Pay attetion to the buffer relocation on encoding (Bug#9318).
[bpt/emacs.git] / src / coding.c
1 /* Coding system handler (conversion, detection, etc).
2 Copyright (C) 2001-2011 Free Software Foundation, Inc.
3 Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
4 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 National Institute of Advanced Industrial Science and Technology (AIST)
6 Registration Number H14PRO021
7 Copyright (C) 2003
8 National Institute of Advanced Industrial Science and Technology (AIST)
9 Registration Number H13PRO009
10
11 This file is part of GNU Emacs.
12
13 GNU Emacs is free software: you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation, either version 3 of the License, or
16 (at your option) any later version.
17
18 GNU Emacs is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
25
26 /*** TABLE OF CONTENTS ***
27
28 0. General comments
29 1. Preamble
30 2. Emacs' internal format (emacs-utf-8) handlers
31 3. UTF-8 handlers
32 4. UTF-16 handlers
33 5. Charset-base coding systems handlers
34 6. emacs-mule (old Emacs' internal format) handlers
35 7. ISO2022 handlers
36 8. Shift-JIS and BIG5 handlers
37 9. CCL handlers
38 10. C library functions
39 11. Emacs Lisp library functions
40 12. Postamble
41
42 */
43
44 /*** 0. General comments ***
45
46
47 CODING SYSTEM
48
49 A coding system is an object for an encoding mechanism that contains
50 information about how to convert byte sequences to character
51 sequences and vice versa. When we say "decode", it means converting
52 a byte sequence of a specific coding system into a character
53 sequence that is represented by Emacs' internal coding system
54 `emacs-utf-8', and when we say "encode", it means converting a
55 character sequence of emacs-utf-8 to a byte sequence of a specific
56 coding system.
57
58 In Emacs Lisp, a coding system is represented by a Lisp symbol. On
59 the C level, a coding system is represented by a vector of attributes
60 stored in the hash table Vcharset_hash_table. The conversion from
61 coding system symbol to attributes vector is done by looking up
62 Vcharset_hash_table by the symbol.
63
64 Coding systems are classified into the following types depending on
65 the encoding mechanism. Here's a brief description of the types.
66
67 o UTF-8
68
69 o UTF-16
70
71 o Charset-base coding system
72
73 A coding system defined by one or more (coded) character sets.
74 Decoding and encoding are done by a code converter defined for each
75 character set.
76
77 o Old Emacs internal format (emacs-mule)
78
79 The coding system adopted by old versions of Emacs (20 and 21).
80
81 o ISO2022-base coding system
82
83 The most famous coding system for multiple character sets. X's
84 Compound Text, various EUCs (Extended Unix Code), and coding systems
85 used in the Internet communication such as ISO-2022-JP are all
86 variants of ISO2022.
87
88 o SJIS (or Shift-JIS or MS-Kanji-Code)
89
90 A coding system to encode character sets: ASCII, JISX0201, and
91 JISX0208. Widely used for PC's in Japan. Details are described in
92 section 8.
93
94 o BIG5
95
96 A coding system to encode character sets: ASCII and Big5. Widely
97 used for Chinese (mainly in Taiwan and Hong Kong). Details are
98 described in section 8. In this file, when we write "big5" (all
99 lowercase), we mean the coding system, and when we write "Big5"
100 (capitalized), we mean the character set.
101
102 o CCL
103
104 If a user wants to decode/encode text encoded in a coding system
105 not listed above, he can supply a decoder and an encoder for it in
106 CCL (Code Conversion Language) programs. Emacs executes the CCL
107 program while decoding/encoding.
108
109 o Raw-text
110
111 A coding system for text containing raw eight-bit data. Emacs
112 treats each byte of source text as a character (except for
113 end-of-line conversion).
114
115 o No-conversion
116
117 Like raw text, but don't do end-of-line conversion.
118
119
120 END-OF-LINE FORMAT
121
122 How text end-of-line is encoded depends on operating system. For
123 instance, Unix's format is just one byte of LF (line-feed) code,
124 whereas DOS's format is two-byte sequence of `carriage-return' and
125 `line-feed' codes. MacOS's format is usually one byte of
126 `carriage-return'.
127
128 Since text character encoding and end-of-line encoding are
129 independent, any coding system described above can take any format
130 of end-of-line (except for no-conversion).
131
132 STRUCT CODING_SYSTEM
133
134 Before using a coding system for code conversion (i.e. decoding and
135 encoding), we setup a structure of type `struct coding_system'.
136 This structure keeps various information about a specific code
137 conversion (e.g. the location of source and destination data).
138
139 */
140
141 /* COMMON MACROS */
142
143
144 /*** GENERAL NOTES on `detect_coding_XXX ()' functions ***
145
146 These functions check if a byte sequence specified as a source in
147 CODING conforms to the format of XXX, and update the members of
148 DETECT_INFO.
149
150 Return 1 if the byte sequence conforms to XXX, otherwise return 0.
151
152 Below is the template of these functions. */
153
154 #if 0
155 static int
156 detect_coding_XXX (struct coding_system *coding,
157 struct coding_detection_info *detect_info)
158 {
159 const unsigned char *src = coding->source;
160 const unsigned char *src_end = coding->source + coding->src_bytes;
161 int multibytep = coding->src_multibyte;
162 EMACS_INT consumed_chars = 0;
163 int found = 0;
164 ...;
165
166 while (1)
167 {
168 /* Get one byte from the source. If the source is exhausted, jump
169 to no_more_source:. */
170 ONE_MORE_BYTE (c);
171
172 if (! __C_conforms_to_XXX___ (c))
173 break;
174 if (! __C_strongly_suggests_XXX__ (c))
175 found = CATEGORY_MASK_XXX;
176 }
177 /* The byte sequence is invalid for XXX. */
178 detect_info->rejected |= CATEGORY_MASK_XXX;
179 return 0;
180
181 no_more_source:
182 /* The source exhausted successfully. */
183 detect_info->found |= found;
184 return 1;
185 }
186 #endif
187
188 /*** GENERAL NOTES on `decode_coding_XXX ()' functions ***
189
190 These functions decode a byte sequence specified as a source by
191 CODING. The resulting multibyte text goes to a place pointed to by
192 CODING->charbuf, the length of which should not exceed
193 CODING->charbuf_size;
194
195 These functions set the information of original and decoded texts in
196 CODING->consumed, CODING->consumed_char, and CODING->charbuf_used.
197 They also set CODING->result to one of CODING_RESULT_XXX indicating
198 how the decoding is finished.
199
200 Below is the template of these functions. */
201
202 #if 0
203 static void
204 decode_coding_XXXX (struct coding_system *coding)
205 {
206 const unsigned char *src = coding->source + coding->consumed;
207 const unsigned char *src_end = coding->source + coding->src_bytes;
208 /* SRC_BASE remembers the start position in source in each loop.
209 The loop will be exited when there's not enough source code, or
210 when there's no room in CHARBUF for a decoded character. */
211 const unsigned char *src_base;
212 /* A buffer to produce decoded characters. */
213 int *charbuf = coding->charbuf + coding->charbuf_used;
214 int *charbuf_end = coding->charbuf + coding->charbuf_size;
215 int multibytep = coding->src_multibyte;
216
217 while (1)
218 {
219 src_base = src;
220 if (charbuf < charbuf_end)
221 /* No more room to produce a decoded character. */
222 break;
223 ONE_MORE_BYTE (c);
224 /* Decode it. */
225 }
226
227 no_more_source:
228 if (src_base < src_end
229 && coding->mode & CODING_MODE_LAST_BLOCK)
230 /* If the source ends by partial bytes to construct a character,
231 treat them as eight-bit raw data. */
232 while (src_base < src_end && charbuf < charbuf_end)
233 *charbuf++ = *src_base++;
234 /* Remember how many bytes and characters we consumed. If the
235 source is multibyte, the bytes and chars are not identical. */
236 coding->consumed = coding->consumed_char = src_base - coding->source;
237 /* Remember how many characters we produced. */
238 coding->charbuf_used = charbuf - coding->charbuf;
239 }
240 #endif
241
242 /*** GENERAL NOTES on `encode_coding_XXX ()' functions ***
243
244 These functions encode SRC_BYTES length text at SOURCE of Emacs'
245 internal multibyte format by CODING. The resulting byte sequence
246 goes to a place pointed to by DESTINATION, the length of which
247 should not exceed DST_BYTES.
248
249 These functions set the information of original and encoded texts in
250 the members produced, produced_char, consumed, and consumed_char of
251 the structure *CODING. They also set the member result to one of
252 CODING_RESULT_XXX indicating how the encoding finished.
253
254 DST_BYTES zero means that source area and destination area are
255 overlapped, which means that we can produce a encoded text until it
256 reaches at the head of not-yet-encoded source text.
257
258 Below is a template of these functions. */
259 #if 0
260 static void
261 encode_coding_XXX (struct coding_system *coding)
262 {
263 int multibytep = coding->dst_multibyte;
264 int *charbuf = coding->charbuf;
265 int *charbuf_end = charbuf->charbuf + coding->charbuf_used;
266 unsigned char *dst = coding->destination + coding->produced;
267 unsigned char *dst_end = coding->destination + coding->dst_bytes;
268 unsigned char *adjusted_dst_end = dst_end - _MAX_BYTES_PRODUCED_IN_LOOP_;
269 EMACS_INT produced_chars = 0;
270
271 for (; charbuf < charbuf_end && dst < adjusted_dst_end; charbuf++)
272 {
273 int c = *charbuf;
274 /* Encode C into DST, and increment DST. */
275 }
276 label_no_more_destination:
277 /* How many chars and bytes we produced. */
278 coding->produced_char += produced_chars;
279 coding->produced = dst - coding->destination;
280 }
281 #endif
282
283 \f
284 /*** 1. Preamble ***/
285
286 #include <config.h>
287 #include <stdio.h>
288 #include <setjmp.h>
289
290 #include "lisp.h"
291 #include "buffer.h"
292 #include "character.h"
293 #include "charset.h"
294 #include "ccl.h"
295 #include "composite.h"
296 #include "coding.h"
297 #include "window.h"
298 #include "frame.h"
299 #include "termhooks.h"
300
301 Lisp_Object Vcoding_system_hash_table;
302
303 static Lisp_Object Qcoding_system, Qeol_type;
304 static Lisp_Object Qcoding_aliases;
305 Lisp_Object Qunix, Qdos;
306 Lisp_Object Qbuffer_file_coding_system;
307 static Lisp_Object Qpost_read_conversion, Qpre_write_conversion;
308 static Lisp_Object Qdefault_char;
309 Lisp_Object Qno_conversion, Qundecided;
310 Lisp_Object Qcharset, Qutf_8;
311 static Lisp_Object Qiso_2022;
312 static Lisp_Object Qutf_16, Qshift_jis, Qbig5;
313 static Lisp_Object Qbig, Qlittle;
314 static Lisp_Object Qcoding_system_history;
315 static Lisp_Object Qvalid_codes;
316 static Lisp_Object QCcategory, QCmnemonic, QCdefault_char;
317 static Lisp_Object QCdecode_translation_table, QCencode_translation_table;
318 static Lisp_Object QCpost_read_conversion, QCpre_write_conversion;
319 static Lisp_Object QCascii_compatible_p;
320
321 Lisp_Object Qcall_process, Qcall_process_region;
322 Lisp_Object Qstart_process, Qopen_network_stream;
323 static Lisp_Object Qtarget_idx;
324
325 static Lisp_Object Qinsufficient_source, Qinconsistent_eol, Qinvalid_source;
326 static Lisp_Object Qinterrupted, Qinsufficient_memory;
327
328 /* If a symbol has this property, evaluate the value to define the
329 symbol as a coding system. */
330 static Lisp_Object Qcoding_system_define_form;
331
332 /* Format of end-of-line decided by system. This is Qunix on
333 Unix and Mac, Qdos on DOS/Windows.
334 This has an effect only for external encoding (i.e. for output to
335 file and process), not for in-buffer or Lisp string encoding. */
336 static Lisp_Object system_eol_type;
337
338 #ifdef emacs
339
340 Lisp_Object Qcoding_system_p, Qcoding_system_error;
341
342 /* Coding system emacs-mule and raw-text are for converting only
343 end-of-line format. */
344 Lisp_Object Qemacs_mule, Qraw_text;
345 Lisp_Object Qutf_8_emacs;
346
347 /* Coding-systems are handed between Emacs Lisp programs and C internal
348 routines by the following three variables. */
349 /* Coding system to be used to encode text for terminal display when
350 terminal coding system is nil. */
351 struct coding_system safe_terminal_coding;
352
353 #endif /* emacs */
354
355 Lisp_Object Qtranslation_table;
356 Lisp_Object Qtranslation_table_id;
357 static Lisp_Object Qtranslation_table_for_decode;
358 static Lisp_Object Qtranslation_table_for_encode;
359
360 /* Two special coding systems. */
361 static Lisp_Object Vsjis_coding_system;
362 static Lisp_Object Vbig5_coding_system;
363
364 /* ISO2022 section */
365
366 #define CODING_ISO_INITIAL(coding, reg) \
367 (XINT (AREF (AREF (CODING_ID_ATTRS ((coding)->id), \
368 coding_attr_iso_initial), \
369 reg)))
370
371
372 #define CODING_ISO_REQUEST(coding, charset_id) \
373 (((charset_id) <= (coding)->max_charset_id \
374 ? ((coding)->safe_charsets[charset_id] != 255 \
375 ? (coding)->safe_charsets[charset_id] \
376 : -1) \
377 : -1))
378
379
380 #define CODING_ISO_FLAGS(coding) \
381 ((coding)->spec.iso_2022.flags)
382 #define CODING_ISO_DESIGNATION(coding, reg) \
383 ((coding)->spec.iso_2022.current_designation[reg])
384 #define CODING_ISO_INVOCATION(coding, plane) \
385 ((coding)->spec.iso_2022.current_invocation[plane])
386 #define CODING_ISO_SINGLE_SHIFTING(coding) \
387 ((coding)->spec.iso_2022.single_shifting)
388 #define CODING_ISO_BOL(coding) \
389 ((coding)->spec.iso_2022.bol)
390 #define CODING_ISO_INVOKED_CHARSET(coding, plane) \
391 CODING_ISO_DESIGNATION ((coding), CODING_ISO_INVOCATION ((coding), (plane)))
392 #define CODING_ISO_CMP_STATUS(coding) \
393 (&(coding)->spec.iso_2022.cmp_status)
394 #define CODING_ISO_EXTSEGMENT_LEN(coding) \
395 ((coding)->spec.iso_2022.ctext_extended_segment_len)
396 #define CODING_ISO_EMBEDDED_UTF_8(coding) \
397 ((coding)->spec.iso_2022.embedded_utf_8)
398
399 /* Control characters of ISO2022. */
400 /* code */ /* function */
401 #define ISO_CODE_SO 0x0E /* shift-out */
402 #define ISO_CODE_SI 0x0F /* shift-in */
403 #define ISO_CODE_SS2_7 0x19 /* single-shift-2 for 7-bit code */
404 #define ISO_CODE_ESC 0x1B /* escape */
405 #define ISO_CODE_SS2 0x8E /* single-shift-2 */
406 #define ISO_CODE_SS3 0x8F /* single-shift-3 */
407 #define ISO_CODE_CSI 0x9B /* control-sequence-introducer */
408
409 /* All code (1-byte) of ISO2022 is classified into one of the
410 followings. */
411 enum iso_code_class_type
412 {
413 ISO_control_0, /* Control codes in the range
414 0x00..0x1F and 0x7F, except for the
415 following 5 codes. */
416 ISO_shift_out, /* ISO_CODE_SO (0x0E) */
417 ISO_shift_in, /* ISO_CODE_SI (0x0F) */
418 ISO_single_shift_2_7, /* ISO_CODE_SS2_7 (0x19) */
419 ISO_escape, /* ISO_CODE_SO (0x1B) */
420 ISO_control_1, /* Control codes in the range
421 0x80..0x9F, except for the
422 following 3 codes. */
423 ISO_single_shift_2, /* ISO_CODE_SS2 (0x8E) */
424 ISO_single_shift_3, /* ISO_CODE_SS3 (0x8F) */
425 ISO_control_sequence_introducer, /* ISO_CODE_CSI (0x9B) */
426 ISO_0x20_or_0x7F, /* Codes of the values 0x20 or 0x7F. */
427 ISO_graphic_plane_0, /* Graphic codes in the range 0x21..0x7E. */
428 ISO_0xA0_or_0xFF, /* Codes of the values 0xA0 or 0xFF. */
429 ISO_graphic_plane_1 /* Graphic codes in the range 0xA1..0xFE. */
430 };
431
432 /** The macros CODING_ISO_FLAG_XXX defines a flag bit of the
433 `iso-flags' attribute of an iso2022 coding system. */
434
435 /* If set, produce long-form designation sequence (e.g. ESC $ ( A)
436 instead of the correct short-form sequence (e.g. ESC $ A). */
437 #define CODING_ISO_FLAG_LONG_FORM 0x0001
438
439 /* If set, reset graphic planes and registers at end-of-line to the
440 initial state. */
441 #define CODING_ISO_FLAG_RESET_AT_EOL 0x0002
442
443 /* If set, reset graphic planes and registers before any control
444 characters to the initial state. */
445 #define CODING_ISO_FLAG_RESET_AT_CNTL 0x0004
446
447 /* If set, encode by 7-bit environment. */
448 #define CODING_ISO_FLAG_SEVEN_BITS 0x0008
449
450 /* If set, use locking-shift function. */
451 #define CODING_ISO_FLAG_LOCKING_SHIFT 0x0010
452
453 /* If set, use single-shift function. Overwrite
454 CODING_ISO_FLAG_LOCKING_SHIFT. */
455 #define CODING_ISO_FLAG_SINGLE_SHIFT 0x0020
456
457 /* If set, use designation escape sequence. */
458 #define CODING_ISO_FLAG_DESIGNATION 0x0040
459
460 /* If set, produce revision number sequence. */
461 #define CODING_ISO_FLAG_REVISION 0x0080
462
463 /* If set, produce ISO6429's direction specifying sequence. */
464 #define CODING_ISO_FLAG_DIRECTION 0x0100
465
466 /* If set, assume designation states are reset at beginning of line on
467 output. */
468 #define CODING_ISO_FLAG_INIT_AT_BOL 0x0200
469
470 /* If set, designation sequence should be placed at beginning of line
471 on output. */
472 #define CODING_ISO_FLAG_DESIGNATE_AT_BOL 0x0400
473
474 /* If set, do not encode unsafe characters on output. */
475 #define CODING_ISO_FLAG_SAFE 0x0800
476
477 /* If set, extra latin codes (128..159) are accepted as a valid code
478 on input. */
479 #define CODING_ISO_FLAG_LATIN_EXTRA 0x1000
480
481 #define CODING_ISO_FLAG_COMPOSITION 0x2000
482
483 /* #define CODING_ISO_FLAG_EUC_TW_SHIFT 0x4000 */
484
485 #define CODING_ISO_FLAG_USE_ROMAN 0x8000
486
487 #define CODING_ISO_FLAG_USE_OLDJIS 0x10000
488
489 #define CODING_ISO_FLAG_FULL_SUPPORT 0x100000
490
491 /* A character to be produced on output if encoding of the original
492 character is prohibited by CODING_ISO_FLAG_SAFE. */
493 #define CODING_INHIBIT_CHARACTER_SUBSTITUTION '?'
494
495 /* UTF-8 section */
496 #define CODING_UTF_8_BOM(coding) \
497 ((coding)->spec.utf_8_bom)
498
499 /* UTF-16 section */
500 #define CODING_UTF_16_BOM(coding) \
501 ((coding)->spec.utf_16.bom)
502
503 #define CODING_UTF_16_ENDIAN(coding) \
504 ((coding)->spec.utf_16.endian)
505
506 #define CODING_UTF_16_SURROGATE(coding) \
507 ((coding)->spec.utf_16.surrogate)
508
509
510 /* CCL section */
511 #define CODING_CCL_DECODER(coding) \
512 AREF (CODING_ID_ATTRS ((coding)->id), coding_attr_ccl_decoder)
513 #define CODING_CCL_ENCODER(coding) \
514 AREF (CODING_ID_ATTRS ((coding)->id), coding_attr_ccl_encoder)
515 #define CODING_CCL_VALIDS(coding) \
516 (SDATA (AREF (CODING_ID_ATTRS ((coding)->id), coding_attr_ccl_valids)))
517
518 /* Index for each coding category in `coding_categories' */
519
520 enum coding_category
521 {
522 coding_category_iso_7,
523 coding_category_iso_7_tight,
524 coding_category_iso_8_1,
525 coding_category_iso_8_2,
526 coding_category_iso_7_else,
527 coding_category_iso_8_else,
528 coding_category_utf_8_auto,
529 coding_category_utf_8_nosig,
530 coding_category_utf_8_sig,
531 coding_category_utf_16_auto,
532 coding_category_utf_16_be,
533 coding_category_utf_16_le,
534 coding_category_utf_16_be_nosig,
535 coding_category_utf_16_le_nosig,
536 coding_category_charset,
537 coding_category_sjis,
538 coding_category_big5,
539 coding_category_ccl,
540 coding_category_emacs_mule,
541 /* All above are targets of code detection. */
542 coding_category_raw_text,
543 coding_category_undecided,
544 coding_category_max
545 };
546
547 /* Definitions of flag bits used in detect_coding_XXXX. */
548 #define CATEGORY_MASK_ISO_7 (1 << coding_category_iso_7)
549 #define CATEGORY_MASK_ISO_7_TIGHT (1 << coding_category_iso_7_tight)
550 #define CATEGORY_MASK_ISO_8_1 (1 << coding_category_iso_8_1)
551 #define CATEGORY_MASK_ISO_8_2 (1 << coding_category_iso_8_2)
552 #define CATEGORY_MASK_ISO_7_ELSE (1 << coding_category_iso_7_else)
553 #define CATEGORY_MASK_ISO_8_ELSE (1 << coding_category_iso_8_else)
554 #define CATEGORY_MASK_UTF_8_AUTO (1 << coding_category_utf_8_auto)
555 #define CATEGORY_MASK_UTF_8_NOSIG (1 << coding_category_utf_8_nosig)
556 #define CATEGORY_MASK_UTF_8_SIG (1 << coding_category_utf_8_sig)
557 #define CATEGORY_MASK_UTF_16_AUTO (1 << coding_category_utf_16_auto)
558 #define CATEGORY_MASK_UTF_16_BE (1 << coding_category_utf_16_be)
559 #define CATEGORY_MASK_UTF_16_LE (1 << coding_category_utf_16_le)
560 #define CATEGORY_MASK_UTF_16_BE_NOSIG (1 << coding_category_utf_16_be_nosig)
561 #define CATEGORY_MASK_UTF_16_LE_NOSIG (1 << coding_category_utf_16_le_nosig)
562 #define CATEGORY_MASK_CHARSET (1 << coding_category_charset)
563 #define CATEGORY_MASK_SJIS (1 << coding_category_sjis)
564 #define CATEGORY_MASK_BIG5 (1 << coding_category_big5)
565 #define CATEGORY_MASK_CCL (1 << coding_category_ccl)
566 #define CATEGORY_MASK_EMACS_MULE (1 << coding_category_emacs_mule)
567 #define CATEGORY_MASK_RAW_TEXT (1 << coding_category_raw_text)
568
569 /* This value is returned if detect_coding_mask () find nothing other
570 than ASCII characters. */
571 #define CATEGORY_MASK_ANY \
572 (CATEGORY_MASK_ISO_7 \
573 | CATEGORY_MASK_ISO_7_TIGHT \
574 | CATEGORY_MASK_ISO_8_1 \
575 | CATEGORY_MASK_ISO_8_2 \
576 | CATEGORY_MASK_ISO_7_ELSE \
577 | CATEGORY_MASK_ISO_8_ELSE \
578 | CATEGORY_MASK_UTF_8_AUTO \
579 | CATEGORY_MASK_UTF_8_NOSIG \
580 | CATEGORY_MASK_UTF_8_SIG \
581 | CATEGORY_MASK_UTF_16_AUTO \
582 | CATEGORY_MASK_UTF_16_BE \
583 | CATEGORY_MASK_UTF_16_LE \
584 | CATEGORY_MASK_UTF_16_BE_NOSIG \
585 | CATEGORY_MASK_UTF_16_LE_NOSIG \
586 | CATEGORY_MASK_CHARSET \
587 | CATEGORY_MASK_SJIS \
588 | CATEGORY_MASK_BIG5 \
589 | CATEGORY_MASK_CCL \
590 | CATEGORY_MASK_EMACS_MULE)
591
592
593 #define CATEGORY_MASK_ISO_7BIT \
594 (CATEGORY_MASK_ISO_7 | CATEGORY_MASK_ISO_7_TIGHT)
595
596 #define CATEGORY_MASK_ISO_8BIT \
597 (CATEGORY_MASK_ISO_8_1 | CATEGORY_MASK_ISO_8_2)
598
599 #define CATEGORY_MASK_ISO_ELSE \
600 (CATEGORY_MASK_ISO_7_ELSE | CATEGORY_MASK_ISO_8_ELSE)
601
602 #define CATEGORY_MASK_ISO_ESCAPE \
603 (CATEGORY_MASK_ISO_7 \
604 | CATEGORY_MASK_ISO_7_TIGHT \
605 | CATEGORY_MASK_ISO_7_ELSE \
606 | CATEGORY_MASK_ISO_8_ELSE)
607
608 #define CATEGORY_MASK_ISO \
609 ( CATEGORY_MASK_ISO_7BIT \
610 | CATEGORY_MASK_ISO_8BIT \
611 | CATEGORY_MASK_ISO_ELSE)
612
613 #define CATEGORY_MASK_UTF_16 \
614 (CATEGORY_MASK_UTF_16_AUTO \
615 | CATEGORY_MASK_UTF_16_BE \
616 | CATEGORY_MASK_UTF_16_LE \
617 | CATEGORY_MASK_UTF_16_BE_NOSIG \
618 | CATEGORY_MASK_UTF_16_LE_NOSIG)
619
620 #define CATEGORY_MASK_UTF_8 \
621 (CATEGORY_MASK_UTF_8_AUTO \
622 | CATEGORY_MASK_UTF_8_NOSIG \
623 | CATEGORY_MASK_UTF_8_SIG)
624
625 /* Table of coding categories (Lisp symbols). This variable is for
626 internal use only. */
627 static Lisp_Object Vcoding_category_table;
628
629 /* Table of coding-categories ordered by priority. */
630 static enum coding_category coding_priorities[coding_category_max];
631
632 /* Nth element is a coding context for the coding system bound to the
633 Nth coding category. */
634 static struct coding_system coding_categories[coding_category_max];
635
636 /*** Commonly used macros and functions ***/
637
638 #ifndef min
639 #define min(a, b) ((a) < (b) ? (a) : (b))
640 #endif
641 #ifndef max
642 #define max(a, b) ((a) > (b) ? (a) : (b))
643 #endif
644
645 #define CODING_GET_INFO(coding, attrs, charset_list) \
646 do { \
647 (attrs) = CODING_ID_ATTRS ((coding)->id); \
648 (charset_list) = CODING_ATTR_CHARSET_LIST (attrs); \
649 } while (0)
650
651
652 /* Safely get one byte from the source text pointed by SRC which ends
653 at SRC_END, and set C to that byte. If there are not enough bytes
654 in the source, it jumps to `no_more_source'. If multibytep is
655 nonzero, and a multibyte character is found at SRC, set C to the
656 negative value of the character code. The caller should declare
657 and set these variables appropriately in advance:
658 src, src_end, multibytep */
659
660 #define ONE_MORE_BYTE(c) \
661 do { \
662 if (src == src_end) \
663 { \
664 if (src_base < src) \
665 record_conversion_result \
666 (coding, CODING_RESULT_INSUFFICIENT_SRC); \
667 goto no_more_source; \
668 } \
669 c = *src++; \
670 if (multibytep && (c & 0x80)) \
671 { \
672 if ((c & 0xFE) == 0xC0) \
673 c = ((c & 1) << 6) | *src++; \
674 else \
675 { \
676 src--; \
677 c = - string_char (src, &src, NULL); \
678 record_conversion_result \
679 (coding, CODING_RESULT_INVALID_SRC); \
680 } \
681 } \
682 consumed_chars++; \
683 } while (0)
684
685 /* Safely get two bytes from the source text pointed by SRC which ends
686 at SRC_END, and set C1 and C2 to those bytes while skipping the
687 heading multibyte characters. If there are not enough bytes in the
688 source, it jumps to `no_more_source'. If multibytep is nonzero and
689 a multibyte character is found for C2, set C2 to the negative value
690 of the character code. The caller should declare and set these
691 variables appropriately in advance:
692 src, src_end, multibytep
693 It is intended that this macro is used in detect_coding_utf_16. */
694
695 #define TWO_MORE_BYTES(c1, c2) \
696 do { \
697 do { \
698 if (src == src_end) \
699 goto no_more_source; \
700 c1 = *src++; \
701 if (multibytep && (c1 & 0x80)) \
702 { \
703 if ((c1 & 0xFE) == 0xC0) \
704 c1 = ((c1 & 1) << 6) | *src++; \
705 else \
706 { \
707 src += BYTES_BY_CHAR_HEAD (c1) - 1; \
708 c1 = -1; \
709 } \
710 } \
711 } while (c1 < 0); \
712 if (src == src_end) \
713 goto no_more_source; \
714 c2 = *src++; \
715 if (multibytep && (c2 & 0x80)) \
716 { \
717 if ((c2 & 0xFE) == 0xC0) \
718 c2 = ((c2 & 1) << 6) | *src++; \
719 else \
720 c2 = -1; \
721 } \
722 } while (0)
723
724
725 /* Store a byte C in the place pointed by DST and increment DST to the
726 next free point, and increment PRODUCED_CHARS. The caller should
727 assure that C is 0..127, and declare and set the variable `dst'
728 appropriately in advance.
729 */
730
731
732 #define EMIT_ONE_ASCII_BYTE(c) \
733 do { \
734 produced_chars++; \
735 *dst++ = (c); \
736 } while (0)
737
738
739 /* Like EMIT_ONE_ASCII_BYTE but store two bytes; C1 and C2. */
740
741 #define EMIT_TWO_ASCII_BYTES(c1, c2) \
742 do { \
743 produced_chars += 2; \
744 *dst++ = (c1), *dst++ = (c2); \
745 } while (0)
746
747
748 /* Store a byte C in the place pointed by DST and increment DST to the
749 next free point, and increment PRODUCED_CHARS. If MULTIBYTEP is
750 nonzero, store in an appropriate multibyte from. The caller should
751 declare and set the variables `dst' and `multibytep' appropriately
752 in advance. */
753
754 #define EMIT_ONE_BYTE(c) \
755 do { \
756 produced_chars++; \
757 if (multibytep) \
758 { \
759 unsigned ch = (c); \
760 if (ch >= 0x80) \
761 ch = BYTE8_TO_CHAR (ch); \
762 CHAR_STRING_ADVANCE (ch, dst); \
763 } \
764 else \
765 *dst++ = (c); \
766 } while (0)
767
768
769 /* Like EMIT_ONE_BYTE, but emit two bytes; C1 and C2. */
770
771 #define EMIT_TWO_BYTES(c1, c2) \
772 do { \
773 produced_chars += 2; \
774 if (multibytep) \
775 { \
776 unsigned ch; \
777 \
778 ch = (c1); \
779 if (ch >= 0x80) \
780 ch = BYTE8_TO_CHAR (ch); \
781 CHAR_STRING_ADVANCE (ch, dst); \
782 ch = (c2); \
783 if (ch >= 0x80) \
784 ch = BYTE8_TO_CHAR (ch); \
785 CHAR_STRING_ADVANCE (ch, dst); \
786 } \
787 else \
788 { \
789 *dst++ = (c1); \
790 *dst++ = (c2); \
791 } \
792 } while (0)
793
794
795 #define EMIT_THREE_BYTES(c1, c2, c3) \
796 do { \
797 EMIT_ONE_BYTE (c1); \
798 EMIT_TWO_BYTES (c2, c3); \
799 } while (0)
800
801
802 #define EMIT_FOUR_BYTES(c1, c2, c3, c4) \
803 do { \
804 EMIT_TWO_BYTES (c1, c2); \
805 EMIT_TWO_BYTES (c3, c4); \
806 } while (0)
807
808
809 /* Prototypes for static functions. */
810 static void record_conversion_result (struct coding_system *coding,
811 enum coding_result_code result);
812 static int detect_coding_utf_8 (struct coding_system *,
813 struct coding_detection_info *info);
814 static void decode_coding_utf_8 (struct coding_system *);
815 static int encode_coding_utf_8 (struct coding_system *);
816
817 static int detect_coding_utf_16 (struct coding_system *,
818 struct coding_detection_info *info);
819 static void decode_coding_utf_16 (struct coding_system *);
820 static int encode_coding_utf_16 (struct coding_system *);
821
822 static int detect_coding_iso_2022 (struct coding_system *,
823 struct coding_detection_info *info);
824 static void decode_coding_iso_2022 (struct coding_system *);
825 static int encode_coding_iso_2022 (struct coding_system *);
826
827 static int detect_coding_emacs_mule (struct coding_system *,
828 struct coding_detection_info *info);
829 static void decode_coding_emacs_mule (struct coding_system *);
830 static int encode_coding_emacs_mule (struct coding_system *);
831
832 static int detect_coding_sjis (struct coding_system *,
833 struct coding_detection_info *info);
834 static void decode_coding_sjis (struct coding_system *);
835 static int encode_coding_sjis (struct coding_system *);
836
837 static int detect_coding_big5 (struct coding_system *,
838 struct coding_detection_info *info);
839 static void decode_coding_big5 (struct coding_system *);
840 static int encode_coding_big5 (struct coding_system *);
841
842 static int detect_coding_ccl (struct coding_system *,
843 struct coding_detection_info *info);
844 static void decode_coding_ccl (struct coding_system *);
845 static int encode_coding_ccl (struct coding_system *);
846
847 static void decode_coding_raw_text (struct coding_system *);
848 static int encode_coding_raw_text (struct coding_system *);
849
850 static EMACS_INT coding_set_source (struct coding_system *);
851 static EMACS_INT coding_set_destination (struct coding_system *);
852 static void coding_alloc_by_realloc (struct coding_system *, EMACS_INT);
853 static void coding_alloc_by_making_gap (struct coding_system *,
854 EMACS_INT, EMACS_INT);
855 static unsigned char *alloc_destination (struct coding_system *,
856 EMACS_INT, unsigned char *);
857 static void setup_iso_safe_charsets (Lisp_Object);
858 static int encode_designation_at_bol (struct coding_system *,
859 int *, int *, unsigned char *);
860 static int detect_eol (const unsigned char *,
861 EMACS_INT, enum coding_category);
862 static Lisp_Object adjust_coding_eol_type (struct coding_system *, int);
863 static void decode_eol (struct coding_system *);
864 static Lisp_Object get_translation_table (Lisp_Object, int, int *);
865 static Lisp_Object get_translation (Lisp_Object, int *, int *);
866 static int produce_chars (struct coding_system *, Lisp_Object, int);
867 static inline void produce_charset (struct coding_system *, int *,
868 EMACS_INT);
869 static void produce_annotation (struct coding_system *, EMACS_INT);
870 static int decode_coding (struct coding_system *);
871 static inline int *handle_composition_annotation (EMACS_INT, EMACS_INT,
872 struct coding_system *,
873 int *, EMACS_INT *);
874 static inline int *handle_charset_annotation (EMACS_INT, EMACS_INT,
875 struct coding_system *,
876 int *, EMACS_INT *);
877 static void consume_chars (struct coding_system *, Lisp_Object, int);
878 static int encode_coding (struct coding_system *);
879 static Lisp_Object make_conversion_work_buffer (int);
880 static Lisp_Object code_conversion_restore (Lisp_Object);
881 static inline int char_encodable_p (int, Lisp_Object);
882 static Lisp_Object make_subsidiaries (Lisp_Object);
883
884 static void
885 record_conversion_result (struct coding_system *coding,
886 enum coding_result_code result)
887 {
888 coding->result = result;
889 switch (result)
890 {
891 case CODING_RESULT_INSUFFICIENT_SRC:
892 Vlast_code_conversion_error = Qinsufficient_source;
893 break;
894 case CODING_RESULT_INCONSISTENT_EOL:
895 Vlast_code_conversion_error = Qinconsistent_eol;
896 break;
897 case CODING_RESULT_INVALID_SRC:
898 Vlast_code_conversion_error = Qinvalid_source;
899 break;
900 case CODING_RESULT_INTERRUPT:
901 Vlast_code_conversion_error = Qinterrupted;
902 break;
903 case CODING_RESULT_INSUFFICIENT_MEM:
904 Vlast_code_conversion_error = Qinsufficient_memory;
905 break;
906 case CODING_RESULT_INSUFFICIENT_DST:
907 /* Don't record this error in Vlast_code_conversion_error
908 because it happens just temporarily and is resolved when the
909 whole conversion is finished. */
910 break;
911 case CODING_RESULT_SUCCESS:
912 break;
913 default:
914 Vlast_code_conversion_error = intern ("Unknown error");
915 }
916 }
917
918 /* These wrapper macros are used to preserve validity of pointers into
919 buffer text across calls to decode_char, encode_char, etc, which
920 could cause relocation of buffers if it loads a charset map,
921 because loading a charset map allocates large structures. */
922
923 #define CODING_DECODE_CHAR(coding, src, src_base, src_end, charset, code, c) \
924 do { \
925 EMACS_INT offset; \
926 \
927 charset_map_loaded = 0; \
928 c = DECODE_CHAR (charset, code); \
929 if (charset_map_loaded \
930 && (offset = coding_set_source (coding))) \
931 { \
932 src += offset; \
933 src_base += offset; \
934 src_end += offset; \
935 } \
936 } while (0)
937
938 #define CODING_ENCODE_CHAR(coding, dst, dst_end, charset, c, code) \
939 do { \
940 EMACS_INT offset; \
941 \
942 charset_map_loaded = 0; \
943 code = ENCODE_CHAR (charset, c); \
944 if (charset_map_loaded \
945 && (offset = coding_set_destination (coding))) \
946 { \
947 dst += offset; \
948 dst_end += offset; \
949 } \
950 } while (0)
951
952 #define CODING_CHAR_CHARSET(coding, dst, dst_end, c, charset_list, code_return, charset) \
953 do { \
954 EMACS_INT offset; \
955 \
956 charset_map_loaded = 0; \
957 charset = char_charset (c, charset_list, code_return); \
958 if (charset_map_loaded \
959 && (offset = coding_set_destination (coding))) \
960 { \
961 dst += offset; \
962 dst_end += offset; \
963 } \
964 } while (0)
965
966 #define CODING_CHAR_CHARSET_P(coding, dst, dst_end, c, charset, result) \
967 do { \
968 EMACS_INT offset; \
969 \
970 charset_map_loaded = 0; \
971 result = CHAR_CHARSET_P (c, charset); \
972 if (charset_map_loaded \
973 && (offset = coding_set_destination (coding))) \
974 { \
975 dst += offset; \
976 dst_end += offset; \
977 } \
978 } while (0)
979
980
981 /* If there are at least BYTES length of room at dst, allocate memory
982 for coding->destination and update dst and dst_end. We don't have
983 to take care of coding->source which will be relocated. It is
984 handled by calling coding_set_source in encode_coding. */
985
986 #define ASSURE_DESTINATION(bytes) \
987 do { \
988 if (dst + (bytes) >= dst_end) \
989 { \
990 EMACS_INT more_bytes = charbuf_end - charbuf + (bytes); \
991 \
992 dst = alloc_destination (coding, more_bytes, dst); \
993 dst_end = coding->destination + coding->dst_bytes; \
994 } \
995 } while (0)
996
997
998 /* Store multibyte form of the character C in P, and advance P to the
999 end of the multibyte form. This is like CHAR_STRING_ADVANCE but it
1000 never calls MAYBE_UNIFY_CHAR. */
1001
1002 #define CHAR_STRING_ADVANCE_NO_UNIFY(c, p) \
1003 do { \
1004 if ((c) <= MAX_1_BYTE_CHAR) \
1005 *(p)++ = (c); \
1006 else if ((c) <= MAX_2_BYTE_CHAR) \
1007 *(p)++ = (0xC0 | ((c) >> 6)), \
1008 *(p)++ = (0x80 | ((c) & 0x3F)); \
1009 else if ((c) <= MAX_3_BYTE_CHAR) \
1010 *(p)++ = (0xE0 | ((c) >> 12)), \
1011 *(p)++ = (0x80 | (((c) >> 6) & 0x3F)), \
1012 *(p)++ = (0x80 | ((c) & 0x3F)); \
1013 else if ((c) <= MAX_4_BYTE_CHAR) \
1014 *(p)++ = (0xF0 | (c >> 18)), \
1015 *(p)++ = (0x80 | ((c >> 12) & 0x3F)), \
1016 *(p)++ = (0x80 | ((c >> 6) & 0x3F)), \
1017 *(p)++ = (0x80 | (c & 0x3F)); \
1018 else if ((c) <= MAX_5_BYTE_CHAR) \
1019 *(p)++ = 0xF8, \
1020 *(p)++ = (0x80 | ((c >> 18) & 0x0F)), \
1021 *(p)++ = (0x80 | ((c >> 12) & 0x3F)), \
1022 *(p)++ = (0x80 | ((c >> 6) & 0x3F)), \
1023 *(p)++ = (0x80 | (c & 0x3F)); \
1024 else \
1025 (p) += BYTE8_STRING ((c) - 0x3FFF80, p); \
1026 } while (0)
1027
1028
1029 /* Return the character code of character whose multibyte form is at
1030 P, and advance P to the end of the multibyte form. This is like
1031 STRING_CHAR_ADVANCE, but it never calls MAYBE_UNIFY_CHAR. */
1032
1033 #define STRING_CHAR_ADVANCE_NO_UNIFY(p) \
1034 (!((p)[0] & 0x80) \
1035 ? *(p)++ \
1036 : ! ((p)[0] & 0x20) \
1037 ? ((p) += 2, \
1038 ((((p)[-2] & 0x1F) << 6) \
1039 | ((p)[-1] & 0x3F) \
1040 | ((unsigned char) ((p)[-2]) < 0xC2 ? 0x3FFF80 : 0))) \
1041 : ! ((p)[0] & 0x10) \
1042 ? ((p) += 3, \
1043 ((((p)[-3] & 0x0F) << 12) \
1044 | (((p)[-2] & 0x3F) << 6) \
1045 | ((p)[-1] & 0x3F))) \
1046 : ! ((p)[0] & 0x08) \
1047 ? ((p) += 4, \
1048 ((((p)[-4] & 0xF) << 18) \
1049 | (((p)[-3] & 0x3F) << 12) \
1050 | (((p)[-2] & 0x3F) << 6) \
1051 | ((p)[-1] & 0x3F))) \
1052 : ((p) += 5, \
1053 ((((p)[-4] & 0x3F) << 18) \
1054 | (((p)[-3] & 0x3F) << 12) \
1055 | (((p)[-2] & 0x3F) << 6) \
1056 | ((p)[-1] & 0x3F))))
1057
1058
1059 /* Update coding->source from coding->src_object, and return how many
1060 bytes coding->source was changed. */
1061
1062 static EMACS_INT
1063 coding_set_source (struct coding_system *coding)
1064 {
1065 const unsigned char *orig = coding->source;
1066
1067 if (BUFFERP (coding->src_object))
1068 {
1069 struct buffer *buf = XBUFFER (coding->src_object);
1070
1071 if (coding->src_pos < 0)
1072 coding->source = BUF_GAP_END_ADDR (buf) + coding->src_pos_byte;
1073 else
1074 coding->source = BUF_BYTE_ADDRESS (buf, coding->src_pos_byte);
1075 }
1076 else if (STRINGP (coding->src_object))
1077 {
1078 coding->source = SDATA (coding->src_object) + coding->src_pos_byte;
1079 }
1080 else
1081 {
1082 /* Otherwise, the source is C string and is never relocated
1083 automatically. Thus we don't have to update anything. */
1084 }
1085 return coding->source - orig;
1086 }
1087
1088
1089 /* Update coding->destination from coding->dst_object, and return how
1090 many bytes coding->destination was changed. */
1091
1092 static EMACS_INT
1093 coding_set_destination (struct coding_system *coding)
1094 {
1095 const unsigned char *orig = coding->destination;
1096
1097 if (BUFFERP (coding->dst_object))
1098 {
1099 if (BUFFERP (coding->src_object) && coding->src_pos < 0)
1100 {
1101 coding->destination = BEG_ADDR + coding->dst_pos_byte - BEG_BYTE;
1102 coding->dst_bytes = (GAP_END_ADDR
1103 - (coding->src_bytes - coding->consumed)
1104 - coding->destination);
1105 }
1106 else
1107 {
1108 /* We are sure that coding->dst_pos_byte is before the gap
1109 of the buffer. */
1110 coding->destination = (BUF_BEG_ADDR (XBUFFER (coding->dst_object))
1111 + coding->dst_pos_byte - BEG_BYTE);
1112 coding->dst_bytes = (BUF_GAP_END_ADDR (XBUFFER (coding->dst_object))
1113 - coding->destination);
1114 }
1115 }
1116 else
1117 {
1118 /* Otherwise, the destination is C string and is never relocated
1119 automatically. Thus we don't have to update anything. */
1120 }
1121 return coding->destination - orig;
1122 }
1123
1124
1125 static void
1126 coding_alloc_by_realloc (struct coding_system *coding, EMACS_INT bytes)
1127 {
1128 if (STRING_BYTES_BOUND - coding->dst_bytes < bytes)
1129 string_overflow ();
1130 coding->destination = (unsigned char *) xrealloc (coding->destination,
1131 coding->dst_bytes + bytes);
1132 coding->dst_bytes += bytes;
1133 }
1134
1135 static void
1136 coding_alloc_by_making_gap (struct coding_system *coding,
1137 EMACS_INT gap_head_used, EMACS_INT bytes)
1138 {
1139 if (EQ (coding->src_object, coding->dst_object))
1140 {
1141 /* The gap may contain the produced data at the head and not-yet
1142 consumed data at the tail. To preserve those data, we at
1143 first make the gap size to zero, then increase the gap
1144 size. */
1145 EMACS_INT add = GAP_SIZE;
1146
1147 GPT += gap_head_used, GPT_BYTE += gap_head_used;
1148 GAP_SIZE = 0; ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
1149 make_gap (bytes);
1150 GAP_SIZE += add; ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
1151 GPT -= gap_head_used, GPT_BYTE -= gap_head_used;
1152 }
1153 else
1154 {
1155 Lisp_Object this_buffer;
1156
1157 this_buffer = Fcurrent_buffer ();
1158 set_buffer_internal (XBUFFER (coding->dst_object));
1159 make_gap (bytes);
1160 set_buffer_internal (XBUFFER (this_buffer));
1161 }
1162 }
1163
1164
1165 static unsigned char *
1166 alloc_destination (struct coding_system *coding, EMACS_INT nbytes,
1167 unsigned char *dst)
1168 {
1169 EMACS_INT offset = dst - coding->destination;
1170
1171 if (BUFFERP (coding->dst_object))
1172 {
1173 struct buffer *buf = XBUFFER (coding->dst_object);
1174
1175 coding_alloc_by_making_gap (coding, dst - BUF_GPT_ADDR (buf), nbytes);
1176 }
1177 else
1178 coding_alloc_by_realloc (coding, nbytes);
1179 coding_set_destination (coding);
1180 dst = coding->destination + offset;
1181 return dst;
1182 }
1183
1184 /** Macros for annotations. */
1185
1186 /* An annotation data is stored in the array coding->charbuf in this
1187 format:
1188 [ -LENGTH ANNOTATION_MASK NCHARS ... ]
1189 LENGTH is the number of elements in the annotation.
1190 ANNOTATION_MASK is one of CODING_ANNOTATE_XXX_MASK.
1191 NCHARS is the number of characters in the text annotated.
1192
1193 The format of the following elements depend on ANNOTATION_MASK.
1194
1195 In the case of CODING_ANNOTATE_COMPOSITION_MASK, these elements
1196 follows:
1197 ... NBYTES METHOD [ COMPOSITION-COMPONENTS ... ]
1198
1199 NBYTES is the number of bytes specified in the header part of
1200 old-style emacs-mule encoding, or 0 for the other kind of
1201 composition.
1202
1203 METHOD is one of enum composition_method.
1204
1205 Optional COMPOSITION-COMPONENTS are characters and composition
1206 rules.
1207
1208 In the case of CODING_ANNOTATE_CHARSET_MASK, one element CHARSET-ID
1209 follows.
