(setup_coding_system): Initialize
[bpt/emacs.git] / src / coding.c
1 /* Coding system handler (conversion, detection, etc).
2 Copyright (C) 2001, 2002, 2003, 2004, 2005,
3 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
5 2005, 2006, 2007, 2008, 2009
6 National Institute of Advanced Industrial Science and Technology (AIST)
7 Registration Number H14PRO021
8 Copyright (C) 2003
9 National Institute of Advanced Industrial Science and Technology (AIST)
10 Registration Number H13PRO009
11
12 This file is part of GNU Emacs.
13
14 GNU Emacs is free software: you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation, either version 3 of the License, or
17 (at your option) any later version.
18
19 GNU Emacs is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
26
27 /*** TABLE OF CONTENTS ***
28
29 0. General comments
30 1. Preamble
31 2. Emacs' internal format (emacs-utf-8) handlers
32 3. UTF-8 handlers
33 4. UTF-16 handlers
34 5. Charset-base coding systems handlers
35 6. emacs-mule (old Emacs' internal format) handlers
36 7. ISO2022 handlers
37 8. Shift-JIS and BIG5 handlers
38 9. CCL handlers
39 10. C library functions
40 11. Emacs Lisp library functions
41 12. Postamble
42
43 */
44
45 /*** 0. General comments ***
46
47
48 CODING SYSTEM
49
50 A coding system is an object for an encoding mechanism that contains
51 information about how to convert byte sequences to character
52 sequences and vice versa. When we say "decode", it means converting
53 a byte sequence of a specific coding system into a character
54 sequence that is represented by Emacs' internal coding system
55 `emacs-utf-8', and when we say "encode", it means converting a
56 character sequence of emacs-utf-8 to a byte sequence of a specific
57 coding system.
58
59 In Emacs Lisp, a coding system is represented by a Lisp symbol. In
60 C level, a coding system is represented by a vector of attributes
61 stored in the hash table Vcharset_hash_table. The conversion from
62 coding system symbol to attributes vector is done by looking up
63 Vcharset_hash_table by the symbol.
64
65 Coding systems are classified into the following types depending on
66 the encoding mechanism. Here's a brief description of the types.
67
68 o UTF-8
69
70 o UTF-16
71
72 o Charset-base coding system
73
74 A coding system defined by one or more (coded) character sets.
75 Decoding and encoding are done by a code converter defined for each
76 character set.
77
78 o Old Emacs internal format (emacs-mule)
79
80 The coding system adopted by old versions of Emacs (20 and 21).
81
82 o ISO2022-base coding system
83
84 The most famous coding system for multiple character sets. X's
85 Compound Text, various EUCs (Extended Unix Code), and coding systems
86 used in the Internet communication such as ISO-2022-JP are all
87 variants of ISO2022.
88
89 o SJIS (or Shift-JIS or MS-Kanji-Code)
90
91 A coding system to encode character sets: ASCII, JISX0201, and
92 JISX0208. Widely used for PC's in Japan. Details are described in
93 section 8.
94
95 o BIG5
96
97 A coding system to encode character sets: ASCII and Big5. Widely
98 used for Chinese (mainly in Taiwan and Hong Kong). Details are
99 described in section 8. In this file, when we write "big5" (all
100 lowercase), we mean the coding system, and when we write "Big5"
101 (capitalized), we mean the character set.
102
103 o CCL
104
105 If a user wants to decode/encode text encoded in a coding system
106 not listed above, he can supply a decoder and an encoder for it in
107 CCL (Code Conversion Language) programs. Emacs executes the CCL
108 program while decoding/encoding.
109
110 o Raw-text
111
112 A coding system for text containing raw eight-bit data. Emacs
113 treats each byte of source text as a character (except for
114 end-of-line conversion).
115
116 o No-conversion
117
118 Like raw text, but don't do end-of-line conversion.
119
120
121 END-OF-LINE FORMAT
122
123 How text end-of-line is encoded depends on operating system. For
124 instance, Unix's format is just one byte of LF (line-feed) code,
125 whereas DOS's format is two-byte sequence of `carriage-return' and
126 `line-feed' codes. MacOS's format is usually one byte of
127 `carriage-return'.
128
129 Since text character encoding and end-of-line encoding are
130 independent, any coding system described above can take any format
131 of end-of-line (except for no-conversion).
132
133 STRUCT CODING_SYSTEM
134
135 Before using a coding system for code conversion (i.e. decoding and
136 encoding), we setup a structure of type `struct coding_system'.
137 This structure keeps various information about a specific code
138 conversion (e.g. the location of source and destination data).
139
140 */
141
142 /* COMMON MACROS */
143
144
145 /*** GENERAL NOTES on `detect_coding_XXX ()' functions ***
146
147 These functions check if a byte sequence specified as a source in
148 CODING conforms to the format of XXX, and update the members of
149 DETECT_INFO.
150
151 Return 1 if the byte sequence conforms to XXX, otherwise return 0.
152
153 Below is the template of these functions. */
154
155 #if 0
156 static int
157 detect_coding_XXX (coding, detect_info)
158 struct coding_system *coding;
159 struct coding_detection_info *detect_info;
160 {
161 const unsigned char *src = coding->source;
162 const unsigned char *src_end = coding->source + coding->src_bytes;
163 int multibytep = coding->src_multibyte;
164 int consumed_chars = 0;
165 int found = 0;
166 ...;
167
168 while (1)
169 {
170 /* Get one byte from the source. If the souce is exausted, jump
171 to no_more_source:. */
172 ONE_MORE_BYTE (c);
173
174 if (! __C_conforms_to_XXX___ (c))
175 break;
176 if (! __C_strongly_suggests_XXX__ (c))
177 found = CATEGORY_MASK_XXX;
178 }
179 /* The byte sequence is invalid for XXX. */
180 detect_info->rejected |= CATEGORY_MASK_XXX;
181 return 0;
182
183 no_more_source:
184 /* The source exausted successfully. */
185 detect_info->found |= found;
186 return 1;
187 }
188 #endif
189
190 /*** GENERAL NOTES on `decode_coding_XXX ()' functions ***
191
192 These functions decode a byte sequence specified as a source by
193 CODING. The resulting multibyte text goes to a place pointed to by
194 CODING->charbuf, the length of which should not exceed
195 CODING->charbuf_size;
196
197 These functions set the information of original and decoded texts in
198 CODING->consumed, CODING->consumed_char, and CODING->charbuf_used.
199 They also set CODING->result to one of CODING_RESULT_XXX indicating
200 how the decoding is finished.
201
202 Below is the template of these functions. */
203
204 #if 0
205 static void
206 decode_coding_XXXX (coding)
207 struct coding_system *coding;
208 {
209 const unsigned char *src = coding->source + coding->consumed;
210 const unsigned char *src_end = coding->source + coding->src_bytes;
211 /* SRC_BASE remembers the start position in source in each loop.
212 The loop will be exited when there's not enough source code, or
213 when there's no room in CHARBUF for a decoded character. */
214 const unsigned char *src_base;
215 /* A buffer to produce decoded characters. */
216 int *charbuf = coding->charbuf + coding->charbuf_used;
217 int *charbuf_end = coding->charbuf + coding->charbuf_size;
218 int multibytep = coding->src_multibyte;
219
220 while (1)
221 {
222 src_base = src;
223 if (charbuf < charbuf_end)
224 /* No more room to produce a decoded character. */
225 break;
226 ONE_MORE_BYTE (c);
227 /* Decode it. */
228 }
229
230 no_more_source:
231 if (src_base < src_end
232 && coding->mode & CODING_MODE_LAST_BLOCK)
233 /* If the source ends by partial bytes to construct a character,
234 treat them as eight-bit raw data. */
235 while (src_base < src_end && charbuf < charbuf_end)
236 *charbuf++ = *src_base++;
237 /* Remember how many bytes and characters we consumed. If the
238 source is multibyte, the bytes and chars are not identical. */
239 coding->consumed = coding->consumed_char = src_base - coding->source;
240 /* Remember how many characters we produced. */
241 coding->charbuf_used = charbuf - coding->charbuf;
242 }
243 #endif
244
245 /*** GENERAL NOTES on `encode_coding_XXX ()' functions ***
246
247 These functions encode SRC_BYTES length text at SOURCE of Emacs'
248 internal multibyte format by CODING. The resulting byte sequence
249 goes to a place pointed to by DESTINATION, the length of which
250 should not exceed DST_BYTES.
251
252 These functions set the information of original and encoded texts in
253 the members produced, produced_char, consumed, and consumed_char of
254 the structure *CODING. They also set the member result to one of
255 CODING_RESULT_XXX indicating how the encoding finished.
256
257 DST_BYTES zero means that source area and destination area are
258 overlapped, which means that we can produce a encoded text until it
259 reaches at the head of not-yet-encoded source text.
260
261 Below is a template of these functions. */
262 #if 0
263 static void
264 encode_coding_XXX (coding)
265 struct coding_system *coding;
266 {
267 int multibytep = coding->dst_multibyte;
268 int *charbuf = coding->charbuf;
269 int *charbuf_end = charbuf->charbuf + coding->charbuf_used;
270 unsigned char *dst = coding->destination + coding->produced;
271 unsigned char *dst_end = coding->destination + coding->dst_bytes;
272 unsigned char *adjusted_dst_end = dst_end - _MAX_BYTES_PRODUCED_IN_LOOP_;
273 int produced_chars = 0;
274
275 for (; charbuf < charbuf_end && dst < adjusted_dst_end; charbuf++)
276 {
277 int c = *charbuf;
278 /* Encode C into DST, and increment DST. */
279 }
280 label_no_more_destination:
281 /* How many chars and bytes we produced. */
282 coding->produced_char += produced_chars;
283 coding->produced = dst - coding->destination;
284 }
285 #endif
286
287 \f
288 /*** 1. Preamble ***/
289
290 #include <config.h>
291 #include <stdio.h>
292
293 #include "lisp.h"
294 #include "buffer.h"
295 #include "character.h"
296 #include "charset.h"
297 #include "ccl.h"
298 #include "composite.h"
299 #include "coding.h"
300 #include "window.h"
301 #include "frame.h"
302 #include "termhooks.h"
303
304 Lisp_Object Vcoding_system_hash_table;
305
306 Lisp_Object Qcoding_system, Qcoding_aliases, Qeol_type;
307 Lisp_Object Qunix, Qdos;
308 extern Lisp_Object Qmac; /* frame.c */
309 Lisp_Object Qbuffer_file_coding_system;
310 Lisp_Object Qpost_read_conversion, Qpre_write_conversion;
311 Lisp_Object Qdefault_char;
312 Lisp_Object Qno_conversion, Qundecided;
313 Lisp_Object Qcharset, Qiso_2022, Qutf_8, Qutf_16, Qshift_jis, Qbig5;
314 Lisp_Object Qbig, Qlittle;
315 Lisp_Object Qcoding_system_history;
316 Lisp_Object Qvalid_codes;
317 Lisp_Object QCcategory, QCmnemonic, QCdefault_char;
318 Lisp_Object QCdecode_translation_table, QCencode_translation_table;
319 Lisp_Object QCpost_read_conversion, QCpre_write_conversion;
320 Lisp_Object QCascii_compatible_p;
321
322 extern Lisp_Object Qinsert_file_contents, Qwrite_region;
323 Lisp_Object Qcall_process, Qcall_process_region;
324 Lisp_Object Qstart_process, Qopen_network_stream;
325 Lisp_Object Qtarget_idx;
326
327 Lisp_Object Qinsufficient_source, Qinconsistent_eol, Qinvalid_source;
328 Lisp_Object Qinterrupted, Qinsufficient_memory;
329
330 extern Lisp_Object Qcompletion_ignore_case;
331
332 /* If a symbol has this property, evaluate the value to define the
333 symbol as a coding system. */
334 static Lisp_Object Qcoding_system_define_form;
335
336 int coding_system_require_warning;
337
338 Lisp_Object Vselect_safe_coding_system_function;
339
340 /* Mnemonic string for each format of end-of-line. */
341 Lisp_Object eol_mnemonic_unix, eol_mnemonic_dos, eol_mnemonic_mac;
342 /* Mnemonic string to indicate format of end-of-line is not yet
343 decided. */
344 Lisp_Object eol_mnemonic_undecided;
345
346 /* Format of end-of-line decided by system. This is Qunix on
347 Unix and Mac, Qdos on DOS/Windows.
348 This has an effect only for external encoding (i.e. for output to
349 file and process), not for in-buffer or Lisp string encoding. */
350 static Lisp_Object system_eol_type;
351
352 #ifdef emacs
353
354 Lisp_Object Vcoding_system_list, Vcoding_system_alist;
355
356 Lisp_Object Qcoding_system_p, Qcoding_system_error;
357
358 /* Coding system emacs-mule and raw-text are for converting only
359 end-of-line format. */
360 Lisp_Object Qemacs_mule, Qraw_text;
361 Lisp_Object Qutf_8_emacs;
362
363 /* Coding-systems are handed between Emacs Lisp programs and C internal
364 routines by the following three variables. */
365 /* Coding-system for reading files and receiving data from process. */
366 Lisp_Object Vcoding_system_for_read;
367 /* Coding-system for writing files and sending data to process. */
368 Lisp_Object Vcoding_system_for_write;
369 /* Coding-system actually used in the latest I/O. */
370 Lisp_Object Vlast_coding_system_used;
371 /* Set to non-nil when an error is detected while code conversion. */
372 Lisp_Object Vlast_code_conversion_error;
373 /* A vector of length 256 which contains information about special
374 Latin codes (especially for dealing with Microsoft codes). */
375 Lisp_Object Vlatin_extra_code_table;
376
377 /* Flag to inhibit code conversion of end-of-line format. */
378 int inhibit_eol_conversion;
379
380 /* Flag to inhibit ISO2022 escape sequence detection. */
381 int inhibit_iso_escape_detection;
382
383 /* Flag to inhibit detection of binary files through null bytes. */
384 int inhibit_null_byte_detection;
385
386 /* Flag to make buffer-file-coding-system inherit from process-coding. */
387 int inherit_process_coding_system;
388
389 /* Coding system to be used to encode text for terminal display when
390 terminal coding system is nil. */
391 struct coding_system safe_terminal_coding;
392
393 Lisp_Object Vfile_coding_system_alist;
394 Lisp_Object Vprocess_coding_system_alist;
395 Lisp_Object Vnetwork_coding_system_alist;
396
397 Lisp_Object Vlocale_coding_system;
398
399 #endif /* emacs */
400
401 /* Flag to tell if we look up translation table on character code
402 conversion. */
403 Lisp_Object Venable_character_translation;
404 /* Standard translation table to look up on decoding (reading). */
405 Lisp_Object Vstandard_translation_table_for_decode;
406 /* Standard translation table to look up on encoding (writing). */
407 Lisp_Object Vstandard_translation_table_for_encode;
408
409 Lisp_Object Qtranslation_table;
410 Lisp_Object Qtranslation_table_id;
411 Lisp_Object Qtranslation_table_for_decode;
412 Lisp_Object Qtranslation_table_for_encode;
413
414 /* Alist of charsets vs revision number. */
415 static Lisp_Object Vcharset_revision_table;
416
417 /* Default coding systems used for process I/O. */
418 Lisp_Object Vdefault_process_coding_system;
419
420 /* Char table for translating Quail and self-inserting input. */
421 Lisp_Object Vtranslation_table_for_input;
422
423 /* Two special coding systems. */
424 Lisp_Object Vsjis_coding_system;
425 Lisp_Object Vbig5_coding_system;
426
427 /* ISO2022 section */
428
429 #define CODING_ISO_INITIAL(coding, reg) \
430 (XINT (AREF (AREF (CODING_ID_ATTRS ((coding)->id), \
431 coding_attr_iso_initial), \
432 reg)))
433
434
435 #define CODING_ISO_REQUEST(coding, charset_id) \
436 (((charset_id) <= (coding)->max_charset_id \
437 ? ((coding)->safe_charsets[charset_id] != 255 \
438 ? (coding)->safe_charsets[charset_id] \
439 : -1) \
440 : -1))
441
442
443 #define CODING_ISO_FLAGS(coding) \
444 ((coding)->spec.iso_2022.flags)
445 #define CODING_ISO_DESIGNATION(coding, reg) \
446 ((coding)->spec.iso_2022.current_designation[reg])
447 #define CODING_ISO_INVOCATION(coding, plane) \
448 ((coding)->spec.iso_2022.current_invocation[plane])
449 #define CODING_ISO_SINGLE_SHIFTING(coding) \
450 ((coding)->spec.iso_2022.single_shifting)
451 #define CODING_ISO_BOL(coding) \
452 ((coding)->spec.iso_2022.bol)
453 #define CODING_ISO_INVOKED_CHARSET(coding, plane) \
454 CODING_ISO_DESIGNATION ((coding), CODING_ISO_INVOCATION ((coding), (plane)))
455 #define CODING_ISO_CMP_STATUS(coding) \
456 (&(coding)->spec.iso_2022.cmp_status)
457 #define CODING_ISO_EXTSEGMENT_LEN(coding) \
458 ((coding)->spec.iso_2022.ctext_extended_segment_len)
459 #define CODING_ISO_EMBEDDED_UTF_8(coding) \
460 ((coding)->spec.iso_2022.embedded_utf_8)
461
462 /* Control characters of ISO2022. */
463 /* code */ /* function */
464 #define ISO_CODE_LF 0x0A /* line-feed */
465 #define ISO_CODE_CR 0x0D /* carriage-return */
466 #define ISO_CODE_SO 0x0E /* shift-out */
467 #define ISO_CODE_SI 0x0F /* shift-in */
468 #define ISO_CODE_SS2_7 0x19 /* single-shift-2 for 7-bit code */
469 #define ISO_CODE_ESC 0x1B /* escape */
470 #define ISO_CODE_SS2 0x8E /* single-shift-2 */
471 #define ISO_CODE_SS3 0x8F /* single-shift-3 */
472 #define ISO_CODE_CSI 0x9B /* control-sequence-introducer */
473
474 /* All code (1-byte) of ISO2022 is classified into one of the
475 followings. */
476 enum iso_code_class_type
477 {
478 ISO_control_0, /* Control codes in the range
479 0x00..0x1F and 0x7F, except for the
480 following 5 codes. */
481 ISO_shift_out, /* ISO_CODE_SO (0x0E) */
482 ISO_shift_in, /* ISO_CODE_SI (0x0F) */
483 ISO_single_shift_2_7, /* ISO_CODE_SS2_7 (0x19) */
484 ISO_escape, /* ISO_CODE_SO (0x1B) */
485 ISO_control_1, /* Control codes in the range
486 0x80..0x9F, except for the
487 following 3 codes. */
488 ISO_single_shift_2, /* ISO_CODE_SS2 (0x8E) */
489 ISO_single_shift_3, /* ISO_CODE_SS3 (0x8F) */
490 ISO_control_sequence_introducer, /* ISO_CODE_CSI (0x9B) */
491 ISO_0x20_or_0x7F, /* Codes of the values 0x20 or 0x7F. */
492 ISO_graphic_plane_0, /* Graphic codes in the range 0x21..0x7E. */
493 ISO_0xA0_or_0xFF, /* Codes of the values 0xA0 or 0xFF. */
494 ISO_graphic_plane_1 /* Graphic codes in the range 0xA1..0xFE. */
495 };
496
497 /** The macros CODING_ISO_FLAG_XXX defines a flag bit of the
498 `iso-flags' attribute of an iso2022 coding system. */
499
500 /* If set, produce long-form designation sequence (e.g. ESC $ ( A)
501 instead of the correct short-form sequence (e.g. ESC $ A). */
502 #define CODING_ISO_FLAG_LONG_FORM 0x0001
503
504 /* If set, reset graphic planes and registers at end-of-line to the
505 initial state. */
506 #define CODING_ISO_FLAG_RESET_AT_EOL 0x0002
507
508 /* If set, reset graphic planes and registers before any control
509 characters to the initial state. */
510 #define CODING_ISO_FLAG_RESET_AT_CNTL 0x0004
511
512 /* If set, encode by 7-bit environment. */
513 #define CODING_ISO_FLAG_SEVEN_BITS 0x0008
514
515 /* If set, use locking-shift function. */
516 #define CODING_ISO_FLAG_LOCKING_SHIFT 0x0010
517
518 /* If set, use single-shift function. Overwrite
519 CODING_ISO_FLAG_LOCKING_SHIFT. */
520 #define CODING_ISO_FLAG_SINGLE_SHIFT 0x0020
521
522 /* If set, use designation escape sequence. */
523 #define CODING_ISO_FLAG_DESIGNATION 0x0040
524
525 /* If set, produce revision number sequence. */
526 #define CODING_ISO_FLAG_REVISION 0x0080
527
528 /* If set, produce ISO6429's direction specifying sequence. */
529 #define CODING_ISO_FLAG_DIRECTION 0x0100
530
531 /* If set, assume designation states are reset at beginning of line on
532 output. */
533 #define CODING_ISO_FLAG_INIT_AT_BOL 0x0200
534
535 /* If set, designation sequence should be placed at beginning of line
536 on output. */
537 #define CODING_ISO_FLAG_DESIGNATE_AT_BOL 0x0400
538
539 /* If set, do not encode unsafe charactes on output. */
540 #define CODING_ISO_FLAG_SAFE 0x0800
541
542 /* If set, extra latin codes (128..159) are accepted as a valid code
543 on input. */
544 #define CODING_ISO_FLAG_LATIN_EXTRA 0x1000
545
546 #define CODING_ISO_FLAG_COMPOSITION 0x2000
547
548 #define CODING_ISO_FLAG_EUC_TW_SHIFT 0x4000
549
550 #define CODING_ISO_FLAG_USE_ROMAN 0x8000
551
552 #define CODING_ISO_FLAG_USE_OLDJIS 0x10000
553
554 #define CODING_ISO_FLAG_FULL_SUPPORT 0x100000
555
556 /* A character to be produced on output if encoding of the original
557 character is prohibited by CODING_ISO_FLAG_SAFE. */
558 #define CODING_INHIBIT_CHARACTER_SUBSTITUTION '?'
559
560 /* UTF-8 section */
561 #define CODING_UTF_8_BOM(coding) \
562 ((coding)->spec.utf_8_bom)
563
564 /* UTF-16 section */
565 #define CODING_UTF_16_BOM(coding) \
566 ((coding)->spec.utf_16.bom)
567
568 #define CODING_UTF_16_ENDIAN(coding) \
569 ((coding)->spec.utf_16.endian)
570
571 #define CODING_UTF_16_SURROGATE(coding) \
572 ((coding)->spec.utf_16.surrogate)
573
574
575 /* CCL section */
576 #define CODING_CCL_DECODER(coding) \
577 AREF (CODING_ID_ATTRS ((coding)->id), coding_attr_ccl_decoder)
578 #define CODING_CCL_ENCODER(coding) \
579 AREF (CODING_ID_ATTRS ((coding)->id), coding_attr_ccl_encoder)
580 #define CODING_CCL_VALIDS(coding) \
581 (SDATA (AREF (CODING_ID_ATTRS ((coding)->id), coding_attr_ccl_valids)))
582
583 /* Index for each coding category in `coding_categories' */
584
585 enum coding_category
586 {
587 coding_category_iso_7,
588 coding_category_iso_7_tight,
589 coding_category_iso_8_1,
590 coding_category_iso_8_2,
591 coding_category_iso_7_else,
592 coding_category_iso_8_else,
593 coding_category_utf_8_auto,
594 coding_category_utf_8_nosig,
595 coding_category_utf_8_sig,
596 coding_category_utf_16_auto,
597 coding_category_utf_16_be,
598 coding_category_utf_16_le,
599 coding_category_utf_16_be_nosig,
600 coding_category_utf_16_le_nosig,
601 coding_category_charset,
602 coding_category_sjis,
603 coding_category_big5,
604 coding_category_ccl,
605 coding_category_emacs_mule,
606 /* All above are targets of code detection. */
607 coding_category_raw_text,
608 coding_category_undecided,
609 coding_category_max
610 };
611
612 /* Definitions of flag bits used in detect_coding_XXXX. */
613 #define CATEGORY_MASK_ISO_7 (1 << coding_category_iso_7)
614 #define CATEGORY_MASK_ISO_7_TIGHT (1 << coding_category_iso_7_tight)
615 #define CATEGORY_MASK_ISO_8_1 (1 << coding_category_iso_8_1)
616 #define CATEGORY_MASK_ISO_8_2 (1 << coding_category_iso_8_2)
617 #define CATEGORY_MASK_ISO_7_ELSE (1 << coding_category_iso_7_else)
618 #define CATEGORY_MASK_ISO_8_ELSE (1 << coding_category_iso_8_else)
619 #define CATEGORY_MASK_UTF_8_AUTO (1 << coding_category_utf_8_auto)
620 #define CATEGORY_MASK_UTF_8_NOSIG (1 << coding_category_utf_8_nosig)
621 #define CATEGORY_MASK_UTF_8_SIG (1 << coding_category_utf_8_sig)
622 #define CATEGORY_MASK_UTF_16_AUTO (1 << coding_category_utf_16_auto)
623 #define CATEGORY_MASK_UTF_16_BE (1 << coding_category_utf_16_be)
624 #define CATEGORY_MASK_UTF_16_LE (1 << coding_category_utf_16_le)
625 #define CATEGORY_MASK_UTF_16_BE_NOSIG (1 << coding_category_utf_16_be_nosig)
626 #define CATEGORY_MASK_UTF_16_LE_NOSIG (1 << coding_category_utf_16_le_nosig)
627 #define CATEGORY_MASK_CHARSET (1 << coding_category_charset)
628 #define CATEGORY_MASK_SJIS (1 << coding_category_sjis)
629 #define CATEGORY_MASK_BIG5 (1 << coding_category_big5)
630 #define CATEGORY_MASK_CCL (1 << coding_category_ccl)
631 #define CATEGORY_MASK_EMACS_MULE (1 << coding_category_emacs_mule)
632 #define CATEGORY_MASK_RAW_TEXT (1 << coding_category_raw_text)
633
634 /* This value is returned if detect_coding_mask () find nothing other
635 than ASCII characters. */
636 #define CATEGORY_MASK_ANY \
637 (CATEGORY_MASK_ISO_7 \
638 | CATEGORY_MASK_ISO_7_TIGHT \
639 | CATEGORY_MASK_ISO_8_1 \
640 | CATEGORY_MASK_ISO_8_2 \
641 | CATEGORY_MASK_ISO_7_ELSE \
642 | CATEGORY_MASK_ISO_8_ELSE \
643 | CATEGORY_MASK_UTF_8_AUTO \
644 | CATEGORY_MASK_UTF_8_NOSIG \
645 | CATEGORY_MASK_UTF_8_SIG \
646 | CATEGORY_MASK_UTF_16_AUTO \
647 | CATEGORY_MASK_UTF_16_BE \
648 | CATEGORY_MASK_UTF_16_LE \
649 | CATEGORY_MASK_UTF_16_BE_NOSIG \
650 | CATEGORY_MASK_UTF_16_LE_NOSIG \
651 | CATEGORY_MASK_CHARSET \
652 | CATEGORY_MASK_SJIS \
653 | CATEGORY_MASK_BIG5 \
654 | CATEGORY_MASK_CCL \
655 | CATEGORY_MASK_EMACS_MULE)
656
657
658 #define CATEGORY_MASK_ISO_7BIT \
659 (CATEGORY_MASK_ISO_7 | CATEGORY_MASK_ISO_7_TIGHT)
660
661 #define CATEGORY_MASK_ISO_8BIT \
662 (CATEGORY_MASK_ISO_8_1 | CATEGORY_MASK_ISO_8_2)
663
664 #define CATEGORY_MASK_ISO_ELSE \
665 (CATEGORY_MASK_ISO_7_ELSE | CATEGORY_MASK_ISO_8_ELSE)
666
667 #define CATEGORY_MASK_ISO_ESCAPE \
668 (CATEGORY_MASK_ISO_7 \
669 | CATEGORY_MASK_ISO_7_TIGHT \
670 | CATEGORY_MASK_ISO_7_ELSE \
671 | CATEGORY_MASK_ISO_8_ELSE)
672
673 #define CATEGORY_MASK_ISO \
674 ( CATEGORY_MASK_ISO_7BIT \
675 | CATEGORY_MASK_ISO_8BIT \
676 | CATEGORY_MASK_ISO_ELSE)
677
678 #define CATEGORY_MASK_UTF_16 \
679 (CATEGORY_MASK_UTF_16_AUTO \
680 | CATEGORY_MASK_UTF_16_BE \
681 | CATEGORY_MASK_UTF_16_LE \
682 | CATEGORY_MASK_UTF_16_BE_NOSIG \
683 | CATEGORY_MASK_UTF_16_LE_NOSIG)
684
685 #define CATEGORY_MASK_UTF_8 \
686 (CATEGORY_MASK_UTF_8_AUTO \
687 | CATEGORY_MASK_UTF_8_NOSIG \
688 | CATEGORY_MASK_UTF_8_SIG)
689
690 /* List of symbols `coding-category-xxx' ordered by priority. This
691 variable is exposed to Emacs Lisp. */
692 static Lisp_Object Vcoding_category_list;
693
694 /* Table of coding categories (Lisp symbols). This variable is for
695 internal use oly. */
696 static Lisp_Object Vcoding_category_table;
697
698 /* Table of coding-categories ordered by priority. */
699 static enum coding_category coding_priorities[coding_category_max];
700
701 /* Nth element is a coding context for the coding system bound to the
702 Nth coding category. */
703 static struct coding_system coding_categories[coding_category_max];
704
705 /*** Commonly used macros and functions ***/
706
707 #ifndef min
708 #define min(a, b) ((a) < (b) ? (a) : (b))
709 #endif
710 #ifndef max
711 #define max(a, b) ((a) > (b) ? (a) : (b))
712 #endif
713
714 #define CODING_GET_INFO(coding, attrs, charset_list) \
715 do { \
716 (attrs) = CODING_ID_ATTRS ((coding)->id); \
717 (charset_list) = CODING_ATTR_CHARSET_LIST (attrs); \
718 } while (0)
719
720
721 /* Safely get one byte from the source text pointed by SRC which ends
722 at SRC_END, and set C to that byte. If there are not enough bytes
723 in the source, it jumps to `no_more_source'. If multibytep is
724 nonzero, and a multibyte character is found at SRC, set C to the
725 negative value of the character code. The caller should declare
726 and set these variables appropriately in advance:
727 src, src_end, multibytep */
728
729 #define ONE_MORE_BYTE(c) \
730 do { \
731 if (src == src_end) \
732 { \
733 if (src_base < src) \
734 record_conversion_result \
735 (coding, CODING_RESULT_INSUFFICIENT_SRC); \
736 goto no_more_source; \
737 } \
738 c = *src++; \
739 if (multibytep && (c & 0x80)) \
740 { \
741 if ((c & 0xFE) == 0xC0) \
742 c = ((c & 1) << 6) | *src++; \
743 else \
744 { \
745 src--; \
746 c = - string_char (src, &src, NULL); \
747 record_conversion_result \
748 (coding, CODING_RESULT_INVALID_SRC); \
749 } \
750 } \
751 consumed_chars++; \
752 } while (0)
753
754 /* Safely get two bytes from the source text pointed by SRC which ends
755 at SRC_END, and set C1 and C2 to those bytes while skipping the
756 heading multibyte characters. If there are not enough bytes in the
757 source, it jumps to `no_more_source'. If multibytep is nonzero and
758 a multibyte character is found for C2, set C2 to the negative value
759 of the character code. The caller should declare and set these
760 variables appropriately in advance:
761 src, src_end, multibytep
762 It is intended that this macro is used in detect_coding_utf_16. */
763
764 #define TWO_MORE_BYTES(c1, c2) \
765 do { \
766 do { \
767 if (src == src_end) \
768 goto no_more_source; \
769 c1 = *src++; \
770 if (multibytep && (c1 & 0x80)) \
771 { \
772 if ((c1 & 0xFE) == 0xC0) \
773 c1 = ((c1 & 1) << 6) | *src++; \
774 else \
775 { \
776 src += BYTES_BY_CHAR_HEAD (c1) - 1; \
777 c1 = -1; \
778 } \
779 } \
780 } while (c1 < 0); \
781 if (src == src_end) \
782 goto no_more_source; \
783 c2 = *src++; \
784 if (multibytep && (c2 & 0x80)) \
785 { \
786 if ((c2 & 0xFE) == 0xC0) \
787 c2 = ((c2 & 1) << 6) | *src++; \
788 else \
789 c2 = -1; \
790 } \
791 } while (0)
792
793
794 #define ONE_MORE_BYTE_NO_CHECK(c) \
795 do { \
796 c = *src++; \
797 if (multibytep && (c & 0x80)) \
798 { \
799 if ((c & 0xFE) == 0xC0) \
800 c = ((c & 1) << 6) | *src++; \
801 else \
802 { \
803 src--; \
804 c = - string_char (src, &src, NULL); \
805 record_conversion_result \
806 (coding, CODING_RESULT_INVALID_SRC); \
807 } \
808 } \
809 consumed_chars++; \
810 } while (0)
811
812
813 /* Store a byte C in the place pointed by DST and increment DST to the
814 next free point, and increment PRODUCED_CHARS. The caller should
815 assure that C is 0..127, and declare and set the variable `dst'
816 appropriately in advance.
817 */
818
819
820 #define EMIT_ONE_ASCII_BYTE(c) \
821 do { \
822 produced_chars++; \
823 *dst++ = (c); \
824 } while (0)
825
826
827 /* Like EMIT_ONE_ASCII_BYTE byt store two bytes; C1 and C2. */
828
829 #define EMIT_TWO_ASCII_BYTES(c1, c2) \
830 do { \
831 produced_chars += 2; \
832 *dst++ = (c1), *dst++ = (c2); \
833 } while (0)
834
835
836 /* Store a byte C in the place pointed by DST and increment DST to the
837 next free point, and increment PRODUCED_CHARS. If MULTIBYTEP is
838 nonzero, store in an appropriate multibyte from. The caller should
839 declare and set the variables `dst' and `multibytep' appropriately
840 in advance. */
841
842 #define EMIT_ONE_BYTE(c) \
843 do { \
844 produced_chars++; \
845 if (multibytep) \
846 { \
847 int ch = (c); \
848 if (ch >= 0x80) \
849 ch = BYTE8_TO_CHAR (ch); \
850 CHAR_STRING_ADVANCE (ch, dst); \
851 } \
852 else \
853 *dst++ = (c); \
854 } while (0)
855
856
857 /* Like EMIT_ONE_BYTE, but emit two bytes; C1 and C2. */
858
859 #define EMIT_TWO_BYTES(c1, c2) \
860 do { \
861 produced_chars += 2; \
862 if (multibytep) \
863 { \
864 int ch; \
865 \
866 ch = (c1); \
867 if (ch >= 0x80) \
868 ch = BYTE8_TO_CHAR (ch); \
869 CHAR_STRING_ADVANCE (ch, dst); \
870 ch = (c2); \
871 if (ch >= 0x80) \
872 ch = BYTE8_TO_CHAR (ch); \
873 CHAR_STRING_ADVANCE (ch, dst); \
874 } \
875 else \
876 { \
877 *dst++ = (c1); \
878 *dst++ = (c2); \
879 } \
880 } while (0)
881
882
883 #define EMIT_THREE_BYTES(c1, c2, c3) \
884 do { \
885 EMIT_ONE_BYTE (c1); \
886 EMIT_TWO_BYTES (c2, c3); \
887 } while (0)
888
889
890 #define EMIT_FOUR_BYTES(c1, c2, c3, c4) \
891 do { \
892 EMIT_TWO_BYTES (c1, c2); \
893 EMIT_TWO_BYTES (c3, c4); \
894 } while (0)
895
896
897 /* Prototypes for static functions. */
898 static void record_conversion_result P_ ((struct coding_system *coding,
899 enum coding_result_code result));
900 static int detect_coding_utf_8 P_ ((struct coding_system *,
901 struct coding_detection_info *info));
902 static void decode_coding_utf_8 P_ ((struct coding_system *));
903 static int encode_coding_utf_8 P_ ((struct coding_system *));
904
905 static int detect_coding_utf_16 P_ ((struct coding_system *,
906 struct coding_detection_info *info));
907 static void decode_coding_utf_16 P_ ((struct coding_system *));
908 static int encode_coding_utf_16 P_ ((struct coding_system *));
909
910 static int detect_coding_iso_2022 P_ ((struct coding_system *,
911 struct coding_detection_info *info));
912 static void decode_coding_iso_2022 P_ ((struct coding_system *));
913 static int encode_coding_iso_2022 P_ ((struct coding_system *));
914
915 static int detect_coding_emacs_mule P_ ((struct coding_system *,
916 struct coding_detection_info *info));
917 static void decode_coding_emacs_mule P_ ((struct coding_system *));
918 static int encode_coding_emacs_mule P_ ((struct coding_system *));
919
920 static int detect_coding_sjis P_ ((struct coding_system *,
921 struct coding_detection_info *info));
922 static void decode_coding_sjis P_ ((struct coding_system *));
923 static int encode_coding_sjis P_ ((struct coding_system *));
924
925 static int detect_coding_big5 P_ ((struct coding_system *,
926 struct coding_detection_info *info));
927 static void decode_coding_big5 P_ ((struct coding_system *));
928 static int encode_coding_big5 P_ ((struct coding_system *));
929
930 static int detect_coding_ccl P_ ((struct coding_system *,
931 struct coding_detection_info *info));
932 static void decode_coding_ccl P_ ((struct coding_system *));
933 static int encode_coding_ccl P_ ((struct coding_system *));
934
935 static void decode_coding_raw_text P_ ((struct coding_system *));
936 static int encode_coding_raw_text P_ ((struct coding_system *));
937
938 static void coding_set_source P_ ((struct coding_system *));
939 static void coding_set_destination P_ ((struct coding_system *));
940 static void coding_alloc_by_realloc P_ ((struct coding_system *, EMACS_INT));
941 static void coding_alloc_by_making_gap P_ ((struct coding_system *,
942 EMACS_INT, EMACS_INT));
943 static unsigned char *alloc_destination P_ ((struct coding_system *,
944 EMACS_INT, unsigned char *));
945 static void setup_iso_safe_charsets P_ ((Lisp_Object));
946 static unsigned char *encode_designation_at_bol P_ ((struct coding_system *,
947 int *, int *,
948 unsigned char *));
949 static int detect_eol P_ ((const unsigned char *,
950 EMACS_INT, enum coding_category));
951 static Lisp_Object adjust_coding_eol_type P_ ((struct coding_system *, int));
952 static void decode_eol P_ ((struct coding_system *));
953 static Lisp_Object get_translation_table P_ ((Lisp_Object, int, int *));
954 static Lisp_Object get_translation P_ ((Lisp_Object, int *, int *));
955 static int produce_chars P_ ((struct coding_system *, Lisp_Object, int));
956 static INLINE void produce_charset P_ ((struct coding_system *, int *,
957 EMACS_INT));
958 static void produce_annotation P_ ((struct coding_system *, EMACS_INT));
959 static int decode_coding P_ ((struct coding_system *));
960 static INLINE int *handle_composition_annotation P_ ((EMACS_INT, EMACS_INT,
961 struct coding_system *,
962 int *, EMACS_INT *));
963 static INLINE int *handle_charset_annotation P_ ((EMACS_INT, EMACS_INT,
964 struct coding_system *,
965 int *, EMACS_INT *));
966 static void consume_chars P_ ((struct coding_system *, Lisp_Object, int));
967 static int encode_coding P_ ((struct coding_system *));
968 static Lisp_Object make_conversion_work_buffer P_ ((int));
969 static Lisp_Object code_conversion_restore P_ ((Lisp_Object));
970 static INLINE int char_encodable_p P_ ((int, Lisp_Object));
971 static Lisp_Object make_subsidiaries P_ ((Lisp_Object));
972
973 static void
974 record_conversion_result (struct coding_system *coding,
975 enum coding_result_code result)
976 {
977 coding->result = result;
978 switch (result)
979 {
980 case CODING_RESULT_INSUFFICIENT_SRC:
981 Vlast_code_conversion_error = Qinsufficient_source;
982 break;
983 case CODING_RESULT_INCONSISTENT_EOL:
984 Vlast_code_conversion_error = Qinconsistent_eol;
985 break;
986 case CODING_RESULT_INVALID_SRC:
987 Vlast_code_conversion_error = Qinvalid_source;
988 break;
989 case CODING_RESULT_INTERRUPT:
990 Vlast_code_conversion_error = Qinterrupted;
991 break;
992 case CODING_RESULT_INSUFFICIENT_MEM:
993 Vlast_code_conversion_error = Qinsufficient_memory;
994 break;
995 case CODING_RESULT_SUCCESS:
996 break;
997 default:
998 Vlast_code_conversion_error = intern ("Unknown error");
999 }
1000 }
1001
1002 #define CODING_DECODE_CHAR(coding, src, src_base, src_end, charset, code, c) \
1003 do { \
1004 charset_map_loaded = 0; \
1005 c = DECODE_CHAR (charset, code); \
1006 if (charset_map_loaded) \
1007 { \
1008 const unsigned char *orig = coding->source; \
1009 EMACS_INT offset; \
1010 \
1011 coding_set_source (coding); \
1012 offset = coding->source - orig; \
1013 src += offset; \
1014 src_base += offset; \
1015 src_end += offset; \
1016 } \
1017 } while (0)
1018
1019
1020 /* If there are at least BYTES length of room at dst, allocate memory
1021 for coding->destination and update dst and dst_end. We don't have
1022 to take care of coding->source which will be relocated. It is
1023 handled by calling coding_set_source in encode_coding. */
1024
1025 #define ASSURE_DESTINATION(bytes) \
1026 do { \
1027 if (dst + (bytes) >= dst_end) \
1028 { \
1029 int more_bytes = charbuf_end - charbuf + (bytes); \
1030 \
1031 dst = alloc_destination (coding, more_bytes, dst); \
1032 dst_end = coding->destination + coding->dst_bytes; \
1033 } \
1034 } while (0)
1035
1036
1037 /* Store multibyte form of the character C in P, and advance P to the
1038 end of the multibyte form. This is like CHAR_STRING_ADVANCE but it
1039 never calls MAYBE_UNIFY_CHAR. */
1040
1041 #define CHAR_STRING_ADVANCE_NO_UNIFY(c, p) \
1042 do { \
1043 if ((c) <= MAX_1_BYTE_CHAR) \
1044 *(p)++ = (c); \
1045 else if ((c) <= MAX_2_BYTE_CHAR) \
1046 *(p)++ = (0xC0 | ((c) >> 6)), \
1047 *(p)++ = (0x80 | ((c) & 0x3F)); \
1048 else if ((c) <= MAX_3_BYTE_CHAR) \
1049 *(p)++ = (0xE0 | ((c) >> 12)), \
1050 *(p)++ = (0x80 | (((c) >> 6) & 0x3F)), \
1051 *(p)++ = (0x80 | ((c) & 0x3F)); \
1052 else if ((c) <= MAX_4_BYTE_CHAR) \
1053 *(p)++ = (0xF0 | (c >> 18)), \
1054 *(p)++ = (0x80 | ((c >> 12) & 0x3F)), \
1055 *(p)++ = (0x80 | ((c >> 6) & 0x3F)), \
1056 *(p)++ = (0x80 | (c & 0x3F)); \
1057 else if ((c) <= MAX_5_BYTE_CHAR) \
1058 *(p)++ = 0xF8, \
1059 *(p)++ = (0x80 | ((c >> 18) & 0x0F)), \
1060 *(p)++ = (0x80 | ((c >> 12) & 0x3F)), \
1061 *(p)++ = (0x80 | ((c >> 6) & 0x3F)), \
1062 *(p)++ = (0x80 | (c & 0x3F)); \
1063 else \
1064 (p) += BYTE8_STRING ((c) - 0x3FFF80, p); \
1065 } while (0)
1066
1067
1068 /* Return the character code of character whose multibyte form is at
1069 P, and advance P to the end of the multibyte form. This is like
1070 STRING_CHAR_ADVANCE, but it never calls MAYBE_UNIFY_CHAR. */
1071
1072 #define STRING_CHAR_ADVANCE_NO_UNIFY(p) \
1073 (!((p)[0] & 0x80) \
1074 ? *(p)++ \
1075 : ! ((p)[0] & 0x20) \
1076 ? ((p) += 2, \
1077 ((((p)[-2] & 0x1F) << 6) \
1078 | ((p)[-1] & 0x3F) \
1079 | ((unsigned char) ((p)[-2]) < 0xC2 ? 0x3FFF80 : 0))) \
1080 : ! ((p)[0] & 0x10) \
1081 ? ((p) += 3, \
1082 ((((p)[-3] & 0x0F) << 12) \
1083 | (((p)[-2] & 0x3F) << 6) \
1084 | ((p)[-1] & 0x3F))) \
1085 : ! ((p)[0] & 0x08) \
1086 ? ((p) += 4, \
1087 ((((p)[-4] & 0xF) << 18) \
1088 | (((p)[-3] & 0x3F) << 12) \
1089 | (((p)[-2] & 0x3F) << 6) \
1090 | ((p)[-1] & 0x3F))) \
1091 : ((p) += 5, \
1092 ((((p)[-4] & 0x3F) << 18) \
1093 | (((p)[-3] & 0x3F) << 12) \
1094 | (((p)[-2] & 0x3F) << 6) \
1095 | ((p)[-1] & 0x3F))))
1096
1097
1098 static void
1099 coding_set_source (coding)
1100 struct coding_system *coding;
1101 {
1102 if (BUFFERP (coding->src_object))
1103 {
1104 struct buffer *buf = XBUFFER (coding->src_object);
1105
1106 if (coding->src_pos < 0)
1107 coding->source = BUF_GAP_END_ADDR (buf) + coding->src_pos_byte;
1108 else
1109 coding->source = BUF_BYTE_ADDRESS (buf, coding->src_pos_byte);
1110 }
1111 else if (STRINGP (coding->src_object))
1112 {
1113 coding->source = SDATA (coding->src_object) + coding->src_pos_byte;
1114 }
1115 else
1116 /* Otherwise, the source is C string and is never relocated
1117 automatically. Thus we don't have to update anything. */
1118 ;
1119 }
1120
1121 static void
1122 coding_set_destination (coding)
1123 struct coding_system *coding;
1124 {
1125 if (BUFFERP (coding->dst_object))
1126 {
1127 if (coding->src_pos < 0)
1128 {
1129 coding->destination = BEG_ADDR + coding->dst_pos_byte - BEG_BYTE;
1130 coding->dst_bytes = (GAP_END_ADDR
1131 - (coding->src_bytes - coding->consumed)
1132 - coding->destination);
1133 }
1134 else
1135 {
1136 /* We are sure that coding->dst_pos_byte is before the gap
1137 of the buffer. */
1138 coding->destination = (BUF_BEG_ADDR (XBUFFER (coding->dst_object))
1139 + coding->dst_pos_byte - BEG_BYTE);
1140 coding->dst_bytes = (BUF_GAP_END_ADDR (XBUFFER (coding->dst_object))
1141 - coding->destination);
1142 }
1143 }
1144 else
1145 /* Otherwise, the destination is C string and is never relocated
1146 automatically. Thus we don't have to update anything. */
1147 ;
1148 }
1149
1150
1151 static void
1152 coding_alloc_by_realloc (coding, bytes)
1153 struct coding_system *coding;
1154 EMACS_INT bytes;
1155 {
1156 coding->destination = (unsigned char *) xrealloc (coding->destination,
1157 coding->dst_bytes + bytes);
1158 coding->dst_bytes += bytes;
1159 }
1160
1161 static void
1162 coding_alloc_by_making_gap (coding, gap_head_used, bytes)
1163 struct coding_system *coding;
1164 EMACS_INT gap_head_used, bytes;
1165 {
1166 if (EQ (coding->src_object, coding->dst_object))
1167 {
1168 /* The gap may contain the produced data at the head and not-yet
1169 consumed data at the tail. To preserve those data, we at
1170 first make the gap size to zero, then increase the gap
1171 size. */
1172 EMACS_INT add = GAP_SIZE;
1173
1174 GPT += gap_head_used, GPT_BYTE += gap_head_used;
1175 GAP_SIZE = 0; ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
1176 make_gap (bytes);
1177 GAP_SIZE += add; ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
1178 GPT -= gap_head_used, GPT_BYTE -= gap_head_used;
1179 }
1180 else
1181 {
1182 Lisp_Object this_buffer;
1183
1184 this_buffer = Fcurrent_buffer ();
1185 set_buffer_internal (XBUFFER (coding->dst_object));
1186 make_gap (bytes);
1187 set_buffer_internal (XBUFFER (this_buffer));
1188 }
1189 }
1190
1191
1192 static unsigned char *
1193 alloc_destination (coding, nbytes, dst)
1194 struct coding_system *coding;
1195 EMACS_INT nbytes;
1196 unsigned char *dst;
1197 {
1198 EMACS_INT offset = dst - coding->destination;
1199
1200 if (BUFFERP (coding->dst_object))
1201 {
1202 struct buffer *buf = XBUFFER (coding->dst_object);
1203
1204 coding_alloc_by_making_gap (coding, dst - BUF_GPT_ADDR (buf), nbytes);
1205 }
1206 else
1207 coding_alloc_by_realloc (coding, nbytes);
1208 coding_set_destination (coding);
1209 dst = coding->destination + offset;
1210 return dst;
1211 }
1212
1213 /** Macros for annotations. */
1214
1215 /* An annotation data is stored in the array coding->charbuf in this
1216 format:
1217 [ -LENGTH ANNOTATION_MASK NCHARS ... ]
1218 LENGTH is the number of elements in the annotation.
1219 ANNOTATION_MASK is one of CODING_ANNOTATE_XXX_MASK.
1220 NCHARS is the number of characters in the text annotated.
1221
1222 The format of the following elements depend on ANNOTATION_MASK.
1223
1224 In the case of CODING_ANNOTATE_COMPOSITION_MASK, these elements
1225 follows:
1226 ... NBYTES METHOD [ COMPOSITION-COMPONENTS ... ]
1227
1228 NBYTES is the number of bytes specified in the header part of
1229 old-style emacs-mule encoding, or 0 for the other kind of
1230 composition.
1231
1232 METHOD is one of enum composition_method.
1233
1234 Optionnal COMPOSITION-COMPONENTS are characters and composition
1235 rules.
1236
1237 In the case of CODING_ANNOTATE_CHARSET_MASK, one element CHARSET-ID
1238 follows.
