(Fcommand_remapping): New optional argument.
[bpt/emacs.git] / src / keymap.c
1 /* Manipulation of keymaps
2 Copyright (C) 1985, 1986, 1987, 1988, 1993, 1994, 1995,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004,
4 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs; see the file COPYING. If not, write to
20 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23
24 #include <config.h>
25 #include <stdio.h>
26 #if HAVE_ALLOCA_H
27 # include <alloca.h>
28 #endif
29 #include "lisp.h"
30 #include "commands.h"
31 #include "buffer.h"
32 #include "charset.h"
33 #include "keyboard.h"
34 #include "termhooks.h"
35 #include "blockinput.h"
36 #include "puresize.h"
37 #include "intervals.h"
38 #include "keymap.h"
39 #include "window.h"
40
41 /* The number of elements in keymap vectors. */
42 #define DENSE_TABLE_SIZE (0200)
43
44 /* Actually allocate storage for these variables */
45
46 Lisp_Object current_global_map; /* Current global keymap */
47
48 Lisp_Object global_map; /* default global key bindings */
49
50 Lisp_Object meta_map; /* The keymap used for globally bound
51 ESC-prefixed default commands */
52
53 Lisp_Object control_x_map; /* The keymap used for globally bound
54 C-x-prefixed default commands */
55
56 /* was MinibufLocalMap */
57 Lisp_Object Vminibuffer_local_map;
58 /* The keymap used by the minibuf for local
59 bindings when spaces are allowed in the
60 minibuf */
61
62 /* was MinibufLocalNSMap */
63 Lisp_Object Vminibuffer_local_ns_map;
64 /* The keymap used by the minibuf for local
65 bindings when spaces are not encouraged
66 in the minibuf */
67
68 /* keymap used for minibuffers when doing completion */
69 /* was MinibufLocalCompletionMap */
70 Lisp_Object Vminibuffer_local_completion_map;
71
72 /* keymap used for minibuffers when doing completion in filenames */
73 Lisp_Object Vminibuffer_local_filename_completion_map;
74
75 /* keymap used for minibuffers when doing completion in filenames
76 with require-match*/
77 Lisp_Object Vminibuffer_local_must_match_filename_map;
78
79 /* keymap used for minibuffers when doing completion and require a match */
80 /* was MinibufLocalMustMatchMap */
81 Lisp_Object Vminibuffer_local_must_match_map;
82
83 /* Alist of minor mode variables and keymaps. */
84 Lisp_Object Vminor_mode_map_alist;
85
86 /* Alist of major-mode-specific overrides for
87 minor mode variables and keymaps. */
88 Lisp_Object Vminor_mode_overriding_map_alist;
89
90 /* List of emulation mode keymap alists. */
91 Lisp_Object Vemulation_mode_map_alists;
92
93 /* Keymap mapping ASCII function key sequences onto their preferred forms.
94 Initialized by the terminal-specific lisp files. See DEFVAR for more
95 documentation. */
96 Lisp_Object Vfunction_key_map;
97
98 /* Keymap mapping ASCII function key sequences onto their preferred forms. */
99 Lisp_Object Vkey_translation_map;
100
101 /* A list of all commands given new bindings since a certain time
102 when nil was stored here.
103 This is used to speed up recomputation of menu key equivalents
104 when Emacs starts up. t means don't record anything here. */
105 Lisp_Object Vdefine_key_rebound_commands;
106
107 Lisp_Object Qkeymapp, Qkeymap, Qnon_ascii, Qmenu_item, Qremap;
108
109 /* Alist of elements like (DEL . "\d"). */
110 static Lisp_Object exclude_keys;
111
112 /* Pre-allocated 2-element vector for Fcommand_remapping to use. */
113 static Lisp_Object command_remapping_vector;
114
115 /* A char with the CHAR_META bit set in a vector or the 0200 bit set
116 in a string key sequence is equivalent to prefixing with this
117 character. */
118 extern Lisp_Object meta_prefix_char;
119
120 extern Lisp_Object Voverriding_local_map;
121
122 /* Hash table used to cache a reverse-map to speed up calls to where-is. */
123 static Lisp_Object where_is_cache;
124 /* Which keymaps are reverse-stored in the cache. */
125 static Lisp_Object where_is_cache_keymaps;
126
127 static Lisp_Object store_in_keymap P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
128 static void fix_submap_inheritance P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
129
130 static Lisp_Object define_as_prefix P_ ((Lisp_Object, Lisp_Object));
131 static void describe_command P_ ((Lisp_Object, Lisp_Object));
132 static void describe_translation P_ ((Lisp_Object, Lisp_Object));
133 static void describe_map P_ ((Lisp_Object, Lisp_Object,
134 void (*) P_ ((Lisp_Object, Lisp_Object)),
135 int, Lisp_Object, Lisp_Object*, int, int));
136 static void describe_vector P_ ((Lisp_Object, Lisp_Object, Lisp_Object,
137 void (*) (Lisp_Object, Lisp_Object), int,
138 Lisp_Object, Lisp_Object, int *,
139 int, int, int));
140 static void silly_event_symbol_error P_ ((Lisp_Object));
141 \f
142 /* Keymap object support - constructors and predicates. */
143
144 DEFUN ("make-keymap", Fmake_keymap, Smake_keymap, 0, 1, 0,
145 doc: /* Construct and return a new keymap, of the form (keymap CHARTABLE . ALIST).
146 CHARTABLE is a char-table that holds the bindings for all characters
147 without modifiers. All entries in it are initially nil, meaning
148 "command undefined". ALIST is an assoc-list which holds bindings for
149 function keys, mouse events, and any other things that appear in the
150 input stream. Initially, ALIST is nil.
151
152 The optional arg STRING supplies a menu name for the keymap
153 in case you use it as a menu with `x-popup-menu'. */)
154 (string)
155 Lisp_Object string;
156 {
157 Lisp_Object tail;
158 if (!NILP (string))
159 tail = Fcons (string, Qnil);
160 else
161 tail = Qnil;
162 return Fcons (Qkeymap,
163 Fcons (Fmake_char_table (Qkeymap, Qnil), tail));
164 }
165
166 DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, Smake_sparse_keymap, 0, 1, 0,
167 doc: /* Construct and return a new sparse keymap.
168 Its car is `keymap' and its cdr is an alist of (CHAR . DEFINITION),
169 which binds the character CHAR to DEFINITION, or (SYMBOL . DEFINITION),
170 which binds the function key or mouse event SYMBOL to DEFINITION.
171 Initially the alist is nil.
172
173 The optional arg STRING supplies a menu name for the keymap
174 in case you use it as a menu with `x-popup-menu'. */)
175 (string)
176 Lisp_Object string;
177 {
178 if (!NILP (string))
179 return Fcons (Qkeymap, Fcons (string, Qnil));
180 return Fcons (Qkeymap, Qnil);
181 }
182
183 /* This function is used for installing the standard key bindings
184 at initialization time.
185
186 For example:
187
188 initial_define_key (control_x_map, Ctl('X'), "exchange-point-and-mark"); */
189
190 void
191 initial_define_key (keymap, key, defname)
192 Lisp_Object keymap;
193 int key;
194 char *defname;
195 {
196 store_in_keymap (keymap, make_number (key), intern (defname));
197 }
198
199 void
200 initial_define_lispy_key (keymap, keyname, defname)
201 Lisp_Object keymap;
202 char *keyname;
203 char *defname;
204 {
205 store_in_keymap (keymap, intern (keyname), intern (defname));
206 }
207
208 DEFUN ("keymapp", Fkeymapp, Skeymapp, 1, 1, 0,
209 doc: /* Return t if OBJECT is a keymap.
210
211 A keymap is a list (keymap . ALIST),
212 or a symbol whose function definition is itself a keymap.
213 ALIST elements look like (CHAR . DEFN) or (SYMBOL . DEFN);
214 a vector of densely packed bindings for small character codes
215 is also allowed as an element. */)
216 (object)
217 Lisp_Object object;
218 {
219 return (KEYMAPP (object) ? Qt : Qnil);
220 }
221
222 DEFUN ("keymap-prompt", Fkeymap_prompt, Skeymap_prompt, 1, 1, 0,
223 doc: /* Return the prompt-string of a keymap MAP.
224 If non-nil, the prompt is shown in the echo-area
225 when reading a key-sequence to be looked-up in this keymap. */)
226 (map)
227 Lisp_Object map;
228 {
229 map = get_keymap (map, 0, 0);
230 while (CONSP (map))
231 {
232 Lisp_Object tem = XCAR (map);
233 if (STRINGP (tem))
234 return tem;
235 map = XCDR (map);
236 }
237 return Qnil;
238 }
239
240 /* Check that OBJECT is a keymap (after dereferencing through any
241 symbols). If it is, return it.
242
243 If AUTOLOAD is non-zero and OBJECT is a symbol whose function value
244 is an autoload form, do the autoload and try again.
245 If AUTOLOAD is nonzero, callers must assume GC is possible.
246
247 If the map needs to be autoloaded, but AUTOLOAD is zero (and ERROR
248 is zero as well), return Qt.
249
250 ERROR controls how we respond if OBJECT isn't a keymap.
251 If ERROR is non-zero, signal an error; otherwise, just return Qnil.
252
253 Note that most of the time, we don't want to pursue autoloads.
254 Functions like Faccessible_keymaps which scan entire keymap trees
255 shouldn't load every autoloaded keymap. I'm not sure about this,
256 but it seems to me that only read_key_sequence, Flookup_key, and
257 Fdefine_key should cause keymaps to be autoloaded.
258
259 This function can GC when AUTOLOAD is non-zero, because it calls
260 do_autoload which can GC. */
261
262 Lisp_Object
263 get_keymap (object, error, autoload)
264 Lisp_Object object;
265 int error, autoload;
266 {
267 Lisp_Object tem;
268
269 autoload_retry:
270 if (NILP (object))
271 goto end;
272 if (CONSP (object) && EQ (XCAR (object), Qkeymap))
273 return object;
274
275 tem = indirect_function (object);
276 if (CONSP (tem))
277 {
278 if (EQ (XCAR (tem), Qkeymap))
279 return tem;
280
281 /* Should we do an autoload? Autoload forms for keymaps have
282 Qkeymap as their fifth element. */
283 if ((autoload || !error) && EQ (XCAR (tem), Qautoload)
284 && SYMBOLP (object))
285 {
286 Lisp_Object tail;
287
288 tail = Fnth (make_number (4), tem);
289 if (EQ (tail, Qkeymap))
290 {
291 if (autoload)
292 {
293 struct gcpro gcpro1, gcpro2;
294
295 GCPRO2 (tem, object);
296 do_autoload (tem, object);
297 UNGCPRO;
298
299 goto autoload_retry;
300 }
301 else
302 return Qt;
303 }
304 }
305 }
306
307 end:
308 if (error)
309 wrong_type_argument (Qkeymapp, object);
310 return Qnil;
311 }
312 \f
313 /* Return the parent map of KEYMAP, or nil if it has none.
314 We assume that KEYMAP is a valid keymap. */
315
316 Lisp_Object
317 keymap_parent (keymap, autoload)
318 Lisp_Object keymap;
319 int autoload;
320 {
321 Lisp_Object list;
322
323 keymap = get_keymap (keymap, 1, autoload);
324
325 /* Skip past the initial element `keymap'. */
326 list = XCDR (keymap);
327 for (; CONSP (list); list = XCDR (list))
328 {
329 /* See if there is another `keymap'. */
330 if (KEYMAPP (list))
331 return list;
332 }
333
334 return get_keymap (list, 0, autoload);
335 }
336
337 DEFUN ("keymap-parent", Fkeymap_parent, Skeymap_parent, 1, 1, 0,
338 doc: /* Return the parent keymap of KEYMAP. */)
339 (keymap)
340 Lisp_Object keymap;
341 {
342 return keymap_parent (keymap, 1);
343 }
344
345 /* Check whether MAP is one of MAPS parents. */
346 int
347 keymap_memberp (map, maps)
348 Lisp_Object map, maps;
349 {
350 if (NILP (map)) return 0;
351 while (KEYMAPP (maps) && !EQ (map, maps))
352 maps = keymap_parent (maps, 0);
353 return (EQ (map, maps));
354 }
355
356 /* Set the parent keymap of MAP to PARENT. */
357
358 DEFUN ("set-keymap-parent", Fset_keymap_parent, Sset_keymap_parent, 2, 2, 0,
359 doc: /* Modify KEYMAP to set its parent map to PARENT.
360 Return PARENT. PARENT should be nil or another keymap. */)
361 (keymap, parent)
362 Lisp_Object keymap, parent;
363 {
364 Lisp_Object list, prev;
365 struct gcpro gcpro1, gcpro2;
366 int i;
367
368 /* Force a keymap flush for the next call to where-is.
369 Since this can be called from within where-is, we don't set where_is_cache
370 directly but only where_is_cache_keymaps, since where_is_cache shouldn't
371 be changed during where-is, while where_is_cache_keymaps is only used at
372 the very beginning of where-is and can thus be changed here without any
373 adverse effect.
374 This is a very minor correctness (rather than safety) issue. */
375 where_is_cache_keymaps = Qt;
376
377 GCPRO2 (keymap, parent);
378 keymap = get_keymap (keymap, 1, 1);
379
380 if (!NILP (parent))
381 {
382 parent = get_keymap (parent, 1, 1);
383
384 /* Check for cycles. */
385 if (keymap_memberp (keymap, parent))
386 error ("Cyclic keymap inheritance");
387 }
388
389 /* Skip past the initial element `keymap'. */
390 prev = keymap;
391 while (1)
392 {
393 list = XCDR (prev);
394 /* If there is a parent keymap here, replace it.
395 If we came to the end, add the parent in PREV. */
396 if (!CONSP (list) || KEYMAPP (list))
397 {
398 /* If we already have the right parent, return now
399 so that we avoid the loops below. */
400 if (EQ (XCDR (prev), parent))
401 RETURN_UNGCPRO (parent);
402
403 CHECK_IMPURE (prev);
404 XSETCDR (prev, parent);
405 break;
406 }
407 prev = list;
408 }
409
410 /* Scan through for submaps, and set their parents too. */
411
412 for (list = XCDR (keymap); CONSP (list); list = XCDR (list))
413 {
414 /* Stop the scan when we come to the parent. */
415 if (EQ (XCAR (list), Qkeymap))
416 break;
417
418 /* If this element holds a prefix map, deal with it. */
419 if (CONSP (XCAR (list))
420 && CONSP (XCDR (XCAR (list))))
421 fix_submap_inheritance (keymap, XCAR (XCAR (list)),
422 XCDR (XCAR (list)));
423
424 if (VECTORP (XCAR (list)))
425 for (i = 0; i < XVECTOR (XCAR (list))->size; i++)
426 if (CONSP (XVECTOR (XCAR (list))->contents[i]))
427 fix_submap_inheritance (keymap, make_number (i),
428 XVECTOR (XCAR (list))->contents[i]);
429
430 if (CHAR_TABLE_P (XCAR (list)))
431 {
432 Lisp_Object indices[3];
433
434 map_char_table (fix_submap_inheritance, Qnil,
435 XCAR (list), XCAR (list),
436 keymap, 0, indices);
437 }
438 }
439
440 RETURN_UNGCPRO (parent);
441 }
442
443 /* EVENT is defined in MAP as a prefix, and SUBMAP is its definition.
444 if EVENT is also a prefix in MAP's parent,
445 make sure that SUBMAP inherits that definition as its own parent. */
446
447 static void
448 fix_submap_inheritance (map, event, submap)
449 Lisp_Object map, event, submap;
450 {
451 Lisp_Object map_parent, parent_entry;
452
453 /* SUBMAP is a cons that we found as a key binding.
454 Discard the other things found in a menu key binding. */
455
456 submap = get_keymap (get_keyelt (submap, 0), 0, 0);
457
458 /* If it isn't a keymap now, there's no work to do. */
459 if (!CONSP (submap))
460 return;
461
462 map_parent = keymap_parent (map, 0);
463 if (!NILP (map_parent))
464 parent_entry =
465 get_keymap (access_keymap (map_parent, event, 0, 0, 0), 0, 0);
466 else
467 parent_entry = Qnil;
468
469 /* If MAP's parent has something other than a keymap,
470 our own submap shadows it completely. */
471 if (!CONSP (parent_entry))
472 return;
473
474 if (! EQ (parent_entry, submap))
475 {
476 Lisp_Object submap_parent;
477 submap_parent = submap;
478 while (1)
479 {
480 Lisp_Object tem;
481
482 tem = keymap_parent (submap_parent, 0);
483
484 if (KEYMAPP (tem))
485 {
486 if (keymap_memberp (tem, parent_entry))
487 /* Fset_keymap_parent could create a cycle. */
488 return;
489 submap_parent = tem;
490 }
491 else
492 break;
493 }
494 Fset_keymap_parent (submap_parent, parent_entry);
495 }
496 }
497 \f
498 /* Look up IDX in MAP. IDX may be any sort of event.
499 Note that this does only one level of lookup; IDX must be a single
500 event, not a sequence.
501
502 If T_OK is non-zero, bindings for Qt are treated as default
503 bindings; any key left unmentioned by other tables and bindings is
504 given the binding of Qt.
505
506 If T_OK is zero, bindings for Qt are not treated specially.
507
508 If NOINHERIT, don't accept a subkeymap found in an inherited keymap. */
509
510 Lisp_Object
511 access_keymap (map, idx, t_ok, noinherit, autoload)
512 Lisp_Object map;
513 Lisp_Object idx;
514 int t_ok;
515 int noinherit;
516 int autoload;
517 {
518 Lisp_Object val;
519
520 /* Qunbound in VAL means we have found no binding yet. */
521 val = Qunbound;
522
523 /* If idx is a list (some sort of mouse click, perhaps?),
524 the index we want to use is the car of the list, which
525 ought to be a symbol. */
526 idx = EVENT_HEAD (idx);
527
528 /* If idx is a symbol, it might have modifiers, which need to
529 be put in the canonical order. */
530 if (SYMBOLP (idx))
531 idx = reorder_modifiers (idx);
532 else if (INTEGERP (idx))
533 /* Clobber the high bits that can be present on a machine
534 with more than 24 bits of integer. */
535 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
536
537 /* Handle the special meta -> esc mapping. */
538 if (INTEGERP (idx) && XUINT (idx) & meta_modifier)
539 {
540 /* See if there is a meta-map. If there's none, there is
541 no binding for IDX, unless a default binding exists in MAP. */
542 struct gcpro gcpro1;
543 Lisp_Object meta_map;
544 GCPRO1 (map);
545 /* A strange value in which Meta is set would cause
546 infinite recursion. Protect against that. */
547 if (XINT (meta_prefix_char) & CHAR_META)
548 meta_prefix_char = make_number (27);
549 meta_map = get_keymap (access_keymap (map, meta_prefix_char,
550 t_ok, noinherit, autoload),
551 0, autoload);
552 UNGCPRO;
553 if (CONSP (meta_map))
554 {
555 map = meta_map;
556 idx = make_number (XUINT (idx) & ~meta_modifier);
557 }
558 else if (t_ok)
559 /* Set IDX to t, so that we only find a default binding. */
560 idx = Qt;
561 else
562 /* We know there is no binding. */
563 return Qnil;
564 }
565
566 /* t_binding is where we put a default binding that applies,
567 to use in case we do not find a binding specifically
568 for this key sequence. */
569 {
570 Lisp_Object tail;
571 Lisp_Object t_binding = Qnil;
572 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
573
574 GCPRO4 (map, tail, idx, t_binding);
575
576 /* If `t_ok' is 2, both `t' and generic-char bindings are accepted.
