(search_buffer): Fix handling of "\\" in a trivial regexp.
[bpt/emacs.git] / src / search.c
1 /* String search routines for GNU Emacs.
2 Copyright (C) 1985, 1986, 1987, 1993, 1994, 1997, 1998, 1999, 2002, 2003,
3 2004, 2005, 2006 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22
23 #include <config.h>
24 #include "lisp.h"
25 #include "syntax.h"
26 #include "category.h"
27 #include "buffer.h"
28 #include "character.h"
29 #include "region-cache.h"
30 #include "commands.h"
31 #include "blockinput.h"
32 #include "intervals.h"
33
34 #include <sys/types.h>
35 #include "regex.h"
36
37 #define REGEXP_CACHE_SIZE 20
38
39 /* If the regexp is non-nil, then the buffer contains the compiled form
40 of that regexp, suitable for searching. */
41 struct regexp_cache
42 {
43 struct regexp_cache *next;
44 Lisp_Object regexp, whitespace_regexp;
45 struct re_pattern_buffer buf;
46 char fastmap[0400];
47 /* Nonzero means regexp was compiled to do full POSIX backtracking. */
48 char posix;
49 };
50
51 /* The instances of that struct. */
52 struct regexp_cache searchbufs[REGEXP_CACHE_SIZE];
53
54 /* The head of the linked list; points to the most recently used buffer. */
55 struct regexp_cache *searchbuf_head;
56
57
58 /* Every call to re_match, etc., must pass &search_regs as the regs
59 argument unless you can show it is unnecessary (i.e., if re_match
60 is certainly going to be called again before region-around-match
61 can be called).
62
63 Since the registers are now dynamically allocated, we need to make
64 sure not to refer to the Nth register before checking that it has
65 been allocated by checking search_regs.num_regs.
66
67 The regex code keeps track of whether it has allocated the search
68 buffer using bits in the re_pattern_buffer. This means that whenever
69 you compile a new pattern, it completely forgets whether it has
70 allocated any registers, and will allocate new registers the next
71 time you call a searching or matching function. Therefore, we need
72 to call re_set_registers after compiling a new pattern or after
73 setting the match registers, so that the regex functions will be
74 able to free or re-allocate it properly. */
75 static struct re_registers search_regs;
76
77 /* The buffer in which the last search was performed, or
78 Qt if the last search was done in a string;
79 Qnil if no searching has been done yet. */
80 static Lisp_Object last_thing_searched;
81
82 /* error condition signaled when regexp compile_pattern fails */
83
84 Lisp_Object Qinvalid_regexp;
85
86 Lisp_Object Vsearch_spaces_regexp;
87
88 static void set_search_regs ();
89 static void save_search_regs ();
90 static int simple_search ();
91 static int boyer_moore ();
92 static int search_buffer ();
93
94 static void
95 matcher_overflow ()
96 {
97 error ("Stack overflow in regexp matcher");
98 }
99
100 /* Compile a regexp and signal a Lisp error if anything goes wrong.
101 PATTERN is the pattern to compile.
102 CP is the place to put the result.
103 TRANSLATE is a translation table for ignoring case, or nil for none.
104 REGP is the structure that says where to store the "register"
105 values that will result from matching this pattern.
106 If it is 0, we should compile the pattern not to record any
107 subexpression bounds.
108 POSIX is nonzero if we want full backtracking (POSIX style)
109 for this pattern. 0 means backtrack only enough to get a valid match.
110 MULTIBYTE is nonzero iff a target of match is a multibyte buffer or
111 string.
112
113 The behavior also depends on Vsearch_spaces_regexp. */
114
115 static void
116 compile_pattern_1 (cp, pattern, translate, regp, posix, multibyte)
117 struct regexp_cache *cp;
118 Lisp_Object pattern;
119 Lisp_Object translate;
120 struct re_registers *regp;
121 int posix;
122 int multibyte;
123 {
124 char *val;
125 reg_syntax_t old;
126
127 cp->regexp = Qnil;
128 cp->buf.translate = (! NILP (translate) ? translate : make_number (0));
129 cp->posix = posix;
130 cp->buf.multibyte = STRING_MULTIBYTE (pattern);
131 cp->buf.target_multibyte = multibyte;
132 cp->whitespace_regexp = Vsearch_spaces_regexp;
133 BLOCK_INPUT;
134 old = re_set_syntax (RE_SYNTAX_EMACS
135 | (posix ? 0 : RE_NO_POSIX_BACKTRACKING));
136 re_set_whitespace_regexp (NILP (Vsearch_spaces_regexp) ? NULL
137 : SDATA (Vsearch_spaces_regexp));
138
139 val = (char *) re_compile_pattern ((char *) SDATA (pattern),
140 SBYTES (pattern), &cp->buf);
141
142 re_set_whitespace_regexp (NULL);
143
144 re_set_syntax (old);
145 UNBLOCK_INPUT;
146 if (val)
147 Fsignal (Qinvalid_regexp, Fcons (build_string (val), Qnil));
148
149 cp->regexp = Fcopy_sequence (pattern);
150 }
151
152 /* Shrink each compiled regexp buffer in the cache
153 to the size actually used right now.
154 This is called from garbage collection. */
155
156 void
157 shrink_regexp_cache ()
158 {
159 struct regexp_cache *cp;
160
161 for (cp = searchbuf_head; cp != 0; cp = cp->next)
162 {
163 cp->buf.allocated = cp->buf.used;
164 cp->buf.buffer
165 = (unsigned char *) xrealloc (cp->buf.buffer, cp->buf.used);
166 }
167 }
168
169 /* Compile a regexp if necessary, but first check to see if there's one in
170 the cache.
171 PATTERN is the pattern to compile.
172 TRANSLATE is a translation table for ignoring case, or nil for none.
173 REGP is the structure that says where to store the "register"
174 values that will result from matching this pattern.
175 If it is 0, we should compile the pattern not to record any
176 subexpression bounds.
177 POSIX is nonzero if we want full backtracking (POSIX style)
178 for this pattern. 0 means backtrack only enough to get a valid match. */
179
180 struct re_pattern_buffer *
181 compile_pattern (pattern, regp, translate, posix, multibyte)
182 Lisp_Object pattern;
183 struct re_registers *regp;
184 Lisp_Object translate;
185 int posix, multibyte;
186 {
187 struct regexp_cache *cp, **cpp;
188
189 for (cpp = &searchbuf_head; ; cpp = &cp->next)
190 {
191 cp = *cpp;
192 /* Entries are initialized to nil, and may be set to nil by
193 compile_pattern_1 if the pattern isn't valid. Don't apply
194 string accessors in those cases. However, compile_pattern_1
195 is only applied to the cache entry we pick here to reuse. So
196 nil should never appear before a non-nil entry. */
197 if (NILP (cp->regexp))
198 goto compile_it;
199 if (SCHARS (cp->regexp) == SCHARS (pattern)
200 && STRING_MULTIBYTE (cp->regexp) == STRING_MULTIBYTE (pattern)
201 && !NILP (Fstring_equal (cp->regexp, pattern))
202 && EQ (cp->buf.translate, (! NILP (translate) ? translate : make_number (0)))
203 && cp->posix == posix
204 && cp->buf.target_multibyte == multibyte
205 && !NILP (Fequal (cp->whitespace_regexp, Vsearch_spaces_regexp)))
206 break;
207
208 /* If we're at the end of the cache, compile into the nil cell
209 we found, or the last (least recently used) cell with a
210 string value. */
211 if (cp->next == 0)
212 {
213 compile_it:
214 compile_pattern_1 (cp, pattern, translate, regp, posix, multibyte);
215 break;
216 }
217 }
218
219 /* When we get here, cp (aka *cpp) contains the compiled pattern,
220 either because we found it in the cache or because we just compiled it.
221 Move it to the front of the queue to mark it as most recently used. */
222 *cpp = cp->next;
223 cp->next = searchbuf_head;
224 searchbuf_head = cp;
225
226 /* Advise the searching functions about the space we have allocated
227 for register data. */
228 if (regp)
229 re_set_registers (&cp->buf, regp, regp->num_regs, regp->start, regp->end);
230
231 return &cp->buf;
232 }
233
234 /* Error condition used for failing searches */
235 Lisp_Object Qsearch_failed;
236
237 Lisp_Object
238 signal_failure (arg)
239 Lisp_Object arg;
240 {
241 Fsignal (Qsearch_failed, Fcons (arg, Qnil));
242 return Qnil;
243 }
244 \f
245 static Lisp_Object
246 looking_at_1 (string, posix)
247 Lisp_Object string;
248 int posix;
249 {
250 Lisp_Object val;
251 unsigned char *p1, *p2;
252 int s1, s2;
253 register int i;
254 struct re_pattern_buffer *bufp;
255
256 if (running_asynch_code)
257 save_search_regs ();
258
259 CHECK_STRING (string);
260 bufp = compile_pattern (string, &search_regs,
261 (!NILP (current_buffer->case_fold_search)
262 ? current_buffer->case_canon_table : Qnil),
263 posix,
264 !NILP (current_buffer->enable_multibyte_characters));
265
266 immediate_quit = 1;
267 QUIT; /* Do a pending quit right away, to avoid paradoxical behavior */
268
269 /* Get pointers and sizes of the two strings
270 that make up the visible portion of the buffer. */
271
272 p1 = BEGV_ADDR;
273 s1 = GPT_BYTE - BEGV_BYTE;
274 p2 = GAP_END_ADDR;
275 s2 = ZV_BYTE - GPT_BYTE;
276 if (s1 < 0)
277 {
278 p2 = p1;
279 s2 = ZV_BYTE - BEGV_BYTE;
280 s1 = 0;
281 }
282 if (s2 < 0)
283 {
284 s1 = ZV_BYTE - BEGV_BYTE;
285 s2 = 0;
286 }
287
288 re_match_object = Qnil;
289
290 i = re_match_2 (bufp, (char *) p1, s1, (char *) p2, s2,
291 PT_BYTE - BEGV_BYTE, &search_regs,
292 ZV_BYTE - BEGV_BYTE);
293 immediate_quit = 0;
294
295 if (i == -2)
296 matcher_overflow ();
297
298 val = (0 <= i ? Qt : Qnil);
299 if (i >= 0)
300 for (i = 0; i < search_regs.num_regs; i++)
301 if (search_regs.start[i] >= 0)
302 {
303 search_regs.start[i]
304 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
305 search_regs.end[i]
306 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
307 }
308 XSETBUFFER (last_thing_searched, current_buffer);
309 return val;
310 }
311
312 DEFUN ("looking-at", Flooking_at, Slooking_at, 1, 1, 0,
313 doc: /* Return t if text after point matches regular expression REGEXP.
314 This function modifies the match data that `match-beginning',
315 `match-end' and `match-data' access; save and restore the match
316 data if you want to preserve them. */)
317 (regexp)
318 Lisp_Object regexp;
319 {
320 return looking_at_1 (regexp, 0);
321 }
322
323 DEFUN ("posix-looking-at", Fposix_looking_at, Sposix_looking_at, 1, 1, 0,
324 doc: /* Return t if text after point matches regular expression REGEXP.
325 Find the longest match, in accord with Posix regular expression rules.
326 This function modifies the match data that `match-beginning',
327 `match-end' and `match-data' access; save and restore the match
328 data if you want to preserve them. */)
329 (regexp)
330 Lisp_Object regexp;
331 {
332 return looking_at_1 (regexp, 1);
333 }
334 \f
335 static Lisp_Object
336 string_match_1 (regexp, string, start, posix)
337 Lisp_Object regexp, string, start;
338 int posix;
339 {
340 int val;
341 struct re_pattern_buffer *bufp;
342 int pos, pos_byte;
343 int i;
344
345 if (running_asynch_code)
346 save_search_regs ();
347
348 CHECK_STRING (regexp);
349 CHECK_STRING (string);
350
351 if (NILP (start))
352 pos = 0, pos_byte = 0;
353 else
354 {
355 int len = SCHARS (string);
356
357 CHECK_NUMBER (start);
358 pos = XINT (start);
359 if (pos < 0 && -pos <= len)
360 pos = len + pos;
361 else if (0 > pos || pos > len)
362 args_out_of_range (string, start);
363 pos_byte = string_char_to_byte (string, pos);
364 }
365
366 bufp = compile_pattern (regexp, &search_regs,
367 (!NILP (current_buffer->case_fold_search)
368 ? current_buffer->case_canon_table : Qnil),
369 posix,
370 STRING_MULTIBYTE (string));
371 immediate_quit = 1;
372 re_match_object = string;
373
374 val = re_search (bufp, (char *) SDATA (string),
375 SBYTES (string), pos_byte,
376 SBYTES (string) - pos_byte,
377 &search_regs);
378 immediate_quit = 0;
379 last_thing_searched = Qt;
380 if (val == -2)
381 matcher_overflow ();
382 if (val < 0) return Qnil;
383
384 for (i = 0; i < search_regs.num_regs; i++)
385 if (search_regs.start[i] >= 0)
386 {
387 search_regs.start[i]
388 = string_byte_to_char (string, search_regs.start[i]);
389 search_regs.end[i]
390 = string_byte_to_char (string, search_regs.end[i]);
391 }
392
393 return make_number (string_byte_to_char (string, val));
394 }
395
396 DEFUN ("string-match", Fstring_match, Sstring_match, 2, 3, 0,
397 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
398 Matching ignores case if `case-fold-search' is non-nil.
399 If third arg START is non-nil, start search at that index in STRING.
400 For index of first char beyond the match, do (match-end 0).
401 `match-end' and `match-beginning' also give indices of substrings
402 matched by parenthesis constructs in the pattern.