1210
1211 If ANNOTATION_MASK is 0, this annotation is just a space holder to
1212 recover from an invalid annotation, and should be skipped by
1213 produce_annotation. */
1214
1215 /* Maximum length of the header of annotation data. */
1216 #define MAX_ANNOTATION_LENGTH 5
1217
1218 #define ADD_ANNOTATION_DATA(buf, len, mask, nchars) \
1219 do { \
1220 *(buf)++ = -(len); \
1221 *(buf)++ = (mask); \
1222 *(buf)++ = (nchars); \
1223 coding->annotated = 1; \
1224 } while (0);
1225
1226 #define ADD_COMPOSITION_DATA(buf, nchars, nbytes, method) \
1227 do { \
1228 ADD_ANNOTATION_DATA (buf, 5, CODING_ANNOTATE_COMPOSITION_MASK, nchars); \
1229 *buf++ = nbytes; \
1230 *buf++ = method; \
1231 } while (0)
1232
1233
1234 #define ADD_CHARSET_DATA(buf, nchars, id) \
1235 do { \
1236 ADD_ANNOTATION_DATA (buf, 4, CODING_ANNOTATE_CHARSET_MASK, nchars); \
1237 *buf++ = id; \
1238 } while (0)
1239
1240 \f
1241 /*** 2. Emacs' internal format (emacs-utf-8) ***/
1242
1243
1244
1245 \f
1246 /*** 3. UTF-8 ***/
1247
1248 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1249 Check if a text is encoded in UTF-8. If it is, return 1, else
1250 return 0. */
1251
1252 #define UTF_8_1_OCTET_P(c) ((c) < 0x80)
1253 #define UTF_8_EXTRA_OCTET_P(c) (((c) & 0xC0) == 0x80)
1254 #define UTF_8_2_OCTET_LEADING_P(c) (((c) & 0xE0) == 0xC0)
1255 #define UTF_8_3_OCTET_LEADING_P(c) (((c) & 0xF0) == 0xE0)
1256 #define UTF_8_4_OCTET_LEADING_P(c) (((c) & 0xF8) == 0xF0)
1257 #define UTF_8_5_OCTET_LEADING_P(c) (((c) & 0xFC) == 0xF8)
1258
1259 #define UTF_8_BOM_1 0xEF
1260 #define UTF_8_BOM_2 0xBB
1261 #define UTF_8_BOM_3 0xBF
1262
1263 static int
1264 detect_coding_utf_8 (struct coding_system *coding,
1265 struct coding_detection_info *detect_info)
1266 {
1267 const unsigned char *src = coding->source, *src_base;
1268 const unsigned char *src_end = coding->source + coding->src_bytes;
1269 int multibytep = coding->src_multibyte;
1270 EMACS_INT consumed_chars = 0;
1271 int bom_found = 0;
1272 int found = 0;
1273
1274 detect_info->checked |= CATEGORY_MASK_UTF_8;
1275 /* A coding system of this category is always ASCII compatible. */
1276 src += coding->head_ascii;
1277
1278 while (1)
1279 {
1280 int c, c1, c2, c3, c4;
1281
1282 src_base = src;
1283 ONE_MORE_BYTE (c);
1284 if (c < 0 || UTF_8_1_OCTET_P (c))
1285 continue;
1286 ONE_MORE_BYTE (c1);
1287 if (c1 < 0 || ! UTF_8_EXTRA_OCTET_P (c1))
1288 break;
1289 if (UTF_8_2_OCTET_LEADING_P (c))
1290 {
1291 found = 1;
1292 continue;
1293 }
1294 ONE_MORE_BYTE (c2);
1295 if (c2 < 0 || ! UTF_8_EXTRA_OCTET_P (c2))
1296 break;
1297 if (UTF_8_3_OCTET_LEADING_P (c))
1298 {
1299 found = 1;
1300 if (src_base == coding->source
1301 && c == UTF_8_BOM_1 && c1 == UTF_8_BOM_2 && c2 == UTF_8_BOM_3)
1302 bom_found = 1;
1303 continue;
1304 }
1305 ONE_MORE_BYTE (c3);
1306 if (c3 < 0 || ! UTF_8_EXTRA_OCTET_P (c3))
1307 break;
1308 if (UTF_8_4_OCTET_LEADING_P (c))
1309 {
1310 found = 1;
1311 continue;
1312 }
1313 ONE_MORE_BYTE (c4);
1314 if (c4 < 0 || ! UTF_8_EXTRA_OCTET_P (c4))
1315 break;
1316 if (UTF_8_5_OCTET_LEADING_P (c))
1317 {
1318 found = 1;
1319 continue;
1320 }
1321 break;
1322 }
1323 detect_info->rejected |= CATEGORY_MASK_UTF_8;
1324 return 0;
1325
1326 no_more_source:
1327 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
1328 {
1329 detect_info->rejected |= CATEGORY_MASK_UTF_8;
1330 return 0;
1331 }
1332 if (bom_found)
1333 {
1334 /* The first character 0xFFFE doesn't necessarily mean a BOM. */
1335 detect_info->found |= CATEGORY_MASK_UTF_8_SIG | CATEGORY_MASK_UTF_8_NOSIG;
1336 }
1337 else
1338 {
1339 detect_info->rejected |= CATEGORY_MASK_UTF_8_SIG;
1340 if (found)
1341 detect_info->found |= CATEGORY_MASK_UTF_8_NOSIG;
1342 }
1343 return 1;
1344 }
1345
1346
1347 static void
1348 decode_coding_utf_8 (struct coding_system *coding)
1349 {
1350 const unsigned char *src = coding->source + coding->consumed;
1351 const unsigned char *src_end = coding->source + coding->src_bytes;
1352 const unsigned char *src_base;
1353 int *charbuf = coding->charbuf + coding->charbuf_used;
1354 int *charbuf_end = coding->charbuf + coding->charbuf_size;
1355 EMACS_INT consumed_chars = 0, consumed_chars_base = 0;
1356 int multibytep = coding->src_multibyte;
1357 enum utf_bom_type bom = CODING_UTF_8_BOM (coding);
1358 int eol_dos =
1359 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
1360 int byte_after_cr = -1;
1361
1362 if (bom != utf_without_bom)
1363 {
1364 int c1, c2, c3;
1365
1366 src_base = src;
1367 ONE_MORE_BYTE (c1);
1368 if (! UTF_8_3_OCTET_LEADING_P (c1))
1369 src = src_base;
1370 else
1371 {
1372 ONE_MORE_BYTE (c2);
1373 if (! UTF_8_EXTRA_OCTET_P (c2))
1374 src = src_base;
1375 else
1376 {
1377 ONE_MORE_BYTE (c3);
1378 if (! UTF_8_EXTRA_OCTET_P (c3))
1379 src = src_base;
1380 else
1381 {
1382 if ((c1 != UTF_8_BOM_1)
1383 || (c2 != UTF_8_BOM_2) || (c3 != UTF_8_BOM_3))
1384 src = src_base;
1385 else
1386 CODING_UTF_8_BOM (coding) = utf_without_bom;
1387 }
1388 }
1389 }
1390 }
1391 CODING_UTF_8_BOM (coding) = utf_without_bom;
1392
1393 while (1)
1394 {
1395 int c, c1, c2, c3, c4, c5;
1396
1397 src_base = src;
1398 consumed_chars_base = consumed_chars;
1399
1400 if (charbuf >= charbuf_end)
1401 {
1402 if (byte_after_cr >= 0)
1403 src_base--;
1404 break;
1405 }
1406
1407 if (byte_after_cr >= 0)
1408 c1 = byte_after_cr, byte_after_cr = -1;
1409 else
1410 ONE_MORE_BYTE (c1);
1411 if (c1 < 0)
1412 {
1413 c = - c1;
1414 }
1415 else if (UTF_8_1_OCTET_P (c1))
1416 {
1417 if (eol_dos && c1 == '\r')
1418 ONE_MORE_BYTE (byte_after_cr);
1419 c = c1;
1420 }
1421 else
1422 {
1423 ONE_MORE_BYTE (c2);
1424 if (c2 < 0 || ! UTF_8_EXTRA_OCTET_P (c2))
1425 goto invalid_code;
1426 if (UTF_8_2_OCTET_LEADING_P (c1))
1427 {
1428 c = ((c1 & 0x1F) << 6) | (c2 & 0x3F);
1429 /* Reject overlong sequences here and below. Encoders
1430 producing them are incorrect, they can be misleading,
1431 and they mess up read/write invariance. */
1432 if (c < 128)
1433 goto invalid_code;
1434 }
1435 else
1436 {
1437 ONE_MORE_BYTE (c3);
1438 if (c3 < 0 || ! UTF_8_EXTRA_OCTET_P (c3))
1439 goto invalid_code;
1440 if (UTF_8_3_OCTET_LEADING_P (c1))
1441 {
1442 c = (((c1 & 0xF) << 12)
1443 | ((c2 & 0x3F) << 6) | (c3 & 0x3F));
1444 if (c < 0x800
1445 || (c >= 0xd800 && c < 0xe000)) /* surrogates (invalid) */
1446 goto invalid_code;
1447 }
1448 else
1449 {
1450 ONE_MORE_BYTE (c4);
1451 if (c4 < 0 || ! UTF_8_EXTRA_OCTET_P (c4))
1452 goto invalid_code;
1453 if (UTF_8_4_OCTET_LEADING_P (c1))
1454 {
1455 c = (((c1 & 0x7) << 18) | ((c2 & 0x3F) << 12)
1456 | ((c3 & 0x3F) << 6) | (c4 & 0x3F));
1457 if (c < 0x10000)
1458 goto invalid_code;
1459 }
1460 else
1461 {
1462 ONE_MORE_BYTE (c5);
1463 if (c5 < 0 || ! UTF_8_EXTRA_OCTET_P (c5))
1464 goto invalid_code;
1465 if (UTF_8_5_OCTET_LEADING_P (c1))
1466 {
1467 c = (((c1 & 0x3) << 24) | ((c2 & 0x3F) << 18)
1468 | ((c3 & 0x3F) << 12) | ((c4 & 0x3F) << 6)
1469 | (c5 & 0x3F));
1470 if ((c > MAX_CHAR) || (c < 0x200000))
1471 goto invalid_code;
1472 }
1473 else
1474 goto invalid_code;
1475 }
1476 }
1477 }
1478 }
1479
1480 *charbuf++ = c;
1481 continue;
1482
1483 invalid_code:
1484 src = src_base;
1485 consumed_chars = consumed_chars_base;
1486 ONE_MORE_BYTE (c);
1487 *charbuf++ = ASCII_BYTE_P (c) ? c : BYTE8_TO_CHAR (c);
1488 coding->errors++;
1489 }
1490
1491 no_more_source:
1492 coding->consumed_char += consumed_chars_base;
1493 coding->consumed = src_base - coding->source;
1494 coding->charbuf_used = charbuf - coding->charbuf;
1495 }
1496
1497
1498 static int
1499 encode_coding_utf_8 (struct coding_system *coding)
1500 {
1501 int multibytep = coding->dst_multibyte;
1502 int *charbuf = coding->charbuf;
1503 int *charbuf_end = charbuf + coding->charbuf_used;
1504 unsigned char *dst = coding->destination + coding->produced;
1505 unsigned char *dst_end = coding->destination + coding->dst_bytes;
1506 EMACS_INT produced_chars = 0;
1507 int c;
1508
1509 if (CODING_UTF_8_BOM (coding) == utf_with_bom)
1510 {
1511 ASSURE_DESTINATION (3);
1512 EMIT_THREE_BYTES (UTF_8_BOM_1, UTF_8_BOM_2, UTF_8_BOM_3);
1513 CODING_UTF_8_BOM (coding) = utf_without_bom;
1514 }
1515
1516 if (multibytep)
1517 {
1518 int safe_room = MAX_MULTIBYTE_LENGTH * 2;
1519
1520 while (charbuf < charbuf_end)
1521 {
1522 unsigned char str[MAX_MULTIBYTE_LENGTH], *p, *pend = str;
1523
1524 ASSURE_DESTINATION (safe_room);
1525 c = *charbuf++;
1526 if (CHAR_BYTE8_P (c))
1527 {
1528 c = CHAR_TO_BYTE8 (c);
1529 EMIT_ONE_BYTE (c);
1530 }
1531 else
1532 {
1533 CHAR_STRING_ADVANCE_NO_UNIFY (c, pend);
1534 for (p = str; p < pend; p++)
1535 EMIT_ONE_BYTE (*p);
1536 }
1537 }
1538 }
1539 else
1540 {
1541 int safe_room = MAX_MULTIBYTE_LENGTH;
1542
1543 while (charbuf < charbuf_end)
1544 {
1545 ASSURE_DESTINATION (safe_room);
1546 c = *charbuf++;
1547 if (CHAR_BYTE8_P (c))
1548 *dst++ = CHAR_TO_BYTE8 (c);
1549 else
1550 CHAR_STRING_ADVANCE_NO_UNIFY (c, dst);
1551 produced_chars++;
1552 }
1553 }
1554 record_conversion_result (coding, CODING_RESULT_SUCCESS);
1555 coding->produced_char += produced_chars;
1556 coding->produced = dst - coding->destination;
1557 return 0;
1558 }
1559
1560
1561 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1562 Check if a text is encoded in one of UTF-16 based coding systems.
1563 If it is, return 1, else return 0. */
1564
1565 #define UTF_16_HIGH_SURROGATE_P(val) \
1566 (((val) & 0xFC00) == 0xD800)
1567
1568 #define UTF_16_LOW_SURROGATE_P(val) \
1569 (((val) & 0xFC00) == 0xDC00)
1570
1571
1572 static int
1573 detect_coding_utf_16 (struct coding_system *coding,
1574 struct coding_detection_info *detect_info)
1575 {
1576 const unsigned char *src = coding->source;
1577 const unsigned char *src_end = coding->source + coding->src_bytes;
1578 int multibytep = coding->src_multibyte;
1579 int c1, c2;
1580
1581 detect_info->checked |= CATEGORY_MASK_UTF_16;
1582 if (coding->mode & CODING_MODE_LAST_BLOCK
1583 && (coding->src_chars & 1))
1584 {
1585 detect_info->rejected |= CATEGORY_MASK_UTF_16;
1586 return 0;
1587 }
1588
1589 TWO_MORE_BYTES (c1, c2);
1590 if ((c1 == 0xFF) && (c2 == 0xFE))
1591 {
1592 detect_info->found |= (CATEGORY_MASK_UTF_16_LE
1593 | CATEGORY_MASK_UTF_16_AUTO);
1594 detect_info->rejected |= (CATEGORY_MASK_UTF_16_BE
1595 | CATEGORY_MASK_UTF_16_BE_NOSIG
1596 | CATEGORY_MASK_UTF_16_LE_NOSIG);
1597 }
1598 else if ((c1 == 0xFE) && (c2 == 0xFF))
1599 {
1600 detect_info->found |= (CATEGORY_MASK_UTF_16_BE
1601 | CATEGORY_MASK_UTF_16_AUTO);
1602 detect_info->rejected |= (CATEGORY_MASK_UTF_16_LE
1603 | CATEGORY_MASK_UTF_16_BE_NOSIG
1604 | CATEGORY_MASK_UTF_16_LE_NOSIG);
1605 }
1606 else if (c2 < 0)
1607 {
1608 detect_info->rejected |= CATEGORY_MASK_UTF_16;
1609 return 0;
1610 }
1611 else
1612 {
1613 /* We check the dispersion of Eth and Oth bytes where E is even and
1614 O is odd. If both are high, we assume binary data.*/
1615 unsigned char e[256], o[256];
1616 unsigned e_num = 1, o_num = 1;
1617
1618 memset (e, 0, 256);
1619 memset (o, 0, 256);
1620 e[c1] = 1;
1621 o[c2] = 1;
1622
1623 detect_info->rejected |= (CATEGORY_MASK_UTF_16_AUTO
1624 |CATEGORY_MASK_UTF_16_BE
1625 | CATEGORY_MASK_UTF_16_LE);
1626
1627 while ((detect_info->rejected & CATEGORY_MASK_UTF_16)
1628 != CATEGORY_MASK_UTF_16)
1629 {
1630 TWO_MORE_BYTES (c1, c2);
1631 if (c2 < 0)
1632 break;
1633 if (! e[c1])
1634 {
1635 e[c1] = 1;
1636 e_num++;
1637 if (e_num >= 128)
1638 detect_info->rejected |= CATEGORY_MASK_UTF_16_BE_NOSIG;
1639 }
1640 if (! o[c2])
1641 {
1642 o[c2] = 1;
1643 o_num++;
1644 if (o_num >= 128)
1645 detect_info->rejected |= CATEGORY_MASK_UTF_16_LE_NOSIG;
1646 }
1647 }
1648 return 0;
1649 }
1650
1651 no_more_source:
1652 return 1;
1653 }
1654
1655 static void
1656 decode_coding_utf_16 (struct coding_system *coding)
1657 {
1658 const unsigned char *src = coding->source + coding->consumed;
1659 const unsigned char *src_end = coding->source + coding->src_bytes;
1660 const unsigned char *src_base;
1661 int *charbuf = coding->charbuf + coding->charbuf_used;
1662 /* We may produces at most 3 chars in one loop. */
1663 int *charbuf_end = coding->charbuf + coding->charbuf_size - 2;
1664 EMACS_INT consumed_chars = 0, consumed_chars_base = 0;
1665 int multibytep = coding->src_multibyte;
1666 enum utf_bom_type bom = CODING_UTF_16_BOM (coding);
1667 enum utf_16_endian_type endian = CODING_UTF_16_ENDIAN (coding);
1668 int surrogate = CODING_UTF_16_SURROGATE (coding);
1669 int eol_dos =
1670 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
1671 int byte_after_cr1 = -1, byte_after_cr2 = -1;
1672
1673 if (bom == utf_with_bom)
1674 {
1675 int c, c1, c2;
1676
1677 src_base = src;
1678 ONE_MORE_BYTE (c1);
1679 ONE_MORE_BYTE (c2);
1680 c = (c1 << 8) | c2;
1681
1682 if (endian == utf_16_big_endian
1683 ? c != 0xFEFF : c != 0xFFFE)
1684 {
1685 /* The first two bytes are not BOM. Treat them as bytes
1686 for a normal character. */
1687 src = src_base;
1688 coding->errors++;
1689 }
1690 CODING_UTF_16_BOM (coding) = utf_without_bom;
1691 }
1692 else if (bom == utf_detect_bom)
1693 {
1694 /* We have already tried to detect BOM and failed in
1695 detect_coding. */
1696 CODING_UTF_16_BOM (coding) = utf_without_bom;
1697 }
1698
1699 while (1)
1700 {
1701 int c, c1, c2;
1702
1703 src_base = src;
1704 consumed_chars_base = consumed_chars;
1705
1706 if (charbuf >= charbuf_end)
1707 {
1708 if (byte_after_cr1 >= 0)
1709 src_base -= 2;
1710 break;
1711 }
1712
1713 if (byte_after_cr1 >= 0)
1714 c1 = byte_after_cr1, byte_after_cr1 = -1;
1715 else
1716 ONE_MORE_BYTE (c1);
1717 if (c1 < 0)
1718 {
1719 *charbuf++ = -c1;
1720 continue;
1721 }
1722 if (byte_after_cr2 >= 0)
1723 c2 = byte_after_cr2, byte_after_cr2 = -1;
1724 else
1725 ONE_MORE_BYTE (c2);
1726 if (c2 < 0)
1727 {
1728 *charbuf++ = ASCII_BYTE_P (c1) ? c1 : BYTE8_TO_CHAR (c1);
1729 *charbuf++ = -c2;
1730 continue;
1731 }
1732 c = (endian == utf_16_big_endian
1733 ? ((c1 << 8) | c2) : ((c2 << 8) | c1));
1734
1735 if (surrogate)
1736 {
1737 if (! UTF_16_LOW_SURROGATE_P (c))
1738 {
1739 if (endian == utf_16_big_endian)
1740 c1 = surrogate >> 8, c2 = surrogate & 0xFF;
1741 else
1742 c1 = surrogate & 0xFF, c2 = surrogate >> 8;
1743 *charbuf++ = c1;
1744 *charbuf++ = c2;
1745 coding->errors++;
1746 if (UTF_16_HIGH_SURROGATE_P (c))
1747 CODING_UTF_16_SURROGATE (coding) = surrogate = c;
1748 else
1749 *charbuf++ = c;
1750 }
1751 else
1752 {
1753 c = ((surrogate - 0xD800) << 10) | (c - 0xDC00);
1754 CODING_UTF_16_SURROGATE (coding) = surrogate = 0;
1755 *charbuf++ = 0x10000 + c;
1756 }
1757 }
1758 else
1759 {
1760 if (UTF_16_HIGH_SURROGATE_P (c))
1761 CODING_UTF_16_SURROGATE (coding) = surrogate = c;
1762 else
1763 {
1764 if (eol_dos && c == '\r')
1765 {
1766 ONE_MORE_BYTE (byte_after_cr1);
1767 ONE_MORE_BYTE (byte_after_cr2);
1768 }
1769 *charbuf++ = c;
1770 }
1771 }
1772 }
1773
1774 no_more_source:
1775 coding->consumed_char += consumed_chars_base;
1776 coding->consumed = src_base - coding->source;
1777 coding->charbuf_used = charbuf - coding->charbuf;
1778 }
1779
1780 static int
1781 encode_coding_utf_16 (struct coding_system *coding)
1782 {
1783 int multibytep = coding->dst_multibyte;
1784 int *charbuf = coding->charbuf;
1785 int *charbuf_end = charbuf + coding->charbuf_used;
1786 unsigned char *dst = coding->destination + coding->produced;
1787 unsigned char *dst_end = coding->destination + coding->dst_bytes;
1788 int safe_room = 8;
1789 enum utf_bom_type bom = CODING_UTF_16_BOM (coding);
1790 int big_endian = CODING_UTF_16_ENDIAN (coding) == utf_16_big_endian;
1791 EMACS_INT produced_chars = 0;
1792 int c;
1793
1794 if (bom != utf_without_bom)
1795 {
1796 ASSURE_DESTINATION (safe_room);
1797 if (big_endian)
1798 EMIT_TWO_BYTES (0xFE, 0xFF);
1799 else
1800 EMIT_TWO_BYTES (0xFF, 0xFE);
1801 CODING_UTF_16_BOM (coding) = utf_without_bom;
1802 }
1803
1804 while (charbuf < charbuf_end)
1805 {
1806 ASSURE_DESTINATION (safe_room);
1807 c = *charbuf++;
1808 if (c > MAX_UNICODE_CHAR)
1809 c = coding->default_char;
1810
1811 if (c < 0x10000)
1812 {
1813 if (big_endian)
1814 EMIT_TWO_BYTES (c >> 8, c & 0xFF);
1815 else
1816 EMIT_TWO_BYTES (c & 0xFF, c >> 8);
1817 }
1818 else
1819 {
1820 int c1, c2;
1821
1822 c -= 0x10000;
1823 c1 = (c >> 10) + 0xD800;
1824 c2 = (c & 0x3FF) + 0xDC00;
1825 if (big_endian)
1826 EMIT_FOUR_BYTES (c1 >> 8, c1 & 0xFF, c2 >> 8, c2 & 0xFF);
1827 else
1828 EMIT_FOUR_BYTES (c1 & 0xFF, c1 >> 8, c2 & 0xFF, c2 >> 8);
1829 }
1830 }
1831 record_conversion_result (coding, CODING_RESULT_SUCCESS);
1832 coding->produced = dst - coding->destination;
1833 coding->produced_char += produced_chars;
1834 return 0;
1835 }
1836
1837 \f
1838 /*** 6. Old Emacs' internal format (emacs-mule) ***/
1839
1840 /* Emacs' internal format for representation of multiple character
1841 sets is a kind of multi-byte encoding, i.e. characters are
1842 represented by variable-length sequences of one-byte codes.
1843
1844 ASCII characters and control characters (e.g. `tab', `newline') are
1845 represented by one-byte sequences which are their ASCII codes, in
1846 the range 0x00 through 0x7F.
1847
1848 8-bit characters of the range 0x80..0x9F are represented by
1849 two-byte sequences of LEADING_CODE_8_BIT_CONTROL and (their 8-bit
1850 code + 0x20).
1851
1852 8-bit characters of the range 0xA0..0xFF are represented by
1853 one-byte sequences which are their 8-bit code.
1854
1855 The other characters are represented by a sequence of `base
1856 leading-code', optional `extended leading-code', and one or two
1857 `position-code's. The length of the sequence is determined by the
1858 base leading-code. Leading-code takes the range 0x81 through 0x9D,
1859 whereas extended leading-code and position-code take the range 0xA0
1860 through 0xFF. See `charset.h' for more details about leading-code
1861 and position-code.
1862
1863 --- CODE RANGE of Emacs' internal format ---
1864 character set range
1865 ------------- -----
1866 ascii 0x00..0x7F
1867 eight-bit-control LEADING_CODE_8_BIT_CONTROL + 0xA0..0xBF
1868 eight-bit-graphic 0xA0..0xBF
1869 ELSE 0x81..0x9D + [0xA0..0xFF]+
1870 ---------------------------------------------
1871
1872 As this is the internal character representation, the format is
1873 usually not used externally (i.e. in a file or in a data sent to a
1874 process). But, it is possible to have a text externally in this
1875 format (i.e. by encoding by the coding system `emacs-mule').
1876
1877 In that case, a sequence of one-byte codes has a slightly different
1878 form.
1879
1880 At first, all characters in eight-bit-control are represented by
1881 one-byte sequences which are their 8-bit code.
1882
1883 Next, character composition data are represented by the byte
1884 sequence of the form: 0x80 METHOD BYTES CHARS COMPONENT ...,
1885 where,
1886 METHOD is 0xF2 plus one of composition method (enum
1887 composition_method),
1888
1889 BYTES is 0xA0 plus a byte length of this composition data,
1890
1891 CHARS is 0xA0 plus a number of characters composed by this
1892 data,
1893
1894 COMPONENTs are characters of multibyte form or composition
1895 rules encoded by two-byte of ASCII codes.
1896
1897 In addition, for backward compatibility, the following formats are
1898 also recognized as composition data on decoding.
1899
1900 0x80 MSEQ ...
1901 0x80 0xFF MSEQ RULE MSEQ RULE ... MSEQ
1902
1903 Here,
1904 MSEQ is a multibyte form but in these special format:
1905 ASCII: 0xA0 ASCII_CODE+0x80,
1906 other: LEADING_CODE+0x20 FOLLOWING-BYTE ...,
1907 RULE is a one byte code of the range 0xA0..0xF0 that
1908 represents a composition rule.
1909 */
1910
1911 char emacs_mule_bytes[256];
1912
1913
1914 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1915 Check if a text is encoded in `emacs-mule'. If it is, return 1,
1916 else return 0. */
1917
1918 static int
1919 detect_coding_emacs_mule (struct coding_system *coding,
1920 struct coding_detection_info *detect_info)
1921 {
1922 const unsigned char *src = coding->source, *src_base;
1923 const unsigned char *src_end = coding->source + coding->src_bytes;
1924 int multibytep = coding->src_multibyte;
1925 EMACS_INT consumed_chars = 0;
1926 int c;
1927 int found = 0;
1928
1929 detect_info->checked |= CATEGORY_MASK_EMACS_MULE;
1930 /* A coding system of this category is always ASCII compatible. */
1931 src += coding->head_ascii;
1932
1933 while (1)
1934 {
1935 src_base = src;
1936 ONE_MORE_BYTE (c);
1937 if (c < 0)
1938 continue;
1939 if (c == 0x80)
1940 {
1941 /* Perhaps the start of composite character. We simply skip
1942 it because analyzing it is too heavy for detecting. But,
1943 at least, we check that the composite character
1944 constitutes of more than 4 bytes. */
1945 const unsigned char *src_start;
1946
1947 repeat:
1948 src_start = src;
1949 do
1950 {
1951 ONE_MORE_BYTE (c);
1952 }
1953 while (c >= 0xA0);
1954
1955 if (src - src_start <= 4)
1956 break;
1957 found = CATEGORY_MASK_EMACS_MULE;
1958 if (c == 0x80)
1959 goto repeat;
1960 }
1961
1962 if (c < 0x80)
1963 {
1964 if (c < 0x20
1965 && (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO))
1966 break;
1967 }
1968 else
1969 {
1970 int more_bytes = emacs_mule_bytes[c] - 1;
1971
1972 while (more_bytes > 0)
1973 {
1974 ONE_MORE_BYTE (c);
1975 if (c < 0xA0)
1976 {
1977 src--; /* Unread the last byte. */
1978 break;
1979 }
1980 more_bytes--;
1981 }
1982 if (more_bytes != 0)
1983 break;
1984 found = CATEGORY_MASK_EMACS_MULE;
1985 }
1986 }
1987 detect_info->rejected |= CATEGORY_MASK_EMACS_MULE;
1988 return 0;
1989
1990 no_more_source:
1991 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
1992 {
1993 detect_info->rejected |= CATEGORY_MASK_EMACS_MULE;
1994 return 0;
1995 }
1996 detect_info->found |= found;
1997 return 1;
1998 }
1999
2000
2001 /* Parse emacs-mule multibyte sequence at SRC and return the decoded
2002 character. If CMP_STATUS indicates that we must expect MSEQ or
2003 RULE described above, decode it and return the negative value of
2004 the decoded character or rule. If an invalid byte is found, return
2005 -1. If SRC is too short, return -2. */
2006
2007 static int
2008 emacs_mule_char (struct coding_system *coding, const unsigned char *src,
2009 int *nbytes, int *nchars, int *id,
2010 struct composition_status *cmp_status)
2011 {
2012 const unsigned char *src_end = coding->source + coding->src_bytes;
2013 const unsigned char *src_base = src;
2014 int multibytep = coding->src_multibyte;
2015 int charset_ID;
2016 unsigned code;
2017 int c;
2018 int consumed_chars = 0;
2019 int mseq_found = 0;
2020
2021 ONE_MORE_BYTE (c);
2022 if (c < 0)
2023 {
2024 c = -c;
2025 charset_ID = emacs_mule_charset[0];
2026 }
2027 else
2028 {
2029 if (c >= 0xA0)
2030 {
2031 if (cmp_status->state != COMPOSING_NO
2032 && cmp_status->old_form)
2033 {
2034 if (cmp_status->state == COMPOSING_CHAR)
2035 {
2036 if (c == 0xA0)
2037 {
2038 ONE_MORE_BYTE (c);
2039 c -= 0x80;
2040 if (c < 0)
2041 goto invalid_code;
2042 }
2043 else
2044 c -= 0x20;
2045 mseq_found = 1;
2046 }
2047 else
2048 {
2049 *nbytes = src - src_base;
2050 *nchars = consumed_chars;
2051 return -c;
2052 }
2053 }
2054 else
2055 goto invalid_code;
2056 }
2057
2058 switch (emacs_mule_bytes[c])
2059 {
2060 case 2:
2061 if ((charset_ID = emacs_mule_charset[c]) < 0)
2062 goto invalid_code;
2063 ONE_MORE_BYTE (c);
2064 if (c < 0xA0)
2065 goto invalid_code;
2066 code = c & 0x7F;
2067 break;
2068
2069 case 3:
2070 if (c == EMACS_MULE_LEADING_CODE_PRIVATE_11
2071 || c == EMACS_MULE_LEADING_CODE_PRIVATE_12)
2072 {
2073 ONE_MORE_BYTE (c);
2074 if (c < 0xA0 || (charset_ID = emacs_mule_charset[c]) < 0)
2075 goto invalid_code;
2076 ONE_MORE_BYTE (c);
2077 if (c < 0xA0)
2078 goto invalid_code;
2079 code = c & 0x7F;
2080 }
2081 else
2082 {
2083 if ((charset_ID = emacs_mule_charset[c]) < 0)
2084 goto invalid_code;
2085 ONE_MORE_BYTE (c);
2086 if (c < 0xA0)
2087 goto invalid_code;
2088 code = (c & 0x7F) << 8;
2089 ONE_MORE_BYTE (c);
2090 if (c < 0xA0)
2091 goto invalid_code;
2092 code |= c & 0x7F;
2093 }
2094 break;
2095
2096 case 4:
2097 ONE_MORE_BYTE (c);
2098 if (c < 0 || (charset_ID = emacs_mule_charset[c]) < 0)
2099 goto invalid_code;
2100 ONE_MORE_BYTE (c);
2101 if (c < 0xA0)
2102 goto invalid_code;
2103 code = (c & 0x7F) << 8;
2104 ONE_MORE_BYTE (c);
2105 if (c < 0xA0)
2106 goto invalid_code;
2107 code |= c & 0x7F;
2108 break;
2109
2110 case 1:
2111 code = c;
2112 charset_ID = ASCII_BYTE_P (code) ? charset_ascii : charset_eight_bit;
2113 break;
2114
2115 default:
2116 abort ();
2117 }
2118 CODING_DECODE_CHAR (coding, src, src_base, src_end,
2119 CHARSET_FROM_ID (charset_ID), code, c);
2120 if (c < 0)
2121 goto invalid_code;
2122 }
2123 *nbytes = src - src_base;
2124 *nchars = consumed_chars;
2125 if (id)
2126 *id = charset_ID;
2127 return (mseq_found ? -c : c);
2128
2129 no_more_source:
2130 return -2;
2131
2132 invalid_code:
2133 return -1;
2134 }
2135
2136
2137 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
2138
2139 /* Handle these composition sequence ('|': the end of header elements,
2140 BYTES and CHARS >= 0xA0):
2141
2142 (1) relative composition: 0x80 0xF2 BYTES CHARS | CHAR ...
2143 (2) altchar composition: 0x80 0xF4 BYTES CHARS | ALT ... ALT CHAR ...
2144 (3) alt&rule composition: 0x80 0xF5 BYTES CHARS | ALT RULE ... ALT CHAR ...
2145
2146 and these old form:
2147
2148 (4) relative composition: 0x80 | MSEQ ... MSEQ
2149 (5) rulebase composition: 0x80 0xFF | MSEQ MRULE ... MSEQ
2150
2151 When the starter 0x80 and the following header elements are found,
2152 this annotation header is produced.
2153
2154 [ -LENGTH(==-5) CODING_ANNOTATE_COMPOSITION_MASK NCHARS NBYTES METHOD ]
2155
2156 NCHARS is CHARS - 0xA0 for (1), (2), (3), and 0 for (4), (5).
2157 NBYTES is BYTES - 0xA0 for (1), (2), (3), and 0 for (4), (5).
2158
2159 Then, upon reading the following elements, these codes are produced
2160 until the composition end is found:
2161
2162 (1) CHAR ... CHAR
2163 (2) ALT ... ALT CHAR ... CHAR
2164 (3) ALT -2 DECODED-RULE ALT -2 DECODED-RULE ... ALT CHAR ... CHAR
2165 (4) CHAR ... CHAR
2166 (5) CHAR -2 DECODED-RULE CHAR -2 DECODED-RULE ... CHAR
2167
2168 When the composition end is found, LENGTH and NCHARS in the
2169 annotation header is updated as below:
2170
2171 (1) LENGTH: unchanged, NCHARS: unchanged
2172 (2) LENGTH: length of the whole sequence minus NCHARS, NCHARS: unchanged
2173 (3) LENGTH: length of the whole sequence minus NCHARS, NCHARS: unchanged
2174 (4) LENGTH: unchanged, NCHARS: number of CHARs
2175 (5) LENGTH: unchanged, NCHARS: number of CHARs
2176
2177 If an error is found while composing, the annotation header is
2178 changed to the original composition header (plus filler -1s) as
2179 below:
2180
2181 (1),(2),(3) [ 0x80 0xF2+METHOD BYTES CHARS -1 ]
2182 (5) [ 0x80 0xFF -1 -1- -1 ]
2183
2184 and the sequence [ -2 DECODED-RULE ] is changed to the original
2185 byte sequence as below:
2186 o the original byte sequence is B: [ B -1 ]
2187 o the original byte sequence is B1 B2: [ B1 B2 ]
2188
2189 Most of the routines are implemented by macros because many
2190 variables and labels in the caller decode_coding_emacs_mule must be
2191 accessible, and they are usually called just once (thus doesn't
2192 increase the size of compiled object). */
2193
2194 /* Decode a composition rule represented by C as a component of
2195 composition sequence of Emacs 20 style. Set RULE to the decoded
2196 rule. */
2197
2198 #define DECODE_EMACS_MULE_COMPOSITION_RULE_20(c, rule) \
2199 do { \
2200 int gref, nref; \
2201 \
2202 c -= 0xA0; \
2203 if (c < 0 || c >= 81) \
2204 goto invalid_code; \
2205 gref = c / 9, nref = c % 9; \
2206 if (gref == 4) gref = 10; \
2207 if (nref == 4) nref = 10; \
2208 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
2209 } while (0)
2210
2211
2212 /* Decode a composition rule represented by C and the following byte
2213 at SRC as a component of composition sequence of Emacs 21 style.
2214 Set RULE to the decoded rule. */
2215
2216 #define DECODE_EMACS_MULE_COMPOSITION_RULE_21(c, rule) \
2217 do { \
2218 int gref, nref; \
2219 \
2220 gref = c - 0x20; \
2221 if (gref < 0 || gref >= 81) \
2222 goto invalid_code; \
2223 ONE_MORE_BYTE (c); \
2224 nref = c - 0x20; \
2225 if (nref < 0 || nref >= 81) \
2226 goto invalid_code; \
2227 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
2228 } while (0)
2229
2230
2231 /* Start of Emacs 21 style format. The first three bytes at SRC are
2232 (METHOD - 0xF2), (BYTES - 0xA0), (CHARS - 0xA0), where BYTES is the
2233 byte length of this composition information, CHARS is the number of
2234 characters composed by this composition. */
2235
2236 #define DECODE_EMACS_MULE_21_COMPOSITION() \
2237 do { \
2238 enum composition_method method = c - 0xF2; \
2239 int nbytes, nchars; \
2240 \
2241 ONE_MORE_BYTE (c); \
2242 if (c < 0) \
2243 goto invalid_code; \
2244 nbytes = c - 0xA0; \
2245 if (nbytes < 3 || (method == COMPOSITION_RELATIVE && nbytes != 4)) \
2246 goto invalid_code; \
2247 ONE_MORE_BYTE (c); \
2248 nchars = c - 0xA0; \
2249 if (nchars <= 0 || nchars >= MAX_COMPOSITION_COMPONENTS) \
2250 goto invalid_code; \
2251 cmp_status->old_form = 0; \
2252 cmp_status->method = method; \
2253 if (method == COMPOSITION_RELATIVE) \
2254 cmp_status->state = COMPOSING_CHAR; \
2255 else \
2256 cmp_status->state = COMPOSING_COMPONENT_CHAR; \
2257 cmp_status->length = MAX_ANNOTATION_LENGTH; \
2258 cmp_status->nchars = nchars; \
2259 cmp_status->ncomps = nbytes - 4; \
2260 ADD_COMPOSITION_DATA (charbuf, nchars, nbytes, method); \
2261 } while (0)
2262
2263
2264 /* Start of Emacs 20 style format for relative composition. */
2265
2266 #define DECODE_EMACS_MULE_20_RELATIVE_COMPOSITION() \
2267 do { \
2268 cmp_status->old_form = 1; \
2269 cmp_status->method = COMPOSITION_RELATIVE; \
2270 cmp_status->state = COMPOSING_CHAR; \
2271 cmp_status->length = MAX_ANNOTATION_LENGTH; \
2272 cmp_status->nchars = cmp_status->ncomps = 0; \
2273 ADD_COMPOSITION_DATA (charbuf, 0, 0, cmp_status->method); \
2274 } while (0)
2275
2276
2277 /* Start of Emacs 20 style format for rule-base composition. */
2278
2279 #define DECODE_EMACS_MULE_20_RULEBASE_COMPOSITION() \
2280 do { \
2281 cmp_status->old_form = 1; \
2282 cmp_status->method = COMPOSITION_WITH_RULE; \
2283 cmp_status->state = COMPOSING_CHAR; \
2284 cmp_status->length = MAX_ANNOTATION_LENGTH; \
2285 cmp_status->nchars = cmp_status->ncomps = 0; \
2286 ADD_COMPOSITION_DATA (charbuf, 0, 0, cmp_status->method); \
2287 } while (0)
2288
2289
2290 #define DECODE_EMACS_MULE_COMPOSITION_START() \
2291 do { \
2292 const unsigned char *current_src = src; \
2293 \
2294 ONE_MORE_BYTE (c); \
2295 if (c < 0) \
2296 goto invalid_code; \
2297 if (c - 0xF2 >= COMPOSITION_RELATIVE \
2298 && c - 0xF2 <= COMPOSITION_WITH_RULE_ALTCHARS) \
2299 DECODE_EMACS_MULE_21_COMPOSITION (); \
2300 else if (c < 0xA0) \
2301 goto invalid_code; \
2302 else if (c < 0xC0) \
2303 { \
2304 DECODE_EMACS_MULE_20_RELATIVE_COMPOSITION (); \
2305 /* Re-read C as a composition component. */ \
2306 src = current_src; \
2307 } \
2308 else if (c == 0xFF) \
2309 DECODE_EMACS_MULE_20_RULEBASE_COMPOSITION (); \
2310 else \
2311 goto invalid_code; \
2312 } while (0)
2313
2314 #define EMACS_MULE_COMPOSITION_END() \
2315 do { \
2316 int idx = - cmp_status->length; \
2317 \
2318 if (cmp_status->old_form) \
2319 charbuf[idx + 2] = cmp_status->nchars; \
2320 else if (cmp_status->method > COMPOSITION_RELATIVE) \
2321 charbuf[idx] = charbuf[idx + 2] - cmp_status->length; \
2322 cmp_status->state = COMPOSING_NO; \
2323 } while (0)
2324
2325
2326 static int
2327 emacs_mule_finish_composition (int *charbuf,
2328 struct composition_status *cmp_status)
2329 {
2330 int idx = - cmp_status->length;
2331 int new_chars;
2332
2333 if (cmp_status->old_form && cmp_status->nchars > 0)
2334 {
2335 charbuf[idx + 2] = cmp_status->nchars;
2336 new_chars = 0;
2337 if (cmp_status->method == COMPOSITION_WITH_RULE
2338 && cmp_status->state == COMPOSING_CHAR)
2339 {
2340 /* The last rule was invalid. */
2341 int rule = charbuf[-1] + 0xA0;
2342
2343 charbuf[-2] = BYTE8_TO_CHAR (rule);
2344 charbuf[-1] = -1;
2345 new_chars = 1;
2346 }
2347 }
2348 else
2349 {
2350 charbuf[idx++] = BYTE8_TO_CHAR (0x80);
2351
2352 if (cmp_status->method == COMPOSITION_WITH_RULE)
2353 {
2354 charbuf[idx++] = BYTE8_TO_CHAR (0xFF);
2355 charbuf[idx++] = -3;
2356 charbuf[idx++] = 0;
2357 new_chars = 1;
2358 }
2359 else
2360 {
2361 int nchars = charbuf[idx + 1] + 0xA0;
2362 int nbytes = charbuf[idx + 2] + 0xA0;
2363
2364 charbuf[idx++] = BYTE8_TO_CHAR (0xF2 + cmp_status->method);
2365 charbuf[idx++] = BYTE8_TO_CHAR (nbytes);
2366 charbuf[idx++] = BYTE8_TO_CHAR (nchars);
2367 charbuf[idx++] = -1;
2368 new_chars = 4;
2369 }
2370 }
2371 cmp_status->state = COMPOSING_NO;
2372 return new_chars;
2373 }
2374
2375 #define EMACS_MULE_MAYBE_FINISH_COMPOSITION() \
2376 do { \
2377 if (cmp_status->state != COMPOSING_NO) \
2378 char_offset += emacs_mule_finish_composition (charbuf, cmp_status); \
2379 } while (0)
2380
2381
2382 static void
2383 decode_coding_emacs_mule (struct coding_system *coding)
2384 {
2385 const unsigned char *src = coding->source + coding->consumed;
2386 const unsigned char *src_end = coding->source + coding->src_bytes;
2387 const unsigned char *src_base;
2388 int *charbuf = coding->charbuf + coding->charbuf_used;
2389 /* We may produce two annotations (charset and composition) in one
2390 loop and one more charset annotation at the end. */
2391 int *charbuf_end
2392 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 3)
2393 /* We can produce up to 2 characters in a loop. */
2394 - 1;
2395 EMACS_INT consumed_chars = 0, consumed_chars_base;
2396 int multibytep = coding->src_multibyte;
2397 EMACS_INT char_offset = coding->produced_char;
2398 EMACS_INT last_offset = char_offset;
2399 int last_id = charset_ascii;
2400 int eol_dos =
2401 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
2402 int byte_after_cr = -1;
2403 struct composition_status *cmp_status = &coding->spec.emacs_mule.cmp_status;
2404
2405 if (cmp_status->state != COMPOSING_NO)
2406 {
2407 int i;
2408
2409 if (charbuf_end - charbuf < cmp_status->length)
2410 abort ();
2411 for (i = 0; i < cmp_status->length; i++)
2412 *charbuf++ = cmp_status->carryover[i];
2413 coding->annotated = 1;
2414 }
2415
2416 while (1)
2417 {
2418 int c, id IF_LINT (= 0);
2419
2420 src_base = src;
2421 consumed_chars_base = consumed_chars;
2422
2423 if (charbuf >= charbuf_end)
2424 {
2425 if (byte_after_cr >= 0)
2426 src_base--;
2427 break;
2428 }
2429
2430 if (byte_after_cr >= 0)
2431 c = byte_after_cr, byte_after_cr = -1;
2432 else
2433 ONE_MORE_BYTE (c);
2434
2435 if (c < 0 || c == 0x80)
2436 {
2437 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2438 if (c < 0)
2439 {
2440 *charbuf++ = -c;
2441 char_offset++;
2442 }
2443 else
2444 DECODE_EMACS_MULE_COMPOSITION_START ();
2445 continue;
2446 }
2447
2448 if (c < 0x80)
2449 {
2450 if (eol_dos && c == '\r')
2451 ONE_MORE_BYTE (byte_after_cr);
2452 id = charset_ascii;
2453 if (cmp_status->state != COMPOSING_NO)
2454 {
2455 if (cmp_status->old_form)
2456 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2457 else if (cmp_status->state >= COMPOSING_COMPONENT_CHAR)
2458 cmp_status->ncomps--;
2459 }
2460 }
2461 else
2462 {
2463 int nchars IF_LINT (= 0), nbytes IF_LINT (= 0);
2464 /* emacs_mule_char can load a charset map from a file, which
2465 allocates a large structure and might cause buffer text
2466 to be relocated as result. Thus, we need to remember the
2467 original pointer to buffer text, and fix up all related
2468 pointers after the call. */
2469 const unsigned char *orig = coding->source;
2470 EMACS_INT offset;
2471
2472 c = emacs_mule_char (coding, src_base, &nbytes, &nchars, &id,
2473 cmp_status);
2474 offset = coding->source - orig;
2475 if (offset)
2476 {
2477 src += offset;
2478 src_base += offset;
2479 src_end += offset;
2480 }
2481 if (c < 0)
2482 {
2483 if (c == -1)
2484 goto invalid_code;
2485 if (c == -2)
2486 break;
2487 }
2488 src = src_base + nbytes;
2489 consumed_chars = consumed_chars_base + nchars;
2490 if (cmp_status->state >= COMPOSING_COMPONENT_CHAR)
2491 cmp_status->ncomps -= nchars;
2492 }
2493
2494 /* Now if C >= 0, we found a normally encoded character, if C <
2495 0, we found an old-style composition component character or
2496 rule. */
2497
2498 if (cmp_status->state == COMPOSING_NO)
2499 {
2500 if (last_id != id)
2501 {
2502 if (last_id != charset_ascii)
2503 ADD_CHARSET_DATA (charbuf, char_offset - last_offset,
2504 last_id);
2505 last_id = id;
2506 last_offset = char_offset;
2507 }
2508 *charbuf++ = c;
2509 char_offset++;
2510 }
2511 else if (cmp_status->state == COMPOSING_CHAR)
2512 {
2513 if (cmp_status->old_form)
2514 {
2515 if (c >= 0)
2516 {
2517 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2518 *charbuf++ = c;
2519 char_offset++;
2520 }
2521 else
2522 {
2523 *charbuf++ = -c;
2524 cmp_status->nchars++;
2525 cmp_status->length++;
2526 if (cmp_status->nchars == MAX_COMPOSITION_COMPONENTS)
2527 EMACS_MULE_COMPOSITION_END ();
2528 else if (cmp_status->method == COMPOSITION_WITH_RULE)
2529 cmp_status->state = COMPOSING_RULE;
2530 }
2531 }
2532 else
2533 {
2534 *charbuf++ = c;
2535 cmp_status->length++;
2536 cmp_status->nchars--;
2537 if (cmp_status->nchars == 0)
2538 EMACS_MULE_COMPOSITION_END ();
2539 }
2540 }
2541 else if (cmp_status->state == COMPOSING_RULE)
2542 {
2543 int rule;
2544
2545 if (c >= 0)
2546 {
2547 EMACS_MULE_COMPOSITION_END ();
2548 *charbuf++ = c;
2549 char_offset++;
2550 }
2551 else
2552 {
2553 c = -c;
2554 DECODE_EMACS_MULE_COMPOSITION_RULE_20 (c, rule);
2555 if (rule < 0)
2556 goto invalid_code;
2557 *charbuf++ = -2;
2558 *charbuf++ = rule;
2559 cmp_status->length += 2;
2560 cmp_status->state = COMPOSING_CHAR;
2561 }
2562 }
2563 else if (cmp_status->state == COMPOSING_COMPONENT_CHAR)
2564 {
2565 *charbuf++ = c;
2566 cmp_status->length++;
2567 if (cmp_status->ncomps == 0)
2568 cmp_status->state = COMPOSING_CHAR;
2569 else if (cmp_status->ncomps > 0)
2570 {
2571 if (cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS)
2572 cmp_status->state = COMPOSING_COMPONENT_RULE;
2573 }
2574 else
2575 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2576 }
2577 else /* COMPOSING_COMPONENT_RULE */
2578 {
2579 int rule;
2580
2581 DECODE_EMACS_MULE_COMPOSITION_RULE_21 (c, rule);
2582 if (rule < 0)
2583 goto invalid_code;
2584 *charbuf++ = -2;
2585 *charbuf++ = rule;
2586 cmp_status->length += 2;
2587 cmp_status->ncomps--;
2588 if (cmp_status->ncomps > 0)
2589 cmp_status->state = COMPOSING_COMPONENT_CHAR;
2590 else
2591 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2592 }
2593 continue;
2594
2595 invalid_code:
2596 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2597 src = src_base;
2598 consumed_chars = consumed_chars_base;
2599 ONE_MORE_BYTE (c);
2600 *charbuf++ = ASCII_BYTE_P (c) ? c : BYTE8_TO_CHAR (c);
2601 char_offset++;
2602 coding->errors++;
2603 }
2604
2605 no_more_source:
2606 if (cmp_status->state != COMPOSING_NO)
2607 {
2608 if (coding->mode & CODING_MODE_LAST_BLOCK)
2609 EMACS_MULE_MAYBE_FINISH_COMPOSITION ();
2610 else
2611 {
2612 int i;
2613
2614 charbuf -= cmp_status->length;
2615 for (i = 0; i < cmp_status->length; i++)
2616 cmp_status->carryover[i] = charbuf[i];
2617 }
2618 }
2619 if (last_id != charset_ascii)
2620 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
2621 coding->consumed_char += consumed_chars_base;
2622 coding->consumed = src_base - coding->source;
2623 coding->charbuf_used = charbuf - coding->charbuf;
2624 }
2625
2626
2627 #define EMACS_MULE_LEADING_CODES(id, codes) \
2628 do { \
2629 if (id < 0xA0) \
2630 codes[0] = id, codes[1] = 0; \
2631 else if (id < 0xE0) \
2632 codes[0] = 0x9A, codes[1] = id; \
2633 else if (id < 0xF0) \
2634 codes[0] = 0x9B, codes[1] = id; \
2635 else if (id < 0xF5) \
2636 codes[0] = 0x9C, codes[1] = id; \
2637 else \
2638 codes[0] = 0x9D, codes[1] = id; \
2639 } while (0);
2640
2641
2642 static int
2643 encode_coding_emacs_mule (struct coding_system *coding)
2644 {
2645 int multibytep = coding->dst_multibyte;
2646 int *charbuf = coding->charbuf;
2647 int *charbuf_end = charbuf + coding->charbuf_used;
2648 unsigned char *dst = coding->destination + coding->produced;
2649 unsigned char *dst_end = coding->destination + coding->dst_bytes;
2650 int safe_room = 8;
2651 EMACS_INT produced_chars = 0;
2652 Lisp_Object attrs, charset_list;
2653 int c;
2654 int preferred_charset_id = -1;
2655
2656 CODING_GET_INFO (coding, attrs, charset_list);
2657 if (! EQ (charset_list, Vemacs_mule_charset_list))
2658 {
2659 CODING_ATTR_CHARSET_LIST (attrs)
2660 = charset_list = Vemacs_mule_charset_list;
2661 }
2662
2663 while (charbuf < charbuf_end)
2664 {
2665 ASSURE_DESTINATION (safe_room);
2666 c = *charbuf++;
2667
2668 if (c < 0)
2669 {
2670 /* Handle an annotation. */
2671 switch (*charbuf)
2672 {
2673 case CODING_ANNOTATE_COMPOSITION_MASK:
2674 /* Not yet implemented. */
2675 break;
2676 case CODING_ANNOTATE_CHARSET_MASK:
2677 preferred_charset_id = charbuf[3];
2678 if (preferred_charset_id >= 0
2679 && NILP (Fmemq (make_number (preferred_charset_id),
2680 charset_list)))
2681 preferred_charset_id = -1;
2682 break;
2683 default:
2684 abort ();
2685 }
2686 charbuf += -c - 1;
2687 continue;
2688 }
2689
2690 if (ASCII_CHAR_P (c))
2691 EMIT_ONE_ASCII_BYTE (c);
2692 else if (CHAR_BYTE8_P (c))
2693 {
2694 c = CHAR_TO_BYTE8 (c);
2695 EMIT_ONE_BYTE (c);
2696 }
2697 else
2698 {
2699 struct charset *charset;
2700 unsigned code;
2701 int dimension;
2702 int emacs_mule_id;
2703 unsigned char leading_codes[2];
2704
2705 if (preferred_charset_id >= 0)
2706 {
2707 int result;
2708
2709 charset = CHARSET_FROM_ID (preferred_charset_id);
2710 CODING_CHAR_CHARSET_P (coding, dst, dst_end, c, charset, result);
2711 if (result)
2712 code = ENCODE_CHAR (charset, c);
2713 else
2714 CODING_CHAR_CHARSET (coding, dst, dst_end, c, charset_list,
2715 &code, charset);
2716 }
2717 else
2718 CODING_CHAR_CHARSET (coding, dst, dst_end, c, charset_list,
2719 &code, charset);
2720 if (! charset)
2721 {
2722 c = coding->default_char;
2723 if (ASCII_CHAR_P (c))
2724 {
2725 EMIT_ONE_ASCII_BYTE (c);
2726 continue;
2727 }
2728 CODING_CHAR_CHARSET (coding, dst, dst_end, c, charset_list,
2729 &code, charset);
2730 }
2731 dimension = CHARSET_DIMENSION (charset);
2732 emacs_mule_id = CHARSET_EMACS_MULE_ID (charset);
2733 EMACS_MULE_LEADING_CODES (emacs_mule_id, leading_codes);
2734 EMIT_ONE_BYTE (leading_codes[0]);
2735 if (leading_codes[1])
2736 EMIT_ONE_BYTE (leading_codes[1]);
2737 if (dimension == 1)
2738 EMIT_ONE_BYTE (code | 0x80);
2739 else
2740 {
2741 code |= 0x8080;
2742 EMIT_ONE_BYTE (code >> 8);
2743 EMIT_ONE_BYTE (code & 0xFF);
2744 }
2745 }
2746 }
2747 record_conversion_result (coding, CODING_RESULT_SUCCESS);
2748 coding->produced_char += produced_chars;
2749 coding->produced = dst - coding->destination;
2750 return 0;
2751 }
2752
2753 \f
2754 /*** 7. ISO2022 handlers ***/
2755
2756 /* The following note describes the coding system ISO2022 briefly.