577 If it is 1, only generic-char bindings are accepted.
578 Otherwise, neither are. */
579 t_ok = t_ok ? 2 : 0;
580
581 for (tail = XCDR (map);
582 (CONSP (tail)
583 || (tail = get_keymap (tail, 0, autoload), CONSP (tail)));
584 tail = XCDR (tail))
585 {
586 Lisp_Object binding;
587
588 binding = XCAR (tail);
589 if (SYMBOLP (binding))
590 {
591 /* If NOINHERIT, stop finding prefix definitions
592 after we pass a second occurrence of the `keymap' symbol. */
593 if (noinherit && EQ (binding, Qkeymap))
594 RETURN_UNGCPRO (Qnil);
595 }
596 else if (CONSP (binding))
597 {
598 Lisp_Object key = XCAR (binding);
599
600 if (EQ (key, idx))
601 val = XCDR (binding);
602 else if (t_ok
603 && INTEGERP (idx)
604 && (XINT (idx) & CHAR_MODIFIER_MASK) == 0
605 && INTEGERP (key)
606 && (XINT (key) & CHAR_MODIFIER_MASK) == 0
607 && !SINGLE_BYTE_CHAR_P (XINT (idx))
608 && !SINGLE_BYTE_CHAR_P (XINT (key))
609 && CHAR_VALID_P (XINT (key), 1)
610 && !CHAR_VALID_P (XINT (key), 0)
611 && (CHAR_CHARSET (XINT (key))
612 == CHAR_CHARSET (XINT (idx))))
613 {
614 /* KEY is the generic character of the charset of IDX.
615 Use KEY's binding if there isn't a binding for IDX
616 itself. */
617 t_binding = XCDR (binding);
618 t_ok = 0;
619 }
620 else if (t_ok > 1 && EQ (key, Qt))
621 {
622 t_binding = XCDR (binding);
623 t_ok = 1;
624 }
625 }
626 else if (VECTORP (binding))
627 {
628 if (NATNUMP (idx) && XFASTINT (idx) < ASIZE (binding))
629 val = AREF (binding, XFASTINT (idx));
630 }
631 else if (CHAR_TABLE_P (binding))
632 {
633 /* Character codes with modifiers
634 are not included in a char-table.
635 All character codes without modifiers are included. */
636 if (NATNUMP (idx) && (XFASTINT (idx) & CHAR_MODIFIER_MASK) == 0)
637 {
638 val = Faref (binding, idx);
639 /* `nil' has a special meaning for char-tables, so
640 we use something else to record an explicitly
641 unbound entry. */
642 if (NILP (val))
643 val = Qunbound;
644 }
645 }
646
647 /* If we found a binding, clean it up and return it. */
648 if (!EQ (val, Qunbound))
649 {
650 if (EQ (val, Qt))
651 /* A Qt binding is just like an explicit nil binding
652 (i.e. it shadows any parent binding but not bindings in
653 keymaps of lower precedence). */
654 val = Qnil;
655 val = get_keyelt (val, autoload);
656 if (KEYMAPP (val))
657 fix_submap_inheritance (map, idx, val);
658 RETURN_UNGCPRO (val);
659 }
660 QUIT;
661 }
662 UNGCPRO;
663 return get_keyelt (t_binding, autoload);
664 }
665 }
666
667 static void
668 map_keymap_item (fun, args, key, val, data)
669 map_keymap_function_t fun;
670 Lisp_Object args, key, val;
671 void *data;
672 {
673 /* We should maybe try to detect bindings shadowed by previous
674 ones and things like that. */
675 if (EQ (val, Qt))
676 val = Qnil;
677 (*fun) (key, val, args, data);
678 }
679
680 static void
681 map_keymap_char_table_item (args, key, val)
682 Lisp_Object args, key, val;
683 {
684 if (!NILP (val))
685 {
686 map_keymap_function_t fun = XSAVE_VALUE (XCAR (args))->pointer;
687 args = XCDR (args);
688 map_keymap_item (fun, XCDR (args), key, val,
689 XSAVE_VALUE (XCAR (args))->pointer);
690 }
691 }
692
693 /* Call FUN for every binding in MAP.
694 FUN is called with 4 arguments: FUN (KEY, BINDING, ARGS, DATA).
695 AUTOLOAD if non-zero means that we can autoload keymaps if necessary. */
696 void
697 map_keymap (map, fun, args, data, autoload)
698 map_keymap_function_t fun;
699 Lisp_Object map, args;
700 void *data;
701 int autoload;
702 {
703 struct gcpro gcpro1, gcpro2, gcpro3;
704 Lisp_Object tail;
705
706 tail = Qnil;
707 GCPRO3 (map, args, tail);
708 map = get_keymap (map, 1, autoload);
709 for (tail = (CONSP (map) && EQ (Qkeymap, XCAR (map))) ? XCDR (map) : map;
710 CONSP (tail) || (tail = get_keymap (tail, 0, autoload), CONSP (tail));
711 tail = XCDR (tail))
712 {
713 Lisp_Object binding = XCAR (tail);
714
715 if (CONSP (binding))
716 map_keymap_item (fun, args, XCAR (binding), XCDR (binding), data);
717 else if (VECTORP (binding))
718 {
719 /* Loop over the char values represented in the vector. */
720 int len = ASIZE (binding);
721 int c;
722 for (c = 0; c < len; c++)
723 {
724 Lisp_Object character;
725 XSETFASTINT (character, c);
726 map_keymap_item (fun, args, character, AREF (binding, c), data);
727 }
728 }
729 else if (CHAR_TABLE_P (binding))
730 {
731 Lisp_Object indices[3];
732 map_char_table (map_keymap_char_table_item, Qnil, binding, binding,
733 Fcons (make_save_value (fun, 0),
734 Fcons (make_save_value (data, 0),
735 args)),
736 0, indices);
737 }
738 }
739 UNGCPRO;
740 }
741
742 static void
743 map_keymap_call (key, val, fun, dummy)
744 Lisp_Object key, val, fun;
745 void *dummy;
746 {
747 call2 (fun, key, val);
748 }
749
750 DEFUN ("map-keymap", Fmap_keymap, Smap_keymap, 2, 3, 0,
751 doc: /* Call FUNCTION once for each event binding in KEYMAP.
752 FUNCTION is called with two arguments: the event that is bound, and
753 the definition it is bound to. If the event is an integer, it may be
754 a generic character (see Info node `(elisp)Splitting Characters'), and
755 that means that all actual character events belonging to that generic
756 character are bound to the definition.
757
758 If KEYMAP has a parent, the parent's bindings are included as well.
759 This works recursively: if the parent has itself a parent, then the
760 grandparent's bindings are also included and so on.
761 usage: (map-keymap FUNCTION KEYMAP) */)
762 (function, keymap, sort_first)
763 Lisp_Object function, keymap, sort_first;
764 {
765 if (INTEGERP (function))
766 /* We have to stop integers early since map_keymap gives them special
767 significance. */
768 xsignal1 (Qinvalid_function, function);
769 if (! NILP (sort_first))
770 return call3 (intern ("map-keymap-internal"), function, keymap, Qt);
771
772 map_keymap (keymap, map_keymap_call, function, NULL, 1);
773 return Qnil;
774 }
775
776 /* Given OBJECT which was found in a slot in a keymap,
777 trace indirect definitions to get the actual definition of that slot.
778 An indirect definition is a list of the form
779 (KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one
780 and INDEX is the object to look up in KEYMAP to yield the definition.
781
782 Also if OBJECT has a menu string as the first element,
783 remove that. Also remove a menu help string as second element.
784
785 If AUTOLOAD is nonzero, load autoloadable keymaps
786 that are referred to with indirection.
787
788 This can GC because menu_item_eval_property calls Feval. */
789
790 Lisp_Object
791 get_keyelt (object, autoload)
792 Lisp_Object object;
793 int autoload;
794 {
795 while (1)
796 {
797 if (!(CONSP (object)))
798 /* This is really the value. */
799 return object;
800
801 /* If the keymap contents looks like (keymap ...) or (lambda ...)
802 then use itself. */
803 else if (EQ (XCAR (object), Qkeymap) || EQ (XCAR (object), Qlambda))
804 return object;
805
806 /* If the keymap contents looks like (menu-item name . DEFN)
807 or (menu-item name DEFN ...) then use DEFN.
808 This is a new format menu item. */
809 else if (EQ (XCAR (object), Qmenu_item))
810 {
811 if (CONSP (XCDR (object)))
812 {
813 Lisp_Object tem;
814
815 object = XCDR (XCDR (object));
816 tem = object;
817 if (CONSP (object))
818 object = XCAR (object);
819
820 /* If there's a `:filter FILTER', apply FILTER to the
821 menu-item's definition to get the real definition to
822 use. */
823 for (; CONSP (tem) && CONSP (XCDR (tem)); tem = XCDR (tem))
824 if (EQ (XCAR (tem), QCfilter) && autoload)
825 {
826 Lisp_Object filter;
827 filter = XCAR (XCDR (tem));
828 filter = list2 (filter, list2 (Qquote, object));
829 object = menu_item_eval_property (filter);
830 break;
831 }
832 }
833 else
834 /* Invalid keymap. */
835 return object;
836 }
837
838 /* If the keymap contents looks like (STRING . DEFN), use DEFN.
839 Keymap alist elements like (CHAR MENUSTRING . DEFN)
840 will be used by HierarKey menus. */
841 else if (STRINGP (XCAR (object)))
842 {
843 object = XCDR (object);
844 /* Also remove a menu help string, if any,
845 following the menu item name. */
846 if (CONSP (object) && STRINGP (XCAR (object)))
847 object = XCDR (object);
848 /* Also remove the sublist that caches key equivalences, if any. */
849 if (CONSP (object) && CONSP (XCAR (object)))
850 {
851 Lisp_Object carcar;
852 carcar = XCAR (XCAR (object));
853 if (NILP (carcar) || VECTORP (carcar))
854 object = XCDR (object);
855 }
856 }
857
858 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
859 else
860 {
861 struct gcpro gcpro1;
862 Lisp_Object map;
863 GCPRO1 (object);
864 map = get_keymap (Fcar_safe (object), 0, autoload);
865 UNGCPRO;
866 return (!CONSP (map) ? object /* Invalid keymap */
867 : access_keymap (map, Fcdr (object), 0, 0, autoload));
868 }
869 }
870 }
871
872 static Lisp_Object
873 store_in_keymap (keymap, idx, def)
874 Lisp_Object keymap;
875 register Lisp_Object idx;
876 Lisp_Object def;
877 {
878 /* Flush any reverse-map cache. */
879 where_is_cache = Qnil;
880 where_is_cache_keymaps = Qt;
881
882 /* If we are preparing to dump, and DEF is a menu element
883 with a menu item indicator, copy it to ensure it is not pure. */
884 if (CONSP (def) && PURE_P (def)
885 && (EQ (XCAR (def), Qmenu_item) || STRINGP (XCAR (def))))
886 def = Fcons (XCAR (def), XCDR (def));
887
888 if (!CONSP (keymap) || !EQ (XCAR (keymap), Qkeymap))
889 error ("attempt to define a key in a non-keymap");
890
891 /* If idx is a list (some sort of mouse click, perhaps?),
892 the index we want to use is the car of the list, which
893 ought to be a symbol. */
894 idx = EVENT_HEAD (idx);
895
896 /* If idx is a symbol, it might have modifiers, which need to
897 be put in the canonical order. */
898 if (SYMBOLP (idx))
899 idx = reorder_modifiers (idx);
900 else if (INTEGERP (idx))
901 /* Clobber the high bits that can be present on a machine
902 with more than 24 bits of integer. */
903 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
904
905 /* Scan the keymap for a binding of idx. */
906 {
907 Lisp_Object tail;
908
909 /* The cons after which we should insert new bindings. If the
910 keymap has a table element, we record its position here, so new
911 bindings will go after it; this way, the table will stay
912 towards the front of the alist and character lookups in dense
913 keymaps will remain fast. Otherwise, this just points at the
914 front of the keymap. */
915 Lisp_Object insertion_point;
916
917 insertion_point = keymap;
918 for (tail = XCDR (keymap); CONSP (tail); tail = XCDR (tail))
919 {
920 Lisp_Object elt;
921
922 elt = XCAR (tail);
923 if (VECTORP (elt))
924 {
925 if (NATNUMP (idx) && XFASTINT (idx) < ASIZE (elt))
926 {
927 CHECK_IMPURE (elt);
928 ASET (elt, XFASTINT (idx), def);
929 return def;
930 }
931 insertion_point = tail;
932 }
933 else if (CHAR_TABLE_P (elt))
934 {
935 /* Character codes with modifiers
936 are not included in a char-table.
937 All character codes without modifiers are included. */
938 if (NATNUMP (idx) && !(XFASTINT (idx) & CHAR_MODIFIER_MASK))
939 {
940 Faset (elt, idx,
941 /* `nil' has a special meaning for char-tables, so
942 we use something else to record an explicitly
943 unbound entry. */
944 NILP (def) ? Qt : def);
945 return def;
946 }
947 insertion_point = tail;
948 }
949 else if (CONSP (elt))
950 {
951 if (EQ (idx, XCAR (elt)))
952 {
953 CHECK_IMPURE (elt);
954 XSETCDR (elt, def);
955 return def;
956 }
957 }
958 else if (EQ (elt, Qkeymap))
959 /* If we find a 'keymap' symbol in the spine of KEYMAP,
960 then we must have found the start of a second keymap
961 being used as the tail of KEYMAP, and a binding for IDX
962 should be inserted before it. */
963 goto keymap_end;
964
965 QUIT;
966 }
967
968 keymap_end:
969 /* We have scanned the entire keymap, and not found a binding for
970 IDX. Let's add one. */
971 CHECK_IMPURE (insertion_point);
972 XSETCDR (insertion_point,
973 Fcons (Fcons (idx, def), XCDR (insertion_point)));
974 }
975
976 return def;
977 }
978
979 EXFUN (Fcopy_keymap, 1);
980
981 Lisp_Object
982 copy_keymap_item (elt)
983 Lisp_Object elt;
984 {
985 Lisp_Object res, tem;
986
987 if (!CONSP (elt))
988 return elt;
989
990 res = tem = elt;
991
992 /* Is this a new format menu item. */
993 if (EQ (XCAR (tem), Qmenu_item))
994 {
995 /* Copy cell with menu-item marker. */
996 res = elt = Fcons (XCAR (tem), XCDR (tem));
997 tem = XCDR (elt);
998 if (CONSP (tem))
999 {
1000 /* Copy cell with menu-item name. */
1001 XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
1002 elt = XCDR (elt);
1003 tem = XCDR (elt);
1004 }
1005 if (CONSP (tem))
1006 {
1007 /* Copy cell with binding and if the binding is a keymap,
1008 copy that. */
1009 XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
1010 elt = XCDR (elt);
1011 tem = XCAR (elt);
1012 if (CONSP (tem) && EQ (XCAR (tem), Qkeymap))
1013 XSETCAR (elt, Fcopy_keymap (tem));
1014 tem = XCDR (elt);
1015 if (CONSP (tem) && CONSP (XCAR (tem)))
1016 /* Delete cache for key equivalences. */
1017 XSETCDR (elt, XCDR (tem));
1018 }
1019 }
1020 else
1021 {
1022 /* It may be an old fomat menu item.
1023 Skip the optional menu string. */
1024 if (STRINGP (XCAR (tem)))
1025 {
1026 /* Copy the cell, since copy-alist didn't go this deep. */
1027 res = elt = Fcons (XCAR (tem), XCDR (tem));
1028 tem = XCDR (elt);
1029 /* Also skip the optional menu help string. */
1030 if (CONSP (tem) && STRINGP (XCAR (tem)))
1031 {
1032 XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
1033 elt = XCDR (elt);
1034 tem = XCDR (elt);
1035 }
1036 /* There may also be a list that caches key equivalences.
1037 Just delete it for the new keymap. */
1038 if (CONSP (tem)
1039 && CONSP (XCAR (tem))
1040 && (NILP (XCAR (XCAR (tem)))
1041 || VECTORP (XCAR (XCAR (tem)))))
1042 {
1043 XSETCDR (elt, XCDR (tem));
1044 tem = XCDR (tem);
1045 }
1046 if (CONSP (tem) && EQ (XCAR (tem), Qkeymap))
1047 XSETCDR (elt, Fcopy_keymap (tem));
1048 }
1049 else if (EQ (XCAR (tem), Qkeymap))
1050 res = Fcopy_keymap (elt);
1051 }
1052 return res;
1053 }
1054
1055 static void
1056 copy_keymap_1 (chartable, idx, elt)
1057 Lisp_Object chartable, idx, elt;
1058 {
1059 Faset (chartable, idx, copy_keymap_item (elt));
1060 }
1061
1062 DEFUN ("copy-keymap", Fcopy_keymap, Scopy_keymap, 1, 1, 0,
1063 doc: /* Return a copy of the keymap KEYMAP.
1064 The copy starts out with the same definitions of KEYMAP,
1065 but changing either the copy or KEYMAP does not affect the other.
1066 Any key definitions that are subkeymaps are recursively copied.
1067 However, a key definition which is a symbol whose definition is a keymap
1068 is not copied. */)
1069 (keymap)
1070 Lisp_Object keymap;
1071 {
1072 register Lisp_Object copy, tail;
1073 keymap = get_keymap (keymap, 1, 0);
1074 copy = tail = Fcons (Qkeymap, Qnil);
1075 keymap = XCDR (keymap); /* Skip the `keymap' symbol. */
1076
1077 while (CONSP (keymap) && !EQ (XCAR (keymap), Qkeymap))
1078 {
1079 Lisp_Object elt = XCAR (keymap);
1080 if (CHAR_TABLE_P (elt))
1081 {
1082 Lisp_Object indices[3];
1083 elt = Fcopy_sequence (elt);
1084 map_char_table (copy_keymap_1, Qnil, elt, elt, elt, 0, indices);
1085 }
1086 else if (VECTORP (elt))
1087 {
1088 int i;
1089 elt = Fcopy_sequence (elt);
1090 for (i = 0; i < ASIZE (elt); i++)
1091 ASET (elt, i, copy_keymap_item (AREF (elt, i)));
1092 }
1093 else if (CONSP (elt))
1094 elt = Fcons (XCAR (elt), copy_keymap_item (XCDR (elt)));
1095 XSETCDR (tail, Fcons (elt, Qnil));
1096 tail = XCDR (tail);
1097 keymap = XCDR (keymap);
1098 }
1099 XSETCDR (tail, keymap);
1100 return copy;
1101 }
1102 \f
1103 /* Simple Keymap mutators and accessors. */
1104
1105 /* GC is possible in this function if it autoloads a keymap. */
1106
1107 DEFUN ("define-key", Fdefine_key, Sdefine_key, 3, 3, 0,
1108 doc: /* In KEYMAP, define key sequence KEY as DEF.