403
404 You can use the function `match-string' to extract the substrings
405 matched by the parenthesis constructions in REGEXP. */)
406 (regexp, string, start)
407 Lisp_Object regexp, string, start;
408 {
409 return string_match_1 (regexp, string, start, 0);
410 }
411
412 DEFUN ("posix-string-match", Fposix_string_match, Sposix_string_match, 2, 3, 0,
413 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
414 Find the longest match, in accord with Posix regular expression rules.
415 Case is ignored if `case-fold-search' is non-nil in the current buffer.
416 If third arg START is non-nil, start search at that index in STRING.
417 For index of first char beyond the match, do (match-end 0).
418 `match-end' and `match-beginning' also give indices of substrings
419 matched by parenthesis constructs in the pattern. */)
420 (regexp, string, start)
421 Lisp_Object regexp, string, start;
422 {
423 return string_match_1 (regexp, string, start, 1);
424 }
425
426 /* Match REGEXP against STRING, searching all of STRING,
427 and return the index of the match, or negative on failure.
428 This does not clobber the match data. */
429
430 int
431 fast_string_match (regexp, string)
432 Lisp_Object regexp, string;
433 {
434 int val;
435 struct re_pattern_buffer *bufp;
436
437 bufp = compile_pattern (regexp, 0, Qnil,
438 0, STRING_MULTIBYTE (string));
439 immediate_quit = 1;
440 re_match_object = string;
441
442 val = re_search (bufp, (char *) SDATA (string),
443 SBYTES (string), 0,
444 SBYTES (string), 0);
445 immediate_quit = 0;
446 return val;
447 }
448
449 /* Match REGEXP against STRING, searching all of STRING ignoring case,
450 and return the index of the match, or negative on failure.
451 This does not clobber the match data.
452 We assume that STRING contains single-byte characters. */
453
454 extern Lisp_Object Vascii_downcase_table;
455
456 int
457 fast_c_string_match_ignore_case (regexp, string)
458 Lisp_Object regexp;
459 const char *string;
460 {
461 int val;
462 struct re_pattern_buffer *bufp;
463 int len = strlen (string);
464
465 regexp = string_make_unibyte (regexp);
466 re_match_object = Qt;
467 bufp = compile_pattern (regexp, 0,
468 Vascii_canon_table, 0,
469 0);
470 immediate_quit = 1;
471 val = re_search (bufp, string, len, 0, len, 0);
472 immediate_quit = 0;
473 return val;
474 }
475
476 /* Like fast_string_match but ignore case. */
477
478 int
479 fast_string_match_ignore_case (regexp, string)
480 Lisp_Object regexp, string;
481 {
482 int val;
483 struct re_pattern_buffer *bufp;
484
485 bufp = compile_pattern (regexp, 0, Vascii_canon_table,
486 0, STRING_MULTIBYTE (string));
487 immediate_quit = 1;
488 re_match_object = string;
489
490 val = re_search (bufp, (char *) SDATA (string),
491 SBYTES (string), 0,
492 SBYTES (string), 0);
493 immediate_quit = 0;
494 return val;
495 }
496 \f
497 /* The newline cache: remembering which sections of text have no newlines. */
498
499 /* If the user has requested newline caching, make sure it's on.
500 Otherwise, make sure it's off.
501 This is our cheezy way of associating an action with the change of
502 state of a buffer-local variable. */
503 static void
504 newline_cache_on_off (buf)
505 struct buffer *buf;
506 {
507 if (NILP (buf->cache_long_line_scans))
508 {
509 /* It should be off. */
510 if (buf->newline_cache)
511 {
512 free_region_cache (buf->newline_cache);
513 buf->newline_cache = 0;
514 }
515 }
516 else
517 {
518 /* It should be on. */
519 if (buf->newline_cache == 0)
520 buf->newline_cache = new_region_cache ();
521 }
522 }
523
524 \f
525 /* Search for COUNT instances of the character TARGET between START and END.
526
527 If COUNT is positive, search forwards; END must be >= START.
528 If COUNT is negative, search backwards for the -COUNTth instance;
529 END must be <= START.
530 If COUNT is zero, do anything you please; run rogue, for all I care.
531
532 If END is zero, use BEGV or ZV instead, as appropriate for the
533 direction indicated by COUNT.
534
535 If we find COUNT instances, set *SHORTAGE to zero, and return the
536 position past the COUNTth match. Note that for reverse motion
537 this is not the same as the usual convention for Emacs motion commands.
538
539 If we don't find COUNT instances before reaching END, set *SHORTAGE
540 to the number of TARGETs left unfound, and return END.
541
542 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
543 except when inside redisplay. */
544
545 int
546 scan_buffer (target, start, end, count, shortage, allow_quit)
547 register int target;
548 int start, end;
549 int count;
550 int *shortage;
551 int allow_quit;
552 {
553 struct region_cache *newline_cache;
554 int direction;
555
556 if (count > 0)
557 {
558 direction = 1;
559 if (! end) end = ZV;
560 }
561 else
562 {
563 direction = -1;
564 if (! end) end = BEGV;
565 }
566
567 newline_cache_on_off (current_buffer);
568 newline_cache = current_buffer->newline_cache;
569
570 if (shortage != 0)
571 *shortage = 0;
572
573 immediate_quit = allow_quit;
574
575 if (count > 0)
576 while (start != end)
577 {
578 /* Our innermost scanning loop is very simple; it doesn't know
579 about gaps, buffer ends, or the newline cache. ceiling is
580 the position of the last character before the next such
581 obstacle --- the last character the dumb search loop should
582 examine. */
583 int ceiling_byte = CHAR_TO_BYTE (end) - 1;
584 int start_byte = CHAR_TO_BYTE (start);
585 int tem;
586
587 /* If we're looking for a newline, consult the newline cache
588 to see where we can avoid some scanning. */
589 if (target == '\n' && newline_cache)
590 {
591 int next_change;
592 immediate_quit = 0;
593 while (region_cache_forward
594 (current_buffer, newline_cache, start_byte, &next_change))
595 start_byte = next_change;
596 immediate_quit = allow_quit;
597
598 /* START should never be after END. */
599 if (start_byte > ceiling_byte)
600 start_byte = ceiling_byte;
601
602 /* Now the text after start is an unknown region, and
603 next_change is the position of the next known region. */
604 ceiling_byte = min (next_change - 1, ceiling_byte);
605 }
606
607 /* The dumb loop can only scan text stored in contiguous
608 bytes. BUFFER_CEILING_OF returns the last character
609 position that is contiguous, so the ceiling is the
610 position after that. */
611 tem = BUFFER_CEILING_OF (start_byte);
612 ceiling_byte = min (tem, ceiling_byte);
613
614 {
615 /* The termination address of the dumb loop. */
616 register unsigned char *ceiling_addr
617 = BYTE_POS_ADDR (ceiling_byte) + 1;
618 register unsigned char *cursor
619 = BYTE_POS_ADDR (start_byte);
620 unsigned char *base = cursor;
621
622 while (cursor < ceiling_addr)
623 {
624 unsigned char *scan_start = cursor;
625
626 /* The dumb loop. */
627 while (*cursor != target && ++cursor < ceiling_addr)
628 ;
629
630 /* If we're looking for newlines, cache the fact that
631 the region from start to cursor is free of them. */
632 if (target == '\n' && newline_cache)
633 know_region_cache (current_buffer, newline_cache,
634 start_byte + scan_start - base,
635 start_byte + cursor - base);
636
637 /* Did we find the target character? */
638 if (cursor < ceiling_addr)
639 {
640 if (--count == 0)
641 {
642 immediate_quit = 0;
643 return BYTE_TO_CHAR (start_byte + cursor - base + 1);
644 }
645 cursor++;
646 }
647 }
648
649 start = BYTE_TO_CHAR (start_byte + cursor - base);
650 }
651 }
652 else
653 while (start > end)
654 {
655 /* The last character to check before the next obstacle. */
656 int ceiling_byte = CHAR_TO_BYTE (end);
657 int start_byte = CHAR_TO_BYTE (start);
658 int tem;
659
660 /* Consult the newline cache, if appropriate. */
661 if (target == '\n' && newline_cache)
662 {
663 int next_change;
664 immediate_quit = 0;
665 while (region_cache_backward
666 (current_buffer, newline_cache, start_byte, &next_change))
667 start_byte = next_change;
668 immediate_quit = allow_quit;
669
670 /* Start should never be at or before end. */
671 if (start_byte <= ceiling_byte)
672 start_byte = ceiling_byte + 1;
673
674 /* Now the text before start is an unknown region, and
675 next_change is the position of the next known region. */
676 ceiling_byte = max (next_change, ceiling_byte);
677 }
678
679 /* Stop scanning before the gap. */
680 tem = BUFFER_FLOOR_OF (start_byte - 1);
681 ceiling_byte = max (tem, ceiling_byte);
682
683 {
684 /* The termination address of the dumb loop. */
685 register unsigned char *ceiling_addr = BYTE_POS_ADDR (ceiling_byte);
686 register unsigned char *cursor = BYTE_POS_ADDR (start_byte - 1);
687 unsigned char *base = cursor;
688
689 while (cursor >= ceiling_addr)
690 {
691 unsigned char *scan_start = cursor;
692
693 while (*cursor != target && --cursor >= ceiling_addr)
694 ;
695
696 /* If we're looking for newlines, cache the fact that
697 the region from after the cursor to start is free of them. */
698 if (target == '\n' && newline_cache)
699 know_region_cache (current_buffer, newline_cache,
700 start_byte + cursor - base,
701 start_byte + scan_start - base);
702
703 /* Did we find the target character? */
704 if (cursor >= ceiling_addr)
705 {
706 if (++count >= 0)
707 {
708 immediate_quit = 0;
709 return BYTE_TO_CHAR (start_byte + cursor - base);
710 }
711 cursor--;
712 }
713 }
714
715 start = BYTE_TO_CHAR (start_byte + cursor - base);
716 }
717 }
718
719 immediate_quit = 0;
720 if (shortage != 0)
721 *shortage = count * direction;
722 return start;
723 }
724 \f
725 /* Search for COUNT instances of a line boundary, which means either a
726 newline or (if selective display enabled) a carriage return.
727 Start at START. If COUNT is negative, search backwards.
728
729 We report the resulting position by calling TEMP_SET_PT_BOTH.
730
731 If we find COUNT instances. we position after (always after,
732 even if scanning backwards) the COUNTth match, and return 0.
733
734 If we don't find COUNT instances before reaching the end of the
735 buffer (or the beginning, if scanning backwards), we return
736 the number of line boundaries left unfound, and position at
737 the limit we bumped up against.
