Merge from trunk.
[bpt/emacs.git] / src / fns.c
1 /* Random utility Lisp functions.
2 Copyright (C) 1985-1987, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include <config.h>
21
22 #include <unistd.h>
23 #include <time.h>
24 #include <setjmp.h>
25
26 #include <intprops.h>
27
28 #include "lisp.h"
29 #include "commands.h"
30 #include "character.h"
31 #include "coding.h"
32 #include "buffer.h"
33 #include "keyboard.h"
34 #include "keymap.h"
35 #include "intervals.h"
36 #include "frame.h"
37 #include "window.h"
38 #include "blockinput.h"
39 #ifdef HAVE_MENUS
40 #if defined (HAVE_X_WINDOWS)
41 #include "xterm.h"
42 #endif
43 #endif /* HAVE_MENUS */
44
45 #ifndef NULL
46 #define NULL ((POINTER_TYPE *)0)
47 #endif
48
49 Lisp_Object Qstring_lessp;
50 static Lisp_Object Qprovide, Qrequire;
51 static Lisp_Object Qyes_or_no_p_history;
52 Lisp_Object Qcursor_in_echo_area;
53 static Lisp_Object Qwidget_type;
54 static Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
55
56 static int internal_equal (Lisp_Object , Lisp_Object, int, int);
57
58 #ifndef HAVE_UNISTD_H
59 extern long time ();
60 #endif
61 \f
62 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
63 doc: /* Return the argument unchanged. */)
64 (Lisp_Object arg)
65 {
66 return arg;
67 }
68
69 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
70 doc: /* Return a pseudo-random number.
71 All integers representable in Lisp are equally likely.
72 On most systems, this is 29 bits' worth.
73 With positive integer LIMIT, return random number in interval [0,LIMIT).
74 With argument t, set the random number seed from the current time and pid.
75 Other values of LIMIT are ignored. */)
76 (Lisp_Object limit)
77 {
78 EMACS_INT val;
79 Lisp_Object lispy_val;
80 EMACS_UINT denominator;
81
82 if (EQ (limit, Qt))
83 seed_random (getpid () + time (NULL));
84 if (NATNUMP (limit) && XFASTINT (limit) != 0)
85 {
86 /* Try to take our random number from the higher bits of VAL,
87 not the lower, since (says Gentzel) the low bits of `random'
88 are less random than the higher ones. We do this by using the
89 quotient rather than the remainder. At the high end of the RNG
90 it's possible to get a quotient larger than n; discarding
91 these values eliminates the bias that would otherwise appear
92 when using a large n. */
93 denominator = ((EMACS_UINT) 1 << VALBITS) / XFASTINT (limit);
94 do
95 val = get_random () / denominator;
96 while (val >= XFASTINT (limit));
97 }
98 else
99 val = get_random ();
100 XSETINT (lispy_val, val);
101 return lispy_val;
102 }
103 \f
104 /* Heuristic on how many iterations of a tight loop can be safely done
105 before it's time to do a QUIT. This must be a power of 2. */
106 enum { QUIT_COUNT_HEURISTIC = 1 << 16 };
107
108 /* Random data-structure functions */
109
110 DEFUN ("length", Flength, Slength, 1, 1, 0,
111 doc: /* Return the length of vector, list or string SEQUENCE.
112 A byte-code function object is also allowed.
113 If the string contains multibyte characters, this is not necessarily
114 the number of bytes in the string; it is the number of characters.
115 To get the number of bytes, use `string-bytes'. */)
116 (register Lisp_Object sequence)
117 {
118 register Lisp_Object val;
119
120 if (STRINGP (sequence))
121 XSETFASTINT (val, SCHARS (sequence));
122 else if (VECTORP (sequence))
123 XSETFASTINT (val, ASIZE (sequence));
124 else if (CHAR_TABLE_P (sequence))
125 XSETFASTINT (val, MAX_CHAR);
126 else if (BOOL_VECTOR_P (sequence))
127 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
128 else if (COMPILEDP (sequence))
129 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
130 else if (CONSP (sequence))
131 {
132 EMACS_INT i = 0;
133
134 do
135 {
136 ++i;
137 if ((i & (QUIT_COUNT_HEURISTIC - 1)) == 0)
138 {
139 if (MOST_POSITIVE_FIXNUM < i)
140 error ("List too long");
141 QUIT;
142 }
143 sequence = XCDR (sequence);
144 }
145 while (CONSP (sequence));
146
147 CHECK_LIST_END (sequence, sequence);
148
149 val = make_number (i);
150 }
151 else if (NILP (sequence))
152 XSETFASTINT (val, 0);
153 else
154 wrong_type_argument (Qsequencep, sequence);
155
156 return val;
157 }
158
159 /* This does not check for quits. That is safe since it must terminate. */
160
161 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
162 doc: /* Return the length of a list, but avoid error or infinite loop.
163 This function never gets an error. If LIST is not really a list,
164 it returns 0. If LIST is circular, it returns a finite value
165 which is at least the number of distinct elements. */)
166 (Lisp_Object list)
167 {
168 Lisp_Object tail, halftail;
169 double hilen = 0;
170 uintmax_t lolen = 1;
171
172 if (! CONSP (list))
173 return make_number (0);
174
175 /* halftail is used to detect circular lists. */
176 for (tail = halftail = list; ; )
177 {
178 tail = XCDR (tail);
179 if (! CONSP (tail))
180 break;
181 if (EQ (tail, halftail))
182 break;
183 lolen++;
184 if ((lolen & 1) == 0)
185 {
186 halftail = XCDR (halftail);
187 if ((lolen & (QUIT_COUNT_HEURISTIC - 1)) == 0)
188 {
189 QUIT;
190 if (lolen == 0)
191 hilen += UINTMAX_MAX + 1.0;
192 }
193 }
194 }
195
196 /* If the length does not fit into a fixnum, return a float.
197 On all known practical machines this returns an upper bound on
198 the true length. */
199 return hilen ? make_float (hilen + lolen) : make_fixnum_or_float (lolen);
200 }
201
202 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
203 doc: /* Return the number of bytes in STRING.
204 If STRING is multibyte, this may be greater than the length of STRING. */)
205 (Lisp_Object string)
206 {
207 CHECK_STRING (string);
208 return make_number (SBYTES (string));
209 }
210
211 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
212 doc: /* Return t if two strings have identical contents.
213 Case is significant, but text properties are ignored.
214 Symbols are also allowed; their print names are used instead. */)
215 (register Lisp_Object s1, Lisp_Object s2)
216 {
217 if (SYMBOLP (s1))
218 s1 = SYMBOL_NAME (s1);
219 if (SYMBOLP (s2))
220 s2 = SYMBOL_NAME (s2);
221 CHECK_STRING (s1);
222 CHECK_STRING (s2);
223
224 if (SCHARS (s1) != SCHARS (s2)
225 || SBYTES (s1) != SBYTES (s2)
226 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
227 return Qnil;
228 return Qt;
229 }
230
231 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
232 doc: /* Compare the contents of two strings, converting to multibyte if needed.
233 In string STR1, skip the first START1 characters and stop at END1.
234 In string STR2, skip the first START2 characters and stop at END2.
235 END1 and END2 default to the full lengths of the respective strings.
236
237 Case is significant in this comparison if IGNORE-CASE is nil.
238 Unibyte strings are converted to multibyte for comparison.
239
240 The value is t if the strings (or specified portions) match.
241 If string STR1 is less, the value is a negative number N;
242 - 1 - N is the number of characters that match at the beginning.
