKE_CHAR_MULTIBYTE (i1);
4385 }
4386 i2 = XFASTINT (c2);
4387 if (NILP (BVAR (current_buffer, enable_multibyte_characters))
4388 && ! ASCII_CHAR_P (i2))
4389 {
4390 MAKE_CHAR_MULTIBYTE (i2);
4391 }
4392 return (downcase (i1) == downcase (i2) ? Qt : Qnil);
4393 }
4394 \f
4395 /* Transpose the markers in two regions of the current buffer, and
4396 adjust the ones between them if necessary (i.e.: if the regions
4397 differ in size).
4398
4399 START1, END1 are the character positions of the first region.
4400 START1_BYTE, END1_BYTE are the byte positions.
4401 START2, END2 are the character positions of the second region.
4402 START2_BYTE, END2_BYTE are the byte positions.
4403
4404 Traverses the entire marker list of the buffer to do so, adding an
4405 appropriate amount to some, subtracting from some, and leaving the
4406 rest untouched. Most of this is copied from adjust_markers in insdel.c.
4407
4408 It's the caller's job to ensure that START1 <= END1 <= START2 <= END2. */
4409
4410 static void
4411 transpose_markers (ptrdiff_t start1, ptrdiff_t end1,
4412 ptrdiff_t start2, ptrdiff_t end2,
4413 ptrdiff_t start1_byte, ptrdiff_t end1_byte,
4414 ptrdiff_t start2_byte, ptrdiff_t end2_byte)
4415 {
4416 register ptrdiff_t amt1, amt1_byte, amt2, amt2_byte, diff, diff_byte, mpos;
4417 register struct Lisp_Marker *marker;
4418
4419 /* Update point as if it were a marker. */
4420 if (PT < start1)
4421 ;
4422 else if (PT < end1)
4423 TEMP_SET_PT_BOTH (PT + (end2 - end1),
4424 PT_BYTE + (end2_byte - end1_byte));
4425 else if (PT < start2)
4426 TEMP_SET_PT_BOTH (PT + (end2 - start2) - (end1 - start1),
4427 (PT_BYTE + (end2_byte - start2_byte)
4428 - (end1_byte - start1_byte)));
4429 else if (PT < end2)
4430 TEMP_SET_PT_BOTH (PT - (start2 - start1),
4431 PT_BYTE - (start2_byte - start1_byte));
4432
4433 /* We used to adjust the endpoints here to account for the gap, but that
4434 isn't good enough. Even if we assume the caller has tried to move the
4435 gap out of our way, it might still be at start1 exactly, for example;
4436 and that places it `inside' the interval, for our purposes. The amount
4437 of adjustment is nontrivial if there's a `denormalized' marker whose
4438 position is between GPT and GPT + GAP_SIZE, so it's simpler to leave
4439 the dirty work to Fmarker_position, below. */
4440
4441 /* The difference between the region's lengths */
4442 diff = (end2 - start2) - (end1 - start1);
4443 diff_byte = (end2_byte - start2_byte) - (end1_byte - start1_byte);
4444
4445 /* For shifting each marker in a region by the length of the other
4446 region plus the distance between the regions. */
4447 amt1 = (end2 - start2) + (start2 - end1);
4448 amt2 = (end1 - start1) + (start2 - end1);
4449 amt1_byte = (end2_byte - start2_byte) + (start2_byte - end1_byte);
4450 amt2_byte = (end1_byte - start1_byte) + (start2_byte - end1_byte);
4451
4452 for (marker = BUF_MARKERS (current_buffer); marker; marker = marker->next)
4453 {
4454 mpos = marker->bytepos;
4455 if (mpos >= start1_byte && mpos < end2_byte)
4456 {
4457 if (mpos < end1_byte)
4458 mpos += amt1_byte;
4459 else if (mpos < start2_byte)
4460 mpos += diff_byte;
4461 else
4462 mpos -= amt2_byte;
4463 marker->bytepos = mpos;
4464 }
4465 mpos = marker->charpos;
4466 if (mpos >= start1 && mpos < end2)
4467 {
4468 if (mpos < end1)
4469 mpos += amt1;
4470 else if (mpos < start2)
4471 mpos += diff;
4472 else
4473 mpos -= amt2;
4474 }
4475 marker->charpos = mpos;
4476 }
4477 }
4478
4479 DEFUN ("transpose-regions", Ftranspose_regions, Stranspose_regions, 4, 5, 0,
4480 doc: /* Transpose region STARTR1 to ENDR1 with STARTR2 to ENDR2.