1239
1240 If ANNOTATION_MASK is 0, this annotation is just a space holder to
1241 recover from an invalid annotation, and should be skipped by
1242 produce_annotation. */
1243
1244 /* Maximum length of the header of annotation data. */
1245 #define MAX_ANNOTATION_LENGTH 5
1246
1247 #define ADD_ANNOTATION_DATA(buf, len, mask, nchars) \
1248 do { \
1249 *(buf)++ = -(len); \
1250 *(buf)++ = (mask); \
1251 *(buf)++ = (nchars); \
1252 coding->annotated = 1; \
1253 } while (0);
1254
1255 #define ADD_COMPOSITION_DATA(buf, nchars, nbytes, method) \
1256 do { \
1257 ADD_ANNOTATION_DATA (buf, 5, CODING_ANNOTATE_COMPOSITION_MASK, nchars); \
1258 *buf++ = nbytes; \
1259 *buf++ = method; \
1260 } while (0)
1261
1262
1263 #define ADD_CHARSET_DATA(buf, nchars, id) \
1264 do { \
1265 ADD_ANNOTATION_DATA (buf, 4, CODING_ANNOTATE_CHARSET_MASK, nchars); \
1266 *buf++ = id; \
1267 } while (0)
1268
1269 \f
1270 /*** 2. Emacs' internal format (emacs-utf-8) ***/
1271
1272
1273
1274 \f
1275 /*** 3. UTF-8 ***/
1276
1277 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1278 Check if a text is encoded in UTF-8. If it is, return 1, else
1279 return 0. */
1280
1281 #define UTF_8_1_OCTET_P(c) ((c) < 0x80)
1282 #define UTF_8_EXTRA_OCTET_P(c) (((c) & 0xC0) == 0x80)
1283 #define UTF_8_2_OCTET_LEADING_P(c) (((c) & 0xE0) == 0xC0)
1284 #define UTF_8_3_OCTET_LEADING_P(c) (((c) & 0xF0) == 0xE0)
1285 #define UTF_8_4_OCTET_LEADING_P(c) (((c) & 0xF8) == 0xF0)
1286 #define UTF_8_5_OCTET_LEADING_P(c) (((c) & 0xFC) == 0xF8)
1287
1288 #define UTF_BOM 0xFEFF
1289 #define UTF_8_BOM_1 0xEF
1290 #define UTF_8_BOM_2 0xBB
1291 #define UTF_8_BOM_3 0xBF
1292
1293 static int
1294 detect_coding_utf_8 (coding, detect_info)
1295 struct coding_system *coding;
1296 struct coding_detection_info *detect_info;
1297 {
1298 const unsigned char *src = coding->source, *src_base;
1299 const unsigned char *src_end = coding->source + coding->src_bytes;
1300 int multibytep = coding->src_multibyte;
1301 int consumed_chars = 0;
1302 int bom_found = 0;
1303 int found = 0;
1304
1305 detect_info->checked |= CATEGORY_MASK_UTF_8;
1306 /* A coding system of this category is always ASCII compatible. */
1307 src += coding->head_ascii;
1308
1309 while (1)
1310 {
1311 int c, c1, c2, c3, c4;
1312
1313 src_base = src;
1314 ONE_MORE_BYTE (c);
1315 if (c < 0 || UTF_8_1_OCTET_P (c))
1316 continue;
1317 ONE_MORE_BYTE (c1);
1318 if (c1 < 0 || ! UTF_8_EXTRA_OCTET_P (c1))
1319 break;
1320 if (UTF_8_2_OCTET_LEADING_P (c))
1321 {
1322 found = 1;
1323 continue;
1324 }
1325 ONE_MORE_BYTE (c2);
1326 if (c2 < 0 || ! UTF_8_EXTRA_OCTET_P (c2))
1327 break;
1328 if (UTF_8_3_OCTET_LEADING_P (c))
1329 {
1330 found = 1;
1331 if (src_base == coding->source
1332 && c == UTF_8_BOM_1 && c1 == UTF_8_BOM_2 && c2 == UTF_8_BOM_3)
1333 bom_found = 1;
1334 continue;
1335 }
1336 ONE_MORE_BYTE (c3);
1337 if (c3 < 0 || ! UTF_8_EXTRA_OCTET_P (c3))
1338 break;
1339 if (UTF_8_4_OCTET_LEADING_P (c))
1340 {
1341 found = 1;
1342 continue;
1343 }
1344 ONE_MORE_BYTE (c4);
1345 if (c4 < 0 || ! UTF_8_EXTRA_OCTET_P (c4))
1346 break;
1347 if (UTF_8_5_OCTET_LEADING_P (c))
1348 {
1349 found = 1;
1350 continue;
1351 }
1352 break;
1353 }
1354 detect_info->rejected |= CATEGORY_MASK_UTF_8;
1355 return 0;
1356
1357 no_more_source:
1358 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
1359 {
1360 detect_info->rejected |= CATEGORY_MASK_UTF_8;
1361 return 0;
1362 }
1363 if (bom_found)
1364 {
1365 /* The first character 0xFFFE doesn't necessarily mean a BOM. */
1366 detect_info->found |= CATEGORY_MASK_UTF_8_SIG | CATEGORY_MASK_UTF_8_NOSIG;
1367 }
1368 else
1369 {
1370 detect_info->rejected |= CATEGORY_MASK_UTF_8_SIG;
1371 if (found)
1372 detect_info->found |= CATEGORY_MASK_UTF_8_NOSIG;
1373 }
1374 return 1;
1375 }
1376
1377
1378 static void
1379 decode_coding_utf_8 (coding)
1380 struct coding_system *coding;
1381 {
1382 const unsigned char *src = coding->source + coding->consumed;
1383 const unsigned char *src_end = coding->source + coding->src_bytes;
1384 const unsigned char *src_base;
1385 int *charbuf = coding->charbuf + coding->charbuf_used;
1386 int *charbuf_end = coding->charbuf + coding->charbuf_size;
1387 int consumed_chars = 0, consumed_chars_base = 0;
1388 int multibytep = coding->src_multibyte;
1389 enum utf_bom_type bom = CODING_UTF_8_BOM (coding);
1390 Lisp_Object attr, charset_list;
1391 int eol_crlf =
1392 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
1393 int byte_after_cr = -1;
1394
1395 CODING_GET_INFO (coding, attr, charset_list);
1396
1397 if (bom != utf_without_bom)
1398 {
1399 int c1, c2, c3;
1400
1401 src_base = src;
1402 ONE_MORE_BYTE (c1);
1403 if (! UTF_8_3_OCTET_LEADING_P (c1))
1404 src = src_base;
1405 else
1406 {
1407 ONE_MORE_BYTE (c2);
1408 if (! UTF_8_EXTRA_OCTET_P (c2))
1409 src = src_base;
1410 else
1411 {
1412 ONE_MORE_BYTE (c3);
1413 if (! UTF_8_EXTRA_OCTET_P (c3))
1414 src = src_base;
1415 else
1416 {
1417 if ((c1 != UTF_8_BOM_1)
1418 || (c2 != UTF_8_BOM_2) || (c3 != UTF_8_BOM_3))
1419 src = src_base;
1420 else
1421 CODING_UTF_8_BOM (coding) = utf_without_bom;
1422 }
1423 }
1424 }
1425 }
1426 CODING_UTF_8_BOM (coding) = utf_without_bom;
1427
1428
1429
1430 while (1)
1431 {
1432 int c, c1, c2, c3, c4, c5;
1433
1434 src_base = src;
1435 consumed_chars_base = consumed_chars;
1436
1437 if (charbuf >= charbuf_end)
1438 {
1439 if (byte_after_cr >= 0)
1440 src_base--;
1441 break;
1442 }
1443
1444 if (byte_after_cr >= 0)
1445 c1 = byte_after_cr, byte_after_cr = -1;
1446 else
1447 ONE_MORE_BYTE (c1);
1448 if (c1 < 0)
1449 {
1450 c = - c1;
1451 }
1452 else if (UTF_8_1_OCTET_P(c1))
1453 {
1454 if (eol_crlf && c1 == '\r')
1455 ONE_MORE_BYTE (byte_after_cr);
1456 c = c1;
1457 }
1458 else
1459 {
1460 ONE_MORE_BYTE (c2);
1461 if (c2 < 0 || ! UTF_8_EXTRA_OCTET_P (c2))
1462 goto invalid_code;
1463 if (UTF_8_2_OCTET_LEADING_P (c1))
1464 {
1465 c = ((c1 & 0x1F) << 6) | (c2 & 0x3F);
1466 /* Reject overlong sequences here and below. Encoders
1467 producing them are incorrect, they can be misleading,
1468 and they mess up read/write invariance. */
1469 if (c < 128)
1470 goto invalid_code;
1471 }
1472 else
1473 {
1474 ONE_MORE_BYTE (c3);
1475 if (c3 < 0 || ! UTF_8_EXTRA_OCTET_P (c3))
1476 goto invalid_code;
1477 if (UTF_8_3_OCTET_LEADING_P (c1))
1478 {
1479 c = (((c1 & 0xF) << 12)
1480 | ((c2 & 0x3F) << 6) | (c3 & 0x3F));
1481 if (c < 0x800
1482 || (c >= 0xd800 && c < 0xe000)) /* surrogates (invalid) */
1483 goto invalid_code;
1484 }
1485 else
1486 {
1487 ONE_MORE_BYTE (c4);
1488 if (c4 < 0 || ! UTF_8_EXTRA_OCTET_P (c4))
1489 goto invalid_code;
1490 if (UTF_8_4_OCTET_LEADING_P (c1))
1491 {
1492 c = (((c1 & 0x7) << 18) | ((c2 & 0x3F) << 12)
1493 | ((c3 & 0x3F) << 6) | (c4 & 0x3F));
1494 if (c < 0x10000)
1495 goto invalid_code;
1496 }
1497 else
1498 {
1499 ONE_MORE_BYTE (c5);
1500 if (c5 < 0 || ! UTF_8_EXTRA_OCTET_P (c5))
1501 goto invalid_code;
1502 if (UTF_8_5_OCTET_LEADING_P (c1))
1503 {
1504 c = (((c1 & 0x3) << 24) | ((c2 & 0x3F) << 18)
1505 | ((c3 & 0x3F) << 12) | ((c4 & 0x3F) << 6)
1506 | (c5 & 0x3F));
1507 if ((c > MAX_CHAR) || (c < 0x200000))
1508 goto invalid_code;
1509 }
1510 else
1511 goto invalid_code;
1512 }
1513 }
1514 }
1515 }
1516
1517 *charbuf++ = c;
1518 continue;
1519
1520 invalid_code:
1521 src = src_base;
1522 consumed_chars = consumed_chars_base;
1523 ONE_MORE_BYTE (c);
1524 *charbuf++ = ASCII_BYTE_P (c) ? c : BYTE8_TO_CHAR (c);
1525 coding->errors++;
1526 }
1527
1528 no_more_source:
1529 coding->consumed_char += consumed_chars_base;
1530 coding->consumed = src_base - coding->source;
1531 coding->charbuf_used = charbuf - coding->charbuf;
1532 }
1533
1534
1535 static int
1536 encode_coding_utf_8 (coding)
1537 struct coding_system *coding;
1538 {
1539 int multibytep = coding->dst_multibyte;
1540 int *charbuf = coding->charbuf;
1541 int *charbuf_end = charbuf + coding->charbuf_used;
1542 unsigned char *dst = coding->destination + coding->produced;
1543 unsigned char *dst_end = coding->destination + coding->dst_bytes;
1544 int produced_chars = 0;
1545 int c;
1546
1547 if (CODING_UTF_8_BOM (coding) == utf_with_bom)
1548 {
1549 ASSURE_DESTINATION (3);
1550 EMIT_THREE_BYTES (UTF_8_BOM_1, UTF_8_BOM_2, UTF_8_BOM_3);
1551 CODING_UTF_8_BOM (coding) = utf_without_bom;
1552 }
1553
1554 if (multibytep)
1555 {
1556 int safe_room = MAX_MULTIBYTE_LENGTH * 2;
1557
1558 while (charbuf < charbuf_end)
1559 {
1560 unsigned char str[MAX_MULTIBYTE_LENGTH], *p, *pend = str;
1561
1562 ASSURE_DESTINATION (safe_room);
1563 c = *charbuf++;
1564 if (CHAR_BYTE8_P (c))
1565 {
1566 c = CHAR_TO_BYTE8 (c);
1567 EMIT_ONE_BYTE (c);
1568 }
1569 else
1570 {
1571 CHAR_STRING_ADVANCE_NO_UNIFY (c, pend);
1572 for (p = str; p < pend; p++)
1573 EMIT_ONE_BYTE (*p);
1574 }
1575 }
1576 }
1577 else
1578 {
1579 int safe_room = MAX_MULTIBYTE_LENGTH;
1580
1581 while (charbuf < charbuf_end)
1582 {
1583 ASSURE_DESTINATION (safe_room);
1584 c = *charbuf++;
1585 if (CHAR_BYTE8_P (c))
1586 *dst++ = CHAR_TO_BYTE8 (c);
1587 else
1588 CHAR_STRING_ADVANCE_NO_UNIFY (c, dst);
1589 produced_chars++;
1590 }
1591 }
1592 record_conversion_result (coding, CODING_RESULT_SUCCESS);
1593 coding->produced_char += produced_chars;
1594 coding->produced = dst - coding->destination;
1595 return 0;
1596 }
1597
1598
1599 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1600 Check if a text is encoded in one of UTF-16 based coding systems.
1601 If it is, return 1, else return 0. */
1602
1603 #define UTF_16_HIGH_SURROGATE_P(val) \
1604 (((val) & 0xFC00) == 0xD800)
1605
1606 #define UTF_16_LOW_SURROGATE_P(val) \
1607 (((val) & 0xFC00) == 0xDC00)
1608
1609 #define UTF_16_INVALID_P(val) \
1610 (((val) == 0xFFFE) \
1611 || ((val) == 0xFFFF) \
1612 || UTF_16_LOW_SURROGATE_P (val))
1613
1614
1615 static int
1616 detect_coding_utf_16 (coding, detect_info)
1617 struct coding_system *coding;
1618 struct coding_detection_info *detect_info;
1619 {
1620 const unsigned char *src = coding->source, *src_base = src;
1621 const unsigned char *src_end = coding->source + coding->src_bytes;
1622 int multibytep = coding->src_multibyte;
1623 int consumed_chars = 0;
1624 int c1, c2;
1625
1626 detect_info->checked |= CATEGORY_MASK_UTF_16;
1627 if (coding->mode & CODING_MODE_LAST_BLOCK
1628 && (coding->src_chars & 1))
1629 {
1630 detect_info->rejected |= CATEGORY_MASK_UTF_16;
1631 return 0;
1632 }
1633
1634 TWO_MORE_BYTES (c1, c2);
1635 if ((c1 == 0xFF) && (c2 == 0xFE))
1636 {
1637 detect_info->found |= (CATEGORY_MASK_UTF_16_LE
1638 | CATEGORY_MASK_UTF_16_AUTO);
1639 detect_info->rejected |= (CATEGORY_MASK_UTF_16_BE
1640 | CATEGORY_MASK_UTF_16_BE_NOSIG
1641 | CATEGORY_MASK_UTF_16_LE_NOSIG);
1642 }
1643 else if ((c1 == 0xFE) && (c2 == 0xFF))
1644 {
1645 detect_info->found |= (CATEGORY_MASK_UTF_16_BE
1646 | CATEGORY_MASK_UTF_16_AUTO);
1647 detect_info->rejected |= (CATEGORY_MASK_UTF_16_LE
1648 | CATEGORY_MASK_UTF_16_BE_NOSIG
1649 | CATEGORY_MASK_UTF_16_LE_NOSIG);
1650 }
1651 else if (c2 < 0)
1652 {
1653 detect_info->rejected |= CATEGORY_MASK_UTF_16;
1654 return 0;
1655 }
1656 else
1657 {
1658 /* We check the dispersion of Eth and Oth bytes where E is even and
1659 O is odd. If both are high, we assume binary data.*/
1660 unsigned char e[256], o[256];
1661 unsigned e_num = 1, o_num = 1;
1662
1663 memset (e, 0, 256);
1664 memset (o, 0, 256);
1665 e[c1] = 1;
1666 o[c2] = 1;
1667
1668 detect_info->rejected |= (CATEGORY_MASK_UTF_16_AUTO
1669 |CATEGORY_MASK_UTF_16_BE
1670 | CATEGORY_MASK_UTF_16_LE);
1671
1672 while ((detect_info->rejected & CATEGORY_MASK_UTF_16)
1673 != CATEGORY_MASK_UTF_16)
1674 {
1675 TWO_MORE_BYTES (c1, c2);
1676 if (c2 < 0)
1677 break;
1678 if (! e[c1])
1679 {
1680 e[c1] = 1;
1681 e_num++;
1682 if (e_num >= 128)
1683 detect_info->rejected |= CATEGORY_MASK_UTF_16_BE_NOSIG;
1684 }
1685 if (! o[c2])
1686 {
1687 o[c2] = 1;
1688 o_num++;
1689 if (o_num >= 128)
1690 detect_info->rejected |= CATEGORY_MASK_UTF_16_LE_NOSIG;
1691 }
1692 }
1693 return 0;
1694 }
1695
1696 no_more_source:
1697 return 1;
1698 }
1699
1700 static void
1701 decode_coding_utf_16 (coding)
1702 struct coding_system *coding;
1703 {
1704 const unsigned char *src = coding->source + coding->consumed;
1705 const unsigned char *src_end = coding->source + coding->src_bytes;
1706 const unsigned char *src_base;
1707 int *charbuf = coding->charbuf + coding->charbuf_used;
1708 /* We may produces at most 3 chars in one loop. */
1709 int *charbuf_end = coding->charbuf + coding->charbuf_size - 2;
1710 int consumed_chars = 0, consumed_chars_base = 0;
1711 int multibytep = coding->src_multibyte;
1712 enum utf_bom_type bom = CODING_UTF_16_BOM (coding);
1713 enum utf_16_endian_type endian = CODING_UTF_16_ENDIAN (coding);
1714 int surrogate = CODING_UTF_16_SURROGATE (coding);
1715 Lisp_Object attr, charset_list;
1716 int eol_crlf =
1717 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
1718 int byte_after_cr1 = -1, byte_after_cr2 = -1;
1719
1720 CODING_GET_INFO (coding, attr, charset_list);
1721
1722 if (bom == utf_with_bom)
1723 {
1724 int c, c1, c2;
1725
1726 src_base = src;
1727 ONE_MORE_BYTE (c1);
1728 ONE_MORE_BYTE (c2);
1729 c = (c1 << 8) | c2;
1730
1731 if (endian == utf_16_big_endian
1732 ? c != 0xFEFF : c != 0xFFFE)
1733 {
1734 /* The first two bytes are not BOM. Treat them as bytes
1735 for a normal character. */
1736 src = src_base;
1737 coding->errors++;
1738 }
1739 CODING_UTF_16_BOM (coding) = utf_without_bom;
1740 }
1741 else if (bom == utf_detect_bom)
1742 {
1743 /* We have already tried to detect BOM and failed in
1744 detect_coding. */
1745 CODING_UTF_16_BOM (coding) = utf_without_bom;
1746 }
1747
1748 while (1)
1749 {
1750 int c, c1, c2;
1751
1752 src_base = src;
1753 consumed_chars_base = consumed_chars;
1754
1755 if (charbuf >= charbuf_end)
1756 {
1757 if (byte_after_cr1 >= 0)
1758 src_base -= 2;
1759 break;
1760 }
1761
1762 if (byte_after_cr1 >= 0)
1763 c1 = byte_after_cr1, byte_after_cr1 = -1;
1764 else
1765 ONE_MORE_BYTE (c1);
1766 if (c1 < 0)
1767 {
1768 *charbuf++ = -c1;
1769 continue;
1770 }
1771 if (byte_after_cr2 >= 0)
1772 c2 = byte_after_cr2, byte_after_cr2 = -1;
1773 else
1774 ONE_MORE_BYTE (c2);
1775 if (c2 < 0)
1776 {
1777 *charbuf++ = ASCII_BYTE_P (c1) ? c1 : BYTE8_TO_CHAR (c1);
1778 *charbuf++ = -c2;
1779 continue;
1780 }
1781 c = (endian == utf_16_big_endian
1782 ? ((c1 << 8) | c2) : ((c2 << 8) | c1));
1783
1784 if (surrogate)
1785 {
1786 if (! UTF_16_LOW_SURROGATE_P (c))
1787 {
1788 if (endian == utf_16_big_endian)
1789 c1 = surrogate >> 8, c2 = surrogate & 0xFF;
1790 else
1791 c1 = surrogate & 0xFF, c2 = surrogate >> 8;
1792 *charbuf++ = c1;
1793 *charbuf++ = c2;
1794 coding->errors++;
1795 if (UTF_16_HIGH_SURROGATE_P (c))
1796 CODING_UTF_16_SURROGATE (coding) = surrogate = c;
1797 else
1798 *charbuf++ = c;
1799 }
1800 else
1801 {
1802 c = ((surrogate - 0xD800) << 10) | (c - 0xDC00);
1803 CODING_UTF_16_SURROGATE (coding) = surrogate = 0;
1804 *charbuf++ = 0x10000 + c;
1805 }
1806 }
1807 else
1808 {
1809 if (UTF_16_HIGH_SURROGATE_P (c))
1810 CODING_UTF_16_SURROGATE (coding) = surrogate = c;
1811 else
1812 {
1813 if (eol_crlf && c == '\r')
1814 {
1815 ONE_MORE_BYTE (byte_after_cr1);
1816 ONE_MORE_BYTE (byte_after_cr2);
1817 }
1818 *charbuf++ = c;
1819 }
1820 }
1821 }
1822
1823 no_more_source:
1824 coding->consumed_char += consumed_chars_base;
1825 coding->consumed = src_base - coding->source;
1826 coding->charbuf_used = charbuf - coding->charbuf;
1827 }
1828
1829 static int
1830 encode_coding_utf_16 (coding)
1831 struct coding_system *coding;
1832 {
1833 int multibytep = coding->dst_multibyte;
1834 int *charbuf = coding->charbuf;
1835 int *charbuf_end = charbuf + coding->charbuf_used;
1836 unsigned char *dst = coding->destination + coding->produced;
1837 unsigned char *dst_end = coding->destination + coding->dst_bytes;
1838 int safe_room = 8;
1839 enum utf_bom_type bom = CODING_UTF_16_BOM (coding);
1840 int big_endian = CODING_UTF_16_ENDIAN (coding) == utf_16_big_endian;
1841 int produced_chars = 0;
1842 Lisp_Object attrs, charset_list;
1843 int c;
1844
1845 CODING_GET_INFO (coding, attrs, charset_list);
1846
1847 if (bom != utf_without_bom)
1848 {
1849 ASSURE_DESTINATION (safe_room);
1850 if (big_endian)
1851 EMIT_TWO_BYTES (0xFE, 0xFF);
1852 else
1853 EMIT_TWO_BYTES (0xFF, 0xFE);
1854 CODING_UTF_16_BOM (coding) = utf_without_bom;
1855 }
1856
1857 while (charbuf < charbuf_end)
1858 {
1859 ASSURE_DESTINATION (safe_room);
1860 c = *charbuf++;
1861 if (c >= MAX_UNICODE_CHAR)
1862 c = coding->default_char;
1863
1864 if (c < 0x10000)
1865 {
1866 if (big_endian)
1867 EMIT_TWO_BYTES (c >> 8, c & 0xFF);
1868 else
1869 EMIT_TWO_BYTES (c & 0xFF, c >> 8);
1870 }
1871 else
1872 {
1873 int c1, c2;
1874
1875 c -= 0x10000;
1876 c1 = (c >> 10) + 0xD800;
1877 c2 = (c & 0x3FF) + 0xDC00;
1878 if (big_endian)
1879 EMIT_FOUR_BYTES (c1 >> 8, c1 & 0xFF, c2 >> 8, c2 & 0xFF);
1880 else
1881 EMIT_FOUR_BYTES (c1 & 0xFF, c1 >> 8, c2 & 0xFF, c2 >> 8);
1882 }
1883 }
1884 record_conversion_result (coding, CODING_RESULT_SUCCESS);
1885 coding->produced = dst - coding->destination;
1886 coding->produced_char += produced_chars;
1887 return 0;
1888 }
1889
1890 \f
1891 /*** 6. Old Emacs' internal format (emacs-mule) ***/
1892
1893 /* Emacs' internal format for representation of multiple character
1894 sets is a kind of multi-byte encoding, i.e. characters are
1895 represented by variable-length sequences of one-byte codes.
1896
1897 ASCII characters and control characters (e.g. `tab', `newline') are
1898 represented by one-byte sequences which are their ASCII codes, in
1899 the range 0x00 through 0x7F.
1900
1901 8-bit characters of the range 0x80..0x9F are represented by
1902 two-byte sequences of LEADING_CODE_8_BIT_CONTROL and (their 8-bit
1903 code + 0x20).
1904
1905 8-bit characters of the range 0xA0..0xFF are represented by
1906 one-byte sequences which are their 8-bit code.
1907
1908 The other characters are represented by a sequence of `base
1909 leading-code', optional `extended leading-code', and one or two
1910 `position-code's. The length of the sequence is determined by the
1911 base leading-code. Leading-code takes the range 0x81 through 0x9D,
1912 whereas extended leading-code and position-code take the range 0xA0
1913 through 0xFF. See `charset.h' for more details about leading-code
1914 and position-code.
1915
1916 --- CODE RANGE of Emacs' internal format ---
1917 character set range
1918 ------------- -----
1919 ascii 0x00..0x7F
1920 eight-bit-control LEADING_CODE_8_BIT_CONTROL + 0xA0..0xBF
1921 eight-bit-graphic 0xA0..0xBF
1922 ELSE 0x81..0x9D + [0xA0..0xFF]+
1923 ---------------------------------------------
1924
1925 As this is the internal character representation, the format is
1926 usually not used externally (i.e. in a file or in a data sent to a
1927 process). But, it is possible to have a text externally in this
1928 format (i.e. by encoding by the coding system `emacs-mule').
1929
1930 In that case, a sequence of one-byte codes has a slightly different
1931 form.
1932
1933 At first, all characters in eight-bit-control are represented by
1934 one-byte sequences which are their 8-bit code.
1935
1936 Next, character composition data are represented by the byte
1937 sequence of the form: 0x80 METHOD BYTES CHARS COMPONENT ...,
1938 where,
1939 METHOD is 0xF2 plus one of composition method (enum
1940 composition_method),
1941
1942 BYTES is 0xA0 plus a byte length of this composition data,
1943
1944 CHARS is 0xA0 plus a number of characters composed by this
1945 data,
1946
1947 COMPONENTs are characters of multibye form or composition
1948 rules encoded by two-byte of ASCII codes.
1949
1950 In addition, for backward compatibility, the following formats are
1951 also recognized as composition data on decoding.
1952
1953 0x80 MSEQ ...
1954 0x80 0xFF MSEQ RULE MSEQ RULE ... MSEQ
1955
1956 Here,
1957 MSEQ is a multibyte form but in these special format:
1958 ASCII: 0xA0 ASCII_CODE+0x80,
1959 other: LEADING_CODE+0x20 FOLLOWING-BYTE ...,
1960 RULE is a one byte code of the range 0xA0..0xF0 that
1961 represents a composition rule.
1962 */
1963
1964 char emacs_mule_bytes[256];
1965
1966
1967 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1968 Check if a text is encoded in `emacs-mule'. If it is, return 1,
1969 else return 0. */
1970
1971 static int
1972 detect_coding_emacs_mule (coding, detect_info)
1973 struct coding_system *coding;
1974 struct coding_detection_info *detect_info;
1975 {
1976 const unsigned char *src = coding->source, *src_base;
1977 const unsigned char *src_end = coding->source + coding->src_bytes;
1978 int multibytep = coding->src_multibyte;
1979 int consumed_chars = 0;
1980 int c;
1981 int found = 0;
1982
1983 detect_info->checked |= CATEGORY_MASK_EMACS_MULE;
1984 /* A coding system of this category is always ASCII compatible. */
1985 src += coding->head_ascii;
1986
1987 while (1)
1988 {
1989 src_base = src;
1990 ONE_MORE_BYTE (c);
1991 if (c < 0)
1992 continue;
1993 if (c == 0x80)
1994 {
1995 /* Perhaps the start of composite character. We simply skip
1996 it because analyzing it is too heavy for detecting. But,
1997 at least, we check that the composite character
1998 constitutes of more than 4 bytes. */
1999 const unsigned char *src_base;
2000
2001 repeat:
2002 src_base = src;
2003 do
2004 {
2005 ONE_MORE_BYTE (c);
2006 }
2007 while (c >= 0xA0);
2008
2009 if (src - src_base <= 4)
2010 break;
2011 found = CATEGORY_MASK_EMACS_MULE;
2012 if (c == 0x80)
2013 goto repeat;
2014 }
2015
2016 if (c < 0x80)
2017 {
2018 if (c < 0x20
2019 && (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO))
2020 break;
2021 }
2022 else
2023 {
2024 int more_bytes = emacs_mule_bytes[*src_base] - 1;
2025
2026 while (more_bytes > 0)
2027 {
2028 ONE_MORE_BYTE (c);
2029 if (c < 0xA0)
2030 {
2031 src--; /* Unread the last byte. */
2032 break;
2033 }
2034 more_bytes--;
2035 }
2036 if (more_bytes != 0)
2037 break;
2038 found = CATEGORY_MASK_EMACS_MULE;
2039 }
2040 }
2041 detect_info->rejected |= CATEGORY_MASK_EMACS_MULE;
2042 return 0;
2043
2044 no_more_source:
2045 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
2046 {
2047 detect_info->rejected |= CATEGORY_MASK_EMACS_MULE;
2048 return 0;
2049 }
2050 detect_info->found |= found;
2051 return 1;
2052 }
2053
2054
2055 /* Parse emacs-mule multibyte sequence at SRC and return the decoded
2056 character. If CMP_STATUS indicates that we must expect MSEQ or
2057 RULE described above, decode it and return the negative value of
2058 the deocded character or rule. If an invalid byte is found, return
2059 -1. If SRC is too short, return -2. */
2060
2061 int
2062 emacs_mule_char (coding, src, nbytes, nchars, id, cmp_status)
2063 struct coding_system *coding;
2064 const unsigned char *src;
2065 int *nbytes, *nchars, *id;
2066 struct composition_status *cmp_status;
2067 {
2068 const unsigned char *src_end = coding->source + coding->src_bytes;
2069 const unsigned char *src_base = src;
2070 int multibytep = coding->src_multibyte;
2071 struct charset *charset;
2072 unsigned code;
2073 int c;
2074 int consumed_chars = 0;
2075 int mseq_found = 0;
2076
2077 ONE_MORE_BYTE (c);
2078 if (c < 0)
2079 {
2080 c = -c;
2081 charset = emacs_mule_charset[0];
2082 }
2083 else
2084 {
2085 if (c >= 0xA0)
2086 {
2087 if (cmp_status->state != COMPOSING_NO
2088 && cmp_status->old_form)
2089 {
2090 if (cmp_status->state == COMPOSING_CHAR)
2091 {
2092 if (c == 0xA0)
2093 {
2094 ONE_MORE_BYTE (c);
2095 c -= 0x80;
2096 if (c < 0)
2097 goto invalid_code;
2098 }
2099 else
2100 c -= 0x20;
2101 mseq_found = 1;
2102 }
2103 else
2104 {
2105 *nbytes = src - src_base;
2106 *nchars = consumed_chars;
2107 return -c;
2108 }
2109 }
2110 else
2111 goto invalid_code;
2112 }
2113
2114 switch (emacs_mule_bytes[c])
2115 {
2116 case 2:
2117 if (! (charset = emacs_mule_charset[c]))
2118 goto invalid_code;
2119 ONE_MORE_BYTE (c);
2120 if (c < 0xA0)
2121 goto invalid_code;
2122 code = c & 0x7F;
2123 break;
2124
2125 case 3:
2126 if (c == EMACS_MULE_LEADING_CODE_PRIVATE_11
2127 || c == EMACS_MULE_LEADING_CODE_PRIVATE_12)
2128 {
2129 ONE_MORE_BYTE (c);
2130 if (c < 0xA0 || ! (charset = emacs_mule_charset[c]))
2131 goto invalid_code;
2132 ONE_MORE_BYTE (c);
2133 if (c < 0xA0)
2134 goto invalid_code;
2135 code = c & 0x7F;
2136 }
2137 else
2138 {
2139 if (! (charset = emacs_mule_charset[c]))
2140 goto invalid_code;
2141 ONE_MORE_BYTE (c);
2142 if (c < 0xA0)
2143 goto invalid_code;
2144 code = (c & 0x7F) << 8;
2145 ONE_MORE_BYTE (c);
2146 if (c < 0xA0)
2147 goto invalid_code;
2148 code |= c & 0x7F;
2149 }
2150 break;
2151
2152 case 4:
2153 ONE_MORE_BYTE (c);
2154 if (c < 0 || ! (charset = emacs_mule_charset[c]))
2155 goto invalid_code;
2156 ONE_MORE_BYTE (c);
2157 if (c < 0xA0)
2158 goto invalid_code;
2159 code = (c & 0x7F) << 8;
2160 ONE_MORE_BYTE (c);
2161 if (c < 0xA0)
2162 goto invalid_code;
2163 code |= c & 0x7F;
2164 break;
2165
2166 case 1:
2167 code = c;
2168 charset = CHARSET_FROM_ID (ASCII_BYTE_P (code)
2169 ? charset_ascii : charset_eight_bit);
2170 break;
2171
2172 default:
2173 abort ();
2174 }
2175 c = DECODE_CHAR (charset, code);
2176 if (c < 0)
2177 goto invalid_code;
2178 }
2179 *nbytes = src - src_base;
2180 *nchars = consumed_chars;
2181 if (id)
2182 *id = charset->id;
2183 return (mseq_found ? -c : c);
2184
2185 no_more_source:
2186 return -2;
2187
2188 invalid_code:
2189 return -1;
2190 }
2191
2192
2193 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
2194
2195 /* Handle these composition sequence ('|': the end of header elements,
2196 BYTES and CHARS >= 0xA0):
2197
2198 (1) relative composition: 0x80 0xF2 BYTES CHARS | CHAR ...
2199 (2) altchar composition: 0x80 0xF4 BYTES CHARS | ALT ... ALT CHAR ...
2200 (3) alt&rule composition: 0x80 0xF5 BYTES CHARS | ALT RULE ... ALT CHAR ...
2201
2202 and these old form:
2203
2204 (4) relative composition: 0x80 | MSEQ ... MSEQ
2205 (5) rulebase composition: 0x80 0xFF | MSEQ MRULE ... MSEQ
2206
2207 When the starter 0x80 and the following header elements are found,
2208 this annotation header is produced.
2209
2210 [ -LENGTH(==-5) CODING_ANNOTATE_COMPOSITION_MASK NCHARS NBYTES METHOD ]
2211
2212 NCHARS is CHARS - 0xA0 for (1), (2), (3), and 0 for (4), (5).
2213 NBYTES is BYTES - 0xA0 for (1), (2), (3), and 0 for (4), (5).
2214
2215 Then, upon reading the following elements, these codes are produced
2216 until the composition end is found:
2217
2218 (1) CHAR ... CHAR
2219 (2) ALT ... ALT CHAR ... CHAR
2220 (3) ALT -2 DECODED-RULE ALT -2 DECODED-RULE ... ALT CHAR ... CHAR
2221 (4) CHAR ... CHAR
2222 (5) CHAR -2 DECODED-RULE CHAR -2 DECODED-RULE ... CHAR
2223
2224 When the composition end is found, LENGTH and NCHARS in the
2225 annotation header is updated as below:
2226
2227 (1) LENGTH: unchanged, NCHARS: unchanged
2228 (2) LENGTH: length of the whole sequence minus NCHARS, NCHARS: unchanged
2229 (3) LENGTH: length of the whole sequence minus NCHARS, NCHARS: unchanged
2230 (4) LENGTH: unchanged, NCHARS: number of CHARs
2231 (5) LENGTH: unchanged, NCHARS: number of CHARs
2232
2233 If an error is found while composing, the annotation header is
2234 changed to the original composition header (plus filler -1s) as
2235 below:
2236
2237 (1),(2),(3) [ 0x80 0xF2+METHOD BYTES CHARS -1 ]
2238 (5) [ 0x80 0xFF -1 -1- -1 ]
2239
2240 and the sequence [ -2 DECODED-RULE ] is changed to the original
2241 byte sequence as below:
2242 o the original byte sequence is B: [ B -1 ]
2243 o the original byte sequence is B1 B2: [ B1 B2 ]
2244
2245 Most of the routines are implemented by macros because many
2246 variables and labels in the caller decode_coding_emacs_mule must be
2247 accessible, and they are usually called just once (thus doesn't
2248 increase the size of compiled object). */
2249
2250 /* Decode a composition rule represented by C as a component of
2251 composition sequence of Emacs 20 style. Set RULE to the decoded
2252 rule. */
2253
2254 #define DECODE_EMACS_MULE_COMPOSITION_RULE_20(c, rule) \
2255 do { \
2256 int gref, nref; \
2257 \
2258 c -= 0xA0; \
2259 if (c < 0 || c >= 81) \
2260 goto invalid_code; \
2261 gref = c / 9, nref = c % 9; \
2262 if (gref == 4) gref = 10; \
2263 if (nref == 4) nref = 10; \
2264 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
2265 } while (0)
2266
2267
2268 /* Decode a composition rule represented by C and the following byte
2269 at SRC as a component of composition sequence of Emacs 21 style.
2270 Set RULE to the decoded rule. */
2271
2272 #define DECODE_EMACS_MULE_COMPOSITION_RULE_21(c, rule) \
2273 do { \
2274 int gref, nref; \
2275 \
2276 gref = c - 0x20; \
2277 if (gref < 0 || gref >= 81) \
2278 goto invalid_code; \
2279 ONE_MORE_BYTE (c); \
2280 nref = c - 0x20; \
2281 if (nref < 0 || nref >= 81) \
2282 goto invalid_code; \
2283 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
2284 } while (0)
2285
2286
2287 /* Start of Emacs 21 style format. The first three bytes at SRC are
2288 (METHOD - 0xF2), (BYTES - 0xA0), (CHARS - 0xA0), where BYTES is the
2289 byte length of this composition information, CHARS is the number of
2290 characters composed by this composition. */
2291
2292 #define DECODE_EMACS_MULE_21_COMPOSITION() \
2293 do { \
2294 enum composition_method method = c - 0xF2; \
2295 int *charbuf_base = charbuf; \
2296 int nbytes, nchars; \
2297 \
2298 ONE_MORE_BYTE (c); \
2299 if (c < 0) \
2300 goto invalid_code; \
2301 nbytes = c - 0xA0; \
2302 if (nbytes < 3 || (method == COMPOSITION_RELATIVE && nbytes != 4)) \
2303 goto invalid_code; \
2304 ONE_MORE_BYTE (c); \
2305 nchars = c - 0xA0; \
2306 if (nchars <= 0 || nchars >= MAX_COMPOSITION_COMPONENTS) \
2307 goto invalid_code; \
2308 cmp_status->old_form = 0; \
2309 cmp_status->method = method; \
2310 if (method == COMPOSITION_RELATIVE) \
2311 cmp_status->state = COMPOSING_CHAR; \
2312 else \
2313 cmp_status->state = COMPOSING_COMPONENT_CHAR; \
2314 cmp_status->length = MAX_ANNOTATION_LENGTH; \
2315 cmp_status->nchars = nchars; \
2316 cmp_status->ncomps = nbytes - 4; \
2317 ADD_COMPOSITION_DATA (charbuf, nchars, nbytes, method); \
2318 } while (0)
2319
2320
2321 /* Start of Emacs 20 style format for relative composition. */
2322
2323 #define DECODE_EMACS_MULE_20_RELATIVE_COMPOSITION() \
2324 do { \
2325 cmp_status->old_form = 1; \
2326 cmp_status->method = COMPOSITION_RELATIVE; \
2327 cmp_status->state = COMPOSING_CHAR; \
2328 cmp_status->length = MAX_ANNOTATION_LENGTH; \
2329 cmp_status->nchars = cmp_status->ncomps = 0; \
2330 ADD_COMPOSITION_DATA (charbuf, 0, 0, cmp_status->method); \
2331 } while (0)
2332
2333
2334 /* Start of Emacs 20 style format for rule-base composition. */
2335
2336 #define DECODE_EMACS_MULE_20_RULEBASE_COMPOSITION() \
2337 do { \
2338 cmp_status->old_form = 1; \
2339 cmp_status->method = COMPOSITION_WITH_RULE; \
2340 cmp_status->state = COMPOSING_CHAR; \
2341 cmp_status->length = MAX_ANNOTATION_LENGTH; \
2342 cmp_status->nchars = cmp_status->ncomps = 0; \
2343 ADD_COMPOSITION_DATA (charbuf, 0, 0, cmp_status->method); \
2344 } while (0)
2345
2346
2347 #define DECODE_EMACS_MULE_COMPOSITION_START() \
2348 do { \
2349 const unsigned char *current_src = src; \
2350 \
2351 ONE_MORE_BYTE (c); \
2352 if (c < 0) \
2353 goto invalid_code; \
2354 if (c - 0xF2 >= COMPOSITION_RELATIVE \
2355 && c - 0xF2 <= COMPOSITION_WITH_RULE_ALTCHARS) \
2356 DECODE_EMACS_MULE_21_COMPOSITION (); \
2357 else if (c < 0xA0) \
2358 goto invalid_code; \
2359 else if (c < 0xC0) \
2360 { \
2361 DECODE_EMACS_MULE_20_RELATIVE_COMPOSITION (); \
2362 /* Re-read C as a composition component. */ \
2363 src = current_src; \
2364 } \
2365 else if (c == 0xFF) \
2366 DECODE_EMACS_MULE_20_RULEBASE_COMPOSITION (); \
2367 else \
2368 goto invalid_code; \
2369 } while (0)
2370
2371 #define EMACS_MULE_COMPOSITION_END() \
2372 do { \
2373 int idx = - cmp_status->length; \
2374 \
2375 if (cmp_status->old_form) \
2376 charbuf[idx + 2] = cmp_status->nchars; \
2377 else if (cmp_status->method > COMPOSITION_RELATIVE) \
2378 charbuf[idx] = charbuf[idx + 2] - cmp_status->length; \
2379 cmp_status->state = COMPOSING_NO; \
2380 } while (0)
2381
2382
2383 static int
2384 emacs_mule_finish_composition (charbuf, cmp_status)
2385 int *charbuf;
2386 struct composition_status *cmp_status;
2387 {
2388 int idx = - cmp_status->length;
2389 int new_chars;
2390
2391 if (cmp_status->old_form && cmp_status->nchars > 0)
2392 {
2393 charbuf[idx + 2] = cmp_status->nchars;
2394 new_chars = 0;
2395 if (cmp_status->method == COMPOSITION_WITH_RULE
2396 && cmp_status->state == COMPOSING_CHAR)
2397 {
2398 /* The last rule was invalid. */
2399 int rule = charbuf[-1] + 0xA0;
2400
2401 charbuf[-2] = BYTE8_TO_CHAR (rule);
2402 charbuf[-1] = -1;
2403 new_chars = 1;
2404 }
2405 }
2406 else
2407 {
2408 charbuf[idx++] = BYTE8_TO_CHAR (0x80);
2409
2410 if (cmp_status->method == COMPOSITION_WITH_RULE)
2411 {
2412 charbuf[idx++] = BYTE8_TO_CHAR (0xFF);
2413 charbuf[idx++] = -3;
2414 charbuf[idx++] = 0;
2415 new_chars = 1;
2416 }
2417 else
2418 {
2419 int nchars = charbuf[idx + 1] + 0xA0;
2420 int nbytes = charbuf[idx + 2] + 0xA0;
2421
2422 charbuf[idx++] = BYTE8_TO_CHAR (0xF2 + cmp_status->method);
2423 charbuf[idx++] = BYTE8_TO_CHAR (nbytes);
2424 charbuf[idx++] = BYTE8_TO_CHAR (nchars);
2425 charbuf[idx++] = -1;
2426 new_chars = 4;
2427 }
2428 }
2429 cmp_status->state = COMPOSING_NO;
2430 return new_chars;
2431 }
2432
2433 #define EMACS_MULE_MAYBE_FINISH_COMPOSITION() \
2434 do { \
2435 if (cmp_status->state != COMPOSING_NO) \
2436 char_offset += emacs_mule_finish_composition (charbuf, cmp_status); \
2437 } while (0)
2438
2439
2440 static void
2441 decode_coding_emacs_mule (coding)
2442 struct coding_system *coding;
2443 {
2444 const unsigned char *src = coding->source + coding->consumed;
2445 const unsigned char *src_end = coding->source + coding->src_bytes;
2446 const unsigned char *src_base;
2447 int *charbuf = coding->charbuf + coding->charbuf_used;
2448 /* We may produce two annocations (charset and composition) in one
2449 loop and one more charset annocation at the end. */
2450 int *charbuf_end
2451 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 3);
2452 int consumed_chars = 0, consumed_chars_base;
2453 int multibytep = coding->src_multibyte;
2454 Lisp_Object attrs, charset_list;
2455 int char_offset = coding->produced_char;
2456 int last_offset = char_offset;
2457 int last_id = charset_ascii;
2458 int eol_crlf =
2459 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
2460 int byte_after_cr = -1;
2461 struct composition_status *cmp_status = &coding->spec.emacs_mule.cmp_status;
2462
2463 CODING_GET_INFO (coding, attrs, charset_list);
2464
2465 if (cmp_status->state != COMPOSING_NO)
2466 {
2467 int i;
2468
2469 for (i = 0; i < cmp_status->length; i++)
2470 *charbuf++ = cmp_status->carryover[i];
2471 coding->annotated = 1;
2472 }
2473
2474 while (1)
2475 {
2476 int c, id;
2477
2478 src_base = src;
2479 consumed_chars_base = consumed_chars;
2480
2481 if (charbuf >= charbuf_end)
2482 {
2483 if (byte_after_cr >= 0)
2484 src_base--;
2485 break;
2486 }
2487
2488 if (byte_after_cr >= 0)
2489 c = byte_after_cr, byte_after_cr = -1;
2490 else
2491 ONE_MORE_BYTE (c);
2492
2493 if (c < 0 || c == 0x80)
2494 {
2495 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2496 if (c < 0)
2497 {
2498 *charbuf++ = -c;
2499 char_offset++;
2500 }
2501 else
2502 DECODE_EMACS_MULE_COMPOSITION_START ();
2503 continue;
2504 }
2505
2506 if (c < 0x80)
2507 {
2508 if (eol_crlf && c == '\r')
2509 ONE_MORE_BYTE (byte_after_cr);
2510 id = charset_ascii;
2511 if (cmp_status->state != COMPOSING_NO)
2512 {
2513 if (cmp_status->old_form)
2514 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2515 else if (cmp_status->state >= COMPOSING_COMPONENT_CHAR)
2516 cmp_status->ncomps--;
2517 }
2518 }
2519 else
2520 {
2521 int nchars, nbytes;
2522
2523 c = emacs_mule_char (coding, src_base, &nbytes, &nchars, &id,
2524 cmp_status);
2525 if (c < 0)
2526 {
2527 if (c == -1)
2528 goto invalid_code;
2529 if (c == -2)
2530 break;
2531 }
2532 src = src_base + nbytes;
2533 consumed_chars = consumed_chars_base + nchars;
2534 if (cmp_status->state >= COMPOSING_COMPONENT_CHAR)
2535 cmp_status->ncomps -= nchars;
2536 }
2537
2538 /* Now if C >= 0, we found a normally encoded characer, if C <
2539 0, we found an old-style composition component character or
2540 rule. */
2541
2542 if (cmp_status->state == COMPOSING_NO)
2543 {
2544 if (last_id != id)
2545 {
2546 if (last_id != charset_ascii)
2547 ADD_CHARSET_DATA (charbuf, char_offset - last_offset,
2548 last_id);
2549 last_id = id;
2550 last_offset = char_offset;
2551 }
2552 *charbuf++ = c;
2553 char_offset++;
2554 }
2555 else if (cmp_status->state == COMPOSING_CHAR)
2556 {
2557 if (cmp_status->old_form)
2558 {
2559 if (c >= 0)
2560 {
2561 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2562 *charbuf++ = c;
2563 char_offset++;
2564 }
2565 else
2566 {
2567 *charbuf++ = -c;
2568 cmp_status->nchars++;
2569 cmp_status->length++;
2570 if (cmp_status->nchars == MAX_COMPOSITION_COMPONENTS)
2571 EMACS_MULE_COMPOSITION_END ();
2572 else if (cmp_status->method == COMPOSITION_WITH_RULE)
2573 cmp_status->state = COMPOSING_RULE;
2574 }
2575 }
2576 else
2577 {
2578 *charbuf++ = c;
2579 cmp_status->length++;
2580 cmp_status->nchars--;
2581 if (cmp_status->nchars == 0)
2582 EMACS_MULE_COMPOSITION_END ();
2583 }
2584 }
2585 else if (cmp_status->state == COMPOSING_RULE)
2586 {
2587 int rule;
2588
2589 if (c >= 0)
2590 {
2591 EMACS_MULE_COMPOSITION_END ();
2592 *charbuf++ = c;
2593 char_offset++;
2594 }
2595 else
2596 {
2597 c = -c;
2598 DECODE_EMACS_MULE_COMPOSITION_RULE_20 (c, rule);
2599 if (rule < 0)
2600 goto invalid_code;
2601 *charbuf++ = -2;
2602 *charbuf++ = rule;
2603 cmp_status->length += 2;
2604 cmp_status->state = COMPOSING_CHAR;
2605 }
2606 }
2607 else if (cmp_status->state == COMPOSING_COMPONENT_CHAR)
2608 {
2609 *charbuf++ = c;
2610 cmp_status->length++;
2611 if (cmp_status->ncomps == 0)
2612 cmp_status->state = COMPOSING_CHAR;
2613 else if (cmp_status->ncomps > 0)
2614 {
2615 if (cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS)
2616 cmp_status->state = COMPOSING_COMPONENT_RULE;
2617 }
2618 else
2619 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2620 }
2621 else /* COMPOSING_COMPONENT_RULE */
2622 {
2623 int rule;
2624
2625 DECODE_EMACS_MULE_COMPOSITION_RULE_21 (c, rule);
2626 if (rule < 0)
2627 goto invalid_code;
2628 *charbuf++ = -2;
2629 *charbuf++ = rule;
2630 cmp_status->length += 2;
2631 cmp_status->ncomps--;
2632 if (cmp_status->ncomps > 0)
2633 cmp_status->state = COMPOSING_COMPONENT_CHAR;
2634 else
2635 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2636 }
2637 continue;
2638
2639 retry:
2640 src = src_base;
2641 consumed_chars = consumed_chars_base;
2642 continue;
2643
2644 invalid_code:
2645 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2646 src = src_base;
2647 consumed_chars = consumed_chars_base;
2648 ONE_MORE_BYTE (c);
2649 *charbuf++ = ASCII_BYTE_P (c) ? c : BYTE8_TO_CHAR (c);
2650 char_offset++;
2651 coding->errors++;
2652 }
2653
2654 no_more_source:
2655 if (cmp_status->state != COMPOSING_NO)
2656 {
2657 if (coding->mode & CODING_MODE_LAST_BLOCK)
2658 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2659 else
2660 {
2661 int i;
2662
2663 charbuf -= cmp_status->length;
2664 for (i = 0; i < cmp_status->length; i++)
2665 cmp_status->carryover[i] = charbuf[i];
2666 }
2667 }
2668 if (last_id != charset_ascii)
2669 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
2670 coding->consumed_char += consumed_chars_base;
2671 coding->consumed = src_base - coding->source;
2672 coding->charbuf_used = charbuf - coding->charbuf;
2673 }
2674
2675
2676 #define EMACS_MULE_LEADING_CODES(id, codes) \
2677 do { \
2678 if (id < 0xA0) \
2679 codes[0] = id, codes[1] = 0; \
2680 else if (id < 0xE0) \
2681 codes[0] = 0x9A, codes[1] = id; \
2682 else if (id < 0xF0) \
2683 codes[0] = 0x9B, codes[1] = id; \
2684 else if (id < 0xF5) \
2685 codes[0] = 0x9C, codes[1] = id; \
2686 else \
2687 codes[0] = 0x9D, codes[1] = id; \
2688 } while (0);
2689
2690
2691 static int
2692 encode_coding_emacs_mule (coding)
2693 struct coding_system *coding;
2694 {
2695 int multibytep = coding->dst_multibyte;
2696 int *charbuf = coding->charbuf;
2697 int *charbuf_end = charbuf + coding->charbuf_used;
2698 unsigned char *dst = coding->destination + coding->produced;
2699 unsigned char *dst_end = coding->destination + coding->dst_bytes;
2700 int safe_room = 8;
2701 int produced_chars = 0;
2702 Lisp_Object attrs, charset_list;
2703 int c;
2704 int preferred_charset_id = -1;
2705
2706 CODING_GET_INFO (coding, attrs, charset_list);
2707 if (! EQ (charset_list, Vemacs_mule_charset_list))
2708 {
2709 CODING_ATTR_CHARSET_LIST (attrs)
2710 = charset_list = Vemacs_mule_charset_list;
2711 }
2712
2713 while (charbuf < charbuf_end)
2714 {
2715 ASSURE_DESTINATION (safe_room);
2716 c = *charbuf++;
2717
2718 if (c < 0)
2719 {
2720 /* Handle an annotation. */
2721 switch (*charbuf)
2722 {
2723 case CODING_ANNOTATE_COMPOSITION_MASK:
2724 /* Not yet implemented. */
2725 break;
2726 case CODING_ANNOTATE_CHARSET_MASK:
2727 preferred_charset_id = charbuf[3];
2728 if (preferred_charset_id >= 0
2729 && NILP (Fmemq (make_number (preferred_charset_id),
2730 charset_list)))
2731 preferred_charset_id = -1;
2732 break;
2733 default:
2734 abort ();
2735 }
2736 charbuf += -c - 1;
2737 continue;
2738 }
2739
2740 if (ASCII_CHAR_P (c))
2741 EMIT_ONE_ASCII_BYTE (c);
2742 else if (CHAR_BYTE8_P (c))
2743 {
2744 c = CHAR_TO_BYTE8 (c);
2745 EMIT_ONE_BYTE (c);
2746 }
2747 else
2748 {
2749 struct charset *charset;
2750 unsigned code;
2751 int dimension;
2752 int emacs_mule_id;
2753 unsigned char leading_codes[2];
2754
2755 if (preferred_charset_id >= 0)
2756 {
2757 charset = CHARSET_FROM_ID (preferred_charset_id);
2758 if (CHAR_CHARSET_P (c, charset))
2759 code = ENCODE_CHAR (charset, c);
2760 else
2761 charset = char_charset (c, charset_list, &code);
2762 }
2763 else
2764 charset = char_charset (c, charset_list, &code);
2765 if (! charset)
2766 {
2767 c = coding->default_char;
2768 if (ASCII_CHAR_P (c))
2769 {
2770 EMIT_ONE_ASCII_BYTE (c);
2771 continue;
2772 }
2773 charset = char_charset (c, charset_list, &code);
2774 }
2775 dimension = CHARSET_DIMENSION (charset);
2776 emacs_mule_id = CHARSET_EMACS_MULE_ID (charset);
2777 EMACS_MULE_LEADING_CODES (emacs_mule_id, leading_codes);
2778 EMIT_ONE_BYTE (leading_codes[0]);
2779 if (leading_codes[1])
2780 EMIT_ONE_BYTE (leading_codes[1]);
2781 if (dimension == 1)
2782 EMIT_ONE_BYTE (code | 0x80);
2783 else
2784 {
2785 code |= 0x8080;
2786 EMIT_ONE_BYTE (code >> 8);
2787 EMIT_ONE_BYTE (code & 0xFF);
2788 }
2789 }
2790 }
2791 record_conversion_result (coding, CODING_RESULT_SUCCESS);
2792 coding->produced_char += produced_chars;
2793 coding->produced = dst - coding->destination;
2794 return 0;
2795 }
2796
2797 \f
2798 /*** 7. ISO2022 handlers ***/
2799
2800 /* The following note describes the coding system ISO2022 briefly.
