(lw_separator_p): Add `--:space' with the same
[bpt/emacs.git] / src / dispnew.c
1 /* Updating of data structures for redisplay.
2 Copyright (C) 1985, 86, 87, 88, 93, 94, 95, 97, 1998
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <signal.h>
23 #include <config.h>
24 #include <stdio.h>
25 #include <ctype.h>
26
27 #ifdef HAVE_UNISTD_H
28 #include <unistd.h>
29 #endif
30
31 #include "lisp.h"
32 #include "termchar.h"
33 #include "termopts.h"
34 #include "termhooks.h"
35 /* cm.h must come after dispextern.h on Windows. */
36 #include "dispextern.h"
37 #include "cm.h"
38 #include "buffer.h"
39 #include "charset.h"
40 #include "frame.h"
41 #include "window.h"
42 #include "commands.h"
43 #include "disptab.h"
44 #include "indent.h"
45 #include "intervals.h"
46 #include "blockinput.h"
47 #include "process.h"
48 #include "keyboard.h"
49
50 /* I don't know why DEC Alpha OSF1 fail to compile this file if we
51 include the following file. */
52 /* #include "systty.h" */
53 #include "syssignal.h"
54
55 #ifdef HAVE_X_WINDOWS
56 #include "xterm.h"
57 #endif /* HAVE_X_WINDOWS */
58
59 #ifdef HAVE_NTGUI
60 #include "w32term.h"
61 #endif /* HAVE_NTGUI */
62
63 /* Include systime.h after xterm.h to avoid double inclusion of time.h. */
64
65 #include "systime.h"
66 #include <errno.h>
67
68 /* To get the prototype for `sleep'. */
69
70 #ifdef HAVE_UNISTD_H
71 #include <unistd.h>
72 #endif
73
74 #define max(a, b) ((a) > (b) ? (a) : (b))
75 #define min(a, b) ((a) < (b) ? (a) : (b))
76
77 /* Get number of chars of output now in the buffer of a stdio stream.
78 This ought to be built in in stdio, but it isn't. Some s- files
79 override this because their stdio internals differ. */
80
81 #ifdef __GNU_LIBRARY__
82
83 /* The s- file might have overridden the definition with one that
84 works for the system's C library. But we are using the GNU C
85 library, so this is the right definition for every system. */
86
87 #ifdef GNU_LIBRARY_PENDING_OUTPUT_COUNT
88 #define PENDING_OUTPUT_COUNT GNU_LIBRARY_PENDING_OUTPUT_COUNT
89 #else
90 #undef PENDING_OUTPUT_COUNT
91 #define PENDING_OUTPUT_COUNT(FILE) ((FILE)->__bufp - (FILE)->__buffer)
92 #endif
93 #else /* not __GNU_LIBRARY__ */
94 #ifndef PENDING_OUTPUT_COUNT
95 #define PENDING_OUTPUT_COUNT(FILE) ((FILE)->_ptr - (FILE)->_base)
96 #endif
97 #endif /* not __GNU_LIBRARY__ */
98
99 \f
100 /* Structure to pass dimensions around. Used for character bounding
101 boxes, glyph matrix dimensions and alike. */
102
103 struct dim
104 {
105 int width;
106 int height;
107 };
108
109 \f
110 /* Function prototypes. */
111
112 static void redraw_overlapping_rows P_ ((struct window *, int));
113 static void redraw_overlapped_rows P_ ((struct window *, int));
114 static int count_blanks P_ ((struct glyph *, int));
115 static int count_match P_ ((struct glyph *, struct glyph *,
116 struct glyph *, struct glyph *));
117 static unsigned line_draw_cost P_ ((struct glyph_matrix *, int));
118 static void update_frame_line P_ ((struct frame *, int));
119 static struct dim allocate_matrices_for_frame_redisplay
120 P_ ((Lisp_Object, int, int, struct dim, int, int *));
121 static void allocate_matrices_for_window_redisplay P_ ((struct window *,
122 struct dim));
123 static int realloc_glyph_pool P_ ((struct glyph_pool *, struct dim));
124 static void adjust_frame_glyphs P_ ((struct frame *));
125 struct glyph_matrix *new_glyph_matrix P_ ((struct glyph_pool *));
126 static void free_glyph_matrix P_ ((struct glyph_matrix *));
127 static void adjust_glyph_matrix P_ ((struct window *, struct glyph_matrix *,
128 int, int, struct dim));
129 static void change_frame_size_1 P_ ((struct frame *, int, int, int, int, int));
130 static void swap_glyphs_in_rows P_ ((struct glyph_row *, struct glyph_row *));
131 static void swap_glyph_pointers P_ ((struct glyph_row *, struct glyph_row *));
132 static int glyph_row_slice_p P_ ((struct glyph_row *, struct glyph_row *));
133 static void fill_up_frame_row_with_spaces P_ ((struct glyph_row *, int));
134 static void build_frame_matrix_from_window_tree P_ ((struct glyph_matrix *,
135 struct window *));
136 static void build_frame_matrix_from_leaf_window P_ ((struct glyph_matrix *,
137 struct window *));
138 static struct glyph_pool *new_glyph_pool P_ ((void));
139 static void free_glyph_pool P_ ((struct glyph_pool *));
140 static void adjust_frame_glyphs_initially P_ ((void));
141 static void adjust_frame_message_buffer P_ ((struct frame *));
142 static void adjust_decode_mode_spec_buffer P_ ((struct frame *));
143 static void fill_up_glyph_row_with_spaces P_ ((struct glyph_row *));
144 static void build_frame_matrix P_ ((struct frame *));
145 void clear_current_matrices P_ ((struct frame *));
146 void scroll_glyph_matrix_range P_ ((struct glyph_matrix *, int, int,
147 int, int));
148 static void clear_window_matrices P_ ((struct window *, int));
149 static void fill_up_glyph_row_area_with_spaces P_ ((struct glyph_row *, int));
150 static int scrolling_window P_ ((struct window *, int));
151 static int update_window_line P_ ((struct window *, int));
152 static void update_marginal_area P_ ((struct window *, int, int));
153 static int update_text_area P_ ((struct window *, int));
154 static void make_current P_ ((struct glyph_matrix *, struct glyph_matrix *,
155 int));
156 static void mirror_make_current P_ ((struct window *, int));
157 void check_window_matrix_pointers P_ ((struct window *));
158 #if GLYPH_DEBUG
159 static void check_matrix_pointers P_ ((struct glyph_matrix *,
160 struct glyph_matrix *));
161 #endif
162 static void mirror_line_dance P_ ((struct window *, int, int, int *, char *));
163 static int update_window_tree P_ ((struct window *, int));
164 static int update_window P_ ((struct window *, int));
165 static int update_frame_1 P_ ((struct frame *, int, int));
166 static void set_window_cursor_after_update P_ ((struct window *));
167 static int row_equal_p P_ ((struct window *, struct glyph_row *,
168 struct glyph_row *));
169 static void adjust_frame_glyphs_for_window_redisplay P_ ((struct frame *));
170 static void adjust_frame_glyphs_for_frame_redisplay P_ ((struct frame *));
171 static void reverse_rows P_ ((struct glyph_matrix *, int, int));
172 static int margin_glyphs_to_reserve P_ ((struct window *, int, Lisp_Object));
173
174
175 \f
176 /* Non-zero means don't pause redisplay for pending input. (This is
177 for debugging and for a future implementation of EDT-like
178 scrolling. */
179
180 int redisplay_dont_pause;
181
182 /* Nonzero upon entry to redisplay means do not assume anything about
183 current contents of actual terminal frame; clear and redraw it. */
184
185 int frame_garbaged;
186
187 /* Nonzero means last display completed. Zero means it was preempted. */
188
189 int display_completed;
190
191 /* Lisp variable visible-bell; enables use of screen-flash instead of
192 audible bell. */
193
194 int visible_bell;
195
196 /* Invert the color of the whole frame, at a low level. */
197
198 int inverse_video;
199
200 /* Line speed of the terminal. */
201
202 int baud_rate;
203
204 /* Either nil or a symbol naming the window system under which Emacs
205 is running. */
206
207 Lisp_Object Vwindow_system;
208
209 /* Version number of X windows: 10, 11 or nil. */
210
211 Lisp_Object Vwindow_system_version;
212
213 /* Vector of glyph definitions. Indexed by glyph number, the contents
214 are a string which is how to output the glyph.
215
216 If Vglyph_table is nil, a glyph is output by using its low 8 bits
217 as a character code.
218
219 This is an obsolete feature that is no longer used. The variable
220 is retained for compatibility. */
221
222 Lisp_Object Vglyph_table;
223
224 /* Display table to use for vectors that don't specify their own. */
225
226 Lisp_Object Vstandard_display_table;
227
228 /* Nonzero means reading single-character input with prompt so put
229 cursor on mini-buffer after the prompt. positive means at end of
230 text in echo area; negative means at beginning of line. */
231
232 int cursor_in_echo_area;
233
234 Lisp_Object Qdisplay_table;
235
236 \f
237 /* The currently selected frame. In a single-frame version, this
238 variable always holds the address of the_only_frame. */
239
240 struct frame *selected_frame;
241
242 /* A frame which is not just a mini-buffer, or 0 if there are no such
243 frames. This is usually the most recent such frame that was
244 selected. In a single-frame version, this variable always holds
245 the address of the_only_frame. */
246
247 struct frame *last_nonminibuf_frame;
248
249 /* Stdio stream being used for copy of all output. */
250
251 FILE *termscript;
252
253 /* Structure for info on cursor positioning. */
254
255 struct cm Wcm;
256
257 /* 1 means SIGWINCH happened when not safe. */
258
259 int delayed_size_change;
260
261 /* 1 means glyph initialization has been completed at startup. */
262
263 static int glyphs_initialized_initially_p;
264
265 /* Updated window if != 0. Set by update_window. */
266
267 struct window *updated_window;
268
269 /* Glyph row updated in update_window_line, and area that is updated. */
270
271 struct glyph_row *updated_row;
272 int updated_area;
273
274 /* A glyph for a space. */
275
276 struct glyph space_glyph;
277
278 /* Non-zero means update has been performed directly, so that there's
279 no need for redisplay_internal to do much work. Set by
280 direct_output_for_insert. */
281
282 int redisplay_performed_directly_p;
283
284 /* Counts of allocated structures. These counts serve to diagnose
285 memory leaks and double frees. */
286
287 int glyph_matrix_count;
288 int glyph_pool_count;
289
290 /* If non-null, the frame whose frame matrices are manipulated. If
291 null, window matrices are worked on. */
292
293 static struct frame *frame_matrix_frame;
294
295 /* Current interface for window-based redisplay. Set from init_xterm.
296 A null value means we are not using window-based redisplay. */
297
298 struct redisplay_interface *rif;
299
300 /* Non-zero means that fonts have been loaded since the last glyph
301 matrix adjustments. Redisplay must stop, and glyph matrices must
302 be adjusted when this flag becomes non-zero during display. The
303 reason fonts can be loaded so late is that fonts of fontsets are
304 loaded on demand. */
305
306 int fonts_changed_p;
307
308 /* Convert vpos and hpos from frame to window and vice versa.
309 This may only be used for terminal frames. */
310
311 #if GLYPH_DEBUG
312
313 static int window_to_frame_vpos P_ ((struct window *, int));
314 static int window_to_frame_hpos P_ ((struct window *, int));
315 #define WINDOW_TO_FRAME_VPOS(W, VPOS) window_to_frame_vpos ((W), (VPOS))
316 #define WINDOW_TO_FRAME_HPOS(W, HPOS) window_to_frame_hpos ((W), (HPOS))
317
318 #else /* GLYPH_DEBUG == 0 */
319
320 #define WINDOW_TO_FRAME_VPOS(W, VPOS) ((VPOS) + XFASTINT ((W)->top))
321 #define WINDOW_TO_FRAME_HPOS(W, HPOS) ((HPOS) + XFASTINT ((W)->left))
322
323 #endif /* GLYPH_DEBUG == 0 */
324
325
326 /* Like bcopy except never gets confused by overlap. Let this be the
327 first function defined in this file, or change emacs.c where the
328 address of this function is used. */
329
330 void
331 safe_bcopy (from, to, size)
332 char *from, *to;
333 int size;
334 {
335 if (size <= 0 || from == to)
336 return;
337
338 /* If the source and destination don't overlap, then bcopy can
339 handle it. If they do overlap, but the destination is lower in
340 memory than the source, we'll assume bcopy can handle that. */
341 if (to < from || from + size <= to)
342 bcopy (from, to, size);
343
344 /* Otherwise, we'll copy from the end. */
345 else
346 {
347 register char *endf = from + size;
348 register char *endt = to + size;
349
350 /* If TO - FROM is large, then we should break the copy into
351 nonoverlapping chunks of TO - FROM bytes each. However, if
352 TO - FROM is small, then the bcopy function call overhead
353 makes this not worth it. The crossover point could be about
354 anywhere. Since I don't think the obvious copy loop is too
355 bad, I'm trying to err in its favor. */
356 if (to - from < 64)
357 {
358 do
359 *--endt = *--endf;
360 while (endf != from);
361 }
362 else
363 {
364 for (;;)
365 {
366 endt -= (to - from);
367 endf -= (to - from);
368
369 if (endt < to)
370 break;
371
372 bcopy (endf, endt, to - from);
373 }
374
375 /* If SIZE wasn't a multiple of TO - FROM, there will be a
376 little left over. The amount left over is (endt + (to -
377 from)) - to, which is endt - from. */
378 bcopy (from, to, endt - from);
379 }
380 }
381 }
382
383
384 \f
385 /***********************************************************************
386 Glyph Matrices
387 ***********************************************************************/
388
389 /* Allocate and return a glyph_matrix structure. POOL is the glyph
390 pool from which memory for the matrix should be allocated, or null
391 for window-based redisplay where no glyph pools are used. The
392 member `pool' of the glyph matrix structure returned is set to
393 POOL, the structure is otherwise zeroed. */
394
395 struct glyph_matrix *
396 new_glyph_matrix (pool)
397 struct glyph_pool *pool;
398 {
399 struct glyph_matrix *result;
400
401 /* Allocate and clear. */
402 result = (struct glyph_matrix *) xmalloc (sizeof *result);
403 bzero (result, sizeof *result);
404
405 /* Increment number of allocated matrices. This count is used
406 to detect memory leaks. */
407 ++glyph_matrix_count;
408
409 /* Set pool and return. */
410 result->pool = pool;
411 return result;
412 }
413
414
415 /* Free glyph matrix MATRIX. Passing in a null MATRIX is allowed.
416
417 The global counter glyph_matrix_count is decremented when a matrix
418 is freed. If the count gets negative, more structures were freed
419 than allocated, i.e. one matrix was freed more than once or a bogus
420 pointer was passed to this function.
421
422 If MATRIX->pool is null, this means that the matrix manages its own
423 glyph memory---this is done for matrices on X frames. Freeing the
424 matrix also frees the glyph memory in this case. */
425
426 static void
427 free_glyph_matrix (matrix)
428 struct glyph_matrix *matrix;
429 {
430 if (matrix)
431 {
432 int i;
433
434 /* Detect the case that more matrices are freed than were
435 allocated. */
436 if (--glyph_matrix_count < 0)
437 abort ();
438
439 /* Free glyph memory if MATRIX owns it. */
440 if (matrix->pool == NULL)
441 for (i = 0; i < matrix->rows_allocated; ++i)
442 xfree (matrix->rows[i].glyphs[LEFT_MARGIN_AREA]);
443
444 /* Free row structures and the matrix itself. */
445 xfree (matrix->rows);
446 xfree (matrix);
447 }
448 }
449
450
451 /* Return the number of glyphs to reserve for a marginal area of
452 window W. TOTAL_GLYPHS is the number of glyphs in a complete
453 display line of window W. MARGIN gives the width of the marginal
454 area in canonical character units. MARGIN should be an integer
455 or a float. */
456
457 static int
458 margin_glyphs_to_reserve (w, total_glyphs, margin)
459 struct window *w;
460 int total_glyphs;
461 Lisp_Object margin;
462 {
463 int n;
464
465 if (NUMBERP (margin))
466 {
467 int width = XFASTINT (w->width);
468 double d = max (0, XFLOATINT (margin));
469 d = min (width / 2 - 1, d);
470 n = (int) ((double) total_glyphs / width * d);
471 }
472 else
473 n = 0;
474
475 return n;
476 }
477
478
479 /* Adjust glyph matrix MATRIX on window W or on a frame to changed
480 window sizes.
481
482 W is null if the function is called for a frame glyph matrix.
483 Otherwise it is the window MATRIX is a member of. X and Y are the
484 indices of the first column and row of MATRIX within the frame
485 matrix, if such a matrix exists. They are zero for purely
486 window-based redisplay. DIM is the needed size of the matrix.
487
488 In window-based redisplay, where no frame matrices exist, glyph
489 matrices manage their own glyph storage. Otherwise, they allocate
490 storage from a common frame glyph pool which can be found in
491 MATRIX->pool.
492
493 The reason for this memory management strategy is to avoid complete
494 frame redraws if possible. When we allocate from a common pool, a
495 change of the location or size of a sub-matrix within the pool
496 requires a complete redisplay of the frame because we cannot easily
497 make sure that the current matrices of all windows still agree with
498 what is displayed on the screen. While this is usually fast, it
499 leads to screen flickering. */
500
501 static void
502 adjust_glyph_matrix (w, matrix, x, y, dim)
503 struct window *w;
504 struct glyph_matrix *matrix;
505 int x, y;
506 struct dim dim;
507 {
508 int i;
509 int new_rows;
510 int marginal_areas_changed_p = 0;
511 int header_line_changed_p = 0;
512 int header_line_p = 0;
513 int left = -1, right = -1;
514 int window_x, window_y, window_width, window_height;
515
516 /* See if W had a top line that has disappeared now, or vice versa. */
517 if (w)
518 {
519 header_line_p = WINDOW_WANTS_HEADER_LINE_P (w);
520 header_line_changed_p = header_line_p != matrix->header_line_p;
521 }
522 matrix->header_line_p = header_line_p;
523
524 /* Do nothing if MATRIX' size, position, vscroll, and marginal areas
525 haven't changed. This optimization is important because preserving
526 the matrix means preventing redisplay. */
527 if (matrix->pool == NULL)
528 {
529 window_box (w, -1, &window_x, &window_y, &window_width, &window_height);
530 left = margin_glyphs_to_reserve (w, dim.width, w->left_margin_width);
531 right = margin_glyphs_to_reserve (w, dim.width, w->right_margin_width);
532 xassert (left >= 0 && right >= 0);
533 marginal_areas_changed_p = (left != matrix->left_margin_glyphs
534 || right != matrix->right_margin_glyphs);
535
536 if (!marginal_areas_changed_p
537 && !fonts_changed_p
538 && !header_line_changed_p
539 && matrix->window_top_y == XFASTINT (w->top)
540 && matrix->window_height == window_height
541 && matrix->window_vscroll == w->vscroll
542 && matrix->window_width == window_width)
543 return;
544 }
545
546 /* Enlarge MATRIX->rows if necessary. New rows are cleared. */
547 if (matrix->rows_allocated < dim.height)
548 {
549 int size = dim.height * sizeof (struct glyph_row);
550 new_rows = dim.height - matrix->rows_allocated;
551 matrix->rows = (struct glyph_row *) xrealloc (matrix->rows, size);
552 bzero (matrix->rows + matrix->rows_allocated,
553 new_rows * sizeof *matrix->rows);
554 matrix->rows_allocated = dim.height;
555 }
556 else
557 new_rows = 0;
558
559 /* If POOL is not null, MATRIX is a frame matrix or a window matrix
560 on a frame not using window-based redisplay. Set up pointers for
561 each row into the glyph pool. */
562 if (matrix->pool)
563 {
564 xassert (matrix->pool->glyphs);
565
566 if (w)
567 {
568 left = margin_glyphs_to_reserve (w, dim.width,
569 w->left_margin_width);
570 right = margin_glyphs_to_reserve (w, dim.width,
571 w->right_margin_width);
572 }
573 else
574 left = right = 0;
575
576 for (i = 0; i < dim.height; ++i)
577 {
578 struct glyph_row *row = &matrix->rows[i];
579
580 row->glyphs[LEFT_MARGIN_AREA]
581 = (matrix->pool->glyphs
582 + (y + i) * matrix->pool->ncolumns
583 + x);
584
585 if (w == NULL
586 || row == matrix->rows + dim.height - 1
587 || (row == matrix->rows && matrix->header_line_p))
588 {
589 row->glyphs[TEXT_AREA]
590 = row->glyphs[LEFT_MARGIN_AREA];
591 row->glyphs[RIGHT_MARGIN_AREA]
592 = row->glyphs[TEXT_AREA] + dim.width;
593 row->glyphs[LAST_AREA]
594 = row->glyphs[RIGHT_MARGIN_AREA];
595 }
596 else
597 {
598 row->glyphs[TEXT_AREA]
599 = row->glyphs[LEFT_MARGIN_AREA] + left;
600 row->glyphs[RIGHT_MARGIN_AREA]
601 = row->glyphs[TEXT_AREA] + dim.width - left - right;
602 row->glyphs[LAST_AREA]
603 = row->glyphs[LEFT_MARGIN_AREA] + dim.width;
604 }
605 }
606
607 matrix->left_margin_glyphs = left;
608 matrix->right_margin_glyphs = right;
609 }
610 else
611 {
612 /* If MATRIX->pool is null, MATRIX is responsible for managing
613 its own memory. Allocate glyph memory from the heap. */
614 if (dim.width > matrix->matrix_w
615 || new_rows
616 || header_line_changed_p
617 || marginal_areas_changed_p)
618 {
619 struct glyph_row *row = matrix->rows;
620 struct glyph_row *end = row + matrix->rows_allocated;
621
622 while (row < end)
623 {
624 row->glyphs[LEFT_MARGIN_AREA]
625 = (struct glyph *) xrealloc (row->glyphs[LEFT_MARGIN_AREA],
626 (dim.width
627 * sizeof (struct glyph)));
628
629 /* The mode line never has marginal areas. */
630 if (row == matrix->rows + dim.height - 1
631 || (row == matrix->rows && matrix->header_line_p))
632 {
633 row->glyphs[TEXT_AREA]
634 = row->glyphs[LEFT_MARGIN_AREA];
635 row->glyphs[RIGHT_MARGIN_AREA]
636 = row->glyphs[TEXT_AREA] + dim.width;
637 row->glyphs[LAST_AREA]
638 = row->glyphs[RIGHT_MARGIN_AREA];
639 }
640 else
641 {
642 row->glyphs[TEXT_AREA]
643 = row->glyphs[LEFT_MARGIN_AREA] + left;
644 row->glyphs[RIGHT_MARGIN_AREA]
645 = row->glyphs[TEXT_AREA] + dim.width - left - right;
646 row->glyphs[LAST_AREA]
647 = row->glyphs[LEFT_MARGIN_AREA] + dim.width;
648 }
649 ++row;
650 }
651 }
652
653 xassert (left >= 0 && right >= 0);
654 matrix->left_margin_glyphs = left;
655 matrix->right_margin_glyphs = right;
656 }
657
658 /* Number of rows to be used by MATRIX. */
659 matrix->nrows = dim.height;
660
661 /* Mark rows in a current matrix of a window as not having valid
662 contents. It's important to not do this for desired matrices.
663 When Emacs starts, it may already be building desired matrices
664 when this function runs. */
665 if (w && matrix == w->current_matrix)
666 {
667 /* Optimize the case that only the height has changed (C-x 2,
668 upper window). Invalidate all rows that are no longer part
669 of the window. */
670 if (!marginal_areas_changed_p
671 && matrix->window_top_y == XFASTINT (w->top)
672 && matrix->window_width == window_width)
673 {
674 i = 0;
675 while (matrix->rows[i].enabled_p
676 && (MATRIX_ROW_BOTTOM_Y (matrix->rows + i)
677 < matrix->window_height))
678 ++i;
679
680 /* Window end is invalid, if inside of the rows that
681 are invalidated. */
682 if (INTEGERP (w->window_end_vpos)
683 && XFASTINT (w->window_end_vpos) >= i)
684 w->window_end_valid = Qnil;
685
686 while (i < matrix->nrows)
687 matrix->rows[i++].enabled_p = 0;
688 }
689 else
690 {
691 for (i = 0; i < matrix->nrows; ++i)
692 matrix->rows[i].enabled_p = 0;
693 }
694 }
695
696 /* Remember last values to be able to optimize frame redraws. */
697 matrix->matrix_x = x;
698 matrix->matrix_y = y;
699 matrix->matrix_w = dim.width;
700 matrix->matrix_h = dim.height;
701
702 /* Record the top y location and height of W at the time the matrix
703 was last adjusted. This is used to optimize redisplay above. */
704 if (w)
705 {
706 matrix->window_top_y = XFASTINT (w->top);
707 matrix->window_height = window_height;
708 matrix->window_width = window_width;
709 matrix->window_vscroll = w->vscroll;
710 }
711 }
712
713
714 /* Reverse the contents of rows in MATRIX between START and END. The
715 contents of the row at END - 1 end up at START, END - 2 at START +
716 1 etc. This is part of the implementation of rotate_matrix (see
717 below). */
718
719 static void
720 reverse_rows (matrix, start, end)
721 struct glyph_matrix *matrix;
722 int start, end;
723 {
724 int i, j;
725
726 for (i = start, j = end - 1; i < j; ++i, --j)
727 {
728 /* Non-ISO HP/UX compiler doesn't like auto struct
729 initialization. */
730 struct glyph_row temp;
731 temp = matrix->rows[i];
732 matrix->rows[i] = matrix->rows[j];
733 matrix->rows[j] = temp;
734 }
735 }
736
737
738 /* Rotate the contents of rows in MATRIX in the range FIRST .. LAST -
739 1 by BY positions. BY < 0 means rotate left, i.e. towards lower
740 indices. (Note: this does not copy glyphs, only glyph pointers in
741 row structures are moved around).
742
743 The algorithm used for rotating the vector was, I believe, first
744 described by Kernighan. See the vector R as consisting of two
745 sub-vectors AB, where A has length BY for BY >= 0. The result
746 after rotating is then BA. Reverse both sub-vectors to get ArBr
747 and reverse the result to get (ArBr)r which is BA. Similar for
748 rotating right. */
749
750 void
751 rotate_matrix (matrix, first, last, by)
752 struct glyph_matrix *matrix;
753 int first, last, by;
754 {
755 if (by < 0)
756 {
757 /* Up (rotate left, i.e. towards lower indices). */
758 by = -by;
759 reverse_rows (matrix, first, first + by);
760 reverse_rows (matrix, first + by, last);
761 reverse_rows (matrix, first, last);
762 }
763 else if (by > 0)
764 {
765 /* Down (rotate right, i.e. towards higher indices). */
766 reverse_rows (matrix, last - by, last);
767 reverse_rows (matrix, first, last - by);
768 reverse_rows (matrix, first, last);
769 }
770 }
771
772
773 /* Increment buffer positions in glyph rows of MATRIX. Do it for rows
774 with indices START <= index < END. Increment positions by DELTA/
775 DELTA_BYTES. */
776
777 void
778 increment_glyph_matrix_buffer_positions (matrix, start, end, delta,
779 delta_bytes)
780 struct glyph_matrix *matrix;
781 int start, end, delta, delta_bytes;
782 {
783 /* Check that START and END are reasonable values. */
784 xassert (start >= 0 && start <= matrix->nrows);
785 xassert (end >= 0 && end <= matrix->nrows);
786 xassert (start <= end);
787
788 for (; start < end; ++start)
789 increment_glyph_row_buffer_positions (matrix->rows + start,
790 delta, delta_bytes);
791 }
792
793
794 /* Enable a range of rows in glyph matrix MATRIX. START and END are
795 the row indices of the first and last + 1 row to enable. If
796 ENABLED_P is non-zero, enabled_p flags in rows will be set to 1. */
797
798 void
799 enable_glyph_matrix_rows (matrix, start, end, enabled_p)
800 struct glyph_matrix *matrix;
801 int start, end;
802 int enabled_p;
803 {
804 xassert (start <= end);
805 xassert (start >= 0 && start < matrix->nrows);
806 xassert (end >= 0 && end <= matrix->nrows);
807
808 for (; start < end; ++start)
809 matrix->rows[start].enabled_p = enabled_p != 0;
810 }
811
812
813 /* Clear MATRIX.