4481 The regions should not be overlapping, because the size of the buffer is
4482 never changed in a transposition.
4483
4484 Optional fifth arg LEAVE-MARKERS, if non-nil, means don't update
4485 any markers that happen to be located in the regions.
4486
4487 Transposing beyond buffer boundaries is an error. */)
4488 (Lisp_Object startr1, Lisp_Object endr1, Lisp_Object startr2, Lisp_Object endr2, Lisp_Object leave_markers)
4489 {
4490 register ptrdiff_t start1, end1, start2, end2;
4491 ptrdiff_t start1_byte, start2_byte, len1_byte, len2_byte, end2_byte;
4492 ptrdiff_t gap, len1, len_mid, len2;
4493 unsigned char *start1_addr, *start2_addr, *temp;
4494
4495 INTERVAL cur_intv, tmp_interval1, tmp_interval_mid, tmp_interval2, tmp_interval3;
4496 Lisp_Object buf;
4497
4498 XSETBUFFER (buf, current_buffer);
4499 cur_intv = buffer_intervals (current_buffer);
4500
4501 validate_region (&startr1, &endr1);
4502 validate_region (&startr2, &endr2);
4503
4504 start1 = XFASTINT (startr1);
4505 end1 = XFASTINT (endr1);
4506 start2 = XFASTINT (startr2);
4507 end2 = XFASTINT (endr2);
4508 gap = GPT;
4509
4510 /* Swap the regions if they're reversed. */
4511 if (start2 < end1)
4512 {
4513 register ptrdiff_t glumph = start1;
4514 start1 = start2;
4515 start2 = glumph;
4516 glumph = end1;
4517 end1 = end2;
4518 end2 = glumph;
4519 }
4520
4521 len1 = end1 - start1;
4522 len2 = end2 - start2;
4523
4524 if (start2 < end1)
4525 error ("Transposed regions overlap");
4526 /* Nothing to change for adjacent regions with one being empty */
4527 else if ((start1 == end1 || start2 == end2) && end1 == start2)
4528 return Qnil;
4529
4530 /* The possibilities are:
4531 1. Adjacent (contiguous) regions, or separate but equal regions
4532 (no, really equal, in this case!), or
4533 2. Separate regions of unequal size.