243 If string STR1 is greater, the value is a positive number N;
244 N - 1 is the number of characters that match at the beginning. */)
245 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
246 {
247 register EMACS_INT end1_char, end2_char;
248 register EMACS_INT i1, i1_byte, i2, i2_byte;
249
250 CHECK_STRING (str1);
251 CHECK_STRING (str2);
252 if (NILP (start1))
253 start1 = make_number (0);
254 if (NILP (start2))
255 start2 = make_number (0);
256 CHECK_NATNUM (start1);
257 CHECK_NATNUM (start2);
258 if (! NILP (end1))
259 CHECK_NATNUM (end1);
260 if (! NILP (end2))
261 CHECK_NATNUM (end2);
262
263 i1 = XINT (start1);
264 i2 = XINT (start2);
265
266 i1_byte = string_char_to_byte (str1, i1);
267 i2_byte = string_char_to_byte (str2, i2);
268
269 end1_char = SCHARS (str1);
270 if (! NILP (end1) && end1_char > XINT (end1))
271 end1_char = XINT (end1);
272
273 end2_char = SCHARS (str2);
274 if (! NILP (end2) && end2_char > XINT (end2))
275 end2_char = XINT (end2);
276
277 while (i1 < end1_char && i2 < end2_char)
278 {
279 /* When we find a mismatch, we must compare the
280 characters, not just the bytes. */
281 int c1, c2;
282
283 if (STRING_MULTIBYTE (str1))
284 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
285 else
286 {
287 c1 = SREF (str1, i1++);
288 MAKE_CHAR_MULTIBYTE (c1);
289 }
290
291 if (STRING_MULTIBYTE (str2))
292 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
293 else
294 {
295 c2 = SREF (str2, i2++);
296 MAKE_CHAR_MULTIBYTE (c2);
297 }
298
299 if (c1 == c2)
300 continue;
301
302 if (! NILP (ignore_case))
303 {
304 Lisp_Object tem;
305
306 tem = Fupcase (make_number (c1));
307 c1 = XINT (tem);
308 tem = Fupcase (make_number (c2));
309 c2 = XINT (tem);
310 }
311
312 if (c1 == c2)
313 continue;
314
315 /* Note that I1 has already been incremented
316 past the character that we are comparing;
317 hence we don't add or subtract 1 here. */
318 if (c1 < c2)
319 return make_number (- i1 + XINT (start1));
320 else
321 return make_number (i1 - XINT (start1));
322 }
323
324 if (i1 < end1_char)
325 return make_number (i1 - XINT (start1) + 1);
326 if (i2 < end2_char)
327 return make_number (- i1 + XINT (start1) - 1);
328
329 return Qt;
330 }
331
332 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
333 doc: /* Return t if first arg string is less than second in lexicographic order.
334 Case is significant.
335 Symbols are also allowed; their print names are used instead. */)
336 (register Lisp_Object s1, Lisp_Object s2)
337 {
338 register EMACS_INT end;
339 register EMACS_INT i1, i1_byte, i2, i2_byte;
340
341 if (SYMBOLP (s1))
342 s1 = SYMBOL_NAME (s1);
343 if (SYMBOLP (s2))
344 s2 = SYMBOL_NAME (s2);
345 CHECK_STRING (s1);
346 CHECK_STRING (s2);
347
348 i1 = i1_byte = i2 = i2_byte = 0;
349
350 end = SCHARS (s1);
351 if (end > SCHARS (s2))
352 end = SCHARS (s2);
353
354 while (i1 < end)
355 {
356 /* When we find a mismatch, we must compare the
357 characters, not just the bytes. */
358 int c1, c2;
359
360 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
361 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
362
363 if (c1 != c2)
364 return c1 < c2 ? Qt : Qnil;
365 }
366 return i1 < SCHARS (s2) ? Qt : Qnil;
367 }
368 \f
369 static Lisp_Object concat (ptrdiff_t nargs, Lisp_Object *args,
370 enum Lisp_Type target_type, int last_special);
371
372 /* ARGSUSED */
373 Lisp_Object
374 concat2 (Lisp_Object s1, Lisp_Object s2)
375 {
376 Lisp_Object args[2];
377 args[0] = s1;
378 args[1] = s2;
379 return concat (2, args, Lisp_String, 0);
380 }
381
382 /* ARGSUSED */
383 Lisp_Object
384 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
385 {
386 Lisp_Object args[3];
387 args[0] = s1;
388 args[1] = s2;
389 args[2] = s3;
390 return concat (3, args, Lisp_String, 0);
391 }
392
393 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
394 doc: /* Concatenate all the arguments and make the result a list.
395 The result is a list whose elements are the elements of all the arguments.
396 Each argument may be a list, vector or string.
397 The last argument is not copied, just used as the tail of the new list.
398 usage: (append &rest SEQUENCES) */)
399 (ptrdiff_t nargs, Lisp_Object *args)
400 {
401 return concat (nargs, args, Lisp_Cons, 1);
402 }
403
404 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
405 doc: /* Concatenate all the arguments and make the result a string.
406 The result is a string whose elements are the elements of all the arguments.
407 Each argument may be a string or a list or vector of characters (integers).
408 usage: (concat &rest SEQUENCES) */)
409 (ptrdiff_t nargs, Lisp_Object *args)
410 {
411 return concat (nargs, args, Lisp_String, 0);
412 }
413
414 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
415 doc: /* Concatenate all the arguments and make the result a vector.
416 The result is a vector whose elements are the elements of all the arguments.
417 Each argument may be a list, vector or string.
418 usage: (vconcat &rest SEQUENCES) */)
419 (ptrdiff_t nargs, Lisp_Object *args)
420 {
421 return concat (nargs, args, Lisp_Vectorlike, 0);
422 }
423
424
425 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
426 doc: /* Return a copy of a list, vector, string or char-table.
427 The elements of a list or vector are not copied; they are shared
428 with the original. */)
429 (Lisp_Object arg)
430 {
431 if (NILP (arg)) return arg;
432
433 if (CHAR_TABLE_P (arg))
434 {
435 return copy_char_table (arg);
436 }
437
438 if (BOOL_VECTOR_P (arg))
439 {
440 Lisp_Object val;
441 ptrdiff_t size_in_chars
442 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
443 / BOOL_VECTOR_BITS_PER_CHAR);
444
445 val = Fmake_bool_vector (Flength (arg), Qnil);
446 memcpy (XBOOL_VECTOR (val)->data, XBOOL_VECTOR (arg)->data,
447 size_in_chars);
448 return val;
449 }
450
451 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
452 wrong_type_argument (Qsequencep, arg);
453
454 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
455 }
456
457 /* This structure holds information of an argument of `concat' that is
458 a string and has text properties to be copied. */
459 struct textprop_rec
460 {
461 ptrdiff_t argnum; /* refer to ARGS (arguments of `concat') */
462 EMACS_INT from; /* refer to ARGS[argnum] (argument string) */
463 EMACS_INT to; /* refer to VAL (the target string) */
464 };
465
466 static Lisp_Object
467 concat (ptrdiff_t nargs, Lisp_Object *args,
468 enum Lisp_Type target_type, int last_special)
469 {
470 Lisp_Object val;
471 register Lisp_Object tail;
472 register Lisp_Object this;
473 EMACS_INT toindex;
474 EMACS_INT toindex_byte = 0;
475 register EMACS_INT result_len;
476 register EMACS_INT result_len_byte;
477 ptrdiff_t argnum;
478 Lisp_Object last_tail;
479 Lisp_Object prev;
480 int some_multibyte;
481 /* When we make a multibyte string, we can't copy text properties
482 while concatenating each string because the length of resulting
483 string can't be decided until we finish the whole concatenation.
484 So, we record strings that have text properties to be copied
485 here, and copy the text properties after the concatenation. */
486 struct textprop_rec *textprops = NULL;
487 /* Number of elements in textprops. */
488 ptrdiff_t num_textprops = 0;
489 USE_SAFE_ALLOCA;
490
491 tail = Qnil;
492
493 /* In append, the last arg isn't treated like the others */
494 if (last_special && nargs > 0)
495 {
496 nargs--;
497 last_tail = args[nargs];
498 }
499 else
500 last_tail = Qnil;
501
502 /* Check each argument. */
503 for (argnum = 0; argnum < nargs; argnum++)
504 {
505 this = args[argnum];
506 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
507 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
508 wrong_type_argument (Qsequencep, this);
509 }
510
511 /* Compute total length in chars of arguments in RESULT_LEN.