738
739 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
740 except in special cases. */
741
742 int
743 scan_newline (start, start_byte, limit, limit_byte, count, allow_quit)
744 int start, start_byte;
745 int limit, limit_byte;
746 register int count;
747 int allow_quit;
748 {
749 int direction = ((count > 0) ? 1 : -1);
750
751 register unsigned char *cursor;
752 unsigned char *base;
753
754 register int ceiling;
755 register unsigned char *ceiling_addr;
756
757 int old_immediate_quit = immediate_quit;
758
759 /* The code that follows is like scan_buffer
760 but checks for either newline or carriage return. */
761
762 if (allow_quit)
763 immediate_quit++;
764
765 start_byte = CHAR_TO_BYTE (start);
766
767 if (count > 0)
768 {
769 while (start_byte < limit_byte)
770 {
771 ceiling = BUFFER_CEILING_OF (start_byte);
772 ceiling = min (limit_byte - 1, ceiling);
773 ceiling_addr = BYTE_POS_ADDR (ceiling) + 1;
774 base = (cursor = BYTE_POS_ADDR (start_byte));
775 while (1)
776 {
777 while (*cursor != '\n' && ++cursor != ceiling_addr)
778 ;
779
780 if (cursor != ceiling_addr)
781 {
782 if (--count == 0)
783 {
784 immediate_quit = old_immediate_quit;
785 start_byte = start_byte + cursor - base + 1;
786 start = BYTE_TO_CHAR (start_byte);
787 TEMP_SET_PT_BOTH (start, start_byte);
788 return 0;
789 }
790 else
791 if (++cursor == ceiling_addr)
792 break;
793 }
794 else
795 break;
796 }
797 start_byte += cursor - base;
798 }
799 }
800 else
801 {
802 while (start_byte > limit_byte)
803 {
804 ceiling = BUFFER_FLOOR_OF (start_byte - 1);
805 ceiling = max (limit_byte, ceiling);
806 ceiling_addr = BYTE_POS_ADDR (ceiling) - 1;
807 base = (cursor = BYTE_POS_ADDR (start_byte - 1) + 1);
808 while (1)
809 {
810 while (--cursor != ceiling_addr && *cursor != '\n')
811 ;
812
813 if (cursor != ceiling_addr)
814 {
815 if (++count == 0)
816 {
817 immediate_quit = old_immediate_quit;
818 /* Return the position AFTER the match we found. */
819 start_byte = start_byte + cursor - base + 1;
820 start = BYTE_TO_CHAR (start_byte);
821 TEMP_SET_PT_BOTH (start, start_byte);
822 return 0;
823 }
824 }
825 else
826 break;
827 }
828 /* Here we add 1 to compensate for the last decrement
829 of CURSOR, which took it past the valid range. */
830 start_byte += cursor - base + 1;
831 }
832 }
833
834 TEMP_SET_PT_BOTH (limit, limit_byte);
835 immediate_quit = old_immediate_quit;
836
837 return count * direction;
838 }
839
840 int
841 find_next_newline_no_quit (from, cnt)
842 register int from, cnt;
843 {
844 return scan_buffer ('\n', from, 0, cnt, (int *) 0, 0);
845 }
846
847 /* Like find_next_newline, but returns position before the newline,
848 not after, and only search up to TO. This isn't just
849 find_next_newline (...)-1, because you might hit TO. */
850
851 int
852 find_before_next_newline (from, to, cnt)
853 int from, to, cnt;
854 {
855 int shortage;
856 int pos = scan_buffer ('\n', from, to, cnt, &shortage, 1);
857
858 if (shortage == 0)
859 pos--;
860
861 return pos;
862 }
863 \f
864 /* Subroutines of Lisp buffer search functions. */
865
866 static Lisp_Object
867 search_command (string, bound, noerror, count, direction, RE, posix)
868 Lisp_Object string, bound, noerror, count;
869 int direction;
870 int RE;
871 int posix;
872 {
873 register int np;
874 int lim, lim_byte;
875 int n = direction;
876
877 if (!NILP (count))
878 {
879 CHECK_NUMBER (count);
880 n *= XINT (count);
881 }
882
883 CHECK_STRING (string);
884 if (NILP (bound))
885 {
886 if (n > 0)
887 lim = ZV, lim_byte = ZV_BYTE;
888 else
889 lim = BEGV, lim_byte = BEGV_BYTE;
890 }
891 else
892 {
893 CHECK_NUMBER_COERCE_MARKER (bound);
894 lim = XINT (bound);
895 if (n > 0 ? lim < PT : lim > PT)
896 error ("Invalid search bound (wrong side of point)");
897 if (lim > ZV)
898 lim = ZV, lim_byte = ZV_BYTE;
899 else if (lim < BEGV)
900 lim = BEGV, lim_byte = BEGV_BYTE;
901 else
902 lim_byte = CHAR_TO_BYTE (lim);
903 }
904
905 np = search_buffer (string, PT, PT_BYTE, lim, lim_byte, n, RE,
906 (!NILP (current_buffer->case_fold_search)
907 ? current_buffer->case_canon_table
908 : Qnil),
909 (!NILP (current_buffer->case_fold_search)
910 ? current_buffer->case_eqv_table
911 : Qnil),
912 posix);
913 if (np <= 0)
914 {
915 if (NILP (noerror))
916 return signal_failure (string);
917 if (!EQ (noerror, Qt))
918 {
919 if (lim < BEGV || lim > ZV)
920 abort ();
921 SET_PT_BOTH (lim, lim_byte);
922 return Qnil;
923 #if 0 /* This would be clean, but maybe programs depend on
924 a value of nil here. */
925 np = lim;
926 #endif
927 }
928 else
929 return Qnil;
930 }
931
932 if (np < BEGV || np > ZV)
933 abort ();
934
935 SET_PT (np);
936
937 return make_number (np);
938 }
939 \f
940 /* Return 1 if REGEXP it matches just one constant string. */
941
942 static int
943 trivial_regexp_p (regexp)
944 Lisp_Object regexp;
945 {
946 int len = SBYTES (regexp);
947 unsigned char *s = SDATA (regexp);
948 while (--len >= 0)
949 {
950 switch (*s++)
951 {
952 case '.': case '*': case '+': case '?': case '[': case '^': case '$':
953 return 0;
954 case '\\':
955 if (--len < 0)
956 return 0;
957 switch (*s++)
958 {
959 case '|': case '(': case ')': case '`': case '\'': case 'b':
960 case 'B': case '<': case '>': case 'w': case 'W': case 's':
961 case 'S': case '=': case '{': case '}': case '_':
962 case 'c': case 'C': /* for categoryspec and notcategoryspec */
963 case '1': case '2': case '3': case '4': case '5':
964 case '6': case '7': case '8': case '9':
965 return 0;
966 }
967 }
968 }
969 return 1;
970 }
971
972 /* Search for the n'th occurrence of STRING in the current buffer,
973 starting at position POS and stopping at position LIM,
974 treating STRING as a literal string if RE is false or as
975 a regular expression if RE is true.
976
977 If N is positive, searching is forward and LIM must be greater than POS.
978 If N is negative, searching is backward and LIM must be less than POS.
979
980 Returns -x if x occurrences remain to be found (x > 0),
981 or else the position at the beginning of the Nth occurrence
982 (if searching backward) or the end (if searching forward).
983
984 POSIX is nonzero if we want full backtracking (POSIX style)
985 for this pattern. 0 means backtrack only enough to get a valid match. */
986
987 #define TRANSLATE(out, trt, d) \
988 do \
989 { \
990 if (! NILP (trt)) \
991 { \
992 Lisp_Object temp; \
993 temp = Faref (trt, make_number (d)); \
994 if (INTEGERP (temp)) \
995 out = XINT (temp); \
996 else \
997 out = d; \
998 } \
999 else \
1000 out = d; \
1001 } \
1002 while (0)
1003
1004 static int
1005 search_buffer (string, pos, pos_byte, lim, lim_byte, n,
1006 RE, trt, inverse_trt, posix)
1007 Lisp_Object string;
1008 int pos;
1009 int pos_byte;
1010 int lim;
1011 int lim_byte;
1012 int n;
1013 int RE;
1014 Lisp_Object trt;
1015 Lisp_Object inverse_trt;
1016 int posix;
1017 {
1018 int len = SCHARS (string);
1019 int len_byte = SBYTES (string);
1020 register int i;
1021
1022 if (running_asynch_code)
1023 save_search_regs ();
1024
1025 /* Searching 0 times means don't move. */
1026 /* Null string is found at starting position. */
1027 if (len == 0 || n == 0)
1028 {
1029 set_search_regs (pos_byte, 0);
1030 return pos;
1031 }
1032
1033 if (RE && !(trivial_regexp_p (string) && NILP (Vsearch_spaces_regexp)))
1034 {
1035 unsigned char *p1, *p2;
1036 int s1, s2;
1037 struct re_pattern_buffer *bufp;
1038
1039 bufp = compile_pattern (string, &search_regs, trt, posix,
1040 !NILP (current_buffer->enable_multibyte_characters));
1041
1042 immediate_quit = 1; /* Quit immediately if user types ^G,
1043 because letting this function finish
1044 can take too long. */
1045 QUIT; /* Do a pending quit right away,
1046 to avoid paradoxical behavior */
1047 /* Get pointers and sizes of the two strings
1048 that make up the visible portion of the buffer. */
1049
1050 p1 = BEGV_ADDR;
1051 s1 = GPT_BYTE - BEGV_BYTE;
1052 p2 = GAP_END_ADDR;
1053 s2 = ZV_BYTE - GPT_BYTE;
1054 if (s1 < 0)
1055 {
1056 p2 = p1;
1057 s2 = ZV_BYTE - BEGV_BYTE;
1058 s1 = 0;
1059 }
1060 if (s2 < 0)
1061 {
1062 s1 = ZV_BYTE - BEGV_BYTE;
1063 s2 = 0;
1064 }
1065 re_match_object = Qnil;
1066
1067 while (n < 0)
1068 {
1069 int val;
1070 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1071 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1072 &search_regs,
1073 /* Don't allow match past current point */
1074 pos_byte - BEGV_BYTE);
1075 if (val == -2)
1076 {
1077 matcher_overflow ();
1078 }
1079 if (val >= 0)
1080 {
1081 pos_byte = search_regs.start[0] + BEGV_BYTE;
1082 for (i = 0; i < search_regs.num_regs; i++)
1083 if (search_regs.start[i] >= 0)
1084 {
1085 search_regs.start[i]
1086 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1087 search_regs.end[i]
1088 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1089 }
1090 XSETBUFFER (last_thing_searched, current_buffer);
1091 /* Set pos to the new position. */
1092 pos = search_regs.start[0];
1093 }
1094 else
1095 {
1096 immediate_quit = 0;
1097 return (n);
1098 }
1099 n++;
1100 }
1101 while (n > 0)
1102 {
1103 int val;
1104 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1105 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1106 &search_regs,
1107 lim_byte - BEGV_BYTE);
1108 if (val == -2)
1109 {
1110 matcher_overflow ();
1111 }
1112 if (val >= 0)
1113 {
1114 pos_byte = search_regs.end[0] + BEGV_BYTE;
1115 for (i = 0; i < search_regs.num_regs; i++)
1116 if (search_regs.start[i] >= 0)
1117 {
1118 search_regs.start[i]
1119 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1120 search_regs.end[i]
1121 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1122 }
1123 XSETBUFFER (last_thing_searched, current_buffer);
1124 pos = search_regs.end[0];
1125 }
1126 else
1127 {
1128 immediate_quit = 0;
1129 return (0 - n);
1130 }
1131 n--;
1132 }
1133 immediate_quit = 0;
1134 return (pos);
1135 }
1136 else /* non-RE case */
1137 {
1138 unsigned char *raw_pattern, *pat;
1139 int raw_pattern_size;
1140 int raw_pattern_size_byte;
1141 unsigned char *patbuf;
1142 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
1143 unsigned char *base_pat;
1144 /* Set to positive if we find a non-ASCII char that need
1145 translation. Otherwise set to zero later. */
1146 int char_base = -1;
1147 int boyer_moore_ok = 1;
1148
1149 /* MULTIBYTE says whether the text to be searched is multibyte.
1150 We must convert PATTERN to match that, or we will not really
1151 find things right. */
1152
1153 if (multibyte == STRING_MULTIBYTE (string))
1154 {
1155 raw_pattern = (unsigned char *) SDATA (string);
1156 raw_pattern_size = SCHARS (string);
1157 raw_pattern_size_byte = SBYTES (string);
1158 }
1159 else if (multibyte)
1160 {
1161 raw_pattern_size = SCHARS (string);
1162 raw_pattern_size_byte
1163 = count_size_as_multibyte (SDATA (string),
1164 raw_pattern_size);
1165 raw_pattern = (unsigned char *) alloca (raw_pattern_size_byte + 1);
1166 copy_text (SDATA (string), raw_pattern,
1167 SCHARS (string), 0, 1);
1168 }
1169 else
1170 {
1171 /* Converting multibyte to single-byte.
1172
1173 ??? Perhaps this conversion should be done in a special way
1174 by subtracting nonascii-insert-offset from each non-ASCII char,
1175 so that only the multibyte chars which really correspond to
1176 the chosen single-byte character set can possibly match. */
1177 raw_pattern_size = SCHARS (string);
1178 raw_pattern_size_byte = SCHARS (string);
1179 raw_pattern = (unsigned char *) alloca (raw_pattern_size + 1);
1180 copy_text (SDATA (string), raw_pattern,
1181 SBYTES (string), 1, 0);
1182 }
1183
1184 /* Copy and optionally translate the pattern. */
1185 len = raw_pattern_size;
1186 len_byte = raw_pattern_size_byte;
1187 patbuf = (unsigned char *) alloca (len * MAX_MULTIBYTE_LENGTH);
1188 pat = patbuf;
1189 base_pat = raw_pattern;
1190 if (multibyte)
1191 {
1192 /* Fill patbuf by translated characters in STRING while
1193 checking if we can use boyer-moore search. If TRT is
1194 non-nil, we can use boyer-moore search only if TRT can be
1195 represented by the byte array of 256 elements. For that,
1196 all non-ASCII case-equivalents of all case-senstive
1197 characters in STRING must belong to the same charset and
1198 row. */
1199
1200 while (--len >= 0)
1201 {
1202 unsigned char str_base[MAX_MULTIBYTE_LENGTH], *str;
1203 int c, translated, inverse;
1204 int in_charlen, charlen;
1205
1206 /* If we got here and the RE flag is set, it's because we're
1207 dealing with a regexp known to be trivial, so the backslash
1208 just quotes the next character. */
1209 if (RE && *base_pat == '\\')
1210 {
1211 len--;
1212 raw_pattern_size--;
1213 len_byte--;
1214 base_pat++;
1215 }
1216
1217 c = STRING_CHAR_AND_LENGTH (base_pat, len_byte, in_charlen);
1218
1219 if (NILP (trt))
1220 {
1221 str = base_pat;
1222 charlen = in_charlen;
1223 }
1224 else
1225 {
1226 /* Translate the character. */
1227 TRANSLATE (translated, trt, c);
1228 charlen = CHAR_STRING (translated, str_base);
1229 str = str_base;
1230
1231 /* Check if C has any other case-equivalents. */
1232 TRANSLATE (inverse, inverse_trt, c);
1233 /* If so, check if we can use boyer-moore. */
1234 if (c != inverse && boyer_moore_ok)
1235 {
1236 /* Check if all equivalents belong to the same
1237 group of characters. Note that the check of C
1238 itself is done by the last iteration. */
1239 int this_char_base = -1;
1240
1241 while (boyer_moore_ok)
1242 {
1243 if (ASCII_BYTE_P (inverse))
1244 {
1245 if (this_char_base > 0)
1246 boyer_moore_ok = 0;
1247 else
1248 {
1249 this_char_base = 0;
1250 if (char_base < 0)
1251 char_base = this_char_base;
1252 }
1253 }
1254 else if (CHAR_BYTE8_P (inverse))
1255 /* Boyer-moore search can't handle a
1256 translation of an eight-bit
1257 character. */
1258 boyer_moore_ok = 0;
1259 else if (this_char_base < 0)
1260 {
1261 this_char_base = inverse & ~0x3F;
1262 if (char_base < 0)
1263 char_base = this_char_base;
1264 else if (char_base > 0
1265 && this_char_base != char_base)
1266 boyer_moore_ok = 0;
1267 }
1268 else if ((inverse & ~0x3F) != this_char_base)
1269 boyer_moore_ok = 0;
1270 if (c == inverse)
1271 break;
1272 TRANSLATE (inverse, inverse_trt, inverse);
1273 }
1274 }
1275 }
1276 if (char_base < 0)
1277 char_base = 0;
1278
1279 /* Store this character into the translated pattern. */
1280 bcopy (str, pat, charlen);
1281 pat += charlen;
1282 base_pat += in_charlen;
1283 len_byte -= in_charlen;
1284 }
1285 }
1286 else
1287 {
1288 /* Unibyte buffer. */
1289 char_base = 0;
1290 while (--len >= 0)
1291 {
1292 int c, translated;
1293
1294 /* If we got here and the RE flag is set, it's because we're
1295 dealing with a regexp known to be trivial, so the backslash
1296 just quotes the next character. */
1297 if (RE && *base_pat == '\\')
1298 {
1299 len--;
1300 raw_pattern_size--;
1301 base_pat++;
1302 }
1303 c = *base_pat++;
1304 TRANSLATE (translated, trt, c);
1305 *pat++ = translated;
1306 }
1307 }
1308
1309 len_byte = pat - patbuf;
1310 len = raw_pattern_size;
1311 pat = base_pat = patbuf;
1312
1313 if (boyer_moore_ok)
1314 return boyer_moore (n, pat, len, len_byte, trt, inverse_trt,
1315 pos, pos_byte, lim, lim_byte,
1316 char_base);
1317 else
1318 return simple_search (n, pat, len, len_byte, trt,
1319 pos, pos_byte, lim, lim_byte);
1320 }
1321 }
1322 \f
1323 /* Do a simple string search N times for the string PAT,
1324 whose length is LEN/LEN_BYTE,
1325 from buffer position POS/POS_BYTE until LIM/LIM_BYTE.