2757 Since the intention of this note is to help understand the
2758 functions in this file, some parts are NOT ACCURATE or are OVERLY
2759 SIMPLIFIED. For thorough understanding, please refer to the
2760 original document of ISO2022. This is equivalent to the standard
2761 ECMA-35, obtainable from <URL:http://www.ecma.ch/> (*).
2762
2763 ISO2022 provides many mechanisms to encode several character sets
2764 in 7-bit and 8-bit environments. For 7-bit environments, all text
2765 is encoded using bytes less than 128. This may make the encoded
2766 text a little bit longer, but the text passes more easily through
2767 several types of gateway, some of which strip off the MSB (Most
2768 Significant Bit).
2769
2770 There are two kinds of character sets: control character sets and
2771 graphic character sets. The former contain control characters such
2772 as `newline' and `escape' to provide control functions (control
2773 functions are also provided by escape sequences). The latter
2774 contain graphic characters such as 'A' and '-'. Emacs recognizes
2775 two control character sets and many graphic character sets.
2776
2777 Graphic character sets are classified into one of the following
2778 four classes, according to the number of bytes (DIMENSION) and
2779 number of characters in one dimension (CHARS) of the set:
2780 - DIMENSION1_CHARS94
2781 - DIMENSION1_CHARS96
2782 - DIMENSION2_CHARS94
2783 - DIMENSION2_CHARS96
2784
2785 In addition, each character set is assigned an identification tag,
2786 unique for each set, called the "final character" (denoted as <F>
2787 hereafter). The <F> of each character set is decided by ECMA(*)
2788 when it is registered in ISO. The code range of <F> is 0x30..0x7F
2789 (0x30..0x3F are for private use only).
2790
2791 Note (*): ECMA = European Computer Manufacturers Association
2792
2793 Here are examples of graphic character sets [NAME(<F>)]:
2794 o DIMENSION1_CHARS94 -- ASCII('B'), right-half-of-JISX0201('I'), ...
2795 o DIMENSION1_CHARS96 -- right-half-of-ISO8859-1('A'), ...
2796 o DIMENSION2_CHARS94 -- GB2312('A'), JISX0208('B'), ...
2797 o DIMENSION2_CHARS96 -- none for the moment
2798
2799 A code area (1 byte=8 bits) is divided into 4 areas, C0, GL, C1, and GR.
2800 C0 [0x00..0x1F] -- control character plane 0
2801 GL [0x20..0x7F] -- graphic character plane 0
2802 C1 [0x80..0x9F] -- control character plane 1
2803 GR [0xA0..0xFF] -- graphic character plane 1
2804
2805 A control character set is directly designated and invoked to C0 or
2806 C1 by an escape sequence. The most common case is that:
2807 - ISO646's control character set is designated/invoked to C0, and
2808 - ISO6429's control character set is designated/invoked to C1,
2809 and usually these designations/invocations are omitted in encoded
2810 text. In a 7-bit environment, only C0 can be used, and a control
2811 character for C1 is encoded by an appropriate escape sequence to
2812 fit into the environment. All control characters for C1 are
2813 defined to have corresponding escape sequences.
2814
2815 A graphic character set is at first designated to one of four
2816 graphic registers (G0 through G3), then these graphic registers are
2817 invoked to GL or GR. These designations and invocations can be
2818 done independently. The most common case is that G0 is invoked to
2819 GL, G1 is invoked to GR, and ASCII is designated to G0. Usually
2820 these invocations and designations are omitted in encoded text.
2821 In a 7-bit environment, only GL can be used.
2822
2823 When a graphic character set of CHARS94 is invoked to GL, codes
2824 0x20 and 0x7F of the GL area work as control characters SPACE and
2825 DEL respectively, and codes 0xA0 and 0xFF of the GR area should not
2826 be used.
2827
2828 There are two ways of invocation: locking-shift and single-shift.
2829 With locking-shift, the invocation lasts until the next different
2830 invocation, whereas with single-shift, the invocation affects the
2831 following character only and doesn't affect the locking-shift
2832 state. Invocations are done by the following control characters or
2833 escape sequences:
2834
2835 ----------------------------------------------------------------------
2836 abbrev function cntrl escape seq description
2837 ----------------------------------------------------------------------
2838 SI/LS0 (shift-in) 0x0F none invoke G0 into GL
2839 SO/LS1 (shift-out) 0x0E none invoke G1 into GL
2840 LS2 (locking-shift-2) none ESC 'n' invoke G2 into GL
2841 LS3 (locking-shift-3) none ESC 'o' invoke G3 into GL
2842 LS1R (locking-shift-1 right) none ESC '~' invoke G1 into GR (*)
2843 LS2R (locking-shift-2 right) none ESC '}' invoke G2 into GR (*)
2844 LS3R (locking-shift 3 right) none ESC '|' invoke G3 into GR (*)
2845 SS2 (single-shift-2) 0x8E ESC 'N' invoke G2 for one char
2846 SS3 (single-shift-3) 0x8F ESC 'O' invoke G3 for one char
2847 ----------------------------------------------------------------------
2848 (*) These are not used by any known coding system.
2849
2850 Control characters for these functions are defined by macros
2851 ISO_CODE_XXX in `coding.h'.
2852
2853 Designations are done by the following escape sequences:
2854 ----------------------------------------------------------------------
2855 escape sequence description
2856 ----------------------------------------------------------------------
2857 ESC '(' <F> designate DIMENSION1_CHARS94<F> to G0
2858 ESC ')' <F> designate DIMENSION1_CHARS94<F> to G1
2859 ESC '*' <F> designate DIMENSION1_CHARS94<F> to G2
2860 ESC '+' <F> designate DIMENSION1_CHARS94<F> to G3
2861 ESC ',' <F> designate DIMENSION1_CHARS96<F> to G0 (*)
2862 ESC '-' <F> designate DIMENSION1_CHARS96<F> to G1
2863 ESC '.' <F> designate DIMENSION1_CHARS96<F> to G2
2864 ESC '/' <F> designate DIMENSION1_CHARS96<F> to G3
2865 ESC '$' '(' <F> designate DIMENSION2_CHARS94<F> to G0 (**)
2866 ESC '$' ')' <F> designate DIMENSION2_CHARS94<F> to G1
2867 ESC '$' '*' <F> designate DIMENSION2_CHARS94<F> to G2
2868 ESC '$' '+' <F> designate DIMENSION2_CHARS94<F> to G3
2869 ESC '$' ',' <F> designate DIMENSION2_CHARS96<F> to G0 (*)
2870 ESC '$' '-' <F> designate DIMENSION2_CHARS96<F> to G1
2871 ESC '$' '.' <F> designate DIMENSION2_CHARS96<F> to G2
2872 ESC '$' '/' <F> designate DIMENSION2_CHARS96<F> to G3
2873 ----------------------------------------------------------------------
2874
2875 In this list, "DIMENSION1_CHARS94<F>" means a graphic character set
2876 of dimension 1, chars 94, and final character <F>, etc...
2877
2878 Note (*): Although these designations are not allowed in ISO2022,
2879 Emacs accepts them on decoding, and produces them on encoding
2880 CHARS96 character sets in a coding system which is characterized as
2881 7-bit environment, non-locking-shift, and non-single-shift.
2882
2883 Note (**): If <F> is '@', 'A', or 'B', the intermediate character
2884 '(' must be omitted. We refer to this as "short-form" hereafter.
2885
2886 Now you may notice that there are a lot of ways of encoding the
2887 same multilingual text in ISO2022. Actually, there exist many
2888 coding systems such as Compound Text (used in X11's inter client
2889 communication, ISO-2022-JP (used in Japanese Internet), ISO-2022-KR
2890 (used in Korean Internet), EUC (Extended UNIX Code, used in Asian
2891 localized platforms), and all of these are variants of ISO2022.
2892
2893 In addition to the above, Emacs handles two more kinds of escape
2894 sequences: ISO6429's direction specification and Emacs' private
2895 sequence for specifying character composition.
2896
2897 ISO6429's direction specification takes the following form:
2898 o CSI ']' -- end of the current direction
2899 o CSI '0' ']' -- end of the current direction
2900 o CSI '1' ']' -- start of left-to-right text
2901 o CSI '2' ']' -- start of right-to-left text
2902 The control character CSI (0x9B: control sequence introducer) is
2903 abbreviated to the escape sequence ESC '[' in a 7-bit environment.
2904
2905 Character composition specification takes the following form:
2906 o ESC '0' -- start relative composition
2907 o ESC '1' -- end composition
2908 o ESC '2' -- start rule-base composition (*)
2909 o ESC '3' -- start relative composition with alternate chars (**)
2910 o ESC '4' -- start rule-base composition with alternate chars (**)
2911 Since these are not standard escape sequences of any ISO standard,
2912 the use of them with these meanings is restricted to Emacs only.
2913
2914 (*) This form is used only in Emacs 20.7 and older versions,
2915 but newer versions can safely decode it.
2916 (**) This form is used only in Emacs 21.1 and newer versions,
2917 and older versions can't decode it.
2918
2919 Here's a list of example usages of these composition escape
2920 sequences (categorized by `enum composition_method').
2921
2922 COMPOSITION_RELATIVE:
2923 ESC 0 CHAR [ CHAR ] ESC 1
2924 COMPOSITION_WITH_RULE:
2925 ESC 2 CHAR [ RULE CHAR ] ESC 1
2926 COMPOSITION_WITH_ALTCHARS:
2927 ESC 3 ALTCHAR [ ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1
2928 COMPOSITION_WITH_RULE_ALTCHARS:
2929 ESC 4 ALTCHAR [ RULE ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1 */
2930
2931 static enum iso_code_class_type iso_code_class[256];
2932
2933 #define SAFE_CHARSET_P(coding, id) \
2934 ((id) <= (coding)->max_charset_id \
2935 && (coding)->safe_charsets[id] != 255)
2936
2937 static void
2938 setup_iso_safe_charsets (Lisp_Object attrs)
2939 {
2940 Lisp_Object charset_list, safe_charsets;
2941 Lisp_Object request;
2942 Lisp_Object reg_usage;
2943 Lisp_Object tail;
2944 int reg94, reg96;
2945 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
2946 int max_charset_id;
2947
2948 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
2949 if ((flags & CODING_ISO_FLAG_FULL_SUPPORT)
2950 && ! EQ (charset_list, Viso_2022_charset_list))
2951 {
2952 CODING_ATTR_CHARSET_LIST (attrs)
2953 = charset_list = Viso_2022_charset_list;
2954 ASET (attrs, coding_attr_safe_charsets, Qnil);
2955 }
2956
2957 if (STRINGP (AREF (attrs, coding_attr_safe_charsets)))
2958 return;
2959
2960 max_charset_id = 0;
2961 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
2962 {
2963 int id = XINT (XCAR (tail));
2964 if (max_charset_id < id)
2965 max_charset_id = id;
2966 }
2967
2968 safe_charsets = make_uninit_string (max_charset_id + 1);
2969 memset (SDATA (safe_charsets), 255, max_charset_id + 1);
2970 request = AREF (attrs, coding_attr_iso_request);
2971 reg_usage = AREF (attrs, coding_attr_iso_usage);
2972 reg94 = XINT (XCAR (reg_usage));
2973 reg96 = XINT (XCDR (reg_usage));
2974
2975 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
2976 {
2977 Lisp_Object id;
2978 Lisp_Object reg;
2979 struct charset *charset;
2980
2981 id = XCAR (tail);
2982 charset = CHARSET_FROM_ID (XINT (id));
2983 reg = Fcdr (Fassq (id, request));
2984 if (! NILP (reg))
2985 SSET (safe_charsets, XINT (id), XINT (reg));
2986 else if (charset->iso_chars_96)
2987 {
2988 if (reg96 < 4)
2989 SSET (safe_charsets, XINT (id), reg96);
2990 }
2991 else
2992 {
2993 if (reg94 < 4)
2994 SSET (safe_charsets, XINT (id), reg94);
2995 }
2996 }
2997 ASET (attrs, coding_attr_safe_charsets, safe_charsets);
2998 }
2999
3000
3001 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
3002 Check if a text is encoded in one of ISO-2022 based coding systems.
3003 If it is, return 1, else return 0. */
3004
3005 static int
3006 detect_coding_iso_2022 (struct coding_system *coding,
3007 struct coding_detection_info *detect_info)
3008 {
3009 const unsigned char *src = coding->source, *src_base = src;
3010 const unsigned char *src_end = coding->source + coding->src_bytes;
3011 int multibytep = coding->src_multibyte;
3012 int single_shifting = 0;
3013 int id;
3014 int c, c1;
3015 EMACS_INT consumed_chars = 0;
3016 int i;
3017 int rejected = 0;
3018 int found = 0;
3019 int composition_count = -1;
3020
3021 detect_info->checked |= CATEGORY_MASK_ISO;
3022
3023 for (i = coding_category_iso_7; i <= coding_category_iso_8_else; i++)
3024 {
3025 struct coding_system *this = &(coding_categories[i]);
3026 Lisp_Object attrs, val;
3027
3028 if (this->id < 0)
3029 continue;
3030 attrs = CODING_ID_ATTRS (this->id);
3031 if (CODING_ISO_FLAGS (this) & CODING_ISO_FLAG_FULL_SUPPORT
3032 && ! EQ (CODING_ATTR_CHARSET_LIST (attrs), Viso_2022_charset_list))
3033 setup_iso_safe_charsets (attrs);
3034 val = CODING_ATTR_SAFE_CHARSETS (attrs);
3035 this->max_charset_id = SCHARS (val) - 1;
3036 this->safe_charsets = SDATA (val);
3037 }
3038
3039 /* A coding system of this category is always ASCII compatible. */
3040 src += coding->head_ascii;
3041
3042 while (rejected != CATEGORY_MASK_ISO)
3043 {
3044 src_base = src;
3045 ONE_MORE_BYTE (c);
3046 switch (c)
3047 {
3048 case ISO_CODE_ESC:
3049 if (inhibit_iso_escape_detection)
3050 break;
3051 single_shifting = 0;
3052 ONE_MORE_BYTE (c);
3053 if (c == 'N' || c == 'O')
3054 {
3055 /* ESC <Fe> for SS2 or SS3. */
3056 single_shifting = 1;
3057 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_8BIT;
3058 }
3059 else if (c == '1')
3060 {
3061 /* End of composition. */
3062 if (composition_count < 0
3063 || composition_count > MAX_COMPOSITION_COMPONENTS)
3064 /* Invalid */
3065 break;
3066 composition_count = -1;
3067 found |= CATEGORY_MASK_ISO;
3068 }
3069 else if (c >= '0' && c <= '4')
3070 {
3071 /* ESC <Fp> for start/end composition. */
3072 composition_count = 0;
3073 }
3074 else
3075 {
3076 if (c >= '(' && c <= '/')
3077 {
3078 /* Designation sequence for a charset of dimension 1. */
3079 ONE_MORE_BYTE (c1);
3080 if (c1 < ' ' || c1 >= 0x80
3081 || (id = iso_charset_table[0][c >= ','][c1]) < 0)
3082 /* Invalid designation sequence. Just ignore. */
3083 break;
3084 }
3085 else if (c == '$')
3086 {
3087 /* Designation sequence for a charset of dimension 2. */
3088 ONE_MORE_BYTE (c);
3089 if (c >= '@' && c <= 'B')
3090 /* Designation for JISX0208.1978, GB2312, or JISX0208. */
3091 id = iso_charset_table[1][0][c];
3092 else if (c >= '(' && c <= '/')
3093 {
3094 ONE_MORE_BYTE (c1);
3095 if (c1 < ' ' || c1 >= 0x80
3096 || (id = iso_charset_table[1][c >= ','][c1]) < 0)
3097 /* Invalid designation sequence. Just ignore. */
3098 break;
3099 }
3100 else
3101 /* Invalid designation sequence. Just ignore it. */
3102 break;
3103 }
3104 else
3105 {
3106 /* Invalid escape sequence. Just ignore it. */
3107 break;
3108 }
3109
3110 /* We found a valid designation sequence for CHARSET. */
3111 rejected |= CATEGORY_MASK_ISO_8BIT;
3112 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_7],
3113 id))
3114 found |= CATEGORY_MASK_ISO_7;
3115 else
3116 rejected |= CATEGORY_MASK_ISO_7;
3117 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_7_tight],
3118 id))
3119 found |= CATEGORY_MASK_ISO_7_TIGHT;
3120 else
3121 rejected |= CATEGORY_MASK_ISO_7_TIGHT;
3122 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_7_else],
3123 id))
3124 found |= CATEGORY_MASK_ISO_7_ELSE;
3125 else
3126 rejected |= CATEGORY_MASK_ISO_7_ELSE;
3127 if (SAFE_CHARSET_P (&coding_categories[coding_category_iso_8_else],
3128 id))
3129 found |= CATEGORY_MASK_ISO_8_ELSE;
3130 else
3131 rejected |= CATEGORY_MASK_ISO_8_ELSE;
3132 }
3133 break;
3134
3135 case ISO_CODE_SO:
3136 case ISO_CODE_SI:
3137 /* Locking shift out/in. */
3138 if (inhibit_iso_escape_detection)
3139 break;
3140 single_shifting = 0;
3141 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_8BIT;
3142 break;
3143
3144 case ISO_CODE_CSI:
3145 /* Control sequence introducer. */
3146 single_shifting = 0;
3147 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_7_ELSE;
3148 found |= CATEGORY_MASK_ISO_8_ELSE;
3149 goto check_extra_latin;
3150
3151 case ISO_CODE_SS2:
3152 case ISO_CODE_SS3:
3153 /* Single shift. */
3154 if (inhibit_iso_escape_detection)
3155 break;
3156 single_shifting = 0;
3157 rejected |= CATEGORY_MASK_ISO_7BIT;
3158 if (CODING_ISO_FLAGS (&coding_categories[coding_category_iso_8_1])
3159 & CODING_ISO_FLAG_SINGLE_SHIFT)
3160 {
3161 found |= CATEGORY_MASK_ISO_8_1;
3162 single_shifting = 1;
3163 }
3164 if (CODING_ISO_FLAGS (&coding_categories[coding_category_iso_8_2])
3165 & CODING_ISO_FLAG_SINGLE_SHIFT)
3166 {
3167 found |= CATEGORY_MASK_ISO_8_2;
3168 single_shifting = 1;
3169 }
3170 if (single_shifting)
3171 break;
3172 check_extra_latin:
3173 if (! VECTORP (Vlatin_extra_code_table)
3174 || NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
3175 {
3176 rejected = CATEGORY_MASK_ISO;
3177 break;
3178 }
3179 if (CODING_ISO_FLAGS (&coding_categories[coding_category_iso_8_1])
3180 & CODING_ISO_FLAG_LATIN_EXTRA)
3181 found |= CATEGORY_MASK_ISO_8_1;
3182 else
3183 rejected |= CATEGORY_MASK_ISO_8_1;
3184 rejected |= CATEGORY_MASK_ISO_8_2;
3185 break;
3186
3187 default:
3188 if (c < 0)
3189 continue;
3190 if (c < 0x80)
3191 {
3192 if (composition_count >= 0)
3193 composition_count++;
3194 single_shifting = 0;
3195 break;
3196 }
3197 if (c >= 0xA0)
3198 {
3199 rejected |= CATEGORY_MASK_ISO_7BIT | CATEGORY_MASK_ISO_7_ELSE;
3200 found |= CATEGORY_MASK_ISO_8_1;
3201 /* Check the length of succeeding codes of the range
3202 0xA0..0FF. If the byte length is even, we include
3203 CATEGORY_MASK_ISO_8_2 in `found'. We can check this
3204 only when we are not single shifting. */
3205 if (! single_shifting
3206 && ! (rejected & CATEGORY_MASK_ISO_8_2))
3207 {
3208 int len = 1;
3209 while (src < src_end)
3210 {
3211 src_base = src;
3212 ONE_MORE_BYTE (c);
3213 if (c < 0xA0)
3214 {
3215 src = src_base;
3216 break;
3217 }
3218 len++;
3219 }
3220
3221 if (len & 1 && src < src_end)
3222 {
3223 rejected |= CATEGORY_MASK_ISO_8_2;
3224 if (composition_count >= 0)
3225 composition_count += len;
3226 }
3227 else
3228 {
3229 found |= CATEGORY_MASK_ISO_8_2;
3230 if (composition_count >= 0)
3231 composition_count += len / 2;
3232 }
3233 }
3234 break;
3235 }
3236 }
3237 }
3238 detect_info->rejected |= CATEGORY_MASK_ISO;
3239 return 0;
3240
3241 no_more_source:
3242 detect_info->rejected |= rejected;
3243 detect_info->found |= (found & ~rejected);
3244 return 1;
3245 }
3246
3247
3248 /* Set designation state into CODING. Set CHARS_96 to -1 if the
3249 escape sequence should be kept. */
3250 #define DECODE_DESIGNATION(reg, dim, chars_96, final) \
3251 do { \
3252 int id, prev; \
3253 \
3254 if (final < '0' || final >= 128 \
3255 || ((id = ISO_CHARSET_TABLE (dim, chars_96, final)) < 0) \
3256 || !SAFE_CHARSET_P (coding, id)) \
3257 { \
3258 CODING_ISO_DESIGNATION (coding, reg) = -2; \
3259 chars_96 = -1; \
3260 break; \
3261 } \
3262 prev = CODING_ISO_DESIGNATION (coding, reg); \
3263 if (id == charset_jisx0201_roman) \
3264 { \
3265 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_ROMAN) \
3266 id = charset_ascii; \
3267 } \
3268 else if (id == charset_jisx0208_1978) \
3269 { \
3270 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_OLDJIS) \
3271 id = charset_jisx0208; \
3272 } \
3273 CODING_ISO_DESIGNATION (coding, reg) = id; \
3274 /* If there was an invalid designation to REG previously, and this \
3275 designation is ASCII to REG, we should keep this designation \
3276 sequence. */ \
3277 if (prev == -2 && id == charset_ascii) \
3278 chars_96 = -1; \
3279 } while (0)
3280
3281
3282 /* Handle these composition sequence (ALT: alternate char):
3283
3284 (1) relative composition: ESC 0 CHAR ... ESC 1
3285 (2) rulebase composition: ESC 2 CHAR RULE CHAR RULE ... CHAR ESC 1
3286 (3) altchar composition: ESC 3 ALT ... ALT ESC 0 CHAR ... ESC 1
3287 (4) alt&rule composition: ESC 4 ALT RULE ... ALT ESC 0 CHAR ... ESC 1
3288
3289 When the start sequence (ESC 0/2/3/4) is found, this annotation
3290 header is produced.
3291
3292 [ -LENGTH(==-5) CODING_ANNOTATE_COMPOSITION_MASK NCHARS(==0) 0 METHOD ]
3293
3294 Then, upon reading CHAR or RULE (one or two bytes), these codes are
3295 produced until the end sequence (ESC 1) is found:
3296
3297 (1) CHAR ... CHAR
3298 (2) CHAR -2 DECODED-RULE CHAR -2 DECODED-RULE ... CHAR
3299 (3) ALT ... ALT -1 -1 CHAR ... CHAR
3300 (4) ALT -2 DECODED-RULE ALT -2 DECODED-RULE ... ALT -1 -1 CHAR ... CHAR
3301
3302 When the end sequence (ESC 1) is found, LENGTH and NCHARS in the
3303 annotation header is updated as below:
3304
3305 (1) LENGTH: unchanged, NCHARS: number of CHARs
3306 (2) LENGTH: unchanged, NCHARS: number of CHARs
3307 (3) LENGTH: += number of ALTs + 2, NCHARS: number of CHARs
3308 (4) LENGTH: += number of ALTs * 3, NCHARS: number of CHARs
3309
3310 If an error is found while composing, the annotation header is
3311 changed to:
3312
3313 [ ESC '0'/'2'/'3'/'4' -2 0 ]
3314
3315 and the sequence [ -2 DECODED-RULE ] is changed to the original
3316 byte sequence as below:
3317 o the original byte sequence is B: [ B -1 ]
3318 o the original byte sequence is B1 B2: [ B1 B2 ]
3319 and the sequence [ -1 -1 ] is changed to the original byte
3320 sequence:
3321 [ ESC '0' ]
3322 */
3323
3324 /* Decode a composition rule C1 and maybe one more byte from the
3325 source, and set RULE to the encoded composition rule. If the rule
3326 is invalid, goto invalid_code. */
3327
3328 #define DECODE_COMPOSITION_RULE(rule) \
3329 do { \
3330 rule = c1 - 32; \
3331 if (rule < 0) \
3332 goto invalid_code; \
3333 if (rule < 81) /* old format (before ver.21) */ \
3334 { \
3335 int gref = (rule) / 9; \
3336 int nref = (rule) % 9; \
3337 if (gref == 4) gref = 10; \
3338 if (nref == 4) nref = 10; \
3339 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
3340 } \
3341 else /* new format (after ver.21) */ \
3342 { \
3343 int b; \
3344 \
3345 ONE_MORE_BYTE (b); \
3346 if (! COMPOSITION_ENCODE_RULE_VALID (rule - 81, b - 32)) \
3347 goto invalid_code; \
3348 rule = COMPOSITION_ENCODE_RULE (rule - 81, b - 32); \
3349 rule += 0x100; /* Distinguish it from the old format. */ \
3350 } \
3351 } while (0)
3352
3353 #define ENCODE_COMPOSITION_RULE(rule) \
3354 do { \
3355 int gref = (rule % 0x100) / 12, nref = (rule % 0x100) % 12; \
3356 \
3357 if (rule < 0x100) /* old format */ \
3358 { \
3359 if (gref == 10) gref = 4; \
3360 if (nref == 10) nref = 4; \
3361 charbuf[idx] = 32 + gref * 9 + nref; \
3362 charbuf[idx + 1] = -1; \
3363 new_chars++; \
3364 } \
3365 else /* new format */ \
3366 { \
3367 charbuf[idx] = 32 + 81 + gref; \
3368 charbuf[idx + 1] = 32 + nref; \
3369 new_chars += 2; \
3370 } \
3371 } while (0)
3372
3373 /* Finish the current composition as invalid. */
3374
3375 static int finish_composition (int *, struct composition_status *);
3376
3377 static int
3378 finish_composition (int *charbuf, struct composition_status *cmp_status)
3379 {
3380 int idx = - cmp_status->length;
3381 int new_chars;
3382
3383 /* Recover the original ESC sequence */
3384 charbuf[idx++] = ISO_CODE_ESC;
3385 charbuf[idx++] = (cmp_status->method == COMPOSITION_RELATIVE ? '0'
3386 : cmp_status->method == COMPOSITION_WITH_RULE ? '2'
3387 : cmp_status->method == COMPOSITION_WITH_ALTCHARS ? '3'
3388 /* cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS */
3389 : '4');
3390 charbuf[idx++] = -2;
3391 charbuf[idx++] = 0;
3392 charbuf[idx++] = -1;
3393 new_chars = cmp_status->nchars;
3394 if (cmp_status->method >= COMPOSITION_WITH_RULE)
3395 for (; idx < 0; idx++)
3396 {
3397 int elt = charbuf[idx];
3398
3399 if (elt == -2)
3400 {
3401 ENCODE_COMPOSITION_RULE (charbuf[idx + 1]);
3402 idx++;
3403 }
3404 else if (elt == -1)
3405 {
3406 charbuf[idx++] = ISO_CODE_ESC;
3407 charbuf[idx] = '0';
3408 new_chars += 2;
3409 }
3410 }
3411 cmp_status->state = COMPOSING_NO;
3412 return new_chars;
3413 }
3414
3415 /* If characters are under composition, finish the composition. */
3416 #define MAYBE_FINISH_COMPOSITION() \
3417 do { \
3418 if (cmp_status->state != COMPOSING_NO) \
3419 char_offset += finish_composition (charbuf, cmp_status); \
3420 } while (0)
3421
3422 /* Handle composition start sequence ESC 0, ESC 2, ESC 3, or ESC 4.
3423
3424 ESC 0 : relative composition : ESC 0 CHAR ... ESC 1
3425 ESC 2 : rulebase composition : ESC 2 CHAR RULE CHAR RULE ... CHAR ESC 1
3426 ESC 3 : altchar composition : ESC 3 CHAR ... ESC 0 CHAR ... ESC 1
3427 ESC 4 : alt&rule composition : ESC 4 CHAR RULE ... CHAR ESC 0 CHAR ... ESC 1
3428
3429 Produce this annotation sequence now:
3430
3431 [ -LENGTH(==-4) CODING_ANNOTATE_COMPOSITION_MASK NCHARS(==0) METHOD ]
3432 */
3433
3434 #define DECODE_COMPOSITION_START(c1) \
3435 do { \
3436 if (c1 == '0' \
3437 && ((cmp_status->state == COMPOSING_COMPONENT_CHAR \
3438 && cmp_status->method == COMPOSITION_WITH_ALTCHARS) \
3439 || (cmp_status->state == COMPOSING_COMPONENT_RULE \
3440 && cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS))) \
3441 { \
3442 *charbuf++ = -1; \
3443 *charbuf++= -1; \
3444 cmp_status->state = COMPOSING_CHAR; \
3445 cmp_status->length += 2; \
3446 } \
3447 else \
3448 { \
3449 MAYBE_FINISH_COMPOSITION (); \
3450 cmp_status->method = (c1 == '0' ? COMPOSITION_RELATIVE \
3451 : c1 == '2' ? COMPOSITION_WITH_RULE \
3452 : c1 == '3' ? COMPOSITION_WITH_ALTCHARS \
3453 : COMPOSITION_WITH_RULE_ALTCHARS); \
3454 cmp_status->state \
3455 = (c1 <= '2' ? COMPOSING_CHAR : COMPOSING_COMPONENT_CHAR); \
3456 ADD_COMPOSITION_DATA (charbuf, 0, 0, cmp_status->method); \
3457 cmp_status->length = MAX_ANNOTATION_LENGTH; \
3458 cmp_status->nchars = cmp_status->ncomps = 0; \
3459 coding->annotated = 1; \
3460 } \
3461 } while (0)
3462
3463
3464 /* Handle composition end sequence ESC 1. */
3465
3466 #define DECODE_COMPOSITION_END() \
3467 do { \
3468 if (cmp_status->nchars == 0 \
3469 || ((cmp_status->state == COMPOSING_CHAR) \
3470 == (cmp_status->method == COMPOSITION_WITH_RULE))) \
3471 { \
3472 MAYBE_FINISH_COMPOSITION (); \
3473 goto invalid_code; \
3474 } \
3475 if (cmp_status->method == COMPOSITION_WITH_ALTCHARS) \
3476 charbuf[- cmp_status->length] -= cmp_status->ncomps + 2; \
3477 else if (cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS) \
3478 charbuf[- cmp_status->length] -= cmp_status->ncomps * 3; \
3479 charbuf[- cmp_status->length + 2] = cmp_status->nchars; \
3480 char_offset += cmp_status->nchars; \
3481 cmp_status->state = COMPOSING_NO; \
3482 } while (0)
3483
3484 /* Store a composition rule RULE in charbuf, and update cmp_status. */
3485
3486 #define STORE_COMPOSITION_RULE(rule) \
3487 do { \
3488 *charbuf++ = -2; \
3489 *charbuf++ = rule; \
3490 cmp_status->length += 2; \
3491 cmp_status->state--; \
3492 } while (0)
3493
3494 /* Store a composed char or a component char C in charbuf, and update
3495 cmp_status. */
3496
3497 #define STORE_COMPOSITION_CHAR(c) \
3498 do { \
3499 *charbuf++ = (c); \
3500 cmp_status->length++; \
3501 if (cmp_status->state == COMPOSING_CHAR) \
3502 cmp_status->nchars++; \
3503 else \
3504 cmp_status->ncomps++; \
3505 if (cmp_status->method == COMPOSITION_WITH_RULE \
3506 || (cmp_status->method == COMPOSITION_WITH_RULE_ALTCHARS \
3507 && cmp_status->state == COMPOSING_COMPONENT_CHAR)) \
3508 cmp_status->state++; \
3509 } while (0)
3510
3511
3512 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
3513
3514 static void
3515 decode_coding_iso_2022 (struct coding_system *coding)
3516 {
3517 const unsigned char *src = coding->source + coding->consumed;
3518 const unsigned char *src_end = coding->source + coding->src_bytes;
3519 const unsigned char *src_base;
3520 int *charbuf = coding->charbuf + coding->charbuf_used;
3521 /* We may produce two annotations (charset and composition) in one
3522 loop and one more charset annotation at the end. */
3523 int *charbuf_end
3524 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 3);
3525 EMACS_INT consumed_chars = 0, consumed_chars_base;
3526 int multibytep = coding->src_multibyte;
3527 /* Charsets invoked to graphic plane 0 and 1 respectively. */
3528 int charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3529 int charset_id_1 = CODING_ISO_INVOKED_CHARSET (coding, 1);
3530 int charset_id_2, charset_id_3;
3531 struct charset *charset;
3532 int c;
3533 struct composition_status *cmp_status = CODING_ISO_CMP_STATUS (coding);
3534 Lisp_Object attrs = CODING_ID_ATTRS (coding->id);
3535 EMACS_INT char_offset = coding->produced_char;
3536 EMACS_INT last_offset = char_offset;
3537 int last_id = charset_ascii;
3538 int eol_dos =
3539 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
3540 int byte_after_cr = -1;
3541 int i;
3542
3543 setup_iso_safe_charsets (attrs);
3544 coding->safe_charsets = SDATA (CODING_ATTR_SAFE_CHARSETS (attrs));
3545
3546 if (cmp_status->state != COMPOSING_NO)
3547 {
3548 if (charbuf_end - charbuf < cmp_status->length)
3549 abort ();
3550 for (i = 0; i < cmp_status->length; i++)
3551 *charbuf++ = cmp_status->carryover[i];
3552 coding->annotated = 1;
3553 }
3554
3555 while (1)
3556 {
3557 int c1, c2, c3;
3558
3559 src_base = src;
3560 consumed_chars_base = consumed_chars;
3561
3562 if (charbuf >= charbuf_end)
3563 {
3564 if (byte_after_cr >= 0)
3565 src_base--;
3566 break;
3567 }
3568
3569 if (byte_after_cr >= 0)
3570 c1 = byte_after_cr, byte_after_cr = -1;
3571 else
3572 ONE_MORE_BYTE (c1);
3573 if (c1 < 0)
3574 goto invalid_code;
3575
3576 if (CODING_ISO_EXTSEGMENT_LEN (coding) > 0)
3577 {
3578 *charbuf++ = ASCII_BYTE_P (c1) ? c1 : BYTE8_TO_CHAR (c1);
3579 char_offset++;
3580 CODING_ISO_EXTSEGMENT_LEN (coding)--;
3581 continue;
3582 }
3583
3584 if (CODING_ISO_EMBEDDED_UTF_8 (coding))
3585 {
3586 if (c1 == ISO_CODE_ESC)
3587 {
3588 if (src + 1 >= src_end)
3589 goto no_more_source;
3590 *charbuf++ = ISO_CODE_ESC;
3591 char_offset++;
3592 if (src[0] == '%' && src[1] == '@')
3593 {
3594 src += 2;
3595 consumed_chars += 2;
3596 char_offset += 2;
3597 /* We are sure charbuf can contain two more chars. */
3598 *charbuf++ = '%';
3599 *charbuf++ = '@';
3600 CODING_ISO_EMBEDDED_UTF_8 (coding) = 0;
3601 }
3602 }
3603 else
3604 {
3605 *charbuf++ = ASCII_BYTE_P (c1) ? c1 : BYTE8_TO_CHAR (c1);
3606 char_offset++;
3607 }
3608 continue;
3609 }
3610
3611 if ((cmp_status->state == COMPOSING_RULE
3612 || cmp_status->state == COMPOSING_COMPONENT_RULE)
3613 && c1 != ISO_CODE_ESC)
3614 {
3615 int rule;
3616
3617 DECODE_COMPOSITION_RULE (rule);
3618 STORE_COMPOSITION_RULE (rule);
3619 continue;
3620 }
3621
3622 /* We produce at most one character. */
3623 switch (iso_code_class [c1])
3624 {
3625 case ISO_0x20_or_0x7F:
3626 if (charset_id_0 < 0
3627 || ! CHARSET_ISO_CHARS_96 (CHARSET_FROM_ID (charset_id_0)))
3628 /* This is SPACE or DEL. */
3629 charset = CHARSET_FROM_ID (charset_ascii);
3630 else
3631 charset = CHARSET_FROM_ID (charset_id_0);
3632 break;
3633
3634 case ISO_graphic_plane_0:
3635 if (charset_id_0 < 0)
3636 charset = CHARSET_FROM_ID (charset_ascii);
3637 else
3638 charset = CHARSET_FROM_ID (charset_id_0);
3639 break;
3640
3641 case ISO_0xA0_or_0xFF:
3642 if (charset_id_1 < 0
3643 || ! CHARSET_ISO_CHARS_96 (CHARSET_FROM_ID (charset_id_1))
3644 || CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS)
3645 goto invalid_code;
3646 /* This is a graphic character, we fall down ... */
3647
3648 case ISO_graphic_plane_1:
3649 if (charset_id_1 < 0)
3650 goto invalid_code;
3651 charset = CHARSET_FROM_ID (charset_id_1);
3652 break;
3653
3654 case ISO_control_0:
3655 if (eol_dos && c1 == '\r')
3656 ONE_MORE_BYTE (byte_after_cr);
3657 MAYBE_FINISH_COMPOSITION ();
3658 charset = CHARSET_FROM_ID (charset_ascii);
3659 break;
3660
3661 case ISO_control_1:
3662 goto invalid_code;
3663
3664 case ISO_shift_out:
3665 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT)
3666 || CODING_ISO_DESIGNATION (coding, 1) < 0)
3667 goto invalid_code;
3668 CODING_ISO_INVOCATION (coding, 0) = 1;
3669 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3670 continue;
3671
3672 case ISO_shift_in:
3673 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT))
3674 goto invalid_code;
3675 CODING_ISO_INVOCATION (coding, 0) = 0;
3676 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3677 continue;
3678
3679 case ISO_single_shift_2_7:
3680 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS))
3681 goto invalid_code;
3682 case ISO_single_shift_2:
3683 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT))
3684 goto invalid_code;
3685 /* SS2 is handled as an escape sequence of ESC 'N' */
3686 c1 = 'N';
3687 goto label_escape_sequence;
3688
3689 case ISO_single_shift_3:
3690 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT))
3691 goto invalid_code;
3692 /* SS2 is handled as an escape sequence of ESC 'O' */
3693 c1 = 'O';
3694 goto label_escape_sequence;
3695
3696 case ISO_control_sequence_introducer:
3697 /* CSI is handled as an escape sequence of ESC '[' ... */
3698 c1 = '[';
3699 goto label_escape_sequence;
3700
3701 case ISO_escape:
3702 ONE_MORE_BYTE (c1);
3703 label_escape_sequence:
3704 /* Escape sequences handled here are invocation,
3705 designation, direction specification, and character
3706 composition specification. */
3707 switch (c1)
3708 {
3709 case '&': /* revision of following character set */
3710 ONE_MORE_BYTE (c1);
3711 if (!(c1 >= '@' && c1 <= '~'))
3712 goto invalid_code;
3713 ONE_MORE_BYTE (c1);
3714 if (c1 != ISO_CODE_ESC)
3715 goto invalid_code;
3716 ONE_MORE_BYTE (c1);
3717 goto label_escape_sequence;
3718
3719 case '$': /* designation of 2-byte character set */
3720 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATION))
3721 goto invalid_code;
3722 {
3723 int reg, chars96;
3724
3725 ONE_MORE_BYTE (c1);
3726 if (c1 >= '@' && c1 <= 'B')
3727 { /* designation of JISX0208.1978, GB2312.1980,
3728 or JISX0208.1980 */
3729 reg = 0, chars96 = 0;
3730 }
3731 else if (c1 >= 0x28 && c1 <= 0x2B)
3732 { /* designation of DIMENSION2_CHARS94 character set */
3733 reg = c1 - 0x28, chars96 = 0;
3734 ONE_MORE_BYTE (c1);
3735 }
3736 else if (c1 >= 0x2C && c1 <= 0x2F)
3737 { /* designation of DIMENSION2_CHARS96 character set */
3738 reg = c1 - 0x2C, chars96 = 1;
3739 ONE_MORE_BYTE (c1);
3740 }
3741 else
3742 goto invalid_code;
3743 DECODE_DESIGNATION (reg, 2, chars96, c1);
3744 /* We must update these variables now. */
3745 if (reg == 0)
3746 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3747 else if (reg == 1)
3748 charset_id_1 = CODING_ISO_INVOKED_CHARSET (coding, 1);
3749 if (chars96 < 0)
3750 goto invalid_code;
3751 }
3752 continue;
3753
3754 case 'n': /* invocation of locking-shift-2 */
3755 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT)
3756 || CODING_ISO_DESIGNATION (coding, 2) < 0)
3757 goto invalid_code;
3758 CODING_ISO_INVOCATION (coding, 0) = 2;
3759 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3760 continue;
3761
3762 case 'o': /* invocation of locking-shift-3 */
3763 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LOCKING_SHIFT)
3764 || CODING_ISO_DESIGNATION (coding, 3) < 0)
3765 goto invalid_code;
3766 CODING_ISO_INVOCATION (coding, 0) = 3;
3767 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3768 continue;
3769
3770 case 'N': /* invocation of single-shift-2 */
3771 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
3772 || CODING_ISO_DESIGNATION (coding, 2) < 0)
3773 goto invalid_code;
3774 charset_id_2 = CODING_ISO_DESIGNATION (coding, 2);
3775 if (charset_id_2 < 0)
3776 charset = CHARSET_FROM_ID (charset_ascii);
3777 else
3778 charset = CHARSET_FROM_ID (charset_id_2);
3779 ONE_MORE_BYTE (c1);
3780 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
3781 goto invalid_code;
3782 break;
3783
3784 case 'O': /* invocation of single-shift-3 */
3785 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
3786 || CODING_ISO_DESIGNATION (coding, 3) < 0)
3787 goto invalid_code;
3788 charset_id_3 = CODING_ISO_DESIGNATION (coding, 3);
3789 if (charset_id_3 < 0)
3790 charset = CHARSET_FROM_ID (charset_ascii);
3791 else
3792 charset = CHARSET_FROM_ID (charset_id_3);
3793 ONE_MORE_BYTE (c1);
3794 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
3795 goto invalid_code;
3796 break;
3797
3798 case '0': case '2': case '3': case '4': /* start composition */
3799 if (! (coding->common_flags & CODING_ANNOTATE_COMPOSITION_MASK))
3800 goto invalid_code;
3801 if (last_id != charset_ascii)
3802 {
3803 ADD_CHARSET_DATA (charbuf, char_offset- last_offset, last_id);
3804 last_id = charset_ascii;
3805 last_offset = char_offset;
3806 }
3807 DECODE_COMPOSITION_START (c1);
3808 continue;
3809
3810 case '1': /* end composition */
3811 if (cmp_status->state == COMPOSING_NO)
3812 goto invalid_code;
3813 DECODE_COMPOSITION_END ();
3814 continue;
3815
3816 case '[': /* specification of direction */
3817 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DIRECTION))
3818 goto invalid_code;
3819 /* For the moment, nested direction is not supported.
3820 So, `coding->mode & CODING_MODE_DIRECTION' zero means
3821 left-to-right, and nonzero means right-to-left. */
3822 ONE_MORE_BYTE (c1);
3823 switch (c1)
3824 {
3825 case ']': /* end of the current direction */
3826 coding->mode &= ~CODING_MODE_DIRECTION;
3827
3828 case '0': /* end of the current direction */
3829 case '1': /* start of left-to-right direction */
3830 ONE_MORE_BYTE (c1);
3831 if (c1 == ']')
3832 coding->mode &= ~CODING_MODE_DIRECTION;
3833 else
3834 goto invalid_code;
3835 break;
3836
3837 case '2': /* start of right-to-left direction */
3838 ONE_MORE_BYTE (c1);
3839 if (c1 == ']')
3840 coding->mode |= CODING_MODE_DIRECTION;
3841 else
3842 goto invalid_code;
3843 break;
3844
3845 default:
3846 goto invalid_code;
3847 }
3848 continue;
3849
3850 case '%':
3851 ONE_MORE_BYTE (c1);
3852 if (c1 == '/')
3853 {
3854 /* CTEXT extended segment:
3855 ESC % / [0-4] M L --ENCODING-NAME-- \002 --BYTES--
3856 We keep these bytes as is for the moment.
3857 They may be decoded by post-read-conversion. */
3858 int dim, M, L;
3859 int size;
3860
3861 ONE_MORE_BYTE (dim);
3862 if (dim < '0' || dim > '4')
3863 goto invalid_code;
3864 ONE_MORE_BYTE (M);
3865 if (M < 128)
3866 goto invalid_code;
3867 ONE_MORE_BYTE (L);
3868 if (L < 128)
3869 goto invalid_code;
3870 size = ((M - 128) * 128) + (L - 128);
3871 if (charbuf + 6 > charbuf_end)
3872 goto break_loop;
3873 *charbuf++ = ISO_CODE_ESC;
3874 *charbuf++ = '%';
3875 *charbuf++ = '/';
3876 *charbuf++ = dim;
3877 *charbuf++ = BYTE8_TO_CHAR (M);
3878 *charbuf++ = BYTE8_TO_CHAR (L);
3879 CODING_ISO_EXTSEGMENT_LEN (coding) = size;
3880 }
3881 else if (c1 == 'G')
3882 {
3883 /* XFree86 extension for embedding UTF-8 in CTEXT:
3884 ESC % G --UTF-8-BYTES-- ESC % @
3885 We keep these bytes as is for the moment.
3886 They may be decoded by post-read-conversion. */
3887 if (charbuf + 3 > charbuf_end)
3888 goto break_loop;
3889 *charbuf++ = ISO_CODE_ESC;
3890 *charbuf++ = '%';
3891 *charbuf++ = 'G';
3892 CODING_ISO_EMBEDDED_UTF_8 (coding) = 1;
3893 }
3894 else
3895 goto invalid_code;
3896 continue;
3897 break;
3898
3899 default:
3900 if (! (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATION))
3901 goto invalid_code;
3902 {
3903 int reg, chars96;
3904
3905 if (c1 >= 0x28 && c1 <= 0x2B)
3906 { /* designation of DIMENSION1_CHARS94 character set */
3907 reg = c1 - 0x28, chars96 = 0;
3908 ONE_MORE_BYTE (c1);
3909 }
3910 else if (c1 >= 0x2C && c1 <= 0x2F)
3911 { /* designation of DIMENSION1_CHARS96 character set */
3912 reg = c1 - 0x2C, chars96 = 1;
3913 ONE_MORE_BYTE (c1);
3914 }
3915 else
3916 goto invalid_code;
3917 DECODE_DESIGNATION (reg, 1, chars96, c1);
3918 /* We must update these variables now. */
3919 if (reg == 0)
3920 charset_id_0 = CODING_ISO_INVOKED_CHARSET (coding, 0);
3921 else if (reg == 1)
3922 charset_id_1 = CODING_ISO_INVOKED_CHARSET (coding, 1);
3923 if (chars96 < 0)
3924 goto invalid_code;
3925 }
3926 continue;
3927 }
3928 break;
3929
3930 default:
3931 abort ();
3932 }
3933
3934 if (cmp_status->state == COMPOSING_NO
3935 && charset->id != charset_ascii
3936 && last_id != charset->id)
3937 {
3938 if (last_id != charset_ascii)
3939 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
3940 last_id = charset->id;
3941 last_offset = char_offset;
3942 }
3943
3944 /* Now we know CHARSET and 1st position code C1 of a character.
3945 Produce a decoded character while getting 2nd and 3rd
3946 position codes C2, C3 if necessary. */
3947 if (CHARSET_DIMENSION (charset) > 1)
3948 {
3949 ONE_MORE_BYTE (c2);
3950 if (c2 < 0x20 || (c2 >= 0x80 && c2 < 0xA0)
3951 || ((c1 & 0x80) != (c2 & 0x80)))
3952 /* C2 is not in a valid range. */
3953 goto invalid_code;
3954 if (CHARSET_DIMENSION (charset) == 2)
3955 c1 = (c1 << 8) | c2;
3956 else
3957 {
3958 ONE_MORE_BYTE (c3);
3959 if (c3 < 0x20 || (c3 >= 0x80 && c3 < 0xA0)
3960 || ((c1 & 0x80) != (c3 & 0x80)))
3961 /* C3 is not in a valid range. */
3962 goto invalid_code;
3963 c1 = (c1 << 16) | (c2 << 8) | c2;
3964 }
3965 }
3966 c1 &= 0x7F7F7F;
3967 CODING_DECODE_CHAR (coding, src, src_base, src_end, charset, c1, c);
3968 if (c < 0)
3969 {
3970 MAYBE_FINISH_COMPOSITION ();
3971 for (; src_base < src; src_base++, char_offset++)
3972 {
3973 if (ASCII_BYTE_P (*src_base))
3974 *charbuf++ = *src_base;
3975 else
3976 *charbuf++ = BYTE8_TO_CHAR (*src_base);
3977 }
3978 }
3979 else if (cmp_status->state == COMPOSING_NO)
3980 {
3981 *charbuf++ = c;
3982 char_offset++;
3983 }
3984 else if ((cmp_status->state == COMPOSING_CHAR
3985 ? cmp_status->nchars
3986 : cmp_status->ncomps)
3987 >= MAX_COMPOSITION_COMPONENTS)
3988 {
3989 /* Too long composition. */
3990 MAYBE_FINISH_COMPOSITION ();
3991 *charbuf++ = c;
3992 char_offset++;
3993 }
3994 else
3995 STORE_COMPOSITION_CHAR (c);
3996 continue;
3997
3998 invalid_code:
3999 MAYBE_FINISH_COMPOSITION ();
4000 src = src_base;
4001 consumed_chars = consumed_chars_base;
4002 ONE_MORE_BYTE (c);
4003 *charbuf++ = c < 0 ? -c : ASCII_BYTE_P (c) ? c : BYTE8_TO_CHAR (c);
4004 char_offset++;
4005 coding->errors++;
4006 continue;
4007
4008 break_loop:
4009 break;
4010 }
4011
4012 no_more_source:
4013 if (cmp_status->state != COMPOSING_NO)
4014 {
4015 if (coding->mode & CODING_MODE_LAST_BLOCK)
4016 MAYBE_FINISH_COMPOSITION ();
4017 else
4018 {
4019 charbuf -= cmp_status->length;
4020 for (i = 0; i < cmp_status->length; i++)
4021 cmp_status->carryover[i] = charbuf[i];
4022 }
4023 }
4024 else if (last_id != charset_ascii)
4025 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4026 coding->consumed_char += consumed_chars_base;
4027 coding->consumed = src_base - coding->source;
4028 coding->charbuf_used = charbuf - coding->charbuf;
4029 }
4030
4031
4032 /* ISO2022 encoding stuff. */
4033
4034 /*
4035 It is not enough to say just "ISO2022" on encoding, we have to
4036 specify more details. In Emacs, each coding system of ISO2022
4037 variant has the following specifications:
4038 1. Initial designation to G0 thru G3.
4039 2. Allows short-form designation?
4040 3. ASCII should be designated to G0 before control characters?
4041 4. ASCII should be designated to G0 at end of line?
4042 5. 7-bit environment or 8-bit environment?
4043 6. Use locking-shift?
4044 7. Use Single-shift?
4045 And the following two are only for Japanese:
4046 8. Use ASCII in place of JIS0201-1976-Roman?
4047 9. Use JISX0208-1983 in place of JISX0208-1978?
4048 These specifications are encoded in CODING_ISO_FLAGS (coding) as flag bits
4049 defined by macros CODING_ISO_FLAG_XXX. See `coding.h' for more
4050 details.