1109 KEYMAP is a keymap.
1110
1111 KEY is a string or a vector of symbols and characters meaning a
1112 sequence of keystrokes and events. Non-ASCII characters with codes
1113 above 127 (such as ISO Latin-1) can be included if you use a vector.
1114 Using [t] for KEY creates a default definition, which applies to any
1115 event type that has no other definition in this keymap.
1116
1117 DEF is anything that can be a key's definition:
1118 nil (means key is undefined in this keymap),
1119 a command (a Lisp function suitable for interactive calling),
1120 a string (treated as a keyboard macro),
1121 a keymap (to define a prefix key),
1122 a symbol (when the key is looked up, the symbol will stand for its
1123 function definition, which should at that time be one of the above,
1124 or another symbol whose function definition is used, etc.),
1125 a cons (STRING . DEFN), meaning that DEFN is the definition
1126 (DEFN should be a valid definition in its own right),
1127 or a cons (MAP . CHAR), meaning use definition of CHAR in keymap MAP,
1128 or an extended menu item definition. (See info node `Extended Menu Items'.)
1129
1130 If KEYMAP is a sparse keymap with a binding for KEY, the existing
1131 binding is altered. If there is no binding for KEY, the new pair
1132 binding KEY to DEF is added at the front of KEYMAP. */)
1133 (keymap, key, def)
1134 Lisp_Object keymap;
1135 Lisp_Object key;
1136 Lisp_Object def;
1137 {
1138 register int idx;
1139 register Lisp_Object c;
1140 register Lisp_Object cmd;
1141 int metized = 0;
1142 int meta_bit;
1143 int length;
1144 struct gcpro gcpro1, gcpro2, gcpro3;
1145
1146 GCPRO3 (keymap, key, def);
1147 keymap = get_keymap (keymap, 1, 1);
1148
1149 CHECK_VECTOR_OR_STRING (key);
1150
1151 length = XFASTINT (Flength (key));
1152 if (length == 0)
1153 RETURN_UNGCPRO (Qnil);
1154
1155 if (SYMBOLP (def) && !EQ (Vdefine_key_rebound_commands, Qt))
1156 Vdefine_key_rebound_commands = Fcons (def, Vdefine_key_rebound_commands);
1157
1158 meta_bit = VECTORP (key) ? meta_modifier : 0x80;
1159
1160 if (VECTORP (def) && ASIZE (def) > 0 && CONSP (AREF (def, 0)))
1161 { /* DEF is apparently an XEmacs-style keyboard macro. */
1162 Lisp_Object tmp = Fmake_vector (make_number (ASIZE (def)), Qnil);
1163 int i = ASIZE (def);
1164 while (--i >= 0)
1165 {
1166 Lisp_Object c = AREF (def, i);
1167 if (CONSP (c) && lucid_event_type_list_p (c))
1168 c = Fevent_convert_list (c);
1169 ASET (tmp, i, c);
1170 }
1171 def = tmp;
1172 }
1173
1174 idx = 0;
1175 while (1)
1176 {
1177 c = Faref (key, make_number (idx));
1178
1179 if (CONSP (c) && lucid_event_type_list_p (c))
1180 c = Fevent_convert_list (c);
1181
1182 if (SYMBOLP (c))
1183 silly_event_symbol_error (c);
1184
1185 if (INTEGERP (c)
1186 && (XINT (c) & meta_bit)
1187 && !metized)
1188 {
1189 c = meta_prefix_char;
1190 metized = 1;
1191 }
1192 else
1193 {
1194 if (INTEGERP (c))
1195 XSETINT (c, XINT (c) & ~meta_bit);
1196
1197 metized = 0;
1198 idx++;
1199 }
1200
1201 if (!INTEGERP (c) && !SYMBOLP (c) && !CONSP (c))
1202 error ("Key sequence contains invalid event");
1203
1204 if (idx == length)
1205 RETURN_UNGCPRO (store_in_keymap (keymap, c, def));
1206
1207 cmd = access_keymap (keymap, c, 0, 1, 1);
1208
1209 /* If this key is undefined, make it a prefix. */
1210 if (NILP (cmd))
1211 cmd = define_as_prefix (keymap, c);
1212
1213 keymap = get_keymap (cmd, 0, 1);
1214 if (!CONSP (keymap))
1215 /* We must use Fkey_description rather than just passing key to
1216 error; key might be a vector, not a string. */
1217 error ("Key sequence %s starts with non-prefix key %s",
1218 SDATA (Fkey_description (key, Qnil)),
1219 SDATA (Fkey_description (Fsubstring (key, make_number (0),
1220 make_number (idx)),
1221 Qnil)));
1222 }
1223 }
1224
1225 /* This function may GC (it calls Fkey_binding). */
1226
1227 DEFUN ("command-remapping", Fcommand_remapping, Scommand_remapping, 1, 3, 0,
1228 doc: /* Return the remapping for command COMMAND.
1229 Returns nil if COMMAND is not remapped (or not a symbol).
1230
1231 If the optional argument POSITION is non-nil, it specifies a mouse
1232 position as returned by `event-start' and `event-end', and the
1233 remapping occurs in the keymaps associated with it. It can also be a
1234 number or marker, in which case the keymap properties at the specified
1235 buffer position instead of point are used. The KEYMAPS argument is
1236 ignored if POSITION is non-nil.
1237
1238 If the optional argument KEYMAPS is non-nil, it should be a list of
1239 keymaps to search for command remapping. Otherwise, search for the
1240 remapping in all currently active keymaps. */)
1241 (command, position, keymaps)
1242 Lisp_Object command, position, keymaps;
1243 {
1244 if (!SYMBOLP (command))
1245 return Qnil;
1246
1247 ASET (command_remapping_vector, 1, command);
1248
1249 if (NILP (keymaps))
1250 return Fkey_binding (command_remapping_vector, Qnil, Qt, position);
1251 else
1252 {
1253 Lisp_Object maps, binding;
1254
1255 for (maps = keymaps; !NILP (maps); maps = Fcdr (maps))
1256 {
1257 binding = Flookup_key (Fcar (maps), command_remapping_vector, Qnil);
1258 if (!NILP (binding) && !INTEGERP (binding))
1259 return binding;
1260 }
1261 return Qnil;
1262 }
1263 }
1264
1265 /* Value is number if KEY is too long; nil if valid but has no definition. */
1266 /* GC is possible in this function if it autoloads a keymap. */
1267
1268 DEFUN ("lookup-key", Flookup_key, Slookup_key, 2, 3, 0,
1269 doc: /* In keymap KEYMAP, look up key sequence KEY. Return the definition.
1270 A value of nil means undefined. See doc of `define-key'
1271 for kinds of definitions.
1272
1273 A number as value means KEY is "too long";
1274 that is, characters or symbols in it except for the last one
1275 fail to be a valid sequence of prefix characters in KEYMAP.
1276 The number is how many characters at the front of KEY
1277 it takes to reach a non-prefix key.
1278
1279 Normally, `lookup-key' ignores bindings for t, which act as default
1280 bindings, used when nothing else in the keymap applies; this makes it
1281 usable as a general function for probing keymaps. However, if the
1282 third optional argument ACCEPT-DEFAULT is non-nil, `lookup-key' will
1283 recognize the default bindings, just as `read-key-sequence' does. */)
1284 (keymap, key, accept_default)
1285 Lisp_Object keymap;
1286 Lisp_Object key;
1287 Lisp_Object accept_default;
1288 {
1289 register int idx;
1290 register Lisp_Object cmd;
1291 register Lisp_Object c;
1292 int length;
1293 int t_ok = !NILP (accept_default);
1294 struct gcpro gcpro1, gcpro2;
1295
1296 GCPRO2 (keymap, key);
1297 keymap = get_keymap (keymap, 1, 1);
1298
1299 CHECK_VECTOR_OR_STRING (key);
1300
1301 length = XFASTINT (Flength (key));
1302 if (length == 0)
1303 RETURN_UNGCPRO (keymap);
1304
1305 idx = 0;
1306 while (1)
1307 {
1308 c = Faref (key, make_number (idx++));
1309
1310 if (CONSP (c) && lucid_event_type_list_p (c))
1311 c = Fevent_convert_list (c);
1312
1313 /* Turn the 8th bit of string chars into a meta modifier. */
1314 if (INTEGERP (c) && XINT (c) & 0x80 && STRINGP (key))
1315 XSETINT (c, (XINT (c) | meta_modifier) & ~0x80);
1316
1317 /* Allow string since binding for `menu-bar-select-buffer'
1318 includes the buffer name in the key sequence. */
1319 if (!INTEGERP (c) && !SYMBOLP (c) && !CONSP (c) && !STRINGP (c))
1320 error ("Key sequence contains invalid event");
1321
1322 cmd = access_keymap (keymap, c, t_ok, 0, 1);
1323 if (idx == length)
1324 RETURN_UNGCPRO (cmd);
1325
1326 keymap = get_keymap (cmd, 0, 1);
1327 if (!CONSP (keymap))
1328 RETURN_UNGCPRO (make_number (idx));
1329
1330 QUIT;
1331 }
1332 }
1333
1334 /* Make KEYMAP define event C as a keymap (i.e., as a prefix).
1335 Assume that currently it does not define C at all.
1336 Return the keymap. */
1337
1338 static Lisp_Object
1339 define_as_prefix (keymap, c)
1340 Lisp_Object keymap, c;
1341 {
1342 Lisp_Object cmd;
1343
1344 cmd = Fmake_sparse_keymap (Qnil);
1345 /* If this key is defined as a prefix in an inherited keymap,
1346 make it a prefix in this map, and make its definition
1347 inherit the other prefix definition. */
1348 cmd = nconc2 (cmd, access_keymap (keymap, c, 0, 0, 0));
1349 store_in_keymap (keymap, c, cmd);
1350
1351 return cmd;
1352 }
1353
1354 /* Append a key to the end of a key sequence. We always make a vector. */
1355
1356 Lisp_Object
1357 append_key (key_sequence, key)
1358 Lisp_Object key_sequence, key;
1359 {
1360 Lisp_Object args[2];
1361
1362 args[0] = key_sequence;
1363
1364 args[1] = Fcons (key, Qnil);
1365 return Fvconcat (2, args);
1366 }
1367
1368 /* Given a event type C which is a symbol,
1369 signal an error if is a mistake such as RET or M-RET or C-DEL, etc. */
1370
1371 static void
1372 silly_event_symbol_error (c)
1373 Lisp_Object c;
1374 {
1375 Lisp_Object parsed, base, name, assoc;
1376 int modifiers;
1377
1378 parsed = parse_modifiers (c);
1379 modifiers = (int) XUINT (XCAR (XCDR (parsed)));
1380 base = XCAR (parsed);
1381 name = Fsymbol_name (base);
1382 /* This alist includes elements such as ("RET" . "\\r"). */
1383 assoc = Fassoc (name, exclude_keys);
1384
1385 if (! NILP (assoc))
1386 {
1387 char new_mods[sizeof ("\\A-\\C-\\H-\\M-\\S-\\s-")];
1388 char *p = new_mods;
1389 Lisp_Object keystring;
1390 if (modifiers & alt_modifier)
1391 { *p++ = '\\'; *p++ = 'A'; *p++ = '-'; }
1392 if (modifiers & ctrl_modifier)
1393 { *p++ = '\\'; *p++ = 'C'; *p++ = '-'; }
1394 if (modifiers & hyper_modifier)
1395 { *p++ = '\\'; *p++ = 'H'; *p++ = '-'; }
1396 if (modifiers & meta_modifier)
1397 { *p++ = '\\'; *p++ = 'M'; *p++ = '-'; }
1398 if (modifiers & shift_modifier)
1399 { *p++ = '\\'; *p++ = 'S'; *p++ = '-'; }
1400 if (modifiers & super_modifier)
1401 { *p++ = '\\'; *p++ = 's'; *p++ = '-'; }
1402 *p = 0;
1403
1404 c = reorder_modifiers (c);
1405 keystring = concat2 (build_string (new_mods), XCDR (assoc));
1406
1407 error ((modifiers & ~meta_modifier
1408 ? "To bind the key %s, use [?%s], not [%s]"
1409 : "To bind the key %s, use \"%s\", not [%s]"),
1410 SDATA (SYMBOL_NAME (c)), SDATA (keystring),
1411 SDATA (SYMBOL_NAME (c)));
1412 }
1413 }
1414 \f
1415 /* Global, local, and minor mode keymap stuff. */
1416
1417 /* We can't put these variables inside current_minor_maps, since under
1418 some systems, static gets macro-defined to be the empty string.
1419 Ickypoo. */
1420 static Lisp_Object *cmm_modes = NULL, *cmm_maps = NULL;
1421 static int cmm_size = 0;
1422
1423 /* Store a pointer to an array of the currently active minor modes in
1424 *modeptr, a pointer to an array of the keymaps of the currently
1425 active minor modes in *mapptr, and return the number of maps
1426 *mapptr contains.
1427
1428 This function always returns a pointer to the same buffer, and may
1429 free or reallocate it, so if you want to keep it for a long time or
1430 hand it out to lisp code, copy it. This procedure will be called
1431 for every key sequence read, so the nice lispy approach (return a
1432 new assoclist, list, what have you) for each invocation would
1433 result in a lot of consing over time.
1434
1435 If we used xrealloc/xmalloc and ran out of memory, they would throw
1436 back to the command loop, which would try to read a key sequence,
1437 which would call this function again, resulting in an infinite
1438 loop. Instead, we'll use realloc/malloc and silently truncate the
1439 list, let the key sequence be read, and hope some other piece of
1440 code signals the error. */
1441 int
1442 current_minor_maps (modeptr, mapptr)
1443 Lisp_Object **modeptr, **mapptr;
1444 {
1445 int i = 0;
1446 int list_number = 0;
1447 Lisp_Object alist, assoc, var, val;
1448 Lisp_Object emulation_alists;
1449 Lisp_Object lists[2];
1450
1451 emulation_alists = Vemulation_mode_map_alists;
1452 lists[0] = Vminor_mode_overriding_map_alist;
1453 lists[1] = Vminor_mode_map_alist;
1454
1455 for (list_number = 0; list_number < 2; list_number++)
1456 {
1457 if (CONSP (emulation_alists))
1458 {
1459 alist = XCAR (emulation_alists);
1460 emulation_alists = XCDR (emulation_alists);
1461 if (SYMBOLP (alist))
1462 alist = find_symbol_value (alist);
1463 list_number = -1;
1464 }
1465 else
1466 alist = lists[list_number];
1467
1468 for ( ; CONSP (alist); alist = XCDR (alist))
1469 if ((assoc = XCAR (alist), CONSP (assoc))
1470 && (var = XCAR (assoc), SYMBOLP (var))
1471 && (val = find_symbol_value (var), !EQ (val, Qunbound))
1472 && !NILP (val))
1473 {
1474 Lisp_Object temp;
1475
1476 /* If a variable has an entry in Vminor_mode_overriding_map_alist,
1477 and also an entry in Vminor_mode_map_alist,
1478 ignore the latter. */
1479 if (list_number == 1)
1480 {
1481 val = assq_no_quit (var, lists[0]);
1482 if (!NILP (val))
1483 continue;
1484 }
1485
1486 if (i >= cmm_size)
1487 {
1488 int newsize, allocsize;
1489 Lisp_Object *newmodes, *newmaps;
1490
1491 newsize = cmm_size == 0 ? 30 : cmm_size * 2;
1492 allocsize = newsize * sizeof *newmodes;
1493
1494 /* Use malloc here. See the comment above this function.
1495 Avoid realloc here; it causes spurious traps on GNU/Linux [KFS] */
1496 BLOCK_INPUT;
1497 newmodes = (Lisp_Object *) malloc (allocsize);
1498 if (newmodes)
1499 {
1500 if (cmm_modes)
1501 {
1502 bcopy (cmm_modes, newmodes, cmm_size * sizeof cmm_modes[0]);
1503 free (cmm_modes);
1504 }
1505 cmm_modes = newmodes;
1506 }
1507
1508 newmaps = (Lisp_Object *) malloc (allocsize);
1509 if (newmaps)
1510 {
1511 if (cmm_maps)
1512 {
1513 bcopy (cmm_maps, newmaps, cmm_size * sizeof cmm_maps[0]);
1514 free (cmm_maps);
1515 }
1516 cmm_maps = newmaps;
1517 }
1518 UNBLOCK_INPUT;
1519
1520 if (newmodes == NULL || newmaps == NULL)
1521 break;
1522 cmm_size = newsize;
1523 }
1524
1525 /* Get the keymap definition--or nil if it is not defined. */
1526 temp = Findirect_function (XCDR (assoc), Qt);
1527 if (!NILP (temp))
1528 {
1529 cmm_modes[i] = var;
1530 cmm_maps [i] = temp;
1531 i++;
1532 }
1533 }
1534 }
1535
1536 if (modeptr) *modeptr = cmm_modes;
1537 if (mapptr) *mapptr = cmm_maps;
1538 return i;
1539 }
1540
1541 DEFUN ("current-active-maps", Fcurrent_active_maps, Scurrent_active_maps,
1542 0, 1, 0,
1543 doc: /* Return a list of the currently active keymaps.
1544 OLP if non-nil indicates that we should obey `overriding-local-map' and
1545 `overriding-terminal-local-map'. */)
1546 (olp)
1547 Lisp_Object olp;
1548 {
1549 Lisp_Object keymaps = Fcons (current_global_map, Qnil);
1550
1551 if (!NILP (olp))
1552 {
1553 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1554 keymaps = Fcons (current_kboard->Voverriding_terminal_local_map, keymaps);
1555 /* The doc said that overriding-terminal-local-map should
1556 override overriding-local-map. The code used them both,
1557 but it seems clearer to use just one. rms, jan 2005. */
1558 else if (!NILP (Voverriding_local_map))
1559 keymaps = Fcons (Voverriding_local_map, keymaps);
1560 }
1561 if (NILP (XCDR (keymaps)))
1562 {
1563 Lisp_Object local;
1564 Lisp_Object *maps;
1565 int nmaps, i;
1566
1567 /* This usually returns the buffer's local map,
1568 but that can be overridden by a `local-map' property. */
1569 local = get_local_map (PT, current_buffer, Qlocal_map);
1570 if (!NILP (local))
1571 keymaps = Fcons (local, keymaps);
1572
1573 /* Now put all the minor mode keymaps on the list. */
1574 nmaps = current_minor_maps (0, &maps);
1575
1576 for (i = --nmaps; i >= 0; i--)
1577 if (!NILP (maps[i]))
1578 keymaps = Fcons (maps[i], keymaps);
1579
1580 /* This returns nil unless there is a `keymap' property. */
1581 local = get_local_map (PT, current_buffer, Qkeymap);
1582 if (!NILP (local))
1583 keymaps = Fcons (local, keymaps);
1584 }
1585
1586 return keymaps;
1587 }
1588
1589 /* GC is possible in this function if it autoloads a keymap. */
1590
1591 DEFUN ("key-binding", Fkey_binding, Skey_binding, 1, 4, 0,
1592 doc: /* Return the binding for command KEY in current keymaps.