1326 TRT is the translation table.
1327
1328 Return the character position where the match is found.
1329 Otherwise, if M matches remained to be found, return -M.
1330
1331 This kind of search works regardless of what is in PAT and
1332 regardless of what is in TRT. It is used in cases where
1333 boyer_moore cannot work. */
1334
1335 static int
1336 simple_search (n, pat, len, len_byte, trt, pos, pos_byte, lim, lim_byte)
1337 int n;
1338 unsigned char *pat;
1339 int len, len_byte;
1340 Lisp_Object trt;
1341 int pos, pos_byte;
1342 int lim, lim_byte;
1343 {
1344 int multibyte = ! NILP (current_buffer->enable_multibyte_characters);
1345 int forward = n > 0;
1346 /* Number of buffer bytes matched. Note that this may be different
1347 from len_byte in a multibyte buffer. */
1348 int match_byte;
1349
1350 if (lim > pos && multibyte)
1351 while (n > 0)
1352 {
1353 while (1)
1354 {
1355 /* Try matching at position POS. */
1356 int this_pos = pos;
1357 int this_pos_byte = pos_byte;
1358 int this_len = len;
1359 int this_len_byte = len_byte;
1360 unsigned char *p = pat;
1361 if (pos + len > lim)
1362 goto stop;
1363
1364 while (this_len > 0)
1365 {
1366 int charlen, buf_charlen;
1367 int pat_ch, buf_ch;
1368
1369 pat_ch = STRING_CHAR_AND_LENGTH (p, this_len_byte, charlen);
1370 buf_ch = STRING_CHAR_AND_LENGTH (BYTE_POS_ADDR (this_pos_byte),
1371 ZV_BYTE - this_pos_byte,
1372 buf_charlen);
1373 TRANSLATE (buf_ch, trt, buf_ch);
1374
1375 if (buf_ch != pat_ch)
1376 break;
1377
1378 this_len_byte -= charlen;
1379 this_len--;
1380 p += charlen;
1381
1382 this_pos_byte += buf_charlen;
1383 this_pos++;
1384 }
1385
1386 if (this_len == 0)
1387 {
1388 match_byte = this_pos_byte - pos_byte;
1389 pos += len;
1390 pos_byte += match_byte;
1391 break;
1392 }
1393
1394 INC_BOTH (pos, pos_byte);
1395 }
1396
1397 n--;
1398 }
1399 else if (lim > pos)
1400 while (n > 0)
1401 {
1402 while (1)
1403 {
1404 /* Try matching at position POS. */
1405 int this_pos = pos;
1406 int this_len = len;
1407 unsigned char *p = pat;
1408
1409 if (pos + len > lim)
1410 goto stop;
1411
1412 while (this_len > 0)
1413 {
1414 int pat_ch = *p++;
1415 int buf_ch = FETCH_BYTE (this_pos);
1416 TRANSLATE (buf_ch, trt, buf_ch);
1417
1418 if (buf_ch != pat_ch)
1419 break;
1420
1421 this_len--;
1422 this_pos++;
1423 }
1424
1425 if (this_len == 0)
1426 {
1427 match_byte = len;
1428 pos += len;
1429 break;
1430 }
1431
1432 pos++;
1433 }
1434
1435 n--;
1436 }
1437 /* Backwards search. */
1438 else if (lim < pos && multibyte)
1439 while (n < 0)
1440 {
1441 while (1)
1442 {
1443 /* Try matching at position POS. */
1444 int this_pos = pos - len;
1445 int this_pos_byte;
1446 int this_len = len;
1447 int this_len_byte = len_byte;
1448 unsigned char *p = pat;
1449
1450 if (pos - len < lim)
1451 goto stop;
1452 this_pos_byte = CHAR_TO_BYTE (this_pos);
1453 match_byte = pos_byte - this_pos_byte;
1454
1455 while (this_len > 0)
1456 {
1457 int charlen, buf_charlen;
1458 int pat_ch, buf_ch;
1459
1460 pat_ch = STRING_CHAR_AND_LENGTH (p, this_len_byte, charlen);
1461 buf_ch = STRING_CHAR_AND_LENGTH (BYTE_POS_ADDR (this_pos_byte),
1462 ZV_BYTE - this_pos_byte,
1463 buf_charlen);
1464 TRANSLATE (buf_ch, trt, buf_ch);
1465
1466 if (buf_ch != pat_ch)
1467 break;
1468
1469 this_len_byte -= charlen;
1470 this_len--;
1471 p += charlen;
1472 this_pos_byte += buf_charlen;
1473 this_pos++;
1474 }
1475
1476 if (this_len == 0)
1477 {
1478 pos -= len;
1479 pos_byte -= match_byte;
1480 break;
1481 }
1482
1483 DEC_BOTH (pos, pos_byte);
1484 }
1485
1486 n++;
1487 }
1488 else if (lim < pos)
1489 while (n < 0)
1490 {
1491 while (1)
1492 {
1493 /* Try matching at position POS. */
1494 int this_pos = pos - len;
1495 int this_len = len;
1496 unsigned char *p = pat;
1497
1498 if (pos - len < lim)
1499 goto stop;
1500
1501 while (this_len > 0)
1502 {
1503 int pat_ch = *p++;
1504 int buf_ch = FETCH_BYTE (this_pos);
1505 TRANSLATE (buf_ch, trt, buf_ch);
1506
1507 if (buf_ch != pat_ch)
1508 break;
1509 this_len--;
1510 this_pos++;
1511 }
1512
1513 if (this_len == 0)
1514 {
1515 match_byte = len;
1516 pos -= len;
1517 break;
1518 }
1519
1520 pos--;
1521 }
1522
1523 n++;
1524 }
1525
1526 stop:
1527 if (n == 0)
1528 {
1529 if (forward)
1530 set_search_regs ((multibyte ? pos_byte : pos) - match_byte, match_byte);
1531 else
1532 set_search_regs (multibyte ? pos_byte : pos, match_byte);
1533
1534 return pos;
1535 }
1536 else if (n > 0)
1537 return -n;
1538 else
1539 return n;
1540 }
1541 \f
1542 /* Do Boyer-Moore search N times for the string BASE_PAT,
1543 whose length is LEN/LEN_BYTE,
1544 from buffer position POS/POS_BYTE until LIM/LIM_BYTE.
1545 DIRECTION says which direction we search in.
1546 TRT and INVERSE_TRT are translation tables.
1547 Characters in PAT are already translated by TRT.
1548
1549 This kind of search works if all the characters in BASE_PAT that
1550 have nontrivial translation are the same aside from the last byte.
1551 This makes it possible to translate just the last byte of a
1552 character, and do so after just a simple test of the context.
1553 CHAR_BASE is nonzero iff there is such a non-ASCII character.
1554
1555 If that criterion is not satisfied, do not call this function. */
1556
1557 static int
1558 boyer_moore (n, base_pat, len, len_byte, trt, inverse_trt,
1559 pos, pos_byte, lim, lim_byte, char_base)
1560 int n;
1561 unsigned char *base_pat;
1562 int len, len_byte;
1563 Lisp_Object trt;
1564 Lisp_Object inverse_trt;
1565 int pos, pos_byte;
1566 int lim, lim_byte;
1567 int char_base;
1568 {
1569 int direction = ((n > 0) ? 1 : -1);
1570 register int dirlen;
1571 int infinity, limit, stride_for_teases = 0;
1572 register int *BM_tab;
1573 int *BM_tab_base;
1574 register unsigned char *cursor, *p_limit;
1575 register int i, j;
1576 unsigned char *pat, *pat_end;
1577 int multibyte = ! NILP (current_buffer->enable_multibyte_characters);
1578
1579 unsigned char simple_translate[0400];
1580 /* These are set to the preceding bytes of a byte to be translated
1581 if char_base is nonzero. As the maximum byte length of a
1582 multibyte character is 5, we have to check at most four previous
1583 bytes. */
1584 int translate_prev_byte1 = 0;
1585 int translate_prev_byte2 = 0;
1586 int translate_prev_byte3 = 0;
1587 int translate_prev_byte4 = 0;
1588
1589 #ifdef C_ALLOCA
1590 int BM_tab_space[0400];
1591 BM_tab = &BM_tab_space[0];
1592 #else
1593 BM_tab = (int *) alloca (0400 * sizeof (int));
1594 #endif
1595 /* The general approach is that we are going to maintain that we know */
1596 /* the first (closest to the present position, in whatever direction */
1597 /* we're searching) character that could possibly be the last */
1598 /* (furthest from present position) character of a valid match. We */
1599 /* advance the state of our knowledge by looking at that character */
1600 /* and seeing whether it indeed matches the last character of the */
1601 /* pattern. If it does, we take a closer look. If it does not, we */
1602 /* move our pointer (to putative last characters) as far as is */
1603 /* logically possible. This amount of movement, which I call a */
1604 /* stride, will be the length of the pattern if the actual character */
1605 /* appears nowhere in the pattern, otherwise it will be the distance */
1606 /* from the last occurrence of that character to the end of the */
1607 /* pattern. */
1608 /* As a coding trick, an enormous stride is coded into the table for */
1609 /* characters that match the last character. This allows use of only */
1610 /* a single test, a test for having gone past the end of the */
1611 /* permissible match region, to test for both possible matches (when */
1612 /* the stride goes past the end immediately) and failure to */
1613 /* match (where you get nudged past the end one stride at a time). */
1614
1615 /* Here we make a "mickey mouse" BM table. The stride of the search */
1616 /* is determined only by the last character of the putative match. */
1617 /* If that character does not match, we will stride the proper */
1618 /* distance to propose a match that superimposes it on the last */
1619 /* instance of a character that matches it (per trt), or misses */
1620 /* it entirely if there is none. */
1621
1622 dirlen = len_byte * direction;
1623 infinity = dirlen - (lim_byte + pos_byte + len_byte + len_byte) * direction;
1624
1625 /* Record position after the end of the pattern. */
1626 pat_end = base_pat + len_byte;
1627 /* BASE_PAT points to a character that we start scanning from.
1628 It is the first character in a forward search,
1629 the last character in a backward search. */
1630 if (direction < 0)
1631 base_pat = pat_end - 1;
1632
1633 BM_tab_base = BM_tab;
1634 BM_tab += 0400;
1635 j = dirlen; /* to get it in a register */
1636 /* A character that does not appear in the pattern induces a */
1637 /* stride equal to the pattern length. */
1638 while (BM_tab_base != BM_tab)
1639 {
1640 *--BM_tab = j;
1641 *--BM_tab = j;
1642 *--BM_tab = j;
1643 *--BM_tab = j;
1644 }
1645
1646 /* We use this for translation, instead of TRT itself.