512 If desired output is a string, also compute length in bytes
513 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
514 whether the result should be a multibyte string. */
515 result_len_byte = 0;
516 result_len = 0;
517 some_multibyte = 0;
518 for (argnum = 0; argnum < nargs; argnum++)
519 {
520 EMACS_INT len;
521 this = args[argnum];
522 len = XFASTINT (Flength (this));
523 if (target_type == Lisp_String)
524 {
525 /* We must count the number of bytes needed in the string
526 as well as the number of characters. */
527 EMACS_INT i;
528 Lisp_Object ch;
529 int c;
530 EMACS_INT this_len_byte;
531
532 if (VECTORP (this) || COMPILEDP (this))
533 for (i = 0; i < len; i++)
534 {
535 ch = AREF (this, i);
536 CHECK_CHARACTER (ch);
537 c = XFASTINT (ch);
538 this_len_byte = CHAR_BYTES (c);
539 result_len_byte += this_len_byte;
540 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
541 some_multibyte = 1;
542 }
543 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
544 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
545 else if (CONSP (this))
546 for (; CONSP (this); this = XCDR (this))
547 {
548 ch = XCAR (this);
549 CHECK_CHARACTER (ch);
550 c = XFASTINT (ch);
551 this_len_byte = CHAR_BYTES (c);
552 result_len_byte += this_len_byte;
553 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
554 some_multibyte = 1;
555 }
556 else if (STRINGP (this))
557 {
558 if (STRING_MULTIBYTE (this))
559 {
560 some_multibyte = 1;
561 result_len_byte += SBYTES (this);
562 }
563 else
564 result_len_byte += count_size_as_multibyte (SDATA (this),
565 SCHARS (this));
566 }
567 }
568
569 result_len += len;
570 if (STRING_BYTES_BOUND < result_len)
571 string_overflow ();
572 }
573
574 if (! some_multibyte)
575 result_len_byte = result_len;
576
577 /* Create the output object. */
578 if (target_type == Lisp_Cons)
579 val = Fmake_list (make_number (result_len), Qnil);
580 else if (target_type == Lisp_Vectorlike)
581 val = Fmake_vector (make_number (result_len), Qnil);
582 else if (some_multibyte)
583 val = make_uninit_multibyte_string (result_len, result_len_byte);
584 else
585 val = make_uninit_string (result_len);
586
587 /* In `append', if all but last arg are nil, return last arg. */
588 if (target_type == Lisp_Cons && EQ (val, Qnil))
589 return last_tail;
590
591 /* Copy the contents of the args into the result. */
592 if (CONSP (val))
593 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
594 else
595 toindex = 0, toindex_byte = 0;
596
597 prev = Qnil;
598 if (STRINGP (val))
599 SAFE_ALLOCA (textprops, struct textprop_rec *, sizeof (struct textprop_rec) * nargs);
600
601 for (argnum = 0; argnum < nargs; argnum++)
602 {
603 Lisp_Object thislen;
604 EMACS_INT thisleni = 0;
605 register EMACS_INT thisindex = 0;
606 register EMACS_INT thisindex_byte = 0;
607
608 this = args[argnum];
609 if (!CONSP (this))
610 thislen = Flength (this), thisleni = XINT (thislen);
611
612 /* Between strings of the same kind, copy fast. */
613 if (STRINGP (this) && STRINGP (val)
614 && STRING_MULTIBYTE (this) == some_multibyte)
615 {
616 EMACS_INT thislen_byte = SBYTES (this);
617
618 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
619 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
620 {
621 textprops[num_textprops].argnum = argnum;
622 textprops[num_textprops].from = 0;
623 textprops[num_textprops++].to = toindex;
624 }
625 toindex_byte += thislen_byte;
626 toindex += thisleni;
627 }
628 /* Copy a single-byte string to a multibyte string. */
629 else if (STRINGP (this) && STRINGP (val))
630 {
631 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
632 {
633 textprops[num_textprops].argnum = argnum;
634 textprops[num_textprops].from = 0;
635 textprops[num_textprops++].to = toindex;
636 }
637 toindex_byte += copy_text (SDATA (this),
638 SDATA (val) + toindex_byte,
639 SCHARS (this), 0, 1);
640 toindex += thisleni;
641 }
642 else
643 /* Copy element by element. */
644 while (1)
645 {
646 register Lisp_Object elt;
647
648 /* Fetch next element of `this' arg into `elt', or break if
649 `this' is exhausted. */
650 if (NILP (this)) break;
651 if (CONSP (this))
652 elt = XCAR (this), this = XCDR (this);
653 else if (thisindex >= thisleni)
654 break;
655 else if (STRINGP (this))
656 {
657 int c;
658 if (STRING_MULTIBYTE (this))
659 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
660 thisindex,
661 thisindex_byte);
662 else
663 {
664 c = SREF (this, thisindex); thisindex++;
665 if (some_multibyte && !ASCII_CHAR_P (c))
666 c = BYTE8_TO_CHAR (c);
667 }
668 XSETFASTINT (elt, c);
669 }
670 else if (BOOL_VECTOR_P (this))
671 {
672 int byte;
673 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
674 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
675 elt = Qt;
676 else
677 elt = Qnil;
678 thisindex++;
679 }
680 else
681 {
682 elt = AREF (this, thisindex);
683 thisindex++;
684 }
685
686 /* Store this element into the result. */
687 if (toindex < 0)
688 {
689 XSETCAR (tail, elt);
690 prev = tail;
691 tail = XCDR (tail);
692 }
693 else if (VECTORP (val))
694 {
695 ASET (val, toindex, elt);
696 toindex++;
697 }
698 else
699 {
700 int c;
701 CHECK_CHARACTER (elt);
702 c = XFASTINT (elt);
703 if (some_multibyte)
704 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
705 else
706 SSET (val, toindex_byte++, c);
707 toindex++;
708 }
709 }
710 }
711 if (!NILP (prev))
712 XSETCDR (prev, last_tail);
713
714 if (num_textprops > 0)
715 {
716 Lisp_Object props;
717 EMACS_INT last_to_end = -1;
718
719 for (argnum = 0; argnum < num_textprops; argnum++)
720 {
721 this = args[textprops[argnum].argnum];
722 props = text_property_list (this,
723 make_number (0),
724 make_number (SCHARS (this)),
725 Qnil);
726 /* If successive arguments have properties, be sure that the
727 value of `composition' property be the copy. */
728 if (last_to_end == textprops[argnum].to)
729 make_composition_value_copy (props);
730 add_text_properties_from_list (val, props,
731 make_number (textprops[argnum].to));
732 last_to_end = textprops[argnum].to + SCHARS (this);
733 }
734 }
735
736 SAFE_FREE ();
737 return val;
738 }
739 \f
740 static Lisp_Object string_char_byte_cache_string;
741 static EMACS_INT string_char_byte_cache_charpos;
742 static EMACS_INT string_char_byte_cache_bytepos;
743
744 void
745 clear_string_char_byte_cache (void)
746 {
747 string_char_byte_cache_string = Qnil;
748 }
749
750 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
751
752 EMACS_INT
753 string_char_to_byte (Lisp_Object string, EMACS_INT char_index)
754 {
755 EMACS_INT i_byte;
756 EMACS_INT best_below, best_below_byte;
757 EMACS_INT best_above, best_above_byte;
758
759 best_below = best_below_byte = 0;
760 best_above = SCHARS (string);
761 best_above_byte = SBYTES (string);
762 if (best_above == best_above_byte)
763 return char_index;
764
765 if (EQ (string, string_char_byte_cache_string))
766 {
767 if (string_char_byte_cache_charpos < char_index)
768 {
769 best_below = string_char_byte_cache_charpos;
770 best_below_byte = string_char_byte_cache_bytepos;
771 }
772 else
773 {
774 best_above = string_char_byte_cache_charpos;
775 best_above_byte = string_char_byte_cache_bytepos;
776 }
777 }
778
779 if (char_index - best_below < best_above - char_index)
780 {
781 unsigned char *p = SDATA (string) + best_below_byte;
782
783 while (best_below < char_index)
784 {
785 p += BYTES_BY_CHAR_HEAD (*p);
786 best_below++;
787 }
788 i_byte = p - SDATA (string);
789 }
790 else
791 {
792 unsigned char *p = SDATA (string) + best_above_byte;
793
794 while (best_above > char_index)
795 {
796 p--;
797 while (!CHAR_HEAD_P (*p)) p--;
798 best_above--;
799 }
800 i_byte = p - SDATA (string);
801 }
802
803 string_char_byte_cache_bytepos = i_byte;
804 string_char_byte_cache_charpos = char_index;
805 string_char_byte_cache_string = string;
806
807 return i_byte;
808 }
809 \f
810 /* Return the character index corresponding to BYTE_INDEX in STRING. */
811
812 EMACS_INT
813 string_byte_to_char (Lisp_Object string, EMACS_INT byte_index)
814 {
815 EMACS_INT i, i_byte;
816 EMACS_INT best_below, best_below_byte;
817 EMACS_INT best_above, best_above_byte;
818
819 best_below = best_below_byte = 0;
820 best_above = SCHARS (string);
821 best_above_byte = SBYTES (string);
822 if (best_above == best_above_byte)
823 return byte_index;
824
825 if (EQ (string, string_char_byte_cache_string))
826 {
827 if (string_char_byte_cache_bytepos < byte_index)
828 {
829 best_below = string_char_byte_cache_charpos;