4534
4535 The worst case is usually No. 2. It means that (aside from
4536 potential need for getting the gap out of the way), there also
4537 needs to be a shifting of the text between the two regions. So
4538 if they are spread far apart, we are that much slower... sigh. */
4539
4540 /* It must be pointed out that the really studly thing to do would
4541 be not to move the gap at all, but to leave it in place and work
4542 around it if necessary. This would be extremely efficient,
4543 especially considering that people are likely to do
4544 transpositions near where they are working interactively, which
4545 is exactly where the gap would be found. However, such code
4546 would be much harder to write and to read. So, if you are
4547 reading this comment and are feeling squirrely, by all means have
4548 a go! I just didn't feel like doing it, so I will simply move
4549 the gap the minimum distance to get it out of the way, and then
4550 deal with an unbroken array. */
4551
4552 start1_byte = CHAR_TO_BYTE (start1);
4553 end2_byte = CHAR_TO_BYTE (end2);
4554
4555 /* Make sure the gap won't interfere, by moving it out of the text
4556 we will operate on. */
4557 if (start1 < gap && gap < end2)
4558 {
4559 if (gap - start1 < end2 - gap)
4560 move_gap_both (start1, start1_byte);
4561 else
4562 move_gap_both (end2, end2_byte);
4563 }
4564
4565 start2_byte = CHAR_TO_BYTE (start2);
4566 len1_byte = CHAR_TO_BYTE (end1) - start1_byte;
4567 len2_byte = end2_byte - start2_byte;
4568
4569 #ifdef BYTE_COMBINING_DEBUG
4570 if (end1 == start2)
4571 {
4572 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4573 len2_byte, start1, start1_byte)
4574 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4575 len1_byte, end2, start2_byte + len2_byte)
4576 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4577 len1_byte, end2, start2_byte + len2_byte))
4578 emacs_abort ();
4579 }
4580 else
4581 {
4582 if (count_combining_before (BYTE_POS_ADDR (start2_byte),
4583 len2_byte, start1, start1_byte)
4584 || count_combining_before (BYTE_POS_ADDR (start1_byte),
4585 len1_byte, start2, start2_byte)
4586 || count_combining_after (BYTE_POS_ADDR (start2_byte),
4587 len2_byte, end1, start1_byte + len1_byte)
4588 || count_combining_after (BYTE_POS_ADDR (start1_byte),
4589 len1_byte, end2, start2_byte + len2_byte))
4590 emacs_abort ();
4591 }
4592 #endif
4593
4594 /* Hmmm... how about checking to see if the gap is large
4595 enough to use as the temporary storage? That would avoid an
4596 allocation... interesting. Later, don't fool with it now. */
4597
4598 /* Working without memmove, for portability (sigh), so must be
4599 careful of overlapping subsections of the array... */
4600
4601 if (end1 == start2) /* adjacent regions */
4602 {
4603 modify_text (start1, end2);
4604 record_change (start1, len1 + len2);
4605
4606 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4607 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4608 /* Don't use Fset_text_properties: that can cause GC, which can
4609 clobber objects stored in the tmp_intervals. */
4610 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4611 if (tmp_interval3)
4612 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4613
4614 /* First region smaller than second. */
4615 if (len1_byte < len2_byte)
4616 {
4617 USE_SAFE_ALLOCA;
4618
4619 temp = SAFE_ALLOCA (len2_byte);
4620
4621 /* Don't precompute these addresses. We have to compute them