1647 We fill this in to handle the characters that actually
1648 occur in the pattern. Others don't matter anyway! */
1649 bzero (simple_translate, sizeof simple_translate);
1650 for (i = 0; i < 0400; i++)
1651 simple_translate[i] = i;
1652
1653 if (char_base)
1654 {
1655 /* Setup translate_prev_byte1/2/3/4 from CHAR_BASE. Only a
1656 byte following them are the target of translation. */
1657 unsigned char str[MAX_MULTIBYTE_LENGTH];
1658 int len = CHAR_STRING (char_base, str);
1659
1660 translate_prev_byte1 = str[len - 2];
1661 if (len > 2)
1662 {
1663 translate_prev_byte2 = str[len - 3];
1664 if (len > 3)
1665 {
1666 translate_prev_byte3 = str[len - 4];
1667 if (len > 4)
1668 translate_prev_byte4 = str[len - 5];
1669 }
1670 }
1671 }
1672
1673 i = 0;
1674 while (i != infinity)
1675 {
1676 unsigned char *ptr = base_pat + i;
1677 i += direction;
1678 if (i == dirlen)
1679 i = infinity;
1680 if (! NILP (trt))
1681 {
1682 /* If the byte currently looking at is the last of a
1683 character to check case-equivalents, set CH to that
1684 character. An ASCII character and a non-ASCII character
1685 matching with CHAR_BASE are to be checked. */
1686 int ch = -1;
1687
1688 if (ASCII_BYTE_P (*ptr) || ! multibyte)
1689 ch = *ptr;
1690 else if (char_base
1691 && ((pat_end - ptr) == 1 || CHAR_HEAD_P (ptr[1])))
1692 {
1693 unsigned char *charstart = ptr - 1;
1694
1695 while (! (CHAR_HEAD_P (*charstart)))
1696 charstart--;
1697 ch = STRING_CHAR (charstart, ptr - charstart + 1);
1698 if (char_base != (ch & ~0x3F))
1699 ch = -1;
1700 }
1701
1702 if (ch > 0400)
1703 j = (ch & 0x3F) | 0200;
1704 else
1705 j = *ptr;
1706
1707 if (i == infinity)
1708 stride_for_teases = BM_tab[j];
1709
1710 BM_tab[j] = dirlen - i;
1711 /* A translation table is accompanied by its inverse -- see */
1712 /* comment following downcase_table for details */
1713 if (ch >= 0)
1714 {
1715 int starting_ch = ch;
1716 int starting_j = j;
1717
1718 while (1)
1719 {
1720 TRANSLATE (ch, inverse_trt, ch);
1721 if (ch > 0400)
1722 j = (ch & 0x3F) | 0200;
1723 else
1724 j = ch;
1725
1726 /* For all the characters that map into CH,
1727 set up simple_translate to map the last byte
1728 into STARTING_J. */
1729 simple_translate[j] = starting_j;
1730 if (ch == starting_ch)
1731 break;
1732 BM_tab[j] = dirlen - i;
1733 }
1734 }
1735 }
1736 else
1737 {
1738 j = *ptr;
1739
1740 if (i == infinity)
1741 stride_for_teases = BM_tab[j];
1742 BM_tab[j] = dirlen - i;
1743 }
1744 /* stride_for_teases tells how much to stride if we get a */
1745 /* match on the far character but are subsequently */
1746 /* disappointed, by recording what the stride would have been */
1747 /* for that character if the last character had been */
1748 /* different. */
1749 }
1750 infinity = dirlen - infinity;
1751 pos_byte += dirlen - ((direction > 0) ? direction : 0);
1752 /* loop invariant - POS_BYTE points at where last char (first
1753 char if reverse) of pattern would align in a possible match. */
1754 while (n != 0)
1755 {
1756 int tail_end;
1757 unsigned char *tail_end_ptr;
1758
1759 /* It's been reported that some (broken) compiler thinks that
1760 Boolean expressions in an arithmetic context are unsigned.
1761 Using an explicit ?1:0 prevents this. */
1762 if ((lim_byte - pos_byte - ((direction > 0) ? 1 : 0)) * direction
1763 < 0)
1764 return (n * (0 - direction));
1765 /* First we do the part we can by pointers (maybe nothing) */
1766 QUIT;
1767 pat = base_pat;
1768 limit = pos_byte - dirlen + direction;
1769 if (direction > 0)
1770 {
1771 limit = BUFFER_CEILING_OF (limit);
1772 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1773 can take on without hitting edge of buffer or the gap. */
1774 limit = min (limit, pos_byte + 20000);
1775 limit = min (limit, lim_byte - 1);
1776 }
1777 else
1778 {
1779 limit = BUFFER_FLOOR_OF (limit);
1780 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1781 can take on without hitting edge of buffer or the gap. */
1782 limit = max (limit, pos_byte - 20000);
1783 limit = max (limit, lim_byte);
1784 }
1785 tail_end = BUFFER_CEILING_OF (pos_byte) + 1;
1786 tail_end_ptr = BYTE_POS_ADDR (tail_end);
1787
1788 if ((limit - pos_byte) * direction > 20)
1789 {
1790 unsigned char *p2;
1791
1792 p_limit = BYTE_POS_ADDR (limit);
1793 p2 = (cursor = BYTE_POS_ADDR (pos_byte));
1794 /* In this loop, pos + cursor - p2 is the surrogate for pos */
1795 while (1) /* use one cursor setting as long as i can */
1796 {
1797 if (direction > 0) /* worth duplicating */
1798 {
1799 /* Use signed comparison if appropriate
1800 to make cursor+infinity sure to be > p_limit.
1801 Assuming that the buffer lies in a range of addresses
1802 that are all "positive" (as ints) or all "negative",
1803 either kind of comparison will work as long
1804 as we don't step by infinity. So pick the kind
1805 that works when we do step by infinity. */
1806 if ((EMACS_INT) (p_limit + infinity) > (EMACS_INT) p_limit)
1807 while ((EMACS_INT) cursor <= (EMACS_INT) p_limit)
1808 cursor += BM_tab[*cursor];
1809 else
1810 while ((EMACS_UINT) cursor <= (EMACS_UINT) p_limit)
1811 cursor += BM_tab[*cursor];
1812 }
1813 else
1814 {
1815 if ((EMACS_INT) (p_limit + infinity) < (EMACS_INT) p_limit)
1816 while ((EMACS_INT) cursor >= (EMACS_INT) p_limit)
1817 cursor += BM_tab[*cursor];
1818 else
1819 while ((EMACS_UINT) cursor >= (EMACS_UINT) p_limit)
1820 cursor += BM_tab[*cursor];
1821 }
1822 /* If you are here, cursor is beyond the end of the searched region. */
1823 /* This can happen if you match on the far character of the pattern, */
1824 /* because the "stride" of that character is infinity, a number able */
1825 /* to throw you well beyond the end of the search. It can also */
1826 /* happen if you fail to match within the permitted region and would */
1827 /* otherwise try a character beyond that region */
1828 if ((cursor - p_limit) * direction <= len_byte)
1829 break; /* a small overrun is genuine */
1830 cursor -= infinity; /* large overrun = hit */
1831 i = dirlen - direction;
1832 if (! NILP (trt))
1833 {
1834 while ((i -= direction) + direction != 0)
1835 {
1836 int ch;
1837 cursor -= direction;
1838 /* Translate only the last byte of a character. */
1839 if (! multibyte
1840 || ((cursor == tail_end_ptr
1841 || CHAR_HEAD_P (cursor[1]))
1842 && (CHAR_HEAD_P (cursor[0])
1843 /* Check if this is the last byte of
1844 a translable character. */
1845 || (translate_prev_byte1 == cursor[-1]
1846 && (CHAR_HEAD_P (translate_prev_byte1)
1847 || (translate_prev_byte2 == cursor[-2]
1848 && (CHAR_HEAD_P (translate_prev_byte2)
1849 || (translate_prev_byte3 == cursor[-3]))))))))
1850 ch = simple_translate[*cursor];
1851 else
1852 ch = *cursor;
1853 if (pat[i] != ch)
1854 break;
1855 }
1856 }
1857 else
1858 {
1859 while ((i -= direction) + direction != 0)
1860 {
1861 cursor -= direction;
1862 if (pat[i] != *cursor)
1863 break;
1864 }
1865 }
1866 cursor += dirlen - i - direction; /* fix cursor */
1867 if (i + direction == 0)
1868 {
1869 int position;
1870
1871 cursor -= direction;
1872
1873 position = pos_byte + cursor - p2 + ((direction > 0)
1874 ? 1 - len_byte : 0);
1875 set_search_regs (position, len_byte);
1876
1877 if ((n -= direction) != 0)
1878 cursor += dirlen; /* to resume search */
1879 else
1880 return ((direction > 0)
1881 ? search_regs.end[0] : search_regs.start[0]);
1882 }
1883 else
1884 cursor += stride_for_teases; /* <sigh> we lose - */
1885 }
1886 pos_byte += cursor - p2;
1887 }
1888 else
1889 /* Now we'll pick up a clump that has to be done the hard */
1890 /* way because it covers a discontinuity */
1891 {
1892 limit = ((direction > 0)
1893 ? BUFFER_CEILING_OF (pos_byte - dirlen + 1)
1894 : BUFFER_FLOOR_OF (pos_byte - dirlen - 1));
1895 limit = ((direction > 0)
1896 ? min (limit + len_byte, lim_byte - 1)
1897 : max (limit - len_byte, lim_byte));
1898 /* LIMIT is now the last value POS_BYTE can have
1899 and still be valid for a possible match. */
1900 while (1)
1901 {
1902 /* This loop can be coded for space rather than */
1903 /* speed because it will usually run only once. */
1904 /* (the reach is at most len + 21, and typically */
1905 /* does not exceed len) */
1906 while ((limit - pos_byte) * direction >= 0)
1907 pos_byte += BM_tab[FETCH_BYTE (pos_byte)];
1908 /* now run the same tests to distinguish going off the */
1909 /* end, a match or a phony match. */
1910 if ((pos_byte - limit) * direction <= len_byte)
1911 break; /* ran off the end */
1912 /* Found what might be a match.
1913 Set POS_BYTE back to last (first if reverse) pos. */
1914 pos_byte -= infinity;
1915 i = dirlen - direction;
1916 while ((i -= direction) + direction != 0)
1917 {
1918 int ch;
1919 unsigned char *ptr;
1920 pos_byte -= direction;
1921 ptr = BYTE_POS_ADDR (pos_byte);
1922 /* Translate only the last byte of a character. */
1923 if (! multibyte
1924 || ((ptr == tail_end_ptr
1925 || CHAR_HEAD_P (ptr[1]))
1926 && (CHAR_HEAD_P (ptr[0])
1927 /* Check if this is the last byte of a
1928 translable character. */
1929 || (translate_prev_byte1 == ptr[-1]
1930 && (CHAR_HEAD_P (translate_prev_byte1)
1931 || (translate_prev_byte2 == ptr[-2]
1932 && (CHAR_HEAD_P (translate_prev_byte2)
1933 || translate_prev_byte3 == ptr[-3])))))))
1934 ch = simple_translate[*ptr];
1935 else
1936 ch = *ptr;
1937 if (pat[i] != ch)
1938 break;
1939 }
1940 /* Above loop has moved POS_BYTE part or all the way
1941 back to the first pos (last pos if reverse).
1942 Set it once again at the last (first if reverse) char. */
1943 pos_byte += dirlen - i- direction;
1944 if (i + direction == 0)
1945 {
1946 int position;
1947 pos_byte -= direction;
1948
1949 position = pos_byte + ((direction > 0) ? 1 - len_byte : 0);
1950
1951 set_search_regs (position, len_byte);
1952
1953 if ((n -= direction) != 0)
1954 pos_byte += dirlen; /* to resume search */
1955 else
1956 return ((direction > 0)
1957 ? search_regs.end[0] : search_regs.start[0]);
1958 }
1959 else
1960 pos_byte += stride_for_teases;
1961 }
1962 }
1963 /* We have done one clump. Can we continue? */
1964 if ((lim_byte - pos_byte) * direction < 0)
1965 return ((0 - n) * direction);
1966 }
1967 return BYTE_TO_CHAR (pos_byte);
1968 }
1969
1970 /* Record beginning BEG_BYTE and end BEG_BYTE + NBYTES
1971 for the overall match just found in the current buffer.