830 best_below_byte = string_char_byte_cache_bytepos;
831 }
832 else
833 {
834 best_above = string_char_byte_cache_charpos;
835 best_above_byte = string_char_byte_cache_bytepos;
836 }
837 }
838
839 if (byte_index - best_below_byte < best_above_byte - byte_index)
840 {
841 unsigned char *p = SDATA (string) + best_below_byte;
842 unsigned char *pend = SDATA (string) + byte_index;
843
844 while (p < pend)
845 {
846 p += BYTES_BY_CHAR_HEAD (*p);
847 best_below++;
848 }
849 i = best_below;
850 i_byte = p - SDATA (string);
851 }
852 else
853 {
854 unsigned char *p = SDATA (string) + best_above_byte;
855 unsigned char *pbeg = SDATA (string) + byte_index;
856
857 while (p > pbeg)
858 {
859 p--;
860 while (!CHAR_HEAD_P (*p)) p--;
861 best_above--;
862 }
863 i = best_above;
864 i_byte = p - SDATA (string);
865 }
866
867 string_char_byte_cache_bytepos = i_byte;
868 string_char_byte_cache_charpos = i;
869 string_char_byte_cache_string = string;
870
871 return i;
872 }
873 \f
874 /* Convert STRING to a multibyte string. */
875
876 static Lisp_Object
877 string_make_multibyte (Lisp_Object string)
878 {
879 unsigned char *buf;
880 EMACS_INT nbytes;
881 Lisp_Object ret;
882 USE_SAFE_ALLOCA;
883
884 if (STRING_MULTIBYTE (string))
885 return string;
886
887 nbytes = count_size_as_multibyte (SDATA (string),
888 SCHARS (string));
889 /* If all the chars are ASCII, they won't need any more bytes
890 once converted. In that case, we can return STRING itself. */
891 if (nbytes == SBYTES (string))
892 return string;
893
894 SAFE_ALLOCA (buf, unsigned char *, nbytes);
895 copy_text (SDATA (string), buf, SBYTES (string),
896 0, 1);
897
898 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
899 SAFE_FREE ();
900
901 return ret;
902 }
903
904
905 /* Convert STRING (if unibyte) to a multibyte string without changing
906 the number of characters. Characters 0200 trough 0237 are
907 converted to eight-bit characters. */
908
909 Lisp_Object
910 string_to_multibyte (Lisp_Object string)
911 {
912 unsigned char *buf;
913 EMACS_INT nbytes;
914 Lisp_Object ret;
915 USE_SAFE_ALLOCA;
916
917 if (STRING_MULTIBYTE (string))
918 return string;
919
920 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
921 /* If all the chars are ASCII, they won't need any more bytes once
922 converted. */
923 if (nbytes == SBYTES (string))
924 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
925
926 SAFE_ALLOCA (buf, unsigned char *, nbytes);
927 memcpy (buf, SDATA (string), SBYTES (string));
928 str_to_multibyte (buf, nbytes, SBYTES (string));
929
930 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
931 SAFE_FREE ();
932
933 return ret;
934 }
935
936
937 /* Convert STRING to a single-byte string. */
938
939 Lisp_Object
940 string_make_unibyte (Lisp_Object string)
941 {
942 EMACS_INT nchars;
943 unsigned char *buf;
944 Lisp_Object ret;
945 USE_SAFE_ALLOCA;
946
947 if (! STRING_MULTIBYTE (string))
948 return string;
949
950 nchars = SCHARS (string);
951
952 SAFE_ALLOCA (buf, unsigned char *, nchars);
953 copy_text (SDATA (string), buf, SBYTES (string),
954 1, 0);
955
956 ret = make_unibyte_string ((char *) buf, nchars);
957 SAFE_FREE ();
958
959 return ret;
960 }
961
962 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
963 1, 1, 0,
964 doc: /* Return the multibyte equivalent of STRING.
965 If STRING is unibyte and contains non-ASCII characters, the function
966 `unibyte-char-to-multibyte' is used to convert each unibyte character
967 to a multibyte character. In this case, the returned string is a
968 newly created string with no text properties. If STRING is multibyte
969 or entirely ASCII, it is returned unchanged. In particular, when
970 STRING is unibyte and entirely ASCII, the returned string is unibyte.
971 \(When the characters are all ASCII, Emacs primitives will treat the
972 string the same way whether it is unibyte or multibyte.) */)
973 (Lisp_Object string)
974 {
975 CHECK_STRING (string);
976
977 return string_make_multibyte (string);
978 }
979
980 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
981 1, 1, 0,
982 doc: /* Return the unibyte equivalent of STRING.
983 Multibyte character codes are converted to unibyte according to
984 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
985 If the lookup in the translation table fails, this function takes just
986 the low 8 bits of each character. */)
987 (Lisp_Object string)
988 {
989 CHECK_STRING (string);
990
991 return string_make_unibyte (string);
992 }
993
994 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
995 1, 1, 0,
996 doc: /* Return a unibyte string with the same individual bytes as STRING.
997 If STRING is unibyte, the result is STRING itself.
998 Otherwise it is a newly created string, with no text properties.
999 If STRING is multibyte and contains a character of charset
1000 `eight-bit', it is converted to the corresponding single byte. */)
1001 (Lisp_Object string)
1002 {
1003 CHECK_STRING (string);
1004
1005 if (STRING_MULTIBYTE (string))
1006 {
1007 EMACS_INT bytes = SBYTES (string);
1008 unsigned char *str = (unsigned char *) xmalloc (bytes);
1009
1010 memcpy (str, SDATA (string), bytes);
1011 bytes = str_as_unibyte (str, bytes);
1012 string = make_unibyte_string ((char *) str, bytes);
1013 xfree (str);
1014 }
1015 return string;
1016 }
1017
1018 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1019 1, 1, 0,
1020 doc: /* Return a multibyte string with the same individual bytes as STRING.
1021 If STRING is multibyte, the result is STRING itself.
1022 Otherwise it is a newly created string, with no text properties.
1023
1024 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1025 part of a correct utf-8 sequence), it is converted to the corresponding
1026 multibyte character of charset `eight-bit'.
1027 See also `string-to-multibyte'.
1028
1029 Beware, this often doesn't really do what you think it does.
1030 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1031 If you're not sure, whether to use `string-as-multibyte' or
1032 `string-to-multibyte', use `string-to-multibyte'. */)
1033 (Lisp_Object string)
1034 {
1035 CHECK_STRING (string);
1036
1037 if (! STRING_MULTIBYTE (string))
1038 {
1039 Lisp_Object new_string;
1040 EMACS_INT nchars, nbytes;
1041
1042 parse_str_as_multibyte (SDATA (string),
1043 SBYTES (string),
1044 &nchars, &nbytes);
1045 new_string = make_uninit_multibyte_string (nchars, nbytes);
1046 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1047 if (nbytes != SBYTES (string))
1048 str_as_multibyte (SDATA (new_string), nbytes,
1049 SBYTES (string), NULL);
1050 string = new_string;
1051 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1052 }
1053 return string;
1054 }
1055
1056 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1057 1, 1, 0,
1058 doc: /* Return a multibyte string with the same individual chars as STRING.
1059 If STRING is multibyte, the result is STRING itself.
1060 Otherwise it is a newly created string, with no text properties.
1061
1062 If STRING is unibyte and contains an 8-bit byte, it is converted to
1063 the corresponding multibyte character of charset `eight-bit'.
1064
1065 This differs from `string-as-multibyte' by converting each byte of a correct
1066 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1067 correct sequence. */)
1068 (Lisp_Object string)
1069 {
1070 CHECK_STRING (string);
1071
1072 return string_to_multibyte (string);
1073 }
1074
1075 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1076 1, 1, 0,
1077 doc: /* Return a unibyte string with the same individual chars as STRING.
1078 If STRING is unibyte, the result is STRING itself.
1079 Otherwise it is a newly created string, with no text properties,
1080 where each `eight-bit' character is converted to the corresponding byte.
1081 If STRING contains a non-ASCII, non-`eight-bit' character,
1082 an error is signaled. */)
1083 (Lisp_Object string)
1084 {
1085 CHECK_STRING (string);
1086
1087 if (STRING_MULTIBYTE (string))
1088 {
1089 EMACS_INT chars = SCHARS (string);
1090 unsigned char *str = (unsigned char *) xmalloc (chars);
1091 EMACS_INT converted = str_to_unibyte (SDATA (string), str, chars, 0);
1092
1093 if (converted < chars)
1094 error ("Can't convert the %"pI"dth character to unibyte", converted);
1095 string = make_unibyte_string ((char *) str, chars);
1096 xfree (str);
1097 }
1098 return string;
1099 }
1100
1101 \f
1102 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1103 doc: /* Return a copy of ALIST.