814
815 This empties all rows in MATRIX by setting the enabled_p flag for
816 all rows of the matrix to zero. The function prepare_desired_row
817 will eventually really clear a row when it sees one with a zero
818 enabled_p flag.
819
820 Resets update hints to defaults value. The only update hint
821 currently present is the flag MATRIX->no_scrolling_p. */
822
823 void
824 clear_glyph_matrix (matrix)
825 struct glyph_matrix *matrix;
826 {
827 if (matrix)
828 {
829 enable_glyph_matrix_rows (matrix, 0, matrix->nrows, 0);
830 matrix->no_scrolling_p = 0;
831 }
832 }
833
834
835 /* Shift part of the glyph matrix MATRIX of window W up or down.
836 Increment y-positions in glyph rows between START and END by DY,
837 and recompute their visible height. */
838
839 void
840 shift_glyph_matrix (w, matrix, start, end, dy)
841 struct window *w;
842 struct glyph_matrix *matrix;
843 int start, end, dy;
844 {
845 int min_y, max_y;
846
847 xassert (start <= end);
848 xassert (start >= 0 && start < matrix->nrows);
849 xassert (end >= 0 && end <= matrix->nrows);
850
851 min_y = WINDOW_DISPLAY_HEADER_LINE_HEIGHT (w);
852 max_y = WINDOW_DISPLAY_HEIGHT_NO_MODE_LINE (w);
853
854 for (; start < end; ++start)
855 {
856 struct glyph_row *row = &matrix->rows[start];
857
858 row->y += dy;
859
860 if (row->y < min_y)
861 row->visible_height = row->height - (min_y - row->y);
862 else if (row->y + row->height > max_y)
863 row->visible_height = row->height - (row->y + row->height - max_y);
864 else
865 row->visible_height = row->height;
866 }
867 }
868
869
870 /* Mark all rows in current matrices of frame F as invalid. Marking
871 invalid is done by setting enabled_p to zero for all rows in a
872 current matrix. */
873
874 void
875 clear_current_matrices (f)
876 register struct frame *f;
877 {
878 /* Clear frame current matrix, if we have one. */
879 if (f->current_matrix)
880 clear_glyph_matrix (f->current_matrix);
881
882 /* Clear the matrix of the menu bar window, if such a window exists.
883 The menu bar window is currently used to display menus on X when
884 no toolkit support is compiled in. */
885 if (WINDOWP (f->menu_bar_window))
886 clear_glyph_matrix (XWINDOW (f->menu_bar_window)->current_matrix);
887
888 /* Clear the matrix of the tool-bar window, if any. */
889 if (WINDOWP (f->tool_bar_window))
890 clear_glyph_matrix (XWINDOW (f->tool_bar_window)->current_matrix);
891
892 /* Clear current window matrices. */
893 xassert (WINDOWP (FRAME_ROOT_WINDOW (f)));
894 clear_window_matrices (XWINDOW (FRAME_ROOT_WINDOW (f)), 0);
895 }
896
897
898 /* Clear out all display lines of F for a coming redisplay. */
899
900 void
901 clear_desired_matrices (f)
902 register struct frame *f;
903 {
904 if (f->desired_matrix)
905 clear_glyph_matrix (f->desired_matrix);
906
907 if (WINDOWP (f->menu_bar_window))
908 clear_glyph_matrix (XWINDOW (f->menu_bar_window)->desired_matrix);
909
910 if (WINDOWP (f->tool_bar_window))
911 clear_glyph_matrix (XWINDOW (f->tool_bar_window)->desired_matrix);
912
913 /* Do it for window matrices. */
914 xassert (WINDOWP (FRAME_ROOT_WINDOW (f)));
915 clear_window_matrices (XWINDOW (FRAME_ROOT_WINDOW (f)), 1);
916 }
917
918
919 /* Clear matrices in window tree rooted in W. If DESIRED_P is
920 non-zero clear desired matrices, otherwise clear current matrices. */
921
922 static void
923 clear_window_matrices (w, desired_p)
924 struct window *w;
925 int desired_p;
926 {
927 while (w)
928 {
929 if (!NILP (w->hchild))
930 {
931 xassert (WINDOWP (w->hchild));
932 clear_window_matrices (XWINDOW (w->hchild), desired_p);
933 }
934 else if (!NILP (w->vchild))
935 {
936 xassert (WINDOWP (w->vchild));
937 clear_window_matrices (XWINDOW (w->vchild), desired_p);
938 }
939 else
940 {
941 if (desired_p)
942 clear_glyph_matrix (w->desired_matrix);
943 else
944 {
945 clear_glyph_matrix (w->current_matrix);
946 w->window_end_valid = Qnil;
947 }
948 }
949
950 w = NILP (w->next) ? 0 : XWINDOW (w->next);
951 }
952 }
953
954
955 \f
956 /***********************************************************************
957 Glyph Rows
958
959 See dispextern.h for an overall explanation of glyph rows.
960 ***********************************************************************/
961
962 /* Clear glyph row ROW. Do it in a way that makes it robust against
963 changes in the glyph_row structure, i.e. addition or removal of
964 structure members. */
965
966 void
967 clear_glyph_row (row)
968 struct glyph_row *row;
969 {
970 struct glyph *p[1 + LAST_AREA];
971 static struct glyph_row null_row;
972
973 /* Save pointers. */
974 p[LEFT_MARGIN_AREA] = row->glyphs[LEFT_MARGIN_AREA];
975 p[TEXT_AREA] = row->glyphs[TEXT_AREA];
976 p[RIGHT_MARGIN_AREA] = row->glyphs[RIGHT_MARGIN_AREA];
977 p[LAST_AREA] = row->glyphs[LAST_AREA];
978
979 /* Clear. */
980 *row = null_row;
981
982 /* Restore pointers. */
983 row->glyphs[LEFT_MARGIN_AREA] = p[LEFT_MARGIN_AREA];
984 row->glyphs[TEXT_AREA] = p[TEXT_AREA];
985 row->glyphs[RIGHT_MARGIN_AREA] = p[RIGHT_MARGIN_AREA];
986 row->glyphs[LAST_AREA] = p[LAST_AREA];
987 }
988
989
990 /* Make ROW an empty, enabled row of canonical character height,
991 in window W starting at y-position Y. */
992
993 void
994 blank_row (w, row, y)
995 struct window *w;
996 struct glyph_row *row;
997 int y;
998 {
999 int min_y, max_y;
1000
1001 min_y = WINDOW_DISPLAY_HEADER_LINE_HEIGHT (w);
1002 max_y = WINDOW_DISPLAY_HEIGHT_NO_MODE_LINE (w);
1003
1004 clear_glyph_row (row);
1005 row->y = y;
1006 row->ascent = row->phys_ascent = 0;
1007 row->height = row->phys_height = CANON_Y_UNIT (XFRAME (w->frame));
1008
1009 if (row->y < min_y)
1010 row->visible_height = row->height - (min_y - row->y);
1011 else if (row->y + row->height > max_y)
1012 row->visible_height = row->height - (row->y + row->height - max_y);
1013 else
1014 row->visible_height = row->height;
1015
1016 row->enabled_p = 1;
1017 }
1018
1019
1020 /* Increment buffer positions in glyph row ROW. DELTA and DELTA_BYTES
1021 are the amounts by which to change positions. Note that the first
1022 glyph of the text area of a row can have a buffer position even if
1023 the used count of the text area is zero. Such rows display line
1024 ends. */
1025
1026 void
1027 increment_glyph_row_buffer_positions (row, delta, delta_bytes)
1028 struct glyph_row *row;
1029 int delta, delta_bytes;
1030 {
1031 int area, i;
1032
1033 /* Increment start and end positions. */
1034 MATRIX_ROW_START_CHARPOS (row) += delta;
1035 MATRIX_ROW_START_BYTEPOS (row) += delta_bytes;
1036 MATRIX_ROW_END_CHARPOS (row) += delta;
1037 MATRIX_ROW_END_BYTEPOS (row) += delta_bytes;
1038
1039 /* Increment positions in glyphs. */
1040 for (area = 0; area < LAST_AREA; ++area)
1041 for (i = 0; i < row->used[area]; ++i)
1042 if (BUFFERP (row->glyphs[area][i].object)
1043 && row->glyphs[area][i].charpos > 0)
1044 row->glyphs[area][i].charpos += delta;
1045
1046 /* Capture the case of rows displaying a line end. */
1047 if (row->used[TEXT_AREA] == 0
1048 && MATRIX_ROW_DISPLAYS_TEXT_P (row))
1049 row->glyphs[TEXT_AREA]->charpos += delta;
1050 }
1051
1052
1053 /* Swap glyphs between two glyph rows A and B. This exchanges glyph
1054 contents, i.e. glyph structure contents are exchanged between A and
1055 B without changing glyph pointers in A and B. */
1056
1057 static void
1058 swap_glyphs_in_rows (a, b)
1059 struct glyph_row *a, *b;
1060 {
1061 int area;
1062
1063 for (area = 0; area < LAST_AREA; ++area)
1064 {
1065 /* Number of glyphs to swap. */
1066 int max_used = max (a->used[area], b->used[area]);
1067
1068 /* Start of glyphs in area of row A. */
1069 struct glyph *glyph_a = a->glyphs[area];
1070
1071 /* End + 1 of glyphs in area of row A. */
1072 struct glyph *glyph_a_end = a->glyphs[max_used];
1073
1074 /* Start of glyphs in area of row B. */
1075 struct glyph *glyph_b = b->glyphs[area];
1076
1077 while (glyph_a < glyph_a_end)
1078 {
1079 /* Non-ISO HP/UX compiler doesn't like auto struct
1080 initialization. */
1081 struct glyph temp;
1082 temp = *glyph_a;
1083 *glyph_a = *glyph_b;
1084 *glyph_b = temp;
1085 ++glyph_a;
1086 ++glyph_b;
1087 }
1088 }
1089 }
1090
1091
1092 /* Exchange pointers to glyph memory between glyph rows A and B. */
1093
1094 static INLINE void
1095 swap_glyph_pointers (a, b)
1096 struct glyph_row *a, *b;
1097 {
1098 int i;
1099 for (i = 0; i < LAST_AREA + 1; ++i)
1100 {
1101 struct glyph *temp = a->glyphs[i];
1102 a->glyphs[i] = b->glyphs[i];
1103 b->glyphs[i] = temp;
1104 }
1105 }
1106
1107
1108 /* Copy glyph row structure FROM to glyph row structure TO, except
1109 that glyph pointers in the structures are left unchanged. */
1110
1111 INLINE void
1112 copy_row_except_pointers (to, from)
1113 struct glyph_row *to, *from;
1114 {
1115 struct glyph *pointers[1 + LAST_AREA];
1116
1117 /* Save glyph pointers of TO. */
1118 bcopy (to->glyphs, pointers, sizeof to->glyphs);
1119
1120 /* Do a structure assignment. */
1121 *to = *from;
1122
1123 /* Restore original pointers of TO. */
1124 bcopy (pointers, to->glyphs, sizeof to->glyphs);
1125 }
1126
1127
1128 /* Copy contents of glyph row FROM to glyph row TO. Glyph pointers in
1129 TO and FROM are left unchanged. Glyph contents are copied from the
1130 glyph memory of FROM to the glyph memory of TO. Increment buffer
1131 positions in row TO by DELTA/ DELTA_BYTES. */
1132
1133 void
1134 copy_glyph_row_contents (to, from, delta, delta_bytes)
1135 struct glyph_row *to, *from;
1136 int delta, delta_bytes;
1137 {
1138 int area;
1139
1140 /* This is like a structure assignment TO = FROM, except that
1141 glyph pointers in the rows are left unchanged. */
1142 copy_row_except_pointers (to, from);
1143
1144 /* Copy glyphs from FROM to TO. */
1145 for (area = 0; area < LAST_AREA; ++area)
1146 if (from->used[area])
1147 bcopy (from->glyphs[area], to->glyphs[area],
1148 from->used[area] * sizeof (struct glyph));
1149
1150 /* Increment buffer positions in TO by DELTA. */
1151 increment_glyph_row_buffer_positions (to, delta, delta_bytes);
1152 }
1153
1154
1155 /* Assign glyph row FROM to glyph row TO. This works like a structure
1156 assignment TO = FROM, except that glyph pointers are not copied but
1157 exchanged between TO and FROM. Pointers must be exchanged to avoid
1158 a memory leak. */
1159
1160 static INLINE void
1161 assign_row (to, from)
1162 struct glyph_row *to, *from;
1163 {
1164 swap_glyph_pointers (to, from);
1165 copy_row_except_pointers (to, from);
1166 }
1167
1168
1169 /* Test whether the glyph memory of the glyph row WINDOW_ROW, which is
1170 a row in a window matrix, is a slice of the glyph memory of the
1171 glyph row FRAME_ROW which is a row in a frame glyph matrix. Value
1172 is non-zero if the glyph memory of WINDOW_ROW is part of the glyph
1173 memory of FRAME_ROW. */
1174
1175 static int
1176 glyph_row_slice_p (window_row, frame_row)
1177 struct glyph_row *window_row, *frame_row;
1178 {
1179 struct glyph *window_glyph_start = window_row->glyphs[0];
1180 struct glyph *frame_glyph_start = frame_row->glyphs[0];
1181 struct glyph *frame_glyph_end = frame_row->glyphs[LAST_AREA];
1182
1183 return (frame_glyph_start <= window_glyph_start
1184 && window_glyph_start < frame_glyph_end);
1185 }
1186
1187
1188 /* Find the row in the window glyph matrix WINDOW_MATRIX being a slice
1189 of ROW in the frame matrix FRAME_MATRIX. Value is null if no row
1190 in WINDOW_MATRIX is found satisfying the condition. */
1191
1192 static struct glyph_row *
1193 find_glyph_row_slice (window_matrix, frame_matrix, row)
1194 struct glyph_matrix *window_matrix, *frame_matrix;
1195 int row;
1196 {
1197 int i;
1198
1199 xassert (row >= 0 && row < frame_matrix->nrows);
1200
1201 for (i = 0; i < window_matrix->nrows; ++i)
1202 if (glyph_row_slice_p (window_matrix->rows + i,
1203 frame_matrix->rows + row))
1204 break;
1205
1206 return i < window_matrix->nrows ? window_matrix->rows + i : 0;
1207 }
1208
1209
1210 /* Prepare ROW for display. Desired rows are cleared lazily,
1211 i.e. they are only marked as to be cleared by setting their
1212 enabled_p flag to zero. When a row is to be displayed, a prior
1213 call to this function really clears it. */
1214
1215 void
1216 prepare_desired_row (row)
1217 struct glyph_row *row;
1218 {
1219 if (!row->enabled_p)
1220 {
1221 clear_glyph_row (row);
1222 row->enabled_p = 1;
1223 }
1224 }
1225
1226
1227 /* Return a hash code for glyph row ROW. */
1228
1229 int
1230 line_hash_code (row)
1231 struct glyph_row *row;
1232 {
1233 int hash = 0;
1234
1235 if (row->enabled_p)
1236 {
1237 if (row->inverse_p)
1238 {
1239 /* Give all highlighted lines the same hash code
1240 so as to encourage scrolling to leave them in place. */
1241 hash = -1;
1242 }
1243 else
1244 {
1245 struct glyph *glyph = row->glyphs[TEXT_AREA];
1246 struct glyph *end = glyph + row->used[TEXT_AREA];
1247
1248 while (glyph < end)
1249 {
1250 GLYPH g = GLYPH_FROM_CHAR_GLYPH (*glyph);
1251 if (must_write_spaces)
1252 g -= SPACEGLYPH;
1253 hash = (((hash << 4) + (hash >> 24)) & 0x0fffffff) + g;
1254 ++glyph;
1255 }
1256
1257 if (hash == 0)
1258 hash = 1;
1259 }
1260 }
1261
1262 return hash;
1263 }
1264
1265
1266 /* Return the cost of drawing line VPOS In MATRIX. The cost equals
1267 the number of characters in the line. If must_write_spaces is
1268 zero, leading and trailing spaces are ignored. */
1269
1270 static unsigned int
1271 line_draw_cost (matrix, vpos)
1272 struct glyph_matrix *matrix;
1273 int vpos;
1274 {
1275 struct glyph_row *row = matrix->rows + vpos;
1276 struct glyph *beg = row->glyphs[TEXT_AREA];
1277 struct glyph *end = beg + row->used[TEXT_AREA];
1278 int len;
1279 Lisp_Object *glyph_table_base = GLYPH_TABLE_BASE;
1280 int glyph_table_len = GLYPH_TABLE_LENGTH;
1281
1282 /* Ignore trailing and leading spaces if we can. */
1283 if (!must_write_spaces)
1284 {
1285 /* Skip from the end over trailing spaces. */
1286 while (end != beg && CHAR_GLYPH_SPACE_P (*end))
1287 --end;
1288
1289 /* All blank line. */
1290 if (end == beg)
1291 return 0;
1292
1293 /* Skip over leading spaces. */
1294 while (CHAR_GLYPH_SPACE_P (*beg))
1295 ++beg;
1296 }
1297
1298 /* If we don't have a glyph-table, each glyph is one character,
1299 so return the number of glyphs. */
1300 if (glyph_table_base == 0)
1301 len = end - beg;
1302 else
1303 {
1304 /* Otherwise, scan the glyphs and accumulate their total length
1305 in LEN. */
1306 len = 0;
1307 while (beg < end)
1308 {
1309 GLYPH g = GLYPH_FROM_CHAR_GLYPH (*beg);
1310
1311 if (GLYPH_SIMPLE_P (glyph_table_base, glyph_table_len, g))
1312 len += 1;
1313 else
1314 len += GLYPH_LENGTH (glyph_table_base, g);
1315
1316 ++beg;
1317 }
1318 }
1319
1320 return len;
1321 }
1322
1323
1324 /* Test two glyph rows A and B for equality. Value is non-zero if A
1325 and B have equal contents. W is the window to which the glyphs
1326 rows A and B belong. It is needed here to test for partial row
1327 visibility. */
1328
1329 static INLINE int
1330 row_equal_p (w, a, b)
1331 struct window *w;
1332 struct glyph_row *a, *b;
1333 {
1334 if (a == b)
1335 return 1;
1336 else if (a->hash != b->hash)
1337 return 0;
1338 else
1339 {
1340 struct glyph *a_glyph, *b_glyph, *a_end;
1341 int area;
1342
1343 /* Compare glyphs. */
1344 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
1345 {
1346 if (a->used[area] != b->used[area])
1347 return 0;
1348
1349 a_glyph = a->glyphs[area];
1350 a_end = a_glyph + a->used[area];
1351 b_glyph = b->glyphs[area];
1352
1353 while (a_glyph < a_end
1354 && GLYPH_EQUAL_P (a_glyph, b_glyph))
1355 ++a_glyph, ++b_glyph;
1356
1357 if (a_glyph != a_end)
1358 return 0;
1359 }
1360
1361 if (a->truncated_on_left_p != b->truncated_on_left_p
1362 || a->inverse_p != b->inverse_p
1363 || a->fill_line_p != b->fill_line_p
1364 || a->truncated_on_right_p != b->truncated_on_right_p
1365 || a->overlay_arrow_p != b->overlay_arrow_p
1366 || a->continued_p != b->continued_p
1367 || a->indicate_empty_line_p != b->indicate_empty_line_p
1368 || a->overlapped_p != b->overlapped_p
1369 || (MATRIX_ROW_CONTINUATION_LINE_P (a)
1370 != MATRIX_ROW_CONTINUATION_LINE_P (b))
1371 /* Different partially visible characters on left margin. */
1372 || a->x != b->x
1373 /* Different height. */
1374 || a->ascent != b->ascent
1375 || a->phys_ascent != b->phys_ascent
1376 || a->phys_height != b->phys_height
1377 || a->visible_height != b->visible_height)
1378 return 0;
1379 }
1380
1381 return 1;
1382 }
1383
1384
1385 \f
1386 /***********************************************************************
1387 Glyph Pool
1388
1389 See dispextern.h for an overall explanation of glyph pools.
1390 ***********************************************************************/
1391
1392 /* Allocate a glyph_pool structure. The structure returned is
1393 initialized with zeros. The global variable glyph_pool_count is
1394 incremented for each pool allocated. */
1395
1396 static struct glyph_pool *
1397 new_glyph_pool ()
1398 {
1399 struct glyph_pool *result;
1400
1401 /* Allocate a new glyph_pool and clear it. */
1402 result = (struct glyph_pool *) xmalloc (sizeof *result);
1403 bzero (result, sizeof *result);
1404
1405 /* For memory leak and double deletion checking. */
1406 ++glyph_pool_count;
1407
1408 return result;
1409 }
1410
1411
1412 /* Free a glyph_pool structure POOL. The function may be called with
1413 a null POOL pointer. The global variable glyph_pool_count is
1414 decremented with every pool structure freed. If this count gets
1415 negative, more structures were freed than allocated, i.e. one
1416 structure must have been freed more than once or a bogus pointer
1417 was passed to free_glyph_pool. */
1418
1419 static void
1420 free_glyph_pool (pool)
1421 struct glyph_pool *pool;
1422 {
1423 if (pool)
1424 {
1425 /* More freed than allocated? */
1426 --glyph_pool_count;
1427 xassert (glyph_pool_count >= 0);
1428
1429 xfree (pool->glyphs);
1430 xfree (pool);
1431 }
1432 }
1433
1434
1435 /* Enlarge a glyph pool POOL. MATRIX_DIM gives the number of rows and
1436 columns we need. This function never shrinks a pool. The only
1437 case in which this would make sense, would be when a frame's size
1438 is changed from a large value to a smaller one. But, if someone
1439 does it once, we can expect that he will do it again.
1440
1441 Value is non-zero if the pool changed in a way which makes
1442 re-adjusting window glyph matrices necessary. */
1443
1444 static int
1445 realloc_glyph_pool (pool, matrix_dim)
1446 struct glyph_pool *pool;
1447 struct dim matrix_dim;
1448 {
1449 int needed;
1450 int changed_p;
1451
1452 changed_p = (pool->glyphs == 0
1453 || matrix_dim.height != pool->nrows
1454 || matrix_dim.width != pool->ncolumns);
1455
1456 /* Enlarge the glyph pool. */
1457 needed = matrix_dim.width * matrix_dim.height;
1458 if (needed > pool->nglyphs)
1459 {
1460 int size = needed * sizeof (struct glyph);
1461
1462 if (pool->glyphs)
1463 pool->glyphs = (struct glyph *) xrealloc (pool->glyphs, size);
1464 else
1465 {
1466 pool->glyphs = (struct glyph *) xmalloc (size);
1467 bzero (pool->glyphs, size);
1468 }
1469
1470 pool->nglyphs = needed;
1471 }
1472
1473 /* Remember the number of rows and columns because (a) we use then
1474 to do sanity checks, and (b) the number of columns determines
1475 where rows in the frame matrix start---this must be available to
1476 determine pointers to rows of window sub-matrices. */
1477 pool->nrows = matrix_dim.height;
1478 pool->ncolumns = matrix_dim.width;
1479
1480 return changed_p;
1481 }
1482
1483
1484 \f
1485 /***********************************************************************
1486 Debug Code
1487 ***********************************************************************/
1488
1489 #if GLYPH_DEBUG
1490
1491 /* Check that no glyph pointers have been lost in MATRIX. If a
1492 pointer has been lost, e.g. by using a structure assignment between
1493 rows, at least one pointer must occur more than once in the rows of
1494 MATRIX. */
1495
1496 void
1497 check_matrix_pointer_lossage (matrix)
1498 struct glyph_matrix *matrix;
1499 {
1500 int i, j;
1501
1502 for (i = 0; i < matrix->nrows; ++i)
1503 for (j = 0; j < matrix->nrows; ++j)
1504 xassert (i == j
1505 || (matrix->rows[i].glyphs[TEXT_AREA]
1506 != matrix->rows[j].glyphs[TEXT_AREA]));
1507 }
1508
1509
1510 /* Get a pointer to glyph row ROW in MATRIX, with bounds checks. */
1511
1512 struct glyph_row *
1513 matrix_row (matrix, row)
1514 struct glyph_matrix *matrix;
1515 int row;
1516 {
1517 xassert (matrix && matrix->rows);
1518 xassert (row >= 0 && row < matrix->nrows);
1519
1520 /* That's really too slow for normal testing because this function
1521 is called almost everywhere. Although---it's still astonishingly
1522 fast, so it is valuable to have for debugging purposes. */
1523 #if 0
1524 check_matrix_pointer_lossage (matrix);
1525 #endif
1526
1527 return matrix->rows + row;
1528 }
1529
1530
1531 #if 0 /* This function makes invalid assumptions when text is
1532 partially invisible. But it might come handy for debugging
1533 nevertheless. */
1534
1535 /* Check invariants that must hold for an up to date current matrix of
1536 window W. */
1537
1538 static void
1539 check_matrix_invariants (w)
1540 struct window *w;
1541 {
1542 struct glyph_matrix *matrix = w->current_matrix;
1543 int yb = window_text_bottom_y (w);
1544 struct glyph_row *row = matrix->rows;
1545 struct glyph_row *last_text_row = NULL;
1546 struct buffer *saved = current_buffer;
1547 struct buffer *buffer = XBUFFER (w->buffer);
1548 int c;
1549
1550 /* This can sometimes happen for a fresh window. */
1551 if (matrix->nrows < 2)
1552 return;
1553
1554 set_buffer_temp (buffer);
1555
1556 /* Note: last row is always reserved for the mode line. */
1557 while (MATRIX_ROW_DISPLAYS_TEXT_P (row)
1558 && MATRIX_ROW_BOTTOM_Y (row) < yb)
1559 {
1560 struct glyph_row *next = row + 1;
1561
1562 if (MATRIX_ROW_DISPLAYS_TEXT_P (row))
1563 last_text_row = row;
1564
1565 /* Check that character and byte positions are in sync. */
1566 xassert (MATRIX_ROW_START_BYTEPOS (row)
1567 == CHAR_TO_BYTE (MATRIX_ROW_START_CHARPOS (row)));
1568
1569 /* CHAR_TO_BYTE aborts when invoked for a position > Z. We can
1570 have such a position temporarily in case of a minibuffer
1571 displaying something like `[Sole completion]' at its end. */
1572 if (MATRIX_ROW_END_CHARPOS (row) < BUF_ZV (current_buffer))
1573 xassert (MATRIX_ROW_END_BYTEPOS (row)
1574 == CHAR_TO_BYTE (MATRIX_ROW_END_CHARPOS (row)));
1575
1576 /* Check that end position of `row' is equal to start position
1577 of next row. */
1578 if (next->enabled_p && MATRIX_ROW_DISPLAYS_TEXT_P (next))
1579 {
1580 xassert (MATRIX_ROW_END_CHARPOS (row)
1581 == MATRIX_ROW_START_CHARPOS (next));
1582 xassert (MATRIX_ROW_END_BYTEPOS (row)
1583 == MATRIX_ROW_START_BYTEPOS (next));
1584 }
1585 row = next;
1586 }
1587
1588 xassert (w->current_matrix->nrows == w->desired_matrix->nrows);
1589 xassert (w->desired_matrix->rows != NULL);
1590 set_buffer_temp (saved);
1591 }
1592
1593 #endif /* 0 */
1594
1595 #endif /* GLYPH_DEBUG != 0 */
1596
1597
1598 \f
1599 /**********************************************************************
1600 Allocating/ Adjusting Glyph Matrices
1601 **********************************************************************/
1602
1603 /* Allocate glyph matrices over a window tree for a frame-based
1604 redisplay
1605
1606 X and Y are column/row within the frame glyph matrix where
1607 sub-matrices for the window tree rooted at WINDOW must be
1608 allocated. CH_DIM contains the dimensions of the smallest
1609 character that could be used during display. DIM_ONLY_P non-zero
1610 means that the caller of this function is only interested in the
1611 result matrix dimension, and matrix adjustments should not be
1612 performed.
