Merge from emacs-24; up to 2014-04-02T16:17:08Z!dmantipov@yandex.ru
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2014 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
29
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
33
34 #include "lisp.h"
35 #include "process.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "character.h"
39 #include "buffer.h"
40 #include "window.h"
41 #include "keyboard.h"
42 #include "frame.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45 #ifdef HAVE_WINDOW_SYSTEM
46 #include TERM_HEADER
47 #endif /* HAVE_WINDOW_SYSTEM */
48
49 #include <verify.h>
50 #include <execinfo.h> /* For backtrace. */
51
52 #if (defined ENABLE_CHECKING \
53 && defined HAVE_VALGRIND_VALGRIND_H \
54 && !defined USE_VALGRIND)
55 # define USE_VALGRIND 1
56 #endif
57
58 #if USE_VALGRIND
59 #include <valgrind/valgrind.h>
60 #include <valgrind/memcheck.h>
61 static bool valgrind_p;
62 #endif
63
64 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
65 Doable only if GC_MARK_STACK. */
66 #if ! GC_MARK_STACK
67 # undef GC_CHECK_MARKED_OBJECTS
68 #endif
69
70 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
71 memory. Can do this only if using gmalloc.c and if not checking
72 marked objects. */
73
74 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
75 || defined GC_CHECK_MARKED_OBJECTS)
76 #undef GC_MALLOC_CHECK
77 #endif
78
79 #include <unistd.h>
80 #include <fcntl.h>
81
82 #ifdef USE_GTK
83 # include "gtkutil.h"
84 #endif
85 #ifdef WINDOWSNT
86 #include "w32.h"
87 #include "w32heap.h" /* for sbrk */
88 #endif
89
90 #ifdef DOUG_LEA_MALLOC
91
92 #include <malloc.h>
93
94 /* Specify maximum number of areas to mmap. It would be nice to use a
95 value that explicitly means "no limit". */
96
97 #define MMAP_MAX_AREAS 100000000
98
99 #endif /* not DOUG_LEA_MALLOC */
100
101 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
102 to a struct Lisp_String. */
103
104 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
105 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
106 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
107
108 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
109 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
110 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
111
112 /* Default value of gc_cons_threshold (see below). */
113
114 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
115
116 /* Global variables. */
117 struct emacs_globals globals;
118
119 /* Number of bytes of consing done since the last gc. */
120
121 EMACS_INT consing_since_gc;
122
123 /* Similar minimum, computed from Vgc_cons_percentage. */
124
125 EMACS_INT gc_relative_threshold;
126
127 /* Minimum number of bytes of consing since GC before next GC,
128 when memory is full. */
129
130 EMACS_INT memory_full_cons_threshold;
131
132 /* True during GC. */
133
134 bool gc_in_progress;
135
136 /* True means abort if try to GC.
137 This is for code which is written on the assumption that
138 no GC will happen, so as to verify that assumption. */
139
140 bool abort_on_gc;
141
142 /* Number of live and free conses etc. */
143
144 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
145 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
146 static EMACS_INT total_free_floats, total_floats;
147
148 /* Points to memory space allocated as "spare", to be freed if we run
149 out of memory. We keep one large block, four cons-blocks, and
150 two string blocks. */
151
152 static char *spare_memory[7];
153
154 /* Amount of spare memory to keep in large reserve block, or to see
155 whether this much is available when malloc fails on a larger request. */
156
157 #define SPARE_MEMORY (1 << 14)
158
159 /* Initialize it to a nonzero value to force it into data space
160 (rather than bss space). That way unexec will remap it into text
161 space (pure), on some systems. We have not implemented the
162 remapping on more recent systems because this is less important
163 nowadays than in the days of small memories and timesharing. */
164
165 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
166 #define PUREBEG (char *) pure
167
168 /* Pointer to the pure area, and its size. */
169
170 static char *purebeg;
171 static ptrdiff_t pure_size;
172
173 /* Number of bytes of pure storage used before pure storage overflowed.
174 If this is non-zero, this implies that an overflow occurred. */
175
176 static ptrdiff_t pure_bytes_used_before_overflow;
177
178 /* True if P points into pure space. */
179
180 #define PURE_POINTER_P(P) \
181 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
182
183 /* Index in pure at which next pure Lisp object will be allocated.. */
184
185 static ptrdiff_t pure_bytes_used_lisp;
186
187 /* Number of bytes allocated for non-Lisp objects in pure storage. */
188
189 static ptrdiff_t pure_bytes_used_non_lisp;
190
191 /* If nonzero, this is a warning delivered by malloc and not yet
192 displayed. */
193
194 const char *pending_malloc_warning;
195
196 #if 0 /* Normally, pointer sanity only on request... */
197 #ifdef ENABLE_CHECKING
198 #define SUSPICIOUS_OBJECT_CHECKING 1
199 #endif
200 #endif
201
202 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
203 bug is unresolved. */
204 #define SUSPICIOUS_OBJECT_CHECKING 1
205
206 #ifdef SUSPICIOUS_OBJECT_CHECKING
207 struct suspicious_free_record
208 {
209 void *suspicious_object;
210 void *backtrace[128];
211 };
212 static void *suspicious_objects[32];
213 static int suspicious_object_index;
214 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
215 static int suspicious_free_history_index;
216 /* Find the first currently-monitored suspicious pointer in range
217 [begin,end) or NULL if no such pointer exists. */
218 static void *find_suspicious_object_in_range (void *begin, void *end);
219 static void detect_suspicious_free (void *ptr);
220 #else
221 # define find_suspicious_object_in_range(begin, end) NULL
222 # define detect_suspicious_free(ptr) (void)
223 #endif
224
225 /* Maximum amount of C stack to save when a GC happens. */
226
227 #ifndef MAX_SAVE_STACK
228 #define MAX_SAVE_STACK 16000
229 #endif
230
231 /* Buffer in which we save a copy of the C stack at each GC. */
232
233 #if MAX_SAVE_STACK > 0
234 static char *stack_copy;
235 static ptrdiff_t stack_copy_size;
236
237 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
238 avoiding any address sanitization. */
239
240 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
241 no_sanitize_memcpy (void *dest, void const *src, size_t size)
242 {
243 if (! ADDRESS_SANITIZER)
244 return memcpy (dest, src, size);
245 else
246 {
247 size_t i;
248 char *d = dest;
249 char const *s = src;
250 for (i = 0; i < size; i++)
251 d[i] = s[i];
252 return dest;
253 }
254 }
255
256 #endif /* MAX_SAVE_STACK > 0 */
257
258 static Lisp_Object Qconses;
259 static Lisp_Object Qsymbols;
260 static Lisp_Object Qmiscs;
261 static Lisp_Object Qstrings;
262 static Lisp_Object Qvectors;
263 static Lisp_Object Qfloats;
264 static Lisp_Object Qintervals;
265 static Lisp_Object Qbuffers;
266 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
267 static Lisp_Object Qgc_cons_threshold;
268 Lisp_Object Qautomatic_gc;
269 Lisp_Object Qchar_table_extra_slots;
270
271 /* Hook run after GC has finished. */
272
273 static Lisp_Object Qpost_gc_hook;
274
275 static void mark_terminals (void);
276 static void gc_sweep (void);
277 static Lisp_Object make_pure_vector (ptrdiff_t);
278 static void mark_buffer (struct buffer *);
279
280 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
281 static void refill_memory_reserve (void);
282 #endif
283 static void compact_small_strings (void);
284 static void free_large_strings (void);
285 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
286
287 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
288 what memory allocated via lisp_malloc and lisp_align_malloc is intended
289 for what purpose. This enumeration specifies the type of memory. */
290
291 enum mem_type
292 {
293 MEM_TYPE_NON_LISP,
294 MEM_TYPE_BUFFER,
295 MEM_TYPE_CONS,
296 MEM_TYPE_STRING,
297 MEM_TYPE_MISC,
298 MEM_TYPE_SYMBOL,
299 MEM_TYPE_FLOAT,
300 /* Since all non-bool pseudovectors are small enough to be
301 allocated from vector blocks, this memory type denotes
302 large regular vectors and large bool pseudovectors. */
303 MEM_TYPE_VECTORLIKE,
304 /* Special type to denote vector blocks. */
305 MEM_TYPE_VECTOR_BLOCK,
306 /* Special type to denote reserved memory. */
307 MEM_TYPE_SPARE
308 };
309
310 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
311
312 /* A unique object in pure space used to make some Lisp objects
313 on free lists recognizable in O(1). */
314
315 static Lisp_Object Vdead;
316 #define DEADP(x) EQ (x, Vdead)
317
318 #ifdef GC_MALLOC_CHECK
319
320 enum mem_type allocated_mem_type;
321
322 #endif /* GC_MALLOC_CHECK */
323
324 /* A node in the red-black tree describing allocated memory containing
325 Lisp data. Each such block is recorded with its start and end
326 address when it is allocated, and removed from the tree when it
327 is freed.
328
329 A red-black tree is a balanced binary tree with the following
330 properties:
331
332 1. Every node is either red or black.
333 2. Every leaf is black.
334 3. If a node is red, then both of its children are black.
335 4. Every simple path from a node to a descendant leaf contains
336 the same number of black nodes.
337 5. The root is always black.
338
339 When nodes are inserted into the tree, or deleted from the tree,
340 the tree is "fixed" so that these properties are always true.
341
342 A red-black tree with N internal nodes has height at most 2
343 log(N+1). Searches, insertions and deletions are done in O(log N).
344 Please see a text book about data structures for a detailed
345 description of red-black trees. Any book worth its salt should
346 describe them. */
347
348 struct mem_node
349 {
350 /* Children of this node. These pointers are never NULL. When there
351 is no child, the value is MEM_NIL, which points to a dummy node. */
352 struct mem_node *left, *right;
353
354 /* The parent of this node. In the root node, this is NULL. */
355 struct mem_node *parent;
356
357 /* Start and end of allocated region. */
358 void *start, *end;
359
360 /* Node color. */
361 enum {MEM_BLACK, MEM_RED} color;
362
363 /* Memory type. */
364 enum mem_type type;
365 };
366
367 /* Base address of stack. Set in main. */
368
369 Lisp_Object *stack_base;
370
371 /* Root of the tree describing allocated Lisp memory. */
372
373 static struct mem_node *mem_root;
374
375 /* Lowest and highest known address in the heap. */
376
377 static void *min_heap_address, *max_heap_address;
378
379 /* Sentinel node of the tree. */
380
381 static struct mem_node mem_z;
382 #define MEM_NIL &mem_z
383
384 static struct mem_node *mem_insert (void *, void *, enum mem_type);
385 static void mem_insert_fixup (struct mem_node *);
386 static void mem_rotate_left (struct mem_node *);
387 static void mem_rotate_right (struct mem_node *);
388 static void mem_delete (struct mem_node *);
389 static void mem_delete_fixup (struct mem_node *);
390 static struct mem_node *mem_find (void *);
391
392 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
393
394 #ifndef DEADP
395 # define DEADP(x) 0
396 #endif
397
398 /* Recording what needs to be marked for gc. */
399
400 struct gcpro *gcprolist;
401
402 /* Addresses of staticpro'd variables. Initialize it to a nonzero
403 value; otherwise some compilers put it into BSS. */
404
405 enum { NSTATICS = 2048 };
406 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
407
408 /* Index of next unused slot in staticvec. */
409
410 static int staticidx;
411
412 static void *pure_alloc (size_t, int);
413
414 /* Return X rounded to the next multiple of Y. Arguments should not
415 have side effects, as they are evaluated more than once. Assume X
416 + Y - 1 does not overflow. Tune for Y being a power of 2. */
417
418 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
419 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
420 : ((x) + (y) - 1) & ~ ((y) - 1))
421
422 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
423
424 static void *
425 ALIGN (void *ptr, int alignment)
426 {
427 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
428 }
429
430 static void
431 XFLOAT_INIT (Lisp_Object f, double n)
432 {
433 XFLOAT (f)->u.data = n;
434 }
435
436 static bool
437 pointers_fit_in_lispobj_p (void)
438 {
439 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
440 }
441
442 static bool
443 mmap_lisp_allowed_p (void)
444 {
445 /* If we can't store all memory addresses in our lisp objects, it's
446 risky to let the heap use mmap and give us addresses from all
447 over our address space. We also can't use mmap for lisp objects
448 if we might dump: unexec doesn't preserve the contents of mmaped
449 regions. */
450 return pointers_fit_in_lispobj_p () && !might_dump;
451 }
452
453 \f
454 /************************************************************************
455 Malloc
456 ************************************************************************/
457
458 /* Function malloc calls this if it finds we are near exhausting storage. */
459
460 void
461 malloc_warning (const char *str)
462 {
463 pending_malloc_warning = str;
464 }
465
466
467 /* Display an already-pending malloc warning. */
468
469 void
470 display_malloc_warning (void)
471 {
472 call3 (intern ("display-warning"),
473 intern ("alloc"),
474 build_string (pending_malloc_warning),
475 intern ("emergency"));
476 pending_malloc_warning = 0;
477 }
478 \f
479 /* Called if we can't allocate relocatable space for a buffer. */
480
481 void
482 buffer_memory_full (ptrdiff_t nbytes)
483 {
484 /* If buffers use the relocating allocator, no need to free
485 spare_memory, because we may have plenty of malloc space left
486 that we could get, and if we don't, the malloc that fails will
487 itself cause spare_memory to be freed. If buffers don't use the
488 relocating allocator, treat this like any other failing
489 malloc. */
490
491 #ifndef REL_ALLOC
492 memory_full (nbytes);
493 #else
494 /* This used to call error, but if we've run out of memory, we could
495 get infinite recursion trying to build the string. */
496 xsignal (Qnil, Vmemory_signal_data);
497 #endif
498 }
499
500 /* A common multiple of the positive integers A and B. Ideally this
501 would be the least common multiple, but there's no way to do that
502 as a constant expression in C, so do the best that we can easily do. */
503 #define COMMON_MULTIPLE(a, b) \
504 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
505
506 #ifndef XMALLOC_OVERRUN_CHECK
507 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
508 #else
509
510 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
511 around each block.
512
513 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
514 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
515 block size in little-endian order. The trailer consists of
516 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
517
518 The header is used to detect whether this block has been allocated
519 through these functions, as some low-level libc functions may
520 bypass the malloc hooks. */
521
522 #define XMALLOC_OVERRUN_CHECK_SIZE 16
523 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
524 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
525
526 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
527 hold a size_t value and (2) the header size is a multiple of the
528 alignment that Emacs needs for C types and for USE_LSB_TAG. */
529 #define XMALLOC_BASE_ALIGNMENT \
530 alignof (union { long double d; intmax_t i; void *p; })
531
532 #if USE_LSB_TAG
533 # define XMALLOC_HEADER_ALIGNMENT \
534 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
535 #else
536 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
537 #endif
538 #define XMALLOC_OVERRUN_SIZE_SIZE \
539 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
540 + XMALLOC_HEADER_ALIGNMENT - 1) \
541 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
542 - XMALLOC_OVERRUN_CHECK_SIZE)
543
544 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
545 { '\x9a', '\x9b', '\xae', '\xaf',
546 '\xbf', '\xbe', '\xce', '\xcf',
547 '\xea', '\xeb', '\xec', '\xed',
548 '\xdf', '\xde', '\x9c', '\x9d' };
549
550 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
551 { '\xaa', '\xab', '\xac', '\xad',
552 '\xba', '\xbb', '\xbc', '\xbd',
553 '\xca', '\xcb', '\xcc', '\xcd',
554 '\xda', '\xdb', '\xdc', '\xdd' };
555
556 /* Insert and extract the block size in the header. */
557
558 static void
559 xmalloc_put_size (unsigned char *ptr, size_t size)
560 {
561 int i;
562 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
563 {
564 *--ptr = size & ((1 << CHAR_BIT) - 1);
565 size >>= CHAR_BIT;
566 }
567 }
568
569 static size_t
570 xmalloc_get_size (unsigned char *ptr)
571 {
572 size_t size = 0;
573 int i;
574 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
575 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
576 {
577 size <<= CHAR_BIT;
578 size += *ptr++;
579 }
580 return size;
581 }
582
583
584 /* Like malloc, but wraps allocated block with header and trailer. */
585
586 static void *
587 overrun_check_malloc (size_t size)
588 {
589 register unsigned char *val;
590 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
591 emacs_abort ();
592
593 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
594 if (val)
595 {
596 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
597 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
598 xmalloc_put_size (val, size);
599 memcpy (val + size, xmalloc_overrun_check_trailer,
600 XMALLOC_OVERRUN_CHECK_SIZE);
601 }
602 return val;
603 }
604
605
606 /* Like realloc, but checks old block for overrun, and wraps new block
607 with header and trailer. */
608
609 static void *
610 overrun_check_realloc (void *block, size_t size)
611 {
612 register unsigned char *val = (unsigned char *) block;
613 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
614 emacs_abort ();
615
616 if (val
617 && memcmp (xmalloc_overrun_check_header,
618 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
619 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
620 {
621 size_t osize = xmalloc_get_size (val);
622 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
623 XMALLOC_OVERRUN_CHECK_SIZE))
624 emacs_abort ();
625 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
626 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
627 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
628 }
629
630 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
631
632 if (val)
633 {
634 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
635 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
636 xmalloc_put_size (val, size);
637 memcpy (val + size, xmalloc_overrun_check_trailer,
638 XMALLOC_OVERRUN_CHECK_SIZE);
639 }
640 return val;
641 }
642
643 /* Like free, but checks block for overrun. */
644
645 static void
646 overrun_check_free (void *block)
647 {
648 unsigned char *val = (unsigned char *) block;
649
650 if (val
651 && memcmp (xmalloc_overrun_check_header,
652 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
653 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
654 {
655 size_t osize = xmalloc_get_size (val);
656 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
657 XMALLOC_OVERRUN_CHECK_SIZE))
658 emacs_abort ();
659 #ifdef XMALLOC_CLEAR_FREE_MEMORY
660 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
661 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
662 #else
663 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
664 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
665 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
666 #endif
667 }
668
669 free (val);
670 }
671
672 #undef malloc
673 #undef realloc
674 #undef free
675 #define malloc overrun_check_malloc
676 #define realloc overrun_check_realloc
677 #define free overrun_check_free
678 #endif
679
680 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
681 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
682 If that variable is set, block input while in one of Emacs's memory
683 allocation functions. There should be no need for this debugging
684 option, since signal handlers do not allocate memory, but Emacs
685 formerly allocated memory in signal handlers and this compile-time
686 option remains as a way to help debug the issue should it rear its
687 ugly head again. */
688 #ifdef XMALLOC_BLOCK_INPUT_CHECK
689 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
690 static void
691 malloc_block_input (void)
692 {
693 if (block_input_in_memory_allocators)
694 block_input ();
695 }
696 static void
697 malloc_unblock_input (void)
698 {
699 if (block_input_in_memory_allocators)
700 unblock_input ();
701 }
702 # define MALLOC_BLOCK_INPUT malloc_block_input ()
703 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
704 #else
705 # define MALLOC_BLOCK_INPUT ((void) 0)
706 # define MALLOC_UNBLOCK_INPUT ((void) 0)
707 #endif
708
709 #define MALLOC_PROBE(size) \
710 do { \
711 if (profiler_memory_running) \
712 malloc_probe (size); \
713 } while (0)
714
715
716 /* Like malloc but check for no memory and block interrupt input.. */
717
718 void *
719 xmalloc (size_t size)
720 {
721 void *val;
722
723 MALLOC_BLOCK_INPUT;
724 val = malloc (size);
725 MALLOC_UNBLOCK_INPUT;
726
727 if (!val && size)
728 memory_full (size);
729 MALLOC_PROBE (size);
730 return val;
731 }
732
733 /* Like the above, but zeroes out the memory just allocated. */
734
735 void *
736 xzalloc (size_t size)
737 {
738 void *val;
739
740 MALLOC_BLOCK_INPUT;
741 val = malloc (size);
742 MALLOC_UNBLOCK_INPUT;
743
744 if (!val && size)
745 memory_full (size);
746 memset (val, 0, size);
747 MALLOC_PROBE (size);
748 return val;
749 }
750
751 /* Like realloc but check for no memory and block interrupt input.. */
752
753 void *
754 xrealloc (void *block, size_t size)
755 {
756 void *val;
757
758 MALLOC_BLOCK_INPUT;
759 /* We must call malloc explicitly when BLOCK is 0, since some
760 reallocs don't do this. */
761 if (! block)
762 val = malloc (size);
763 else
764 val = realloc (block, size);
765 MALLOC_UNBLOCK_INPUT;
766
767 if (!val && size)
768 memory_full (size);
769 MALLOC_PROBE (size);
770 return val;
771 }
772
773
774 /* Like free but block interrupt input. */
775
776 void
777 xfree (void *block)
778 {
779 if (!block)
780 return;
781 MALLOC_BLOCK_INPUT;
782 free (block);
783 MALLOC_UNBLOCK_INPUT;
784 /* We don't call refill_memory_reserve here
785 because in practice the call in r_alloc_free seems to suffice. */
786 }
787
788
789 /* Other parts of Emacs pass large int values to allocator functions
790 expecting ptrdiff_t. This is portable in practice, but check it to
791 be safe. */
792 verify (INT_MAX <= PTRDIFF_MAX);
793
794
795 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
796 Signal an error on memory exhaustion, and block interrupt input. */
797
798 void *
799 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
800 {
801 eassert (0 <= nitems && 0 < item_size);
802 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
803 memory_full (SIZE_MAX);
804 return xmalloc (nitems * item_size);
805 }
806
807
808 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
809 Signal an error on memory exhaustion, and block interrupt input. */
810
811 void *
812 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
813 {
814 eassert (0 <= nitems && 0 < item_size);
815 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
816 memory_full (SIZE_MAX);
817 return xrealloc (pa, nitems * item_size);
818 }
819
820
821 /* Grow PA, which points to an array of *NITEMS items, and return the
822 location of the reallocated array, updating *NITEMS to reflect its
823 new size. The new array will contain at least NITEMS_INCR_MIN more
824 items, but will not contain more than NITEMS_MAX items total.
825 ITEM_SIZE is the size of each item, in bytes.
826
827 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
828 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
829 infinity.
830
831 If PA is null, then allocate a new array instead of reallocating
832 the old one.
833
834 Block interrupt input as needed. If memory exhaustion occurs, set
835 *NITEMS to zero if PA is null, and signal an error (i.e., do not
836 return).
837
838 Thus, to grow an array A without saving its old contents, do
839 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
840 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
841 and signals an error, and later this code is reexecuted and
842 attempts to free A. */
843
844 void *
845 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
846 ptrdiff_t nitems_max, ptrdiff_t item_size)
847 {
848 /* The approximate size to use for initial small allocation
849 requests. This is the largest "small" request for the GNU C
850 library malloc. */
851 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
852
853 /* If the array is tiny, grow it to about (but no greater than)
854 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
855 ptrdiff_t n = *nitems;
856 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
857 ptrdiff_t half_again = n >> 1;
858 ptrdiff_t incr_estimate = max (tiny_max, half_again);
859
860 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
861 NITEMS_MAX, and what the C language can represent safely. */
862 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
863 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
864 ? nitems_max : C_language_max);
865 ptrdiff_t nitems_incr_max = n_max - n;
866 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
867
868 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
869 if (! pa)
870 *nitems = 0;
871 if (nitems_incr_max < incr)
872 memory_full (SIZE_MAX);
873 n += incr;
874 pa = xrealloc (pa, n * item_size);
875 *nitems = n;
876 return pa;
877 }
878
879
880 /* Like strdup, but uses xmalloc. */
881
882 char *
883 xstrdup (const char *s)
884 {
885 ptrdiff_t size;
886 eassert (s);
887 size = strlen (s) + 1;
888 return memcpy (xmalloc (size), s, size);
889 }
890
891 /* Like above, but duplicates Lisp string to C string. */
892
893 char *
894 xlispstrdup (Lisp_Object string)
895 {
896 ptrdiff_t size = SBYTES (string) + 1;
897 return memcpy (xmalloc (size), SSDATA (string), size);
898 }
899
900 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
901 pointed to. If STRING is null, assign it without copying anything.
902 Allocate before freeing, to avoid a dangling pointer if allocation
903 fails. */
904
905 void
906 dupstring (char **ptr, char const *string)
907 {
908 char *old = *ptr;
909 *ptr = string ? xstrdup (string) : 0;
910 xfree (old);
911 }
912
913
914 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
915 argument is a const pointer. */
916
917 void
918 xputenv (char const *string)
919 {
920 if (putenv ((char *) string) != 0)
921 memory_full (0);
922 }
923
924 /* Return a newly allocated memory block of SIZE bytes, remembering
925 to free it when unwinding. */
926 void *
927 record_xmalloc (size_t size)
928 {
929 void *p = xmalloc (size);
930 record_unwind_protect_ptr (xfree, p);
931 return p;
932 }
933
934
935 /* Like malloc but used for allocating Lisp data. NBYTES is the
936 number of bytes to allocate, TYPE describes the intended use of the
937 allocated memory block (for strings, for conses, ...). */
938
939 #if ! USE_LSB_TAG
940 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
941 #endif
942
943 static void *
944 lisp_malloc (size_t nbytes, enum mem_type type)
945 {
946 register void *val;
947
948 MALLOC_BLOCK_INPUT;
949
950 #ifdef GC_MALLOC_CHECK
951 allocated_mem_type = type;
952 #endif
953
954 val = malloc (nbytes);
955
956 #if ! USE_LSB_TAG
957 /* If the memory just allocated cannot be addressed thru a Lisp
958 object's pointer, and it needs to be,
959 that's equivalent to running out of memory. */
960 if (val && type != MEM_TYPE_NON_LISP)
961 {
962 Lisp_Object tem;
963 XSETCONS (tem, (char *) val + nbytes - 1);
964 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
965 {
966 lisp_malloc_loser = val;
967 free (val);
968 val = 0;
969 }
970 }
971 #endif
972
973 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
974 if (val && type != MEM_TYPE_NON_LISP)
975 mem_insert (val, (char *) val + nbytes, type);
976 #endif
977
978 MALLOC_UNBLOCK_INPUT;
979 if (!val && nbytes)
980 memory_full (nbytes);
981 MALLOC_PROBE (nbytes);
982 return val;
983 }
984
985 /* Free BLOCK. This must be called to free memory allocated with a
986 call to lisp_malloc. */
987
988 static void
989 lisp_free (void *block)
990 {
991 MALLOC_BLOCK_INPUT;
992 free (block);
993 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
994 mem_delete (mem_find (block));
995 #endif
996 MALLOC_UNBLOCK_INPUT;
997 }
998
999 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1000
1001 /* The entry point is lisp_align_malloc which returns blocks of at most
1002 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1003
1004 /* Use aligned_alloc if it or a simple substitute is available.