4051 */
4052
4053 /* Produce codes (escape sequence) for designating CHARSET to graphic
4054 register REG at DST, and increment DST. If <final-char> of CHARSET is
4055 '@', 'A', or 'B' and the coding system CODING allows, produce
4056 designation sequence of short-form. */
4057
4058 #define ENCODE_DESIGNATION(charset, reg, coding) \
4059 do { \
4060 unsigned char final_char = CHARSET_ISO_FINAL (charset); \
4061 const char *intermediate_char_94 = "()*+"; \
4062 const char *intermediate_char_96 = ",-./"; \
4063 int revision = -1; \
4064 \
4065 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_REVISION) \
4066 revision = CHARSET_ISO_REVISION (charset); \
4067 \
4068 if (revision >= 0) \
4069 { \
4070 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, '&'); \
4071 EMIT_ONE_BYTE ('@' + revision); \
4072 } \
4073 EMIT_ONE_ASCII_BYTE (ISO_CODE_ESC); \
4074 if (CHARSET_DIMENSION (charset) == 1) \
4075 { \
4076 int b; \
4077 if (! CHARSET_ISO_CHARS_96 (charset)) \
4078 b = intermediate_char_94[reg]; \
4079 else \
4080 b = intermediate_char_96[reg]; \
4081 EMIT_ONE_ASCII_BYTE (b); \
4082 } \
4083 else \
4084 { \
4085 EMIT_ONE_ASCII_BYTE ('$'); \
4086 if (! CHARSET_ISO_CHARS_96 (charset)) \
4087 { \
4088 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_LONG_FORM \
4089 || reg != 0 \
4090 || final_char < '@' || final_char > 'B') \
4091 EMIT_ONE_ASCII_BYTE (intermediate_char_94[reg]); \
4092 } \
4093 else \
4094 EMIT_ONE_ASCII_BYTE (intermediate_char_96[reg]); \
4095 } \
4096 EMIT_ONE_ASCII_BYTE (final_char); \
4097 \
4098 CODING_ISO_DESIGNATION (coding, reg) = CHARSET_ID (charset); \
4099 } while (0)
4100
4101
4102 /* The following two macros produce codes (control character or escape
4103 sequence) for ISO2022 single-shift functions (single-shift-2 and
4104 single-shift-3). */
4105
4106 #define ENCODE_SINGLE_SHIFT_2 \
4107 do { \
4108 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4109 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'N'); \
4110 else \
4111 EMIT_ONE_BYTE (ISO_CODE_SS2); \
4112 CODING_ISO_SINGLE_SHIFTING (coding) = 1; \
4113 } while (0)
4114
4115
4116 #define ENCODE_SINGLE_SHIFT_3 \
4117 do { \
4118 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4119 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'O'); \
4120 else \
4121 EMIT_ONE_BYTE (ISO_CODE_SS3); \
4122 CODING_ISO_SINGLE_SHIFTING (coding) = 1; \
4123 } while (0)
4124
4125
4126 /* The following four macros produce codes (control character or
4127 escape sequence) for ISO2022 locking-shift functions (shift-in,
4128 shift-out, locking-shift-2, and locking-shift-3). */
4129
4130 #define ENCODE_SHIFT_IN \
4131 do { \
4132 EMIT_ONE_ASCII_BYTE (ISO_CODE_SI); \
4133 CODING_ISO_INVOCATION (coding, 0) = 0; \
4134 } while (0)
4135
4136
4137 #define ENCODE_SHIFT_OUT \
4138 do { \
4139 EMIT_ONE_ASCII_BYTE (ISO_CODE_SO); \
4140 CODING_ISO_INVOCATION (coding, 0) = 1; \
4141 } while (0)
4142
4143
4144 #define ENCODE_LOCKING_SHIFT_2 \
4145 do { \
4146 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'n'); \
4147 CODING_ISO_INVOCATION (coding, 0) = 2; \
4148 } while (0)
4149
4150
4151 #define ENCODE_LOCKING_SHIFT_3 \
4152 do { \
4153 EMIT_TWO_ASCII_BYTES (ISO_CODE_ESC, 'n'); \
4154 CODING_ISO_INVOCATION (coding, 0) = 3; \
4155 } while (0)
4156
4157
4158 /* Produce codes for a DIMENSION1 character whose character set is
4159 CHARSET and whose position-code is C1. Designation and invocation
4160 sequences are also produced in advance if necessary. */
4161
4162 #define ENCODE_ISO_CHARACTER_DIMENSION1(charset, c1) \
4163 do { \
4164 int id = CHARSET_ID (charset); \
4165 \
4166 if ((CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_ROMAN) \
4167 && id == charset_ascii) \
4168 { \
4169 id = charset_jisx0201_roman; \
4170 charset = CHARSET_FROM_ID (id); \
4171 } \
4172 \
4173 if (CODING_ISO_SINGLE_SHIFTING (coding)) \
4174 { \
4175 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4176 EMIT_ONE_ASCII_BYTE (c1 & 0x7F); \
4177 else \
4178 EMIT_ONE_BYTE (c1 | 0x80); \
4179 CODING_ISO_SINGLE_SHIFTING (coding) = 0; \
4180 break; \
4181 } \
4182 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 0)) \
4183 { \
4184 EMIT_ONE_ASCII_BYTE (c1 & 0x7F); \
4185 break; \
4186 } \
4187 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 1)) \
4188 { \
4189 EMIT_ONE_BYTE (c1 | 0x80); \
4190 break; \
4191 } \
4192 else \
4193 /* Since CHARSET is not yet invoked to any graphic planes, we \
4194 must invoke it, or, at first, designate it to some graphic \
4195 register. Then repeat the loop to actually produce the \
4196 character. */ \
4197 dst = encode_invocation_designation (charset, coding, dst, \
4198 &produced_chars); \
4199 } while (1)
4200
4201
4202 /* Produce codes for a DIMENSION2 character whose character set is
4203 CHARSET and whose position-codes are C1 and C2. Designation and
4204 invocation codes are also produced in advance if necessary. */
4205
4206 #define ENCODE_ISO_CHARACTER_DIMENSION2(charset, c1, c2) \
4207 do { \
4208 int id = CHARSET_ID (charset); \
4209 \
4210 if ((CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_USE_OLDJIS) \
4211 && id == charset_jisx0208) \
4212 { \
4213 id = charset_jisx0208_1978; \
4214 charset = CHARSET_FROM_ID (id); \
4215 } \
4216 \
4217 if (CODING_ISO_SINGLE_SHIFTING (coding)) \
4218 { \
4219 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SEVEN_BITS) \
4220 EMIT_TWO_ASCII_BYTES ((c1) & 0x7F, (c2) & 0x7F); \
4221 else \
4222 EMIT_TWO_BYTES ((c1) | 0x80, (c2) | 0x80); \
4223 CODING_ISO_SINGLE_SHIFTING (coding) = 0; \
4224 break; \
4225 } \
4226 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 0)) \
4227 { \
4228 EMIT_TWO_ASCII_BYTES ((c1) & 0x7F, (c2) & 0x7F); \
4229 break; \
4230 } \
4231 else if (id == CODING_ISO_INVOKED_CHARSET (coding, 1)) \
4232 { \
4233 EMIT_TWO_BYTES ((c1) | 0x80, (c2) | 0x80); \
4234 break; \
4235 } \
4236 else \
4237 /* Since CHARSET is not yet invoked to any graphic planes, we \
4238 must invoke it, or, at first, designate it to some graphic \
4239 register. Then repeat the loop to actually produce the \
4240 character. */ \
4241 dst = encode_invocation_designation (charset, coding, dst, \
4242 &produced_chars); \
4243 } while (1)
4244
4245
4246 #define ENCODE_ISO_CHARACTER(charset, c) \
4247 do { \
4248 int code; \
4249 CODING_ENCODE_CHAR (coding, dst, dst_end, (charset), (c), code); \
4250 \
4251 if (CHARSET_DIMENSION (charset) == 1) \
4252 ENCODE_ISO_CHARACTER_DIMENSION1 ((charset), code); \
4253 else \
4254 ENCODE_ISO_CHARACTER_DIMENSION2 ((charset), code >> 8, code & 0xFF); \
4255 } while (0)
4256
4257
4258 /* Produce designation and invocation codes at a place pointed by DST
4259 to use CHARSET. The element `spec.iso_2022' of *CODING is updated.
4260 Return new DST. */
4261
4262 static unsigned char *
4263 encode_invocation_designation (struct charset *charset,
4264 struct coding_system *coding,
4265 unsigned char *dst, EMACS_INT *p_nchars)
4266 {
4267 int multibytep = coding->dst_multibyte;
4268 EMACS_INT produced_chars = *p_nchars;
4269 int reg; /* graphic register number */
4270 int id = CHARSET_ID (charset);
4271
4272 /* At first, check designations. */
4273 for (reg = 0; reg < 4; reg++)
4274 if (id == CODING_ISO_DESIGNATION (coding, reg))
4275 break;
4276
4277 if (reg >= 4)
4278 {
4279 /* CHARSET is not yet designated to any graphic registers. */
4280 /* At first check the requested designation. */
4281 reg = CODING_ISO_REQUEST (coding, id);
4282 if (reg < 0)
4283 /* Since CHARSET requests no special designation, designate it
4284 to graphic register 0. */
4285 reg = 0;
4286
4287 ENCODE_DESIGNATION (charset, reg, coding);
4288 }
4289
4290 if (CODING_ISO_INVOCATION (coding, 0) != reg
4291 && CODING_ISO_INVOCATION (coding, 1) != reg)
4292 {
4293 /* Since the graphic register REG is not invoked to any graphic
4294 planes, invoke it to graphic plane 0. */
4295 switch (reg)
4296 {
4297 case 0: /* graphic register 0 */
4298 ENCODE_SHIFT_IN;
4299 break;
4300
4301 case 1: /* graphic register 1 */
4302 ENCODE_SHIFT_OUT;
4303 break;
4304
4305 case 2: /* graphic register 2 */
4306 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
4307 ENCODE_SINGLE_SHIFT_2;
4308 else
4309 ENCODE_LOCKING_SHIFT_2;
4310 break;
4311
4312 case 3: /* graphic register 3 */
4313 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_SINGLE_SHIFT)
4314 ENCODE_SINGLE_SHIFT_3;
4315 else
4316 ENCODE_LOCKING_SHIFT_3;
4317 break;
4318 }
4319 }
4320
4321 *p_nchars = produced_chars;
4322 return dst;
4323 }
4324
4325
4326 /* Produce codes for designation and invocation to reset the graphic
4327 planes and registers to initial state. */
4328 #define ENCODE_RESET_PLANE_AND_REGISTER() \
4329 do { \
4330 int reg; \
4331 struct charset *charset; \
4332 \
4333 if (CODING_ISO_INVOCATION (coding, 0) != 0) \
4334 ENCODE_SHIFT_IN; \
4335 for (reg = 0; reg < 4; reg++) \
4336 if (CODING_ISO_INITIAL (coding, reg) >= 0 \
4337 && (CODING_ISO_DESIGNATION (coding, reg) \
4338 != CODING_ISO_INITIAL (coding, reg))) \
4339 { \
4340 charset = CHARSET_FROM_ID (CODING_ISO_INITIAL (coding, reg)); \
4341 ENCODE_DESIGNATION (charset, reg, coding); \
4342 } \
4343 } while (0)
4344
4345
4346 /* Produce designation sequences of charsets in the line started from
4347 CHARBUF to a place pointed by DST, and return the number of
4348 produced bytes. DST should not directly point a buffer text area
4349 which may be relocated by char_charset call.
4350
4351 If the current block ends before any end-of-line, we may fail to
4352 find all the necessary designations. */
4353
4354 static int
4355 encode_designation_at_bol (struct coding_system *coding,
4356 int *charbuf, int *charbuf_end,
4357 unsigned char *dst)
4358 {
4359 unsigned char *orig;
4360 struct charset *charset;
4361 /* Table of charsets to be designated to each graphic register. */
4362 int r[4];
4363 int c, found = 0, reg;
4364 EMACS_INT produced_chars = 0;
4365 int multibytep = coding->dst_multibyte;
4366 Lisp_Object attrs;
4367 Lisp_Object charset_list;
4368
4369 attrs = CODING_ID_ATTRS (coding->id);
4370 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
4371 if (EQ (charset_list, Qiso_2022))
4372 charset_list = Viso_2022_charset_list;
4373
4374 for (reg = 0; reg < 4; reg++)
4375 r[reg] = -1;
4376
4377 while (charbuf < charbuf_end && found < 4)
4378 {
4379 int id;
4380
4381 c = *charbuf++;
4382 if (c == '\n')
4383 break;
4384 charset = char_charset (c, charset_list, NULL);
4385 id = CHARSET_ID (charset);
4386 reg = CODING_ISO_REQUEST (coding, id);
4387 if (reg >= 0 && r[reg] < 0)
4388 {
4389 found++;
4390 r[reg] = id;
4391 }
4392 }
4393
4394 if (found)
4395 {
4396 for (reg = 0; reg < 4; reg++)
4397 if (r[reg] >= 0
4398 && CODING_ISO_DESIGNATION (coding, reg) != r[reg])
4399 ENCODE_DESIGNATION (CHARSET_FROM_ID (r[reg]), reg, coding);
4400 }
4401
4402 return dst - orig;
4403 }
4404
4405 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions". */
4406
4407 static int
4408 encode_coding_iso_2022 (struct coding_system *coding)
4409 {
4410 int multibytep = coding->dst_multibyte;
4411 int *charbuf = coding->charbuf;
4412 int *charbuf_end = charbuf + coding->charbuf_used;
4413 unsigned char *dst = coding->destination + coding->produced;
4414 unsigned char *dst_end = coding->destination + coding->dst_bytes;
4415 int safe_room = 16;
4416 int bol_designation
4417 = (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATE_AT_BOL
4418 && CODING_ISO_BOL (coding));
4419 EMACS_INT produced_chars = 0;
4420 Lisp_Object attrs, eol_type, charset_list;
4421 int ascii_compatible;
4422 int c;
4423 int preferred_charset_id = -1;
4424
4425 CODING_GET_INFO (coding, attrs, charset_list);
4426 eol_type = inhibit_eol_conversion ? Qunix : CODING_ID_EOL_TYPE (coding->id);
4427 if (VECTORP (eol_type))
4428 eol_type = Qunix;
4429
4430 setup_iso_safe_charsets (attrs);
4431 /* Charset list may have been changed. */
4432 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
4433 coding->safe_charsets = SDATA (CODING_ATTR_SAFE_CHARSETS (attrs));
4434
4435 ascii_compatible
4436 = (! NILP (CODING_ATTR_ASCII_COMPAT (attrs))
4437 && ! (CODING_ISO_FLAGS (coding) & (CODING_ISO_FLAG_DESIGNATION
4438 | CODING_ISO_FLAG_LOCKING_SHIFT)));
4439
4440 while (charbuf < charbuf_end)
4441 {
4442 ASSURE_DESTINATION (safe_room);
4443
4444 if (bol_designation)
4445 {
4446 /* We have to produce designation sequences if any now. */
4447 unsigned char desig_buf[16];
4448 int nbytes;
4449 EMACS_INT offset;
4450
4451 charset_map_loaded = 0;
4452 nbytes = encode_designation_at_bol (coding, charbuf, charbuf_end,
4453 desig_buf);
4454 if (charset_map_loaded
4455 && (offset = coding_set_destination (coding)))
4456 {
4457 dst += offset;
4458 dst_end += offset;
4459 }
4460 memcpy (dst, desig_buf, nbytes);
4461 dst += nbytes;
4462 /* We are sure that designation sequences are all ASCII bytes. */
4463 produced_chars += nbytes;
4464 bol_designation = 0;
4465 ASSURE_DESTINATION (safe_room);
4466 }
4467
4468 c = *charbuf++;
4469
4470 if (c < 0)
4471 {
4472 /* Handle an annotation. */
4473 switch (*charbuf)
4474 {
4475 case CODING_ANNOTATE_COMPOSITION_MASK:
4476 /* Not yet implemented. */
4477 break;
4478 case CODING_ANNOTATE_CHARSET_MASK:
4479 preferred_charset_id = charbuf[2];
4480 if (preferred_charset_id >= 0
4481 && NILP (Fmemq (make_number (preferred_charset_id),
4482 charset_list)))
4483 preferred_charset_id = -1;
4484 break;
4485 default:
4486 abort ();
4487 }
4488 charbuf += -c - 1;
4489 continue;
4490 }
4491
4492 /* Now encode the character C. */
4493 if (c < 0x20 || c == 0x7F)
4494 {
4495 if (c == '\n'
4496 || (c == '\r' && EQ (eol_type, Qmac)))
4497 {
4498 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_RESET_AT_EOL)
4499 ENCODE_RESET_PLANE_AND_REGISTER ();
4500 if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_INIT_AT_BOL)
4501 {
4502 int i;
4503
4504 for (i = 0; i < 4; i++)
4505 CODING_ISO_DESIGNATION (coding, i)
4506 = CODING_ISO_INITIAL (coding, i);
4507 }
4508 bol_designation
4509 = CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_DESIGNATE_AT_BOL;
4510 }
4511 else if (CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_RESET_AT_CNTL)
4512 ENCODE_RESET_PLANE_AND_REGISTER ();
4513 EMIT_ONE_ASCII_BYTE (c);
4514 }
4515 else if (ASCII_CHAR_P (c))
4516 {
4517 if (ascii_compatible)
4518 EMIT_ONE_ASCII_BYTE (c);
4519 else
4520 {
4521 struct charset *charset = CHARSET_FROM_ID (charset_ascii);
4522 ENCODE_ISO_CHARACTER (charset, c);
4523 }
4524 }
4525 else if (CHAR_BYTE8_P (c))
4526 {
4527 c = CHAR_TO_BYTE8 (c);
4528 EMIT_ONE_BYTE (c);
4529 }
4530 else
4531 {
4532 struct charset *charset;
4533
4534 if (preferred_charset_id >= 0)
4535 {
4536 int result;
4537
4538 charset = CHARSET_FROM_ID (preferred_charset_id);
4539 CODING_CHAR_CHARSET_P (coding, dst, dst_end, c, charset, result);
4540 if (! result)
4541 CODING_CHAR_CHARSET (coding, dst, dst_end, c, charset_list,
4542 NULL, charset);
4543 }
4544 else
4545 CODING_CHAR_CHARSET (coding, dst, dst_end, c, charset_list,
4546 NULL, charset);
4547 if (!charset)
4548 {
4549 if (coding->mode & CODING_MODE_SAFE_ENCODING)
4550 {
4551 c = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
4552 charset = CHARSET_FROM_ID (charset_ascii);
4553 }
4554 else
4555 {
4556 c = coding->default_char;
4557 CODING_CHAR_CHARSET (coding, dst, dst_end, c,
4558 charset_list, NULL, charset);
4559 }
4560 }
4561 ENCODE_ISO_CHARACTER (charset, c);
4562 }
4563 }
4564
4565 if (coding->mode & CODING_MODE_LAST_BLOCK
4566 && CODING_ISO_FLAGS (coding) & CODING_ISO_FLAG_RESET_AT_EOL)
4567 {
4568 ASSURE_DESTINATION (safe_room);
4569 ENCODE_RESET_PLANE_AND_REGISTER ();
4570 }
4571 record_conversion_result (coding, CODING_RESULT_SUCCESS);
4572 CODING_ISO_BOL (coding) = bol_designation;
4573 coding->produced_char += produced_chars;
4574 coding->produced = dst - coding->destination;
4575 return 0;
4576 }
4577
4578 \f
4579 /*** 8,9. SJIS and BIG5 handlers ***/
4580
4581 /* Although SJIS and BIG5 are not ISO's coding system, they are used
4582 quite widely. So, for the moment, Emacs supports them in the bare
4583 C code. But, in the future, they may be supported only by CCL. */
4584
4585 /* SJIS is a coding system encoding three character sets: ASCII, right
4586 half of JISX0201-Kana, and JISX0208. An ASCII character is encoded
4587 as is. A character of charset katakana-jisx0201 is encoded by
4588 "position-code + 0x80". A character of charset japanese-jisx0208
4589 is encoded in 2-byte but two position-codes are divided and shifted
4590 so that it fit in the range below.
4591
4592 --- CODE RANGE of SJIS ---
4593 (character set) (range)
4594 ASCII 0x00 .. 0x7F
4595 KATAKANA-JISX0201 0xA0 .. 0xDF
4596 JISX0208 (1st byte) 0x81 .. 0x9F and 0xE0 .. 0xEF
4597 (2nd byte) 0x40 .. 0x7E and 0x80 .. 0xFC
4598 -------------------------------
4599
4600 */
4601
4602 /* BIG5 is a coding system encoding two character sets: ASCII and
4603 Big5. An ASCII character is encoded as is. Big5 is a two-byte
4604 character set and is encoded in two-byte.
4605
4606 --- CODE RANGE of BIG5 ---
4607 (character set) (range)
4608 ASCII 0x00 .. 0x7F
4609 Big5 (1st byte) 0xA1 .. 0xFE
4610 (2nd byte) 0x40 .. 0x7E and 0xA1 .. 0xFE
4611 --------------------------
4612
4613 */
4614
4615 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
4616 Check if a text is encoded in SJIS. If it is, return
4617 CATEGORY_MASK_SJIS, else return 0. */
4618
4619 static int
4620 detect_coding_sjis (struct coding_system *coding,
4621 struct coding_detection_info *detect_info)
4622 {
4623 const unsigned char *src = coding->source, *src_base;
4624 const unsigned char *src_end = coding->source + coding->src_bytes;
4625 int multibytep = coding->src_multibyte;
4626 EMACS_INT consumed_chars = 0;
4627 int found = 0;
4628 int c;
4629 Lisp_Object attrs, charset_list;
4630 int max_first_byte_of_2_byte_code;
4631
4632 CODING_GET_INFO (coding, attrs, charset_list);
4633 max_first_byte_of_2_byte_code
4634 = (XINT (Flength (charset_list)) > 3 ? 0xFC : 0xEF);
4635
4636 detect_info->checked |= CATEGORY_MASK_SJIS;
4637 /* A coding system of this category is always ASCII compatible. */
4638 src += coding->head_ascii;
4639
4640 while (1)
4641 {
4642 src_base = src;
4643 ONE_MORE_BYTE (c);
4644 if (c < 0x80)
4645 continue;
4646 if ((c >= 0x81 && c <= 0x9F)
4647 || (c >= 0xE0 && c <= max_first_byte_of_2_byte_code))
4648 {
4649 ONE_MORE_BYTE (c);
4650 if (c < 0x40 || c == 0x7F || c > 0xFC)
4651 break;
4652 found = CATEGORY_MASK_SJIS;
4653 }
4654 else if (c >= 0xA0 && c < 0xE0)
4655 found = CATEGORY_MASK_SJIS;
4656 else
4657 break;
4658 }
4659 detect_info->rejected |= CATEGORY_MASK_SJIS;
4660 return 0;
4661
4662 no_more_source:
4663 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
4664 {
4665 detect_info->rejected |= CATEGORY_MASK_SJIS;
4666 return 0;
4667 }
4668 detect_info->found |= found;
4669 return 1;
4670 }
4671
4672 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
4673 Check if a text is encoded in BIG5. If it is, return
4674 CATEGORY_MASK_BIG5, else return 0. */
4675
4676 static int
4677 detect_coding_big5 (struct coding_system *coding,
4678 struct coding_detection_info *detect_info)
4679 {
4680 const unsigned char *src = coding->source, *src_base;
4681 const unsigned char *src_end = coding->source + coding->src_bytes;
4682 int multibytep = coding->src_multibyte;
4683 EMACS_INT consumed_chars = 0;
4684 int found = 0;
4685 int c;
4686
4687 detect_info->checked |= CATEGORY_MASK_BIG5;
4688 /* A coding system of this category is always ASCII compatible. */
4689 src += coding->head_ascii;
4690
4691 while (1)
4692 {
4693 src_base = src;
4694 ONE_MORE_BYTE (c);
4695 if (c < 0x80)
4696 continue;
4697 if (c >= 0xA1)
4698 {
4699 ONE_MORE_BYTE (c);
4700 if (c < 0x40 || (c >= 0x7F && c <= 0xA0))
4701 return 0;
4702 found = CATEGORY_MASK_BIG5;
4703 }
4704 else
4705 break;
4706 }
4707 detect_info->rejected |= CATEGORY_MASK_BIG5;
4708 return 0;
4709
4710 no_more_source:
4711 if (src_base < src && coding->mode & CODING_MODE_LAST_BLOCK)
4712 {
4713 detect_info->rejected |= CATEGORY_MASK_BIG5;
4714 return 0;
4715 }
4716 detect_info->found |= found;
4717 return 1;
4718 }
4719
4720 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".
4721 If SJIS_P is 1, decode SJIS text, else decode BIG5 test. */
4722
4723 static void
4724 decode_coding_sjis (struct coding_system *coding)
4725 {
4726 const unsigned char *src = coding->source + coding->consumed;
4727 const unsigned char *src_end = coding->source + coding->src_bytes;
4728 const unsigned char *src_base;
4729 int *charbuf = coding->charbuf + coding->charbuf_used;
4730 /* We may produce one charset annotation in one loop and one more at
4731 the end. */
4732 int *charbuf_end
4733 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 2);
4734 EMACS_INT consumed_chars = 0, consumed_chars_base;
4735 int multibytep = coding->src_multibyte;
4736 struct charset *charset_roman, *charset_kanji, *charset_kana;
4737 struct charset *charset_kanji2;
4738 Lisp_Object attrs, charset_list, val;
4739 EMACS_INT char_offset = coding->produced_char;
4740 EMACS_INT last_offset = char_offset;
4741 int last_id = charset_ascii;
4742 int eol_dos =
4743 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
4744 int byte_after_cr = -1;
4745
4746 CODING_GET_INFO (coding, attrs, charset_list);
4747
4748 val = charset_list;
4749 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4750 charset_kana = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4751 charset_kanji = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4752 charset_kanji2 = NILP (val) ? NULL : CHARSET_FROM_ID (XINT (XCAR (val)));
4753
4754 while (1)
4755 {
4756 int c, c1;
4757 struct charset *charset;
4758
4759 src_base = src;
4760 consumed_chars_base = consumed_chars;
4761
4762 if (charbuf >= charbuf_end)
4763 {
4764 if (byte_after_cr >= 0)
4765 src_base--;
4766 break;
4767 }
4768
4769 if (byte_after_cr >= 0)
4770 c = byte_after_cr, byte_after_cr = -1;
4771 else
4772 ONE_MORE_BYTE (c);
4773 if (c < 0)
4774 goto invalid_code;
4775 if (c < 0x80)
4776 {
4777 if (eol_dos && c == '\r')
4778 ONE_MORE_BYTE (byte_after_cr);
4779 charset = charset_roman;
4780 }
4781 else if (c == 0x80 || c == 0xA0)
4782 goto invalid_code;
4783 else if (c >= 0xA1 && c <= 0xDF)
4784 {
4785 /* SJIS -> JISX0201-Kana */
4786 c &= 0x7F;
4787 charset = charset_kana;
4788 }
4789 else if (c <= 0xEF)
4790 {
4791 /* SJIS -> JISX0208 */
4792 ONE_MORE_BYTE (c1);
4793 if (c1 < 0x40 || c1 == 0x7F || c1 > 0xFC)
4794 goto invalid_code;
4795 c = (c << 8) | c1;
4796 SJIS_TO_JIS (c);
4797 charset = charset_kanji;
4798 }
4799 else if (c <= 0xFC && charset_kanji2)
4800 {
4801 /* SJIS -> JISX0213-2 */
4802 ONE_MORE_BYTE (c1);
4803 if (c1 < 0x40 || c1 == 0x7F || c1 > 0xFC)
4804 goto invalid_code;
4805 c = (c << 8) | c1;
4806 SJIS_TO_JIS2 (c);
4807 charset = charset_kanji2;
4808 }
4809 else
4810 goto invalid_code;
4811 if (charset->id != charset_ascii
4812 && last_id != charset->id)
4813 {
4814 if (last_id != charset_ascii)
4815 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4816 last_id = charset->id;
4817 last_offset = char_offset;
4818 }
4819 CODING_DECODE_CHAR (coding, src, src_base, src_end, charset, c, c);
4820 *charbuf++ = c;
4821 char_offset++;
4822 continue;
4823
4824 invalid_code:
4825 src = src_base;
4826 consumed_chars = consumed_chars_base;
4827 ONE_MORE_BYTE (c);
4828 *charbuf++ = c < 0 ? -c : BYTE8_TO_CHAR (c);
4829 char_offset++;
4830 coding->errors++;
4831 }
4832
4833 no_more_source:
4834 if (last_id != charset_ascii)
4835 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4836 coding->consumed_char += consumed_chars_base;
4837 coding->consumed = src_base - coding->source;
4838 coding->charbuf_used = charbuf - coding->charbuf;
4839 }
4840
4841 static void
4842 decode_coding_big5 (struct coding_system *coding)
4843 {
4844 const unsigned char *src = coding->source + coding->consumed;
4845 const unsigned char *src_end = coding->source + coding->src_bytes;
4846 const unsigned char *src_base;
4847 int *charbuf = coding->charbuf + coding->charbuf_used;
4848 /* We may produce one charset annotation in one loop and one more at
4849 the end. */
4850 int *charbuf_end
4851 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 2);
4852 EMACS_INT consumed_chars = 0, consumed_chars_base;
4853 int multibytep = coding->src_multibyte;
4854 struct charset *charset_roman, *charset_big5;
4855 Lisp_Object attrs, charset_list, val;
4856 EMACS_INT char_offset = coding->produced_char;
4857 EMACS_INT last_offset = char_offset;
4858 int last_id = charset_ascii;
4859 int eol_dos =
4860 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
4861 int byte_after_cr = -1;
4862
4863 CODING_GET_INFO (coding, attrs, charset_list);
4864 val = charset_list;
4865 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4866 charset_big5 = CHARSET_FROM_ID (XINT (XCAR (val)));
4867
4868 while (1)
4869 {
4870 int c, c1;
4871 struct charset *charset;
4872
4873 src_base = src;
4874 consumed_chars_base = consumed_chars;
4875
4876 if (charbuf >= charbuf_end)
4877 {
4878 if (byte_after_cr >= 0)
4879 src_base--;
4880 break;
4881 }
4882
4883 if (byte_after_cr >= 0)
4884 c = byte_after_cr, byte_after_cr = -1;
4885 else
4886 ONE_MORE_BYTE (c);
4887
4888 if (c < 0)
4889 goto invalid_code;
4890 if (c < 0x80)
4891 {
4892 if (eol_dos && c == '\r')
4893 ONE_MORE_BYTE (byte_after_cr);
4894 charset = charset_roman;
4895 }
4896 else
4897 {
4898 /* BIG5 -> Big5 */
4899 if (c < 0xA1 || c > 0xFE)
4900 goto invalid_code;
4901 ONE_MORE_BYTE (c1);
4902 if (c1 < 0x40 || (c1 > 0x7E && c1 < 0xA1) || c1 > 0xFE)
4903 goto invalid_code;
4904 c = c << 8 | c1;
4905 charset = charset_big5;
4906 }
4907 if (charset->id != charset_ascii
4908 && last_id != charset->id)
4909 {
4910 if (last_id != charset_ascii)
4911 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4912 last_id = charset->id;
4913 last_offset = char_offset;
4914 }
4915 CODING_DECODE_CHAR (coding, src, src_base, src_end, charset, c, c);
4916 *charbuf++ = c;
4917 char_offset++;
4918 continue;
4919
4920 invalid_code:
4921 src = src_base;
4922 consumed_chars = consumed_chars_base;
4923 ONE_MORE_BYTE (c);
4924 *charbuf++ = c < 0 ? -c : BYTE8_TO_CHAR (c);
4925 char_offset++;
4926 coding->errors++;
4927 }
4928
4929 no_more_source:
4930 if (last_id != charset_ascii)
4931 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
4932 coding->consumed_char += consumed_chars_base;
4933 coding->consumed = src_base - coding->source;
4934 coding->charbuf_used = charbuf - coding->charbuf;
4935 }
4936
4937 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions".
4938 This function can encode charsets `ascii', `katakana-jisx0201',
4939 `japanese-jisx0208', `chinese-big5-1', and `chinese-big5-2'. We
4940 are sure that all these charsets are registered as official charset
4941 (i.e. do not have extended leading-codes). Characters of other
4942 charsets are produced without any encoding. If SJIS_P is 1, encode
4943 SJIS text, else encode BIG5 text. */
4944
4945 static int
4946 encode_coding_sjis (struct coding_system *coding)
4947 {
4948 int multibytep = coding->dst_multibyte;
4949 int *charbuf = coding->charbuf;
4950 int *charbuf_end = charbuf + coding->charbuf_used;
4951 unsigned char *dst = coding->destination + coding->produced;
4952 unsigned char *dst_end = coding->destination + coding->dst_bytes;
4953 int safe_room = 4;
4954 EMACS_INT produced_chars = 0;
4955 Lisp_Object attrs, charset_list, val;
4956 int ascii_compatible;
4957 struct charset *charset_kanji, *charset_kana;
4958 struct charset *charset_kanji2;
4959 int c;
4960
4961 CODING_GET_INFO (coding, attrs, charset_list);
4962 val = XCDR (charset_list);
4963 charset_kana = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4964 charset_kanji = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
4965 charset_kanji2 = NILP (val) ? NULL : CHARSET_FROM_ID (XINT (XCAR (val)));
4966
4967 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
4968
4969 while (charbuf < charbuf_end)
4970 {
4971 ASSURE_DESTINATION (safe_room);
4972 c = *charbuf++;
4973 /* Now encode the character C. */
4974 if (ASCII_CHAR_P (c) && ascii_compatible)
4975 EMIT_ONE_ASCII_BYTE (c);
4976 else if (CHAR_BYTE8_P (c))
4977 {
4978 c = CHAR_TO_BYTE8 (c);
4979 EMIT_ONE_BYTE (c);
4980 }
4981 else
4982 {
4983 unsigned code;
4984 struct charset *charset;
4985 CODING_CHAR_CHARSET (coding, dst, dst_end, c, charset_list,
4986 &code, charset);
4987
4988 if (!charset)
4989 {
4990 if (coding->mode & CODING_MODE_SAFE_ENCODING)
4991 {
4992 code = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
4993 charset = CHARSET_FROM_ID (charset_ascii);
4994 }
4995 else
4996 {
4997 c = coding->default_char;
4998 CODING_CHAR_CHARSET (coding, dst, dst_end, c,
4999 charset_list, &code, charset);
5000 }
5001 }
5002 if (code == CHARSET_INVALID_CODE (charset))
5003 abort ();
5004 if (charset == charset_kanji)
5005 {
5006 int c1, c2;
5007 JIS_TO_SJIS (code);
5008 c1 = code >> 8, c2 = code & 0xFF;
5009 EMIT_TWO_BYTES (c1, c2);
5010 }
5011 else if (charset == charset_kana)
5012 EMIT_ONE_BYTE (code | 0x80);
5013 else if (charset_kanji2 && charset == charset_kanji2)
5014 {
5015 int c1, c2;
5016
5017 c1 = code >> 8;
5018 if (c1 == 0x21 || (c1 >= 0x23 && c1 <= 0x25)
5019 || c1 == 0x28
5020 || (c1 >= 0x2C && c1 <= 0x2F) || c1 >= 0x6E)
5021 {
5022 JIS_TO_SJIS2 (code);
5023 c1 = code >> 8, c2 = code & 0xFF;
5024 EMIT_TWO_BYTES (c1, c2);
5025 }
5026 else
5027 EMIT_ONE_ASCII_BYTE (code & 0x7F);
5028 }
5029 else
5030 EMIT_ONE_ASCII_BYTE (code & 0x7F);
5031 }
5032 }
5033 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5034 coding->produced_char += produced_chars;
5035 coding->produced = dst - coding->destination;
5036 return 0;
5037 }
5038
5039 static int
5040 encode_coding_big5 (struct coding_system *coding)
5041 {
5042 int multibytep = coding->dst_multibyte;
5043 int *charbuf = coding->charbuf;
5044 int *charbuf_end = charbuf + coding->charbuf_used;
5045 unsigned char *dst = coding->destination + coding->produced;
5046 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5047 int safe_room = 4;
5048 EMACS_INT produced_chars = 0;
5049 Lisp_Object attrs, charset_list, val;
5050 int ascii_compatible;
5051 struct charset *charset_big5;
5052 int c;
5053
5054 CODING_GET_INFO (coding, attrs, charset_list);
5055 val = XCDR (charset_list);
5056 charset_big5 = CHARSET_FROM_ID (XINT (XCAR (val)));
5057 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
5058
5059 while (charbuf < charbuf_end)
5060 {
5061 ASSURE_DESTINATION (safe_room);
5062 c = *charbuf++;
5063 /* Now encode the character C. */
5064 if (ASCII_CHAR_P (c) && ascii_compatible)
5065 EMIT_ONE_ASCII_BYTE (c);
5066 else if (CHAR_BYTE8_P (c))
5067 {
5068 c = CHAR_TO_BYTE8 (c);
5069 EMIT_ONE_BYTE (c);
5070 }
5071 else
5072 {
5073 unsigned code;
5074 struct charset *charset;
5075 CODING_CHAR_CHARSET (coding, dst, dst_end, c, charset_list,
5076 &code, charset);
5077
5078 if (! charset)
5079 {
5080 if (coding->mode & CODING_MODE_SAFE_ENCODING)
5081 {
5082 code = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
5083 charset = CHARSET_FROM_ID (charset_ascii);
5084 }
5085 else
5086 {
5087 c = coding->default_char;
5088 CODING_CHAR_CHARSET (coding, dst, dst_end, c,
5089 charset_list, &code, charset);
5090 }
5091 }
5092 if (code == CHARSET_INVALID_CODE (charset))
5093 abort ();
5094 if (charset == charset_big5)
5095 {
5096 int c1, c2;
5097
5098 c1 = code >> 8, c2 = code & 0xFF;
5099 EMIT_TWO_BYTES (c1, c2);
5100 }
5101 else
5102 EMIT_ONE_ASCII_BYTE (code & 0x7F);
5103 }
5104 }
5105 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5106 coding->produced_char += produced_chars;
5107 coding->produced = dst - coding->destination;
5108 return 0;
5109 }
5110
5111 \f
5112 /*** 10. CCL handlers ***/
5113
5114 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
5115 Check if a text is encoded in a coding system of which
5116 encoder/decoder are written in CCL program. If it is, return
5117 CATEGORY_MASK_CCL, else return 0. */
5118
5119 static int
5120 detect_coding_ccl (struct coding_system *coding,
5121 struct coding_detection_info *detect_info)
5122 {
5123 const unsigned char *src = coding->source, *src_base;
5124 const unsigned char *src_end = coding->source + coding->src_bytes;
5125 int multibytep = coding->src_multibyte;
5126 EMACS_INT consumed_chars = 0;
5127 int found = 0;
5128 unsigned char *valids;
5129 EMACS_INT head_ascii = coding->head_ascii;
5130 Lisp_Object attrs;
5131
5132 detect_info->checked |= CATEGORY_MASK_CCL;
5133
5134 coding = &coding_categories[coding_category_ccl];
5135 valids = CODING_CCL_VALIDS (coding);
5136 attrs = CODING_ID_ATTRS (coding->id);
5137 if (! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
5138 src += head_ascii;
5139
5140 while (1)
5141 {
5142 int c;
5143
5144 src_base = src;
5145 ONE_MORE_BYTE (c);
5146 if (c < 0 || ! valids[c])
5147 break;
5148 if ((valids[c] > 1))
5149 found = CATEGORY_MASK_CCL;
5150 }
5151 detect_info->rejected |= CATEGORY_MASK_CCL;
5152 return 0;
5153
5154 no_more_source:
5155 detect_info->found |= found;
5156 return 1;
5157 }
5158
5159 static void
5160 decode_coding_ccl (struct coding_system *coding)
5161 {
5162 const unsigned char *src = coding->source + coding->consumed;
5163 const unsigned char *src_end = coding->source + coding->src_bytes;
5164 int *charbuf = coding->charbuf + coding->charbuf_used;
5165 int *charbuf_end = coding->charbuf + coding->charbuf_size;
5166 EMACS_INT consumed_chars = 0;
5167 int multibytep = coding->src_multibyte;
5168 struct ccl_program *ccl = &coding->spec.ccl->ccl;
5169 int source_charbuf[1024];
5170 int source_byteidx[1025];
5171 Lisp_Object attrs, charset_list;
5172
5173 CODING_GET_INFO (coding, attrs, charset_list);
5174
5175 while (1)
5176 {
5177 const unsigned char *p = src;
5178 int i = 0;
5179
5180 if (multibytep)
5181 {
5182 while (i < 1024 && p < src_end)
5183 {
5184 source_byteidx[i] = p - src;
5185 source_charbuf[i++] = STRING_CHAR_ADVANCE (p);
5186 }
5187 source_byteidx[i] = p - src;
5188 }
5189 else
5190 while (i < 1024 && p < src_end)
5191 source_charbuf[i++] = *p++;
5192
5193 if (p == src_end && coding->mode & CODING_MODE_LAST_BLOCK)
5194 ccl->last_block = 1;
5195 ccl_driver (ccl, source_charbuf, charbuf, i, charbuf_end - charbuf,
5196 charset_list);
5197 charbuf += ccl->produced;
5198 if (multibytep)
5199 src += source_byteidx[ccl->consumed];
5200 else
5201 src += ccl->consumed;
5202 consumed_chars += ccl->consumed;
5203 if (p == src_end || ccl->status != CCL_STAT_SUSPEND_BY_SRC)
5204 break;
5205 }
5206
5207 switch (ccl->status)
5208 {
5209 case CCL_STAT_SUSPEND_BY_SRC:
5210 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_SRC);
5211 break;
5212 case CCL_STAT_SUSPEND_BY_DST:
5213 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_DST);
5214 break;
5215 case CCL_STAT_QUIT:
5216 case CCL_STAT_INVALID_CMD:
5217 record_conversion_result (coding, CODING_RESULT_INTERRUPT);
5218 break;
5219 default:
5220 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5221 break;
5222 }
5223 coding->consumed_char += consumed_chars;
5224 coding->consumed = src - coding->source;
5225 coding->charbuf_used = charbuf - coding->charbuf;
5226 }
5227
5228 static int
5229 encode_coding_ccl (struct coding_system *coding)
5230 {
5231 struct ccl_program *ccl = &coding->spec.ccl->ccl;
5232 int multibytep = coding->dst_multibyte;
5233 int *charbuf = coding->charbuf;
5234 int *charbuf_end = charbuf + coding->charbuf_used;
5235 unsigned char *dst = coding->destination + coding->produced;
5236 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5237 int destination_charbuf[1024];
5238 EMACS_INT produced_chars = 0;
5239 int i;
5240 Lisp_Object attrs, charset_list;
5241
5242 CODING_GET_INFO (coding, attrs, charset_list);
5243 if (coding->consumed_char == coding->src_chars
5244 && coding->mode & CODING_MODE_LAST_BLOCK)
5245 ccl->last_block = 1;
5246
5247 while (charbuf < charbuf_end)
5248 {
5249 ccl_driver (ccl, charbuf, destination_charbuf,
5250 charbuf_end - charbuf, 1024, charset_list);
5251 if (multibytep)
5252 {
5253 ASSURE_DESTINATION (ccl->produced * 2);
5254 for (i = 0; i < ccl->produced; i++)
5255 EMIT_ONE_BYTE (destination_charbuf[i] & 0xFF);
5256 }
5257 else
5258 {
5259 ASSURE_DESTINATION (ccl->produced);
5260 for (i = 0; i < ccl->produced; i++)
5261 *dst++ = destination_charbuf[i] & 0xFF;
5262 produced_chars += ccl->produced;
5263 }
5264 charbuf += ccl->consumed;
5265 if (ccl->status == CCL_STAT_QUIT
5266 || ccl->status == CCL_STAT_INVALID_CMD)
5267 break;
5268 }
5269
5270 switch (ccl->status)
5271 {
5272 case CCL_STAT_SUSPEND_BY_SRC:
5273 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_SRC);
5274 break;
5275 case CCL_STAT_SUSPEND_BY_DST:
5276 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_DST);
5277 break;
5278 case CCL_STAT_QUIT:
5279 case CCL_STAT_INVALID_CMD:
5280 record_conversion_result (coding, CODING_RESULT_INTERRUPT);
5281 break;
5282 default:
5283 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5284 break;
5285 }
5286
5287 coding->produced_char += produced_chars;
5288 coding->produced = dst - coding->destination;
5289 return 0;
5290 }
5291
5292
5293 \f
5294 /*** 10, 11. no-conversion handlers ***/
5295
5296 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
5297
5298 static void
5299 decode_coding_raw_text (struct coding_system *coding)
5300 {
5301 int eol_dos =
5302 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
5303
5304 coding->chars_at_source = 1;
5305 coding->consumed_char = coding->src_chars;
5306 coding->consumed = coding->src_bytes;
5307 if (eol_dos && coding->source[coding->src_bytes - 1] == '\r')
5308 {
5309 coding->consumed_char--;
5310 coding->consumed--;
5311 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_SRC);
5312 }
5313 else
5314 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5315 }
5316
5317 static int
5318 encode_coding_raw_text (struct coding_system *coding)
5319 {
5320 int multibytep = coding->dst_multibyte;
5321 int *charbuf = coding->charbuf;
5322 int *charbuf_end = coding->charbuf + coding->charbuf_used;
5323 unsigned char *dst = coding->destination + coding->produced;
5324 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5325 EMACS_INT produced_chars = 0;
5326 int c;
5327
5328 if (multibytep)
5329 {
5330 int safe_room = MAX_MULTIBYTE_LENGTH * 2;
5331
5332 if (coding->src_multibyte)
5333 while (charbuf < charbuf_end)
5334 {
5335 ASSURE_DESTINATION (safe_room);
5336 c = *charbuf++;
5337 if (ASCII_CHAR_P (c))
5338 EMIT_ONE_ASCII_BYTE (c);
5339 else if (CHAR_BYTE8_P (c))
5340 {
5341 c = CHAR_TO_BYTE8 (c);
5342 EMIT_ONE_BYTE (c);
5343 }
5344 else
5345 {
5346 unsigned char str[MAX_MULTIBYTE_LENGTH], *p0 = str, *p1 = str;
5347
5348 CHAR_STRING_ADVANCE (c, p1);
5349 do
5350 {
5351 EMIT_ONE_BYTE (*p0);
5352 p0++;
5353 }
5354 while (p0 < p1);
5355 }
5356 }
5357 else
5358 while (charbuf < charbuf_end)
5359 {
5360 ASSURE_DESTINATION (safe_room);
5361 c = *charbuf++;
5362 EMIT_ONE_BYTE (c);
5363 }
5364 }
5365 else
5366 {
5367 if (coding->src_multibyte)
5368 {
5369 int safe_room = MAX_MULTIBYTE_LENGTH;
5370
5371 while (charbuf < charbuf_end)
5372 {
5373 ASSURE_DESTINATION (safe_room);
5374 c = *charbuf++;
5375 if (ASCII_CHAR_P (c))
5376 *dst++ = c;
5377 else if (CHAR_BYTE8_P (c))
5378 *dst++ = CHAR_TO_BYTE8 (c);
5379 else
5380 CHAR_STRING_ADVANCE (c, dst);
5381 }
5382 }
5383 else
5384 {
5385 ASSURE_DESTINATION (charbuf_end - charbuf);
5386 while (charbuf < charbuf_end && dst < dst_end)
5387 *dst++ = *charbuf++;
5388 }
5389 produced_chars = dst - (coding->destination + coding->produced);
5390 }
5391 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5392 coding->produced_char += produced_chars;
5393 coding->produced = dst - coding->destination;
5394 return 0;
5395 }
5396
5397 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
5398 Check if a text is encoded in a charset-based coding system. If it
5399 is, return 1, else return 0. */
5400
5401 static int
5402 detect_coding_charset (struct coding_system *coding,
5403 struct coding_detection_info *detect_info)
5404 {
5405 const unsigned char *src = coding->source, *src_base;
5406 const unsigned char *src_end = coding->source + coding->src_bytes;
5407 int multibytep = coding->src_multibyte;
5408 EMACS_INT consumed_chars = 0;
5409 Lisp_Object attrs, valids, name;
5410 int found = 0;
5411 EMACS_INT head_ascii = coding->head_ascii;
5412 int check_latin_extra = 0;
5413
5414 detect_info->checked |= CATEGORY_MASK_CHARSET;
5415
5416 coding = &coding_categories[coding_category_charset];
5417 attrs = CODING_ID_ATTRS (coding->id);
5418 valids = AREF (attrs, coding_attr_charset_valids);
5419 name = CODING_ID_NAME (coding->id);
5420 if (strncmp (SSDATA (SYMBOL_NAME (name)),
5421 "iso-8859-", sizeof ("iso-8859-") - 1) == 0
5422 || strncmp (SSDATA (SYMBOL_NAME (name)),
5423 "iso-latin-", sizeof ("iso-latin-") - 1) == 0)
5424 check_latin_extra = 1;
5425
5426 if (! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
5427 src += head_ascii;
5428
5429 while (1)
5430 {
5431 int c;
5432 Lisp_Object val;
5433 struct charset *charset;
5434 int dim, idx;
5435
5436 src_base = src;
5437 ONE_MORE_BYTE (c);
5438 if (c < 0)
5439 continue;
5440 val = AREF (valids, c);
5441 if (NILP (val))
5442 break;
5443 if (c >= 0x80)
5444 {
5445 if (c < 0xA0
5446 && check_latin_extra
5447 && (!VECTORP (Vlatin_extra_code_table)
5448 || NILP (XVECTOR (Vlatin_extra_code_table)->contents[c])))
5449 break;
5450 found = CATEGORY_MASK_CHARSET;
5451 }
5452 if (INTEGERP (val))
5453 {
5454 charset = CHARSET_FROM_ID (XFASTINT (val));
5455 dim = CHARSET_DIMENSION (charset);
5456 for (idx = 1; idx < dim; idx++)
5457 {
5458 if (src == src_end)
5459 goto too_short;
5460 ONE_MORE_BYTE (c);
5461 if (c < charset->code_space[(dim - 1 - idx) * 4]
5462 || c > charset->code_space[(dim - 1 - idx) * 4 + 1])
5463 break;
5464 }
5465 if (idx < dim)
5466 break;
5467 }
5468 else
5469 {
5470 idx = 1;
5471 for (; CONSP (val); val = XCDR (val))
5472 {
5473 charset = CHARSET_FROM_ID (XFASTINT (XCAR (val)));
5474 dim = CHARSET_DIMENSION (charset);
5475 while (idx < dim)
5476 {
5477 if (src == src_end)
5478 goto too_short;
5479 ONE_MORE_BYTE (c);
5480 if (c < charset->code_space[(dim - 1 - idx) * 4]
5481 || c > charset->code_space[(dim - 1 - idx) * 4 + 1])
5482 break;
5483 idx++;
5484 }
5485 if (idx == dim)
5486 {
5487 val = Qnil;
5488 break;
5489 }
5490 }
5491 if (CONSP (val))
5492 break;
5493 }
5494 }
5495 too_short:
5496 detect_info->rejected |= CATEGORY_MASK_CHARSET;
5497 return 0;
5498
5499 no_more_source:
5500 detect_info->found |= found;
5501 return 1;
5502 }
5503
5504 static void
5505 decode_coding_charset (struct coding_system *coding)
5506 {
5507 const unsigned char *src = coding->source + coding->consumed;
5508 const unsigned char *src_end = coding->source + coding->src_bytes;
5509 const unsigned char *src_base;
5510 int *charbuf = coding->charbuf + coding->charbuf_used;
5511 /* We may produce one charset annotation in one loop and one more at
5512 the end. */
5513 int *charbuf_end
5514 = coding->charbuf + coding->charbuf_size - (MAX_ANNOTATION_LENGTH * 2);
5515 EMACS_INT consumed_chars = 0, consumed_chars_base;
5516 int multibytep = coding->src_multibyte;
5517 Lisp_Object attrs = CODING_ID_ATTRS (coding->id);
5518 Lisp_Object valids;
5519 EMACS_INT char_offset = coding->produced_char;
5520 EMACS_INT last_offset = char_offset;
5521 int last_id = charset_ascii;
5522 int eol_dos =
5523 !inhibit_eol_conversion && EQ (CODING_ID_EOL_TYPE (coding->id), Qdos);
5524 int byte_after_cr = -1;
5525
5526 valids = AREF (attrs, coding_attr_charset_valids);
5527
5528 while (1)
5529 {
5530 int c;
5531 Lisp_Object val;
5532 struct charset *charset;
5533 int dim;
5534 int len = 1;
5535 unsigned code;
5536
5537 src_base = src;
5538 consumed_chars_base = consumed_chars;
5539
5540 if (charbuf >= charbuf_end)
5541 {
5542 if (byte_after_cr >= 0)
5543 src_base--;
5544 break;
5545 }
5546
5547 if (byte_after_cr >= 0)
5548 {
5549 c = byte_after_cr;
5550 byte_after_cr = -1;
5551 }
5552 else
5553 {
5554 ONE_MORE_BYTE (c);
5555 if (eol_dos && c == '\r')
5556 ONE_MORE_BYTE (byte_after_cr);
5557 }
5558 if (c < 0)
5559 goto invalid_code;
5560 code = c;
5561
5562 val = AREF (valids, c);
5563 if (! INTEGERP (val) && ! CONSP (val))
5564 goto invalid_code;
5565 if (INTEGERP (val))
5566 {
5567 charset = CHARSET_FROM_ID (XFASTINT (val));
5568 dim = CHARSET_DIMENSION (charset);
5569 while (len < dim)
5570 {
5571 ONE_MORE_BYTE (c);
5572 code = (code << 8) | c;
5573 len++;
5574 }
5575 CODING_DECODE_CHAR (coding, src, src_base, src_end,
5576 charset, code, c);
5577 }
5578 else
5579 {
5580 /* VAL is a list of charset IDs. It is assured that the
5581 list is sorted by charset dimensions (smaller one
5582 comes first). */
5583 while (CONSP (val))
5584 {
5585 charset = CHARSET_FROM_ID (XFASTINT (XCAR (val)));
5586 dim = CHARSET_DIMENSION (charset);
5587 while (len < dim)
5588 {
5589 ONE_MORE_BYTE (c);
5590 code = (code << 8) | c;
5591 len++;
5592 }
5593 CODING_DECODE_CHAR (coding, src, src_base,
5594 src_end, charset, code, c);
5595 if (c >= 0)
5596 break;
5597 val = XCDR (val);
5598 }
5599 }
5600 if (c < 0)
5601 goto invalid_code;
5602 if (charset->id != charset_ascii
5603 && last_id != charset->id)
5604 {
5605 if (last_id != charset_ascii)
5606 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
5607 last_id = charset->id;
5608 last_offset = char_offset;
5609 }
5610
5611 *charbuf++ = c;
5612 char_offset++;
5613 continue;
5614
5615 invalid_code:
5616 src = src_base;
5617 consumed_chars = consumed_chars_base;
5618 ONE_MORE_BYTE (c);
5619 *charbuf++ = c < 0 ? -c : ASCII_BYTE_P (c) ? c : BYTE8_TO_CHAR (c);
5620 char_offset++;
5621 coding->errors++;
5622 }
5623
5624 no_more_source:
5625 if (last_id != charset_ascii)
5626 ADD_CHARSET_DATA (charbuf, char_offset - last_offset, last_id);
5627 coding->consumed_char += consumed_chars_base;
5628 coding->consumed = src_base - coding->source;
5629 coding->charbuf_used = charbuf - coding->charbuf;
5630 }
5631
5632 static int
5633 encode_coding_charset (struct coding_system *coding)
5634 {
5635 int multibytep = coding->dst_multibyte;
5636 int *charbuf = coding->charbuf;
5637 int *charbuf_end = charbuf + coding->charbuf_used;
5638 unsigned char *dst = coding->destination + coding->produced;
5639 unsigned char *dst_end = coding->destination + coding->dst_bytes;
5640 int safe_room = MAX_MULTIBYTE_LENGTH;
5641 EMACS_INT produced_chars = 0;
5642 Lisp_Object attrs, charset_list;
5643 int ascii_compatible;
5644 int c;
5645
5646 CODING_GET_INFO (coding, attrs, charset_list);
5647 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
5648
5649 while (charbuf < charbuf_end)
5650 {
5651 struct charset *charset;
5652 unsigned code;
5653
5654 ASSURE_DESTINATION (safe_room);
5655 c = *charbuf++;
5656 if (ascii_compatible && ASCII_CHAR_P (c))
5657 EMIT_ONE_ASCII_BYTE (c);
5658 else if (CHAR_BYTE8_P (c))
5659 {
5660 c = CHAR_TO_BYTE8 (c);
5661 EMIT_ONE_BYTE (c);
5662 }
5663 else
5664 {
5665 CODING_CHAR_CHARSET (coding, dst, dst_end, c, charset_list,
5666 &code, charset);
5667
5668 if (charset)
5669 {
5670 if (CHARSET_DIMENSION (charset) == 1)
5671 EMIT_ONE_BYTE (code);
5672 else if (CHARSET_DIMENSION (charset) == 2)
5673 EMIT_TWO_BYTES (code >> 8, code & 0xFF);
5674 else if (CHARSET_DIMENSION (charset) == 3)
5675 EMIT_THREE_BYTES (code >> 16, (code >> 8) & 0xFF, code & 0xFF);
5676 else
5677 EMIT_FOUR_BYTES (code >> 24, (code >> 16) & 0xFF,
5678 (code >> 8) & 0xFF, code & 0xFF);
5679 }
5680 else
5681 {
5682 if (coding->mode & CODING_MODE_SAFE_ENCODING)
5683 c = CODING_INHIBIT_CHARACTER_SUBSTITUTION;
5684 else
5685 c = coding->default_char;
5686 EMIT_ONE_BYTE (c);
5687 }
5688 }
5689 }
5690
5691 record_conversion_result (coding, CODING_RESULT_SUCCESS);
5692 coding->produced_char += produced_chars;
5693 coding->produced = dst - coding->destination;
5694 return 0;
5695 }
5696
5697 \f
5698 /*** 7. C library functions ***/
5699
5700 /* Setup coding context CODING from information about CODING_SYSTEM.