1593 KEY is a string or vector, a sequence of keystrokes.
1594 The binding is probably a symbol with a function definition.
1595
1596 Normally, `key-binding' ignores bindings for t, which act as default
1597 bindings, used when nothing else in the keymap applies; this makes it
1598 usable as a general function for probing keymaps. However, if the
1599 optional second argument ACCEPT-DEFAULT is non-nil, `key-binding' does
1600 recognize the default bindings, just as `read-key-sequence' does.
1601
1602 Like the normal command loop, `key-binding' will remap the command
1603 resulting from looking up KEY by looking up the command in the
1604 current keymaps. However, if the optional third argument NO-REMAP
1605 is non-nil, `key-binding' returns the unmapped command.
1606
1607 If KEY is a key sequence initiated with the mouse, the used keymaps
1608 will depend on the clicked mouse position with regard to the buffer
1609 and possible local keymaps on strings.
1610
1611 If the optional argument POSITION is non-nil, it specifies a mouse
1612 position as returned by `event-start' and `event-end', and the lookup
1613 occurs in the keymaps associated with it instead of KEY. It can also
1614 be a number or marker, in which case the keymap properties at the
1615 specified buffer position instead of point are used.
1616 */)
1617 (key, accept_default, no_remap, position)
1618 Lisp_Object key, accept_default, no_remap, position;
1619 {
1620 Lisp_Object *maps, value;
1621 int nmaps, i;
1622 struct gcpro gcpro1, gcpro2;
1623 int count = SPECPDL_INDEX ();
1624
1625 GCPRO2 (key, position);
1626
1627 if (NILP (position) && VECTORP (key))
1628 {
1629 Lisp_Object event
1630 /* mouse events may have a symbolic prefix indicating the
1631 scrollbar or mode line */
1632 = AREF (key, SYMBOLP (AREF (key, 0)) && ASIZE (key) > 1 ? 1 : 0);
1633
1634 /* We are not interested in locations without event data */
1635
1636 if (EVENT_HAS_PARAMETERS (event) && CONSP (XCDR (event)))
1637 {
1638 Lisp_Object kind = EVENT_HEAD_KIND (EVENT_HEAD (event));
1639 if (EQ (kind, Qmouse_click))
1640 position = EVENT_START (event);
1641 }
1642 }
1643
1644 /* Key sequences beginning with mouse clicks
1645 are read using the keymaps of the buffer clicked on, not
1646 the current buffer. So we may have to switch the buffer
1647 here. */
1648
1649 if (CONSP (position))
1650 {
1651 Lisp_Object window;
1652
1653 window = POSN_WINDOW (position);
1654
1655 if (WINDOWP (window)
1656 && BUFFERP (XWINDOW (window)->buffer)
1657 && XBUFFER (XWINDOW (window)->buffer) != current_buffer)
1658 {
1659 /* Arrange to go back to the original buffer once we're done
1660 processing the key sequence. We don't use
1661 save_excursion_{save,restore} here, in analogy to
1662 `read-key-sequence' to avoid saving point. Maybe this
1663 would not be a problem here, but it is easier to keep
1664 things the same.
1665 */
1666
1667 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
1668
1669 set_buffer_internal (XBUFFER (XWINDOW (window)->buffer));
1670 }
1671 }
1672
1673 if (! NILP (current_kboard->Voverriding_terminal_local_map))
1674 {
1675 value = Flookup_key (current_kboard->Voverriding_terminal_local_map,
1676 key, accept_default);
1677 if (! NILP (value) && !INTEGERP (value))
1678 goto done;
1679 }
1680 else if (! NILP (Voverriding_local_map))
1681 {
1682 value = Flookup_key (Voverriding_local_map, key, accept_default);
1683 if (! NILP (value) && !INTEGERP (value))
1684 goto done;
1685 }
1686 else
1687 {
1688 Lisp_Object keymap, local_map;
1689 EMACS_INT pt;
1690
1691 pt = INTEGERP (position) ? XINT (position)
1692 : MARKERP (position) ? marker_position (position)
1693 : PT;
1694
1695 local_map = get_local_map (pt, current_buffer, Qlocal_map);
1696 keymap = get_local_map (pt, current_buffer, Qkeymap);
1697
1698 if (CONSP (position))
1699 {
1700 Lisp_Object string;
1701
1702 /* For a mouse click, get the local text-property keymap
1703 of the place clicked on, rather than point. */
1704
1705 if (POSN_INBUFFER_P (position))
1706 {
1707 Lisp_Object pos;
1708
1709 pos = POSN_BUFFER_POSN (position);
1710 if (INTEGERP (pos)
1711 && XINT (pos) >= BEG && XINT (pos) <= Z)
1712 {
1713 local_map = get_local_map (XINT (pos),
1714 current_buffer, Qlocal_map);
1715
1716 keymap = get_local_map (XINT (pos),
1717 current_buffer, Qkeymap);
1718 }
1719 }
1720
1721 /* If on a mode line string with a local keymap,
1722 or for a click on a string, i.e. overlay string or a
1723 string displayed via the `display' property,
1724 consider `local-map' and `keymap' properties of
1725 that string. */
1726
1727 if (string = POSN_STRING (position),
1728 (CONSP (string) && STRINGP (XCAR (string))))
1729 {
1730 Lisp_Object pos, map;
1731
1732 pos = XCDR (string);
1733 string = XCAR (string);
1734 if (INTEGERP (pos)
1735 && XINT (pos) >= 0
1736 && XINT (pos) < SCHARS (string))
1737 {
1738 map = Fget_text_property (pos, Qlocal_map, string);
1739 if (!NILP (map))
1740 local_map = map;
1741
1742 map = Fget_text_property (pos, Qkeymap, string);
1743 if (!NILP (map))
1744 keymap = map;
1745 }
1746 }
1747
1748 }
1749
1750 if (! NILP (keymap))
1751 {
1752 value = Flookup_key (keymap, key, accept_default);
1753 if (! NILP (value) && !INTEGERP (value))
1754 goto done;
1755 }
1756
1757 nmaps = current_minor_maps (0, &maps);
1758 /* Note that all these maps are GCPRO'd
1759 in the places where we found them. */
1760
1761 for (i = 0; i < nmaps; i++)
1762 if (! NILP (maps[i]))
1763 {
1764 value = Flookup_key (maps[i], key, accept_default);
1765 if (! NILP (value) && !INTEGERP (value))
1766 goto done;
1767 }
1768
1769 if (! NILP (local_map))
1770 {
1771 value = Flookup_key (local_map, key, accept_default);
1772 if (! NILP (value) && !INTEGERP (value))
1773 goto done;
1774 }
1775 }
1776
1777 value = Flookup_key (current_global_map, key, accept_default);
1778
1779 done:
1780 unbind_to (count, Qnil);
1781
1782 UNGCPRO;
1783 if (NILP (value) || INTEGERP (value))
1784 return Qnil;
1785
1786 /* If the result of the ordinary keymap lookup is an interactive
1787 command, look for a key binding (ie. remapping) for that command. */
1788
1789 if (NILP (no_remap) && SYMBOLP (value))
1790 {
1791 Lisp_Object value1;
1792 if (value1 = Fcommand_remapping (value, position, Qnil), !NILP (value1))
1793 value = value1;
1794 }
1795
1796 return value;
1797 }
1798
1799 /* GC is possible in this function if it autoloads a keymap. */
1800
1801 DEFUN ("local-key-binding", Flocal_key_binding, Slocal_key_binding, 1, 2, 0,
1802 doc: /* Return the binding for command KEYS in current local keymap only.
1803 KEYS is a string or vector, a sequence of keystrokes.
1804 The binding is probably a symbol with a function definition.
1805
1806 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1807 bindings; see the description of `lookup-key' for more details about this. */)
1808 (keys, accept_default)
1809 Lisp_Object keys, accept_default;
1810 {
1811 register Lisp_Object map;
1812 map = current_buffer->keymap;
1813 if (NILP (map))
1814 return Qnil;
1815 return Flookup_key (map, keys, accept_default);
1816 }
1817
1818 /* GC is possible in this function if it autoloads a keymap. */
1819
1820 DEFUN ("global-key-binding", Fglobal_key_binding, Sglobal_key_binding, 1, 2, 0,
1821 doc: /* Return the binding for command KEYS in current global keymap only.
1822 KEYS is a string or vector, a sequence of keystrokes.
1823 The binding is probably a symbol with a function definition.
1824 This function's return values are the same as those of `lookup-key'
1825 \(which see).
1826
1827 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1828 bindings; see the description of `lookup-key' for more details about this. */)
1829 (keys, accept_default)
1830 Lisp_Object keys, accept_default;
1831 {
1832 return Flookup_key (current_global_map, keys, accept_default);
1833 }
1834
1835 /* GC is possible in this function if it autoloads a keymap. */
1836
1837 DEFUN ("minor-mode-key-binding", Fminor_mode_key_binding, Sminor_mode_key_binding, 1, 2, 0,
1838 doc: /* Find the visible minor mode bindings of KEY.
1839 Return an alist of pairs (MODENAME . BINDING), where MODENAME is
1840 the symbol which names the minor mode binding KEY, and BINDING is
1841 KEY's definition in that mode. In particular, if KEY has no
1842 minor-mode bindings, return nil. If the first binding is a
1843 non-prefix, all subsequent bindings will be omitted, since they would
1844 be ignored. Similarly, the list doesn't include non-prefix bindings
1845 that come after prefix bindings.
1846
1847 If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1848 bindings; see the description of `lookup-key' for more details about this. */)
1849 (key, accept_default)
1850 Lisp_Object key, accept_default;
1851 {
1852 Lisp_Object *modes, *maps;
1853 int nmaps;
1854 Lisp_Object binding;
1855 int i, j;
1856 struct gcpro gcpro1, gcpro2;
1857
1858 nmaps = current_minor_maps (&modes, &maps);
1859 /* Note that all these maps are GCPRO'd
1860 in the places where we found them. */
1861
1862 binding = Qnil;
1863 GCPRO2 (key, binding);
1864
1865 for (i = j = 0; i < nmaps; i++)
1866 if (!NILP (maps[i])
1867 && !NILP (binding = Flookup_key (maps[i], key, accept_default))
1868 && !INTEGERP (binding))
1869 {
1870 if (KEYMAPP (binding))
1871 maps[j++] = Fcons (modes[i], binding);
1872 else if (j == 0)
1873 RETURN_UNGCPRO (Fcons (Fcons (modes[i], binding), Qnil));
1874 }
1875
1876 UNGCPRO;
1877 return Flist (j, maps);
1878 }
1879
1880 DEFUN ("define-prefix-command", Fdefine_prefix_command, Sdefine_prefix_command, 1, 3, 0,
1881 doc: /* Define COMMAND as a prefix command. COMMAND should be a symbol.
1882 A new sparse keymap is stored as COMMAND's function definition and its value.
1883 If a second optional argument MAPVAR is given, the map is stored as
1884 its value instead of as COMMAND's value; but COMMAND is still defined
1885 as a function.
1886 The third optional argument NAME, if given, supplies a menu name
1887 string for the map. This is required to use the keymap as a menu.
1888 This function returns COMMAND. */)
1889 (command, mapvar, name)
1890 Lisp_Object command, mapvar, name;
1891 {
1892 Lisp_Object map;
1893 map = Fmake_sparse_keymap (name);
1894 Ffset (command, map);
1895 if (!NILP (mapvar))
1896 Fset (mapvar, map);
1897 else
1898 Fset (command, map);
1899 return command;
1900 }
1901
1902 DEFUN ("use-global-map", Fuse_global_map, Suse_global_map, 1, 1, 0,
1903 doc: /* Select KEYMAP as the global keymap. */)
1904 (keymap)
1905 Lisp_Object keymap;
1906 {
1907 keymap = get_keymap (keymap, 1, 1);
1908 current_global_map = keymap;
1909
1910 return Qnil;
1911 }
1912
1913 DEFUN ("use-local-map", Fuse_local_map, Suse_local_map, 1, 1, 0,
1914 doc: /* Select KEYMAP as the local keymap.
1915 If KEYMAP is nil, that means no local keymap. */)
1916 (keymap)
1917 Lisp_Object keymap;
1918 {
1919 if (!NILP (keymap))
1920 keymap = get_keymap (keymap, 1, 1);
1921
1922 current_buffer->keymap = keymap;
1923
1924 return Qnil;
1925 }
1926
1927 DEFUN ("current-local-map", Fcurrent_local_map, Scurrent_local_map, 0, 0, 0,
1928 doc: /* Return current buffer's local keymap, or nil if it has none. */)
1929 ()
1930 {
1931 return current_buffer->keymap;
1932 }
1933
1934 DEFUN ("current-global-map", Fcurrent_global_map, Scurrent_global_map, 0, 0, 0,
1935 doc: /* Return the current global keymap. */)
1936 ()
1937 {
1938 return current_global_map;
1939 }
1940
1941 DEFUN ("current-minor-mode-maps", Fcurrent_minor_mode_maps, Scurrent_minor_mode_maps, 0, 0, 0,
1942 doc: /* Return a list of keymaps for the minor modes of the current buffer. */)
1943 ()
1944 {
1945 Lisp_Object *maps;
1946 int nmaps = current_minor_maps (0, &maps);
1947
1948 return Flist (nmaps, maps);
1949 }
1950 \f
1951 /* Help functions for describing and documenting keymaps. */
1952
1953
1954 static void
1955 accessible_keymaps_1 (key, cmd, maps, tail, thisseq, is_metized)
1956 Lisp_Object maps, tail, thisseq, key, cmd;
1957 int is_metized; /* If 1, `key' is assumed to be INTEGERP. */
1958 {
1959 Lisp_Object tem;
1960
1961 cmd = get_keymap (get_keyelt (cmd, 0), 0, 0);
1962 if (NILP (cmd))
1963 return;
1964
1965 /* Look for and break cycles. */
1966 while (!NILP (tem = Frassq (cmd, maps)))
1967 {
1968 Lisp_Object prefix = XCAR (tem);
1969 int lim = XINT (Flength (XCAR (tem)));
1970 if (lim <= XINT (Flength (thisseq)))
1971 { /* This keymap was already seen with a smaller prefix. */
1972 int i = 0;
1973 while (i < lim && EQ (Faref (prefix, make_number (i)),
1974 Faref (thisseq, make_number (i))))
1975 i++;
1976 if (i >= lim)
1977 /* `prefix' is a prefix of `thisseq' => there's a cycle. */
1978 return;
1979 }
1980 /* This occurrence of `cmd' in `maps' does not correspond to a cycle,
1981 but maybe `cmd' occurs again further down in `maps', so keep
1982 looking. */
1983 maps = XCDR (Fmemq (tem, maps));
1984 }
1985
1986 /* If the last key in thisseq is meta-prefix-char,
1987 turn it into a meta-ized keystroke. We know
1988 that the event we're about to append is an
1989 ascii keystroke since we're processing a
1990 keymap table. */
1991 if (is_metized)
1992 {
1993 int meta_bit = meta_modifier;
1994 Lisp_Object last = make_number (XINT (Flength (thisseq)) - 1);
1995 tem = Fcopy_sequence (thisseq);
1996
1997 Faset (tem, last, make_number (XINT (key) | meta_bit));
1998
1999 /* This new sequence is the same length as
2000 thisseq, so stick it in the list right
2001 after this one. */
2002 XSETCDR (tail,
2003 Fcons (Fcons (tem, cmd), XCDR (tail)));
2004 }
2005 else
2006 {
2007 tem = append_key (thisseq, key);
2008 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
2009 }
2010 }
2011
2012 static void
2013 accessible_keymaps_char_table (args, index, cmd)
2014 Lisp_Object args, index, cmd;
2015 {
2016 accessible_keymaps_1 (index, cmd,
2017 XCAR (XCAR (args)),
2018 XCAR (XCDR (args)),
2019 XCDR (XCDR (args)),
2020 XINT (XCDR (XCAR (args))));
2021 }
2022
2023 /* This function cannot GC. */
2024
2025 DEFUN ("accessible-keymaps", Faccessible_keymaps, Saccessible_keymaps,
2026 1, 2, 0,
2027 doc: /* Find all keymaps accessible via prefix characters from KEYMAP.
2028 Returns a list of elements of the form (KEYS . MAP), where the sequence
2029 KEYS starting from KEYMAP gets you to MAP. These elements are ordered
2030 so that the KEYS increase in length. The first element is ([] . KEYMAP).
2031 An optional argument PREFIX, if non-nil, should be a key sequence;
2032 then the value includes only maps for prefixes that start with PREFIX. */)
2033 (keymap, prefix)
2034 Lisp_Object keymap, prefix;
2035 {
2036 Lisp_Object maps, tail;
2037 int prefixlen = 0;
2038
2039 /* no need for gcpro because we don't autoload any keymaps. */
2040
2041 if (!NILP (prefix))
2042 prefixlen = XINT (Flength (prefix));
2043
2044 if (!NILP (prefix))
2045 {
2046 /* If a prefix was specified, start with the keymap (if any) for
2047 that prefix, so we don't waste time considering other prefixes. */
2048 Lisp_Object tem;
2049 tem = Flookup_key (keymap, prefix, Qt);
2050 /* Flookup_key may give us nil, or a number,
2051 if the prefix is not defined in this particular map.
2052 It might even give us a list that isn't a keymap. */
2053 tem = get_keymap (tem, 0, 0);
2054 if (CONSP (tem))
2055 {
2056 /* Convert PREFIX to a vector now, so that later on
2057 we don't have to deal with the possibility of a string. */
2058 if (STRINGP (prefix))
2059 {
2060 int i, i_byte, c;
2061 Lisp_Object copy;
2062
2063 copy = Fmake_vector (make_number (SCHARS (prefix)), Qnil);
2064 for (i = 0, i_byte = 0; i < SCHARS (prefix);)
2065 {
2066 int i_before = i;
2067
2068 FETCH_STRING_CHAR_ADVANCE (c, prefix, i, i_byte);
2069 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
2070 c ^= 0200 | meta_modifier;
2071 ASET (copy, i_before, make_number (c));
2072 }
2073 prefix = copy;
2074 }
2075 maps = Fcons (Fcons (prefix, tem), Qnil);
2076 }
2077 else
2078 return Qnil;
2079 }
2080 else
2081 maps = Fcons (Fcons (Fmake_vector (make_number (0), Qnil),
2082 get_keymap (keymap, 1, 0)),
2083 Qnil);
2084
2085 /* For each map in the list maps,
2086 look at any other maps it points to,
2087 and stick them at the end if they are not already in the list.