1005 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1006 clang 3.3 anyway. */
1007
1008 #if ! ADDRESS_SANITIZER
1009 # if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC
1010 # define USE_ALIGNED_ALLOC 1
1011 /* Defined in gmalloc.c. */
1012 void *aligned_alloc (size_t, size_t);
1013 # elif defined HAVE_ALIGNED_ALLOC
1014 # define USE_ALIGNED_ALLOC 1
1015 # elif defined HAVE_POSIX_MEMALIGN
1016 # define USE_ALIGNED_ALLOC 1
1017 static void *
1018 aligned_alloc (size_t alignment, size_t size)
1019 {
1020 void *p;
1021 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1022 }
1023 # endif
1024 #endif
1025
1026 /* BLOCK_ALIGN has to be a power of 2. */
1027 #define BLOCK_ALIGN (1 << 10)
1028
1029 /* Padding to leave at the end of a malloc'd block. This is to give
1030 malloc a chance to minimize the amount of memory wasted to alignment.
1031 It should be tuned to the particular malloc library used.
1032 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1033 aligned_alloc on the other hand would ideally prefer a value of 4
1034 because otherwise, there's 1020 bytes wasted between each ablocks.
1035 In Emacs, testing shows that those 1020 can most of the time be
1036 efficiently used by malloc to place other objects, so a value of 0 can
1037 still preferable unless you have a lot of aligned blocks and virtually
1038 nothing else. */
1039 #define BLOCK_PADDING 0
1040 #define BLOCK_BYTES \
1041 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1042
1043 /* Internal data structures and constants. */
1044
1045 #define ABLOCKS_SIZE 16
1046
1047 /* An aligned block of memory. */
1048 struct ablock
1049 {
1050 union
1051 {
1052 char payload[BLOCK_BYTES];
1053 struct ablock *next_free;
1054 } x;
1055 /* `abase' is the aligned base of the ablocks. */
1056 /* It is overloaded to hold the virtual `busy' field that counts
1057 the number of used ablock in the parent ablocks.
1058 The first ablock has the `busy' field, the others have the `abase'
1059 field. To tell the difference, we assume that pointers will have
1060 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1061 is used to tell whether the real base of the parent ablocks is `abase'
1062 (if not, the word before the first ablock holds a pointer to the
1063 real base). */
1064 struct ablocks *abase;
1065 /* The padding of all but the last ablock is unused. The padding of
1066 the last ablock in an ablocks is not allocated. */
1067 #if BLOCK_PADDING
1068 char padding[BLOCK_PADDING];
1069 #endif
1070 };
1071
1072 /* A bunch of consecutive aligned blocks. */
1073 struct ablocks
1074 {
1075 struct ablock blocks[ABLOCKS_SIZE];
1076 };
1077
1078 /* Size of the block requested from malloc or aligned_alloc. */
1079 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1080
1081 #define ABLOCK_ABASE(block) \
1082 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1083 ? (struct ablocks *)(block) \
1084 : (block)->abase)
1085
1086 /* Virtual `busy' field. */
1087 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1088
1089 /* Pointer to the (not necessarily aligned) malloc block. */
1090 #ifdef USE_ALIGNED_ALLOC
1091 #define ABLOCKS_BASE(abase) (abase)
1092 #else
1093 #define ABLOCKS_BASE(abase) \
1094 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1095 #endif
1096
1097 /* The list of free ablock. */
1098 static struct ablock *free_ablock;
1099
1100 /* Allocate an aligned block of nbytes.
1101 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1102 smaller or equal to BLOCK_BYTES. */
1103 static void *
1104 lisp_align_malloc (size_t nbytes, enum mem_type type)
1105 {
1106 void *base, *val;
1107 struct ablocks *abase;
1108
1109 eassert (nbytes <= BLOCK_BYTES);
1110
1111 MALLOC_BLOCK_INPUT;
1112
1113 #ifdef GC_MALLOC_CHECK
1114 allocated_mem_type = type;
1115 #endif
1116
1117 if (!free_ablock)
1118 {
1119 int i;
1120 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1121
1122 #ifdef DOUG_LEA_MALLOC
1123 if (!mmap_lisp_allowed_p ())
1124 mallopt (M_MMAP_MAX, 0);
1125 #endif
1126
1127 #ifdef USE_ALIGNED_ALLOC
1128 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1129 #else
1130 base = malloc (ABLOCKS_BYTES);
1131 abase = ALIGN (base, BLOCK_ALIGN);
1132 #endif
1133
1134 if (base == 0)
1135 {
1136 MALLOC_UNBLOCK_INPUT;
1137 memory_full (ABLOCKS_BYTES);
1138 }
1139
1140 aligned = (base == abase);
1141 if (!aligned)
1142 ((void **) abase)[-1] = base;
1143
1144 #ifdef DOUG_LEA_MALLOC
1145 if (!mmap_lisp_allowed_p ())
1146 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1147 #endif
1148
1149 #if ! USE_LSB_TAG
1150 /* If the memory just allocated cannot be addressed thru a Lisp
1151 object's pointer, and it needs to be, that's equivalent to
1152 running out of memory. */
1153 if (type != MEM_TYPE_NON_LISP)
1154 {
1155 Lisp_Object tem;
1156 char *end = (char *) base + ABLOCKS_BYTES - 1;
1157 XSETCONS (tem, end);
1158 if ((char *) XCONS (tem) != end)
1159 {
1160 lisp_malloc_loser = base;
1161 free (base);
1162 MALLOC_UNBLOCK_INPUT;
1163 memory_full (SIZE_MAX);
1164 }
1165 }
1166 #endif
1167
1168 /* Initialize the blocks and put them on the free list.
1169 If `base' was not properly aligned, we can't use the last block. */
1170 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1171 {
1172 abase->blocks[i].abase = abase;
1173 abase->blocks[i].x.next_free = free_ablock;
1174 free_ablock = &abase->blocks[i];
1175 }
1176 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1177
1178 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1179 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1180 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1181 eassert (ABLOCKS_BASE (abase) == base);
1182 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1183 }
1184
1185 abase = ABLOCK_ABASE (free_ablock);
1186 ABLOCKS_BUSY (abase)
1187 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1188 val = free_ablock;
1189 free_ablock = free_ablock->x.next_free;
1190
1191 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1192 if (type != MEM_TYPE_NON_LISP)
1193 mem_insert (val, (char *) val + nbytes, type);
1194 #endif
1195
1196 MALLOC_UNBLOCK_INPUT;
1197
1198 MALLOC_PROBE (nbytes);
1199
1200 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1201 return val;
1202 }
1203
1204 static void
1205 lisp_align_free (void *block)
1206 {
1207 struct ablock *ablock = block;
1208 struct ablocks *abase = ABLOCK_ABASE (ablock);
1209
1210 MALLOC_BLOCK_INPUT;
1211 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1212 mem_delete (mem_find (block));
1213 #endif
1214 /* Put on free list. */
1215 ablock->x.next_free = free_ablock;
1216 free_ablock = ablock;
1217 /* Update busy count. */
1218 ABLOCKS_BUSY (abase)
1219 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1220
1221 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1222 { /* All the blocks are free. */
1223 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1224 struct ablock **tem = &free_ablock;
1225 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1226
1227 while (*tem)
1228 {
1229 if (*tem >= (struct ablock *) abase && *tem < atop)
1230 {
1231 i++;
1232 *tem = (*tem)->x.next_free;
1233 }
1234 else
1235 tem = &(*tem)->x.next_free;
1236 }
1237 eassert ((aligned & 1) == aligned);
1238 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1239 #ifdef USE_POSIX_MEMALIGN
1240 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1241 #endif
1242 free (ABLOCKS_BASE (abase));
1243 }
1244 MALLOC_UNBLOCK_INPUT;
1245 }
1246
1247 \f
1248 /***********************************************************************
1249 Interval Allocation
1250 ***********************************************************************/
1251
1252 /* Number of intervals allocated in an interval_block structure.
1253 The 1020 is 1024 minus malloc overhead. */
1254
1255 #define INTERVAL_BLOCK_SIZE \
1256 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1257
1258 /* Intervals are allocated in chunks in the form of an interval_block
1259 structure. */
1260
1261 struct interval_block
1262 {
1263 /* Place `intervals' first, to preserve alignment. */
1264 struct interval intervals[INTERVAL_BLOCK_SIZE];
1265 struct interval_block *next;
1266 };
1267
1268 /* Current interval block. Its `next' pointer points to older
1269 blocks. */
1270
1271 static struct interval_block *interval_block;
1272
1273 /* Index in interval_block above of the next unused interval
1274 structure. */
1275
1276 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1277
1278 /* Number of free and live intervals. */
1279
1280 static EMACS_INT total_free_intervals, total_intervals;
1281
1282 /* List of free intervals. */
1283
1284 static INTERVAL interval_free_list;
1285
1286 /* Return a new interval. */
1287
1288 INTERVAL
1289 make_interval (void)
1290 {
1291 INTERVAL val;
1292
1293 MALLOC_BLOCK_INPUT;
1294
1295 if (interval_free_list)
1296 {
1297 val = interval_free_list;
1298 interval_free_list = INTERVAL_PARENT (interval_free_list);
1299 }
1300 else
1301 {
1302 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1303 {
1304 struct interval_block *newi
1305 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1306
1307 newi->next = interval_block;
1308 interval_block = newi;
1309 interval_block_index = 0;
1310 total_free_intervals += INTERVAL_BLOCK_SIZE;
1311 }
1312 val = &interval_block->intervals[interval_block_index++];
1313 }
1314
1315 MALLOC_UNBLOCK_INPUT;
1316
1317 consing_since_gc += sizeof (struct interval);
1318 intervals_consed++;
1319 total_free_intervals--;
1320 RESET_INTERVAL (val);
1321 val->gcmarkbit = 0;
1322 return val;
1323 }
1324
1325
1326 /* Mark Lisp objects in interval I. */
1327
1328 static void
1329 mark_interval (register INTERVAL i, Lisp_Object dummy)
1330 {
1331 /* Intervals should never be shared. So, if extra internal checking is
1332 enabled, GC aborts if it seems to have visited an interval twice. */
1333 eassert (!i->gcmarkbit);
1334 i->gcmarkbit = 1;
1335 mark_object (i->plist);
1336 }
1337
1338 /* Mark the interval tree rooted in I. */
1339
1340 #define MARK_INTERVAL_TREE(i) \
1341 do { \
1342 if (i && !i->gcmarkbit) \
1343 traverse_intervals_noorder (i, mark_interval, Qnil); \
1344 } while (0)
1345
1346 /***********************************************************************
1347 String Allocation
1348 ***********************************************************************/
1349
1350 /* Lisp_Strings are allocated in string_block structures. When a new
1351 string_block is allocated, all the Lisp_Strings it contains are
1352 added to a free-list string_free_list. When a new Lisp_String is
1353 needed, it is taken from that list. During the sweep phase of GC,
1354 string_blocks that are entirely free are freed, except two which
1355 we keep.
1356
1357 String data is allocated from sblock structures. Strings larger
1358 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1359 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1360
1361 Sblocks consist internally of sdata structures, one for each
1362 Lisp_String. The sdata structure points to the Lisp_String it
1363 belongs to. The Lisp_String points back to the `u.data' member of
1364 its sdata structure.
1365
1366 When a Lisp_String is freed during GC, it is put back on
1367 string_free_list, and its `data' member and its sdata's `string'
1368 pointer is set to null. The size of the string is recorded in the
1369 `n.nbytes' member of the sdata. So, sdata structures that are no
1370 longer used, can be easily recognized, and it's easy to compact the
1371 sblocks of small strings which we do in compact_small_strings. */
1372
1373 /* Size in bytes of an sblock structure used for small strings. This
1374 is 8192 minus malloc overhead. */
1375
1376 #define SBLOCK_SIZE 8188
1377
1378 /* Strings larger than this are considered large strings. String data
1379 for large strings is allocated from individual sblocks. */
1380
1381 #define LARGE_STRING_BYTES 1024
1382
1383 /* The SDATA typedef is a struct or union describing string memory
1384 sub-allocated from an sblock. This is where the contents of Lisp
1385 strings are stored. */
1386
1387 struct sdata
1388 {
1389 /* Back-pointer to the string this sdata belongs to. If null, this
1390 structure is free, and NBYTES (in this structure or in the union below)
1391 contains the string's byte size (the same value that STRING_BYTES
1392 would return if STRING were non-null). If non-null, STRING_BYTES
1393 (STRING) is the size of the data, and DATA contains the string's
1394 contents. */
1395 struct Lisp_String *string;
1396
1397 #ifdef GC_CHECK_STRING_BYTES
1398 ptrdiff_t nbytes;
1399 #endif
1400
1401 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1402 };
1403
1404 #ifdef GC_CHECK_STRING_BYTES
1405
1406 typedef struct sdata sdata;
1407 #define SDATA_NBYTES(S) (S)->nbytes
1408 #define SDATA_DATA(S) (S)->data
1409
1410 #else
1411
1412 typedef union
1413 {
1414 struct Lisp_String *string;
1415
1416 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1417 which has a flexible array member. However, if implemented by
1418 giving this union a member of type 'struct sdata', the union
1419 could not be the last (flexible) member of 'struct sblock',
1420 because C99 prohibits a flexible array member from having a type
1421 that is itself a flexible array. So, comment this member out here,
1422 but remember that the option's there when using this union. */
1423 #if 0
1424 struct sdata u;
1425 #endif
1426
1427 /* When STRING is null. */
1428 struct
1429 {
1430 struct Lisp_String *string;
1431 ptrdiff_t nbytes;
1432 } n;
1433 } sdata;
1434
1435 #define SDATA_NBYTES(S) (S)->n.nbytes
1436 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1437
1438 #endif /* not GC_CHECK_STRING_BYTES */
1439
1440 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1441
1442 /* Structure describing a block of memory which is sub-allocated to
1443 obtain string data memory for strings. Blocks for small strings
1444 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1445 as large as needed. */
1446
1447 struct sblock
1448 {
1449 /* Next in list. */
1450 struct sblock *next;
1451
1452 /* Pointer to the next free sdata block. This points past the end
1453 of the sblock if there isn't any space left in this block. */
1454 sdata *next_free;
1455
1456 /* String data. */
1457 sdata data[FLEXIBLE_ARRAY_MEMBER];
1458 };
1459
1460 /* Number of Lisp strings in a string_block structure. The 1020 is
1461 1024 minus malloc overhead. */
1462
1463 #define STRING_BLOCK_SIZE \
1464 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1465
1466 /* Structure describing a block from which Lisp_String structures
1467 are allocated. */
1468
1469 struct string_block
1470 {
1471 /* Place `strings' first, to preserve alignment. */
1472 struct Lisp_String strings[STRING_BLOCK_SIZE];
1473 struct string_block *next;
1474 };
1475
1476 /* Head and tail of the list of sblock structures holding Lisp string
1477 data. We always allocate from current_sblock. The NEXT pointers
1478 in the sblock structures go from oldest_sblock to current_sblock. */
1479
1480 static struct sblock *oldest_sblock, *current_sblock;
1481
1482 /* List of sblocks for large strings. */
1483
1484 static struct sblock *large_sblocks;
1485
1486 /* List of string_block structures. */
1487
1488 static struct string_block *string_blocks;
1489
1490 /* Free-list of Lisp_Strings. */
1491
1492 static struct Lisp_String *string_free_list;
1493
1494 /* Number of live and free Lisp_Strings. */
1495
1496 static EMACS_INT total_strings, total_free_strings;
1497
1498 /* Number of bytes used by live strings. */
1499
1500 static EMACS_INT total_string_bytes;
1501
1502 /* Given a pointer to a Lisp_String S which is on the free-list
1503 string_free_list, return a pointer to its successor in the
1504 free-list. */
1505
1506 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1507
1508 /* Return a pointer to the sdata structure belonging to Lisp string S.
1509 S must be live, i.e. S->data must not be null. S->data is actually
1510 a pointer to the `u.data' member of its sdata structure; the
1511 structure starts at a constant offset in front of that. */
1512
1513 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1514
1515
1516 #ifdef GC_CHECK_STRING_OVERRUN
1517
1518 /* We check for overrun in string data blocks by appending a small
1519 "cookie" after each allocated string data block, and check for the
1520 presence of this cookie during GC. */
1521
1522 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1523 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1524 { '\xde', '\xad', '\xbe', '\xef' };
1525
1526 #else
1527 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1528 #endif
1529
1530 /* Value is the size of an sdata structure large enough to hold NBYTES
1531 bytes of string data. The value returned includes a terminating
1532 NUL byte, the size of the sdata structure, and padding. */
1533
1534 #ifdef GC_CHECK_STRING_BYTES
1535
1536 #define SDATA_SIZE(NBYTES) \
1537 ((SDATA_DATA_OFFSET \
1538 + (NBYTES) + 1 \
1539 + sizeof (ptrdiff_t) - 1) \
1540 & ~(sizeof (ptrdiff_t) - 1))
1541
1542 #else /* not GC_CHECK_STRING_BYTES */
1543
1544 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1545 less than the size of that member. The 'max' is not needed when
1546 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1547 alignment code reserves enough space. */
1548
1549 #define SDATA_SIZE(NBYTES) \
1550 ((SDATA_DATA_OFFSET \
1551 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1552 ? NBYTES \
1553 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1554 + 1 \
1555 + sizeof (ptrdiff_t) - 1) \
1556 & ~(sizeof (ptrdiff_t) - 1))
1557
1558 #endif /* not GC_CHECK_STRING_BYTES */
1559
1560 /* Extra bytes to allocate for each string. */
1561
1562 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1563
1564 /* Exact bound on the number of bytes in a string, not counting the
1565 terminating null. A string cannot contain more bytes than
1566 STRING_BYTES_BOUND, nor can it be so long that the size_t
1567 arithmetic in allocate_string_data would overflow while it is
1568 calculating a value to be passed to malloc. */
1569 static ptrdiff_t const STRING_BYTES_MAX =
1570 min (STRING_BYTES_BOUND,
1571 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1572 - GC_STRING_EXTRA
1573 - offsetof (struct sblock, data)
1574 - SDATA_DATA_OFFSET)
1575 & ~(sizeof (EMACS_INT) - 1)));
1576
1577 /* Initialize string allocation. Called from init_alloc_once. */
1578
1579 static void
1580 init_strings (void)
1581 {
1582 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1583 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1584 }
1585
1586
1587 #ifdef GC_CHECK_STRING_BYTES
1588
1589 static int check_string_bytes_count;
1590
1591 /* Like STRING_BYTES, but with debugging check. Can be
1592 called during GC, so pay attention to the mark bit. */
1593
1594 ptrdiff_t
1595 string_bytes (struct Lisp_String *s)
1596 {
1597 ptrdiff_t nbytes =
1598 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1599
1600 if (!PURE_POINTER_P (s)
1601 && s->data
1602 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1603 emacs_abort ();
1604 return nbytes;
1605 }
1606
1607 /* Check validity of Lisp strings' string_bytes member in B. */
1608
1609 static void
1610 check_sblock (struct sblock *b)
1611 {
1612 sdata *from, *end, *from_end;
1613
1614 end = b->next_free;
1615
1616 for (from = b->data; from < end; from = from_end)
1617 {
1618 /* Compute the next FROM here because copying below may
1619 overwrite data we need to compute it. */
1620 ptrdiff_t nbytes;
1621
1622 /* Check that the string size recorded in the string is the
1623 same as the one recorded in the sdata structure. */
1624 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1625 : SDATA_NBYTES (from));
1626 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1627 }
1628 }
1629
1630
1631 /* Check validity of Lisp strings' string_bytes member. ALL_P
1632 means check all strings, otherwise check only most
1633 recently allocated strings. Used for hunting a bug. */
1634
1635 static void
1636 check_string_bytes (bool all_p)
1637 {
1638 if (all_p)
1639 {
1640 struct sblock *b;
1641
1642 for (b = large_sblocks; b; b = b->next)
1643 {
1644 struct Lisp_String *s = b->data[0].string;
1645 if (s)
1646 string_bytes (s);
1647 }
1648
1649 for (b = oldest_sblock; b; b = b->next)
1650 check_sblock (b);
1651 }
1652 else if (current_sblock)
1653 check_sblock (current_sblock);
1654 }
1655
1656 #else /* not GC_CHECK_STRING_BYTES */
1657
1658 #define check_string_bytes(all) ((void) 0)
1659
1660 #endif /* GC_CHECK_STRING_BYTES */
1661
1662 #ifdef GC_CHECK_STRING_FREE_LIST
1663
1664 /* Walk through the string free list looking for bogus next pointers.