1613
1614 The function returns the total width/height of the sub-matrices of
1615 the window tree. If called on a frame root window, the computation
1616 will take the mini-buffer window into account.
1617
1618 *WINDOW_CHANGE_FLAGS is set to a bit mask with bits
1619
1620 NEW_LEAF_MATRIX set if any window in the tree did not have a
1621 glyph matrices yet, and
1622
1623 CHANGED_LEAF_MATRIX set if the dimension or location of a matrix of
1624 any window in the tree will be changed or have been changed (see
1625 DIM_ONLY_P).
1626
1627 *WINDOW_CHANGE_FLAGS must be initialized by the caller of this
1628 function.
1629
1630 Windows are arranged into chains of windows on the same level
1631 through the next fields of window structures. Such a level can be
1632 either a sequence of horizontally adjacent windows from left to
1633 right, or a sequence of vertically adjacent windows from top to
1634 bottom. Each window in a horizontal sequence can be either a leaf
1635 window or a vertical sequence; a window in a vertical sequence can
1636 be either a leaf or a horizontal sequence. All windows in a
1637 horizontal sequence have the same height, and all windows in a
1638 vertical sequence have the same width.
1639
1640 This function uses, for historical reasons, a more general
1641 algorithm to determine glyph matrix dimensions that would be
1642 necessary.
1643
1644 The matrix height of a horizontal sequence is determined by the
1645 maximum height of any matrix in the sequence. The matrix width of
1646 a horizontal sequence is computed by adding up matrix widths of
1647 windows in the sequence.
1648
1649 |<------- result width ------->|
1650 +---------+----------+---------+ ---
1651 | | | | |
1652 | | | |
1653 +---------+ | | result height
1654 | +---------+
1655 | | |
1656 +----------+ ---
1657
1658 The matrix width of a vertical sequence is the maximum matrix width
1659 of any window in the sequence. Its height is computed by adding up
1660 matrix heights of windows in the sequence.
1661
1662 |<---- result width -->|
1663 +---------+ ---
1664 | | |
1665 | | |
1666 +---------+--+ |
1667 | | |
1668 | | result height
1669 | |
1670 +------------+---------+ |
1671 | | |
1672 | | |
1673 +------------+---------+ --- */
1674
1675 /* Bit indicating that a new matrix will be allocated or has been
1676 allocated. */
1677
1678 #define NEW_LEAF_MATRIX (1 << 0)
1679
1680 /* Bit indicating that a matrix will or has changed its location or
1681 size. */
1682
1683 #define CHANGED_LEAF_MATRIX (1 << 1)
1684
1685 static struct dim
1686 allocate_matrices_for_frame_redisplay (window, x, y, ch_dim,
1687 dim_only_p, window_change_flags)
1688 Lisp_Object window;
1689 int x, y;
1690 struct dim ch_dim;
1691 int dim_only_p;
1692 int *window_change_flags;
1693 {
1694 struct frame *f = XFRAME (WINDOW_FRAME (XWINDOW (window)));
1695 int x0 = x, y0 = y;
1696 int wmax = 0, hmax = 0;
1697 struct dim total;
1698 struct dim dim;
1699 struct window *w;
1700 int in_horz_combination_p;
1701
1702 /* What combination is WINDOW part of? Compute this once since the
1703 result is the same for all windows in the `next' chain. The
1704 special case of a root window (parent equal to nil) is treated
1705 like a vertical combination because a root window's `next'
1706 points to the mini-buffer window, if any, which is arranged
1707 vertically below other windows. */
1708 in_horz_combination_p
1709 = (!NILP (XWINDOW (window)->parent)
1710 && !NILP (XWINDOW (XWINDOW (window)->parent)->hchild));
1711
1712 /* For WINDOW and all windows on the same level. */
1713 do
1714 {
1715 w = XWINDOW (window);
1716
1717 /* Get the dimension of the window sub-matrix for W, depending
1718 on whether this a combination or a leaf window. */
1719 if (!NILP (w->hchild))
1720 dim = allocate_matrices_for_frame_redisplay (w->hchild, x, y, ch_dim,
1721 dim_only_p,
1722 window_change_flags);
1723 else if (!NILP (w->vchild))
1724 dim = allocate_matrices_for_frame_redisplay (w->vchild, x, y, ch_dim,
1725 dim_only_p,
1726 window_change_flags);
1727 else
1728 {
1729 /* If not already done, allocate sub-matrix structures. */
1730 if (w->desired_matrix == NULL)
1731 {
1732 w->desired_matrix = new_glyph_matrix (f->desired_pool);
1733 w->current_matrix = new_glyph_matrix (f->current_pool);
1734 *window_change_flags |= NEW_LEAF_MATRIX;
1735 }
1736
1737 /* Width and height MUST be chosen so that there are no
1738 holes in the frame matrix. */
1739 dim.width = w->width;
1740 dim.height = w->height;
1741
1742 /* Will matrix be re-allocated? */
1743 if (x != w->desired_matrix->matrix_x
1744 || y != w->desired_matrix->matrix_y
1745 || dim.width != w->desired_matrix->matrix_w
1746 || dim.height != w->desired_matrix->matrix_h
1747 || (margin_glyphs_to_reserve (w, dim.width,
1748 w->right_margin_width)
1749 != w->desired_matrix->left_margin_glyphs)
1750 || (margin_glyphs_to_reserve (w, dim.width,
1751 w->left_margin_width)
1752 != w->desired_matrix->right_margin_glyphs))
1753 *window_change_flags |= CHANGED_LEAF_MATRIX;
1754
1755 /* Actually change matrices, if allowed. Do not consider
1756 CHANGED_LEAF_MATRIX computed above here because the pool
1757 may have been changed which we don't now here. We trust
1758 that we only will be called with DIM_ONLY_P != 0 when
1759 necessary. */
1760 if (!dim_only_p)
1761 {
1762 adjust_glyph_matrix (w, w->desired_matrix, x, y, dim);
1763 adjust_glyph_matrix (w, w->current_matrix, x, y, dim);
1764 }
1765 }
1766
1767 /* If we are part of a horizontal combination, advance x for
1768 windows to the right of W; otherwise advance y for windows
1769 below W. */
1770 if (in_horz_combination_p)
1771 x += dim.width;
1772 else
1773 y += dim.height;
1774
1775 /* Remember maximum glyph matrix dimensions. */
1776 wmax = max (wmax, dim.width);
1777 hmax = max (hmax, dim.height);
1778
1779 /* Next window on same level. */
1780 window = w->next;
1781 }
1782 while (!NILP (window));
1783
1784 /* Set `total' to the total glyph matrix dimension of this window
1785 level. In a vertical combination, the width is the width of the
1786 widest window; the height is the y we finally reached, corrected
1787 by the y we started with. In a horizontal combination, the total
1788 height is the height of the tallest window, and the width is the
1789 x we finally reached, corrected by the x we started with. */
1790 if (in_horz_combination_p)
1791 {
1792 total.width = x - x0;
1793 total.height = hmax;
1794 }
1795 else
1796 {
1797 total.width = wmax;
1798 total.height = y - y0;
1799 }
1800
1801 return total;
1802 }
1803
1804
1805 /* Allocate window matrices for window-based redisplay. W is the
1806 window whose matrices must be allocated/reallocated. CH_DIM is the
1807 size of the smallest character that could potentially be used on W. */
1808
1809 static void
1810 allocate_matrices_for_window_redisplay (w, ch_dim)
1811 struct window *w;
1812 struct dim ch_dim;
1813 {
1814 struct frame *f = XFRAME (w->frame);
1815
1816 while (w)
1817 {
1818 if (!NILP (w->vchild))
1819 allocate_matrices_for_window_redisplay (XWINDOW (w->vchild), ch_dim);
1820 else if (!NILP (w->hchild))
1821 allocate_matrices_for_window_redisplay (XWINDOW (w->hchild), ch_dim);
1822 else
1823 {
1824 /* W is a leaf window. */
1825 int window_pixel_width = XFLOATINT (w->width) * CANON_X_UNIT (f);
1826 int window_pixel_height = window_box_height (w) + abs (w->vscroll);
1827 struct dim dim;
1828
1829 /* If matrices are not yet allocated, allocate them now. */
1830 if (w->desired_matrix == NULL)
1831 {
1832 w->desired_matrix = new_glyph_matrix (NULL);
1833 w->current_matrix = new_glyph_matrix (NULL);
1834 }
1835
1836 /* Compute number of glyphs needed in a glyph row. */
1837 dim.width = (((window_pixel_width + ch_dim.width - 1)
1838 / ch_dim.width)
1839 /* 2 partially visible columns in the text area. */
1840 + 2
1841 /* One partially visible column at the right
1842 edge of each marginal area. */
1843 + 1 + 1);
1844
1845 /* Compute number of glyph rows needed. */
1846 dim.height = (((window_pixel_height + ch_dim.height - 1)
1847 / ch_dim.height)
1848 /* One partially visible line at the top and
1849 bottom of the window. */
1850 + 2
1851 /* 2 for top and mode line. */
1852 + 2);
1853
1854 /* Change matrices. */
1855 adjust_glyph_matrix (w, w->desired_matrix, 0, 0, dim);
1856 adjust_glyph_matrix (w, w->current_matrix, 0, 0, dim);
1857 }
1858
1859 w = NILP (w->next) ? NULL : XWINDOW (w->next);
1860 }
1861 }
1862
1863
1864 /* Re-allocate/ re-compute glyph matrices on frame F. If F is null,
1865 do it for all frames; otherwise do it just for the given frame.
1866 This function must be called when a new frame is created, its size
1867 changes, or its window configuration changes. */
1868
1869 void
1870 adjust_glyphs (f)
1871 struct frame *f;
1872 {
1873 /* Block input so that expose events and other events that access
1874 glyph matrices are not processed while we are changing them. */
1875 BLOCK_INPUT;
1876
1877 if (f)
1878 adjust_frame_glyphs (f);
1879 else
1880 {
1881 Lisp_Object tail, lisp_frame;
1882
1883 FOR_EACH_FRAME (tail, lisp_frame)
1884 adjust_frame_glyphs (XFRAME (lisp_frame));
1885 }
1886
1887 UNBLOCK_INPUT;
1888 }
1889
1890
1891 /* Adjust frame glyphs when Emacs is initialized.
1892
1893 To be called from init_display.
1894
1895 We need a glyph matrix because redraw will happen soon.
1896 Unfortunately, window sizes on selected_frame are not yet set to
1897 meaningful values. I believe we can assume that there are only two
1898 windows on the frame---the mini-buffer and the root window. Frame
1899 height and width seem to be correct so far. So, set the sizes of
1900 windows to estimated values. */
1901
1902 static void
1903 adjust_frame_glyphs_initially ()
1904 {
1905 struct window *root = XWINDOW (selected_frame->root_window);
1906 struct window *mini = XWINDOW (root->next);
1907 int frame_height = FRAME_HEIGHT (selected_frame);
1908 int frame_width = FRAME_WIDTH (selected_frame);
1909 int top_margin = FRAME_TOP_MARGIN (selected_frame);
1910
1911 /* Do it for the root window. */
1912 XSETFASTINT (root->top, top_margin);
1913 XSETFASTINT (root->width, frame_width);
1914 set_window_height (selected_frame->root_window,
1915 frame_height - 1 - top_margin, 0);
1916
1917 /* Do it for the mini-buffer window. */
1918 XSETFASTINT (mini->top, frame_height - 1);
1919 XSETFASTINT (mini->width, frame_width);
1920 set_window_height (root->next, 1, 0);
1921
1922 adjust_frame_glyphs (selected_frame);
1923 glyphs_initialized_initially_p = 1;
1924 }
1925
1926
1927 /* Allocate/reallocate glyph matrices of a single frame F. */
1928
1929 static void
1930 adjust_frame_glyphs (f)
1931 struct frame *f;
1932 {
1933 if (FRAME_WINDOW_P (f))
1934 adjust_frame_glyphs_for_window_redisplay (f);
1935 else
1936 adjust_frame_glyphs_for_frame_redisplay (f);
1937
1938 /* Don't forget the message buffer and the buffer for
1939 decode_mode_spec. */
1940 adjust_frame_message_buffer (f);
1941 adjust_decode_mode_spec_buffer (f);
1942
1943 f->glyphs_initialized_p = 1;
1944 }
1945
1946
1947 /* Allocate/reallocate glyph matrices of a single frame F for
1948 frame-based redisplay. */
1949
1950 static void
1951 adjust_frame_glyphs_for_frame_redisplay (f)
1952 struct frame *f;
1953 {
1954 struct dim ch_dim;
1955 struct dim matrix_dim;
1956 int pool_changed_p;
1957 int window_change_flags;
1958 int top_window_y;
1959
1960 if (!FRAME_LIVE_P (f))
1961 return;
1962
1963 /* Determine the smallest character in any font for F. On
1964 console windows, all characters have dimension (1, 1). */
1965 ch_dim.width = ch_dim.height = 1;
1966
1967 top_window_y = FRAME_TOP_MARGIN (f);
1968
1969 /* Allocate glyph pool structures if not already done. */
1970 if (f->desired_pool == NULL)
1971 {
1972 f->desired_pool = new_glyph_pool ();
1973 f->current_pool = new_glyph_pool ();
1974 }
1975
1976 /* Allocate frames matrix structures if needed. */
1977 if (f->desired_matrix == NULL)
1978 {
1979 f->desired_matrix = new_glyph_matrix (f->desired_pool);
1980 f->current_matrix = new_glyph_matrix (f->current_pool);
1981 }
1982
1983 /* Compute window glyph matrices. (This takes the mini-buffer
1984 window into account). The result is the size of the frame glyph
1985 matrix needed. The variable window_change_flags is set to a bit
1986 mask indicating whether new matrices will be allocated or
1987 existing matrices change their size or location within the frame
1988 matrix. */
1989 window_change_flags = 0;
1990 matrix_dim
1991 = allocate_matrices_for_frame_redisplay (FRAME_ROOT_WINDOW (f),
1992 0, top_window_y,
1993 ch_dim, 1,
1994 &window_change_flags);
1995
1996 /* Add in menu bar lines, if any. */
1997 matrix_dim.height += top_window_y;
1998
1999 /* Enlarge pools as necessary. */
2000 pool_changed_p = realloc_glyph_pool (f->desired_pool, matrix_dim);
2001 realloc_glyph_pool (f->current_pool, matrix_dim);
2002
2003 /* Set up glyph pointers within window matrices. Do this only if
2004 absolutely necessary since it requires a frame redraw. */
2005 if (pool_changed_p || window_change_flags)
2006 {
2007 /* Do it for window matrices. */
2008 allocate_matrices_for_frame_redisplay (FRAME_ROOT_WINDOW (f),
2009 0, top_window_y, ch_dim, 0,
2010 &window_change_flags);
2011
2012 /* Size of frame matrices must equal size of frame. Note
2013 that we are called for X frames with window widths NOT equal
2014 to the frame width (from CHANGE_FRAME_SIZE_1). */
2015 xassert (matrix_dim.width == FRAME_WIDTH (f)
2016 && matrix_dim.height == FRAME_HEIGHT (f));
2017
2018 /* Resize frame matrices. */
2019 adjust_glyph_matrix (NULL, f->desired_matrix, 0, 0, matrix_dim);
2020 adjust_glyph_matrix (NULL, f->current_matrix, 0, 0, matrix_dim);
2021
2022 /* Since location and size of sub-matrices within the pool may
2023 have changed, and current matrices don't have meaningful
2024 contents anymore, mark the frame garbaged. */
2025 SET_FRAME_GARBAGED (f);
2026 }
2027 }
2028
2029
2030 /* Allocate/reallocate glyph matrices of a single frame F for
2031 window-based redisplay. */
2032
2033 static void
2034 adjust_frame_glyphs_for_window_redisplay (f)
2035 struct frame *f;
2036 {
2037 struct dim ch_dim;
2038 struct window *w;
2039
2040 xassert (FRAME_WINDOW_P (f) && FRAME_LIVE_P (f));
2041
2042 /* Get minimum sizes. */
2043 #ifdef HAVE_WINDOW_SYSTEM
2044 ch_dim.width = FRAME_SMALLEST_CHAR_WIDTH (f);
2045 ch_dim.height = FRAME_SMALLEST_FONT_HEIGHT (f);
2046 #else
2047 ch_dim.width = ch_dim.height = 1;
2048 #endif
2049
2050 /* Allocate/reallocate window matrices. */
2051 allocate_matrices_for_window_redisplay (XWINDOW (FRAME_ROOT_WINDOW (f)),
2052 ch_dim);
2053
2054 /* Allocate/ reallocate matrices of the dummy window used to display
2055 the menu bar under X when no X toolkit support is available. */
2056 #ifndef USE_X_TOOLKIT
2057 {
2058 /* Allocate a dummy window if not already done. */
2059 if (NILP (f->menu_bar_window))
2060 {
2061 f->menu_bar_window = make_window ();
2062 w = XWINDOW (f->menu_bar_window);
2063 XSETFRAME (w->frame, f);
2064 w->pseudo_window_p = 1;
2065 }
2066 else
2067 w = XWINDOW (f->menu_bar_window);
2068
2069 /* Set window dimensions to frame dimensions and allocate or
2070 adjust glyph matrices of W. */
2071 XSETFASTINT (w->top, 0);
2072 XSETFASTINT (w->left, 0);
2073 XSETFASTINT (w->height, FRAME_MENU_BAR_LINES (f));
2074 XSETFASTINT (w->width, FRAME_WINDOW_WIDTH (f));
2075 allocate_matrices_for_window_redisplay (w, ch_dim);
2076 }
2077 #endif /* not USE_X_TOOLKIT */
2078
2079 /* Allocate/ reallocate matrices of the tool bar window. If we
2080 don't have a tool bar window yet, make one. */
2081 if (NILP (f->tool_bar_window))
2082 {
2083 f->tool_bar_window = make_window ();
2084 w = XWINDOW (f->tool_bar_window);
2085 XSETFRAME (w->frame, f);
2086 w->pseudo_window_p = 1;
2087 }
2088 else
2089 w = XWINDOW (f->tool_bar_window);
2090
2091 XSETFASTINT (w->top, FRAME_MENU_BAR_LINES (f));
2092 XSETFASTINT (w->left, 0);
2093 XSETFASTINT (w->height, FRAME_TOOL_BAR_LINES (f));
2094 XSETFASTINT (w->width, FRAME_WINDOW_WIDTH (f));
2095 allocate_matrices_for_window_redisplay (w, ch_dim);
2096 }
2097
2098
2099 /* Adjust/ allocate message buffer of frame F.
2100
2101 Note that the message buffer is never freed. Since I could not
2102 find a free in 19.34, I assume that freeing it would be
2103 problematic in some way and don't do it either.
2104
2105 (Implementation note: It should be checked if we can free it
2106 eventually without causing trouble). */
2107
2108 static void
2109 adjust_frame_message_buffer (f)
2110 struct frame *f;
2111 {
2112 int size = FRAME_MESSAGE_BUF_SIZE (f) + 1;
2113
2114 if (FRAME_MESSAGE_BUF (f))
2115 {
2116 char *buffer = FRAME_MESSAGE_BUF (f);
2117 char *new_buffer = (char *) xrealloc (buffer, size);
2118 FRAME_MESSAGE_BUF (f) = new_buffer;
2119 }
2120 else
2121 FRAME_MESSAGE_BUF (f) = (char *) xmalloc (size);
2122 }
2123
2124
2125 /* Re-allocate buffer for decode_mode_spec on frame F. */
2126
2127 static void
2128 adjust_decode_mode_spec_buffer (f)
2129 struct frame *f;
2130 {
2131 f->decode_mode_spec_buffer
2132 = (char *) xrealloc (f->decode_mode_spec_buffer,
2133 FRAME_MESSAGE_BUF_SIZE (f) + 1);
2134 }
2135
2136
2137 \f
2138 /**********************************************************************
2139 Freeing Glyph Matrices
2140 **********************************************************************/
2141
2142 /* Free glyph memory for a frame F. F may be null. This function can
2143 be called for the same frame more than once. The root window of
2144 F may be nil when this function is called. This is the case when
2145 the function is called when F is destroyed. */
2146
2147 void
2148 free_glyphs (f)
2149 struct frame *f;
2150 {
2151 if (f && f->glyphs_initialized_p)
2152 {
2153 f->glyphs_initialized_p = 0;
2154
2155 /* Release window sub-matrices. */
2156 if (!NILP (f->root_window))
2157 free_window_matrices (XWINDOW (f->root_window));
2158
2159 /* Free the dummy window for menu bars without X toolkit and its
2160 glyph matrices. */
2161 if (!NILP (f->menu_bar_window))
2162 {
2163 struct window *w = XWINDOW (f->menu_bar_window);
2164 free_glyph_matrix (w->desired_matrix);
2165 free_glyph_matrix (w->current_matrix);
2166 w->desired_matrix = w->current_matrix = NULL;
2167 f->menu_bar_window = Qnil;
2168 }
2169
2170 /* Free the tool bar window and its glyph matrices. */
2171 if (!NILP (f->tool_bar_window))
2172 {
2173 struct window *w = XWINDOW (f->tool_bar_window);
2174 free_glyph_matrix (w->desired_matrix);
2175 free_glyph_matrix (w->current_matrix);
2176 w->desired_matrix = w->current_matrix = NULL;
2177 f->tool_bar_window = Qnil;
2178 }
2179
2180 /* Release frame glyph matrices. Reset fields to zero in
2181 case we are called a second time. */
2182 if (f->desired_matrix)
2183 {
2184 free_glyph_matrix (f->desired_matrix);
2185 free_glyph_matrix (f->current_matrix);
2186 f->desired_matrix = f->current_matrix = NULL;
2187 }
2188
2189 /* Release glyph pools. */
2190 if (f->desired_pool)
2191 {
2192 free_glyph_pool (f->desired_pool);
2193 free_glyph_pool (f->current_pool);
2194 f->desired_pool = f->current_pool = NULL;
2195 }
2196 }
2197 }
2198
2199
2200 /* Free glyph sub-matrices in the window tree rooted at W. This
2201 function may be called with a null pointer, and it may be called on
2202 the same tree more than once. */
2203
2204 void
2205 free_window_matrices (w)
2206 struct window *w;
2207 {
2208 while (w)
2209 {
2210 if (!NILP (w->hchild))
2211 free_window_matrices (XWINDOW (w->hchild));
2212 else if (!NILP (w->vchild))
2213 free_window_matrices (XWINDOW (w->vchild));
2214 else
2215 {
2216 /* This is a leaf window. Free its memory and reset fields
2217 to zero in case this function is called a second time for
2218 W. */
2219 free_glyph_matrix (w->current_matrix);
2220 free_glyph_matrix (w->desired_matrix);
2221 w->current_matrix = w->desired_matrix = NULL;
2222 }
2223
2224 /* Next window on same level. */
2225 w = NILP (w->next) ? 0 : XWINDOW (w->next);
2226 }
2227 }
2228
2229
2230 /* Check glyph memory leaks. This function is called from
2231 shut_down_emacs. Note that frames are not destroyed when Emacs
2232 exits. We therefore free all glyph memory for all active frames
2233 explicitly and check that nothing is left allocated. */
2234
2235 void
2236 check_glyph_memory ()
2237 {
2238 Lisp_Object tail, frame;
2239
2240 /* Free glyph memory for all frames. */
2241 FOR_EACH_FRAME (tail, frame)
2242 free_glyphs (XFRAME (frame));
2243
2244 /* Check that nothing is left allocated. */
2245 if (glyph_matrix_count)
2246 abort ();
2247 if (glyph_pool_count)
2248 abort ();
2249 }
2250
2251
2252 \f
2253 /**********************************************************************
2254 Building a Frame Matrix
2255 **********************************************************************/
2256
2257 /* Most of the redisplay code works on glyph matrices attached to
2258 windows. This is a good solution most of the time, but it is not
2259 suitable for terminal code. Terminal output functions cannot rely
2260 on being able to set an arbitrary terminal window. Instead they
2261 must be provided with a view of the whole frame, i.e. the whole
2262 screen. We build such a view by constructing a frame matrix from
2263 window matrices in this section.
2264
2265 Windows that must be updated have their must_be_update_p flag set.
2266 For all such windows, their desired matrix is made part of the
2267 desired frame matrix. For other windows, their current matrix is
2268 made part of the desired frame matrix.
2269
2270 +-----------------+----------------+
2271 | desired | desired |
2272 | | |
2273 +-----------------+----------------+
2274 | current |
2275 | |
2276 +----------------------------------+
2277
2278 Desired window matrices can be made part of the frame matrix in a
2279 cheap way: We exploit the fact that the desired frame matrix and
2280 desired window matrices share their glyph memory. This is not
2281 possible for current window matrices. Their glyphs are copied to
2282 the desired frame matrix. The latter is equivalent to
2283 preserve_other_columns in the old redisplay.
2284
2285 Used glyphs counters for frame matrix rows are the result of adding
2286 up glyph lengths of the window matrices. A line in the frame
2287 matrix is enabled, if a corresponding line in a window matrix is
2288 enabled.
2289
2290 After building the desired frame matrix, it will be passed to
2291 terminal code, which will manipulate both the desired and current
2292 frame matrix. Changes applied to the frame's current matrix have
2293 to be visible in current window matrices afterwards, of course.
2294
2295 This problem is solved like this:
2296
2297 1. Window and frame matrices share glyphs. Window matrices are
2298 constructed in a way that their glyph contents ARE the glyph
2299 contents needed in a frame matrix. Thus, any modification of
2300 glyphs done in terminal code will be reflected in window matrices
2301 automatically.
2302
2303 2. Exchanges of rows in a frame matrix done by terminal code are
2304 intercepted by hook functions so that corresponding row operations
2305 on window matrices can be performed. This is necessary because we
2306 use pointers to glyphs in glyph row structures. To satisfy the
2307 assumption of point 1 above that glyphs are updated implicitly in
2308 window matrices when they are manipulated via the frame matrix,
2309 window and frame matrix must of course agree where to find the
2310 glyphs for their rows. Possible manipulations that must be
2311 mirrored are assignments of rows of the desired frame matrix to the
2312 current frame matrix and scrolling the current frame matrix. */
2313
2314 /* Build frame F's desired matrix from window matrices. Only windows
2315 which have the flag must_be_updated_p set have to be updated. Menu
2316 bar lines of a frame are not covered by window matrices, so make
2317 sure not to touch them in this function. */
2318
2319 static void
2320 build_frame_matrix (f)
2321 struct frame *f;
2322 {
2323 int i;
2324
2325 /* F must have a frame matrix when this function is called. */
2326 xassert (!FRAME_WINDOW_P (f));
2327
2328 /* Clear all rows in the frame matrix covered by window matrices.