2801 Since the intention of this note is to help understand the
2802 functions in this file, some parts are NOT ACCURATE or are OVERLY
2803 SIMPLIFIED. For thorough understanding, please refer to the
2804 original document of ISO2022. This is equivalent to the standard
2805 ECMA-35, obtainable from <URL:http://www.ecma.ch/> (*).
2806
2807 ISO2022 provides many mechanisms to encode several character sets
2808 in 7-bit and 8-bit environments. For 7-bit environments, all text
2809 is encoded using bytes less than 128. This may make the encoded
2810 text a little bit longer, but the text passes more easily through
2811 several types of gateway, some of which strip off the MSB (Most
2812 Significant Bit).
2813
2814 There are two kinds of character sets: control character sets and
2815 graphic character sets. The former contain control characters such
2816 as `newline' and `escape' to provide control functions (control
2817 functions are also provided by escape sequences). The latter
2818 contain graphic characters such as 'A' and '-'. Emacs recognizes
2819 two control character sets and many graphic character sets.
2820
2821 Graphic character sets are classified into one of the following
2822 four classes, according to the number of bytes (DIMENSION) and
2823 number of characters in one dimension (CHARS) of the set:
2824 - DIMENSION1_CHARS94
2825 - DIMENSION1_CHARS96
2826 - DIMENSION2_CHARS94
2827 - DIMENSION2_CHARS96
2828
2829 In addition, each character set is assigned an identification tag,
2830 unique for each set, called the "final character" (denoted as <F>
2831 hereafter). The <F> of each character set is decided by ECMA(*)
2832 when it is registered in ISO. The code range of <F> is 0x30..0x7F
2833 (0x30..0x3F are for private use only).
2834
2835 Note (*): ECMA = European Computer Manufacturers Association
2836
2837 Here are examples of graphic character sets [NAME(<F>)]:
2838 o DIMENSION1_CHARS94 -- ASCII('B'), right-half-of-JISX0201('I'), ...
2839 o DIMENSION1_CHARS96 -- right-half-of-ISO8859-1('A'), ...
2840 o DIMENSION2_CHARS94 -- GB2312('A'), JISX0208('B'), ...
2841 o DIMENSION2_CHARS96 -- none for the moment
2842
2843 A code area (1 byte=8 bits) is divided into 4 areas, C0, GL, C1, and GR.
2844 C0 [0x00..0x1F] -- control character plane 0
2845 GL [0x20..0x7F] -- graphic character plane 0
2846 C1 [0x80..0x9F] -- control character plane 1
2847 GR [0xA0..0xFF] -- graphic character plane 1
2848
2849 A control character set is directly designated and invoked to C0 or
2850 C1 by an escape sequence. The most common case is that:
2851 - ISO646's control character set is designated/invoked to C0, and
2852 - ISO6429's control character set is designated/invoked to C1,
2853 and usually these designations/invocations are omitted in encoded
2854 text. In a 7-bit environment, only C0 can be used, and a control
2855 character for C1 is encoded by an appropriate escape sequence to
2856 fit into the environment. All control characters for C1 are
2857 defined to have corresponding escape sequences.
2858
2859 A graphic character set is at first designated to one of four
2860 graphic registers (G0 through G3), then these graphic registers are
2861 invoked to GL or GR. These designations and invocations can be
2862 done independently. The most common case is that G0 is invoked to
2863 GL, G1 is invoked to GR, and ASCII is designated to G0. Usually
2864 these invocations and designations are omitted in encoded text.
2865 In a 7-bit environment, only GL can be used.
2866
2867 When a graphic character set of CHARS94 is invoked to GL, codes
2868 0x20 and 0x7F of the GL area work as control characters SPACE and
2869 DEL respectively, and codes 0xA0 and 0xFF of the GR area should not
2870 be used.
2871
2872 There are two ways of invocation: locking-shift and single-shift.
2873 With locking-shift, the invocation lasts until the next different
2874 invocation, whereas with single-shift, the invocation affects the
2875 following character only and doesn't affect the locking-shift
2876 state. Invocations are done by the following control characters or
2877 escape sequences:
2878
2879 ----------------------------------------------------------------------
2880 abbrev function cntrl escape seq description
2881 ----------------------------------------------------------------------
2882 SI/LS0 (shift-in) 0x0F none invoke G0 into GL
2883 SO/LS1 (shift-out) 0x0E none invoke G1 into GL
2884 LS2 (locking-shift-2) none ESC 'n' invoke G2 into GL
2885 LS3 (locking-shift-3) none ESC 'o' invoke G3 into GL
2886 LS1R (locking-shift-1 right) none ESC '~' invoke G1 into GR (*)
2887 LS2R (locking-shift-2 right) none ESC '}' invoke G2 into GR (*)
2888 LS3R (locking-shift 3 right) none ESC '|' invoke G3 into GR (*)
2889 SS2 (single-shift-2) 0x8E ESC 'N' invoke G2 for one char
2890 SS3 (single-shift-3) 0x8F ESC 'O' invoke G3 for one char
2891 ----------------------------------------------------------------------
2892 (*) These are not used by any known coding system.
2893
2894 Control characters for these functions are defined by macros
2895 ISO_CODE_XXX in `coding.h'.
2896
2897 Designations are done by the following escape sequences:
2898 ----------------------------------------------------------------------
2899 escape sequence description
2900 ----------------------------------------------------------------------
2901 ESC '(' <F> designate DIMENSION1_CHARS94<F> to G0
2902 ESC ')' <F> designate DIMENSION1_CHARS94<F> to G1
2903 ESC '*' <F> designate DIMENSION1_CHARS94<F> to G2
2904 ESC '+' <F> designate DIMENSION1_CHARS94<F> to G3
2905 ESC ',' <F> designate DIMENSION1_CHARS96<F> to G0 (*)
2906 ESC '-' <F> designate DIMENSION1_CHARS96<F> to G1
2907 ESC '.' <F> designate DIMENSION1_CHARS96<F> to G2
2908 ESC '/' <F> designate DIMENSION1_CHARS96<F> to G3
2909 ESC '$' '(' <F> designate DIMENSION2_CHARS94<F> to G0 (**)
2910 ESC '$' ')' <F> designate DIMENSION2_CHARS94<F> to G1
2911 ESC '$' '*' <F> designate DIMENSION2_CHARS94<F> to G2
2912 ESC '$' '+' <F> designate DIMENSION2_CHARS94<F> to G3
2913 ESC '$' ',' <F> designate DIMENSION2_CHARS96<F> to G0 (*)
2914 ESC '$' '-' <F> designate DIMENSION2_CHARS96<F> to G1
2915 ESC '$' '.' <F> designate DIMENSION2_CHARS96<F> to G2
2916 ESC '$' '/' <F> designate DIMENSION2_CHARS96<F> to G3
2917 ----------------------------------------------------------------------
2918
2919 In this list, "DIMENSION1_CHARS94<F>" means a graphic character set
2920 of dimension 1, chars 94, and final character <F>, etc...
2921
2922 Note (*): Although these designations are not allowed in ISO2022,
2923 Emacs accepts them on decoding, and produces them on encoding
2924 CHARS96 character sets in a coding system which is characterized as
2925 7-bit environment, non-locking-shift, and non-single-shift.
2926
2927 Note (**): If <F> is '@', 'A', or 'B', the intermediate character
2928 '(' must be omitted. We refer to this as "short-form" hereafter.
2929
2930 Now you may notice that there are a lot of ways of encoding the
2931 same multilingual text in ISO2022. Actually, there exist many
2932 coding systems such as Compound Text (used in X11's inter client
2933 communication, ISO-2022-JP (used in Japanese Internet), ISO-2022-KR
2934 (used in Korean Internet), EUC (Extended UNIX Code, used in Asian
2935 localized platforms), and all of these are variants of ISO2022.
2936
2937 In addition to the above, Emacs handles two more kinds of escape
2938 sequences: ISO6429's direction specification and Emacs' private
2939 sequence for specifying character composition.
2940
2941 ISO6429's direction specification takes the following form:
2942 o CSI ']' -- end of the current direction
2943 o CSI '0' ']' -- end of the current direction
2944 o CSI '1' ']' -- start of left-to-right text
2945 o CSI '2' ']' -- start of right-to-left text
2946 The control character CSI (0x9B: control sequence introducer) is
2947 abbreviated to the escape sequence ESC '[' in a 7-bit environment.
2948
2949 Character composition specification takes the following form:
2950 o ESC '0' -- start relative composition
2951 o ESC '1' -- end composition
2952 o ESC '2' -- start rule-base composition (*)
2953 o ESC '3' -- start relative composition with alternate chars (**)
2954 o ESC '4' -- start rule-base composition with alternate chars (**)
2955 Since these are not standard escape sequences of any ISO standard,
2956 the use of them with these meanings is restricted to Emacs only.
2957
2958 (*) This form is used only in Emacs 20.7 and older versions,
2959 but newer versions can safely decode it.
2960 (**) This form is used only in Emacs 21.1 and newer versions,
2961 and older versions can't decode it.
2962
2963 Here's a list of example usages of these composition escape
2964 sequences (categorized by `enum composition_method').
2965
2966 COMPOSITION_RELATIVE:
2967 ESC 0 CHAR [ CHAR ] ESC 1
2968 COMPOSITION_WITH_RULE:
2969 ESC 2 CHAR [ RULE CHAR ] ESC 1
2970 COMPOSITION_WITH_ALTCHARS:
2971 ESC 3 ALTCHAR [ ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1
2972 COMPOSITION_WITH_RULE_ALTCHARS:
2973 ESC 4 ALTCHAR [ RULE ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1 */
2974
2975 enum iso_code_class_type iso_code_class[256];
2976
2977 #define SAFE_CHARSET_P(coding, id) \
2978 ((id) <= (coding)->max_charset_id \
2979 && (coding)->safe_charsets[id] != 255)
2980
2981
2982 #define SHIFT_OUT_OK(category) \
2983 (CODING_ISO_INITIAL (&coding_categories[category], 1) >= 0)
2984
2985 static void
2986 setup_iso_safe_charsets (attrs)
2987 Lisp_Object attrs;
2988 {
2989 Lisp_Object charset_list, safe_charsets;
2990 Lisp_Object request;
2991 Lisp_Object reg_usage;
2992 Lisp_Object tail;
2993 int reg94, reg96;
2994 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
2995 int max_charset_id;
2996
2997 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
2998 if ((flags & CODING_ISO_FLAG_FULL_SUPPORT)
2999 && ! EQ (charset_list, Viso_2022_charset_list))
3000 {
3001 CODING_ATTR_CHARSET_LIST (attrs)
3002 = charset_list = Viso_2022_charset_list;
3003 ASET (attrs, coding_attr_safe_charsets, Qnil);
3004 }
3005
3006 if (STRINGP (AREF (attrs, coding_attr_safe_charsets)))
3007 return;
3008
3009 max_charset_id = 0;
3010 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
3011 {
3012 int id = XINT (XCAR (tail));
3013 if (max_charset_id < id)
3014 max_charset_id = id;
3015 }
3016
3017 safe_charsets = make_uninit_string (max_charset_id + 1);
3018 memset (SDATA (safe_charsets), 255, max_charset_id + 1);
3019 request = AREF (attrs, coding_attr_iso_request);
3020 reg_usage = AREF (attrs, coding_attr_iso_usage);
3021 reg94 = XINT (XCAR (reg_usage));
3022 reg96 = XINT (XCDR (reg_usage));
3023
3024 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
3025 {
3026 Lisp_Object id;
3027 Lisp_Object reg;
3028 struct charset *charset;
3029
3030 id = XCAR (tail);
3031 charset = CHARSET_FROM_ID (XINT (id));
3032 reg = Fcdr (Fassq (id, request));
3033 if (! NILP (reg))
3034 SSET (safe_charsets, XINT (id), XINT (reg));
3035 else if (charset->iso_chars_96)
3036 {
3037 if (reg96 < 4)
3038 SSET (safe_charsets, XINT (id), reg96);
3039 }
3040 else
3041 {
3042 if (reg94 < 4)
3043 SSET (safe_charsets, XINT (id), reg94);
3044 }
3045 }
3046 ASET (attrs, coding_attr_safe_charsets, safe_charsets);
3047 }
3048
3049
3050 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
3051 Check if a text is encoded in one of ISO-2022 based codig systems.
3052 If it is, return 1, else return 0. */
3053
3054 static int
3055 detect_coding_iso_2022 (coding, detect_info)
3056 struct coding_system *coding;
3057 struct coding_detection_info *detect_info;
3058 {
3059 const unsigned char *src = coding->source, *src_base = src;
3060 const unsigned char *src_end = coding->source + coding->src_bytes;
3061 int multibytep = coding->src_multibyte;
3062 int single_shifting = 0;
3063 int id;
3064 int c, c1;
3065 int consumed_chars = 0;
3066 int i;
3067 int rejected = 0;
3068 int found = 0;
3069 int composition_count = -1;
3070
3071 detect_info->checked |= CATEGORY_MASK_ISO;
3072
3073 for (i = coding_category_iso_7; i <= coding_category_iso_8_else; i++)
3074 {
3075 struct coding_system *this = &(coding_categories[i]);
3076 Lisp_Object attrs, val;
3077
3078 if (this->id < 0)
3079 continue;
3080 attrs = CODING_ID_ATTRS (this->id);
3081 if (CODING_ISO_FLAGS (this) & CODING_ISO_FLAG_FULL_SUPPORT
3082 && ! EQ (CODING_ATTR_CHARSET_LIST (attrs), Viso_2022_charset_list))
3083 setup_iso_safe_charsets (attrs);
3084 val = CODING_ATTR_SAFE_CHARSETS (attrs);
3085 this->max_charset_id = SCHARS (val) - 1;
3086 this->safe_charsets = SDATA (val);
3087 }
3088
3089 /* A coding system of this category is always ASCII compatible. */
3090 src += coding->head_ascii;
3091
3092 while (rejected != CATEGORY_MASK_ISO)
3093 {
3094 src_base = src;
3095 ONE_MORE_BYTE (c);
3096 switch (c)
3097 {
3098 case ISO_CODE_ESC:
3099 if (inhibit_iso_escape_detection)
3100 break;
3101 single_shifting = 0;
3102 ONE_MORE_BYTE (c);
3103 if (c >= '(' && c <= '/')
3104 {
3105 /* Designation sequence for a charset of dimension 1. */
3106 ONE_MORE_BYTE (c1);
3107 if (c1 < ' ' || c1 >= 0x80
3108 || (id = iso_charset_table[0][c >= ','][c1]) < 0)
3109 /* Invalid designation sequence. Just ignore. */
3110 break;
3111 }
3112 else if (c == '$')
3113 {
3114 /* Designation sequence for a charset of dimension 2. */
3115 ONE_MORE_BYTE (c);
3116 if (c >= '@' && c <= 'B')
3117 /* Designation for JISX0208.1978, GB2312, or JISX0208. */
3118 id = iso_charset_table[1][0][c];
3119 else if (c >= '(' && c <= '/')
3120 {
3121 ONE_MORE_BYTE (c1);
3122 if (c1 < ' ' || c1 >= 0x80
3123 || (id = iso_charset_table[1][c >= ','][c1]) < 0)
3124 /* Invalid designation sequence. Just ignore. */
3125 break;
3126 }
3127 else
3128 /* Invalid designation sequence. Just ignore it. */
3129 break;
3130 }
3131 else if (c == 'N' || c == 'O')
3132 {
3133 /* ESC <Fe> for SS2 or SS3. */
3134 single_shifting = 1;
3135 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_8BIT;
3136 break;
3137 }
3138 else if (c == '1')
3139 {
3140 /* End of composition. */
3141 if (composition_count < 0
3142 || composition_count > MAX_COMPOSITION_COMPONENTS)
3143 /* Invalid */
3144 break;
3145 composition_count = -1;
3146 found |= CATEGORY_MASK_ISO;
3147 }
3148 else if (c >= '0' && c <= '4')
3149 {
3150 /* ESC <Fp> for start/end composition. */
3151 composition_count = 0;
3152 break;
3153 }
3154 else
3155 {
3156 /* Invalid escape sequence. Just ignore it. */
3157 break;
3158 }
3159
3160 /* We found a valid designation sequence for CHARSET. */
3161 rejected |= CATEGORY_MASK_ISO_8BIT;
3162 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_7],
3163 id))
3164 found |= CATEGORY_MASK_ISO_7;
3165 else
3166 rejected |= CATEGORY_MASK_ISO_7;
3167 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_7_tight],
3168 id))
3169 found |= CATEGORY_MASK_ISO_7_TIGHT;
3170 else
3171 rejected |= CATEGORY_MASK_ISO_7_TIGHT;
3172 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_7_else],
3173 id))
3174 found |= CATEGORY_MASK_ISO_7_ELSE;
3175 else
3176 rejected |= CATEGORY_MASK_ISO_7_ELSE;
3177 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_8_else],
3178 id))
3179 found |= CATEGORY_MASK_ISO_8_ELSE;
3180 else
3181 rejected |= CATEGORY_MASK_ISO_8_ELSE;
3182 break;
3183
3184 case ISO_CODE_SO:
3185 case ISO_CODE_SI:
3186 /* Locking shift out/in. */
3187 if (inhibit_iso_escape_detection)
3188 break;
3189 single_shifting = 0;
3190 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_8BIT;
3191 break;
3192
3193 case ISO_CODE_CSI:
3194 /* Control sequence introducer. */
3195 single_shifting = 0;
3196 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_7_ELSE;
3197 found |= CATEGORY_MASK_ISO_8_ELSE;
3198 goto check_extra_latin;
3199
3200 case ISO_CODE_SS2:
3201 case ISO_CODE_SS3:
3202 /* Single shift. */
3203 if (inhibit_iso_escape_detection)
3204 break;
3205 single_shifting = 0;
3206 rejected |= CATEGORY_MASK_ISO_7BIT;
3207 if (CODING_ISO_FLAGS (&coding_categories[coding_category_iso_8_1])
3208 & CODING_ISO_FLAG_SINGLE_SHIFT)
3209 found |= CATEGORY_MASK_ISO_8_1, single_shifting = 1;
3210 if (CODING_ISO_FLAGS (&coding_categories[coding_category_iso_8_2])
3211 & CODING_ISO_FLAG_SINGLE_SHIFT)
3212 found |= CATEGORY_MASK_ISO_8_2, single_shifting = 1;
3213 if (single_shifting)
3214 break;
3215 goto check_extra_latin;
3216
3217 default:
3218 if (c < 0)
3219 continue;
3220 if (c < 0x80)
3221 {
3222 if (composition_count >= 0)
3223 composition_count++;
3224 single_shifting = 0;
3225 break;
3226 }
3227 if (c >= 0xA0)
3228 {
3229 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_7_ELSE;
3230 found |= CATEGORY_MASK_ISO_8_1;
3231 /* Check the length of succeeding codes of the range
3232 0xA0..0FF. If the byte length is even, we include
3233 CATEGORY_MASK_ISO_8_2 in `found'. We can check this
3234 only when we are not single shifting. */
3235 if (! single_shifting
3236 && ! (rejected & CATEGORY_MASK_ISO_8_2))
3237 {
3238 int i = 1;
3239 while (src < src_end)
3240 {
3241 ONE_MORE_BYTE (c);
3242 if (c < 0xA0)
3243 break;
3244 i++;
3245 }
3246
3247 if (i & 1 && src < src_end)
3248 {
3249 rejected |= CATEGORY_MASK_ISO_8_2;
3250 if (composition_count >= 0)
3251 composition_count += i;
3252 }
3253 else
3254 {
3255 found |= CATEGORY_MASK_ISO_8_2;
3256 if (composition_count >= 0)
3257 composition_count += i / 2;
3258 }
3259 }
3260 break;
3261 }
3262 check_extra_latin:
3263 single_shifting = 0;
3264 if (! VECTORP (Vlatin_extra_code_table)
3265 || NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
3266 {
3267 rejected = CATEGORY_MASK_ISO;
3268 break;
3269 }
3270 if (CODING_ISO_FLAGS (&coding_categories[coding_category_iso_8_1])
3271 & CODING_ISO_FLAG_LATIN_EXTRA)
3272 found |= CATEGORY_MASK_ISO_8_1;
3273 else
3274 rejected |= CATEGORY_MASK_ISO_8_1;
3275 rejected |= CATEGORY_MASK_ISO_8_2;
3276 }
3277 }
3278 detect_info->rejected |= CATEGORY_MASK_ISO;
3279 return 0;
3280
3281 no_more_source:
3282 detect_info->rejected |= rejected;
3283 detect_info->found |= (found & ~rejected);
3284 return 1;
3285 }
3286
3287
3288 /* Set designation state into CODING. Set CHARS_96 to -1 if the
3289 escape sequence should be kept. */
3290 #define DECODE_DESIGNATION(reg, dim, chars_96, final) \
3291 do { \
3292 int id, prev; \
3293 \
3294 if (final < '0' || final >= 128 \
3295 || ((id = ISO_CHARSET_TABLE (dim, chars_96, final)) < 0) \
3296 || !SAFE_CHARSET_P (coding, id)) \
3297 { \
3298 CODING_ISO_DESIGNATION (coding, reg) = -2; \
3299 chars_96 = -1; \
3300 break; \
3301 } \
3302 prev = CODING_ISO_DESIGNATION (coding, reg); \
3303 if (id == charset_jisx0201_roman) \
3304 { \
3305 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_ROMAN) \
3306 id = charset_ascii; \
3307 } \
3308 else if (id == charset_jisx0208_1978) \
3309 { \
3310 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_OLDJIS) \
3311 id = charset_jisx0208; \
3312 } \
3313 CODING_ISO_DESIGNATION (coding, reg) = id; \
3314 /* If there was an invalid designation to REG previously, and this \
3315 designation is ASCII to REG, we should keep this designation \
3316 sequence. */ \
3317 if (prev == -2 && id == charset_ascii) \
3318 chars_96 = -1; \
3319 } while (0)
3320
3321
3322 /* Handle these composition sequence (ALT: alternate char):
3323
3324 (1) relative composition: ESC 0 CHAR ... ESC 1
3325 (2) rulebase composition: ESC 2 CHAR RULE CHAR RULE ... CHAR ESC 1
3326 (3) altchar composition: ESC 3 ALT ... ALT ESC 0 CHAR ... ESC 1
3327 (4) alt&rule composition: ESC 4 ALT RULE ... ALT ESC 0 CHAR ... ESC 1
3328
3329 When the start sequence (ESC 0/2/3/4) is found, this annotation
3330 header is produced.
3331
3332 [ -LENGTH(==-5) CODING_ANNOTATE_COMPOSITION_MASK NCHARS(==0) 0 METHOD ]
3333
3334 Then, upon reading CHAR or RULE (one or two bytes), these codes are
3335 produced until the end sequence (ESC 1) is found:
3336
3337 (1) CHAR ... CHAR
3338 (2) CHAR -2 DECODED-RULE CHAR -2 DECODED-RULE ... CHAR
3339 (3) ALT ... ALT -1 -1 CHAR ... CHAR
3340 (4) ALT -2 DECODED-RULE ALT -2 DECODED-RULE ... ALT -1 -1 CHAR ... CHAR
3341
3342 When the end sequence (ESC 1) is found, LENGTH and NCHARS in the
3343 annotation header is updated as below:
3344
3345 (1) LENGTH: unchanged, NCHARS: number of CHARs
3346 (2) LENGTH: unchanged, NCHARS: number of CHARs
3347 (3) LENGTH: += number of ALTs + 2, NCHARS: number of CHARs
3348 (4) LENGTH: += number of ALTs * 3, NCHARS: number of CHARs
3349
3350 If an error is found while composing, the annotation header is
3351 changed to:
3352
3353 [ ESC '0'/'2'/'3'/'4' -2 0 ]
3354
3355 and the sequence [ -2 DECODED-RULE ] is changed to the original
3356 byte sequence as below:
3357 o the original byte sequence is B: [ B -1 ]
3358 o the original byte sequence is B1 B2: [ B1 B2 ]
3359 and the sequence [ -1 -1 ] is changed to the original byte
3360 sequence:
3361 [ ESC '0' ]
3362 */
3363
3364 /* Decode a composition rule C1 and maybe one more byte from the
3365 source, and set RULE to the encoded composition rule, NBYTES to the
3366 length of the composition rule. If the rule is invalid, set RULE
3367 to some negative value. */
3368
3369 #define DECODE_COMPOSITION_RULE(rule, nbytes) \
3370 do { \
3371 rule = c1 - 32; \
3372 if (rule < 0) \
3373 break; \
3374 if (rule < 81) /* old format (before ver.21) */ \
3375 { \
3376 int gref = (rule) / 9; \
3377 int nref = (rule) % 9; \
3378 if (gref == 4) gref = 10; \
3379 if (nref == 4) nref = 10; \
3380 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
3381 nbytes = 1; \
3382 } \
3383 else /* new format (after ver.21) */ \
3384 { \
3385 int c; \
3386 \
3387 ONE_MORE_BYTE (c); \
3388 rule = COMPOSITION_ENCODE_RULE (rule - 81, c - 32); \
3389 if (rule >= 0) \
3390 rule += 0x100; /* to destinguish it from the old format */ \
3391 nbytes = 2; \
3392 } \
3393 } while (0)
3394
3395 #define ENCODE_COMPOSITION_RULE(rule) \
3396 do { \
3397 int gref = (rule % 0x100) / 12, nref = (rule % 0x100) % 12; \
3398 \
3399 if (rule < 0x100) /* old format */ \
3400 { \
3401 if (gref == 10) gref = 4; \
3402 if (nref == 10) nref = 4; \
3403 charbuf[idx] = 32 + gref * 9 + nref; \
3404 charbuf[idx + 1] = -1; \
3405 new_chars++; \
3406 } \
3407 else /* new format */ \
3408 { \
3409 charbuf[idx] = 32 + 81 + gref; \
3410 charbuf[idx + 1] = 32 + nref; \
3411 new_chars += 2; \
3412 } \
3413 } while (0)
3414
3415 /* Finish the current composition as invalid. */
3416
3417 static int finish_composition P_ ((int *, struct composition_status *));
3418
3419 static int
3420 finish_composition (charbuf, cmp_status)
3421 int *charbuf;
3422 struct composition_status *cmp_status;
3423 {
3424 int idx = - cmp_status->length;
3425 int new_chars;
3426
3427 /* Recover the original ESC sequence */
3428 charbuf[idx++] = ISO_CODE_ESC;
3429 charbuf[idx++] = (cmp_status->method == COMPOSITION_RELATIVE ? '0'
3430 : cmp_status->method == COMPOSITION_WITH_RULE ? '2'
3431 : cmp_status->method == COMPOSITION_WITH_ALTCHARS ? '3'
3432 /* cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS */
3433 : '4');
3434 charbuf[idx++] = -2;
3435 charbuf[idx++] = 0;
3436 charbuf[idx++] = -1;
3437 new_chars = cmp_status->nchars;
3438 if (cmp_status->method >= COMPOSITION_WITH_RULE)
3439 for (; idx < 0; idx++)
3440 {
3441 int elt = charbuf[idx];
3442
3443 if (elt == -2)
3444 {
3445 ENCODE_COMPOSITION_RULE (charbuf[idx + 1]);
3446 idx++;
3447 }
3448 else if (elt == -1)
3449 {
3450 charbuf[idx++] = ISO_CODE_ESC;
3451 charbuf[idx] = '0';
3452 new_chars += 2;
3453 }
3454 }
3455 cmp_status->state = COMPOSING_NO;
3456 return new_chars;
3457 }
3458
3459 /* If characers are under composition, finish the composition. */
3460 #define MAYBE_FINISH_COMPOSITION() \
3461 do { \
3462 if (cmp_status->state != COMPOSING_NO) \
3463 char_offset += finish_composition (charbuf, cmp_status); \
3464 } while (0)
3465
3466 /* Handle composition start sequence ESC 0, ESC 2, ESC 3, or ESC 4.
3467
3468 ESC 0 : relative composition : ESC 0 CHAR ... ESC 1
3469 ESC 2 : rulebase composition : ESC 2 CHAR RULE CHAR RULE ... CHAR ESC 1
3470 ESC 3 : altchar composition : ESC 3 CHAR ... ESC 0 CHAR ... ESC 1
3471 ESC 4 : alt&rule composition : ESC 4 CHAR RULE ... CHAR ESC 0 CHAR ... ESC 1
3472
3473 Produce this annotation sequence now:
3474
3475 [ -LENGTH(==-4) CODING_ANNOTATE_COMPOSITION_MASK NCHARS(==0) METHOD ]
3476 */
3477
3478 #define DECODE_COMPOSITION_START(c1) \
3479 do { \
3480 if (c1 == '0' \
3481 && ((cmp_status->state == COMPOSING_COMPONENT_CHAR \
3482 && cmp_status->method == COMPOSITION_WITH_ALTCHARS) \
3483 || (cmp_status->state == COMPOSING_COMPONENT_RULE \
3484 && cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS))) \
3485 { \
3486 *charbuf++ = -1; \
3487 *charbuf++= -1; \
3488 cmp_status->state = COMPOSING_CHAR; \
3489 cmp_status->length += 2; \
3490 } \
3491 else \
3492 { \
3493 MAYBE_FINISH_COMPOSITION (); \
3494 cmp_status->method = (c1 == '0' ? COMPOSITION_RELATIVE \
3495 : c1 == '2' ? COMPOSITION_WITH_RULE \
3496 : c1 == '3' ? COMPOSITION_WITH_ALTCHARS \
3497 : COMPOSITION_WITH_RULE_ALTCHARS); \
3498 cmp_status->state \
3499 = (c1 <= '2' ? COMPOSING_CHAR : COMPOSING_COMPONENT_CHAR); \
3500 ADD_COMPOSITION_DATA (charbuf, 0, 0, cmp_status->method); \
3501 cmp_status->length = MAX_ANNOTATION_LENGTH; \
3502 cmp_status->nchars = cmp_status->ncomps = 0; \
3503 coding->annotated = 1; \
3504 } \
3505 } while (0)
3506
3507
3508 /* Handle composition end sequence ESC 1. */
3509
3510 #define DECODE_COMPOSITION_END() \
3511 do { \
3512 if (cmp_status->nchars == 0 \
3513 || ((cmp_status->state == COMPOSING_CHAR) \
3514 == (cmp_status->method == COMPOSITION_WITH_RULE))) \
3515 { \
3516 MAYBE_FINISH_COMPOSITION (); \
3517 goto invalid_code; \
3518 } \
3519 if (cmp_status->method == COMPOSITION_WITH_ALTCHARS) \
3520 charbuf[- cmp_status->length] -= cmp_status->ncomps + 2; \
3521 else if (cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS) \
3522 charbuf[- cmp_status->length] -= cmp_status->ncomps * 3; \
3523 charbuf[- cmp_status->length + 2] = cmp_status->nchars; \
3524 char_offset += cmp_status->nchars; \
3525 cmp_status->state = COMPOSING_NO; \
3526 } while (0)
3527
3528 /* Store a composition rule RULE in charbuf, and update cmp_status. */
3529
3530 #define STORE_COMPOSITION_RULE(rule) \
3531 do { \
3532 *charbuf++ = -2; \
3533 *charbuf++ = rule; \
3534 cmp_status->length += 2; \
3535 cmp_status->state--; \
3536 } while (0)
3537
3538 /* Store a composed char or a component char C in charbuf, and update
3539 cmp_status. */
3540
3541 #define STORE_COMPOSITION_CHAR(c) \
3542 do { \
3543 *charbuf++ = (c); \
3544 cmp_status->length++; \
3545 if (cmp_status->state == COMPOSING_CHAR) \
3546 cmp_status->nchars++; \
3547 else \
3548 cmp_status->ncomps++; \
3549 if (cmp_status->method == COMPOSITION_WITH_RULE \
3550 || (cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS \
3551 && cmp_status->state == COMPOSING_COMPONENT_CHAR)) \
3552 cmp_status->state++; \
3553 } while (0)
3554
3555
3556 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
3557
3558 static void
3559 decode_coding_iso_2022 (coding)
3560 struct coding_system *coding;
3561 {
3562 const unsigned char *src = coding->source + coding->consumed;
3563 const unsigned char *src_end = coding->source + coding->src_bytes;
3564 const unsigned char *src_base;
3565 int *charbuf = coding->charbuf + coding->charbuf_used;
3566 /* We may produce two annocations (charset and composition) in one
3567 loop and one more charset annocation at the end. */
3568 int *charbuf_end
3569 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 3);
3570 int consumed_chars = 0, consumed_chars_base;
3571 int multibytep = coding->src_multibyte;
3572 /* Charsets invoked to graphic plane 0 and 1 respectively. */
3573 int charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3574 int charset_id_1 = CODING_ISO_INVOKED_CHARSET (coding, 1);
3575 int charset_id_2, charset_id_3;
3576 struct charset *charset;
3577 int c;
3578 struct composition_status *cmp_status = CODING_ISO_CMP_STATUS (coding);
3579 Lisp_Object attrs, charset_list;
3580 int char_offset = coding->produced_char;
3581 int last_offset = char_offset;
3582 int last_id = charset_ascii;
3583 int eol_crlf =
3584 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
3585 int byte_after_cr = -1;
3586 int i;
3587
3588 CODING_GET_INFO (coding, attrs, charset_list);
3589 setup_iso_safe_charsets (attrs);
3590 /* Charset list may have been changed. */
3591 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
3592 coding->safe_charsets = SDATA (CODING_ATTR_SAFE_CHARSETS (attrs));
3593
3594 if (cmp_status->state != COMPOSING_NO)
3595 {
3596 for (i = 0; i < cmp_status->length; i++)
3597 *charbuf++ = cmp_status->carryover[i];
3598 coding->annotated = 1;
3599 }
3600
3601 while (1)
3602 {
3603 int c1, c2, c3;
3604
3605 src_base = src;
3606 consumed_chars_base = consumed_chars;
3607
3608 if (charbuf >= charbuf_end)
3609 {
3610 if (byte_after_cr >= 0)
3611 src_base--;
3612 break;
3613 }
3614
3615 if (byte_after_cr >= 0)
3616 c1 = byte_after_cr, byte_after_cr = -1;
3617 else
3618 ONE_MORE_BYTE (c1);
3619 if (c1 < 0)
3620 goto invalid_code;
3621
3622 if (CODING_ISO_EXTSEGMENT_LEN (coding) > 0)
3623 {
3624 *charbuf++ = ASCII_BYTE_P (c1) ? c1 : BYTE8_TO_CHAR (c1);
3625 char_offset++;
3626 CODING_ISO_EXTSEGMENT_LEN (coding)--;
3627 continue;
3628 }
3629
3630 if (CODING_ISO_EMBEDDED_UTF_8 (coding))
3631 {
3632 if (c1 == ISO_CODE_ESC)
3633 {
3634 if (src + 1 >= src_end)
3635 goto no_more_source;
3636 *charbuf++ = ISO_CODE_ESC;
3637 char_offset++;
3638 if (src[0] == '%' && src[1] == '@')
3639 {
3640 src += 2;
3641 consumed_chars += 2;
3642 char_offset += 2;
3643 /* We are sure charbuf can contain two more chars. */
3644 *charbuf++ = '%';
3645 *charbuf++ = '@';
3646 CODING_ISO_EMBEDDED_UTF_8 (coding) = 0;
3647 }
3648 }
3649 else
3650 {
3651 *charbuf++ = ASCII_BYTE_P (c1) ? c1 : BYTE8_TO_CHAR (c1);
3652 char_offset++;
3653 }
3654 continue;
3655 }
3656
3657 if ((cmp_status->state == COMPOSING_RULE
3658 || cmp_status->state == COMPOSING_COMPONENT_RULE)
3659 && c1 != ISO_CODE_ESC)
3660 {
3661 int rule, nbytes;
3662
3663 DECODE_COMPOSITION_RULE (rule, nbytes);
3664 if (rule < 0)
3665 goto invalid_code;
3666 STORE_COMPOSITION_RULE (rule);
3667 continue;
3668 }
3669
3670 /* We produce at most one character. */
3671 switch (iso_code_class [c1])
3672 {
3673 case ISO_0x20_or_0x7F:
3674 if (charset_id_0 < 0
3675 || ! CHARSET_ISO_CHARS_96 (CHARSET_FROM_ID (charset_id_0)))
3676 /* This is SPACE or DEL. */
3677 charset = CHARSET_FROM_ID (charset_ascii);
3678 else
3679 charset = CHARSET_FROM_ID (charset_id_0);
3680 break;
3681
3682 case ISO_graphic_plane_0:
3683 if (charset_id_0 < 0)
3684 charset = CHARSET_FROM_ID (charset_ascii);
3685 else
3686 charset = CHARSET_FROM_ID (charset_id_0);
3687 break;
3688
3689 case ISO_0xA0_or_0xFF:
3690 if (charset_id_1 < 0
3691 || ! CHARSET_ISO_CHARS_96 (CHARSET_FROM_ID (charset_id_1))
3692 || CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS)
3693 goto invalid_code;
3694 /* This is a graphic character, we fall down ... */
3695
3696 case ISO_graphic_plane_1:
3697 if (charset_id_1 < 0)
3698 goto invalid_code;
3699 charset = CHARSET_FROM_ID (charset_id_1);
3700 break;
3701
3702 case ISO_control_0:
3703 if (eol_crlf && c1 == '\r')
3704 ONE_MORE_BYTE (byte_after_cr);
3705 MAYBE_FINISH_COMPOSITION ();
3706 charset = CHARSET_FROM_ID (charset_ascii);
3707 break;
3708
3709 case ISO_control_1:
3710 goto invalid_code;
3711
3712 case ISO_shift_out:
3713 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT)
3714 || CODING_ISO_DESIGNATION (coding, 1) < 0)
3715 goto invalid_code;
3716 CODING_ISO_INVOCATION (coding, 0) = 1;
3717 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3718 continue;
3719
3720 case ISO_shift_in:
3721 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT))
3722 goto invalid_code;
3723 CODING_ISO_INVOCATION (coding, 0) = 0;
3724 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3725 continue;
3726
3727 case ISO_single_shift_2_7:
3728 case ISO_single_shift_2:
3729 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT))
3730 goto invalid_code;
3731 /* SS2 is handled as an escape sequence of ESC 'N' */
3732 c1 = 'N';
3733 goto label_escape_sequence;
3734
3735 case ISO_single_shift_3:
3736 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT))
3737 goto invalid_code;
3738 /* SS2 is handled as an escape sequence of ESC 'O' */
3739 c1 = 'O';
3740 goto label_escape_sequence;
3741
3742 case ISO_control_sequence_introducer:
3743 /* CSI is handled as an escape sequence of ESC '[' ... */
3744 c1 = '[';
3745 goto label_escape_sequence;
3746
3747 case ISO_escape:
3748 ONE_MORE_BYTE (c1);
3749 label_escape_sequence:
3750 /* Escape sequences handled here are invocation,
3751 designation, direction specification, and character
3752 composition specification. */
3753 switch (c1)
3754 {
3755 case '&': /* revision of following character set */
3756 ONE_MORE_BYTE (c1);
3757 if (!(c1 >= '@' && c1 <= '~'))
3758 goto invalid_code;
3759 ONE_MORE_BYTE (c1);
3760 if (c1 != ISO_CODE_ESC)
3761 goto invalid_code;
3762 ONE_MORE_BYTE (c1);
3763 goto label_escape_sequence;
3764
3765 case '$': /* designation of 2-byte character set */
3766 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATION))
3767 goto invalid_code;
3768 {
3769 int reg, chars96;
3770
3771 ONE_MORE_BYTE (c1);
3772 if (c1 >= '@' && c1 <= 'B')
3773 { /* designation of JISX0208.1978, GB2312.1980,
3774 or JISX0208.1980 */
3775 reg = 0, chars96 = 0;
3776 }
3777 else if (c1 >= 0x28 && c1 <= 0x2B)
3778 { /* designation of DIMENSION2_CHARS94 character set */
3779 reg = c1 - 0x28, chars96 = 0;
3780 ONE_MORE_BYTE (c1);
3781 }
3782 else if (c1 >= 0x2C && c1 <= 0x2F)
3783 { /* designation of DIMENSION2_CHARS96 character set */
3784 reg = c1 - 0x2C, chars96 = 1;
3785 ONE_MORE_BYTE (c1);
3786 }
3787 else
3788 goto invalid_code;
3789 DECODE_DESIGNATION (reg, 2, chars96, c1);
3790 /* We must update these variables now. */
3791 if (reg == 0)
3792 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3793 else if (reg == 1)
3794 charset_id_1 = CODING_ISO_INVOKED_CHARSET (coding, 1);
3795 if (chars96 < 0)
3796 goto invalid_code;
3797 }
3798 continue;
3799
3800 case 'n': /* invocation of locking-shift-2 */
3801 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT)
3802 || CODING_ISO_DESIGNATION (coding, 2) < 0)
3803 goto invalid_code;
3804 CODING_ISO_INVOCATION (coding, 0) = 2;
3805 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3806 continue;
3807
3808 case 'o': /* invocation of locking-shift-3 */
3809 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT)
3810 || CODING_ISO_DESIGNATION (coding, 3) < 0)
3811 goto invalid_code;
3812 CODING_ISO_INVOCATION (coding, 0) = 3;
3813 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3814 continue;
3815
3816 case 'N': /* invocation of single-shift-2 */
3817 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
3818 || CODING_ISO_DESIGNATION (coding, 2) < 0)
3819 goto invalid_code;
3820 charset_id_2 = CODING_ISO_DESIGNATION (coding, 2);
3821 if (charset_id_2 < 0)
3822 charset = CHARSET_FROM_ID (charset_ascii);
3823 else
3824 charset = CHARSET_FROM_ID (charset_id_2);
3825 ONE_MORE_BYTE (c1);
3826 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
3827 goto invalid_code;
3828 break;
3829
3830 case 'O': /* invocation of single-shift-3 */
3831 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
3832 || CODING_ISO_DESIGNATION (coding, 3) < 0)
3833 goto invalid_code;
3834 charset_id_3 = CODING_ISO_DESIGNATION (coding, 3);
3835 if (charset_id_3 < 0)
3836 charset = CHARSET_FROM_ID (charset_ascii);
3837 else
3838 charset = CHARSET_FROM_ID (charset_id_3);
3839 ONE_MORE_BYTE (c1);
3840 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
3841 goto invalid_code;
3842 break;
3843
3844 case '0': case '2': case '3': case '4': /* start composition */
3845 if (! (coding->common_flags & CODING_ANNOTATE_COMPOSITION_MASK))
3846 goto invalid_code;
3847 if (last_id != charset_ascii)
3848 {
3849 ADD_CHARSET_DATA (charbuf, char_offset- last_offset, last_id);
3850 last_id = charset_ascii;
3851 last_offset = char_offset;
3852 }
3853 DECODE_COMPOSITION_START (c1);
3854 continue;
3855
3856 case '1': /* end composition */
3857 if (cmp_status->state == COMPOSING_NO)
3858 goto invalid_code;
3859 DECODE_COMPOSITION_END ();
3860 continue;
3861
3862 case '[': /* specification of direction */
3863 if (! CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DIRECTION)
3864 goto invalid_code;
3865 /* For the moment, nested direction is not supported.
3866 So, `coding->mode & CODING_MODE_DIRECTION' zero means
3867 left-to-right, and nozero means right-to-left. */
3868 ONE_MORE_BYTE (c1);
3869 switch (c1)
3870 {
3871 case ']': /* end of the current direction */
3872 coding->mode &= ~CODING_MODE_DIRECTION;
3873
3874 case '0': /* end of the current direction */
3875 case '1': /* start of left-to-right direction */
3876 ONE_MORE_BYTE (c1);
3877 if (c1 == ']')
3878 coding->mode &= ~CODING_MODE_DIRECTION;
3879 else
3880 goto invalid_code;
3881 break;
3882
3883 case '2': /* start of right-to-left direction */
3884 ONE_MORE_BYTE (c1);
3885 if (c1 == ']')
3886 coding->mode |= CODING_MODE_DIRECTION;
3887 else
3888 goto invalid_code;
3889 break;
3890
3891 default:
3892 goto invalid_code;
3893 }
3894 continue;
3895
3896 case '%':
3897 ONE_MORE_BYTE (c1);
3898 if (c1 == '/')
3899 {
3900 /* CTEXT extended segment:
3901 ESC % / [0-4] M L --ENCODING-NAME-- \002 --BYTES--
3902 We keep these bytes as is for the moment.
3903 They may be decoded by post-read-conversion. */
3904 int dim, M, L;
3905 int size;
3906
3907 ONE_MORE_BYTE (dim);
3908 if (dim < 0 || dim > 4)
3909 goto invalid_code;
3910 ONE_MORE_BYTE (M);
3911 if (M < 128)
3912 goto invalid_code;
3913 ONE_MORE_BYTE (L);
3914 if (L < 128)
3915 goto invalid_code;
3916 size = ((M - 128) * 128) + (L - 128);
3917 if (charbuf + 6 > charbuf_end)
3918 goto break_loop;
3919 *charbuf++ = ISO_CODE_ESC;
3920 *charbuf++ = '%';
3921 *charbuf++ = '/';
3922 *charbuf++ = dim;
3923 *charbuf++ = BYTE8_TO_CHAR (M);
3924 *charbuf++ = BYTE8_TO_CHAR (L);
3925 CODING_ISO_EXTSEGMENT_LEN (coding) = size;
3926 }
3927 else if (c1 == 'G')
3928 {
3929 /* XFree86 extension for embedding UTF-8 in CTEXT:
3930 ESC % G --UTF-8-BYTES-- ESC % @
3931 We keep these bytes as is for the moment.
3932 They may be decoded by post-read-conversion. */
3933 if (charbuf + 3 > charbuf_end)
3934 goto break_loop;
3935 *charbuf++ = ISO_CODE_ESC;
3936 *charbuf++ = '%';
3937 *charbuf++ = 'G';
3938 CODING_ISO_EMBEDDED_UTF_8 (coding) = 1;
3939 }
3940 else
3941 goto invalid_code;
3942 continue;
3943 break;
3944
3945 default:
3946 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATION))
3947 goto invalid_code;
3948 {
3949 int reg, chars96;
3950
3951 if (c1 >= 0x28 && c1 <= 0x2B)
3952 { /* designation of DIMENSION1_CHARS94 character set */
3953 reg = c1 - 0x28, chars96 = 0;
3954 ONE_MORE_BYTE (c1);
3955 }
3956 else if (c1 >= 0x2C && c1 <= 0x2F)
3957 { /* designation of DIMENSION1_CHARS96 character set */
3958 reg = c1 - 0x2C, chars96 = 1;
3959 ONE_MORE_BYTE (c1);
3960 }
3961 else
3962 goto invalid_code;
3963 DECODE_DESIGNATION (reg, 1, chars96, c1);
3964 /* We must update these variables now. */
3965 if (reg == 0)
3966 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3967 else if (reg == 1)
3968 charset_id_1 = CODING_ISO_INVOKED_CHARSET (coding, 1);
3969 if (chars96 < 0)
3970 goto invalid_code;
3971 }
3972 continue;
3973 }
3974 }
3975
3976 if (cmp_status->state == COMPOSING_NO
3977 && charset->id != charset_ascii
3978 && last_id != charset->id)
3979 {
3980 if (last_id != charset_ascii)
3981 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
3982 last_id = charset->id;
3983 last_offset = char_offset;
3984 }
3985
3986 /* Now we know CHARSET and 1st position code C1 of a character.
3987 Produce a decoded character while getting 2nd and 3rd
3988 position codes C2, C3 if necessary. */
3989 if (CHARSET_DIMENSION (charset) > 1)
3990 {
3991 ONE_MORE_BYTE (c2);
3992 if (c2 < 0x20 || (c2 >= 0x80 && c2 < 0xA0)
3993 || ((c1 & 0x80) != (c2 & 0x80)))
3994 /* C2 is not in a valid range. */
3995 goto invalid_code;
3996 if (CHARSET_DIMENSION (charset) == 2)
3997 c1 = (c1 << 8) | c2;
3998 else
3999 {
4000 ONE_MORE_BYTE (c3);
4001 if (c3 < 0x20 || (c3 >= 0x80 && c3 < 0xA0)
4002 || ((c1 & 0x80) != (c3 & 0x80)))
4003 /* C3 is not in a valid range. */
4004 goto invalid_code;
4005 c1 = (c1 << 16) | (c2 << 8) | c2;
4006 }
4007 }
4008 c1 &= 0x7F7F7F;
4009 CODING_DECODE_CHAR (coding, src, src_base, src_end, charset, c1, c);
4010 if (c < 0)
4011 {
4012 MAYBE_FINISH_COMPOSITION ();
4013 for (; src_base < src; src_base++, char_offset++)
4014 {
4015 if (ASCII_BYTE_P (*src_base))
4016 *charbuf++ = *src_base;
4017 else
4018 *charbuf++ = BYTE8_TO_CHAR (*src_base);
4019 }
4020 }
4021 else if (cmp_status->state == COMPOSING_NO)
4022 {
4023 *charbuf++ = c;
4024 char_offset++;
4025 }
4026 else if ((cmp_status->state == COMPOSING_CHAR
4027 ? cmp_status->nchars
4028 : cmp_status->ncomps)
4029 >= MAX_COMPOSITION_COMPONENTS)
4030 {
4031 /* Too long composition. */
4032 MAYBE_FINISH_COMPOSITION ();
4033 *charbuf++ = c;
4034 char_offset++;
4035 }
4036 else
4037 STORE_COMPOSITION_CHAR (c);
4038 continue;
4039
4040 invalid_code:
4041 MAYBE_FINISH_COMPOSITION ();
4042 src = src_base;
4043 consumed_chars = consumed_chars_base;
4044 ONE_MORE_BYTE (c);
4045 *charbuf++ = c < 0 ? -c : ASCII_BYTE_P (c) ? c : BYTE8_TO_CHAR (c);
4046 char_offset++;
4047 coding->errors++;
4048 continue;
4049
4050 break_loop:
4051 break;
4052 }
4053
4054 no_more_source:
4055 if (cmp_status->state != COMPOSING_NO)
4056 {
4057 if (coding->mode & CODING_MODE_LAST_BLOCK)
4058 MAYBE_FINISH_COMPOSITION ();
4059 else
4060 {
4061 charbuf -= cmp_status->length;
4062 for (i = 0; i < cmp_status->length; i++)
4063 cmp_status->carryover[i] = charbuf[i];
4064 }
4065 }
4066 else if (last_id != charset_ascii)
4067 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4068 coding->consumed_char += consumed_chars_base;
4069 coding->consumed = src_base - coding->source;
4070 coding->charbuf_used = charbuf - coding->charbuf;
4071 }
4072
4073
4074 /* ISO2022 encoding stuff. */
4075
4076 /*
4077 It is not enough to say just "ISO2022" on encoding, we have to
4078 specify more details. In Emacs, each coding system of ISO2022
4079 variant has the following specifications:
4080 1. Initial designation to G0 thru G3.