1104 This is an alist which represents the same mapping from objects to objects,
1105 but does not share the alist structure with ALIST.
1106 The objects mapped (cars and cdrs of elements of the alist)
1107 are shared, however.
1108 Elements of ALIST that are not conses are also shared. */)
1109 (Lisp_Object alist)
1110 {
1111 register Lisp_Object tem;
1112
1113 CHECK_LIST (alist);
1114 if (NILP (alist))
1115 return alist;
1116 alist = concat (1, &alist, Lisp_Cons, 0);
1117 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1118 {
1119 register Lisp_Object car;
1120 car = XCAR (tem);
1121
1122 if (CONSP (car))
1123 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1124 }
1125 return alist;
1126 }
1127
1128 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1129 doc: /* Return a new string whose contents are a substring of STRING.
1130 The returned string consists of the characters between index FROM
1131 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1132 zero-indexed: 0 means the first character of STRING. Negative values
1133 are counted from the end of STRING. If TO is nil, the substring runs
1134 to the end of STRING.
1135
1136 The STRING argument may also be a vector. In that case, the return
1137 value is a new vector that contains the elements between index FROM
1138 \(inclusive) and index TO (exclusive) of that vector argument. */)
1139 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1140 {
1141 Lisp_Object res;
1142 EMACS_INT size;
1143 EMACS_INT size_byte = 0;
1144 EMACS_INT from_char, to_char;
1145 EMACS_INT from_byte = 0, to_byte = 0;
1146
1147 CHECK_VECTOR_OR_STRING (string);
1148 CHECK_NUMBER (from);
1149
1150 if (STRINGP (string))
1151 {
1152 size = SCHARS (string);
1153 size_byte = SBYTES (string);
1154 }
1155 else
1156 size = ASIZE (string);
1157
1158 if (NILP (to))
1159 {
1160 to_char = size;
1161 to_byte = size_byte;
1162 }
1163 else
1164 {
1165 CHECK_NUMBER (to);
1166
1167 to_char = XINT (to);
1168 if (to_char < 0)
1169 to_char += size;
1170
1171 if (STRINGP (string))
1172 to_byte = string_char_to_byte (string, to_char);
1173 }
1174
1175 from_char = XINT (from);
1176 if (from_char < 0)
1177 from_char += size;
1178 if (STRINGP (string))
1179 from_byte = string_char_to_byte (string, from_char);
1180
1181 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1182 args_out_of_range_3 (string, make_number (from_char),
1183 make_number (to_char));
1184
1185 if (STRINGP (string))
1186 {
1187 res = make_specified_string (SSDATA (string) + from_byte,
1188 to_char - from_char, to_byte - from_byte,
1189 STRING_MULTIBYTE (string));
1190 copy_text_properties (make_number (from_char), make_number (to_char),
1191 string, make_number (0), res, Qnil);
1192 }
1193 else
1194 res = Fvector (to_char - from_char, &AREF (string, from_char));
1195
1196 return res;
1197 }
1198
1199
1200 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1201 doc: /* Return a substring of STRING, without text properties.
1202 It starts at index FROM and ends before TO.
1203 TO may be nil or omitted; then the substring runs to the end of STRING.
1204 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1205 If FROM or TO is negative, it counts from the end.
1206
1207 With one argument, just copy STRING without its properties. */)
1208 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1209 {
1210 EMACS_INT size, size_byte;
1211 EMACS_INT from_char, to_char;
1212 EMACS_INT from_byte, to_byte;
1213
1214 CHECK_STRING (string);
1215
1216 size = SCHARS (string);
1217 size_byte = SBYTES (string);
1218
1219 if (NILP (from))
1220 from_char = from_byte = 0;
1221 else
1222 {
1223 CHECK_NUMBER (from);
1224 from_char = XINT (from);
1225 if (from_char < 0)
1226 from_char += size;
1227
1228 from_byte = string_char_to_byte (string, from_char);
1229 }
1230
1231 if (NILP (to))
1232 {
1233 to_char = size;
1234 to_byte = size_byte;
1235 }
1236 else
1237 {
1238 CHECK_NUMBER (to);
1239
1240 to_char = XINT (to);
1241 if (to_char < 0)
1242 to_char += size;
1243
1244 to_byte = string_char_to_byte (string, to_char);
1245 }
1246
1247 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1248 args_out_of_range_3 (string, make_number (from_char),
1249 make_number (to_char));
1250
1251 return make_specified_string (SSDATA (string) + from_byte,
1252 to_char - from_char, to_byte - from_byte,
1253 STRING_MULTIBYTE (string));
1254 }
1255
1256 /* Extract a substring of STRING, giving start and end positions
1257 both in characters and in bytes. */
1258
1259 Lisp_Object
1260 substring_both (Lisp_Object string, EMACS_INT from, EMACS_INT from_byte,
1261 EMACS_INT to, EMACS_INT to_byte)
1262 {
1263 Lisp_Object res;
1264 EMACS_INT size;
1265
1266 CHECK_VECTOR_OR_STRING (string);
1267
1268 size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
1269
1270 if (!(0 <= from && from <= to && to <= size))
1271 args_out_of_range_3 (string, make_number (from), make_number (to));
1272
1273 if (STRINGP (string))
1274 {
1275 res = make_specified_string (SSDATA (string) + from_byte,
1276 to - from, to_byte - from_byte,
1277 STRING_MULTIBYTE (string));
1278 copy_text_properties (make_number (from), make_number (to),
1279 string, make_number (0), res, Qnil);
1280 }
1281 else
1282 res = Fvector (to - from, &AREF (string, from));
1283
1284 return res;
1285 }
1286 \f
1287 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1288 doc: /* Take cdr N times on LIST, return the result. */)
1289 (Lisp_Object n, Lisp_Object list)
1290 {
1291 EMACS_INT i, num;
1292 CHECK_NUMBER (n);
1293 num = XINT (n);
1294 for (i = 0; i < num && !NILP (list); i++)
1295 {
1296 QUIT;
1297 CHECK_LIST_CONS (list, list);
1298 list = XCDR (list);
1299 }
1300 return list;
1301 }
1302
1303 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1304 doc: /* Return the Nth element of LIST.
1305 N counts from zero. If LIST is not that long, nil is returned. */)
1306 (Lisp_Object n, Lisp_Object list)
1307 {
1308 return Fcar (Fnthcdr (n, list));
1309 }
1310
1311 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1312 doc: /* Return element of SEQUENCE at index N. */)
1313 (register Lisp_Object sequence, Lisp_Object n)
1314 {
1315 CHECK_NUMBER (n);
1316 if (CONSP (sequence) || NILP (sequence))
1317 return Fcar (Fnthcdr (n, sequence));
1318
1319 /* Faref signals a "not array" error, so check here. */
1320 CHECK_ARRAY (sequence, Qsequencep);
1321 return Faref (sequence, n);
1322 }
1323
1324 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1325 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1326 The value is actually the tail of LIST whose car is ELT. */)
1327 (register Lisp_Object elt, Lisp_Object list)
1328 {
1329 register Lisp_Object tail;
1330 for (tail = list; CONSP (tail); tail = XCDR (tail))
1331 {
1332 register Lisp_Object tem;
1333 CHECK_LIST_CONS (tail, list);
1334 tem = XCAR (tail);
1335 if (! NILP (Fequal (elt, tem)))
1336 return tail;
1337 QUIT;
1338 }
1339 return Qnil;
1340 }
1341
1342 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1343 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1344 The value is actually the tail of LIST whose car is ELT. */)
1345 (register Lisp_Object elt, Lisp_Object list)
1346 {
1347 while (1)
1348 {
1349 if (!CONSP (list) || EQ (XCAR (list), elt))
1350 break;
1351
1352 list = XCDR (list);
1353 if (!CONSP (list) || EQ (XCAR (list), elt))
1354 break;
1355
1356 list = XCDR (list);
1357 if (!CONSP (list) || EQ (XCAR (list), elt))
1358 break;
1359
1360 list = XCDR (list);
1361 QUIT;
1362 }
1363
1364 CHECK_LIST (list);
1365 return list;
1366 }
1367
1368 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1369 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1370 The value is actually the tail of LIST whose car is ELT. */)
1371 (register Lisp_Object elt, Lisp_Object list)
1372 {
1373 register Lisp_Object tail;
1374
1375 if (!FLOATP (elt))
1376 return Fmemq (elt, list);
1377
1378 for (tail = list; CONSP (tail); tail = XCDR (tail))
1379 {
1380 register Lisp_Object tem;
1381 CHECK_LIST_CONS (tail, list);
1382 tem = XCAR (tail);
1383 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1384 return tail;
1385 QUIT;
1386 }
1387 return Qnil;
1388 }
1389
1390 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1391 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1392 The value is actually the first element of LIST whose car is KEY.