1665 This may catch buffer overrun from a previous string. */
1666
1667 static void
1668 check_string_free_list (void)
1669 {
1670 struct Lisp_String *s;
1671
1672 /* Pop a Lisp_String off the free-list. */
1673 s = string_free_list;
1674 while (s != NULL)
1675 {
1676 if ((uintptr_t) s < 1024)
1677 emacs_abort ();
1678 s = NEXT_FREE_LISP_STRING (s);
1679 }
1680 }
1681 #else
1682 #define check_string_free_list()
1683 #endif
1684
1685 /* Return a new Lisp_String. */
1686
1687 static struct Lisp_String *
1688 allocate_string (void)
1689 {
1690 struct Lisp_String *s;
1691
1692 MALLOC_BLOCK_INPUT;
1693
1694 /* If the free-list is empty, allocate a new string_block, and
1695 add all the Lisp_Strings in it to the free-list. */
1696 if (string_free_list == NULL)
1697 {
1698 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1699 int i;
1700
1701 b->next = string_blocks;
1702 string_blocks = b;
1703
1704 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1705 {
1706 s = b->strings + i;
1707 /* Every string on a free list should have NULL data pointer. */
1708 s->data = NULL;
1709 NEXT_FREE_LISP_STRING (s) = string_free_list;
1710 string_free_list = s;
1711 }
1712
1713 total_free_strings += STRING_BLOCK_SIZE;
1714 }
1715
1716 check_string_free_list ();
1717
1718 /* Pop a Lisp_String off the free-list. */
1719 s = string_free_list;
1720 string_free_list = NEXT_FREE_LISP_STRING (s);
1721
1722 MALLOC_UNBLOCK_INPUT;
1723
1724 --total_free_strings;
1725 ++total_strings;
1726 ++strings_consed;
1727 consing_since_gc += sizeof *s;
1728
1729 #ifdef GC_CHECK_STRING_BYTES
1730 if (!noninteractive)
1731 {
1732 if (++check_string_bytes_count == 200)
1733 {
1734 check_string_bytes_count = 0;
1735 check_string_bytes (1);
1736 }
1737 else
1738 check_string_bytes (0);
1739 }
1740 #endif /* GC_CHECK_STRING_BYTES */
1741
1742 return s;
1743 }
1744
1745
1746 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1747 plus a NUL byte at the end. Allocate an sdata structure for S, and
1748 set S->data to its `u.data' member. Store a NUL byte at the end of
1749 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1750 S->data if it was initially non-null. */
1751
1752 void
1753 allocate_string_data (struct Lisp_String *s,
1754 EMACS_INT nchars, EMACS_INT nbytes)
1755 {
1756 sdata *data, *old_data;
1757 struct sblock *b;
1758 ptrdiff_t needed, old_nbytes;
1759
1760 if (STRING_BYTES_MAX < nbytes)
1761 string_overflow ();
1762
1763 /* Determine the number of bytes needed to store NBYTES bytes
1764 of string data. */
1765 needed = SDATA_SIZE (nbytes);
1766 if (s->data)
1767 {
1768 old_data = SDATA_OF_STRING (s);
1769 old_nbytes = STRING_BYTES (s);
1770 }
1771 else
1772 old_data = NULL;
1773
1774 MALLOC_BLOCK_INPUT;
1775
1776 if (nbytes > LARGE_STRING_BYTES)
1777 {
1778 size_t size = offsetof (struct sblock, data) + needed;
1779
1780 #ifdef DOUG_LEA_MALLOC
1781 if (!mmap_lisp_allowed_p ())
1782 mallopt (M_MMAP_MAX, 0);
1783 #endif
1784
1785 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1786
1787 #ifdef DOUG_LEA_MALLOC
1788 if (!mmap_lisp_allowed_p ())
1789 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1790 #endif
1791
1792 b->next_free = b->data;
1793 b->data[0].string = NULL;
1794 b->next = large_sblocks;
1795 large_sblocks = b;
1796 }
1797 else if (current_sblock == NULL
1798 || (((char *) current_sblock + SBLOCK_SIZE
1799 - (char *) current_sblock->next_free)
1800 < (needed + GC_STRING_EXTRA)))
1801 {
1802 /* Not enough room in the current sblock. */
1803 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1804 b->next_free = b->data;
1805 b->data[0].string = NULL;
1806 b->next = NULL;
1807
1808 if (current_sblock)
1809 current_sblock->next = b;
1810 else
1811 oldest_sblock = b;
1812 current_sblock = b;
1813 }
1814 else
1815 b = current_sblock;
1816
1817 data = b->next_free;
1818 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1819
1820 MALLOC_UNBLOCK_INPUT;
1821
1822 data->string = s;
1823 s->data = SDATA_DATA (data);
1824 #ifdef GC_CHECK_STRING_BYTES
1825 SDATA_NBYTES (data) = nbytes;
1826 #endif
1827 s->size = nchars;
1828 s->size_byte = nbytes;
1829 s->data[nbytes] = '\0';
1830 #ifdef GC_CHECK_STRING_OVERRUN
1831 memcpy ((char *) data + needed, string_overrun_cookie,
1832 GC_STRING_OVERRUN_COOKIE_SIZE);
1833 #endif
1834
1835 /* Note that Faset may call to this function when S has already data
1836 assigned. In this case, mark data as free by setting it's string
1837 back-pointer to null, and record the size of the data in it. */
1838 if (old_data)
1839 {
1840 SDATA_NBYTES (old_data) = old_nbytes;
1841 old_data->string = NULL;
1842 }
1843
1844 consing_since_gc += needed;
1845 }
1846
1847
1848 /* Sweep and compact strings. */
1849
1850 NO_INLINE /* For better stack traces */
1851 static void
1852 sweep_strings (void)
1853 {
1854 struct string_block *b, *next;
1855 struct string_block *live_blocks = NULL;
1856
1857 string_free_list = NULL;
1858 total_strings = total_free_strings = 0;
1859 total_string_bytes = 0;
1860
1861 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1862 for (b = string_blocks; b; b = next)
1863 {
1864 int i, nfree = 0;
1865 struct Lisp_String *free_list_before = string_free_list;
1866
1867 next = b->next;
1868
1869 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1870 {
1871 struct Lisp_String *s = b->strings + i;
1872
1873 if (s->data)
1874 {
1875 /* String was not on free-list before. */
1876 if (STRING_MARKED_P (s))
1877 {
1878 /* String is live; unmark it and its intervals. */
1879 UNMARK_STRING (s);
1880
1881 /* Do not use string_(set|get)_intervals here. */
1882 s->intervals = balance_intervals (s->intervals);
1883
1884 ++total_strings;
1885 total_string_bytes += STRING_BYTES (s);
1886 }
1887 else
1888 {
1889 /* String is dead. Put it on the free-list. */
1890 sdata *data = SDATA_OF_STRING (s);
1891
1892 /* Save the size of S in its sdata so that we know
1893 how large that is. Reset the sdata's string
1894 back-pointer so that we know it's free. */
1895 #ifdef GC_CHECK_STRING_BYTES
1896 if (string_bytes (s) != SDATA_NBYTES (data))
1897 emacs_abort ();
1898 #else
1899 data->n.nbytes = STRING_BYTES (s);
1900 #endif
1901 data->string = NULL;
1902
1903 /* Reset the strings's `data' member so that we
1904 know it's free. */
1905 s->data = NULL;
1906
1907 /* Put the string on the free-list. */
1908 NEXT_FREE_LISP_STRING (s) = string_free_list;
1909 string_free_list = s;
1910 ++nfree;
1911 }
1912 }
1913 else
1914 {
1915 /* S was on the free-list before. Put it there again. */
1916 NEXT_FREE_LISP_STRING (s) = string_free_list;
1917 string_free_list = s;
1918 ++nfree;
1919 }
1920 }
1921
1922 /* Free blocks that contain free Lisp_Strings only, except
1923 the first two of them. */
1924 if (nfree == STRING_BLOCK_SIZE
1925 && total_free_strings > STRING_BLOCK_SIZE)
1926 {
1927 lisp_free (b);
1928 string_free_list = free_list_before;
1929 }
1930 else
1931 {
1932 total_free_strings += nfree;
1933 b->next = live_blocks;
1934 live_blocks = b;
1935 }
1936 }
1937
1938 check_string_free_list ();
1939
1940 string_blocks = live_blocks;
1941 free_large_strings ();
1942 compact_small_strings ();
1943
1944 check_string_free_list ();
1945 }
1946
1947
1948 /* Free dead large strings. */
1949
1950 static void
1951 free_large_strings (void)
1952 {
1953 struct sblock *b, *next;
1954 struct sblock *live_blocks = NULL;
1955
1956 for (b = large_sblocks; b; b = next)
1957 {
1958 next = b->next;
1959
1960 if (b->data[0].string == NULL)
1961 lisp_free (b);
1962 else
1963 {
1964 b->next = live_blocks;
1965 live_blocks = b;
1966 }
1967 }
1968
1969 large_sblocks = live_blocks;
1970 }
1971
1972
1973 /* Compact data of small strings. Free sblocks that don't contain
1974 data of live strings after compaction. */
1975
1976 static void
1977 compact_small_strings (void)
1978 {
1979 struct sblock *b, *tb, *next;
1980 sdata *from, *to, *end, *tb_end;
1981 sdata *to_end, *from_end;
1982
1983 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1984 to, and TB_END is the end of TB. */
1985 tb = oldest_sblock;
1986 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1987 to = tb->data;
1988
1989 /* Step through the blocks from the oldest to the youngest. We
1990 expect that old blocks will stabilize over time, so that less
1991 copying will happen this way. */
1992 for (b = oldest_sblock; b; b = b->next)
1993 {
1994 end = b->next_free;
1995 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1996
1997 for (from = b->data; from < end; from = from_end)
1998 {
1999 /* Compute the next FROM here because copying below may
2000 overwrite data we need to compute it. */
2001 ptrdiff_t nbytes;
2002 struct Lisp_String *s = from->string;
2003
2004 #ifdef GC_CHECK_STRING_BYTES
2005 /* Check that the string size recorded in the string is the
2006 same as the one recorded in the sdata structure. */
2007 if (s && string_bytes (s) != SDATA_NBYTES (from))
2008 emacs_abort ();
2009 #endif /* GC_CHECK_STRING_BYTES */
2010
2011 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2012 eassert (nbytes <= LARGE_STRING_BYTES);
2013
2014 nbytes = SDATA_SIZE (nbytes);
2015 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2016
2017 #ifdef GC_CHECK_STRING_OVERRUN
2018 if (memcmp (string_overrun_cookie,
2019 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2020 GC_STRING_OVERRUN_COOKIE_SIZE))
2021 emacs_abort ();
2022 #endif
2023
2024 /* Non-NULL S means it's alive. Copy its data. */
2025 if (s)
2026 {
2027 /* If TB is full, proceed with the next sblock. */
2028 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2029 if (to_end > tb_end)
2030 {
2031 tb->next_free = to;
2032 tb = tb->next;
2033 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2034 to = tb->data;
2035 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2036 }
2037
2038 /* Copy, and update the string's `data' pointer. */
2039 if (from != to)
2040 {
2041 eassert (tb != b || to < from);
2042 memmove (to, from, nbytes + GC_STRING_EXTRA);
2043 to->string->data = SDATA_DATA (to);
2044 }
2045
2046 /* Advance past the sdata we copied to. */
2047 to = to_end;
2048 }
2049 }
2050 }
2051
2052 /* The rest of the sblocks following TB don't contain live data, so
2053 we can free them. */
2054 for (b = tb->next; b; b = next)
2055 {
2056 next = b->next;
2057 lisp_free (b);
2058 }
2059
2060 tb->next_free = to;
2061 tb->next = NULL;
2062 current_sblock = tb;
2063 }
2064
2065 void
2066 string_overflow (void)
2067 {
2068 error ("Maximum string size exceeded");
2069 }
2070
2071 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2072 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2073 LENGTH must be an integer.
2074 INIT must be an integer that represents a character. */)
2075 (Lisp_Object length, Lisp_Object init)
2076 {
2077 register Lisp_Object val;
2078 int c;
2079 EMACS_INT nbytes;
2080
2081 CHECK_NATNUM (length);
2082 CHECK_CHARACTER (init);
2083
2084 c = XFASTINT (init);
2085 if (ASCII_CHAR_P (c))
2086 {
2087 nbytes = XINT (length);
2088 val = make_uninit_string (nbytes);
2089 memset (SDATA (val), c, nbytes);
2090 SDATA (val)[nbytes] = 0;
2091 }
2092 else
2093 {
2094 unsigned char str[MAX_MULTIBYTE_LENGTH];
2095 ptrdiff_t len = CHAR_STRING (c, str);
2096 EMACS_INT string_len = XINT (length);
2097 unsigned char *p, *beg, *end;
2098
2099 if (string_len > STRING_BYTES_MAX / len)
2100 string_overflow ();
2101 nbytes = len * string_len;
2102 val = make_uninit_multibyte_string (string_len, nbytes);
2103 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2104 {
2105 /* First time we just copy `str' to the data of `val'. */
2106 if (p == beg)
2107 memcpy (p, str, len);
2108 else
2109 {
2110 /* Next time we copy largest possible chunk from
2111 initialized to uninitialized part of `val'. */
2112 len = min (p - beg, end - p);
2113 memcpy (p, beg, len);
2114 }
2115 }
2116 *p = 0;
2117 }
2118
2119 return val;
2120 }
2121
2122 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2123 Return A. */
2124
2125 Lisp_Object
2126 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2127 {
2128 EMACS_INT nbits = bool_vector_size (a);
2129 if (0 < nbits)
2130 {
2131 unsigned char *data = bool_vector_uchar_data (a);
2132 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2133 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2134 int last_mask = ~ (~0 << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2135 memset (data, pattern, nbytes - 1);
2136 data[nbytes - 1] = pattern & last_mask;
2137 }
2138 return a;
2139 }
2140
2141 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2142
2143 Lisp_Object
2144 make_uninit_bool_vector (EMACS_INT nbits)
2145 {
2146 Lisp_Object val;
2147 EMACS_INT words = bool_vector_words (nbits);
2148 EMACS_INT word_bytes = words * sizeof (bits_word);
2149 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2150 + word_size - 1)
2151 / word_size);
2152 struct Lisp_Bool_Vector *p
2153 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2154 XSETVECTOR (val, p);
2155 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2156 p->size = nbits;
2157
2158 /* Clear padding at the end. */
2159 if (words)
2160 p->data[words - 1] = 0;
2161
2162 return val;
2163 }
2164
2165 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2166 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2167 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2168 (Lisp_Object length, Lisp_Object init)
2169 {
2170 Lisp_Object val;
2171
2172 CHECK_NATNUM (length);
2173 val = make_uninit_bool_vector (XFASTINT (length));
2174 return bool_vector_fill (val, init);
2175 }
2176
2177
2178 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2179 of characters from the contents. This string may be unibyte or
2180 multibyte, depending on the contents. */
2181
2182 Lisp_Object
2183 make_string (const char *contents, ptrdiff_t nbytes)
2184 {
2185 register Lisp_Object val;
2186 ptrdiff_t nchars, multibyte_nbytes;
2187
2188 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2189 &nchars, &multibyte_nbytes);
2190 if (nbytes == nchars || nbytes != multibyte_nbytes)
2191 /* CONTENTS contains no multibyte sequences or contains an invalid
2192 multibyte sequence. We must make unibyte string. */
2193 val = make_unibyte_string (contents, nbytes);
2194 else
2195 val = make_multibyte_string (contents, nchars, nbytes);
2196 return val;
2197 }
2198
2199
2200 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2201
2202 Lisp_Object
2203 make_unibyte_string (const char *contents, ptrdiff_t length)
2204 {
2205 register Lisp_Object val;
2206 val = make_uninit_string (length);
2207 memcpy (SDATA (val), contents, length);
2208 return val;
2209 }
2210
2211
2212 /* Make a multibyte string from NCHARS characters occupying NBYTES
2213 bytes at CONTENTS. */
2214
2215 Lisp_Object
2216 make_multibyte_string (const char *contents,
2217 ptrdiff_t nchars, ptrdiff_t nbytes)
2218 {
2219 register Lisp_Object val;
2220 val = make_uninit_multibyte_string (nchars, nbytes);
2221 memcpy (SDATA (val), contents, nbytes);
2222 return val;
2223 }
2224
2225
2226 /* Make a string from NCHARS characters occupying NBYTES bytes at
2227 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2228
2229 Lisp_Object
2230 make_string_from_bytes (const char *contents,
2231 ptrdiff_t nchars, ptrdiff_t nbytes)
2232 {
2233 register Lisp_Object val;
2234 val = make_uninit_multibyte_string (nchars, nbytes);
2235 memcpy (SDATA (val), contents, nbytes);
2236 if (SBYTES (val) == SCHARS (val))
2237 STRING_SET_UNIBYTE (val);
2238 return val;
2239 }
2240
2241
2242 /* Make a string from NCHARS characters occupying NBYTES bytes at
2243 CONTENTS. The argument MULTIBYTE controls whether to label the
2244 string as multibyte. If NCHARS is negative, it counts the number of
2245 characters by itself. */
2246
2247 Lisp_Object
2248 make_specified_string (const char *contents,
2249 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2250 {
2251 Lisp_Object val;
2252
2253 if (nchars < 0)
2254 {
2255 if (multibyte)
2256 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2257 nbytes);
2258 else
2259 nchars = nbytes;
2260 }
2261 val = make_uninit_multibyte_string (nchars, nbytes);
2262 memcpy (SDATA (val), contents, nbytes);
2263 if (!multibyte)
2264 STRING_SET_UNIBYTE (val);
2265 return val;
2266 }
2267
2268
2269 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2270 occupying LENGTH bytes. */
2271
2272 Lisp_Object
2273 make_uninit_string (EMACS_INT length)
2274 {
2275 Lisp_Object val;
2276
2277 if (!length)
2278 return empty_unibyte_string;
2279 val = make_uninit_multibyte_string (length, length);
2280 STRING_SET_UNIBYTE (val);
2281 return val;
2282 }
2283
2284
2285 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2286 which occupy NBYTES bytes. */
2287
2288 Lisp_Object
2289 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2290 {
2291 Lisp_Object string;
2292 struct Lisp_String *s;
2293
2294 if (nchars < 0)
2295 emacs_abort ();
2296 if (!nbytes)
2297 return empty_multibyte_string;
2298
2299 s = allocate_string ();
2300 s->intervals = NULL;
2301 allocate_string_data (s, nchars, nbytes);
2302 XSETSTRING (string, s);
2303 string_chars_consed += nbytes;
2304 return string;
2305 }
2306
2307 /* Print arguments to BUF according to a FORMAT, then return
2308 a Lisp_String initialized with the data from BUF. */
2309
2310 Lisp_Object
2311 make_formatted_string (char *buf, const char *format, ...)
2312 {
2313 va_list ap;
2314 int length;
2315
2316 va_start (ap, format);
2317 length = vsprintf (buf, format, ap);
2318 va_end (ap);
2319 return make_string (buf, length);
2320 }
2321
2322 \f
2323 /***********************************************************************
2324 Float Allocation
2325 ***********************************************************************/
2326
2327 /* We store float cells inside of float_blocks, allocating a new
2328 float_block with malloc whenever necessary. Float cells reclaimed
2329 by GC are put on a free list to be reallocated before allocating
2330 any new float cells from the latest float_block. */
2331
2332 #define FLOAT_BLOCK_SIZE \
2333 (((BLOCK_BYTES - sizeof (struct float_block *) \
2334 /* The compiler might add padding at the end. */ \
2335 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2336 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2337
2338 #define GETMARKBIT(block,n) \
2339 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2340 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2341 & 1)
2342
2343 #define SETMARKBIT(block,n) \
2344 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2345 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2346
2347 #define UNSETMARKBIT(block,n) \
2348 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2349 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2350
2351 #define FLOAT_BLOCK(fptr) \
2352 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2353
2354 #define FLOAT_INDEX(fptr) \
2355 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2356
2357 struct float_block
2358 {
2359 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2360 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2361 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2362 struct float_block *next;
2363 };
2364
2365 #define FLOAT_MARKED_P(fptr) \
2366 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2367
2368 #define FLOAT_MARK(fptr) \
2369 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2370
2371 #define FLOAT_UNMARK(fptr) \
2372 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2373
2374 /* Current float_block. */
2375
2376 static struct float_block *float_block;
2377
2378 /* Index of first unused Lisp_Float in the current float_block. */
2379
2380 static int float_block_index = FLOAT_BLOCK_SIZE;
2381
2382 /* Free-list of Lisp_Floats. */
2383
2384 static struct Lisp_Float *float_free_list;
2385
2386 /* Return a new float object with value FLOAT_VALUE. */
2387
2388 Lisp_Object
2389 make_float (double float_value)
2390 {
2391 register Lisp_Object val;
2392
2393 MALLOC_BLOCK_INPUT;
2394
2395 if (float_free_list)
2396 {
2397 /* We use the data field for chaining the free list
2398 so that we won't use the same field that has the mark bit. */
2399 XSETFLOAT (val, float_free_list);
2400 float_free_list = float_free_list->u.chain;
2401 }
2402 else
2403 {
2404 if (float_block_index == FLOAT_BLOCK_SIZE)
2405 {
2406 struct float_block *new
2407 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2408 new->next = float_block;
2409 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2410 float_block = new;
2411 float_block_index = 0;
2412 total_free_floats += FLOAT_BLOCK_SIZE;
2413 }
2414 XSETFLOAT (val, &float_block->floats[float_block_index]);
2415 float_block_index++;
2416 }
2417
2418 MALLOC_UNBLOCK_INPUT;
2419
2420 XFLOAT_INIT (val, float_value);
2421 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2422 consing_since_gc += sizeof (struct Lisp_Float);
2423 floats_consed++;
2424 total_free_floats--;
2425 return val;
2426 }
2427
2428
2429 \f
2430 /***********************************************************************
2431 Cons Allocation
2432 ***********************************************************************/
2433
2434 /* We store cons cells inside of cons_blocks, allocating a new
2435 cons_block with malloc whenever necessary. Cons cells reclaimed by
2436 GC are put on a free list to be reallocated before allocating
2437 any new cons cells from the latest cons_block. */
2438
2439 #define CONS_BLOCK_SIZE \
2440 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2441 /* The compiler might add padding at the end. */ \
2442 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2443 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2444
2445 #define CONS_BLOCK(fptr) \
2446 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2447
2448 #define CONS_INDEX(fptr) \
2449 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2450
2451 struct cons_block
2452 {
2453 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2454 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2455 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2456 struct cons_block *next;
2457 };
2458
2459 #define CONS_MARKED_P(fptr) \
2460 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2461
2462 #define CONS_MARK(fptr) \
2463 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2464
2465 #define CONS_UNMARK(fptr) \
2466 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2467
2468 /* Current cons_block. */
2469
2470 static struct cons_block *cons_block;
2471
2472 /* Index of first unused Lisp_Cons in the current block. */
2473
2474 static int cons_block_index = CONS_BLOCK_SIZE;
2475
2476 /* Free-list of Lisp_Cons structures. */
2477
2478 static struct Lisp_Cons *cons_free_list;
2479
2480 /* Explicitly free a cons cell by putting it on the free-list. */
2481
2482 void
2483 free_cons (struct Lisp_Cons *ptr)
2484 {
2485 ptr->u.chain = cons_free_list;
2486 #if GC_MARK_STACK
2487 ptr->car = Vdead;
2488 #endif
2489 cons_free_list = ptr;
2490 consing_since_gc -= sizeof *ptr;
2491 total_free_conses++;
2492 }
2493
2494 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2495 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2496 (Lisp_Object car, Lisp_Object cdr)
2497 {
2498 register Lisp_Object val;
2499
2500 MALLOC_BLOCK_INPUT;
2501
2502 if (cons_free_list)
2503 {
2504 /* We use the cdr for chaining the free list
2505 so that we won't use the same field that has the mark bit. */
2506 XSETCONS (val, cons_free_list);
2507 cons_free_list = cons_free_list->u.chain;
2508 }
2509 else
2510 {
2511 if (cons_block_index == CONS_BLOCK_SIZE)
2512 {
2513 struct cons_block *new
2514 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2515 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2516 new->next = cons_block;
2517 cons_block = new;
2518 cons_block_index = 0;
2519 total_free_conses += CONS_BLOCK_SIZE;
2520 }
2521 XSETCONS (val, &cons_block->conses[cons_block_index]);
2522 cons_block_index++;
2523 }
2524
2525 MALLOC_UNBLOCK_INPUT;
2526
2527 XSETCAR (val, car);
2528 XSETCDR (val, cdr);
2529 eassert (!CONS_MARKED_P (XCONS (val)));
2530 consing_since_gc += sizeof (struct Lisp_Cons);
2531 total_free_conses--;
2532 cons_cells_consed++;
2533 return val;
2534 }
2535
2536 #ifdef GC_CHECK_CONS_LIST
2537 /* Get an error now if there's any junk in the cons free list. */
2538 void
2539 check_cons_list (void)
2540 {
2541 struct Lisp_Cons *tail = cons_free_list;
2542
2543 while (tail)
2544 tail = tail->u.chain;
2545 }
2546 #endif
2547
2548 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2549
2550 Lisp_Object
2551 list1 (Lisp_Object arg1)
2552 {
2553 return Fcons (arg1, Qnil);
2554 }
2555
2556 Lisp_Object
2557 list2 (Lisp_Object arg1, Lisp_Object arg2)
2558 {
2559 return Fcons (arg1, Fcons (arg2, Qnil));
2560 }
2561
2562
2563 Lisp_Object
2564 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2565 {
2566 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2567 }
2568
2569
2570 Lisp_Object
2571 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2572 {
2573 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2574 }
2575
2576
2577 Lisp_Object
2578 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2579 {
2580 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2581 Fcons (arg5, Qnil)))));
2582 }
2583
2584 /* Make a list of COUNT Lisp_Objects, where ARG is the
2585 first one. Allocate conses from pure space if TYPE
2586 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2587
2588 Lisp_Object
2589 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2590 {
2591 va_list ap;
2592 ptrdiff_t i;
2593 Lisp_Object val, *objp;
2594
2595 /* Change to SAFE_ALLOCA if you hit this eassert. */
2596 eassert (count <= MAX_ALLOCA / word_size);
2597
2598 objp = alloca (count * word_size);
2599 objp[0] = arg;
2600 va_start (ap, arg);
2601 for (i = 1; i < count; i++)
2602 objp[i] = va_arg (ap, Lisp_Object);
2603 va_end (ap);
2604
2605 for (val = Qnil, i = count - 1; i >= 0; i--)
2606 {
2607 if (type == CONSTYPE_PURE)
2608 val = pure_cons (objp[i], val);
2609 else if (type == CONSTYPE_HEAP)
2610 val = Fcons (objp[i], val);
2611 else
2612 emacs_abort ();
2613 }
2614 return val;
2615 }
2616
2617 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2618 doc: /* Return a newly created list with specified arguments as elements.
2619 Any number of arguments, even zero arguments, are allowed.
2620 usage: (list &rest OBJECTS) */)
2621 (ptrdiff_t nargs, Lisp_Object *args)
2622 {
2623 register Lisp_Object val;
2624 val = Qnil;
2625
2626 while (nargs > 0)
2627 {
2628 nargs--;
2629 val = Fcons (args[nargs], val);
2630 }
2631 return val;
2632 }
2633
2634
2635 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2636 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2637 (register Lisp_Object length, Lisp_Object init)
2638 {
2639 register Lisp_Object val;
2640 register EMACS_INT size;
2641
2642 CHECK_NATNUM (length);
2643 size = XFASTINT (length);
2644
2645 val = Qnil;
2646 while (size > 0)
2647 {
2648 val = Fcons (init, val);
2649 --size;
2650
2651 if (size > 0)
2652 {
2653 val = Fcons (init, val);
2654 --size;
2655
2656 if (size > 0)
2657 {
2658 val = Fcons (init, val);
2659 --size;
2660
2661 if (size > 0)
2662 {
2663 val = Fcons (init, val);
2664 --size;
2665
2666 if (size > 0)
2667 {
2668 val = Fcons (init, val);
2669 --size;
2670 }
2671 }
2672 }
2673 }
2674
2675 QUIT;
2676 }
2677
2678 return val;
2679 }
2680
2681
2682 \f
2683 /***********************************************************************
2684 Vector Allocation
2685 ***********************************************************************/
2686
2687 /* Sometimes a vector's contents are merely a pointer internally used
2688 in vector allocation code. Usually you don't want to touch this. */
2689
2690 static struct Lisp_Vector *
2691 next_vector (struct Lisp_Vector *v)
2692 {
2693 return XUNTAG (v->contents[0], 0);
2694 }
2695
2696 static void
2697 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2698 {
2699 v->contents[0] = make_lisp_ptr (p, 0);
2700 }
2701
2702 /* This value is balanced well enough to avoid too much internal overhead
2703 for the most common cases; it's not required to be a power of two, but
2704 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2705
2706 #define VECTOR_BLOCK_SIZE 4096
2707
2708 enum
2709 {
2710 /* Alignment of struct Lisp_Vector objects. */
2711 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2712 USE_LSB_TAG ? GCALIGNMENT : 1),
2713
2714 /* Vector size requests are a multiple of this. */
2715 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2716 };
2717
2718 /* Verify assumptions described above. */
2719 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2720 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2721
2722 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2723 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2724 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2725 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2726
2727 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2728
2729 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2730
2731 /* Size of the minimal vector allocated from block. */
2732
2733 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2734
2735 /* Size of the largest vector allocated from block. */
2736
2737 #define VBLOCK_BYTES_MAX \
2738 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2739
2740 /* We maintain one free list for each possible block-allocated
2741 vector size, and this is the number of free lists we have. */
2742
2743 #define VECTOR_MAX_FREE_LIST_INDEX \
2744 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2745
2746 /* Common shortcut to advance vector pointer over a block data. */
2747
2748 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2749
2750 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2751
2752 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2753
2754 /* Common shortcut to setup vector on a free list. */
2755
2756 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2757 do { \
2758 (tmp) = ((nbytes - header_size) / word_size); \
2759 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2760 eassert ((nbytes) % roundup_size == 0); \
2761 (tmp) = VINDEX (nbytes); \
2762 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2763 set_next_vector (v, vector_free_lists[tmp]); \
2764 vector_free_lists[tmp] = (v); \
2765 total_free_vector_slots += (nbytes) / word_size; \
2766 } while (0)
2767
2768 /* This internal type is used to maintain the list of large vectors
2769 which are allocated at their own, e.g. outside of vector blocks.