1972 Also clear out the match data for registers 1 and up. */
1973
1974 static void
1975 set_search_regs (beg_byte, nbytes)
1976 int beg_byte, nbytes;
1977 {
1978 int i;
1979
1980 /* Make sure we have registers in which to store
1981 the match position. */
1982 if (search_regs.num_regs == 0)
1983 {
1984 search_regs.start = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
1985 search_regs.end = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
1986 search_regs.num_regs = 2;
1987 }
1988
1989 /* Clear out the other registers. */
1990 for (i = 1; i < search_regs.num_regs; i++)
1991 {
1992 search_regs.start[i] = -1;
1993 search_regs.end[i] = -1;
1994 }
1995
1996 search_regs.start[0] = BYTE_TO_CHAR (beg_byte);
1997 search_regs.end[0] = BYTE_TO_CHAR (beg_byte + nbytes);
1998 XSETBUFFER (last_thing_searched, current_buffer);
1999 }
2000 \f
2001 /* Given a string of words separated by word delimiters,
2002 compute a regexp that matches those exact words
2003 separated by arbitrary punctuation. */
2004
2005 static Lisp_Object
2006 wordify (string)
2007 Lisp_Object string;
2008 {
2009 register unsigned char *p, *o;
2010 register int i, i_byte, len, punct_count = 0, word_count = 0;
2011 Lisp_Object val;
2012 int prev_c = 0;
2013 int adjust;
2014
2015 CHECK_STRING (string);
2016 p = SDATA (string);
2017 len = SCHARS (string);
2018
2019 for (i = 0, i_byte = 0; i < len; )
2020 {
2021 int c;
2022
2023 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c, string, i, i_byte);
2024
2025 if (SYNTAX (c) != Sword)
2026 {
2027 punct_count++;
2028 if (i > 0 && SYNTAX (prev_c) == Sword)
2029 word_count++;
2030 }
2031
2032 prev_c = c;
2033 }
2034
2035 if (SYNTAX (prev_c) == Sword)
2036 word_count++;
2037 if (!word_count)
2038 return empty_string;
2039
2040 adjust = - punct_count + 5 * (word_count - 1) + 4;
2041 if (STRING_MULTIBYTE (string))
2042 val = make_uninit_multibyte_string (len + adjust,
2043 SBYTES (string)
2044 + adjust);
2045 else
2046 val = make_uninit_string (len + adjust);
2047
2048 o = SDATA (val);
2049 *o++ = '\\';
2050 *o++ = 'b';
2051 prev_c = 0;
2052
2053 for (i = 0, i_byte = 0; i < len; )
2054 {
2055 int c;
2056 int i_byte_orig = i_byte;
2057
2058 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c, string, i, i_byte);
2059
2060 if (SYNTAX (c) == Sword)
2061 {
2062 bcopy (SDATA (string) + i_byte_orig, o,
2063 i_byte - i_byte_orig);
2064 o += i_byte - i_byte_orig;
2065 }
2066 else if (i > 0 && SYNTAX (prev_c) == Sword && --word_count)
2067 {
2068 *o++ = '\\';
2069 *o++ = 'W';
2070 *o++ = '\\';
2071 *o++ = 'W';
2072 *o++ = '*';
2073 }
2074
2075 prev_c = c;
2076 }
2077
2078 *o++ = '\\';
2079 *o++ = 'b';
2080
2081 return val;
2082 }
2083 \f
2084 DEFUN ("search-backward", Fsearch_backward, Ssearch_backward, 1, 4,
2085 "MSearch backward: ",
2086 doc: /* Search backward from point for STRING.
2087 Set point to the beginning of the occurrence found, and return point.
2088 An optional second argument bounds the search; it is a buffer position.
2089 The match found must not extend before that position.
2090 Optional third argument, if t, means if fail just return nil (no error).
2091 If not nil and not t, position at limit of search and return nil.
2092 Optional fourth argument is repeat count--search for successive occurrences.
2093
2094 Search case-sensitivity is determined by the value of the variable
2095 `case-fold-search', which see.
2096
2097 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2098 (string, bound, noerror, count)
2099 Lisp_Object string, bound, noerror, count;
2100 {
2101 return search_command (string, bound, noerror, count, -1, 0, 0);
2102 }
2103
2104 DEFUN ("search-forward", Fsearch_forward, Ssearch_forward, 1, 4, "MSearch: ",
2105 doc: /* Search forward from point for STRING.
2106 Set point to the end of the occurrence found, and return point.
2107 An optional second argument bounds the search; it is a buffer position.
2108 The match found must not extend after that position. nil is equivalent
2109 to (point-max).
2110 Optional third argument, if t, means if fail just return nil (no error).
2111 If not nil and not t, move to limit of search and return nil.
2112 Optional fourth argument is repeat count--search for successive occurrences.
2113
2114 Search case-sensitivity is determined by the value of the variable
2115 `case-fold-search', which see.
2116
2117 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2118 (string, bound, noerror, count)
2119 Lisp_Object string, bound, noerror, count;
2120 {
2121 return search_command (string, bound, noerror, count, 1, 0, 0);
2122 }
2123
2124 DEFUN ("word-search-backward", Fword_search_backward, Sword_search_backward, 1, 4,
2125 "sWord search backward: ",
2126 doc: /* Search backward from point for STRING, ignoring differences in punctuation.
2127 Set point to the beginning of the occurrence found, and return point.
2128 An optional second argument bounds the search; it is a buffer position.
2129 The match found must not extend before that position.
2130 Optional third argument, if t, means if fail just return nil (no error).
2131 If not nil and not t, move to limit of search and return nil.
2132 Optional fourth argument is repeat count--search for successive occurrences. */)
2133 (string, bound, noerror, count)
2134 Lisp_Object string, bound, noerror, count;
2135 {
2136 return search_command (wordify (string), bound, noerror, count, -1, 1, 0);
2137 }
2138
2139 DEFUN ("word-search-forward", Fword_search_forward, Sword_search_forward, 1, 4,
2140 "sWord search: ",
2141 doc: /* Search forward from point for STRING, ignoring differences in punctuation.
2142 Set point to the end of the occurrence found, and return point.
2143 An optional second argument bounds the search; it is a buffer position.
2144 The match found must not extend after that position.
2145 Optional third argument, if t, means if fail just return nil (no error).
2146 If not nil and not t, move to limit of search and return nil.
2147 Optional fourth argument is repeat count--search for successive occurrences. */)
2148 (string, bound, noerror, count)
2149 Lisp_Object string, bound, noerror, count;
2150 {
2151 return search_command (wordify (string), bound, noerror, count, 1, 1, 0);
2152 }
2153
2154 DEFUN ("re-search-backward", Fre_search_backward, Sre_search_backward, 1, 4,
2155 "sRE search backward: ",
2156 doc: /* Search backward from point for match for regular expression REGEXP.
2157 Set point to the beginning of the match, and return point.
2158 The match found is the one starting last in the buffer
2159 and yet ending before the origin of the search.
2160 An optional second argument bounds the search; it is a buffer position.
2161 The match found must start at or after that position.
2162 Optional third argument, if t, means if fail just return nil (no error).
2163 If not nil and not t, move to limit of search and return nil.
2164 Optional fourth argument is repeat count--search for successive occurrences.
2165 See also the functions `match-beginning', `match-end', `match-string',
2166 and `replace-match'. */)
2167 (regexp, bound, noerror, count)
2168 Lisp_Object regexp, bound, noerror, count;
2169 {
2170 return search_command (regexp, bound, noerror, count, -1, 1, 0);
2171 }
2172
2173 DEFUN ("re-search-forward", Fre_search_forward, Sre_search_forward, 1, 4,
2174 "sRE search: ",
2175 doc: /* Search forward from point for regular expression REGEXP.
2176 Set point to the end of the occurrence found, and return point.
2177 An optional second argument bounds the search; it is a buffer position.
2178 The match found must not extend after that position.
2179 Optional third argument, if t, means if fail just return nil (no error).
2180 If not nil and not t, move to limit of search and return nil.
2181 Optional fourth argument is repeat count--search for successive occurrences.
2182 See also the functions `match-beginning', `match-end', `match-string',
2183 and `replace-match'. */)
2184 (regexp, bound, noerror, count)
2185 Lisp_Object regexp, bound, noerror, count;
2186 {
2187 return search_command (regexp, bound, noerror, count, 1, 1, 0);
2188 }
2189
2190 DEFUN ("posix-search-backward", Fposix_search_backward, Sposix_search_backward, 1, 4,
2191 "sPosix search backward: ",
2192 doc: /* Search backward from point for match for regular expression REGEXP.
2193 Find the longest match in accord with Posix regular expression rules.
2194 Set point to the beginning of the match, and return point.
2195 The match found is the one starting last in the buffer
2196 and yet ending before the origin of the search.
2197 An optional second argument bounds the search; it is a buffer position.
2198 The match found must start at or after that position.
2199 Optional third argument, if t, means if fail just return nil (no error).
2200 If not nil and not t, move to limit of search and return nil.
2201 Optional fourth argument is repeat count--search for successive occurrences.
2202 See also the functions `match-beginning', `match-end', `match-string',
2203 and `replace-match'. */)
2204 (regexp, bound, noerror, count)
2205 Lisp_Object regexp, bound, noerror, count;
2206 {
2207 return search_command (regexp, bound, noerror, count, -1, 1, 1);
2208 }
2209
2210 DEFUN ("posix-search-forward", Fposix_search_forward, Sposix_search_forward, 1, 4,
2211 "sPosix search: ",
2212 doc: /* Search forward from point for regular expression REGEXP.
2213 Find the longest match in accord with Posix regular expression rules.
2214 Set point to the end of the occurrence found, and return point.
2215 An optional second argument bounds the search; it is a buffer position.
2216 The match found must not extend after that position.
2217 Optional third argument, if t, means if fail just return nil (no error).
2218 If not nil and not t, move to limit of search and return nil.
2219 Optional fourth argument is repeat count--search for successive occurrences.
2220 See also the functions `match-beginning', `match-end', `match-string',
2221 and `replace-match'. */)
2222 (regexp, bound, noerror, count)
2223 Lisp_Object regexp, bound, noerror, count;
2224 {
2225 return search_command (regexp, bound, noerror, count, 1, 1, 1);
2226 }
2227 \f
2228 DEFUN ("replace-match", Freplace_match, Sreplace_match, 1, 5, 0,
2229 doc: /* Replace text matched by last search with NEWTEXT.
2230 Leave point at the end of the replacement text.
2231
2232 If second arg FIXEDCASE is non-nil, do not alter case of replacement text.
2233 Otherwise maybe capitalize the whole text, or maybe just word initials,
2234 based on the replaced text.
2235 If the replaced text has only capital letters
2236 and has at least one multiletter word, convert NEWTEXT to all caps.
2237 Otherwise if all words are capitalized in the replaced text,
2238 capitalize each word in NEWTEXT.
2239
2240 If third arg LITERAL is non-nil, insert NEWTEXT literally.
2241 Otherwise treat `\\' as special:
2242 `\\&' in NEWTEXT means substitute original matched text.
2243 `\\N' means substitute what matched the Nth `\\(...\\)'.
2244 If Nth parens didn't match, substitute nothing.
2245 `\\\\' means insert one `\\'.
2246 Case conversion does not apply to these substitutions.
2247
2248 FIXEDCASE and LITERAL are optional arguments.
2249
2250 The optional fourth argument STRING can be a string to modify.
2251 This is meaningful when the previous match was done against STRING,
2252 using `string-match'. When used this way, `replace-match'
2253 creates and returns a new string made by copying STRING and replacing
2254 the part of STRING that was matched.
2255
2256 The optional fifth argument SUBEXP specifies a subexpression;
2257 it says to replace just that subexpression with NEWTEXT,
2258 rather than replacing the entire matched text.
2259 This is, in a vague sense, the inverse of using `\\N' in NEWTEXT;
2260 `\\N' copies subexp N into NEWTEXT, but using N as SUBEXP puts
2261 NEWTEXT in place of subexp N.
2262 This is useful only after a regular expression search or match,
2263 since only regular expressions have distinguished subexpressions. */)
2264 (newtext, fixedcase, literal, string, subexp)
2265 Lisp_Object newtext, fixedcase, literal, string, subexp;
2266 {
2267 enum { nochange, all_caps, cap_initial } case_action;
2268 register int pos, pos_byte;
2269 int some_multiletter_word;
2270 int some_lowercase;
2271 int some_uppercase;
2272 int some_nonuppercase_initial;
2273 register int c, prevc;
2274 int sub;
2275 int opoint, newpoint;
2276
2277 CHECK_STRING (newtext);
2278
2279 if (! NILP (string))
2280 CHECK_STRING (string);
2281
2282 case_action = nochange; /* We tried an initialization */
2283 /* but some C compilers blew it */
2284
2285 if (search_regs.num_regs <= 0)
2286 error ("`replace-match' called before any match found");
2287
2288 if (NILP (subexp))
2289 sub = 0;
2290 else
2291 {
2292 CHECK_NUMBER (subexp);
2293 sub = XINT (subexp);
2294 if (sub < 0 || sub >= search_regs.num_regs)
2295 args_out_of_range (subexp, make_number (search_regs.num_regs));
2296 }
2297
2298 if (NILP (string))
2299 {
2300 if (search_regs.start[sub] < BEGV
2301 || search_regs.start[sub] > search_regs.end[sub]
2302 || search_regs.end[sub] > ZV)
2303 args_out_of_range (make_number (search_regs.start[sub]),
2304 make_number (search_regs.end[sub]));
2305 }
2306 else
2307 {
2308 if (search_regs.start[sub] < 0
2309 || search_regs.start[sub] > search_regs.end[sub]
2310 || search_regs.end[sub] > SCHARS (string))
2311 args_out_of_range (make_number (search_regs.start[sub]),
2312 make_number (search_regs.end[sub]));
2313 }
2314
2315 if (NILP (fixedcase))
2316 {
2317 /* Decide how to casify by examining the matched text. */
2318 int last;
2319
2320 pos = search_regs.start[sub];
2321 last = search_regs.end[sub];
2322
2323 if (NILP (string))
2324 pos_byte = CHAR_TO_BYTE (pos);
2325 else
2326 pos_byte = string_char_to_byte (string, pos);
2327
2328 prevc = '\n';
2329 case_action = all_caps;
2330
2331 /* some_multiletter_word is set nonzero if any original word
2332 is more than one letter long. */
2333 some_multiletter_word = 0;
2334 some_lowercase = 0;
2335 some_nonuppercase_initial = 0;
2336 some_uppercase = 0;
2337
2338 while (pos < last)
2339 {
2340 if (NILP (string))
2341 {
2342 c = FETCH_CHAR_AS_MULTIBYTE (pos_byte);
2343 INC_BOTH (pos, pos_byte);
2344 }
2345 else
2346 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c, string, pos, pos_byte);
2347
2348 if (LOWERCASEP (c))
2349 {
2350 /* Cannot be all caps if any original char is lower case */
2351
2352 some_lowercase = 1;
2353 if (SYNTAX (prevc) != Sword)
2354 some_nonuppercase_initial = 1;
2355 else
2356 some_multiletter_word = 1;
2357 }
2358 else if (UPPERCASEP (c))
2359 {
2360 some_uppercase = 1;
2361 if (SYNTAX (prevc) != Sword)
2362 ;
2363 else
2364 some_multiletter_word = 1;
2365 }
2366 else
2367 {
2368 /* If the initial is a caseless word constituent,
2369 treat that like a lowercase initial. */
2370 if (SYNTAX (prevc) != Sword)
2371 some_nonuppercase_initial = 1;
2372 }
2373
2374 prevc = c;
2375 }
2376
2377 /* Convert to all caps if the old text is all caps
2378 and has at least one multiletter word. */
2379 if (! some_lowercase && some_multiletter_word)
2380 case_action = all_caps;
2381 /* Capitalize each word, if the old text has all capitalized words. */
2382 else if (!some_nonuppercase_initial && some_multiletter_word)
2383 case_action = cap_initial;
2384 else if (!some_nonuppercase_initial && some_uppercase)
2385 /* Should x -> yz, operating on X, give Yz or YZ?