4081 2. Allows short-form designation?
4082 3. ASCII should be designated to G0 before control characters?
4083 4. ASCII should be designated to G0 at end of line?
4084 5. 7-bit environment or 8-bit environment?
4085 6. Use locking-shift?
4086 7. Use Single-shift?
4087 And the following two are only for Japanese:
4088 8. Use ASCII in place of JIS0201-1976-Roman?
4089 9. Use JISX0208-1983 in place of JISX0208-1978?
4090 These specifications are encoded in CODING_ISO_FLAGS (coding) as flag bits
4091 defined by macros CODING_ISO_FLAG_XXX. See `coding.h' for more
4092 details.
4093 */
4094
4095 /* Produce codes (escape sequence) for designating CHARSET to graphic
4096 register REG at DST, and increment DST. If <final-char> of CHARSET is
4097 '@', 'A', or 'B' and the coding system CODING allows, produce
4098 designation sequence of short-form. */
4099
4100 #define ENCODE_DESIGNATION(charset, reg, coding) \
4101 do { \
4102 unsigned char final_char = CHARSET_ISO_FINAL (charset); \
4103 char *intermediate_char_94 = "()*+"; \
4104 char *intermediate_char_96 = ",-./"; \
4105 int revision = -1; \
4106 int c; \
4107 \
4108 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_REVISION) \
4109 revision = CHARSET_ISO_REVISION (charset); \
4110 \
4111 if (revision >= 0) \
4112 { \
4113 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, '&'); \
4114 EMIT_ONE_BYTE ('@' + revision); \
4115 } \
4116 EMIT_ONE_ASCII_BYTE (ISO_CODE_ESC); \
4117 if (CHARSET_DIMENSION (charset) == 1) \
4118 { \
4119 if (! CHARSET_ISO_CHARS_96 (charset)) \
4120 c = intermediate_char_94[reg]; \
4121 else \
4122 c = intermediate_char_96[reg]; \
4123 EMIT_ONE_ASCII_BYTE (c); \
4124 } \
4125 else \
4126 { \
4127 EMIT_ONE_ASCII_BYTE ('$'); \
4128 if (! CHARSET_ISO_CHARS_96 (charset)) \
4129 { \
4130 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LONG_FORM \
4131 || reg != 0 \
4132 || final_char < '@' || final_char > 'B') \
4133 EMIT_ONE_ASCII_BYTE (intermediate_char_94[reg]); \
4134 } \
4135 else \
4136 EMIT_ONE_ASCII_BYTE (intermediate_char_96[reg]); \
4137 } \
4138 EMIT_ONE_ASCII_BYTE (final_char); \
4139 \
4140 CODING_ISO_DESIGNATION (coding, reg) = CHARSET_ID (charset); \
4141 } while (0)
4142
4143
4144 /* The following two macros produce codes (control character or escape
4145 sequence) for ISO2022 single-shift functions (single-shift-2 and
4146 single-shift-3). */
4147
4148 #define ENCODE_SINGLE_SHIFT_2 \
4149 do { \
4150 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4151 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'N'); \
4152 else \
4153 EMIT_ONE_BYTE (ISO_CODE_SS2); \
4154 CODING_ISO_SINGLE_SHIFTING (coding) = 1; \
4155 } while (0)
4156
4157
4158 #define ENCODE_SINGLE_SHIFT_3 \
4159 do { \
4160 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4161 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'O'); \
4162 else \
4163 EMIT_ONE_BYTE (ISO_CODE_SS3); \
4164 CODING_ISO_SINGLE_SHIFTING (coding) = 1; \
4165 } while (0)
4166
4167
4168 /* The following four macros produce codes (control character or
4169 escape sequence) for ISO2022 locking-shift functions (shift-in,
4170 shift-out, locking-shift-2, and locking-shift-3). */
4171
4172 #define ENCODE_SHIFT_IN \
4173 do { \
4174 EMIT_ONE_ASCII_BYTE (ISO_CODE_SI); \
4175 CODING_ISO_INVOCATION (coding, 0) = 0; \
4176 } while (0)
4177
4178
4179 #define ENCODE_SHIFT_OUT \
4180 do { \
4181 EMIT_ONE_ASCII_BYTE (ISO_CODE_SO); \
4182 CODING_ISO_INVOCATION (coding, 0) = 1; \
4183 } while (0)
4184
4185
4186 #define ENCODE_LOCKING_SHIFT_2 \
4187 do { \
4188 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'n'); \
4189 CODING_ISO_INVOCATION (coding, 0) = 2; \
4190 } while (0)
4191
4192
4193 #define ENCODE_LOCKING_SHIFT_3 \
4194 do { \
4195 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'n'); \
4196 CODING_ISO_INVOCATION (coding, 0) = 3; \
4197 } while (0)
4198
4199
4200 /* Produce codes for a DIMENSION1 character whose character set is
4201 CHARSET and whose position-code is C1. Designation and invocation
4202 sequences are also produced in advance if necessary. */
4203
4204 #define ENCODE_ISO_CHARACTER_DIMENSION1(charset, c1) \
4205 do { \
4206 int id = CHARSET_ID (charset); \
4207 \
4208 if ((CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_ROMAN) \
4209 && id == charset_ascii) \
4210 { \
4211 id = charset_jisx0201_roman; \
4212 charset = CHARSET_FROM_ID (id); \
4213 } \
4214 \
4215 if (CODING_ISO_SINGLE_SHIFTING (coding)) \
4216 { \
4217 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4218 EMIT_ONE_ASCII_BYTE (c1 & 0x7F); \
4219 else \
4220 EMIT_ONE_BYTE (c1 | 0x80); \
4221 CODING_ISO_SINGLE_SHIFTING (coding) = 0; \
4222 break; \
4223 } \
4224 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 0)) \
4225 { \
4226 EMIT_ONE_ASCII_BYTE (c1 & 0x7F); \
4227 break; \
4228 } \
4229 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 1)) \
4230 { \
4231 EMIT_ONE_BYTE (c1 | 0x80); \
4232 break; \
4233 } \
4234 else \
4235 /* Since CHARSET is not yet invoked to any graphic planes, we \
4236 must invoke it, or, at first, designate it to some graphic \
4237 register. Then repeat the loop to actually produce the \
4238 character. */ \
4239 dst = encode_invocation_designation (charset, coding, dst, \
4240 &produced_chars); \
4241 } while (1)
4242
4243
4244 /* Produce codes for a DIMENSION2 character whose character set is
4245 CHARSET and whose position-codes are C1 and C2. Designation and
4246 invocation codes are also produced in advance if necessary. */
4247
4248 #define ENCODE_ISO_CHARACTER_DIMENSION2(charset, c1, c2) \
4249 do { \
4250 int id = CHARSET_ID (charset); \
4251 \
4252 if ((CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_OLDJIS) \
4253 && id == charset_jisx0208) \
4254 { \
4255 id = charset_jisx0208_1978; \
4256 charset = CHARSET_FROM_ID (id); \
4257 } \
4258 \
4259 if (CODING_ISO_SINGLE_SHIFTING (coding)) \
4260 { \
4261 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4262 EMIT_TWO_ASCII_BYTES ((c1) & 0x7F, (c2) & 0x7F); \
4263 else \
4264 EMIT_TWO_BYTES ((c1) | 0x80, (c2) | 0x80); \
4265 CODING_ISO_SINGLE_SHIFTING (coding) = 0; \
4266 break; \
4267 } \
4268 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 0)) \
4269 { \
4270 EMIT_TWO_ASCII_BYTES ((c1) & 0x7F, (c2) & 0x7F); \
4271 break; \
4272 } \
4273 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 1)) \
4274 { \
4275 EMIT_TWO_BYTES ((c1) | 0x80, (c2) | 0x80); \
4276 break; \
4277 } \
4278 else \
4279 /* Since CHARSET is not yet invoked to any graphic planes, we \
4280 must invoke it, or, at first, designate it to some graphic \
4281 register. Then repeat the loop to actually produce the \
4282 character. */ \
4283 dst = encode_invocation_designation (charset, coding, dst, \
4284 &produced_chars); \
4285 } while (1)
4286
4287
4288 #define ENCODE_ISO_CHARACTER(charset, c) \
4289 do { \
4290 int code = ENCODE_CHAR ((charset),(c)); \
4291 \
4292 if (CHARSET_DIMENSION (charset) == 1) \
4293 ENCODE_ISO_CHARACTER_DIMENSION1 ((charset), code); \
4294 else \
4295 ENCODE_ISO_CHARACTER_DIMENSION2 ((charset), code >> 8, code & 0xFF); \
4296 } while (0)
4297
4298
4299 /* Produce designation and invocation codes at a place pointed by DST
4300 to use CHARSET. The element `spec.iso_2022' of *CODING is updated.
4301 Return new DST. */
4302
4303 unsigned char *
4304 encode_invocation_designation (charset, coding, dst, p_nchars)
4305 struct charset *charset;
4306 struct coding_system *coding;
4307 unsigned char *dst;
4308 int *p_nchars;
4309 {
4310 int multibytep = coding->dst_multibyte;
4311 int produced_chars = *p_nchars;
4312 int reg; /* graphic register number */
4313 int id = CHARSET_ID (charset);
4314
4315 /* At first, check designations. */
4316 for (reg = 0; reg < 4; reg++)
4317 if (id == CODING_ISO_DESIGNATION (coding, reg))
4318 break;
4319
4320 if (reg >= 4)
4321 {
4322 /* CHARSET is not yet designated to any graphic registers. */
4323 /* At first check the requested designation. */
4324 reg = CODING_ISO_REQUEST (coding, id);
4325 if (reg < 0)
4326 /* Since CHARSET requests no special designation, designate it
4327 to graphic register 0. */
4328 reg = 0;
4329
4330 ENCODE_DESIGNATION (charset, reg, coding);
4331 }
4332
4333 if (CODING_ISO_INVOCATION (coding, 0) != reg
4334 && CODING_ISO_INVOCATION (coding, 1) != reg)
4335 {
4336 /* Since the graphic register REG is not invoked to any graphic
4337 planes, invoke it to graphic plane 0. */
4338 switch (reg)
4339 {
4340 case 0: /* graphic register 0 */
4341 ENCODE_SHIFT_IN;
4342 break;
4343
4344 case 1: /* graphic register 1 */
4345 ENCODE_SHIFT_OUT;
4346 break;
4347
4348 case 2: /* graphic register 2 */
4349 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
4350 ENCODE_SINGLE_SHIFT_2;
4351 else
4352 ENCODE_LOCKING_SHIFT_2;
4353 break;
4354
4355 case 3: /* graphic register 3 */
4356 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
4357 ENCODE_SINGLE_SHIFT_3;
4358 else
4359 ENCODE_LOCKING_SHIFT_3;
4360 break;
4361 }
4362 }
4363
4364 *p_nchars = produced_chars;
4365 return dst;
4366 }
4367
4368 /* The following three macros produce codes for indicating direction
4369 of text. */
4370 #define ENCODE_CONTROL_SEQUENCE_INTRODUCER \
4371 do { \
4372 if (CODING_ISO_FLAGS (coding) == CODING_ISO_FLAG_SEVEN_BITS) \
4373 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, '['); \
4374 else \
4375 EMIT_ONE_BYTE (ISO_CODE_CSI); \
4376 } while (0)
4377
4378
4379 #define ENCODE_DIRECTION_R2L() \
4380 do { \
4381 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst); \
4382 EMIT_TWO_ASCII_BYTES ('2', ']'); \
4383 } while (0)
4384
4385
4386 #define ENCODE_DIRECTION_L2R() \
4387 do { \
4388 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst); \
4389 EMIT_TWO_ASCII_BYTES ('0', ']'); \
4390 } while (0)
4391
4392
4393 /* Produce codes for designation and invocation to reset the graphic
4394 planes and registers to initial state. */
4395 #define ENCODE_RESET_PLANE_AND_REGISTER() \
4396 do { \
4397 int reg; \
4398 struct charset *charset; \
4399 \
4400 if (CODING_ISO_INVOCATION (coding, 0) != 0) \
4401 ENCODE_SHIFT_IN; \
4402 for (reg = 0; reg < 4; reg++) \
4403 if (CODING_ISO_INITIAL (coding, reg) >= 0 \
4404 && (CODING_ISO_DESIGNATION (coding, reg) \
4405 != CODING_ISO_INITIAL (coding, reg))) \
4406 { \
4407 charset = CHARSET_FROM_ID (CODING_ISO_INITIAL (coding, reg)); \
4408 ENCODE_DESIGNATION (charset, reg, coding); \
4409 } \
4410 } while (0)
4411
4412
4413 /* Produce designation sequences of charsets in the line started from
4414 SRC to a place pointed by DST, and return updated DST.
4415
4416 If the current block ends before any end-of-line, we may fail to
4417 find all the necessary designations. */
4418
4419 static unsigned char *
4420 encode_designation_at_bol (coding, charbuf, charbuf_end, dst)
4421 struct coding_system *coding;
4422 int *charbuf, *charbuf_end;
4423 unsigned char *dst;
4424 {
4425 struct charset *charset;
4426 /* Table of charsets to be designated to each graphic register. */
4427 int r[4];
4428 int c, found = 0, reg;
4429 int produced_chars = 0;
4430 int multibytep = coding->dst_multibyte;
4431 Lisp_Object attrs;
4432 Lisp_Object charset_list;
4433
4434 attrs = CODING_ID_ATTRS (coding->id);
4435 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
4436 if (EQ (charset_list, Qiso_2022))
4437 charset_list = Viso_2022_charset_list;
4438
4439 for (reg = 0; reg < 4; reg++)
4440 r[reg] = -1;
4441
4442 while (found < 4)
4443 {
4444 int id;
4445
4446 c = *charbuf++;
4447 if (c == '\n')
4448 break;
4449 charset = char_charset (c, charset_list, NULL);
4450 id = CHARSET_ID (charset);
4451 reg = CODING_ISO_REQUEST (coding, id);
4452 if (reg >= 0 && r[reg] < 0)
4453 {
4454 found++;
4455 r[reg] = id;
4456 }
4457 }
4458
4459 if (found)
4460 {
4461 for (reg = 0; reg < 4; reg++)
4462 if (r[reg] >= 0
4463 && CODING_ISO_DESIGNATION (coding, reg) != r[reg])
4464 ENCODE_DESIGNATION (CHARSET_FROM_ID (r[reg]), reg, coding);
4465 }
4466
4467 return dst;
4468 }
4469
4470 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions". */
4471
4472 static int
4473 encode_coding_iso_2022 (coding)
4474 struct coding_system *coding;
4475 {
4476 int multibytep = coding->dst_multibyte;
4477 int *charbuf = coding->charbuf;
4478 int *charbuf_end = charbuf + coding->charbuf_used;
4479 unsigned char *dst = coding->destination + coding->produced;
4480 unsigned char *dst_end = coding->destination + coding->dst_bytes;
4481 int safe_room = 16;
4482 int bol_designation
4483 = (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATE_AT_BOL
4484 && CODING_ISO_BOL (coding));
4485 int produced_chars = 0;
4486 Lisp_Object attrs, eol_type, charset_list;
4487 int ascii_compatible;
4488 int c;
4489 int preferred_charset_id = -1;
4490
4491 CODING_GET_INFO (coding, attrs, charset_list);
4492 eol_type = inhibit_eol_conversion ? Qunix : CODING_ID_EOL_TYPE (coding->id);
4493 if (VECTORP (eol_type))
4494 eol_type = Qunix;
4495
4496 setup_iso_safe_charsets (attrs);
4497 /* Charset list may have been changed. */
4498 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
4499 coding->safe_charsets = SDATA (CODING_ATTR_SAFE_CHARSETS (attrs));
4500
4501 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
4502
4503 while (charbuf < charbuf_end)
4504 {
4505 ASSURE_DESTINATION (safe_room);
4506
4507 if (bol_designation)
4508 {
4509 unsigned char *dst_prev = dst;
4510
4511 /* We have to produce designation sequences if any now. */
4512 dst = encode_designation_at_bol (coding, charbuf, charbuf_end, dst);
4513 bol_designation = 0;
4514 /* We are sure that designation sequences are all ASCII bytes. */
4515 produced_chars += dst - dst_prev;
4516 }
4517
4518 c = *charbuf++;
4519
4520 if (c < 0)
4521 {
4522 /* Handle an annotation. */
4523 switch (*charbuf)
4524 {
4525 case CODING_ANNOTATE_COMPOSITION_MASK:
4526 /* Not yet implemented. */
4527 break;
4528 case CODING_ANNOTATE_CHARSET_MASK:
4529 preferred_charset_id = charbuf[2];
4530 if (preferred_charset_id >= 0
4531 && NILP (Fmemq (make_number (preferred_charset_id),
4532 charset_list)))
4533 preferred_charset_id = -1;
4534 break;
4535 default:
4536 abort ();
4537 }
4538 charbuf += -c - 1;
4539 continue;
4540 }
4541
4542 /* Now encode the character C. */
4543 if (c < 0x20 || c == 0x7F)
4544 {
4545 if (c == '\n'
4546 || (c == '\r' && EQ (eol_type, Qmac)))
4547 {
4548 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_RESET_AT_EOL)
4549 ENCODE_RESET_PLANE_AND_REGISTER ();
4550 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_INIT_AT_BOL)
4551 {
4552 int i;
4553
4554 for (i = 0; i < 4; i++)
4555 CODING_ISO_DESIGNATION (coding, i)
4556 = CODING_ISO_INITIAL (coding, i);
4557 }
4558 bol_designation
4559 = CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATE_AT_BOL;
4560 }
4561 else if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_RESET_AT_CNTL)
4562 ENCODE_RESET_PLANE_AND_REGISTER ();
4563 EMIT_ONE_ASCII_BYTE (c);
4564 }
4565 else if (ASCII_CHAR_P (c))
4566 {
4567 if (ascii_compatible)
4568 EMIT_ONE_ASCII_BYTE (c);
4569 else
4570 {
4571 struct charset *charset = CHARSET_FROM_ID (charset_ascii);
4572 ENCODE_ISO_CHARACTER (charset, c);
4573 }
4574 }
4575 else if (CHAR_BYTE8_P (c))
4576 {
4577 c = CHAR_TO_BYTE8 (c);
4578 EMIT_ONE_BYTE (c);
4579 }
4580 else
4581 {
4582 struct charset *charset;
4583
4584 if (preferred_charset_id >= 0)
4585 {
4586 charset = CHARSET_FROM_ID (preferred_charset_id);
4587 if (! CHAR_CHARSET_P (c, charset))
4588 charset = char_charset (c, charset_list, NULL);
4589 }
4590 else
4591 charset = char_charset (c, charset_list, NULL);
4592 if (!charset)
4593 {
4594 if (coding->mode & CODING_MODE_SAFE_ENCODING)
4595 {
4596 c = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
4597 charset = CHARSET_FROM_ID (charset_ascii);
4598 }
4599 else
4600 {
4601 c = coding->default_char;
4602 charset = char_charset (c, charset_list, NULL);
4603 }
4604 }
4605 ENCODE_ISO_CHARACTER (charset, c);
4606 }
4607 }
4608
4609 if (coding->mode & CODING_MODE_LAST_BLOCK
4610 && CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_RESET_AT_EOL)
4611 {
4612 ASSURE_DESTINATION (safe_room);
4613 ENCODE_RESET_PLANE_AND_REGISTER ();
4614 }
4615 record_conversion_result (coding, CODING_RESULT_SUCCESS);
4616 CODING_ISO_BOL (coding) = bol_designation;
4617 coding->produced_char += produced_chars;
4618 coding->produced = dst - coding->destination;
4619 return 0;
4620 }
4621
4622 \f
4623 /*** 8,9. SJIS and BIG5 handlers ***/
4624
4625 /* Although SJIS and BIG5 are not ISO's coding system, they are used
4626 quite widely. So, for the moment, Emacs supports them in the bare
4627 C code. But, in the future, they may be supported only by CCL. */
4628
4629 /* SJIS is a coding system encoding three character sets: ASCII, right
4630 half of JISX0201-Kana, and JISX0208. An ASCII character is encoded
4631 as is. A character of charset katakana-jisx0201 is encoded by
4632 "position-code + 0x80". A character of charset japanese-jisx0208
4633 is encoded in 2-byte but two position-codes are divided and shifted
4634 so that it fit in the range below.
4635
4636 --- CODE RANGE of SJIS ---
4637 (character set) (range)
4638 ASCII 0x00 .. 0x7F
4639 KATAKANA-JISX0201 0xA0 .. 0xDF
4640 JISX0208 (1st byte) 0x81 .. 0x9F and 0xE0 .. 0xEF
4641 (2nd byte) 0x40 .. 0x7E and 0x80 .. 0xFC
4642 -------------------------------
4643
4644 */
4645
4646 /* BIG5 is a coding system encoding two character sets: ASCII and
4647 Big5. An ASCII character is encoded as is. Big5 is a two-byte
4648 character set and is encoded in two-byte.
4649
4650 --- CODE RANGE of BIG5 ---
4651 (character set) (range)
4652 ASCII 0x00 .. 0x7F
4653 Big5 (1st byte) 0xA1 .. 0xFE
4654 (2nd byte) 0x40 .. 0x7E and 0xA1 .. 0xFE
4655 --------------------------
4656
4657 */
4658
4659 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
4660 Check if a text is encoded in SJIS. If it is, return
4661 CATEGORY_MASK_SJIS, else return 0. */
4662
4663 static int
4664 detect_coding_sjis (coding, detect_info)
4665 struct coding_system *coding;
4666 struct coding_detection_info *detect_info;
4667 {
4668 const unsigned char *src = coding->source, *src_base;
4669 const unsigned char *src_end = coding->source + coding->src_bytes;
4670 int multibytep = coding->src_multibyte;
4671 int consumed_chars = 0;
4672 int found = 0;
4673 int c;
4674
4675 detect_info->checked |= CATEGORY_MASK_SJIS;
4676 /* A coding system of this category is always ASCII compatible. */
4677 src += coding->head_ascii;
4678
4679 while (1)
4680 {
4681 src_base = src;
4682 ONE_MORE_BYTE (c);
4683 if (c < 0x80)
4684 continue;
4685 if ((c >= 0x81 && c <= 0x9F) || (c >= 0xE0 && c <= 0xEF))
4686 {
4687 ONE_MORE_BYTE (c);
4688 if (c < 0x40 || c == 0x7F || c > 0xFC)
4689 break;
4690 found = CATEGORY_MASK_SJIS;
4691 }
4692 else if (c >= 0xA0 && c < 0xE0)
4693 found = CATEGORY_MASK_SJIS;
4694 else
4695 break;
4696 }
4697 detect_info->rejected |= CATEGORY_MASK_SJIS;
4698 return 0;
4699
4700 no_more_source:
4701 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
4702 {
4703 detect_info->rejected |= CATEGORY_MASK_SJIS;
4704 return 0;
4705 }
4706 detect_info->found |= found;
4707 return 1;
4708 }
4709
4710 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
4711 Check if a text is encoded in BIG5. If it is, return
4712 CATEGORY_MASK_BIG5, else return 0. */
4713
4714 static int
4715 detect_coding_big5 (coding, detect_info)
4716 struct coding_system *coding;
4717 struct coding_detection_info *detect_info;
4718 {
4719 const unsigned char *src = coding->source, *src_base;
4720 const unsigned char *src_end = coding->source + coding->src_bytes;
4721 int multibytep = coding->src_multibyte;
4722 int consumed_chars = 0;
4723 int found = 0;
4724 int c;
4725
4726 detect_info->checked |= CATEGORY_MASK_BIG5;
4727 /* A coding system of this category is always ASCII compatible. */
4728 src += coding->head_ascii;
4729
4730 while (1)
4731 {
4732 src_base = src;
4733 ONE_MORE_BYTE (c);
4734 if (c < 0x80)
4735 continue;
4736 if (c >= 0xA1)
4737 {
4738 ONE_MORE_BYTE (c);
4739 if (c < 0x40 || (c >= 0x7F && c <= 0xA0))
4740 return 0;
4741 found = CATEGORY_MASK_BIG5;
4742 }
4743 else
4744 break;
4745 }
4746 detect_info->rejected |= CATEGORY_MASK_BIG5;
4747 return 0;
4748
4749 no_more_source:
4750 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
4751 {
4752 detect_info->rejected |= CATEGORY_MASK_BIG5;
4753 return 0;
4754 }
4755 detect_info->found |= found;
4756 return 1;
4757 }
4758
4759 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".
4760 If SJIS_P is 1, decode SJIS text, else decode BIG5 test. */
4761
4762 static void
4763 decode_coding_sjis (coding)
4764 struct coding_system *coding;
4765 {
4766 const unsigned char *src = coding->source + coding->consumed;
4767 const unsigned char *src_end = coding->source + coding->src_bytes;
4768 const unsigned char *src_base;
4769 int *charbuf = coding->charbuf + coding->charbuf_used;
4770 /* We may produce one charset annocation in one loop and one more at
4771 the end. */
4772 int *charbuf_end
4773 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 2);
4774 int consumed_chars = 0, consumed_chars_base;
4775 int multibytep = coding->src_multibyte;
4776 struct charset *charset_roman, *charset_kanji, *charset_kana;
4777 struct charset *charset_kanji2;
4778 Lisp_Object attrs, charset_list, val;
4779 int char_offset = coding->produced_char;
4780 int last_offset = char_offset;
4781 int last_id = charset_ascii;
4782 int eol_crlf =
4783 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
4784 int byte_after_cr = -1;
4785
4786 CODING_GET_INFO (coding, attrs, charset_list);
4787
4788 val = charset_list;
4789 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4790 charset_kana = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4791 charset_kanji = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4792 charset_kanji2 = NILP (val) ? NULL : CHARSET_FROM_ID (XINT (XCAR (val)));
4793
4794 while (1)
4795 {
4796 int c, c1;
4797 struct charset *charset;
4798
4799 src_base = src;
4800 consumed_chars_base = consumed_chars;
4801
4802 if (charbuf >= charbuf_end)
4803 {
4804 if (byte_after_cr >= 0)
4805 src_base--;
4806 break;
4807 }
4808
4809 if (byte_after_cr >= 0)
4810 c = byte_after_cr, byte_after_cr = -1;
4811 else
4812 ONE_MORE_BYTE (c);
4813 if (c < 0)
4814 goto invalid_code;
4815 if (c < 0x80)
4816 {
4817 if (eol_crlf && c == '\r')
4818 ONE_MORE_BYTE (byte_after_cr);
4819 charset = charset_roman;
4820 }
4821 else if (c == 0x80 || c == 0xA0)
4822 goto invalid_code;
4823 else if (c >= 0xA1 && c <= 0xDF)
4824 {
4825 /* SJIS -> JISX0201-Kana */
4826 c &= 0x7F;
4827 charset = charset_kana;
4828 }
4829 else if (c <= 0xEF)
4830 {
4831 /* SJIS -> JISX0208 */
4832 ONE_MORE_BYTE (c1);
4833 if (c1 < 0x40 || c1 == 0x7F || c1 > 0xFC)
4834 goto invalid_code;
4835 c = (c << 8) | c1;
4836 SJIS_TO_JIS (c);
4837 charset = charset_kanji;
4838 }
4839 else if (c <= 0xFC && charset_kanji2)
4840 {
4841 /* SJIS -> JISX0213-2 */
4842 ONE_MORE_BYTE (c1);
4843 if (c1 < 0x40 || c1 == 0x7F || c1 > 0xFC)
4844 goto invalid_code;
4845 c = (c << 8) | c1;
4846 SJIS_TO_JIS2 (c);
4847 charset = charset_kanji2;
4848 }
4849 else
4850 goto invalid_code;
4851 if (charset->id != charset_ascii
4852 && last_id != charset->id)
4853 {
4854 if (last_id != charset_ascii)
4855 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4856 last_id = charset->id;
4857 last_offset = char_offset;
4858 }
4859 CODING_DECODE_CHAR (coding, src, src_base, src_end, charset, c, c);
4860 *charbuf++ = c;
4861 char_offset++;
4862 continue;
4863
4864 invalid_code:
4865 src = src_base;
4866 consumed_chars = consumed_chars_base;
4867 ONE_MORE_BYTE (c);
4868 *charbuf++ = c < 0 ? -c : BYTE8_TO_CHAR (c);
4869 char_offset++;
4870 coding->errors++;
4871 }
4872
4873 no_more_source:
4874 if (last_id != charset_ascii)
4875 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4876 coding->consumed_char += consumed_chars_base;
4877 coding->consumed = src_base - coding->source;
4878 coding->charbuf_used = charbuf - coding->charbuf;
4879 }
4880
4881 static void
4882 decode_coding_big5 (coding)
4883 struct coding_system *coding;
4884 {
4885 const unsigned char *src = coding->source + coding->consumed;
4886 const unsigned char *src_end = coding->source + coding->src_bytes;
4887 const unsigned char *src_base;
4888 int *charbuf = coding->charbuf + coding->charbuf_used;
4889 /* We may produce one charset annocation in one loop and one more at
4890 the end. */
4891 int *charbuf_end
4892 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 2);
4893 int consumed_chars = 0, consumed_chars_base;
4894 int multibytep = coding->src_multibyte;
4895 struct charset *charset_roman, *charset_big5;
4896 Lisp_Object attrs, charset_list, val;
4897 int char_offset = coding->produced_char;
4898 int last_offset = char_offset;
4899 int last_id = charset_ascii;
4900 int eol_crlf =
4901 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
4902 int byte_after_cr = -1;
4903
4904 CODING_GET_INFO (coding, attrs, charset_list);
4905 val = charset_list;
4906 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4907 charset_big5 = CHARSET_FROM_ID (XINT (XCAR (val)));
4908
4909 while (1)
4910 {
4911 int c, c1;
4912 struct charset *charset;
4913
4914 src_base = src;
4915 consumed_chars_base = consumed_chars;
4916
4917 if (charbuf >= charbuf_end)
4918 {
4919 if (byte_after_cr >= 0)
4920 src_base--;
4921 break;
4922 }
4923
4924 if (byte_after_cr >= 0)
4925 c = byte_after_cr, byte_after_cr = -1;
4926 else
4927 ONE_MORE_BYTE (c);
4928
4929 if (c < 0)
4930 goto invalid_code;
4931 if (c < 0x80)
4932 {
4933 if (eol_crlf && c == '\r')
4934 ONE_MORE_BYTE (byte_after_cr);
4935 charset = charset_roman;
4936 }
4937 else
4938 {
4939 /* BIG5 -> Big5 */
4940 if (c < 0xA1 || c > 0xFE)
4941 goto invalid_code;
4942 ONE_MORE_BYTE (c1);
4943 if (c1 < 0x40 || (c1 > 0x7E && c1 < 0xA1) || c1 > 0xFE)
4944 goto invalid_code;
4945 c = c << 8 | c1;
4946 charset = charset_big5;
4947 }
4948 if (charset->id != charset_ascii
4949 && last_id != charset->id)
4950 {
4951 if (last_id != charset_ascii)
4952 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4953 last_id = charset->id;
4954 last_offset = char_offset;
4955 }
4956 CODING_DECODE_CHAR (coding, src, src_base, src_end, charset, c, c);
4957 *charbuf++ = c;
4958 char_offset++;
4959 continue;
4960
4961 invalid_code:
4962 src = src_base;
4963 consumed_chars = consumed_chars_base;
4964 ONE_MORE_BYTE (c);
4965 *charbuf++ = c < 0 ? -c : BYTE8_TO_CHAR (c);
4966 char_offset++;
4967 coding->errors++;
4968 }
4969
4970 no_more_source:
4971 if (last_id != charset_ascii)
4972 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4973 coding->consumed_char += consumed_chars_base;
4974 coding->consumed = src_base - coding->source;
4975 coding->charbuf_used = charbuf - coding->charbuf;
4976 }
4977
4978 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions".
4979 This function can encode charsets `ascii', `katakana-jisx0201',
4980 `japanese-jisx0208', `chinese-big5-1', and `chinese-big5-2'. We
4981 are sure that all these charsets are registered as official charset
4982 (i.e. do not have extended leading-codes). Characters of other
4983 charsets are produced without any encoding. If SJIS_P is 1, encode
4984 SJIS text, else encode BIG5 text. */
4985
4986 static int
4987 encode_coding_sjis (coding)
4988 struct coding_system *coding;
4989 {
4990 int multibytep = coding->dst_multibyte;
4991 int *charbuf = coding->charbuf;
4992 int *charbuf_end = charbuf + coding->charbuf_used;
4993 unsigned char *dst = coding->destination + coding->produced;
4994 unsigned char *dst_end = coding->destination + coding->dst_bytes;
4995 int safe_room = 4;
4996 int produced_chars = 0;
4997 Lisp_Object attrs, charset_list, val;
4998 int ascii_compatible;
4999 struct charset *charset_roman, *charset_kanji, *charset_kana;
5000 struct charset *charset_kanji2;
5001 int c;
5002
5003 CODING_GET_INFO (coding, attrs, charset_list);
5004 val = charset_list;
5005 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
5006 charset_kana = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
5007 charset_kanji = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
5008 charset_kanji2 = NILP (val) ? NULL : CHARSET_FROM_ID (XINT (XCAR (val)));
5009
5010 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
5011
5012 while (charbuf < charbuf_end)
5013 {
5014 ASSURE_DESTINATION (safe_room);
5015 c = *charbuf++;
5016 /* Now encode the character C. */
5017 if (ASCII_CHAR_P (c) && ascii_compatible)
5018 EMIT_ONE_ASCII_BYTE (c);
5019 else if (CHAR_BYTE8_P (c))
5020 {
5021 c = CHAR_TO_BYTE8 (c);
5022 EMIT_ONE_BYTE (c);
5023 }
5024 else
5025 {
5026 unsigned code;
5027 struct charset *charset = char_charset (c, charset_list, &code);
5028
5029 if (!charset)
5030 {
5031 if (coding->mode & CODING_MODE_SAFE_ENCODING)
5032 {
5033 code = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
5034 charset = CHARSET_FROM_ID (charset_ascii);
5035 }
5036 else
5037 {
5038 c = coding->default_char;
5039 charset = char_charset (c, charset_list, &code);
5040 }
5041 }
5042 if (code == CHARSET_INVALID_CODE (charset))
5043 abort ();
5044 if (charset == charset_kanji)
5045 {
5046 int c1, c2;
5047 JIS_TO_SJIS (code);
5048 c1 = code >> 8, c2 = code & 0xFF;
5049 EMIT_TWO_BYTES (c1, c2);
5050 }
5051 else if (charset == charset_kana)
5052 EMIT_ONE_BYTE (code | 0x80);
5053 else if (charset_kanji2 && charset == charset_kanji2)
5054 {
5055 int c1, c2;
5056
5057 c1 = code >> 8;
5058 if (c1 == 0x21 || (c1 >= 0x23 && c1 < 0x25)
5059 || (c1 >= 0x2C && c1 <= 0x2F) || c1 >= 0x6E)
5060 {
5061 JIS_TO_SJIS2 (code);
5062 c1 = code >> 8, c2 = code & 0xFF;
5063 EMIT_TWO_BYTES (c1, c2);
5064 }
5065 else
5066 EMIT_ONE_ASCII_BYTE (code & 0x7F);
5067 }
5068 else
5069 EMIT_ONE_ASCII_BYTE (code & 0x7F);
5070 }
5071 }
5072 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5073 coding->produced_char += produced_chars;
5074 coding->produced = dst - coding->destination;
5075 return 0;
5076 }
5077
5078 static int
5079 encode_coding_big5 (coding)
5080 struct coding_system *coding;
5081 {
5082 int multibytep = coding->dst_multibyte;
5083 int *charbuf = coding->charbuf;
5084 int *charbuf_end = charbuf + coding->charbuf_used;
5085 unsigned char *dst = coding->destination + coding->produced;
5086 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5087 int safe_room = 4;
5088 int produced_chars = 0;
5089 Lisp_Object attrs, charset_list, val;
5090 int ascii_compatible;
5091 struct charset *charset_roman, *charset_big5;
5092 int c;
5093
5094 CODING_GET_INFO (coding, attrs, charset_list);
5095 val = charset_list;
5096 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
5097 charset_big5 = CHARSET_FROM_ID (XINT (XCAR (val)));
5098 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
5099
5100 while (charbuf < charbuf_end)
5101 {
5102 ASSURE_DESTINATION (safe_room);
5103 c = *charbuf++;
5104 /* Now encode the character C. */
5105 if (ASCII_CHAR_P (c) && ascii_compatible)
5106 EMIT_ONE_ASCII_BYTE (c);
5107 else if (CHAR_BYTE8_P (c))
5108 {
5109 c = CHAR_TO_BYTE8 (c);
5110 EMIT_ONE_BYTE (c);
5111 }
5112 else
5113 {
5114 unsigned code;
5115 struct charset *charset = char_charset (c, charset_list, &code);
5116
5117 if (! charset)
5118 {
5119 if (coding->mode & CODING_MODE_SAFE_ENCODING)
5120 {
5121 code = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
5122 charset = CHARSET_FROM_ID (charset_ascii);
5123 }
5124 else
5125 {
5126 c = coding->default_char;
5127 charset = char_charset (c, charset_list, &code);
5128 }
5129 }
5130 if (code == CHARSET_INVALID_CODE (charset))
5131 abort ();
5132 if (charset == charset_big5)
5133 {
5134 int c1, c2;
5135
5136 c1 = code >> 8, c2 = code & 0xFF;
5137 EMIT_TWO_BYTES (c1, c2);
5138 }
5139 else
5140 EMIT_ONE_ASCII_BYTE (code & 0x7F);
5141 }
5142 }
5143 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5144 coding->produced_char += produced_chars;
5145 coding->produced = dst - coding->destination;
5146 return 0;
5147 }
5148
5149 \f
5150 /*** 10. CCL handlers ***/
5151
5152 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
5153 Check if a text is encoded in a coding system of which
5154 encoder/decoder are written in CCL program. If it is, return
5155 CATEGORY_MASK_CCL, else return 0. */
5156
5157 static int
5158 detect_coding_ccl (coding, detect_info)
5159 struct coding_system *coding;
5160 struct coding_detection_info *detect_info;
5161 {
5162 const unsigned char *src = coding->source, *src_base;
5163 const unsigned char *src_end = coding->source + coding->src_bytes;
5164 int multibytep = coding->src_multibyte;
5165 int consumed_chars = 0;
5166 int found = 0;
5167 unsigned char *valids;
5168 int head_ascii = coding->head_ascii;
5169 Lisp_Object attrs;
5170
5171 detect_info->checked |= CATEGORY_MASK_CCL;
5172
5173 coding = &coding_categories[coding_category_ccl];
5174 valids = CODING_CCL_VALIDS (coding);
5175 attrs = CODING_ID_ATTRS (coding->id);
5176 if (! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
5177 src += head_ascii;
5178
5179 while (1)
5180 {
5181 int c;
5182
5183 src_base = src;
5184 ONE_MORE_BYTE (c);
5185 if (c < 0 || ! valids[c])
5186 break;
5187 if ((valids[c] > 1))
5188 found = CATEGORY_MASK_CCL;
5189 }
5190 detect_info->rejected |= CATEGORY_MASK_CCL;
5191 return 0;
5192
5193 no_more_source:
5194 detect_info->found |= found;
5195 return 1;
5196 }
5197
5198 static void
5199 decode_coding_ccl (coding)
5200 struct coding_system *coding;
5201 {
5202 const unsigned char *src = coding->source + coding->consumed;
5203 const unsigned char *src_end = coding->source + coding->src_bytes;
5204 int *charbuf = coding->charbuf + coding->charbuf_used;
5205 int *charbuf_end = coding->charbuf + coding->charbuf_size;
5206 int consumed_chars = 0;
5207 int multibytep = coding->src_multibyte;
5208 struct ccl_program ccl;
5209 int source_charbuf[1024];
5210 int source_byteidx[1024];
5211 Lisp_Object attrs, charset_list;
5212
5213 CODING_GET_INFO (coding, attrs, charset_list);
5214 setup_ccl_program (&ccl, CODING_CCL_DECODER (coding));
5215
5216 while (src < src_end)
5217 {
5218 const unsigned char *p = src;
5219 int *source, *source_end;
5220 int i = 0;
5221
5222 if (multibytep)
5223 while (i < 1024 && p < src_end)
5224 {
5225 source_byteidx[i] = p - src;
5226 source_charbuf[i++] = STRING_CHAR_ADVANCE (p);
5227 }
5228 else
5229 while (i < 1024 && p < src_end)
5230 source_charbuf[i++] = *p++;
5231
5232 if (p == src_end && coding->mode & CODING_MODE_LAST_BLOCK)
5233 ccl.last_block = 1;
5234
5235 source = source_charbuf;
5236 source_end = source + i;
5237 while (source < source_end)
5238 {
5239 ccl_driver (&ccl, source, charbuf,
5240 source_end - source, charbuf_end - charbuf,
5241 charset_list);
5242 source += ccl.consumed;
5243 charbuf += ccl.produced;
5244 if (ccl.status != CCL_STAT_SUSPEND_BY_DST)
5245 break;
5246 }
5247 if (source < source_end)
5248 src += source_byteidx[source - source_charbuf];
5249 else
5250 src = p;
5251 consumed_chars += source - source_charbuf;
5252
5253 if (ccl.status != CCL_STAT_SUSPEND_BY_SRC
5254 && ccl.status != CODING_RESULT_INSUFFICIENT_SRC)
5255 break;
5256 }
5257
5258 switch (ccl.status)
5259 {
5260 case CCL_STAT_SUSPEND_BY_SRC:
5261 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_SRC);
5262 break;
5263 case CCL_STAT_SUSPEND_BY_DST:
5264 break;
5265 case CCL_STAT_QUIT:
5266 case CCL_STAT_INVALID_CMD:
5267 record_conversion_result (coding, CODING_RESULT_INTERRUPT);
5268 break;
5269 default:
5270 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5271 break;
5272 }
5273 coding->consumed_char += consumed_chars;
5274 coding->consumed = src - coding->source;
5275 coding->charbuf_used = charbuf - coding->charbuf;
5276 }
5277
5278 static int
5279 encode_coding_ccl (coding)
5280 struct coding_system *coding;
5281 {
5282 struct ccl_program ccl;
5283 int multibytep = coding->dst_multibyte;
5284 int *charbuf = coding->charbuf;
5285 int *charbuf_end = charbuf + coding->charbuf_used;
5286 unsigned char *dst = coding->destination + coding->produced;
5287 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5288 int destination_charbuf[1024];
5289 int i, produced_chars = 0;
5290 Lisp_Object attrs, charset_list;
5291
5292 CODING_GET_INFO (coding, attrs, charset_list);
5293 setup_ccl_program (&ccl, CODING_CCL_ENCODER (coding));
5294
5295 ccl.last_block = coding->mode & CODING_MODE_LAST_BLOCK;
5296 ccl.dst_multibyte = coding->dst_multibyte;
5297
5298 while (charbuf < charbuf_end)
5299 {
5300 ccl_driver (&ccl, charbuf, destination_charbuf,
5301 charbuf_end - charbuf, 1024, charset_list);
5302 if (multibytep)
5303 {
5304 ASSURE_DESTINATION (ccl.produced * 2);
5305 for (i = 0; i < ccl.produced; i++)
5306 EMIT_ONE_BYTE (destination_charbuf[i] & 0xFF);
5307 }
5308 else
5309 {
5310 ASSURE_DESTINATION (ccl.produced);
5311 for (i = 0; i < ccl.produced; i++)
5312 *dst++ = destination_charbuf[i] & 0xFF;
5313 produced_chars += ccl.produced;
5314 }
5315 charbuf += ccl.consumed;
5316 if (ccl.status == CCL_STAT_QUIT
5317 || ccl.status == CCL_STAT_INVALID_CMD)
5318 break;
5319 }
5320
5321 switch (ccl.status)
5322 {
5323 case CCL_STAT_SUSPEND_BY_SRC:
5324 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_SRC);
5325 break;
5326 case CCL_STAT_SUSPEND_BY_DST:
5327 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_DST);
5328 break;
5329 case CCL_STAT_QUIT:
5330 case CCL_STAT_INVALID_CMD:
5331 record_conversion_result (coding, CODING_RESULT_INTERRUPT);
5332 break;
5333 default:
5334 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5335 break;
5336 }
5337
5338 coding->produced_char += produced_chars;
5339 coding->produced = dst - coding->destination;
5340 return 0;
5341 }
5342
5343
5344 \f
5345 /*** 10, 11. no-conversion handlers ***/
5346
5347 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
5348
5349 static void
5350 decode_coding_raw_text (coding)
5351 struct coding_system *coding;
5352 {
5353 int eol_crlf =
5354 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
5355
5356 coding->chars_at_source = 1;
5357 coding->consumed_char = coding->src_chars;
5358 coding->consumed = coding->src_bytes;
5359 if (eol_crlf && coding->source[coding->src_bytes - 1] == '\r')
5360 {
5361 coding->consumed_char--;
5362 coding->consumed--;
5363 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_SRC);
5364 }
5365 else
5366 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5367 }
5368
5369 static int
5370 encode_coding_raw_text (coding)
5371 struct coding_system *coding;
5372 {
5373 int multibytep = coding->dst_multibyte;
5374 int *charbuf = coding->charbuf;
5375 int *charbuf_end = coding->charbuf + coding->charbuf_used;
5376 unsigned char *dst = coding->destination + coding->produced;
5377 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5378 int produced_chars = 0;
5379 int c;
5380
5381 if (multibytep)
5382 {
5383 int safe_room = MAX_MULTIBYTE_LENGTH * 2;
5384
5385 if (coding->src_multibyte)
5386 while (charbuf < charbuf_end)
5387 {
5388 ASSURE_DESTINATION (safe_room);
5389 c = *charbuf++;
5390 if (ASCII_CHAR_P (c))
5391 EMIT_ONE_ASCII_BYTE (c);
5392 else if (CHAR_BYTE8_P (c))
5393 {
5394 c = CHAR_TO_BYTE8 (c);
5395 EMIT_ONE_BYTE (c);
5396 }
5397 else
5398 {
5399 unsigned char str[MAX_MULTIBYTE_LENGTH], *p0 = str, *p1 = str;
5400
5401 CHAR_STRING_ADVANCE (c, p1);
5402 while (p0 < p1)
5403 {
5404 EMIT_ONE_BYTE (*p0);
5405 p0++;
5406 }
5407 }
5408 }
5409 else
5410 while (charbuf < charbuf_end)
5411 {
5412 ASSURE_DESTINATION (safe_room);
5413 c = *charbuf++;
5414 EMIT_ONE_BYTE (c);
5415 }
5416 }
5417 else
5418 {
5419 if (coding->src_multibyte)
5420 {
5421 int safe_room = MAX_MULTIBYTE_LENGTH;
5422
5423 while (charbuf < charbuf_end)
5424 {
5425 ASSURE_DESTINATION (safe_room);
5426 c = *charbuf++;
5427 if (ASCII_CHAR_P (c))
5428 *dst++ = c;
5429 else if (CHAR_BYTE8_P (c))
5430 *dst++ = CHAR_TO_BYTE8 (c);
5431 else
5432 CHAR_STRING_ADVANCE (c, dst);
5433 }
5434 }
5435 else
5436 {
5437 ASSURE_DESTINATION (charbuf_end - charbuf);
5438 while (charbuf < charbuf_end && dst < dst_end)
5439 *dst++ = *charbuf++;
5440 }
5441 produced_chars = dst - (coding->destination + coding->produced);
5442 }
5443 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5444 coding->produced_char += produced_chars;
5445 coding->produced = dst - coding->destination;
5446 return 0;
5447 }
5448
5449 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
5450 Check if a text is encoded in a charset-based coding system. If it
5451 is, return 1, else return 0. */
5452
5453 static int
5454 detect_coding_charset (coding, detect_info)
5455 struct coding_system *coding;
5456 struct coding_detection_info *detect_info;
5457 {
5458 const unsigned char *src = coding->source, *src_base;
5459 const unsigned char *src_end = coding->source + coding->src_bytes;
5460 int multibytep = coding->src_multibyte;
5461 int consumed_chars = 0;
5462 Lisp_Object attrs, valids, name;
5463 int found = 0;
5464 int head_ascii = coding->head_ascii;
5465 int check_latin_extra = 0;
5466
5467 detect_info->checked |= CATEGORY_MASK_CHARSET;
5468
5469 coding = &coding_categories[coding_category_charset];
5470 attrs = CODING_ID_ATTRS (coding->id);
5471 valids = AREF (attrs, coding_attr_charset_valids);
5472 name = CODING_ID_NAME (coding->id);
5473 if (strncmp ((char *) SDATA (SYMBOL_NAME (name)),
5474 "iso-8859-", sizeof ("iso-8859-") - 1) == 0
5475 || strncmp ((char *) SDATA (SYMBOL_NAME (name)),
5476 "iso-latin-", sizeof ("iso-latin-") - 1) == 0)
5477 check_latin_extra = 1;
5478
5479 if (! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
5480 src += head_ascii;
5481
5482 while (1)
5483 {
5484 int c;
5485 Lisp_Object val;
5486 struct charset *charset;
5487 int dim, idx;
5488
5489 src_base = src;
5490 ONE_MORE_BYTE (c);
5491 if (c < 0)
5492 continue;
5493 val = AREF (valids, c);
5494 if (NILP (val))
5495 break;
5496 if (c >= 0x80)
5497 {
5498 if (c < 0xA0
5499 && check_latin_extra
5500 && (!VECTORP (Vlatin_extra_code_table)
5501 || NILP (XVECTOR (Vlatin_extra_code_table)->contents[c])))
5502 break;
5503 found = CATEGORY_MASK_CHARSET;
5504 }
5505 if (INTEGERP (val))
5506 {
5507 charset = CHARSET_FROM_ID (XFASTINT (val));
5508 dim = CHARSET_DIMENSION (charset);
5509 for (idx = 1; idx < dim; idx++)
5510 {
5511 if (src == src_end)
5512 goto too_short;
5513 ONE_MORE_BYTE (c);
5514 if (c < charset->code_space[(dim - 1 - idx) * 2]
5515 || c > charset->code_space[(dim - 1 - idx) * 2 + 1])
5516 break;
5517 }
5518 if (idx < dim)
5519 break;
5520 }
5521 else
5522 {
5523 idx = 1;
5524 for (; CONSP (val); val = XCDR (val))
5525 {
5526 charset = CHARSET_FROM_ID (XFASTINT (XCAR (val)));
5527 dim = CHARSET_DIMENSION (charset);
5528 while (idx < dim)
5529 {
5530 if (src == src_end)
5531 goto too_short;
5532 ONE_MORE_BYTE (c);
5533 if (c < charset->code_space[(dim - 1 - idx) * 4]
5534 || c > charset->code_space[(dim - 1 - idx) * 4 + 1])
5535 break;
5536 idx++;
5537 }
5538 if (idx == dim)
5539 {
5540 val = Qnil;
5541 break;
5542 }
5543 }
5544 if (CONSP (val))
5545 break;
5546 }
5547 }
5548 too_short:
5549 detect_info->rejected |= CATEGORY_MASK_CHARSET;
5550 return 0;
5551
5552 no_more_source:
5553 detect_info->found |= found;
5554 return 1;
5555 }
5556
5557 static void
5558 decode_coding_charset (coding)
5559 struct coding_system *coding;
5560 {
5561 const unsigned char *src = coding->source + coding->consumed;
5562 const unsigned char *src_end = coding->source + coding->src_bytes;
5563 const unsigned char *src_base;
5564 int *charbuf = coding->charbuf + coding->charbuf_used;
5565 /* We may produce one charset annocation in one loop and one more at
5566 the end. */
5567 int *charbuf_end
5568 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 2);
5569 int consumed_chars = 0, consumed_chars_base;
5570 int multibytep = coding->src_multibyte;
5571 Lisp_Object attrs, charset_list, valids;
5572 int char_offset = coding->produced_char;
5573 int last_offset = char_offset;
5574 int last_id = charset_ascii;
5575 int eol_crlf =
5576 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
5577 int byte_after_cr = -1;
5578
5579 CODING_GET_INFO (coding, attrs, charset_list);
5580 valids = AREF (attrs, coding_attr_charset_valids);
5581
5582 while (1)
5583 {
5584 int c;
5585 Lisp_Object val;
5586 struct charset *charset;
5587 int dim;
5588 int len = 1;
5589 unsigned code;
5590
5591 src_base = src;
5592 consumed_chars_base = consumed_chars;
5593
5594 if (charbuf >= charbuf_end)
5595 {
5596 if (byte_after_cr >= 0)
5597 src_base--;
5598 break;
5599 }
5600
5601 if (byte_after_cr >= 0)
5602 {
5603 c = byte_after_cr;
5604 byte_after_cr = -1;
5605 }
5606 else
5607 {
5608 ONE_MORE_BYTE (c);
5609 if (eol_crlf && c == '\r')
5610 ONE_MORE_BYTE (byte_after_cr);
5611 }
5612 if (c < 0)
5613 goto invalid_code;
5614 code = c;
5615
5616 val = AREF (valids, c);
5617 if (! INTEGERP (val) && ! CONSP (val))
5618 goto invalid_code;
5619 if (INTEGERP (val))
5620 {
5621 charset = CHARSET_FROM_ID (XFASTINT (val));
5622 dim = CHARSET_DIMENSION (charset);
5623 while (len < dim)
5624 {
5625 ONE_MORE_BYTE (c);
5626 code = (code << 8) | c;
5627 len++;
5628 }
5629 CODING_DECODE_CHAR (coding, src, src_base, src_end,
5630 charset, code, c);
5631 }
5632 else
5633 {
5634 /* VAL is a list of charset IDs. It is assured that the
5635 list is sorted by charset dimensions (smaller one
5636 comes first). */
5637 while (CONSP (val))
5638 {
5639 charset = CHARSET_FROM_ID (XFASTINT (XCAR (val)));
5640 dim = CHARSET_DIMENSION (charset);
5641 while (len < dim)
5642 {
5643 ONE_MORE_BYTE (c);
5644 code = (code << 8) | c;
5645 len++;
5646 }
5647 CODING_DECODE_CHAR (coding, src, src_base,
5648 src_end, charset, code, c);
5649 if (c >= 0)
5650 break;
5651 val = XCDR (val);
5652 }
5653 }
5654 if (c < 0)
5655 goto invalid_code;
5656 if (charset->id != charset_ascii
5657 && last_id != charset->id)
5658 {
5659 if (last_id != charset_ascii)
5660 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
5661 last_id = charset->id;
5662 last_offset = char_offset;
5663 }
5664
5665 *charbuf++ = c;
5666 char_offset++;
5667 continue;
5668
5669 invalid_code:
5670 src = src_base;
5671 consumed_chars = consumed_chars_base;
5672 ONE_MORE_BYTE (c);
5673 *charbuf++ = c < 0 ? -c : ASCII_BYTE_P (c) ? c : BYTE8_TO_CHAR (c);
5674 char_offset++;
5675 coding->errors++;
5676 }
5677
5678 no_more_source:
5679 if (last_id != charset_ascii)
5680 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
5681 coding->consumed_char += consumed_chars_base;
5682 coding->consumed = src_base - coding->source;
5683 coding->charbuf_used = charbuf - coding->charbuf;
5684 }
5685
5686 static int
5687 encode_coding_charset (coding)
5688 struct coding_system *coding;
5689 {
5690 int multibytep = coding->dst_multibyte;
5691 int *charbuf = coding->charbuf;
5692 int *charbuf_end = charbuf + coding->charbuf_used;
5693 unsigned char *dst = coding->destination + coding->produced;
5694 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5695 int safe_room = MAX_MULTIBYTE_LENGTH;
5696 int produced_chars = 0;
5697 Lisp_Object attrs, charset_list;
5698 int ascii_compatible;
5699 int c;
5700
5701 CODING_GET_INFO (coding, attrs, charset_list);
5702 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
5703
5704 while (charbuf < charbuf_end)
5705 {
5706 struct charset *charset;
5707 unsigned code;
5708
5709 ASSURE_DESTINATION (safe_room);
5710 c = *charbuf++;
5711 if (ascii_compatible && ASCII_CHAR_P (c))
5712 EMIT_ONE_ASCII_BYTE (c);
5713 else if (CHAR_BYTE8_P (c))
5714 {
5715 c = CHAR_TO_BYTE8 (c);
5716 EMIT_ONE_BYTE (c);
5717 }
5718 else
5719 {
5720 charset = char_charset (c, charset_list, &code);
5721 if (charset)
5722 {
5723 if (CHARSET_DIMENSION (charset) == 1)
5724 EMIT_ONE_BYTE (code);
5725 else if (CHARSET_DIMENSION (charset) == 2)
5726 EMIT_TWO_BYTES (code >> 8, code & 0xFF);
5727 else if (CHARSET_DIMENSION (charset) == 3)
5728 EMIT_THREE_BYTES (code >> 16, (code >> 8) & 0xFF, code & 0xFF);
5729 else
5730 EMIT_FOUR_BYTES (code >> 24, (code >> 16) & 0xFF,
5731 (code >> 8) & 0xFF, code & 0xFF);
5732 }
5733 else
5734 {
5735 if (coding->mode & CODING_MODE_SAFE_ENCODING)
5736 c = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
5737 else
5738 c = coding->default_char;
5739 EMIT_ONE_BYTE (c);
5740 }
5741 }
5742 }
5743
5744 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5745 coding->produced_char += produced_chars;
5746 coding->produced = dst - coding->destination;
5747 return 0;
5748 }
5749
5750 \f
5751 /*** 7. C library functions ***/
5752
5753 /* Setup coding context CODING from information about CODING_SYSTEM.