5701 If CODING_SYSTEM is nil, `no-conversion' is assumed. If
5702 CODING_SYSTEM is invalid, signal an error. */
5703
5704 void
5705 setup_coding_system (Lisp_Object coding_system, struct coding_system *coding)
5706 {
5707 Lisp_Object attrs;
5708 Lisp_Object eol_type;
5709 Lisp_Object coding_type;
5710 Lisp_Object val;
5711
5712 if (NILP (coding_system))
5713 coding_system = Qundecided;
5714
5715 CHECK_CODING_SYSTEM_GET_ID (coding_system, coding->id);
5716
5717 attrs = CODING_ID_ATTRS (coding->id);
5718 eol_type = inhibit_eol_conversion ? Qunix : CODING_ID_EOL_TYPE (coding->id);
5719
5720 coding->mode = 0;
5721 coding->head_ascii = -1;
5722 if (VECTORP (eol_type))
5723 coding->common_flags = (CODING_REQUIRE_DECODING_MASK
5724 | CODING_REQUIRE_DETECTION_MASK);
5725 else if (! EQ (eol_type, Qunix))
5726 coding->common_flags = (CODING_REQUIRE_DECODING_MASK
5727 | CODING_REQUIRE_ENCODING_MASK);
5728 else
5729 coding->common_flags = 0;
5730 if (! NILP (CODING_ATTR_POST_READ (attrs)))
5731 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
5732 if (! NILP (CODING_ATTR_PRE_WRITE (attrs)))
5733 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
5734 if (! NILP (CODING_ATTR_FOR_UNIBYTE (attrs)))
5735 coding->common_flags |= CODING_FOR_UNIBYTE_MASK;
5736
5737 val = CODING_ATTR_SAFE_CHARSETS (attrs);
5738 coding->max_charset_id = SCHARS (val) - 1;
5739 coding->safe_charsets = SDATA (val);
5740 coding->default_char = XINT (CODING_ATTR_DEFAULT_CHAR (attrs));
5741 coding->carryover_bytes = 0;
5742
5743 coding_type = CODING_ATTR_TYPE (attrs);
5744 if (EQ (coding_type, Qundecided))
5745 {
5746 coding->detector = NULL;
5747 coding->decoder = decode_coding_raw_text;
5748 coding->encoder = encode_coding_raw_text;
5749 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
5750 }
5751 else if (EQ (coding_type, Qiso_2022))
5752 {
5753 int i;
5754 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
5755
5756 /* Invoke graphic register 0 to plane 0. */
5757 CODING_ISO_INVOCATION (coding, 0) = 0;
5758 /* Invoke graphic register 1 to plane 1 if we can use 8-bit. */
5759 CODING_ISO_INVOCATION (coding, 1)
5760 = (flags & CODING_ISO_FLAG_SEVEN_BITS ? -1 : 1);
5761 /* Setup the initial status of designation. */
5762 for (i = 0; i < 4; i++)
5763 CODING_ISO_DESIGNATION (coding, i) = CODING_ISO_INITIAL (coding, i);
5764 /* Not single shifting initially. */
5765 CODING_ISO_SINGLE_SHIFTING (coding) = 0;
5766 /* Beginning of buffer should also be regarded as bol. */
5767 CODING_ISO_BOL (coding) = 1;
5768 coding->detector = detect_coding_iso_2022;
5769 coding->decoder = decode_coding_iso_2022;
5770 coding->encoder = encode_coding_iso_2022;
5771 if (flags & CODING_ISO_FLAG_SAFE)
5772 coding->mode |= CODING_MODE_SAFE_ENCODING;
5773 coding->common_flags
5774 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK
5775 | CODING_REQUIRE_FLUSHING_MASK);
5776 if (flags & CODING_ISO_FLAG_COMPOSITION)
5777 coding->common_flags |= CODING_ANNOTATE_COMPOSITION_MASK;
5778 if (flags & CODING_ISO_FLAG_DESIGNATION)
5779 coding->common_flags |= CODING_ANNOTATE_CHARSET_MASK;
5780 if (flags & CODING_ISO_FLAG_FULL_SUPPORT)
5781 {
5782 setup_iso_safe_charsets (attrs);
5783 val = CODING_ATTR_SAFE_CHARSETS (attrs);
5784 coding->max_charset_id = SCHARS (val) - 1;
5785 coding->safe_charsets = SDATA (val);
5786 }
5787 CODING_ISO_FLAGS (coding) = flags;
5788 CODING_ISO_CMP_STATUS (coding)->state = COMPOSING_NO;
5789 CODING_ISO_CMP_STATUS (coding)->method = COMPOSITION_NO;
5790 CODING_ISO_EXTSEGMENT_LEN (coding) = 0;
5791 CODING_ISO_EMBEDDED_UTF_8 (coding) = 0;
5792 }
5793 else if (EQ (coding_type, Qcharset))
5794 {
5795 coding->detector = detect_coding_charset;
5796 coding->decoder = decode_coding_charset;
5797 coding->encoder = encode_coding_charset;
5798 coding->common_flags
5799 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5800 }
5801 else if (EQ (coding_type, Qutf_8))
5802 {
5803 val = AREF (attrs, coding_attr_utf_bom);
5804 CODING_UTF_8_BOM (coding) = (CONSP (val) ? utf_detect_bom
5805 : EQ (val, Qt) ? utf_with_bom
5806 : utf_without_bom);
5807 coding->detector = detect_coding_utf_8;
5808 coding->decoder = decode_coding_utf_8;
5809 coding->encoder = encode_coding_utf_8;
5810 coding->common_flags
5811 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5812 if (CODING_UTF_8_BOM (coding) == utf_detect_bom)
5813 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
5814 }
5815 else if (EQ (coding_type, Qutf_16))
5816 {
5817 val = AREF (attrs, coding_attr_utf_bom);
5818 CODING_UTF_16_BOM (coding) = (CONSP (val) ? utf_detect_bom
5819 : EQ (val, Qt) ? utf_with_bom
5820 : utf_without_bom);
5821 val = AREF (attrs, coding_attr_utf_16_endian);
5822 CODING_UTF_16_ENDIAN (coding) = (EQ (val, Qbig) ? utf_16_big_endian
5823 : utf_16_little_endian);
5824 CODING_UTF_16_SURROGATE (coding) = 0;
5825 coding->detector = detect_coding_utf_16;
5826 coding->decoder = decode_coding_utf_16;
5827 coding->encoder = encode_coding_utf_16;
5828 coding->common_flags
5829 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5830 if (CODING_UTF_16_BOM (coding) == utf_detect_bom)
5831 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
5832 }
5833 else if (EQ (coding_type, Qccl))
5834 {
5835 coding->detector = detect_coding_ccl;
5836 coding->decoder = decode_coding_ccl;
5837 coding->encoder = encode_coding_ccl;
5838 coding->common_flags
5839 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK
5840 | CODING_REQUIRE_FLUSHING_MASK);
5841 }
5842 else if (EQ (coding_type, Qemacs_mule))
5843 {
5844 coding->detector = detect_coding_emacs_mule;
5845 coding->decoder = decode_coding_emacs_mule;
5846 coding->encoder = encode_coding_emacs_mule;
5847 coding->common_flags
5848 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5849 coding->spec.emacs_mule.full_support = 1;
5850 if (! NILP (AREF (attrs, coding_attr_emacs_mule_full))
5851 && ! EQ (CODING_ATTR_CHARSET_LIST (attrs), Vemacs_mule_charset_list))
5852 {
5853 Lisp_Object tail, safe_charsets;
5854 int max_charset_id = 0;
5855
5856 for (tail = Vemacs_mule_charset_list; CONSP (tail);
5857 tail = XCDR (tail))
5858 if (max_charset_id < XFASTINT (XCAR (tail)))
5859 max_charset_id = XFASTINT (XCAR (tail));
5860 safe_charsets = make_uninit_string (max_charset_id + 1);
5861 memset (SDATA (safe_charsets), 255, max_charset_id + 1);
5862 for (tail = Vemacs_mule_charset_list; CONSP (tail);
5863 tail = XCDR (tail))
5864 SSET (safe_charsets, XFASTINT (XCAR (tail)), 0);
5865 coding->max_charset_id = max_charset_id;
5866 coding->safe_charsets = SDATA (safe_charsets);
5867 coding->spec.emacs_mule.full_support = 1;
5868 }
5869 coding->spec.emacs_mule.cmp_status.state = COMPOSING_NO;
5870 coding->spec.emacs_mule.cmp_status.method = COMPOSITION_NO;
5871 }
5872 else if (EQ (coding_type, Qshift_jis))
5873 {
5874 coding->detector = detect_coding_sjis;
5875 coding->decoder = decode_coding_sjis;
5876 coding->encoder = encode_coding_sjis;
5877 coding->common_flags
5878 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5879 }
5880 else if (EQ (coding_type, Qbig5))
5881 {
5882 coding->detector = detect_coding_big5;
5883 coding->decoder = decode_coding_big5;
5884 coding->encoder = encode_coding_big5;
5885 coding->common_flags
5886 |= (CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK);
5887 }
5888 else /* EQ (coding_type, Qraw_text) */
5889 {
5890 coding->detector = NULL;
5891 coding->decoder = decode_coding_raw_text;
5892 coding->encoder = encode_coding_raw_text;
5893 if (! EQ (eol_type, Qunix))
5894 {
5895 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
5896 if (! VECTORP (eol_type))
5897 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
5898 }
5899
5900 }
5901
5902 return;
5903 }
5904
5905 /* Return a list of charsets supported by CODING. */
5906
5907 Lisp_Object
5908 coding_charset_list (struct coding_system *coding)
5909 {
5910 Lisp_Object attrs, charset_list;
5911
5912 CODING_GET_INFO (coding, attrs, charset_list);
5913 if (EQ (CODING_ATTR_TYPE (attrs), Qiso_2022))
5914 {
5915 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
5916
5917 if (flags & CODING_ISO_FLAG_FULL_SUPPORT)
5918 charset_list = Viso_2022_charset_list;
5919 }
5920 else if (EQ (CODING_ATTR_TYPE (attrs), Qemacs_mule))
5921 {
5922 charset_list = Vemacs_mule_charset_list;
5923 }
5924 return charset_list;
5925 }
5926
5927
5928 /* Return a list of charsets supported by CODING-SYSTEM. */
5929
5930 Lisp_Object
5931 coding_system_charset_list (Lisp_Object coding_system)
5932 {
5933 ptrdiff_t id;
5934 Lisp_Object attrs, charset_list;
5935
5936 CHECK_CODING_SYSTEM_GET_ID (coding_system, id);
5937 attrs = CODING_ID_ATTRS (id);
5938
5939 if (EQ (CODING_ATTR_TYPE (attrs), Qiso_2022))
5940 {
5941 int flags = XINT (AREF (attrs, coding_attr_iso_flags));
5942
5943 if (flags & CODING_ISO_FLAG_FULL_SUPPORT)
5944 charset_list = Viso_2022_charset_list;
5945 else
5946 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
5947 }
5948 else if (EQ (CODING_ATTR_TYPE (attrs), Qemacs_mule))
5949 {
5950 charset_list = Vemacs_mule_charset_list;
5951 }
5952 else
5953 {
5954 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
5955 }
5956 return charset_list;
5957 }
5958
5959
5960 /* Return raw-text or one of its subsidiaries that has the same
5961 eol_type as CODING-SYSTEM. */
5962
5963 Lisp_Object
5964 raw_text_coding_system (Lisp_Object coding_system)
5965 {
5966 Lisp_Object spec, attrs;
5967 Lisp_Object eol_type, raw_text_eol_type;
5968
5969 if (NILP (coding_system))
5970 return Qraw_text;
5971 spec = CODING_SYSTEM_SPEC (coding_system);
5972 attrs = AREF (spec, 0);
5973
5974 if (EQ (CODING_ATTR_TYPE (attrs), Qraw_text))
5975 return coding_system;
5976
5977 eol_type = AREF (spec, 2);
5978 if (VECTORP (eol_type))
5979 return Qraw_text;
5980 spec = CODING_SYSTEM_SPEC (Qraw_text);
5981 raw_text_eol_type = AREF (spec, 2);
5982 return (EQ (eol_type, Qunix) ? AREF (raw_text_eol_type, 0)
5983 : EQ (eol_type, Qdos) ? AREF (raw_text_eol_type, 1)
5984 : AREF (raw_text_eol_type, 2));
5985 }
5986
5987
5988 /* If CODING_SYSTEM doesn't specify end-of-line format, return one of
5989 the subsidiary that has the same eol-spec as PARENT (if it is not
5990 nil and specifies end-of-line format) or the system's setting
5991 (system_eol_type). */
5992
5993 Lisp_Object
5994 coding_inherit_eol_type (Lisp_Object coding_system, Lisp_Object parent)
5995 {
5996 Lisp_Object spec, eol_type;
5997
5998 if (NILP (coding_system))
5999 coding_system = Qraw_text;
6000 spec = CODING_SYSTEM_SPEC (coding_system);
6001 eol_type = AREF (spec, 2);
6002 if (VECTORP (eol_type))
6003 {
6004 Lisp_Object parent_eol_type;
6005
6006 if (! NILP (parent))
6007 {
6008 Lisp_Object parent_spec;
6009
6010 parent_spec = CODING_SYSTEM_SPEC (parent);
6011 parent_eol_type = AREF (parent_spec, 2);
6012 if (VECTORP (parent_eol_type))
6013 parent_eol_type = system_eol_type;
6014 }
6015 else
6016 parent_eol_type = system_eol_type;
6017 if (EQ (parent_eol_type, Qunix))
6018 coding_system = AREF (eol_type, 0);
6019 else if (EQ (parent_eol_type, Qdos))
6020 coding_system = AREF (eol_type, 1);
6021 else if (EQ (parent_eol_type, Qmac))
6022 coding_system = AREF (eol_type, 2);
6023 }
6024 return coding_system;
6025 }
6026
6027
6028 /* Check if text-conversion and eol-conversion of CODING_SYSTEM are
6029 decided for writing to a process. If not, complement them, and
6030 return a new coding system. */
6031
6032 Lisp_Object
6033 complement_process_encoding_system (Lisp_Object coding_system)
6034 {
6035 Lisp_Object coding_base = Qnil, eol_base = Qnil;
6036 Lisp_Object spec, attrs;
6037 int i;
6038
6039 for (i = 0; i < 3; i++)
6040 {
6041 if (i == 1)
6042 coding_system = CDR_SAFE (Vdefault_process_coding_system);
6043 else if (i == 2)
6044 coding_system = preferred_coding_system ();
6045 spec = CODING_SYSTEM_SPEC (coding_system);
6046 if (NILP (spec))
6047 continue;
6048 attrs = AREF (spec, 0);
6049 if (NILP (coding_base) && ! EQ (CODING_ATTR_TYPE (attrs), Qundecided))
6050 coding_base = CODING_ATTR_BASE_NAME (attrs);
6051 if (NILP (eol_base) && ! VECTORP (AREF (spec, 2)))
6052 eol_base = coding_system;
6053 if (! NILP (coding_base) && ! NILP (eol_base))
6054 break;
6055 }
6056
6057 if (i > 0)
6058 /* The original CODING_SYSTEM didn't specify text-conversion or
6059 eol-conversion. Be sure that we return a fully complemented
6060 coding system. */
6061 coding_system = coding_inherit_eol_type (coding_base, eol_base);
6062 return coding_system;
6063 }
6064
6065
6066 /* Emacs has a mechanism to automatically detect a coding system if it
6067 is one of Emacs' internal format, ISO2022, SJIS, and BIG5. But,
6068 it's impossible to distinguish some coding systems accurately
6069 because they use the same range of codes. So, at first, coding
6070 systems are categorized into 7, those are:
6071
6072 o coding-category-emacs-mule
6073
6074 The category for a coding system which has the same code range
6075 as Emacs' internal format. Assigned the coding-system (Lisp
6076 symbol) `emacs-mule' by default.
6077
6078 o coding-category-sjis
6079
6080 The category for a coding system which has the same code range
6081 as SJIS. Assigned the coding-system (Lisp
6082 symbol) `japanese-shift-jis' by default.
6083
6084 o coding-category-iso-7
6085
6086 The category for a coding system which has the same code range
6087 as ISO2022 of 7-bit environment. This doesn't use any locking
6088 shift and single shift functions. This can encode/decode all
6089 charsets. Assigned the coding-system (Lisp symbol)
6090 `iso-2022-7bit' by default.
6091
6092 o coding-category-iso-7-tight
6093
6094 Same as coding-category-iso-7 except that this can
6095 encode/decode only the specified charsets.
6096
6097 o coding-category-iso-8-1
6098
6099 The category for a coding system which has the same code range
6100 as ISO2022 of 8-bit environment and graphic plane 1 used only
6101 for DIMENSION1 charset. This doesn't use any locking shift
6102 and single shift functions. Assigned the coding-system (Lisp
6103 symbol) `iso-latin-1' by default.
6104
6105 o coding-category-iso-8-2
6106
6107 The category for a coding system which has the same code range
6108 as ISO2022 of 8-bit environment and graphic plane 1 used only
6109 for DIMENSION2 charset. This doesn't use any locking shift
6110 and single shift functions. Assigned the coding-system (Lisp
6111 symbol) `japanese-iso-8bit' by default.
6112
6113 o coding-category-iso-7-else
6114
6115 The category for a coding system which has the same code range
6116 as ISO2022 of 7-bit environment but uses locking shift or
6117 single shift functions. Assigned the coding-system (Lisp
6118 symbol) `iso-2022-7bit-lock' by default.
6119
6120 o coding-category-iso-8-else
6121
6122 The category for a coding system which has the same code range
6123 as ISO2022 of 8-bit environment but uses locking shift or
6124 single shift functions. Assigned the coding-system (Lisp
6125 symbol) `iso-2022-8bit-ss2' by default.
6126
6127 o coding-category-big5
6128
6129 The category for a coding system which has the same code range
6130 as BIG5. Assigned the coding-system (Lisp symbol)
6131 `cn-big5' by default.
6132
6133 o coding-category-utf-8
6134
6135 The category for a coding system which has the same code range
6136 as UTF-8 (cf. RFC3629). Assigned the coding-system (Lisp
6137 symbol) `utf-8' by default.
6138
6139 o coding-category-utf-16-be
6140
6141 The category for a coding system in which a text has an
6142 Unicode signature (cf. Unicode Standard) in the order of BIG
6143 endian at the head. Assigned the coding-system (Lisp symbol)
6144 `utf-16-be' by default.
6145
6146 o coding-category-utf-16-le
6147
6148 The category for a coding system in which a text has an
6149 Unicode signature (cf. Unicode Standard) in the order of
6150 LITTLE endian at the head. Assigned the coding-system (Lisp
6151 symbol) `utf-16-le' by default.
6152
6153 o coding-category-ccl
6154
6155 The category for a coding system of which encoder/decoder is
6156 written in CCL programs. The default value is nil, i.e., no
6157 coding system is assigned.
6158
6159 o coding-category-binary
6160
6161 The category for a coding system not categorized in any of the
6162 above. Assigned the coding-system (Lisp symbol)
6163 `no-conversion' by default.
6164
6165 Each of them is a Lisp symbol and the value is an actual
6166 `coding-system's (this is also a Lisp symbol) assigned by a user.
6167 What Emacs does actually is to detect a category of coding system.
6168 Then, it uses a `coding-system' assigned to it. If Emacs can't
6169 decide only one possible category, it selects a category of the
6170 highest priority. Priorities of categories are also specified by a
6171 user in a Lisp variable `coding-category-list'.
6172
6173 */
6174
6175 #define EOL_SEEN_NONE 0
6176 #define EOL_SEEN_LF 1
6177 #define EOL_SEEN_CR 2
6178 #define EOL_SEEN_CRLF 4
6179
6180 /* Detect how end-of-line of a text of length SRC_BYTES pointed by
6181 SOURCE is encoded. If CATEGORY is one of
6182 coding_category_utf_16_XXXX, assume that CR and LF are encoded by
6183 two-byte, else they are encoded by one-byte.
6184
6185 Return one of EOL_SEEN_XXX. */
6186
6187 #define MAX_EOL_CHECK_COUNT 3
6188
6189 static int
6190 detect_eol (const unsigned char *source, EMACS_INT src_bytes,
6191 enum coding_category category)
6192 {
6193 const unsigned char *src = source, *src_end = src + src_bytes;
6194 unsigned char c;
6195 int total = 0;
6196 int eol_seen = EOL_SEEN_NONE;
6197
6198 if ((1 << category) & CATEGORY_MASK_UTF_16)
6199 {
6200 int msb, lsb;
6201
6202 msb = category == (coding_category_utf_16_le
6203 | coding_category_utf_16_le_nosig);
6204 lsb = 1 - msb;
6205
6206 while (src + 1 < src_end)
6207 {
6208 c = src[lsb];
6209 if (src[msb] == 0 && (c == '\n' || c == '\r'))
6210 {
6211 int this_eol;
6212
6213 if (c == '\n')
6214 this_eol = EOL_SEEN_LF;
6215 else if (src + 3 >= src_end
6216 || src[msb + 2] != 0
6217 || src[lsb + 2] != '\n')
6218 this_eol = EOL_SEEN_CR;
6219 else
6220 {
6221 this_eol = EOL_SEEN_CRLF;
6222 src += 2;
6223 }
6224
6225 if (eol_seen == EOL_SEEN_NONE)
6226 /* This is the first end-of-line. */
6227 eol_seen = this_eol;
6228 else if (eol_seen != this_eol)
6229 {
6230 /* The found type is different from what found before.
6231 Allow for stray ^M characters in DOS EOL files. */
6232 if ((eol_seen == EOL_SEEN_CR && this_eol == EOL_SEEN_CRLF)
6233 || (eol_seen == EOL_SEEN_CRLF
6234 && this_eol == EOL_SEEN_CR))
6235 eol_seen = EOL_SEEN_CRLF;
6236 else
6237 {
6238 eol_seen = EOL_SEEN_LF;
6239 break;
6240 }
6241 }
6242 if (++total == MAX_EOL_CHECK_COUNT)
6243 break;
6244 }
6245 src += 2;
6246 }
6247 }
6248 else
6249 while (src < src_end)
6250 {
6251 c = *src++;
6252 if (c == '\n' || c == '\r')
6253 {
6254 int this_eol;
6255
6256 if (c == '\n')
6257 this_eol = EOL_SEEN_LF;
6258 else if (src >= src_end || *src != '\n')
6259 this_eol = EOL_SEEN_CR;
6260 else
6261 this_eol = EOL_SEEN_CRLF, src++;
6262
6263 if (eol_seen == EOL_SEEN_NONE)
6264 /* This is the first end-of-line. */
6265 eol_seen = this_eol;
6266 else if (eol_seen != this_eol)
6267 {
6268 /* The found type is different from what found before.
6269 Allow for stray ^M characters in DOS EOL files. */
6270 if ((eol_seen == EOL_SEEN_CR && this_eol == EOL_SEEN_CRLF)
6271 || (eol_seen == EOL_SEEN_CRLF && this_eol == EOL_SEEN_CR))
6272 eol_seen = EOL_SEEN_CRLF;
6273 else
6274 {
6275 eol_seen = EOL_SEEN_LF;
6276 break;
6277 }
6278 }
6279 if (++total == MAX_EOL_CHECK_COUNT)
6280 break;
6281 }
6282 }
6283 return eol_seen;
6284 }
6285
6286
6287 static Lisp_Object
6288 adjust_coding_eol_type (struct coding_system *coding, int eol_seen)
6289 {
6290 Lisp_Object eol_type;
6291
6292 eol_type = CODING_ID_EOL_TYPE (coding->id);
6293 if (eol_seen & EOL_SEEN_LF)
6294 {
6295 coding->id = CODING_SYSTEM_ID (AREF (eol_type, 0));
6296 eol_type = Qunix;
6297 }
6298 else if (eol_seen & EOL_SEEN_CRLF)
6299 {
6300 coding->id = CODING_SYSTEM_ID (AREF (eol_type, 1));
6301 eol_type = Qdos;
6302 }
6303 else if (eol_seen & EOL_SEEN_CR)
6304 {
6305 coding->id = CODING_SYSTEM_ID (AREF (eol_type, 2));
6306 eol_type = Qmac;
6307 }
6308 return eol_type;
6309 }
6310
6311 /* Detect how a text specified in CODING is encoded. If a coding
6312 system is detected, update fields of CODING by the detected coding
6313 system. */
6314
6315 static void
6316 detect_coding (struct coding_system *coding)
6317 {
6318 const unsigned char *src, *src_end;
6319 int saved_mode = coding->mode;
6320
6321 coding->consumed = coding->consumed_char = 0;
6322 coding->produced = coding->produced_char = 0;
6323 coding_set_source (coding);
6324
6325 src_end = coding->source + coding->src_bytes;
6326 coding->head_ascii = 0;
6327
6328 /* If we have not yet decided the text encoding type, detect it
6329 now. */
6330 if (EQ (CODING_ATTR_TYPE (CODING_ID_ATTRS (coding->id)), Qundecided))
6331 {
6332 int c, i;
6333 struct coding_detection_info detect_info;
6334 int null_byte_found = 0, eight_bit_found = 0;
6335
6336 detect_info.checked = detect_info.found = detect_info.rejected = 0;
6337 for (src = coding->source; src < src_end; src++)
6338 {
6339 c = *src;
6340 if (c & 0x80)
6341 {
6342 eight_bit_found = 1;
6343 if (null_byte_found)
6344 break;
6345 }
6346 else if (c < 0x20)
6347 {
6348 if ((c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
6349 && ! inhibit_iso_escape_detection
6350 && ! detect_info.checked)
6351 {
6352 if (detect_coding_iso_2022 (coding, &detect_info))
6353 {
6354 /* We have scanned the whole data. */
6355 if (! (detect_info.rejected & CATEGORY_MASK_ISO_7_ELSE))
6356 {
6357 /* We didn't find an 8-bit code. We may
6358 have found a null-byte, but it's very
6359 rare that a binary file conforms to
6360 ISO-2022. */
6361 src = src_end;
6362 coding->head_ascii = src - coding->source;
6363 }
6364 detect_info.rejected |= ~CATEGORY_MASK_ISO_ESCAPE;
6365 break;
6366 }
6367 }
6368 else if (! c && !inhibit_null_byte_detection)
6369 {
6370 null_byte_found = 1;
6371 if (eight_bit_found)
6372 break;
6373 }
6374 if (! eight_bit_found)
6375 coding->head_ascii++;
6376 }
6377 else if (! eight_bit_found)
6378 coding->head_ascii++;
6379 }
6380
6381 if (null_byte_found || eight_bit_found
6382 || coding->head_ascii < coding->src_bytes
6383 || detect_info.found)
6384 {
6385 enum coding_category category;
6386 struct coding_system *this;
6387
6388 if (coding->head_ascii == coding->src_bytes)
6389 /* As all bytes are 7-bit, we can ignore non-ISO-2022 codings. */
6390 for (i = 0; i < coding_category_raw_text; i++)
6391 {
6392 category = coding_priorities[i];
6393 this = coding_categories + category;
6394 if (detect_info.found & (1 << category))
6395 break;
6396 }
6397 else
6398 {
6399 if (null_byte_found)
6400 {
6401 detect_info.checked |= ~CATEGORY_MASK_UTF_16;
6402 detect_info.rejected |= ~CATEGORY_MASK_UTF_16;
6403 }
6404 for (i = 0; i < coding_category_raw_text; i++)
6405 {
6406 category = coding_priorities[i];
6407 this = coding_categories + category;
6408 if (this->id < 0)
6409 {
6410 /* No coding system of this category is defined. */
6411 detect_info.rejected |= (1 << category);
6412 }
6413 else if (category >= coding_category_raw_text)
6414 continue;
6415 else if (detect_info.checked & (1 << category))
6416 {
6417 if (detect_info.found & (1 << category))
6418 break;
6419 }
6420 else if ((*(this->detector)) (coding, &detect_info)
6421 && detect_info.found & (1 << category))
6422 {
6423 if (category == coding_category_utf_16_auto)
6424 {
6425 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
6426 category = coding_category_utf_16_le;
6427 else
6428 category = coding_category_utf_16_be;
6429 }
6430 break;
6431 }
6432 }
6433 }
6434
6435 if (i < coding_category_raw_text)
6436 setup_coding_system (CODING_ID_NAME (this->id), coding);
6437 else if (null_byte_found)
6438 setup_coding_system (Qno_conversion, coding);
6439 else if ((detect_info.rejected & CATEGORY_MASK_ANY)
6440 == CATEGORY_MASK_ANY)
6441 setup_coding_system (Qraw_text, coding);
6442 else if (detect_info.rejected)
6443 for (i = 0; i < coding_category_raw_text; i++)
6444 if (! (detect_info.rejected & (1 << coding_priorities[i])))
6445 {
6446 this = coding_categories + coding_priorities[i];
6447 setup_coding_system (CODING_ID_NAME (this->id), coding);
6448 break;
6449 }
6450 }
6451 }
6452 else if (XINT (CODING_ATTR_CATEGORY (CODING_ID_ATTRS (coding->id)))
6453 == coding_category_utf_8_auto)
6454 {
6455 Lisp_Object coding_systems;
6456 struct coding_detection_info detect_info;
6457
6458 coding_systems
6459 = AREF (CODING_ID_ATTRS (coding->id), coding_attr_utf_bom);
6460 detect_info.found = detect_info.rejected = 0;
6461 coding->head_ascii = 0;
6462 if (CONSP (coding_systems)
6463 && detect_coding_utf_8 (coding, &detect_info))
6464 {
6465 if (detect_info.found & CATEGORY_MASK_UTF_8_SIG)
6466 setup_coding_system (XCAR (coding_systems), coding);
6467 else
6468 setup_coding_system (XCDR (coding_systems), coding);
6469 }
6470 }
6471 else if (XINT (CODING_ATTR_CATEGORY (CODING_ID_ATTRS (coding->id)))
6472 == coding_category_utf_16_auto)
6473 {
6474 Lisp_Object coding_systems;
6475 struct coding_detection_info detect_info;
6476
6477 coding_systems
6478 = AREF (CODING_ID_ATTRS (coding->id), coding_attr_utf_bom);
6479 detect_info.found = detect_info.rejected = 0;
6480 coding->head_ascii = 0;
6481 if (CONSP (coding_systems)
6482 && detect_coding_utf_16 (coding, &detect_info))
6483 {
6484 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
6485 setup_coding_system (XCAR (coding_systems), coding);
6486 else if (detect_info.found & CATEGORY_MASK_UTF_16_BE)
6487 setup_coding_system (XCDR (coding_systems), coding);
6488 }
6489 }
6490 coding->mode = saved_mode;
6491 }
6492
6493
6494 static void
6495 decode_eol (struct coding_system *coding)
6496 {
6497 Lisp_Object eol_type;
6498 unsigned char *p, *pbeg, *pend;
6499
6500 eol_type = CODING_ID_EOL_TYPE (coding->id);
6501 if (EQ (eol_type, Qunix) || inhibit_eol_conversion)
6502 return;
6503
6504 if (NILP (coding->dst_object))
6505 pbeg = coding->destination;
6506 else
6507 pbeg = BYTE_POS_ADDR (coding->dst_pos_byte);
6508 pend = pbeg + coding->produced;
6509
6510 if (VECTORP (eol_type))
6511 {
6512 int eol_seen = EOL_SEEN_NONE;
6513
6514 for (p = pbeg; p < pend; p++)
6515 {
6516 if (*p == '\n')
6517 eol_seen |= EOL_SEEN_LF;
6518 else if (*p == '\r')
6519 {
6520 if (p + 1 < pend && *(p + 1) == '\n')
6521 {
6522 eol_seen |= EOL_SEEN_CRLF;
6523 p++;
6524 }
6525 else
6526 eol_seen |= EOL_SEEN_CR;
6527 }
6528 }
6529 /* Handle DOS-style EOLs in a file with stray ^M characters. */
6530 if ((eol_seen & EOL_SEEN_CRLF) != 0
6531 && (eol_seen & EOL_SEEN_CR) != 0
6532 && (eol_seen & EOL_SEEN_LF) == 0)
6533 eol_seen = EOL_SEEN_CRLF;
6534 else if (eol_seen != EOL_SEEN_NONE
6535 && eol_seen != EOL_SEEN_LF
6536 && eol_seen != EOL_SEEN_CRLF
6537 && eol_seen != EOL_SEEN_CR)
6538 eol_seen = EOL_SEEN_LF;
6539 if (eol_seen != EOL_SEEN_NONE)
6540 eol_type = adjust_coding_eol_type (coding, eol_seen);
6541 }
6542
6543 if (EQ (eol_type, Qmac))
6544 {
6545 for (p = pbeg; p < pend; p++)
6546 if (*p == '\r')
6547 *p = '\n';
6548 }
6549 else if (EQ (eol_type, Qdos))
6550 {
6551 EMACS_INT n = 0;
6552
6553 if (NILP (coding->dst_object))
6554 {
6555 /* Start deleting '\r' from the tail to minimize the memory
6556 movement. */
6557 for (p = pend - 2; p >= pbeg; p--)
6558 if (*p == '\r')
6559 {
6560 memmove (p, p + 1, pend-- - p - 1);
6561 n++;
6562 }
6563 }
6564 else
6565 {
6566 EMACS_INT pos_byte = coding->dst_pos_byte;
6567 EMACS_INT pos = coding->dst_pos;
6568 EMACS_INT pos_end = pos + coding->produced_char - 1;
6569
6570 while (pos < pos_end)
6571 {
6572 p = BYTE_POS_ADDR (pos_byte);
6573 if (*p == '\r' && p[1] == '\n')
6574 {
6575 del_range_2 (pos, pos_byte, pos + 1, pos_byte + 1, 0);
6576 n++;
6577 pos_end--;
6578 }
6579 pos++;
6580 if (coding->dst_multibyte)
6581 pos_byte += BYTES_BY_CHAR_HEAD (*p);
6582 else
6583 pos_byte++;
6584 }
6585 }
6586 coding->produced -= n;
6587 coding->produced_char -= n;
6588 }
6589 }
6590
6591
6592 /* Return a translation table (or list of them) from coding system
6593 attribute vector ATTRS for encoding (ENCODEP is nonzero) or
6594 decoding (ENCODEP is zero). */
6595
6596 static Lisp_Object
6597 get_translation_table (Lisp_Object attrs, int encodep, int *max_lookup)
6598 {
6599 Lisp_Object standard, translation_table;
6600 Lisp_Object val;
6601
6602 if (NILP (Venable_character_translation))
6603 {
6604 if (max_lookup)
6605 *max_lookup = 0;
6606 return Qnil;
6607 }
6608 if (encodep)
6609 translation_table = CODING_ATTR_ENCODE_TBL (attrs),
6610 standard = Vstandard_translation_table_for_encode;
6611 else
6612 translation_table = CODING_ATTR_DECODE_TBL (attrs),
6613 standard = Vstandard_translation_table_for_decode;
6614 if (NILP (translation_table))
6615 translation_table = standard;
6616 else
6617 {
6618 if (SYMBOLP (translation_table))
6619 translation_table = Fget (translation_table, Qtranslation_table);
6620 else if (CONSP (translation_table))
6621 {
6622 translation_table = Fcopy_sequence (translation_table);
6623 for (val = translation_table; CONSP (val); val = XCDR (val))
6624 if (SYMBOLP (XCAR (val)))
6625 XSETCAR (val, Fget (XCAR (val), Qtranslation_table));
6626 }
6627 if (CHAR_TABLE_P (standard))
6628 {
6629 if (CONSP (translation_table))
6630 translation_table = nconc2 (translation_table,
6631 Fcons (standard, Qnil));
6632 else
6633 translation_table = Fcons (translation_table,
6634 Fcons (standard, Qnil));
6635 }
6636 }
6637
6638 if (max_lookup)
6639 {
6640 *max_lookup = 1;
6641 if (CHAR_TABLE_P (translation_table)
6642 && CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (translation_table)) > 1)
6643 {
6644 val = XCHAR_TABLE (translation_table)->extras[1];
6645 if (NATNUMP (val) && *max_lookup < XFASTINT (val))
6646 *max_lookup = XFASTINT (val);
6647 }
6648 else if (CONSP (translation_table))
6649 {
6650 Lisp_Object tail;
6651
6652 for (tail = translation_table; CONSP (tail); tail = XCDR (tail))
6653 if (CHAR_TABLE_P (XCAR (tail))
6654 && CHAR_TABLE_EXTRA_SLOTS (XCHAR_TABLE (XCAR (tail))) > 1)
6655 {
6656 Lisp_Object tailval = XCHAR_TABLE (XCAR (tail))->extras[1];
6657 if (NATNUMP (tailval) && *max_lookup < XFASTINT (tailval))
6658 *max_lookup = XFASTINT (tailval);
6659 }
6660 }
6661 }
6662 return translation_table;
6663 }
6664
6665 #define LOOKUP_TRANSLATION_TABLE(table, c, trans) \
6666 do { \
6667 trans = Qnil; \
6668 if (CHAR_TABLE_P (table)) \
6669 { \
6670 trans = CHAR_TABLE_REF (table, c); \
6671 if (CHARACTERP (trans)) \
6672 c = XFASTINT (trans), trans = Qnil; \
6673 } \
6674 else if (CONSP (table)) \
6675 { \
6676 Lisp_Object tail; \
6677 \
6678 for (tail = table; CONSP (tail); tail = XCDR (tail)) \
6679 if (CHAR_TABLE_P (XCAR (tail))) \
6680 { \
6681 trans = CHAR_TABLE_REF (XCAR (tail), c); \
6682 if (CHARACTERP (trans)) \
6683 c = XFASTINT (trans), trans = Qnil; \
6684 else if (! NILP (trans)) \
6685 break; \
6686 } \
6687 } \
6688 } while (0)
6689
6690
6691 /* Return a translation of character(s) at BUF according to TRANS.
6692 TRANS is TO-CHAR or ((FROM . TO) ...) where
6693 FROM = [FROM-CHAR ...], TO is TO-CHAR or [TO-CHAR ...].
6694 The return value is TO-CHAR or ([FROM-CHAR ...] . TO) if a
6695 translation is found, and Qnil if not found..
6696 If BUF is too short to lookup characters in FROM, return Qt. */
6697
6698 static Lisp_Object
6699 get_translation (Lisp_Object trans, int *buf, int *buf_end)
6700 {
6701
6702 if (INTEGERP (trans))
6703 return trans;
6704 for (; CONSP (trans); trans = XCDR (trans))
6705 {
6706 Lisp_Object val = XCAR (trans);
6707 Lisp_Object from = XCAR (val);
6708 int len = ASIZE (from);
6709 int i;
6710
6711 for (i = 0; i < len; i++)
6712 {
6713 if (buf + i == buf_end)
6714 return Qt;
6715 if (XINT (AREF (from, i)) != buf[i])
6716 break;
6717 }
6718 if (i == len)
6719 return val;
6720 }
6721 return Qnil;
6722 }
6723
6724
6725 static int
6726 produce_chars (struct coding_system *coding, Lisp_Object translation_table,
6727 int last_block)
6728 {
6729 unsigned char *dst = coding->destination + coding->produced;
6730 unsigned char *dst_end = coding->destination + coding->dst_bytes;
6731 EMACS_INT produced;
6732 EMACS_INT produced_chars = 0;
6733 int carryover = 0;
6734
6735 if (! coding->chars_at_source)
6736 {
6737 /* Source characters are in coding->charbuf. */
6738 int *buf = coding->charbuf;
6739 int *buf_end = buf + coding->charbuf_used;
6740
6741 if (EQ (coding->src_object, coding->dst_object))
6742 {
6743 coding_set_source (coding);
6744 dst_end = ((unsigned char *) coding->source) + coding->consumed;
6745 }
6746
6747 while (buf < buf_end)
6748 {
6749 int c = *buf, i;
6750
6751 if (c >= 0)
6752 {
6753 EMACS_INT from_nchars = 1, to_nchars = 1;
6754 Lisp_Object trans = Qnil;
6755
6756 LOOKUP_TRANSLATION_TABLE (translation_table, c, trans);
6757 if (! NILP (trans))
6758 {
6759 trans = get_translation (trans, buf, buf_end);
6760 if (INTEGERP (trans))
6761 c = XINT (trans);
6762 else if (CONSP (trans))
6763 {
6764 from_nchars = ASIZE (XCAR (trans));
6765 trans = XCDR (trans);
6766 if (INTEGERP (trans))
6767 c = XINT (trans);
6768 else
6769 {
6770 to_nchars = ASIZE (trans);
6771 c = XINT (AREF (trans, 0));
6772 }
6773 }
6774 else if (EQ (trans, Qt) && ! last_block)
6775 break;
6776 }
6777
6778 if ((dst_end - dst) / MAX_MULTIBYTE_LENGTH < to_nchars)
6779 {
6780 if (((min (PTRDIFF_MAX, SIZE_MAX) - (buf_end - buf))
6781 / MAX_MULTIBYTE_LENGTH)
6782 < to_nchars)
6783 memory_full (SIZE_MAX);
6784 dst = alloc_destination (coding,
6785 buf_end - buf
6786 + MAX_MULTIBYTE_LENGTH * to_nchars,
6787 dst);
6788 if (EQ (coding->src_object, coding->dst_object))
6789 {
6790 coding_set_source (coding);
6791 dst_end = (((unsigned char *) coding->source)
6792 + coding->consumed);
6793 }
6794 else
6795 dst_end = coding->destination + coding->dst_bytes;
6796 }
6797
6798 for (i = 0; i < to_nchars; i++)
6799 {
6800 if (i > 0)
6801 c = XINT (AREF (trans, i));
6802 if (coding->dst_multibyte
6803 || ! CHAR_BYTE8_P (c))
6804 CHAR_STRING_ADVANCE_NO_UNIFY (c, dst);
6805 else
6806 *dst++ = CHAR_TO_BYTE8 (c);
6807 }
6808 produced_chars += to_nchars;
6809 buf += from_nchars;
6810 }
6811 else
6812 /* This is an annotation datum. (-C) is the length. */
6813 buf += -c;
6814 }
6815 carryover = buf_end - buf;
6816 }
6817 else
6818 {
6819 /* Source characters are at coding->source. */
6820 const unsigned char *src = coding->source;
6821 const unsigned char *src_end = src + coding->consumed;
6822
6823 if (EQ (coding->dst_object, coding->src_object))
6824 dst_end = (unsigned char *) src;
6825 if (coding->src_multibyte != coding->dst_multibyte)
6826 {
6827 if (coding->src_multibyte)
6828 {
6829 int multibytep = 1;
6830 EMACS_INT consumed_chars = 0;
6831
6832 while (1)
6833 {
6834 const unsigned char *src_base = src;
6835 int c;
6836
6837 ONE_MORE_BYTE (c);
6838 if (dst == dst_end)
6839 {
6840 if (EQ (coding->src_object, coding->dst_object))
6841 dst_end = (unsigned char *) src;
6842 if (dst == dst_end)
6843 {
6844 EMACS_INT offset = src - coding->source;
6845
6846 dst = alloc_destination (coding, src_end - src + 1,
6847 dst);
6848 dst_end = coding->destination + coding->dst_bytes;
6849 coding_set_source (coding);
6850 src = coding->source + offset;
6851 src_end = coding->source + coding->src_bytes;
6852 if (EQ (coding->src_object, coding->dst_object))
6853 dst_end = (unsigned char *) src;
6854 }
6855 }
6856 *dst++ = c;
6857 produced_chars++;
6858 }
6859 no_more_source:
6860 ;
6861 }
6862 else
6863 while (src < src_end)
6864 {
6865 int multibytep = 1;
6866 int c = *src++;
6867
6868 if (dst >= dst_end - 1)
6869 {
6870 if (EQ (coding->src_object, coding->dst_object))
6871 dst_end = (unsigned char *) src;
6872 if (dst >= dst_end - 1)
6873 {
6874 EMACS_INT offset = src - coding->source;
6875 EMACS_INT more_bytes;
6876
6877 if (EQ (coding->src_object, coding->dst_object))
6878 more_bytes = ((src_end - src) / 2) + 2;
6879 else
6880 more_bytes = src_end - src + 2;
6881 dst = alloc_destination (coding, more_bytes, dst);
6882 dst_end = coding->destination + coding->dst_bytes;
6883 coding_set_source (coding);
6884 src = coding->source + offset;
6885 src_end = coding->source + coding->src_bytes;
6886 if (EQ (coding->src_object, coding->dst_object))
6887 dst_end = (unsigned char *) src;
6888 }
6889 }
6890 EMIT_ONE_BYTE (c);
6891 }
6892 }
6893 else
6894 {
6895 if (!EQ (coding->src_object, coding->dst_object))
6896 {
6897 EMACS_INT require = coding->src_bytes - coding->dst_bytes;
6898
6899 if (require > 0)
6900 {
6901 EMACS_INT offset = src - coding->source;
6902
6903 dst = alloc_destination (coding, require, dst);
6904 coding_set_source (coding);
6905 src = coding->source + offset;
6906 src_end = coding->source + coding->src_bytes;
6907 }
6908 }
6909 produced_chars = coding->consumed_char;
6910 while (src < src_end)
6911 *dst++ = *src++;
6912 }
6913 }
6914
6915 produced = dst - (coding->destination + coding->produced);
6916 if (BUFFERP (coding->dst_object) && produced_chars > 0)
6917 insert_from_gap (produced_chars, produced);
6918 coding->produced += produced;
6919 coding->produced_char += produced_chars;
6920 return carryover;
6921 }
6922
6923 /* Compose text in CODING->object according to the annotation data at
6924 CHARBUF. CHARBUF is an array:
6925 [ -LENGTH ANNOTATION_MASK NCHARS NBYTES METHOD [ COMPONENTS... ] ]
6926 */
6927
6928 static inline void
6929 produce_composition (struct coding_system *coding, int *charbuf, EMACS_INT pos)
6930 {
6931 int len;
6932 EMACS_INT to;
6933 enum composition_method method;
6934 Lisp_Object components;
6935
6936 len = -charbuf[0] - MAX_ANNOTATION_LENGTH;
6937 to = pos + charbuf[2];
6938 method = (enum composition_method) (charbuf[4]);
6939
6940 if (method == COMPOSITION_RELATIVE)
6941 components = Qnil;
6942 else
6943 {
6944 Lisp_Object args[MAX_COMPOSITION_COMPONENTS * 2 - 1];
6945 int i, j;
6946
6947 if (method == COMPOSITION_WITH_RULE)
6948 len = charbuf[2] * 3 - 2;
6949 charbuf += MAX_ANNOTATION_LENGTH;
6950 /* charbuf = [ CHRA ... CHAR] or [ CHAR -2 RULE ... CHAR ] */
6951 for (i = j = 0; i < len && charbuf[i] != -1; i++, j++)
6952 {
6953 if (charbuf[i] >= 0)
6954 args[j] = make_number (charbuf[i]);
6955 else
6956 {
6957 i++;
6958 args[j] = make_number (charbuf[i] % 0x100);
6959 }
6960 }
6961 components = (i == j ? Fstring (j, args) : Fvector (j, args));
6962 }
6963 compose_text (pos, to, components, Qnil, coding->dst_object);
6964 }
6965
6966
6967 /* Put `charset' property on text in CODING->object according to
6968 the annotation data at CHARBUF. CHARBUF is an array:
6969 [ -LENGTH ANNOTATION_MASK NCHARS CHARSET-ID ]
6970 */
6971
6972 static inline void
6973 produce_charset (struct coding_system *coding, int *charbuf, EMACS_INT pos)
6974 {
6975 EMACS_INT from = pos - charbuf[2];
6976 struct charset *charset = CHARSET_FROM_ID (charbuf[3]);
6977
6978 Fput_text_property (make_number (from), make_number (pos),
6979 Qcharset, CHARSET_NAME (charset),
6980 coding->dst_object);
6981 }
6982
6983
6984 #define CHARBUF_SIZE 0x4000
6985
6986 #define ALLOC_CONVERSION_WORK_AREA(coding) \
6987 do { \
6988 int size = CHARBUF_SIZE; \
6989 \
6990 coding->charbuf = NULL; \
6991 while (size > 1024) \
6992 { \
6993 coding->charbuf = (int *) alloca (sizeof (int) * size); \
6994 if (coding->charbuf) \
6995 break; \
6996 size >>= 1; \
6997 } \
6998 if (! coding->charbuf) \
6999 { \
7000 record_conversion_result (coding, CODING_RESULT_INSUFFICIENT_MEM); \
7001 return coding->result; \
7002 } \
7003 coding->charbuf_size = size; \
7004 } while (0)
7005
7006
7007 static void
7008 produce_annotation (struct coding_system *coding, EMACS_INT pos)
7009 {
7010 int *charbuf = coding->charbuf;
7011 int *charbuf_end = charbuf + coding->charbuf_used;
7012
7013 if (NILP (coding->dst_object))
7014 return;
7015
7016 while (charbuf < charbuf_end)
7017 {
7018 if (*charbuf >= 0)
7019 pos++, charbuf++;
7020 else
7021 {
7022 int len = -*charbuf;
7023
7024 if (len > 2)
7025 switch (charbuf[1])
7026 {
7027 case CODING_ANNOTATE_COMPOSITION_MASK:
7028 produce_composition (coding, charbuf, pos);
7029 break;
7030 case CODING_ANNOTATE_CHARSET_MASK:
7031 produce_charset (coding, charbuf, pos);
7032 break;
7033 }
7034 charbuf += len;
7035 }
7036 }
7037 }
7038
7039 /* Decode the data at CODING->src_object into CODING->dst_object.