1393 Elements of LIST that are not conses are ignored. */)
1394 (Lisp_Object key, Lisp_Object list)
1395 {
1396 while (1)
1397 {
1398 if (!CONSP (list)
1399 || (CONSP (XCAR (list))
1400 && EQ (XCAR (XCAR (list)), key)))
1401 break;
1402
1403 list = XCDR (list);
1404 if (!CONSP (list)
1405 || (CONSP (XCAR (list))
1406 && EQ (XCAR (XCAR (list)), key)))
1407 break;
1408
1409 list = XCDR (list);
1410 if (!CONSP (list)
1411 || (CONSP (XCAR (list))
1412 && EQ (XCAR (XCAR (list)), key)))
1413 break;
1414
1415 list = XCDR (list);
1416 QUIT;
1417 }
1418
1419 return CAR (list);
1420 }
1421
1422 /* Like Fassq but never report an error and do not allow quits.
1423 Use only on lists known never to be circular. */
1424
1425 Lisp_Object
1426 assq_no_quit (Lisp_Object key, Lisp_Object list)
1427 {
1428 while (CONSP (list)
1429 && (!CONSP (XCAR (list))
1430 || !EQ (XCAR (XCAR (list)), key)))
1431 list = XCDR (list);
1432
1433 return CAR_SAFE (list);
1434 }
1435
1436 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1437 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1438 The value is actually the first element of LIST whose car equals KEY. */)
1439 (Lisp_Object key, Lisp_Object list)
1440 {
1441 Lisp_Object car;
1442
1443 while (1)
1444 {
1445 if (!CONSP (list)
1446 || (CONSP (XCAR (list))
1447 && (car = XCAR (XCAR (list)),
1448 EQ (car, key) || !NILP (Fequal (car, key)))))
1449 break;
1450
1451 list = XCDR (list);
1452 if (!CONSP (list)
1453 || (CONSP (XCAR (list))
1454 && (car = XCAR (XCAR (list)),
1455 EQ (car, key) || !NILP (Fequal (car, key)))))
1456 break;
1457
1458 list = XCDR (list);
1459 if (!CONSP (list)
1460 || (CONSP (XCAR (list))
1461 && (car = XCAR (XCAR (list)),
1462 EQ (car, key) || !NILP (Fequal (car, key)))))
1463 break;
1464
1465 list = XCDR (list);
1466 QUIT;
1467 }
1468
1469 return CAR (list);
1470 }
1471
1472 /* Like Fassoc but never report an error and do not allow quits.
1473 Use only on lists known never to be circular. */
1474
1475 Lisp_Object
1476 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1477 {
1478 while (CONSP (list)
1479 && (!CONSP (XCAR (list))
1480 || (!EQ (XCAR (XCAR (list)), key)
1481 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1482 list = XCDR (list);
1483
1484 return CONSP (list) ? XCAR (list) : Qnil;
1485 }
1486
1487 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1488 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1489 The value is actually the first element of LIST whose cdr is KEY. */)
1490 (register Lisp_Object key, Lisp_Object list)
1491 {
1492 while (1)
1493 {
1494 if (!CONSP (list)
1495 || (CONSP (XCAR (list))
1496 && EQ (XCDR (XCAR (list)), key)))
1497 break;
1498
1499 list = XCDR (list);
1500 if (!CONSP (list)
1501 || (CONSP (XCAR (list))
1502 && EQ (XCDR (XCAR (list)), key)))
1503 break;
1504
1505 list = XCDR (list);
1506 if (!CONSP (list)
1507 || (CONSP (XCAR (list))
1508 && EQ (XCDR (XCAR (list)), key)))
1509 break;
1510
1511 list = XCDR (list);
1512 QUIT;
1513 }
1514
1515 return CAR (list);
1516 }
1517
1518 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1519 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1520 The value is actually the first element of LIST whose cdr equals KEY. */)
1521 (Lisp_Object key, Lisp_Object list)
1522 {
1523 Lisp_Object cdr;
1524
1525 while (1)
1526 {
1527 if (!CONSP (list)
1528 || (CONSP (XCAR (list))
1529 && (cdr = XCDR (XCAR (list)),
1530 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1531 break;
1532
1533 list = XCDR (list);
1534 if (!CONSP (list)
1535 || (CONSP (XCAR (list))
1536 && (cdr = XCDR (XCAR (list)),
1537 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1538 break;
1539
1540 list = XCDR (list);
1541 if (!CONSP (list)
1542 || (CONSP (XCAR (list))
1543 && (cdr = XCDR (XCAR (list)),
1544 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1545 break;
1546
1547 list = XCDR (list);
1548 QUIT;
1549 }
1550
1551 return CAR (list);
1552 }
1553 \f
1554 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1555 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1556 The modified LIST is returned. Comparison is done with `eq'.
1557 If the first member of LIST is ELT, there is no way to remove it by side effect;
1558 therefore, write `(setq foo (delq element foo))'
1559 to be sure of changing the value of `foo'. */)
1560 (register Lisp_Object elt, Lisp_Object list)
1561 {
1562 register Lisp_Object tail, prev;
1563 register Lisp_Object tem;
1564
1565 tail = list;
1566 prev = Qnil;
1567 while (!NILP (tail))
1568 {
1569 CHECK_LIST_CONS (tail, list);
1570 tem = XCAR (tail);
1571 if (EQ (elt, tem))
1572 {
1573 if (NILP (prev))
1574 list = XCDR (tail);
1575 else
1576 Fsetcdr (prev, XCDR (tail));
1577 }
1578 else
1579 prev = tail;
1580 tail = XCDR (tail);
1581 QUIT;
1582 }
1583 return list;
1584 }
1585
1586 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1587 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1588 SEQ must be a list, a vector, or a string.
1589 The modified SEQ is returned. Comparison is done with `equal'.
1590 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1591 is not a side effect; it is simply using a different sequence.
1592 Therefore, write `(setq foo (delete element foo))'
1593 to be sure of changing the value of `foo'. */)
1594 (Lisp_Object elt, Lisp_Object seq)
1595 {
1596 if (VECTORP (seq))
1597 {
1598 EMACS_INT i, n;
1599
1600 for (i = n = 0; i < ASIZE (seq); ++i)
1601 if (NILP (Fequal (AREF (seq, i), elt)))
1602 ++n;
1603
1604 if (n != ASIZE (seq))
1605 {
1606 struct Lisp_Vector *p = allocate_vector (n);
1607
1608 for (i = n = 0; i < ASIZE (seq); ++i)
1609 if (NILP (Fequal (AREF (seq, i), elt)))
1610 p->contents[n++] = AREF (seq, i);
1611
1612 XSETVECTOR (seq, p);
1613 }
1614 }
1615 else if (STRINGP (seq))
1616 {
1617 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1618 int c;
1619
1620 for (i = nchars = nbytes = ibyte = 0;
1621 i < SCHARS (seq);
1622 ++i, ibyte += cbytes)
1623 {
1624 if (STRING_MULTIBYTE (seq))
1625 {
1626 c = STRING_CHAR (SDATA (seq) + ibyte);
1627 cbytes = CHAR_BYTES (c);
1628 }
1629 else
1630 {
1631 c = SREF (seq, i);
1632 cbytes = 1;
1633 }
1634
1635 if (!INTEGERP (elt) || c != XINT (elt))
1636 {
1637 ++nchars;
1638 nbytes += cbytes;
1639 }
1640 }
1641
1642 if (nchars != SCHARS (seq))
1643 {
1644 Lisp_Object tem;
1645
1646 tem = make_uninit_multibyte_string (nchars, nbytes);
1647 if (!STRING_MULTIBYTE (seq))
1648 STRING_SET_UNIBYTE (tem);
1649
1650 for (i = nchars = nbytes = ibyte = 0;
1651 i < SCHARS (seq);
1652 ++i, ibyte += cbytes)
1653 {
1654 if (STRING_MULTIBYTE (seq))
1655 {
1656 c = STRING_CHAR (SDATA (seq) + ibyte);
1657 cbytes = CHAR_BYTES (c);
1658 }
1659 else
1660 {
1661 c = SREF (seq, i);
1662 cbytes = 1;
1663 }
1664
1665 if (!INTEGERP (elt) || c != XINT (elt))
1666 {
1667 unsigned char *from = SDATA (seq) + ibyte;
1668 unsigned char *to = SDATA (tem) + nbytes;
1669 EMACS_INT n;
1670
1671 ++nchars;
1672 nbytes += cbytes;
1673
1674 for (n = cbytes; n--; )
1675 *to++ = *from++;
1676 }
1677 }
1678
1679 seq = tem;
1680 }
1681 }
1682 else
1683 {
1684 Lisp_Object tail, prev;
1685
1686 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1687 {
1688 CHECK_LIST_CONS (tail, seq);
1689
1690 if (!NILP (Fequal (elt, XCAR (tail))))
1691 {
1692 if (NILP (prev))
1693 seq = XCDR (tail);
1694 else
1695 Fsetcdr (prev, XCDR (tail));
1696 }
1697 else
1698 prev = tail;
1699 QUIT;
1700 }
1701 }
1702
1703 return seq;
1704 }
1705
1706 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1707 doc: /* Reverse LIST by modifying cdr pointers.