2770
2771 struct large_vector itself cannot contain a struct Lisp_Vector, as
2772 the latter contains a flexible array member and C99 does not allow
2773 such structs to be nested. Instead, each struct large_vector
2774 object LV is followed by a struct Lisp_Vector, which is at offset
2775 large_vector_offset from LV, and whose address is therefore
2776 large_vector_vec (&LV). */
2777
2778 struct large_vector
2779 {
2780 struct large_vector *next;
2781 };
2782
2783 enum
2784 {
2785 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2786 };
2787
2788 static struct Lisp_Vector *
2789 large_vector_vec (struct large_vector *p)
2790 {
2791 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2792 }
2793
2794 /* This internal type is used to maintain an underlying storage
2795 for small vectors. */
2796
2797 struct vector_block
2798 {
2799 char data[VECTOR_BLOCK_BYTES];
2800 struct vector_block *next;
2801 };
2802
2803 /* Chain of vector blocks. */
2804
2805 static struct vector_block *vector_blocks;
2806
2807 /* Vector free lists, where NTH item points to a chain of free
2808 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2809
2810 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2811
2812 /* Singly-linked list of large vectors. */
2813
2814 static struct large_vector *large_vectors;
2815
2816 /* The only vector with 0 slots, allocated from pure space. */
2817
2818 Lisp_Object zero_vector;
2819
2820 /* Number of live vectors. */
2821
2822 static EMACS_INT total_vectors;
2823
2824 /* Total size of live and free vectors, in Lisp_Object units. */
2825
2826 static EMACS_INT total_vector_slots, total_free_vector_slots;
2827
2828 /* Get a new vector block. */
2829
2830 static struct vector_block *
2831 allocate_vector_block (void)
2832 {
2833 struct vector_block *block = xmalloc (sizeof *block);
2834
2835 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2836 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2837 MEM_TYPE_VECTOR_BLOCK);
2838 #endif
2839
2840 block->next = vector_blocks;
2841 vector_blocks = block;
2842 return block;
2843 }
2844
2845 /* Called once to initialize vector allocation. */
2846
2847 static void
2848 init_vectors (void)
2849 {
2850 zero_vector = make_pure_vector (0);
2851 }
2852
2853 /* Allocate vector from a vector block. */
2854
2855 static struct Lisp_Vector *
2856 allocate_vector_from_block (size_t nbytes)
2857 {
2858 struct Lisp_Vector *vector;
2859 struct vector_block *block;
2860 size_t index, restbytes;
2861
2862 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2863 eassert (nbytes % roundup_size == 0);
2864
2865 /* First, try to allocate from a free list
2866 containing vectors of the requested size. */
2867 index = VINDEX (nbytes);
2868 if (vector_free_lists[index])
2869 {
2870 vector = vector_free_lists[index];
2871 vector_free_lists[index] = next_vector (vector);
2872 total_free_vector_slots -= nbytes / word_size;
2873 return vector;
2874 }
2875
2876 /* Next, check free lists containing larger vectors. Since
2877 we will split the result, we should have remaining space
2878 large enough to use for one-slot vector at least. */
2879 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2880 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2881 if (vector_free_lists[index])
2882 {
2883 /* This vector is larger than requested. */
2884 vector = vector_free_lists[index];
2885 vector_free_lists[index] = next_vector (vector);
2886 total_free_vector_slots -= nbytes / word_size;
2887
2888 /* Excess bytes are used for the smaller vector,
2889 which should be set on an appropriate free list. */
2890 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2891 eassert (restbytes % roundup_size == 0);
2892 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2893 return vector;
2894 }
2895
2896 /* Finally, need a new vector block. */
2897 block = allocate_vector_block ();
2898
2899 /* New vector will be at the beginning of this block. */
2900 vector = (struct Lisp_Vector *) block->data;
2901
2902 /* If the rest of space from this block is large enough
2903 for one-slot vector at least, set up it on a free list. */
2904 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2905 if (restbytes >= VBLOCK_BYTES_MIN)
2906 {
2907 eassert (restbytes % roundup_size == 0);
2908 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2909 }
2910 return vector;
2911 }
2912
2913 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2914
2915 #define VECTOR_IN_BLOCK(vector, block) \
2916 ((char *) (vector) <= (block)->data \
2917 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2918
2919 /* Return the memory footprint of V in bytes. */
2920
2921 static ptrdiff_t
2922 vector_nbytes (struct Lisp_Vector *v)
2923 {
2924 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2925 ptrdiff_t nwords;
2926
2927 if (size & PSEUDOVECTOR_FLAG)
2928 {
2929 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2930 {
2931 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2932 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
2933 * sizeof (bits_word));
2934 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
2935 verify (header_size <= bool_header_size);
2936 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
2937 }
2938 else
2939 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
2940 + ((size & PSEUDOVECTOR_REST_MASK)
2941 >> PSEUDOVECTOR_SIZE_BITS));
2942 }
2943 else
2944 nwords = size;
2945 return vroundup (header_size + word_size * nwords);
2946 }
2947
2948 /* Release extra resources still in use by VECTOR, which may be any
2949 vector-like object. For now, this is used just to free data in
2950 font objects. */
2951
2952 static void
2953 cleanup_vector (struct Lisp_Vector *vector)
2954 {
2955 detect_suspicious_free (vector);
2956 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
2957 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
2958 == FONT_OBJECT_MAX))
2959 {
2960 /* Attempt to catch subtle bugs like Bug#16140. */
2961 eassert (valid_font_driver (((struct font *) vector)->driver));
2962 ((struct font *) vector)->driver->close ((struct font *) vector);
2963 }
2964 }
2965
2966 /* Reclaim space used by unmarked vectors. */
2967
2968 NO_INLINE /* For better stack traces */
2969 static void
2970 sweep_vectors (void)
2971 {
2972 struct vector_block *block, **bprev = &vector_blocks;
2973 struct large_vector *lv, **lvprev = &large_vectors;
2974 struct Lisp_Vector *vector, *next;
2975
2976 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2977 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2978
2979 /* Looking through vector blocks. */
2980
2981 for (block = vector_blocks; block; block = *bprev)
2982 {
2983 bool free_this_block = 0;
2984 ptrdiff_t nbytes;
2985
2986 for (vector = (struct Lisp_Vector *) block->data;
2987 VECTOR_IN_BLOCK (vector, block); vector = next)
2988 {
2989 if (VECTOR_MARKED_P (vector))
2990 {
2991 VECTOR_UNMARK (vector);
2992 total_vectors++;
2993 nbytes = vector_nbytes (vector);
2994 total_vector_slots += nbytes / word_size;
2995 next = ADVANCE (vector, nbytes);
2996 }
2997 else
2998 {
2999 ptrdiff_t total_bytes;
3000
3001 cleanup_vector (vector);
3002 nbytes = vector_nbytes (vector);
3003 total_bytes = nbytes;
3004 next = ADVANCE (vector, nbytes);
3005
3006 /* While NEXT is not marked, try to coalesce with VECTOR,
3007 thus making VECTOR of the largest possible size. */
3008
3009 while (VECTOR_IN_BLOCK (next, block))
3010 {
3011 if (VECTOR_MARKED_P (next))
3012 break;
3013 cleanup_vector (next);
3014 nbytes = vector_nbytes (next);
3015 total_bytes += nbytes;
3016 next = ADVANCE (next, nbytes);
3017 }
3018
3019 eassert (total_bytes % roundup_size == 0);
3020
3021 if (vector == (struct Lisp_Vector *) block->data
3022 && !VECTOR_IN_BLOCK (next, block))
3023 /* This block should be freed because all of its
3024 space was coalesced into the only free vector. */
3025 free_this_block = 1;
3026 else
3027 {
3028 size_t tmp;
3029 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3030 }
3031 }
3032 }
3033
3034 if (free_this_block)
3035 {
3036 *bprev = block->next;
3037 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3038 mem_delete (mem_find (block->data));
3039 #endif
3040 xfree (block);
3041 }
3042 else
3043 bprev = &block->next;
3044 }
3045
3046 /* Sweep large vectors. */
3047
3048 for (lv = large_vectors; lv; lv = *lvprev)
3049 {
3050 vector = large_vector_vec (lv);
3051 if (VECTOR_MARKED_P (vector))
3052 {
3053 VECTOR_UNMARK (vector);
3054 total_vectors++;
3055 if (vector->header.size & PSEUDOVECTOR_FLAG)
3056 {
3057 /* All non-bool pseudovectors are small enough to be allocated
3058 from vector blocks. This code should be redesigned if some
3059 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3060 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3061 total_vector_slots += vector_nbytes (vector) / word_size;
3062 }
3063 else
3064 total_vector_slots
3065 += header_size / word_size + vector->header.size;
3066 lvprev = &lv->next;
3067 }
3068 else
3069 {
3070 *lvprev = lv->next;
3071 lisp_free (lv);
3072 }
3073 }
3074 }
3075
3076 /* Value is a pointer to a newly allocated Lisp_Vector structure
3077 with room for LEN Lisp_Objects. */
3078
3079 static struct Lisp_Vector *
3080 allocate_vectorlike (ptrdiff_t len)
3081 {
3082 struct Lisp_Vector *p;
3083
3084 MALLOC_BLOCK_INPUT;
3085
3086 if (len == 0)
3087 p = XVECTOR (zero_vector);
3088 else
3089 {
3090 size_t nbytes = header_size + len * word_size;
3091
3092 #ifdef DOUG_LEA_MALLOC
3093 if (!mmap_lisp_allowed_p ())
3094 mallopt (M_MMAP_MAX, 0);
3095 #endif
3096
3097 if (nbytes <= VBLOCK_BYTES_MAX)
3098 p = allocate_vector_from_block (vroundup (nbytes));
3099 else
3100 {
3101 struct large_vector *lv
3102 = lisp_malloc ((large_vector_offset + header_size
3103 + len * word_size),
3104 MEM_TYPE_VECTORLIKE);
3105 lv->next = large_vectors;
3106 large_vectors = lv;
3107 p = large_vector_vec (lv);
3108 }
3109
3110 #ifdef DOUG_LEA_MALLOC
3111 if (!mmap_lisp_allowed_p ())
3112 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3113 #endif
3114
3115 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3116 emacs_abort ();
3117
3118 consing_since_gc += nbytes;
3119 vector_cells_consed += len;
3120 }
3121
3122 MALLOC_UNBLOCK_INPUT;
3123
3124 return p;
3125 }
3126
3127
3128 /* Allocate a vector with LEN slots. */
3129
3130 struct Lisp_Vector *
3131 allocate_vector (EMACS_INT len)
3132 {
3133 struct Lisp_Vector *v;
3134 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3135
3136 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3137 memory_full (SIZE_MAX);
3138 v = allocate_vectorlike (len);
3139 v->header.size = len;
3140 return v;
3141 }
3142
3143
3144 /* Allocate other vector-like structures. */
3145
3146 struct Lisp_Vector *
3147 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
3148 {
3149 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3150 int i;
3151
3152 /* Catch bogus values. */
3153 eassert (tag <= PVEC_FONT);
3154 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3155 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3156
3157 /* Only the first lisplen slots will be traced normally by the GC. */
3158 for (i = 0; i < lisplen; ++i)
3159 v->contents[i] = Qnil;
3160
3161 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3162 return v;
3163 }
3164
3165 struct buffer *
3166 allocate_buffer (void)
3167 {
3168 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3169
3170 BUFFER_PVEC_INIT (b);
3171 /* Put B on the chain of all buffers including killed ones. */
3172 b->next = all_buffers;
3173 all_buffers = b;
3174 /* Note that the rest fields of B are not initialized. */
3175 return b;
3176 }
3177
3178 struct Lisp_Hash_Table *
3179 allocate_hash_table (void)
3180 {
3181 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3182 }
3183
3184 struct window *
3185 allocate_window (void)
3186 {
3187 struct window *w;
3188
3189 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3190 /* Users assumes that non-Lisp data is zeroed. */
3191 memset (&w->current_matrix, 0,
3192 sizeof (*w) - offsetof (struct window, current_matrix));
3193 return w;
3194 }
3195
3196 struct terminal *
3197 allocate_terminal (void)
3198 {
3199 struct terminal *t;
3200
3201 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3202 /* Users assumes that non-Lisp data is zeroed. */
3203 memset (&t->next_terminal, 0,
3204 sizeof (*t) - offsetof (struct terminal, next_terminal));
3205 return t;
3206 }
3207
3208 struct frame *
3209 allocate_frame (void)
3210 {
3211 struct frame *f;
3212
3213 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3214 /* Users assumes that non-Lisp data is zeroed. */
3215 memset (&f->face_cache, 0,
3216 sizeof (*f) - offsetof (struct frame, face_cache));
3217 return f;
3218 }
3219
3220 struct Lisp_Process *
3221 allocate_process (void)
3222 {
3223 struct Lisp_Process *p;
3224
3225 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3226 /* Users assumes that non-Lisp data is zeroed. */
3227 memset (&p->pid, 0,
3228 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3229 return p;
3230 }
3231
3232 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3233 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3234 See also the function `vector'. */)
3235 (register Lisp_Object length, Lisp_Object init)
3236 {
3237 Lisp_Object vector;
3238 register ptrdiff_t sizei;
3239 register ptrdiff_t i;
3240 register struct Lisp_Vector *p;
3241
3242 CHECK_NATNUM (length);
3243
3244 p = allocate_vector (XFASTINT (length));
3245 sizei = XFASTINT (length);
3246 for (i = 0; i < sizei; i++)
3247 p->contents[i] = init;
3248
3249 XSETVECTOR (vector, p);
3250 return vector;
3251 }
3252
3253
3254 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3255 doc: /* Return a newly created vector with specified arguments as elements.
3256 Any number of arguments, even zero arguments, are allowed.
3257 usage: (vector &rest OBJECTS) */)
3258 (ptrdiff_t nargs, Lisp_Object *args)
3259 {
3260 ptrdiff_t i;
3261 register Lisp_Object val = make_uninit_vector (nargs);
3262 register struct Lisp_Vector *p = XVECTOR (val);
3263
3264 for (i = 0; i < nargs; i++)
3265 p->contents[i] = args[i];
3266 return val;
3267 }
3268
3269 void
3270 make_byte_code (struct Lisp_Vector *v)
3271 {
3272 /* Don't allow the global zero_vector to become a byte code object. */
3273 eassert (0 < v->header.size);
3274
3275 if (v->header.size > 1 && STRINGP (v->contents[1])
3276 && STRING_MULTIBYTE (v->contents[1]))
3277 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3278 earlier because they produced a raw 8-bit string for byte-code
3279 and now such a byte-code string is loaded as multibyte while
3280 raw 8-bit characters converted to multibyte form. Thus, now we
3281 must convert them back to the original unibyte form. */
3282 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3283 XSETPVECTYPE (v, PVEC_COMPILED);
3284 }
3285
3286 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3287 doc: /* Create a byte-code object with specified arguments as elements.
3288 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3289 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3290 and (optional) INTERACTIVE-SPEC.
3291 The first four arguments are required; at most six have any
3292 significance.
3293 The ARGLIST can be either like the one of `lambda', in which case the arguments
3294 will be dynamically bound before executing the byte code, or it can be an
3295 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3296 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3297 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3298 argument to catch the left-over arguments. If such an integer is used, the
3299 arguments will not be dynamically bound but will be instead pushed on the
3300 stack before executing the byte-code.
3301 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3302 (ptrdiff_t nargs, Lisp_Object *args)
3303 {
3304 ptrdiff_t i;
3305 register Lisp_Object val = make_uninit_vector (nargs);
3306 register struct Lisp_Vector *p = XVECTOR (val);
3307
3308 /* We used to purecopy everything here, if purify-flag was set. This worked
3309 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3310 dangerous, since make-byte-code is used during execution to build
3311 closures, so any closure built during the preload phase would end up
3312 copied into pure space, including its free variables, which is sometimes
3313 just wasteful and other times plainly wrong (e.g. those free vars may want
3314 to be setcar'd). */
3315
3316 for (i = 0; i < nargs; i++)
3317 p->contents[i] = args[i];
3318 make_byte_code (p);
3319 XSETCOMPILED (val, p);
3320 return val;
3321 }
3322
3323
3324 \f
3325 /***********************************************************************
3326 Symbol Allocation
3327 ***********************************************************************/
3328
3329 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3330 of the required alignment if LSB tags are used. */
3331
3332 union aligned_Lisp_Symbol
3333 {
3334 struct Lisp_Symbol s;
3335 #if USE_LSB_TAG
3336 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3337 & -GCALIGNMENT];
3338 #endif
3339 };
3340
3341 /* Each symbol_block is just under 1020 bytes long, since malloc
3342 really allocates in units of powers of two and uses 4 bytes for its
3343 own overhead. */
3344
3345 #define SYMBOL_BLOCK_SIZE \
3346 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3347
3348 struct symbol_block
3349 {
3350 /* Place `symbols' first, to preserve alignment. */
3351 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3352 struct symbol_block *next;
3353 };
3354
3355 /* Current symbol block and index of first unused Lisp_Symbol
3356 structure in it. */
3357
3358 static struct symbol_block *symbol_block;
3359 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3360 /* Pointer to the first symbol_block that contains pinned symbols.
3361 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3362 10K of which are pinned (and all but 250 of them are interned in obarray),
3363 whereas a "typical session" has in the order of 30K symbols.
3364 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3365 than 30K to find the 10K symbols we need to mark. */
3366 static struct symbol_block *symbol_block_pinned;
3367
3368 /* List of free symbols. */
3369
3370 static struct Lisp_Symbol *symbol_free_list;
3371
3372 static void
3373 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3374 {
3375 XSYMBOL (sym)->name = name;
3376 }
3377
3378 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3379 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3380 Its value is void, and its function definition and property list are nil. */)
3381 (Lisp_Object name)
3382 {
3383 register Lisp_Object val;
3384 register struct Lisp_Symbol *p;
3385
3386 CHECK_STRING (name);
3387
3388 MALLOC_BLOCK_INPUT;
3389
3390 if (symbol_free_list)
3391 {
3392 XSETSYMBOL (val, symbol_free_list);
3393 symbol_free_list = symbol_free_list->next;
3394 }
3395 else
3396 {
3397 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3398 {
3399 struct symbol_block *new
3400 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3401 new->next = symbol_block;
3402 symbol_block = new;
3403 symbol_block_index = 0;
3404 total_free_symbols += SYMBOL_BLOCK_SIZE;
3405 }
3406 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3407 symbol_block_index++;
3408 }
3409
3410 MALLOC_UNBLOCK_INPUT;
3411
3412 p = XSYMBOL (val);
3413 set_symbol_name (val, name);
3414 set_symbol_plist (val, Qnil);
3415 p->redirect = SYMBOL_PLAINVAL;
3416 SET_SYMBOL_VAL (p, Qunbound);
3417 set_symbol_function (val, Qnil);
3418 set_symbol_next (val, NULL);
3419 p->gcmarkbit = false;
3420 p->interned = SYMBOL_UNINTERNED;
3421 p->constant = 0;
3422 p->declared_special = false;
3423 p->pinned = false;
3424 consing_since_gc += sizeof (struct Lisp_Symbol);
3425 symbols_consed++;
3426 total_free_symbols--;
3427 return val;
3428 }
3429
3430
3431 \f
3432 /***********************************************************************
3433 Marker (Misc) Allocation
3434 ***********************************************************************/
3435
3436 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3437 the required alignment when LSB tags are used. */
3438
3439 union aligned_Lisp_Misc
3440 {
3441 union Lisp_Misc m;
3442 #if USE_LSB_TAG
3443 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3444 & -GCALIGNMENT];
3445 #endif
3446 };
3447
3448 /* Allocation of markers and other objects that share that structure.
3449 Works like allocation of conses. */
3450
3451 #define MARKER_BLOCK_SIZE \
3452 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3453
3454 struct marker_block
3455 {
3456 /* Place `markers' first, to preserve alignment. */
3457 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3458 struct marker_block *next;
3459 };
3460
3461 static struct marker_block *marker_block;
3462 static int marker_block_index = MARKER_BLOCK_SIZE;
3463
3464 static union Lisp_Misc *marker_free_list;
3465
3466 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3467
3468 static Lisp_Object
3469 allocate_misc (enum Lisp_Misc_Type type)
3470 {
3471 Lisp_Object val;
3472
3473 MALLOC_BLOCK_INPUT;
3474
3475 if (marker_free_list)
3476 {
3477 XSETMISC (val, marker_free_list);
3478 marker_free_list = marker_free_list->u_free.chain;
3479 }
3480 else
3481 {
3482 if (marker_block_index == MARKER_BLOCK_SIZE)
3483 {
3484 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3485 new->next = marker_block;
3486 marker_block = new;
3487 marker_block_index = 0;
3488 total_free_markers += MARKER_BLOCK_SIZE;
3489 }
3490 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3491 marker_block_index++;
3492 }
3493
3494 MALLOC_UNBLOCK_INPUT;
3495
3496 --total_free_markers;
3497 consing_since_gc += sizeof (union Lisp_Misc);
3498 misc_objects_consed++;
3499 XMISCANY (val)->type = type;
3500 XMISCANY (val)->gcmarkbit = 0;
3501 return val;
3502 }
3503
3504 /* Free a Lisp_Misc object. */
3505
3506 void
3507 free_misc (Lisp_Object misc)
3508 {
3509 XMISCANY (misc)->type = Lisp_Misc_Free;
3510 XMISC (misc)->u_free.chain = marker_free_list;
3511 marker_free_list = XMISC (misc);
3512 consing_since_gc -= sizeof (union Lisp_Misc);
3513 total_free_markers++;
3514 }
3515
3516 /* Verify properties of Lisp_Save_Value's representation
3517 that are assumed here and elsewhere. */
3518
3519 verify (SAVE_UNUSED == 0);
3520 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3521 >> SAVE_SLOT_BITS)
3522 == 0);
3523
3524 /* Return Lisp_Save_Value objects for the various combinations
3525 that callers need. */
3526
3527 Lisp_Object
3528 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3529 {
3530 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3531 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3532 p->save_type = SAVE_TYPE_INT_INT_INT;
3533 p->data[0].integer = a;
3534 p->data[1].integer = b;
3535 p->data[2].integer = c;
3536 return val;
3537 }
3538
3539 Lisp_Object
3540 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3541 Lisp_Object d)
3542 {
3543 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3544 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3545 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3546 p->data[0].object = a;
3547 p->data[1].object = b;
3548 p->data[2].object = c;
3549 p->data[3].object = d;
3550 return val;
3551 }
3552
3553 Lisp_Object
3554 make_save_ptr (void *a)
3555 {
3556 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3557 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3558 p->save_type = SAVE_POINTER;
3559 p->data[0].pointer = a;
3560 return val;
3561 }
3562
3563 Lisp_Object
3564 make_save_ptr_int (void *a, ptrdiff_t b)
3565 {
3566 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3567 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3568 p->save_type = SAVE_TYPE_PTR_INT;
3569 p->data[0].pointer = a;
3570 p->data[1].integer = b;
3571 return val;
3572 }
3573
3574 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3575 Lisp_Object
3576 make_save_ptr_ptr (void *a, void *b)
3577 {
3578 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3579 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3580 p->save_type = SAVE_TYPE_PTR_PTR;
3581 p->data[0].pointer = a;
3582 p->data[1].pointer = b;
3583 return val;
3584 }
3585 #endif
3586
3587 Lisp_Object
3588 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3589 {
3590 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3591 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3592 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3593 p->data[0].funcpointer = a;
3594 p->data[1].pointer = b;
3595 p->data[2].object = c;
3596 return val;
3597 }
3598
3599 /* Return a Lisp_Save_Value object that represents an array A
3600 of N Lisp objects. */
3601
3602 Lisp_Object
3603 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3604 {
3605 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3606 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3607 p->save_type = SAVE_TYPE_MEMORY;
3608 p->data[0].pointer = a;
3609 p->data[1].integer = n;
3610 return val;
3611 }
3612
3613 /* Free a Lisp_Save_Value object. Do not use this function
3614 if SAVE contains pointer other than returned by xmalloc. */
3615
3616 void
3617 free_save_value (Lisp_Object save)
3618 {
3619 xfree (XSAVE_POINTER (save, 0));
3620 free_misc (save);
3621 }
3622
3623 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3624
3625 Lisp_Object
3626 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3627 {
3628 register Lisp_Object overlay;
3629
3630 overlay = allocate_misc (Lisp_Misc_Overlay);
3631 OVERLAY_START (overlay) = start;
3632 OVERLAY_END (overlay) = end;
3633 set_overlay_plist (overlay, plist);
3634 XOVERLAY (overlay)->next = NULL;
3635 return overlay;
3636 }
3637
3638 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3639 doc: /* Return a newly allocated marker which does not point at any place. */)
3640 (void)
3641 {
3642 register Lisp_Object val;
3643 register struct Lisp_Marker *p;
3644
3645 val = allocate_misc (Lisp_Misc_Marker);
3646 p = XMARKER (val);
3647 p->buffer = 0;
3648 p->bytepos = 0;
3649 p->charpos = 0;
3650 p->next = NULL;
3651 p->insertion_type = 0;
3652 p->need_adjustment = 0;
3653 return val;
3654 }
3655
3656 /* Return a newly allocated marker which points into BUF
3657 at character position CHARPOS and byte position BYTEPOS. */
3658
3659 Lisp_Object
3660 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3661 {
3662 Lisp_Object obj;
3663 struct Lisp_Marker *m;
3664
3665 /* No dead buffers here. */
3666 eassert (BUFFER_LIVE_P (buf));
3667
3668 /* Every character is at least one byte. */
3669 eassert (charpos <= bytepos);
3670
3671 obj = allocate_misc (Lisp_Misc_Marker);
3672 m = XMARKER (obj);
3673 m->buffer = buf;
3674 m->charpos = charpos;
3675 m->bytepos = bytepos;
3676 m->insertion_type = 0;
3677 m->need_adjustment = 0;
3678 m->next = BUF_MARKERS (buf);
3679 BUF_MARKERS (buf) = m;
3680 return obj;
3681 }
3682
3683 /* Put MARKER back on the free list after using it temporarily. */
3684
3685 void
3686 free_marker (Lisp_Object marker)
3687 {
3688 unchain_marker (XMARKER (marker));
3689 free_misc (marker);
3690 }
3691
3692 \f
3693 /* Return a newly created vector or string with specified arguments as
3694 elements. If all the arguments are characters that can fit
3695 in a string of events, make a string; otherwise, make a vector.