7040 CODING->src_object is a buffer, a string, or nil.
7041 CODING->dst_object is a buffer.
7042
7043 If CODING->src_object is a buffer, it must be the current buffer.
7044 In this case, if CODING->src_pos is positive, it is a position of
7045 the source text in the buffer, otherwise, the source text is in the
7046 gap area of the buffer, and CODING->src_pos specifies the offset of
7047 the text from GPT (which must be the same as PT). If this is the
7048 same buffer as CODING->dst_object, CODING->src_pos must be
7049 negative.
7050
7051 If CODING->src_object is a string, CODING->src_pos is an index to
7052 that string.
7053
7054 If CODING->src_object is nil, CODING->source must already point to
7055 the non-relocatable memory area. In this case, CODING->src_pos is
7056 an offset from CODING->source.
7057
7058 The decoded data is inserted at the current point of the buffer
7059 CODING->dst_object.
7060 */
7061
7062 static int
7063 decode_coding (struct coding_system *coding)
7064 {
7065 Lisp_Object attrs;
7066 Lisp_Object undo_list;
7067 Lisp_Object translation_table;
7068 struct ccl_spec cclspec;
7069 int carryover;
7070 int i;
7071
7072 if (BUFFERP (coding->src_object)
7073 && coding->src_pos > 0
7074 && coding->src_pos < GPT
7075 && coding->src_pos + coding->src_chars > GPT)
7076 move_gap_both (coding->src_pos, coding->src_pos_byte);
7077
7078 undo_list = Qt;
7079 if (BUFFERP (coding->dst_object))
7080 {
7081 if (current_buffer != XBUFFER (coding->dst_object))
7082 set_buffer_internal (XBUFFER (coding->dst_object));
7083 if (GPT != PT)
7084 move_gap_both (PT, PT_BYTE);
7085 undo_list = BVAR (current_buffer, undo_list);
7086 BVAR (current_buffer, undo_list) = Qt;
7087 }
7088
7089 coding->consumed = coding->consumed_char = 0;
7090 coding->produced = coding->produced_char = 0;
7091 coding->chars_at_source = 0;
7092 record_conversion_result (coding, CODING_RESULT_SUCCESS);
7093 coding->errors = 0;
7094
7095 ALLOC_CONVERSION_WORK_AREA (coding);
7096
7097 attrs = CODING_ID_ATTRS (coding->id);
7098 translation_table = get_translation_table (attrs, 0, NULL);
7099
7100 carryover = 0;
7101 if (coding->decoder == decode_coding_ccl)
7102 {
7103 coding->spec.ccl = &cclspec;
7104 setup_ccl_program (&cclspec.ccl, CODING_CCL_DECODER (coding));
7105 }
7106 do
7107 {
7108 EMACS_INT pos = coding->dst_pos + coding->produced_char;
7109
7110 coding_set_source (coding);
7111 coding->annotated = 0;
7112 coding->charbuf_used = carryover;
7113 (*(coding->decoder)) (coding);
7114 coding_set_destination (coding);
7115 carryover = produce_chars (coding, translation_table, 0);
7116 if (coding->annotated)
7117 produce_annotation (coding, pos);
7118 for (i = 0; i < carryover; i++)
7119 coding->charbuf[i]
7120 = coding->charbuf[coding->charbuf_used - carryover + i];
7121 }
7122 while (coding->result == CODING_RESULT_INSUFFICIENT_DST
7123 || (coding->consumed < coding->src_bytes
7124 && (coding->result == CODING_RESULT_SUCCESS
7125 || coding->result == CODING_RESULT_INVALID_SRC)));
7126
7127 if (carryover > 0)
7128 {
7129 coding_set_destination (coding);
7130 coding->charbuf_used = carryover;
7131 produce_chars (coding, translation_table, 1);
7132 }
7133
7134 coding->carryover_bytes = 0;
7135 if (coding->consumed < coding->src_bytes)
7136 {
7137 int nbytes = coding->src_bytes - coding->consumed;
7138 const unsigned char *src;
7139
7140 coding_set_source (coding);
7141 coding_set_destination (coding);
7142 src = coding->source + coding->consumed;
7143
7144 if (coding->mode & CODING_MODE_LAST_BLOCK)
7145 {
7146 /* Flush out unprocessed data as binary chars. We are sure
7147 that the number of data is less than the size of
7148 coding->charbuf. */
7149 coding->charbuf_used = 0;
7150 coding->chars_at_source = 0;
7151
7152 while (nbytes-- > 0)
7153 {
7154 int c = *src++;
7155
7156 if (c & 0x80)
7157 c = BYTE8_TO_CHAR (c);
7158 coding->charbuf[coding->charbuf_used++] = c;
7159 }
7160 produce_chars (coding, Qnil, 1);
7161 }
7162 else
7163 {
7164 /* Record unprocessed bytes in coding->carryover. We are
7165 sure that the number of data is less than the size of
7166 coding->carryover. */
7167 unsigned char *p = coding->carryover;
7168
7169 if (nbytes > sizeof coding->carryover)
7170 nbytes = sizeof coding->carryover;
7171 coding->carryover_bytes = nbytes;
7172 while (nbytes-- > 0)
7173 *p++ = *src++;
7174 }
7175 coding->consumed = coding->src_bytes;
7176 }
7177
7178 if (! EQ (CODING_ID_EOL_TYPE (coding->id), Qunix)
7179 && !inhibit_eol_conversion)
7180 decode_eol (coding);
7181 if (BUFFERP (coding->dst_object))
7182 {
7183 BVAR (current_buffer, undo_list) = undo_list;
7184 record_insert (coding->dst_pos, coding->produced_char);
7185 }
7186 return coding->result;
7187 }
7188
7189
7190 /* Extract an annotation datum from a composition starting at POS and
7191 ending before LIMIT of CODING->src_object (buffer or string), store
7192 the data in BUF, set *STOP to a starting position of the next
7193 composition (if any) or to LIMIT, and return the address of the
7194 next element of BUF.
7195
7196 If such an annotation is not found, set *STOP to a starting
7197 position of a composition after POS (if any) or to LIMIT, and
7198 return BUF. */
7199
7200 static inline int *
7201 handle_composition_annotation (EMACS_INT pos, EMACS_INT limit,
7202 struct coding_system *coding, int *buf,
7203 EMACS_INT *stop)
7204 {
7205 EMACS_INT start, end;
7206 Lisp_Object prop;
7207
7208 if (! find_composition (pos, limit, &start, &end, &prop, coding->src_object)
7209 || end > limit)
7210 *stop = limit;
7211 else if (start > pos)
7212 *stop = start;
7213 else
7214 {
7215 if (start == pos)
7216 {
7217 /* We found a composition. Store the corresponding
7218 annotation data in BUF. */
7219 int *head = buf;
7220 enum composition_method method = COMPOSITION_METHOD (prop);
7221 int nchars = COMPOSITION_LENGTH (prop);
7222
7223 ADD_COMPOSITION_DATA (buf, nchars, 0, method);
7224 if (method != COMPOSITION_RELATIVE)
7225 {
7226 Lisp_Object components;
7227 int len, i, i_byte;
7228
7229 components = COMPOSITION_COMPONENTS (prop);
7230 if (VECTORP (components))
7231 {
7232 len = ASIZE (components);
7233 for (i = 0; i < len; i++)
7234 *buf++ = XINT (AREF (components, i));
7235 }
7236 else if (STRINGP (components))
7237 {
7238 len = SCHARS (components);
7239 i = i_byte = 0;
7240 while (i < len)
7241 {
7242 FETCH_STRING_CHAR_ADVANCE (*buf, components, i, i_byte);
7243 buf++;
7244 }
7245 }
7246 else if (INTEGERP (components))
7247 {
7248 len = 1;
7249 *buf++ = XINT (components);
7250 }
7251 else if (CONSP (components))
7252 {
7253 for (len = 0; CONSP (components);
7254 len++, components = XCDR (components))
7255 *buf++ = XINT (XCAR (components));
7256 }
7257 else
7258 abort ();
7259 *head -= len;
7260 }
7261 }
7262
7263 if (find_composition (end, limit, &start, &end, &prop,
7264 coding->src_object)
7265 && end <= limit)
7266 *stop = start;
7267 else
7268 *stop = limit;
7269 }
7270 return buf;
7271 }
7272
7273
7274 /* Extract an annotation datum from a text property `charset' at POS of
7275 CODING->src_object (buffer of string), store the data in BUF, set
7276 *STOP to the position where the value of `charset' property changes
7277 (limiting by LIMIT), and return the address of the next element of
7278 BUF.
7279
7280 If the property value is nil, set *STOP to the position where the
7281 property value is non-nil (limiting by LIMIT), and return BUF. */
7282
7283 static inline int *
7284 handle_charset_annotation (EMACS_INT pos, EMACS_INT limit,
7285 struct coding_system *coding, int *buf,
7286 EMACS_INT *stop)
7287 {
7288 Lisp_Object val, next;
7289 int id;
7290
7291 val = Fget_text_property (make_number (pos), Qcharset, coding->src_object);
7292 if (! NILP (val) && CHARSETP (val))
7293 id = XINT (CHARSET_SYMBOL_ID (val));
7294 else
7295 id = -1;
7296 ADD_CHARSET_DATA (buf, 0, id);
7297 next = Fnext_single_property_change (make_number (pos), Qcharset,
7298 coding->src_object,
7299 make_number (limit));
7300 *stop = XINT (next);
7301 return buf;
7302 }
7303
7304
7305 static void
7306 consume_chars (struct coding_system *coding, Lisp_Object translation_table,
7307 int max_lookup)
7308 {
7309 int *buf = coding->charbuf;
7310 int *buf_end = coding->charbuf + coding->charbuf_size;
7311 const unsigned char *src = coding->source + coding->consumed;
7312 const unsigned char *src_end = coding->source + coding->src_bytes;
7313 EMACS_INT pos = coding->src_pos + coding->consumed_char;
7314 EMACS_INT end_pos = coding->src_pos + coding->src_chars;
7315 int multibytep = coding->src_multibyte;
7316 Lisp_Object eol_type;
7317 int c;
7318 EMACS_INT stop, stop_composition, stop_charset;
7319 int *lookup_buf = NULL;
7320
7321 if (! NILP (translation_table))
7322 lookup_buf = alloca (sizeof (int) * max_lookup);
7323
7324 eol_type = inhibit_eol_conversion ? Qunix : CODING_ID_EOL_TYPE (coding->id);
7325 if (VECTORP (eol_type))
7326 eol_type = Qunix;
7327
7328 /* Note: composition handling is not yet implemented. */
7329 coding->common_flags &= ~CODING_ANNOTATE_COMPOSITION_MASK;
7330
7331 if (NILP (coding->src_object))
7332 stop = stop_composition = stop_charset = end_pos;
7333 else
7334 {
7335 if (coding->common_flags & CODING_ANNOTATE_COMPOSITION_MASK)
7336 stop = stop_composition = pos;
7337 else
7338 stop = stop_composition = end_pos;
7339 if (coding->common_flags & CODING_ANNOTATE_CHARSET_MASK)
7340 stop = stop_charset = pos;
7341 else
7342 stop_charset = end_pos;
7343 }
7344
7345 /* Compensate for CRLF and conversion. */
7346 buf_end -= 1 + MAX_ANNOTATION_LENGTH;
7347 while (buf < buf_end)
7348 {
7349 Lisp_Object trans;
7350
7351 if (pos == stop)
7352 {
7353 if (pos == end_pos)
7354 break;
7355 if (pos == stop_composition)
7356 buf = handle_composition_annotation (pos, end_pos, coding,
7357 buf, &stop_composition);
7358 if (pos == stop_charset)
7359 buf = handle_charset_annotation (pos, end_pos, coding,
7360 buf, &stop_charset);
7361 stop = (stop_composition < stop_charset
7362 ? stop_composition : stop_charset);
7363 }
7364
7365 if (! multibytep)
7366 {
7367 EMACS_INT bytes;
7368
7369 if (coding->encoder == encode_coding_raw_text
7370 || coding->encoder == encode_coding_ccl)
7371 c = *src++, pos++;
7372 else if ((bytes = MULTIBYTE_LENGTH (src, src_end)) > 0)
7373 c = STRING_CHAR_ADVANCE_NO_UNIFY (src), pos += bytes;
7374 else
7375 c = BYTE8_TO_CHAR (*src), src++, pos++;
7376 }
7377 else
7378 c = STRING_CHAR_ADVANCE_NO_UNIFY (src), pos++;
7379 if ((c == '\r') && (coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
7380 c = '\n';
7381 if (! EQ (eol_type, Qunix))
7382 {
7383 if (c == '\n')
7384 {
7385 if (EQ (eol_type, Qdos))
7386 *buf++ = '\r';
7387 else
7388 c = '\r';
7389 }
7390 }
7391
7392 trans = Qnil;
7393 LOOKUP_TRANSLATION_TABLE (translation_table, c, trans);
7394 if (NILP (trans))
7395 *buf++ = c;
7396 else
7397 {
7398 int from_nchars = 1, to_nchars = 1;
7399 int *lookup_buf_end;
7400 const unsigned char *p = src;
7401 int i;
7402
7403 lookup_buf[0] = c;
7404 for (i = 1; i < max_lookup && p < src_end; i++)
7405 lookup_buf[i] = STRING_CHAR_ADVANCE (p);
7406 lookup_buf_end = lookup_buf + i;
7407 trans = get_translation (trans, lookup_buf, lookup_buf_end);
7408 if (INTEGERP (trans))
7409 c = XINT (trans);
7410 else if (CONSP (trans))
7411 {
7412 from_nchars = ASIZE (XCAR (trans));
7413 trans = XCDR (trans);
7414 if (INTEGERP (trans))
7415 c = XINT (trans);
7416 else
7417 {
7418 to_nchars = ASIZE (trans);
7419 if (buf + to_nchars > buf_end)
7420 break;
7421 c = XINT (AREF (trans, 0));
7422 }
7423 }
7424 else
7425 break;
7426 *buf++ = c;
7427 for (i = 1; i < to_nchars; i++)
7428 *buf++ = XINT (AREF (trans, i));
7429 for (i = 1; i < from_nchars; i++, pos++)
7430 src += MULTIBYTE_LENGTH_NO_CHECK (src);
7431 }
7432 }
7433
7434 coding->consumed = src - coding->source;
7435 coding->consumed_char = pos - coding->src_pos;
7436 coding->charbuf_used = buf - coding->charbuf;
7437 coding->chars_at_source = 0;
7438 }
7439
7440
7441 /* Encode the text at CODING->src_object into CODING->dst_object.
7442 CODING->src_object is a buffer or a string.
7443 CODING->dst_object is a buffer or nil.
7444
7445 If CODING->src_object is a buffer, it must be the current buffer.
7446 In this case, if CODING->src_pos is positive, it is a position of
7447 the source text in the buffer, otherwise. the source text is in the
7448 gap area of the buffer, and coding->src_pos specifies the offset of
7449 the text from GPT (which must be the same as PT). If this is the
7450 same buffer as CODING->dst_object, CODING->src_pos must be
7451 negative and CODING should not have `pre-write-conversion'.
7452
7453 If CODING->src_object is a string, CODING should not have
7454 `pre-write-conversion'.
7455
7456 If CODING->dst_object is a buffer, the encoded data is inserted at
7457 the current point of that buffer.
7458
7459 If CODING->dst_object is nil, the encoded data is placed at the
7460 memory area specified by CODING->destination. */
7461
7462 static int
7463 encode_coding (struct coding_system *coding)
7464 {
7465 Lisp_Object attrs;
7466 Lisp_Object translation_table;
7467 int max_lookup;
7468 struct ccl_spec cclspec;
7469
7470 attrs = CODING_ID_ATTRS (coding->id);
7471 if (coding->encoder == encode_coding_raw_text)
7472 translation_table = Qnil, max_lookup = 0;
7473 else
7474 translation_table = get_translation_table (attrs, 1, &max_lookup);
7475
7476 if (BUFFERP (coding->dst_object))
7477 {
7478 set_buffer_internal (XBUFFER (coding->dst_object));
7479 coding->dst_multibyte
7480 = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
7481 }
7482
7483 coding->consumed = coding->consumed_char = 0;
7484 coding->produced = coding->produced_char = 0;
7485 record_conversion_result (coding, CODING_RESULT_SUCCESS);
7486 coding->errors = 0;
7487
7488 ALLOC_CONVERSION_WORK_AREA (coding);
7489
7490 if (coding->encoder == encode_coding_ccl)
7491 {
7492 coding->spec.ccl = &cclspec;
7493 setup_ccl_program (&cclspec.ccl, CODING_CCL_ENCODER (coding));
7494 }
7495 do {
7496 coding_set_source (coding);
7497 consume_chars (coding, translation_table, max_lookup);
7498 coding_set_destination (coding);
7499 (*(coding->encoder)) (coding);
7500 } while (coding->consumed_char < coding->src_chars);
7501
7502 if (BUFFERP (coding->dst_object) && coding->produced_char > 0)
7503 insert_from_gap (coding->produced_char, coding->produced);
7504
7505 return (coding->result);
7506 }
7507
7508
7509 /* Name (or base name) of work buffer for code conversion. */
7510 static Lisp_Object Vcode_conversion_workbuf_name;
7511
7512 /* A working buffer used by the top level conversion. Once it is
7513 created, it is never destroyed. It has the name
7514 Vcode_conversion_workbuf_name. The other working buffers are
7515 destroyed after the use is finished, and their names are modified
7516 versions of Vcode_conversion_workbuf_name. */
7517 static Lisp_Object Vcode_conversion_reused_workbuf;
7518
7519 /* 1 iff Vcode_conversion_reused_workbuf is already in use. */
7520 static int reused_workbuf_in_use;
7521
7522
7523 /* Return a working buffer of code conversion. MULTIBYTE specifies the
7524 multibyteness of returning buffer. */
7525
7526 static Lisp_Object
7527 make_conversion_work_buffer (int multibyte)
7528 {
7529 Lisp_Object name, workbuf;
7530 struct buffer *current;
7531
7532 if (reused_workbuf_in_use++)
7533 {
7534 name = Fgenerate_new_buffer_name (Vcode_conversion_workbuf_name, Qnil);
7535 workbuf = Fget_buffer_create (name);
7536 }
7537 else
7538 {
7539 if (NILP (Fbuffer_live_p (Vcode_conversion_reused_workbuf)))
7540 Vcode_conversion_reused_workbuf
7541 = Fget_buffer_create (Vcode_conversion_workbuf_name);
7542 workbuf = Vcode_conversion_reused_workbuf;
7543 }
7544 current = current_buffer;
7545 set_buffer_internal (XBUFFER (workbuf));
7546 /* We can't allow modification hooks to run in the work buffer. For
7547 instance, directory_files_internal assumes that file decoding
7548 doesn't compile new regexps. */
7549 Fset (Fmake_local_variable (Qinhibit_modification_hooks), Qt);
7550 Ferase_buffer ();
7551 BVAR (current_buffer, undo_list) = Qt;
7552 BVAR (current_buffer, enable_multibyte_characters) = multibyte ? Qt : Qnil;
7553 set_buffer_internal (current);
7554 return workbuf;
7555 }
7556
7557
7558 static Lisp_Object
7559 code_conversion_restore (Lisp_Object arg)
7560 {
7561 Lisp_Object current, workbuf;
7562 struct gcpro gcpro1;
7563
7564 GCPRO1 (arg);
7565 current = XCAR (arg);
7566 workbuf = XCDR (arg);
7567 if (! NILP (workbuf))
7568 {
7569 if (EQ (workbuf, Vcode_conversion_reused_workbuf))
7570 reused_workbuf_in_use = 0;
7571 else if (! NILP (Fbuffer_live_p (workbuf)))
7572 Fkill_buffer (workbuf);
7573 }
7574 set_buffer_internal (XBUFFER (current));
7575 UNGCPRO;
7576 return Qnil;
7577 }
7578
7579 Lisp_Object
7580 code_conversion_save (int with_work_buf, int multibyte)
7581 {
7582 Lisp_Object workbuf = Qnil;
7583
7584 if (with_work_buf)
7585 workbuf = make_conversion_work_buffer (multibyte);
7586 record_unwind_protect (code_conversion_restore,
7587 Fcons (Fcurrent_buffer (), workbuf));
7588 return workbuf;
7589 }
7590
7591 int
7592 decode_coding_gap (struct coding_system *coding,
7593 EMACS_INT chars, EMACS_INT bytes)
7594 {
7595 int count = SPECPDL_INDEX ();
7596 Lisp_Object attrs;
7597
7598 code_conversion_save (0, 0);
7599
7600 coding->src_object = Fcurrent_buffer ();
7601 coding->src_chars = chars;
7602 coding->src_bytes = bytes;
7603 coding->src_pos = -chars;
7604 coding->src_pos_byte = -bytes;
7605 coding->src_multibyte = chars < bytes;
7606 coding->dst_object = coding->src_object;
7607 coding->dst_pos = PT;
7608 coding->dst_pos_byte = PT_BYTE;
7609 coding->dst_multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
7610
7611 if (CODING_REQUIRE_DETECTION (coding))
7612 detect_coding (coding);
7613
7614 coding->mode |= CODING_MODE_LAST_BLOCK;
7615 current_buffer->text->inhibit_shrinking = 1;
7616 decode_coding (coding);
7617 current_buffer->text->inhibit_shrinking = 0;
7618
7619 attrs = CODING_ID_ATTRS (coding->id);
7620 if (! NILP (CODING_ATTR_POST_READ (attrs)))
7621 {
7622 EMACS_INT prev_Z = Z, prev_Z_BYTE = Z_BYTE;
7623 Lisp_Object val;
7624
7625 TEMP_SET_PT_BOTH (coding->dst_pos, coding->dst_pos_byte);
7626 val = call1 (CODING_ATTR_POST_READ (attrs),
7627 make_number (coding->produced_char));
7628 CHECK_NATNUM (val);
7629 coding->produced_char += Z - prev_Z;
7630 coding->produced += Z_BYTE - prev_Z_BYTE;
7631 }
7632
7633 unbind_to (count, Qnil);
7634 return coding->result;
7635 }
7636
7637
7638 /* Decode the text in the range FROM/FROM_BYTE and TO/TO_BYTE in
7639 SRC_OBJECT into DST_OBJECT by coding context CODING.
7640
7641 SRC_OBJECT is a buffer, a string, or Qnil.
7642
7643 If it is a buffer, the text is at point of the buffer. FROM and TO
7644 are positions in the buffer.
7645
7646 If it is a string, the text is at the beginning of the string.
7647 FROM and TO are indices to the string.
7648
7649 If it is nil, the text is at coding->source. FROM and TO are
7650 indices to coding->source.
7651
7652 DST_OBJECT is a buffer, Qt, or Qnil.
7653
7654 If it is a buffer, the decoded text is inserted at point of the
7655 buffer. If the buffer is the same as SRC_OBJECT, the source text
7656 is deleted.
7657
7658 If it is Qt, a string is made from the decoded text, and
7659 set in CODING->dst_object.
7660
7661 If it is Qnil, the decoded text is stored at CODING->destination.
7662 The caller must allocate CODING->dst_bytes bytes at
7663 CODING->destination by xmalloc. If the decoded text is longer than
7664 CODING->dst_bytes, CODING->destination is relocated by xrealloc.
7665 */
7666
7667 void
7668 decode_coding_object (struct coding_system *coding,
7669 Lisp_Object src_object,
7670 EMACS_INT from, EMACS_INT from_byte,
7671 EMACS_INT to, EMACS_INT to_byte,
7672 Lisp_Object dst_object)
7673 {
7674 int count = SPECPDL_INDEX ();
7675 unsigned char *destination IF_LINT (= NULL);
7676 EMACS_INT dst_bytes IF_LINT (= 0);
7677 EMACS_INT chars = to - from;
7678 EMACS_INT bytes = to_byte - from_byte;
7679 Lisp_Object attrs;
7680 int saved_pt = -1, saved_pt_byte IF_LINT (= 0);
7681 int need_marker_adjustment = 0;
7682 Lisp_Object old_deactivate_mark;
7683
7684 old_deactivate_mark = Vdeactivate_mark;
7685
7686 if (NILP (dst_object))
7687 {
7688 destination = coding->destination;
7689 dst_bytes = coding->dst_bytes;
7690 }
7691
7692 coding->src_object = src_object;
7693 coding->src_chars = chars;
7694 coding->src_bytes = bytes;
7695 coding->src_multibyte = chars < bytes;
7696
7697 if (STRINGP (src_object))
7698 {
7699 coding->src_pos = from;
7700 coding->src_pos_byte = from_byte;
7701 }
7702 else if (BUFFERP (src_object))
7703 {
7704 set_buffer_internal (XBUFFER (src_object));
7705 if (from != GPT)
7706 move_gap_both (from, from_byte);
7707 if (EQ (src_object, dst_object))
7708 {
7709 struct Lisp_Marker *tail;
7710
7711 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
7712 {
7713 tail->need_adjustment
7714 = tail->charpos == (tail->insertion_type ? from : to);
7715 need_marker_adjustment |= tail->need_adjustment;
7716 }
7717 saved_pt = PT, saved_pt_byte = PT_BYTE;
7718 TEMP_SET_PT_BOTH (from, from_byte);
7719 current_buffer->text->inhibit_shrinking = 1;
7720 del_range_both (from, from_byte, to, to_byte, 1);
7721 coding->src_pos = -chars;
7722 coding->src_pos_byte = -bytes;
7723 }
7724 else
7725 {
7726 coding->src_pos = from;
7727 coding->src_pos_byte = from_byte;
7728 }
7729 }
7730
7731 if (CODING_REQUIRE_DETECTION (coding))
7732 detect_coding (coding);
7733 attrs = CODING_ID_ATTRS (coding->id);
7734
7735 if (EQ (dst_object, Qt)
7736 || (! NILP (CODING_ATTR_POST_READ (attrs))
7737 && NILP (dst_object)))
7738 {
7739 coding->dst_multibyte = !CODING_FOR_UNIBYTE (coding);
7740 coding->dst_object = code_conversion_save (1, coding->dst_multibyte);
7741 coding->dst_pos = BEG;
7742 coding->dst_pos_byte = BEG_BYTE;
7743 }
7744 else if (BUFFERP (dst_object))
7745 {
7746 code_conversion_save (0, 0);
7747 coding->dst_object = dst_object;
7748 coding->dst_pos = BUF_PT (XBUFFER (dst_object));
7749 coding->dst_pos_byte = BUF_PT_BYTE (XBUFFER (dst_object));
7750 coding->dst_multibyte
7751 = ! NILP (BVAR (XBUFFER (dst_object), enable_multibyte_characters));
7752 }
7753 else
7754 {
7755 code_conversion_save (0, 0);
7756 coding->dst_object = Qnil;
7757 /* Most callers presume this will return a multibyte result, and they
7758 won't use `binary' or `raw-text' anyway, so let's not worry about
7759 CODING_FOR_UNIBYTE. */
7760 coding->dst_multibyte = 1;
7761 }
7762
7763 decode_coding (coding);
7764
7765 if (BUFFERP (coding->dst_object))
7766 set_buffer_internal (XBUFFER (coding->dst_object));
7767
7768 if (! NILP (CODING_ATTR_POST_READ (attrs)))
7769 {
7770 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
7771 EMACS_INT prev_Z = Z, prev_Z_BYTE = Z_BYTE;
7772 Lisp_Object val;
7773
7774 TEMP_SET_PT_BOTH (coding->dst_pos, coding->dst_pos_byte);
7775 GCPRO5 (coding->src_object, coding->dst_object, src_object, dst_object,
7776 old_deactivate_mark);
7777 val = safe_call1 (CODING_ATTR_POST_READ (attrs),
7778 make_number (coding->produced_char));
7779 UNGCPRO;
7780 CHECK_NATNUM (val);
7781 coding->produced_char += Z - prev_Z;
7782 coding->produced += Z_BYTE - prev_Z_BYTE;
7783 }
7784
7785 if (EQ (dst_object, Qt))
7786 {
7787 coding->dst_object = Fbuffer_string ();
7788 }
7789 else if (NILP (dst_object) && BUFFERP (coding->dst_object))
7790 {
7791 set_buffer_internal (XBUFFER (coding->dst_object));
7792 if (dst_bytes < coding->produced)
7793 {
7794 destination = xrealloc (destination, coding->produced);
7795 if (! destination)
7796 {
7797 record_conversion_result (coding,
7798 CODING_RESULT_INSUFFICIENT_MEM);
7799 unbind_to (count, Qnil);
7800 return;
7801 }
7802 if (BEGV < GPT && GPT < BEGV + coding->produced_char)
7803 move_gap_both (BEGV, BEGV_BYTE);
7804 memcpy (destination, BEGV_ADDR, coding->produced);
7805 coding->destination = destination;
7806 }
7807 }
7808
7809 if (saved_pt >= 0)
7810 {
7811 /* This is the case of:
7812 (BUFFERP (src_object) && EQ (src_object, dst_object))
7813 As we have moved PT while replacing the original buffer
7814 contents, we must recover it now. */
7815 set_buffer_internal (XBUFFER (src_object));
7816 current_buffer->text->inhibit_shrinking = 0;
7817 if (saved_pt < from)
7818 TEMP_SET_PT_BOTH (saved_pt, saved_pt_byte);
7819 else if (saved_pt < from + chars)
7820 TEMP_SET_PT_BOTH (from, from_byte);
7821 else if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
7822 TEMP_SET_PT_BOTH (saved_pt + (coding->produced_char - chars),
7823 saved_pt_byte + (coding->produced - bytes));
7824 else
7825 TEMP_SET_PT_BOTH (saved_pt + (coding->produced - bytes),
7826 saved_pt_byte + (coding->produced - bytes));
7827
7828 if (need_marker_adjustment)
7829 {
7830 struct Lisp_Marker *tail;
7831
7832 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
7833 if (tail->need_adjustment)
7834 {
7835 tail->need_adjustment = 0;
7836 if (tail->insertion_type)
7837 {
7838 tail->bytepos = from_byte;
7839 tail->charpos = from;
7840 }
7841 else
7842 {
7843 tail->bytepos = from_byte + coding->produced;
7844 tail->charpos
7845 = (NILP (BVAR (current_buffer, enable_multibyte_characters))
7846 ? tail->bytepos : from + coding->produced_char);
7847 }
7848 }
7849 }
7850 }
7851
7852 Vdeactivate_mark = old_deactivate_mark;
7853 unbind_to (count, coding->dst_object);
7854 }
7855
7856
7857 void
7858 encode_coding_object (struct coding_system *coding,
7859 Lisp_Object src_object,
7860 EMACS_INT from, EMACS_INT from_byte,
7861 EMACS_INT to, EMACS_INT to_byte,
7862 Lisp_Object dst_object)
7863 {
7864 int count = SPECPDL_INDEX ();
7865 EMACS_INT chars = to - from;
7866 EMACS_INT bytes = to_byte - from_byte;
7867 Lisp_Object attrs;
7868 int saved_pt = -1, saved_pt_byte IF_LINT (= 0);
7869 int need_marker_adjustment = 0;
7870 int kill_src_buffer = 0;
7871 Lisp_Object old_deactivate_mark;
7872
7873 old_deactivate_mark = Vdeactivate_mark;
7874
7875 coding->src_object = src_object;
7876 coding->src_chars = chars;
7877 coding->src_bytes = bytes;
7878 coding->src_multibyte = chars < bytes;
7879
7880 attrs = CODING_ID_ATTRS (coding->id);
7881
7882 if (EQ (src_object, dst_object))
7883 {
7884 struct Lisp_Marker *tail;
7885
7886 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
7887 {
7888 tail->need_adjustment
7889 = tail->charpos == (tail->insertion_type ? from : to);
7890 need_marker_adjustment |= tail->need_adjustment;
7891 }
7892 }
7893
7894 if (! NILP (CODING_ATTR_PRE_WRITE (attrs)))
7895 {
7896 coding->src_object = code_conversion_save (1, coding->src_multibyte);
7897 set_buffer_internal (XBUFFER (coding->src_object));
7898 if (STRINGP (src_object))
7899 insert_from_string (src_object, from, from_byte, chars, bytes, 0);
7900 else if (BUFFERP (src_object))
7901 insert_from_buffer (XBUFFER (src_object), from, chars, 0);
7902 else
7903 insert_1_both ((char *) coding->source + from, chars, bytes, 0, 0, 0);
7904
7905 if (EQ (src_object, dst_object))
7906 {
7907 set_buffer_internal (XBUFFER (src_object));
7908 saved_pt = PT, saved_pt_byte = PT_BYTE;
7909 del_range_both (from, from_byte, to, to_byte, 1);
7910 set_buffer_internal (XBUFFER (coding->src_object));
7911 }
7912
7913 {
7914 Lisp_Object args[3];
7915 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
7916
7917 GCPRO5 (coding->src_object, coding->dst_object, src_object, dst_object,
7918 old_deactivate_mark);
7919 args[0] = CODING_ATTR_PRE_WRITE (attrs);
7920 args[1] = make_number (BEG);
7921 args[2] = make_number (Z);
7922 safe_call (3, args);
7923 UNGCPRO;
7924 }
7925 if (XBUFFER (coding->src_object) != current_buffer)
7926 kill_src_buffer = 1;
7927 coding->src_object = Fcurrent_buffer ();
7928 if (BEG != GPT)
7929 move_gap_both (BEG, BEG_BYTE);
7930 coding->src_chars = Z - BEG;
7931 coding->src_bytes = Z_BYTE - BEG_BYTE;
7932 coding->src_pos = BEG;
7933 coding->src_pos_byte = BEG_BYTE;
7934 coding->src_multibyte = Z < Z_BYTE;
7935 }
7936 else if (STRINGP (src_object))
7937 {
7938 code_conversion_save (0, 0);
7939 coding->src_pos = from;
7940 coding->src_pos_byte = from_byte;
7941 }
7942 else if (BUFFERP (src_object))
7943 {
7944 code_conversion_save (0, 0);
7945 set_buffer_internal (XBUFFER (src_object));
7946 if (EQ (src_object, dst_object))
7947 {
7948 saved_pt = PT, saved_pt_byte = PT_BYTE;
7949 coding->src_object = del_range_1 (from, to, 1, 1);
7950 coding->src_pos = 0;
7951 coding->src_pos_byte = 0;
7952 }
7953 else
7954 {
7955 if (from < GPT && to >= GPT)
7956 move_gap_both (from, from_byte);
7957 coding->src_pos = from;
7958 coding->src_pos_byte = from_byte;
7959 }
7960 }
7961 else
7962 code_conversion_save (0, 0);
7963
7964 if (BUFFERP (dst_object))
7965 {
7966 coding->dst_object = dst_object;
7967 if (EQ (src_object, dst_object))
7968 {
7969 coding->dst_pos = from;
7970 coding->dst_pos_byte = from_byte;
7971 }
7972 else
7973 {
7974 struct buffer *current = current_buffer;
7975
7976 set_buffer_temp (XBUFFER (dst_object));
7977 coding->dst_pos = PT;
7978 coding->dst_pos_byte = PT_BYTE;
7979 move_gap_both (coding->dst_pos, coding->dst_pos_byte);
7980 set_buffer_temp (current);
7981 }
7982 coding->dst_multibyte
7983 = ! NILP (BVAR (XBUFFER (dst_object), enable_multibyte_characters));
7984 }
7985 else if (EQ (dst_object, Qt))
7986 {
7987 ptrdiff_t dst_bytes = max (1, coding->src_chars);
7988 coding->dst_object = Qnil;
7989 coding->destination = (unsigned char *) xmalloc (dst_bytes);
7990 coding->dst_bytes = dst_bytes;
7991 coding->dst_multibyte = 0;
7992 }
7993 else
7994 {
7995 coding->dst_object = Qnil;
7996 coding->dst_multibyte = 0;
7997 }
7998
7999 encode_coding (coding);
8000
8001 if (EQ (dst_object, Qt))
8002 {
8003 if (BUFFERP (coding->dst_object))
8004 coding->dst_object = Fbuffer_string ();
8005 else
8006 {
8007 coding->dst_object
8008 = make_unibyte_string ((char *) coding->destination,
8009 coding->produced);
8010 xfree (coding->destination);
8011 }
8012 }
8013
8014 if (saved_pt >= 0)
8015 {
8016 /* This is the case of:
8017 (BUFFERP (src_object) && EQ (src_object, dst_object))
8018 As we have moved PT while replacing the original buffer
8019 contents, we must recover it now. */
8020 set_buffer_internal (XBUFFER (src_object));
8021 if (saved_pt < from)
8022 TEMP_SET_PT_BOTH (saved_pt, saved_pt_byte);
8023 else if (saved_pt < from + chars)
8024 TEMP_SET_PT_BOTH (from, from_byte);
8025 else if (! NILP (BVAR (current_buffer, enable_multibyte_characters)))
8026 TEMP_SET_PT_BOTH (saved_pt + (coding->produced_char - chars),
8027 saved_pt_byte + (coding->produced - bytes));
8028 else
8029 TEMP_SET_PT_BOTH (saved_pt + (coding->produced - bytes),
8030 saved_pt_byte + (coding->produced - bytes));
8031
8032 if (need_marker_adjustment)
8033 {
8034 struct Lisp_Marker *tail;
8035
8036 for (tail = BUF_MARKERS (current_buffer); tail; tail = tail->next)
8037 if (tail->need_adjustment)
8038 {
8039 tail->need_adjustment = 0;
8040 if (tail->insertion_type)
8041 {
8042 tail->bytepos = from_byte;
8043 tail->charpos = from;
8044 }
8045 else
8046 {
8047 tail->bytepos = from_byte + coding->produced;
8048 tail->charpos
8049 = (NILP (BVAR (current_buffer, enable_multibyte_characters))
8050 ? tail->bytepos : from + coding->produced_char);
8051 }
8052 }
8053 }
8054 }
8055
8056 if (kill_src_buffer)
8057 Fkill_buffer (coding->src_object);
8058
8059 Vdeactivate_mark = old_deactivate_mark;
8060 unbind_to (count, Qnil);
8061 }
8062
8063
8064 Lisp_Object
8065 preferred_coding_system (void)
8066 {
8067 int id = coding_categories[coding_priorities[0]].id;
8068
8069 return CODING_ID_NAME (id);
8070 }
8071
8072 \f
8073 #ifdef emacs
8074 /*** 8. Emacs Lisp library functions ***/
8075
8076 DEFUN ("coding-system-p", Fcoding_system_p, Scoding_system_p, 1, 1, 0,
8077 doc: /* Return t if OBJECT is nil or a coding-system.
8078 See the documentation of `define-coding-system' for information
8079 about coding-system objects. */)
8080 (Lisp_Object object)
8081 {
8082 if (NILP (object)
8083 || CODING_SYSTEM_ID (object) >= 0)
8084 return Qt;
8085 if (! SYMBOLP (object)
8086 || NILP (Fget (object, Qcoding_system_define_form)))
8087 return Qnil;
8088 return Qt;
8089 }
8090
8091 DEFUN ("read-non-nil-coding-system", Fread_non_nil_coding_system,
8092 Sread_non_nil_coding_system, 1, 1, 0,
8093 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT. */)
8094 (Lisp_Object prompt)
8095 {
8096 Lisp_Object val;
8097 do
8098 {
8099 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
8100 Qt, Qnil, Qcoding_system_history, Qnil, Qnil);
8101 }
8102 while (SCHARS (val) == 0);
8103 return (Fintern (val, Qnil));
8104 }
8105
8106 DEFUN ("read-coding-system", Fread_coding_system, Sread_coding_system, 1, 2, 0,
8107 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT.
8108 If the user enters null input, return second argument DEFAULT-CODING-SYSTEM.
8109 Ignores case when completing coding systems (all Emacs coding systems
8110 are lower-case). */)
8111 (Lisp_Object prompt, Lisp_Object default_coding_system)
8112 {
8113 Lisp_Object val;
8114 int count = SPECPDL_INDEX ();
8115
8116 if (SYMBOLP (default_coding_system))
8117 default_coding_system = SYMBOL_NAME (default_coding_system);
8118 specbind (Qcompletion_ignore_case, Qt);
8119 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
8120 Qt, Qnil, Qcoding_system_history,
8121 default_coding_system, Qnil);
8122 unbind_to (count, Qnil);
8123 return (SCHARS (val) == 0 ? Qnil : Fintern (val, Qnil));
8124 }
8125
8126 DEFUN ("check-coding-system", Fcheck_coding_system, Scheck_coding_system,
8127 1, 1, 0,
8128 doc: /* Check validity of CODING-SYSTEM.
8129 If valid, return CODING-SYSTEM, else signal a `coding-system-error' error.
8130 It is valid if it is nil or a symbol defined as a coding system by the
8131 function `define-coding-system'. */)
8132 (Lisp_Object coding_system)
8133 {
8134 Lisp_Object define_form;
8135
8136 define_form = Fget (coding_system, Qcoding_system_define_form);
8137 if (! NILP (define_form))
8138 {
8139 Fput (coding_system, Qcoding_system_define_form, Qnil);
8140 safe_eval (define_form);
8141 }
8142 if (!NILP (Fcoding_system_p (coding_system)))
8143 return coding_system;
8144 xsignal1 (Qcoding_system_error, coding_system);
8145 }
8146
8147 \f
8148 /* Detect how the bytes at SRC of length SRC_BYTES are encoded. If
8149 HIGHEST is nonzero, return the coding system of the highest
8150 priority among the detected coding systems. Otherwise return a
8151 list of detected coding systems sorted by their priorities. If
8152 MULTIBYTEP is nonzero, it is assumed that the bytes are in correct
8153 multibyte form but contains only ASCII and eight-bit chars.
8154 Otherwise, the bytes are raw bytes.
8155
8156 CODING-SYSTEM controls the detection as below:
8157
8158 If it is nil, detect both text-format and eol-format. If the
8159 text-format part of CODING-SYSTEM is already specified
8160 (e.g. `iso-latin-1'), detect only eol-format. If the eol-format
8161 part of CODING-SYSTEM is already specified (e.g. `undecided-unix'),
8162 detect only text-format. */
8163
8164 Lisp_Object
8165 detect_coding_system (const unsigned char *src,
8166 EMACS_INT src_chars, EMACS_INT src_bytes,
8167 int highest, int multibytep,
8168 Lisp_Object coding_system)
8169 {
8170 const unsigned char *src_end = src + src_bytes;
8171 Lisp_Object attrs, eol_type;
8172 Lisp_Object val = Qnil;
8173 struct coding_system coding;
8174 ptrdiff_t id;
8175 struct coding_detection_info detect_info;
8176 enum coding_category base_category;
8177 int null_byte_found = 0, eight_bit_found = 0;
8178
8179 if (NILP (coding_system))
8180 coding_system = Qundecided;
8181 setup_coding_system (coding_system, &coding);
8182 attrs = CODING_ID_ATTRS (coding.id);
8183 eol_type = CODING_ID_EOL_TYPE (coding.id);
8184 coding_system = CODING_ATTR_BASE_NAME (attrs);
8185
8186 coding.source = src;
8187 coding.src_chars = src_chars;
8188 coding.src_bytes = src_bytes;
8189 coding.src_multibyte = multibytep;
8190 coding.consumed = 0;
8191 coding.mode |= CODING_MODE_LAST_BLOCK;
8192 coding.head_ascii = 0;
8193
8194 detect_info.checked = detect_info.found = detect_info.rejected = 0;
8195
8196 /* At first, detect text-format if necessary. */
8197 base_category = XINT (CODING_ATTR_CATEGORY (attrs));
8198 if (base_category == coding_category_undecided)
8199 {
8200 enum coding_category category IF_LINT (= 0);
8201 struct coding_system *this IF_LINT (= NULL);
8202 int c, i;
8203
8204 /* Skip all ASCII bytes except for a few ISO2022 controls. */
8205 for (; src < src_end; src++)
8206 {
8207 c = *src;
8208 if (c & 0x80)
8209 {
8210 eight_bit_found = 1;
8211 if (null_byte_found)
8212 break;
8213 }
8214 else if (c < 0x20)
8215 {
8216 if ((c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
8217 && ! inhibit_iso_escape_detection
8218 && ! detect_info.checked)
8219 {
8220 if (detect_coding_iso_2022 (&coding, &detect_info))
8221 {
8222 /* We have scanned the whole data. */
8223 if (! (detect_info.rejected & CATEGORY_MASK_ISO_7_ELSE))
8224 {
8225 /* We didn't find an 8-bit code. We may
8226 have found a null-byte, but it's very
8227 rare that a binary file confirm to
8228 ISO-2022. */
8229 src = src_end;
8230 coding.head_ascii = src - coding.source;
8231 }
8232 detect_info.rejected |= ~CATEGORY_MASK_ISO_ESCAPE;
8233 break;
8234 }
8235 }
8236 else if (! c && !inhibit_null_byte_detection)
8237 {
8238 null_byte_found = 1;
8239 if (eight_bit_found)
8240 break;
8241 }
8242 if (! eight_bit_found)
8243 coding.head_ascii++;
8244 }
8245 else if (! eight_bit_found)
8246 coding.head_ascii++;
8247 }
8248
8249 if (null_byte_found || eight_bit_found
8250 || coding.head_ascii < coding.src_bytes
8251 || detect_info.found)
8252 {
8253 if (coding.head_ascii == coding.src_bytes)
8254 /* As all bytes are 7-bit, we can ignore non-ISO-2022 codings. */
8255 for (i = 0; i < coding_category_raw_text; i++)
8256 {
8257 category = coding_priorities[i];
8258 this = coding_categories + category;
8259 if (detect_info.found & (1 << category))
8260 break;
8261 }
8262 else
8263 {
8264 if (null_byte_found)
8265 {
8266 detect_info.checked |= ~CATEGORY_MASK_UTF_16;
8267 detect_info.rejected |= ~CATEGORY_MASK_UTF_16;
8268 }
8269 for (i = 0; i < coding_category_raw_text; i++)
8270 {
8271 category = coding_priorities[i];
8272 this = coding_categories + category;
8273
8274 if (this->id < 0)
8275 {
8276 /* No coding system of this category is defined. */
8277 detect_info.rejected |= (1 << category);
8278 }
8279 else if (category >= coding_category_raw_text)
8280 continue;
8281 else if (detect_info.checked & (1 << category))
8282 {
8283 if (highest
8284 && (detect_info.found & (1 << category)))
8285 break;
8286 }
8287 else if ((*(this->detector)) (&coding, &detect_info)
8288 && highest
8289 && (detect_info.found & (1 << category)))
8290 {
8291 if (category == coding_category_utf_16_auto)
8292 {
8293 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
8294 category = coding_category_utf_16_le;
8295 else
8296 category = coding_category_utf_16_be;
8297 }
8298 break;
8299 }
8300 }
8301 }
8302 }
8303
8304 if ((detect_info.rejected & CATEGORY_MASK_ANY) == CATEGORY_MASK_ANY
8305 || null_byte_found)
8306 {
8307 detect_info.found = CATEGORY_MASK_RAW_TEXT;
8308 id = CODING_SYSTEM_ID (Qno_conversion);
8309 val = Fcons (make_number (id), Qnil);
8310 }
8311 else if (! detect_info.rejected && ! detect_info.found)
8312 {
8313 detect_info.found = CATEGORY_MASK_ANY;
8314 id = coding_categories[coding_category_undecided].id;
8315 val = Fcons (make_number (id), Qnil);
8316 }
8317 else if (highest)
8318 {
8319 if (detect_info.found)
8320 {
8321 detect_info.found = 1 << category;
8322 val = Fcons (make_number (this->id), Qnil);
8323 }
8324 else
8325 for (i = 0; i < coding_category_raw_text; i++)
8326 if (! (detect_info.rejected & (1 << coding_priorities[i])))
8327 {
8328 detect_info.found = 1 << coding_priorities[i];
8329 id = coding_categories[coding_priorities[i]].id;
8330 val = Fcons (make_number (id), Qnil);
8331 break;
8332 }
8333 }
8334 else
8335 {
8336 int mask = detect_info.rejected | detect_info.found;
8337 int found = 0;
8338
8339 for (i = coding_category_raw_text - 1; i >= 0; i--)
8340 {
8341 category = coding_priorities[i];
8342 if (! (mask & (1 << category)))
8343 {
8344 found |= 1 << category;
8345 id = coding_categories[category].id;
8346 if (id >= 0)
8347 val = Fcons (make_number (id), val);
8348 }
8349 }
8350 for (i = coding_category_raw_text - 1; i >= 0; i--)
8351 {
8352 category = coding_priorities[i];
8353 if (detect_info.found & (1 << category))
8354 {
8355 id = coding_categories[category].id;
8356 val = Fcons (make_number (id), val);
8357 }
8358 }
8359 detect_info.found |= found;
8360 }
8361 }
8362 else if (base_category == coding_category_utf_8_auto)
8363 {
8364 if (detect_coding_utf_8 (&coding, &detect_info))
8365 {
8366 struct coding_system *this;
8367
8368 if (detect_info.found & CATEGORY_MASK_UTF_8_SIG)
8369 this = coding_categories + coding_category_utf_8_sig;
8370 else
8371 this = coding_categories + coding_category_utf_8_nosig;
8372 val = Fcons (make_number (this->id), Qnil);
8373 }
8374 }
8375 else if (base_category == coding_category_utf_16_auto)
8376 {
8377 if (detect_coding_utf_16 (&coding, &detect_info))
8378 {
8379 struct coding_system *this;
8380
8381 if (detect_info.found & CATEGORY_MASK_UTF_16_LE)
8382 this = coding_categories + coding_category_utf_16_le;
8383 else if (detect_info.found & CATEGORY_MASK_UTF_16_BE)
8384 this = coding_categories + coding_category_utf_16_be;
8385 else if (detect_info.rejected & CATEGORY_MASK_UTF_16_LE_NOSIG)
8386 this = coding_categories + coding_category_utf_16_be_nosig;
8387 else
8388 this = coding_categories + coding_category_utf_16_le_nosig;
8389 val = Fcons (make_number (this->id), Qnil);
8390 }
8391 }
8392 else
8393 {
8394 detect_info.found = 1 << XINT (CODING_ATTR_CATEGORY (attrs));
8395 val = Fcons (make_number (coding.id), Qnil);
8396 }
8397
8398 /* Then, detect eol-format if necessary. */
8399 {
8400 int normal_eol = -1, utf_16_be_eol = -1, utf_16_le_eol = -1;
8401 Lisp_Object tail;
8402
8403 if (VECTORP (eol_type))
8404 {
8405 if (detect_info.found & ~CATEGORY_MASK_UTF_16)
8406 {
8407 if (null_byte_found)
8408 normal_eol = EOL_SEEN_LF;
8409 else
8410 normal_eol = detect_eol (coding.source, src_bytes,
8411 coding_category_raw_text);
8412 }
8413 if (detect_info.found & (CATEGORY_MASK_UTF_16_BE
8414 | CATEGORY_MASK_UTF_16_BE_NOSIG))
8415 utf_16_be_eol = detect_eol (coding.source, src_bytes,
8416 coding_category_utf_16_be);
8417 if (detect_info.found & (CATEGORY_MASK_UTF_16_LE
8418 | CATEGORY_MASK_UTF_16_LE_NOSIG))
8419 utf_16_le_eol = detect_eol (coding.source, src_bytes,
8420 coding_category_utf_16_le);
8421 }
8422 else
8423 {
8424 if (EQ (eol_type, Qunix))
8425 normal_eol = utf_16_be_eol = utf_16_le_eol = EOL_SEEN_LF;
8426 else if (EQ (eol_type, Qdos))
8427 normal_eol = utf_16_be_eol = utf_16_le_eol = EOL_SEEN_CRLF;
8428 else
8429 normal_eol = utf_16_be_eol = utf_16_le_eol = EOL_SEEN_CR;
8430 }
8431
8432 for (tail = val; CONSP (tail); tail = XCDR (tail))
8433 {
8434 enum coding_category category;
8435 int this_eol;
8436
8437 id = XINT (XCAR (tail));
8438 attrs = CODING_ID_ATTRS (id);
8439 category = XINT (CODING_ATTR_CATEGORY (attrs));
8440 eol_type = CODING_ID_EOL_TYPE (id);
8441 if (VECTORP (eol_type))
8442 {
8443 if (category == coding_category_utf_16_be
8444 || category == coding_category_utf_16_be_nosig)
8445 this_eol = utf_16_be_eol;
8446 else if (category == coding_category_utf_16_le
8447 || category == coding_category_utf_16_le_nosig)
8448 this_eol = utf_16_le_eol;
8449 else
8450 this_eol = normal_eol;
8451
8452 if (this_eol == EOL_SEEN_LF)
8453 XSETCAR (tail, AREF (eol_type, 0));
8454 else if (this_eol == EOL_SEEN_CRLF)
8455 XSETCAR (tail, AREF (eol_type, 1));
8456 else if (this_eol == EOL_SEEN_CR)
8457 XSETCAR (tail, AREF (eol_type, 2));
8458 else
8459 XSETCAR (tail, CODING_ID_NAME (id));
8460 }
8461 else
8462 XSETCAR (tail, CODING_ID_NAME (id));
8463 }
8464 }
8465
8466 return (highest ? (CONSP (val) ? XCAR (val) : Qnil) : val);
8467 }
8468
8469
8470 DEFUN ("detect-coding-region", Fdetect_coding_region, Sdetect_coding_region,
8471 2, 3, 0,
8472 doc: /* Detect coding system of the text in the region between START and END.