2088
2089 This is a breadth-first traversal, where tail is the queue of
2090 nodes, and maps accumulates a list of all nodes visited. */
2091
2092 for (tail = maps; CONSP (tail); tail = XCDR (tail))
2093 {
2094 register Lisp_Object thisseq, thismap;
2095 Lisp_Object last;
2096 /* Does the current sequence end in the meta-prefix-char? */
2097 int is_metized;
2098
2099 thisseq = Fcar (Fcar (tail));
2100 thismap = Fcdr (Fcar (tail));
2101 last = make_number (XINT (Flength (thisseq)) - 1);
2102 is_metized = (XINT (last) >= 0
2103 /* Don't metize the last char of PREFIX. */
2104 && XINT (last) >= prefixlen
2105 && EQ (Faref (thisseq, last), meta_prefix_char));
2106
2107 for (; CONSP (thismap); thismap = XCDR (thismap))
2108 {
2109 Lisp_Object elt;
2110
2111 elt = XCAR (thismap);
2112
2113 QUIT;
2114
2115 if (CHAR_TABLE_P (elt))
2116 {
2117 Lisp_Object indices[3];
2118
2119 map_char_table (accessible_keymaps_char_table, Qnil, elt,
2120 elt, Fcons (Fcons (maps, make_number (is_metized)),
2121 Fcons (tail, thisseq)),
2122 0, indices);
2123 }
2124 else if (VECTORP (elt))
2125 {
2126 register int i;
2127
2128 /* Vector keymap. Scan all the elements. */
2129 for (i = 0; i < ASIZE (elt); i++)
2130 accessible_keymaps_1 (make_number (i), AREF (elt, i),
2131 maps, tail, thisseq, is_metized);
2132
2133 }
2134 else if (CONSP (elt))
2135 accessible_keymaps_1 (XCAR (elt), XCDR (elt),
2136 maps, tail, thisseq,
2137 is_metized && INTEGERP (XCAR (elt)));
2138
2139 }
2140 }
2141
2142 return maps;
2143 }
2144 \f
2145 Lisp_Object Qsingle_key_description, Qkey_description;
2146
2147 /* This function cannot GC. */
2148
2149 DEFUN ("key-description", Fkey_description, Skey_description, 1, 2, 0,
2150 doc: /* Return a pretty description of key-sequence KEYS.
2151 Optional arg PREFIX is the sequence of keys leading up to KEYS.
2152 Control characters turn into "C-foo" sequences, meta into "M-foo",
2153 spaces are put between sequence elements, etc. */)
2154 (keys, prefix)
2155 Lisp_Object keys, prefix;
2156 {
2157 int len = 0;
2158 int i, i_byte;
2159 Lisp_Object *args;
2160 int size = XINT (Flength (keys));
2161 Lisp_Object list;
2162 Lisp_Object sep = build_string (" ");
2163 Lisp_Object key;
2164 int add_meta = 0;
2165
2166 if (!NILP (prefix))
2167 size += XINT (Flength (prefix));
2168
2169 /* This has one extra element at the end that we don't pass to Fconcat. */
2170 args = (Lisp_Object *) alloca (size * 4 * sizeof (Lisp_Object));
2171
2172 /* In effect, this computes
2173 (mapconcat 'single-key-description keys " ")
2174 but we shouldn't use mapconcat because it can do GC. */
2175
2176 next_list:
2177 if (!NILP (prefix))
2178 list = prefix, prefix = Qnil;
2179 else if (!NILP (keys))
2180 list = keys, keys = Qnil;
2181 else
2182 {
2183 if (add_meta)
2184 {
2185 args[len] = Fsingle_key_description (meta_prefix_char, Qnil);
2186 len += 2;
2187 }
2188 else if (len == 0)
2189 return empty_string;
2190 return Fconcat (len - 1, args);
2191 }
2192
2193 if (STRINGP (list))
2194 size = SCHARS (list);
2195 else if (VECTORP (list))
2196 size = XVECTOR (list)->size;
2197 else if (CONSP (list))
2198 size = XINT (Flength (list));
2199 else
2200 wrong_type_argument (Qarrayp, list);
2201
2202 i = i_byte = 0;
2203
2204 while (i < size)
2205 {
2206 if (STRINGP (list))
2207 {
2208 int c;
2209 FETCH_STRING_CHAR_ADVANCE (c, list, i, i_byte);
2210 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
2211 c ^= 0200 | meta_modifier;
2212 XSETFASTINT (key, c);
2213 }
2214 else if (VECTORP (list))
2215 {
2216 key = AREF (list, i++);
2217 }
2218 else
2219 {
2220 key = XCAR (list);
2221 list = XCDR (list);
2222 i++;
2223 }
2224
2225 if (add_meta)
2226 {
2227 if (!INTEGERP (key)
2228 || EQ (key, meta_prefix_char)
2229 || (XINT (key) & meta_modifier))
2230 {
2231 args[len++] = Fsingle_key_description (meta_prefix_char, Qnil);
2232 args[len++] = sep;
2233 if (EQ (key, meta_prefix_char))
2234 continue;
2235 }
2236 else
2237 XSETINT (key, (XINT (key) | meta_modifier) & ~0x80);
2238 add_meta = 0;
2239 }
2240 else if (EQ (key, meta_prefix_char))
2241 {
2242 add_meta = 1;
2243 continue;
2244 }
2245 args[len++] = Fsingle_key_description (key, Qnil);
2246 args[len++] = sep;
2247 }
2248 goto next_list;
2249 }
2250
2251
2252 char *
2253 push_key_description (c, p, force_multibyte)
2254 register unsigned int c;
2255 register char *p;
2256 int force_multibyte;
2257 {
2258 unsigned c2;
2259 int valid_p;
2260
2261 /* Clear all the meaningless bits above the meta bit. */
2262 c &= meta_modifier | ~ - meta_modifier;
2263 c2 = c & ~(alt_modifier | ctrl_modifier | hyper_modifier
2264 | meta_modifier | shift_modifier | super_modifier);
2265
2266 valid_p = SINGLE_BYTE_CHAR_P (c2) || char_valid_p (c2, 0);
2267 if (! valid_p)
2268 {
2269 /* KEY_DESCRIPTION_SIZE is large enough for this. */
2270 p += sprintf (p, "[%d]", c);
2271 return p;
2272 }
2273
2274 if (c & alt_modifier)
2275 {
2276 *p++ = 'A';
2277 *p++ = '-';
2278 c -= alt_modifier;
2279 }
2280 if ((c & ctrl_modifier) != 0
2281 || (c2 < ' ' && c2 != 27 && c2 != '\t' && c2 != Ctl ('M')))
2282 {
2283 *p++ = 'C';
2284 *p++ = '-';
2285 c &= ~ctrl_modifier;
2286 }
2287 if (c & hyper_modifier)
2288 {
2289 *p++ = 'H';
2290 *p++ = '-';
2291 c -= hyper_modifier;
2292 }
2293 if (c & meta_modifier)
2294 {
2295 *p++ = 'M';
2296 *p++ = '-';
2297 c -= meta_modifier;
2298 }
2299 if (c & shift_modifier)
2300 {
2301 *p++ = 'S';
2302 *p++ = '-';
2303 c -= shift_modifier;
2304 }
2305 if (c & super_modifier)
2306 {
2307 *p++ = 's';
2308 *p++ = '-';
2309 c -= super_modifier;
2310 }
2311 if (c < 040)
2312 {
2313 if (c == 033)
2314 {
2315 *p++ = 'E';
2316 *p++ = 'S';
2317 *p++ = 'C';
2318 }
2319 else if (c == '\t')
2320 {
2321 *p++ = 'T';
2322 *p++ = 'A';
2323 *p++ = 'B';
2324 }
2325 else if (c == Ctl ('M'))
2326 {
2327 *p++ = 'R';
2328 *p++ = 'E';
2329 *p++ = 'T';
2330 }
2331 else
2332 {
2333 /* `C-' already added above. */
2334 if (c > 0 && c <= Ctl ('Z'))
2335 *p++ = c + 0140;
2336 else
2337 *p++ = c + 0100;
2338 }
2339 }
2340 else if (c == 0177)
2341 {
2342 *p++ = 'D';
2343 *p++ = 'E';
2344 *p++ = 'L';
2345 }
2346 else if (c == ' ')
2347 {
2348 *p++ = 'S';
2349 *p++ = 'P';
2350 *p++ = 'C';
2351 }
2352 else if (c < 128
2353 || (NILP (current_buffer->enable_multibyte_characters)
2354 && SINGLE_BYTE_CHAR_P (c)
2355 && !force_multibyte))
2356 {
2357 *p++ = c;
2358 }
2359 else
2360 {
2361 if (force_multibyte)
2362 {
2363 if (SINGLE_BYTE_CHAR_P (c))
2364 c = unibyte_char_to_multibyte (c);
2365 p += CHAR_STRING (c, p);
2366 }
2367 else if (NILP (current_buffer->enable_multibyte_characters))
2368 {
2369 int bit_offset;
2370 *p++ = '\\';
2371 /* The biggest character code uses 19 bits. */
2372 for (bit_offset = 18; bit_offset >= 0; bit_offset -= 3)
2373 {
2374 if (c >= (1 << bit_offset))
2375 *p++ = ((c & (7 << bit_offset)) >> bit_offset) + '0';
2376 }
2377 }
2378 else
2379 p += CHAR_STRING (c, p);
2380 }
2381
2382 return p;
2383 }
2384
2385 /* This function cannot GC. */
2386
2387 DEFUN ("single-key-description", Fsingle_key_description,
2388 Ssingle_key_description, 1, 2, 0,
2389 doc: /* Return a pretty description of command character KEY.
2390 Control characters turn into C-whatever, etc.
2391 Optional argument NO-ANGLES non-nil means don't put angle brackets
2392 around function keys and event symbols. */)
2393 (key, no_angles)
2394 Lisp_Object key, no_angles;
2395 {
2396 if (CONSP (key) && lucid_event_type_list_p (key))
2397 key = Fevent_convert_list (key);
2398
2399 key = EVENT_HEAD (key);
2400
2401 if (INTEGERP (key)) /* Normal character */
2402 {
2403 unsigned int charset, c1, c2;
2404 int without_bits = XINT (key) & ~((-1) << CHARACTERBITS);
2405
2406 if (SINGLE_BYTE_CHAR_P (without_bits))
2407 charset = 0;
2408 else
2409 SPLIT_CHAR (without_bits, charset, c1, c2);
2410
2411 if (! CHAR_VALID_P (without_bits, 1))
2412 {
2413 char buf[256];
2414
2415 sprintf (buf, "Invalid char code %d", XINT (key));
2416 return build_string (buf);
2417 }
2418 else if (charset
2419 && ((c1 == 0 && c2 == -1) || c2 == 0))
2420 {
2421 /* Handle a generic character. */
2422 Lisp_Object name;
2423 char buf[256];
2424
2425 name = CHARSET_TABLE_INFO (charset, CHARSET_SHORT_NAME_IDX);
2426 CHECK_STRING (name);
2427 if (c1 == 0)
2428 /* Only a charset is specified. */
2429 sprintf (buf, "Generic char %d: all of ", without_bits);
2430 else
2431 /* 1st code-point of 2-dimensional charset is specified. */
2432 sprintf (buf, "Generic char %d: row %d of ", without_bits, c1);
2433 return concat2 (build_string (buf), name);
2434 }
2435 else
2436 {
2437 char tem[KEY_DESCRIPTION_SIZE], *end;
2438 int nbytes, nchars;
2439 Lisp_Object string;
2440
2441 end = push_key_description (XUINT (key), tem, 1);
2442 nbytes = end - tem;
2443 nchars = multibyte_chars_in_text (tem, nbytes);
2444 if (nchars == nbytes)
2445 {
2446 *end = '\0';
2447 string = build_string (tem);
2448 }
2449 else
2450 string = make_multibyte_string (tem, nchars, nbytes);
2451 return string;
2452 }
2453 }
2454 else if (SYMBOLP (key)) /* Function key or event-symbol */
2455 {
2456 if (NILP (no_angles))
2457 {
2458 char *buffer
2459 = (char *) alloca (SBYTES (SYMBOL_NAME (key)) + 5);
2460 sprintf (buffer, "<%s>", SDATA (SYMBOL_NAME (key)));
2461 return build_string (buffer);
2462 }
2463 else
2464 return Fsymbol_name (key);
2465 }
2466 else if (STRINGP (key)) /* Buffer names in the menubar. */
2467 return Fcopy_sequence (key);
2468 else
2469 error ("KEY must be an integer, cons, symbol, or string");
2470 return Qnil;
2471 }
2472
2473 char *
2474 push_text_char_description (c, p)
2475 register unsigned int c;
2476 register char *p;
2477 {
2478 if (c >= 0200)
2479 {
2480 *p++ = 'M';
2481 *p++ = '-';
2482 c -= 0200;
2483 }
2484 if (c < 040)
2485 {
2486 *p++ = '^';
2487 *p++ = c + 64; /* 'A' - 1 */
2488 }
2489 else if (c == 0177)
2490 {
2491 *p++ = '^';
2492 *p++ = '?';
2493 }
2494 else
2495 *p++ = c;
2496 return p;
2497 }
2498
2499 /* This function cannot GC. */
2500
2501 DEFUN ("text-char-description", Ftext_char_description, Stext_char_description, 1, 1, 0,
2502 doc: /* Return a pretty description of file-character CHARACTER.
2503 Control characters turn into "^char", etc. This differs from
2504 `single-key-description' which turns them into "C-char".
2505 Also, this function recognizes the 2**7 bit as the Meta character,
2506 whereas `single-key-description' uses the 2**27 bit for Meta.
2507 See Info node `(elisp)Describing Characters' for examples. */)
2508 (character)
2509 Lisp_Object character;
2510 {
2511 /* Currently MAX_MULTIBYTE_LENGTH is 4 (< 6). */
2512 unsigned char str[6];
2513 int c;
2514
2515 CHECK_NUMBER (character);
2516
2517 c = XINT (character);
2518 if (!SINGLE_BYTE_CHAR_P (c))
2519 {
2520 int len = CHAR_STRING (c, str);
2521
2522 return make_multibyte_string (str, 1, len);
2523 }
2524
2525 *push_text_char_description (c & 0377, str) = 0;
2526
2527 return build_string (str);
2528 }
2529
2530 /* Return non-zero if SEQ contains only ASCII characters, perhaps with
2531 a meta bit. */
2532 static int
2533 ascii_sequence_p (seq)
2534 Lisp_Object seq;
2535 {
2536 int i;
2537 int len = XINT (Flength (seq));
2538
2539 for (i = 0; i < len; i++)
2540 {
2541 Lisp_Object ii, elt;
2542
2543 XSETFASTINT (ii, i);
2544 elt = Faref (seq, ii);
2545
2546 if (!INTEGERP (elt)
2547 || (XUINT (elt) & ~CHAR_META) >= 0x80)
2548 return 0;
2549 }
2550
2551 return 1;
2552 }
2553
2554 \f
2555 /* where-is - finding a command in a set of keymaps. */
2556
2557 static Lisp_Object where_is_internal ();
2558 static Lisp_Object where_is_internal_1 ();
2559 static void where_is_internal_2 ();
2560
2561 /* Like Flookup_key, but uses a list of keymaps SHADOW instead of a single map.
2562 Returns the first non-nil binding found in any of those maps. */
2563
2564 static Lisp_Object
2565 shadow_lookup (shadow, key, flag)
2566 Lisp_Object shadow, key, flag;
2567 {
2568 Lisp_Object tail, value;
2569
2570 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
2571 {
2572 value = Flookup_key (XCAR (tail), key, flag);
2573 if (NATNUMP (value))
2574 {
2575 value = Flookup_key (XCAR (tail),
2576 Fsubstring (key, make_number (0), value), flag);
2577 if (!NILP (value))
2578 return Qnil;
2579 }
2580 else if (!NILP (value))
2581 return value;
2582 }
2583 return Qnil;
2584 }
2585
2586 static Lisp_Object Vmouse_events;
2587
2588 /* This function can GC if Flookup_key autoloads any keymaps. */
2589
2590 static Lisp_Object
2591 where_is_internal (definition, keymaps, firstonly, noindirect, no_remap)
2592 Lisp_Object definition, keymaps;
2593 Lisp_Object firstonly, noindirect, no_remap;
2594 {
2595 Lisp_Object maps = Qnil;
2596 Lisp_Object found, sequences;
2597 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2598 /* 1 means ignore all menu bindings entirely. */
2599 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2600
2601 found = keymaps;
2602 while (CONSP (found))
2603 {
2604 maps =
2605 nconc2 (maps,
2606 Faccessible_keymaps (get_keymap (XCAR (found), 1, 0), Qnil));
2607 found = XCDR (found);
2608 }
2609
2610 GCPRO5 (definition, keymaps, maps, found, sequences);
2611 found = Qnil;
2612 sequences = Qnil;
2613
2614 /* If this command is remapped, then it has no key bindings
2615 of its own. */
2616 if (NILP (no_remap)
2617 && SYMBOLP (definition)
2618 && !NILP (Fcommand_remapping (definition, Qnil, keymaps)))
2619 RETURN_UNGCPRO (Qnil);
2620
2621 for (; !NILP (maps); maps = Fcdr (maps))
2622 {
2623 /* Key sequence to reach map, and the map that it reaches */
2624 register Lisp_Object this, map, tem;
2625
2626 /* In order to fold [META-PREFIX-CHAR CHAR] sequences into
2627 [M-CHAR] sequences, check if last character of the sequence
2628 is the meta-prefix char. */
2629 Lisp_Object last;
2630 int last_is_meta;
2631
2632 this = Fcar (Fcar (maps));
2633 map = Fcdr (Fcar (maps));
2634 last = make_number (XINT (Flength (this)) - 1);
2635 last_is_meta = (XINT (last) >= 0
2636 && EQ (Faref (this, last), meta_prefix_char));
2637
2638 /* if (nomenus && !ascii_sequence_p (this)) */
2639 if (nomenus && XINT (last) >= 0
2640 && SYMBOLP (tem = Faref (this, make_number (0)))
2641 && !NILP (Fmemq (XCAR (parse_modifiers (tem)), Vmouse_events)))
2642 /* If no menu entries should be returned, skip over the
2643 keymaps bound to `menu-bar' and `tool-bar' and other
2644 non-ascii prefixes like `C-down-mouse-2'. */
2645 continue;
2646
2647 QUIT;
2648
2649 while (CONSP (map))
2650 {
2651 /* Because the code we want to run on each binding is rather
2652 large, we don't want to have two separate loop bodies for
2653 sparse keymap bindings and tables; we want to iterate one
2654 loop body over both keymap and vector bindings.