3696
3697 Any number of arguments, even zero arguments, are allowed. */
3698
3699 Lisp_Object
3700 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3701 {
3702 ptrdiff_t i;
3703
3704 for (i = 0; i < nargs; i++)
3705 /* The things that fit in a string
3706 are characters that are in 0...127,
3707 after discarding the meta bit and all the bits above it. */
3708 if (!INTEGERP (args[i])
3709 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3710 return Fvector (nargs, args);
3711
3712 /* Since the loop exited, we know that all the things in it are
3713 characters, so we can make a string. */
3714 {
3715 Lisp_Object result;
3716
3717 result = Fmake_string (make_number (nargs), make_number (0));
3718 for (i = 0; i < nargs; i++)
3719 {
3720 SSET (result, i, XINT (args[i]));
3721 /* Move the meta bit to the right place for a string char. */
3722 if (XINT (args[i]) & CHAR_META)
3723 SSET (result, i, SREF (result, i) | 0x80);
3724 }
3725
3726 return result;
3727 }
3728 }
3729
3730
3731 \f
3732 /************************************************************************
3733 Memory Full Handling
3734 ************************************************************************/
3735
3736
3737 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3738 there may have been size_t overflow so that malloc was never
3739 called, or perhaps malloc was invoked successfully but the
3740 resulting pointer had problems fitting into a tagged EMACS_INT. In
3741 either case this counts as memory being full even though malloc did
3742 not fail. */
3743
3744 void
3745 memory_full (size_t nbytes)
3746 {
3747 /* Do not go into hysterics merely because a large request failed. */
3748 bool enough_free_memory = 0;
3749 if (SPARE_MEMORY < nbytes)
3750 {
3751 void *p;
3752
3753 MALLOC_BLOCK_INPUT;
3754 p = malloc (SPARE_MEMORY);
3755 if (p)
3756 {
3757 free (p);
3758 enough_free_memory = 1;
3759 }
3760 MALLOC_UNBLOCK_INPUT;
3761 }
3762
3763 if (! enough_free_memory)
3764 {
3765 int i;
3766
3767 Vmemory_full = Qt;
3768
3769 memory_full_cons_threshold = sizeof (struct cons_block);
3770
3771 /* The first time we get here, free the spare memory. */
3772 for (i = 0; i < ARRAYELTS (spare_memory); i++)
3773 if (spare_memory[i])
3774 {
3775 if (i == 0)
3776 free (spare_memory[i]);
3777 else if (i >= 1 && i <= 4)
3778 lisp_align_free (spare_memory[i]);
3779 else
3780 lisp_free (spare_memory[i]);
3781 spare_memory[i] = 0;
3782 }
3783 }
3784
3785 /* This used to call error, but if we've run out of memory, we could
3786 get infinite recursion trying to build the string. */
3787 xsignal (Qnil, Vmemory_signal_data);
3788 }
3789
3790 /* If we released our reserve (due to running out of memory),
3791 and we have a fair amount free once again,
3792 try to set aside another reserve in case we run out once more.
3793
3794 This is called when a relocatable block is freed in ralloc.c,
3795 and also directly from this file, in case we're not using ralloc.c. */
3796
3797 void
3798 refill_memory_reserve (void)
3799 {
3800 #ifndef SYSTEM_MALLOC
3801 if (spare_memory[0] == 0)
3802 spare_memory[0] = malloc (SPARE_MEMORY);
3803 if (spare_memory[1] == 0)
3804 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3805 MEM_TYPE_SPARE);
3806 if (spare_memory[2] == 0)
3807 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3808 MEM_TYPE_SPARE);
3809 if (spare_memory[3] == 0)
3810 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3811 MEM_TYPE_SPARE);
3812 if (spare_memory[4] == 0)
3813 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3814 MEM_TYPE_SPARE);
3815 if (spare_memory[5] == 0)
3816 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3817 MEM_TYPE_SPARE);
3818 if (spare_memory[6] == 0)
3819 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3820 MEM_TYPE_SPARE);
3821 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3822 Vmemory_full = Qnil;
3823 #endif
3824 }
3825 \f
3826 /************************************************************************
3827 C Stack Marking
3828 ************************************************************************/
3829
3830 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3831
3832 /* Conservative C stack marking requires a method to identify possibly
3833 live Lisp objects given a pointer value. We do this by keeping
3834 track of blocks of Lisp data that are allocated in a red-black tree
3835 (see also the comment of mem_node which is the type of nodes in
3836 that tree). Function lisp_malloc adds information for an allocated
3837 block to the red-black tree with calls to mem_insert, and function
3838 lisp_free removes it with mem_delete. Functions live_string_p etc
3839 call mem_find to lookup information about a given pointer in the
3840 tree, and use that to determine if the pointer points to a Lisp
3841 object or not. */
3842
3843 /* Initialize this part of alloc.c. */
3844
3845 static void
3846 mem_init (void)
3847 {
3848 mem_z.left = mem_z.right = MEM_NIL;
3849 mem_z.parent = NULL;
3850 mem_z.color = MEM_BLACK;
3851 mem_z.start = mem_z.end = NULL;
3852 mem_root = MEM_NIL;
3853 }
3854
3855
3856 /* Value is a pointer to the mem_node containing START. Value is
3857 MEM_NIL if there is no node in the tree containing START. */
3858
3859 static struct mem_node *
3860 mem_find (void *start)
3861 {
3862 struct mem_node *p;
3863
3864 if (start < min_heap_address || start > max_heap_address)
3865 return MEM_NIL;
3866
3867 /* Make the search always successful to speed up the loop below. */
3868 mem_z.start = start;
3869 mem_z.end = (char *) start + 1;
3870
3871 p = mem_root;
3872 while (start < p->start || start >= p->end)
3873 p = start < p->start ? p->left : p->right;
3874 return p;
3875 }
3876
3877
3878 /* Insert a new node into the tree for a block of memory with start
3879 address START, end address END, and type TYPE. Value is a
3880 pointer to the node that was inserted. */
3881
3882 static struct mem_node *
3883 mem_insert (void *start, void *end, enum mem_type type)
3884 {
3885 struct mem_node *c, *parent, *x;
3886
3887 if (min_heap_address == NULL || start < min_heap_address)
3888 min_heap_address = start;
3889 if (max_heap_address == NULL || end > max_heap_address)
3890 max_heap_address = end;
3891
3892 /* See where in the tree a node for START belongs. In this
3893 particular application, it shouldn't happen that a node is already
3894 present. For debugging purposes, let's check that. */
3895 c = mem_root;
3896 parent = NULL;
3897
3898 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3899
3900 while (c != MEM_NIL)
3901 {
3902 if (start >= c->start && start < c->end)
3903 emacs_abort ();
3904 parent = c;
3905 c = start < c->start ? c->left : c->right;
3906 }
3907
3908 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3909
3910 while (c != MEM_NIL)
3911 {
3912 parent = c;
3913 c = start < c->start ? c->left : c->right;
3914 }
3915
3916 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3917
3918 /* Create a new node. */
3919 #ifdef GC_MALLOC_CHECK
3920 x = malloc (sizeof *x);
3921 if (x == NULL)
3922 emacs_abort ();
3923 #else
3924 x = xmalloc (sizeof *x);
3925 #endif
3926 x->start = start;
3927 x->end = end;
3928 x->type = type;
3929 x->parent = parent;
3930 x->left = x->right = MEM_NIL;
3931 x->color = MEM_RED;
3932
3933 /* Insert it as child of PARENT or install it as root. */
3934 if (parent)
3935 {
3936 if (start < parent->start)
3937 parent->left = x;
3938 else
3939 parent->right = x;
3940 }
3941 else
3942 mem_root = x;
3943
3944 /* Re-establish red-black tree properties. */
3945 mem_insert_fixup (x);
3946
3947 return x;
3948 }
3949
3950
3951 /* Re-establish the red-black properties of the tree, and thereby
3952 balance the tree, after node X has been inserted; X is always red. */
3953
3954 static void
3955 mem_insert_fixup (struct mem_node *x)
3956 {
3957 while (x != mem_root && x->parent->color == MEM_RED)
3958 {
3959 /* X is red and its parent is red. This is a violation of
3960 red-black tree property #3. */
3961
3962 if (x->parent == x->parent->parent->left)
3963 {
3964 /* We're on the left side of our grandparent, and Y is our
3965 "uncle". */
3966 struct mem_node *y = x->parent->parent->right;
3967
3968 if (y->color == MEM_RED)
3969 {
3970 /* Uncle and parent are red but should be black because
3971 X is red. Change the colors accordingly and proceed
3972 with the grandparent. */
3973 x->parent->color = MEM_BLACK;
3974 y->color = MEM_BLACK;
3975 x->parent->parent->color = MEM_RED;
3976 x = x->parent->parent;
3977 }
3978 else
3979 {
3980 /* Parent and uncle have different colors; parent is
3981 red, uncle is black. */
3982 if (x == x->parent->right)
3983 {
3984 x = x->parent;
3985 mem_rotate_left (x);
3986 }
3987
3988 x->parent->color = MEM_BLACK;
3989 x->parent->parent->color = MEM_RED;
3990 mem_rotate_right (x->parent->parent);
3991 }
3992 }
3993 else
3994 {
3995 /* This is the symmetrical case of above. */
3996 struct mem_node *y = x->parent->parent->left;
3997
3998 if (y->color == MEM_RED)
3999 {
4000 x->parent->color = MEM_BLACK;
4001 y->color = MEM_BLACK;
4002 x->parent->parent->color = MEM_RED;
4003 x = x->parent->parent;
4004 }
4005 else
4006 {
4007 if (x == x->parent->left)
4008 {
4009 x = x->parent;
4010 mem_rotate_right (x);
4011 }
4012
4013 x->parent->color = MEM_BLACK;
4014 x->parent->parent->color = MEM_RED;
4015 mem_rotate_left (x->parent->parent);
4016 }
4017 }
4018 }
4019
4020 /* The root may have been changed to red due to the algorithm. Set
4021 it to black so that property #5 is satisfied. */
4022 mem_root->color = MEM_BLACK;
4023 }
4024
4025
4026 /* (x) (y)
4027 / \ / \
4028 a (y) ===> (x) c
4029 / \ / \
4030 b c a b */
4031
4032 static void
4033 mem_rotate_left (struct mem_node *x)
4034 {
4035 struct mem_node *y;
4036
4037 /* Turn y's left sub-tree into x's right sub-tree. */
4038 y = x->right;
4039 x->right = y->left;
4040 if (y->left != MEM_NIL)
4041 y->left->parent = x;
4042
4043 /* Y's parent was x's parent. */
4044 if (y != MEM_NIL)
4045 y->parent = x->parent;
4046
4047 /* Get the parent to point to y instead of x. */
4048 if (x->parent)
4049 {
4050 if (x == x->parent->left)
4051 x->parent->left = y;
4052 else
4053 x->parent->right = y;
4054 }
4055 else
4056 mem_root = y;
4057
4058 /* Put x on y's left. */
4059 y->left = x;
4060 if (x != MEM_NIL)
4061 x->parent = y;
4062 }
4063
4064
4065 /* (x) (Y)
4066 / \ / \
4067 (y) c ===> a (x)
4068 / \ / \
4069 a b b c */
4070
4071 static void
4072 mem_rotate_right (struct mem_node *x)
4073 {
4074 struct mem_node *y = x->left;
4075
4076 x->left = y->right;
4077 if (y->right != MEM_NIL)
4078 y->right->parent = x;
4079
4080 if (y != MEM_NIL)
4081 y->parent = x->parent;
4082 if (x->parent)
4083 {
4084 if (x == x->parent->right)
4085 x->parent->right = y;
4086 else
4087 x->parent->left = y;
4088 }
4089 else
4090 mem_root = y;
4091
4092 y->right = x;
4093 if (x != MEM_NIL)
4094 x->parent = y;
4095 }
4096
4097
4098 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4099
4100 static void
4101 mem_delete (struct mem_node *z)
4102 {
4103 struct mem_node *x, *y;
4104
4105 if (!z || z == MEM_NIL)
4106 return;
4107
4108 if (z->left == MEM_NIL || z->right == MEM_NIL)
4109 y = z;
4110 else
4111 {
4112 y = z->right;
4113 while (y->left != MEM_NIL)
4114 y = y->left;
4115 }
4116
4117 if (y->left != MEM_NIL)
4118 x = y->left;
4119 else
4120 x = y->right;
4121
4122 x->parent = y->parent;
4123 if (y->parent)
4124 {
4125 if (y == y->parent->left)
4126 y->parent->left = x;
4127 else
4128 y->parent->right = x;
4129 }
4130 else
4131 mem_root = x;
4132
4133 if (y != z)
4134 {
4135 z->start = y->start;
4136 z->end = y->end;
4137 z->type = y->type;
4138 }
4139
4140 if (y->color == MEM_BLACK)
4141 mem_delete_fixup (x);
4142
4143 #ifdef GC_MALLOC_CHECK
4144 free (y);
4145 #else
4146 xfree (y);
4147 #endif
4148 }
4149
4150
4151 /* Re-establish the red-black properties of the tree, after a
4152 deletion. */
4153
4154 static void
4155 mem_delete_fixup (struct mem_node *x)
4156 {
4157 while (x != mem_root && x->color == MEM_BLACK)
4158 {
4159 if (x == x->parent->left)
4160 {
4161 struct mem_node *w = x->parent->right;
4162
4163 if (w->color == MEM_RED)
4164 {
4165 w->color = MEM_BLACK;
4166 x->parent->color = MEM_RED;
4167 mem_rotate_left (x->parent);
4168 w = x->parent->right;
4169 }
4170
4171 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4172 {
4173 w->color = MEM_RED;
4174 x = x->parent;
4175 }
4176 else
4177 {
4178 if (w->right->color == MEM_BLACK)
4179 {
4180 w->left->color = MEM_BLACK;
4181 w->color = MEM_RED;
4182 mem_rotate_right (w);
4183 w = x->parent->right;
4184 }
4185 w->color = x->parent->color;
4186 x->parent->color = MEM_BLACK;
4187 w->right->color = MEM_BLACK;
4188 mem_rotate_left (x->parent);
4189 x = mem_root;
4190 }
4191 }
4192 else
4193 {
4194 struct mem_node *w = x->parent->left;
4195
4196 if (w->color == MEM_RED)
4197 {
4198 w->color = MEM_BLACK;
4199 x->parent->color = MEM_RED;
4200 mem_rotate_right (x->parent);
4201 w = x->parent->left;
4202 }
4203
4204 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4205 {
4206 w->color = MEM_RED;
4207 x = x->parent;
4208 }
4209 else
4210 {
4211 if (w->left->color == MEM_BLACK)
4212 {
4213 w->right->color = MEM_BLACK;
4214 w->color = MEM_RED;
4215 mem_rotate_left (w);
4216 w = x->parent->left;
4217 }
4218
4219 w->color = x->parent->color;
4220 x->parent->color = MEM_BLACK;
4221 w->left->color = MEM_BLACK;
4222 mem_rotate_right (x->parent);
4223 x = mem_root;
4224 }
4225 }
4226 }
4227
4228 x->color = MEM_BLACK;
4229 }
4230
4231
4232 /* Value is non-zero if P is a pointer to a live Lisp string on
4233 the heap. M is a pointer to the mem_block for P. */
4234
4235 static bool
4236 live_string_p (struct mem_node *m, void *p)
4237 {
4238 if (m->type == MEM_TYPE_STRING)
4239 {
4240 struct string_block *b = m->start;
4241 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4242
4243 /* P must point to the start of a Lisp_String structure, and it
4244 must not be on the free-list. */
4245 return (offset >= 0
4246 && offset % sizeof b->strings[0] == 0
4247 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4248 && ((struct Lisp_String *) p)->data != NULL);
4249 }
4250 else
4251 return 0;
4252 }
4253
4254
4255 /* Value is non-zero if P is a pointer to a live Lisp cons on
4256 the heap. M is a pointer to the mem_block for P. */
4257
4258 static bool
4259 live_cons_p (struct mem_node *m, void *p)
4260 {
4261 if (m->type == MEM_TYPE_CONS)
4262 {
4263 struct cons_block *b = m->start;
4264 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4265
4266 /* P must point to the start of a Lisp_Cons, not be
4267 one of the unused cells in the current cons block,
4268 and not be on the free-list. */
4269 return (offset >= 0
4270 && offset % sizeof b->conses[0] == 0
4271 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4272 && (b != cons_block
4273 || offset / sizeof b->conses[0] < cons_block_index)
4274 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4275 }
4276 else
4277 return 0;
4278 }
4279
4280
4281 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4282 the heap. M is a pointer to the mem_block for P. */
4283
4284 static bool
4285 live_symbol_p (struct mem_node *m, void *p)
4286 {
4287 if (m->type == MEM_TYPE_SYMBOL)
4288 {
4289 struct symbol_block *b = m->start;
4290 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4291
4292 /* P must point to the start of a Lisp_Symbol, not be
4293 one of the unused cells in the current symbol block,
4294 and not be on the free-list. */
4295 return (offset >= 0
4296 && offset % sizeof b->symbols[0] == 0
4297 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4298 && (b != symbol_block
4299 || offset / sizeof b->symbols[0] < symbol_block_index)
4300 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4301 }
4302 else
4303 return 0;
4304 }
4305
4306
4307 /* Value is non-zero if P is a pointer to a live Lisp float on
4308 the heap. M is a pointer to the mem_block for P. */
4309
4310 static bool
4311 live_float_p (struct mem_node *m, void *p)
4312 {
4313 if (m->type == MEM_TYPE_FLOAT)
4314 {
4315 struct float_block *b = m->start;
4316 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4317
4318 /* P must point to the start of a Lisp_Float and not be
4319 one of the unused cells in the current float block. */
4320 return (offset >= 0
4321 && offset % sizeof b->floats[0] == 0
4322 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4323 && (b != float_block
4324 || offset / sizeof b->floats[0] < float_block_index));
4325 }
4326 else
4327 return 0;
4328 }
4329
4330
4331 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4332 the heap. M is a pointer to the mem_block for P. */
4333
4334 static bool
4335 live_misc_p (struct mem_node *m, void *p)
4336 {
4337 if (m->type == MEM_TYPE_MISC)
4338 {
4339 struct marker_block *b = m->start;
4340 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4341
4342 /* P must point to the start of a Lisp_Misc, not be
4343 one of the unused cells in the current misc block,
4344 and not be on the free-list. */
4345 return (offset >= 0
4346 && offset % sizeof b->markers[0] == 0
4347 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4348 && (b != marker_block
4349 || offset / sizeof b->markers[0] < marker_block_index)
4350 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4351 }
4352 else
4353 return 0;
4354 }
4355
4356
4357 /* Value is non-zero if P is a pointer to a live vector-like object.
4358 M is a pointer to the mem_block for P. */
4359
4360 static bool
4361 live_vector_p (struct mem_node *m, void *p)
4362 {
4363 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4364 {
4365 /* This memory node corresponds to a vector block. */
4366 struct vector_block *block = m->start;
4367 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4368
4369 /* P is in the block's allocation range. Scan the block
4370 up to P and see whether P points to the start of some
4371 vector which is not on a free list. FIXME: check whether
4372 some allocation patterns (probably a lot of short vectors)
4373 may cause a substantial overhead of this loop. */
4374 while (VECTOR_IN_BLOCK (vector, block)
4375 && vector <= (struct Lisp_Vector *) p)
4376 {
4377 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4378 return 1;
4379 else
4380 vector = ADVANCE (vector, vector_nbytes (vector));
4381 }
4382 }
4383 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4384 /* This memory node corresponds to a large vector. */
4385 return 1;
4386 return 0;
4387 }
4388
4389
4390 /* Value is non-zero if P is a pointer to a live buffer. M is a
4391 pointer to the mem_block for P. */
4392
4393 static bool
4394 live_buffer_p (struct mem_node *m, void *p)
4395 {
4396 /* P must point to the start of the block, and the buffer
4397 must not have been killed. */
4398 return (m->type == MEM_TYPE_BUFFER
4399 && p == m->start
4400 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4401 }
4402
4403 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4404
4405 #if GC_MARK_STACK
4406
4407 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4408
4409 /* Currently not used, but may be called from gdb. */
4410
4411 void dump_zombies (void) EXTERNALLY_VISIBLE;
4412
4413 /* Array of objects that are kept alive because the C stack contains
4414 a pattern that looks like a reference to them. */
4415
4416 #define MAX_ZOMBIES 10
4417 static Lisp_Object zombies[MAX_ZOMBIES];
4418
4419 /* Number of zombie objects. */
4420
4421 static EMACS_INT nzombies;
4422
4423 /* Number of garbage collections. */
4424
4425 static EMACS_INT ngcs;
4426
4427 /* Average percentage of zombies per collection. */
4428
4429 static double avg_zombies;
4430
4431 /* Max. number of live and zombie objects. */
4432
4433 static EMACS_INT max_live, max_zombies;
4434
4435 /* Average number of live objects per GC. */
4436
4437 static double avg_live;
4438
4439 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4440 doc: /* Show information about live and zombie objects. */)
4441 (void)
4442 {
4443 Lisp_Object args[8], zombie_list = Qnil;
4444 EMACS_INT i;
4445 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4446 zombie_list = Fcons (zombies[i], zombie_list);
4447 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4448 args[1] = make_number (ngcs);
4449 args[2] = make_float (avg_live);
4450 args[3] = make_float (avg_zombies);
4451 args[4] = make_float (avg_zombies / avg_live / 100);
4452 args[5] = make_number (max_live);
4453 args[6] = make_number (max_zombies);
4454 args[7] = zombie_list;
4455 return Fmessage (8, args);
4456 }
4457
4458 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4459
4460
4461 /* Mark OBJ if we can prove it's a Lisp_Object. */
4462
4463 static void
4464 mark_maybe_object (Lisp_Object obj)
4465 {
4466 void *po;
4467 struct mem_node *m;
4468
4469 #if USE_VALGRIND
4470 if (valgrind_p)
4471 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4472 #endif
4473
4474 if (INTEGERP (obj))
4475 return;
4476
4477 po = (void *) XPNTR (obj);
4478 m = mem_find (po);
4479
4480 if (m != MEM_NIL)
4481 {
4482 bool mark_p = 0;
4483
4484 switch (XTYPE (obj))
4485 {
4486 case Lisp_String:
4487 mark_p = (live_string_p (m, po)
4488 && !STRING_MARKED_P ((struct Lisp_String *) po));
4489 break;
4490
4491 case Lisp_Cons:
4492 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4493 break;
4494
4495 case Lisp_Symbol:
4496 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4497 break;
4498
4499 case Lisp_Float:
4500 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4501 break;
4502
4503 case Lisp_Vectorlike:
4504 /* Note: can't check BUFFERP before we know it's a
4505 buffer because checking that dereferences the pointer
4506 PO which might point anywhere. */
4507 if (live_vector_p (m, po))
4508 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4509 else if (live_buffer_p (m, po))
4510 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4511 break;
4512
4513 case Lisp_Misc:
4514 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4515 break;
4516
4517 default:
4518 break;
4519 }
4520
4521 if (mark_p)
4522 {
4523 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4524 if (nzombies < MAX_ZOMBIES)
4525 zombies[nzombies] = obj;
4526 ++nzombies;
4527 #endif
4528 mark_object (obj);
4529 }
4530 }
4531 }
4532
4533
4534 /* If P points to Lisp data, mark that as live if it isn't already
4535 marked. */
4536
4537 static void
4538 mark_maybe_pointer (void *p)
4539 {
4540 struct mem_node *m;
4541
4542 #if USE_VALGRIND
4543 if (valgrind_p)
4544 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4545 #endif
4546
4547 /* Quickly rule out some values which can't point to Lisp data.