2329 Menu bar lines are not covered by windows. */
2330 for (i = FRAME_TOP_MARGIN (f); i < f->desired_matrix->nrows; ++i)
2331 clear_glyph_row (MATRIX_ROW (f->desired_matrix, i));
2332
2333 /* Build the matrix by walking the window tree. */
2334 build_frame_matrix_from_window_tree (f->desired_matrix,
2335 XWINDOW (FRAME_ROOT_WINDOW (f)));
2336 }
2337
2338
2339 /* Walk a window tree, building a frame matrix MATRIX from window
2340 matrices. W is the root of a window tree. */
2341
2342 static void
2343 build_frame_matrix_from_window_tree (matrix, w)
2344 struct glyph_matrix *matrix;
2345 struct window *w;
2346 {
2347 while (w)
2348 {
2349 if (!NILP (w->hchild))
2350 build_frame_matrix_from_window_tree (matrix, XWINDOW (w->hchild));
2351 else if (!NILP (w->vchild))
2352 build_frame_matrix_from_window_tree (matrix, XWINDOW (w->vchild));
2353 else
2354 build_frame_matrix_from_leaf_window (matrix, w);
2355
2356 w = NILP (w->next) ? 0 : XWINDOW (w->next);
2357 }
2358 }
2359
2360
2361 /* Add a window's matrix to a frame matrix. FRAME_MATRIX is the
2362 desired frame matrix built. W is a leaf window whose desired or
2363 current matrix is to be added to FRAME_MATRIX. W's flag
2364 must_be_updated_p determines which matrix it contributes to
2365 FRAME_MATRIX. If must_be_updated_p is non-zero, W's desired matrix
2366 is added to FRAME_MATRIX, otherwise W's current matrix is added.
2367 Adding a desired matrix means setting up used counters and such in
2368 frame rows, while adding a current window matrix to FRAME_MATRIX
2369 means copying glyphs. The latter case corresponds to
2370 preserve_other_columns in the old redisplay. */
2371
2372 static void
2373 build_frame_matrix_from_leaf_window (frame_matrix, w)
2374 struct glyph_matrix *frame_matrix;
2375 struct window *w;
2376 {
2377 struct glyph_matrix *window_matrix;
2378 int window_y, frame_y;
2379 /* If non-zero, a glyph to insert at the right border of W. */
2380 GLYPH right_border_glyph = 0;
2381
2382 /* Set window_matrix to the matrix we have to add to FRAME_MATRIX. */
2383 if (w->must_be_updated_p)
2384 {
2385 window_matrix = w->desired_matrix;
2386
2387 /* Decide whether we want to add a vertical border glyph. */
2388 if (!WINDOW_RIGHTMOST_P (w))
2389 {
2390 struct Lisp_Char_Table *dp = window_display_table (w);
2391 right_border_glyph = (dp && INTEGERP (DISP_BORDER_GLYPH (dp))
2392 ? XINT (DISP_BORDER_GLYPH (dp))
2393 : '|');
2394 }
2395 }
2396 else
2397 window_matrix = w->current_matrix;
2398
2399 /* For all rows in the window matrix and corresponding rows in the
2400 frame matrix. */
2401 window_y = 0;
2402 frame_y = window_matrix->matrix_y;
2403 while (window_y < window_matrix->nrows)
2404 {
2405 struct glyph_row *frame_row = frame_matrix->rows + frame_y;
2406 struct glyph_row *window_row = window_matrix->rows + window_y;
2407
2408 /* Fill up the frame row with spaces up to the left margin of the
2409 window row. */
2410 fill_up_frame_row_with_spaces (frame_row, window_matrix->matrix_x);
2411
2412 /* Fill up areas in the window matrix row with spaces. */
2413 fill_up_glyph_row_with_spaces (window_row);
2414
2415 if (window_matrix == w->current_matrix)
2416 {
2417 /* We have to copy W's current matrix. Copy window
2418 row to frame row. */
2419 bcopy (window_row->glyphs[0],
2420 frame_row->glyphs[TEXT_AREA] + window_matrix->matrix_x,
2421 window_matrix->matrix_w * sizeof (struct glyph));
2422 }
2423 else
2424 {
2425 /* Copy W's desired matrix. */
2426
2427 /* Maybe insert a vertical border between horizontally adjacent
2428 windows. */
2429 if (right_border_glyph)
2430 {
2431 struct glyph *border = window_row->glyphs[LAST_AREA] - 1;
2432 SET_CHAR_GLYPH_FROM_GLYPH (*border, right_border_glyph);
2433 }
2434
2435 /* Due to hooks installed, it normally doesn't happen that
2436 window rows and frame rows of the same matrix are out of
2437 sync, i.e. have a different understanding of where to
2438 find glyphs for the row. The following is a safety-belt
2439 that doesn't cost much and makes absolutely sure that
2440 window and frame matrices are in sync. */
2441 if (!glyph_row_slice_p (window_row, frame_row))
2442 {
2443 /* Find the row in the window being a slice. There
2444 should exist one from program logic. */
2445 struct glyph_row *slice_row
2446 = find_glyph_row_slice (window_matrix, frame_matrix, frame_y);
2447 xassert (slice_row != 0);
2448
2449 /* Exchange glyphs between both window rows. */
2450 swap_glyphs_in_rows (window_row, slice_row);
2451
2452 /* Exchange pointers between both rows. */
2453 swap_glyph_pointers (window_row, slice_row);
2454 }
2455
2456 /* Now, we are sure that window row window_y is a slice of
2457 the frame row frame_y. But, lets check that assumption. */
2458 xassert (glyph_row_slice_p (window_row, frame_row));
2459
2460 /* If rows are in sync, we don't have to copy glyphs because
2461 frame and window share glyphs. */
2462
2463 #if GLYPH_DEBUG
2464 strcpy (w->current_matrix->method, w->desired_matrix->method);
2465 #endif
2466 }
2467
2468 /* Set number of used glyphs in the frame matrix. Since we fill
2469 up with spaces, and visit leaf windows from left to right it
2470 can be done simply. */
2471 frame_row->used[TEXT_AREA]
2472 = window_matrix->matrix_x + window_matrix->matrix_w;
2473
2474 /* Or in flags. */
2475 frame_row->enabled_p |= window_row->enabled_p;
2476 frame_row->inverse_p |= window_row->inverse_p;
2477
2478 /* Next row. */
2479 ++window_y;
2480 ++frame_y;
2481 }
2482 }
2483
2484
2485 /* Add spaces to a glyph row ROW in a window matrix.
2486
2487 Each row has the form:
2488
2489 +---------+-----------------------------+------------+
2490 | left | text | right |
2491 +---------+-----------------------------+------------+
2492
2493 Left and right marginal areas are optional. This function adds
2494 spaces to areas so that there are no empty holes between areas.
2495 In other words: If the right area is not empty, the text area
2496 is filled up with spaces up to the right area. If the text area
2497 is not empty, the left area is filled up.
2498
2499 To be called for frame-based redisplay, only. */
2500
2501 static void
2502 fill_up_glyph_row_with_spaces (row)
2503 struct glyph_row *row;
2504 {
2505 fill_up_glyph_row_area_with_spaces (row, LEFT_MARGIN_AREA);
2506 fill_up_glyph_row_area_with_spaces (row, TEXT_AREA);
2507 fill_up_glyph_row_area_with_spaces (row, RIGHT_MARGIN_AREA);
2508 }
2509
2510
2511 /* Fill area AREA of glyph row ROW with spaces. To be called for
2512 frame-based redisplay only. */
2513
2514 static void
2515 fill_up_glyph_row_area_with_spaces (row, area)
2516 struct glyph_row *row;
2517 int area;
2518 {
2519 if (row->glyphs[area] < row->glyphs[area + 1])
2520 {
2521 struct glyph *end = row->glyphs[area + 1];
2522 struct glyph *text = row->glyphs[area] + row->used[area];
2523
2524 while (text < end)
2525 *text++ = space_glyph;
2526 row->used[area] = text - row->glyphs[area];
2527 }
2528 }
2529
2530
2531 /* Add spaces to the end of ROW in a frame matrix until index UPTO is
2532 reached. In frame matrices only one area, TEXT_AREA, is used. */
2533
2534 static void
2535 fill_up_frame_row_with_spaces (row, upto)
2536 struct glyph_row *row;
2537 int upto;
2538 {
2539 int i = row->used[TEXT_AREA];
2540 struct glyph *glyph = row->glyphs[TEXT_AREA];
2541
2542 while (i < upto)
2543 glyph[i++] = space_glyph;
2544
2545 row->used[TEXT_AREA] = i;
2546 }
2547
2548
2549 \f
2550 /**********************************************************************
2551 Mirroring operations on frame matrices in window matrices
2552 **********************************************************************/
2553
2554 /* Set frame being updated via frame-based redisplay to F. This
2555 function must be called before updates to make explicit that we are
2556 working on frame matrices or not. */
2557
2558 static INLINE void
2559 set_frame_matrix_frame (f)
2560 struct frame *f;
2561 {
2562 frame_matrix_frame = f;
2563 }
2564
2565
2566 /* Make sure glyph row ROW in CURRENT_MATRIX is up to date.
2567 DESIRED_MATRIX is the desired matrix corresponding to
2568 CURRENT_MATRIX. The update is done by exchanging glyph pointers
2569 between rows in CURRENT_MATRIX and DESIRED_MATRIX. If
2570 frame_matrix_frame is non-null, this indicates that the exchange is
2571 done in frame matrices, and that we have to perform analogous
2572 operations in window matrices of frame_matrix_frame. */
2573
2574 static INLINE void
2575 make_current (desired_matrix, current_matrix, row)
2576 struct glyph_matrix *desired_matrix, *current_matrix;
2577 int row;
2578 {
2579 struct glyph_row *current_row = MATRIX_ROW (current_matrix, row);
2580 struct glyph_row *desired_row = MATRIX_ROW (desired_matrix, row);
2581
2582 /* Do current_row = desired_row. This exchanges glyph pointers
2583 between both rows, and does a structure assignment otherwise. */
2584 assign_row (current_row, desired_row);
2585
2586 /* Enable current_row to mark it as valid. */
2587 current_row->enabled_p = 1;
2588
2589 /* If we are called on frame matrices, perform analogous operations
2590 for window matrices. */
2591 if (frame_matrix_frame)
2592 mirror_make_current (XWINDOW (frame_matrix_frame->root_window), row);
2593 }
2594
2595
2596 /* W is the root of a window tree. FRAME_ROW is the index of a row in
2597 W's frame which has been made current (by swapping pointers between
2598 current and desired matrix). Perform analogous operations in the
2599 matrices of leaf windows in the window tree rooted at W. */
2600
2601 static void
2602 mirror_make_current (w, frame_row)
2603 struct window *w;
2604 int frame_row;
2605 {
2606 while (w)
2607 {
2608 if (!NILP (w->hchild))
2609 mirror_make_current (XWINDOW (w->hchild), frame_row);
2610 else if (!NILP (w->vchild))
2611 mirror_make_current (XWINDOW (w->vchild), frame_row);
2612 else
2613 {
2614 /* Row relative to window W. Don't use FRAME_TO_WINDOW_VPOS
2615 here because the checks performed in debug mode there
2616 will not allow the conversion. */
2617 int row = frame_row - w->desired_matrix->matrix_y;
2618
2619 /* If FRAME_ROW is within W, assign the desired row to the
2620 current row (exchanging glyph pointers). */
2621 if (row >= 0 && row < w->desired_matrix->matrix_h)
2622 {
2623 struct glyph_row *current_row
2624 = MATRIX_ROW (w->current_matrix, row);
2625 struct glyph_row *desired_row
2626 = MATRIX_ROW (w->desired_matrix, row);
2627
2628 if (desired_row->enabled_p)
2629 assign_row (current_row, desired_row);
2630 else
2631 swap_glyph_pointers (desired_row, current_row);
2632 current_row->enabled_p = 1;
2633 }
2634 }
2635
2636 w = NILP (w->next) ? 0 : XWINDOW (w->next);
2637 }
2638 }
2639
2640
2641 /* Perform row dance after scrolling. We are working on the range of
2642 lines UNCHANGED_AT_TOP + 1 to UNCHANGED_AT_TOP + NLINES (not
2643 including) in MATRIX. COPY_FROM is a vector containing, for each
2644 row I in the range 0 <= I < NLINES, the index of the original line
2645 to move to I. This index is relative to the row range, i.e. 0 <=
2646 index < NLINES. RETAINED_P is a vector containing zero for each
2647 row 0 <= I < NLINES which is empty.
2648
2649 This function is called from do_scrolling and do_direct_scrolling. */
2650
2651 void
2652 mirrored_line_dance (matrix, unchanged_at_top, nlines, copy_from,
2653 retained_p)
2654 struct glyph_matrix *matrix;
2655 int unchanged_at_top, nlines;
2656 int *copy_from;
2657 char *retained_p;
2658 {
2659 /* A copy of original rows. */
2660 struct glyph_row *old_rows;
2661
2662 /* Rows to assign to. */
2663 struct glyph_row *new_rows = MATRIX_ROW (matrix, unchanged_at_top);
2664
2665 int i;
2666
2667 /* Make a copy of the original rows. */
2668 old_rows = (struct glyph_row *) alloca (nlines * sizeof *old_rows);
2669 bcopy (new_rows, old_rows, nlines * sizeof *old_rows);
2670
2671 /* Assign new rows, maybe clear lines. */
2672 for (i = 0; i < nlines; ++i)
2673 {
2674 int enabled_before_p = new_rows[i].enabled_p;
2675
2676 xassert (i + unchanged_at_top < matrix->nrows);
2677 xassert (unchanged_at_top + copy_from[i] < matrix->nrows);
2678 new_rows[i] = old_rows[copy_from[i]];
2679 new_rows[i].enabled_p = enabled_before_p;
2680
2681 /* RETAINED_P is zero for empty lines. */
2682 if (!retained_p[copy_from[i]])
2683 new_rows[i].enabled_p = 0;
2684 }
2685
2686 /* Do the same for window matrices, if MATRIX Is a frame matrix. */
2687 if (frame_matrix_frame)
2688 mirror_line_dance (XWINDOW (frame_matrix_frame->root_window),
2689 unchanged_at_top, nlines, copy_from, retained_p);
2690 }
2691
2692
2693 /* Perform a line dance in the window tree rooted at W, after
2694 scrolling a frame matrix in mirrored_line_dance.
2695
2696 We are working on the range of lines UNCHANGED_AT_TOP + 1 to
2697 UNCHANGED_AT_TOP + NLINES (not including) in W's frame matrix.
2698 COPY_FROM is a vector containing, for each row I in the range 0 <=
2699 I < NLINES, the index of the original line to move to I. This
2700 index is relative to the row range, i.e. 0 <= index < NLINES.
2701 RETAINED_P is a vector containing zero for each row 0 <= I < NLINES
2702 which is empty. */
2703
2704 static void
2705 mirror_line_dance (w, unchanged_at_top, nlines, copy_from, retained_p)
2706 struct window *w;
2707 int unchanged_at_top, nlines;
2708 int *copy_from;
2709 char *retained_p;
2710 {
2711 while (w)
2712 {
2713 if (!NILP (w->hchild))
2714 mirror_line_dance (XWINDOW (w->hchild), unchanged_at_top,
2715 nlines, copy_from, retained_p);
2716 else if (!NILP (w->vchild))
2717 mirror_line_dance (XWINDOW (w->vchild), unchanged_at_top,
2718 nlines, copy_from, retained_p);
2719 else
2720 {
2721 /* W is a leaf window, and we are working on its current
2722 matrix m. */
2723 struct glyph_matrix *m = w->current_matrix;
2724
2725 int i;
2726
2727 struct glyph_row *old_rows;
2728
2729 /* Make a copy of the original rows of matrix m. */
2730 old_rows = (struct glyph_row *) alloca (m->nrows * sizeof *old_rows);
2731 bcopy (m->rows, old_rows, m->nrows * sizeof *old_rows);
2732
2733 for (i = 0; i < nlines; ++i)
2734 {
2735 /* Frame relative line assigned to. */
2736 int frame_to = i + unchanged_at_top;
2737
2738 /* Frame relative line assigned. */
2739 int frame_from = copy_from[i] + unchanged_at_top;
2740
2741 /* Window relative line assigned to. */
2742 int window_to = frame_to - m->matrix_y;
2743
2744 /* Window relative line assigned. */
2745 int window_from = frame_from - m->matrix_y;
2746
2747 /* Is assigned line inside window? */
2748 int from_inside_window_p
2749 = window_from >= 0 && window_from < m->matrix_h;
2750
2751 if (from_inside_window_p)
2752 {
2753 #if GLYPH_DEBUG
2754 /* Is assigned to line inside window? */
2755 int to_inside_window_p
2756 = window_to >= 0 && window_to < m->matrix_h;
2757 #endif
2758
2759 /* Enabled setting before assignment. */
2760 int enabled_before_p;
2761
2762 /* If not both lines inside the window, we have a
2763 serious problem. */
2764 xassert (to_inside_window_p);
2765
2766 /* Do the assignment. The enabled_p flag is saved
2767 over the assignment because the old redisplay did
2768 that. */
2769 enabled_before_p = m->rows[window_to].enabled_p;
2770 m->rows[window_to] = old_rows[window_from];
2771 m->rows[window_to].enabled_p = enabled_before_p;
2772
2773 /* If frame line is empty, window line is empty, too. */
2774 if (!retained_p[copy_from[i]])
2775 m->rows[window_to].enabled_p = 0;
2776 }
2777 }
2778
2779 /* Check that no pointers are lost. */
2780 CHECK_MATRIX (m);
2781 }
2782
2783 /* Next window on same level. */
2784 w = NILP (w->next) ? 0 : XWINDOW (w->next);
2785 }
2786 }
2787
2788
2789 #if GLYPH_DEBUG
2790
2791 /* Check that window and frame matrices agree about their
2792 understanding where glyphs of the rows are to find. For each
2793 window in the window tree rooted at W, check that rows in the
2794 matrices of leaf window agree with their frame matrices about
2795 glyph pointers. */
2796
2797 void
2798 check_window_matrix_pointers (w)
2799 struct window *w;
2800 {
2801 while (w)
2802 {
2803 if (!NILP (w->hchild))
2804 check_window_matrix_pointers (XWINDOW (w->hchild));
2805 else if (!NILP (w->vchild))
2806 check_window_matrix_pointers (XWINDOW (w->vchild));
2807 else
2808 {
2809 struct frame *f = XFRAME (w->frame);
2810 check_matrix_pointers (w->desired_matrix, f->desired_matrix);
2811 check_matrix_pointers (w->current_matrix, f->current_matrix);
2812 }
2813
2814 w = NILP (w->next) ? 0 : XWINDOW (w->next);
2815 }
2816 }
2817
2818
2819 /* Check that window rows are slices of frame rows. WINDOW_MATRIX is
2820 a window and FRAME_MATRIX is the corresponding frame matrix. For
2821 each row in WINDOW_MATRIX check that it's a slice of the
2822 corresponding frame row. If it isn't, abort. */
2823
2824 static void
2825 check_matrix_pointers (window_matrix, frame_matrix)
2826 struct glyph_matrix *window_matrix, *frame_matrix;
2827 {
2828 /* Row number in WINDOW_MATRIX. */
2829 int i = 0;
2830
2831 /* Row number corresponding to I in FRAME_MATRIX. */
2832 int j = window_matrix->matrix_y;
2833
2834 /* For all rows check that the row in the window matrix is a
2835 slice of the row in the frame matrix. If it isn't we didn't
2836 mirror an operation on the frame matrix correctly. */
2837 while (i < window_matrix->nrows)
2838 {
2839 if (!glyph_row_slice_p (window_matrix->rows + i,
2840 frame_matrix->rows + j))
2841 abort ();
2842 ++i, ++j;
2843 }
2844 }
2845
2846 #endif /* GLYPH_DEBUG != 0 */
2847
2848
2849 \f
2850 /**********************************************************************
2851 VPOS and HPOS translations
2852 **********************************************************************/
2853
2854 #if GLYPH_DEBUG
2855
2856 /* Translate vertical position VPOS which is relative to window W to a
2857 vertical position relative to W's frame. */
2858
2859 static int
2860 window_to_frame_vpos (w, vpos)
2861 struct window *w;
2862 int vpos;
2863 {
2864 struct frame *f = XFRAME (w->frame);
2865
2866 xassert (!FRAME_WINDOW_P (f));
2867 xassert (vpos >= 0 && vpos <= w->desired_matrix->nrows);
2868 vpos += XFASTINT (w->top);
2869 xassert (vpos >= 0 && vpos <= FRAME_HEIGHT (f));
2870 return vpos;
2871 }
2872
2873
2874 /* Translate horizontal position HPOS which is relative to window W to
2875 a vertical position relative to W's frame. */
2876
2877 static int
2878 window_to_frame_hpos (w, hpos)
2879 struct window *w;
2880 int hpos;
2881 {
2882 struct frame *f = XFRAME (w->frame);
2883
2884 xassert (!FRAME_WINDOW_P (f));
2885 hpos += XFASTINT (w->left);
2886 return hpos;
2887 }
2888
2889 #endif /* GLYPH_DEBUG */
2890
2891
2892 \f
2893 /**********************************************************************
2894 Redrawing Frames
2895 **********************************************************************/
2896
2897 DEFUN ("redraw-frame", Fredraw_frame, Sredraw_frame, 1, 1, 0,
2898 "Clear frame FRAME and output again what is supposed to appear on it.")
2899 (frame)
2900 Lisp_Object frame;
2901 {
2902 struct frame *f;
2903
2904 CHECK_LIVE_FRAME (frame, 0);
2905 f = XFRAME (frame);
2906
2907 /* Ignore redraw requests, if frame has no glyphs yet.
2908 (Implementation note: It still has to be checked why we are
2909 called so early here). */
2910 if (!glyphs_initialized_initially_p)
2911 return Qnil;
2912
2913 update_begin (f);
2914 if (FRAME_MSDOS_P (f))
2915 set_terminal_modes ();
2916 clear_frame ();
2917 clear_current_matrices (f);
2918 update_end (f);
2919 fflush (stdout);
2920 windows_or_buffers_changed++;
2921 /* Mark all windows as inaccurate, so that every window will have
2922 its redisplay done. */
2923 mark_window_display_accurate (FRAME_ROOT_WINDOW (f), 0);
2924 set_window_update_flags (XWINDOW (FRAME_ROOT_WINDOW (f)), 1);
2925 f->garbaged = 0;
2926 return Qnil;
2927 }
2928
2929
2930 /* Redraw frame F. This is nothing more than a call to the Lisp
2931 function redraw-frame. */
2932
2933 void
2934 redraw_frame (f)
2935 struct frame *f;
2936 {
2937 Lisp_Object frame;
2938 XSETFRAME (frame, f);
2939 Fredraw_frame (frame);
2940 }
2941
2942
2943 DEFUN ("redraw-display", Fredraw_display, Sredraw_display, 0, 0, "",
2944 "Clear and redisplay all visible frames.")
2945 ()
2946 {
2947 Lisp_Object tail, frame;
2948
2949 FOR_EACH_FRAME (tail, frame)
2950 if (FRAME_VISIBLE_P (XFRAME (frame)))
2951 Fredraw_frame (frame);
2952
2953 return Qnil;
2954 }
2955
2956
2957 /* This is used when frame_garbaged is set. Call Fredraw_frame on all
2958 visible frames marked as garbaged. */
2959
2960 void
2961 redraw_garbaged_frames ()
2962 {
2963 Lisp_Object tail, frame;
2964
2965 FOR_EACH_FRAME (tail, frame)
2966 if (FRAME_VISIBLE_P (XFRAME (frame))
2967 && FRAME_GARBAGED_P (XFRAME (frame)))
2968 Fredraw_frame (frame);
2969 }
2970
2971
2972 \f
2973 /***********************************************************************
2974 Direct Operations
2975 ***********************************************************************/
2976
2977 /* Try to update display and current glyph matrix directly.
2978
2979 This function is called after a character G has been inserted into
2980 current_buffer. It tries to update the current glyph matrix and
2981 perform appropriate screen output to reflect the insertion. If it
2982 succeeds, the global flag redisplay_performed_directly_p will be
2983 set to 1, and thereby prevent the more costly general redisplay
2984 from running (see redisplay_internal).