2655
2656 For this reason, if Fcar (map) is a vector, we don't
2657 advance map to the next element until i indicates that we
2658 have finished off the vector. */
2659 Lisp_Object elt, key, binding;
2660 elt = XCAR (map);
2661 map = XCDR (map);
2662
2663 sequences = Qnil;
2664
2665 QUIT;
2666
2667 /* Set key and binding to the current key and binding, and
2668 advance map and i to the next binding. */
2669 if (VECTORP (elt))
2670 {
2671 Lisp_Object sequence;
2672 int i;
2673 /* In a vector, look at each element. */
2674 for (i = 0; i < XVECTOR (elt)->size; i++)
2675 {
2676 binding = AREF (elt, i);
2677 XSETFASTINT (key, i);
2678 sequence = where_is_internal_1 (binding, key, definition,
2679 noindirect, this,
2680 last, nomenus, last_is_meta);
2681 if (!NILP (sequence))
2682 sequences = Fcons (sequence, sequences);
2683 }
2684 }
2685 else if (CHAR_TABLE_P (elt))
2686 {
2687 Lisp_Object indices[3];
2688 Lisp_Object args;
2689
2690 args = Fcons (Fcons (Fcons (definition, noindirect),
2691 Qnil), /* Result accumulator. */
2692 Fcons (Fcons (this, last),
2693 Fcons (make_number (nomenus),
2694 make_number (last_is_meta))));
2695 map_char_table (where_is_internal_2, Qnil, elt, elt, args,
2696 0, indices);
2697 sequences = XCDR (XCAR (args));
2698 }
2699 else if (CONSP (elt))
2700 {
2701 Lisp_Object sequence;
2702
2703 key = XCAR (elt);
2704 binding = XCDR (elt);
2705
2706 sequence = where_is_internal_1 (binding, key, definition,
2707 noindirect, this,
2708 last, nomenus, last_is_meta);
2709 if (!NILP (sequence))
2710 sequences = Fcons (sequence, sequences);
2711 }
2712
2713
2714 while (!NILP (sequences))
2715 {
2716 Lisp_Object sequence, remapped, function;
2717
2718 sequence = XCAR (sequences);
2719 sequences = XCDR (sequences);
2720
2721 /* If the current sequence is a command remapping with
2722 format [remap COMMAND], find the key sequences
2723 which run COMMAND, and use those sequences instead. */
2724 remapped = Qnil;
2725 if (NILP (no_remap)
2726 && VECTORP (sequence) && XVECTOR (sequence)->size == 2
2727 && EQ (AREF (sequence, 0), Qremap)
2728 && (function = AREF (sequence, 1), SYMBOLP (function)))
2729 {
2730 Lisp_Object remapped1;
2731
2732 remapped1 = where_is_internal (function, keymaps, firstonly, noindirect, Qt);
2733 if (CONSP (remapped1))
2734 {
2735 /* Verify that this key binding actually maps to the
2736 remapped command (see below). */
2737 if (!EQ (shadow_lookup (keymaps, XCAR (remapped1), Qnil), function))
2738 continue;
2739 sequence = XCAR (remapped1);
2740 remapped = XCDR (remapped1);
2741 goto record_sequence;
2742 }
2743 }
2744
2745 /* Verify that this key binding is not shadowed by another
2746 binding for the same key, before we say it exists.
2747
2748 Mechanism: look for local definition of this key and if
2749 it is defined and does not match what we found then
2750 ignore this key.
2751
2752 Either nil or number as value from Flookup_key
2753 means undefined. */
2754 if (!EQ (shadow_lookup (keymaps, sequence, Qnil), definition))
2755 continue;
2756
2757 record_sequence:
2758 /* Don't annoy user with strings from a menu such as
2759 Select Paste. Change them all to "(any string)",
2760 so that there seems to be only one menu item
2761 to report. */
2762 if (! NILP (sequence))
2763 {
2764 Lisp_Object tem;
2765 tem = Faref (sequence, make_number (XVECTOR (sequence)->size - 1));
2766 if (STRINGP (tem))
2767 Faset (sequence, make_number (XVECTOR (sequence)->size - 1),
2768 build_string ("(any string)"));
2769 }
2770
2771 /* It is a true unshadowed match. Record it, unless it's already
2772 been seen (as could happen when inheriting keymaps). */
2773 if (NILP (Fmember (sequence, found)))
2774 found = Fcons (sequence, found);
2775
2776 /* If firstonly is Qnon_ascii, then we can return the first
2777 binding we find. If firstonly is not Qnon_ascii but not
2778 nil, then we should return the first ascii-only binding
2779 we find. */
2780 if (EQ (firstonly, Qnon_ascii))
2781 RETURN_UNGCPRO (sequence);
2782 else if (!NILP (firstonly) && ascii_sequence_p (sequence))
2783 RETURN_UNGCPRO (sequence);
2784
2785 if (CONSP (remapped))
2786 {
2787 sequence = XCAR (remapped);
2788 remapped = XCDR (remapped);
2789 goto record_sequence;
2790 }
2791 }
2792 }
2793 }
2794
2795 UNGCPRO;
2796
2797 found = Fnreverse (found);
2798
2799 /* firstonly may have been t, but we may have gone all the way through
2800 the keymaps without finding an all-ASCII key sequence. So just
2801 return the best we could find. */
2802 if (!NILP (firstonly))
2803 return Fcar (found);
2804
2805 return found;
2806 }
2807
2808 DEFUN ("where-is-internal", Fwhere_is_internal, Swhere_is_internal, 1, 5, 0,
2809 doc: /* Return list of keys that invoke DEFINITION.
2810 If KEYMAP is a keymap, search only KEYMAP and the global keymap.
2811 If KEYMAP is nil, search all the currently active keymaps.
2812 If KEYMAP is a list of keymaps, search only those keymaps.
2813
2814 If optional 3rd arg FIRSTONLY is non-nil, return the first key sequence found,
2815 rather than a list of all possible key sequences.
2816 If FIRSTONLY is the symbol `non-ascii', return the first binding found,
2817 no matter what it is.
2818 If FIRSTONLY has another non-nil value, prefer sequences of ASCII characters
2819 \(or their meta variants) and entirely reject menu bindings.
2820
2821 If optional 4th arg NOINDIRECT is non-nil, don't follow indirections
2822 to other keymaps or slots. This makes it possible to search for an
2823 indirect definition itself.
2824
2825 If optional 5th arg NO-REMAP is non-nil, don't search for key sequences
2826 that invoke a command which is remapped to DEFINITION, but include the
2827 remapped command in the returned list. */)
2828 (definition, keymap, firstonly, noindirect, no_remap)
2829 Lisp_Object definition, keymap;
2830 Lisp_Object firstonly, noindirect, no_remap;
2831 {
2832 Lisp_Object sequences, keymaps;
2833 /* 1 means ignore all menu bindings entirely. */
2834 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2835 Lisp_Object result;
2836
2837 /* Find the relevant keymaps. */
2838 if (CONSP (keymap) && KEYMAPP (XCAR (keymap)))
2839 keymaps = keymap;
2840 else if (!NILP (keymap))
2841 keymaps = Fcons (keymap, Fcons (current_global_map, Qnil));
2842 else
2843 keymaps = Fcurrent_active_maps (Qnil);
2844
2845 /* Only use caching for the menubar (i.e. called with (def nil t nil).
2846 We don't really need to check `keymap'. */
2847 if (nomenus && NILP (noindirect) && NILP (keymap))
2848 {
2849 Lisp_Object *defns;
2850 int i, j, n;
2851 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2852
2853 /* Check heuristic-consistency of the cache. */
2854 if (NILP (Fequal (keymaps, where_is_cache_keymaps)))
2855 where_is_cache = Qnil;
2856
2857 if (NILP (where_is_cache))
2858 {
2859 /* We need to create the cache. */
2860 Lisp_Object args[2];
2861 where_is_cache = Fmake_hash_table (0, args);
2862 where_is_cache_keymaps = Qt;
2863
2864 /* Fill in the cache. */
2865 GCPRO5 (definition, keymaps, firstonly, noindirect, no_remap);
2866 where_is_internal (definition, keymaps, firstonly, noindirect, no_remap);
2867 UNGCPRO;
2868
2869 where_is_cache_keymaps = keymaps;
2870 }
2871
2872 /* We want to process definitions from the last to the first.
2873 Instead of consing, copy definitions to a vector and step
2874 over that vector. */
2875 sequences = Fgethash (definition, where_is_cache, Qnil);
2876 n = XINT (Flength (sequences));
2877 defns = (Lisp_Object *) alloca (n * sizeof *defns);
2878 for (i = 0; CONSP (sequences); sequences = XCDR (sequences))
2879 defns[i++] = XCAR (sequences);
2880
2881 /* Verify that the key bindings are not shadowed. Note that
2882 the following can GC. */
2883 GCPRO2 (definition, keymaps);
2884 result = Qnil;
2885 j = -1;
2886 for (i = n - 1; i >= 0; --i)
2887 if (EQ (shadow_lookup (keymaps, defns[i], Qnil), definition))
2888 {
2889 if (ascii_sequence_p (defns[i]))
2890 break;
2891 else if (j < 0)
2892 j = i;
2893 }
2894
2895 result = i >= 0 ? defns[i] : (j >= 0 ? defns[j] : Qnil);
2896 UNGCPRO;
2897 }
2898 else
2899 {
2900 /* Kill the cache so that where_is_internal_1 doesn't think
2901 we're filling it up. */
2902 where_is_cache = Qnil;
2903 result = where_is_internal (definition, keymaps, firstonly, noindirect, no_remap);
2904 }
2905
2906 return result;
2907 }
2908
2909 /* This is the function that Fwhere_is_internal calls using map_char_table.
2910 ARGS has the form
2911 (((DEFINITION . NOINDIRECT) . (KEYMAP . RESULT))
2912 .
2913 ((THIS . LAST) . (NOMENUS . LAST_IS_META)))
2914 Since map_char_table doesn't really use the return value from this function,
2915 we the result append to RESULT, the slot in ARGS.
2916
2917 This function can GC because it calls where_is_internal_1 which can
2918 GC. */
2919
2920 static void
2921 where_is_internal_2 (args, key, binding)
2922 Lisp_Object args, key, binding;
2923 {
2924 Lisp_Object definition, noindirect, this, last;
2925 Lisp_Object result, sequence;
2926 int nomenus, last_is_meta;
2927 struct gcpro gcpro1, gcpro2, gcpro3;
2928
2929 GCPRO3 (args, key, binding);
2930 result = XCDR (XCAR (args));
2931 definition = XCAR (XCAR (XCAR (args)));
2932 noindirect = XCDR (XCAR (XCAR (args)));
2933 this = XCAR (XCAR (XCDR (args)));
2934 last = XCDR (XCAR (XCDR (args)));
2935 nomenus = XFASTINT (XCAR (XCDR (XCDR (args))));
2936 last_is_meta = XFASTINT (XCDR (XCDR (XCDR (args))));
2937
2938 sequence = where_is_internal_1 (binding, key, definition, noindirect,
2939 this, last, nomenus, last_is_meta);
2940
2941 if (!NILP (sequence))
2942 XSETCDR (XCAR (args), Fcons (sequence, result));
2943
2944 UNGCPRO;
2945 }
2946
2947
2948 /* This function can GC because get_keyelt can. */
2949
2950 static Lisp_Object
2951 where_is_internal_1 (binding, key, definition, noindirect, this, last,
2952 nomenus, last_is_meta)
2953 Lisp_Object binding, key, definition, noindirect, this, last;
2954 int nomenus, last_is_meta;
2955 {
2956 Lisp_Object sequence;
2957
2958 /* Search through indirections unless that's not wanted. */
2959 if (NILP (noindirect))
2960 binding = get_keyelt (binding, 0);
2961
2962 /* End this iteration if this element does not match
2963 the target. */
2964
2965 if (!(!NILP (where_is_cache) /* everything "matches" during cache-fill. */
2966 || EQ (binding, definition)
2967 || (CONSP (definition) && !NILP (Fequal (binding, definition)))))
2968 /* Doesn't match. */
2969 return Qnil;
2970
2971 /* We have found a match. Construct the key sequence where we found it. */
2972 if (INTEGERP (key) && last_is_meta)
2973 {
2974 sequence = Fcopy_sequence (this);
2975 Faset (sequence, last, make_number (XINT (key) | meta_modifier));
2976 }
2977 else
2978 sequence = append_key (this, key);
2979
2980 if (!NILP (where_is_cache))
2981 {
2982 Lisp_Object sequences = Fgethash (binding, where_is_cache, Qnil);
2983 Fputhash (binding, Fcons (sequence, sequences), where_is_cache);
2984 return Qnil;
2985 }
2986 else
2987 return sequence;
2988 }
2989 \f
2990 /* describe-bindings - summarizing all the bindings in a set of keymaps. */
2991
2992 DEFUN ("describe-buffer-bindings", Fdescribe_buffer_bindings, Sdescribe_buffer_bindings, 1, 3, 0,
2993 doc: /* Insert the list of all defined keys and their definitions.
2994 The list is inserted in the current buffer, while the bindings are
2995 looked up in BUFFER.
2996 The optional argument PREFIX, if non-nil, should be a key sequence;
2997 then we display only bindings that start with that prefix.
2998 The optional argument MENUS, if non-nil, says to mention menu bindings.
2999 \(Ordinarily these are omitted from the output.) */)
3000 (buffer, prefix, menus)
3001 Lisp_Object buffer, prefix, menus;
3002 {
3003 Lisp_Object outbuf, shadow;
3004 int nomenu = NILP (menus);
3005 register Lisp_Object start1;
3006 struct gcpro gcpro1;
3007
3008 char *alternate_heading
3009 = "\
3010 Keyboard translations:\n\n\
3011 You type Translation\n\
3012 -------- -----------\n";
3013
3014 CHECK_BUFFER (buffer);
3015
3016 shadow = Qnil;
3017 GCPRO1 (shadow);
3018
3019 outbuf = Fcurrent_buffer ();
3020
3021 /* Report on alternates for keys. */
3022 if (STRINGP (Vkeyboard_translate_table) && !NILP (prefix))
3023 {
3024 int c;
3025 const unsigned char *translate = SDATA (Vkeyboard_translate_table);
3026 int translate_len = SCHARS (Vkeyboard_translate_table);
3027
3028 for (c = 0; c < translate_len; c++)
3029 if (translate[c] != c)
3030 {
3031 char buf[KEY_DESCRIPTION_SIZE];
3032 char *bufend;
3033
3034 if (alternate_heading)
3035 {
3036 insert_string (alternate_heading);
3037 alternate_heading = 0;
3038 }
3039
3040 bufend = push_key_description (translate[c], buf, 1);
3041 insert (buf, bufend - buf);
3042 Findent_to (make_number (16), make_number (1));
3043 bufend = push_key_description (c, buf, 1);
3044 insert (buf, bufend - buf);
3045
3046 insert ("\n", 1);
3047
3048 /* Insert calls signal_after_change which may GC. */
3049 translate = SDATA (Vkeyboard_translate_table);
3050 }
3051
3052 insert ("\n", 1);
3053 }
3054
3055 if (!NILP (Vkey_translation_map))
3056 describe_map_tree (Vkey_translation_map, 0, Qnil, prefix,
3057 "Key translations", nomenu, 1, 0, 0);
3058
3059
3060 /* Print the (major mode) local map. */
3061 start1 = Qnil;
3062 if (!NILP (current_kboard->Voverriding_terminal_local_map))
3063 start1 = current_kboard->Voverriding_terminal_local_map;
3064 else if (!NILP (Voverriding_local_map))
3065 start1 = Voverriding_local_map;
3066
3067 if (!NILP (start1))
3068 {
3069 describe_map_tree (start1, 1, shadow, prefix,
3070 "\f\nOverriding Bindings", nomenu, 0, 0, 0);
3071 shadow = Fcons (start1, shadow);
3072 }
3073 else
3074 {
3075 /* Print the minor mode and major mode keymaps. */
3076 int i, nmaps;
3077 Lisp_Object *modes, *maps;
3078
3079 /* Temporarily switch to `buffer', so that we can get that buffer's
3080 minor modes correctly. */
3081 Fset_buffer (buffer);
3082
3083 nmaps = current_minor_maps (&modes, &maps);
3084 Fset_buffer (outbuf);
3085
3086 start1 = get_local_map (BUF_PT (XBUFFER (buffer)),
3087 XBUFFER (buffer), Qkeymap);
3088 if (!NILP (start1))
3089 {
3090 describe_map_tree (start1, 1, shadow, prefix,
3091 "\f\n`keymap' Property Bindings", nomenu,
3092 0, 0, 0);
3093 shadow = Fcons (start1, shadow);
3094 }
3095
3096 /* Print the minor mode maps. */
3097 for (i = 0; i < nmaps; i++)
3098 {
3099 /* The title for a minor mode keymap
3100 is constructed at run time.
3101 We let describe_map_tree do the actual insertion
3102 because it takes care of other features when doing so. */
3103 char *title, *p;
3104
3105 if (!SYMBOLP (modes[i]))
3106 abort();
3107
3108 p = title = (char *) alloca (42 + SCHARS (SYMBOL_NAME (modes[i])));
3109 *p++ = '\f';
3110 *p++ = '\n';
3111 *p++ = '`';
3112 bcopy (SDATA (SYMBOL_NAME (modes[i])), p,
3113 SCHARS (SYMBOL_NAME (modes[i])));
3114 p += SCHARS (SYMBOL_NAME (modes[i]));
3115 *p++ = '\'';
3116 bcopy (" Minor Mode Bindings", p, sizeof (" Minor Mode Bindings") - 1);
3117 p += sizeof (" Minor Mode Bindings") - 1;
3118 *p = 0;
3119
3120 describe_map_tree (maps[i], 1, shadow, prefix,
3121 title, nomenu, 0, 0, 0);
3122 shadow = Fcons (maps[i], shadow);
3123 }
3124
3125 start1 = get_local_map (BUF_PT (XBUFFER (buffer)),
3126 XBUFFER (buffer), Qlocal_map);
3127 if (!NILP (start1))
3128 {
3129 if (EQ (start1, XBUFFER (buffer)->keymap))
3130 describe_map_tree (start1, 1, shadow, prefix,
3131 "\f\nMajor Mode Bindings", nomenu, 0, 0, 0);
3132 else
3133 describe_map_tree (start1, 1, shadow, prefix,
3134 "\f\n`local-map' Property Bindings",
3135 nomenu, 0, 0, 0);
3136
3137 shadow = Fcons (start1, shadow);
3138 }
3139 }
3140
3141 describe_map_tree (current_global_map, 1, shadow, prefix,
3142 "\f\nGlobal Bindings", nomenu, 0, 1, 0);
3143
3144 /* Print the function-key-map translations under this prefix. */
3145 if (!NILP (Vfunction_key_map))
3146 describe_map_tree (Vfunction_key_map, 0, Qnil, prefix,
3147 "\f\nFunction key map translations", nomenu, 1, 0, 0);
3148
3149 UNGCPRO;
3150 return Qnil;
3151 }
3152
3153 /* Insert a description of the key bindings in STARTMAP,
3154 followed by those of all maps reachable through STARTMAP.
3155 If PARTIAL is nonzero, omit certain "uninteresting" commands
3156 (such as `undefined').
3157 If SHADOW is non-nil, it is a list of maps;
3158 don't mention keys which would be shadowed by any of them.
3159 PREFIX, if non-nil, says mention only keys that start with PREFIX.
3160 TITLE, if not 0, is a string to insert at the beginning.
3161 TITLE should not end with a colon or a newline; we supply that.
3162 If NOMENU is not 0, then omit menu-bar commands.
3163
3164 If TRANSL is nonzero, the definitions are actually key translations
3165 so print strings and vectors differently.
3166
3167 If ALWAYS_TITLE is nonzero, print the title even if there are no maps
3168 to look through.