4548 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4549 Otherwise, assume that Lisp data is aligned on even addresses. */
4550 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4551 return;
4552
4553 m = mem_find (p);
4554 if (m != MEM_NIL)
4555 {
4556 Lisp_Object obj = Qnil;
4557
4558 switch (m->type)
4559 {
4560 case MEM_TYPE_NON_LISP:
4561 case MEM_TYPE_SPARE:
4562 /* Nothing to do; not a pointer to Lisp memory. */
4563 break;
4564
4565 case MEM_TYPE_BUFFER:
4566 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4567 XSETVECTOR (obj, p);
4568 break;
4569
4570 case MEM_TYPE_CONS:
4571 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4572 XSETCONS (obj, p);
4573 break;
4574
4575 case MEM_TYPE_STRING:
4576 if (live_string_p (m, p)
4577 && !STRING_MARKED_P ((struct Lisp_String *) p))
4578 XSETSTRING (obj, p);
4579 break;
4580
4581 case MEM_TYPE_MISC:
4582 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4583 XSETMISC (obj, p);
4584 break;
4585
4586 case MEM_TYPE_SYMBOL:
4587 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4588 XSETSYMBOL (obj, p);
4589 break;
4590
4591 case MEM_TYPE_FLOAT:
4592 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4593 XSETFLOAT (obj, p);
4594 break;
4595
4596 case MEM_TYPE_VECTORLIKE:
4597 case MEM_TYPE_VECTOR_BLOCK:
4598 if (live_vector_p (m, p))
4599 {
4600 Lisp_Object tem;
4601 XSETVECTOR (tem, p);
4602 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4603 obj = tem;
4604 }
4605 break;
4606
4607 default:
4608 emacs_abort ();
4609 }
4610
4611 if (!NILP (obj))
4612 mark_object (obj);
4613 }
4614 }
4615
4616
4617 /* Alignment of pointer values. Use alignof, as it sometimes returns
4618 a smaller alignment than GCC's __alignof__ and mark_memory might
4619 miss objects if __alignof__ were used. */
4620 #define GC_POINTER_ALIGNMENT alignof (void *)
4621
4622 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4623 not suffice, which is the typical case. A host where a Lisp_Object is
4624 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4625 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4626 suffice to widen it to to a Lisp_Object and check it that way. */
4627 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4628 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4629 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4630 nor mark_maybe_object can follow the pointers. This should not occur on
4631 any practical porting target. */
4632 # error "MSB type bits straddle pointer-word boundaries"
4633 # endif
4634 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4635 pointer words that hold pointers ORed with type bits. */
4636 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4637 #else
4638 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4639 words that hold unmodified pointers. */
4640 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4641 #endif
4642
4643 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4644 or END+OFFSET..START. */
4645
4646 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4647 mark_memory (void *start, void *end)
4648 {
4649 void **pp;
4650 int i;
4651
4652 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4653 nzombies = 0;
4654 #endif
4655
4656 /* Make START the pointer to the start of the memory region,
4657 if it isn't already. */
4658 if (end < start)
4659 {
4660 void *tem = start;
4661 start = end;
4662 end = tem;
4663 }
4664
4665 /* Mark Lisp data pointed to. This is necessary because, in some
4666 situations, the C compiler optimizes Lisp objects away, so that
4667 only a pointer to them remains. Example:
4668
4669 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4670 ()
4671 {
4672 Lisp_Object obj = build_string ("test");
4673 struct Lisp_String *s = XSTRING (obj);
4674 Fgarbage_collect ();
4675 fprintf (stderr, "test `%s'\n", s->data);
4676 return Qnil;
4677 }
4678
4679 Here, `obj' isn't really used, and the compiler optimizes it
4680 away. The only reference to the life string is through the
4681 pointer `s'. */
4682
4683 for (pp = start; (void *) pp < end; pp++)
4684 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4685 {
4686 void *p = *(void **) ((char *) pp + i);
4687 mark_maybe_pointer (p);
4688 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4689 mark_maybe_object (XIL ((intptr_t) p));
4690 }
4691 }
4692
4693 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4694
4695 static bool setjmp_tested_p;
4696 static int longjmps_done;
4697
4698 #define SETJMP_WILL_LIKELY_WORK "\
4699 \n\
4700 Emacs garbage collector has been changed to use conservative stack\n\
4701 marking. Emacs has determined that the method it uses to do the\n\
4702 marking will likely work on your system, but this isn't sure.\n\
4703 \n\
4704 If you are a system-programmer, or can get the help of a local wizard\n\
4705 who is, please take a look at the function mark_stack in alloc.c, and\n\
4706 verify that the methods used are appropriate for your system.\n\
4707 \n\
4708 Please mail the result to <emacs-devel@gnu.org>.\n\
4709 "
4710
4711 #define SETJMP_WILL_NOT_WORK "\
4712 \n\
4713 Emacs garbage collector has been changed to use conservative stack\n\
4714 marking. Emacs has determined that the default method it uses to do the\n\
4715 marking will not work on your system. We will need a system-dependent\n\
4716 solution for your system.\n\
4717 \n\
4718 Please take a look at the function mark_stack in alloc.c, and\n\
4719 try to find a way to make it work on your system.\n\
4720 \n\
4721 Note that you may get false negatives, depending on the compiler.\n\
4722 In particular, you need to use -O with GCC for this test.\n\
4723 \n\
4724 Please mail the result to <emacs-devel@gnu.org>.\n\
4725 "
4726
4727
4728 /* Perform a quick check if it looks like setjmp saves registers in a
4729 jmp_buf. Print a message to stderr saying so. When this test
4730 succeeds, this is _not_ a proof that setjmp is sufficient for
4731 conservative stack marking. Only the sources or a disassembly
4732 can prove that. */
4733
4734 static void
4735 test_setjmp (void)
4736 {
4737 char buf[10];
4738 register int x;
4739 sys_jmp_buf jbuf;
4740
4741 /* Arrange for X to be put in a register. */
4742 sprintf (buf, "1");
4743 x = strlen (buf);
4744 x = 2 * x - 1;
4745
4746 sys_setjmp (jbuf);
4747 if (longjmps_done == 1)
4748 {
4749 /* Came here after the longjmp at the end of the function.
4750
4751 If x == 1, the longjmp has restored the register to its
4752 value before the setjmp, and we can hope that setjmp
4753 saves all such registers in the jmp_buf, although that
4754 isn't sure.
4755
4756 For other values of X, either something really strange is
4757 taking place, or the setjmp just didn't save the register. */
4758
4759 if (x == 1)
4760 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4761 else
4762 {
4763 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4764 exit (1);
4765 }
4766 }
4767
4768 ++longjmps_done;
4769 x = 2;
4770 if (longjmps_done == 1)
4771 sys_longjmp (jbuf, 1);
4772 }
4773
4774 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4775
4776
4777 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4778
4779 /* Abort if anything GCPRO'd doesn't survive the GC. */
4780
4781 static void
4782 check_gcpros (void)
4783 {
4784 struct gcpro *p;
4785 ptrdiff_t i;
4786
4787 for (p = gcprolist; p; p = p->next)
4788 for (i = 0; i < p->nvars; ++i)
4789 if (!survives_gc_p (p->var[i]))
4790 /* FIXME: It's not necessarily a bug. It might just be that the
4791 GCPRO is unnecessary or should release the object sooner. */
4792 emacs_abort ();
4793 }
4794
4795 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4796
4797 void
4798 dump_zombies (void)
4799 {
4800 int i;
4801
4802 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4803 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4804 {
4805 fprintf (stderr, " %d = ", i);
4806 debug_print (zombies[i]);
4807 }
4808 }
4809
4810 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4811
4812
4813 /* Mark live Lisp objects on the C stack.
4814
4815 There are several system-dependent problems to consider when
4816 porting this to new architectures:
4817
4818 Processor Registers
4819
4820 We have to mark Lisp objects in CPU registers that can hold local
4821 variables or are used to pass parameters.
4822
4823 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4824 something that either saves relevant registers on the stack, or
4825 calls mark_maybe_object passing it each register's contents.
4826
4827 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4828 implementation assumes that calling setjmp saves registers we need
4829 to see in a jmp_buf which itself lies on the stack. This doesn't
4830 have to be true! It must be verified for each system, possibly
4831 by taking a look at the source code of setjmp.
4832
4833 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4834 can use it as a machine independent method to store all registers
4835 to the stack. In this case the macros described in the previous
4836 two paragraphs are not used.
4837
4838 Stack Layout
4839
4840 Architectures differ in the way their processor stack is organized.
4841 For example, the stack might look like this
4842
4843 +----------------+
4844 | Lisp_Object | size = 4
4845 +----------------+
4846 | something else | size = 2
4847 +----------------+
4848 | Lisp_Object | size = 4
4849 +----------------+
4850 | ... |
4851
4852 In such a case, not every Lisp_Object will be aligned equally. To
4853 find all Lisp_Object on the stack it won't be sufficient to walk
4854 the stack in steps of 4 bytes. Instead, two passes will be
4855 necessary, one starting at the start of the stack, and a second
4856 pass starting at the start of the stack + 2. Likewise, if the
4857 minimal alignment of Lisp_Objects on the stack is 1, four passes
4858 would be necessary, each one starting with one byte more offset
4859 from the stack start. */
4860
4861 static void
4862 mark_stack (void)
4863 {
4864 void *end;
4865
4866 #ifdef HAVE___BUILTIN_UNWIND_INIT
4867 /* Force callee-saved registers and register windows onto the stack.
4868 This is the preferred method if available, obviating the need for
4869 machine dependent methods. */
4870 __builtin_unwind_init ();
4871 end = &end;
4872 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4873 #ifndef GC_SAVE_REGISTERS_ON_STACK
4874 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4875 union aligned_jmpbuf {
4876 Lisp_Object o;
4877 sys_jmp_buf j;
4878 } j;
4879 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4880 #endif
4881 /* This trick flushes the register windows so that all the state of
4882 the process is contained in the stack. */
4883 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4884 needed on ia64 too. See mach_dep.c, where it also says inline
4885 assembler doesn't work with relevant proprietary compilers. */
4886 #ifdef __sparc__
4887 #if defined (__sparc64__) && defined (__FreeBSD__)
4888 /* FreeBSD does not have a ta 3 handler. */
4889 asm ("flushw");
4890 #else
4891 asm ("ta 3");
4892 #endif
4893 #endif
4894
4895 /* Save registers that we need to see on the stack. We need to see
4896 registers used to hold register variables and registers used to
4897 pass parameters. */
4898 #ifdef GC_SAVE_REGISTERS_ON_STACK
4899 GC_SAVE_REGISTERS_ON_STACK (end);
4900 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4901
4902 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4903 setjmp will definitely work, test it
4904 and print a message with the result
4905 of the test. */
4906 if (!setjmp_tested_p)
4907 {
4908 setjmp_tested_p = 1;
4909 test_setjmp ();
4910 }
4911 #endif /* GC_SETJMP_WORKS */
4912
4913 sys_setjmp (j.j);
4914 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4915 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4916 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4917
4918 /* This assumes that the stack is a contiguous region in memory. If
4919 that's not the case, something has to be done here to iterate
4920 over the stack segments. */
4921 mark_memory (stack_base, end);
4922
4923 /* Allow for marking a secondary stack, like the register stack on the
4924 ia64. */
4925 #ifdef GC_MARK_SECONDARY_STACK
4926 GC_MARK_SECONDARY_STACK ();
4927 #endif
4928
4929 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4930 check_gcpros ();
4931 #endif
4932 }
4933
4934 #else /* GC_MARK_STACK == 0 */
4935
4936 #define mark_maybe_object(obj) emacs_abort ()
4937
4938 #endif /* GC_MARK_STACK != 0 */
4939
4940
4941 /* Determine whether it is safe to access memory at address P. */
4942 static int
4943 valid_pointer_p (void *p)
4944 {
4945 #ifdef WINDOWSNT
4946 return w32_valid_pointer_p (p, 16);
4947 #else
4948 int fd[2];
4949
4950 /* Obviously, we cannot just access it (we would SEGV trying), so we
4951 trick the o/s to tell us whether p is a valid pointer.
4952 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4953 not validate p in that case. */
4954
4955 if (emacs_pipe (fd) == 0)
4956 {
4957 bool valid = emacs_write (fd[1], p, 16) == 16;
4958 emacs_close (fd[1]);
4959 emacs_close (fd[0]);
4960 return valid;
4961 }
4962
4963 return -1;
4964 #endif
4965 }
4966
4967 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4968 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4969 cannot validate OBJ. This function can be quite slow, so its primary
4970 use is the manual debugging. The only exception is print_object, where
4971 we use it to check whether the memory referenced by the pointer of
4972 Lisp_Save_Value object contains valid objects. */
4973
4974 int
4975 valid_lisp_object_p (Lisp_Object obj)
4976 {
4977 void *p;
4978 #if GC_MARK_STACK
4979 struct mem_node *m;
4980 #endif
4981
4982 if (INTEGERP (obj))
4983 return 1;
4984
4985 p = (void *) XPNTR (obj);
4986 if (PURE_POINTER_P (p))
4987 return 1;
4988
4989 if (p == &buffer_defaults || p == &buffer_local_symbols)
4990 return 2;
4991
4992 #if !GC_MARK_STACK
4993 return valid_pointer_p (p);
4994 #else
4995
4996 m = mem_find (p);
4997
4998 if (m == MEM_NIL)
4999 {
5000 int valid = valid_pointer_p (p);
5001 if (valid <= 0)
5002 return valid;
5003
5004 if (SUBRP (obj))
5005 return 1;
5006
5007 return 0;
5008 }
5009
5010 switch (m->type)
5011 {
5012 case MEM_TYPE_NON_LISP:
5013 case MEM_TYPE_SPARE:
5014 return 0;
5015
5016 case MEM_TYPE_BUFFER:
5017 return live_buffer_p (m, p) ? 1 : 2;
5018
5019 case MEM_TYPE_CONS:
5020 return live_cons_p (m, p);
5021
5022 case MEM_TYPE_STRING:
5023 return live_string_p (m, p);
5024
5025 case MEM_TYPE_MISC:
5026 return live_misc_p (m, p);
5027
5028 case MEM_TYPE_SYMBOL:
5029 return live_symbol_p (m, p);
5030
5031 case MEM_TYPE_FLOAT:
5032 return live_float_p (m, p);
5033
5034 case MEM_TYPE_VECTORLIKE:
5035 case MEM_TYPE_VECTOR_BLOCK:
5036 return live_vector_p (m, p);
5037
5038 default:
5039 break;
5040 }
5041
5042 return 0;
5043 #endif
5044 }
5045
5046
5047
5048 \f
5049 /***********************************************************************
5050 Pure Storage Management
5051 ***********************************************************************/
5052
5053 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5054 pointer to it. TYPE is the Lisp type for which the memory is
5055 allocated. TYPE < 0 means it's not used for a Lisp object. */
5056
5057 static void *
5058 pure_alloc (size_t size, int type)
5059 {
5060 void *result;
5061 #if USE_LSB_TAG
5062 size_t alignment = GCALIGNMENT;
5063 #else
5064 size_t alignment = alignof (EMACS_INT);
5065
5066 /* Give Lisp_Floats an extra alignment. */
5067 if (type == Lisp_Float)
5068 alignment = alignof (struct Lisp_Float);
5069 #endif
5070
5071 again:
5072 if (type >= 0)
5073 {
5074 /* Allocate space for a Lisp object from the beginning of the free
5075 space with taking account of alignment. */
5076 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5077 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5078 }
5079 else
5080 {
5081 /* Allocate space for a non-Lisp object from the end of the free
5082 space. */
5083 pure_bytes_used_non_lisp += size;
5084 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5085 }
5086 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5087
5088 if (pure_bytes_used <= pure_size)
5089 return result;
5090
5091 /* Don't allocate a large amount here,
5092 because it might get mmap'd and then its address
5093 might not be usable. */
5094 purebeg = xmalloc (10000);
5095 pure_size = 10000;
5096 pure_bytes_used_before_overflow += pure_bytes_used - size;
5097 pure_bytes_used = 0;
5098 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5099 goto again;
5100 }
5101
5102
5103 /* Print a warning if PURESIZE is too small. */
5104
5105 void
5106 check_pure_size (void)
5107 {
5108 if (pure_bytes_used_before_overflow)
5109 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5110 " bytes needed)"),
5111 pure_bytes_used + pure_bytes_used_before_overflow);
5112 }
5113
5114
5115 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5116 the non-Lisp data pool of the pure storage, and return its start
5117 address. Return NULL if not found. */
5118
5119 static char *
5120 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5121 {
5122 int i;
5123 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5124 const unsigned char *p;
5125 char *non_lisp_beg;
5126
5127 if (pure_bytes_used_non_lisp <= nbytes)
5128 return NULL;
5129
5130 /* Set up the Boyer-Moore table. */
5131 skip = nbytes + 1;
5132 for (i = 0; i < 256; i++)
5133 bm_skip[i] = skip;
5134
5135 p = (const unsigned char *) data;
5136 while (--skip > 0)
5137 bm_skip[*p++] = skip;
5138
5139 last_char_skip = bm_skip['\0'];
5140
5141 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5142 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5143
5144 /* See the comments in the function `boyer_moore' (search.c) for the
5145 use of `infinity'. */
5146 infinity = pure_bytes_used_non_lisp + 1;
5147 bm_skip['\0'] = infinity;
5148
5149 p = (const unsigned char *) non_lisp_beg + nbytes;
5150 start = 0;
5151 do
5152 {
5153 /* Check the last character (== '\0'). */
5154 do
5155 {
5156 start += bm_skip[*(p + start)];
5157 }
5158 while (start <= start_max);
5159
5160 if (start < infinity)
5161 /* Couldn't find the last character. */
5162 return NULL;
5163
5164 /* No less than `infinity' means we could find the last
5165 character at `p[start - infinity]'. */
5166 start -= infinity;
5167
5168 /* Check the remaining characters. */
5169 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5170 /* Found. */
5171 return non_lisp_beg + start;
5172
5173 start += last_char_skip;
5174 }
5175 while (start <= start_max);
5176
5177 return NULL;
5178 }
5179
5180
5181 /* Return a string allocated in pure space. DATA is a buffer holding
5182 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5183 means make the result string multibyte.
5184
5185 Must get an error if pure storage is full, since if it cannot hold
5186 a large string it may be able to hold conses that point to that
5187 string; then the string is not protected from gc. */
5188
5189 Lisp_Object
5190 make_pure_string (const char *data,
5191 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5192 {
5193 Lisp_Object string;
5194 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5195 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5196 if (s->data == NULL)
5197 {
5198 s->data = pure_alloc (nbytes + 1, -1);
5199 memcpy (s->data, data, nbytes);
5200 s->data[nbytes] = '\0';
5201 }
5202 s->size = nchars;
5203 s->size_byte = multibyte ? nbytes : -1;
5204 s->intervals = NULL;
5205 XSETSTRING (string, s);
5206 return string;
5207 }
5208
5209 /* Return a string allocated in pure space. Do not
5210 allocate the string data, just point to DATA. */
5211
5212 Lisp_Object
5213 make_pure_c_string (const char *data, ptrdiff_t nchars)
5214 {
5215 Lisp_Object string;
5216 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5217 s->size = nchars;
5218 s->size_byte = -1;
5219 s->data = (unsigned char *) data;
5220 s->intervals = NULL;
5221 XSETSTRING (string, s);
5222 return string;
5223 }
5224
5225 static Lisp_Object purecopy (Lisp_Object obj);
5226
5227 /* Return a cons allocated from pure space. Give it pure copies
5228 of CAR as car and CDR as cdr. */
5229
5230 Lisp_Object
5231 pure_cons (Lisp_Object car, Lisp_Object cdr)
5232 {
5233 Lisp_Object new;
5234 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5235 XSETCONS (new, p);
5236 XSETCAR (new, purecopy (car));
5237 XSETCDR (new, purecopy (cdr));
5238 return new;
5239 }
5240
5241
5242 /* Value is a float object with value NUM allocated from pure space. */
5243
5244 static Lisp_Object
5245 make_pure_float (double num)
5246 {
5247 Lisp_Object new;
5248 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5249 XSETFLOAT (new, p);
5250 XFLOAT_INIT (new, num);
5251 return new;
5252 }
5253
5254
5255 /* Return a vector with room for LEN Lisp_Objects allocated from
5256 pure space. */
5257
5258 static Lisp_Object
5259 make_pure_vector (ptrdiff_t len)
5260 {
5261 Lisp_Object new;
5262 size_t size = header_size + len * word_size;
5263 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5264 XSETVECTOR (new, p);
5265 XVECTOR (new)->header.size = len;
5266 return new;
5267 }
5268
5269
5270 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5271 doc: /* Make a copy of object OBJ in pure storage.
5272 Recursively copies contents of vectors and cons cells.
5273 Does not copy symbols. Copies strings without text properties. */)
5274 (register Lisp_Object obj)
5275 {
5276 if (NILP (Vpurify_flag))
5277 return obj;
5278 else if (MARKERP (obj) || OVERLAYP (obj)
5279 || HASH_TABLE_P (obj) || SYMBOLP (obj))
5280 /* Can't purify those. */
5281 return obj;
5282 else
5283 return purecopy (obj);
5284 }
5285
5286 static Lisp_Object
5287 purecopy (Lisp_Object obj)
5288 {
5289 if (PURE_POINTER_P (XPNTR (obj)) || INTEGERP (obj) || SUBRP (obj))
5290 return obj; /* Already pure. */
5291
5292 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5293 {
5294 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5295 if (!NILP (tmp))
5296 return tmp;
5297 }
5298
5299 if (CONSP (obj))
5300 obj = pure_cons (XCAR (obj), XCDR (obj));
5301 else if (FLOATP (obj))
5302 obj = make_pure_float (XFLOAT_DATA (obj));
5303 else if (STRINGP (obj))
5304 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5305 SBYTES (obj),
5306 STRING_MULTIBYTE (obj));
5307 else if (COMPILEDP (obj) || VECTORP (obj))
5308 {
5309 register struct Lisp_Vector *vec;
5310 register ptrdiff_t i;
5311 ptrdiff_t size;
5312
5313 size = ASIZE (obj);
5314 if (size & PSEUDOVECTOR_FLAG)
5315 size &= PSEUDOVECTOR_SIZE_MASK;
5316 vec = XVECTOR (make_pure_vector (size));
5317 for (i = 0; i < size; i++)
5318 vec->contents[i] = purecopy (AREF (obj, i));
5319 if (COMPILEDP (obj))
5320 {
5321 XSETPVECTYPE (vec, PVEC_COMPILED);
5322 XSETCOMPILED (obj, vec);
5323 }
5324 else
5325 XSETVECTOR (obj, vec);
5326 }
5327 else if (SYMBOLP (obj))
5328 {
5329 if (!XSYMBOL (obj)->pinned)
5330 { /* We can't purify them, but they appear in many pure objects.
5331 Mark them as `pinned' so we know to mark them at every GC cycle. */
5332 XSYMBOL (obj)->pinned = true;
5333 symbol_block_pinned = symbol_block;
5334 }
5335 return obj;
5336 }
5337 else
5338 {
5339 Lisp_Object args[2];
5340 args[0] = build_pure_c_string ("Don't know how to purify: %S");
5341 args[1] = obj;
5342 Fsignal (Qerror, (Fcons (Fformat (2, args), Qnil)));
5343 }
5344
5345 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5346 Fputhash (obj, obj, Vpurify_flag);
5347
5348 return obj;
5349 }
5350
5351
5352 \f
5353 /***********************************************************************
5354 Protection from GC
5355 ***********************************************************************/
5356
5357 /* Put an entry in staticvec, pointing at the variable with address
5358 VARADDRESS. */
5359
5360 void
5361 staticpro (Lisp_Object *varaddress)
5362 {
5363 if (staticidx >= NSTATICS)
5364 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5365 staticvec[staticidx++] = varaddress;
5366 }
5367
5368 \f
5369 /***********************************************************************
5370 Protection from GC
5371 ***********************************************************************/
5372
5373 /* Temporarily prevent garbage collection. */
5374
5375 ptrdiff_t
5376 inhibit_garbage_collection (void)
5377 {
5378 ptrdiff_t count = SPECPDL_INDEX ();
5379
5380 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5381 return count;
5382 }
5383
5384 /* Used to avoid possible overflows when
5385 converting from C to Lisp integers. */
5386
5387 static Lisp_Object
5388 bounded_number (EMACS_INT number)
5389 {
5390 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5391 }
5392
5393 /* Calculate total bytes of live objects. */
5394
5395 static size_t
5396 total_bytes_of_live_objects (void)
5397 {
5398 size_t tot = 0;
5399 tot += total_conses * sizeof (struct Lisp_Cons);
5400 tot += total_symbols * sizeof (struct Lisp_Symbol);
5401 tot += total_markers * sizeof (union Lisp_Misc);
5402 tot += total_string_bytes;
5403 tot += total_vector_slots * word_size;
5404 tot += total_floats * sizeof (struct Lisp_Float);
5405 tot += total_intervals * sizeof (struct interval);
5406 tot += total_strings * sizeof (struct Lisp_String);
5407 return tot;
5408 }
5409
5410 #ifdef HAVE_WINDOW_SYSTEM
5411
5412 /* This code has a few issues on MS-Windows, see Bug#15876 and Bug#16140. */
5413
5414 #if !defined (HAVE_NTGUI)
5415
5416 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5417 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5418
5419 static Lisp_Object
5420 compact_font_cache_entry (Lisp_Object entry)
5421 {
5422 Lisp_Object tail, *prev = &entry;
5423
5424 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5425 {
5426 bool drop = 0;
5427 Lisp_Object obj = XCAR (tail);
5428
5429 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5430 if (CONSP (obj) && FONT_SPEC_P (XCAR (obj))
5431 && !VECTOR_MARKED_P (XFONT_SPEC (XCAR (obj)))
5432 && VECTORP (XCDR (obj)))
5433 {
5434 ptrdiff_t i, size = ASIZE (XCDR (obj)) & ~ARRAY_MARK_FLAG;
5435
5436 /* If font-spec is not marked, most likely all font-entities
5437 are not marked too. But we must be sure that nothing is
5438 marked within OBJ before we really drop it. */
5439 for (i = 0; i < size; i++)
5440 if (VECTOR_MARKED_P (XFONT_ENTITY (AREF (XCDR (obj), i))))
5441 break;
5442
5443 if (i == size)
5444 drop = 1;
5445 }
5446 if (drop)
5447 *prev = XCDR (tail);
5448 else
5449 prev = xcdr_addr (tail);
5450 }
5451 return entry;
5452 }
5453
5454 #endif /* not HAVE_NTGUI */
5455
5456 /* Compact font caches on all terminals and mark
5457 everything which is still here after compaction. */
5458
5459 static void
5460 compact_font_caches (void)
5461 {
5462 struct terminal *t;
5463
5464 for (t = terminal_list; t; t = t->next_terminal)
5465 {
5466 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5467 #if !defined (HAVE_NTGUI)
5468 if (CONSP (cache))
5469 {
5470 Lisp_Object entry;
5471
5472 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5473 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5474 }
5475 #endif /* not HAVE_NTGUI */
5476 mark_object (cache);
5477 }
5478 }
5479
5480 #else /* not HAVE_WINDOW_SYSTEM */
5481
5482 #define compact_font_caches() (void)(0)
5483
5484 #endif /* HAVE_WINDOW_SYSTEM */
5485
5486 /* Remove (MARKER . DATA) entries with unmarked MARKER
5487 from buffer undo LIST and return changed list. */
5488
5489 static Lisp_Object
5490 compact_undo_list (Lisp_Object list)
5491 {
5492 Lisp_Object tail, *prev = &list;
5493
5494 for (tail = list; CONSP (tail); tail = XCDR (tail))
5495 {
5496 if (CONSP (XCAR (tail))
5497 && MARKERP (XCAR (XCAR (tail)))
5498 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5499 *prev = XCDR (tail);
5500 else
5501 prev = xcdr_addr (tail);
5502 }
5503 return list;
5504 }
5505
5506 static void
5507 mark_pinned_symbols (void)
5508 {
5509 struct symbol_block *sblk;
5510 int lim = (symbol_block_pinned == symbol_block
5511 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5512
5513 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5514 {
5515 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5516 for (; sym < end; ++sym)
5517 if (sym->s.pinned)
5518 mark_object (make_lisp_ptr (&sym->s, Lisp_Symbol));
5519
5520 lim = SYMBOL_BLOCK_SIZE;
5521 }
5522 }
5523
5524 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5525 doc: /* Reclaim storage for Lisp objects no longer needed.