4622 at the last minute, because the relocating allocator might
4623 have moved the buffer around during the xmalloc. */
4624 start1_addr = BYTE_POS_ADDR (start1_byte);
4625 start2_addr = BYTE_POS_ADDR (start2_byte);
4626
4627 memcpy (temp, start2_addr, len2_byte);
4628 memcpy (start1_addr + len2_byte, start1_addr, len1_byte);
4629 memcpy (start1_addr, temp, len2_byte);
4630 SAFE_FREE ();
4631 }
4632 else
4633 /* First region not smaller than second. */
4634 {
4635 USE_SAFE_ALLOCA;
4636
4637 temp = SAFE_ALLOCA (len1_byte);
4638 start1_addr = BYTE_POS_ADDR (start1_byte);
4639 start2_addr = BYTE_POS_ADDR (start2_byte);
4640 memcpy (temp, start1_addr, len1_byte);
4641 memcpy (start1_addr, start2_addr, len2_byte);
4642 memcpy (start1_addr + len2_byte, temp, len1_byte);
4643 SAFE_FREE ();
4644 }
4645 graft_intervals_into_buffer (tmp_interval1, start1 + len2,
4646 len1, current_buffer, 0);
4647 graft_intervals_into_buffer (tmp_interval2, start1,
4648 len2, current_buffer, 0);
4649 update_compositions (start1, start1 + len2, CHECK_BORDER);
4650 update_compositions (start1 + len2, end2, CHECK_TAIL);
4651 }
4652 /* Non-adjacent regions, because end1 != start2, bleagh... */
4653 else
4654 {
4655 len_mid = start2_byte - (start1_byte + len1_byte);
4656
4657 if (len1_byte == len2_byte)
4658 /* Regions are same size, though, how nice. */
4659 {
4660 USE_SAFE_ALLOCA;
4661
4662 modify_text (start1, end1);
4663 modify_text (start2, end2);
4664 record_change (start1, len1);
4665 record_change (start2, len2);
4666 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4667 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4668
4669 tmp_interval3 = validate_interval_range (buf, &startr1, &endr1, 0);
4670 if (tmp_interval3)
4671 set_text_properties_1 (startr1, endr1, Qnil, buf, tmp_interval3);
4672
4673 tmp_interval3 = validate_interval_range (buf, &startr2, &endr2, 0);
4674 if (tmp_interval3)
4675 set_text_properties_1 (startr2, endr2, Qnil, buf, tmp_interval3);
4676
4677 temp = SAFE_ALLOCA (len1_byte);
4678 start1_addr = BYTE_POS_ADDR (start1_byte);
4679 start2_addr = BYTE_POS_ADDR (start2_byte);
4680 memcpy (temp, start1_addr, len1_byte);
4681 memcpy (start1_addr, start2_addr, len2_byte);
4682 memcpy (start2_addr, temp, len1_byte);
4683 SAFE_FREE ();
4684
4685 graft_intervals_into_buffer (tmp_interval1, start2,
4686 len1, current_buffer, 0);
4687 graft_intervals_into_buffer (tmp_interval2, start1,
4688 len2, current_buffer, 0);
4689 }
4690
4691 else if (len1_byte < len2_byte) /* Second region larger than first */
4692 /* Non-adjacent & unequal size, area between must also be shifted. */
4693 {
4694 USE_SAFE_ALLOCA;
4695
4696 modify_text (start1, end2);
4697 record_change (start1, (end2 - start1));
4698 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4699 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4700 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4701
4702 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4703 if (tmp_interval3)
4704 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4705
4706 /* holds region 2 */
4707 temp = SAFE_ALLOCA (len2_byte);
4708 start1_addr = BYTE_POS_ADDR (start1_byte);
4709 start2_addr = BYTE_POS_ADDR (start2_byte);
4710 memcpy (temp, start2_addr, len2_byte);
4711 memcpy (start1_addr + len_mid + len2_byte, start1_addr, len1_byte);
4712 memmove (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4713 memcpy (start1_addr, temp, len2_byte);