5754 If CODING_SYSTEM is nil, `no-conversion' is assumed. If
5755 CODING_SYSTEM is invalid, signal an error. */
5756
5757 void
5758 setup_coding_system (coding_system, coding)
5759 Lisp_Object coding_system;
5760 struct coding_system *coding;
5761 {
5762 Lisp_Object attrs;
5763 Lisp_Object eol_type;
5764 Lisp_Object coding_type;
5765 Lisp_Object val;
5766
5767 if (NILP (coding_system))
5768 coding_system = Qundecided;
5769
5770 CHECK_CODING_SYSTEM_GET_ID (coding_system, coding->id);
5771
5772 attrs = CODING_ID_ATTRS (coding->id);
5773 eol_type = inhibit_eol_conversion ? Qunix : CODING_ID_EOL_TYPE (coding->id);
5774
5775 coding->mode = 0;
5776 coding->head_ascii = -1;
5777 if (VECTORP (eol_type))
5778 coding->common_flags = (CODING_REQUIRE_DECODING_MASK
5779 | CODING_REQUIRE_DETECTION_MASK);
5780 else if (! EQ (eol_type, Qunix))
5781 coding->common_flags = (CODING_REQUIRE_DECODING_MASK
5782 | CODING_REQUIRE_ENCODING_MASK);
5783 else
5784 coding->common_flags = 0;
5785 if (! NILP (CODING_ATTR_POST_READ (attrs)))
5786 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
5787 if (! NILP (CODING_ATTR_PRE_WRITE (attrs)))
5788 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
5789 if (! NILP (CODING_ATTR_FOR_UNIBYTE (attrs)))
5790 coding->common_flags |= CODING_FOR_UNIBYTE_MASK;
5791
5792 val = CODING_ATTR_SAFE_CHARSETS (attrs);
5793 coding->max_charset_id = SCHARS (val) - 1;
5794 coding->safe_charsets = SDATA (val);
5795 coding->default_char = XINT (CODING_ATTR_DEFAULT_CHAR (attrs));
5796 coding->carryover_bytes = 0;
5797
5798 coding_type = CODING_ATTR_TYPE (attrs);
5799 if (EQ (coding_type, Qundecided))
5800 {
5801 coding->detector = NULL;
5802 coding->decoder = decode_coding_raw_text;
5803 coding->encoder = encode_coding_raw_text;
5804 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
5805 }
5806 else if (EQ (coding_type, Qiso_2022))
5807 {
5808 int i;
5809 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
5810
5811 /* Invoke graphic register 0 to plane 0. */
5812 CODING_ISO_INVOCATION (coding, 0) = 0;
5813 /* Invoke graphic register 1 to plane 1 if we can use 8-bit. */
5814 CODING_ISO_INVOCATION (coding, 1)
5815 = (flags & CODING_ISO_FLAG_SEVEN_BITS ? -1 : 1);
5816 /* Setup the initial status of designation. */
5817 for (i = 0; i < 4; i++)
5818 CODING_ISO_DESIGNATION (coding, i) = CODING_ISO_INITIAL (coding, i);
5819 /* Not single shifting initially. */
5820 CODING_ISO_SINGLE_SHIFTING (coding) = 0;
5821 /* Beginning of buffer should also be regarded as bol. */
5822 CODING_ISO_BOL (coding) = 1;
5823 coding->detector = detect_coding_iso_2022;
5824 coding->decoder = decode_coding_iso_2022;
5825 coding->encoder = encode_coding_iso_2022;
5826 if (flags & CODING_ISO_FLAG_SAFE)
5827 coding->mode |= CODING_MODE_SAFE_ENCODING;
5828 coding->common_flags
5829 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK
5830 | CODING_REQUIRE_FLUSHING_MASK);
5831 if (flags & CODING_ISO_FLAG_COMPOSITION)
5832 coding->common_flags |= CODING_ANNOTATE_COMPOSITION_MASK;
5833 if (flags & CODING_ISO_FLAG_DESIGNATION)
5834 coding->common_flags |= CODING_ANNOTATE_CHARSET_MASK;
5835 if (flags & CODING_ISO_FLAG_FULL_SUPPORT)
5836 {
5837 setup_iso_safe_charsets (attrs);
5838 val = CODING_ATTR_SAFE_CHARSETS (attrs);
5839 coding->max_charset_id = SCHARS (val) - 1;
5840 coding->safe_charsets = SDATA (val);
5841 }
5842 CODING_ISO_FLAGS (coding) = flags;
5843 CODING_ISO_CMP_STATUS (coding)->state = COMPOSING_NO;
5844 CODING_ISO_CMP_STATUS (coding)->method = COMPOSITION_NO;
5845 CODING_ISO_EXTSEGMENT_LEN (coding) = 0;
5846 CODING_ISO_EMBEDDED_UTF_8 (coding) = 0;
5847 }
5848 else if (EQ (coding_type, Qcharset))
5849 {
5850 coding->detector = detect_coding_charset;
5851 coding->decoder = decode_coding_charset;
5852 coding->encoder = encode_coding_charset;
5853 coding->common_flags
5854 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5855 }
5856 else if (EQ (coding_type, Qutf_8))
5857 {
5858 val = AREF (attrs, coding_attr_utf_bom);
5859 CODING_UTF_8_BOM (coding) = (CONSP (val) ? utf_detect_bom
5860 : EQ (val, Qt) ? utf_with_bom
5861 : utf_without_bom);
5862 coding->detector = detect_coding_utf_8;
5863 coding->decoder = decode_coding_utf_8;
5864 coding->encoder = encode_coding_utf_8;
5865 coding->common_flags
5866 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5867 if (CODING_UTF_8_BOM (coding) == utf_detect_bom)
5868 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
5869 }
5870 else if (EQ (coding_type, Qutf_16))
5871 {
5872 val = AREF (attrs, coding_attr_utf_bom);
5873 CODING_UTF_16_BOM (coding) = (CONSP (val) ? utf_detect_bom
5874 : EQ (val, Qt) ? utf_with_bom
5875 : utf_without_bom);
5876 val = AREF (attrs, coding_attr_utf_16_endian);
5877 CODING_UTF_16_ENDIAN (coding) = (EQ (val, Qbig) ? utf_16_big_endian
5878 : utf_16_little_endian);
5879 CODING_UTF_16_SURROGATE (coding) = 0;
5880 coding->detector = detect_coding_utf_16;
5881 coding->decoder = decode_coding_utf_16;
5882 coding->encoder = encode_coding_utf_16;
5883 coding->common_flags
5884 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5885 if (CODING_UTF_16_BOM (coding) == utf_detect_bom)
5886 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
5887 }
5888 else if (EQ (coding_type, Qccl))
5889 {
5890 coding->detector = detect_coding_ccl;
5891 coding->decoder = decode_coding_ccl;
5892 coding->encoder = encode_coding_ccl;
5893 coding->common_flags
5894 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK
5895 | CODING_REQUIRE_FLUSHING_MASK);
5896 }
5897 else if (EQ (coding_type, Qemacs_mule))
5898 {
5899 coding->detector = detect_coding_emacs_mule;
5900 coding->decoder = decode_coding_emacs_mule;
5901 coding->encoder = encode_coding_emacs_mule;
5902 coding->common_flags
5903 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5904 coding->spec.emacs_mule.full_support = 1;
5905 if (! NILP (AREF (attrs, coding_attr_emacs_mule_full))
5906 && ! EQ (CODING_ATTR_CHARSET_LIST (attrs), Vemacs_mule_charset_list))
5907 {
5908 Lisp_Object tail, safe_charsets;
5909 int max_charset_id = 0;
5910
5911 for (tail = Vemacs_mule_charset_list; CONSP (tail);
5912 tail = XCDR (tail))
5913 if (max_charset_id < XFASTINT (XCAR (tail)))
5914 max_charset_id = XFASTINT (XCAR (tail));
5915 safe_charsets = make_uninit_string (max_charset_id + 1);
5916 memset (SDATA (safe_charsets), 255, max_charset_id + 1);
5917 for (tail = Vemacs_mule_charset_list; CONSP (tail);
5918 tail = XCDR (tail))
5919 SSET (safe_charsets, XFASTINT (XCAR (tail)), 0);
5920 coding->max_charset_id = max_charset_id;
5921 coding->safe_charsets = SDATA (safe_charsets);
5922 coding->spec.emacs_mule.full_support = 1;
5923 }
5924 coding->spec.emacs_mule.cmp_status.state = COMPOSING_NO;
5925 coding->spec.emacs_mule.cmp_status.method = COMPOSITION_NO;
5926 }
5927 else if (EQ (coding_type, Qshift_jis))
5928 {
5929 coding->detector = detect_coding_sjis;
5930 coding->decoder = decode_coding_sjis;
5931 coding->encoder = encode_coding_sjis;
5932 coding->common_flags
5933 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5934 }
5935 else if (EQ (coding_type, Qbig5))
5936 {
5937 coding->detector = detect_coding_big5;
5938 coding->decoder = decode_coding_big5;
5939 coding->encoder = encode_coding_big5;
5940 coding->common_flags
5941 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5942 }
5943 else /* EQ (coding_type, Qraw_text) */
5944 {
5945 coding->detector = NULL;
5946 coding->decoder = decode_coding_raw_text;
5947 coding->encoder = encode_coding_raw_text;
5948 if (! EQ (eol_type, Qunix))
5949 {
5950 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
5951 if (! VECTORP (eol_type))
5952 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
5953 }
5954
5955 }
5956
5957 return;
5958 }
5959
5960 /* Return a list of charsets supported by CODING. */
5961
5962 Lisp_Object
5963 coding_charset_list (coding)
5964 struct coding_system *coding;
5965 {
5966 Lisp_Object attrs, charset_list;
5967
5968 CODING_GET_INFO (coding, attrs, charset_list);
5969 if (EQ (CODING_ATTR_TYPE (attrs), Qiso_2022))
5970 {
5971 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
5972
5973 if (flags & CODING_ISO_FLAG_FULL_SUPPORT)
5974 charset_list = Viso_2022_charset_list;
5975 }
5976 else if (EQ (CODING_ATTR_TYPE (attrs), Qemacs_mule))
5977 {
5978 charset_list = Vemacs_mule_charset_list;
5979 }
5980 return charset_list;
5981 }
5982
5983
5984 /* Return a list of charsets supported by CODING-SYSTEM. */
5985
5986 Lisp_Object
5987 coding_system_charset_list (coding_system)
5988 Lisp_Object coding_system;
5989 {
5990 int id;
5991 Lisp_Object attrs, charset_list;
5992
5993 CHECK_CODING_SYSTEM_GET_ID (coding_system, id);
5994 attrs = CODING_ID_ATTRS (id);
5995
5996 if (EQ (CODING_ATTR_TYPE (attrs), Qiso_2022))
5997 {
5998 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
5999
6000 if (flags & CODING_ISO_FLAG_FULL_SUPPORT)
6001 charset_list = Viso_2022_charset_list;
6002 else
6003 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
6004 }
6005 else if (EQ (CODING_ATTR_TYPE (attrs), Qemacs_mule))
6006 {
6007 charset_list = Vemacs_mule_charset_list;
6008 }
6009 else
6010 {
6011 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
6012 }
6013 return charset_list;
6014 }
6015
6016
6017 /* Return raw-text or one of its subsidiaries that has the same
6018 eol_type as CODING-SYSTEM. */
6019
6020 Lisp_Object
6021 raw_text_coding_system (coding_system)
6022 Lisp_Object coding_system;
6023 {
6024 Lisp_Object spec, attrs;
6025 Lisp_Object eol_type, raw_text_eol_type;
6026
6027 if (NILP (coding_system))
6028 return Qraw_text;
6029 spec = CODING_SYSTEM_SPEC (coding_system);
6030 attrs = AREF (spec, 0);
6031
6032 if (EQ (CODING_ATTR_TYPE (attrs), Qraw_text))
6033 return coding_system;
6034
6035 eol_type = AREF (spec, 2);
6036 if (VECTORP (eol_type))
6037 return Qraw_text;
6038 spec = CODING_SYSTEM_SPEC (Qraw_text);
6039 raw_text_eol_type = AREF (spec, 2);
6040 return (EQ (eol_type, Qunix) ? AREF (raw_text_eol_type, 0)
6041 : EQ (eol_type, Qdos) ? AREF (raw_text_eol_type, 1)
6042 : AREF (raw_text_eol_type, 2));
6043 }
6044
6045
6046 /* If CODING_SYSTEM doesn't specify end-of-line format but PARENT
6047 does, return one of the subsidiary that has the same eol-spec as
6048 PARENT. Otherwise, return CODING_SYSTEM. If PARENT is nil,
6049 inherit end-of-line format from the system's setting
6050 (system_eol_type). */
6051
6052 Lisp_Object
6053 coding_inherit_eol_type (coding_system, parent)
6054 Lisp_Object coding_system, parent;
6055 {
6056 Lisp_Object spec, eol_type;
6057
6058 if (NILP (coding_system))
6059 coding_system = Qraw_text;
6060 spec = CODING_SYSTEM_SPEC (coding_system);
6061 eol_type = AREF (spec, 2);
6062 if (VECTORP (eol_type))
6063 {
6064 Lisp_Object parent_eol_type;
6065
6066 if (! NILP (parent))
6067 {
6068 Lisp_Object parent_spec;
6069
6070 parent_spec = CODING_SYSTEM_SPEC (parent);
6071 parent_eol_type = AREF (parent_spec, 2);
6072 }
6073 else
6074 parent_eol_type = system_eol_type;
6075 if (EQ (parent_eol_type, Qunix))
6076 coding_system = AREF (eol_type, 0);
6077 else if (EQ (parent_eol_type, Qdos))
6078 coding_system = AREF (eol_type, 1);
6079 else if (EQ (parent_eol_type, Qmac))
6080 coding_system = AREF (eol_type, 2);
6081 }
6082 return coding_system;
6083 }
6084
6085 /* Emacs has a mechanism to automatically detect a coding system if it
6086 is one of Emacs' internal format, ISO2022, SJIS, and BIG5. But,
6087 it's impossible to distinguish some coding systems accurately
6088 because they use the same range of codes. So, at first, coding
6089 systems are categorized into 7, those are:
6090
6091 o coding-category-emacs-mule
6092
6093 The category for a coding system which has the same code range
6094 as Emacs' internal format. Assigned the coding-system (Lisp
6095 symbol) `emacs-mule' by default.
6096
6097 o coding-category-sjis
6098
6099 The category for a coding system which has the same code range
6100 as SJIS. Assigned the coding-system (Lisp
6101 symbol) `japanese-shift-jis' by default.
6102
6103 o coding-category-iso-7
6104
6105 The category for a coding system which has the same code range
6106 as ISO2022 of 7-bit environment. This doesn't use any locking
6107 shift and single shift functions. This can encode/decode all
6108 charsets. Assigned the coding-system (Lisp symbol)
6109 `iso-2022-7bit' by default.
6110
6111 o coding-category-iso-7-tight
6112
6113 Same as coding-category-iso-7 except that this can
6114 encode/decode only the specified charsets.
6115
6116 o coding-category-iso-8-1
6117
6118 The category for a coding system which has the same code range
6119 as ISO2022 of 8-bit environment and graphic plane 1 used only
6120 for DIMENSION1 charset. This doesn't use any locking shift
6121 and single shift functions. Assigned the coding-system (Lisp
6122 symbol) `iso-latin-1' by default.
6123
6124 o coding-category-iso-8-2
6125
6126 The category for a coding system which has the same code range
6127 as ISO2022 of 8-bit environment and graphic plane 1 used only
6128 for DIMENSION2 charset. This doesn't use any locking shift
6129 and single shift functions. Assigned the coding-system (Lisp
6130 symbol) `japanese-iso-8bit' by default.
6131
6132 o coding-category-iso-7-else
6133
6134 The category for a coding system which has the same code range
6135 as ISO2022 of 7-bit environemnt but uses locking shift or
6136 single shift functions. Assigned the coding-system (Lisp
6137 symbol) `iso-2022-7bit-lock' by default.
6138
6139 o coding-category-iso-8-else
6140
6141 The category for a coding system which has the same code range
6142 as ISO2022 of 8-bit environemnt but uses locking shift or
6143 single shift functions. Assigned the coding-system (Lisp
6144 symbol) `iso-2022-8bit-ss2' by default.
6145
6146 o coding-category-big5
6147
6148 The category for a coding system which has the same code range
6149 as BIG5. Assigned the coding-system (Lisp symbol)
6150 `cn-big5' by default.
6151
6152 o coding-category-utf-8
6153
6154 The category for a coding system which has the same code range
6155 as UTF-8 (cf. RFC3629). Assigned the coding-system (Lisp
6156 symbol) `utf-8' by default.
6157
6158 o coding-category-utf-16-be
6159
6160 The category for a coding system in which a text has an
6161 Unicode signature (cf. Unicode Standard) in the order of BIG
6162 endian at the head. Assigned the coding-system (Lisp symbol)
6163 `utf-16-be' by default.
6164
6165 o coding-category-utf-16-le
6166
6167 The category for a coding system in which a text has an
6168 Unicode signature (cf. Unicode Standard) in the order of
6169 LITTLE endian at the head. Assigned the coding-system (Lisp
6170 symbol) `utf-16-le' by default.
6171
6172 o coding-category-ccl
6173
6174 The category for a coding system of which encoder/decoder is
6175 written in CCL programs. The default value is nil, i.e., no
6176 coding system is assigned.
6177
6178 o coding-category-binary
6179
6180 The category for a coding system not categorized in any of the
6181 above. Assigned the coding-system (Lisp symbol)
6182 `no-conversion' by default.
6183
6184 Each of them is a Lisp symbol and the value is an actual
6185 `coding-system's (this is also a Lisp symbol) assigned by a user.
6186 What Emacs does actually is to detect a category of coding system.
6187 Then, it uses a `coding-system' assigned to it. If Emacs can't
6188 decide only one possible category, it selects a category of the
6189 highest priority. Priorities of categories are also specified by a
6190 user in a Lisp variable `coding-category-list'.
6191
6192 */
6193
6194 #define EOL_SEEN_NONE 0
6195 #define EOL_SEEN_LF 1
6196 #define EOL_SEEN_CR 2
6197 #define EOL_SEEN_CRLF 4
6198
6199 /* Detect how end-of-line of a text of length SRC_BYTES pointed by
6200 SOURCE is encoded. If CATEGORY is one of
6201 coding_category_utf_16_XXXX, assume that CR and LF are encoded by
6202 two-byte, else they are encoded by one-byte.
6203
6204 Return one of EOL_SEEN_XXX. */
6205
6206 #define MAX_EOL_CHECK_COUNT 3
6207
6208 static int
6209 detect_eol (source, src_bytes, category)
6210 const unsigned char *source;
6211 EMACS_INT src_bytes;
6212 enum coding_category category;
6213 {
6214 const unsigned char *src = source, *src_end = src + src_bytes;
6215 unsigned char c;
6216 int total = 0;
6217 int eol_seen = EOL_SEEN_NONE;
6218
6219 if ((1 << category) & CATEGORY_MASK_UTF_16)
6220 {
6221 int msb, lsb;
6222
6223 msb = category == (coding_category_utf_16_le
6224 | coding_category_utf_16_le_nosig);
6225 lsb = 1 - msb;
6226
6227 while (src + 1 < src_end)
6228 {
6229 c = src[lsb];
6230 if (src[msb] == 0 && (c == '\n' || c == '\r'))
6231 {
6232 int this_eol;
6233
6234 if (c == '\n')
6235 this_eol = EOL_SEEN_LF;
6236 else if (src + 3 >= src_end
6237 || src[msb + 2] != 0
6238 || src[lsb + 2] != '\n')
6239 this_eol = EOL_SEEN_CR;
6240 else
6241 {
6242 this_eol = EOL_SEEN_CRLF;
6243 src += 2;
6244 }
6245
6246 if (eol_seen == EOL_SEEN_NONE)
6247 /* This is the first end-of-line. */
6248 eol_seen = this_eol;
6249 else if (eol_seen != this_eol)
6250 {
6251 /* The found type is different from what found before.
6252 Allow for stray ^M characters in DOS EOL files. */
6253 if (eol_seen == EOL_SEEN_CR && this_eol == EOL_SEEN_CRLF
6254 || eol_seen == EOL_SEEN_CRLF && this_eol == EOL_SEEN_CR)
6255 eol_seen = EOL_SEEN_CRLF;
6256 else
6257 {
6258 eol_seen = EOL_SEEN_LF;
6259 break;
6260 }
6261 }
6262 if (++total == MAX_EOL_CHECK_COUNT)
6263 break;
6264 }
6265 src += 2;
6266 }
6267 }
6268 else
6269 {
6270 while (src < src_end)
6271 {
6272 c = *src++;
6273 if (c == '\n' || c == '\r')
6274 {
6275 int this_eol;
6276
6277 if (c == '\n')
6278 this_eol = EOL_SEEN_LF;
6279 else if (src >= src_end || *src != '\n')
6280 this_eol = EOL_SEEN_CR;
6281 else
6282 this_eol = EOL_SEEN_CRLF, src++;
6283
6284 if (eol_seen == EOL_SEEN_NONE)
6285 /* This is the first end-of-line. */
6286 eol_seen = this_eol;
6287 else if (eol_seen != this_eol)
6288 {
6289 /* The found type is different from what found before.
6290 Allow for stray ^M characters in DOS EOL files. */
6291 if (eol_seen == EOL_SEEN_CR && this_eol == EOL_SEEN_CRLF
6292 || eol_seen == EOL_SEEN_CRLF && this_eol == EOL_SEEN_CR)
6293 eol_seen = EOL_SEEN_CRLF;
6294 else
6295 {
6296 eol_seen = EOL_SEEN_LF;
6297 break;
6298 }
6299 }
6300 if (++total == MAX_EOL_CHECK_COUNT)
6301 break;
6302 }
6303 }
6304 }
6305 return eol_seen;
6306 }
6307
6308
6309 static Lisp_Object
6310 adjust_coding_eol_type (coding, eol_seen)
6311 struct coding_system *coding;
6312 int eol_seen;
6313 {
6314 Lisp_Object eol_type;
6315
6316 eol_type = CODING_ID_EOL_TYPE (coding->id);
6317 if (eol_seen & EOL_SEEN_LF)
6318 {
6319 coding->id = CODING_SYSTEM_ID (AREF (eol_type, 0));
6320 eol_type = Qunix;
6321 }
6322 else if (eol_seen & EOL_SEEN_CRLF)
6323 {
6324 coding->id = CODING_SYSTEM_ID (AREF (eol_type, 1));
6325 eol_type = Qdos;
6326 }
6327 else if (eol_seen & EOL_SEEN_CR)
6328 {
6329 coding->id = CODING_SYSTEM_ID (AREF (eol_type, 2));
6330 eol_type = Qmac;
6331 }
6332 return eol_type;
6333 }
6334
6335 /* Detect how a text specified in CODING is encoded. If a coding
6336 system is detected, update fields of CODING by the detected coding
6337 system. */
6338
6339 void
6340 detect_coding (coding)
6341 struct coding_system *coding;
6342 {
6343 const unsigned char *src, *src_end;
6344 int saved_mode = coding->mode;
6345
6346 coding->consumed = coding->consumed_char = 0;
6347 coding->produced = coding->produced_char = 0;
6348 coding_set_source (coding);
6349
6350 src_end = coding->source + coding->src_bytes;
6351 coding->head_ascii = 0;
6352
6353 /* If we have not yet decided the text encoding type, detect it
6354 now. */
6355 if (EQ (CODING_ATTR_TYPE (CODING_ID_ATTRS (coding->id)), Qundecided))
6356 {
6357 int c, i;
6358 struct coding_detection_info detect_info;
6359 int null_byte_found = 0, eight_bit_found = 0;
6360
6361 detect_info.checked = detect_info.found = detect_info.rejected = 0;
6362 for (src = coding->source; src < src_end; src++)
6363 {
6364 c = *src;
6365 if (c & 0x80)
6366 {
6367 eight_bit_found = 1;
6368 if (null_byte_found)
6369 break;
6370 }
6371 else if (c < 0x20)
6372 {
6373 if ((c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
6374 && ! inhibit_iso_escape_detection
6375 && ! detect_info.checked)
6376 {
6377 if (detect_coding_iso_2022 (coding, &detect_info))
6378 {
6379 /* We have scanned the whole data. */
6380 if (! (detect_info.rejected & CATEGORY_MASK_ISO_7_ELSE))
6381 {
6382 /* We didn't find an 8-bit code. We may
6383 have found a null-byte, but it's very
6384 rare that a binary file confirm to
6385 ISO-2022. */
6386 src = src_end;
6387 coding->head_ascii = src - coding->source;
6388 }
6389 detect_info.rejected |= ~CATEGORY_MASK_ISO_ESCAPE;
6390 break;
6391 }
6392 }
6393 else if (! c && !inhibit_null_byte_detection)
6394 {
6395 null_byte_found = 1;
6396 if (eight_bit_found)
6397 break;
6398 }
6399 if (! eight_bit_found)
6400 coding->head_ascii++;
6401 }
6402 else if (! eight_bit_found)
6403 coding->head_ascii++;
6404 }
6405
6406 if (null_byte_found || eight_bit_found
6407 || coding->head_ascii < coding->src_bytes
6408 || detect_info.found)
6409 {
6410 enum coding_category category;
6411 struct coding_system *this;
6412
6413 if (coding->head_ascii == coding->src_bytes)
6414 /* As all bytes are 7-bit, we can ignore non-ISO-2022 codings. */
6415 for (i = 0; i < coding_category_raw_text; i++)
6416 {
6417 category = coding_priorities[i];
6418 this = coding_categories + category;
6419 if (detect_info.found & (1 << category))
6420 break;
6421 }
6422 else
6423 {
6424 if (null_byte_found)
6425 {
6426 detect_info.checked |= ~CATEGORY_MASK_UTF_16;
6427 detect_info.rejected |= ~CATEGORY_MASK_UTF_16;
6428 }
6429 for (i = 0; i < coding_category_raw_text; i++)
6430 {
6431 category = coding_priorities[i];
6432 this = coding_categories + category;
6433 if (this->id < 0)
6434 {
6435 /* No coding system of this category is defined. */
6436 detect_info.rejected |= (1 << category);
6437 }
6438 else if (category >= coding_category_raw_text)
6439 continue;
6440 else if (detect_info.checked & (1 << category))
6441 {
6442 if (detect_info.found & (1 << category))
6443 break;
6444 }
6445 else if ((*(this->detector)) (coding, &detect_info)
6446 && detect_info.found & (1 << category))
6447 {
6448 if (category == coding_category_utf_16_auto)
6449 {
6450 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
6451 category = coding_category_utf_16_le;
6452 else
6453 category = coding_category_utf_16_be;
6454 }
6455 break;
6456 }
6457 }
6458 }
6459
6460 if (i < coding_category_raw_text)
6461 setup_coding_system (CODING_ID_NAME (this->id), coding);
6462 else if (null_byte_found)
6463 setup_coding_system (Qno_conversion, coding);
6464 else if ((detect_info.rejected & CATEGORY_MASK_ANY)
6465 == CATEGORY_MASK_ANY)
6466 setup_coding_system (Qraw_text, coding);
6467 else if (detect_info.rejected)
6468 for (i = 0; i < coding_category_raw_text; i++)
6469 if (! (detect_info.rejected & (1 << coding_priorities[i])))
6470 {
6471 this = coding_categories + coding_priorities[i];
6472 setup_coding_system (CODING_ID_NAME (this->id), coding);
6473 break;
6474 }
6475 }
6476 }
6477 else if (XINT (CODING_ATTR_CATEGORY (CODING_ID_ATTRS (coding->id)))
6478 == coding_category_utf_8_auto)
6479 {
6480 Lisp_Object coding_systems;
6481 struct coding_detection_info detect_info;
6482
6483 coding_systems
6484 = AREF (CODING_ID_ATTRS (coding->id), coding_attr_utf_bom);
6485 detect_info.found = detect_info.rejected = 0;
6486 coding->head_ascii = 0;
6487 if (CONSP (coding_systems)
6488 && detect_coding_utf_8 (coding, &detect_info))
6489 {
6490 if (detect_info.found & CATEGORY_MASK_UTF_8_SIG)
6491 setup_coding_system (XCAR (coding_systems), coding);
6492 else
6493 setup_coding_system (XCDR (coding_systems), coding);
6494 }
6495 }
6496 else if (XINT (CODING_ATTR_CATEGORY (CODING_ID_ATTRS (coding->id)))
6497 == coding_category_utf_16_auto)
6498 {
6499 Lisp_Object coding_systems;
6500 struct coding_detection_info detect_info;
6501
6502 coding_systems
6503 = AREF (CODING_ID_ATTRS (coding->id), coding_attr_utf_bom);
6504 detect_info.found = detect_info.rejected = 0;
6505 coding->head_ascii = 0;
6506 if (CONSP (coding_systems)
6507 && detect_coding_utf_16 (coding, &detect_info))
6508 {
6509 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
6510 setup_coding_system (XCAR (coding_systems), coding);
6511 else if (detect_info.found & CATEGORY_MASK_UTF_16_BE)
6512 setup_coding_system (XCDR (coding_systems), coding);
6513 }
6514 }
6515 coding->mode = saved_mode;
6516 }
6517
6518
6519 static void
6520 decode_eol (coding)
6521 struct coding_system *coding;
6522 {
6523 Lisp_Object eol_type;
6524 unsigned char *p, *pbeg, *pend;
6525
6526 eol_type = CODING_ID_EOL_TYPE (coding->id);
6527 if (EQ (eol_type, Qunix) || inhibit_eol_conversion)
6528 return;
6529
6530 if (NILP (coding->dst_object))
6531 pbeg = coding->destination;
6532 else
6533 pbeg = BYTE_POS_ADDR (coding->dst_pos_byte);
6534 pend = pbeg + coding->produced;
6535
6536 if (VECTORP (eol_type))
6537 {
6538 int eol_seen = EOL_SEEN_NONE;
6539
6540 for (p = pbeg; p < pend; p++)
6541 {
6542 if (*p == '\n')
6543 eol_seen |= EOL_SEEN_LF;
6544 else if (*p == '\r')
6545 {
6546 if (p + 1 < pend && *(p + 1) == '\n')
6547 {
6548 eol_seen |= EOL_SEEN_CRLF;
6549 p++;
6550 }
6551 else
6552 eol_seen |= EOL_SEEN_CR;
6553 }
6554 }
6555 /* Handle DOS-style EOLs in a file with stray ^M characters. */
6556 if ((eol_seen & EOL_SEEN_CRLF) != 0
6557 && (eol_seen & EOL_SEEN_CR) != 0
6558 && (eol_seen & EOL_SEEN_LF) == 0)
6559 eol_seen = EOL_SEEN_CRLF;
6560 else if (eol_seen != EOL_SEEN_NONE
6561 && eol_seen != EOL_SEEN_LF
6562 && eol_seen != EOL_SEEN_CRLF
6563 && eol_seen != EOL_SEEN_CR)
6564 eol_seen = EOL_SEEN_LF;
6565 if (eol_seen != EOL_SEEN_NONE)
6566 eol_type = adjust_coding_eol_type (coding, eol_seen);
6567 }
6568
6569 if (EQ (eol_type, Qmac))
6570 {
6571 for (p = pbeg; p < pend; p++)
6572 if (*p == '\r')
6573 *p = '\n';
6574 }
6575 else if (EQ (eol_type, Qdos))
6576 {
6577 int n = 0;
6578
6579 if (NILP (coding->dst_object))
6580 {
6581 /* Start deleting '\r' from the tail to minimize the memory
6582 movement. */
6583 for (p = pend - 2; p >= pbeg; p--)
6584 if (*p == '\r')
6585 {
6586 safe_bcopy ((char *) (p + 1), (char *) p, pend-- - p - 1);
6587 n++;
6588 }
6589 }
6590 else
6591 {
6592 int pos_byte = coding->dst_pos_byte;
6593 int pos = coding->dst_pos;
6594 int pos_end = pos + coding->produced_char - 1;
6595
6596 while (pos < pos_end)
6597 {
6598 p = BYTE_POS_ADDR (pos_byte);
6599 if (*p == '\r' && p[1] == '\n')
6600 {
6601 del_range_2 (pos, pos_byte, pos + 1, pos_byte + 1, 0);
6602 n++;
6603 pos_end--;
6604 }
6605 pos++;
6606 if (coding->dst_multibyte)
6607 pos_byte += BYTES_BY_CHAR_HEAD (*p);
6608 else
6609 pos_byte++;
6610 }
6611 }
6612 coding->produced -= n;
6613 coding->produced_char -= n;
6614 }
6615 }
6616
6617
6618 /* Return a translation table (or list of them) from coding system
6619 attribute vector ATTRS for encoding (ENCODEP is nonzero) or
6620 decoding (ENCODEP is zero). */
6621
6622 static Lisp_Object
6623 get_translation_table (attrs, encodep, max_lookup)
6624 Lisp_Object attrs;
6625 int encodep, *max_lookup;
6626 {
6627 Lisp_Object standard, translation_table;
6628 Lisp_Object val;
6629
6630 if (NILP (Venable_character_translation))
6631 {
6632 if (max_lookup)
6633 *max_lookup = 0;
6634 return Qnil;
6635 }
6636 if (encodep)
6637 translation_table = CODING_ATTR_ENCODE_TBL (attrs),
6638 standard = Vstandard_translation_table_for_encode;
6639 else
6640 translation_table = CODING_ATTR_DECODE_TBL (attrs),
6641 standard = Vstandard_translation_table_for_decode;
6642 if (NILP (translation_table))
6643 translation_table = standard;
6644 else
6645 {
6646 if (SYMBOLP (translation_table))
6647 translation_table = Fget (translation_table, Qtranslation_table);
6648 else if (CONSP (translation_table))
6649 {
6650 translation_table = Fcopy_sequence (translation_table);
6651 for (val = translation_table; CONSP (val); val = XCDR (val))
6652 if (SYMBOLP (XCAR (val)))
6653 XSETCAR (val, Fget (XCAR (val), Qtranslation_table));
6654 }
6655 if (CHAR_TABLE_P (standard))
6656 {
6657 if (CONSP (translation_table))
6658 translation_table = nconc2 (translation_table,
6659 Fcons (standard, Qnil));
6660 else
6661 translation_table = Fcons (translation_table,
6662 Fcons (standard, Qnil));
6663 }
6664 }
6665
6666 if (max_lookup)
6667 {
6668 *max_lookup = 1;
6669 if (CHAR_TABLE_P (translation_table)
6670 && CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (translation_table)) > 1)
6671 {
6672 val = XCHAR_TABLE (translation_table)->extras[1];
6673 if (NATNUMP (val) && *max_lookup < XFASTINT (val))
6674 *max_lookup = XFASTINT (val);
6675 }
6676 else if (CONSP (translation_table))
6677 {
6678 Lisp_Object tail, val;
6679
6680 for (tail = translation_table; CONSP (tail); tail = XCDR (tail))
6681 if (CHAR_TABLE_P (XCAR (tail))
6682 && CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (XCAR (tail))) > 1)
6683 {
6684 val = XCHAR_TABLE (XCAR (tail))->extras[1];
6685 if (NATNUMP (val) && *max_lookup < XFASTINT (val))
6686 *max_lookup = XFASTINT (val);
6687 }
6688 }
6689 }
6690 return translation_table;
6691 }
6692
6693 #define LOOKUP_TRANSLATION_TABLE(table, c, trans) \
6694 do { \
6695 trans = Qnil; \
6696 if (CHAR_TABLE_P (table)) \
6697 { \
6698 trans = CHAR_TABLE_REF (table, c); \
6699 if (CHARACTERP (trans)) \
6700 c = XFASTINT (trans), trans = Qnil; \
6701 } \
6702 else if (CONSP (table)) \
6703 { \
6704 Lisp_Object tail; \
6705 \
6706 for (tail = table; CONSP (tail); tail = XCDR (tail)) \
6707 if (CHAR_TABLE_P (XCAR (tail))) \
6708 { \
6709 trans = CHAR_TABLE_REF (XCAR (tail), c); \
6710 if (CHARACTERP (trans)) \
6711 c = XFASTINT (trans), trans = Qnil; \
6712 else if (! NILP (trans)) \
6713 break; \
6714 } \
6715 } \
6716 } while (0)
6717
6718
6719 /* Return a translation of character(s) at BUF according to TRANS.
6720 TRANS is TO-CHAR or ((FROM . TO) ...) where
6721 FROM = [FROM-CHAR ...], TO is TO-CHAR or [TO-CHAR ...].
6722 The return value is TO-CHAR or ([FROM-CHAR ...] . TO) if a
6723 translation is found, and Qnil if not found..
6724 If BUF is too short to lookup characters in FROM, return Qt. */
6725
6726 static Lisp_Object
6727 get_translation (trans, buf, buf_end)
6728 Lisp_Object trans;
6729 int *buf, *buf_end;
6730 {
6731
6732 if (INTEGERP (trans))
6733 return trans;
6734 for (; CONSP (trans); trans = XCDR (trans))
6735 {
6736 Lisp_Object val = XCAR (trans);
6737 Lisp_Object from = XCAR (val);
6738 int len = ASIZE (from);
6739 int i;
6740
6741 for (i = 0; i < len; i++)
6742 {
6743 if (buf + i == buf_end)
6744 return Qt;
6745 if (XINT (AREF (from, i)) != buf[i])
6746 break;
6747 }
6748 if (i == len)
6749 return val;
6750 }
6751 return Qnil;
6752 }
6753
6754
6755 static int
6756 produce_chars (coding, translation_table, last_block)
6757 struct coding_system *coding;
6758 Lisp_Object translation_table;
6759 int last_block;
6760 {
6761 unsigned char *dst = coding->destination + coding->produced;
6762 unsigned char *dst_end = coding->destination + coding->dst_bytes;
6763 EMACS_INT produced;
6764 EMACS_INT produced_chars = 0;
6765 int carryover = 0;
6766
6767 if (! coding->chars_at_source)
6768 {
6769 /* Source characters are in coding->charbuf. */
6770 int *buf = coding->charbuf;
6771 int *buf_end = buf + coding->charbuf_used;
6772
6773 if (EQ (coding->src_object, coding->dst_object))
6774 {
6775 coding_set_source (coding);
6776 dst_end = ((unsigned char *) coding->source) + coding->consumed;
6777 }
6778
6779 while (buf < buf_end)
6780 {
6781 int c = *buf, i;
6782
6783 if (c >= 0)
6784 {
6785 int from_nchars = 1, to_nchars = 1;
6786 Lisp_Object trans = Qnil;
6787
6788 LOOKUP_TRANSLATION_TABLE (translation_table, c, trans);
6789 if (! NILP (trans))
6790 {
6791 trans = get_translation (trans, buf, buf_end);
6792 if (INTEGERP (trans))
6793 c = XINT (trans);
6794 else if (CONSP (trans))
6795 {
6796 from_nchars = ASIZE (XCAR (trans));
6797 trans = XCDR (trans);
6798 if (INTEGERP (trans))
6799 c = XINT (trans);
6800 else
6801 {
6802 to_nchars = ASIZE (trans);
6803 c = XINT (AREF (trans, 0));
6804 }
6805 }
6806 else if (EQ (trans, Qt) && ! last_block)
6807 break;
6808 }
6809
6810 if (dst + MAX_MULTIBYTE_LENGTH * to_nchars > dst_end)
6811 {
6812 dst = alloc_destination (coding,
6813 buf_end - buf
6814 + MAX_MULTIBYTE_LENGTH * to_nchars,
6815 dst);
6816 if (EQ (coding->src_object, coding->dst_object))
6817 {
6818 coding_set_source (coding);
6819 dst_end = (((unsigned char *) coding->source)
6820 + coding->consumed);
6821 }
6822 else
6823 dst_end = coding->destination + coding->dst_bytes;
6824 }
6825
6826 for (i = 0; i < to_nchars; i++)
6827 {
6828 if (i > 0)
6829 c = XINT (AREF (trans, i));
6830 if (coding->dst_multibyte
6831 || ! CHAR_BYTE8_P (c))
6832 CHAR_STRING_ADVANCE_NO_UNIFY (c, dst);
6833 else
6834 *dst++ = CHAR_TO_BYTE8 (c);
6835 }
6836 produced_chars += to_nchars;
6837 buf += from_nchars;
6838 }
6839 else
6840 /* This is an annotation datum. (-C) is the length. */
6841 buf += -c;
6842 }
6843 carryover = buf_end - buf;
6844 }
6845 else
6846 {
6847 /* Source characters are at coding->source. */
6848 const unsigned char *src = coding->source;
6849 const unsigned char *src_end = src + coding->consumed;
6850
6851 if (EQ (coding->dst_object, coding->src_object))
6852 dst_end = (unsigned char *) src;
6853 if (coding->src_multibyte != coding->dst_multibyte)
6854 {
6855 if (coding->src_multibyte)
6856 {
6857 int multibytep = 1;
6858 EMACS_INT consumed_chars = 0;
6859
6860 while (1)
6861 {
6862 const unsigned char *src_base = src;
6863 int c;
6864
6865 ONE_MORE_BYTE (c);
6866 if (dst == dst_end)
6867 {
6868 if (EQ (coding->src_object, coding->dst_object))
6869 dst_end = (unsigned char *) src;
6870 if (dst == dst_end)
6871 {
6872 EMACS_INT offset = src - coding->source;
6873
6874 dst = alloc_destination (coding, src_end - src + 1,
6875 dst);
6876 dst_end = coding->destination + coding->dst_bytes;
6877 coding_set_source (coding);
6878 src = coding->source + offset;
6879 src_end = coding->source + coding->src_bytes;
6880 if (EQ (coding->src_object, coding->dst_object))
6881 dst_end = (unsigned char *) src;
6882 }
6883 }
6884 *dst++ = c;
6885 produced_chars++;
6886 }
6887 no_more_source:
6888 ;
6889 }
6890 else
6891 while (src < src_end)
6892 {
6893 int multibytep = 1;
6894 int c = *src++;
6895
6896 if (dst >= dst_end - 1)
6897 {
6898 if (EQ (coding->src_object, coding->dst_object))
6899 dst_end = (unsigned char *) src;
6900 if (dst >= dst_end - 1)
6901 {
6902 EMACS_INT offset = src - coding->source;
6903 EMACS_INT more_bytes;
6904
6905 if (EQ (coding->src_object, coding->dst_object))
6906 more_bytes = ((src_end - src) / 2) + 2;
6907 else
6908 more_bytes = src_end - src + 2;
6909 dst = alloc_destination (coding, more_bytes, dst);
6910 dst_end = coding->destination + coding->dst_bytes;
6911 coding_set_source (coding);
6912 src = coding->source + offset;
6913 src_end = coding->source + coding->src_bytes;
6914 if (EQ (coding->src_object, coding->dst_object))
6915 dst_end = (unsigned char *) src;
6916 }
6917 }
6918 EMIT_ONE_BYTE (c);
6919 }
6920 }
6921 else
6922 {
6923 if (!EQ (coding->src_object, coding->dst_object))
6924 {
6925 EMACS_INT require = coding->src_bytes - coding->dst_bytes;
6926
6927 if (require > 0)
6928 {
6929 EMACS_INT offset = src - coding->source;
6930
6931 dst = alloc_destination (coding, require, dst);
6932 coding_set_source (coding);
6933 src = coding->source + offset;
6934 src_end = coding->source + coding->src_bytes;
6935 }
6936 }
6937 produced_chars = coding->consumed_char;
6938 while (src < src_end)
6939 *dst++ = *src++;
6940 }
6941 }
6942
6943 produced = dst - (coding->destination + coding->produced);
6944 if (BUFFERP (coding->dst_object) && produced_chars > 0)
6945 insert_from_gap (produced_chars, produced);
6946 coding->produced += produced;
6947 coding->produced_char += produced_chars;
6948 return carryover;
6949 }
6950
6951 /* Compose text in CODING->object according to the annotation data at
6952 CHARBUF. CHARBUF is an array:
6953 [ -LENGTH ANNOTATION_MASK NCHARS NBYTES METHOD [ COMPONENTS... ] ]
6954 */
6955
6956 static INLINE void
6957 produce_composition (coding, charbuf, pos)
6958 struct coding_system *coding;
6959 int *charbuf;
6960 EMACS_INT pos;
6961 {
6962 int len;
6963 EMACS_INT to;
6964 enum composition_method method;
6965 Lisp_Object components;
6966
6967 len = -charbuf[0] - MAX_ANNOTATION_LENGTH;
6968 to = pos + charbuf[2];
6969 method = (enum composition_method) (charbuf[4]);
6970
6971 if (method == COMPOSITION_RELATIVE)
6972 components = Qnil;
6973 else
6974 {
6975 Lisp_Object args[MAX_COMPOSITION_COMPONENTS * 2 - 1];
6976 int i, j;
6977
6978 if (method == COMPOSITION_WITH_RULE)
6979 len = charbuf[2] * 3 - 2;
6980 charbuf += MAX_ANNOTATION_LENGTH;
6981 /* charbuf = [ CHRA ... CHAR] or [ CHAR -2 RULE ... CHAR ] */
6982 for (i = j = 0; i < len && charbuf[i] != -1; i++, j++)
6983 {
6984 if (charbuf[i] >= 0)
6985 args[j] = make_number (charbuf[i]);
6986 else
6987 {
6988 i++;
6989 args[j] = make_number (charbuf[i] % 0x100);
6990 }
6991 }
6992 components = (i == j ? Fstring (j, args) : Fvector (j, args));
6993 }
6994 compose_text (pos, to, components, Qnil, coding->dst_object);
6995 }
6996
6997
6998 /* Put `charset' property on text in CODING->object according to
6999 the annotation data at CHARBUF. CHARBUF is an array:
7000 [ -LENGTH ANNOTATION_MASK NCHARS CHARSET-ID ]
7001 */
7002
7003 static INLINE void
7004 produce_charset (coding, charbuf, pos)
7005 struct coding_system *coding;
7006 int *charbuf;
7007 EMACS_INT pos;
7008 {
7009 EMACS_INT from = pos - charbuf[2];
7010 struct charset *charset = CHARSET_FROM_ID (charbuf[3]);
7011
7012 Fput_text_property (make_number (from), make_number (pos),
7013 Qcharset, CHARSET_NAME (charset),
7014 coding->dst_object);
7015 }
7016
7017
7018 #define CHARBUF_SIZE 0x4000
7019
7020 #define ALLOC_CONVERSION_WORK_AREA(coding) \
7021 do { \
7022 int size = CHARBUF_SIZE; \
7023 \
7024 coding->charbuf = NULL; \
7025 while (size > 1024) \
7026 { \
7027 coding->charbuf = (int *) alloca (sizeof (int) * size); \
7028 if (coding->charbuf) \
7029 break; \
7030 size >>= 1; \
7031 } \
7032 if (! coding->charbuf) \
7033 { \
7034 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_MEM); \
7035 return coding->result; \
7036 } \
7037 coding->charbuf_size = size; \
7038 } while (0)
7039
7040
7041 static void
7042 produce_annotation (coding, pos)
7043 struct coding_system *coding;
7044 EMACS_INT pos;
7045 {
7046 int *charbuf = coding->charbuf;
7047 int *charbuf_end = charbuf + coding->charbuf_used;
7048
7049 if (NILP (coding->dst_object))
7050 return;
7051
7052 while (charbuf < charbuf_end)
7053 {
7054 if (*charbuf >= 0)
7055 pos++, charbuf++;
7056 else
7057 {
7058 int len = -*charbuf;
7059
7060 if (len > 2)
7061 switch (charbuf[1])
7062 {
7063 case CODING_ANNOTATE_COMPOSITION_MASK:
7064 produce_composition (coding, charbuf, pos);
7065 break;
7066 case CODING_ANNOTATE_CHARSET_MASK:
7067 produce_charset (coding, charbuf, pos);
7068 break;
7069 }
7070 charbuf += len;
7071 }
7072 }
7073 }
7074
7075 /* Decode the data at CODING->src_object into CODING->dst_object.