8473 Return a list of possible coding systems ordered by priority.
8474 The coding systems to try and their priorities follows what
8475 the function `coding-system-priority-list' (which see) returns.
8476
8477 If only ASCII characters are found (except for such ISO-2022 control
8478 characters as ESC), it returns a list of single element `undecided'
8479 or its subsidiary coding system according to a detected end-of-line
8480 format.
8481
8482 If optional argument HIGHEST is non-nil, return the coding system of
8483 highest priority. */)
8484 (Lisp_Object start, Lisp_Object end, Lisp_Object highest)
8485 {
8486 int from, to;
8487 int from_byte, to_byte;
8488
8489 CHECK_NUMBER_COERCE_MARKER (start);
8490 CHECK_NUMBER_COERCE_MARKER (end);
8491
8492 validate_region (&start, &end);
8493 from = XINT (start), to = XINT (end);
8494 from_byte = CHAR_TO_BYTE (from);
8495 to_byte = CHAR_TO_BYTE (to);
8496
8497 if (from < GPT && to >= GPT)
8498 move_gap_both (to, to_byte);
8499
8500 return detect_coding_system (BYTE_POS_ADDR (from_byte),
8501 to - from, to_byte - from_byte,
8502 !NILP (highest),
8503 !NILP (BVAR (current_buffer
8504 , enable_multibyte_characters)),
8505 Qnil);
8506 }
8507
8508 DEFUN ("detect-coding-string", Fdetect_coding_string, Sdetect_coding_string,
8509 1, 2, 0,
8510 doc: /* Detect coding system of the text in STRING.
8511 Return a list of possible coding systems ordered by priority.
8512 The coding systems to try and their priorities follows what
8513 the function `coding-system-priority-list' (which see) returns.
8514
8515 If only ASCII characters are found (except for such ISO-2022 control
8516 characters as ESC), it returns a list of single element `undecided'
8517 or its subsidiary coding system according to a detected end-of-line
8518 format.
8519
8520 If optional argument HIGHEST is non-nil, return the coding system of
8521 highest priority. */)
8522 (Lisp_Object string, Lisp_Object highest)
8523 {
8524 CHECK_STRING (string);
8525
8526 return detect_coding_system (SDATA (string),
8527 SCHARS (string), SBYTES (string),
8528 !NILP (highest), STRING_MULTIBYTE (string),
8529 Qnil);
8530 }
8531
8532
8533 static inline int
8534 char_encodable_p (int c, Lisp_Object attrs)
8535 {
8536 Lisp_Object tail;
8537 struct charset *charset;
8538 Lisp_Object translation_table;
8539
8540 translation_table = CODING_ATTR_TRANS_TBL (attrs);
8541 if (! NILP (translation_table))
8542 c = translate_char (translation_table, c);
8543 for (tail = CODING_ATTR_CHARSET_LIST (attrs);
8544 CONSP (tail); tail = XCDR (tail))
8545 {
8546 charset = CHARSET_FROM_ID (XINT (XCAR (tail)));
8547 if (CHAR_CHARSET_P (c, charset))
8548 break;
8549 }
8550 return (! NILP (tail));
8551 }
8552
8553
8554 /* Return a list of coding systems that safely encode the text between
8555 START and END. If EXCLUDE is non-nil, it is a list of coding
8556 systems not to check. The returned list doesn't contain any such
8557 coding systems. In any case, if the text contains only ASCII or is
8558 unibyte, return t. */
8559
8560 DEFUN ("find-coding-systems-region-internal",
8561 Ffind_coding_systems_region_internal,
8562 Sfind_coding_systems_region_internal, 2, 3, 0,
8563 doc: /* Internal use only. */)
8564 (Lisp_Object start, Lisp_Object end, Lisp_Object exclude)
8565 {
8566 Lisp_Object coding_attrs_list, safe_codings;
8567 EMACS_INT start_byte, end_byte;
8568 const unsigned char *p, *pbeg, *pend;
8569 int c;
8570 Lisp_Object tail, elt, work_table;
8571
8572 if (STRINGP (start))
8573 {
8574 if (!STRING_MULTIBYTE (start)
8575 || SCHARS (start) == SBYTES (start))
8576 return Qt;
8577 start_byte = 0;
8578 end_byte = SBYTES (start);
8579 }
8580 else
8581 {
8582 CHECK_NUMBER_COERCE_MARKER (start);
8583 CHECK_NUMBER_COERCE_MARKER (end);
8584 if (XINT (start) < BEG || XINT (end) > Z || XINT (start) > XINT (end))
8585 args_out_of_range (start, end);
8586 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
8587 return Qt;
8588 start_byte = CHAR_TO_BYTE (XINT (start));
8589 end_byte = CHAR_TO_BYTE (XINT (end));
8590 if (XINT (end) - XINT (start) == end_byte - start_byte)
8591 return Qt;
8592
8593 if (XINT (start) < GPT && XINT (end) > GPT)
8594 {
8595 if ((GPT - XINT (start)) < (XINT (end) - GPT))
8596 move_gap_both (XINT (start), start_byte);
8597 else
8598 move_gap_both (XINT (end), end_byte);
8599 }
8600 }
8601
8602 coding_attrs_list = Qnil;
8603 for (tail = Vcoding_system_list; CONSP (tail); tail = XCDR (tail))
8604 if (NILP (exclude)
8605 || NILP (Fmemq (XCAR (tail), exclude)))
8606 {
8607 Lisp_Object attrs;
8608
8609 attrs = AREF (CODING_SYSTEM_SPEC (XCAR (tail)), 0);
8610 if (EQ (XCAR (tail), CODING_ATTR_BASE_NAME (attrs))
8611 && ! EQ (CODING_ATTR_TYPE (attrs), Qundecided))
8612 {
8613 ASET (attrs, coding_attr_trans_tbl,
8614 get_translation_table (attrs, 1, NULL));
8615 coding_attrs_list = Fcons (attrs, coding_attrs_list);
8616 }
8617 }
8618
8619 if (STRINGP (start))
8620 p = pbeg = SDATA (start);
8621 else
8622 p = pbeg = BYTE_POS_ADDR (start_byte);
8623 pend = p + (end_byte - start_byte);
8624
8625 while (p < pend && ASCII_BYTE_P (*p)) p++;
8626 while (p < pend && ASCII_BYTE_P (*(pend - 1))) pend--;
8627
8628 work_table = Fmake_char_table (Qnil, Qnil);
8629 while (p < pend)
8630 {
8631 if (ASCII_BYTE_P (*p))
8632 p++;
8633 else
8634 {
8635 c = STRING_CHAR_ADVANCE (p);
8636 if (!NILP (char_table_ref (work_table, c)))
8637 /* This character was already checked. Ignore it. */
8638 continue;
8639
8640 charset_map_loaded = 0;
8641 for (tail = coding_attrs_list; CONSP (tail);)
8642 {
8643 elt = XCAR (tail);
8644 if (NILP (elt))
8645 tail = XCDR (tail);
8646 else if (char_encodable_p (c, elt))
8647 tail = XCDR (tail);
8648 else if (CONSP (XCDR (tail)))
8649 {
8650 XSETCAR (tail, XCAR (XCDR (tail)));
8651 XSETCDR (tail, XCDR (XCDR (tail)));
8652 }
8653 else
8654 {
8655 XSETCAR (tail, Qnil);
8656 tail = XCDR (tail);
8657 }
8658 }
8659 if (charset_map_loaded)
8660 {
8661 EMACS_INT p_offset = p - pbeg, pend_offset = pend - pbeg;
8662
8663 if (STRINGP (start))
8664 pbeg = SDATA (start);
8665 else
8666 pbeg = BYTE_POS_ADDR (start_byte);
8667 p = pbeg + p_offset;
8668 pend = pbeg + pend_offset;
8669 }
8670 char_table_set (work_table, c, Qt);
8671 }
8672 }
8673
8674 safe_codings = list2 (Qraw_text, Qno_conversion);
8675 for (tail = coding_attrs_list; CONSP (tail); tail = XCDR (tail))
8676 if (! NILP (XCAR (tail)))
8677 safe_codings = Fcons (CODING_ATTR_BASE_NAME (XCAR (tail)), safe_codings);
8678
8679 return safe_codings;
8680 }
8681
8682
8683 DEFUN ("unencodable-char-position", Funencodable_char_position,
8684 Sunencodable_char_position, 3, 5, 0,
8685 doc: /*
8686 Return position of first un-encodable character in a region.
8687 START and END specify the region and CODING-SYSTEM specifies the
8688 encoding to check. Return nil if CODING-SYSTEM does encode the region.
8689
8690 If optional 4th argument COUNT is non-nil, it specifies at most how
8691 many un-encodable characters to search. In this case, the value is a
8692 list of positions.
8693
8694 If optional 5th argument STRING is non-nil, it is a string to search
8695 for un-encodable characters. In that case, START and END are indexes
8696 to the string. */)
8697 (Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object count, Lisp_Object string)
8698 {
8699 int n;
8700 struct coding_system coding;
8701 Lisp_Object attrs, charset_list, translation_table;
8702 Lisp_Object positions;
8703 int from, to;
8704 const unsigned char *p, *stop, *pend;
8705 int ascii_compatible;
8706
8707 setup_coding_system (Fcheck_coding_system (coding_system), &coding);
8708 attrs = CODING_ID_ATTRS (coding.id);
8709 if (EQ (CODING_ATTR_TYPE (attrs), Qraw_text))
8710 return Qnil;
8711 ascii_compatible = ! NILP (CODING_ATTR_ASCII_COMPAT (attrs));
8712 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
8713 translation_table = get_translation_table (attrs, 1, NULL);
8714
8715 if (NILP (string))
8716 {
8717 validate_region (&start, &end);
8718 from = XINT (start);
8719 to = XINT (end);
8720 if (NILP (BVAR (current_buffer, enable_multibyte_characters))
8721 || (ascii_compatible
8722 && (to - from) == (CHAR_TO_BYTE (to) - (CHAR_TO_BYTE (from)))))
8723 return Qnil;
8724 p = CHAR_POS_ADDR (from);
8725 pend = CHAR_POS_ADDR (to);
8726 if (from < GPT && to >= GPT)
8727 stop = GPT_ADDR;
8728 else
8729 stop = pend;
8730 }
8731 else
8732 {
8733 CHECK_STRING (string);
8734 CHECK_NATNUM (start);
8735 CHECK_NATNUM (end);
8736 from = XINT (start);
8737 to = XINT (end);
8738 if (from > to
8739 || to > SCHARS (string))
8740 args_out_of_range_3 (string, start, end);
8741 if (! STRING_MULTIBYTE (string))
8742 return Qnil;
8743 p = SDATA (string) + string_char_to_byte (string, from);
8744 stop = pend = SDATA (string) + string_char_to_byte (string, to);
8745 if (ascii_compatible && (to - from) == (pend - p))
8746 return Qnil;
8747 }
8748
8749 if (NILP (count))
8750 n = 1;
8751 else
8752 {
8753 CHECK_NATNUM (count);
8754 n = XINT (count);
8755 }
8756
8757 positions = Qnil;
8758 while (1)
8759 {
8760 int c;
8761
8762 if (ascii_compatible)
8763 while (p < stop && ASCII_BYTE_P (*p))
8764 p++, from++;
8765 if (p >= stop)
8766 {
8767 if (p >= pend)
8768 break;
8769 stop = pend;
8770 p = GAP_END_ADDR;
8771 }
8772
8773 c = STRING_CHAR_ADVANCE (p);
8774 if (! (ASCII_CHAR_P (c) && ascii_compatible)
8775 && ! char_charset (translate_char (translation_table, c),
8776 charset_list, NULL))
8777 {
8778 positions = Fcons (make_number (from), positions);
8779 n--;
8780 if (n == 0)
8781 break;
8782 }
8783
8784 from++;
8785 }
8786
8787 return (NILP (count) ? Fcar (positions) : Fnreverse (positions));
8788 }
8789
8790
8791 DEFUN ("check-coding-systems-region", Fcheck_coding_systems_region,
8792 Scheck_coding_systems_region, 3, 3, 0,
8793 doc: /* Check if the region is encodable by coding systems.
8794
8795 START and END are buffer positions specifying the region.
8796 CODING-SYSTEM-LIST is a list of coding systems to check.
8797
8798 The value is an alist ((CODING-SYSTEM POS0 POS1 ...) ...), where
8799 CODING-SYSTEM is a member of CODING-SYSTEM-LIST and can't encode the
8800 whole region, POS0, POS1, ... are buffer positions where non-encodable
8801 characters are found.
8802
8803 If all coding systems in CODING-SYSTEM-LIST can encode the region, the
8804 value is nil.
8805
8806 START may be a string. In that case, check if the string is
8807 encodable, and the value contains indices to the string instead of
8808 buffer positions. END is ignored.
8809
8810 If the current buffer (or START if it is a string) is unibyte, the value
8811 is nil. */)
8812 (Lisp_Object start, Lisp_Object end, Lisp_Object coding_system_list)
8813 {
8814 Lisp_Object list;
8815 EMACS_INT start_byte, end_byte;
8816 int pos;
8817 const unsigned char *p, *pbeg, *pend;
8818 int c;
8819 Lisp_Object tail, elt, attrs;
8820
8821 if (STRINGP (start))
8822 {
8823 if (!STRING_MULTIBYTE (start)
8824 || SCHARS (start) == SBYTES (start))
8825 return Qnil;
8826 start_byte = 0;
8827 end_byte = SBYTES (start);
8828 pos = 0;
8829 }
8830 else
8831 {
8832 CHECK_NUMBER_COERCE_MARKER (start);
8833 CHECK_NUMBER_COERCE_MARKER (end);
8834 if (XINT (start) < BEG || XINT (end) > Z || XINT (start) > XINT (end))
8835 args_out_of_range (start, end);
8836 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
8837 return Qnil;
8838 start_byte = CHAR_TO_BYTE (XINT (start));
8839 end_byte = CHAR_TO_BYTE (XINT (end));
8840 if (XINT (end) - XINT (start) == end_byte - start_byte)
8841 return Qnil;
8842
8843 if (XINT (start) < GPT && XINT (end) > GPT)
8844 {
8845 if ((GPT - XINT (start)) < (XINT (end) - GPT))
8846 move_gap_both (XINT (start), start_byte);
8847 else
8848 move_gap_both (XINT (end), end_byte);
8849 }
8850 pos = XINT (start);
8851 }
8852
8853 list = Qnil;
8854 for (tail = coding_system_list; CONSP (tail); tail = XCDR (tail))
8855 {
8856 elt = XCAR (tail);
8857 attrs = AREF (CODING_SYSTEM_SPEC (elt), 0);
8858 ASET (attrs, coding_attr_trans_tbl,
8859 get_translation_table (attrs, 1, NULL));
8860 list = Fcons (Fcons (elt, Fcons (attrs, Qnil)), list);
8861 }
8862
8863 if (STRINGP (start))
8864 p = pbeg = SDATA (start);
8865 else
8866 p = pbeg = BYTE_POS_ADDR (start_byte);
8867 pend = p + (end_byte - start_byte);
8868
8869 while (p < pend && ASCII_BYTE_P (*p)) p++, pos++;
8870 while (p < pend && ASCII_BYTE_P (*(pend - 1))) pend--;
8871
8872 while (p < pend)
8873 {
8874 if (ASCII_BYTE_P (*p))
8875 p++;
8876 else
8877 {
8878 c = STRING_CHAR_ADVANCE (p);
8879
8880 charset_map_loaded = 0;
8881 for (tail = list; CONSP (tail); tail = XCDR (tail))
8882 {
8883 elt = XCDR (XCAR (tail));
8884 if (! char_encodable_p (c, XCAR (elt)))
8885 XSETCDR (elt, Fcons (make_number (pos), XCDR (elt)));
8886 }
8887 if (charset_map_loaded)
8888 {
8889 EMACS_INT p_offset = p - pbeg, pend_offset = pend - pbeg;
8890
8891 if (STRINGP (start))
8892 pbeg = SDATA (start);
8893 else
8894 pbeg = BYTE_POS_ADDR (start_byte);
8895 p = pbeg + p_offset;
8896 pend = pbeg + pend_offset;
8897 }
8898 }
8899 pos++;
8900 }
8901
8902 tail = list;
8903 list = Qnil;
8904 for (; CONSP (tail); tail = XCDR (tail))
8905 {
8906 elt = XCAR (tail);
8907 if (CONSP (XCDR (XCDR (elt))))
8908 list = Fcons (Fcons (XCAR (elt), Fnreverse (XCDR (XCDR (elt)))),
8909 list);
8910 }
8911
8912 return list;
8913 }
8914
8915
8916 static Lisp_Object
8917 code_convert_region (Lisp_Object start, Lisp_Object end,
8918 Lisp_Object coding_system, Lisp_Object dst_object,
8919 int encodep, int norecord)
8920 {
8921 struct coding_system coding;
8922 EMACS_INT from, from_byte, to, to_byte;
8923 Lisp_Object src_object;
8924
8925 CHECK_NUMBER_COERCE_MARKER (start);
8926 CHECK_NUMBER_COERCE_MARKER (end);
8927 if (NILP (coding_system))
8928 coding_system = Qno_conversion;
8929 else
8930 CHECK_CODING_SYSTEM (coding_system);
8931 src_object = Fcurrent_buffer ();
8932 if (NILP (dst_object))
8933 dst_object = src_object;
8934 else if (! EQ (dst_object, Qt))
8935 CHECK_BUFFER (dst_object);
8936
8937 validate_region (&start, &end);
8938 from = XFASTINT (start);
8939 from_byte = CHAR_TO_BYTE (from);
8940 to = XFASTINT (end);
8941 to_byte = CHAR_TO_BYTE (to);
8942
8943 setup_coding_system (coding_system, &coding);
8944 coding.mode |= CODING_MODE_LAST_BLOCK;
8945
8946 if (encodep)
8947 encode_coding_object (&coding, src_object, from, from_byte, to, to_byte,
8948 dst_object);
8949 else
8950 decode_coding_object (&coding, src_object, from, from_byte, to, to_byte,
8951 dst_object);
8952 if (! norecord)
8953 Vlast_coding_system_used = CODING_ID_NAME (coding.id);
8954
8955 return (BUFFERP (dst_object)
8956 ? make_number (coding.produced_char)
8957 : coding.dst_object);
8958 }
8959
8960
8961 DEFUN ("decode-coding-region", Fdecode_coding_region, Sdecode_coding_region,
8962 3, 4, "r\nzCoding system: ",
8963 doc: /* Decode the current region from the specified coding system.
8964 When called from a program, takes four arguments:
8965 START, END, CODING-SYSTEM, and DESTINATION.
8966 START and END are buffer positions.
8967
8968 Optional 4th arguments DESTINATION specifies where the decoded text goes.
8969 If nil, the region between START and END is replaced by the decoded text.
8970 If buffer, the decoded text is inserted in that buffer after point (point
8971 does not move).
8972 In those cases, the length of the decoded text is returned.
8973 If DESTINATION is t, the decoded text is returned.
8974
8975 This function sets `last-coding-system-used' to the precise coding system
8976 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
8977 not fully specified.) */)
8978 (Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object destination)
8979 {
8980 return code_convert_region (start, end, coding_system, destination, 0, 0);
8981 }
8982
8983 DEFUN ("encode-coding-region", Fencode_coding_region, Sencode_coding_region,
8984 3, 4, "r\nzCoding system: ",
8985 doc: /* Encode the current region by specified coding system.
8986 When called from a program, takes four arguments:
8987 START, END, CODING-SYSTEM and DESTINATION.
8988 START and END are buffer positions.
8989
8990 Optional 4th arguments DESTINATION specifies where the encoded text goes.
8991 If nil, the region between START and END is replace by the encoded text.
8992 If buffer, the encoded text is inserted in that buffer after point (point
8993 does not move).
8994 In those cases, the length of the encoded text is returned.
8995 If DESTINATION is t, the encoded text is returned.
8996
8997 This function sets `last-coding-system-used' to the precise coding system
8998 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
8999 not fully specified.) */)
9000 (Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object destination)
9001 {
9002 return code_convert_region (start, end, coding_system, destination, 1, 0);
9003 }
9004
9005 Lisp_Object
9006 code_convert_string (Lisp_Object string, Lisp_Object coding_system,
9007 Lisp_Object dst_object, int encodep, int nocopy, int norecord)
9008 {
9009 struct coding_system coding;
9010 EMACS_INT chars, bytes;
9011
9012 CHECK_STRING (string);
9013 if (NILP (coding_system))
9014 {
9015 if (! norecord)
9016 Vlast_coding_system_used = Qno_conversion;
9017 if (NILP (dst_object))
9018 return (nocopy ? Fcopy_sequence (string) : string);
9019 }
9020
9021 if (NILP (coding_system))
9022 coding_system = Qno_conversion;
9023 else
9024 CHECK_CODING_SYSTEM (coding_system);
9025 if (NILP (dst_object))
9026 dst_object = Qt;
9027 else if (! EQ (dst_object, Qt))
9028 CHECK_BUFFER (dst_object);
9029
9030 setup_coding_system (coding_system, &coding);
9031 coding.mode |= CODING_MODE_LAST_BLOCK;
9032 chars = SCHARS (string);
9033 bytes = SBYTES (string);
9034 if (encodep)
9035 encode_coding_object (&coding, string, 0, 0, chars, bytes, dst_object);
9036 else
9037 decode_coding_object (&coding, string, 0, 0, chars, bytes, dst_object);
9038 if (! norecord)
9039 Vlast_coding_system_used = CODING_ID_NAME (coding.id);
9040
9041 return (BUFFERP (dst_object)
9042 ? make_number (coding.produced_char)
9043 : coding.dst_object);
9044 }
9045
9046
9047 /* Encode or decode STRING according to CODING_SYSTEM.
9048 Do not set Vlast_coding_system_used.
9049
9050 This function is called only from macros DECODE_FILE and
9051 ENCODE_FILE, thus we ignore character composition. */
9052
9053 Lisp_Object
9054 code_convert_string_norecord (Lisp_Object string, Lisp_Object coding_system,
9055 int encodep)
9056 {
9057 return code_convert_string (string, coding_system, Qt, encodep, 0, 1);
9058 }
9059
9060
9061 DEFUN ("decode-coding-string", Fdecode_coding_string, Sdecode_coding_string,
9062 2, 4, 0,
9063 doc: /* Decode STRING which is encoded in CODING-SYSTEM, and return the result.
9064
9065 Optional third arg NOCOPY non-nil means it is OK to return STRING itself
9066 if the decoding operation is trivial.
9067
9068 Optional fourth arg BUFFER non-nil means that the decoded text is
9069 inserted in that buffer after point (point does not move). In this
9070 case, the return value is the length of the decoded text.
9071
9072 This function sets `last-coding-system-used' to the precise coding system
9073 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
9074 not fully specified.) */)
9075 (Lisp_Object string, Lisp_Object coding_system, Lisp_Object nocopy, Lisp_Object buffer)
9076 {
9077 return code_convert_string (string, coding_system, buffer,
9078 0, ! NILP (nocopy), 0);
9079 }
9080
9081 DEFUN ("encode-coding-string", Fencode_coding_string, Sencode_coding_string,
9082 2, 4, 0,
9083 doc: /* Encode STRING to CODING-SYSTEM, and return the result.
9084
9085 Optional third arg NOCOPY non-nil means it is OK to return STRING
9086 itself if the encoding operation is trivial.
9087
9088 Optional fourth arg BUFFER non-nil means that the encoded text is
9089 inserted in that buffer after point (point does not move). In this
9090 case, the return value is the length of the encoded text.
9091
9092 This function sets `last-coding-system-used' to the precise coding system
9093 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
9094 not fully specified.) */)
9095 (Lisp_Object string, Lisp_Object coding_system, Lisp_Object nocopy, Lisp_Object buffer)
9096 {
9097 return code_convert_string (string, coding_system, buffer,
9098 1, ! NILP (nocopy), 0);
9099 }
9100
9101 \f
9102 DEFUN ("decode-sjis-char", Fdecode_sjis_char, Sdecode_sjis_char, 1, 1, 0,
9103 doc: /* Decode a Japanese character which has CODE in shift_jis encoding.
9104 Return the corresponding character. */)
9105 (Lisp_Object code)
9106 {
9107 Lisp_Object spec, attrs, val;
9108 struct charset *charset_roman, *charset_kanji, *charset_kana, *charset;
9109 EMACS_INT ch;
9110 int c;
9111
9112 CHECK_NATNUM (code);
9113 ch = XFASTINT (code);
9114 CHECK_CODING_SYSTEM_GET_SPEC (Vsjis_coding_system, spec);
9115 attrs = AREF (spec, 0);
9116
9117 if (ASCII_BYTE_P (ch)
9118 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9119 return code;
9120
9121 val = CODING_ATTR_CHARSET_LIST (attrs);
9122 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
9123 charset_kana = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
9124 charset_kanji = CHARSET_FROM_ID (XINT (XCAR (val)));
9125
9126 if (ch <= 0x7F)
9127 {
9128 c = ch;
9129 charset = charset_roman;
9130 }
9131 else if (ch >= 0xA0 && ch < 0xDF)
9132 {
9133 c = ch - 0x80;
9134 charset = charset_kana;
9135 }
9136 else
9137 {
9138 EMACS_INT c1 = ch >> 8;
9139 int c2 = ch & 0xFF;
9140
9141 if (c1 < 0x81 || (c1 > 0x9F && c1 < 0xE0) || c1 > 0xEF
9142 || c2 < 0x40 || c2 == 0x7F || c2 > 0xFC)
9143 error ("Invalid code: %"pI"d", ch);
9144 c = ch;
9145 SJIS_TO_JIS (c);
9146 charset = charset_kanji;
9147 }
9148 c = DECODE_CHAR (charset, c);
9149 if (c < 0)
9150 error ("Invalid code: %"pI"d", ch);
9151 return make_number (c);
9152 }
9153
9154
9155 DEFUN ("encode-sjis-char", Fencode_sjis_char, Sencode_sjis_char, 1, 1, 0,
9156 doc: /* Encode a Japanese character CH to shift_jis encoding.
9157 Return the corresponding code in SJIS. */)
9158 (Lisp_Object ch)
9159 {
9160 Lisp_Object spec, attrs, charset_list;
9161 int c;
9162 struct charset *charset;
9163 unsigned code;
9164
9165 CHECK_CHARACTER (ch);
9166 c = XFASTINT (ch);
9167 CHECK_CODING_SYSTEM_GET_SPEC (Vsjis_coding_system, spec);
9168 attrs = AREF (spec, 0);
9169
9170 if (ASCII_CHAR_P (c)
9171 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9172 return ch;
9173
9174 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
9175 charset = char_charset (c, charset_list, &code);
9176 if (code == CHARSET_INVALID_CODE (charset))
9177 error ("Can't encode by shift_jis encoding: %c", c);
9178 JIS_TO_SJIS (code);
9179
9180 return make_number (code);
9181 }
9182
9183 DEFUN ("decode-big5-char", Fdecode_big5_char, Sdecode_big5_char, 1, 1, 0,
9184 doc: /* Decode a Big5 character which has CODE in BIG5 coding system.
9185 Return the corresponding character. */)
9186 (Lisp_Object code)
9187 {
9188 Lisp_Object spec, attrs, val;
9189 struct charset *charset_roman, *charset_big5, *charset;
9190 EMACS_INT ch;
9191 int c;
9192
9193 CHECK_NATNUM (code);
9194 ch = XFASTINT (code);
9195 CHECK_CODING_SYSTEM_GET_SPEC (Vbig5_coding_system, spec);
9196 attrs = AREF (spec, 0);
9197
9198 if (ASCII_BYTE_P (ch)
9199 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9200 return code;
9201
9202 val = CODING_ATTR_CHARSET_LIST (attrs);
9203 charset_roman = CHARSET_FROM_ID (XINT (XCAR (val))), val = XCDR (val);
9204 charset_big5 = CHARSET_FROM_ID (XINT (XCAR (val)));
9205
9206 if (ch <= 0x7F)
9207 {
9208 c = ch;
9209 charset = charset_roman;
9210 }
9211 else
9212 {
9213 EMACS_INT b1 = ch >> 8;
9214 int b2 = ch & 0x7F;
9215 if (b1 < 0xA1 || b1 > 0xFE
9216 || b2 < 0x40 || (b2 > 0x7E && b2 < 0xA1) || b2 > 0xFE)
9217 error ("Invalid code: %"pI"d", ch);
9218 c = ch;
9219 charset = charset_big5;
9220 }
9221 c = DECODE_CHAR (charset, c);
9222 if (c < 0)
9223 error ("Invalid code: %"pI"d", ch);
9224 return make_number (c);
9225 }
9226
9227 DEFUN ("encode-big5-char", Fencode_big5_char, Sencode_big5_char, 1, 1, 0,
9228 doc: /* Encode the Big5 character CH to BIG5 coding system.
9229 Return the corresponding character code in Big5. */)
9230 (Lisp_Object ch)
9231 {
9232 Lisp_Object spec, attrs, charset_list;
9233 struct charset *charset;
9234 int c;
9235 unsigned code;
9236
9237 CHECK_CHARACTER (ch);
9238 c = XFASTINT (ch);
9239 CHECK_CODING_SYSTEM_GET_SPEC (Vbig5_coding_system, spec);
9240 attrs = AREF (spec, 0);
9241 if (ASCII_CHAR_P (c)
9242 && ! NILP (CODING_ATTR_ASCII_COMPAT (attrs)))
9243 return ch;
9244
9245 charset_list = CODING_ATTR_CHARSET_LIST (attrs);
9246 charset = char_charset (c, charset_list, &code);
9247 if (code == CHARSET_INVALID_CODE (charset))
9248 error ("Can't encode by Big5 encoding: %c", c);
9249
9250 return make_number (code);
9251 }
9252
9253 \f
9254 DEFUN ("set-terminal-coding-system-internal", Fset_terminal_coding_system_internal,
9255 Sset_terminal_coding_system_internal, 1, 2, 0,
9256 doc: /* Internal use only. */)
9257 (Lisp_Object coding_system, Lisp_Object terminal)
9258 {
9259 struct terminal *term = get_terminal (terminal, 1);
9260 struct coding_system *terminal_coding = TERMINAL_TERMINAL_CODING (term);
9261 CHECK_SYMBOL (coding_system);
9262 setup_coding_system (Fcheck_coding_system (coding_system), terminal_coding);
9263 /* We had better not send unsafe characters to terminal. */
9264 terminal_coding->mode |= CODING_MODE_SAFE_ENCODING;
9265 /* Character composition should be disabled. */
9266 terminal_coding->common_flags &= ~CODING_ANNOTATE_COMPOSITION_MASK;
9267 terminal_coding->src_multibyte = 1;
9268 terminal_coding->dst_multibyte = 0;
9269 if (terminal_coding->common_flags & CODING_REQUIRE_ENCODING_MASK)
9270 term->charset_list = coding_charset_list (terminal_coding);
9271 else
9272 term->charset_list = Fcons (make_number (charset_ascii), Qnil);
9273 return Qnil;
9274 }
9275
9276 DEFUN ("set-safe-terminal-coding-system-internal",
9277 Fset_safe_terminal_coding_system_internal,
9278 Sset_safe_terminal_coding_system_internal, 1, 1, 0,
9279 doc: /* Internal use only. */)
9280 (Lisp_Object coding_system)
9281 {
9282 CHECK_SYMBOL (coding_system);
9283 setup_coding_system (Fcheck_coding_system (coding_system),
9284 &safe_terminal_coding);
9285 /* Character composition should be disabled. */
9286 safe_terminal_coding.common_flags &= ~CODING_ANNOTATE_COMPOSITION_MASK;
9287 safe_terminal_coding.src_multibyte = 1;
9288 safe_terminal_coding.dst_multibyte = 0;
9289 return Qnil;
9290 }
9291
9292 DEFUN ("terminal-coding-system", Fterminal_coding_system,
9293 Sterminal_coding_system, 0, 1, 0,
9294 doc: /* Return coding system specified for terminal output on the given terminal.
9295 TERMINAL may be a terminal object, a frame, or nil for the selected
9296 frame's terminal device. */)
9297 (Lisp_Object terminal)
9298 {
9299 struct coding_system *terminal_coding
9300 = TERMINAL_TERMINAL_CODING (get_terminal (terminal, 1));
9301 Lisp_Object coding_system = CODING_ID_NAME (terminal_coding->id);
9302
9303 /* For backward compatibility, return nil if it is `undecided'. */
9304 return (! EQ (coding_system, Qundecided) ? coding_system : Qnil);
9305 }
9306
9307 DEFUN ("set-keyboard-coding-system-internal", Fset_keyboard_coding_system_internal,
9308 Sset_keyboard_coding_system_internal, 1, 2, 0,
9309 doc: /* Internal use only. */)
9310 (Lisp_Object coding_system, Lisp_Object terminal)
9311 {
9312 struct terminal *t = get_terminal (terminal, 1);
9313 CHECK_SYMBOL (coding_system);
9314 if (NILP (coding_system))
9315 coding_system = Qno_conversion;
9316 else
9317 Fcheck_coding_system (coding_system);
9318 setup_coding_system (coding_system, TERMINAL_KEYBOARD_CODING (t));
9319 /* Character composition should be disabled. */
9320 TERMINAL_KEYBOARD_CODING (t)->common_flags
9321 &= ~CODING_ANNOTATE_COMPOSITION_MASK;
9322 return Qnil;
9323 }
9324
9325 DEFUN ("keyboard-coding-system",
9326 Fkeyboard_coding_system, Skeyboard_coding_system, 0, 1, 0,
9327 doc: /* Return coding system specified for decoding keyboard input. */)
9328 (Lisp_Object terminal)
9329 {
9330 return CODING_ID_NAME (TERMINAL_KEYBOARD_CODING
9331 (get_terminal (terminal, 1))->id);
9332 }
9333
9334 \f
9335 DEFUN ("find-operation-coding-system", Ffind_operation_coding_system,
9336 Sfind_operation_coding_system, 1, MANY, 0,
9337 doc: /* Choose a coding system for an operation based on the target name.
9338 The value names a pair of coding systems: (DECODING-SYSTEM . ENCODING-SYSTEM).
9339 DECODING-SYSTEM is the coding system to use for decoding
9340 \(in case OPERATION does decoding), and ENCODING-SYSTEM is the coding system
9341 for encoding (in case OPERATION does encoding).
9342
9343 The first argument OPERATION specifies an I/O primitive:
9344 For file I/O, `insert-file-contents' or `write-region'.
9345 For process I/O, `call-process', `call-process-region', or `start-process'.
9346 For network I/O, `open-network-stream'.
9347
9348 The remaining arguments should be the same arguments that were passed
9349 to the primitive. Depending on which primitive, one of those arguments
9350 is selected as the TARGET. For example, if OPERATION does file I/O,
9351 whichever argument specifies the file name is TARGET.
9352
9353 TARGET has a meaning which depends on OPERATION:
9354 For file I/O, TARGET is a file name (except for the special case below).
9355 For process I/O, TARGET is a process name.
9356 For network I/O, TARGET is a service name or a port number.
9357
9358 This function looks up what is specified for TARGET in
9359 `file-coding-system-alist', `process-coding-system-alist',
9360 or `network-coding-system-alist' depending on OPERATION.
9361 They may specify a coding system, a cons of coding systems,
9362 or a function symbol to call.
9363 In the last case, we call the function with one argument,
9364 which is a list of all the arguments given to this function.
9365 If the function can't decide a coding system, it can return
9366 `undecided' so that the normal code-detection is performed.
9367
9368 If OPERATION is `insert-file-contents', the argument corresponding to
9369 TARGET may be a cons (FILENAME . BUFFER). In that case, FILENAME is a
9370 file name to look up, and BUFFER is a buffer that contains the file's
9371 contents (not yet decoded). If `file-coding-system-alist' specifies a
9372 function to call for FILENAME, that function should examine the
9373 contents of BUFFER instead of reading the file.
9374
9375 usage: (find-operation-coding-system OPERATION ARGUMENTS...) */)
9376 (ptrdiff_t nargs, Lisp_Object *args)
9377 {
9378 Lisp_Object operation, target_idx, target, val;
9379 register Lisp_Object chain;
9380
9381 if (nargs < 2)
9382 error ("Too few arguments");
9383 operation = args[0];
9384 if (!SYMBOLP (operation)
9385 || !NATNUMP (target_idx = Fget (operation, Qtarget_idx)))
9386 error ("Invalid first argument");
9387 if (nargs < 1 + XFASTINT (target_idx))
9388 error ("Too few arguments for operation `%s'",
9389 SDATA (SYMBOL_NAME (operation)));
9390 target = args[XFASTINT (target_idx) + 1];
9391 if (!(STRINGP (target)
9392 || (EQ (operation, Qinsert_file_contents) && CONSP (target)
9393 && STRINGP (XCAR (target)) && BUFFERP (XCDR (target)))
9394 || (EQ (operation, Qopen_network_stream) && INTEGERP (target))))
9395 error ("Invalid argument %"pI"d of operation `%s'",
9396 XFASTINT (target_idx) + 1, SDATA (SYMBOL_NAME (operation)));
9397 if (CONSP (target))
9398 target = XCAR (target);
9399
9400 chain = ((EQ (operation, Qinsert_file_contents)
9401 || EQ (operation, Qwrite_region))
9402 ? Vfile_coding_system_alist
9403 : (EQ (operation, Qopen_network_stream)
9404 ? Vnetwork_coding_system_alist
9405 : Vprocess_coding_system_alist));
9406 if (NILP (chain))
9407 return Qnil;
9408
9409 for (; CONSP (chain); chain = XCDR (chain))
9410 {
9411 Lisp_Object elt;
9412
9413 elt = XCAR (chain);
9414 if (CONSP (elt)
9415 && ((STRINGP (target)
9416 && STRINGP (XCAR (elt))
9417 && fast_string_match (XCAR (elt), target) >= 0)
9418 || (INTEGERP (target) && EQ (target, XCAR (elt)))))
9419 {
9420 val = XCDR (elt);
9421 /* Here, if VAL is both a valid coding system and a valid
9422 function symbol, we return VAL as a coding system. */
9423 if (CONSP (val))
9424 return val;
9425 if (! SYMBOLP (val))
9426 return Qnil;
9427 if (! NILP (Fcoding_system_p (val)))
9428 return Fcons (val, val);
9429 if (! NILP (Ffboundp (val)))
9430 {
9431 /* We use call1 rather than safe_call1
9432 so as to get bug reports about functions called here
9433 which don't handle the current interface. */
9434 val = call1 (val, Flist (nargs, args));
9435 if (CONSP (val))
9436 return val;
9437 if (SYMBOLP (val) && ! NILP (Fcoding_system_p (val)))
9438 return Fcons (val, val);
9439 }
9440 return Qnil;
9441 }
9442 }
9443 return Qnil;
9444 }
9445
9446 DEFUN ("set-coding-system-priority", Fset_coding_system_priority,
9447 Sset_coding_system_priority, 0, MANY, 0,
9448 doc: /* Assign higher priority to the coding systems given as arguments.
9449 If multiple coding systems belong to the same category,
9450 all but the first one are ignored.
9451
9452 usage: (set-coding-system-priority &rest coding-systems) */)
9453 (ptrdiff_t nargs, Lisp_Object *args)
9454 {
9455 ptrdiff_t i, j;
9456 int changed[coding_category_max];
9457 enum coding_category priorities[coding_category_max];
9458
9459 memset (changed, 0, sizeof changed);
9460
9461 for (i = j = 0; i < nargs; i++)
9462 {
9463 enum coding_category category;
9464 Lisp_Object spec, attrs;
9465
9466 CHECK_CODING_SYSTEM_GET_SPEC (args[i], spec);
9467 attrs = AREF (spec, 0);
9468 category = XINT (CODING_ATTR_CATEGORY (attrs));
9469 if (changed[category])
9470 /* Ignore this coding system because a coding system of the
9471 same category already had a higher priority. */
9472 continue;
9473 changed[category] = 1;
9474 priorities[j++] = category;
9475 if (coding_categories[category].id >= 0
9476 && ! EQ (args[i], CODING_ID_NAME (coding_categories[category].id)))
9477 setup_coding_system (args[i], &coding_categories[category]);
9478 Fset (AREF (Vcoding_category_table, category), args[i]);
9479 }
9480
9481 /* Now we have decided top J priorities. Reflect the order of the
9482 original priorities to the remaining priorities. */
9483
9484 for (i = j, j = 0; i < coding_category_max; i++, j++)
9485 {
9486 while (j < coding_category_max
9487 && changed[coding_priorities[j]])
9488 j++;
9489 if (j == coding_category_max)
9490 abort ();
9491 priorities[i] = coding_priorities[j];
9492 }
9493
9494 memcpy (coding_priorities, priorities, sizeof priorities);
9495
9496 /* Update `coding-category-list'. */
9497 Vcoding_category_list = Qnil;
9498 for (i = coding_category_max; i-- > 0; )
9499 Vcoding_category_list
9500 = Fcons (AREF (Vcoding_category_table, priorities[i]),
9501 Vcoding_category_list);
9502
9503 return Qnil;
9504 }
9505
9506 DEFUN ("coding-system-priority-list", Fcoding_system_priority_list,
9507 Scoding_system_priority_list, 0, 1, 0,
9508 doc: /* Return a list of coding systems ordered by their priorities.
9509 The list contains a subset of coding systems; i.e. coding systems
9510 assigned to each coding category (see `coding-category-list').
9511
9512 HIGHESTP non-nil means just return the highest priority one. */)
9513 (Lisp_Object highestp)
9514 {
9515 int i;
9516 Lisp_Object val;
9517
9518 for (i = 0, val = Qnil; i < coding_category_max; i++)
9519 {
9520 enum coding_category category = coding_priorities[i];
9521 int id = coding_categories[category].id;
9522 Lisp_Object attrs;
9523
9524 if (id < 0)
9525 continue;
9526 attrs = CODING_ID_ATTRS (id);
9527 if (! NILP (highestp))
9528 return CODING_ATTR_BASE_NAME (attrs);
9529 val = Fcons (CODING_ATTR_BASE_NAME (attrs), val);
9530 }
9531 return Fnreverse (val);
9532 }
9533
9534 static const char *const suffixes[] = { "-unix", "-dos", "-mac" };
9535
9536 static Lisp_Object
9537 make_subsidiaries (Lisp_Object base)
9538 {
9539 Lisp_Object subsidiaries;
9540 ptrdiff_t base_name_len = SBYTES (SYMBOL_NAME (base));
9541 char *buf = (char *) alloca (base_name_len + 6);
9542 int i;
9543
9544 memcpy (buf, SDATA (SYMBOL_NAME (base)), base_name_len);
9545 subsidiaries = Fmake_vector (make_number (3), Qnil);
9546 for (i = 0; i < 3; i++)
9547 {
9548 strcpy (buf + base_name_len, suffixes[i]);
9549 ASET (subsidiaries, i, intern (buf));
9550 }
9551 return subsidiaries;
9552 }
9553
9554
9555 DEFUN ("define-coding-system-internal", Fdefine_coding_system_internal,
9556 Sdefine_coding_system_internal, coding_arg_max, MANY, 0,
9557 doc: /* For internal use only.
9558 usage: (define-coding-system-internal ...) */)
9559 (ptrdiff_t nargs, Lisp_Object *args)
9560 {
9561 Lisp_Object name;
9562 Lisp_Object spec_vec; /* [ ATTRS ALIASE EOL_TYPE ] */
9563 Lisp_Object attrs; /* Vector of attributes. */
9564 Lisp_Object eol_type;
9565 Lisp_Object aliases;
9566 Lisp_Object coding_type, charset_list, safe_charsets;
9567 enum coding_category category;
9568 Lisp_Object tail, val;
9569 int max_charset_id = 0;
9570 int i;
9571
9572 if (nargs < coding_arg_max)
9573 goto short_args;
9574
9575 attrs = Fmake_vector (make_number (coding_attr_last_index), Qnil);
9576
9577 name = args[coding_arg_name];
9578 CHECK_SYMBOL (name);
9579 CODING_ATTR_BASE_NAME (attrs) = name;
9580
9581 val = args[coding_arg_mnemonic];
9582 if (! STRINGP (val))
9583 CHECK_CHARACTER (val);
9584 CODING_ATTR_MNEMONIC (attrs) = val;
9585
9586 coding_type = args[coding_arg_coding_type];
9587 CHECK_SYMBOL (coding_type);
9588 CODING_ATTR_TYPE (attrs) = coding_type;
9589
9590 charset_list = args[coding_arg_charset_list];
9591 if (SYMBOLP (charset_list))
9592 {
9593 if (EQ (charset_list, Qiso_2022))
9594 {
9595 if (! EQ (coding_type, Qiso_2022))
9596 error ("Invalid charset-list");
9597 charset_list = Viso_2022_charset_list;
9598 }
9599 else if (EQ (charset_list, Qemacs_mule))
9600 {
9601 if (! EQ (coding_type, Qemacs_mule))
9602 error ("Invalid charset-list");
9603 charset_list = Vemacs_mule_charset_list;
9604 }
9605 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
9606 if (max_charset_id < XFASTINT (XCAR (tail)))
9607 max_charset_id = XFASTINT (XCAR (tail));
9608 }
9609 else
9610 {
9611 charset_list = Fcopy_sequence (charset_list);
9612 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
9613 {
9614 struct charset *charset;
9615
9616 val = XCAR (tail);
9617 CHECK_CHARSET_GET_CHARSET (val, charset);
9618 if (EQ (coding_type, Qiso_2022)
9619 ? CHARSET_ISO_FINAL (charset) < 0
9620 : EQ (coding_type, Qemacs_mule)
9621 ? CHARSET_EMACS_MULE_ID (charset) < 0
9622 : 0)
9623 error ("Can't handle charset `%s'",
9624 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9625
9626 XSETCAR (tail, make_number (charset->id));
9627 if (max_charset_id < charset->id)
9628 max_charset_id = charset->id;
9629 }
9630 }
9631 CODING_ATTR_CHARSET_LIST (attrs) = charset_list;
9632
9633 safe_charsets = make_uninit_string (max_charset_id + 1);
9634 memset (SDATA (safe_charsets), 255, max_charset_id + 1);
9635 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
9636 SSET (safe_charsets, XFASTINT (XCAR (tail)), 0);
9637 CODING_ATTR_SAFE_CHARSETS (attrs) = safe_charsets;
9638
9639 CODING_ATTR_ASCII_COMPAT (attrs) = args[coding_arg_ascii_compatible_p];
9640
9641 val = args[coding_arg_decode_translation_table];
9642 if (! CHAR_TABLE_P (val) && ! CONSP (val))
9643 CHECK_SYMBOL (val);
9644 CODING_ATTR_DECODE_TBL (attrs) = val;
9645
9646 val = args[coding_arg_encode_translation_table];
9647 if (! CHAR_TABLE_P (val) && ! CONSP (val))
9648 CHECK_SYMBOL (val);
9649 CODING_ATTR_ENCODE_TBL (attrs) = val;
9650
9651 val = args[coding_arg_post_read_conversion];
9652 CHECK_SYMBOL (val);
9653 CODING_ATTR_POST_READ (attrs) = val;
9654
9655 val = args[coding_arg_pre_write_conversion];
9656 CHECK_SYMBOL (val);
9657 CODING_ATTR_PRE_WRITE (attrs) = val;
9658
9659 val = args[coding_arg_default_char];
9660 if (NILP (val))
9661 CODING_ATTR_DEFAULT_CHAR (attrs) = make_number (' ');
9662 else
9663 {
9664 CHECK_CHARACTER (val);
9665 CODING_ATTR_DEFAULT_CHAR (attrs) = val;
9666 }
9667
9668 val = args[coding_arg_for_unibyte];
9669 CODING_ATTR_FOR_UNIBYTE (attrs) = NILP (val) ? Qnil : Qt;
9670
9671 val = args[coding_arg_plist];
9672 CHECK_LIST (val);
9673 CODING_ATTR_PLIST (attrs) = val;
9674
9675 if (EQ (coding_type, Qcharset))
9676 {
9677 /* Generate a lisp vector of 256 elements. Each element is nil,
9678 integer, or a list of charset IDs.