3169
3170 If MENTION_SHADOW is nonzero, then when something is shadowed by SHADOW,
3171 don't omit it; instead, mention it but say it is shadowed. */
3172
3173 void
3174 describe_map_tree (startmap, partial, shadow, prefix, title, nomenu, transl,
3175 always_title, mention_shadow)
3176 Lisp_Object startmap, shadow, prefix;
3177 int partial;
3178 char *title;
3179 int nomenu;
3180 int transl;
3181 int always_title;
3182 int mention_shadow;
3183 {
3184 Lisp_Object maps, orig_maps, seen, sub_shadows;
3185 struct gcpro gcpro1, gcpro2, gcpro3;
3186 int something = 0;
3187 char *key_heading
3188 = "\
3189 key binding\n\
3190 --- -------\n";
3191
3192 orig_maps = maps = Faccessible_keymaps (startmap, prefix);
3193 seen = Qnil;
3194 sub_shadows = Qnil;
3195 GCPRO3 (maps, seen, sub_shadows);
3196
3197 if (nomenu)
3198 {
3199 Lisp_Object list;
3200
3201 /* Delete from MAPS each element that is for the menu bar. */
3202 for (list = maps; !NILP (list); list = XCDR (list))
3203 {
3204 Lisp_Object elt, prefix, tem;
3205
3206 elt = Fcar (list);
3207 prefix = Fcar (elt);
3208 if (XVECTOR (prefix)->size >= 1)
3209 {
3210 tem = Faref (prefix, make_number (0));
3211 if (EQ (tem, Qmenu_bar))
3212 maps = Fdelq (elt, maps);
3213 }
3214 }
3215 }
3216
3217 if (!NILP (maps) || always_title)
3218 {
3219 if (title)
3220 {
3221 insert_string (title);
3222 if (!NILP (prefix))
3223 {
3224 insert_string (" Starting With ");
3225 insert1 (Fkey_description (prefix, Qnil));
3226 }
3227 insert_string (":\n");
3228 }
3229 insert_string (key_heading);
3230 something = 1;
3231 }
3232
3233 for (; !NILP (maps); maps = Fcdr (maps))
3234 {
3235 register Lisp_Object elt, prefix, tail;
3236
3237 elt = Fcar (maps);
3238 prefix = Fcar (elt);
3239
3240 sub_shadows = Qnil;
3241
3242 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
3243 {
3244 Lisp_Object shmap;
3245
3246 shmap = XCAR (tail);
3247
3248 /* If the sequence by which we reach this keymap is zero-length,
3249 then the shadow map for this keymap is just SHADOW. */
3250 if ((STRINGP (prefix) && SCHARS (prefix) == 0)
3251 || (VECTORP (prefix) && XVECTOR (prefix)->size == 0))
3252 ;
3253 /* If the sequence by which we reach this keymap actually has
3254 some elements, then the sequence's definition in SHADOW is
3255 what we should use. */
3256 else
3257 {
3258 shmap = Flookup_key (shmap, Fcar (elt), Qt);
3259 if (INTEGERP (shmap))
3260 shmap = Qnil;
3261 }
3262
3263 /* If shmap is not nil and not a keymap,
3264 it completely shadows this map, so don't
3265 describe this map at all. */
3266 if (!NILP (shmap) && !KEYMAPP (shmap))
3267 goto skip;
3268
3269 if (!NILP (shmap))
3270 sub_shadows = Fcons (shmap, sub_shadows);
3271 }
3272
3273 /* Maps we have already listed in this loop shadow this map. */
3274 for (tail = orig_maps; !EQ (tail, maps); tail = XCDR (tail))
3275 {
3276 Lisp_Object tem;
3277 tem = Fequal (Fcar (XCAR (tail)), prefix);
3278 if (!NILP (tem))
3279 sub_shadows = Fcons (XCDR (XCAR (tail)), sub_shadows);
3280 }
3281
3282 describe_map (Fcdr (elt), prefix,
3283 transl ? describe_translation : describe_command,
3284 partial, sub_shadows, &seen, nomenu, mention_shadow);
3285
3286 skip: ;
3287 }
3288
3289 if (something)
3290 insert_string ("\n");
3291
3292 UNGCPRO;
3293 }
3294
3295 static int previous_description_column;
3296
3297 static void
3298 describe_command (definition, args)
3299 Lisp_Object definition, args;
3300 {
3301 register Lisp_Object tem1;
3302 int column = (int) current_column (); /* iftc */
3303 int description_column;
3304
3305 /* If column 16 is no good, go to col 32;
3306 but don't push beyond that--go to next line instead. */
3307 if (column > 30)
3308 {
3309 insert_char ('\n');
3310 description_column = 32;
3311 }
3312 else if (column > 14 || (column > 10 && previous_description_column == 32))
3313 description_column = 32;
3314 else
3315 description_column = 16;
3316
3317 Findent_to (make_number (description_column), make_number (1));
3318 previous_description_column = description_column;
3319
3320 if (SYMBOLP (definition))
3321 {
3322 tem1 = SYMBOL_NAME (definition);
3323 insert1 (tem1);
3324 insert_string ("\n");
3325 }
3326 else if (STRINGP (definition) || VECTORP (definition))
3327 insert_string ("Keyboard Macro\n");
3328 else if (KEYMAPP (definition))
3329 insert_string ("Prefix Command\n");
3330 else
3331 insert_string ("??\n");
3332 }
3333
3334 static void
3335 describe_translation (definition, args)
3336 Lisp_Object definition, args;
3337 {
3338 register Lisp_Object tem1;
3339
3340 Findent_to (make_number (16), make_number (1));
3341
3342 if (SYMBOLP (definition))
3343 {
3344 tem1 = SYMBOL_NAME (definition);
3345 insert1 (tem1);
3346 insert_string ("\n");
3347 }
3348 else if (STRINGP (definition) || VECTORP (definition))
3349 {
3350 insert1 (Fkey_description (definition, Qnil));
3351 insert_string ("\n");
3352 }
3353 else if (KEYMAPP (definition))
3354 insert_string ("Prefix Command\n");
3355 else
3356 insert_string ("??\n");
3357 }
3358
3359 /* describe_map puts all the usable elements of a sparse keymap
3360 into an array of `struct describe_map_elt',
3361 then sorts them by the events. */
3362
3363 struct describe_map_elt { Lisp_Object event; Lisp_Object definition; int shadowed; };
3364
3365 /* qsort comparison function for sorting `struct describe_map_elt' by
3366 the event field. */
3367
3368 static int
3369 describe_map_compare (aa, bb)
3370 const void *aa, *bb;
3371 {
3372 const struct describe_map_elt *a = aa, *b = bb;
3373 if (INTEGERP (a->event) && INTEGERP (b->event))
3374 return ((XINT (a->event) > XINT (b->event))
3375 - (XINT (a->event) < XINT (b->event)));
3376 if (!INTEGERP (a->event) && INTEGERP (b->event))
3377 return 1;
3378 if (INTEGERP (a->event) && !INTEGERP (b->event))
3379 return -1;
3380 if (SYMBOLP (a->event) && SYMBOLP (b->event))
3381 return (!NILP (Fstring_lessp (a->event, b->event)) ? -1
3382 : !NILP (Fstring_lessp (b->event, a->event)) ? 1
3383 : 0);
3384 return 0;
3385 }
3386
3387 /* Describe the contents of map MAP, assuming that this map itself is
3388 reached by the sequence of prefix keys PREFIX (a string or vector).
3389 PARTIAL, SHADOW, NOMENU are as in `describe_map_tree' above. */
3390
3391 static void
3392 describe_map (map, prefix, elt_describer, partial, shadow,
3393 seen, nomenu, mention_shadow)
3394 register Lisp_Object map;
3395 Lisp_Object prefix;
3396 void (*elt_describer) P_ ((Lisp_Object, Lisp_Object));
3397 int partial;
3398 Lisp_Object shadow;
3399 Lisp_Object *seen;
3400 int nomenu;
3401 int mention_shadow;
3402 {
3403 Lisp_Object tail, definition, event;
3404 Lisp_Object tem;
3405 Lisp_Object suppress;
3406 Lisp_Object kludge;
3407 int first = 1;
3408 struct gcpro gcpro1, gcpro2, gcpro3;
3409
3410 /* These accumulate the values from sparse keymap bindings,
3411 so we can sort them and handle them in order. */
3412 int length_needed = 0;
3413 struct describe_map_elt *vect;
3414 int slots_used = 0;
3415 int i;
3416
3417 suppress = Qnil;
3418
3419 if (partial)
3420 suppress = intern ("suppress-keymap");
3421
3422 /* This vector gets used to present single keys to Flookup_key. Since
3423 that is done once per keymap element, we don't want to cons up a
3424 fresh vector every time. */
3425 kludge = Fmake_vector (make_number (1), Qnil);
3426 definition = Qnil;
3427
3428 for (tail = map; CONSP (tail); tail = XCDR (tail))
3429 length_needed++;
3430
3431 vect = ((struct describe_map_elt *)
3432 alloca (sizeof (struct describe_map_elt) * length_needed));
3433
3434 GCPRO3 (prefix, definition, kludge);
3435
3436 for (tail = map; CONSP (tail); tail = XCDR (tail))
3437 {
3438 QUIT;
3439
3440 if (VECTORP (XCAR (tail))
3441 || CHAR_TABLE_P (XCAR (tail)))
3442 describe_vector (XCAR (tail),
3443 prefix, Qnil, elt_describer, partial, shadow, map,
3444 (int *)0, 0, 1, mention_shadow);
3445 else if (CONSP (XCAR (tail)))
3446 {
3447 int this_shadowed = 0;
3448
3449 event = XCAR (XCAR (tail));
3450
3451 /* Ignore bindings whose "prefix" are not really valid events.
3452 (We get these in the frames and buffers menu.) */
3453 if (!(SYMBOLP (event) || INTEGERP (event)))
3454 continue;
3455
3456 if (nomenu && EQ (event, Qmenu_bar))
3457 continue;
3458
3459 definition = get_keyelt (XCDR (XCAR (tail)), 0);
3460
3461 /* Don't show undefined commands or suppressed commands. */
3462 if (NILP (definition)) continue;
3463 if (SYMBOLP (definition) && partial)
3464 {
3465 tem = Fget (definition, suppress);
3466 if (!NILP (tem))
3467 continue;
3468 }
3469
3470 /* Don't show a command that isn't really visible
3471 because a local definition of the same key shadows it. */
3472
3473 ASET (kludge, 0, event);
3474 if (!NILP (shadow))
3475 {
3476 tem = shadow_lookup (shadow, kludge, Qt);
3477 if (!NILP (tem))
3478 {
3479 /* If both bindings are keymaps, this key is a prefix key,
3480 so don't say it is shadowed. */
3481 if (KEYMAPP (definition) && KEYMAPP (tem))
3482 ;
3483 /* Avoid generating duplicate entries if the
3484 shadowed binding has the same definition. */
3485 else if (mention_shadow && !EQ (tem, definition))
3486 this_shadowed = 1;
3487 else
3488 continue;
3489 }
3490 }
3491
3492 tem = Flookup_key (map, kludge, Qt);
3493 if (!EQ (tem, definition)) continue;
3494
3495 vect[slots_used].event = event;
3496 vect[slots_used].definition = definition;
3497 vect[slots_used].shadowed = this_shadowed;
3498 slots_used++;
3499 }
3500 else if (EQ (XCAR (tail), Qkeymap))
3501 {
3502 /* The same keymap might be in the structure twice, if we're
3503 using an inherited keymap. So skip anything we've already
3504 encountered. */
3505 tem = Fassq (tail, *seen);
3506 if (CONSP (tem) && !NILP (Fequal (XCAR (tem), prefix)))
3507 break;
3508 *seen = Fcons (Fcons (tail, prefix), *seen);
3509 }
3510 }
3511
3512 /* If we found some sparse map events, sort them. */
3513
3514 qsort (vect, slots_used, sizeof (struct describe_map_elt),
3515 describe_map_compare);
3516
3517 /* Now output them in sorted order. */
3518
3519 for (i = 0; i < slots_used; i++)
3520 {
3521 Lisp_Object start, end;
3522
3523 if (first)
3524 {
3525 previous_description_column = 0;
3526 insert ("\n", 1);
3527 first = 0;
3528 }
3529
3530 ASET (kludge, 0, vect[i].event);
3531 start = vect[i].event;
3532 end = start;
3533
3534 definition = vect[i].definition;
3535
3536 /* Find consecutive chars that are identically defined. */
3537 if (INTEGERP (vect[i].event))
3538 {
3539 while (i + 1 < slots_used
3540 && EQ (vect[i+1].event, make_number (XINT (vect[i].event) + 1))
3541 && !NILP (Fequal (vect[i + 1].definition, definition))
3542 && vect[i].shadowed == vect[i + 1].shadowed)
3543 i++;
3544 end = vect[i].event;
3545 }
3546
3547 /* Now START .. END is the range to describe next. */
3548
3549 /* Insert the string to describe the event START. */
3550 insert1 (Fkey_description (kludge, prefix));
3551
3552 if (!EQ (start, end))
3553 {
3554 insert (" .. ", 4);
3555
3556 ASET (kludge, 0, end);
3557 /* Insert the string to describe the character END. */
3558 insert1 (Fkey_description (kludge, prefix));
3559 }
3560
3561 /* Print a description of the definition of this character.
3562 elt_describer will take care of spacing out far enough
3563 for alignment purposes. */
3564 (*elt_describer) (vect[i].definition, Qnil);
3565
3566 if (vect[i].shadowed)
3567 {
3568 SET_PT (PT - 1);
3569 insert_string ("\n (that binding is currently shadowed by another mode)");
3570 SET_PT (PT + 1);
3571 }
3572 }
3573
3574 UNGCPRO;
3575 }
3576
3577 static void
3578 describe_vector_princ (elt, fun)
3579 Lisp_Object elt, fun;
3580 {
3581 Findent_to (make_number (16), make_number (1));
3582 call1 (fun, elt);
3583 Fterpri (Qnil);
3584 }
3585
3586 DEFUN ("describe-vector", Fdescribe_vector, Sdescribe_vector, 1, 2, 0,
3587 doc: /* Insert a description of contents of VECTOR.
3588 This is text showing the elements of vector matched against indices.
3589 DESCRIBER is the output function used; nil means use `princ'. */)
3590 (vector, describer)
3591 Lisp_Object vector, describer;
3592 {
3593 int count = SPECPDL_INDEX ();
3594 if (NILP (describer))
3595 describer = intern ("princ");
3596 specbind (Qstandard_output, Fcurrent_buffer ());
3597 CHECK_VECTOR_OR_CHAR_TABLE (vector);
3598 describe_vector (vector, Qnil, describer, describe_vector_princ, 0,
3599 Qnil, Qnil, (int *)0, 0, 0, 0);
3600
3601 return unbind_to (count, Qnil);
3602 }
3603
3604 /* Insert in the current buffer a description of the contents of VECTOR.
3605 We call ELT_DESCRIBER to insert the description of one value found
3606 in VECTOR.
3607
3608 ELT_PREFIX describes what "comes before" the keys or indices defined
3609 by this vector. This is a human-readable string whose size
3610 is not necessarily related to the situation.
3611
3612 If the vector is in a keymap, ELT_PREFIX is a prefix key which
3613 leads to this keymap.
3614
3615 If the vector is a chartable, ELT_PREFIX is the vector
3616 of bytes that lead to the character set or portion of a character
3617 set described by this chartable.
3618
3619 If PARTIAL is nonzero, it means do not mention suppressed commands
3620 (that assumes the vector is in a keymap).
3621
3622 SHADOW is a list of keymaps that shadow this map.
3623 If it is non-nil, then we look up the key in those maps
3624 and we don't mention it now if it is defined by any of them.
3625
3626 ENTIRE_MAP is the keymap in which this vector appears.
3627 If the definition in effect in the whole map does not match
3628 the one in this vector, we ignore this one.
3629
3630 When describing a sub-char-table, INDICES is a list of
3631 indices at higher levels in this char-table,
3632 and CHAR_TABLE_DEPTH says how many levels down we have gone.
3633
3634 KEYMAP_P is 1 if vector is known to be a keymap, so map ESC to M-.
3635
3636 ARGS is simply passed as the second argument to ELT_DESCRIBER. */
3637
3638 static void
3639 describe_vector (vector, prefix, args, elt_describer,
3640 partial, shadow, entire_map,
3641 indices, char_table_depth, keymap_p,
3642 mention_shadow)
3643 register Lisp_Object vector;
3644 Lisp_Object prefix, args;
3645 void (*elt_describer) P_ ((Lisp_Object, Lisp_Object));
3646 int partial;
3647 Lisp_Object shadow;
3648 Lisp_Object entire_map;
3649 int *indices;
3650 int char_table_depth;
3651 int keymap_p;
3652 int mention_shadow;
3653 {
3654 Lisp_Object definition;
3655 Lisp_Object tem2;
3656 Lisp_Object elt_prefix = Qnil;
3657 register int i;
3658 Lisp_Object suppress;
3659 Lisp_Object kludge;
3660 int first = 1;
3661 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
3662 /* Range of elements to be handled. */
3663 int from, to;
3664 /* A flag to tell if a leaf in this level of char-table is not a
3665 generic character (i.e. a complete multibyte character). */
3666 int complete_char;
3667 int character;
3668 int starting_i;
3669
3670 suppress = Qnil;
3671
3672 if (indices == 0)
3673 indices = (int *) alloca (3 * sizeof (int));
3674
3675 definition = Qnil;
3676
3677 if (!keymap_p)
3678 {
3679 /* Call Fkey_description first, to avoid GC bug for the other string. */
3680 if (!NILP (prefix) && XFASTINT (Flength (prefix)) > 0)
3681 {
3682 Lisp_Object tem;
3683 tem = Fkey_description (prefix, Qnil);
3684 elt_prefix = concat2 (tem, build_string (" "));
3685 }
3686 prefix = Qnil;
3687 }
3688
3689 /* This vector gets used to present single keys to Flookup_key. Since
3690 that is done once per vector element, we don't want to cons up a
3691 fresh vector every time. */
3692 kludge = Fmake_vector (make_number (1), Qnil);
3693 GCPRO4 (elt_prefix, prefix, definition, kludge);
3694
3695 if (partial)
3696 suppress = intern ("suppress-keymap");
3697
3698 if (CHAR_TABLE_P (vector))
3699 {
3700 if (char_table_depth == 0)
3701 {
3702 /* VECTOR is a top level char-table. */
3703 complete_char = 1;
3704 from = 0;
3705 to = CHAR_TABLE_ORDINARY_SLOTS;
3706 }
3707 else
3708 {
3709 /* VECTOR is a sub char-table. */
3710 if (char_table_depth >= 3)
3711 /* A char-table is never that deep. */
3712 error ("Too deep char table");
3713
3714 complete_char
3715 = (CHARSET_VALID_P (indices[0])
3716 && ((CHARSET_DIMENSION (indices[0]) == 1
3717 && char_table_depth == 1)
3718 || char_table_depth == 2));
3719
3720 /* Meaningful elements are from 32th to 127th. */
3721 from = 32;
3722 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
3723 }
3724 }
3725 else
3726 {
3727 /* This does the right thing for ordinary vectors. */
3728
3729 complete_char = 1;
3730 from = 0;
3731 to = XVECTOR (vector)->size;
3732 }
3733
3734 for (i = from; i < to; i++)
3735 {
3736 int this_shadowed = 0;
3737 QUIT;
3738
3739 if (CHAR_TABLE_P (vector))
3740 {
3741 if (char_table_depth == 0 && i >= CHAR_TABLE_SINGLE_BYTE_SLOTS)
3742 complete_char = 0;
3743
3744 if (i >= CHAR_TABLE_SINGLE_BYTE_SLOTS
3745 && !CHARSET_DEFINED_P (i - 128))
3746 continue;
3747
3748 definition
3749 = get_keyelt (XCHAR_TABLE (vector)->contents[i], 0);
3750 }
3751 else
3752 definition = get_keyelt (AREF (vector, i), 0);
3753
3754 if (NILP (definition)) continue;
3755
3756 /* Don't mention suppressed commands. */
3757 if (SYMBOLP (definition) && partial)
3758 {
3759 Lisp_Object tem;
3760
3761 tem = Fget (definition, suppress);
3762
3763 if (!NILP (tem)) continue;
3764 }
3765
3766 /* Set CHARACTER to the character this entry describes, if any.