7076 CODING->src_object is a buffer, a string, or nil.
7077 CODING->dst_object is a buffer.
7078
7079 If CODING->src_object is a buffer, it must be the current buffer.
7080 In this case, if CODING->src_pos is positive, it is a position of
7081 the source text in the buffer, otherwise, the source text is in the
7082 gap area of the buffer, and CODING->src_pos specifies the offset of
7083 the text from GPT (which must be the same as PT). If this is the
7084 same buffer as CODING->dst_object, CODING->src_pos must be
7085 negative.
7086
7087 If CODING->src_object is a string, CODING->src_pos is an index to
7088 that string.
7089
7090 If CODING->src_object is nil, CODING->source must already point to
7091 the non-relocatable memory area. In this case, CODING->src_pos is
7092 an offset from CODING->source.
7093
7094 The decoded data is inserted at the current point of the buffer
7095 CODING->dst_object.
7096 */
7097
7098 static int
7099 decode_coding (coding)
7100 struct coding_system *coding;
7101 {
7102 Lisp_Object attrs;
7103 Lisp_Object undo_list;
7104 Lisp_Object translation_table;
7105 int carryover;
7106 int i;
7107
7108 if (BUFFERP (coding->src_object)
7109 && coding->src_pos > 0
7110 && coding->src_pos < GPT
7111 && coding->src_pos + coding->src_chars > GPT)
7112 move_gap_both (coding->src_pos, coding->src_pos_byte);
7113
7114 undo_list = Qt;
7115 if (BUFFERP (coding->dst_object))
7116 {
7117 if (current_buffer != XBUFFER (coding->dst_object))
7118 set_buffer_internal (XBUFFER (coding->dst_object));
7119 if (GPT != PT)
7120 move_gap_both (PT, PT_BYTE);
7121 undo_list = current_buffer->undo_list;
7122 current_buffer->undo_list = Qt;
7123 }
7124
7125 coding->consumed = coding->consumed_char = 0;
7126 coding->produced = coding->produced_char = 0;
7127 coding->chars_at_source = 0;
7128 record_conversion_result (coding, CODING_RESULT_SUCCESS);
7129 coding->errors = 0;
7130
7131 ALLOC_CONVERSION_WORK_AREA (coding);
7132
7133 attrs = CODING_ID_ATTRS (coding->id);
7134 translation_table = get_translation_table (attrs, 0, NULL);
7135
7136 carryover = 0;
7137 do
7138 {
7139 EMACS_INT pos = coding->dst_pos + coding->produced_char;
7140
7141 coding_set_source (coding);
7142 coding->annotated = 0;
7143 coding->charbuf_used = carryover;
7144 (*(coding->decoder)) (coding);
7145 coding_set_destination (coding);
7146 carryover = produce_chars (coding, translation_table, 0);
7147 if (coding->annotated)
7148 produce_annotation (coding, pos);
7149 for (i = 0; i < carryover; i++)
7150 coding->charbuf[i]
7151 = coding->charbuf[coding->charbuf_used - carryover + i];
7152 }
7153 while (coding->consumed < coding->src_bytes
7154 && (coding->result == CODING_RESULT_SUCCESS
7155 || coding->result == CODING_RESULT_INVALID_SRC));
7156
7157 if (carryover > 0)
7158 {
7159 coding_set_destination (coding);
7160 coding->charbuf_used = carryover;
7161 produce_chars (coding, translation_table, 1);
7162 }
7163
7164 coding->carryover_bytes = 0;
7165 if (coding->consumed < coding->src_bytes)
7166 {
7167 int nbytes = coding->src_bytes - coding->consumed;
7168 const unsigned char *src;
7169
7170 coding_set_source (coding);
7171 coding_set_destination (coding);
7172 src = coding->source + coding->consumed;
7173
7174 if (coding->mode & CODING_MODE_LAST_BLOCK)
7175 {
7176 /* Flush out unprocessed data as binary chars. We are sure
7177 that the number of data is less than the size of
7178 coding->charbuf. */
7179 coding->charbuf_used = 0;
7180 coding->chars_at_source = 0;
7181
7182 while (nbytes-- > 0)
7183 {
7184 int c = *src++;
7185
7186 if (c & 0x80)
7187 c = BYTE8_TO_CHAR (c);
7188 coding->charbuf[coding->charbuf_used++] = c;
7189 }
7190 produce_chars (coding, Qnil, 1);
7191 }
7192 else
7193 {
7194 /* Record unprocessed bytes in coding->carryover. We are
7195 sure that the number of data is less than the size of
7196 coding->carryover. */
7197 unsigned char *p = coding->carryover;
7198
7199 if (nbytes > sizeof coding->carryover)
7200 nbytes = sizeof coding->carryover;
7201 coding->carryover_bytes = nbytes;
7202 while (nbytes-- > 0)
7203 *p++ = *src++;
7204 }
7205 coding->consumed = coding->src_bytes;
7206 }
7207
7208 if (! EQ (CODING_ID_EOL_TYPE (coding->id), Qunix)
7209 && !inhibit_eol_conversion)
7210 decode_eol (coding);
7211 if (BUFFERP (coding->dst_object))
7212 {
7213 current_buffer->undo_list = undo_list;
7214 record_insert (coding->dst_pos, coding->produced_char);
7215 }
7216 return coding->result;
7217 }
7218
7219
7220 /* Extract an annotation datum from a composition starting at POS and
7221 ending before LIMIT of CODING->src_object (buffer or string), store
7222 the data in BUF, set *STOP to a starting position of the next
7223 composition (if any) or to LIMIT, and return the address of the
7224 next element of BUF.
7225
7226 If such an annotation is not found, set *STOP to a starting
7227 position of a composition after POS (if any) or to LIMIT, and
7228 return BUF. */
7229
7230 static INLINE int *
7231 handle_composition_annotation (pos, limit, coding, buf, stop)
7232 EMACS_INT pos, limit;
7233 struct coding_system *coding;
7234 int *buf;
7235 EMACS_INT *stop;
7236 {
7237 EMACS_INT start, end;
7238 Lisp_Object prop;
7239
7240 if (! find_composition (pos, limit, &start, &end, &prop, coding->src_object)
7241 || end > limit)
7242 *stop = limit;
7243 else if (start > pos)
7244 *stop = start;
7245 else
7246 {
7247 if (start == pos)
7248 {
7249 /* We found a composition. Store the corresponding
7250 annotation data in BUF. */
7251 int *head = buf;
7252 enum composition_method method = COMPOSITION_METHOD (prop);
7253 int nchars = COMPOSITION_LENGTH (prop);
7254
7255 ADD_COMPOSITION_DATA (buf, nchars, 0, method);
7256 if (method != COMPOSITION_RELATIVE)
7257 {
7258 Lisp_Object components;
7259 int len, i, i_byte;
7260
7261 components = COMPOSITION_COMPONENTS (prop);
7262 if (VECTORP (components))
7263 {
7264 len = XVECTOR (components)->size;
7265 for (i = 0; i < len; i++)
7266 *buf++ = XINT (AREF (components, i));
7267 }
7268 else if (STRINGP (components))
7269 {
7270 len = SCHARS (components);
7271 i = i_byte = 0;
7272 while (i < len)
7273 {
7274 FETCH_STRING_CHAR_ADVANCE (*buf, components, i, i_byte);
7275 buf++;
7276 }
7277 }
7278 else if (INTEGERP (components))
7279 {
7280 len = 1;
7281 *buf++ = XINT (components);
7282 }
7283 else if (CONSP (components))
7284 {
7285 for (len = 0; CONSP (components);
7286 len++, components = XCDR (components))
7287 *buf++ = XINT (XCAR (components));
7288 }
7289 else
7290 abort ();
7291 *head -= len;
7292 }
7293 }
7294
7295 if (find_composition (end, limit, &start, &end, &prop,
7296 coding->src_object)
7297 && end <= limit)
7298 *stop = start;
7299 else
7300 *stop = limit;
7301 }
7302 return buf;
7303 }
7304
7305
7306 /* Extract an annotation datum from a text property `charset' at POS of
7307 CODING->src_object (buffer of string), store the data in BUF, set
7308 *STOP to the position where the value of `charset' property changes
7309 (limiting by LIMIT), and return the address of the next element of
7310 BUF.
7311
7312 If the property value is nil, set *STOP to the position where the
7313 property value is non-nil (limiting by LIMIT), and return BUF. */
7314
7315 static INLINE int *
7316 handle_charset_annotation (pos, limit, coding, buf, stop)
7317 EMACS_INT pos, limit;
7318 struct coding_system *coding;
7319 int *buf;
7320 EMACS_INT *stop;
7321 {
7322 Lisp_Object val, next;
7323 int id;
7324
7325 val = Fget_text_property (make_number (pos), Qcharset, coding->src_object);
7326 if (! NILP (val) && CHARSETP (val))
7327 id = XINT (CHARSET_SYMBOL_ID (val));
7328 else
7329 id = -1;
7330 ADD_CHARSET_DATA (buf, 0, id);
7331 next = Fnext_single_property_change (make_number (pos), Qcharset,
7332 coding->src_object,
7333 make_number (limit));
7334 *stop = XINT (next);
7335 return buf;
7336 }
7337
7338
7339 static void
7340 consume_chars (coding, translation_table, max_lookup)
7341 struct coding_system *coding;
7342 Lisp_Object translation_table;
7343 int max_lookup;
7344 {
7345 int *buf = coding->charbuf;
7346 int *buf_end = coding->charbuf + coding->charbuf_size;
7347 const unsigned char *src = coding->source + coding->consumed;
7348 const unsigned char *src_end = coding->source + coding->src_bytes;
7349 EMACS_INT pos = coding->src_pos + coding->consumed_char;
7350 EMACS_INT end_pos = coding->src_pos + coding->src_chars;
7351 int multibytep = coding->src_multibyte;
7352 Lisp_Object eol_type;
7353 int c;
7354 EMACS_INT stop, stop_composition, stop_charset;
7355 int *lookup_buf = NULL;
7356
7357 if (! NILP (translation_table))
7358 lookup_buf = alloca (sizeof (int) * max_lookup);
7359
7360 eol_type = inhibit_eol_conversion ? Qunix : CODING_ID_EOL_TYPE (coding->id);
7361 if (VECTORP (eol_type))
7362 eol_type = Qunix;
7363
7364 /* Note: composition handling is not yet implemented. */
7365 coding->common_flags &= ~CODING_ANNOTATE_COMPOSITION_MASK;
7366
7367 if (NILP (coding->src_object))
7368 stop = stop_composition = stop_charset = end_pos;
7369 else
7370 {
7371 if (coding->common_flags & CODING_ANNOTATE_COMPOSITION_MASK)
7372 stop = stop_composition = pos;
7373 else
7374 stop = stop_composition = end_pos;
7375 if (coding->common_flags & CODING_ANNOTATE_CHARSET_MASK)
7376 stop = stop_charset = pos;
7377 else
7378 stop_charset = end_pos;
7379 }
7380
7381 /* Compensate for CRLF and conversion. */
7382 buf_end -= 1 + MAX_ANNOTATION_LENGTH;
7383 while (buf < buf_end)
7384 {
7385 Lisp_Object trans;
7386
7387 if (pos == stop)
7388 {
7389 if (pos == end_pos)
7390 break;
7391 if (pos == stop_composition)
7392 buf = handle_composition_annotation (pos, end_pos, coding,
7393 buf, &stop_composition);
7394 if (pos == stop_charset)
7395 buf = handle_charset_annotation (pos, end_pos, coding,
7396 buf, &stop_charset);
7397 stop = (stop_composition < stop_charset
7398 ? stop_composition : stop_charset);
7399 }
7400
7401 if (! multibytep)
7402 {
7403 EMACS_INT bytes;
7404
7405 if (coding->encoder == encode_coding_raw_text)
7406 c = *src++, pos++;
7407 else if ((bytes = MULTIBYTE_LENGTH (src, src_end)) > 0)
7408 c = STRING_CHAR_ADVANCE_NO_UNIFY (src), pos += bytes;
7409 else
7410 c = BYTE8_TO_CHAR (*src), src++, pos++;
7411 }
7412 else
7413 c = STRING_CHAR_ADVANCE_NO_UNIFY (src), pos++;
7414 if ((c == '\r') && (coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
7415 c = '\n';
7416 if (! EQ (eol_type, Qunix))
7417 {
7418 if (c == '\n')
7419 {
7420 if (EQ (eol_type, Qdos))
7421 *buf++ = '\r';
7422 else
7423 c = '\r';
7424 }
7425 }
7426
7427 trans = Qnil;
7428 LOOKUP_TRANSLATION_TABLE (translation_table, c, trans);
7429 if (NILP (trans))
7430 *buf++ = c;
7431 else
7432 {
7433 int from_nchars = 1, to_nchars = 1;
7434 int *lookup_buf_end;
7435 const unsigned char *p = src;
7436 int i;
7437
7438 lookup_buf[0] = c;
7439 for (i = 1; i < max_lookup && p < src_end; i++)
7440 lookup_buf[i] = STRING_CHAR_ADVANCE (p);
7441 lookup_buf_end = lookup_buf + i;
7442 trans = get_translation (trans, lookup_buf, lookup_buf_end);
7443 if (INTEGERP (trans))
7444 c = XINT (trans);
7445 else if (CONSP (trans))
7446 {
7447 from_nchars = ASIZE (XCAR (trans));
7448 trans = XCDR (trans);
7449 if (INTEGERP (trans))
7450 c = XINT (trans);
7451 else
7452 {
7453 to_nchars = ASIZE (trans);
7454 if (buf + to_nchars > buf_end)
7455 break;
7456 c = XINT (AREF (trans, 0));
7457 }
7458 }
7459 else
7460 break;
7461 *buf++ = c;
7462 for (i = 1; i < to_nchars; i++)
7463 *buf++ = XINT (AREF (trans, i));
7464 for (i = 1; i < from_nchars; i++, pos++)
7465 src += MULTIBYTE_LENGTH_NO_CHECK (src);
7466 }
7467 }
7468
7469 coding->consumed = src - coding->source;
7470 coding->consumed_char = pos - coding->src_pos;
7471 coding->charbuf_used = buf - coding->charbuf;
7472 coding->chars_at_source = 0;
7473 }
7474
7475
7476 /* Encode the text at CODING->src_object into CODING->dst_object.
7477 CODING->src_object is a buffer or a string.
7478 CODING->dst_object is a buffer or nil.
7479
7480 If CODING->src_object is a buffer, it must be the current buffer.
7481 In this case, if CODING->src_pos is positive, it is a position of
7482 the source text in the buffer, otherwise. the source text is in the
7483 gap area of the buffer, and coding->src_pos specifies the offset of
7484 the text from GPT (which must be the same as PT). If this is the
7485 same buffer as CODING->dst_object, CODING->src_pos must be
7486 negative and CODING should not have `pre-write-conversion'.
7487
7488 If CODING->src_object is a string, CODING should not have
7489 `pre-write-conversion'.
7490
7491 If CODING->dst_object is a buffer, the encoded data is inserted at
7492 the current point of that buffer.
7493
7494 If CODING->dst_object is nil, the encoded data is placed at the
7495 memory area specified by CODING->destination. */
7496
7497 static int
7498 encode_coding (coding)
7499 struct coding_system *coding;
7500 {
7501 Lisp_Object attrs;
7502 Lisp_Object translation_table;
7503 int max_lookup;
7504
7505 attrs = CODING_ID_ATTRS (coding->id);
7506 if (coding->encoder == encode_coding_raw_text)
7507 translation_table = Qnil, max_lookup = 0;
7508 else
7509 translation_table = get_translation_table (attrs, 1, &max_lookup);
7510
7511 if (BUFFERP (coding->dst_object))
7512 {
7513 set_buffer_internal (XBUFFER (coding->dst_object));
7514 coding->dst_multibyte
7515 = ! NILP (current_buffer->enable_multibyte_characters);
7516 }
7517
7518 coding->consumed = coding->consumed_char = 0;
7519 coding->produced = coding->produced_char = 0;
7520 record_conversion_result (coding, CODING_RESULT_SUCCESS);
7521 coding->errors = 0;
7522
7523 ALLOC_CONVERSION_WORK_AREA (coding);
7524
7525 do {
7526 coding_set_source (coding);
7527 consume_chars (coding, translation_table, max_lookup);
7528 coding_set_destination (coding);
7529 (*(coding->encoder)) (coding);
7530 } while (coding->consumed_char < coding->src_chars);
7531
7532 if (BUFFERP (coding->dst_object) && coding->produced_char > 0)
7533 insert_from_gap (coding->produced_char, coding->produced);
7534
7535 return (coding->result);
7536 }
7537
7538
7539 /* Name (or base name) of work buffer for code conversion. */
7540 static Lisp_Object Vcode_conversion_workbuf_name;
7541
7542 /* A working buffer used by the top level conversion. Once it is
7543 created, it is never destroyed. It has the name
7544 Vcode_conversion_workbuf_name. The other working buffers are
7545 destroyed after the use is finished, and their names are modified
7546 versions of Vcode_conversion_workbuf_name. */
7547 static Lisp_Object Vcode_conversion_reused_workbuf;
7548
7549 /* 1 iff Vcode_conversion_reused_workbuf is already in use. */
7550 static int reused_workbuf_in_use;
7551
7552
7553 /* Return a working buffer of code convesion. MULTIBYTE specifies the
7554 multibyteness of returning buffer. */
7555
7556 static Lisp_Object
7557 make_conversion_work_buffer (multibyte)
7558 int multibyte;
7559 {
7560 Lisp_Object name, workbuf;
7561 struct buffer *current;
7562
7563 if (reused_workbuf_in_use++)
7564 {
7565 name = Fgenerate_new_buffer_name (Vcode_conversion_workbuf_name, Qnil);
7566 workbuf = Fget_buffer_create (name);
7567 }
7568 else
7569 {
7570 if (NILP (Fbuffer_live_p (Vcode_conversion_reused_workbuf)))
7571 Vcode_conversion_reused_workbuf
7572 = Fget_buffer_create (Vcode_conversion_workbuf_name);
7573 workbuf = Vcode_conversion_reused_workbuf;
7574 }
7575 current = current_buffer;
7576 set_buffer_internal (XBUFFER (workbuf));
7577 /* We can't allow modification hooks to run in the work buffer. For
7578 instance, directory_files_internal assumes that file decoding
7579 doesn't compile new regexps. */
7580 Fset (Fmake_local_variable (Qinhibit_modification_hooks), Qt);
7581 Ferase_buffer ();
7582 current_buffer->undo_list = Qt;
7583 current_buffer->enable_multibyte_characters = multibyte ? Qt : Qnil;
7584 set_buffer_internal (current);
7585 return workbuf;
7586 }
7587
7588
7589 static Lisp_Object
7590 code_conversion_restore (arg)
7591 Lisp_Object arg;
7592 {
7593 Lisp_Object current, workbuf;
7594 struct gcpro gcpro1;
7595
7596 GCPRO1 (arg);
7597 current = XCAR (arg);
7598 workbuf = XCDR (arg);
7599 if (! NILP (workbuf))
7600 {
7601 if (EQ (workbuf, Vcode_conversion_reused_workbuf))
7602 reused_workbuf_in_use = 0;
7603 else if (! NILP (Fbuffer_live_p (workbuf)))
7604 Fkill_buffer (workbuf);
7605 }
7606 set_buffer_internal (XBUFFER (current));
7607 UNGCPRO;
7608 return Qnil;
7609 }
7610
7611 Lisp_Object
7612 code_conversion_save (with_work_buf, multibyte)
7613 int with_work_buf, multibyte;
7614 {
7615 Lisp_Object workbuf = Qnil;
7616
7617 if (with_work_buf)
7618 workbuf = make_conversion_work_buffer (multibyte);
7619 record_unwind_protect (code_conversion_restore,
7620 Fcons (Fcurrent_buffer (), workbuf));
7621 return workbuf;
7622 }
7623
7624 int
7625 decode_coding_gap (coding, chars, bytes)
7626 struct coding_system *coding;
7627 EMACS_INT chars, bytes;
7628 {
7629 int count = specpdl_ptr - specpdl;
7630 Lisp_Object attrs;
7631
7632 code_conversion_save (0, 0);
7633
7634 coding->src_object = Fcurrent_buffer ();
7635 coding->src_chars = chars;
7636 coding->src_bytes = bytes;
7637 coding->src_pos = -chars;
7638 coding->src_pos_byte = -bytes;
7639 coding->src_multibyte = chars < bytes;
7640 coding->dst_object = coding->src_object;
7641 coding->dst_pos = PT;
7642 coding->dst_pos_byte = PT_BYTE;
7643 coding->dst_multibyte = ! NILP (current_buffer->enable_multibyte_characters);
7644
7645 if (CODING_REQUIRE_DETECTION (coding))
7646 detect_coding (coding);
7647
7648 coding->mode |= CODING_MODE_LAST_BLOCK;
7649 current_buffer->text->inhibit_shrinking = 1;
7650 decode_coding (coding);
7651 current_buffer->text->inhibit_shrinking = 0;
7652
7653 attrs = CODING_ID_ATTRS (coding->id);
7654 if (! NILP (CODING_ATTR_POST_READ (attrs)))
7655 {
7656 EMACS_INT prev_Z = Z, prev_Z_BYTE = Z_BYTE;
7657 Lisp_Object val;
7658
7659 TEMP_SET_PT_BOTH (coding->dst_pos, coding->dst_pos_byte);
7660 val = call1 (CODING_ATTR_POST_READ (attrs),
7661 make_number (coding->produced_char));
7662 CHECK_NATNUM (val);
7663 coding->produced_char += Z - prev_Z;
7664 coding->produced += Z_BYTE - prev_Z_BYTE;
7665 }
7666
7667 unbind_to (count, Qnil);
7668 return coding->result;
7669 }
7670
7671 int
7672 encode_coding_gap (coding, chars, bytes)
7673 struct coding_system *coding;
7674 EMACS_INT chars, bytes;
7675 {
7676 int count = specpdl_ptr - specpdl;
7677
7678 code_conversion_save (0, 0);
7679
7680 coding->src_object = Fcurrent_buffer ();
7681 coding->src_chars = chars;
7682 coding->src_bytes = bytes;
7683 coding->src_pos = -chars;
7684 coding->src_pos_byte = -bytes;
7685 coding->src_multibyte = chars < bytes;
7686 coding->dst_object = coding->src_object;
7687 coding->dst_pos = PT;
7688 coding->dst_pos_byte = PT_BYTE;
7689
7690 encode_coding (coding);
7691
7692 unbind_to (count, Qnil);
7693 return coding->result;
7694 }
7695
7696
7697 /* Decode the text in the range FROM/FROM_BYTE and TO/TO_BYTE in
7698 SRC_OBJECT into DST_OBJECT by coding context CODING.
7699
7700 SRC_OBJECT is a buffer, a string, or Qnil.
7701
7702 If it is a buffer, the text is at point of the buffer. FROM and TO
7703 are positions in the buffer.
7704
7705 If it is a string, the text is at the beginning of the string.
7706 FROM and TO are indices to the string.
7707
7708 If it is nil, the text is at coding->source. FROM and TO are
7709 indices to coding->source.
7710
7711 DST_OBJECT is a buffer, Qt, or Qnil.
7712
7713 If it is a buffer, the decoded text is inserted at point of the
7714 buffer. If the buffer is the same as SRC_OBJECT, the source text
7715 is deleted.
7716
7717 If it is Qt, a string is made from the decoded text, and
7718 set in CODING->dst_object.
7719
7720 If it is Qnil, the decoded text is stored at CODING->destination.
7721 The caller must allocate CODING->dst_bytes bytes at
7722 CODING->destination by xmalloc. If the decoded text is longer than
7723 CODING->dst_bytes, CODING->destination is relocated by xrealloc.
7724 */
7725
7726 void
7727 decode_coding_object (coding, src_object, from, from_byte, to, to_byte,
7728 dst_object)
7729 struct coding_system *coding;
7730 Lisp_Object src_object;
7731 EMACS_INT from, from_byte, to, to_byte;
7732 Lisp_Object dst_object;
7733 {
7734 int count = specpdl_ptr - specpdl;
7735 unsigned char *destination;
7736 EMACS_INT dst_bytes;
7737 EMACS_INT chars = to - from;
7738 EMACS_INT bytes = to_byte - from_byte;
7739 Lisp_Object attrs;
7740 int saved_pt = -1, saved_pt_byte;
7741 int need_marker_adjustment = 0;
7742 Lisp_Object old_deactivate_mark;
7743
7744 old_deactivate_mark = Vdeactivate_mark;
7745
7746 if (NILP (dst_object))
7747 {
7748 destination = coding->destination;
7749 dst_bytes = coding->dst_bytes;
7750 }
7751
7752 coding->src_object = src_object;
7753 coding->src_chars = chars;
7754 coding->src_bytes = bytes;
7755 coding->src_multibyte = chars < bytes;
7756
7757 if (STRINGP (src_object))
7758 {
7759 coding->src_pos = from;
7760 coding->src_pos_byte = from_byte;
7761 }
7762 else if (BUFFERP (src_object))
7763 {
7764 set_buffer_internal (XBUFFER (src_object));
7765 if (from != GPT)
7766 move_gap_both (from, from_byte);
7767 if (EQ (src_object, dst_object))
7768 {
7769 struct Lisp_Marker *tail;
7770
7771 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
7772 {
7773 tail->need_adjustment
7774 = tail->charpos == (tail->insertion_type ? from : to);
7775 need_marker_adjustment |= tail->need_adjustment;
7776 }
7777 saved_pt = PT, saved_pt_byte = PT_BYTE;
7778 TEMP_SET_PT_BOTH (from, from_byte);
7779 current_buffer->text->inhibit_shrinking = 1;
7780 del_range_both (from, from_byte, to, to_byte, 1);
7781 coding->src_pos = -chars;
7782 coding->src_pos_byte = -bytes;
7783 }
7784 else
7785 {
7786 coding->src_pos = from;
7787 coding->src_pos_byte = from_byte;
7788 }
7789 }
7790
7791 if (CODING_REQUIRE_DETECTION (coding))
7792 detect_coding (coding);
7793 attrs = CODING_ID_ATTRS (coding->id);
7794
7795 if (EQ (dst_object, Qt)
7796 || (! NILP (CODING_ATTR_POST_READ (attrs))
7797 && NILP (dst_object)))
7798 {
7799 coding->dst_multibyte = !CODING_FOR_UNIBYTE (coding);
7800 coding->dst_object = code_conversion_save (1, coding->dst_multibyte);
7801 coding->dst_pos = BEG;
7802 coding->dst_pos_byte = BEG_BYTE;
7803 }
7804 else if (BUFFERP (dst_object))
7805 {
7806 code_conversion_save (0, 0);
7807 coding->dst_object = dst_object;
7808 coding->dst_pos = BUF_PT (XBUFFER (dst_object));
7809 coding->dst_pos_byte = BUF_PT_BYTE (XBUFFER (dst_object));
7810 coding->dst_multibyte
7811 = ! NILP (XBUFFER (dst_object)->enable_multibyte_characters);
7812 }
7813 else
7814 {
7815 code_conversion_save (0, 0);
7816 coding->dst_object = Qnil;
7817 /* Most callers presume this will return a multibyte result, and they
7818 won't use `binary' or `raw-text' anyway, so let's not worry about
7819 CODING_FOR_UNIBYTE. */
7820 coding->dst_multibyte = 1;
7821 }
7822
7823 decode_coding (coding);
7824
7825 if (BUFFERP (coding->dst_object))
7826 set_buffer_internal (XBUFFER (coding->dst_object));
7827
7828 if (! NILP (CODING_ATTR_POST_READ (attrs)))
7829 {
7830 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
7831 EMACS_INT prev_Z = Z, prev_Z_BYTE = Z_BYTE;
7832 Lisp_Object val;
7833
7834 TEMP_SET_PT_BOTH (coding->dst_pos, coding->dst_pos_byte);
7835 GCPRO5 (coding->src_object, coding->dst_object, src_object, dst_object,
7836 old_deactivate_mark);
7837 val = safe_call1 (CODING_ATTR_POST_READ (attrs),
7838 make_number (coding->produced_char));
7839 UNGCPRO;
7840 CHECK_NATNUM (val);
7841 coding->produced_char += Z - prev_Z;
7842 coding->produced += Z_BYTE - prev_Z_BYTE;
7843 }
7844
7845 if (EQ (dst_object, Qt))
7846 {
7847 coding->dst_object = Fbuffer_string ();
7848 }
7849 else if (NILP (dst_object) && BUFFERP (coding->dst_object))
7850 {
7851 set_buffer_internal (XBUFFER (coding->dst_object));
7852 if (dst_bytes < coding->produced)
7853 {
7854 destination = xrealloc (destination, coding->produced);
7855 if (! destination)
7856 {
7857 record_conversion_result (coding,
7858 CODING_RESULT_INSUFFICIENT_DST);
7859 unbind_to (count, Qnil);
7860 return;
7861 }
7862 if (BEGV < GPT && GPT < BEGV + coding->produced_char)
7863 move_gap_both (BEGV, BEGV_BYTE);
7864 bcopy (BEGV_ADDR, destination, coding->produced);
7865 coding->destination = destination;
7866 }
7867 }
7868
7869 if (saved_pt >= 0)
7870 {
7871 /* This is the case of:
7872 (BUFFERP (src_object) && EQ (src_object, dst_object))
7873 As we have moved PT while replacing the original buffer
7874 contents, we must recover it now. */
7875 set_buffer_internal (XBUFFER (src_object));
7876 current_buffer->text->inhibit_shrinking = 0;
7877 if (saved_pt < from)
7878 TEMP_SET_PT_BOTH (saved_pt, saved_pt_byte);
7879 else if (saved_pt < from + chars)
7880 TEMP_SET_PT_BOTH (from, from_byte);
7881 else if (! NILP (current_buffer->enable_multibyte_characters))
7882 TEMP_SET_PT_BOTH (saved_pt + (coding->produced_char - chars),
7883 saved_pt_byte + (coding->produced - bytes));
7884 else
7885 TEMP_SET_PT_BOTH (saved_pt + (coding->produced - bytes),
7886 saved_pt_byte + (coding->produced - bytes));
7887
7888 if (need_marker_adjustment)
7889 {
7890 struct Lisp_Marker *tail;
7891
7892 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
7893 if (tail->need_adjustment)
7894 {
7895 tail->need_adjustment = 0;
7896 if (tail->insertion_type)
7897 {
7898 tail->bytepos = from_byte;
7899 tail->charpos = from;
7900 }
7901 else
7902 {
7903 tail->bytepos = from_byte + coding->produced;
7904 tail->charpos
7905 = (NILP (current_buffer->enable_multibyte_characters)
7906 ? tail->bytepos : from + coding->produced_char);
7907 }
7908 }
7909 }
7910 }
7911
7912 Vdeactivate_mark = old_deactivate_mark;
7913 unbind_to (count, coding->dst_object);
7914 }
7915
7916
7917 void
7918 encode_coding_object (coding, src_object, from, from_byte, to, to_byte,
7919 dst_object)
7920 struct coding_system *coding;
7921 Lisp_Object src_object;
7922 EMACS_INT from, from_byte, to, to_byte;
7923 Lisp_Object dst_object;
7924 {
7925 int count = specpdl_ptr - specpdl;
7926 EMACS_INT chars = to - from;
7927 EMACS_INT bytes = to_byte - from_byte;
7928 Lisp_Object attrs;
7929 int saved_pt = -1, saved_pt_byte;
7930 int need_marker_adjustment = 0;
7931 int kill_src_buffer = 0;
7932 Lisp_Object old_deactivate_mark;
7933
7934 old_deactivate_mark = Vdeactivate_mark;
7935
7936 coding->src_object = src_object;
7937 coding->src_chars = chars;
7938 coding->src_bytes = bytes;
7939 coding->src_multibyte = chars < bytes;
7940
7941 attrs = CODING_ID_ATTRS (coding->id);
7942
7943 if (EQ (src_object, dst_object))
7944 {
7945 struct Lisp_Marker *tail;
7946
7947 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
7948 {
7949 tail->need_adjustment
7950 = tail->charpos == (tail->insertion_type ? from : to);
7951 need_marker_adjustment |= tail->need_adjustment;
7952 }
7953 }
7954
7955 if (! NILP (CODING_ATTR_PRE_WRITE (attrs)))
7956 {
7957 coding->src_object = code_conversion_save (1, coding->src_multibyte);
7958 set_buffer_internal (XBUFFER (coding->src_object));
7959 if (STRINGP (src_object))
7960 insert_from_string (src_object, from, from_byte, chars, bytes, 0);
7961 else if (BUFFERP (src_object))
7962 insert_from_buffer (XBUFFER (src_object), from, chars, 0);
7963 else
7964 insert_1_both (coding->source + from, chars, bytes, 0, 0, 0);
7965
7966 if (EQ (src_object, dst_object))
7967 {
7968 set_buffer_internal (XBUFFER (src_object));
7969 saved_pt = PT, saved_pt_byte = PT_BYTE;
7970 del_range_both (from, from_byte, to, to_byte, 1);
7971 set_buffer_internal (XBUFFER (coding->src_object));
7972 }
7973
7974 {
7975 Lisp_Object args[3];
7976 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
7977
7978 GCPRO5 (coding->src_object, coding->dst_object, src_object, dst_object,
7979 old_deactivate_mark);
7980 args[0] = CODING_ATTR_PRE_WRITE (attrs);
7981 args[1] = make_number (BEG);
7982 args[2] = make_number (Z);
7983 safe_call (3, args);
7984 UNGCPRO;
7985 }
7986 if (XBUFFER (coding->src_object) != current_buffer)
7987 kill_src_buffer = 1;
7988 coding->src_object = Fcurrent_buffer ();
7989 if (BEG != GPT)
7990 move_gap_both (BEG, BEG_BYTE);
7991 coding->src_chars = Z - BEG;
7992 coding->src_bytes = Z_BYTE - BEG_BYTE;
7993 coding->src_pos = BEG;
7994 coding->src_pos_byte = BEG_BYTE;
7995 coding->src_multibyte = Z < Z_BYTE;
7996 }
7997 else if (STRINGP (src_object))
7998 {
7999 code_conversion_save (0, 0);
8000 coding->src_pos = from;
8001 coding->src_pos_byte = from_byte;
8002 }
8003 else if (BUFFERP (src_object))
8004 {
8005 code_conversion_save (0, 0);
8006 set_buffer_internal (XBUFFER (src_object));
8007 if (EQ (src_object, dst_object))
8008 {
8009 saved_pt = PT, saved_pt_byte = PT_BYTE;
8010 coding->src_object = del_range_1 (from, to, 1, 1);
8011 coding->src_pos = 0;
8012 coding->src_pos_byte = 0;
8013 }
8014 else
8015 {
8016 if (from < GPT && to >= GPT)
8017 move_gap_both (from, from_byte);
8018 coding->src_pos = from;
8019 coding->src_pos_byte = from_byte;
8020 }
8021 }
8022 else
8023 code_conversion_save (0, 0);
8024
8025 if (BUFFERP (dst_object))
8026 {
8027 coding->dst_object = dst_object;
8028 if (EQ (src_object, dst_object))
8029 {
8030 coding->dst_pos = from;
8031 coding->dst_pos_byte = from_byte;
8032 }
8033 else
8034 {
8035 struct buffer *current = current_buffer;
8036
8037 set_buffer_temp (XBUFFER (dst_object));
8038 coding->dst_pos = PT;
8039 coding->dst_pos_byte = PT_BYTE;
8040 move_gap_both (coding->dst_pos, coding->dst_pos_byte);
8041 set_buffer_temp (current);
8042 }
8043 coding->dst_multibyte
8044 = ! NILP (XBUFFER (dst_object)->enable_multibyte_characters);
8045 }
8046 else if (EQ (dst_object, Qt))
8047 {
8048 coding->dst_object = Qnil;
8049 coding->dst_bytes = coding->src_chars;
8050 if (coding->dst_bytes == 0)
8051 coding->dst_bytes = 1;
8052 coding->destination = (unsigned char *) xmalloc (coding->dst_bytes);
8053 coding->dst_multibyte = 0;
8054 }
8055 else
8056 {
8057 coding->dst_object = Qnil;
8058 coding->dst_multibyte = 0;
8059 }
8060
8061 encode_coding (coding);
8062
8063 if (EQ (dst_object, Qt))
8064 {
8065 if (BUFFERP (coding->dst_object))
8066 coding->dst_object = Fbuffer_string ();
8067 else
8068 {
8069 coding->dst_object
8070 = make_unibyte_string ((char *) coding->destination,
8071 coding->produced);
8072 xfree (coding->destination);
8073 }
8074 }
8075
8076 if (saved_pt >= 0)
8077 {
8078 /* This is the case of:
8079 (BUFFERP (src_object) && EQ (src_object, dst_object))
8080 As we have moved PT while replacing the original buffer
8081 contents, we must recover it now. */
8082 set_buffer_internal (XBUFFER (src_object));
8083 if (saved_pt < from)
8084 TEMP_SET_PT_BOTH (saved_pt, saved_pt_byte);
8085 else if (saved_pt < from + chars)
8086 TEMP_SET_PT_BOTH (from, from_byte);
8087 else if (! NILP (current_buffer->enable_multibyte_characters))
8088 TEMP_SET_PT_BOTH (saved_pt + (coding->produced_char - chars),
8089 saved_pt_byte + (coding->produced - bytes));
8090 else
8091 TEMP_SET_PT_BOTH (saved_pt + (coding->produced - bytes),
8092 saved_pt_byte + (coding->produced - bytes));
8093
8094 if (need_marker_adjustment)
8095 {
8096 struct Lisp_Marker *tail;
8097
8098 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
8099 if (tail->need_adjustment)
8100 {
8101 tail->need_adjustment = 0;
8102 if (tail->insertion_type)
8103 {
8104 tail->bytepos = from_byte;
8105 tail->charpos = from;
8106 }
8107 else
8108 {
8109 tail->bytepos = from_byte + coding->produced;
8110 tail->charpos
8111 = (NILP (current_buffer->enable_multibyte_characters)
8112 ? tail->bytepos : from + coding->produced_char);
8113 }
8114 }
8115 }
8116 }
8117
8118 if (kill_src_buffer)
8119 Fkill_buffer (coding->src_object);
8120
8121 Vdeactivate_mark = old_deactivate_mark;
8122 unbind_to (count, Qnil);
8123 }
8124
8125
8126 Lisp_Object
8127 preferred_coding_system ()
8128 {
8129 int id = coding_categories[coding_priorities[0]].id;
8130
8131 return CODING_ID_NAME (id);
8132 }
8133
8134 \f
8135 #ifdef emacs
8136 /*** 8. Emacs Lisp library functions ***/
8137
8138 DEFUN ("coding-system-p", Fcoding_system_p, Scoding_system_p, 1, 1, 0,
8139 doc: /* Return t if OBJECT is nil or a coding-system.
8140 See the documentation of `define-coding-system' for information
8141 about coding-system objects. */)
8142 (object)
8143 Lisp_Object object;
8144 {
8145 if (NILP (object)
8146 || CODING_SYSTEM_ID (object) >= 0)
8147 return Qt;
8148 if (! SYMBOLP (object)
8149 || NILP (Fget (object, Qcoding_system_define_form)))
8150 return Qnil;
8151 return Qt;
8152 }
8153
8154 DEFUN ("read-non-nil-coding-system", Fread_non_nil_coding_system,
8155 Sread_non_nil_coding_system, 1, 1, 0,
8156 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT. */)
8157 (prompt)
8158 Lisp_Object prompt;
8159 {
8160 Lisp_Object val;
8161 do
8162 {
8163 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
8164 Qt, Qnil, Qcoding_system_history, Qnil, Qnil);
8165 }
8166 while (SCHARS (val) == 0);
8167 return (Fintern (val, Qnil));
8168 }
8169
8170 DEFUN ("read-coding-system", Fread_coding_system, Sread_coding_system, 1, 2, 0,
8171 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT.
8172 If the user enters null input, return second argument DEFAULT-CODING-SYSTEM.
8173 Ignores case when completing coding systems (all Emacs coding systems
8174 are lower-case). */)
8175 (prompt, default_coding_system)
8176 Lisp_Object prompt, default_coding_system;
8177 {
8178 Lisp_Object val;
8179 int count = SPECPDL_INDEX ();
8180
8181 if (SYMBOLP (default_coding_system))
8182 default_coding_system = SYMBOL_NAME (default_coding_system);
8183 specbind (Qcompletion_ignore_case, Qt);
8184 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
8185 Qt, Qnil, Qcoding_system_history,
8186 default_coding_system, Qnil);
8187 unbind_to (count, Qnil);
8188 return (SCHARS (val) == 0 ? Qnil : Fintern (val, Qnil));
8189 }
8190
8191 DEFUN ("check-coding-system", Fcheck_coding_system, Scheck_coding_system,
8192 1, 1, 0,
8193 doc: /* Check validity of CODING-SYSTEM.
8194 If valid, return CODING-SYSTEM, else signal a `coding-system-error' error.
8195 It is valid if it is nil or a symbol defined as a coding system by the
8196 function `define-coding-system'. */)
8197 (coding_system)
8198 Lisp_Object coding_system;
8199 {
8200 Lisp_Object define_form;
8201
8202 define_form = Fget (coding_system, Qcoding_system_define_form);
8203 if (! NILP (define_form))
8204 {
8205 Fput (coding_system, Qcoding_system_define_form, Qnil);
8206 safe_eval (define_form);
8207 }
8208 if (!NILP (Fcoding_system_p (coding_system)))
8209 return coding_system;
8210 xsignal1 (Qcoding_system_error, coding_system);
8211 }
8212
8213 \f
8214 /* Detect how the bytes at SRC of length SRC_BYTES are encoded. If
8215 HIGHEST is nonzero, return the coding system of the highest
8216 priority among the detected coding systems. Otherwize return a
8217 list of detected coding systems sorted by their priorities. If
8218 MULTIBYTEP is nonzero, it is assumed that the bytes are in correct
8219 multibyte form but contains only ASCII and eight-bit chars.
8220 Otherwise, the bytes are raw bytes.
8221
8222 CODING-SYSTEM controls the detection as below:
8223
8224 If it is nil, detect both text-format and eol-format. If the
8225 text-format part of CODING-SYSTEM is already specified
8226 (e.g. `iso-latin-1'), detect only eol-format. If the eol-format
8227 part of CODING-SYSTEM is already specified (e.g. `undecided-unix'),
8228 detect only text-format. */
8229
8230 Lisp_Object
8231 detect_coding_system (src, src_chars, src_bytes, highest, multibytep,
8232 coding_system)
8233 const unsigned char *src;
8234 EMACS_INT src_chars, src_bytes;
8235 int highest;
8236 int multibytep;
8237 Lisp_Object coding_system;
8238 {
8239 const unsigned char *src_end = src + src_bytes;
8240 Lisp_Object attrs, eol_type;
8241 Lisp_Object val = Qnil;
8242 struct coding_system coding;
8243 int id;
8244 struct coding_detection_info detect_info;
8245 enum coding_category base_category;
8246 int null_byte_found = 0, eight_bit_found = 0;
8247
8248 if (NILP (coding_system))
8249 coding_system = Qundecided;
8250 setup_coding_system (coding_system, &coding);
8251 attrs = CODING_ID_ATTRS (coding.id);
8252 eol_type = CODING_ID_EOL_TYPE (coding.id);
8253 coding_system = CODING_ATTR_BASE_NAME (attrs);
8254
8255 coding.source = src;
8256 coding.src_chars = src_chars;
8257 coding.src_bytes = src_bytes;
8258 coding.src_multibyte = multibytep;
8259 coding.consumed = 0;
8260 coding.mode |= CODING_MODE_LAST_BLOCK;
8261 coding.head_ascii = 0;
8262
8263 detect_info.checked = detect_info.found = detect_info.rejected = 0;
8264
8265 /* At first, detect text-format if necessary. */
8266 base_category = XINT (CODING_ATTR_CATEGORY (attrs));
8267 if (base_category == coding_category_undecided)
8268 {
8269 enum coding_category category;
8270 struct coding_system *this;
8271 int c, i;
8272
8273 /* Skip all ASCII bytes except for a few ISO2022 controls. */
8274 for (; src < src_end; src++)
8275 {
8276 c = *src;
8277 if (c & 0x80)
8278 {
8279 eight_bit_found = 1;
8280 if (null_byte_found)
8281 break;
8282 }
8283 else if (c < 0x20)
8284 {
8285 if ((c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
8286 && ! inhibit_iso_escape_detection
8287 && ! detect_info.checked)
8288 {
8289 if (detect_coding_iso_2022 (&coding, &detect_info))
8290 {
8291 /* We have scanned the whole data. */
8292 if (! (detect_info.rejected & CATEGORY_MASK_ISO_7_ELSE))
8293 {
8294 /* We didn't find an 8-bit code. We may
8295 have found a null-byte, but it's very
8296 rare that a binary file confirm to
8297 ISO-2022. */
8298 src = src_end;
8299 coding.head_ascii = src - coding.source;
8300 }
8301 detect_info.rejected |= ~CATEGORY_MASK_ISO_ESCAPE;
8302 break;
8303 }
8304 }
8305 else if (! c && !inhibit_null_byte_detection)
8306 {
8307 null_byte_found = 1;
8308 if (eight_bit_found)
8309 break;
8310 }
8311 if (! eight_bit_found)
8312 coding.head_ascii++;
8313 }
8314 else if (! eight_bit_found)
8315 coding.head_ascii++;
8316 }
8317
8318 if (null_byte_found || eight_bit_found
8319 || coding.head_ascii < coding.src_bytes
8320 || detect_info.found)
8321 {
8322 if (coding.head_ascii == coding.src_bytes)
8323 /* As all bytes are 7-bit, we can ignore non-ISO-2022 codings. */
8324 for (i = 0; i < coding_category_raw_text; i++)
8325 {
8326 category = coding_priorities[i];
8327 this = coding_categories + category;
8328 if (detect_info.found & (1 << category))
8329 break;
8330 }
8331 else
8332 {
8333 if (null_byte_found)
8334 {
8335 detect_info.checked |= ~CATEGORY_MASK_UTF_16;
8336 detect_info.rejected |= ~CATEGORY_MASK_UTF_16;
8337 }
8338 for (i = 0; i < coding_category_raw_text; i++)
8339 {
8340 category = coding_priorities[i];
8341 this = coding_categories + category;
8342
8343 if (this->id < 0)
8344 {
8345 /* No coding system of this category is defined. */
8346 detect_info.rejected |= (1 << category);
8347 }
8348 else if (category >= coding_category_raw_text)
8349 continue;
8350 else if (detect_info.checked & (1 << category))
8351 {
8352 if (highest
8353 && (detect_info.found & (1 << category)))
8354 break;
8355 }
8356 else if ((*(this->detector)) (&coding, &detect_info)
8357 && highest
8358 && (detect_info.found & (1 << category)))
8359 {
8360 if (category == coding_category_utf_16_auto)
8361 {
8362 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
8363 category = coding_category_utf_16_le;
8364 else
8365 category = coding_category_utf_16_be;
8366 }
8367 break;
8368 }
8369 }
8370 }
8371 }
8372
8373 if ((detect_info.rejected & CATEGORY_MASK_ANY) == CATEGORY_MASK_ANY
8374 || null_byte_found)
8375 {
8376 detect_info.found = CATEGORY_MASK_RAW_TEXT;
8377 id = CODING_SYSTEM_ID (Qno_conversion);
8378 val = Fcons (make_number (id), Qnil);
8379 }
8380 else if (! detect_info.rejected && ! detect_info.found)
8381 {
8382 detect_info.found = CATEGORY_MASK_ANY;
8383 id = coding_categories[coding_category_undecided].id;
8384 val = Fcons (make_number (id), Qnil);
8385 }
8386 else if (highest)
8387 {
8388 if (detect_info.found)
8389 {
8390 detect_info.found = 1 << category;
8391 val = Fcons (make_number (this->id), Qnil);
8392 }
8393 else
8394 for (i = 0; i < coding_category_raw_text; i++)
8395 if (! (detect_info.rejected & (1 << coding_priorities[i])))
8396 {
8397 detect_info.found = 1 << coding_priorities[i];
8398 id = coding_categories[coding_priorities[i]].id;
8399 val = Fcons (make_number (id), Qnil);
8400 break;
8401 }
8402 }
8403 else
8404 {
8405 int mask = detect_info.rejected | detect_info.found;
8406 int found = 0;
8407
8408 for (i = coding_category_raw_text - 1; i >= 0; i--)
8409 {
8410 category = coding_priorities[i];
8411 if (! (mask & (1 << category)))
8412 {
8413 found |= 1 << category;
8414 id = coding_categories[category].id;
8415 if (id >= 0)
8416 val = Fcons (make_number (id), val);
8417 }
8418 }
8419 for (i = coding_category_raw_text - 1; i >= 0; i--)
8420 {
8421 category = coding_priorities[i];
8422 if (detect_info.found & (1 << category))
8423 {
8424 id = coding_categories[category].id;
8425 val = Fcons (make_number (id), val);
8426 }
8427 }
8428 detect_info.found |= found;
8429 }
8430 }
8431 else if (base_category == coding_category_utf_8_auto)
8432 {
8433 if (detect_coding_utf_8 (&coding, &detect_info))
8434 {
8435 struct coding_system *this;
8436
8437 if (detect_info.found & CATEGORY_MASK_UTF_8_SIG)
8438 this = coding_categories + coding_category_utf_8_sig;
8439 else
8440 this = coding_categories + coding_category_utf_8_nosig;
8441 val = Fcons (make_number (this->id), Qnil);
8442 }
8443 }
8444 else if (base_category == coding_category_utf_16_auto)
8445 {
8446 if (detect_coding_utf_16 (&coding, &detect_info))
8447 {
8448 struct coding_system *this;
8449
8450 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
8451 this = coding_categories + coding_category_utf_16_le;
8452 else if (detect_info.found & CATEGORY_MASK_UTF_16_BE)
8453 this = coding_categories + coding_category_utf_16_be;
8454 else if (detect_info.rejected & CATEGORY_MASK_UTF_16_LE_NOSIG)
8455 this = coding_categories + coding_category_utf_16_be_nosig;
8456 else
8457 this = coding_categories + coding_category_utf_16_le_nosig;
8458 val = Fcons (make_number (this->id), Qnil);
8459 }
8460 }
8461 else
8462 {
8463 detect_info.found = 1 << XINT (CODING_ATTR_CATEGORY (attrs));
8464 val = Fcons (make_number (coding.id), Qnil);
8465 }
8466
8467 /* Then, detect eol-format if necessary. */
8468 {
8469 int normal_eol = -1, utf_16_be_eol = -1, utf_16_le_eol = -1;
8470 Lisp_Object tail;
8471
8472 if (VECTORP (eol_type))
8473 {
8474 if (detect_info.found & ~CATEGORY_MASK_UTF_16)
8475 {
8476 if (null_byte_found)
8477 normal_eol = EOL_SEEN_LF;
8478 else
8479 normal_eol = detect_eol (coding.source, src_bytes,
8480 coding_category_raw_text);
8481 }
8482 if (detect_info.found & (CATEGORY_MASK_UTF_16_BE
8483 | CATEGORY_MASK_UTF_16_BE_NOSIG))
8484 utf_16_be_eol = detect_eol (coding.source, src_bytes,
8485 coding_category_utf_16_be);
8486 if (detect_info.found & (CATEGORY_MASK_UTF_16_LE
8487 | CATEGORY_MASK_UTF_16_LE_NOSIG))
8488 utf_16_le_eol = detect_eol (coding.source, src_bytes,
8489 coding_category_utf_16_le);
8490 }
8491 else
8492 {
8493 if (EQ (eol_type, Qunix))
8494 normal_eol = utf_16_be_eol = utf_16_le_eol = EOL_SEEN_LF;
8495 else if (EQ (eol_type, Qdos))
8496 normal_eol = utf_16_be_eol = utf_16_le_eol = EOL_SEEN_CRLF;
8497 else
8498 normal_eol = utf_16_be_eol = utf_16_le_eol = EOL_SEEN_CR;
8499 }
8500
8501 for (tail = val; CONSP (tail); tail = XCDR (tail))
8502 {
8503 enum coding_category category;
8504 int this_eol;
8505
8506 id = XINT (XCAR (tail));
8507 attrs = CODING_ID_ATTRS (id);
8508 category = XINT (CODING_ATTR_CATEGORY (attrs));
8509 eol_type = CODING_ID_EOL_TYPE (id);
8510 if (VECTORP (eol_type))
8511 {
8512 if (category == coding_category_utf_16_be
8513 || category == coding_category_utf_16_be_nosig)
8514 this_eol = utf_16_be_eol;
8515 else if (category == coding_category_utf_16_le
8516 || category == coding_category_utf_16_le_nosig)
8517 this_eol = utf_16_le_eol;
8518 else
8519 this_eol = normal_eol;
8520
8521 if (this_eol == EOL_SEEN_LF)
8522 XSETCAR (tail, AREF (eol_type, 0));
8523 else if (this_eol == EOL_SEEN_CRLF)
8524 XSETCAR (tail, AREF (eol_type, 1));
8525 else if (this_eol == EOL_SEEN_CR)
8526 XSETCAR (tail, AREF (eol_type, 2));
8527 else
8528 XSETCAR (tail, CODING_ID_NAME (id));
8529 }
8530 else
8531 XSETCAR (tail, CODING_ID_NAME (id));
8532 }
8533 }
8534
8535 return (highest ? (CONSP (val) ? XCAR (val) : Qnil) : val);
8536 }
8537
8538
8539 DEFUN ("detect-coding-region", Fdetect_coding_region, Sdetect_coding_region,
8540 2, 3, 0,
8541 doc: /* Detect coding system of the text in the region between START and END.