9679
9680 If Nth element is nil, the byte code N is invalid in this
9681 coding system.
9682
9683 If Nth element is a number NUM, N is the first byte of a
9684 charset whose ID is NUM.
9685
9686 If Nth element is a list of charset IDs, N is the first byte
9687 of one of them. The list is sorted by dimensions of the
9688 charsets. A charset of smaller dimension comes first. */
9689 val = Fmake_vector (make_number (256), Qnil);
9690
9691 for (tail = charset_list; CONSP (tail); tail = XCDR (tail))
9692 {
9693 struct charset *charset = CHARSET_FROM_ID (XFASTINT (XCAR (tail)));
9694 int dim = CHARSET_DIMENSION (charset);
9695 int idx = (dim - 1) * 4;
9696
9697 if (CHARSET_ASCII_COMPATIBLE_P (charset))
9698 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9699
9700 for (i = charset->code_space[idx];
9701 i <= charset->code_space[idx + 1]; i++)
9702 {
9703 Lisp_Object tmp, tmp2;
9704 int dim2;
9705
9706 tmp = AREF (val, i);
9707 if (NILP (tmp))
9708 tmp = XCAR (tail);
9709 else if (NUMBERP (tmp))
9710 {
9711 dim2 = CHARSET_DIMENSION (CHARSET_FROM_ID (XFASTINT (tmp)));
9712 if (dim < dim2)
9713 tmp = Fcons (XCAR (tail), Fcons (tmp, Qnil));
9714 else
9715 tmp = Fcons (tmp, Fcons (XCAR (tail), Qnil));
9716 }
9717 else
9718 {
9719 for (tmp2 = tmp; CONSP (tmp2); tmp2 = XCDR (tmp2))
9720 {
9721 dim2 = CHARSET_DIMENSION (CHARSET_FROM_ID (XFASTINT (XCAR (tmp2))));
9722 if (dim < dim2)
9723 break;
9724 }
9725 if (NILP (tmp2))
9726 tmp = nconc2 (tmp, Fcons (XCAR (tail), Qnil));
9727 else
9728 {
9729 XSETCDR (tmp2, Fcons (XCAR (tmp2), XCDR (tmp2)));
9730 XSETCAR (tmp2, XCAR (tail));
9731 }
9732 }
9733 ASET (val, i, tmp);
9734 }
9735 }
9736 ASET (attrs, coding_attr_charset_valids, val);
9737 category = coding_category_charset;
9738 }
9739 else if (EQ (coding_type, Qccl))
9740 {
9741 Lisp_Object valids;
9742
9743 if (nargs < coding_arg_ccl_max)
9744 goto short_args;
9745
9746 val = args[coding_arg_ccl_decoder];
9747 CHECK_CCL_PROGRAM (val);
9748 if (VECTORP (val))
9749 val = Fcopy_sequence (val);
9750 ASET (attrs, coding_attr_ccl_decoder, val);
9751
9752 val = args[coding_arg_ccl_encoder];
9753 CHECK_CCL_PROGRAM (val);
9754 if (VECTORP (val))
9755 val = Fcopy_sequence (val);
9756 ASET (attrs, coding_attr_ccl_encoder, val);
9757
9758 val = args[coding_arg_ccl_valids];
9759 valids = Fmake_string (make_number (256), make_number (0));
9760 for (tail = val; !NILP (tail); tail = Fcdr (tail))
9761 {
9762 int from, to;
9763
9764 val = Fcar (tail);
9765 if (INTEGERP (val))
9766 {
9767 from = to = XINT (val);
9768 if (from < 0 || from > 255)
9769 args_out_of_range_3 (val, make_number (0), make_number (255));
9770 }
9771 else
9772 {
9773 CHECK_CONS (val);
9774 CHECK_NATNUM_CAR (val);
9775 CHECK_NATNUM_CDR (val);
9776 from = XINT (XCAR (val));
9777 if (from > 255)
9778 args_out_of_range_3 (XCAR (val),
9779 make_number (0), make_number (255));
9780 to = XINT (XCDR (val));
9781 if (to < from || to > 255)
9782 args_out_of_range_3 (XCDR (val),
9783 XCAR (val), make_number (255));
9784 }
9785 for (i = from; i <= to; i++)
9786 SSET (valids, i, 1);
9787 }
9788 ASET (attrs, coding_attr_ccl_valids, valids);
9789
9790 category = coding_category_ccl;
9791 }
9792 else if (EQ (coding_type, Qutf_16))
9793 {
9794 Lisp_Object bom, endian;
9795
9796 CODING_ATTR_ASCII_COMPAT (attrs) = Qnil;
9797
9798 if (nargs < coding_arg_utf16_max)
9799 goto short_args;
9800
9801 bom = args[coding_arg_utf16_bom];
9802 if (! NILP (bom) && ! EQ (bom, Qt))
9803 {
9804 CHECK_CONS (bom);
9805 val = XCAR (bom);
9806 CHECK_CODING_SYSTEM (val);
9807 val = XCDR (bom);
9808 CHECK_CODING_SYSTEM (val);
9809 }
9810 ASET (attrs, coding_attr_utf_bom, bom);
9811
9812 endian = args[coding_arg_utf16_endian];
9813 CHECK_SYMBOL (endian);
9814 if (NILP (endian))
9815 endian = Qbig;
9816 else if (! EQ (endian, Qbig) && ! EQ (endian, Qlittle))
9817 error ("Invalid endian: %s", SDATA (SYMBOL_NAME (endian)));
9818 ASET (attrs, coding_attr_utf_16_endian, endian);
9819
9820 category = (CONSP (bom)
9821 ? coding_category_utf_16_auto
9822 : NILP (bom)
9823 ? (EQ (endian, Qbig)
9824 ? coding_category_utf_16_be_nosig
9825 : coding_category_utf_16_le_nosig)
9826 : (EQ (endian, Qbig)
9827 ? coding_category_utf_16_be
9828 : coding_category_utf_16_le));
9829 }
9830 else if (EQ (coding_type, Qiso_2022))
9831 {
9832 Lisp_Object initial, reg_usage, request, flags;
9833
9834 if (nargs < coding_arg_iso2022_max)
9835 goto short_args;
9836
9837 initial = Fcopy_sequence (args[coding_arg_iso2022_initial]);
9838 CHECK_VECTOR (initial);
9839 for (i = 0; i < 4; i++)
9840 {
9841 val = Faref (initial, make_number (i));
9842 if (! NILP (val))
9843 {
9844 struct charset *charset;
9845
9846 CHECK_CHARSET_GET_CHARSET (val, charset);
9847 ASET (initial, i, make_number (CHARSET_ID (charset)));
9848 if (i == 0 && CHARSET_ASCII_COMPATIBLE_P (charset))
9849 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9850 }
9851 else
9852 ASET (initial, i, make_number (-1));
9853 }
9854
9855 reg_usage = args[coding_arg_iso2022_reg_usage];
9856 CHECK_CONS (reg_usage);
9857 CHECK_NUMBER_CAR (reg_usage);
9858 CHECK_NUMBER_CDR (reg_usage);
9859
9860 request = Fcopy_sequence (args[coding_arg_iso2022_request]);
9861 for (tail = request; ! NILP (tail); tail = Fcdr (tail))
9862 {
9863 int id;
9864 Lisp_Object tmp1;
9865
9866 val = Fcar (tail);
9867 CHECK_CONS (val);
9868 tmp1 = XCAR (val);
9869 CHECK_CHARSET_GET_ID (tmp1, id);
9870 CHECK_NATNUM_CDR (val);
9871 if (XINT (XCDR (val)) >= 4)
9872 error ("Invalid graphic register number: %"pI"d", XINT (XCDR (val)));
9873 XSETCAR (val, make_number (id));
9874 }
9875
9876 flags = args[coding_arg_iso2022_flags];
9877 CHECK_NATNUM (flags);
9878 i = XINT (flags);
9879 if (EQ (args[coding_arg_charset_list], Qiso_2022))
9880 flags = make_number (i | CODING_ISO_FLAG_FULL_SUPPORT);
9881
9882 ASET (attrs, coding_attr_iso_initial, initial);
9883 ASET (attrs, coding_attr_iso_usage, reg_usage);
9884 ASET (attrs, coding_attr_iso_request, request);
9885 ASET (attrs, coding_attr_iso_flags, flags);
9886 setup_iso_safe_charsets (attrs);
9887
9888 if (i & CODING_ISO_FLAG_SEVEN_BITS)
9889 category = ((i & (CODING_ISO_FLAG_LOCKING_SHIFT
9890 | CODING_ISO_FLAG_SINGLE_SHIFT))
9891 ? coding_category_iso_7_else
9892 : EQ (args[coding_arg_charset_list], Qiso_2022)
9893 ? coding_category_iso_7
9894 : coding_category_iso_7_tight);
9895 else
9896 {
9897 int id = XINT (AREF (initial, 1));
9898
9899 category = (((i & CODING_ISO_FLAG_LOCKING_SHIFT)
9900 || EQ (args[coding_arg_charset_list], Qiso_2022)
9901 || id < 0)
9902 ? coding_category_iso_8_else
9903 : (CHARSET_DIMENSION (CHARSET_FROM_ID (id)) == 1)
9904 ? coding_category_iso_8_1
9905 : coding_category_iso_8_2);
9906 }
9907 if (category != coding_category_iso_8_1
9908 && category != coding_category_iso_8_2)
9909 CODING_ATTR_ASCII_COMPAT (attrs) = Qnil;
9910 }
9911 else if (EQ (coding_type, Qemacs_mule))
9912 {
9913 if (EQ (args[coding_arg_charset_list], Qemacs_mule))
9914 ASET (attrs, coding_attr_emacs_mule_full, Qt);
9915 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9916 category = coding_category_emacs_mule;
9917 }
9918 else if (EQ (coding_type, Qshift_jis))
9919 {
9920
9921 struct charset *charset;
9922
9923 if (XINT (Flength (charset_list)) != 3
9924 && XINT (Flength (charset_list)) != 4)
9925 error ("There should be three or four charsets");
9926
9927 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
9928 if (CHARSET_DIMENSION (charset) != 1)
9929 error ("Dimension of charset %s is not one",
9930 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9931 if (CHARSET_ASCII_COMPATIBLE_P (charset))
9932 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9933
9934 charset_list = XCDR (charset_list);
9935 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
9936 if (CHARSET_DIMENSION (charset) != 1)
9937 error ("Dimension of charset %s is not one",
9938 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9939
9940 charset_list = XCDR (charset_list);
9941 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
9942 if (CHARSET_DIMENSION (charset) != 2)
9943 error ("Dimension of charset %s is not two",
9944 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9945
9946 charset_list = XCDR (charset_list);
9947 if (! NILP (charset_list))
9948 {
9949 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
9950 if (CHARSET_DIMENSION (charset) != 2)
9951 error ("Dimension of charset %s is not two",
9952 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9953 }
9954
9955 category = coding_category_sjis;
9956 Vsjis_coding_system = name;
9957 }
9958 else if (EQ (coding_type, Qbig5))
9959 {
9960 struct charset *charset;
9961
9962 if (XINT (Flength (charset_list)) != 2)
9963 error ("There should be just two charsets");
9964
9965 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
9966 if (CHARSET_DIMENSION (charset) != 1)
9967 error ("Dimension of charset %s is not one",
9968 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9969 if (CHARSET_ASCII_COMPATIBLE_P (charset))
9970 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9971
9972 charset_list = XCDR (charset_list);
9973 charset = CHARSET_FROM_ID (XINT (XCAR (charset_list)));
9974 if (CHARSET_DIMENSION (charset) != 2)
9975 error ("Dimension of charset %s is not two",
9976 SDATA (SYMBOL_NAME (CHARSET_NAME (charset))));
9977
9978 category = coding_category_big5;
9979 Vbig5_coding_system = name;
9980 }
9981 else if (EQ (coding_type, Qraw_text))
9982 {
9983 category = coding_category_raw_text;
9984 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9985 }
9986 else if (EQ (coding_type, Qutf_8))
9987 {
9988 Lisp_Object bom;
9989
9990 CODING_ATTR_ASCII_COMPAT (attrs) = Qt;
9991
9992 if (nargs < coding_arg_utf8_max)
9993 goto short_args;
9994
9995 bom = args[coding_arg_utf8_bom];
9996 if (! NILP (bom) && ! EQ (bom, Qt))
9997 {
9998 CHECK_CONS (bom);
9999 val = XCAR (bom);
10000 CHECK_CODING_SYSTEM (val);
10001 val = XCDR (bom);
10002 CHECK_CODING_SYSTEM (val);
10003 }
10004 ASET (attrs, coding_attr_utf_bom, bom);
10005
10006 category = (CONSP (bom) ? coding_category_utf_8_auto
10007 : NILP (bom) ? coding_category_utf_8_nosig
10008 : coding_category_utf_8_sig);
10009 }
10010 else if (EQ (coding_type, Qundecided))
10011 category = coding_category_undecided;
10012 else
10013 error ("Invalid coding system type: %s",
10014 SDATA (SYMBOL_NAME (coding_type)));
10015
10016 CODING_ATTR_CATEGORY (attrs) = make_number (category);
10017 CODING_ATTR_PLIST (attrs)
10018 = Fcons (QCcategory, Fcons (AREF (Vcoding_category_table, category),
10019 CODING_ATTR_PLIST (attrs)));
10020 CODING_ATTR_PLIST (attrs)
10021 = Fcons (QCascii_compatible_p,
10022 Fcons (CODING_ATTR_ASCII_COMPAT (attrs),
10023 CODING_ATTR_PLIST (attrs)));
10024
10025 eol_type = args[coding_arg_eol_type];
10026 if (! NILP (eol_type)
10027 && ! EQ (eol_type, Qunix)
10028 && ! EQ (eol_type, Qdos)
10029 && ! EQ (eol_type, Qmac))
10030 error ("Invalid eol-type");
10031
10032 aliases = Fcons (name, Qnil);
10033
10034 if (NILP (eol_type))
10035 {
10036 eol_type = make_subsidiaries (name);
10037 for (i = 0; i < 3; i++)
10038 {
10039 Lisp_Object this_spec, this_name, this_aliases, this_eol_type;
10040
10041 this_name = AREF (eol_type, i);
10042 this_aliases = Fcons (this_name, Qnil);
10043 this_eol_type = (i == 0 ? Qunix : i == 1 ? Qdos : Qmac);
10044 this_spec = Fmake_vector (make_number (3), attrs);
10045 ASET (this_spec, 1, this_aliases);
10046 ASET (this_spec, 2, this_eol_type);
10047 Fputhash (this_name, this_spec, Vcoding_system_hash_table);
10048 Vcoding_system_list = Fcons (this_name, Vcoding_system_list);
10049 val = Fassoc (Fsymbol_name (this_name), Vcoding_system_alist);
10050 if (NILP (val))
10051 Vcoding_system_alist
10052 = Fcons (Fcons (Fsymbol_name (this_name), Qnil),
10053 Vcoding_system_alist);
10054 }
10055 }
10056
10057 spec_vec = Fmake_vector (make_number (3), attrs);
10058 ASET (spec_vec, 1, aliases);
10059 ASET (spec_vec, 2, eol_type);
10060
10061 Fputhash (name, spec_vec, Vcoding_system_hash_table);
10062 Vcoding_system_list = Fcons (name, Vcoding_system_list);
10063 val = Fassoc (Fsymbol_name (name), Vcoding_system_alist);
10064 if (NILP (val))
10065 Vcoding_system_alist = Fcons (Fcons (Fsymbol_name (name), Qnil),
10066 Vcoding_system_alist);
10067
10068 {
10069 int id = coding_categories[category].id;
10070
10071 if (id < 0 || EQ (name, CODING_ID_NAME (id)))
10072 setup_coding_system (name, &coding_categories[category]);
10073 }
10074
10075 return Qnil;
10076
10077 short_args:
10078 return Fsignal (Qwrong_number_of_arguments,
10079 Fcons (intern ("define-coding-system-internal"),
10080 make_number (nargs)));
10081 }
10082
10083
10084 DEFUN ("coding-system-put", Fcoding_system_put, Scoding_system_put,
10085 3, 3, 0,
10086 doc: /* Change value in CODING-SYSTEM's property list PROP to VAL. */)
10087 (Lisp_Object coding_system, Lisp_Object prop, Lisp_Object val)
10088 {
10089 Lisp_Object spec, attrs;
10090
10091 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10092 attrs = AREF (spec, 0);
10093 if (EQ (prop, QCmnemonic))
10094 {
10095 if (! STRINGP (val))
10096 CHECK_CHARACTER (val);
10097 CODING_ATTR_MNEMONIC (attrs) = val;
10098 }
10099 else if (EQ (prop, QCdefault_char))
10100 {
10101 if (NILP (val))
10102 val = make_number (' ');
10103 else
10104 CHECK_CHARACTER (val);
10105 CODING_ATTR_DEFAULT_CHAR (attrs) = val;
10106 }
10107 else if (EQ (prop, QCdecode_translation_table))
10108 {
10109 if (! CHAR_TABLE_P (val) && ! CONSP (val))
10110 CHECK_SYMBOL (val);
10111 CODING_ATTR_DECODE_TBL (attrs) = val;
10112 }
10113 else if (EQ (prop, QCencode_translation_table))
10114 {
10115 if (! CHAR_TABLE_P (val) && ! CONSP (val))
10116 CHECK_SYMBOL (val);
10117 CODING_ATTR_ENCODE_TBL (attrs) = val;
10118 }
10119 else if (EQ (prop, QCpost_read_conversion))
10120 {
10121 CHECK_SYMBOL (val);
10122 CODING_ATTR_POST_READ (attrs) = val;
10123 }
10124 else if (EQ (prop, QCpre_write_conversion))
10125 {
10126 CHECK_SYMBOL (val);
10127 CODING_ATTR_PRE_WRITE (attrs) = val;
10128 }
10129 else if (EQ (prop, QCascii_compatible_p))
10130 {
10131 CODING_ATTR_ASCII_COMPAT (attrs) = val;
10132 }
10133
10134 CODING_ATTR_PLIST (attrs)
10135 = Fplist_put (CODING_ATTR_PLIST (attrs), prop, val);
10136 return val;
10137 }
10138
10139
10140 DEFUN ("define-coding-system-alias", Fdefine_coding_system_alias,
10141 Sdefine_coding_system_alias, 2, 2, 0,
10142 doc: /* Define ALIAS as an alias for CODING-SYSTEM. */)
10143 (Lisp_Object alias, Lisp_Object coding_system)
10144 {
10145 Lisp_Object spec, aliases, eol_type, val;
10146
10147 CHECK_SYMBOL (alias);
10148 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10149 aliases = AREF (spec, 1);
10150 /* ALIASES should be a list of length more than zero, and the first
10151 element is a base coding system. Append ALIAS at the tail of the
10152 list. */
10153 while (!NILP (XCDR (aliases)))
10154 aliases = XCDR (aliases);
10155 XSETCDR (aliases, Fcons (alias, Qnil));
10156
10157 eol_type = AREF (spec, 2);
10158 if (VECTORP (eol_type))
10159 {
10160 Lisp_Object subsidiaries;
10161 int i;
10162
10163 subsidiaries = make_subsidiaries (alias);
10164 for (i = 0; i < 3; i++)
10165 Fdefine_coding_system_alias (AREF (subsidiaries, i),
10166 AREF (eol_type, i));
10167 }
10168
10169 Fputhash (alias, spec, Vcoding_system_hash_table);
10170 Vcoding_system_list = Fcons (alias, Vcoding_system_list);
10171 val = Fassoc (Fsymbol_name (alias), Vcoding_system_alist);
10172 if (NILP (val))
10173 Vcoding_system_alist = Fcons (Fcons (Fsymbol_name (alias), Qnil),
10174 Vcoding_system_alist);
10175
10176 return Qnil;
10177 }
10178
10179 DEFUN ("coding-system-base", Fcoding_system_base, Scoding_system_base,
10180 1, 1, 0,
10181 doc: /* Return the base of CODING-SYSTEM.
10182 Any alias or subsidiary coding system is not a base coding system. */)
10183 (Lisp_Object coding_system)
10184 {
10185 Lisp_Object spec, attrs;
10186
10187 if (NILP (coding_system))
10188 return (Qno_conversion);
10189 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10190 attrs = AREF (spec, 0);
10191 return CODING_ATTR_BASE_NAME (attrs);
10192 }
10193
10194 DEFUN ("coding-system-plist", Fcoding_system_plist, Scoding_system_plist,
10195 1, 1, 0,
10196 doc: "Return the property list of CODING-SYSTEM.")
10197 (Lisp_Object coding_system)
10198 {
10199 Lisp_Object spec, attrs;
10200
10201 if (NILP (coding_system))
10202 coding_system = Qno_conversion;
10203 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10204 attrs = AREF (spec, 0);
10205 return CODING_ATTR_PLIST (attrs);
10206 }
10207
10208
10209 DEFUN ("coding-system-aliases", Fcoding_system_aliases, Scoding_system_aliases,
10210 1, 1, 0,
10211 doc: /* Return the list of aliases of CODING-SYSTEM. */)
10212 (Lisp_Object coding_system)
10213 {
10214 Lisp_Object spec;
10215
10216 if (NILP (coding_system))
10217 coding_system = Qno_conversion;
10218 CHECK_CODING_SYSTEM_GET_SPEC (coding_system, spec);
10219 return AREF (spec, 1);
10220 }
10221
10222 DEFUN ("coding-system-eol-type", Fcoding_system_eol_type,
10223 Scoding_system_eol_type, 1, 1, 0,
10224 doc: /* Return eol-type of CODING-SYSTEM.
10225 An eol-type is an integer 0, 1, 2, or a vector of coding systems.
10226
10227 Integer values 0, 1, and 2 indicate a format of end-of-line; LF, CRLF,
10228 and CR respectively.
10229
10230 A vector value indicates that a format of end-of-line should be
10231 detected automatically. Nth element of the vector is the subsidiary
10232 coding system whose eol-type is N. */)
10233 (Lisp_Object coding_system)
10234 {
10235 Lisp_Object spec, eol_type;
10236 int n;
10237
10238 if (NILP (coding_system))
10239 coding_system = Qno_conversion;
10240 if (! CODING_SYSTEM_P (coding_system))
10241 return Qnil;
10242 spec = CODING_SYSTEM_SPEC (coding_system);
10243 eol_type = AREF (spec, 2);
10244 if (VECTORP (eol_type))
10245 return Fcopy_sequence (eol_type);
10246 n = EQ (eol_type, Qunix) ? 0 : EQ (eol_type, Qdos) ? 1 : 2;
10247 return make_number (n);
10248 }
10249
10250 #endif /* emacs */
10251
10252 \f
10253 /*** 9. Post-amble ***/
10254
10255 void
10256 init_coding_once (void)
10257 {
10258 int i;
10259
10260 for (i = 0; i < coding_category_max; i++)
10261 {
10262 coding_categories[i].id = -1;
10263 coding_priorities[i] = i;
10264 }
10265
10266 /* ISO2022 specific initialize routine. */
10267 for (i = 0; i < 0x20; i++)
10268 iso_code_class[i] = ISO_control_0;
10269 for (i = 0x21; i < 0x7F; i++)
10270 iso_code_class[i] = ISO_graphic_plane_0;
10271 for (i = 0x80; i < 0xA0; i++)
10272 iso_code_class[i] = ISO_control_1;
10273 for (i = 0xA1; i < 0xFF; i++)
10274 iso_code_class[i] = ISO_graphic_plane_1;
10275 iso_code_class[0x20] = iso_code_class[0x7F] = ISO_0x20_or_0x7F;
10276 iso_code_class[0xA0] = iso_code_class[0xFF] = ISO_0xA0_or_0xFF;
10277 iso_code_class[ISO_CODE_SO] = ISO_shift_out;
10278 iso_code_class[ISO_CODE_SI] = ISO_shift_in;
10279 iso_code_class[ISO_CODE_SS2_7] = ISO_single_shift_2_7;
10280 iso_code_class[ISO_CODE_ESC] = ISO_escape;
10281 iso_code_class[ISO_CODE_SS2] = ISO_single_shift_2;
10282 iso_code_class[ISO_CODE_SS3] = ISO_single_shift_3;
10283 iso_code_class[ISO_CODE_CSI] = ISO_control_sequence_introducer;
10284
10285 for (i = 0; i < 256; i++)
10286 {
10287 emacs_mule_bytes[i] = 1;
10288 }
10289 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_11] = 3;
10290 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_12] = 3;
10291 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_21] = 4;
10292 emacs_mule_bytes[EMACS_MULE_LEADING_CODE_PRIVATE_22] = 4;
10293 }
10294
10295 #ifdef emacs
10296
10297 void
10298 syms_of_coding (void)
10299 {
10300 staticpro (&Vcoding_system_hash_table);
10301 {
10302 Lisp_Object args[2];
10303 args[0] = QCtest;
10304 args[1] = Qeq;
10305 Vcoding_system_hash_table = Fmake_hash_table (2, args);
10306 }
10307
10308 staticpro (&Vsjis_coding_system);
10309 Vsjis_coding_system = Qnil;
10310
10311 staticpro (&Vbig5_coding_system);
10312 Vbig5_coding_system = Qnil;
10313
10314 staticpro (&Vcode_conversion_reused_workbuf);
10315 Vcode_conversion_reused_workbuf = Qnil;
10316
10317 staticpro (&Vcode_conversion_workbuf_name);
10318 Vcode_conversion_workbuf_name = make_pure_c_string (" *code-conversion-work*");
10319
10320 reused_workbuf_in_use = 0;
10321
10322 DEFSYM (Qcharset, "charset");
10323 DEFSYM (Qtarget_idx, "target-idx");
10324 DEFSYM (Qcoding_system_history, "coding-system-history");
10325 Fset (Qcoding_system_history, Qnil);
10326
10327 /* Target FILENAME is the first argument. */
10328 Fput (Qinsert_file_contents, Qtarget_idx, make_number (0));
10329 /* Target FILENAME is the third argument. */
10330 Fput (Qwrite_region, Qtarget_idx, make_number (2));
10331
10332 DEFSYM (Qcall_process, "call-process");
10333 /* Target PROGRAM is the first argument. */
10334 Fput (Qcall_process, Qtarget_idx, make_number (0));
10335
10336 DEFSYM (Qcall_process_region, "call-process-region");
10337 /* Target PROGRAM is the third argument. */
10338 Fput (Qcall_process_region, Qtarget_idx, make_number (2));
10339
10340 DEFSYM (Qstart_process, "start-process");
10341 /* Target PROGRAM is the third argument. */
10342 Fput (Qstart_process, Qtarget_idx, make_number (2));
10343
10344 DEFSYM (Qopen_network_stream, "open-network-stream");
10345 /* Target SERVICE is the fourth argument. */
10346 Fput (Qopen_network_stream, Qtarget_idx, make_number (3));
10347
10348 DEFSYM (Qcoding_system, "coding-system");
10349 DEFSYM (Qcoding_aliases, "coding-aliases");
10350
10351 DEFSYM (Qeol_type, "eol-type");
10352 DEFSYM (Qunix, "unix");
10353 DEFSYM (Qdos, "dos");
10354
10355 DEFSYM (Qbuffer_file_coding_system, "buffer-file-coding-system");
10356 DEFSYM (Qpost_read_conversion, "post-read-conversion");
10357 DEFSYM (Qpre_write_conversion, "pre-write-conversion");
10358 DEFSYM (Qdefault_char, "default-char");
10359 DEFSYM (Qundecided, "undecided");
10360 DEFSYM (Qno_conversion, "no-conversion");
10361 DEFSYM (Qraw_text, "raw-text");
10362
10363 DEFSYM (Qiso_2022, "iso-2022");
10364
10365 DEFSYM (Qutf_8, "utf-8");
10366 DEFSYM (Qutf_8_emacs, "utf-8-emacs");
10367
10368 DEFSYM (Qutf_16, "utf-16");
10369 DEFSYM (Qbig, "big");
10370 DEFSYM (Qlittle, "little");
10371
10372 DEFSYM (Qshift_jis, "shift-jis");
10373 DEFSYM (Qbig5, "big5");
10374
10375 DEFSYM (Qcoding_system_p, "coding-system-p");
10376
10377 DEFSYM (Qcoding_system_error, "coding-system-error");
10378 Fput (Qcoding_system_error, Qerror_conditions,
10379 pure_cons (Qcoding_system_error, pure_cons (Qerror, Qnil)));
10380 Fput (Qcoding_system_error, Qerror_message,
10381 make_pure_c_string ("Invalid coding system"));
10382
10383 /* Intern this now in case it isn't already done.
10384 Setting this variable twice is harmless.
10385 But don't staticpro it here--that is done in alloc.c. */
10386 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
10387
10388 DEFSYM (Qtranslation_table, "translation-table");
10389 Fput (Qtranslation_table, Qchar_table_extra_slots, make_number (2));
10390 DEFSYM (Qtranslation_table_id, "translation-table-id");
10391 DEFSYM (Qtranslation_table_for_decode, "translation-table-for-decode");
10392 DEFSYM (Qtranslation_table_for_encode, "translation-table-for-encode");
10393
10394 DEFSYM (Qvalid_codes, "valid-codes");
10395
10396 DEFSYM (Qemacs_mule, "emacs-mule");
10397
10398 DEFSYM (QCcategory, ":category");
10399 DEFSYM (QCmnemonic, ":mnemonic");
10400 DEFSYM (QCdefault_char, ":default-char");
10401 DEFSYM (QCdecode_translation_table, ":decode-translation-table");
10402 DEFSYM (QCencode_translation_table, ":encode-translation-table");
10403 DEFSYM (QCpost_read_conversion, ":post-read-conversion");
10404 DEFSYM (QCpre_write_conversion, ":pre-write-conversion");
10405 DEFSYM (QCascii_compatible_p, ":ascii-compatible-p");
10406
10407 Vcoding_category_table
10408 = Fmake_vector (make_number (coding_category_max), Qnil);
10409 staticpro (&Vcoding_category_table);
10410 /* Followings are target of code detection. */
10411 ASET (Vcoding_category_table, coding_category_iso_7,
10412 intern_c_string ("coding-category-iso-7"));
10413 ASET (Vcoding_category_table, coding_category_iso_7_tight,
10414 intern_c_string ("coding-category-iso-7-tight"));
10415 ASET (Vcoding_category_table, coding_category_iso_8_1,
10416 intern_c_string ("coding-category-iso-8-1"));
10417 ASET (Vcoding_category_table, coding_category_iso_8_2,
10418 intern_c_string ("coding-category-iso-8-2"));
10419 ASET (Vcoding_category_table, coding_category_iso_7_else,
10420 intern_c_string ("coding-category-iso-7-else"));
10421 ASET (Vcoding_category_table, coding_category_iso_8_else,
10422 intern_c_string ("coding-category-iso-8-else"));
10423 ASET (Vcoding_category_table, coding_category_utf_8_auto,
10424 intern_c_string ("coding-category-utf-8-auto"));
10425 ASET (Vcoding_category_table, coding_category_utf_8_nosig,
10426 intern_c_string ("coding-category-utf-8"));
10427 ASET (Vcoding_category_table, coding_category_utf_8_sig,
10428 intern_c_string ("coding-category-utf-8-sig"));
10429 ASET (Vcoding_category_table, coding_category_utf_16_be,
10430 intern_c_string ("coding-category-utf-16-be"));
10431 ASET (Vcoding_category_table, coding_category_utf_16_auto,
10432 intern_c_string ("coding-category-utf-16-auto"));
10433 ASET (Vcoding_category_table, coding_category_utf_16_le,
10434 intern_c_string ("coding-category-utf-16-le"));
10435 ASET (Vcoding_category_table, coding_category_utf_16_be_nosig,
10436 intern_c_string ("coding-category-utf-16-be-nosig"));
10437 ASET (Vcoding_category_table, coding_category_utf_16_le_nosig,
10438 intern_c_string ("coding-category-utf-16-le-nosig"));
10439 ASET (Vcoding_category_table, coding_category_charset,
10440 intern_c_string ("coding-category-charset"));
10441 ASET (Vcoding_category_table, coding_category_sjis,
10442 intern_c_string ("coding-category-sjis"));
10443 ASET (Vcoding_category_table, coding_category_big5,
10444 intern_c_string ("coding-category-big5"));
10445 ASET (Vcoding_category_table, coding_category_ccl,
10446 intern_c_string ("coding-category-ccl"));
10447 ASET (Vcoding_category_table, coding_category_emacs_mule,
10448 intern_c_string ("coding-category-emacs-mule"));
10449 /* Followings are NOT target of code detection. */
10450 ASET (Vcoding_category_table, coding_category_raw_text,
10451 intern_c_string ("coding-category-raw-text"));
10452 ASET (Vcoding_category_table, coding_category_undecided,
10453 intern_c_string ("coding-category-undecided"));
10454
10455 DEFSYM (Qinsufficient_source, "insufficient-source");
10456 DEFSYM (Qinconsistent_eol, "inconsistent-eol");
10457 DEFSYM (Qinvalid_source, "invalid-source");
10458 DEFSYM (Qinterrupted, "interrupted");
10459 DEFSYM (Qinsufficient_memory, "insufficient-memory");
10460 DEFSYM (Qcoding_system_define_form, "coding-system-define-form");
10461
10462 defsubr (&Scoding_system_p);
10463 defsubr (&Sread_coding_system);
10464 defsubr (&Sread_non_nil_coding_system);
10465 defsubr (&Scheck_coding_system);
10466 defsubr (&Sdetect_coding_region);
10467 defsubr (&Sdetect_coding_string);
10468 defsubr (&Sfind_coding_systems_region_internal);
10469 defsubr (&Sunencodable_char_position);
10470 defsubr (&Scheck_coding_systems_region);
10471 defsubr (&Sdecode_coding_region);
10472 defsubr (&Sencode_coding_region);
10473 defsubr (&Sdecode_coding_string);
10474 defsubr (&Sencode_coding_string);
10475 defsubr (&Sdecode_sjis_char);
10476 defsubr (&Sencode_sjis_char);
10477 defsubr (&Sdecode_big5_char);
10478 defsubr (&Sencode_big5_char);
10479 defsubr (&Sset_terminal_coding_system_internal);
10480 defsubr (&Sset_safe_terminal_coding_system_internal);
10481 defsubr (&Sterminal_coding_system);
10482 defsubr (&Sset_keyboard_coding_system_internal);
10483 defsubr (&Skeyboard_coding_system);
10484 defsubr (&Sfind_operation_coding_system);
10485 defsubr (&Sset_coding_system_priority);
10486 defsubr (&Sdefine_coding_system_internal);
10487 defsubr (&Sdefine_coding_system_alias);
10488 defsubr (&Scoding_system_put);
10489 defsubr (&Scoding_system_base);
10490 defsubr (&Scoding_system_plist);
10491 defsubr (&Scoding_system_aliases);
10492 defsubr (&Scoding_system_eol_type);
10493 defsubr (&Scoding_system_priority_list);
10494
10495 DEFVAR_LISP ("coding-system-list", Vcoding_system_list,
10496 doc: /* List of coding systems.
10497
10498 Do not alter the value of this variable manually. This variable should be
10499 updated by the functions `define-coding-system' and
10500 `define-coding-system-alias'. */);
10501 Vcoding_system_list = Qnil;
10502
10503 DEFVAR_LISP ("coding-system-alist", Vcoding_system_alist,
10504 doc: /* Alist of coding system names.
10505 Each element is one element list of coding system name.
10506 This variable is given to `completing-read' as COLLECTION argument.
10507
10508 Do not alter the value of this variable manually. This variable should be
10509 updated by the functions `make-coding-system' and
10510 `define-coding-system-alias'. */);
10511 Vcoding_system_alist = Qnil;
10512
10513 DEFVAR_LISP ("coding-category-list", Vcoding_category_list,
10514 doc: /* List of coding-categories (symbols) ordered by priority.
10515
10516 On detecting a coding system, Emacs tries code detection algorithms
10517 associated with each coding-category one by one in this order. When
10518 one algorithm agrees with a byte sequence of source text, the coding
10519 system bound to the corresponding coding-category is selected.
10520
10521 Don't modify this variable directly, but use `set-coding-system-priority'. */);
10522 {
10523 int i;
10524
10525 Vcoding_category_list = Qnil;
10526 for (i = coding_category_max - 1; i >= 0; i--)
10527 Vcoding_category_list
10528 = Fcons (XVECTOR (Vcoding_category_table)->contents[i],
10529 Vcoding_category_list);
10530 }
10531
10532 DEFVAR_LISP ("coding-system-for-read", Vcoding_system_for_read,
10533 doc: /* Specify the coding system for read operations.
10534 It is useful to bind this variable with `let', but do not set it globally.
10535 If the value is a coding system, it is used for decoding on read operation.
10536 If not, an appropriate element is used from one of the coding system alists.
10537 There are three such tables: `file-coding-system-alist',
10538 `process-coding-system-alist', and `network-coding-system-alist'. */);
10539 Vcoding_system_for_read = Qnil;
10540
10541 DEFVAR_LISP ("coding-system-for-write", Vcoding_system_for_write,
10542 doc: /* Specify the coding system for write operations.
10543 Programs bind this variable with `let', but you should not set it globally.
10544 If the value is a coding system, it is used for encoding of output,
10545 when writing it to a file and when sending it to a file or subprocess.
10546
10547 If this does not specify a coding system, an appropriate element
10548 is used from one of the coding system alists.
10549 There are three such tables: `file-coding-system-alist',
10550 `process-coding-system-alist', and `network-coding-system-alist'.
10551 For output to files, if the above procedure does not specify a coding system,
10552 the value of `buffer-file-coding-system' is used. */);
10553 Vcoding_system_for_write = Qnil;
10554
10555 DEFVAR_LISP ("last-coding-system-used", Vlast_coding_system_used,
10556 doc: /*
10557 Coding system used in the latest file or process I/O. */);
10558 Vlast_coding_system_used = Qnil;
10559
10560 DEFVAR_LISP ("last-code-conversion-error", Vlast_code_conversion_error,
10561 doc: /*
10562 Error status of the last code conversion.
10563
10564 When an error was detected in the last code conversion, this variable
10565 is set to one of the following symbols.
10566 `insufficient-source'
10567 `inconsistent-eol'
10568 `invalid-source'
10569 `interrupted'
10570 `insufficient-memory'
10571 When no error was detected, the value doesn't change. So, to check
10572 the error status of a code conversion by this variable, you must
10573 explicitly set this variable to nil before performing code
10574 conversion. */);
10575 Vlast_code_conversion_error = Qnil;
10576
10577 DEFVAR_BOOL ("inhibit-eol-conversion", inhibit_eol_conversion,
10578 doc: /*
10579 *Non-nil means always inhibit code conversion of end-of-line format.
10580 See info node `Coding Systems' and info node `Text and Binary' concerning
10581 such conversion. */);
10582 inhibit_eol_conversion = 0;
10583
10584 DEFVAR_BOOL ("inherit-process-coding-system", inherit_process_coding_system,
10585 doc: /*
10586 Non-nil means process buffer inherits coding system of process output.
10587 Bind it to t if the process output is to be treated as if it were a file
10588 read from some filesystem. */);
10589 inherit_process_coding_system = 0;
10590
10591 DEFVAR_LISP ("file-coding-system-alist", Vfile_coding_system_alist,
10592 doc: /*
10593 Alist to decide a coding system to use for a file I/O operation.
10594 The format is ((PATTERN . VAL) ...),
10595 where PATTERN is a regular expression matching a file name,
10596 VAL is a coding system, a cons of coding systems, or a function symbol.
10597 If VAL is a coding system, it is used for both decoding and encoding
10598 the file contents.
10599 If VAL is a cons of coding systems, the car part is used for decoding,
10600 and the cdr part is used for encoding.
10601 If VAL is a function symbol, the function must return a coding system
10602 or a cons of coding systems which are used as above. The function is
10603 called with an argument that is a list of the arguments with which
10604 `find-operation-coding-system' was called. If the function can't decide
10605 a coding system, it can return `undecided' so that the normal
10606 code-detection is performed.
10607
10608 See also the function `find-operation-coding-system'
10609 and the variable `auto-coding-alist'. */);
10610 Vfile_coding_system_alist = Qnil;
10611
10612 DEFVAR_LISP ("process-coding-system-alist", Vprocess_coding_system_alist,
10613 doc: /*
10614 Alist to decide a coding system to use for a process I/O operation.
10615 The format is ((PATTERN . VAL) ...),
10616 where PATTERN is a regular expression matching a program name,
10617 VAL is a coding system, a cons of coding systems, or a function symbol.
10618 If VAL is a coding system, it is used for both decoding what received
10619 from the program and encoding what sent to the program.
10620 If VAL is a cons of coding systems, the car part is used for decoding,
10621 and the cdr part is used for encoding.
10622 If VAL is a function symbol, the function must return a coding system
10623 or a cons of coding systems which are used as above.
10624
10625 See also the function `find-operation-coding-system'. */);
10626 Vprocess_coding_system_alist = Qnil;
10627
10628 DEFVAR_LISP ("network-coding-system-alist", Vnetwork_coding_system_alist,
10629 doc: /*
10630 Alist to decide a coding system to use for a network I/O operation.
10631 The format is ((PATTERN . VAL) ...),
10632 where PATTERN is a regular expression matching a network service name
10633 or is a port number to connect to,
10634 VAL is a coding system, a cons of coding systems, or a function symbol.
10635 If VAL is a coding system, it is used for both decoding what received
10636 from the network stream and encoding what sent to the network stream.
10637 If VAL is a cons of coding systems, the car part is used for decoding,
10638 and the cdr part is used for encoding.
10639 If VAL is a function symbol, the function must return a coding system
10640 or a cons of coding systems which are used as above.
10641
10642 See also the function `find-operation-coding-system'. */);
10643 Vnetwork_coding_system_alist = Qnil;
10644
10645 DEFVAR_LISP ("locale-coding-system", Vlocale_coding_system,
10646 doc: /* Coding system to use with system messages.
10647 Also used for decoding keyboard input on X Window system. */);
10648 Vlocale_coding_system = Qnil;
10649
10650 /* The eol mnemonics are reset in startup.el system-dependently. */
10651 DEFVAR_LISP ("eol-mnemonic-unix", eol_mnemonic_unix,
10652 doc: /*
10653 *String displayed in mode line for UNIX-like (LF) end-of-line format. */);
10654 eol_mnemonic_unix = make_pure_c_string (":");
10655
10656 DEFVAR_LISP ("eol-mnemonic-dos", eol_mnemonic_dos,
10657 doc: /*
10658 *String displayed in mode line for DOS-like (CRLF) end-of-line format. */);
10659 eol_mnemonic_dos = make_pure_c_string ("\\");
10660
10661 DEFVAR_LISP ("eol-mnemonic-mac", eol_mnemonic_mac,
10662 doc: /*
10663 *String displayed in mode line for MAC-like (CR) end-of-line format. */);
10664 eol_mnemonic_mac = make_pure_c_string ("/");
10665
10666 DEFVAR_LISP ("eol-mnemonic-undecided", eol_mnemonic_undecided,
10667 doc: /*
10668 *String displayed in mode line when end-of-line format is not yet determined. */);
10669 eol_mnemonic_undecided = make_pure_c_string (":");
10670
10671 DEFVAR_LISP ("enable-character-translation", Venable_character_translation,
10672 doc: /*
10673 *Non-nil enables character translation while encoding and decoding. */);
10674 Venable_character_translation = Qt;
10675
10676 DEFVAR_LISP ("standard-translation-table-for-decode",
10677 Vstandard_translation_table_for_decode,
10678 doc: /* Table for translating characters while decoding. */);
10679 Vstandard_translation_table_for_decode = Qnil;
10680
10681 DEFVAR_LISP ("standard-translation-table-for-encode",
10682 Vstandard_translation_table_for_encode,
10683 doc: /* Table for translating characters while encoding. */);
10684 Vstandard_translation_table_for_encode = Qnil;
10685
10686 DEFVAR_LISP ("charset-revision-table", Vcharset_revision_table,
10687 doc: /* Alist of charsets vs revision numbers.
10688 While encoding, if a charset (car part of an element) is found,
10689 designate it with the escape sequence identifying revision (cdr part
10690 of the element). */);
10691 Vcharset_revision_table = Qnil;
10692
10693 DEFVAR_LISP ("default-process-coding-system",
10694 Vdefault_process_coding_system,
10695 doc: /* Cons of coding systems used for process I/O by default.
10696 The car part is used for decoding a process output,
10697 the cdr part is used for encoding a text to be sent to a process. */);
10698 Vdefault_process_coding_system = Qnil;
10699
10700 DEFVAR_LISP ("latin-extra-code-table", Vlatin_extra_code_table,
10701 doc: /*
10702 Table of extra Latin codes in the range 128..159 (inclusive).
10703 This is a vector of length 256.
10704 If Nth element is non-nil, the existence of code N in a file
10705 \(or output of subprocess) doesn't prevent it to be detected as
10706 a coding system of ISO 2022 variant which has a flag
10707 `accept-latin-extra-code' t (e.g. iso-latin-1) on reading a file
10708 or reading output of a subprocess.
10709 Only 128th through 159th elements have a meaning. */);
10710 Vlatin_extra_code_table = Fmake_vector (make_number (256), Qnil);
10711
10712 DEFVAR_LISP ("select-safe-coding-system-function",
10713 Vselect_safe_coding_system_function,
10714 doc: /*
10715 Function to call to select safe coding system for encoding a text.
10716
10717 If set, this function is called to force a user to select a proper
10718 coding system which can encode the text in the case that a default
10719 coding system used in each operation can't encode the text. The
10720 function should take care that the buffer is not modified while
10721 the coding system is being selected.
10722
10723 The default value is `select-safe-coding-system' (which see). */);
10724 Vselect_safe_coding_system_function = Qnil;
10725
10726 DEFVAR_BOOL ("coding-system-require-warning",
10727 coding_system_require_warning,
10728 doc: /* Internal use only.
10729 If non-nil, on writing a file, `select-safe-coding-system-function' is
10730 called even if `coding-system-for-write' is non-nil. The command
10731 `universal-coding-system-argument' binds this variable to t temporarily. */);
10732 coding_system_require_warning = 0;
10733
10734
10735 DEFVAR_BOOL ("inhibit-iso-escape-detection",
10736 inhibit_iso_escape_detection,
10737 doc: /*
10738 If non-nil, Emacs ignores ISO-2022 escape sequences during code detection.
10739
10740 When Emacs reads text, it tries to detect how the text is encoded.
10741 This code detection is sensitive to escape sequences. If Emacs sees
10742 a valid ISO-2022 escape sequence, it assumes the text is encoded in one
10743 of the ISO2022 encodings, and decodes text by the corresponding coding
10744 system (e.g. `iso-2022-7bit').
10745
10746 However, there may be a case that you want to read escape sequences in
10747 a file as is. In such a case, you can set this variable to non-nil.
10748 Then the code detection will ignore any escape sequences, and no text is
10749 detected as encoded in some ISO-2022 encoding. The result is that all
10750 escape sequences become visible in a buffer.
10751
10752 The default value is nil, and it is strongly recommended not to change
10753 it. That is because many Emacs Lisp source files that contain
10754 non-ASCII characters are encoded by the coding system `iso-2022-7bit'
10755 in Emacs's distribution, and they won't be decoded correctly on
10756 reading if you suppress escape sequence detection.
10757
10758 The other way to read escape sequences in a file without decoding is
10759 to explicitly specify some coding system that doesn't use ISO-2022
10760 escape sequence (e.g `latin-1') on reading by \\[universal-coding-system-argument]. */);
10761 inhibit_iso_escape_detection = 0;
10762
10763 DEFVAR_BOOL ("inhibit-null-byte-detection",
10764 inhibit_null_byte_detection,
10765 doc: /* If non-nil, Emacs ignores null bytes on code detection.
10766 By default, Emacs treats it as binary data, and does not attempt to
10767 decode it. The effect is as if you specified `no-conversion' for
10768 reading that text.
10769
10770 Set this to non-nil when a regular text happens to include null bytes.
10771 Examples are Index nodes of Info files and null-byte delimited output
10772 from GNU Find and GNU Grep. Emacs will then ignore the null bytes and
10773 decode text as usual. */);
10774 inhibit_null_byte_detection = 0;
10775
10776 DEFVAR_LISP ("translation-table-for-input", Vtranslation_table_for_input,
10777 doc: /* Char table for translating self-inserting characters.
10778 This is applied to the result of input methods, not their input.
10779 See also `keyboard-translate-table'.
10780
10781 Use of this variable for character code unification was rendered
10782 obsolete in Emacs 23.1 and later, since Unicode is now the basis of
10783 internal character representation. */);
10784 Vtranslation_table_for_input = Qnil;
10785
10786 {
10787 Lisp_Object args[coding_arg_max];
10788 Lisp_Object plist[16];
10789 int i;
10790
10791 for (i = 0; i < coding_arg_max; i++)
10792 args[i] = Qnil;
10793
10794 plist[0] = intern_c_string (":name");
10795 plist[1] = args[coding_arg_name] = Qno_conversion;
10796 plist[2] = intern_c_string (":mnemonic");
10797 plist[3] = args[coding_arg_mnemonic] = make_number ('=');
10798 plist[4] = intern_c_string (":coding-type");
10799 plist[5] = args[coding_arg_coding_type] = Qraw_text;
10800 plist[6] = intern_c_string (":ascii-compatible-p");
10801 plist[7] = args[coding_arg_ascii_compatible_p] = Qt;
10802 plist[8] = intern_c_string (":default-char");
10803 plist[9] = args[coding_arg_default_char] = make_number (0);
10804 plist[10] = intern_c_string (":for-unibyte");
10805 plist[11] = args[coding_arg_for_unibyte] = Qt;
10806 plist[12] = intern_c_string (":docstring");
10807 plist[13] = make_pure_c_string ("Do no conversion.\n\
10808 \n\
10809 When you visit a file with this coding, the file is read into a\n\
10810 unibyte buffer as is, thus each byte of a file is treated as a\n\
10811 character.");
10812 plist[14] = intern_c_string (":eol-type");
10813 plist[15] = args[coding_arg_eol_type] = Qunix;
10814 args[coding_arg_plist] = Flist (16, plist);
10815 Fdefine_coding_system_internal (coding_arg_max, args);
10816
10817 plist[1] = args[coding_arg_name] = Qundecided;
10818 plist[3] = args[coding_arg_mnemonic] = make_number ('-');
10819 plist[5] = args[coding_arg_coding_type] = Qundecided;
10820 /* This is already set.
10821 plist[7] = args[coding_arg_ascii_compatible_p] = Qt; */
10822 plist[8] = intern_c_string (":charset-list");
10823 plist[9] = args[coding_arg_charset_list] = Fcons (Qascii, Qnil);
10824 plist[11] = args[coding_arg_for_unibyte] = Qnil;
10825 plist[13] = make_pure_c_string ("No conversion on encoding, automatic conversion on decoding.");
10826 plist[15] = args[coding_arg_eol_type] = Qnil;
10827 args[coding_arg_plist] = Flist (16, plist);
10828 Fdefine_coding_system_internal (coding_arg_max, args);
10829 }
10830
10831 setup_coding_system (Qno_conversion, &safe_terminal_coding);
10832
10833 {
10834 int i;
10835
10836 for (i = 0; i < coding_category_max; i++)
10837 Fset (AREF (Vcoding_category_table, i), Qno_conversion);
10838 }
10839 #if defined (DOS_NT)
10840 system_eol_type = Qdos;
10841 #else
10842 system_eol_type = Qunix;
10843 #endif
10844 staticpro (&system_eol_type);
10845 }
10846
10847 char *
10848 emacs_strerror (int error_number)
10849 {
10850 char *str;
10851
10852 synchronize_system_messages_locale ();
10853 str = strerror (error_number);
10854
10855 if (! NILP (Vlocale_coding_system))
10856 {
10857 Lisp_Object dec = code_convert_string_norecord (build_string (str),
10858 Vlocale_coding_system,
10859 0);
10860 str = SSDATA (dec);
10861 }
10862
10863 return str;
10864 }
10865
10866 #endif /* emacs */