5526 Garbage collection happens automatically if you cons more than
5527 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5528 `garbage-collect' normally returns a list with info on amount of space in use,
5529 where each entry has the form (NAME SIZE USED FREE), where:
5530 - NAME is a symbol describing the kind of objects this entry represents,
5531 - SIZE is the number of bytes used by each one,
5532 - USED is the number of those objects that were found live in the heap,
5533 - FREE is the number of those objects that are not live but that Emacs
5534 keeps around for future allocations (maybe because it does not know how
5535 to return them to the OS).
5536 However, if there was overflow in pure space, `garbage-collect'
5537 returns nil, because real GC can't be done.
5538 See Info node `(elisp)Garbage Collection'. */)
5539 (void)
5540 {
5541 struct buffer *nextb;
5542 char stack_top_variable;
5543 ptrdiff_t i;
5544 bool message_p;
5545 ptrdiff_t count = SPECPDL_INDEX ();
5546 struct timespec start;
5547 Lisp_Object retval = Qnil;
5548 size_t tot_before = 0;
5549
5550 if (abort_on_gc)
5551 emacs_abort ();
5552
5553 /* Can't GC if pure storage overflowed because we can't determine
5554 if something is a pure object or not. */
5555 if (pure_bytes_used_before_overflow)
5556 return Qnil;
5557
5558 /* Record this function, so it appears on the profiler's backtraces. */
5559 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5560
5561 check_cons_list ();
5562
5563 /* Don't keep undo information around forever.
5564 Do this early on, so it is no problem if the user quits. */
5565 FOR_EACH_BUFFER (nextb)
5566 compact_buffer (nextb);
5567
5568 if (profiler_memory_running)
5569 tot_before = total_bytes_of_live_objects ();
5570
5571 start = current_timespec ();
5572
5573 /* In case user calls debug_print during GC,
5574 don't let that cause a recursive GC. */
5575 consing_since_gc = 0;
5576
5577 /* Save what's currently displayed in the echo area. */
5578 message_p = push_message ();
5579 record_unwind_protect_void (pop_message_unwind);
5580
5581 /* Save a copy of the contents of the stack, for debugging. */
5582 #if MAX_SAVE_STACK > 0
5583 if (NILP (Vpurify_flag))
5584 {
5585 char *stack;
5586 ptrdiff_t stack_size;
5587 if (&stack_top_variable < stack_bottom)
5588 {
5589 stack = &stack_top_variable;
5590 stack_size = stack_bottom - &stack_top_variable;
5591 }
5592 else
5593 {
5594 stack = stack_bottom;
5595 stack_size = &stack_top_variable - stack_bottom;
5596 }
5597 if (stack_size <= MAX_SAVE_STACK)
5598 {
5599 if (stack_copy_size < stack_size)
5600 {
5601 stack_copy = xrealloc (stack_copy, stack_size);
5602 stack_copy_size = stack_size;
5603 }
5604 no_sanitize_memcpy (stack_copy, stack, stack_size);
5605 }
5606 }
5607 #endif /* MAX_SAVE_STACK > 0 */
5608
5609 if (garbage_collection_messages)
5610 message1_nolog ("Garbage collecting...");
5611
5612 block_input ();
5613
5614 shrink_regexp_cache ();
5615
5616 gc_in_progress = 1;
5617
5618 /* Mark all the special slots that serve as the roots of accessibility. */
5619
5620 mark_buffer (&buffer_defaults);
5621 mark_buffer (&buffer_local_symbols);
5622
5623 for (i = 0; i < staticidx; i++)
5624 mark_object (*staticvec[i]);
5625
5626 mark_pinned_symbols ();
5627 mark_specpdl ();
5628 mark_terminals ();
5629 mark_kboards ();
5630
5631 #ifdef USE_GTK
5632 xg_mark_data ();
5633 #endif
5634
5635 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5636 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5637 mark_stack ();
5638 #else
5639 {
5640 register struct gcpro *tail;
5641 for (tail = gcprolist; tail; tail = tail->next)
5642 for (i = 0; i < tail->nvars; i++)
5643 mark_object (tail->var[i]);
5644 }
5645 mark_byte_stack ();
5646 #endif
5647 {
5648 struct handler *handler;
5649 for (handler = handlerlist; handler; handler = handler->next)
5650 {
5651 mark_object (handler->tag_or_ch);
5652 mark_object (handler->val);
5653 }
5654 }
5655 #ifdef HAVE_WINDOW_SYSTEM
5656 mark_fringe_data ();
5657 #endif
5658
5659 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5660 mark_stack ();
5661 #endif
5662
5663 /* Everything is now marked, except for the data in font caches
5664 and undo lists. They're compacted by removing an items which
5665 aren't reachable otherwise. */
5666
5667 compact_font_caches ();
5668
5669 FOR_EACH_BUFFER (nextb)
5670 {
5671 if (!EQ (BVAR (nextb, undo_list), Qt))
5672 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5673 /* Now that we have stripped the elements that need not be
5674 in the undo_list any more, we can finally mark the list. */
5675 mark_object (BVAR (nextb, undo_list));
5676 }
5677
5678 gc_sweep ();
5679
5680 /* Clear the mark bits that we set in certain root slots. */
5681
5682 unmark_byte_stack ();
5683 VECTOR_UNMARK (&buffer_defaults);
5684 VECTOR_UNMARK (&buffer_local_symbols);
5685
5686 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5687 dump_zombies ();
5688 #endif
5689
5690 check_cons_list ();
5691
5692 gc_in_progress = 0;
5693
5694 unblock_input ();
5695
5696 consing_since_gc = 0;
5697 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5698 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5699
5700 gc_relative_threshold = 0;
5701 if (FLOATP (Vgc_cons_percentage))
5702 { /* Set gc_cons_combined_threshold. */
5703 double tot = total_bytes_of_live_objects ();
5704
5705 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5706 if (0 < tot)
5707 {
5708 if (tot < TYPE_MAXIMUM (EMACS_INT))
5709 gc_relative_threshold = tot;
5710 else
5711 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5712 }
5713 }
5714
5715 if (garbage_collection_messages)
5716 {
5717 if (message_p || minibuf_level > 0)
5718 restore_message ();
5719 else
5720 message1_nolog ("Garbage collecting...done");
5721 }
5722
5723 unbind_to (count, Qnil);
5724 {
5725 Lisp_Object total[11];
5726 int total_size = 10;
5727
5728 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5729 bounded_number (total_conses),
5730 bounded_number (total_free_conses));
5731
5732 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5733 bounded_number (total_symbols),
5734 bounded_number (total_free_symbols));
5735
5736 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5737 bounded_number (total_markers),
5738 bounded_number (total_free_markers));
5739
5740 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5741 bounded_number (total_strings),
5742 bounded_number (total_free_strings));
5743
5744 total[4] = list3 (Qstring_bytes, make_number (1),
5745 bounded_number (total_string_bytes));
5746
5747 total[5] = list3 (Qvectors,
5748 make_number (header_size + sizeof (Lisp_Object)),
5749 bounded_number (total_vectors));
5750
5751 total[6] = list4 (Qvector_slots, make_number (word_size),
5752 bounded_number (total_vector_slots),
5753 bounded_number (total_free_vector_slots));
5754
5755 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5756 bounded_number (total_floats),
5757 bounded_number (total_free_floats));
5758
5759 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5760 bounded_number (total_intervals),
5761 bounded_number (total_free_intervals));
5762
5763 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5764 bounded_number (total_buffers));
5765
5766 #ifdef DOUG_LEA_MALLOC
5767 total_size++;
5768 total[10] = list4 (Qheap, make_number (1024),
5769 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5770 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5771 #endif
5772 retval = Flist (total_size, total);
5773 }
5774
5775 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5776 {
5777 /* Compute average percentage of zombies. */
5778 double nlive
5779 = (total_conses + total_symbols + total_markers + total_strings
5780 + total_vectors + total_floats + total_intervals + total_buffers);
5781
5782 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5783 max_live = max (nlive, max_live);
5784 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5785 max_zombies = max (nzombies, max_zombies);
5786 ++ngcs;
5787 }
5788 #endif
5789
5790 if (!NILP (Vpost_gc_hook))
5791 {
5792 ptrdiff_t gc_count = inhibit_garbage_collection ();
5793 safe_run_hooks (Qpost_gc_hook);
5794 unbind_to (gc_count, Qnil);
5795 }
5796
5797 /* Accumulate statistics. */
5798 if (FLOATP (Vgc_elapsed))
5799 {
5800 struct timespec since_start = timespec_sub (current_timespec (), start);
5801 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5802 + timespectod (since_start));
5803 }
5804
5805 gcs_done++;
5806
5807 /* Collect profiling data. */
5808 if (profiler_memory_running)
5809 {
5810 size_t swept = 0;
5811 size_t tot_after = total_bytes_of_live_objects ();
5812 if (tot_before > tot_after)
5813 swept = tot_before - tot_after;
5814 malloc_probe (swept);
5815 }
5816
5817 return retval;
5818 }
5819
5820
5821 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5822 only interesting objects referenced from glyphs are strings. */
5823
5824 static void
5825 mark_glyph_matrix (struct glyph_matrix *matrix)
5826 {
5827 struct glyph_row *row = matrix->rows;
5828 struct glyph_row *end = row + matrix->nrows;
5829
5830 for (; row < end; ++row)
5831 if (row->enabled_p)
5832 {
5833 int area;
5834 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5835 {
5836 struct glyph *glyph = row->glyphs[area];
5837 struct glyph *end_glyph = glyph + row->used[area];
5838
5839 for (; glyph < end_glyph; ++glyph)
5840 if (STRINGP (glyph->object)
5841 && !STRING_MARKED_P (XSTRING (glyph->object)))
5842 mark_object (glyph->object);
5843 }
5844 }
5845 }
5846
5847 /* Mark reference to a Lisp_Object.
5848 If the object referred to has not been seen yet, recursively mark
5849 all the references contained in it. */
5850
5851 #define LAST_MARKED_SIZE 500
5852 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5853 static int last_marked_index;
5854
5855 /* For debugging--call abort when we cdr down this many
5856 links of a list, in mark_object. In debugging,
5857 the call to abort will hit a breakpoint.
5858 Normally this is zero and the check never goes off. */
5859 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5860
5861 static void
5862 mark_vectorlike (struct Lisp_Vector *ptr)
5863 {
5864 ptrdiff_t size = ptr->header.size;
5865 ptrdiff_t i;
5866
5867 eassert (!VECTOR_MARKED_P (ptr));
5868 VECTOR_MARK (ptr); /* Else mark it. */
5869 if (size & PSEUDOVECTOR_FLAG)
5870 size &= PSEUDOVECTOR_SIZE_MASK;
5871
5872 /* Note that this size is not the memory-footprint size, but only
5873 the number of Lisp_Object fields that we should trace.
5874 The distinction is used e.g. by Lisp_Process which places extra
5875 non-Lisp_Object fields at the end of the structure... */
5876 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5877 mark_object (ptr->contents[i]);
5878 }
5879
5880 /* Like mark_vectorlike but optimized for char-tables (and
5881 sub-char-tables) assuming that the contents are mostly integers or
5882 symbols. */
5883
5884 static void
5885 mark_char_table (struct Lisp_Vector *ptr)
5886 {
5887 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5888 int i;
5889
5890 eassert (!VECTOR_MARKED_P (ptr));
5891 VECTOR_MARK (ptr);
5892 for (i = 0; i < size; i++)
5893 {
5894 Lisp_Object val = ptr->contents[i];
5895
5896 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5897 continue;
5898 if (SUB_CHAR_TABLE_P (val))
5899 {
5900 if (! VECTOR_MARKED_P (XVECTOR (val)))
5901 mark_char_table (XVECTOR (val));
5902 }
5903 else
5904 mark_object (val);
5905 }
5906 }
5907
5908 /* Mark the chain of overlays starting at PTR. */
5909
5910 static void
5911 mark_overlay (struct Lisp_Overlay *ptr)
5912 {
5913 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5914 {
5915 ptr->gcmarkbit = 1;
5916 mark_object (ptr->start);
5917 mark_object (ptr->end);
5918 mark_object (ptr->plist);
5919 }
5920 }
5921
5922 /* Mark Lisp_Objects and special pointers in BUFFER. */
5923
5924 static void
5925 mark_buffer (struct buffer *buffer)
5926 {
5927 /* This is handled much like other pseudovectors... */
5928 mark_vectorlike ((struct Lisp_Vector *) buffer);
5929
5930 /* ...but there are some buffer-specific things. */
5931
5932 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5933
5934 /* For now, we just don't mark the undo_list. It's done later in
5935 a special way just before the sweep phase, and after stripping
5936 some of its elements that are not needed any more. */
5937
5938 mark_overlay (buffer->overlays_before);
5939 mark_overlay (buffer->overlays_after);
5940
5941 /* If this is an indirect buffer, mark its base buffer. */
5942 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5943 mark_buffer (buffer->base_buffer);
5944 }
5945
5946 /* Mark Lisp faces in the face cache C. */
5947
5948 static void
5949 mark_face_cache (struct face_cache *c)
5950 {
5951 if (c)
5952 {
5953 int i, j;
5954 for (i = 0; i < c->used; ++i)
5955 {
5956 struct face *face = FACE_FROM_ID (c->f, i);
5957
5958 if (face)
5959 {
5960 if (face->font && !VECTOR_MARKED_P (face->font))
5961 mark_vectorlike ((struct Lisp_Vector *) face->font);
5962
5963 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5964 mark_object (face->lface[j]);
5965 }
5966 }
5967 }
5968 }
5969
5970 /* Remove killed buffers or items whose car is a killed buffer from
5971 LIST, and mark other items. Return changed LIST, which is marked. */
5972
5973 static Lisp_Object
5974 mark_discard_killed_buffers (Lisp_Object list)
5975 {
5976 Lisp_Object tail, *prev = &list;
5977
5978 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5979 tail = XCDR (tail))
5980 {
5981 Lisp_Object tem = XCAR (tail);
5982 if (CONSP (tem))
5983 tem = XCAR (tem);
5984 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5985 *prev = XCDR (tail);
5986 else
5987 {
5988 CONS_MARK (XCONS (tail));
5989 mark_object (XCAR (tail));
5990 prev = xcdr_addr (tail);
5991 }
5992 }
5993 mark_object (tail);
5994 return list;
5995 }
5996
5997 /* Determine type of generic Lisp_Object and mark it accordingly. */
5998
5999 void
6000 mark_object (Lisp_Object arg)
6001 {
6002 register Lisp_Object obj = arg;
6003 #ifdef GC_CHECK_MARKED_OBJECTS
6004 void *po;
6005 struct mem_node *m;
6006 #endif
6007 ptrdiff_t cdr_count = 0;
6008
6009 loop:
6010
6011 if (PURE_POINTER_P (XPNTR (obj)))
6012 return;
6013
6014 last_marked[last_marked_index++] = obj;
6015 if (last_marked_index == LAST_MARKED_SIZE)
6016 last_marked_index = 0;
6017
6018 /* Perform some sanity checks on the objects marked here. Abort if
6019 we encounter an object we know is bogus. This increases GC time
6020 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
6021 #ifdef GC_CHECK_MARKED_OBJECTS
6022
6023 po = (void *) XPNTR (obj);
6024
6025 /* Check that the object pointed to by PO is known to be a Lisp
6026 structure allocated from the heap. */
6027 #define CHECK_ALLOCATED() \
6028 do { \
6029 m = mem_find (po); \
6030 if (m == MEM_NIL) \
6031 emacs_abort (); \
6032 } while (0)
6033
6034 /* Check that the object pointed to by PO is live, using predicate
6035 function LIVEP. */
6036 #define CHECK_LIVE(LIVEP) \
6037 do { \
6038 if (!LIVEP (m, po)) \
6039 emacs_abort (); \
6040 } while (0)
6041
6042 /* Check both of the above conditions. */
6043 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6044 do { \
6045 CHECK_ALLOCATED (); \
6046 CHECK_LIVE (LIVEP); \
6047 } while (0) \
6048
6049 #else /* not GC_CHECK_MARKED_OBJECTS */
6050
6051 #define CHECK_LIVE(LIVEP) (void) 0
6052 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
6053
6054 #endif /* not GC_CHECK_MARKED_OBJECTS */
6055
6056 switch (XTYPE (obj))
6057 {
6058 case Lisp_String:
6059 {
6060 register struct Lisp_String *ptr = XSTRING (obj);
6061 if (STRING_MARKED_P (ptr))
6062 break;
6063 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6064 MARK_STRING (ptr);
6065 MARK_INTERVAL_TREE (ptr->intervals);
6066 #ifdef GC_CHECK_STRING_BYTES
6067 /* Check that the string size recorded in the string is the
6068 same as the one recorded in the sdata structure. */
6069 string_bytes (ptr);
6070 #endif /* GC_CHECK_STRING_BYTES */
6071 }
6072 break;
6073
6074 case Lisp_Vectorlike:
6075 {
6076 register struct Lisp_Vector *ptr = XVECTOR (obj);
6077 register ptrdiff_t pvectype;
6078
6079 if (VECTOR_MARKED_P (ptr))
6080 break;
6081
6082 #ifdef GC_CHECK_MARKED_OBJECTS
6083 m = mem_find (po);
6084 if (m == MEM_NIL && !SUBRP (obj))
6085 emacs_abort ();
6086 #endif /* GC_CHECK_MARKED_OBJECTS */
6087
6088 if (ptr->header.size & PSEUDOVECTOR_FLAG)
6089 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6090 >> PSEUDOVECTOR_AREA_BITS);
6091 else
6092 pvectype = PVEC_NORMAL_VECTOR;
6093
6094 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6095 CHECK_LIVE (live_vector_p);
6096
6097 switch (pvectype)
6098 {
6099 case PVEC_BUFFER:
6100 #ifdef GC_CHECK_MARKED_OBJECTS
6101 {
6102 struct buffer *b;
6103 FOR_EACH_BUFFER (b)
6104 if (b == po)
6105 break;
6106 if (b == NULL)
6107 emacs_abort ();
6108 }
6109 #endif /* GC_CHECK_MARKED_OBJECTS */
6110 mark_buffer ((struct buffer *) ptr);
6111 break;
6112
6113 case PVEC_COMPILED:
6114 { /* We could treat this just like a vector, but it is better
6115 to save the COMPILED_CONSTANTS element for last and avoid
6116 recursion there. */
6117 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6118 int i;
6119
6120 VECTOR_MARK (ptr);
6121 for (i = 0; i < size; i++)
6122 if (i != COMPILED_CONSTANTS)
6123 mark_object (ptr->contents[i]);
6124 if (size > COMPILED_CONSTANTS)
6125 {
6126 obj = ptr->contents[COMPILED_CONSTANTS];
6127 goto loop;
6128 }
6129 }
6130 break;
6131
6132 case PVEC_FRAME:
6133 {
6134 struct frame *f = (struct frame *) ptr;
6135
6136 mark_vectorlike (ptr);
6137 mark_face_cache (f->face_cache);
6138 #ifdef HAVE_WINDOW_SYSTEM
6139 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6140 {
6141 struct font *font = FRAME_FONT (f);
6142
6143 if (font && !VECTOR_MARKED_P (font))
6144 mark_vectorlike ((struct Lisp_Vector *) font);
6145 }
6146 #endif
6147 }
6148 break;
6149
6150 case PVEC_WINDOW:
6151 {
6152 struct window *w = (struct window *) ptr;
6153
6154 mark_vectorlike (ptr);
6155
6156 /* Mark glyph matrices, if any. Marking window
6157 matrices is sufficient because frame matrices
6158 use the same glyph memory. */
6159 if (w->current_matrix)
6160 {
6161 mark_glyph_matrix (w->current_matrix);
6162 mark_glyph_matrix (w->desired_matrix);
6163 }
6164
6165 /* Filter out killed buffers from both buffer lists
6166 in attempt to help GC to reclaim killed buffers faster.
6167 We can do it elsewhere for live windows, but this is the
6168 best place to do it for dead windows. */
6169 wset_prev_buffers
6170 (w, mark_discard_killed_buffers (w->prev_buffers));
6171 wset_next_buffers
6172 (w, mark_discard_killed_buffers (w->next_buffers));
6173 }
6174 break;
6175
6176 case PVEC_HASH_TABLE:
6177 {
6178 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6179
6180 mark_vectorlike (ptr);
6181 mark_object (h->test.name);
6182 mark_object (h->test.user_hash_function);
6183 mark_object (h->test.user_cmp_function);
6184 /* If hash table is not weak, mark all keys and values.
6185 For weak tables, mark only the vector. */
6186 if (NILP (h->weak))
6187 mark_object (h->key_and_value);
6188 else
6189 VECTOR_MARK (XVECTOR (h->key_and_value));
6190 }
6191 break;
6192
6193 case PVEC_CHAR_TABLE:
6194 mark_char_table (ptr);
6195 break;
6196
6197 case PVEC_BOOL_VECTOR:
6198 /* No Lisp_Objects to mark in a bool vector. */
6199 VECTOR_MARK (ptr);
6200 break;
6201
6202 case PVEC_SUBR:
6203 break;
6204
6205 case PVEC_FREE:
6206 emacs_abort ();
6207
6208 default:
6209 mark_vectorlike (ptr);
6210 }
6211 }
6212 break;
6213
6214 case Lisp_Symbol:
6215 {
6216 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6217 struct Lisp_Symbol *ptrx;
6218
6219 if (ptr->gcmarkbit)
6220 break;
6221 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6222 ptr->gcmarkbit = 1;
6223 /* Attempt to catch bogus objects. */
6224 eassert (valid_lisp_object_p (ptr->function) >= 1);
6225 mark_object (ptr->function);
6226 mark_object (ptr->plist);
6227 switch (ptr->redirect)
6228 {
6229 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6230 case SYMBOL_VARALIAS:
6231 {
6232 Lisp_Object tem;
6233 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6234 mark_object (tem);
6235 break;
6236 }
6237 case SYMBOL_LOCALIZED:
6238 {
6239 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6240 Lisp_Object where = blv->where;
6241 /* If the value is set up for a killed buffer or deleted
6242 frame, restore it's global binding. If the value is
6243 forwarded to a C variable, either it's not a Lisp_Object
6244 var, or it's staticpro'd already. */
6245 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6246 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6247 swap_in_global_binding (ptr);
6248 mark_object (blv->where);
6249 mark_object (blv->valcell);
6250 mark_object (blv->defcell);
6251 break;
6252 }
6253 case SYMBOL_FORWARDED:
6254 /* If the value is forwarded to a buffer or keyboard field,
6255 these are marked when we see the corresponding object.
6256 And if it's forwarded to a C variable, either it's not
6257 a Lisp_Object var, or it's staticpro'd already. */
6258 break;
6259 default: emacs_abort ();
6260 }
6261 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6262 MARK_STRING (XSTRING (ptr->name));
6263 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6264
6265 ptr = ptr->next;
6266 if (ptr)
6267 {
6268 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
6269 XSETSYMBOL (obj, ptrx);
6270 goto loop;
6271 }
6272 }
6273 break;
6274
6275 case Lisp_Misc:
6276 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6277
6278 if (XMISCANY (obj)->gcmarkbit)
6279 break;
6280
6281 switch (XMISCTYPE (obj))
6282 {
6283 case Lisp_Misc_Marker:
6284 /* DO NOT mark thru the marker's chain.