4714 SAFE_FREE ();
4715
4716 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4717 len1, current_buffer, 0);
4718 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4719 len_mid, current_buffer, 0);
4720 graft_intervals_into_buffer (tmp_interval2, start1,
4721 len2, current_buffer, 0);
4722 }
4723 else
4724 /* Second region smaller than first. */
4725 {
4726 USE_SAFE_ALLOCA;
4727
4728 record_change (start1, (end2 - start1));
4729 modify_text (start1, end2);
4730
4731 tmp_interval1 = copy_intervals (cur_intv, start1, len1);
4732 tmp_interval_mid = copy_intervals (cur_intv, end1, len_mid);
4733 tmp_interval2 = copy_intervals (cur_intv, start2, len2);
4734
4735 tmp_interval3 = validate_interval_range (buf, &startr1, &endr2, 0);
4736 if (tmp_interval3)
4737 set_text_properties_1 (startr1, endr2, Qnil, buf, tmp_interval3);
4738
4739 /* holds region 1 */
4740 temp = SAFE_ALLOCA (len1_byte);
4741 start1_addr = BYTE_POS_ADDR (start1_byte);
4742 start2_addr = BYTE_POS_ADDR (start2_byte);
4743 memcpy (temp, start1_addr, len1_byte);
4744 memcpy (start1_addr, start2_addr, len2_byte);
4745 memcpy (start1_addr + len2_byte, start1_addr + len1_byte, len_mid);
4746 memcpy (start1_addr + len2_byte + len_mid, temp, len1_byte);
4747 SAFE_FREE ();
4748
4749 graft_intervals_into_buffer (tmp_interval1, end2 - len1,
4750 len1, current_buffer, 0);
4751 graft_intervals_into_buffer (tmp_interval_mid, start1 + len2,
4752 len_mid, current_buffer, 0);
4753 graft_intervals_into_buffer (tmp_interval2, start1,
4754 len2, current_buffer, 0);
4755 }
4756
4757 update_compositions (start1, start1 + len2, CHECK_BORDER);
4758 update_compositions (end2 - len1, end2, CHECK_BORDER);
4759 }
4760
4761 /* When doing multiple transpositions, it might be nice
4762 to optimize this. Perhaps the markers in any one buffer
4763 should be organized in some sorted data tree. */
4764 if (NILP (leave_markers))
4765 {
4766 transpose_markers (start1, end1, start2, end2,
4767 start1_byte, start1_byte + len1_byte,
4768 start2_byte, start2_byte + len2_byte);
4769 fix_start_end_in_overlays (start1, end2);
4770 }
4771
4772 signal_after_change (start1, end2 - start1, end2 - start1);
4773 return Qnil;
4774 }
4775
4776 \f
4777 void
4778 syms_of_editfns (void)
4779 {
4780 DEFSYM (Qbuffer_access_fontify_functions, "buffer-access-fontify-functions");
4781
4782 DEFVAR_LISP ("inhibit-field-text-motion", Vinhibit_field_text_motion,
4783 doc: /* Non-nil means text motion commands don't notice fields. */);
4784 Vinhibit_field_text_motion = Qnil;
4785
4786 DEFVAR_LISP ("buffer-access-fontify-functions",
4787 Vbuffer_access_fontify_functions,
4788 doc: /* List of functions called by `buffer-substring' to fontify if necessary.
4789 Each function is called with two arguments which specify the range
4790 of the buffer being accessed. */);
4791 Vbuffer_access_fontify_functions = Qnil;
4792
4793 {
4794 Lisp_Object obuf;
4795 obuf = Fcurrent_buffer ();
4796 /* Do this here, because init_buffer_once is too early--it won't work. */
4797 Fset_buffer (Vprin1_to_string_buffer);
4798 /* Make sure buffer-access-fontify-functions is nil in this buffer. */
4799 Fset (Fmake_local_variable (intern_c_string ("buffer-access-fontify-functions")),
4800 Qnil);
4801 Fset_buffer (obuf);
4802 }
4803
4804 DEFVAR_LISP ("buffer-access-fontified-property",
4805 Vbuffer_access_fontified_property,
4806 doc: /* Property which (if non-nil) indicates text has been fontified.