1708 Return the reversed list. */)
1709 (Lisp_Object list)
1710 {
1711 register Lisp_Object prev, tail, next;
1712
1713 if (NILP (list)) return list;
1714 prev = Qnil;
1715 tail = list;
1716 while (!NILP (tail))
1717 {
1718 QUIT;
1719 CHECK_LIST_CONS (tail, list);
1720 next = XCDR (tail);
1721 Fsetcdr (tail, prev);
1722 prev = tail;
1723 tail = next;
1724 }
1725 return prev;
1726 }
1727
1728 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1729 doc: /* Reverse LIST, copying. Return the reversed list.
1730 See also the function `nreverse', which is used more often. */)
1731 (Lisp_Object list)
1732 {
1733 Lisp_Object new;
1734
1735 for (new = Qnil; CONSP (list); list = XCDR (list))
1736 {
1737 QUIT;
1738 new = Fcons (XCAR (list), new);
1739 }
1740 CHECK_LIST_END (list, list);
1741 return new;
1742 }
1743 \f
1744 Lisp_Object merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred);
1745
1746 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1747 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1748 Returns the sorted list. LIST is modified by side effects.
1749 PREDICATE is called with two elements of LIST, and should return non-nil
1750 if the first element should sort before the second. */)
1751 (Lisp_Object list, Lisp_Object predicate)
1752 {
1753 Lisp_Object front, back;
1754 register Lisp_Object len, tem;
1755 struct gcpro gcpro1, gcpro2;
1756 EMACS_INT length;
1757
1758 front = list;
1759 len = Flength (list);
1760 length = XINT (len);
1761 if (length < 2)
1762 return list;
1763
1764 XSETINT (len, (length / 2) - 1);
1765 tem = Fnthcdr (len, list);
1766 back = Fcdr (tem);
1767 Fsetcdr (tem, Qnil);
1768
1769 GCPRO2 (front, back);
1770 front = Fsort (front, predicate);
1771 back = Fsort (back, predicate);
1772 UNGCPRO;
1773 return merge (front, back, predicate);
1774 }
1775
1776 Lisp_Object
1777 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1778 {
1779 Lisp_Object value;
1780 register Lisp_Object tail;
1781 Lisp_Object tem;
1782 register Lisp_Object l1, l2;
1783 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1784
1785 l1 = org_l1;
1786 l2 = org_l2;
1787 tail = Qnil;
1788 value = Qnil;
1789
1790 /* It is sufficient to protect org_l1 and org_l2.
1791 When l1 and l2 are updated, we copy the new values
1792 back into the org_ vars. */
1793 GCPRO4 (org_l1, org_l2, pred, value);
1794
1795 while (1)
1796 {
1797 if (NILP (l1))
1798 {
1799 UNGCPRO;
1800 if (NILP (tail))
1801 return l2;
1802 Fsetcdr (tail, l2);
1803 return value;
1804 }
1805 if (NILP (l2))
1806 {
1807 UNGCPRO;
1808 if (NILP (tail))
1809 return l1;
1810 Fsetcdr (tail, l1);
1811 return value;
1812 }
1813 tem = call2 (pred, Fcar (l2), Fcar (l1));
1814 if (NILP (tem))
1815 {
1816 tem = l1;
1817 l1 = Fcdr (l1);
1818 org_l1 = l1;
1819 }
1820 else
1821 {
1822 tem = l2;
1823 l2 = Fcdr (l2);
1824 org_l2 = l2;
1825 }
1826 if (NILP (tail))
1827 value = tem;
1828 else
1829 Fsetcdr (tail, tem);
1830 tail = tem;
1831 }
1832 }
1833
1834 \f
1835 /* This does not check for quits. That is safe since it must terminate. */
1836
1837 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1838 doc: /* Extract a value from a property list.
1839 PLIST is a property list, which is a list of the form
1840 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1841 corresponding to the given PROP, or nil if PROP is not one of the
1842 properties on the list. This function never signals an error. */)
1843 (Lisp_Object plist, Lisp_Object prop)
1844 {
1845 Lisp_Object tail, halftail;
1846
1847 /* halftail is used to detect circular lists. */
1848 tail = halftail = plist;
1849 while (CONSP (tail) && CONSP (XCDR (tail)))
1850 {
1851 if (EQ (prop, XCAR (tail)))
1852 return XCAR (XCDR (tail));
1853
1854 tail = XCDR (XCDR (tail));
1855 halftail = XCDR (halftail);
1856 if (EQ (tail, halftail))
1857 break;
1858
1859 #if 0 /* Unsafe version. */
1860 /* This function can be called asynchronously
1861 (setup_coding_system). Don't QUIT in that case. */
1862 if (!interrupt_input_blocked)
1863 QUIT;
1864 #endif
1865 }
1866
1867 return Qnil;
1868 }
1869
1870 DEFUN ("get", Fget, Sget, 2, 2, 0,
1871 doc: /* Return the value of SYMBOL's PROPNAME property.
1872 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1873 (Lisp_Object symbol, Lisp_Object propname)
1874 {
1875 CHECK_SYMBOL (symbol);
1876 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1877 }
1878
1879 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1880 doc: /* Change value in PLIST of PROP to VAL.
1881 PLIST is a property list, which is a list of the form
1882 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1883 If PROP is already a property on the list, its value is set to VAL,
1884 otherwise the new PROP VAL pair is added. The new plist is returned;
1885 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1886 The PLIST is modified by side effects. */)
1887 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1888 {
1889 register Lisp_Object tail, prev;
1890 Lisp_Object newcell;
1891 prev = Qnil;
1892 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1893 tail = XCDR (XCDR (tail)))
1894 {
1895 if (EQ (prop, XCAR (tail)))
1896 {
1897 Fsetcar (XCDR (tail), val);
1898 return plist;
1899 }
1900
1901 prev = tail;
1902 QUIT;
1903 }
1904 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1905 if (NILP (prev))
1906 return newcell;
1907 else
1908 Fsetcdr (XCDR (prev), newcell);
1909 return plist;
1910 }
1911
1912 DEFUN ("put", Fput, Sput, 3, 3, 0,
1913 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1914 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1915 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1916 {
1917 CHECK_SYMBOL (symbol);
1918 XSYMBOL (symbol)->plist
1919 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
1920 return value;
1921 }
1922 \f
1923 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1924 doc: /* Extract a value from a property list, comparing with `equal'.