2985
2986 This function is not called for `hairy' character insertions.
2987 In particular, it is not called when after or before change
2988 functions exist, like they are used by font-lock. See keyboard.c
2989 for details where this function is called. */
2990
2991 int
2992 direct_output_for_insert (g)
2993 int g;
2994 {
2995 register struct frame *f = selected_frame;
2996 struct window *w = XWINDOW (selected_window);
2997 struct it it, it2;
2998 struct glyph_row *glyph_row;
2999 struct glyph *glyphs, *glyph, *end;
3000 int n;
3001 /* Non-null means that Redisplay of W is based on window matrices. */
3002 int window_redisplay_p = FRAME_WINDOW_P (f);
3003 /* Non-null means we are in overwrite mode. */
3004 int overwrite_p = !NILP (current_buffer->overwrite_mode);
3005 int added_width;
3006 struct text_pos pos;
3007 int delta, delta_bytes;
3008
3009 /* Not done directly. */
3010 redisplay_performed_directly_p = 0;
3011
3012 /* Quickly give up for some common cases. */
3013 if (cursor_in_echo_area
3014 /* Give up if fonts have changed. */
3015 || fonts_changed_p
3016 /* Give up if face attributes have been changed. */
3017 || face_change_count
3018 /* Give up if cursor position not really known. */
3019 || !display_completed
3020 /* Give up if buffer appears in two places. */
3021 || buffer_shared > 1
3022 /* Give up if w is mini-buffer and a message is being displayed there */
3023 || (MINI_WINDOW_P (w) && !NILP (echo_area_buffer[0]))
3024 /* Give up for hscrolled mini-buffer because display of the prompt
3025 is handled specially there (see display_line). */
3026 || (MINI_WINDOW_P (w) && XFASTINT (w->hscroll))
3027 /* Give up if overwriting in the middle of a line. */
3028 || (overwrite_p
3029 && PT != ZV
3030 && FETCH_BYTE (PT) != '\n')
3031 /* Give up for tabs and line ends. */
3032 || g == '\t'
3033 || g == '\n'
3034 || g == '\r'
3035 /* Give up if unable to display the cursor in the window. */
3036 || w->cursor.vpos < 0
3037 || (glyph_row = MATRIX_ROW (w->current_matrix, w->cursor.vpos),
3038 /* Can't do it in a continued line because continuation
3039 lines would change. */
3040 (glyph_row->continued_p
3041 /* Can't use this method if the line overlaps others or is
3042 overlapped by others because these other lines would
3043 have to be redisplayed. */
3044 || glyph_row->overlapping_p
3045 || glyph_row->overlapped_p))
3046 /* Can't do it for partial width windows on terminal frames
3047 because we can't clear to eol in such a window. */
3048 || (!window_redisplay_p && !WINDOW_FULL_WIDTH_P (w)))
3049 return 0;
3050
3051 /* Set up a display iterator structure for W. Glyphs will be
3052 produced in scratch_glyph_row. Current position is W's cursor
3053 position. */
3054 clear_glyph_row (&scratch_glyph_row);
3055 SET_TEXT_POS (pos, PT, PT_BYTE);
3056 DEC_TEXT_POS (pos);
3057 init_iterator (&it, w, CHARPOS (pos), BYTEPOS (pos), &scratch_glyph_row,
3058 DEFAULT_FACE_ID);
3059
3060 glyph_row = MATRIX_ROW (w->current_matrix, w->cursor.vpos);
3061
3062 /* Give up if highlighting trailing whitespace and we have trailing
3063 whitespace in glyph_row. We would have to remove the trailing
3064 whitespace face in that case. */
3065 if (!NILP (Vshow_trailing_whitespace)
3066 && glyph_row->used[TEXT_AREA])
3067 {
3068 struct glyph *last;
3069
3070 last = glyph_row->glyphs[TEXT_AREA] + glyph_row->used[TEXT_AREA] - 1;
3071 if (last->type == STRETCH_GLYPH
3072 || (last->type == CHAR_GLYPH
3073 && last->u.ch.code == ' '))
3074 return 0;
3075 }
3076
3077 /* Give up if there are overlay strings at pos. This would fail
3078 if the overlay string has newlines in it. */
3079 if (STRINGP (it.string))
3080 return 0;
3081
3082 it.hpos = w->cursor.hpos;
3083 it.vpos = w->cursor.vpos;
3084 it.current_x = w->cursor.x + it.first_visible_x;
3085 it.current_y = w->cursor.y;
3086 it.end_charpos = PT;
3087 it.stop_charpos = min (PT, it.stop_charpos);
3088
3089 /* More than one display element may be returned for PT - 1 if
3090 (i) it's a control character which is translated into `\003' or
3091 `^C', or (ii) it has a display table entry, or (iii) it's a
3092 combination of both. */
3093 delta = delta_bytes = 0;
3094 while (get_next_display_element (&it))
3095 {
3096 PRODUCE_GLYPHS (&it);
3097
3098 /* Give up if glyph doesn't fit completely on the line. */
3099 if (it.current_x >= it.last_visible_x)
3100 return 0;
3101
3102 /* Give up if new glyph has different ascent or descent than
3103 the original row, or if it is not a character glyph. */
3104 if (glyph_row->ascent != it.ascent
3105 || glyph_row->height != it.ascent + it.descent
3106 || glyph_row->phys_ascent != it.phys_ascent
3107 || glyph_row->phys_height != it.phys_ascent + it.phys_descent
3108 || it.what != IT_CHARACTER)
3109 return 0;
3110
3111 delta += 1;
3112 delta_bytes += it.len;
3113 set_iterator_to_next (&it);
3114 }
3115
3116 /* Give up if we hit the right edge of the window. We would have
3117 to insert truncation or continuation glyphs. */
3118 added_width = it.current_x - (w->cursor.x + it.first_visible_x);
3119 if (glyph_row->pixel_width + added_width >= it.last_visible_x)
3120 return 0;
3121
3122 /* Give up if there is a \t following in the line. */
3123 it2 = it;
3124 it2.end_charpos = ZV;
3125 it2.stop_charpos = min (it2.stop_charpos, ZV);
3126 while (get_next_display_element (&it2)
3127 && !ITERATOR_AT_END_OF_LINE_P (&it2))
3128 {
3129 if (it2.c == '\t')
3130 return 0;
3131 set_iterator_to_next (&it2);
3132 }
3133
3134 /* Number of new glyphs produced. */
3135 n = it.glyph_row->used[TEXT_AREA];
3136
3137 /* Start and end of glyphs in original row. */
3138 glyphs = glyph_row->glyphs[TEXT_AREA] + w->cursor.hpos;
3139 end = glyph_row->glyphs[1 + TEXT_AREA];
3140
3141 /* Make room for new glyphs, then insert them. */
3142 xassert (end - glyphs - n >= 0);
3143 safe_bcopy (glyphs, glyphs + n, (end - glyphs - n) * sizeof (*end));
3144 bcopy (it.glyph_row->glyphs[TEXT_AREA], glyphs, n * sizeof *glyphs);
3145 glyph_row->used[TEXT_AREA] = min (glyph_row->used[TEXT_AREA] + n,
3146 end - glyph_row->glyphs[TEXT_AREA]);
3147
3148 /* Compute new line width. */
3149 glyph = glyph_row->glyphs[TEXT_AREA];
3150 end = glyph + glyph_row->used[TEXT_AREA];
3151 glyph_row->pixel_width = glyph_row->x;
3152 while (glyph < end)
3153 {
3154 glyph_row->pixel_width += glyph->pixel_width;
3155 ++glyph;
3156 }
3157
3158 /* Increment buffer positions for glyphs following the newly
3159 inserted ones. */
3160 for (glyph = glyphs + n; glyph < end; ++glyph)
3161 if (glyph->charpos > 0)
3162 glyph->charpos += delta;
3163
3164 if (MATRIX_ROW_END_CHARPOS (glyph_row) > 0)
3165 {
3166 MATRIX_ROW_END_CHARPOS (glyph_row) += delta;
3167 MATRIX_ROW_END_BYTEPOS (glyph_row) += delta_bytes;
3168 }
3169
3170 /* Adjust positions in lines following the one we are in. */
3171 increment_glyph_matrix_buffer_positions (w->current_matrix,
3172 w->cursor.vpos + 1,
3173 w->current_matrix->nrows,
3174 delta, delta_bytes);
3175
3176 glyph_row->contains_overlapping_glyphs_p
3177 |= it.glyph_row->contains_overlapping_glyphs_p;
3178
3179 if (!NILP (Vshow_trailing_whitespace))
3180 highlight_trailing_whitespace (it.f, glyph_row);
3181
3182 /* Write glyphs. If at end of row, we can simply call write_glyphs.
3183 In the middle, we have to insert glyphs. Note that this is now
3184 implemented for X frames. The implementation uses updated_window
3185 and updated_row. */
3186 updated_row = glyph_row;
3187 update_begin (f);
3188 if (rif)
3189 {
3190 rif->update_window_begin_hook (w);
3191
3192 if (glyphs == end - n)
3193 rif->write_glyphs (glyphs, n);
3194 else
3195 rif->insert_glyphs (glyphs, n);
3196 }
3197 else
3198 {
3199 if (glyphs == end - n)
3200 write_glyphs (glyphs, n);
3201 else
3202 insert_glyphs (glyphs, n);
3203 }
3204
3205 w->cursor.hpos += n;
3206 w->cursor.x = it.current_x - it.first_visible_x;
3207 xassert (w->cursor.hpos >= 0
3208 && w->cursor.hpos < w->desired_matrix->matrix_w);
3209
3210 /* How to set the cursor differs depending on whether we are
3211 using a frame matrix or a window matrix. Note that when
3212 a frame matrix is used, cursor_to expects frame coordinates,
3213 and the X and Y parameters are not used. */
3214 if (window_redisplay_p)
3215 rif->cursor_to (w->cursor.vpos, w->cursor.hpos,
3216 w->cursor.y, w->cursor.x);
3217 else
3218 {
3219 int x, y;
3220 x = (WINDOW_TO_FRAME_HPOS (w, w->cursor.hpos)
3221 + (INTEGERP (w->left_margin_width)
3222 ? XFASTINT (w->left_margin_width)
3223 : 0));
3224 y = WINDOW_TO_FRAME_VPOS (w, w->cursor.vpos);
3225 cursor_to (y, x);
3226 }
3227
3228 if (rif)
3229 rif->update_window_end_hook (w, 1);
3230 update_end (f);
3231 updated_row = NULL;
3232 fflush (stdout);
3233
3234 TRACE ((stderr, "direct output for insert\n"));
3235
3236 UNCHANGED_MODIFIED = MODIFF;
3237 BEG_UNCHANGED = GPT - BEG;
3238 XSETFASTINT (w->last_point, PT);
3239 w->last_cursor = w->cursor;
3240 XSETFASTINT (w->last_modified, MODIFF);
3241 XSETFASTINT (w->last_overlay_modified, OVERLAY_MODIFF);
3242
3243 redisplay_performed_directly_p = 1;
3244 return 1;
3245 }
3246
3247
3248 /* Perform a direct display update for moving PT by N positions
3249 left or right. N < 0 means a movement backwards. This function
3250 is currently only called for N == 1 or N == -1. */
3251
3252 int
3253 direct_output_forward_char (n)
3254 int n;
3255 {
3256 struct frame *f = selected_frame;
3257 struct window *w = XWINDOW (selected_window);
3258 struct glyph_row *row;
3259
3260 /* Give up if face attributes have been changed. */
3261 if (face_change_count)
3262 return 0;
3263
3264 /* Give up if current matrix is not up to date or we are
3265 displaying a message. */
3266 if (!display_completed || cursor_in_echo_area)
3267 return 0;
3268
3269 /* Give up if the buffer's direction is reversed. */
3270 if (!NILP (XBUFFER (w->buffer)->direction_reversed))
3271 return 0;
3272
3273 /* Can't use direct output if highlighting a region. */
3274 if (!NILP (Vtransient_mark_mode) && !NILP (current_buffer->mark_active))
3275 return 0;
3276
3277 /* Can't use direct output if highlighting trailing whitespace. */
3278 if (!NILP (Vshow_trailing_whitespace))
3279 return 0;
3280
3281 row = MATRIX_ROW (w->current_matrix, w->cursor.vpos);
3282
3283 if (PT <= MATRIX_ROW_START_BYTEPOS (row)
3284 || PT >= MATRIX_ROW_END_BYTEPOS (row))
3285 return 0;
3286
3287 set_cursor_from_row (w, row, w->current_matrix, 0, 0, 0, 0);
3288 w->last_cursor = w->cursor;
3289 XSETFASTINT (w->last_point, PT);
3290
3291 xassert (w->cursor.hpos >= 0
3292 && w->cursor.hpos < w->desired_matrix->matrix_w);
3293
3294 if (FRAME_WINDOW_P (f))
3295 rif->cursor_to (w->cursor.vpos, w->cursor.hpos,
3296 w->cursor.y, w->cursor.x);
3297 else
3298 {
3299 int x, y;
3300 x = (WINDOW_TO_FRAME_HPOS (w, w->cursor.hpos)
3301 + (INTEGERP (w->left_margin_width)
3302 ? XFASTINT (w->left_margin_width)
3303 : 0));
3304 y = WINDOW_TO_FRAME_VPOS (w, w->cursor.vpos);
3305 cursor_to (y, x);
3306 }
3307
3308 fflush (stdout);
3309 redisplay_performed_directly_p = 1;
3310 return 1;
3311 }
3312
3313
3314 \f
3315 /***********************************************************************
3316 Frame Update
3317 ***********************************************************************/
3318
3319 /* Update frame F based on the data in desired matrices.
3320
3321 If FORCE_P is non-zero, don't let redisplay be stopped by detecting
3322 pending input. If INHIBIT_HAIRY_ID_P is non-zero, don't try
3323 scrolling.
3324
3325 Value is non-zero if redisplay was stopped due to pending input. */
3326
3327 int
3328 update_frame (f, force_p, inhibit_hairy_id_p)
3329 struct frame *f;
3330 int force_p;
3331 int inhibit_hairy_id_p;
3332 {
3333 /* 1 means display has been paused because of pending input. */
3334 int paused_p;
3335 struct window *root_window = XWINDOW (f->root_window);
3336
3337 if (FRAME_WINDOW_P (f))
3338 {
3339 /* We are working on window matrix basis. All windows whose
3340 flag must_be_updated_p is set have to be updated. */
3341
3342 /* Record that we are not working on frame matrices. */
3343 set_frame_matrix_frame (NULL);
3344
3345 /* Update all windows in the window tree of F, maybe stopping
3346 when pending input is detected. */
3347 update_begin (f);
3348
3349 /* Update the menu bar on X frames that don't have toolkit
3350 support. */
3351 if (WINDOWP (f->menu_bar_window))
3352 update_window (XWINDOW (f->menu_bar_window), 1);
3353
3354 /* Update the tool-bar window, if present. */
3355 if (WINDOWP (f->tool_bar_window))
3356 {
3357 Lisp_Object tem;
3358 struct window *w = XWINDOW (f->tool_bar_window);
3359
3360 /* Update tool-bar window. */
3361 if (w->must_be_updated_p)
3362 {
3363 update_window (w, 1);
3364 w->must_be_updated_p = 0;
3365
3366 /* Swap tool-bar strings. We swap because we want to
3367 reuse strings. */
3368 tem = f->current_tool_bar_string;
3369 f->current_tool_bar_string = f->desired_tool_bar_string;
3370 f->desired_tool_bar_string = tem;
3371 f->n_current_tool_bar_items = f->n_desired_tool_bar_items;
3372
3373 /* Swap tool-bar items. We swap because we want to
3374 reuse vectors. */
3375 tem = f->current_tool_bar_items;
3376 f->current_tool_bar_items = f->desired_tool_bar_items;
3377 f->desired_tool_bar_items = tem;
3378 }
3379 }
3380
3381
3382 /* Update windows. */
3383 paused_p = update_window_tree (root_window, force_p);
3384 update_end (f);
3385 display_completed = !paused_p;
3386
3387 /* The flush is a performance bottleneck under X. */
3388 #if 0
3389 rif->flush_display (f);
3390 #endif
3391 }
3392 else
3393 {
3394 /* We are working on frame matrix basis. Set the frame on whose
3395 frame matrix we operate. */
3396 set_frame_matrix_frame (f);
3397
3398 /* Build F's desired matrix from window matrices. For windows
3399 whose must_be_updated_p flag is set, desired matrices are
3400 made part of the desired frame matrix. For other windows,
3401 the current matrix is copied. */
3402 build_frame_matrix (f);
3403
3404 /* Do the update on the frame desired matrix. */
3405 paused_p = update_frame_1 (f, force_p, inhibit_hairy_id_p);
3406
3407 /* Check window matrices for lost pointers. */
3408 IF_DEBUG (check_window_matrix_pointers (root_window));
3409 }
3410
3411 /* Reset flags indicating that a window should be updated. */
3412 set_window_update_flags (root_window, 0);
3413 return paused_p;
3414 }
3415
3416
3417 \f
3418 /************************************************************************
3419 Window-based updates
3420 ************************************************************************/
3421
3422 /* Perform updates in window tree rooted at W. FORCE_P non-zero means
3423 don't stop updating when input is pending. */
3424
3425 static int
3426 update_window_tree (w, force_p)
3427 struct window *w;
3428 int force_p;
3429 {
3430 int paused_p = 0;
3431
3432 while (w && !paused_p)
3433 {
3434 if (!NILP (w->hchild))
3435 paused_p |= update_window_tree (XWINDOW (w->hchild), force_p);
3436 else if (!NILP (w->vchild))
3437 paused_p |= update_window_tree (XWINDOW (w->vchild), force_p);
3438 else if (w->must_be_updated_p)
3439 paused_p |= update_window (w, force_p);
3440
3441 w = NILP (w->next) ? 0 : XWINDOW (w->next);
3442 }
3443
3444 return paused_p;
3445 }
3446
3447
3448 /* Update window W if its flag must_be_updated_p is non-zero. If
3449 FORCE_P is non-zero, don't stop updating if input is pending. */
3450
3451 void
3452 update_single_window (w, force_p)
3453 struct window *w;
3454 int force_p;
3455 {
3456 if (w->must_be_updated_p)
3457 {
3458 struct frame *f = XFRAME (WINDOW_FRAME (w));
3459
3460 /* Record that this is not a frame-based redisplay. */
3461 set_frame_matrix_frame (NULL);
3462
3463 /* Update W. */
3464 update_begin (f);
3465 update_window (w, force_p);
3466 update_end (f);
3467
3468 /* Reset flag in W. */
3469 w->must_be_updated_p = 0;
3470 }
3471 }
3472
3473
3474 /* Redraw lines from the current matrix of window W that are
3475 overlapped by other rows. YB is bottom-most y-position in W. */
3476
3477 static void
3478 redraw_overlapped_rows (w, yb)
3479 struct window *w;
3480 int yb;
3481 {
3482 int i, bottom_y;
3483 struct glyph_row *row;
3484
3485 /* If rows overlapping others have been changed, the rows being
3486 overlapped have to be redrawn. This won't draw lines that have
3487 already been drawn in update_window_line because overlapped_p in
3488 desired rows is 0, so after row assignment overlapped_p in
3489 current rows is 0. */
3490 for (i = 0; i < w->current_matrix->nrows; ++i)
3491 {
3492 row = w->current_matrix->rows + i;
3493
3494 if (!row->enabled_p)
3495 break;
3496 else if (row->mode_line_p)
3497 continue;
3498
3499 if (row->overlapped_p)
3500 {
3501 enum glyph_row_area area;
3502
3503 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
3504 {
3505 updated_row = row;
3506 updated_area = area;
3507 rif->cursor_to (i, 0, row->y, area == TEXT_AREA ? row->x : 0);
3508 if (row->used[area])
3509 rif->write_glyphs (row->glyphs[area], row->used[area]);
3510 rif->clear_end_of_line (-1);
3511 }
3512
3513 row->overlapped_p = 0;
3514 }
3515
3516 bottom_y = MATRIX_ROW_BOTTOM_Y (row);
3517 if (bottom_y >= yb)
3518 break;
3519 }
3520 }
3521
3522
3523 /* Redraw lines from the current matrix of window W that overlap
3524 others. YB is bottom-most y-position in W. */
3525
3526 static void
3527 redraw_overlapping_rows (w, yb)
3528 struct window *w;
3529 int yb;
3530 {
3531 int i, bottom_y;
3532 struct glyph_row *row;
3533
3534 for (i = 0; i < w->current_matrix->nrows; ++i)
3535 {
3536 row = w->current_matrix->rows + i;
3537
3538 if (!row->enabled_p)
3539 break;
3540 else if (row->mode_line_p)
3541 continue;
3542
3543 bottom_y = MATRIX_ROW_BOTTOM_Y (row);
3544
3545 if (row->overlapping_p && i > 0 && bottom_y < yb)
3546 {
3547 if (row->used[LEFT_MARGIN_AREA])
3548 rif->fix_overlapping_area (w, row, LEFT_MARGIN_AREA);
3549
3550 if (row->used[TEXT_AREA])
3551 rif->fix_overlapping_area (w, row, TEXT_AREA);
3552
3553 if (row->used[RIGHT_MARGIN_AREA])
3554 rif->fix_overlapping_area (w, row, RIGHT_MARGIN_AREA);
3555
3556 /* Record in neighbor rows that ROW overwrites part of their
3557 display. */
3558 if (row->phys_ascent > row->ascent && i > 0)
3559 MATRIX_ROW (w->current_matrix, i - 1)->overlapped_p = 1;
3560 if ((row->phys_height - row->phys_ascent
3561 > row->height - row->ascent)
3562 && bottom_y < yb)
3563 MATRIX_ROW (w->current_matrix, i + 1)->overlapped_p = 1;
3564 }
3565
3566 if (bottom_y >= yb)
3567 break;
3568 }
3569 }
3570
3571
3572 /* Update display of window W. FORCE_P non-zero means that we should
3573 not stop when detecting pending input. */
3574
3575 static int
3576 update_window (w, force_p)
3577 struct window *w;
3578 int force_p;
3579 {
3580 struct glyph_matrix *desired_matrix = w->desired_matrix;
3581 int paused_p;
3582 int preempt_count = baud_rate / 2400 + 1;
3583 extern int input_pending;
3584 #if GLYPH_DEBUG
3585 struct frame *f = XFRAME (WINDOW_FRAME (w));
3586 extern struct frame *updating_frame;
3587 #endif
3588
3589 /* Check that W's frame doesn't have glyph matrices. */
3590 xassert (FRAME_WINDOW_P (f));
3591 xassert (updating_frame != NULL);
3592
3593 /* Check pending input the first time so that we can quickly return. */
3594 if (redisplay_dont_pause)
3595 force_p = 1;
3596 else
3597 detect_input_pending ();
3598
3599 /* If forced to complete the update, or if no input is pending, do
3600 the update. */
3601 if (force_p || !input_pending)
3602 {
3603 struct glyph_row *row, *end;
3604 struct glyph_row *mode_line_row;
3605 struct glyph_row *header_line_row = NULL;
3606 int yb, changed_p = 0;
3607
3608 rif->update_window_begin_hook (w);
3609 yb = window_text_bottom_y (w);
3610
3611 /* If window has a top line, update it before everything else.
3612 Adjust y-positions of other rows by the top line height. */
3613 row = desired_matrix->rows;
3614 end = row + desired_matrix->nrows - 1;
3615 if (row->mode_line_p)
3616 header_line_row = row++;
3617
3618 /* Update the mode line, if necessary. */
3619 mode_line_row = MATRIX_MODE_LINE_ROW (desired_matrix);
3620 if (mode_line_row->mode_line_p && mode_line_row->enabled_p)
3621 {
3622 mode_line_row->y = yb;
3623 update_window_line (w, MATRIX_ROW_VPOS (mode_line_row,
3624 desired_matrix));
3625 changed_p = 1;
3626 }
3627
3628 /* Find first enabled row. Optimizations in redisplay_internal
3629 may lead to an update with only one row enabled. There may
3630 be also completely empty matrices. */
3631 while (row < end && !row->enabled_p)
3632 ++row;
3633
3634 /* Try reusing part of the display by inserting/deleting lines. */
3635 if (row < end && !desired_matrix->no_scrolling_p)
3636 {
3637 int rc = scrolling_window (w, header_line_row != NULL);
3638 if (rc < 0)
3639 {
3640 /* All rows were found to be equal. */
3641 paused_p = 0;
3642 goto set_cursor;
3643 }
3644 else if (rc > 0)
3645 force_p = 1;
3646 changed_p = 1;
3647 }
3648
3649 /* Update the top mode line after scrolling because a new top
3650 line would otherwise overwrite lines at the top of the window
3651 that can be scrolled. */
3652 if (header_line_row && header_line_row->enabled_p)
3653 {
3654 header_line_row->y = 0;
3655 update_window_line (w, 0);
3656 changed_p = 1;
3657 }
3658
3659 /* Update the rest of the lines. */
3660 for (; row < end && (force_p || !input_pending); ++row)
3661 if (row->enabled_p
3662 /* A row can be completely invisible in case a desired
3663 matrix was built with a vscroll and then
3664 make_cursor_line_fully_visible shifts the matrix. */
3665 && row->visible_height > 0)
3666 {
3667 int vpos = MATRIX_ROW_VPOS (row, desired_matrix);
3668 int i;
3669
3670 /* We'll Have to play a little bit with when to
3671 detect_input_pending. If it's done too often,
3672 scrolling large windows with repeated scroll-up
3673 commands will too quickly pause redisplay. */
3674 if (!force_p && vpos % preempt_count == 0)
3675 detect_input_pending ();
3676
3677 changed_p |= update_window_line (w, vpos);
3678
3679 /* Mark all rows below the last visible one in the current
3680 matrix as invalid. This is necessary because of
3681 variable line heights. Consider the case of three
3682 successive redisplays, where the first displays 5
3683 lines, the second 3 lines, and the third 5 lines again.
3684 If the second redisplay wouldn't mark rows in the
3685 current matrix invalid, the third redisplay might be
3686 tempted to optimize redisplay based on lines displayed
3687 in the first redisplay. */
3688 if (MATRIX_ROW_BOTTOM_Y (row) >= yb)
3689 for (i = vpos + 1; i < w->current_matrix->nrows - 1; ++i)
3690 MATRIX_ROW (w->current_matrix, i)->enabled_p = 0;
3691 }
3692
3693 /* Was display preempted? */
3694 paused_p = row < end;
3695
3696 set_cursor:
3697
3698 /* Fix the appearance of overlapping(overlapped rows. */
3699 if (rif->fix_overlapping_area
3700 && !w->pseudo_window_p
3701 && changed_p
3702 && !paused_p)
3703 {
3704 redraw_overlapped_rows (w, yb);
3705 redraw_overlapping_rows (w, yb);
3706 }
3707
3708 if (!paused_p && !w->pseudo_window_p)
3709 {
3710 /* Make cursor visible at cursor position of W. */
3711 set_window_cursor_after_update (w);
3712
3713 #if 0
3714 /* Check that current matrix invariants are satisfied. This
3715 is for debugging only. See the comment around
3716 check_matrix_invariants. */
3717 IF_DEBUG (check_matrix_invariants (w));
3718 #endif
3719 }
3720
3721 #if GLYPH_DEBUG
3722 /* Remember the redisplay method used to display the matrix. */
3723 strcpy (w->current_matrix->method, w->desired_matrix->method);
3724 #endif
3725
3726 /* End of update of window W. */
3727 rif->update_window_end_hook (w, 1);
3728
3729 }
3730 else
3731 paused_p = 1;
3732
3733 clear_glyph_matrix (desired_matrix);
3734
3735 return paused_p;
3736 }
3737
3738
3739 /* Update the display of area AREA in window W, row number VPOS.
3740 AREA can be either LEFT_MARGIN_AREA or RIGHT_MARGIN_AREA. */
3741
3742 static void
3743 update_marginal_area (w, area, vpos)
3744 struct window *w;
3745 int area, vpos;
3746 {
3747 struct glyph_row *desired_row = MATRIX_ROW (w->desired_matrix, vpos);
3748
3749 /* Let functions in xterm.c know what area subsequent X positions
3750 will be relative to. */
3751 updated_area = area;
3752
3753 /* Set cursor to start of glyphs, write them, and clear to the end
3754 of the area. I don't think that something more sophisticated is
3755 necessary here, since marginal areas will not be the default. */
3756 rif->cursor_to (vpos, 0, desired_row->y, 0);
3757 if (desired_row->used[area])
3758 rif->write_glyphs (desired_row->glyphs[area], desired_row->used[area]);
3759 rif->clear_end_of_line (-1);
3760 }
3761
3762
3763 /* Update the display of the text area of row VPOS in window W.