6285 The buffer's markers chain does not preserve markers from gc;
6286 instead, markers are removed from the chain when freed by gc. */
6287 XMISCANY (obj)->gcmarkbit = 1;
6288 break;
6289
6290 case Lisp_Misc_Save_Value:
6291 XMISCANY (obj)->gcmarkbit = 1;
6292 {
6293 struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6294 /* If `save_type' is zero, `data[0].pointer' is the address
6295 of a memory area containing `data[1].integer' potential
6296 Lisp_Objects. */
6297 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
6298 {
6299 Lisp_Object *p = ptr->data[0].pointer;
6300 ptrdiff_t nelt;
6301 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6302 mark_maybe_object (*p);
6303 }
6304 else
6305 {
6306 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6307 int i;
6308 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6309 if (save_type (ptr, i) == SAVE_OBJECT)
6310 mark_object (ptr->data[i].object);
6311 }
6312 }
6313 break;
6314
6315 case Lisp_Misc_Overlay:
6316 mark_overlay (XOVERLAY (obj));
6317 break;
6318
6319 default:
6320 emacs_abort ();
6321 }
6322 break;
6323
6324 case Lisp_Cons:
6325 {
6326 register struct Lisp_Cons *ptr = XCONS (obj);
6327 if (CONS_MARKED_P (ptr))
6328 break;
6329 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6330 CONS_MARK (ptr);
6331 /* If the cdr is nil, avoid recursion for the car. */
6332 if (EQ (ptr->u.cdr, Qnil))
6333 {
6334 obj = ptr->car;
6335 cdr_count = 0;
6336 goto loop;
6337 }
6338 mark_object (ptr->car);
6339 obj = ptr->u.cdr;
6340 cdr_count++;
6341 if (cdr_count == mark_object_loop_halt)
6342 emacs_abort ();
6343 goto loop;
6344 }
6345
6346 case Lisp_Float:
6347 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6348 FLOAT_MARK (XFLOAT (obj));
6349 break;
6350
6351 case_Lisp_Int:
6352 break;
6353
6354 default:
6355 emacs_abort ();
6356 }
6357
6358 #undef CHECK_LIVE
6359 #undef CHECK_ALLOCATED
6360 #undef CHECK_ALLOCATED_AND_LIVE
6361 }
6362 /* Mark the Lisp pointers in the terminal objects.
6363 Called by Fgarbage_collect. */
6364
6365 static void
6366 mark_terminals (void)
6367 {
6368 struct terminal *t;
6369 for (t = terminal_list; t; t = t->next_terminal)
6370 {
6371 eassert (t->name != NULL);
6372 #ifdef HAVE_WINDOW_SYSTEM
6373 /* If a terminal object is reachable from a stacpro'ed object,
6374 it might have been marked already. Make sure the image cache
6375 gets marked. */
6376 mark_image_cache (t->image_cache);
6377 #endif /* HAVE_WINDOW_SYSTEM */
6378 if (!VECTOR_MARKED_P (t))
6379 mark_vectorlike ((struct Lisp_Vector *)t);
6380 }
6381 }
6382
6383
6384
6385 /* Value is non-zero if OBJ will survive the current GC because it's
6386 either marked or does not need to be marked to survive. */
6387
6388 bool
6389 survives_gc_p (Lisp_Object obj)
6390 {
6391 bool survives_p;
6392
6393 switch (XTYPE (obj))
6394 {
6395 case_Lisp_Int:
6396 survives_p = 1;
6397 break;
6398
6399 case Lisp_Symbol:
6400 survives_p = XSYMBOL (obj)->gcmarkbit;
6401 break;
6402
6403 case Lisp_Misc:
6404 survives_p = XMISCANY (obj)->gcmarkbit;
6405 break;
6406
6407 case Lisp_String:
6408 survives_p = STRING_MARKED_P (XSTRING (obj));
6409 break;
6410
6411 case Lisp_Vectorlike:
6412 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6413 break;
6414
6415 case Lisp_Cons:
6416 survives_p = CONS_MARKED_P (XCONS (obj));
6417 break;
6418
6419 case Lisp_Float:
6420 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6421 break;
6422
6423 default:
6424 emacs_abort ();
6425 }
6426
6427 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6428 }
6429
6430
6431 \f
6432
6433 NO_INLINE /* For better stack traces */
6434 static void
6435 sweep_conses (void)
6436 {
6437 register struct cons_block *cblk;
6438 struct cons_block **cprev = &cons_block;
6439 register int lim = cons_block_index;
6440 EMACS_INT num_free = 0, num_used = 0;
6441
6442 cons_free_list = 0;
6443
6444 for (cblk = cons_block; cblk; cblk = *cprev)
6445 {
6446 register int i = 0;
6447 int this_free = 0;
6448 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6449
6450 /* Scan the mark bits an int at a time. */
6451 for (i = 0; i < ilim; i++)
6452 {
6453 if (cblk->gcmarkbits[i] == -1)
6454 {
6455 /* Fast path - all cons cells for this int are marked. */
6456 cblk->gcmarkbits[i] = 0;
6457 num_used += BITS_PER_INT;
6458 }
6459 else
6460 {
6461 /* Some cons cells for this int are not marked.
6462 Find which ones, and free them. */
6463 int start, pos, stop;
6464
6465 start = i * BITS_PER_INT;
6466 stop = lim - start;
6467 if (stop > BITS_PER_INT)
6468 stop = BITS_PER_INT;
6469 stop += start;
6470
6471 for (pos = start; pos < stop; pos++)
6472 {
6473 if (!CONS_MARKED_P (&cblk->conses[pos]))
6474 {
6475 this_free++;
6476 cblk->conses[pos].u.chain = cons_free_list;
6477 cons_free_list = &cblk->conses[pos];
6478 #if GC_MARK_STACK
6479 cons_free_list->car = Vdead;
6480 #endif
6481 }
6482 else
6483 {
6484 num_used++;
6485 CONS_UNMARK (&cblk->conses[pos]);
6486 }
6487 }
6488 }
6489 }
6490
6491 lim = CONS_BLOCK_SIZE;
6492 /* If this block contains only free conses and we have already
6493 seen more than two blocks worth of free conses then deallocate
6494 this block. */
6495 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6496 {
6497 *cprev = cblk->next;
6498 /* Unhook from the free list. */
6499 cons_free_list = cblk->conses[0].u.chain;
6500 lisp_align_free (cblk);
6501 }
6502 else
6503 {
6504 num_free += this_free;
6505 cprev = &cblk->next;
6506 }
6507 }
6508 total_conses = num_used;
6509 total_free_conses = num_free;
6510 }
6511
6512 NO_INLINE /* For better stack traces */
6513 static void
6514 sweep_floats (void)
6515 {
6516 register struct float_block *fblk;
6517 struct float_block **fprev = &float_block;
6518 register int lim = float_block_index;
6519 EMACS_INT num_free = 0, num_used = 0;
6520
6521 float_free_list = 0;
6522
6523 for (fblk = float_block; fblk; fblk = *fprev)
6524 {
6525 register int i;
6526 int this_free = 0;
6527 for (i = 0; i < lim; i++)
6528 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6529 {
6530 this_free++;
6531 fblk->floats[i].u.chain = float_free_list;
6532 float_free_list = &fblk->floats[i];
6533 }
6534 else
6535 {
6536 num_used++;
6537 FLOAT_UNMARK (&fblk->floats[i]);
6538 }
6539 lim = FLOAT_BLOCK_SIZE;
6540 /* If this block contains only free floats and we have already
6541 seen more than two blocks worth of free floats then deallocate
6542 this block. */
6543 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6544 {
6545 *fprev = fblk->next;
6546 /* Unhook from the free list. */
6547 float_free_list = fblk->floats[0].u.chain;
6548 lisp_align_free (fblk);
6549 }
6550 else
6551 {
6552 num_free += this_free;
6553 fprev = &fblk->next;
6554 }
6555 }
6556 total_floats = num_used;
6557 total_free_floats = num_free;
6558 }
6559
6560 NO_INLINE /* For better stack traces */
6561 static void
6562 sweep_intervals (void)
6563 {
6564 register struct interval_block *iblk;
6565 struct interval_block **iprev = &interval_block;
6566 register int lim = interval_block_index;
6567 EMACS_INT num_free = 0, num_used = 0;
6568
6569 interval_free_list = 0;
6570
6571 for (iblk = interval_block; iblk; iblk = *iprev)
6572 {
6573 register int i;
6574 int this_free = 0;
6575
6576 for (i = 0; i < lim; i++)
6577 {
6578 if (!iblk->intervals[i].gcmarkbit)
6579 {
6580 set_interval_parent (&iblk->intervals[i], interval_free_list);
6581 interval_free_list = &iblk->intervals[i];
6582 this_free++;
6583 }
6584 else
6585 {
6586 num_used++;
6587 iblk->intervals[i].gcmarkbit = 0;
6588 }
6589 }
6590 lim = INTERVAL_BLOCK_SIZE;
6591 /* If this block contains only free intervals and we have already
6592 seen more than two blocks worth of free intervals then
6593 deallocate this block. */
6594 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6595 {
6596 *iprev = iblk->next;
6597 /* Unhook from the free list. */
6598 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6599 lisp_free (iblk);
6600 }
6601 else
6602 {
6603 num_free += this_free;
6604 iprev = &iblk->next;
6605 }
6606 }
6607 total_intervals = num_used;
6608 total_free_intervals = num_free;
6609 }
6610
6611 NO_INLINE /* For better stack traces */
6612 static void
6613 sweep_symbols (void)
6614 {
6615 register struct symbol_block *sblk;
6616 struct symbol_block **sprev = &symbol_block;
6617 register int lim = symbol_block_index;
6618 EMACS_INT num_free = 0, num_used = 0;
6619
6620 symbol_free_list = NULL;
6621
6622 for (sblk = symbol_block; sblk; sblk = *sprev)
6623 {
6624 int this_free = 0;
6625 union aligned_Lisp_Symbol *sym = sblk->symbols;
6626 union aligned_Lisp_Symbol *end = sym + lim;
6627
6628 for (; sym < end; ++sym)
6629 {
6630 if (!sym->s.gcmarkbit)
6631 {
6632 if (sym->s.redirect == SYMBOL_LOCALIZED)
6633 xfree (SYMBOL_BLV (&sym->s));
6634 sym->s.next = symbol_free_list;
6635 symbol_free_list = &sym->s;
6636 #if GC_MARK_STACK
6637 symbol_free_list->function = Vdead;
6638 #endif
6639 ++this_free;
6640 }
6641 else
6642 {
6643 ++num_used;
6644 sym->s.gcmarkbit = 0;
6645 /* Attempt to catch bogus objects. */
6646 eassert (valid_lisp_object_p (sym->s.function) >= 1);
6647 }
6648 }
6649
6650 lim = SYMBOL_BLOCK_SIZE;
6651 /* If this block contains only free symbols and we have already
6652 seen more than two blocks worth of free symbols then deallocate
6653 this block. */
6654 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6655 {
6656 *sprev = sblk->next;
6657 /* Unhook from the free list. */
6658 symbol_free_list = sblk->symbols[0].s.next;
6659 lisp_free (sblk);
6660 }
6661 else
6662 {
6663 num_free += this_free;
6664 sprev = &sblk->next;
6665 }
6666 }
6667 total_symbols = num_used;
6668 total_free_symbols = num_free;
6669 }
6670
6671 NO_INLINE /* For better stack traces */
6672 static void
6673 sweep_misc (void)
6674 {
6675 register struct marker_block *mblk;
6676 struct marker_block **mprev = &marker_block;
6677 register int lim = marker_block_index;
6678 EMACS_INT num_free = 0, num_used = 0;
6679
6680 /* Put all unmarked misc's on free list. For a marker, first
6681 unchain it from the buffer it points into. */
6682
6683 marker_free_list = 0;
6684
6685 for (mblk = marker_block; mblk; mblk = *mprev)
6686 {
6687 register int i;
6688 int this_free = 0;
6689
6690 for (i = 0; i < lim; i++)
6691 {
6692 if (!mblk->markers[i].m.u_any.gcmarkbit)
6693 {
6694 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6695 unchain_marker (&mblk->markers[i].m.u_marker);
6696 /* Set the type of the freed object to Lisp_Misc_Free.
6697 We could leave the type alone, since nobody checks it,
6698 but this might catch bugs faster. */
6699 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6700 mblk->markers[i].m.u_free.chain = marker_free_list;
6701 marker_free_list = &mblk->markers[i].m;
6702 this_free++;
6703 }
6704 else
6705 {
6706 num_used++;
6707 mblk->markers[i].m.u_any.gcmarkbit = 0;
6708 }
6709 }
6710 lim = MARKER_BLOCK_SIZE;
6711 /* If this block contains only free markers and we have already
6712 seen more than two blocks worth of free markers then deallocate
6713 this block. */
6714 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6715 {
6716 *mprev = mblk->next;
6717 /* Unhook from the free list. */
6718 marker_free_list = mblk->markers[0].m.u_free.chain;
6719 lisp_free (mblk);
6720 }
6721 else
6722 {
6723 num_free += this_free;
6724 mprev = &mblk->next;
6725 }
6726 }
6727
6728 total_markers = num_used;
6729 total_free_markers = num_free;
6730 }
6731
6732 NO_INLINE /* For better stack traces */
6733 static void
6734 sweep_buffers (void)
6735 {
6736 register struct buffer *buffer, **bprev = &all_buffers;
6737
6738 total_buffers = 0;
6739 for (buffer = all_buffers; buffer; buffer = *bprev)
6740 if (!VECTOR_MARKED_P (buffer))
6741 {
6742 *bprev = buffer->next;
6743 lisp_free (buffer);
6744 }
6745 else
6746 {
6747 VECTOR_UNMARK (buffer);
6748 /* Do not use buffer_(set|get)_intervals here. */
6749 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6750 total_buffers++;
6751 bprev = &buffer->next;
6752 }
6753 }
6754
6755 /* Sweep: find all structures not marked, and free them. */
6756 static void
6757 gc_sweep (void)
6758 {
6759 /* Remove or mark entries in weak hash tables.
6760 This must be done before any object is unmarked. */
6761 sweep_weak_hash_tables ();
6762
6763 sweep_strings ();
6764 check_string_bytes (!noninteractive);
6765 sweep_conses ();
6766 sweep_floats ();
6767 sweep_intervals ();
6768 sweep_symbols ();
6769 sweep_misc ();
6770 sweep_buffers ();
6771 sweep_vectors ();
6772 check_string_bytes (!noninteractive);
6773 }
6774
6775 \f
6776 /* Debugging aids. */
6777
6778 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6779 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6780 This may be helpful in debugging Emacs's memory usage.
6781 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6782 (void)
6783 {
6784 Lisp_Object end;
6785
6786 #ifdef HAVE_NS
6787 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
6788 XSETINT (end, 0);
6789 #else
6790 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6791 #endif
6792
6793 return end;
6794 }
6795
6796 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6797 doc: /* Return a list of counters that measure how much consing there has been.
6798 Each of these counters increments for a certain kind of object.
6799 The counters wrap around from the largest positive integer to zero.
6800 Garbage collection does not decrease them.
6801 The elements of the value are as follows:
6802 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6803 All are in units of 1 = one object consed
6804 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6805 objects consed.
6806 MISCS include overlays, markers, and some internal types.
6807 Frames, windows, buffers, and subprocesses count as vectors
6808 (but the contents of a buffer's text do not count here). */)
6809 (void)
6810 {
6811 return listn (CONSTYPE_HEAP, 8,
6812 bounded_number (cons_cells_consed),
6813 bounded_number (floats_consed),
6814 bounded_number (vector_cells_consed),
6815 bounded_number (symbols_consed),
6816 bounded_number (string_chars_consed),
6817 bounded_number (misc_objects_consed),
6818 bounded_number (intervals_consed),
6819 bounded_number (strings_consed));
6820 }
6821
6822 /* Find at most FIND_MAX symbols which have OBJ as their value or
6823 function. This is used in gdbinit's `xwhichsymbols' command. */
6824
6825 Lisp_Object
6826 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6827 {
6828 struct symbol_block *sblk;
6829 ptrdiff_t gc_count = inhibit_garbage_collection ();
6830 Lisp_Object found = Qnil;
6831
6832 if (! DEADP (obj))
6833 {
6834 for (sblk = symbol_block; sblk; sblk = sblk->next)
6835 {
6836 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6837 int bn;
6838
6839 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6840 {
6841 struct Lisp_Symbol *sym = &aligned_sym->s;
6842 Lisp_Object val;
6843 Lisp_Object tem;
6844
6845 if (sblk == symbol_block && bn >= symbol_block_index)
6846 break;
6847
6848 XSETSYMBOL (tem, sym);
6849 val = find_symbol_value (tem);
6850 if (EQ (val, obj)
6851 || EQ (sym->function, obj)
6852 || (!NILP (sym->function)
6853 && COMPILEDP (sym->function)
6854 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6855 || (!NILP (val)
6856 && COMPILEDP (val)
6857 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6858 {
6859 found = Fcons (tem, found);
6860 if (--find_max == 0)
6861 goto out;
6862 }
6863 }
6864 }
6865 }
6866
6867 out:
6868 unbind_to (gc_count, Qnil);
6869 return found;
6870 }
6871
6872 #ifdef SUSPICIOUS_OBJECT_CHECKING
6873
6874 static void *
6875 find_suspicious_object_in_range (void *begin, void *end)
6876 {
6877 char *begin_a = begin;
6878 char *end_a = end;
6879 int i;
6880
6881 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
6882 {
6883 char *suspicious_object = suspicious_objects[i];
6884 if (begin_a <= suspicious_object && suspicious_object < end_a)
6885 return suspicious_object;
6886 }
6887
6888 return NULL;
6889 }
6890
6891 static void
6892 note_suspicious_free (void* ptr)
6893 {
6894 struct suspicious_free_record* rec;
6895
6896 rec = &suspicious_free_history[suspicious_free_history_index++];
6897 if (suspicious_free_history_index ==
6898 ARRAYELTS (suspicious_free_history))
6899 {
6900 suspicious_free_history_index = 0;
6901 }
6902
6903 memset (rec, 0, sizeof (*rec));
6904 rec->suspicious_object = ptr;
6905 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
6906 }
6907
6908 static void
6909 detect_suspicious_free (void* ptr)
6910 {
6911 int i;
6912
6913 eassert (ptr != NULL);
6914
6915 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
6916 if (suspicious_objects[i] == ptr)
6917 {
6918 note_suspicious_free (ptr);
6919 suspicious_objects[i] = NULL;
6920 }
6921 }
6922
6923 #endif /* SUSPICIOUS_OBJECT_CHECKING */
6924
6925 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
6926 doc: /* Return OBJ, maybe marking it for extra scrutiny.
6927 If Emacs is compiled with suspicous object checking, capture
6928 a stack trace when OBJ is freed in order to help track down
6929 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
6930 (Lisp_Object obj)
6931 {
6932 #ifdef SUSPICIOUS_OBJECT_CHECKING
6933 /* Right now, we care only about vectors. */
6934 if (VECTORLIKEP (obj))
6935 {
6936 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
6937 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
6938 suspicious_object_index = 0;
6939 }
6940 #endif
6941 return obj;
6942 }
6943
6944 #ifdef ENABLE_CHECKING
6945
6946 bool suppress_checking;
6947
6948 void
6949 die (const char *msg, const char *file, int line)
6950 {
6951 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
6952 file, line, msg);
6953 terminate_due_to_signal (SIGABRT, INT_MAX);
6954 }
6955 #endif
6956 \f
6957 /* Initialization. */
6958
6959 void
6960 init_alloc_once (void)
6961 {
6962 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6963 purebeg = PUREBEG;
6964 pure_size = PURESIZE;
6965
6966 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6967 mem_init ();
6968 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6969 #endif
6970
6971 #ifdef DOUG_LEA_MALLOC
6972 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
6973 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
6974 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
6975 #endif
6976 init_strings ();
6977 init_vectors ();
6978
6979 refill_memory_reserve ();
6980 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6981 }
6982
6983 void
6984 init_alloc (void)
6985 {
6986 gcprolist = 0;
6987 byte_stack_list = 0;
6988 #if GC_MARK_STACK
6989 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6990 setjmp_tested_p = longjmps_done = 0;
6991 #endif
6992 #endif
6993 Vgc_elapsed = make_float (0.0);
6994 gcs_done = 0;
6995
6996 #if USE_VALGRIND
6997 valgrind_p = RUNNING_ON_VALGRIND != 0;
6998 #endif
6999 }
7000
7001 void
7002 syms_of_alloc (void)
7003 {
7004 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7005 doc: /* Number of bytes of consing between garbage collections.
7006 Garbage collection can happen automatically once this many bytes have been
7007 allocated since the last garbage collection. All data types count.
7008
7009 Garbage collection happens automatically only when `eval' is called.
7010
7011 By binding this temporarily to a large number, you can effectively
7012 prevent garbage collection during a part of the program.
7013 See also `gc-cons-percentage'. */);
7014
7015 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7016 doc: /* Portion of the heap used for allocation.
7017 Garbage collection can happen automatically once this portion of the heap
7018 has been allocated since the last garbage collection.
7019 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7020 Vgc_cons_percentage = make_float (0.1);
7021
7022 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7023 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7024
7025 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7026 doc: /* Number of cons cells that have been consed so far. */);
7027
7028 DEFVAR_INT ("floats-consed", floats_consed,
7029 doc: /* Number of floats that have been consed so far. */);
7030
7031 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7032 doc: /* Number of vector cells that have been consed so far. */);
7033
7034 DEFVAR_INT ("symbols-consed", symbols_consed,
7035 doc: /* Number of symbols that have been consed so far. */);
7036
7037 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7038 doc: /* Number of string characters that have been consed so far. */);
7039
7040 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7041 doc: /* Number of miscellaneous objects that have been consed so far.
7042 These include markers and overlays, plus certain objects not visible
7043 to users. */);
7044
7045 DEFVAR_INT ("intervals-consed", intervals_consed,
7046 doc: /* Number of intervals that have been consed so far. */);
7047
7048 DEFVAR_INT ("strings-consed", strings_consed,
7049 doc: /* Number of strings that have been consed so far. */);
7050
7051 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7052 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7053 This means that certain objects should be allocated in shared (pure) space.
7054 It can also be set to a hash-table, in which case this table is used to
7055 do hash-consing of the objects allocated to pure space. */);
7056
7057 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7058 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7059 garbage_collection_messages = 0;
7060
7061 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7062 doc: /* Hook run after garbage collection has finished. */);
7063 Vpost_gc_hook = Qnil;
7064 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7065
7066 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7067 doc: /* Precomputed `signal' argument for memory-full error. */);
7068 /* We build this in advance because if we wait until we need it, we might
7069 not be able to allocate the memory to hold it. */
7070 Vmemory_signal_data
7071 = listn (CONSTYPE_PURE, 2, Qerror,
7072 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7073
7074 DEFVAR_LISP ("memory-full", Vmemory_full,
7075 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7076 Vmemory_full = Qnil;
7077
7078 DEFSYM (Qconses, "conses");
7079 DEFSYM (Qsymbols, "symbols");
7080 DEFSYM (Qmiscs, "miscs");
7081 DEFSYM (Qstrings, "strings");
7082 DEFSYM (Qvectors, "vectors");
7083 DEFSYM (Qfloats, "floats");
7084 DEFSYM (Qintervals, "intervals");
7085 DEFSYM (Qbuffers, "buffers");
7086 DEFSYM (Qstring_bytes, "string-bytes");
7087 DEFSYM (Qvector_slots, "vector-slots");
7088 DEFSYM (Qheap, "heap");
7089 DEFSYM (Qautomatic_gc, "Automatic GC");
7090
7091 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7092 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7093
7094 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7095 doc: /* Accumulated time elapsed in garbage collections.
7096 The time is in seconds as a floating point value. */);
7097 DEFVAR_INT ("gcs-done", gcs_done,
7098 doc: /* Accumulated number of garbage collections done. */);
7099
7100 defsubr (&Scons);
7101 defsubr (&Slist);
7102 defsubr (&Svector);
7103 defsubr (&Smake_byte_code);
7104 defsubr (&Smake_list);
7105 defsubr (&Smake_vector);
7106 defsubr (&Smake_string);
7107 defsubr (&Smake_bool_vector);
7108 defsubr (&Smake_symbol);
7109 defsubr (&Smake_marker);
7110 defsubr (&Spurecopy);
7111 defsubr (&Sgarbage_collect);
7112 defsubr (&Smemory_limit);
7113 defsubr (&Smemory_use_counts);
7114 defsubr (&Ssuspicious_object);
7115
7116 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7117 defsubr (&Sgc_status);
7118 #endif
7119 }
7120
7121 /* When compiled with GCC, GDB might say "No enum type named
7122 pvec_type" if we don't have at least one symbol with that type, and
7123 then xbacktrace could fail. Similarly for the other enums and
7124 their values. Some non-GCC compilers don't like these constructs. */
7125 #ifdef __GNUC__
7126 union
7127 {
7128 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7129 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
7130 enum char_bits char_bits;
7131 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7132 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7133 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
7134 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
7135 enum Lisp_Bits Lisp_Bits;
7136 enum Lisp_Compiled Lisp_Compiled;
7137 enum maxargs maxargs;
7138 enum MAX_ALLOCA MAX_ALLOCA;
7139 enum More_Lisp_Bits More_Lisp_Bits;
7140 enum pvec_type pvec_type;
7141 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7142 #endif /* __GNUC__ */