2386 We'll assume the latter. */
2387 case_action = all_caps;
2388 else
2389 case_action = nochange;
2390 }
2391
2392 /* Do replacement in a string. */
2393 if (!NILP (string))
2394 {
2395 Lisp_Object before, after;
2396
2397 before = Fsubstring (string, make_number (0),
2398 make_number (search_regs.start[sub]));
2399 after = Fsubstring (string, make_number (search_regs.end[sub]), Qnil);
2400
2401 /* Substitute parts of the match into NEWTEXT
2402 if desired. */
2403 if (NILP (literal))
2404 {
2405 int lastpos = 0;
2406 int lastpos_byte = 0;
2407 /* We build up the substituted string in ACCUM. */
2408 Lisp_Object accum;
2409 Lisp_Object middle;
2410 int length = SBYTES (newtext);
2411
2412 accum = Qnil;
2413
2414 for (pos_byte = 0, pos = 0; pos_byte < length;)
2415 {
2416 int substart = -1;
2417 int subend = 0;
2418 int delbackslash = 0;
2419
2420 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2421
2422 if (c == '\\')
2423 {
2424 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2425
2426 if (c == '&')
2427 {
2428 substart = search_regs.start[sub];
2429 subend = search_regs.end[sub];
2430 }
2431 else if (c >= '1' && c <= '9')
2432 {
2433 if (search_regs.start[c - '0'] >= 0
2434 && c <= search_regs.num_regs + '0')
2435 {
2436 substart = search_regs.start[c - '0'];
2437 subend = search_regs.end[c - '0'];
2438 }
2439 else
2440 {
2441 /* If that subexp did not match,
2442 replace \\N with nothing. */
2443 substart = 0;
2444 subend = 0;
2445 }
2446 }
2447 else if (c == '\\')
2448 delbackslash = 1;
2449 else
2450 error ("Invalid use of `\\' in replacement text");
2451 }
2452 if (substart >= 0)
2453 {
2454 if (pos - 2 != lastpos)
2455 middle = substring_both (newtext, lastpos,
2456 lastpos_byte,
2457 pos - 2, pos_byte - 2);
2458 else
2459 middle = Qnil;
2460 accum = concat3 (accum, middle,
2461 Fsubstring (string,
2462 make_number (substart),
2463 make_number (subend)));
2464 lastpos = pos;
2465 lastpos_byte = pos_byte;
2466 }
2467 else if (delbackslash)
2468 {
2469 middle = substring_both (newtext, lastpos,
2470 lastpos_byte,
2471 pos - 1, pos_byte - 1);
2472
2473 accum = concat2 (accum, middle);
2474 lastpos = pos;
2475 lastpos_byte = pos_byte;
2476 }
2477 }
2478
2479 if (pos != lastpos)
2480 middle = substring_both (newtext, lastpos,
2481 lastpos_byte,
2482 pos, pos_byte);
2483 else
2484 middle = Qnil;
2485
2486 newtext = concat2 (accum, middle);
2487 }
2488
2489 /* Do case substitution in NEWTEXT if desired. */
2490 if (case_action == all_caps)
2491 newtext = Fupcase (newtext);
2492 else if (case_action == cap_initial)
2493 newtext = Fupcase_initials (newtext);
2494
2495 return concat3 (before, newtext, after);
2496 }
2497
2498 /* Record point, then move (quietly) to the start of the match. */
2499 if (PT >= search_regs.end[sub])
2500 opoint = PT - ZV;
2501 else if (PT > search_regs.start[sub])
2502 opoint = search_regs.end[sub] - ZV;
2503 else
2504 opoint = PT;
2505
2506 /* If we want non-literal replacement,
2507 perform substitution on the replacement string. */
2508 if (NILP (literal))
2509 {
2510 int length = SBYTES (newtext);
2511 unsigned char *substed;
2512 int substed_alloc_size, substed_len;
2513 int buf_multibyte = !NILP (current_buffer->enable_multibyte_characters);
2514 int str_multibyte = STRING_MULTIBYTE (newtext);
2515 Lisp_Object rev_tbl;
2516 int really_changed = 0;
2517
2518 rev_tbl = Qnil;
2519
2520 substed_alloc_size = length * 2 + 100;
2521 substed = (unsigned char *) xmalloc (substed_alloc_size + 1);
2522 substed_len = 0;
2523
2524 /* Go thru NEWTEXT, producing the actual text to insert in
2525 SUBSTED while adjusting multibyteness to that of the current
2526 buffer. */
2527
2528 for (pos_byte = 0, pos = 0; pos_byte < length;)
2529 {
2530 unsigned char str[MAX_MULTIBYTE_LENGTH];
2531 unsigned char *add_stuff = NULL;
2532 int add_len = 0;
2533 int idx = -1;
2534
2535 if (str_multibyte)
2536 {
2537 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext, pos, pos_byte);
2538 if (!buf_multibyte)
2539 c = multibyte_char_to_unibyte (c, rev_tbl);
2540 }
2541 else
2542 {
2543 /* Note that we don't have to increment POS. */
2544 c = SREF (newtext, pos_byte++);
2545 if (buf_multibyte)
2546 c = unibyte_char_to_multibyte (c);
2547 }
2548
2549 /* Either set ADD_STUFF and ADD_LEN to the text to put in SUBSTED,
2550 or set IDX to a match index, which means put that part
2551 of the buffer text into SUBSTED. */
2552
2553 if (c == '\\')
2554 {
2555 really_changed = 1;
2556
2557 if (str_multibyte)
2558 {
2559 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext,
2560 pos, pos_byte);
2561 if (!buf_multibyte && !ASCII_CHAR_P (c))
2562 c = multibyte_char_to_unibyte (c, rev_tbl);
2563 }
2564 else
2565 {
2566 c = SREF (newtext, pos_byte++);
2567 if (buf_multibyte)
2568 c = unibyte_char_to_multibyte (c);
2569 }
2570
2571 if (c == '&')
2572 idx = sub;
2573 else if (c >= '1' && c <= '9' && c <= search_regs.num_regs + '0')
2574 {
2575 if (search_regs.start[c - '0'] >= 1)
2576 idx = c - '0';
2577 }
2578 else if (c == '\\')
2579 add_len = 1, add_stuff = "\\";
2580 else
2581 {
2582 xfree (substed);
2583 error ("Invalid use of `\\' in replacement text");
2584 }
2585 }
2586 else
2587 {
2588 add_len = CHAR_STRING (c, str);
2589 add_stuff = str;
2590 }
2591
2592 /* If we want to copy part of a previous match,
2593 set up ADD_STUFF and ADD_LEN to point to it. */
2594 if (idx >= 0)
2595 {
2596 int begbyte = CHAR_TO_BYTE (search_regs.start[idx]);
2597 add_len = CHAR_TO_BYTE (search_regs.end[idx]) - begbyte;
2598 if (search_regs.start[idx] < GPT && GPT < search_regs.end[idx])
2599 move_gap (search_regs.start[idx]);
2600 add_stuff = BYTE_POS_ADDR (begbyte);
2601 }
2602
2603 /* Now the stuff we want to add to SUBSTED
2604 is invariably ADD_LEN bytes starting at ADD_STUFF. */
2605
2606 /* Make sure SUBSTED is big enough. */
2607 if (substed_len + add_len >= substed_alloc_size)
2608 {
2609 substed_alloc_size = substed_len + add_len + 500;
2610 substed = (unsigned char *) xrealloc (substed,
2611 substed_alloc_size + 1);
2612 }
2613
2614 /* Now add to the end of SUBSTED. */
2615 if (add_stuff)
2616 {
2617 bcopy (add_stuff, substed + substed_len, add_len);
2618 substed_len += add_len;
2619 }
2620 }
2621
2622 if (really_changed)
2623 {
2624 if (buf_multibyte)
2625 {
2626 int nchars = multibyte_chars_in_text (substed, substed_len);
2627
2628 newtext = make_multibyte_string (substed, nchars, substed_len);
2629 }
2630 else
2631 newtext = make_unibyte_string (substed, substed_len);
2632 }
2633 xfree (substed);
2634 }
2635
2636 /* Replace the old text with the new in the cleanest possible way. */
2637 replace_range (search_regs.start[sub], search_regs.end[sub],
2638 newtext, 1, 0, 1);
2639 newpoint = search_regs.start[sub] + SCHARS (newtext);
2640
2641 if (case_action == all_caps)
2642 Fupcase_region (make_number (search_regs.start[sub]),
2643 make_number (newpoint));
2644 else if (case_action == cap_initial)
2645 Fupcase_initials_region (make_number (search_regs.start[sub]),
2646 make_number (newpoint));
2647
2648 /* Adjust search data for this change. */
2649 {
2650 int oldend = search_regs.end[sub];
2651 int oldstart = search_regs.start[sub];
2652 int change = newpoint - search_regs.end[sub];
2653 int i;
2654
2655 for (i = 0; i < search_regs.num_regs; i++)
2656 {
2657 if (search_regs.start[i] >= oldend)
2658 search_regs.start[i] += change;
2659 else if (search_regs.start[i] > oldstart)
2660 search_regs.start[i] = oldstart;
2661 if (search_regs.end[i] >= oldend)
2662 search_regs.end[i] += change;
2663 else if (search_regs.end[i] > oldstart)
2664 search_regs.end[i] = oldstart;
2665 }
2666 }
2667
2668 /* Put point back where it was in the text. */
2669 if (opoint <= 0)
2670 TEMP_SET_PT (opoint + ZV);
2671 else
2672 TEMP_SET_PT (opoint);
2673
2674 /* Now move point "officially" to the start of the inserted replacement. */
2675 move_if_not_intangible (newpoint);
2676
2677 return Qnil;
2678 }
2679 \f
2680 static Lisp_Object
2681 match_limit (num, beginningp)
2682 Lisp_Object num;
2683 int beginningp;
2684 {
2685 register int n;
2686
2687 CHECK_NUMBER (num);
2688 n = XINT (num);
2689 if (n < 0)
2690 args_out_of_range (num, make_number (0));
2691 if (search_regs.num_regs <= 0)
2692 error ("No match data, because no search succeeded");
2693 if (n >= search_regs.num_regs
2694 || search_regs.start[n] < 0)
2695 return Qnil;
2696 return (make_number ((beginningp) ? search_regs.start[n]
2697 : search_regs.end[n]));
2698 }
2699
2700 DEFUN ("match-beginning", Fmatch_beginning, Smatch_beginning, 1, 1, 0,
2701 doc: /* Return position of start of text matched by last search.
2702 SUBEXP, a number, specifies which parenthesized expression in the last
2703 regexp.
2704 Value is nil if SUBEXPth pair didn't match, or there were less than
2705 SUBEXP pairs.
2706 Zero means the entire text matched by the whole regexp or whole string. */)
2707 (subexp)
2708 Lisp_Object subexp;
2709 {
2710 return match_limit (subexp, 1);
2711 }
2712
2713 DEFUN ("match-end", Fmatch_end, Smatch_end, 1, 1, 0,
2714 doc: /* Return position of end of text matched by last search.
2715 SUBEXP, a number, specifies which parenthesized expression in the last
2716 regexp.
2717 Value is nil if SUBEXPth pair didn't match, or there were less than
2718 SUBEXP pairs.
2719 Zero means the entire text matched by the whole regexp or whole string. */)
2720 (subexp)
2721 Lisp_Object subexp;
2722 {
2723 return match_limit (subexp, 0);
2724 }
2725
2726 DEFUN ("match-data", Fmatch_data, Smatch_data, 0, 3, 0,
2727 doc: /* Return a list containing all info on what the last search matched.
2728 Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.
2729 All the elements are markers or nil (nil if the Nth pair didn't match)
2730 if the last match was on a buffer; integers or nil if a string was matched.
2731 Use `store-match-data' to reinstate the data in this list.
2732
2733 If INTEGERS (the optional first argument) is non-nil, always use
2734 integers \(rather than markers) to represent buffer positions. In
2735 this case, and if the last match was in a buffer, the buffer will get
2736 stored as one additional element at the end of the list.
2737
2738 If REUSE is a list, reuse it as part of the value. If REUSE is long
2739 enough to hold all the values, and if INTEGERS is non-nil, no consing
2740 is done.