3764 Value is non-zero if display has changed. */
3765
3766 static int
3767 update_text_area (w, vpos)
3768 struct window *w;
3769 int vpos;
3770 {
3771 struct glyph_row *current_row = MATRIX_ROW (w->current_matrix, vpos);
3772 struct glyph_row *desired_row = MATRIX_ROW (w->desired_matrix, vpos);
3773 int changed_p = 0;
3774
3775 /* Let functions in xterm.c know what area subsequent X positions
3776 will be relative to. */
3777 updated_area = TEXT_AREA;
3778
3779 /* If rows are at different X or Y, or rows have different height,
3780 or the current row is marked invalid, write the entire line. */
3781 if (!current_row->enabled_p
3782 || desired_row->y != current_row->y
3783 || desired_row->ascent != current_row->ascent
3784 || desired_row->phys_ascent != current_row->phys_ascent
3785 || desired_row->phys_height != current_row->phys_height
3786 || desired_row->visible_height != current_row->visible_height
3787 || current_row->overlapped_p
3788 || current_row->x != desired_row->x)
3789 {
3790 rif->cursor_to (vpos, 0, desired_row->y, desired_row->x);
3791
3792 if (desired_row->used[TEXT_AREA])
3793 rif->write_glyphs (desired_row->glyphs[TEXT_AREA],
3794 desired_row->used[TEXT_AREA]);
3795
3796 /* Clear to end of window. */
3797 rif->clear_end_of_line (-1);
3798 changed_p = 1;
3799 }
3800 else
3801 {
3802 int stop, i, x;
3803 struct glyph *current_glyph = current_row->glyphs[TEXT_AREA];
3804 struct glyph *desired_glyph = desired_row->glyphs[TEXT_AREA];
3805
3806 /* If the desired row extends its face to the text area end,
3807 make sure we write at least one glyph, so that the face
3808 extension actually takes place. */
3809 int desired_stop_pos = (desired_row->used[TEXT_AREA]
3810 - (MATRIX_ROW_EXTENDS_FACE_P (desired_row)
3811 ? 1 : 0));
3812
3813 stop = min (current_row->used[TEXT_AREA], desired_stop_pos);
3814 i = 0;
3815 x = desired_row->x;
3816
3817 while (i < stop)
3818 {
3819 /* Skip over glyphs that both rows have in common. These
3820 don't have to be written. */
3821 while (i < stop
3822 && GLYPH_EQUAL_P (desired_glyph, current_glyph))
3823 {
3824 x += desired_glyph->pixel_width;
3825 ++desired_glyph, ++current_glyph, ++i;
3826 }
3827
3828 /* Consider the case that the current row contains "xxx ppp
3829 ggg" in italic Courier font, and the desired row is "xxx
3830 ggg". The character `p' has lbearing, `g' has not. The
3831 loop above will stop in front of the first `p' in the
3832 current row. If we would start writing glyphs there, we
3833 wouldn't erase the lbearing of the `p'. The rest of the
3834 lbearing problem is then taken care of by x_draw_glyphs. */
3835 if (current_row->contains_overlapping_glyphs_p
3836 && i > 0
3837 && i < current_row->used[TEXT_AREA]
3838 && current_row->used[TEXT_AREA] != desired_row->used[TEXT_AREA])
3839 {
3840 int left, right;
3841 rif->get_glyph_overhangs (current_glyph, XFRAME (w->frame),
3842 &left, &right);
3843 while (left > 0 && i > 0)
3844 {
3845 --i, --desired_glyph, --current_glyph;
3846 x -= desired_glyph->pixel_width;
3847 left -= desired_glyph->pixel_width;
3848 }
3849 }
3850
3851 /* Try to avoid writing the entire rest of the desired row
3852 by looking for a resync point. This mainly prevents
3853 mode line flickering in the case the mode line is in
3854 fixed-pitch font, which it usually will be. */
3855 if (i < desired_row->used[TEXT_AREA])
3856 {
3857 int start_x = x, start_hpos = i;
3858 struct glyph *start = desired_glyph;
3859 int current_x = x;
3860
3861 /* Find the next glyph that's equal again. */
3862 while (i < stop
3863 && !GLYPH_EQUAL_P (desired_glyph, current_glyph)
3864 && x == current_x)
3865 {
3866 x += desired_glyph->pixel_width;
3867 current_x += current_glyph->pixel_width;
3868 ++desired_glyph, ++current_glyph, ++i;
3869 }
3870
3871 if (i == start_hpos || x != current_x)
3872 {
3873 i = start_hpos;
3874 x = start_x;
3875 desired_glyph = start;
3876 break;
3877 }
3878
3879 rif->cursor_to (vpos, start_hpos, desired_row->y, start_x);
3880 rif->write_glyphs (start, i - start_hpos);
3881 changed_p = 1;
3882 }
3883 }
3884
3885 /* Write the rest. */
3886 if (i < desired_row->used[TEXT_AREA])
3887 {
3888 rif->cursor_to (vpos, i, desired_row->y, x);
3889 rif->write_glyphs (desired_glyph, desired_row->used[TEXT_AREA] - i);
3890 changed_p = 1;
3891 }
3892
3893 /* Maybe clear to end of line. */
3894 if (MATRIX_ROW_EXTENDS_FACE_P (desired_row))
3895 {
3896 /* If new row extends to the end of the text area, nothing
3897 has to be cleared, if and only if we did a write_glyphs
3898 above. This is made sure by setting desired_stop_pos
3899 appropriately above. */
3900 xassert (i < desired_row->used[TEXT_AREA]);
3901 }
3902 else if (MATRIX_ROW_EXTENDS_FACE_P (current_row))
3903 {
3904 /* If old row extends to the end of the text area, clear. */
3905 if (i >= desired_row->used[TEXT_AREA])
3906 rif->cursor_to (vpos, i, desired_row->y,
3907 desired_row->x + desired_row->pixel_width);
3908 rif->clear_end_of_line (-1);
3909 changed_p = 1;
3910 }
3911 else if (desired_row->pixel_width < current_row->pixel_width)
3912 {
3913 /* Otherwise clear to the end of the old row. Everything
3914 after that position should be clear already. */
3915 int x;
3916
3917 if (i >= desired_row->used[TEXT_AREA])
3918 rif->cursor_to (vpos, i, desired_row->y,
3919 desired_row->x + desired_row->pixel_width);
3920
3921 /* If cursor is displayed at the end of the line, make sure
3922 it's cleared. Nowadays we don't have a phys_cursor_glyph
3923 with which to erase the cursor (because this method
3924 doesn't work with lbearing/rbearing), so we must do it
3925 this way. */
3926 if (vpos == w->phys_cursor.vpos
3927 && w->phys_cursor.hpos >= desired_row->used[TEXT_AREA])
3928 {
3929 w->phys_cursor_on_p = 0;
3930 x = -1;
3931 }
3932 else
3933 x = current_row->x + current_row->pixel_width;
3934 rif->clear_end_of_line (x);
3935 changed_p = 1;
3936 }
3937 }
3938
3939 return changed_p;
3940 }
3941
3942
3943 /* Update row VPOS in window W. Value is non-zero if display has been
3944 changed. */
3945
3946 static int
3947 update_window_line (w, vpos)
3948 struct window *w;
3949 int vpos;
3950 {
3951 struct glyph_row *current_row = MATRIX_ROW (w->current_matrix, vpos);
3952 struct glyph_row *desired_row = MATRIX_ROW (w->desired_matrix, vpos);
3953 int changed_p = 0;
3954
3955 xassert (desired_row->enabled_p);
3956
3957 /* Set the row being updated. This is important to let xterm.c
3958 know what line height values are in effect. */
3959 updated_row = desired_row;
3960
3961 /* Update display of the left margin area, if there is one. */
3962 if (!desired_row->full_width_p
3963 && !NILP (w->left_margin_width))
3964 {
3965 update_marginal_area (w, LEFT_MARGIN_AREA, vpos);
3966 changed_p = 1;
3967 }
3968
3969 /* Update the display of the text area. */
3970 changed_p |= update_text_area (w, vpos);
3971
3972 /* Update display of the right margin area, if there is one. */
3973 if (!desired_row->full_width_p
3974 && !NILP (w->right_margin_width))
3975 {
3976 changed_p = 1;
3977 update_marginal_area (w, RIGHT_MARGIN_AREA, vpos);
3978 }
3979
3980 /* Draw truncation marks etc. */
3981 if (!current_row->enabled_p
3982 || desired_row->y != current_row->y
3983 || desired_row->visible_height != current_row->visible_height
3984 || desired_row->overlay_arrow_p != current_row->overlay_arrow_p
3985 || desired_row->truncated_on_left_p != current_row->truncated_on_left_p
3986 || desired_row->truncated_on_right_p != current_row->truncated_on_right_p
3987 || desired_row->continued_p != current_row->continued_p
3988 || desired_row->mode_line_p != current_row->mode_line_p
3989 || (desired_row->indicate_empty_line_p
3990 != current_row->indicate_empty_line_p)
3991 || (MATRIX_ROW_CONTINUATION_LINE_P (desired_row)
3992 != MATRIX_ROW_CONTINUATION_LINE_P (current_row)))
3993 rif->after_update_window_line_hook (desired_row);
3994
3995 /* Update current_row from desired_row. */
3996 make_current (w->desired_matrix, w->current_matrix, vpos);
3997 updated_row = NULL;
3998 return changed_p;
3999 }
4000
4001
4002 /* Set the cursor after an update of window W. This function may only
4003 be called from update_window. */
4004
4005 static void
4006 set_window_cursor_after_update (w)
4007 struct window *w;
4008 {
4009 struct frame *f = XFRAME (w->frame);
4010 int cx, cy, vpos, hpos;
4011
4012 /* Not intended for frame matrix updates. */
4013 xassert (FRAME_WINDOW_P (f));
4014
4015 if (cursor_in_echo_area
4016 && !NILP (echo_area_buffer[0])
4017 /* If we are showing a message instead of the mini-buffer,
4018 show the cursor for the message instead. */
4019 && XWINDOW (minibuf_window) == w
4020 && EQ (minibuf_window, echo_area_window)
4021 /* These cases apply only to the frame that contains
4022 the active mini-buffer window. */
4023 && FRAME_HAS_MINIBUF_P (f)
4024 && EQ (FRAME_MINIBUF_WINDOW (f), echo_area_window))
4025 {
4026 cx = cy = vpos = hpos = 0;
4027
4028 if (cursor_in_echo_area >= 0)
4029 {
4030 /* If the mini-buffer is several lines high, find the last
4031 line that has any text on it. Note: either all lines
4032 are enabled or none. Otherwise we wouldn't be able to
4033 determine Y. */
4034 struct glyph_row *row, *last_row;
4035 struct glyph *glyph;
4036 int yb = window_text_bottom_y (w);
4037
4038 last_row = NULL;
4039 for (row = MATRIX_ROW (w->current_matrix, 0);
4040 row->enabled_p;
4041 ++row)
4042 {
4043 if (row->used[TEXT_AREA]
4044 && row->glyphs[TEXT_AREA][0].charpos >= 0)
4045 last_row = row;
4046
4047 if (MATRIX_ROW_BOTTOM_Y (row) >= yb)
4048 break;
4049 }
4050
4051 if (last_row)
4052 {
4053 struct glyph *start = row->glyphs[TEXT_AREA];
4054 struct glyph *last = start + row->used[TEXT_AREA] - 1;
4055
4056 while (last > start && last->charpos < 0)
4057 --last;
4058
4059 for (glyph = start; glyph < last; ++glyph)
4060 {
4061 cx += glyph->pixel_width;
4062 ++hpos;
4063 }
4064
4065 cy = last_row->y;
4066 vpos = MATRIX_ROW_VPOS (last_row, w->current_matrix);
4067 }
4068 }
4069 }
4070 else
4071 {
4072 cx = w->cursor.x;
4073 cy = w->cursor.y;
4074 hpos = w->cursor.hpos;
4075 vpos = w->cursor.vpos;
4076 }
4077
4078 /* Window cursor can be out of sync for horizontally split windows. */
4079 hpos = max (0, hpos);
4080 hpos = min (w->current_matrix->matrix_w - 1, hpos);
4081 vpos = max (0, vpos);
4082 vpos = min (w->current_matrix->nrows - 1, vpos);
4083 rif->cursor_to (vpos, hpos, cy, cx);
4084 }
4085
4086
4087 /* Try to reuse part of the current display of W by scrolling lines.
4088 HEADER_LINE_P non-zero means W has a top mode line.
4089
4090 The algorithm is taken from Communications of the ACM, Apr78 "A
4091 Technique for Isolating Differences Between Files." It should take
4092 O(N) time.
4093
4094 A short outline of the steps of the algorithm
4095
4096 1. Skip lines equal at the start and end of both matrices.
4097
4098 2. Enter rows in the current and desired matrix into a symbol
4099 table, counting how often they appear in both matrices.
4100
4101 3. Rows that appear exactly once in both matrices serve as anchors,
4102 i.e. we assume that such lines are likely to have been moved.
4103
4104 4. Starting from anchor lines, extend regions to be scrolled both
4105 forward and backward.
4106
4107 Value is
4108
4109 -1 if all rows were found to be equal.
4110 0 to indicate that we did not scroll the display, or
4111 1 if we did scroll. */
4112
4113 static int
4114 scrolling_window (w, header_line_p)
4115 struct window *w;
4116 int header_line_p;
4117 {
4118 struct symbol
4119 {
4120 /* Number of occurrences of this line in old and new matrix. */
4121 short old_uses, new_uses;
4122
4123 /* Vpos of line in new matrix. */
4124 short new_line_number;
4125
4126 /* The line itself. */
4127 struct glyph_row *row;
4128
4129 /* Hash collision chain. */
4130 struct symbol *next;
4131 };
4132
4133 int SYMBOL_TABLE_SIZE = 101;
4134 struct symbol **table;
4135 struct symbol **old_line_syms, **new_line_syms;
4136 int i, j, first_old, first_new, last_old, last_new;
4137 struct symbol *sym;
4138 struct run **runs;
4139 int nruns;
4140 struct glyph_matrix *desired_matrix = w->desired_matrix;
4141 struct glyph_matrix *current_matrix = w->current_matrix;
4142 int yb = window_text_bottom_y (w);
4143
4144 /* Skip over rows equal at the start. */
4145 i = header_line_p ? 1 : 0;
4146 while (i < current_matrix->nrows - 1
4147 && MATRIX_ROW_ENABLED_P (current_matrix, i)
4148 && MATRIX_ROW_ENABLED_P (desired_matrix, i)
4149 && MATRIX_ROW_BOTTOM_Y (MATRIX_ROW (desired_matrix, i)) < yb
4150 && MATRIX_ROW_BOTTOM_Y (MATRIX_ROW (current_matrix, i)) < yb
4151 && row_equal_p (w,
4152 MATRIX_ROW (desired_matrix, i),
4153 MATRIX_ROW (current_matrix, i)))
4154 {
4155 assign_row (MATRIX_ROW (current_matrix, i),
4156 MATRIX_ROW (desired_matrix, i));
4157 MATRIX_ROW (desired_matrix, i)->enabled_p = 0;
4158 ++i;
4159 }
4160
4161 /* Give up if some rows in the desired matrix are not enabled. */
4162 if (!MATRIX_ROW (desired_matrix, i)->enabled_p)
4163 return -1;
4164
4165 first_old = first_new = i;
4166
4167 /* Set last_new to the index + 1 of the last enabled row in the
4168 desired matrix. */
4169 i = first_new + 1;
4170 while (i < desired_matrix->nrows - 1
4171 && MATRIX_ROW (desired_matrix, i)->enabled_p
4172 && MATRIX_ROW_BOTTOM_Y (MATRIX_ROW (desired_matrix, i)) < yb)
4173 ++i;
4174
4175 if (!MATRIX_ROW (desired_matrix, i)->enabled_p)
4176 return 0;
4177
4178 last_new = i;
4179
4180 /* Set last_old to the index + 1 of the last enabled row in the
4181 current matrix. We don't look at the enabled flag here because
4182 we plan to reuse part of the display even if other parts are
4183 disabled. */
4184 i = first_old + 1;
4185 while (i < current_matrix->nrows - 1
4186 && MATRIX_ROW_BOTTOM_Y (MATRIX_ROW (current_matrix, i)) < yb)
4187 ++i;
4188 last_old = i;
4189
4190 /* Skip over rows equal at the bottom. */
4191 i = last_new;
4192 j = last_old;
4193 while (i - 1 > first_new
4194 && j - 1 > first_old
4195 && MATRIX_ROW (current_matrix, i - 1)->enabled_p
4196 && (MATRIX_ROW (current_matrix, i - 1)->y
4197 == MATRIX_ROW (desired_matrix, j - 1)->y)
4198 && row_equal_p (w,
4199 MATRIX_ROW (desired_matrix, i - 1),
4200 MATRIX_ROW (current_matrix, j - 1)))
4201 --i, --j;
4202 last_new = i;
4203 last_old = j;
4204
4205 /* Nothing to do if all rows are equal. */
4206 if (last_new == first_new)
4207 return 0;
4208
4209 /* Allocate a hash table in which all rows will be inserted. */
4210 table = (struct symbol **) alloca (SYMBOL_TABLE_SIZE * sizeof *table);
4211 bzero (table, SYMBOL_TABLE_SIZE * sizeof *table);
4212
4213 /* For each row in the current matrix, record the symbol belonging
4214 to the row in OLD_LINE_SYMS. */
4215 old_line_syms = (struct symbol **) alloca (current_matrix->nrows
4216 * sizeof *old_line_syms);
4217 new_line_syms = (struct symbol **) alloca (desired_matrix->nrows
4218 * sizeof *new_line_syms);
4219
4220 #define ADDSYM(ROW) \
4221 do \
4222 { \
4223 struct glyph_row *row_ = (ROW); \
4224 int i_ = row_->hash % SYMBOL_TABLE_SIZE; \
4225 sym = table[i_]; \
4226 while (sym && !row_equal_p (w, sym->row, row_)) \
4227 sym = sym->next; \
4228 if (sym == NULL) \
4229 { \
4230 sym = (struct symbol *) alloca (sizeof *sym); \
4231 sym->row = row_; \
4232 sym->old_uses = sym->new_uses = 0; \
4233 sym->next = table[i_]; \
4234 table[i_] = sym; \
4235 } \
4236 } \
4237 while (0)
4238
4239 /* Add current rows to the symbol table. */
4240 for (i = first_old; i < last_old; ++i)
4241 {
4242 if (MATRIX_ROW (current_matrix, i)->enabled_p)
4243 {
4244 ADDSYM (MATRIX_ROW (current_matrix, i));
4245 old_line_syms[i] = sym;
4246 ++sym->old_uses;
4247 }
4248 else
4249 old_line_syms[i] = NULL;
4250 }
4251
4252 /* Add desired rows to the symbol table. */
4253 for (i = first_new; i < last_new; ++i)
4254 {
4255 xassert (MATRIX_ROW_ENABLED_P (desired_matrix, i));
4256 ADDSYM (MATRIX_ROW (desired_matrix, i));
4257 ++sym->new_uses;
4258 new_line_syms[i] = sym;
4259 sym->new_line_number = i;
4260 }
4261
4262 #undef ADDSYM
4263
4264 /* Record in runs which moves were found, ordered by pixel
4265 height of copied areas. */
4266 nruns = 0;
4267 runs = (struct run **) alloca (desired_matrix->nrows * sizeof *runs);
4268
4269 /* Identify moves based on lines that are unique and equal
4270 in both matrices. */
4271 for (i = first_old; i < last_old;)
4272 if (old_line_syms[i]
4273 && old_line_syms[i]->old_uses == 1
4274 && old_line_syms[i]->new_uses == 1)
4275 {
4276 int j, k;
4277 int new_line = old_line_syms[i]->new_line_number;
4278 struct run *run = (struct run *) alloca (sizeof *run);
4279
4280 /* Record move. */
4281 run->current_vpos = i;
4282 run->current_y = MATRIX_ROW (current_matrix, i)->y;
4283 run->desired_vpos = new_line;
4284 run->desired_y = MATRIX_ROW (desired_matrix, new_line)->y;
4285 run->nrows = 1;
4286 run->height = MATRIX_ROW (current_matrix, i)->height;
4287
4288 /* Extend backward. */
4289 j = i - 1;
4290 k = new_line - 1;
4291 while (j > first_old
4292 && k > first_new
4293 && old_line_syms[j] == new_line_syms[k])
4294 {
4295 int h = MATRIX_ROW (current_matrix, j)->height;
4296 --run->current_vpos;
4297 --run->desired_vpos;
4298 ++run->nrows;
4299 run->height += h;
4300 run->desired_y -= h;
4301 run->current_y -= h;
4302 --j, --k;
4303 }
4304
4305 /* Extend forward. */
4306 j = i + 1;
4307 k = new_line + 1;
4308 while (j < last_old
4309 && k < last_new
4310 && old_line_syms[j] == new_line_syms[k])
4311 {
4312 int h = MATRIX_ROW (current_matrix, j)->height;
4313 ++run->nrows;
4314 run->height += h;
4315 ++j, ++k;
4316 }
4317
4318 /* Insert run into list of all runs. Order runs by copied
4319 pixel lines. Note that we record runs that don't have to
4320 be copied because they are already in place. This is done
4321 because we can avoid calling update_window_line in this
4322 case. */
4323 for (j = 0; j < nruns && runs[j]->height > run->height; ++j)
4324 ;
4325 for (k = nruns; k >= j; --k)
4326 runs[k] = runs[k - 1];
4327 runs[j] = run;
4328 ++nruns;
4329
4330 i += run->nrows;
4331 }
4332 else
4333 ++i;
4334
4335 /* Do the moves. Do it in a way that we don't overwrite something
4336 we want to copy later on. This is not solvable in general
4337 because there is only one display and we don't have a way to
4338 exchange areas on this display. Example:
4339
4340 +-----------+ +-----------+
4341 | A | | B |
4342 +-----------+ --> +-----------+
4343 | B | | A |
4344 +-----------+ +-----------+
4345
4346 Instead, prefer bigger moves, and invalidate moves that would
4347 copy from where we copied to. */
4348
4349 for (i = 0; i < nruns; ++i)
4350 if (runs[i]->nrows > 0)
4351 {
4352 struct run *r = runs[i];
4353
4354 /* Copy on the display. */
4355 if (r->current_y != r->desired_y)
4356 {
4357 rif->scroll_run_hook (w, r);
4358
4359 /* Invalidate runs that copy from where we copied to. */
4360 for (j = i + 1; j < nruns; ++j)
4361 {
4362 struct run *p = runs[j];
4363
4364 if ((p->current_y >= r->desired_y
4365 && p->current_y < r->desired_y + r->height)
4366 || (p->current_y + p->height >= r->desired_y
4367 && (p->current_y + p->height
4368 < r->desired_y + r->height)))
4369 p->nrows = 0;
4370 }
4371 }
4372
4373 /* Assign matrix rows. */
4374 for (j = 0; j < r->nrows; ++j)
4375 {
4376 struct glyph_row *from, *to;
4377 int to_overlapped_p;
4378
4379 to = MATRIX_ROW (current_matrix, r->desired_vpos + j);
4380 to_overlapped_p = to->overlapped_p;
4381 from = MATRIX_ROW (desired_matrix, r->desired_vpos + j);
4382 assign_row (to, from);
4383 to->enabled_p = 1, from->enabled_p = 0;
4384 to->overlapped_p = to_overlapped_p;
4385 }
4386 }
4387
4388 /* Value is non-zero to indicate that we scrolled the display. */
4389 return 1;
4390 }
4391
4392
4393 /* Set WINDOW->must_be_updated_p TO ON_P for all windows WINDOW in the
4394 window tree rooted at W. */
4395
4396 void
4397 set_window_update_flags (w, on_p)
4398 struct window *w;
4399 int on_p;
4400 {
4401 while (w)
4402 {
4403 if (!NILP (w->hchild))
4404 set_window_update_flags (XWINDOW (w->hchild), on_p);
4405 else if (!NILP (w->vchild))
4406 set_window_update_flags (XWINDOW (w->vchild), on_p);
4407 else
4408 w->must_be_updated_p = on_p;
4409
4410 w = NILP (w->next) ? 0 : XWINDOW (w->next);
4411 }
4412 }
4413
4414
4415 \f
4416 /************************************************************************
4417 Frame-Based Updates
4418 ************************************************************************/
4419
4420 /* Update the desired frame matrix of frame F.
4421
4422 FORCE_P non-zero means that the update should not be stopped by
4423 pending input. INHIBIT_HAIRY_ID_P non-zero means that scrolling
4424 should not be tried.
4425
4426 Value is non-zero if update was stopped due to pending input. */
4427
4428 static int
4429 update_frame_1 (f, force_p, inhibit_id_p)
4430 struct frame *f;
4431 int force_p;
4432 int inhibit_id_p;
4433 {
4434 /* Frame matrices to work on. */
4435 struct glyph_matrix *current_matrix = f->current_matrix;
4436 struct glyph_matrix *desired_matrix = f->desired_matrix;
4437 int i;
4438 int pause;
4439 int preempt_count = baud_rate / 2400 + 1;
4440 extern int input_pending;
4441
4442 xassert (current_matrix && desired_matrix);
4443
4444 if (baud_rate != FRAME_COST_BAUD_RATE (f))
4445 calculate_costs (f);
4446
4447 if (preempt_count <= 0)
4448 preempt_count = 1;
4449
4450 detect_input_pending ();
4451 if (input_pending && !force_p)
4452 {
4453 pause = 1;
4454 goto do_pause;
4455 }
4456
4457 update_begin (f);
4458
4459 /* If we cannot insert/delete lines, it's no use trying it. */
4460 if (!line_ins_del_ok)
4461 inhibit_id_p = 1;
4462
4463 /* See if any of the desired lines are enabled; don't compute for
4464 i/d line if just want cursor motion. */
4465 for (i = 0; i < desired_matrix->nrows; i++)
4466 if (MATRIX_ROW_ENABLED_P (desired_matrix, i))
4467 break;
4468
4469 /* Try doing i/d line, if not yet inhibited. */
4470 if (!inhibit_id_p && i < desired_matrix->nrows)
4471 force_p |= scrolling (f);
4472
4473 /* Update the individual lines as needed. Do bottom line first. */
4474 if (MATRIX_ROW_ENABLED_P (desired_matrix, desired_matrix->nrows - 1))
4475 update_frame_line (f, desired_matrix->nrows - 1);
4476
4477 /* Now update the rest of the lines. */
4478 for (i = 0; i < desired_matrix->nrows - 1 && (force_p || !input_pending); i++)
4479 {
4480 if (MATRIX_ROW_ENABLED_P (desired_matrix, i))
4481 {
4482 if (FRAME_TERMCAP_P (f))
4483 {
4484 /* Flush out every so many lines.