3767 Also update *INDICES. */
3768 if (CHAR_TABLE_P (vector))
3769 {
3770 indices[char_table_depth] = i;
3771
3772 if (char_table_depth == 0)
3773 {
3774 character = i;
3775 indices[0] = i - 128;
3776 }
3777 else if (complete_char)
3778 {
3779 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3780 }
3781 else
3782 character = 0;
3783 }
3784 else
3785 character = i;
3786
3787 ASET (kludge, 0, make_number (character));
3788
3789 /* If this binding is shadowed by some other map, ignore it. */
3790 if (!NILP (shadow) && complete_char)
3791 {
3792 Lisp_Object tem;
3793
3794 tem = shadow_lookup (shadow, kludge, Qt);
3795
3796 if (!NILP (tem))
3797 {
3798 if (mention_shadow)
3799 this_shadowed = 1;
3800 else
3801 continue;
3802 }
3803 }
3804
3805 /* Ignore this definition if it is shadowed by an earlier
3806 one in the same keymap. */
3807 if (!NILP (entire_map) && complete_char)
3808 {
3809 Lisp_Object tem;
3810
3811 tem = Flookup_key (entire_map, kludge, Qt);
3812
3813 if (!EQ (tem, definition))
3814 continue;
3815 }
3816
3817 if (first)
3818 {
3819 if (char_table_depth == 0)
3820 insert ("\n", 1);
3821 first = 0;
3822 }
3823
3824 /* For a sub char-table, show the depth by indentation.
3825 CHAR_TABLE_DEPTH can be greater than 0 only for a char-table. */
3826 if (char_table_depth > 0)
3827 insert (" ", char_table_depth * 2); /* depth is 1 or 2. */
3828
3829 /* Output the prefix that applies to every entry in this map. */
3830 if (!NILP (elt_prefix))
3831 insert1 (elt_prefix);
3832
3833 /* Insert or describe the character this slot is for,
3834 or a description of what it is for. */
3835 if (SUB_CHAR_TABLE_P (vector))
3836 {
3837 if (complete_char)
3838 insert_char (character);
3839 else
3840 {
3841 /* We need an octal representation for this block of
3842 characters. */
3843 char work[16];
3844 sprintf (work, "(row %d)", i);
3845 insert (work, strlen (work));
3846 }
3847 }
3848 else if (CHAR_TABLE_P (vector))
3849 {
3850 if (complete_char)
3851 insert1 (Fkey_description (kludge, prefix));
3852 else
3853 {
3854 /* Print the information for this character set. */
3855 insert_string ("<");
3856 tem2 = CHARSET_TABLE_INFO (i - 128, CHARSET_SHORT_NAME_IDX);
3857 if (STRINGP (tem2))
3858 insert_from_string (tem2, 0, 0, SCHARS (tem2),
3859 SBYTES (tem2), 0);
3860 else
3861 insert ("?", 1);
3862 insert (">", 1);
3863 }
3864 }
3865 else
3866 {
3867 insert1 (Fkey_description (kludge, prefix));
3868 }
3869
3870 /* If we find a sub char-table within a char-table,
3871 scan it recursively; it defines the details for
3872 a character set or a portion of a character set. */
3873 if (CHAR_TABLE_P (vector) && SUB_CHAR_TABLE_P (definition))
3874 {
3875 insert ("\n", 1);
3876 describe_vector (definition, prefix, args, elt_describer,
3877 partial, shadow, entire_map,
3878 indices, char_table_depth + 1, keymap_p,
3879 mention_shadow);
3880 continue;
3881 }
3882
3883 starting_i = i;
3884
3885 /* Find all consecutive characters or rows that have the same
3886 definition. But, for elements of a top level char table, if
3887 they are for charsets, we had better describe one by one even
3888 if they have the same definition. */
3889 if (CHAR_TABLE_P (vector))
3890 {
3891 int limit = to;
3892
3893 if (char_table_depth == 0)
3894 limit = CHAR_TABLE_SINGLE_BYTE_SLOTS;
3895
3896 while (i + 1 < limit
3897 && (tem2 = get_keyelt (XCHAR_TABLE (vector)->contents[i + 1], 0),
3898 !NILP (tem2))
3899 && !NILP (Fequal (tem2, definition)))
3900 i++;
3901 }
3902 else
3903 while (i + 1 < to
3904 && (tem2 = get_keyelt (AREF (vector, i + 1), 0),
3905 !NILP (tem2))
3906 && !NILP (Fequal (tem2, definition)))
3907 i++;
3908
3909
3910 /* If we have a range of more than one character,
3911 print where the range reaches to. */
3912
3913 if (i != starting_i)
3914 {
3915 insert (" .. ", 4);
3916
3917 ASET (kludge, 0, make_number (i));
3918
3919 if (!NILP (elt_prefix))
3920 insert1 (elt_prefix);
3921
3922 if (CHAR_TABLE_P (vector))
3923 {
3924 if (char_table_depth == 0)
3925 {
3926 insert1 (Fkey_description (kludge, prefix));
3927 }
3928 else if (complete_char)
3929 {
3930 indices[char_table_depth] = i;
3931 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3932 insert_char (character);
3933 }
3934 else
3935 {
3936 /* We need an octal representation for this block of
3937 characters. */
3938 char work[16];
3939 sprintf (work, "(row %d)", i);
3940 insert (work, strlen (work));
3941 }
3942 }
3943 else
3944 {
3945 insert1 (Fkey_description (kludge, prefix));
3946 }
3947 }
3948
3949 /* Print a description of the definition of this character.
3950 elt_describer will take care of spacing out far enough
3951 for alignment purposes. */
3952 (*elt_describer) (definition, args);
3953
3954 if (this_shadowed)
3955 {
3956 SET_PT (PT - 1);
3957 insert_string (" (binding currently shadowed)");
3958 SET_PT (PT + 1);
3959 }
3960 }
3961
3962 /* For (sub) char-table, print `defalt' slot at last. */
3963 if (CHAR_TABLE_P (vector) && !NILP (XCHAR_TABLE (vector)->defalt))
3964 {
3965 insert (" ", char_table_depth * 2);
3966 insert_string ("<<default>>");
3967 (*elt_describer) (XCHAR_TABLE (vector)->defalt, args);
3968 }
3969
3970 UNGCPRO;
3971 }
3972 \f
3973 /* Apropos - finding all symbols whose names match a regexp. */
3974 static Lisp_Object apropos_predicate;
3975 static Lisp_Object apropos_accumulate;
3976
3977 static void
3978 apropos_accum (symbol, string)
3979 Lisp_Object symbol, string;
3980 {
3981 register Lisp_Object tem;
3982
3983 tem = Fstring_match (string, Fsymbol_name (symbol), Qnil);
3984 if (!NILP (tem) && !NILP (apropos_predicate))
3985 tem = call1 (apropos_predicate, symbol);
3986 if (!NILP (tem))
3987 apropos_accumulate = Fcons (symbol, apropos_accumulate);
3988 }
3989
3990 DEFUN ("apropos-internal", Fapropos_internal, Sapropos_internal, 1, 2, 0,
3991 doc: /* Show all symbols whose names contain match for REGEXP.
3992 If optional 2nd arg PREDICATE is non-nil, (funcall PREDICATE SYMBOL) is done
3993 for each symbol and a symbol is mentioned only if that returns non-nil.
3994 Return list of symbols found. */)
3995 (regexp, predicate)
3996 Lisp_Object regexp, predicate;
3997 {
3998 Lisp_Object tem;
3999 CHECK_STRING (regexp);
4000 apropos_predicate = predicate;
4001 apropos_accumulate = Qnil;
4002 map_obarray (Vobarray, apropos_accum, regexp);
4003 tem = Fsort (apropos_accumulate, Qstring_lessp);
4004 apropos_accumulate = Qnil;
4005 apropos_predicate = Qnil;
4006 return tem;
4007 }
4008 \f
4009 void
4010 syms_of_keymap ()
4011 {
4012 Qkeymap = intern ("keymap");
4013 staticpro (&Qkeymap);
4014 staticpro (&apropos_predicate);
4015 staticpro (&apropos_accumulate);
4016 apropos_predicate = Qnil;
4017 apropos_accumulate = Qnil;
4018
4019 /* Now we are ready to set up this property, so we can
4020 create char tables. */
4021 Fput (Qkeymap, Qchar_table_extra_slots, make_number (0));
4022
4023 /* Initialize the keymaps standardly used.
4024 Each one is the value of a Lisp variable, and is also
4025 pointed to by a C variable */
4026
4027 global_map = Fmake_keymap (Qnil);
4028 Fset (intern ("global-map"), global_map);
4029
4030 current_global_map = global_map;
4031 staticpro (&global_map);
4032 staticpro (&current_global_map);
4033
4034 meta_map = Fmake_keymap (Qnil);
4035 Fset (intern ("esc-map"), meta_map);
4036 Ffset (intern ("ESC-prefix"), meta_map);
4037
4038 control_x_map = Fmake_keymap (Qnil);
4039 Fset (intern ("ctl-x-map"), control_x_map);
4040 Ffset (intern ("Control-X-prefix"), control_x_map);
4041
4042 exclude_keys
4043 = Fcons (Fcons (build_string ("DEL"), build_string ("\\d")),
4044 Fcons (Fcons (build_string ("TAB"), build_string ("\\t")),
4045 Fcons (Fcons (build_string ("RET"), build_string ("\\r")),
4046 Fcons (Fcons (build_string ("ESC"), build_string ("\\e")),
4047 Fcons (Fcons (build_string ("SPC"), build_string (" ")),
4048 Qnil)))));
4049 staticpro (&exclude_keys);
4050
4051 DEFVAR_LISP ("define-key-rebound-commands", &Vdefine_key_rebound_commands,
4052 doc: /* List of commands given new key bindings recently.
4053 This is used for internal purposes during Emacs startup;
4054 don't alter it yourself. */);
4055 Vdefine_key_rebound_commands = Qt;
4056
4057 DEFVAR_LISP ("minibuffer-local-map", &Vminibuffer_local_map,
4058 doc: /* Default keymap to use when reading from the minibuffer. */);
4059 Vminibuffer_local_map = Fmake_sparse_keymap (Qnil);
4060
4061 DEFVAR_LISP ("minibuffer-local-ns-map", &Vminibuffer_local_ns_map,
4062 doc: /* Local keymap for the minibuffer when spaces are not allowed. */);
4063 Vminibuffer_local_ns_map = Fmake_sparse_keymap (Qnil);
4064 Fset_keymap_parent (Vminibuffer_local_ns_map, Vminibuffer_local_map);
4065
4066 DEFVAR_LISP ("minibuffer-local-completion-map", &Vminibuffer_local_completion_map,
4067 doc: /* Local keymap for minibuffer input with completion. */);
4068 Vminibuffer_local_completion_map = Fmake_sparse_keymap (Qnil);
4069 Fset_keymap_parent (Vminibuffer_local_completion_map, Vminibuffer_local_map);
4070
4071 DEFVAR_LISP ("minibuffer-local-filename-completion-map",
4072 &Vminibuffer_local_filename_completion_map,
4073 doc: /* Local keymap for minibuffer input with completion for filenames. */);
4074 Vminibuffer_local_filename_completion_map = Fmake_sparse_keymap (Qnil);
4075 Fset_keymap_parent (Vminibuffer_local_filename_completion_map,
4076 Vminibuffer_local_completion_map);
4077
4078
4079 DEFVAR_LISP ("minibuffer-local-must-match-map", &Vminibuffer_local_must_match_map,
4080 doc: /* Local keymap for minibuffer input with completion, for exact match. */);
4081 Vminibuffer_local_must_match_map = Fmake_sparse_keymap (Qnil);
4082 Fset_keymap_parent (Vminibuffer_local_must_match_map,
4083 Vminibuffer_local_completion_map);
4084
4085 DEFVAR_LISP ("minibuffer-local-must-match-filename-map",
4086 &Vminibuffer_local_must_match_filename_map,
4087 doc: /* Local keymap for minibuffer input with completion for filenames with exact match. */);
4088 Vminibuffer_local_must_match_filename_map = Fmake_sparse_keymap (Qnil);
4089 Fset_keymap_parent (Vminibuffer_local_must_match_filename_map,
4090 Vminibuffer_local_must_match_map);
4091
4092 DEFVAR_LISP ("minor-mode-map-alist", &Vminor_mode_map_alist,
4093 doc: /* Alist of keymaps to use for minor modes.
4094 Each element looks like (VARIABLE . KEYMAP); KEYMAP is used to read
4095 key sequences and look up bindings iff VARIABLE's value is non-nil.
4096 If two active keymaps bind the same key, the keymap appearing earlier
4097 in the list takes precedence. */);
4098 Vminor_mode_map_alist = Qnil;
4099
4100 DEFVAR_LISP ("minor-mode-overriding-map-alist", &Vminor_mode_overriding_map_alist,
4101 doc: /* Alist of keymaps to use for minor modes, in current major mode.
4102 This variable is an alist just like `minor-mode-map-alist', and it is
4103 used the same way (and before `minor-mode-map-alist'); however,
4104 it is provided for major modes to bind locally. */);
4105 Vminor_mode_overriding_map_alist = Qnil;
4106
4107 DEFVAR_LISP ("emulation-mode-map-alists", &Vemulation_mode_map_alists,
4108 doc: /* List of keymap alists to use for emulations modes.
4109 It is intended for modes or packages using multiple minor-mode keymaps.
4110 Each element is a keymap alist just like `minor-mode-map-alist', or a
4111 symbol with a variable binding which is a keymap alist, and it is used
4112 the same way. The "active" keymaps in each alist are used before
4113 `minor-mode-map-alist' and `minor-mode-overriding-map-alist'. */);
4114 Vemulation_mode_map_alists = Qnil;
4115
4116
4117 DEFVAR_LISP ("function-key-map", &Vfunction_key_map,
4118 doc: /* Keymap that translates key sequences to key sequences during input.
4119 This is used mainly for mapping ASCII function key sequences into
4120 real Emacs function key events (symbols).
4121
4122 The `read-key-sequence' function replaces any subsequence bound by
4123 `function-key-map' with its binding. More precisely, when the active
4124 keymaps have no binding for the current key sequence but
4125 `function-key-map' binds a suffix of the sequence to a vector or string,
4126 `read-key-sequence' replaces the matching suffix with its binding, and
4127 continues with the new sequence.
4128
4129 If the binding is a function, it is called with one argument (the prompt)
4130 and its return value (a key sequence) is used.
4131
4132 The events that come from bindings in `function-key-map' are not
4133 themselves looked up in `function-key-map'.
4134
4135 For example, suppose `function-key-map' binds `ESC O P' to [f1].
4136 Typing `ESC O P' to `read-key-sequence' would return [f1]. Typing
4137 `C-x ESC O P' would return [?\\C-x f1]. If [f1] were a prefix
4138 key, typing `ESC O P x' would return [f1 x]. */);
4139 Vfunction_key_map = Fmake_sparse_keymap (Qnil);
4140
4141 DEFVAR_LISP ("key-translation-map", &Vkey_translation_map,
4142 doc: /* Keymap of key translations that can override keymaps.
4143 This keymap works like `function-key-map', but comes after that,
4144 and its non-prefix bindings override ordinary bindings. */);
4145 Vkey_translation_map = Qnil;
4146
4147 staticpro (&Vmouse_events);
4148 Vmouse_events = Fcons (intern ("menu-bar"),
4149 Fcons (intern ("tool-bar"),
4150 Fcons (intern ("header-line"),
4151 Fcons (intern ("mode-line"),
4152 Fcons (intern ("mouse-1"),
4153 Fcons (intern ("mouse-2"),
4154 Fcons (intern ("mouse-3"),
4155 Fcons (intern ("mouse-4"),
4156 Fcons (intern ("mouse-5"),
4157 Qnil)))))))));
4158
4159
4160 Qsingle_key_description = intern ("single-key-description");
4161 staticpro (&Qsingle_key_description);
4162
4163 Qkey_description = intern ("key-description");
4164 staticpro (&Qkey_description);
4165
4166 Qkeymapp = intern ("keymapp");
4167 staticpro (&Qkeymapp);
4168
4169 Qnon_ascii = intern ("non-ascii");
4170 staticpro (&Qnon_ascii);
4171
4172 Qmenu_item = intern ("menu-item");
4173 staticpro (&Qmenu_item);
4174
4175 Qremap = intern ("remap");
4176 staticpro (&Qremap);
4177
4178 command_remapping_vector = Fmake_vector (make_number (2), Qremap);
4179 staticpro (&command_remapping_vector);
4180
4181 where_is_cache_keymaps = Qt;
4182 where_is_cache = Qnil;
4183 staticpro (&where_is_cache);
4184 staticpro (&where_is_cache_keymaps);
4185
4186 defsubr (&Skeymapp);
4187 defsubr (&Skeymap_parent);
4188 defsubr (&Skeymap_prompt);
4189 defsubr (&Sset_keymap_parent);
4190 defsubr (&Smake_keymap);
4191 defsubr (&Smake_sparse_keymap);
4192 defsubr (&Smap_keymap);
4193 defsubr (&Scopy_keymap);
4194 defsubr (&Scommand_remapping);
4195 defsubr (&Skey_binding);
4196 defsubr (&Slocal_key_binding);
4197 defsubr (&Sglobal_key_binding);
4198 defsubr (&Sminor_mode_key_binding);
4199 defsubr (&Sdefine_key);
4200 defsubr (&Slookup_key);
4201 defsubr (&Sdefine_prefix_command);
4202 defsubr (&Suse_global_map);
4203 defsubr (&Suse_local_map);
4204 defsubr (&Scurrent_local_map);
4205 defsubr (&Scurrent_global_map);
4206 defsubr (&Scurrent_minor_mode_maps);
4207 defsubr (&Scurrent_active_maps);
4208 defsubr (&Saccessible_keymaps);
4209 defsubr (&Skey_description);
4210 defsubr (&Sdescribe_vector);
4211 defsubr (&Ssingle_key_description);
4212 defsubr (&Stext_char_description);
4213 defsubr (&Swhere_is_internal);
4214 defsubr (&Sdescribe_buffer_bindings);
4215 defsubr (&Sapropos_internal);
4216 }
4217
4218 void
4219 keys_of_keymap ()
4220 {
4221 initial_define_key (global_map, 033, "ESC-prefix");
4222 initial_define_key (global_map, Ctl('X'), "Control-X-prefix");
4223 }
4224
4225 /* arch-tag: 6dd15c26-7cf1-41c4-b904-f42f7ddda463
4226 (do not change this comment) */