2741
2742 If optional third arg RESEAT is non-nil, any previous markers on the
2743 REUSE list will be modified to point to nowhere.
2744
2745 Return value is undefined if the last search failed. */)
2746 (integers, reuse, reseat)
2747 Lisp_Object integers, reuse, reseat;
2748 {
2749 Lisp_Object tail, prev;
2750 Lisp_Object *data;
2751 int i, len;
2752
2753 if (!NILP (reseat))
2754 for (tail = reuse; CONSP (tail); tail = XCDR (tail))
2755 if (MARKERP (XCAR (tail)))
2756 {
2757 unchain_marker (XMARKER (XCAR (tail)));
2758 XSETCAR (tail, Qnil);
2759 }
2760
2761 if (NILP (last_thing_searched))
2762 return Qnil;
2763
2764 prev = Qnil;
2765
2766 data = (Lisp_Object *) alloca ((2 * search_regs.num_regs + 1)
2767 * sizeof (Lisp_Object));
2768
2769 len = 0;
2770 for (i = 0; i < search_regs.num_regs; i++)
2771 {
2772 int start = search_regs.start[i];
2773 if (start >= 0)
2774 {
2775 if (EQ (last_thing_searched, Qt)
2776 || ! NILP (integers))
2777 {
2778 XSETFASTINT (data[2 * i], start);
2779 XSETFASTINT (data[2 * i + 1], search_regs.end[i]);
2780 }
2781 else if (BUFFERP (last_thing_searched))
2782 {
2783 data[2 * i] = Fmake_marker ();
2784 Fset_marker (data[2 * i],
2785 make_number (start),
2786 last_thing_searched);
2787 data[2 * i + 1] = Fmake_marker ();
2788 Fset_marker (data[2 * i + 1],
2789 make_number (search_regs.end[i]),
2790 last_thing_searched);
2791 }
2792 else
2793 /* last_thing_searched must always be Qt, a buffer, or Qnil. */
2794 abort ();
2795
2796 len = 2 * i + 2;
2797 }
2798 else
2799 data[2 * i] = data[2 * i + 1] = Qnil;
2800 }
2801
2802 if (BUFFERP (last_thing_searched) && !NILP (integers))
2803 {
2804 data[len] = last_thing_searched;
2805 len++;
2806 }
2807
2808 /* If REUSE is not usable, cons up the values and return them. */
2809 if (! CONSP (reuse))
2810 return Flist (len, data);
2811
2812 /* If REUSE is a list, store as many value elements as will fit
2813 into the elements of REUSE. */
2814 for (i = 0, tail = reuse; CONSP (tail);
2815 i++, tail = XCDR (tail))
2816 {
2817 if (i < len)
2818 XSETCAR (tail, data[i]);
2819 else
2820 XSETCAR (tail, Qnil);
2821 prev = tail;
2822 }
2823
2824 /* If we couldn't fit all value elements into REUSE,
2825 cons up the rest of them and add them to the end of REUSE. */
2826 if (i < len)
2827 XSETCDR (prev, Flist (len - i, data + i));
2828
2829 return reuse;
2830 }
2831
2832 /* Internal usage only:
2833 If RESEAT is `evaporate', put the markers back on the free list
2834 immediately. No other references to the markers must exist in this case,
2835 so it is used only internally on the unwind stack and save-match-data from
2836 Lisp. */
2837
2838 DEFUN ("set-match-data", Fset_match_data, Sset_match_data, 1, 2, 0,
2839 doc: /* Set internal data on last search match from elements of LIST.
2840 LIST should have been created by calling `match-data' previously.
2841
2842 If optional arg RESEAT is non-nil, make markers on LIST point nowhere. */)
2843 (list, reseat)
2844 register Lisp_Object list, reseat;
2845 {
2846 register int i;
2847 register Lisp_Object marker;
2848
2849 if (running_asynch_code)
2850 save_search_regs ();
2851
2852 if (!CONSP (list) && !NILP (list))
2853 list = wrong_type_argument (Qconsp, list);
2854
2855 /* Unless we find a marker with a buffer or an explicit buffer
2856 in LIST, assume that this match data came from a string. */
2857 last_thing_searched = Qt;
2858
2859 /* Allocate registers if they don't already exist. */
2860 {
2861 int length = XFASTINT (Flength (list)) / 2;
2862
2863 if (length > search_regs.num_regs)
2864 {
2865 if (search_regs.num_regs == 0)
2866 {
2867 search_regs.start
2868 = (regoff_t *) xmalloc (length * sizeof (regoff_t));
2869 search_regs.end
2870 = (regoff_t *) xmalloc (length * sizeof (regoff_t));
2871 }
2872 else
2873 {
2874 search_regs.start
2875 = (regoff_t *) xrealloc (search_regs.start,
2876 length * sizeof (regoff_t));
2877 search_regs.end
2878 = (regoff_t *) xrealloc (search_regs.end,
2879 length * sizeof (regoff_t));
2880 }
2881
2882 for (i = search_regs.num_regs; i < length; i++)
2883 search_regs.start[i] = -1;
2884
2885 search_regs.num_regs = length;
2886 }
2887
2888 for (i = 0; CONSP (list); i++)
2889 {
2890 marker = XCAR (list);
2891 if (BUFFERP (marker))
2892 {
2893 last_thing_searched = marker;
2894 break;
2895 }
2896 if (i >= length)
2897 break;
2898 if (NILP (marker))
2899 {
2900 search_regs.start[i] = -1;
2901 list = XCDR (list);
2902 }
2903 else
2904 {
2905 int from;
2906 Lisp_Object m;
2907
2908 m = marker;
2909 if (MARKERP (marker))
2910 {
2911 if (XMARKER (marker)->buffer == 0)
2912 XSETFASTINT (marker, 0);
2913 else
2914 XSETBUFFER (last_thing_searched, XMARKER (marker)->buffer);
2915 }
2916
2917 CHECK_NUMBER_COERCE_MARKER (marker);
2918 from = XINT (marker);
2919
2920 if (!NILP (reseat) && MARKERP (m))
2921 {
2922 if (EQ (reseat, Qevaporate))
2923 free_marker (m);
2924 else
2925 unchain_marker (XMARKER (m));
2926 XSETCAR (list, Qnil);
2927 }
2928
2929 if ((list = XCDR (list), !CONSP (list)))
2930 break;
2931
2932 m = marker = XCAR (list);
2933
2934 if (MARKERP (marker) && XMARKER (marker)->buffer == 0)
2935 XSETFASTINT (marker, 0);
2936
2937 CHECK_NUMBER_COERCE_MARKER (marker);
2938 search_regs.start[i] = from;
2939 search_regs.end[i] = XINT (marker);
2940
2941 if (!NILP (reseat) && MARKERP (m))
2942 {
2943 if (EQ (reseat, Qevaporate))
2944 free_marker (m);
2945 else
2946 unchain_marker (XMARKER (m));
2947 XSETCAR (list, Qnil);
2948 }
2949 }
2950 list = XCDR (list);
2951 }
2952
2953 for (; i < search_regs.num_regs; i++)
2954 search_regs.start[i] = -1;
2955 }
2956
2957 return Qnil;
2958 }
2959
2960 /* If non-zero the match data have been saved in saved_search_regs
2961 during the execution of a sentinel or filter. */
2962 static int search_regs_saved;
2963 static struct re_registers saved_search_regs;
2964 static Lisp_Object saved_last_thing_searched;
2965
2966 /* Called from Flooking_at, Fstring_match, search_buffer, Fstore_match_data
2967 if asynchronous code (filter or sentinel) is running. */
2968 static void
2969 save_search_regs ()
2970 {
2971 if (!search_regs_saved)
2972 {
2973 saved_search_regs.num_regs = search_regs.num_regs;
2974 saved_search_regs.start = search_regs.start;
2975 saved_search_regs.end = search_regs.end;
2976 saved_last_thing_searched = last_thing_searched;
2977 last_thing_searched = Qnil;
2978 search_regs.num_regs = 0;
2979 search_regs.start = 0;
2980 search_regs.end = 0;
2981
2982 search_regs_saved = 1;
2983 }
2984 }
2985
2986 /* Called upon exit from filters and sentinels. */
2987 void
2988 restore_search_regs ()
2989 {
2990 if (search_regs_saved)
2991 {
2992 if (search_regs.num_regs > 0)
2993 {
2994 xfree (search_regs.start);
2995 xfree (search_regs.end);
2996 }
2997 search_regs.num_regs = saved_search_regs.num_regs;
2998 search_regs.start = saved_search_regs.start;
2999 search_regs.end = saved_search_regs.end;
3000 last_thing_searched = saved_last_thing_searched;
3001 saved_last_thing_searched = Qnil;
3002 search_regs_saved = 0;
3003 }
3004 }
3005
3006 static Lisp_Object
3007 unwind_set_match_data (list)
3008 Lisp_Object list;
3009 {
3010 /* It is safe to free (evaporate) the markers immediately. */
3011 return Fset_match_data (list, Qevaporate);
3012 }
3013
3014 /* Called to unwind protect the match data. */
3015 void
3016 record_unwind_save_match_data ()
3017 {
3018 record_unwind_protect (unwind_set_match_data,
3019 Fmatch_data (Qnil, Qnil, Qnil));
3020 }
3021
3022 /* Quote a string to inactivate reg-expr chars */
3023
3024 DEFUN ("regexp-quote", Fregexp_quote, Sregexp_quote, 1, 1, 0,
3025 doc: /* Return a regexp string which matches exactly STRING and nothing else. */)
3026 (string)
3027 Lisp_Object string;
3028 {
3029 register unsigned char *in, *out, *end;
3030 register unsigned char *temp;
3031 int backslashes_added = 0;
3032
3033 CHECK_STRING (string);
3034
3035 temp = (unsigned char *) alloca (SBYTES (string) * 2);
3036
3037 /* Now copy the data into the new string, inserting escapes. */
3038
3039 in = SDATA (string);
3040 end = in + SBYTES (string);
3041 out = temp;
3042
3043 for (; in != end; in++)
3044 {
3045 if (*in == '[' || *in == ']'
3046 || *in == '*' || *in == '.' || *in == '\\'
3047 || *in == '?' || *in == '+'
3048 || *in == '^' || *in == '$')
3049 *out++ = '\\', backslashes_added++;
3050 *out++ = *in;
3051 }
3052
3053 return make_specified_string (temp,
3054 SCHARS (string) + backslashes_added,
3055 out - temp,
3056 STRING_MULTIBYTE (string));
3057 }
3058 \f
3059 void
3060 syms_of_search ()
3061 {
3062 register int i;
3063
3064 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
3065 {
3066 searchbufs[i].buf.allocated = 100;
3067 searchbufs[i].buf.buffer = (unsigned char *) xmalloc (100);
3068 searchbufs[i].buf.fastmap = searchbufs[i].fastmap;
3069 searchbufs[i].regexp = Qnil;
3070 searchbufs[i].whitespace_regexp = Qnil;
3071 staticpro (&searchbufs[i].regexp);
3072 staticpro (&searchbufs[i].whitespace_regexp);
3073 searchbufs[i].next = (i == REGEXP_CACHE_SIZE-1 ? 0 : &searchbufs[i+1]);
3074 }
3075 searchbuf_head = &searchbufs[0];
3076
3077 Qsearch_failed = intern ("search-failed");
3078 staticpro (&Qsearch_failed);
3079 Qinvalid_regexp = intern ("invalid-regexp");
3080 staticpro (&Qinvalid_regexp);
3081
3082 Fput (Qsearch_failed, Qerror_conditions,
3083 Fcons (Qsearch_failed, Fcons (Qerror, Qnil)));
3084 Fput (Qsearch_failed, Qerror_message,
3085 build_string ("Search failed"));
3086
3087 Fput (Qinvalid_regexp, Qerror_conditions,
3088 Fcons (Qinvalid_regexp, Fcons (Qerror, Qnil)));
3089 Fput (Qinvalid_regexp, Qerror_message,
3090 build_string ("Invalid regexp"));
3091
3092 last_thing_searched = Qnil;
3093 staticpro (&last_thing_searched);
3094
3095 saved_last_thing_searched = Qnil;
3096 staticpro (&saved_last_thing_searched);
3097
3098 DEFVAR_LISP ("search-spaces-regexp", &Vsearch_spaces_regexp,
3099 doc: /* Regexp to substitute for bunches of spaces in regexp search.
3100 Some commands use this for user-specified regexps.
3101 Spaces that occur inside character classes or repetition operators
3102 or other such regexp constructs are not replaced with this.
3103 A value of nil (which is the normal value) means treat spaces literally. */);
3104 Vsearch_spaces_regexp = Qnil;
3105
3106 defsubr (&Slooking_at);
3107 defsubr (&Sposix_looking_at);
3108 defsubr (&Sstring_match);
3109 defsubr (&Sposix_string_match);
3110 defsubr (&Ssearch_forward);
3111 defsubr (&Ssearch_backward);
3112 defsubr (&Sword_search_forward);
3113 defsubr (&Sword_search_backward);
3114 defsubr (&Sre_search_forward);
3115 defsubr (&Sre_search_backward);
3116 defsubr (&Sposix_search_forward);
3117 defsubr (&Sposix_search_backward);
3118 defsubr (&Sreplace_match);
3119 defsubr (&Smatch_beginning);
3120 defsubr (&Smatch_end);
3121 defsubr (&Smatch_data);
3122 defsubr (&Sset_match_data);
3123 defsubr (&Sregexp_quote);
3124 }
3125
3126 /* arch-tag: a6059d79-0552-4f14-a2cb-d379a4e3c78f
3127 (do not change this comment) */