4485 Also flush out if likely to have more than 1k buffered
4486 otherwise. I'm told that some telnet connections get
4487 really screwed by more than 1k output at once. */
4488 int outq = PENDING_OUTPUT_COUNT (stdout);
4489 if (outq > 900
4490 || (outq > 20 && ((i - 1) % preempt_count == 0)))
4491 {
4492 fflush (stdout);
4493 if (preempt_count == 1)
4494 {
4495 #ifdef EMACS_OUTQSIZE
4496 if (EMACS_OUTQSIZE (0, &outq) < 0)
4497 /* Probably not a tty. Ignore the error and reset
4498 * the outq count. */
4499 outq = PENDING_OUTPUT_COUNT (stdout);
4500 #endif
4501 outq *= 10;
4502 if (baud_rate <= outq && baud_rate > 0)
4503 sleep (outq / baud_rate);
4504 }
4505 }
4506 }
4507
4508 if ((i - 1) % preempt_count == 0)
4509 detect_input_pending ();
4510
4511 update_frame_line (f, i);
4512 }
4513 }
4514
4515 pause = (i < FRAME_HEIGHT (f) - 1) ? i : 0;
4516
4517 /* Now just clean up termcap drivers and set cursor, etc. */
4518 if (!pause)
4519 {
4520 if ((cursor_in_echo_area
4521 /* If we are showing a message instead of the mini-buffer,
4522 show the cursor for the message instead of for the
4523 (now hidden) mini-buffer contents. */
4524 || (EQ (minibuf_window, selected_window)
4525 && EQ (minibuf_window, echo_area_window)
4526 && !NILP (echo_area_buffer[0])))
4527 /* These cases apply only to the frame that contains
4528 the active mini-buffer window. */
4529 && FRAME_HAS_MINIBUF_P (f)
4530 && EQ (FRAME_MINIBUF_WINDOW (f), echo_area_window))
4531 {
4532 int top = XINT (XWINDOW (FRAME_MINIBUF_WINDOW (f))->top);
4533 int row, col;
4534
4535 if (cursor_in_echo_area < 0)
4536 {
4537 /* Negative value of cursor_in_echo_area means put
4538 cursor at beginning of line. */
4539 row = top;
4540 col = 0;
4541 }
4542 else
4543 {
4544 /* Positive value of cursor_in_echo_area means put
4545 cursor at the end of the prompt. If the mini-buffer
4546 is several lines high, find the last line that has
4547 any text on it. */
4548 row = FRAME_HEIGHT (f);
4549 do
4550 {
4551 --row;
4552 col = 0;
4553
4554 if (MATRIX_ROW_ENABLED_P (current_matrix, row))
4555 {
4556 /* Frame rows are filled up with spaces that
4557 must be ignored here. */
4558 struct glyph_row *r = MATRIX_ROW (current_matrix,
4559 row);
4560 struct glyph *start = r->glyphs[TEXT_AREA];
4561 struct glyph *last = start + r->used[TEXT_AREA];
4562
4563 while (last > start
4564 && (last - 1)->charpos < 0)
4565 --last;
4566
4567 col = last - start;
4568 }
4569 }
4570 while (row > top && col == 0);
4571
4572 /* Make sure COL is not out of range. */
4573 if (col >= FRAME_CURSOR_X_LIMIT (f))
4574 {
4575 /* If we have another row, advance cursor into it. */
4576 if (row < FRAME_HEIGHT (f) - 1)
4577 {
4578 col = FRAME_LEFT_SCROLL_BAR_WIDTH (f);
4579 row++;
4580 }
4581 /* Otherwise move it back in range. */
4582 else
4583 col = FRAME_CURSOR_X_LIMIT (f) - 1;
4584 }
4585 }
4586
4587 cursor_to (row, col);
4588 }
4589 else
4590 {
4591 /* We have only one cursor on terminal frames. Use it to
4592 display the cursor of the selected window. */
4593 struct window *w = XWINDOW (FRAME_SELECTED_WINDOW (f));
4594 if (w->cursor.vpos >= 0)
4595 {
4596 int x = WINDOW_TO_FRAME_HPOS (w, w->cursor.hpos);
4597 int y = WINDOW_TO_FRAME_VPOS (w, w->cursor.vpos);
4598
4599 if (INTEGERP (w->left_margin_width))
4600 x += XFASTINT (w->left_margin_width);
4601
4602 /* x = max (min (x, FRAME_WINDOW_WIDTH (f) - 1), 0); */
4603 cursor_to (y, x);
4604 }
4605 }
4606 }
4607
4608 update_end (f);
4609
4610 if (termscript)
4611 fflush (termscript);
4612 fflush (stdout);
4613
4614 do_pause:
4615
4616 display_completed = !pause;
4617 clear_desired_matrices (f);
4618 return pause;
4619 }
4620
4621
4622 /* Do line insertions/deletions on frame F for frame-based redisplay. */
4623
4624 int
4625 scrolling (frame)
4626 struct frame *frame;
4627 {
4628 int unchanged_at_top, unchanged_at_bottom;
4629 int window_size;
4630 int changed_lines;
4631 int *old_hash = (int *) alloca (FRAME_HEIGHT (frame) * sizeof (int));
4632 int *new_hash = (int *) alloca (FRAME_HEIGHT (frame) * sizeof (int));
4633 int *draw_cost = (int *) alloca (FRAME_HEIGHT (frame) * sizeof (int));
4634 int *old_draw_cost = (int *) alloca (FRAME_HEIGHT (frame) * sizeof (int));
4635 register int i;
4636 int free_at_end_vpos = FRAME_HEIGHT (frame);
4637 struct glyph_matrix *current_matrix = frame->current_matrix;
4638 struct glyph_matrix *desired_matrix = frame->desired_matrix;
4639
4640 if (!current_matrix)
4641 abort ();
4642
4643 /* Compute hash codes of all the lines. Also calculate number of
4644 changed lines, number of unchanged lines at the beginning, and
4645 number of unchanged lines at the end. */
4646 changed_lines = 0;
4647 unchanged_at_top = 0;
4648 unchanged_at_bottom = FRAME_HEIGHT (frame);
4649 for (i = 0; i < FRAME_HEIGHT (frame); i++)
4650 {
4651 /* Give up on this scrolling if some old lines are not enabled. */
4652 if (!MATRIX_ROW_ENABLED_P (current_matrix, i))
4653 return 0;
4654 old_hash[i] = line_hash_code (MATRIX_ROW (current_matrix, i));
4655 if (! MATRIX_ROW_ENABLED_P (desired_matrix, i))
4656 {
4657 /* This line cannot be redrawn, so don't let scrolling mess it. */
4658 new_hash[i] = old_hash[i];
4659 #define INFINITY 1000000 /* Taken from scroll.c */
4660 draw_cost[i] = INFINITY;
4661 }
4662 else
4663 {
4664 new_hash[i] = line_hash_code (MATRIX_ROW (desired_matrix, i));
4665 draw_cost[i] = line_draw_cost (desired_matrix, i);
4666 }
4667
4668 if (old_hash[i] != new_hash[i])
4669 {
4670 changed_lines++;
4671 unchanged_at_bottom = FRAME_HEIGHT (frame) - i - 1;
4672 }
4673 else if (i == unchanged_at_top)
4674 unchanged_at_top++;
4675 old_draw_cost[i] = line_draw_cost (current_matrix, i);
4676 }
4677
4678 /* If changed lines are few, don't allow preemption, don't scroll. */
4679 if ((!scroll_region_ok && changed_lines < baud_rate / 2400)
4680 || unchanged_at_bottom == FRAME_HEIGHT (frame))
4681 return 1;
4682
4683 window_size = (FRAME_HEIGHT (frame) - unchanged_at_top
4684 - unchanged_at_bottom);
4685
4686 if (scroll_region_ok)
4687 free_at_end_vpos -= unchanged_at_bottom;
4688 else if (memory_below_frame)
4689 free_at_end_vpos = -1;
4690
4691 /* If large window, fast terminal and few lines in common between
4692 current frame and desired frame, don't bother with i/d calc. */
4693 if (!scroll_region_ok && window_size >= 18 && baud_rate > 2400
4694 && (window_size >=
4695 10 * scrolling_max_lines_saved (unchanged_at_top,
4696 FRAME_HEIGHT (frame) - unchanged_at_bottom,
4697 old_hash, new_hash, draw_cost)))
4698 return 0;
4699
4700 if (window_size < 2)
4701 return 0;
4702
4703 scrolling_1 (frame, window_size, unchanged_at_top, unchanged_at_bottom,
4704 draw_cost + unchanged_at_top - 1,
4705 old_draw_cost + unchanged_at_top - 1,
4706 old_hash + unchanged_at_top - 1,
4707 new_hash + unchanged_at_top - 1,
4708 free_at_end_vpos - unchanged_at_top);
4709
4710 return 0;
4711 }
4712
4713
4714 /* Count the number of blanks at the start of the vector of glyphs R
4715 which is LEN glyphs long. */
4716
4717 static int
4718 count_blanks (r, len)
4719 struct glyph *r;
4720 int len;
4721 {
4722 int i;
4723
4724 for (i = 0; i < len; ++i)
4725 if (!CHAR_GLYPH_SPACE_P (r[i]))
4726 break;
4727
4728 return i;
4729 }
4730
4731
4732 /* Count the number of glyphs in common at the start of the glyph
4733 vectors STR1 and STR2. END1 is the end of STR1 and END2 is the end
4734 of STR2. Value is the number of equal glyphs equal at the start. */
4735
4736 static int
4737 count_match (str1, end1, str2, end2)
4738 struct glyph *str1, *end1, *str2, *end2;
4739 {
4740 struct glyph *p1 = str1;
4741 struct glyph *p2 = str2;
4742
4743 while (p1 < end1
4744 && p2 < end2
4745 && GLYPH_FROM_CHAR_GLYPH (*p1) == GLYPH_FROM_CHAR_GLYPH (*p2))
4746 ++p1, ++p2;
4747
4748 return p1 - str1;
4749 }
4750
4751
4752 /* Char insertion/deletion cost vector, from term.c */
4753
4754 extern int *char_ins_del_vector;
4755 #define char_ins_del_cost(f) (&char_ins_del_vector[FRAME_WINDOW_WIDTH((f))])
4756
4757
4758 /* Perform a frame-based update on line VPOS in frame FRAME. */
4759
4760 static void
4761 update_frame_line (frame, vpos)
4762 register struct frame *frame;
4763 int vpos;
4764 {
4765 struct glyph *obody, *nbody, *op1, *op2, *np1, *nend;
4766 int tem;
4767 int osp, nsp, begmatch, endmatch, olen, nlen;
4768 struct glyph_matrix *current_matrix = frame->current_matrix;
4769 struct glyph_matrix *desired_matrix = frame->desired_matrix;
4770 struct glyph_row *current_row = MATRIX_ROW (current_matrix, vpos);
4771 struct glyph_row *desired_row = MATRIX_ROW (desired_matrix, vpos);
4772 int must_write_whole_line_p;
4773
4774 if (desired_row->inverse_p
4775 != (current_row->enabled_p && current_row->inverse_p))
4776 {
4777 int n = current_row->enabled_p ? current_row->used[TEXT_AREA] : 0;
4778 change_line_highlight (desired_row->inverse_p, vpos, vpos, n);
4779 current_row->enabled_p = 0;
4780 }
4781 else
4782 reassert_line_highlight (desired_row->inverse_p, vpos);
4783
4784 must_write_whole_line_p = !current_row->enabled_p;
4785 if (must_write_whole_line_p)
4786 {
4787 /* A line that is not enabled is empty. */
4788 obody = 0;
4789 olen = 0;
4790 }
4791 else
4792 {
4793 /* A line not empty in the current matrix. */
4794 obody = MATRIX_ROW_GLYPH_START (current_matrix, vpos);
4795 olen = current_row->used[TEXT_AREA];
4796
4797 if (! current_row->inverse_p)
4798 {
4799 /* Ignore trailing spaces. */
4800 if (!must_write_spaces)
4801 while (olen > 0 && CHAR_GLYPH_SPACE_P (obody[olen-1]))
4802 olen--;
4803 }
4804 else
4805 {
4806 /* For an inverse-video line, remember we gave it spaces all
4807 the way to the frame edge so that the reverse video
4808 extends all the way across. */
4809 while (olen < FRAME_WIDTH (frame) - 1)
4810 obody[olen++] = space_glyph;
4811 }
4812 }
4813
4814 current_row->enabled_p = 1;
4815 current_row->used[TEXT_AREA] = desired_row->used[TEXT_AREA];
4816 current_row->inverse_p = desired_row->inverse_p;
4817
4818 /* If desired line is empty, just clear the line. */
4819 if (!desired_row->enabled_p)
4820 {
4821 nlen = 0;
4822 goto just_erase;
4823 }
4824
4825 nbody = desired_row->glyphs[TEXT_AREA];
4826 nlen = desired_row->used[TEXT_AREA];
4827 nend = nbody + nlen;
4828
4829 /* If display line has unknown contents, write the whole line. */
4830 if (must_write_whole_line_p)
4831 {
4832 if (!must_write_spaces)
4833 while (nlen > 0 && CHAR_GLYPH_SPACE_P (nbody[nlen - 1]))
4834 --nlen;
4835
4836 cursor_to (vpos, 0);
4837 if (nlen)
4838 write_glyphs (nbody, nlen);
4839
4840 clear_end_of_line (FRAME_WINDOW_WIDTH (frame));
4841 make_current (desired_matrix, current_matrix, vpos);
4842 return;
4843 }
4844
4845 /* Pretend trailing spaces are not there at all,
4846 unless for one reason or another we must write all spaces. */
4847 if (!desired_row->inverse_p)
4848 {
4849 if (!must_write_spaces)
4850 while (nlen > 0 && CHAR_GLYPH_SPACE_P (nbody[nlen - 1]))
4851 nlen--;
4852 }
4853 else
4854 {
4855 /* For an inverse-video line, give it extra trailing spaces all
4856 the way to the frame edge so that the reverse video extends
4857 all the way across. */
4858 while (nlen < FRAME_WIDTH (frame) - 1)
4859 nbody[nlen++] = space_glyph;
4860 }
4861
4862 /* If there's no i/d char, quickly do the best we can without it. */
4863 if (!char_ins_del_ok)
4864 {
4865 int i, j;
4866
4867 /* Find the first glyph in desired row that doesn't agree with
4868 a glyph in the current row, and write the rest from there on. */
4869 for (i = 0; i < nlen; i++)
4870 {
4871 if (i >= olen || !GLYPH_EQUAL_P (nbody + i, obody + i))
4872 {
4873 /* Find the end of the run of different glyphs. */
4874 j = i + 1;
4875 while (j < nlen
4876 && (j >= olen
4877 || !GLYPH_EQUAL_P (nbody + j, obody + j)
4878 || CHAR_GLYPH_PADDING_P (nbody[j])))
4879 ++j;
4880
4881 /* Output this run of non-matching chars. */
4882 cursor_to (vpos, i);
4883 write_glyphs (nbody + i, j - i);
4884 i = j - 1;
4885
4886 /* Now find the next non-match. */
4887 }
4888 }
4889
4890 /* Clear the rest of the line, or the non-clear part of it. */
4891 if (olen > nlen)
4892 {
4893 cursor_to (vpos, nlen);
4894 clear_end_of_line (olen);
4895 }
4896
4897 /* Make current row = desired row. */
4898 make_current (desired_matrix, current_matrix, vpos);
4899 return;
4900 }
4901
4902 /* Here when CHAR_INS_DEL_OK != 0, i.e. we can insert or delete
4903 characters in a row. */
4904
4905 if (!olen)
4906 {
4907 /* If current line is blank, skip over initial spaces, if
4908 possible, and write the rest. */
4909 if (must_write_spaces || desired_row->inverse_p)
4910 nsp = 0;
4911 else
4912 nsp = count_blanks (nbody, nlen);
4913
4914 if (nlen > nsp)
4915 {
4916 cursor_to (vpos, nsp);
4917 write_glyphs (nbody + nsp, nlen - nsp);
4918 }
4919
4920 /* Exchange contents between current_frame and new_frame. */
4921 make_current (desired_matrix, current_matrix, vpos);
4922 return;
4923 }
4924
4925 /* Compute number of leading blanks in old and new contents. */
4926 osp = count_blanks (obody, olen);
4927 nsp = desired_row->inverse_p ? 0 : count_blanks (nbody, nlen);
4928
4929 /* Compute number of matching chars starting with first non-blank. */
4930 begmatch = count_match (obody + osp, obody + olen,
4931 nbody + nsp, nbody + nlen);
4932
4933 /* Spaces in new match implicit space past the end of old. */
4934 /* A bug causing this to be a no-op was fixed in 18.29. */
4935 if (!must_write_spaces && osp + begmatch == olen)
4936 {
4937 np1 = nbody + nsp;
4938 while (np1 + begmatch < nend && CHAR_GLYPH_SPACE_P (np1[begmatch]))
4939 ++begmatch;
4940 }
4941
4942 /* Avoid doing insert/delete char
4943 just cause number of leading spaces differs
4944 when the following text does not match. */
4945 if (begmatch == 0 && osp != nsp)
4946 osp = nsp = min (osp, nsp);
4947
4948 /* Find matching characters at end of line */
4949 op1 = obody + olen;
4950 np1 = nbody + nlen;
4951 op2 = op1 + begmatch - min (olen - osp, nlen - nsp);
4952 while (op1 > op2
4953 && GLYPH_EQUAL_P (op1 - 1, np1 - 1))
4954 {
4955 op1--;
4956 np1--;
4957 }
4958 endmatch = obody + olen - op1;
4959
4960 /* tem gets the distance to insert or delete.
4961 endmatch is how many characters we save by doing so.
4962 Is it worth it? */
4963
4964 tem = (nlen - nsp) - (olen - osp);
4965 if (endmatch && tem
4966 && (!char_ins_del_ok || endmatch <= char_ins_del_cost (frame)[tem]))
4967 endmatch = 0;
4968
4969 /* nsp - osp is the distance to insert or delete.
4970 If that is nonzero, begmatch is known to be nonzero also.
4971 begmatch + endmatch is how much we save by doing the ins/del.
4972 Is it worth it? */
4973
4974 if (nsp != osp
4975 && (!char_ins_del_ok
4976 || begmatch + endmatch <= char_ins_del_cost (frame)[nsp - osp]))
4977 {
4978 begmatch = 0;
4979 endmatch = 0;
4980 osp = nsp = min (osp, nsp);
4981 }
4982
4983 /* Now go through the line, inserting, writing and
4984 deleting as appropriate. */
4985
4986 if (osp > nsp)
4987 {
4988 cursor_to (vpos, nsp);
4989 delete_glyphs (osp - nsp);
4990 }
4991 else if (nsp > osp)
4992 {
4993 /* If going to delete chars later in line
4994 and insert earlier in the line,
4995 must delete first to avoid losing data in the insert */
4996 if (endmatch && nlen < olen + nsp - osp)
4997 {
4998 cursor_to (vpos, nlen - endmatch + osp - nsp);
4999 delete_glyphs (olen + nsp - osp - nlen);
5000 olen = nlen - (nsp - osp);
5001 }
5002 cursor_to (vpos, osp);
5003 insert_glyphs (0, nsp - osp);
5004 }
5005 olen += nsp - osp;
5006
5007 tem = nsp + begmatch + endmatch;
5008 if (nlen != tem || olen != tem)
5009 {
5010 cursor_to (vpos, nsp + begmatch);
5011 if (!endmatch || nlen == olen)
5012 {
5013 /* If new text being written reaches right margin,
5014 there is no need to do clear-to-eol at the end.
5015 (and it would not be safe, since cursor is not
5016 going to be "at the margin" after the text is done) */
5017 if (nlen == FRAME_WINDOW_WIDTH (frame))
5018 olen = 0;
5019 write_glyphs (nbody + nsp + begmatch, nlen - tem);
5020 }
5021 else if (nlen > olen)
5022 {
5023 /* Here, we used to have the following simple code:
5024 ----------------------------------------
5025 write_glyphs (nbody + nsp + begmatch, olen - tem);
5026 insert_glyphs (nbody + nsp + begmatch + olen - tem, nlen - olen);
5027 ----------------------------------------
5028 but it doesn't work if nbody[nsp + begmatch + olen - tem]
5029 is a padding glyph. */
5030 int out = olen - tem; /* Columns to be overwritten originally. */
5031 int del;
5032
5033 /* Calculate columns we can actually overwrite. */
5034 while (CHAR_GLYPH_PADDING_P (nbody[nsp + begmatch + out])) out--;
5035 write_glyphs (nbody + nsp + begmatch, out);
5036 /* If we left columns to be overwritten, we must delete them. */
5037 del = olen - tem - out;
5038 if (del > 0) delete_glyphs (del);
5039 /* At last, we insert columns not yet written out. */
5040 insert_glyphs (nbody + nsp + begmatch + out, nlen - olen + del);
5041 olen = nlen;
5042 }
5043 else if (olen > nlen)
5044 {
5045 write_glyphs (nbody + nsp + begmatch, nlen - tem);
5046 delete_glyphs (olen - nlen);
5047 olen = nlen;
5048 }
5049 }
5050
5051 just_erase:
5052 /* If any unerased characters remain after the new line, erase them. */
5053 if (olen > nlen)
5054 {
5055 cursor_to (vpos, nlen);
5056 clear_end_of_line (olen);
5057 }
5058
5059 /* Exchange contents between current_frame and new_frame. */
5060 make_current (desired_matrix, current_matrix, vpos);
5061 }
5062
5063
5064 \f
5065 /***********************************************************************
5066 X/Y Position -> Buffer Position
5067 ***********************************************************************/
5068
5069 /* Return the character position of the character at window relative
5070 pixel position (*X, *Y). *X and *Y are adjusted to character
5071 boundaries. */
5072
5073 int
5074 buffer_posn_from_coords (w, x, y)
5075 struct window *w;
5076 int *x, *y;
5077 {
5078 struct it it;
5079 struct buffer *old_current_buffer = current_buffer;
5080 struct text_pos startp;
5081 int left_area_width;
5082
5083 current_buffer = XBUFFER (w->buffer);
5084 SET_TEXT_POS_FROM_MARKER (startp, w->start);
5085 CHARPOS (startp) = min (ZV, max (BEGV, CHARPOS (startp)));
5086 BYTEPOS (startp) = min (ZV_BYTE, max (BEGV_BYTE, BYTEPOS (startp)));
5087 start_display (&it, w, startp);
5088
5089 left_area_width = WINDOW_DISPLAY_LEFT_AREA_PIXEL_WIDTH (w);
5090 move_it_to (&it, -1, *x + it.first_visible_x - left_area_width, *y, -1,
5091 MOVE_TO_X | MOVE_TO_Y);
5092
5093 *x = it.current_x - it.first_visible_x + left_area_width;
5094 *y = it.current_y;
5095 current_buffer = old_current_buffer;
5096 return IT_CHARPOS (it);
5097 }
5098
5099
5100 /* Value is the string under window-relative coordinates X/Y in the
5101 mode or top line of window W, or nil if none. MODE_LINE_P non-zero
5102 means look at the mode line. *CHARPOS is set to the position in
5103 the string returned. */
5104
5105 Lisp_Object
5106 mode_line_string (w, x, y, mode_line_p, charpos)
5107 struct window *w;
5108 int x, y;
5109 int *charpos;
5110 {
5111 struct glyph_row *row;
5112 struct glyph *glyph, *end;
5113 struct frame *f = XFRAME (w->frame);
5114 int x0;
5115 Lisp_Object string = Qnil;
5116
5117 /* Only do this for frames under a window system. */
5118 if (!FRAME_WINDOW_P (f))
5119 return Qnil;
5120
5121 if (mode_line_p)
5122 row = MATRIX_MODE_LINE_ROW (w->current_matrix);
5123 else
5124 row = MATRIX_HEADER_LINE_ROW (w->current_matrix);
5125
5126 if (row->mode_line_p && row->enabled_p)
5127 {
5128 /* The mode lines are displayed over scroll bars and bitmap
5129 areas, and X is window-relative. Correct X by the scroll bar
5130 and bitmap area width. */
5131 if (FRAME_HAS_VERTICAL_SCROLL_BARS_ON_LEFT (f))
5132 x += FRAME_SCROLL_BAR_COLS (f) * CANON_X_UNIT (f);
5133 x += FRAME_LEFT_FLAGS_AREA_WIDTH (f);
5134
5135 /* Find the glyph under X. If we find one with a string object,
5136 it's the one we were looking for. */
5137 glyph = row->glyphs[TEXT_AREA];
5138 end = glyph + row->used[TEXT_AREA];
5139 for (x0 = 0; glyph < end; x0 += glyph->pixel_width, ++glyph)
5140 if (x >= x0 && x < x0 + glyph->pixel_width)
5141 {
5142 string = glyph->object;
5143 *charpos = glyph->charpos;
5144 break;
5145 }
5146 }
5147
5148 return string;
5149 }
5150
5151
5152 /***********************************************************************
5153 Changing Frame Sizes
5154 ***********************************************************************/
5155
5156 #ifdef SIGWINCH
5157
5158 SIGTYPE
5159 window_change_signal (signalnum) /* If we don't have an argument, */
5160 int signalnum; /* some compilers complain in signal calls. */
5161 {
5162 int width, height;
5163 extern int errno;
5164 int old_errno = errno;
5165
5166 get_frame_size (&width, &height);
5167
5168 /* The frame size change obviously applies to a termcap-controlled
5169 frame. Find such a frame in the list, and assume it's the only
5170 one (since the redisplay code always writes to stdout, not a
5171 FILE * specified in the frame structure). Record the new size,
5172 but don't reallocate the data structures now. Let that be done
5173 later outside of the signal handler. */
5174
5175 {
5176 Lisp_Object tail, frame;
5177
5178 FOR_EACH_FRAME (tail, frame)
5179 {
5180 if (FRAME_TERMCAP_P (XFRAME (frame)))
5181 {
5182 change_frame_size (XFRAME (frame), height, width, 0, 1, 0);
5183 break;
5184 }
5185 }
5186 }
5187
5188 signal (SIGWINCH, window_change_signal);
5189 errno = old_errno;
5190 }
5191 #endif /* SIGWINCH */
5192
5193
5194 /* Do any change in frame size that was requested by a signal. SAFE
5195 non-zero means this function is called from a place where it is
5196 safe to change frame sizes while a redisplay is in progress. */
5197
5198 void
5199 do_pending_window_change (safe)
5200 int safe;
5201 {
5202 /* If window_change_signal should have run before, run it now. */
5203 if (redisplaying_p && !safe)
5204 return;
5205
5206 while (delayed_size_change)
5207 {
5208 Lisp_Object tail, frame;
5209
5210 delayed_size_change = 0;
5211
5212 FOR_EACH_FRAME (tail, frame)
5213 {
5214 struct frame *f = XFRAME (frame);
5215
5216 int height = FRAME_NEW_HEIGHT (f);
5217 int width = FRAME_NEW_WIDTH (f);
5218
5219 if (height != 0 || width != 0)
5220 change_frame_size (f, height, width, 0, 0, safe);
5221 }
5222 }
5223 }
5224
5225
5226 /* Change the frame height and/or width. Values may be given as zero to
5227 indicate no change is to take place.
5228
5229 If DELAY is non-zero, then assume we're being called from a signal
5230 handler, and queue the change for later - perhaps the next
5231 redisplay. Since this tries to resize windows, we can't call it
5232 from a signal handler.
5233
5234 SAFE non-zero means this function is called from a place where it's
5235 safe to change frame sizes while a redisplay is in progress. */
5236
5237 void
5238 change_frame_size (f, newheight, newwidth, pretend, delay, safe)
5239 register struct frame *f;
5240 int newheight, newwidth, pretend, delay, safe;
5241 {
5242 Lisp_Object tail, frame;
5243
5244 if (! FRAME_WINDOW_P (f))
5245 {
5246 /* When using termcap, or on MS-DOS, all frames use
5247 the same screen, so a change in size affects all frames. */
5248 FOR_EACH_FRAME (tail, frame)
5249 if (! FRAME_WINDOW_P (XFRAME (frame)))
5250 change_frame_size_1 (XFRAME (frame), newheight, newwidth,
5251 pretend, delay, safe);
5252 }
5253 else
5254 change_frame_size_1 (f, newheight, newwidth, pretend, delay, safe);
5255 }
5256
5257 static void
5258 change_frame_size_1 (f, newheight, newwidth, pretend, delay, safe)
5259 register struct frame *f;
5260 int newheight, newwidth, pretend, delay, safe;
5261 {
5262 int new_frame_window_width;
5263 int count = specpdl_ptr - specpdl;
5264
5265 /* If we can't deal with the change now, queue it for later. */
5266 if (delay || (redisplaying_p && !safe))
5267 {
5268 FRAME_NEW_HEIGHT (f) = newheight;
5269 FRAME_NEW_WIDTH (f) = newwidth;
5270 delayed_size_change = 1;
5271 return;
5272 }
5273
5274 /* This size-change overrides any pending one for this frame. */
5275 FRAME_NEW_HEIGHT (f) = 0;
5276 FRAME_NEW_WIDTH (f) = 0;
5277
5278 /* If an argument is zero, set it to the current value. */
5279 if (newheight == 0)
5280 newheight = FRAME_HEIGHT (f);
5281 if (newwidth == 0)
5282 newwidth = FRAME_WIDTH (f);
5283
5284 /* Compute width of windows in F.