8542 Return a list of possible coding systems ordered by priority.
8543 The coding systems to try and their priorities follows what
8544 the function `coding-system-priority-list' (which see) returns.
8545
8546 If only ASCII characters are found (except for such ISO-2022 control
8547 characters as ESC), it returns a list of single element `undecided'
8548 or its subsidiary coding system according to a detected end-of-line
8549 format.
8550
8551 If optional argument HIGHEST is non-nil, return the coding system of
8552 highest priority. */)
8553 (start, end, highest)
8554 Lisp_Object start, end, highest;
8555 {
8556 int from, to;
8557 int from_byte, to_byte;
8558
8559 CHECK_NUMBER_COERCE_MARKER (start);
8560 CHECK_NUMBER_COERCE_MARKER (end);
8561
8562 validate_region (&start, &end);
8563 from = XINT (start), to = XINT (end);
8564 from_byte = CHAR_TO_BYTE (from);
8565 to_byte = CHAR_TO_BYTE (to);
8566
8567 if (from < GPT && to >= GPT)
8568 move_gap_both (to, to_byte);
8569
8570 return detect_coding_system (BYTE_POS_ADDR (from_byte),
8571 to - from, to_byte - from_byte,
8572 !NILP (highest),
8573 !NILP (current_buffer
8574 ->enable_multibyte_characters),
8575 Qnil);
8576 }
8577
8578 DEFUN ("detect-coding-string", Fdetect_coding_string, Sdetect_coding_string,
8579 1, 2, 0,
8580 doc: /* Detect coding system of the text in STRING.
8581 Return a list of possible coding systems ordered by priority.
8582 The coding systems to try and their priorities follows what
8583 the function `coding-system-priority-list' (which see) returns.
8584
8585 If only ASCII characters are found (except for such ISO-2022 control
8586 characters as ESC), it returns a list of single element `undecided'
8587 or its subsidiary coding system according to a detected end-of-line
8588 format.
8589
8590 If optional argument HIGHEST is non-nil, return the coding system of
8591 highest priority. */)
8592 (string, highest)
8593 Lisp_Object string, highest;
8594 {
8595 CHECK_STRING (string);
8596
8597 return detect_coding_system (SDATA (string),
8598 SCHARS (string), SBYTES (string),
8599 !NILP (highest), STRING_MULTIBYTE (string),
8600 Qnil);
8601 }
8602
8603
8604 static INLINE int
8605 char_encodable_p (c, attrs)
8606 int c;
8607 Lisp_Object attrs;
8608 {
8609 Lisp_Object tail;
8610 struct charset *charset;
8611 Lisp_Object translation_table;
8612
8613 translation_table = CODING_ATTR_TRANS_TBL (attrs);
8614 if (! NILP (translation_table))
8615 c = translate_char (translation_table, c);
8616 for (tail = CODING_ATTR_CHARSET_LIST (attrs);
8617 CONSP (tail); tail = XCDR (tail))
8618 {
8619 charset = CHARSET_FROM_ID (XINT (XCAR (tail)));
8620 if (CHAR_CHARSET_P (c, charset))
8621 break;
8622 }
8623 return (! NILP (tail));
8624 }
8625
8626
8627 /* Return a list of coding systems that safely encode the text between
8628 START and END. If EXCLUDE is non-nil, it is a list of coding
8629 systems not to check. The returned list doesn't contain any such
8630 coding systems. In any case, if the text contains only ASCII or is
8631 unibyte, return t. */
8632
8633 DEFUN ("find-coding-systems-region-internal",
8634 Ffind_coding_systems_region_internal,
8635 Sfind_coding_systems_region_internal, 2, 3, 0,
8636 doc: /* Internal use only. */)
8637 (start, end, exclude)
8638 Lisp_Object start, end, exclude;
8639 {
8640 Lisp_Object coding_attrs_list, safe_codings;
8641 EMACS_INT start_byte, end_byte;
8642 const unsigned char *p, *pbeg, *pend;
8643 int c;
8644 Lisp_Object tail, elt, work_table;
8645
8646 if (STRINGP (start))
8647 {
8648 if (!STRING_MULTIBYTE (start)
8649 || SCHARS (start) == SBYTES (start))
8650 return Qt;
8651 start_byte = 0;
8652 end_byte = SBYTES (start);
8653 }
8654 else
8655 {
8656 CHECK_NUMBER_COERCE_MARKER (start);
8657 CHECK_NUMBER_COERCE_MARKER (end);
8658 if (XINT (start) < BEG || XINT (end) > Z || XINT (start) > XINT (end))
8659 args_out_of_range (start, end);
8660 if (NILP (current_buffer->enable_multibyte_characters))
8661 return Qt;
8662 start_byte = CHAR_TO_BYTE (XINT (start));
8663 end_byte = CHAR_TO_BYTE (XINT (end));
8664 if (XINT (end) - XINT (start) == end_byte - start_byte)
8665 return Qt;
8666
8667 if (XINT (start) < GPT && XINT (end) > GPT)
8668 {
8669 if ((GPT - XINT (start)) < (XINT (end) - GPT))
8670 move_gap_both (XINT (start), start_byte);
8671 else
8672 move_gap_both (XINT (end), end_byte);
8673 }
8674 }
8675
8676 coding_attrs_list = Qnil;
8677 for (tail = Vcoding_system_list; CONSP (tail); tail = XCDR (tail))
8678 if (NILP (exclude)
8679 || NILP (Fmemq (XCAR (tail), exclude)))
8680 {
8681 Lisp_Object attrs;
8682
8683 attrs = AREF (CODING_SYSTEM_SPEC (XCAR (tail)), 0);
8684 if (EQ (XCAR (tail), CODING_ATTR_BASE_NAME (attrs))
8685 && ! EQ (CODING_ATTR_TYPE (attrs), Qundecided))
8686 {
8687 ASET (attrs, coding_attr_trans_tbl,
8688 get_translation_table (attrs, 1, NULL));
8689 coding_attrs_list = Fcons (attrs, coding_attrs_list);
8690 }
8691 }
8692
8693 if (STRINGP (start))
8694 p = pbeg = SDATA (start);
8695 else
8696 p = pbeg = BYTE_POS_ADDR (start_byte);
8697 pend = p + (end_byte - start_byte);
8698
8699 while (p < pend && ASCII_BYTE_P (*p)) p++;
8700 while (p < pend && ASCII_BYTE_P (*(pend - 1))) pend--;
8701
8702 work_table = Fmake_char_table (Qnil, Qnil);
8703 while (p < pend)
8704 {
8705 if (ASCII_BYTE_P (*p))
8706 p++;
8707 else
8708 {
8709 c = STRING_CHAR_ADVANCE (p);
8710 if (!NILP (char_table_ref (work_table, c)))
8711 /* This character was already checked. Ignore it. */
8712 continue;
8713
8714 charset_map_loaded = 0;
8715 for (tail = coding_attrs_list; CONSP (tail);)
8716 {
8717 elt = XCAR (tail);
8718 if (NILP (elt))
8719 tail = XCDR (tail);
8720 else if (char_encodable_p (c, elt))
8721 tail = XCDR (tail);
8722 else if (CONSP (XCDR (tail)))
8723 {
8724 XSETCAR (tail, XCAR (XCDR (tail)));
8725 XSETCDR (tail, XCDR (XCDR (tail)));
8726 }
8727 else
8728 {
8729 XSETCAR (tail, Qnil);
8730 tail = XCDR (tail);
8731 }
8732 }
8733 if (charset_map_loaded)
8734 {
8735 EMACS_INT p_offset = p - pbeg, pend_offset = pend - pbeg;
8736
8737 if (STRINGP (start))
8738 pbeg = SDATA (start);
8739 else
8740 pbeg = BYTE_POS_ADDR (start_byte);
8741 p = pbeg + p_offset;
8742 pend = pbeg + pend_offset;
8743 }
8744 char_table_set (work_table, c, Qt);
8745 }
8746 }
8747
8748 safe_codings = list2 (Qraw_text, Qno_conversion);
8749 for (tail = coding_attrs_list; CONSP (tail); tail = XCDR (tail))
8750 if (! NILP (XCAR (tail)))
8751 safe_codings = Fcons (CODING_ATTR_BASE_NAME (XCAR (tail)), safe_codings);
8752
8753 return safe_codings;
8754 }
8755
8756
8757 DEFUN ("unencodable-char-position", Funencodable_char_position,
8758 Sunencodable_char_position, 3, 5, 0,
8759 doc: /*
8760 Return position of first un-encodable character in a region.
8761 START and END specify the region and CODING-SYSTEM specifies the
8762 encoding to check. Return nil if CODING-SYSTEM does encode the region.
8763
8764 If optional 4th argument COUNT is non-nil, it specifies at most how
8765 many un-encodable characters to search. In this case, the value is a
8766 list of positions.
8767
8768 If optional 5th argument STRING is non-nil, it is a string to search
8769 for un-encodable characters. In that case, START and END are indexes
8770 to the string. */)
8771 (start, end, coding_system, count, string)
8772 Lisp_Object start, end, coding_system, count, string;
8773 {
8774 int n;
8775 struct coding_system coding;
8776 Lisp_Object attrs, charset_list, translation_table;
8777 Lisp_Object positions;
8778 int from, to;
8779 const unsigned char *p, *stop, *pend;
8780 int ascii_compatible;
8781
8782 setup_coding_system (Fcheck_coding_system (coding_system), &coding);
8783 attrs = CODING_ID_ATTRS (coding.id);
8784 if (EQ (CODING_ATTR_TYPE (attrs), Qraw_text))
8785 return Qnil;
8786 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
8787 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
8788 translation_table = get_translation_table (attrs, 1, NULL);
8789
8790 if (NILP (string))
8791 {
8792 validate_region (&start, &end);
8793 from = XINT (start);
8794 to = XINT (end);
8795 if (NILP (current_buffer->enable_multibyte_characters)
8796 || (ascii_compatible
8797 && (to - from) == (CHAR_TO_BYTE (to) - (CHAR_TO_BYTE (from)))))
8798 return Qnil;
8799 p = CHAR_POS_ADDR (from);
8800 pend = CHAR_POS_ADDR (to);
8801 if (from < GPT && to >= GPT)
8802 stop = GPT_ADDR;
8803 else
8804 stop = pend;
8805 }
8806 else
8807 {
8808 CHECK_STRING (string);
8809 CHECK_NATNUM (start);
8810 CHECK_NATNUM (end);
8811 from = XINT (start);
8812 to = XINT (end);
8813 if (from > to
8814 || to > SCHARS (string))
8815 args_out_of_range_3 (string, start, end);
8816 if (! STRING_MULTIBYTE (string))
8817 return Qnil;
8818 p = SDATA (string) + string_char_to_byte (string, from);
8819 stop = pend = SDATA (string) + string_char_to_byte (string, to);
8820 if (ascii_compatible && (to - from) == (pend - p))
8821 return Qnil;
8822 }
8823
8824 if (NILP (count))
8825 n = 1;
8826 else
8827 {
8828 CHECK_NATNUM (count);
8829 n = XINT (count);
8830 }
8831
8832 positions = Qnil;
8833 while (1)
8834 {
8835 int c;
8836
8837 if (ascii_compatible)
8838 while (p < stop && ASCII_BYTE_P (*p))
8839 p++, from++;
8840 if (p >= stop)
8841 {
8842 if (p >= pend)
8843 break;
8844 stop = pend;
8845 p = GAP_END_ADDR;
8846 }
8847
8848 c = STRING_CHAR_ADVANCE (p);
8849 if (! (ASCII_CHAR_P (c) && ascii_compatible)
8850 && ! char_charset (translate_char (translation_table, c),
8851 charset_list, NULL))
8852 {
8853 positions = Fcons (make_number (from), positions);
8854 n--;
8855 if (n == 0)
8856 break;
8857 }
8858
8859 from++;
8860 }
8861
8862 return (NILP (count) ? Fcar (positions) : Fnreverse (positions));
8863 }
8864
8865
8866 DEFUN ("check-coding-systems-region", Fcheck_coding_systems_region,
8867 Scheck_coding_systems_region, 3, 3, 0,
8868 doc: /* Check if the region is encodable by coding systems.
8869
8870 START and END are buffer positions specifying the region.
8871 CODING-SYSTEM-LIST is a list of coding systems to check.
8872
8873 The value is an alist ((CODING-SYSTEM POS0 POS1 ...) ...), where
8874 CODING-SYSTEM is a member of CODING-SYSTEM-LIST and can't encode the
8875 whole region, POS0, POS1, ... are buffer positions where non-encodable
8876 characters are found.
8877
8878 If all coding systems in CODING-SYSTEM-LIST can encode the region, the
8879 value is nil.
8880
8881 START may be a string. In that case, check if the string is
8882 encodable, and the value contains indices to the string instead of
8883 buffer positions. END is ignored.
8884
8885 If the current buffer (or START if it is a string) is unibyte, the value
8886 is nil. */)
8887 (start, end, coding_system_list)
8888 Lisp_Object start, end, coding_system_list;
8889 {
8890 Lisp_Object list;
8891 EMACS_INT start_byte, end_byte;
8892 int pos;
8893 const unsigned char *p, *pbeg, *pend;
8894 int c;
8895 Lisp_Object tail, elt, attrs;
8896
8897 if (STRINGP (start))
8898 {
8899 if (!STRING_MULTIBYTE (start)
8900 || SCHARS (start) == SBYTES (start))
8901 return Qnil;
8902 start_byte = 0;
8903 end_byte = SBYTES (start);
8904 pos = 0;
8905 }
8906 else
8907 {
8908 CHECK_NUMBER_COERCE_MARKER (start);
8909 CHECK_NUMBER_COERCE_MARKER (end);
8910 if (XINT (start) < BEG || XINT (end) > Z || XINT (start) > XINT (end))
8911 args_out_of_range (start, end);
8912 if (NILP (current_buffer->enable_multibyte_characters))
8913 return Qnil;
8914 start_byte = CHAR_TO_BYTE (XINT (start));
8915 end_byte = CHAR_TO_BYTE (XINT (end));
8916 if (XINT (end) - XINT (start) == end_byte - start_byte)
8917 return Qnil;
8918
8919 if (XINT (start) < GPT && XINT (end) > GPT)
8920 {
8921 if ((GPT - XINT (start)) < (XINT (end) - GPT))
8922 move_gap_both (XINT (start), start_byte);
8923 else
8924 move_gap_both (XINT (end), end_byte);
8925 }
8926 pos = XINT (start);
8927 }
8928
8929 list = Qnil;
8930 for (tail = coding_system_list; CONSP (tail); tail = XCDR (tail))
8931 {
8932 elt = XCAR (tail);
8933 attrs = AREF (CODING_SYSTEM_SPEC (elt), 0);
8934 ASET (attrs, coding_attr_trans_tbl,
8935 get_translation_table (attrs, 1, NULL));
8936 list = Fcons (Fcons (elt, Fcons (attrs, Qnil)), list);
8937 }
8938
8939 if (STRINGP (start))
8940 p = pbeg = SDATA (start);
8941 else
8942 p = pbeg = BYTE_POS_ADDR (start_byte);
8943 pend = p + (end_byte - start_byte);
8944
8945 while (p < pend && ASCII_BYTE_P (*p)) p++, pos++;
8946 while (p < pend && ASCII_BYTE_P (*(pend - 1))) pend--;
8947
8948 while (p < pend)
8949 {
8950 if (ASCII_BYTE_P (*p))
8951 p++;
8952 else
8953 {
8954 c = STRING_CHAR_ADVANCE (p);
8955
8956 charset_map_loaded = 0;
8957 for (tail = list; CONSP (tail); tail = XCDR (tail))
8958 {
8959 elt = XCDR (XCAR (tail));
8960 if (! char_encodable_p (c, XCAR (elt)))
8961 XSETCDR (elt, Fcons (make_number (pos), XCDR (elt)));
8962 }
8963 if (charset_map_loaded)
8964 {
8965 EMACS_INT p_offset = p - pbeg, pend_offset = pend - pbeg;
8966
8967 if (STRINGP (start))
8968 pbeg = SDATA (start);
8969 else
8970 pbeg = BYTE_POS_ADDR (start_byte);
8971 p = pbeg + p_offset;
8972 pend = pbeg + pend_offset;
8973 }
8974 }
8975 pos++;
8976 }
8977
8978 tail = list;
8979 list = Qnil;
8980 for (; CONSP (tail); tail = XCDR (tail))
8981 {
8982 elt = XCAR (tail);
8983 if (CONSP (XCDR (XCDR (elt))))
8984 list = Fcons (Fcons (XCAR (elt), Fnreverse (XCDR (XCDR (elt)))),
8985 list);
8986 }
8987
8988 return list;
8989 }
8990
8991
8992 Lisp_Object
8993 code_convert_region (start, end, coding_system, dst_object, encodep, norecord)
8994 Lisp_Object start, end, coding_system, dst_object;
8995 int encodep, norecord;
8996 {
8997 struct coding_system coding;
8998 EMACS_INT from, from_byte, to, to_byte;
8999 Lisp_Object src_object;
9000
9001 CHECK_NUMBER_COERCE_MARKER (start);
9002 CHECK_NUMBER_COERCE_MARKER (end);
9003 if (NILP (coding_system))
9004 coding_system = Qno_conversion;
9005 else
9006 CHECK_CODING_SYSTEM (coding_system);
9007 src_object = Fcurrent_buffer ();
9008 if (NILP (dst_object))
9009 dst_object = src_object;
9010 else if (! EQ (dst_object, Qt))
9011 CHECK_BUFFER (dst_object);
9012
9013 validate_region (&start, &end);
9014 from = XFASTINT (start);
9015 from_byte = CHAR_TO_BYTE (from);
9016 to = XFASTINT (end);
9017 to_byte = CHAR_TO_BYTE (to);
9018
9019 setup_coding_system (coding_system, &coding);
9020 coding.mode |= CODING_MODE_LAST_BLOCK;
9021
9022 if (encodep)
9023 encode_coding_object (&coding, src_object, from, from_byte, to, to_byte,
9024 dst_object);
9025 else
9026 decode_coding_object (&coding, src_object, from, from_byte, to, to_byte,
9027 dst_object);
9028 if (! norecord)
9029 Vlast_coding_system_used = CODING_ID_NAME (coding.id);
9030
9031 return (BUFFERP (dst_object)
9032 ? make_number (coding.produced_char)
9033 : coding.dst_object);
9034 }
9035
9036
9037 DEFUN ("decode-coding-region", Fdecode_coding_region, Sdecode_coding_region,
9038 3, 4, "r\nzCoding system: ",
9039 doc: /* Decode the current region from the specified coding system.
9040 When called from a program, takes four arguments:
9041 START, END, CODING-SYSTEM, and DESTINATION.
9042 START and END are buffer positions.
9043
9044 Optional 4th arguments DESTINATION specifies where the decoded text goes.
9045 If nil, the region between START and END is replaced by the decoded text.
9046 If buffer, the decoded text is inserted in that buffer after point (point
9047 does not move).
9048 In those cases, the length of the decoded text is returned.
9049 If DESTINATION is t, the decoded text is returned.
9050
9051 This function sets `last-coding-system-used' to the precise coding system
9052 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
9053 not fully specified.) */)
9054 (start, end, coding_system, destination)
9055 Lisp_Object start, end, coding_system, destination;
9056 {
9057 return code_convert_region (start, end, coding_system, destination, 0, 0);
9058 }
9059
9060 DEFUN ("encode-coding-region", Fencode_coding_region, Sencode_coding_region,
9061 3, 4, "r\nzCoding system: ",
9062 doc: /* Encode the current region by specified coding system.
9063 When called from a program, takes four arguments:
9064 START, END, CODING-SYSTEM and DESTINATION.
9065 START and END are buffer positions.
9066
9067 Optional 4th arguments DESTINATION specifies where the encoded text goes.
9068 If nil, the region between START and END is replace by the encoded text.
9069 If buffer, the encoded text is inserted in that buffer after point (point
9070 does not move).
9071 In those cases, the length of the encoded text is returned.
9072 If DESTINATION is t, the encoded text is returned.
9073
9074 This function sets `last-coding-system-used' to the precise coding system
9075 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
9076 not fully specified.) */)
9077 (start, end, coding_system, destination)
9078 Lisp_Object start, end, coding_system, destination;
9079 {
9080 return code_convert_region (start, end, coding_system, destination, 1, 0);
9081 }
9082
9083 Lisp_Object
9084 code_convert_string (string, coding_system, dst_object,
9085 encodep, nocopy, norecord)
9086 Lisp_Object string, coding_system, dst_object;
9087 int encodep, nocopy, norecord;
9088 {
9089 struct coding_system coding;
9090 EMACS_INT chars, bytes;
9091
9092 CHECK_STRING (string);
9093 if (NILP (coding_system))
9094 {
9095 if (! norecord)
9096 Vlast_coding_system_used = Qno_conversion;
9097 if (NILP (dst_object))
9098 return (nocopy ? Fcopy_sequence (string) : string);
9099 }
9100
9101 if (NILP (coding_system))
9102 coding_system = Qno_conversion;
9103 else
9104 CHECK_CODING_SYSTEM (coding_system);
9105 if (NILP (dst_object))
9106 dst_object = Qt;
9107 else if (! EQ (dst_object, Qt))
9108 CHECK_BUFFER (dst_object);
9109
9110 setup_coding_system (coding_system, &coding);
9111 coding.mode |= CODING_MODE_LAST_BLOCK;
9112 chars = SCHARS (string);
9113 bytes = SBYTES (string);
9114 if (encodep)
9115 encode_coding_object (&coding, string, 0, 0, chars, bytes, dst_object);
9116 else
9117 decode_coding_object (&coding, string, 0, 0, chars, bytes, dst_object);
9118 if (! norecord)
9119 Vlast_coding_system_used = CODING_ID_NAME (coding.id);
9120
9121 return (BUFFERP (dst_object)
9122 ? make_number (coding.produced_char)
9123 : coding.dst_object);
9124 }
9125
9126
9127 /* Encode or decode STRING according to CODING_SYSTEM.
9128 Do not set Vlast_coding_system_used.
9129
9130 This function is called only from macros DECODE_FILE and
9131 ENCODE_FILE, thus we ignore character composition. */
9132
9133 Lisp_Object
9134 code_convert_string_norecord (string, coding_system, encodep)
9135 Lisp_Object string, coding_system;
9136 int encodep;
9137 {
9138 return code_convert_string (string, coding_system, Qt, encodep, 0, 1);
9139 }
9140
9141
9142 DEFUN ("decode-coding-string", Fdecode_coding_string, Sdecode_coding_string,
9143 2, 4, 0,
9144 doc: /* Decode STRING which is encoded in CODING-SYSTEM, and return the result.
9145
9146 Optional third arg NOCOPY non-nil means it is OK to return STRING itself
9147 if the decoding operation is trivial.
9148
9149 Optional fourth arg BUFFER non-nil means that the decoded text is
9150 inserted in that buffer after point (point does not move). In this
9151 case, the return value is the length of the decoded text.
9152
9153 This function sets `last-coding-system-used' to the precise coding system
9154 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
9155 not fully specified.) */)
9156 (string, coding_system, nocopy, buffer)
9157 Lisp_Object string, coding_system, nocopy, buffer;
9158 {
9159 return code_convert_string (string, coding_system, buffer,
9160 0, ! NILP (nocopy), 0);
9161 }
9162
9163 DEFUN ("encode-coding-string", Fencode_coding_string, Sencode_coding_string,
9164 2, 4, 0,
9165 doc: /* Encode STRING to CODING-SYSTEM, and return the result.
9166
9167 Optional third arg NOCOPY non-nil means it is OK to return STRING
9168 itself if the encoding operation is trivial.
9169
9170 Optional fourth arg BUFFER non-nil means that the encoded text is
9171 inserted in that buffer after point (point does not move). In this
9172 case, the return value is the length of the encoded text.
9173
9174 This function sets `last-coding-system-used' to the precise coding system
9175 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
9176 not fully specified.) */)
9177 (string, coding_system, nocopy, buffer)
9178 Lisp_Object string, coding_system, nocopy, buffer;
9179 {
9180 return code_convert_string (string, coding_system, buffer,
9181 1, ! NILP (nocopy), 1);
9182 }
9183
9184 \f
9185 DEFUN ("decode-sjis-char", Fdecode_sjis_char, Sdecode_sjis_char, 1, 1, 0,
9186 doc: /* Decode a Japanese character which has CODE in shift_jis encoding.
9187 Return the corresponding character. */)
9188 (code)
9189 Lisp_Object code;
9190 {
9191 Lisp_Object spec, attrs, val;
9192 struct charset *charset_roman, *charset_kanji, *charset_kana, *charset;
9193 int c;
9194
9195 CHECK_NATNUM (code);
9196 c = XFASTINT (code);
9197 CHECK_CODING_SYSTEM_GET_SPEC (Vsjis_coding_system, spec);
9198 attrs = AREF (spec, 0);
9199
9200 if (ASCII_BYTE_P (c)
9201 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9202 return code;
9203
9204 val = CODING_ATTR_CHARSET_LIST (attrs);
9205 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
9206 charset_kana = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
9207 charset_kanji = CHARSET_FROM_ID (XINT (XCAR (val)));
9208
9209 if (c <= 0x7F)
9210 charset = charset_roman;
9211 else if (c >= 0xA0 && c < 0xDF)
9212 {
9213 charset = charset_kana;
9214 c -= 0x80;
9215 }
9216 else
9217 {
9218 int s1 = c >> 8, s2 = c & 0xFF;
9219
9220 if (s1 < 0x81 || (s1 > 0x9F && s1 < 0xE0) || s1 > 0xEF
9221 || s2 < 0x40 || s2 == 0x7F || s2 > 0xFC)
9222 error ("Invalid code: %d", code);
9223 SJIS_TO_JIS (c);
9224 charset = charset_kanji;
9225 }
9226 c = DECODE_CHAR (charset, c);
9227 if (c < 0)
9228 error ("Invalid code: %d", code);
9229 return make_number (c);
9230 }
9231
9232
9233 DEFUN ("encode-sjis-char", Fencode_sjis_char, Sencode_sjis_char, 1, 1, 0,
9234 doc: /* Encode a Japanese character CH to shift_jis encoding.
9235 Return the corresponding code in SJIS. */)
9236 (ch)
9237 Lisp_Object ch;
9238 {
9239 Lisp_Object spec, attrs, charset_list;
9240 int c;
9241 struct charset *charset;
9242 unsigned code;
9243
9244 CHECK_CHARACTER (ch);
9245 c = XFASTINT (ch);
9246 CHECK_CODING_SYSTEM_GET_SPEC (Vsjis_coding_system, spec);
9247 attrs = AREF (spec, 0);
9248
9249 if (ASCII_CHAR_P (c)
9250 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9251 return ch;
9252
9253 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
9254 charset = char_charset (c, charset_list, &code);
9255 if (code == CHARSET_INVALID_CODE (charset))
9256 error ("Can't encode by shift_jis encoding: %d", c);
9257 JIS_TO_SJIS (code);
9258
9259 return make_number (code);
9260 }
9261
9262 DEFUN ("decode-big5-char", Fdecode_big5_char, Sdecode_big5_char, 1, 1, 0,
9263 doc: /* Decode a Big5 character which has CODE in BIG5 coding system.
9264 Return the corresponding character. */)
9265 (code)
9266 Lisp_Object code;
9267 {
9268 Lisp_Object spec, attrs, val;
9269 struct charset *charset_roman, *charset_big5, *charset;
9270 int c;
9271
9272 CHECK_NATNUM (code);
9273 c = XFASTINT (code);
9274 CHECK_CODING_SYSTEM_GET_SPEC (Vbig5_coding_system, spec);
9275 attrs = AREF (spec, 0);
9276
9277 if (ASCII_BYTE_P (c)
9278 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9279 return code;
9280
9281 val = CODING_ATTR_CHARSET_LIST (attrs);
9282 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
9283 charset_big5 = CHARSET_FROM_ID (XINT (XCAR (val)));
9284
9285 if (c <= 0x7F)
9286 charset = charset_roman;
9287 else
9288 {
9289 int b1 = c >> 8, b2 = c & 0x7F;
9290 if (b1 < 0xA1 || b1 > 0xFE
9291 || b2 < 0x40 || (b2 > 0x7E && b2 < 0xA1) || b2 > 0xFE)
9292 error ("Invalid code: %d", code);
9293 charset = charset_big5;
9294 }
9295 c = DECODE_CHAR (charset, (unsigned )c);
9296 if (c < 0)
9297 error ("Invalid code: %d", code);
9298 return make_number (c);
9299 }
9300
9301 DEFUN ("encode-big5-char", Fencode_big5_char, Sencode_big5_char, 1, 1, 0,
9302 doc: /* Encode the Big5 character CH to BIG5 coding system.
9303 Return the corresponding character code in Big5. */)
9304 (ch)
9305 Lisp_Object ch;
9306 {
9307 Lisp_Object spec, attrs, charset_list;
9308 struct charset *charset;
9309 int c;
9310 unsigned code;
9311
9312 CHECK_CHARACTER (ch);
9313 c = XFASTINT (ch);
9314 CHECK_CODING_SYSTEM_GET_SPEC (Vbig5_coding_system, spec);
9315 attrs = AREF (spec, 0);
9316 if (ASCII_CHAR_P (c)
9317 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9318 return ch;
9319
9320 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
9321 charset = char_charset (c, charset_list, &code);
9322 if (code == CHARSET_INVALID_CODE (charset))
9323 error ("Can't encode by Big5 encoding: %d", c);
9324
9325 return make_number (code);
9326 }
9327
9328 \f
9329 DEFUN ("set-terminal-coding-system-internal", Fset_terminal_coding_system_internal,
9330 Sset_terminal_coding_system_internal, 1, 2, 0,
9331 doc: /* Internal use only. */)
9332 (coding_system, terminal)
9333 Lisp_Object coding_system;
9334 Lisp_Object terminal;
9335 {
9336 struct coding_system *terminal_coding = TERMINAL_TERMINAL_CODING (get_terminal (terminal, 1));
9337 CHECK_SYMBOL (coding_system);
9338 setup_coding_system (Fcheck_coding_system (coding_system), terminal_coding);
9339 /* We had better not send unsafe characters to terminal. */
9340 terminal_coding->mode |= CODING_MODE_SAFE_ENCODING;
9341 /* Characer composition should be disabled. */
9342 terminal_coding->common_flags &= ~CODING_ANNOTATE_COMPOSITION_MASK;
9343 terminal_coding->src_multibyte = 1;
9344 terminal_coding->dst_multibyte = 0;
9345 return Qnil;
9346 }
9347
9348 DEFUN ("set-safe-terminal-coding-system-internal",
9349 Fset_safe_terminal_coding_system_internal,
9350 Sset_safe_terminal_coding_system_internal, 1, 1, 0,
9351 doc: /* Internal use only. */)
9352 (coding_system)
9353 Lisp_Object coding_system;
9354 {
9355 CHECK_SYMBOL (coding_system);
9356 setup_coding_system (Fcheck_coding_system (coding_system),
9357 &safe_terminal_coding);
9358 /* Characer composition should be disabled. */
9359 safe_terminal_coding.common_flags &= ~CODING_ANNOTATE_COMPOSITION_MASK;
9360 safe_terminal_coding.src_multibyte = 1;
9361 safe_terminal_coding.dst_multibyte = 0;
9362 return Qnil;
9363 }
9364
9365 DEFUN ("terminal-coding-system", Fterminal_coding_system,
9366 Sterminal_coding_system, 0, 1, 0,
9367 doc: /* Return coding system specified for terminal output on the given terminal.
9368 TERMINAL may be a terminal object, a frame, or nil for the selected
9369 frame's terminal device. */)
9370 (terminal)
9371 Lisp_Object terminal;
9372 {
9373 struct coding_system *terminal_coding
9374 = TERMINAL_TERMINAL_CODING (get_terminal (terminal, 1));
9375 Lisp_Object coding_system = CODING_ID_NAME (terminal_coding->id);
9376
9377 /* For backward compatibility, return nil if it is `undecided'. */
9378 return (! EQ (coding_system, Qundecided) ? coding_system : Qnil);
9379 }
9380
9381 DEFUN ("set-keyboard-coding-system-internal", Fset_keyboard_coding_system_internal,
9382 Sset_keyboard_coding_system_internal, 1, 2, 0,
9383 doc: /* Internal use only. */)
9384 (coding_system, terminal)
9385 Lisp_Object coding_system;
9386 Lisp_Object terminal;
9387 {
9388 struct terminal *t = get_terminal (terminal, 1);
9389 CHECK_SYMBOL (coding_system);
9390 if (NILP (coding_system))
9391 coding_system = Qno_conversion;
9392 else
9393 Fcheck_coding_system (coding_system);
9394 setup_coding_system (coding_system, TERMINAL_KEYBOARD_CODING (t));
9395 /* Characer composition should be disabled. */
9396 TERMINAL_KEYBOARD_CODING (t)->common_flags
9397 &= ~CODING_ANNOTATE_COMPOSITION_MASK;
9398 return Qnil;
9399 }
9400
9401 DEFUN ("keyboard-coding-system",
9402 Fkeyboard_coding_system, Skeyboard_coding_system, 0, 1, 0,
9403 doc: /* Return coding system specified for decoding keyboard input. */)
9404 (terminal)
9405 Lisp_Object terminal;
9406 {
9407 return CODING_ID_NAME (TERMINAL_KEYBOARD_CODING
9408 (get_terminal (terminal, 1))->id);
9409 }
9410
9411 \f
9412 DEFUN ("find-operation-coding-system", Ffind_operation_coding_system,
9413 Sfind_operation_coding_system, 1, MANY, 0,
9414 doc: /* Choose a coding system for an operation based on the target name.
9415 The value names a pair of coding systems: (DECODING-SYSTEM . ENCODING-SYSTEM).
9416 DECODING-SYSTEM is the coding system to use for decoding
9417 \(in case OPERATION does decoding), and ENCODING-SYSTEM is the coding system
9418 for encoding (in case OPERATION does encoding).
9419
9420 The first argument OPERATION specifies an I/O primitive:
9421 For file I/O, `insert-file-contents' or `write-region'.
9422 For process I/O, `call-process', `call-process-region', or `start-process'.
9423 For network I/O, `open-network-stream'.
9424
9425 The remaining arguments should be the same arguments that were passed
9426 to the primitive. Depending on which primitive, one of those arguments
9427 is selected as the TARGET. For example, if OPERATION does file I/O,
9428 whichever argument specifies the file name is TARGET.
9429
9430 TARGET has a meaning which depends on OPERATION:
9431 For file I/O, TARGET is a file name (except for the special case below).
9432 For process I/O, TARGET is a process name.
9433 For network I/O, TARGET is a service name or a port number.
9434
9435 This function looks up what is specified for TARGET in
9436 `file-coding-system-alist', `process-coding-system-alist',
9437 or `network-coding-system-alist' depending on OPERATION.
9438 They may specify a coding system, a cons of coding systems,
9439 or a function symbol to call.
9440 In the last case, we call the function with one argument,
9441 which is a list of all the arguments given to this function.
9442 If the function can't decide a coding system, it can return
9443 `undecided' so that the normal code-detection is performed.
9444
9445 If OPERATION is `insert-file-contents', the argument corresponding to
9446 TARGET may be a cons (FILENAME . BUFFER). In that case, FILENAME is a
9447 file name to look up, and BUFFER is a buffer that contains the file's
9448 contents (not yet decoded). If `file-coding-system-alist' specifies a
9449 function to call for FILENAME, that function should examine the
9450 contents of BUFFER instead of reading the file.
9451
9452 usage: (find-operation-coding-system OPERATION ARGUMENTS...) */)
9453 (nargs, args)
9454 int nargs;
9455 Lisp_Object *args;
9456 {
9457 Lisp_Object operation, target_idx, target, val;
9458 register Lisp_Object chain;
9459
9460 if (nargs < 2)
9461 error ("Too few arguments");
9462 operation = args[0];
9463 if (!SYMBOLP (operation)
9464 || !INTEGERP (target_idx = Fget (operation, Qtarget_idx)))
9465 error ("Invalid first argument");
9466 if (nargs < 1 + XINT (target_idx))
9467 error ("Too few arguments for operation: %s",
9468 SDATA (SYMBOL_NAME (operation)));
9469 target = args[XINT (target_idx) + 1];
9470 if (!(STRINGP (target)
9471 || (EQ (operation, Qinsert_file_contents) && CONSP (target)
9472 && STRINGP (XCAR (target)) && BUFFERP (XCDR (target)))
9473 || (EQ (operation, Qopen_network_stream) && INTEGERP (target))))
9474 error ("Invalid %dth argument", XINT (target_idx) + 1);
9475 if (CONSP (target))
9476 target = XCAR (target);
9477
9478 chain = ((EQ (operation, Qinsert_file_contents)
9479 || EQ (operation, Qwrite_region))
9480 ? Vfile_coding_system_alist
9481 : (EQ (operation, Qopen_network_stream)
9482 ? Vnetwork_coding_system_alist
9483 : Vprocess_coding_system_alist));
9484 if (NILP (chain))
9485 return Qnil;
9486
9487 for (; CONSP (chain); chain = XCDR (chain))
9488 {
9489 Lisp_Object elt;
9490
9491 elt = XCAR (chain);
9492 if (CONSP (elt)
9493 && ((STRINGP (target)
9494 && STRINGP (XCAR (elt))
9495 && fast_string_match (XCAR (elt), target) >= 0)
9496 || (INTEGERP (target) && EQ (target, XCAR (elt)))))
9497 {
9498 val = XCDR (elt);
9499 /* Here, if VAL is both a valid coding system and a valid
9500 function symbol, we return VAL as a coding system. */
9501 if (CONSP (val))
9502 return val;
9503 if (! SYMBOLP (val))
9504 return Qnil;
9505 if (! NILP (Fcoding_system_p (val)))
9506 return Fcons (val, val);
9507 if (! NILP (Ffboundp (val)))
9508 {
9509 /* We use call1 rather than safe_call1
9510 so as to get bug reports about functions called here
9511 which don't handle the current interface. */
9512 val = call1 (val, Flist (nargs, args));
9513 if (CONSP (val))
9514 return val;
9515 if (SYMBOLP (val) && ! NILP (Fcoding_system_p (val)))
9516 return Fcons (val, val);
9517 }
9518 return Qnil;
9519 }
9520 }
9521 return Qnil;
9522 }
9523
9524 DEFUN ("set-coding-system-priority", Fset_coding_system_priority,
9525 Sset_coding_system_priority, 0, MANY, 0,
9526 doc: /* Assign higher priority to the coding systems given as arguments.
9527 If multiple coding systems belong to the same category,
9528 all but the first one are ignored.
9529
9530 usage: (set-coding-system-priority &rest coding-systems) */)
9531 (nargs, args)
9532 int nargs;
9533 Lisp_Object *args;
9534 {
9535 int i, j;
9536 int changed[coding_category_max];
9537 enum coding_category priorities[coding_category_max];
9538
9539 bzero (changed, sizeof changed);
9540
9541 for (i = j = 0; i < nargs; i++)
9542 {
9543 enum coding_category category;
9544 Lisp_Object spec, attrs;
9545
9546 CHECK_CODING_SYSTEM_GET_SPEC (args[i], spec);
9547 attrs = AREF (spec, 0);
9548 category = XINT (CODING_ATTR_CATEGORY (attrs));
9549 if (changed[category])
9550 /* Ignore this coding system because a coding system of the
9551 same category already had a higher priority. */
9552 continue;
9553 changed[category] = 1;
9554 priorities[j++] = category;
9555 if (coding_categories[category].id >= 0
9556 && ! EQ (args[i], CODING_ID_NAME (coding_categories[category].id)))
9557 setup_coding_system (args[i], &coding_categories[category]);
9558 Fset (AREF (Vcoding_category_table, category), args[i]);
9559 }
9560
9561 /* Now we have decided top J priorities. Reflect the order of the
9562 original priorities to the remaining priorities. */
9563
9564 for (i = j, j = 0; i < coding_category_max; i++, j++)
9565 {
9566 while (j < coding_category_max
9567 && changed[coding_priorities[j]])
9568 j++;
9569 if (j == coding_category_max)
9570 abort ();
9571 priorities[i] = coding_priorities[j];
9572 }
9573
9574 bcopy (priorities, coding_priorities, sizeof priorities);
9575
9576 /* Update `coding-category-list'. */
9577 Vcoding_category_list = Qnil;
9578 for (i = coding_category_max - 1; i >= 0; i--)
9579 Vcoding_category_list
9580 = Fcons (AREF (Vcoding_category_table, priorities[i]),
9581 Vcoding_category_list);
9582
9583 return Qnil;
9584 }
9585
9586 DEFUN ("coding-system-priority-list", Fcoding_system_priority_list,
9587 Scoding_system_priority_list, 0, 1, 0,
9588 doc: /* Return a list of coding systems ordered by their priorities.
9589 The list contains a subset of coding systems; i.e. coding systems
9590 assigned to each coding category (see `coding-category-list').
9591
9592 HIGHESTP non-nil means just return the highest priority one. */)
9593 (highestp)
9594 Lisp_Object highestp;
9595 {
9596 int i;
9597 Lisp_Object val;
9598
9599 for (i = 0, val = Qnil; i < coding_category_max; i++)
9600 {
9601 enum coding_category category = coding_priorities[i];
9602 int id = coding_categories[category].id;
9603 Lisp_Object attrs;
9604
9605 if (id < 0)
9606 continue;
9607 attrs = CODING_ID_ATTRS (id);
9608 if (! NILP (highestp))
9609 return CODING_ATTR_BASE_NAME (attrs);
9610 val = Fcons (CODING_ATTR_BASE_NAME (attrs), val);
9611 }
9612 return Fnreverse (val);
9613 }
9614
9615 static char *suffixes[] = { "-unix", "-dos", "-mac" };
9616
9617 static Lisp_Object
9618 make_subsidiaries (base)
9619 Lisp_Object base;
9620 {
9621 Lisp_Object subsidiaries;
9622 int base_name_len = SBYTES (SYMBOL_NAME (base));
9623 char *buf = (char *) alloca (base_name_len + 6);
9624 int i;
9625
9626 bcopy (SDATA (SYMBOL_NAME (base)), buf, base_name_len);
9627 subsidiaries = Fmake_vector (make_number (3), Qnil);
9628 for (i = 0; i < 3; i++)
9629 {
9630 bcopy (suffixes[i], buf + base_name_len, strlen (suffixes[i]) + 1);
9631 ASET (subsidiaries, i, intern (buf));
9632 }
9633 return subsidiaries;
9634 }
9635
9636
9637 DEFUN ("define-coding-system-internal", Fdefine_coding_system_internal,
9638 Sdefine_coding_system_internal, coding_arg_max, MANY, 0,
9639 doc: /* For internal use only.
9640 usage: (define-coding-system-internal ...) */)
9641 (nargs, args)
9642 int nargs;
9643 Lisp_Object *args;
9644 {
9645 Lisp_Object name;
9646 Lisp_Object spec_vec; /* [ ATTRS ALIASE EOL_TYPE ] */
9647 Lisp_Object attrs; /* Vector of attributes. */
9648 Lisp_Object eol_type;
9649 Lisp_Object aliases;
9650 Lisp_Object coding_type, charset_list, safe_charsets;
9651 enum coding_category category;
9652 Lisp_Object tail, val;
9653 int max_charset_id = 0;
9654 int i;
9655
9656 if (nargs < coding_arg_max)
9657 goto short_args;
9658
9659 attrs = Fmake_vector (make_number (coding_attr_last_index), Qnil);
9660
9661 name = args[coding_arg_name];
9662 CHECK_SYMBOL (name);
9663 CODING_ATTR_BASE_NAME (attrs) = name;
9664
9665 val = args[coding_arg_mnemonic];
9666 if (! STRINGP (val))
9667 CHECK_CHARACTER (val);
9668 CODING_ATTR_MNEMONIC (attrs) = val;
9669
9670 coding_type = args[coding_arg_coding_type];
9671 CHECK_SYMBOL (coding_type);
9672 CODING_ATTR_TYPE (attrs) = coding_type;
9673
9674 charset_list = args[coding_arg_charset_list];
9675 if (SYMBOLP (charset_list))
9676 {
9677 if (EQ (charset_list, Qiso_2022))
9678 {
9679 if (! EQ (coding_type, Qiso_2022))
9680 error ("Invalid charset-list");
9681 charset_list = Viso_2022_charset_list;
9682 }
9683 else if (EQ (charset_list, Qemacs_mule))
9684 {
9685 if (! EQ (coding_type, Qemacs_mule))
9686 error ("Invalid charset-list");
9687 charset_list = Vemacs_mule_charset_list;
9688 }
9689 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
9690 if (max_charset_id < XFASTINT (XCAR (tail)))
9691 max_charset_id = XFASTINT (XCAR (tail));
9692 }
9693 else
9694 {
9695 charset_list = Fcopy_sequence (charset_list);
9696 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
9697 {
9698 struct charset *charset;
9699
9700 val = XCAR (tail);
9701 CHECK_CHARSET_GET_CHARSET (val, charset);
9702 if (EQ (coding_type, Qiso_2022)
9703 ? CHARSET_ISO_FINAL (charset) < 0
9704 : EQ (coding_type, Qemacs_mule)
9705 ? CHARSET_EMACS_MULE_ID (charset) < 0
9706 : 0)
9707 error ("Can't handle charset `%s'",
9708 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9709
9710 XSETCAR (tail, make_number (charset->id));
9711 if (max_charset_id < charset->id)
9712 max_charset_id = charset->id;
9713 }
9714 }
9715 CODING_ATTR_CHARSET_LIST (attrs) = charset_list;
9716
9717 safe_charsets = make_uninit_string (max_charset_id + 1);
9718 memset (SDATA (safe_charsets), 255, max_charset_id + 1);
9719 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
9720 SSET (safe_charsets, XFASTINT (XCAR (tail)), 0);
9721 CODING_ATTR_SAFE_CHARSETS (attrs) = safe_charsets;
9722
9723 CODING_ATTR_ASCII_COMPAT (attrs) = args[coding_arg_ascii_compatible_p];
9724
9725 val = args[coding_arg_decode_translation_table];
9726 if (! CHAR_TABLE_P (val) && ! CONSP (val))
9727 CHECK_SYMBOL (val);
9728 CODING_ATTR_DECODE_TBL (attrs) = val;
9729
9730 val = args[coding_arg_encode_translation_table];
9731 if (! CHAR_TABLE_P (val) && ! CONSP (val))
9732 CHECK_SYMBOL (val);
9733 CODING_ATTR_ENCODE_TBL (attrs) = val;
9734
9735 val = args[coding_arg_post_read_conversion];
9736 CHECK_SYMBOL (val);
9737 CODING_ATTR_POST_READ (attrs) = val;
9738
9739 val = args[coding_arg_pre_write_conversion];
9740 CHECK_SYMBOL (val);
9741 CODING_ATTR_PRE_WRITE (attrs) = val;
9742
9743 val = args[coding_arg_default_char];
9744 if (NILP (val))
9745 CODING_ATTR_DEFAULT_CHAR (attrs) = make_number (' ');
9746 else
9747 {
9748 CHECK_CHARACTER (val);
9749 CODING_ATTR_DEFAULT_CHAR (attrs) = val;
9750 }
9751
9752 val = args[coding_arg_for_unibyte];
9753 CODING_ATTR_FOR_UNIBYTE (attrs) = NILP (val) ? Qnil : Qt;
9754
9755 val = args[coding_arg_plist];
9756 CHECK_LIST (val);
9757 CODING_ATTR_PLIST (attrs) = val;
9758
9759 if (EQ (coding_type, Qcharset))
9760 {
9761 /* Generate a lisp vector of 256 elements. Each element is nil,
9762 integer, or a list of charset IDs.