4807 `buffer-substring' need not call the `buffer-access-fontify-functions'
4808 functions if all the text being accessed has this property. */);
4809 Vbuffer_access_fontified_property = Qnil;
4810
4811 DEFVAR_LISP ("system-name", Vsystem_name,
4812 doc: /* The host name of the machine Emacs is running on. */);
4813
4814 DEFVAR_LISP ("user-full-name", Vuser_full_name,
4815 doc: /* The full name of the user logged in. */);
4816
4817 DEFVAR_LISP ("user-login-name", Vuser_login_name,
4818 doc: /* The user's name, taken from environment variables if possible. */);
4819
4820 DEFVAR_LISP ("user-real-login-name", Vuser_real_login_name,
4821 doc: /* The user's name, based upon the real uid only. */);
4822
4823 DEFVAR_LISP ("operating-system-release", Voperating_system_release,
4824 doc: /* The release of the operating system Emacs is running on. */);
4825
4826 defsubr (&Spropertize);
4827 defsubr (&Schar_equal);
4828 defsubr (&Sgoto_char);
4829 defsubr (&Sstring_to_char);
4830 defsubr (&Schar_to_string);
4831 defsubr (&Sbyte_to_string);
4832 defsubr (&Sbuffer_substring);
4833 defsubr (&Sbuffer_substring_no_properties);
4834 defsubr (&Sbuffer_string);
4835
4836 defsubr (&Spoint_marker);
4837 defsubr (&Smark_marker);
4838 defsubr (&Spoint);
4839 defsubr (&Sregion_beginning);
4840 defsubr (&Sregion_end);
4841
4842 DEFSYM (Qfield, "field");
4843 DEFSYM (Qboundary, "boundary");
4844 defsubr (&Sfield_beginning);
4845 defsubr (&Sfield_end);
4846 defsubr (&Sfield_string);
4847 defsubr (&Sfield_string_no_properties);
4848 defsubr (&Sdelete_field);
4849 defsubr (&Sconstrain_to_field);
4850
4851 defsubr (&Sline_beginning_position);
4852 defsubr (&Sline_end_position);
4853
4854 defsubr (&Ssave_excursion);
4855 defsubr (&Ssave_current_buffer);
4856
4857 defsubr (&Sbuffer_size);
4858 defsubr (&Spoint_max);
4859 defsubr (&Spoint_min);
4860 defsubr (&Spoint_min_marker);
4861 defsubr (&Spoint_max_marker);
4862 defsubr (&Sgap_position);
4863 defsubr (&Sgap_size);
4864 defsubr (&Sposition_bytes);
4865 defsubr (&Sbyte_to_position);
4866
4867 defsubr (&Sbobp);
4868 defsubr (&Seobp);
4869 defsubr (&Sbolp);
4870 defsubr (&Seolp);
4871 defsubr (&Sfollowing_char);
4872 defsubr (&Sprevious_char);
4873 defsubr (&Schar_after);
4874 defsubr (&Schar_before);
4875 defsubr (&Sinsert);
4876 defsubr (&Sinsert_before_markers);
4877 defsubr (&Sinsert_and_inherit);
4878 defsubr (&Sinsert_and_inherit_before_markers);
4879 defsubr (&Sinsert_char);
4880 defsubr (&Sinsert_byte);
4881
4882 defsubr (&Suser_login_name);
4883 defsubr (&Suser_real_login_name);
4884 defsubr (&Suser_uid);
4885 defsubr (&Suser_real_uid);
4886 defsubr (&Sgroup_gid);
4887 defsubr (&Sgroup_real_gid);
4888 defsubr (&Suser_full_name);
4889 defsubr (&Semacs_pid);
4890 defsubr (&Scurrent_time);
4891 defsubr (&Sget_internal_run_time);
4892 defsubr (&Sformat_time_string);
4893 defsubr (&Sfloat_time);
4894 defsubr (&Sdecode_time);
4895 defsubr (&Sencode_time);
4896 defsubr (&Scurrent_time_string);
4897 defsubr (&Scurrent_time_zone);
4898 defsubr (&Sset_time_zone_rule);
4899 defsubr (&Ssystem_name);
4900 defsubr (&Smessage);
4901 defsubr (&Smessage_box);
4902 defsubr (&Smessage_or_box);
4903 defsubr (&Scurrent_message);
4904 defsubr (&Sformat);
4905
4906 defsubr (&Sinsert_buffer_substring);
4907 defsubr (&Scompare_buffer_substrings);
4908 defsubr (&Ssubst_char_in_region);
4909 defsubr (&Stranslate_region_internal);
4910 defsubr (&Sdelete_region);
4911 defsubr (&Sdelete_and_extract_region);
4912 defsubr (&Swiden);
4913 defsubr (&Snarrow_to_region);
4914 defsubr (&Ssave_restriction);
4915 defsubr (&Stranspose_regions);
4916 }