5285 This is the width of the frame without vertical scroll bars. */
5286 new_frame_window_width = FRAME_WINDOW_WIDTH_ARG (f, newwidth);
5287
5288 /* Round up to the smallest acceptable size. */
5289 check_frame_size (f, &newheight, &newwidth);
5290
5291 /* If we're not changing the frame size, quit now. */
5292 if (newheight == FRAME_HEIGHT (f)
5293 && new_frame_window_width == FRAME_WINDOW_WIDTH (f))
5294 return;
5295
5296 BLOCK_INPUT;
5297
5298 #ifdef MSDOS
5299 /* We only can set screen dimensions to certain values supported
5300 by our video hardware. Try to find the smallest size greater
5301 or equal to the requested dimensions. */
5302 dos_set_window_size (&newheight, &newwidth);
5303 #endif
5304
5305 if (newheight != FRAME_HEIGHT (f))
5306 {
5307 if (FRAME_HAS_MINIBUF_P (f) && !FRAME_MINIBUF_ONLY_P (f))
5308 {
5309 /* Frame has both root and mini-buffer. */
5310 XSETFASTINT (XWINDOW (FRAME_ROOT_WINDOW (f))->top,
5311 FRAME_TOP_MARGIN (f));
5312 set_window_height (FRAME_ROOT_WINDOW (f),
5313 (newheight
5314 - 1
5315 - FRAME_TOP_MARGIN (f)),
5316 0);
5317 XSETFASTINT (XWINDOW (FRAME_MINIBUF_WINDOW (f))->top,
5318 newheight - 1);
5319 set_window_height (FRAME_MINIBUF_WINDOW (f), 1, 0);
5320 }
5321 else
5322 /* Frame has just one top-level window. */
5323 set_window_height (FRAME_ROOT_WINDOW (f),
5324 newheight - FRAME_TOP_MARGIN (f), 0);
5325
5326 if (FRAME_TERMCAP_P (f) && !pretend)
5327 FrameRows = newheight;
5328 }
5329
5330 if (new_frame_window_width != FRAME_WINDOW_WIDTH (f))
5331 {
5332 set_window_width (FRAME_ROOT_WINDOW (f), new_frame_window_width, 0);
5333 if (FRAME_HAS_MINIBUF_P (f))
5334 set_window_width (FRAME_MINIBUF_WINDOW (f), new_frame_window_width, 0);
5335
5336 if (FRAME_TERMCAP_P (f) && !pretend)
5337 FrameCols = newwidth;
5338
5339 if (WINDOWP (f->tool_bar_window))
5340 XSETFASTINT (XWINDOW (f->tool_bar_window)->width, newwidth);
5341 }
5342
5343 FRAME_HEIGHT (f) = newheight;
5344 SET_FRAME_WIDTH (f, newwidth);
5345
5346 {
5347 struct window *w = XWINDOW (FRAME_SELECTED_WINDOW (f));
5348 int text_area_x, text_area_y, text_area_width, text_area_height;
5349
5350 window_box (w, TEXT_AREA, &text_area_x, &text_area_y, &text_area_width,
5351 &text_area_height);
5352 if (w->cursor.x >= text_area_x + text_area_width)
5353 w->cursor.hpos = w->cursor.x = 0;
5354 if (w->cursor.y >= text_area_y + text_area_height)
5355 w->cursor.vpos = w->cursor.y = 0;
5356 }
5357
5358 adjust_glyphs (f);
5359 SET_FRAME_GARBAGED (f);
5360 calculate_costs (f);
5361
5362 UNBLOCK_INPUT;
5363
5364 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
5365
5366 /* This isn't quite a no-op: it runs window-configuration-change-hook. */
5367 Fset_window_buffer (FRAME_SELECTED_WINDOW (f),
5368 XWINDOW (FRAME_SELECTED_WINDOW (f))->buffer);
5369
5370 unbind_to (count, Qnil);
5371 }
5372
5373
5374 \f
5375 /***********************************************************************
5376 Terminal Related Lisp Functions
5377 ***********************************************************************/
5378
5379 DEFUN ("open-termscript", Fopen_termscript, Sopen_termscript,
5380 1, 1, "FOpen termscript file: ",
5381 "Start writing all terminal output to FILE as well as the terminal.\n\
5382 FILE = nil means just close any termscript file currently open.")
5383 (file)
5384 Lisp_Object file;
5385 {
5386 if (termscript != 0) fclose (termscript);
5387 termscript = 0;
5388
5389 if (! NILP (file))
5390 {
5391 file = Fexpand_file_name (file, Qnil);
5392 termscript = fopen (XSTRING (file)->data, "w");
5393 if (termscript == 0)
5394 report_file_error ("Opening termscript", Fcons (file, Qnil));
5395 }
5396 return Qnil;
5397 }
5398
5399
5400 DEFUN ("send-string-to-terminal", Fsend_string_to_terminal,
5401 Ssend_string_to_terminal, 1, 1, 0,
5402 "Send STRING to the terminal without alteration.\n\
5403 Control characters in STRING will have terminal-dependent effects.")
5404 (string)
5405 Lisp_Object string;
5406 {
5407 /* ??? Perhaps we should do something special for multibyte strings here. */
5408 CHECK_STRING (string, 0);
5409 fwrite (XSTRING (string)->data, 1, STRING_BYTES (XSTRING (string)), stdout);
5410 fflush (stdout);
5411 if (termscript)
5412 {
5413 fwrite (XSTRING (string)->data, 1, STRING_BYTES (XSTRING (string)),
5414 termscript);
5415 fflush (termscript);
5416 }
5417 return Qnil;
5418 }
5419
5420
5421 DEFUN ("ding", Fding, Sding, 0, 1, 0,
5422 "Beep, or flash the screen.\n\
5423 Also, unless an argument is given,\n\
5424 terminate any keyboard macro currently executing.")
5425 (arg)
5426 Lisp_Object arg;
5427 {
5428 if (!NILP (arg))
5429 {
5430 if (noninteractive)
5431 putchar (07);
5432 else
5433 ring_bell ();
5434 fflush (stdout);
5435 }
5436 else
5437 bitch_at_user ();
5438
5439 return Qnil;
5440 }
5441
5442 void
5443 bitch_at_user ()
5444 {
5445 if (noninteractive)
5446 putchar (07);
5447 else if (!INTERACTIVE) /* Stop executing a keyboard macro. */
5448 error ("Keyboard macro terminated by a command ringing the bell");
5449 else
5450 ring_bell ();
5451 fflush (stdout);
5452 }
5453
5454
5455 \f
5456 /***********************************************************************
5457 Sleeping, Waiting
5458 ***********************************************************************/
5459
5460 DEFUN ("sleep-for", Fsleep_for, Ssleep_for, 1, 2, 0,
5461 "Pause, without updating display, for SECONDS seconds.\n\
5462 SECONDS may be a floating-point value, meaning that you can wait for a\n\
5463 fraction of a second. Optional second arg MILLISECONDS specifies an\n\
5464 additional wait period, in milliseconds; this may be useful if your\n\
5465 Emacs was built without floating point support.\n\
5466 \(Not all operating systems support waiting for a fraction of a second.)")
5467 (seconds, milliseconds)
5468 Lisp_Object seconds, milliseconds;
5469 {
5470 int sec, usec;
5471
5472 if (NILP (milliseconds))
5473 XSETINT (milliseconds, 0);
5474 else
5475 CHECK_NUMBER (milliseconds, 1);
5476 usec = XINT (milliseconds) * 1000;
5477
5478 #ifdef LISP_FLOAT_TYPE
5479 {
5480 double duration = extract_float (seconds);
5481 sec = (int) duration;
5482 usec += (duration - sec) * 1000000;
5483 }
5484 #else
5485 CHECK_NUMBER (seconds, 0);
5486 sec = XINT (seconds);
5487 #endif
5488
5489 #ifndef EMACS_HAS_USECS
5490 if (sec == 0 && usec != 0)
5491 error ("millisecond `sleep-for' not supported on %s", SYSTEM_TYPE);
5492 #endif
5493
5494 /* Assure that 0 <= usec < 1000000. */
5495 if (usec < 0)
5496 {
5497 /* We can't rely on the rounding being correct if user is negative. */
5498 if (-1000000 < usec)
5499 sec--, usec += 1000000;
5500 else
5501 sec -= -usec / 1000000, usec = 1000000 - (-usec % 1000000);
5502 }
5503 else
5504 sec += usec / 1000000, usec %= 1000000;
5505
5506 if (sec < 0 || (sec == 0 && usec == 0))
5507 return Qnil;
5508
5509 {
5510 Lisp_Object zero;
5511
5512 XSETFASTINT (zero, 0);
5513 wait_reading_process_input (sec, usec, zero, 0);
5514 }
5515
5516 /* We should always have wait_reading_process_input; we have a dummy
5517 implementation for systems which don't support subprocesses. */
5518 #if 0
5519 /* No wait_reading_process_input */
5520 immediate_quit = 1;
5521 QUIT;
5522
5523 #ifdef VMS
5524 sys_sleep (sec);
5525 #else /* not VMS */
5526 /* The reason this is done this way
5527 (rather than defined (H_S) && defined (H_T))
5528 is because the VMS preprocessor doesn't grok `defined' */
5529 #ifdef HAVE_SELECT
5530 EMACS_GET_TIME (end_time);
5531 EMACS_SET_SECS_USECS (timeout, sec, usec);
5532 EMACS_ADD_TIME (end_time, end_time, timeout);
5533
5534 while (1)
5535 {
5536 EMACS_GET_TIME (timeout);
5537 EMACS_SUB_TIME (timeout, end_time, timeout);
5538 if (EMACS_TIME_NEG_P (timeout)
5539 || !select (1, 0, 0, 0, &timeout))
5540 break;
5541 }
5542 #else /* not HAVE_SELECT */
5543 sleep (sec);
5544 #endif /* HAVE_SELECT */
5545 #endif /* not VMS */
5546
5547 immediate_quit = 0;
5548 #endif /* no subprocesses */
5549
5550 return Qnil;
5551 }
5552
5553
5554 /* This is just like wait_reading_process_input, except that
5555 it does the redisplay.
5556
5557 It's also much like Fsit_for, except that it can be used for
5558 waiting for input as well. */
5559
5560 Lisp_Object
5561 sit_for (sec, usec, reading, display, initial_display)
5562 int sec, usec, reading, display, initial_display;
5563 {
5564 Lisp_Object read_kbd;
5565
5566 swallow_events (display);
5567
5568 if (detect_input_pending_run_timers (display))
5569 return Qnil;
5570
5571 if (initial_display)
5572 redisplay_preserve_echo_area ();
5573
5574 if (sec == 0 && usec == 0)
5575 return Qt;
5576
5577 #ifdef SIGIO
5578 gobble_input (0);
5579 #endif
5580
5581 XSETINT (read_kbd, reading ? -1 : 1);
5582 wait_reading_process_input (sec, usec, read_kbd, display);
5583
5584 return detect_input_pending () ? Qnil : Qt;
5585 }
5586
5587
5588 DEFUN ("sit-for", Fsit_for, Ssit_for, 1, 3, 0,
5589 "Perform redisplay, then wait for SECONDS seconds or until input is available.\n\
5590 SECONDS may be a floating-point value, meaning that you can wait for a\n\
5591 fraction of a second. Optional second arg MILLISECONDS specifies an\n\
5592 additional wait period, in milliseconds; this may be useful if your\n\
5593 Emacs was built without floating point support.\n\
5594 \(Not all operating systems support waiting for a fraction of a second.)\n\
5595 Optional third arg NODISP non-nil means don't redisplay, just wait for input.\n\
5596 Redisplay is preempted as always if input arrives, and does not happen\n\
5597 if input is available before it starts.\n\
5598 Value is t if waited the full time with no input arriving.")
5599 (seconds, milliseconds, nodisp)
5600 Lisp_Object seconds, milliseconds, nodisp;
5601 {
5602 int sec, usec;
5603
5604 if (NILP (milliseconds))
5605 XSETINT (milliseconds, 0);
5606 else
5607 CHECK_NUMBER (milliseconds, 1);
5608 usec = XINT (milliseconds) * 1000;
5609
5610 #ifdef LISP_FLOAT_TYPE
5611 {
5612 double duration = extract_float (seconds);
5613 sec = (int) duration;
5614 usec += (duration - sec) * 1000000;
5615 }
5616 #else
5617 CHECK_NUMBER (seconds, 0);
5618 sec = XINT (seconds);
5619 #endif
5620
5621 #ifndef EMACS_HAS_USECS
5622 if (usec != 0 && sec == 0)
5623 error ("millisecond `sit-for' not supported on %s", SYSTEM_TYPE);
5624 #endif
5625
5626 return sit_for (sec, usec, 0, NILP (nodisp), NILP (nodisp));
5627 }
5628
5629
5630 \f
5631 /***********************************************************************
5632 Other Lisp Functions
5633 ***********************************************************************/
5634
5635 /* A vector of size >= 2 * NFRAMES + 3 * NBUFFERS + 1, containing the
5636 session's frames, frame names, buffers, buffer-read-only flags, and
5637 buffer-modified-flags, and a trailing sentinel (so we don't need to
5638 add length checks). */
5639
5640 static Lisp_Object frame_and_buffer_state;
5641
5642
5643 DEFUN ("frame-or-buffer-changed-p", Fframe_or_buffer_changed_p,
5644 Sframe_or_buffer_changed_p, 0, 0, 0,
5645 "Return non-nil if the frame and buffer state appears to have changed.\n\
5646 The state variable is an internal vector containing all frames and buffers,\n\
5647 aside from buffers whose names start with space,\n\
5648 along with the buffers' read-only and modified flags, which allows a fast\n\
5649 check to see whether the menu bars might need to be recomputed.\n\
5650 If this function returns non-nil, it updates the internal vector to reflect\n\
5651 the current state.\n")
5652 ()
5653 {
5654 Lisp_Object tail, frame, buf;
5655 Lisp_Object *vecp;
5656 int n;
5657
5658 vecp = XVECTOR (frame_and_buffer_state)->contents;
5659 FOR_EACH_FRAME (tail, frame)
5660 {
5661 if (!EQ (*vecp++, frame))
5662 goto changed;
5663 if (!EQ (*vecp++, XFRAME (frame)->name))
5664 goto changed;
5665 }
5666 /* Check that the buffer info matches.
5667 No need to test for the end of the vector
5668 because the last element of the vector is lambda
5669 and that will always cause a mismatch. */
5670 for (tail = Vbuffer_alist; CONSP (tail); tail = XCONS (tail)->cdr)
5671 {
5672 buf = XCONS (XCONS (tail)->car)->cdr;
5673 /* Ignore buffers that aren't included in buffer lists. */
5674 if (XSTRING (XBUFFER (buf)->name)->data[0] == ' ')
5675 continue;
5676 if (!EQ (*vecp++, buf))
5677 goto changed;
5678 if (!EQ (*vecp++, XBUFFER (buf)->read_only))
5679 goto changed;
5680 if (!EQ (*vecp++, Fbuffer_modified_p (buf)))
5681 goto changed;
5682 }
5683 /* Detect deletion of a buffer at the end of the list. */
5684 if (EQ (*vecp, Qlambda))
5685 return Qnil;
5686 changed:
5687 /* Start with 1 so there is room for at least one lambda at the end. */
5688 n = 1;
5689 FOR_EACH_FRAME (tail, frame)
5690 n += 2;
5691 for (tail = Vbuffer_alist; CONSP (tail); tail = XCONS (tail)->cdr)
5692 n += 3;
5693 /* Reallocate the vector if it's grown, or if it's shrunk a lot. */
5694 if (n > XVECTOR (frame_and_buffer_state)->size
5695 || n + 20 < XVECTOR (frame_and_buffer_state)->size / 2)
5696 /* Add 20 extra so we grow it less often. */
5697 frame_and_buffer_state = Fmake_vector (make_number (n + 20), Qlambda);
5698 vecp = XVECTOR (frame_and_buffer_state)->contents;
5699 FOR_EACH_FRAME (tail, frame)
5700 {
5701 *vecp++ = frame;
5702 *vecp++ = XFRAME (frame)->name;
5703 }
5704 for (tail = Vbuffer_alist; CONSP (tail); tail = XCONS (tail)->cdr)
5705 {
5706 buf = XCONS (XCONS (tail)->car)->cdr;
5707 /* Ignore buffers that aren't included in buffer lists. */
5708 if (XSTRING (XBUFFER (buf)->name)->data[0] == ' ')
5709 continue;
5710 *vecp++ = buf;
5711 *vecp++ = XBUFFER (buf)->read_only;
5712 *vecp++ = Fbuffer_modified_p (buf);
5713 }
5714 /* Fill up the vector with lambdas (always at least one). */
5715 *vecp++ = Qlambda;
5716 while (vecp - XVECTOR (frame_and_buffer_state)->contents
5717 < XVECTOR (frame_and_buffer_state)->size)
5718 *vecp++ = Qlambda;
5719 /* Make sure we didn't overflow the vector. */
5720 if (vecp - XVECTOR (frame_and_buffer_state)->contents
5721 > XVECTOR (frame_and_buffer_state)->size)
5722 abort ();
5723 return Qt;
5724 }
5725
5726
5727 \f
5728 /***********************************************************************
5729 Initialization
5730 ***********************************************************************/
5731
5732 char *terminal_type;
5733
5734 /* Initialization done when Emacs fork is started, before doing stty.
5735 Determine terminal type and set terminal_driver. Then invoke its
5736 decoding routine to set up variables in the terminal package. */
5737
5738 void
5739 init_display ()
5740 {
5741 #ifdef HAVE_X_WINDOWS
5742 extern int display_arg;
5743 #endif
5744
5745 /* Construct the space glyph. */
5746 space_glyph.type = CHAR_GLYPH;
5747 SET_CHAR_GLYPH_FROM_GLYPH (space_glyph, ' ');
5748 space_glyph.charpos = -1;
5749
5750 meta_key = 0;
5751 inverse_video = 0;
5752 cursor_in_echo_area = 0;
5753 terminal_type = (char *) 0;
5754
5755 /* Now is the time to initialize this; it's used by init_sys_modes
5756 during startup. */
5757 Vwindow_system = Qnil;
5758
5759 /* If the user wants to use a window system, we shouldn't bother
5760 initializing the terminal. This is especially important when the
5761 terminal is so dumb that emacs gives up before and doesn't bother
5762 using the window system.
5763
5764 If the DISPLAY environment variable is set and nonempty,
5765 try to use X, and die with an error message if that doesn't work. */
5766
5767 #ifdef HAVE_X_WINDOWS
5768 if (! display_arg)
5769 {
5770 char *display;
5771 #ifdef VMS
5772 display = getenv ("DECW$DISPLAY");
5773 #else
5774 display = getenv ("DISPLAY");
5775 #endif
5776
5777 display_arg = (display != 0 && *display != 0);
5778 }
5779
5780 if (!inhibit_window_system && display_arg
5781 #ifndef CANNOT_DUMP
5782 && initialized
5783 #endif
5784 )
5785 {
5786 Vwindow_system = intern ("x");
5787 #ifdef HAVE_X11
5788 Vwindow_system_version = make_number (11);
5789 #else
5790 Vwindow_system_version = make_number (10);
5791 #endif
5792 #if defined (LINUX) && defined (HAVE_LIBNCURSES)
5793 /* In some versions of ncurses,
5794 tputs crashes if we have not called tgetent.
5795 So call tgetent. */
5796 { char b[2044]; tgetent (b, "xterm");}
5797 #endif
5798 adjust_frame_glyphs_initially ();
5799 return;
5800 }
5801 #endif /* HAVE_X_WINDOWS */
5802
5803 #ifdef HAVE_NTGUI
5804 if (!inhibit_window_system)
5805 {
5806 Vwindow_system = intern ("w32");
5807 Vwindow_system_version = make_number (1);
5808 adjust_frame_glyphs_initially ();
5809 return;
5810 }
5811 #endif /* HAVE_NTGUI */
5812
5813 /* If no window system has been specified, try to use the terminal. */
5814 if (! isatty (0))
5815 {
5816 fatal ("standard input is not a tty");
5817 exit (1);
5818 }
5819
5820 /* Look at the TERM variable */
5821 terminal_type = (char *) getenv ("TERM");
5822 if (!terminal_type)
5823 {
5824 #ifdef VMS
5825 fprintf (stderr, "Please specify your terminal type.\n\
5826 For types defined in VMS, use set term /device=TYPE.\n\
5827 For types not defined in VMS, use define emacs_term \"TYPE\".\n\
5828 \(The quotation marks are necessary since terminal types are lower case.)\n");
5829 #else
5830 fprintf (stderr, "Please set the environment variable TERM; see tset(1).\n");
5831 #endif
5832 exit (1);
5833 }
5834
5835 #ifdef VMS
5836 /* VMS DCL tends to up-case things, so down-case term type.
5837 Hardly any uppercase letters in terminal types; should be none. */
5838 {
5839 char *new = (char *) xmalloc (strlen (terminal_type) + 1);
5840 char *p;
5841
5842 strcpy (new, terminal_type);
5843
5844 for (p = new; *p; p++)
5845 if (isupper (*p))
5846 *p = tolower (*p);
5847
5848 terminal_type = new;
5849 }
5850 #endif /* VMS */
5851
5852 term_init (terminal_type);
5853
5854 {
5855 int width = FRAME_WINDOW_WIDTH (selected_frame);
5856 int height = FRAME_HEIGHT (selected_frame);
5857
5858 unsigned int total_glyphs = height * (width + 2) * sizeof (struct glyph);
5859
5860 /* If these sizes are so big they cause overflow, just ignore the
5861 change. It's not clear what better we could do. */
5862 if (total_glyphs / sizeof (struct glyph) / height != width + 2)
5863 fatal ("screen size %dx%d too big", width, height);
5864 }
5865
5866 adjust_frame_glyphs_initially ();
5867 calculate_costs (selected_frame);
5868
5869 #ifdef SIGWINCH
5870 #ifndef CANNOT_DUMP
5871 if (initialized)
5872 #endif /* CANNOT_DUMP */
5873 signal (SIGWINCH, window_change_signal);
5874 #endif /* SIGWINCH */
5875
5876 /* Set up faces of the initial terminal frame of a dumped Emacs. */
5877 if (initialized
5878 && !noninteractive
5879 #ifdef MSDOS
5880 /* The MSDOS terminal turns on its ``window system'' relatively
5881 late into the startup, so we cannot do the frame faces'
5882 initialization just yet. It will be done later by pc-win.el
5883 and internal_terminal_init. */
5884 && (strcmp (terminal_type, "internal") != 0 || inhibit_window_system)
5885 #endif
5886 && NILP (Vwindow_system))
5887 call0 (intern ("tty-set-up-initial-frame-faces"));
5888 }
5889
5890
5891 \f
5892 /***********************************************************************
5893 Blinking cursor
5894 ***********************************************************************/
5895
5896 DEFUN ("show-cursor", Fshow_cursor, Sshow_cursor, 0, 2, 0,
5897 "Change visibility flag of the text cursor of WINDOW.\n\
5898 ON_P nil means toggle the flag. Otherwise, ON_P must be an integer,\n\
5899 and the flag is set according to the value of ON_P. WINDOW nil or\n\
5900 omitted means use the selected window. The new cursor state takes effect\n\
5901 with the next redisplay.")
5902 (on_p, window)
5903 Lisp_Object on_p, window;
5904 {
5905 struct window *w;
5906
5907 /* Don't change cursor state while redisplaying. This could confuse
5908 output routines. */
5909 if (!redisplaying_p)
5910 {
5911 if (NILP (window))
5912 window = selected_window;
5913 else
5914 CHECK_WINDOW (window, 2);
5915 w = XWINDOW (window);
5916
5917 if (NILP (on_p))
5918 w->cursor_off_p = !w->cursor_off_p;
5919 else
5920 {
5921 CHECK_NUMBER (on_p, 1);
5922 w->cursor_off_p = XINT (on_p) != 0;
5923 }
5924 }
5925
5926 return Qnil;
5927 }
5928
5929
5930 \f
5931 /***********************************************************************
5932 Initialization
5933 ***********************************************************************/
5934
5935 void
5936 syms_of_display ()
5937 {
5938 defsubr (&Sredraw_frame);
5939 defsubr (&Sredraw_display);
5940 defsubr (&Sframe_or_buffer_changed_p);
5941 defsubr (&Sopen_termscript);
5942 defsubr (&Sding);
5943 defsubr (&Ssit_for);
5944 defsubr (&Ssleep_for);
5945 defsubr (&Ssend_string_to_terminal);
5946 defsubr (&Sshow_cursor);
5947
5948 frame_and_buffer_state = Fmake_vector (make_number (20), Qlambda);
5949 staticpro (&frame_and_buffer_state);
5950
5951 Qdisplay_table = intern ("display-table");
5952 staticpro (&Qdisplay_table);
5953
5954 DEFVAR_INT ("baud-rate", &baud_rate,
5955 "*The output baud rate of the terminal.\n\
5956 On most systems, changing this value will affect the amount of padding\n\
5957 and the other strategic decisions made during redisplay.");
5958
5959 DEFVAR_BOOL ("inverse-video", &inverse_video,
5960 "*Non-nil means invert the entire frame display.\n\
5961 This means everything is in inverse video which otherwise would not be.");
5962
5963 DEFVAR_BOOL ("visible-bell", &visible_bell,
5964 "*Non-nil means try to flash the frame to represent a bell.");
5965
5966 DEFVAR_BOOL ("no-redraw-on-reenter", &no_redraw_on_reenter,
5967 "*Non-nil means no need to redraw entire frame after suspending.\n\
5968 A non-nil value is useful if the terminal can automatically preserve\n\
5969 Emacs's frame display when you reenter Emacs.\n\
5970 It is up to you to set this variable if your terminal can do that.");
5971
5972 DEFVAR_LISP ("window-system", &Vwindow_system,
5973 "A symbol naming the window-system under which Emacs is running\n\
5974 \(such as `x'), or nil if emacs is running on an ordinary terminal.");
5975
5976 DEFVAR_LISP ("window-system-version", &Vwindow_system_version,
5977 "The version number of the window system in use.\n\
5978 For X windows, this is 10 or 11.");
5979
5980 DEFVAR_BOOL ("cursor-in-echo-area", &cursor_in_echo_area,
5981 "Non-nil means put cursor in minibuffer, at end of any message there.");
5982
5983 DEFVAR_LISP ("glyph-table", &Vglyph_table,
5984 "Table defining how to output a glyph code to the frame.\n\
5985 If not nil, this is a vector indexed by glyph code to define the glyph.\n\
5986 Each element can be:\n\
5987 integer: a glyph code which this glyph is an alias for.\n\
5988 string: output this glyph using that string (not impl. in X windows).\n\
5989 nil: this glyph mod 256 is char code to output,\n\
5990 and this glyph / 256 is face code for X windows (see `face-id').");
5991 Vglyph_table = Qnil;
5992
5993 DEFVAR_LISP ("standard-display-table", &Vstandard_display_table,
5994 "Display table to use for buffers that specify none.\n\
5995 See `buffer-display-table' for more information.");
5996 Vstandard_display_table = Qnil;
5997
5998 DEFVAR_BOOL ("redisplay-dont-pause", &redisplay_dont_pause,
5999 "*Non-nil means update isn't paused when input is detected.");
6000 redisplay_dont_pause = 0;
6001
6002 /* Initialize `window-system', unless init_display already decided it. */
6003 #ifdef CANNOT_DUMP
6004 if (noninteractive)
6005 #endif
6006 {
6007 Vwindow_system = Qnil;
6008 Vwindow_system_version = Qnil;
6009 }
6010 }