9763
9764 If Nth element is nil, the byte code N is invalid in this
9765 coding system.
9766
9767 If Nth element is a number NUM, N is the first byte of a
9768 charset whose ID is NUM.
9769
9770 If Nth element is a list of charset IDs, N is the first byte
9771 of one of them. The list is sorted by dimensions of the
9772 charsets. A charset of smaller dimension comes firtst. */
9773 val = Fmake_vector (make_number (256), Qnil);
9774
9775 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
9776 {
9777 struct charset *charset = CHARSET_FROM_ID (XFASTINT (XCAR (tail)));
9778 int dim = CHARSET_DIMENSION (charset);
9779 int idx = (dim - 1) * 4;
9780
9781 if (CHARSET_ASCII_COMPATIBLE_P (charset))
9782 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9783
9784 for (i = charset->code_space[idx];
9785 i <= charset->code_space[idx + 1]; i++)
9786 {
9787 Lisp_Object tmp, tmp2;
9788 int dim2;
9789
9790 tmp = AREF (val, i);
9791 if (NILP (tmp))
9792 tmp = XCAR (tail);
9793 else if (NUMBERP (tmp))
9794 {
9795 dim2 = CHARSET_DIMENSION (CHARSET_FROM_ID (XFASTINT (tmp)));
9796 if (dim < dim2)
9797 tmp = Fcons (XCAR (tail), Fcons (tmp, Qnil));
9798 else
9799 tmp = Fcons (tmp, Fcons (XCAR (tail), Qnil));
9800 }
9801 else
9802 {
9803 for (tmp2 = tmp; CONSP (tmp2); tmp2 = XCDR (tmp2))
9804 {
9805 dim2 = CHARSET_DIMENSION (CHARSET_FROM_ID (XFASTINT (XCAR (tmp2))));
9806 if (dim < dim2)
9807 break;
9808 }
9809 if (NILP (tmp2))
9810 tmp = nconc2 (tmp, Fcons (XCAR (tail), Qnil));
9811 else
9812 {
9813 XSETCDR (tmp2, Fcons (XCAR (tmp2), XCDR (tmp2)));
9814 XSETCAR (tmp2, XCAR (tail));
9815 }
9816 }
9817 ASET (val, i, tmp);
9818 }
9819 }
9820 ASET (attrs, coding_attr_charset_valids, val);
9821 category = coding_category_charset;
9822 }
9823 else if (EQ (coding_type, Qccl))
9824 {
9825 Lisp_Object valids;
9826
9827 if (nargs < coding_arg_ccl_max)
9828 goto short_args;
9829
9830 val = args[coding_arg_ccl_decoder];
9831 CHECK_CCL_PROGRAM (val);
9832 if (VECTORP (val))
9833 val = Fcopy_sequence (val);
9834 ASET (attrs, coding_attr_ccl_decoder, val);
9835
9836 val = args[coding_arg_ccl_encoder];
9837 CHECK_CCL_PROGRAM (val);
9838 if (VECTORP (val))
9839 val = Fcopy_sequence (val);
9840 ASET (attrs, coding_attr_ccl_encoder, val);
9841
9842 val = args[coding_arg_ccl_valids];
9843 valids = Fmake_string (make_number (256), make_number (0));
9844 for (tail = val; !NILP (tail); tail = Fcdr (tail))
9845 {
9846 int from, to;
9847
9848 val = Fcar (tail);
9849 if (INTEGERP (val))
9850 {
9851 from = to = XINT (val);
9852 if (from < 0 || from > 255)
9853 args_out_of_range_3 (val, make_number (0), make_number (255));
9854 }
9855 else
9856 {
9857 CHECK_CONS (val);
9858 CHECK_NATNUM_CAR (val);
9859 CHECK_NATNUM_CDR (val);
9860 from = XINT (XCAR (val));
9861 if (from > 255)
9862 args_out_of_range_3 (XCAR (val),
9863 make_number (0), make_number (255));
9864 to = XINT (XCDR (val));
9865 if (to < from || to > 255)
9866 args_out_of_range_3 (XCDR (val),
9867 XCAR (val), make_number (255));
9868 }
9869 for (i = from; i <= to; i++)
9870 SSET (valids, i, 1);
9871 }
9872 ASET (attrs, coding_attr_ccl_valids, valids);
9873
9874 category = coding_category_ccl;
9875 }
9876 else if (EQ (coding_type, Qutf_16))
9877 {
9878 Lisp_Object bom, endian;
9879
9880 CODING_ATTR_ASCII_COMPAT (attrs) = Qnil;
9881
9882 if (nargs < coding_arg_utf16_max)
9883 goto short_args;
9884
9885 bom = args[coding_arg_utf16_bom];
9886 if (! NILP (bom) && ! EQ (bom, Qt))
9887 {
9888 CHECK_CONS (bom);
9889 val = XCAR (bom);
9890 CHECK_CODING_SYSTEM (val);
9891 val = XCDR (bom);
9892 CHECK_CODING_SYSTEM (val);
9893 }
9894 ASET (attrs, coding_attr_utf_bom, bom);
9895
9896 endian = args[coding_arg_utf16_endian];
9897 CHECK_SYMBOL (endian);
9898 if (NILP (endian))
9899 endian = Qbig;
9900 else if (! EQ (endian, Qbig) && ! EQ (endian, Qlittle))
9901 error ("Invalid endian: %s", SDATA (SYMBOL_NAME (endian)));
9902 ASET (attrs, coding_attr_utf_16_endian, endian);
9903
9904 category = (CONSP (bom)
9905 ? coding_category_utf_16_auto
9906 : NILP (bom)
9907 ? (EQ (endian, Qbig)
9908 ? coding_category_utf_16_be_nosig
9909 : coding_category_utf_16_le_nosig)
9910 : (EQ (endian, Qbig)
9911 ? coding_category_utf_16_be
9912 : coding_category_utf_16_le));
9913 }
9914 else if (EQ (coding_type, Qiso_2022))
9915 {
9916 Lisp_Object initial, reg_usage, request, flags;
9917 int i;
9918
9919 if (nargs < coding_arg_iso2022_max)
9920 goto short_args;
9921
9922 initial = Fcopy_sequence (args[coding_arg_iso2022_initial]);
9923 CHECK_VECTOR (initial);
9924 for (i = 0; i < 4; i++)
9925 {
9926 val = Faref (initial, make_number (i));
9927 if (! NILP (val))
9928 {
9929 struct charset *charset;
9930
9931 CHECK_CHARSET_GET_CHARSET (val, charset);
9932 ASET (initial, i, make_number (CHARSET_ID (charset)));
9933 if (i == 0 && CHARSET_ASCII_COMPATIBLE_P (charset))
9934 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9935 }
9936 else
9937 ASET (initial, i, make_number (-1));
9938 }
9939
9940 reg_usage = args[coding_arg_iso2022_reg_usage];
9941 CHECK_CONS (reg_usage);
9942 CHECK_NUMBER_CAR (reg_usage);
9943 CHECK_NUMBER_CDR (reg_usage);
9944
9945 request = Fcopy_sequence (args[coding_arg_iso2022_request]);
9946 for (tail = request; ! NILP (tail); tail = Fcdr (tail))
9947 {
9948 int id;
9949 Lisp_Object tmp;
9950
9951 val = Fcar (tail);
9952 CHECK_CONS (val);
9953 tmp = XCAR (val);
9954 CHECK_CHARSET_GET_ID (tmp, id);
9955 CHECK_NATNUM_CDR (val);
9956 if (XINT (XCDR (val)) >= 4)
9957 error ("Invalid graphic register number: %d", XINT (XCDR (val)));
9958 XSETCAR (val, make_number (id));
9959 }
9960
9961 flags = args[coding_arg_iso2022_flags];
9962 CHECK_NATNUM (flags);
9963 i = XINT (flags);
9964 if (EQ (args[coding_arg_charset_list], Qiso_2022))
9965 flags = make_number (i | CODING_ISO_FLAG_FULL_SUPPORT);
9966
9967 ASET (attrs, coding_attr_iso_initial, initial);
9968 ASET (attrs, coding_attr_iso_usage, reg_usage);
9969 ASET (attrs, coding_attr_iso_request, request);
9970 ASET (attrs, coding_attr_iso_flags, flags);
9971 setup_iso_safe_charsets (attrs);
9972
9973 if (i & CODING_ISO_FLAG_SEVEN_BITS)
9974 category = ((i & (CODING_ISO_FLAG_LOCKING_SHIFT
9975 | CODING_ISO_FLAG_SINGLE_SHIFT))
9976 ? coding_category_iso_7_else
9977 : EQ (args[coding_arg_charset_list], Qiso_2022)
9978 ? coding_category_iso_7
9979 : coding_category_iso_7_tight);
9980 else
9981 {
9982 int id = XINT (AREF (initial, 1));
9983
9984 category = (((i & CODING_ISO_FLAG_LOCKING_SHIFT)
9985 || EQ (args[coding_arg_charset_list], Qiso_2022)
9986 || id < 0)
9987 ? coding_category_iso_8_else
9988 : (CHARSET_DIMENSION (CHARSET_FROM_ID (id)) == 1)
9989 ? coding_category_iso_8_1
9990 : coding_category_iso_8_2);
9991 }
9992 if (category != coding_category_iso_8_1
9993 && category != coding_category_iso_8_2)
9994 CODING_ATTR_ASCII_COMPAT (attrs) = Qnil;
9995 }
9996 else if (EQ (coding_type, Qemacs_mule))
9997 {
9998 if (EQ (args[coding_arg_charset_list], Qemacs_mule))
9999 ASET (attrs, coding_attr_emacs_mule_full, Qt);
10000 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
10001 category = coding_category_emacs_mule;
10002 }
10003 else if (EQ (coding_type, Qshift_jis))
10004 {
10005
10006 struct charset *charset;
10007
10008 if (XINT (Flength (charset_list)) != 3
10009 && XINT (Flength (charset_list)) != 4)
10010 error ("There should be three or four charsets");
10011
10012 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
10013 if (CHARSET_DIMENSION (charset) != 1)
10014 error ("Dimension of charset %s is not one",
10015 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
10016 if (CHARSET_ASCII_COMPATIBLE_P (charset))
10017 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
10018
10019 charset_list = XCDR (charset_list);
10020 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
10021 if (CHARSET_DIMENSION (charset) != 1)
10022 error ("Dimension of charset %s is not one",
10023 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
10024
10025 charset_list = XCDR (charset_list);
10026 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
10027 if (CHARSET_DIMENSION (charset) != 2)
10028 error ("Dimension of charset %s is not two",
10029 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
10030
10031 charset_list = XCDR (charset_list);
10032 if (! NILP (charset_list))
10033 {
10034 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
10035 if (CHARSET_DIMENSION (charset) != 2)
10036 error ("Dimension of charset %s is not two",
10037 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
10038 }
10039
10040 category = coding_category_sjis;
10041 Vsjis_coding_system = name;
10042 }
10043 else if (EQ (coding_type, Qbig5))
10044 {
10045 struct charset *charset;
10046
10047 if (XINT (Flength (charset_list)) != 2)
10048 error ("There should be just two charsets");
10049
10050 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
10051 if (CHARSET_DIMENSION (charset) != 1)
10052 error ("Dimension of charset %s is not one",
10053 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
10054 if (CHARSET_ASCII_COMPATIBLE_P (charset))
10055 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
10056
10057 charset_list = XCDR (charset_list);
10058 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
10059 if (CHARSET_DIMENSION (charset) != 2)
10060 error ("Dimension of charset %s is not two",
10061 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
10062
10063 category = coding_category_big5;
10064 Vbig5_coding_system = name;
10065 }
10066 else if (EQ (coding_type, Qraw_text))
10067 {
10068 category = coding_category_raw_text;
10069 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
10070 }
10071 else if (EQ (coding_type, Qutf_8))
10072 {
10073 Lisp_Object bom;
10074
10075 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
10076
10077 if (nargs < coding_arg_utf8_max)
10078 goto short_args;
10079
10080 bom = args[coding_arg_utf8_bom];
10081 if (! NILP (bom) && ! EQ (bom, Qt))
10082 {
10083 CHECK_CONS (bom);
10084 val = XCAR (bom);
10085 CHECK_CODING_SYSTEM (val);
10086 val = XCDR (bom);
10087 CHECK_CODING_SYSTEM (val);
10088 }
10089 ASET (attrs, coding_attr_utf_bom, bom);
10090
10091 category = (CONSP (bom) ? coding_category_utf_8_auto
10092 : NILP (bom) ? coding_category_utf_8_nosig
10093 : coding_category_utf_8_sig);
10094 }
10095 else if (EQ (coding_type, Qundecided))
10096 category = coding_category_undecided;
10097 else
10098 error ("Invalid coding system type: %s",
10099 SDATA (SYMBOL_NAME (coding_type)));
10100
10101 CODING_ATTR_CATEGORY (attrs) = make_number (category);
10102 CODING_ATTR_PLIST (attrs)
10103 = Fcons (QCcategory, Fcons (AREF (Vcoding_category_table, category),
10104 CODING_ATTR_PLIST (attrs)));
10105 CODING_ATTR_PLIST (attrs)
10106 = Fcons (QCascii_compatible_p,
10107 Fcons (CODING_ATTR_ASCII_COMPAT (attrs),
10108 CODING_ATTR_PLIST (attrs)));
10109
10110 eol_type = args[coding_arg_eol_type];
10111 if (! NILP (eol_type)
10112 && ! EQ (eol_type, Qunix)
10113 && ! EQ (eol_type, Qdos)
10114 && ! EQ (eol_type, Qmac))
10115 error ("Invalid eol-type");
10116
10117 aliases = Fcons (name, Qnil);
10118
10119 if (NILP (eol_type))
10120 {
10121 eol_type = make_subsidiaries (name);
10122 for (i = 0; i < 3; i++)
10123 {
10124 Lisp_Object this_spec, this_name, this_aliases, this_eol_type;
10125
10126 this_name = AREF (eol_type, i);
10127 this_aliases = Fcons (this_name, Qnil);
10128 this_eol_type = (i == 0 ? Qunix : i == 1 ? Qdos : Qmac);
10129 this_spec = Fmake_vector (make_number (3), attrs);
10130 ASET (this_spec, 1, this_aliases);
10131 ASET (this_spec, 2, this_eol_type);
10132 Fputhash (this_name, this_spec, Vcoding_system_hash_table);
10133 Vcoding_system_list = Fcons (this_name, Vcoding_system_list);
10134 val = Fassoc (Fsymbol_name (this_name), Vcoding_system_alist);
10135 if (NILP (val))
10136 Vcoding_system_alist
10137 = Fcons (Fcons (Fsymbol_name (this_name), Qnil),
10138 Vcoding_system_alist);
10139 }
10140 }
10141
10142 spec_vec = Fmake_vector (make_number (3), attrs);
10143 ASET (spec_vec, 1, aliases);
10144 ASET (spec_vec, 2, eol_type);
10145
10146 Fputhash (name, spec_vec, Vcoding_system_hash_table);
10147 Vcoding_system_list = Fcons (name, Vcoding_system_list);
10148 val = Fassoc (Fsymbol_name (name), Vcoding_system_alist);
10149 if (NILP (val))
10150 Vcoding_system_alist = Fcons (Fcons (Fsymbol_name (name), Qnil),
10151 Vcoding_system_alist);
10152
10153 {
10154 int id = coding_categories[category].id;
10155
10156 if (id < 0 || EQ (name, CODING_ID_NAME (id)))
10157 setup_coding_system (name, &coding_categories[category]);
10158 }
10159
10160 return Qnil;
10161
10162 short_args:
10163 return Fsignal (Qwrong_number_of_arguments,
10164 Fcons (intern ("define-coding-system-internal"),
10165 make_number (nargs)));
10166 }
10167
10168
10169 DEFUN ("coding-system-put", Fcoding_system_put, Scoding_system_put,
10170 3, 3, 0,
10171 doc: /* Change value in CODING-SYSTEM's property list PROP to VAL. */)
10172 (coding_system, prop, val)
10173 Lisp_Object coding_system, prop, val;
10174 {
10175 Lisp_Object spec, attrs;
10176
10177 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10178 attrs = AREF (spec, 0);
10179 if (EQ (prop, QCmnemonic))
10180 {
10181 if (! STRINGP (val))
10182 CHECK_CHARACTER (val);
10183 CODING_ATTR_MNEMONIC (attrs) = val;
10184 }
10185 else if (EQ (prop, QCdefault_char))
10186 {
10187 if (NILP (val))
10188 val = make_number (' ');
10189 else
10190 CHECK_CHARACTER (val);
10191 CODING_ATTR_DEFAULT_CHAR (attrs) = val;
10192 }
10193 else if (EQ (prop, QCdecode_translation_table))
10194 {
10195 if (! CHAR_TABLE_P (val) && ! CONSP (val))
10196 CHECK_SYMBOL (val);
10197 CODING_ATTR_DECODE_TBL (attrs) = val;
10198 }
10199 else if (EQ (prop, QCencode_translation_table))
10200 {
10201 if (! CHAR_TABLE_P (val) && ! CONSP (val))
10202 CHECK_SYMBOL (val);
10203 CODING_ATTR_ENCODE_TBL (attrs) = val;
10204 }
10205 else if (EQ (prop, QCpost_read_conversion))
10206 {
10207 CHECK_SYMBOL (val);
10208 CODING_ATTR_POST_READ (attrs) = val;
10209 }
10210 else if (EQ (prop, QCpre_write_conversion))
10211 {
10212 CHECK_SYMBOL (val);
10213 CODING_ATTR_PRE_WRITE (attrs) = val;
10214 }
10215 else if (EQ (prop, QCascii_compatible_p))
10216 {
10217 CODING_ATTR_ASCII_COMPAT (attrs) = val;
10218 }
10219
10220 CODING_ATTR_PLIST (attrs)
10221 = Fplist_put (CODING_ATTR_PLIST (attrs), prop, val);
10222 return val;
10223 }
10224
10225
10226 DEFUN ("define-coding-system-alias", Fdefine_coding_system_alias,
10227 Sdefine_coding_system_alias, 2, 2, 0,
10228 doc: /* Define ALIAS as an alias for CODING-SYSTEM. */)
10229 (alias, coding_system)
10230 Lisp_Object alias, coding_system;
10231 {
10232 Lisp_Object spec, aliases, eol_type, val;
10233
10234 CHECK_SYMBOL (alias);
10235 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10236 aliases = AREF (spec, 1);
10237 /* ALIASES should be a list of length more than zero, and the first
10238 element is a base coding system. Append ALIAS at the tail of the
10239 list. */
10240 while (!NILP (XCDR (aliases)))
10241 aliases = XCDR (aliases);
10242 XSETCDR (aliases, Fcons (alias, Qnil));
10243
10244 eol_type = AREF (spec, 2);
10245 if (VECTORP (eol_type))
10246 {
10247 Lisp_Object subsidiaries;
10248 int i;
10249
10250 subsidiaries = make_subsidiaries (alias);
10251 for (i = 0; i < 3; i++)
10252 Fdefine_coding_system_alias (AREF (subsidiaries, i),
10253 AREF (eol_type, i));
10254 }
10255
10256 Fputhash (alias, spec, Vcoding_system_hash_table);
10257 Vcoding_system_list = Fcons (alias, Vcoding_system_list);
10258 val = Fassoc (Fsymbol_name (alias), Vcoding_system_alist);
10259 if (NILP (val))
10260 Vcoding_system_alist = Fcons (Fcons (Fsymbol_name (alias), Qnil),
10261 Vcoding_system_alist);
10262
10263 return Qnil;
10264 }
10265
10266 DEFUN ("coding-system-base", Fcoding_system_base, Scoding_system_base,
10267 1, 1, 0,
10268 doc: /* Return the base of CODING-SYSTEM.
10269 Any alias or subsidiary coding system is not a base coding system. */)
10270 (coding_system)
10271 Lisp_Object coding_system;
10272 {
10273 Lisp_Object spec, attrs;
10274
10275 if (NILP (coding_system))
10276 return (Qno_conversion);
10277 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10278 attrs = AREF (spec, 0);
10279 return CODING_ATTR_BASE_NAME (attrs);
10280 }
10281
10282 DEFUN ("coding-system-plist", Fcoding_system_plist, Scoding_system_plist,
10283 1, 1, 0,
10284 doc: "Return the property list of CODING-SYSTEM.")
10285 (coding_system)
10286 Lisp_Object coding_system;
10287 {
10288 Lisp_Object spec, attrs;
10289
10290 if (NILP (coding_system))
10291 coding_system = Qno_conversion;
10292 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10293 attrs = AREF (spec, 0);
10294 return CODING_ATTR_PLIST (attrs);
10295 }
10296
10297
10298 DEFUN ("coding-system-aliases", Fcoding_system_aliases, Scoding_system_aliases,
10299 1, 1, 0,
10300 doc: /* Return the list of aliases of CODING-SYSTEM. */)
10301 (coding_system)
10302 Lisp_Object coding_system;
10303 {
10304 Lisp_Object spec;
10305
10306 if (NILP (coding_system))
10307 coding_system = Qno_conversion;
10308 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10309 return AREF (spec, 1);
10310 }
10311
10312 DEFUN ("coding-system-eol-type", Fcoding_system_eol_type,
10313 Scoding_system_eol_type, 1, 1, 0,
10314 doc: /* Return eol-type of CODING-SYSTEM.
10315 An eol-type is an integer 0, 1, 2, or a vector of coding systems.
10316
10317 Integer values 0, 1, and 2 indicate a format of end-of-line; LF, CRLF,
10318 and CR respectively.
10319
10320 A vector value indicates that a format of end-of-line should be
10321 detected automatically. Nth element of the vector is the subsidiary
10322 coding system whose eol-type is N. */)
10323 (coding_system)
10324 Lisp_Object coding_system;
10325 {
10326 Lisp_Object spec, eol_type;
10327 int n;
10328
10329 if (NILP (coding_system))
10330 coding_system = Qno_conversion;
10331 if (! CODING_SYSTEM_P (coding_system))
10332 return Qnil;
10333 spec = CODING_SYSTEM_SPEC (coding_system);
10334 eol_type = AREF (spec, 2);
10335 if (VECTORP (eol_type))
10336 return Fcopy_sequence (eol_type);
10337 n = EQ (eol_type, Qunix) ? 0 : EQ (eol_type, Qdos) ? 1 : 2;
10338 return make_number (n);
10339 }
10340
10341 #endif /* emacs */
10342
10343 \f
10344 /*** 9. Post-amble ***/
10345
10346 void
10347 init_coding_once ()
10348 {
10349 int i;
10350
10351 for (i = 0; i < coding_category_max; i++)
10352 {
10353 coding_categories[i].id = -1;
10354 coding_priorities[i] = i;
10355 }
10356
10357 /* ISO2022 specific initialize routine. */
10358 for (i = 0; i < 0x20; i++)
10359 iso_code_class[i] = ISO_control_0;
10360 for (i = 0x21; i < 0x7F; i++)
10361 iso_code_class[i] = ISO_graphic_plane_0;
10362 for (i = 0x80; i < 0xA0; i++)
10363 iso_code_class[i] = ISO_control_1;
10364 for (i = 0xA1; i < 0xFF; i++)
10365 iso_code_class[i] = ISO_graphic_plane_1;
10366 iso_code_class[0x20] = iso_code_class[0x7F] = ISO_0x20_or_0x7F;
10367 iso_code_class[0xA0] = iso_code_class[0xFF] = ISO_0xA0_or_0xFF;
10368 iso_code_class[ISO_CODE_SO] = ISO_shift_out;
10369 iso_code_class[ISO_CODE_SI] = ISO_shift_in;
10370 iso_code_class[ISO_CODE_SS2_7] = ISO_single_shift_2_7;
10371 iso_code_class[ISO_CODE_ESC] = ISO_escape;
10372 iso_code_class[ISO_CODE_SS2] = ISO_single_shift_2;
10373 iso_code_class[ISO_CODE_SS3] = ISO_single_shift_3;
10374 iso_code_class[ISO_CODE_CSI] = ISO_control_sequence_introducer;
10375
10376 for (i = 0; i < 256; i++)
10377 {
10378 emacs_mule_bytes[i] = 1;
10379 }
10380 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_11] = 3;
10381 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_12] = 3;
10382 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_21] = 4;
10383 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_22] = 4;
10384 }
10385
10386 #ifdef emacs
10387
10388 void
10389 syms_of_coding ()
10390 {
10391 staticpro (&Vcoding_system_hash_table);
10392 {
10393 Lisp_Object args[2];
10394 args[0] = QCtest;
10395 args[1] = Qeq;
10396 Vcoding_system_hash_table = Fmake_hash_table (2, args);
10397 }
10398
10399 staticpro (&Vsjis_coding_system);
10400 Vsjis_coding_system = Qnil;
10401
10402 staticpro (&Vbig5_coding_system);
10403 Vbig5_coding_system = Qnil;
10404
10405 staticpro (&Vcode_conversion_reused_workbuf);
10406 Vcode_conversion_reused_workbuf = Qnil;
10407
10408 staticpro (&Vcode_conversion_workbuf_name);
10409 Vcode_conversion_workbuf_name = build_string (" *code-conversion-work*");
10410
10411 reused_workbuf_in_use = 0;
10412
10413 DEFSYM (Qcharset, "charset");
10414 DEFSYM (Qtarget_idx, "target-idx");
10415 DEFSYM (Qcoding_system_history, "coding-system-history");
10416 Fset (Qcoding_system_history, Qnil);
10417
10418 /* Target FILENAME is the first argument. */
10419 Fput (Qinsert_file_contents, Qtarget_idx, make_number (0));
10420 /* Target FILENAME is the third argument. */
10421 Fput (Qwrite_region, Qtarget_idx, make_number (2));
10422
10423 DEFSYM (Qcall_process, "call-process");
10424 /* Target PROGRAM is the first argument. */
10425 Fput (Qcall_process, Qtarget_idx, make_number (0));
10426
10427 DEFSYM (Qcall_process_region, "call-process-region");
10428 /* Target PROGRAM is the third argument. */
10429 Fput (Qcall_process_region, Qtarget_idx, make_number (2));
10430
10431 DEFSYM (Qstart_process, "start-process");
10432 /* Target PROGRAM is the third argument. */
10433 Fput (Qstart_process, Qtarget_idx, make_number (2));
10434
10435 DEFSYM (Qopen_network_stream, "open-network-stream");
10436 /* Target SERVICE is the fourth argument. */
10437 Fput (Qopen_network_stream, Qtarget_idx, make_number (3));
10438
10439 DEFSYM (Qcoding_system, "coding-system");
10440 DEFSYM (Qcoding_aliases, "coding-aliases");
10441
10442 DEFSYM (Qeol_type, "eol-type");
10443 DEFSYM (Qunix, "unix");
10444 DEFSYM (Qdos, "dos");
10445
10446 DEFSYM (Qbuffer_file_coding_system, "buffer-file-coding-system");
10447 DEFSYM (Qpost_read_conversion, "post-read-conversion");
10448 DEFSYM (Qpre_write_conversion, "pre-write-conversion");
10449 DEFSYM (Qdefault_char, "default-char");
10450 DEFSYM (Qundecided, "undecided");
10451 DEFSYM (Qno_conversion, "no-conversion");
10452 DEFSYM (Qraw_text, "raw-text");
10453
10454 DEFSYM (Qiso_2022, "iso-2022");
10455
10456 DEFSYM (Qutf_8, "utf-8");
10457 DEFSYM (Qutf_8_emacs, "utf-8-emacs");
10458
10459 DEFSYM (Qutf_16, "utf-16");
10460 DEFSYM (Qbig, "big");
10461 DEFSYM (Qlittle, "little");
10462
10463 DEFSYM (Qshift_jis, "shift-jis");
10464 DEFSYM (Qbig5, "big5");
10465
10466 DEFSYM (Qcoding_system_p, "coding-system-p");
10467
10468 DEFSYM (Qcoding_system_error, "coding-system-error");
10469 Fput (Qcoding_system_error, Qerror_conditions,
10470 Fcons (Qcoding_system_error, Fcons (Qerror, Qnil)));
10471 Fput (Qcoding_system_error, Qerror_message,
10472 build_string ("Invalid coding system"));
10473
10474 /* Intern this now in case it isn't already done.
10475 Setting this variable twice is harmless.
10476 But don't staticpro it here--that is done in alloc.c. */
10477 Qchar_table_extra_slots = intern ("char-table-extra-slots");
10478
10479 DEFSYM (Qtranslation_table, "translation-table");
10480 Fput (Qtranslation_table, Qchar_table_extra_slots, make_number (2));
10481 DEFSYM (Qtranslation_table_id, "translation-table-id");
10482 DEFSYM (Qtranslation_table_for_decode, "translation-table-for-decode");
10483 DEFSYM (Qtranslation_table_for_encode, "translation-table-for-encode");
10484
10485 DEFSYM (Qvalid_codes, "valid-codes");
10486
10487 DEFSYM (Qemacs_mule, "emacs-mule");
10488
10489 DEFSYM (QCcategory, ":category");
10490 DEFSYM (QCmnemonic, ":mnemonic");
10491 DEFSYM (QCdefault_char, ":default-char");
10492 DEFSYM (QCdecode_translation_table, ":decode-translation-table");
10493 DEFSYM (QCencode_translation_table, ":encode-translation-table");
10494 DEFSYM (QCpost_read_conversion, ":post-read-conversion");
10495 DEFSYM (QCpre_write_conversion, ":pre-write-conversion");
10496 DEFSYM (QCascii_compatible_p, ":ascii-compatible-p");
10497
10498 Vcoding_category_table
10499 = Fmake_vector (make_number (coding_category_max), Qnil);
10500 staticpro (&Vcoding_category_table);
10501 /* Followings are target of code detection. */
10502 ASET (Vcoding_category_table, coding_category_iso_7,
10503 intern ("coding-category-iso-7"));
10504 ASET (Vcoding_category_table, coding_category_iso_7_tight,
10505 intern ("coding-category-iso-7-tight"));
10506 ASET (Vcoding_category_table, coding_category_iso_8_1,
10507 intern ("coding-category-iso-8-1"));
10508 ASET (Vcoding_category_table, coding_category_iso_8_2,
10509 intern ("coding-category-iso-8-2"));
10510 ASET (Vcoding_category_table, coding_category_iso_7_else,
10511 intern ("coding-category-iso-7-else"));
10512 ASET (Vcoding_category_table, coding_category_iso_8_else,
10513 intern ("coding-category-iso-8-else"));
10514 ASET (Vcoding_category_table, coding_category_utf_8_auto,
10515 intern ("coding-category-utf-8-auto"));
10516 ASET (Vcoding_category_table, coding_category_utf_8_nosig,
10517 intern ("coding-category-utf-8"));
10518 ASET (Vcoding_category_table, coding_category_utf_8_sig,
10519 intern ("coding-category-utf-8-sig"));
10520 ASET (Vcoding_category_table, coding_category_utf_16_be,
10521 intern ("coding-category-utf-16-be"));
10522 ASET (Vcoding_category_table, coding_category_utf_16_auto,
10523 intern ("coding-category-utf-16-auto"));
10524 ASET (Vcoding_category_table, coding_category_utf_16_le,
10525 intern ("coding-category-utf-16-le"));
10526 ASET (Vcoding_category_table, coding_category_utf_16_be_nosig,
10527 intern ("coding-category-utf-16-be-nosig"));
10528 ASET (Vcoding_category_table, coding_category_utf_16_le_nosig,
10529 intern ("coding-category-utf-16-le-nosig"));
10530 ASET (Vcoding_category_table, coding_category_charset,
10531 intern ("coding-category-charset"));
10532 ASET (Vcoding_category_table, coding_category_sjis,
10533 intern ("coding-category-sjis"));
10534 ASET (Vcoding_category_table, coding_category_big5,
10535 intern ("coding-category-big5"));
10536 ASET (Vcoding_category_table, coding_category_ccl,
10537 intern ("coding-category-ccl"));
10538 ASET (Vcoding_category_table, coding_category_emacs_mule,
10539 intern ("coding-category-emacs-mule"));
10540 /* Followings are NOT target of code detection. */
10541 ASET (Vcoding_category_table, coding_category_raw_text,
10542 intern ("coding-category-raw-text"));
10543 ASET (Vcoding_category_table, coding_category_undecided,
10544 intern ("coding-category-undecided"));
10545
10546 DEFSYM (Qinsufficient_source, "insufficient-source");
10547 DEFSYM (Qinconsistent_eol, "inconsistent-eol");
10548 DEFSYM (Qinvalid_source, "invalid-source");
10549 DEFSYM (Qinterrupted, "interrupted");
10550 DEFSYM (Qinsufficient_memory, "insufficient-memory");
10551 DEFSYM (Qcoding_system_define_form, "coding-system-define-form");
10552
10553 defsubr (&Scoding_system_p);
10554 defsubr (&Sread_coding_system);
10555 defsubr (&Sread_non_nil_coding_system);
10556 defsubr (&Scheck_coding_system);
10557 defsubr (&Sdetect_coding_region);
10558 defsubr (&Sdetect_coding_string);
10559 defsubr (&Sfind_coding_systems_region_internal);
10560 defsubr (&Sunencodable_char_position);
10561 defsubr (&Scheck_coding_systems_region);
10562 defsubr (&Sdecode_coding_region);
10563 defsubr (&Sencode_coding_region);
10564 defsubr (&Sdecode_coding_string);
10565 defsubr (&Sencode_coding_string);
10566 defsubr (&Sdecode_sjis_char);
10567 defsubr (&Sencode_sjis_char);
10568 defsubr (&Sdecode_big5_char);
10569 defsubr (&Sencode_big5_char);
10570 defsubr (&Sset_terminal_coding_system_internal);
10571 defsubr (&Sset_safe_terminal_coding_system_internal);
10572 defsubr (&Sterminal_coding_system);
10573 defsubr (&Sset_keyboard_coding_system_internal);
10574 defsubr (&Skeyboard_coding_system);
10575 defsubr (&Sfind_operation_coding_system);
10576 defsubr (&Sset_coding_system_priority);
10577 defsubr (&Sdefine_coding_system_internal);
10578 defsubr (&Sdefine_coding_system_alias);
10579 defsubr (&Scoding_system_put);
10580 defsubr (&Scoding_system_base);
10581 defsubr (&Scoding_system_plist);
10582 defsubr (&Scoding_system_aliases);
10583 defsubr (&Scoding_system_eol_type);
10584 defsubr (&Scoding_system_priority_list);
10585
10586 DEFVAR_LISP ("coding-system-list", &Vcoding_system_list,
10587 doc: /* List of coding systems.
10588
10589 Do not alter the value of this variable manually. This variable should be
10590 updated by the functions `define-coding-system' and
10591 `define-coding-system-alias'. */);
10592 Vcoding_system_list = Qnil;
10593
10594 DEFVAR_LISP ("coding-system-alist", &Vcoding_system_alist,
10595 doc: /* Alist of coding system names.
10596 Each element is one element list of coding system name.
10597 This variable is given to `completing-read' as COLLECTION argument.
10598
10599 Do not alter the value of this variable manually. This variable should be
10600 updated by the functions `make-coding-system' and
10601 `define-coding-system-alias'. */);
10602 Vcoding_system_alist = Qnil;
10603
10604 DEFVAR_LISP ("coding-category-list", &Vcoding_category_list,
10605 doc: /* List of coding-categories (symbols) ordered by priority.
10606
10607 On detecting a coding system, Emacs tries code detection algorithms
10608 associated with each coding-category one by one in this order. When
10609 one algorithm agrees with a byte sequence of source text, the coding
10610 system bound to the corresponding coding-category is selected.
10611
10612 Don't modify this variable directly, but use `set-coding-priority'. */);
10613 {
10614 int i;
10615
10616 Vcoding_category_list = Qnil;
10617 for (i = coding_category_max - 1; i >= 0; i--)
10618 Vcoding_category_list
10619 = Fcons (XVECTOR (Vcoding_category_table)->contents[i],
10620 Vcoding_category_list);
10621 }
10622
10623 DEFVAR_LISP ("coding-system-for-read", &Vcoding_system_for_read,
10624 doc: /* Specify the coding system for read operations.
10625 It is useful to bind this variable with `let', but do not set it globally.
10626 If the value is a coding system, it is used for decoding on read operation.
10627 If not, an appropriate element is used from one of the coding system alists.
10628 There are three such tables: `file-coding-system-alist',
10629 `process-coding-system-alist', and `network-coding-system-alist'. */);
10630 Vcoding_system_for_read = Qnil;
10631
10632 DEFVAR_LISP ("coding-system-for-write", &Vcoding_system_for_write,
10633 doc: /* Specify the coding system for write operations.
10634 Programs bind this variable with `let', but you should not set it globally.
10635 If the value is a coding system, it is used for encoding of output,
10636 when writing it to a file and when sending it to a file or subprocess.
10637
10638 If this does not specify a coding system, an appropriate element
10639 is used from one of the coding system alists.
10640 There are three such tables: `file-coding-system-alist',
10641 `process-coding-system-alist', and `network-coding-system-alist'.
10642 For output to files, if the above procedure does not specify a coding system,
10643 the value of `buffer-file-coding-system' is used. */);
10644 Vcoding_system_for_write = Qnil;
10645
10646 DEFVAR_LISP ("last-coding-system-used", &Vlast_coding_system_used,
10647 doc: /*
10648 Coding system used in the latest file or process I/O. */);
10649 Vlast_coding_system_used = Qnil;
10650
10651 DEFVAR_LISP ("last-code-conversion-error", &Vlast_code_conversion_error,
10652 doc: /*
10653 Error status of the last code conversion.
10654
10655 When an error was detected in the last code conversion, this variable
10656 is set to one of the following symbols.
10657 `insufficient-source'
10658 `inconsistent-eol'
10659 `invalid-source'
10660 `interrupted'
10661 `insufficient-memory'
10662 When no error was detected, the value doesn't change. So, to check
10663 the error status of a code conversion by this variable, you must
10664 explicitly set this variable to nil before performing code
10665 conversion. */);
10666 Vlast_code_conversion_error = Qnil;
10667
10668 DEFVAR_BOOL ("inhibit-eol-conversion", &inhibit_eol_conversion,
10669 doc: /*
10670 *Non-nil means always inhibit code conversion of end-of-line format.
10671 See info node `Coding Systems' and info node `Text and Binary' concerning
10672 such conversion. */);
10673 inhibit_eol_conversion = 0;
10674
10675 DEFVAR_BOOL ("inherit-process-coding-system", &inherit_process_coding_system,
10676 doc: /*
10677 Non-nil means process buffer inherits coding system of process output.
10678 Bind it to t if the process output is to be treated as if it were a file
10679 read from some filesystem. */);
10680 inherit_process_coding_system = 0;
10681
10682 DEFVAR_LISP ("file-coding-system-alist", &Vfile_coding_system_alist,
10683 doc: /*
10684 Alist to decide a coding system to use for a file I/O operation.
10685 The format is ((PATTERN . VAL) ...),
10686 where PATTERN is a regular expression matching a file name,
10687 VAL is a coding system, a cons of coding systems, or a function symbol.
10688 If VAL is a coding system, it is used for both decoding and encoding
10689 the file contents.
10690 If VAL is a cons of coding systems, the car part is used for decoding,
10691 and the cdr part is used for encoding.
10692 If VAL is a function symbol, the function must return a coding system
10693 or a cons of coding systems which are used as above. The function is
10694 called with an argument that is a list of the arguments with which
10695 `find-operation-coding-system' was called. If the function can't decide
10696 a coding system, it can return `undecided' so that the normal
10697 code-detection is performed.
10698
10699 See also the function `find-operation-coding-system'
10700 and the variable `auto-coding-alist'. */);
10701 Vfile_coding_system_alist = Qnil;
10702
10703 DEFVAR_LISP ("process-coding-system-alist", &Vprocess_coding_system_alist,
10704 doc: /*
10705 Alist to decide a coding system to use for a process I/O operation.
10706 The format is ((PATTERN . VAL) ...),
10707 where PATTERN is a regular expression matching a program name,
10708 VAL is a coding system, a cons of coding systems, or a function symbol.
10709 If VAL is a coding system, it is used for both decoding what received
10710 from the program and encoding what sent to the program.
10711 If VAL is a cons of coding systems, the car part is used for decoding,
10712 and the cdr part is used for encoding.
10713 If VAL is a function symbol, the function must return a coding system
10714 or a cons of coding systems which are used as above.
10715
10716 See also the function `find-operation-coding-system'. */);
10717 Vprocess_coding_system_alist = Qnil;
10718
10719 DEFVAR_LISP ("network-coding-system-alist", &Vnetwork_coding_system_alist,
10720 doc: /*
10721 Alist to decide a coding system to use for a network I/O operation.
10722 The format is ((PATTERN . VAL) ...),
10723 where PATTERN is a regular expression matching a network service name
10724 or is a port number to connect to,
10725 VAL is a coding system, a cons of coding systems, or a function symbol.
10726 If VAL is a coding system, it is used for both decoding what received
10727 from the network stream and encoding what sent to the network stream.
10728 If VAL is a cons of coding systems, the car part is used for decoding,
10729 and the cdr part is used for encoding.
10730 If VAL is a function symbol, the function must return a coding system
10731 or a cons of coding systems which are used as above.
10732
10733 See also the function `find-operation-coding-system'. */);
10734 Vnetwork_coding_system_alist = Qnil;
10735
10736 DEFVAR_LISP ("locale-coding-system", &Vlocale_coding_system,
10737 doc: /* Coding system to use with system messages.
10738 Also used for decoding keyboard input on X Window system. */);
10739 Vlocale_coding_system = Qnil;
10740
10741 /* The eol mnemonics are reset in startup.el system-dependently. */
10742 DEFVAR_LISP ("eol-mnemonic-unix", &eol_mnemonic_unix,
10743 doc: /*
10744 *String displayed in mode line for UNIX-like (LF) end-of-line format. */);
10745 eol_mnemonic_unix = build_string (":");
10746
10747 DEFVAR_LISP ("eol-mnemonic-dos", &eol_mnemonic_dos,
10748 doc: /*
10749 *String displayed in mode line for DOS-like (CRLF) end-of-line format. */);
10750 eol_mnemonic_dos = build_string ("\\");
10751
10752 DEFVAR_LISP ("eol-mnemonic-mac", &eol_mnemonic_mac,
10753 doc: /*
10754 *String displayed in mode line for MAC-like (CR) end-of-line format. */);
10755 eol_mnemonic_mac = build_string ("/");
10756
10757 DEFVAR_LISP ("eol-mnemonic-undecided", &eol_mnemonic_undecided,
10758 doc: /*
10759 *String displayed in mode line when end-of-line format is not yet determined. */);
10760 eol_mnemonic_undecided = build_string (":");
10761
10762 DEFVAR_LISP ("enable-character-translation", &Venable_character_translation,
10763 doc: /*
10764 *Non-nil enables character translation while encoding and decoding. */);
10765 Venable_character_translation = Qt;
10766
10767 DEFVAR_LISP ("standard-translation-table-for-decode",
10768 &Vstandard_translation_table_for_decode,
10769 doc: /* Table for translating characters while decoding. */);
10770 Vstandard_translation_table_for_decode = Qnil;
10771
10772 DEFVAR_LISP ("standard-translation-table-for-encode",
10773 &Vstandard_translation_table_for_encode,
10774 doc: /* Table for translating characters while encoding. */);
10775 Vstandard_translation_table_for_encode = Qnil;
10776
10777 DEFVAR_LISP ("charset-revision-table", &Vcharset_revision_table,
10778 doc: /* Alist of charsets vs revision numbers.
10779 While encoding, if a charset (car part of an element) is found,
10780 designate it with the escape sequence identifying revision (cdr part
10781 of the element). */);
10782 Vcharset_revision_table = Qnil;
10783
10784 DEFVAR_LISP ("default-process-coding-system",
10785 &Vdefault_process_coding_system,
10786 doc: /* Cons of coding systems used for process I/O by default.
10787 The car part is used for decoding a process output,
10788 the cdr part is used for encoding a text to be sent to a process. */);
10789 Vdefault_process_coding_system = Qnil;
10790
10791 DEFVAR_LISP ("latin-extra-code-table", &Vlatin_extra_code_table,
10792 doc: /*
10793 Table of extra Latin codes in the range 128..159 (inclusive).
10794 This is a vector of length 256.
10795 If Nth element is non-nil, the existence of code N in a file
10796 \(or output of subprocess) doesn't prevent it to be detected as
10797 a coding system of ISO 2022 variant which has a flag
10798 `accept-latin-extra-code' t (e.g. iso-latin-1) on reading a file
10799 or reading output of a subprocess.
10800 Only 128th through 159th elements have a meaning. */);
10801 Vlatin_extra_code_table = Fmake_vector (make_number (256), Qnil);
10802
10803 DEFVAR_LISP ("select-safe-coding-system-function",
10804 &Vselect_safe_coding_system_function,
10805 doc: /*
10806 Function to call to select safe coding system for encoding a text.
10807
10808 If set, this function is called to force a user to select a proper
10809 coding system which can encode the text in the case that a default
10810 coding system used in each operation can't encode the text. The
10811 function should take care that the buffer is not modified while
10812 the coding system is being selected.
10813
10814 The default value is `select-safe-coding-system' (which see). */);
10815 Vselect_safe_coding_system_function = Qnil;
10816
10817 DEFVAR_BOOL ("coding-system-require-warning",
10818 &coding_system_require_warning,
10819 doc: /* Internal use only.
10820 If non-nil, on writing a file, `select-safe-coding-system-function' is
10821 called even if `coding-system-for-write' is non-nil. The command
10822 `universal-coding-system-argument' binds this variable to t temporarily. */);
10823 coding_system_require_warning = 0;
10824
10825
10826 DEFVAR_BOOL ("inhibit-iso-escape-detection",
10827 &inhibit_iso_escape_detection,
10828 doc: /*
10829 If non-nil, Emacs ignores ISO-2022 escape sequences during code detection.
10830
10831 When Emacs reads text, it tries to detect how the text is encoded.
10832 This code detection is sensitive to escape sequences. If Emacs sees
10833 a valid ISO-2022 escape sequence, it assumes the text is encoded in one
10834 of the ISO2022 encodings, and decodes text by the corresponding coding
10835 system (e.g. `iso-2022-7bit').
10836
10837 However, there may be a case that you want to read escape sequences in
10838 a file as is. In such a case, you can set this variable to non-nil.
10839 Then the code detection will ignore any escape sequences, and no text is
10840 detected as encoded in some ISO-2022 encoding. The result is that all
10841 escape sequences become visible in a buffer.
10842
10843 The default value is nil, and it is strongly recommended not to change
10844 it. That is because many Emacs Lisp source files that contain
10845 non-ASCII characters are encoded by the coding system `iso-2022-7bit'
10846 in Emacs's distribution, and they won't be decoded correctly on
10847 reading if you suppress escape sequence detection.
10848
10849 The other way to read escape sequences in a file without decoding is
10850 to explicitly specify some coding system that doesn't use ISO-2022
10851 escape sequence (e.g `latin-1') on reading by \\[universal-coding-system-argument]. */);
10852 inhibit_iso_escape_detection = 0;
10853
10854 DEFVAR_BOOL ("inhibit-null-byte-detection",
10855 &inhibit_null_byte_detection,
10856 doc: /* If non-nil, Emacs ignores null bytes on code detection.
10857 By default, Emacs treats it as binary data, and does not attempt to
10858 decode it. The effect is as if you specified `no-conversion' for
10859 reading that text.
10860
10861 Set this to non-nil when a regular text happens to include null bytes.
10862 Examples are Index nodes of Info files and null-byte delimited output
10863 from GNU Find and GNU Grep. Emacs will then ignore the null bytes and
10864 decode text as usual. */);
10865 inhibit_null_byte_detection = 0;
10866
10867 DEFVAR_LISP ("translation-table-for-input", &Vtranslation_table_for_input,
10868 doc: /* Char table for translating self-inserting characters.
10869 This is applied to the result of input methods, not their input.
10870 See also `keyboard-translate-table'.
10871
10872 Use of this variable for character code unification was rendered
10873 obsolete in Emacs 23.1 and later, since Unicode is now the basis of
10874 internal character representation. */);
10875 Vtranslation_table_for_input = Qnil;
10876
10877 {
10878 Lisp_Object args[coding_arg_max];
10879 Lisp_Object plist[16];
10880 int i;
10881
10882 for (i = 0; i < coding_arg_max; i++)
10883 args[i] = Qnil;
10884
10885 plist[0] = intern (":name");
10886 plist[1] = args[coding_arg_name] = Qno_conversion;
10887 plist[2] = intern (":mnemonic");
10888 plist[3] = args[coding_arg_mnemonic] = make_number ('=');
10889 plist[4] = intern (":coding-type");
10890 plist[5] = args[coding_arg_coding_type] = Qraw_text;
10891 plist[6] = intern (":ascii-compatible-p");
10892 plist[7] = args[coding_arg_ascii_compatible_p] = Qt;
10893 plist[8] = intern (":default-char");
10894 plist[9] = args[coding_arg_default_char] = make_number (0);
10895 plist[10] = intern (":for-unibyte");
10896 plist[11] = args[coding_arg_for_unibyte] = Qt;
10897 plist[12] = intern (":docstring");
10898 plist[13] = build_string ("Do no conversion.\n\
10899 \n\
10900 When you visit a file with this coding, the file is read into a\n\
10901 unibyte buffer as is, thus each byte of a file is treated as a\n\
10902 character.");
10903 plist[14] = intern (":eol-type");
10904 plist[15] = args[coding_arg_eol_type] = Qunix;
10905 args[coding_arg_plist] = Flist (16, plist);
10906 Fdefine_coding_system_internal (coding_arg_max, args);
10907
10908 plist[1] = args[coding_arg_name] = Qundecided;
10909 plist[3] = args[coding_arg_mnemonic] = make_number ('-');
10910 plist[5] = args[coding_arg_coding_type] = Qundecided;
10911 /* This is already set.
10912 plist[7] = args[coding_arg_ascii_compatible_p] = Qt; */
10913 plist[8] = intern (":charset-list");
10914 plist[9] = args[coding_arg_charset_list] = Fcons (Qascii, Qnil);
10915 plist[11] = args[coding_arg_for_unibyte] = Qnil;
10916 plist[13] = build_string ("No conversion on encoding, automatic conversion on decoding.");
10917 plist[15] = args[coding_arg_eol_type] = Qnil;
10918 args[coding_arg_plist] = Flist (16, plist);
10919 Fdefine_coding_system_internal (coding_arg_max, args);
10920 }
10921
10922 setup_coding_system (Qno_conversion, &safe_terminal_coding);
10923
10924 {
10925 int i;
10926
10927 for (i = 0; i < coding_category_max; i++)
10928 Fset (AREF (Vcoding_category_table, i), Qno_conversion);
10929 }
10930 #if defined (MSDOS) || defined (WINDOWSNT)
10931 system_eol_type = Qdos;
10932 #else
10933 system_eol_type = Qunix;
10934 #endif
10935 staticpro (&system_eol_type);
10936 }
10937
10938 char *
10939 emacs_strerror (error_number)
10940 int error_number;
10941 {
10942 char *str;
10943
10944 synchronize_system_messages_locale ();
10945 str = strerror (error_number);
10946
10947 if (! NILP (Vlocale_coding_system))
10948 {
10949 Lisp_Object dec = code_convert_string_norecord (build_string (str),
10950 Vlocale_coding_system,
10951 0);
10952 str = (char *) SDATA (dec);
10953 }
10954
10955 return str;
10956 }
10957
10958 #endif /* emacs */
10959
10960 /* arch-tag: 3a3a2b01-5ff6-4071-9afe-f5b808d9229d
10961 (do not change this comment) */