1925 PLIST is a property list, which is a list of the form
1926 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1927 corresponding to the given PROP, or nil if PROP is not
1928 one of the properties on the list. */)
1929 (Lisp_Object plist, Lisp_Object prop)
1930 {
1931 Lisp_Object tail;
1932
1933 for (tail = plist;
1934 CONSP (tail) && CONSP (XCDR (tail));
1935 tail = XCDR (XCDR (tail)))
1936 {
1937 if (! NILP (Fequal (prop, XCAR (tail))))
1938 return XCAR (XCDR (tail));
1939
1940 QUIT;
1941 }
1942
1943 CHECK_LIST_END (tail, prop);
1944
1945 return Qnil;
1946 }
1947
1948 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1949 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1950 PLIST is a property list, which is a list of the form
1951 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1952 If PROP is already a property on the list, its value is set to VAL,
1953 otherwise the new PROP VAL pair is added. The new plist is returned;
1954 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1955 The PLIST is modified by side effects. */)
1956 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1957 {
1958 register Lisp_Object tail, prev;
1959 Lisp_Object newcell;
1960 prev = Qnil;
1961 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1962 tail = XCDR (XCDR (tail)))
1963 {
1964 if (! NILP (Fequal (prop, XCAR (tail))))
1965 {
1966 Fsetcar (XCDR (tail), val);
1967 return plist;
1968 }
1969
1970 prev = tail;
1971 QUIT;
1972 }
1973 newcell = Fcons (prop, Fcons (val, Qnil));
1974 if (NILP (prev))
1975 return newcell;
1976 else
1977 Fsetcdr (XCDR (prev), newcell);
1978 return plist;
1979 }
1980 \f
1981 DEFUN ("eql", Feql, Seql, 2, 2, 0,
1982 doc: /* Return t if the two args are the same Lisp object.
1983 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1984 (Lisp_Object obj1, Lisp_Object obj2)
1985 {
1986 if (FLOATP (obj1))
1987 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
1988 else
1989 return EQ (obj1, obj2) ? Qt : Qnil;
1990 }
1991
1992 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1993 doc: /* Return t if two Lisp objects have similar structure and contents.
1994 They must have the same data type.
1995 Conses are compared by comparing the cars and the cdrs.
1996 Vectors and strings are compared element by element.
1997 Numbers are compared by value, but integers cannot equal floats.
1998 (Use `=' if you want integers and floats to be able to be equal.)
1999 Symbols must match exactly. */)
2000 (register Lisp_Object o1, Lisp_Object o2)
2001 {
2002 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
2003 }
2004
2005 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2006 doc: /* Return t if two Lisp objects have similar structure and contents.
2007 This is like `equal' except that it compares the text properties
2008 of strings. (`equal' ignores text properties.) */)
2009 (register Lisp_Object o1, Lisp_Object o2)
2010 {
2011 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
2012 }
2013
2014 /* DEPTH is current depth of recursion. Signal an error if it
2015 gets too deep.
2016 PROPS, if non-nil, means compare string text properties too. */
2017
2018 static int
2019 internal_equal (register Lisp_Object o1, register Lisp_Object o2, int depth, int props)
2020 {
2021 if (depth > 200)
2022 error ("Stack overflow in equal");
2023
2024 tail_recurse:
2025 QUIT;
2026 if (EQ (o1, o2))
2027 return 1;
2028 if (XTYPE (o1) != XTYPE (o2))
2029 return 0;
2030
2031 switch (XTYPE (o1))
2032 {
2033 case Lisp_Float:
2034 {
2035 double d1, d2;
2036
2037 d1 = extract_float (o1);
2038 d2 = extract_float (o2);
2039 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2040 though they are not =. */
2041 return d1 == d2 || (d1 != d1 && d2 != d2);
2042 }
2043
2044 case Lisp_Cons:
2045 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2046 return 0;
2047 o1 = XCDR (o1);
2048 o2 = XCDR (o2);
2049 goto tail_recurse;
2050
2051 case Lisp_Misc:
2052 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2053 return 0;
2054 if (OVERLAYP (o1))
2055 {
2056 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2057 depth + 1, props)
2058 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2059 depth + 1, props))
2060 return 0;
2061 o1 = XOVERLAY (o1)->plist;
2062 o2 = XOVERLAY (o2)->plist;
2063 goto tail_recurse;
2064 }
2065 if (MARKERP (o1))
2066 {
2067 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2068 && (XMARKER (o1)->buffer == 0
2069 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2070 }
2071 break;
2072
2073 case Lisp_Vectorlike:
2074 {
2075 register int i;
2076 EMACS_INT size = ASIZE (o1);
2077 /* Pseudovectors have the type encoded in the size field, so this test
2078 actually checks that the objects have the same type as well as the
2079 same size. */
2080 if (ASIZE (o2) != size)
2081 return 0;
2082 /* Boolvectors are compared much like strings. */
2083 if (BOOL_VECTOR_P (o1))
2084 {
2085 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2086 return 0;
2087 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2088 ((XBOOL_VECTOR (o1)->size
2089 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2090 / BOOL_VECTOR_BITS_PER_CHAR)))
2091 return 0;
2092 return 1;
2093 }
2094 if (WINDOW_CONFIGURATIONP (o1))
2095 return compare_window_configurations (o1, o2, 0);
2096
2097 /* Aside from them, only true vectors, char-tables, compiled
2098 functions, and fonts (font-spec, font-entity, font-object)
2099 are sensible to compare, so eliminate the others now. */
2100 if (size & PSEUDOVECTOR_FLAG)
2101 {
2102 if (!(size & (PVEC_COMPILED
2103 | PVEC_CHAR_TABLE | PVEC_SUB_CHAR_TABLE | PVEC_FONT)))
2104 return 0;
2105 size &= PSEUDOVECTOR_SIZE_MASK;
2106 }
2107 for (i = 0; i < size; i++)
2108 {
2109 Lisp_Object v1, v2;
2110 v1 = AREF (o1, i);
2111 v2 = AREF (o2, i);
2112 if (!internal_equal (v1, v2, depth + 1, props))
2113 return 0;
2114 }
2115 return 1;
2116 }
2117 break;
2118
2119 case Lisp_String:
2120 if (SCHARS (o1) != SCHARS (o2))
2121 return 0;
2122 if (SBYTES (o1) != SBYTES (o2))
2123 return 0;
2124 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2125 return 0;
2126 if (props && !compare_string_intervals (o1, o2))
2127 return 0;
2128 return 1;
2129
2130 default:
2131 break;
2132 }
2133
2134 return 0;
2135 }
2136 \f
2137
2138 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2139 doc: /* Store each element of ARRAY with ITEM.
2140 ARRAY is a vector, string, char-table, or bool-vector. */)
2141 (Lisp_Object array, Lisp_Object item)
2142 {
2143 register EMACS_INT size, idx;
2144
2145 if (VECTORP (array))
2146 {
2147 register Lisp_Object *p = XVECTOR (array)->contents;
2148 size = ASIZE (array);
2149 for (idx = 0; idx < size; idx++)
2150 p[idx] = item;
2151 }
2152 else if (CHAR_TABLE_P (array))
2153 {
2154 int i;
2155
2156 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2157 XCHAR_TABLE (array)->contents[i] = item;
2158 XCHAR_TABLE (array)->defalt = item;
2159 }
2160 else if (STRINGP (array))
2161 {
2162 register unsigned char *p = SDATA (array);
2163 int charval;
2164 CHECK_CHARACTER (item);
2165 charval = XFASTINT (item);
2166 size = SCHARS (array);
2167 if (STRING_MULTIBYTE (array))
2168 {
2169 unsigned char str[MAX_MULTIBYTE_LENGTH];
2170 int len = CHAR_STRING (charval, str);
2171 EMACS_INT size_byte = SBYTES (array);
2172
2173 if (INT_MULTIPLY_OVERFLOW (SCHARS (array), len)
2174 || SCHARS (array) * len != size_byte)
2175 error ("Attempt to change byte length of a string");
2176 for (idx = 0; idx < size_byte; idx++)
2177 *p++ = str[idx % len];
2178 }
2179 else
2180 for (idx = 0; idx < size; idx++)
2181 p[idx] = charval;
2182 }
2183 else if (BOOL_VECTOR_P (array))
2184 {
2185 register unsigned char *p = XBOOL_VECTOR (array)->data;
2186 EMACS_INT size_in_chars;
2187 size = XBOOL_VECTOR (array)->size;
2188 size_in_chars
2189 = ((size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2190 / BOOL_VECTOR_BITS_PER_CHAR);
2191
2192 if (size_in_chars)
2193 {
2194 memset (p, ! NILP (item) ? -1 : 0, size_in_chars);
2195
2196 /* Clear any extraneous bits in the last byte. */
2197 p[size_in_chars - 1] &= (1 << (size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2198 }
2199 }
2200 else
2201 wrong_type_argument (Qarrayp, array);
2202 return array;
2203 }
2204
2205 DEFUN ("clear-string", Fclear_string, Sclear_string,
2206 1, 1, 0,
2207 doc: /* Clear the contents of STRING.
2208 This makes STRING unibyte and may change its length. */)
2209 (Lisp_Object string)
2210 {
2211 EMACS_INT len;
2212 CHECK_STRING (string);
2213 len = SBYTES (string);
2214 memset (SDATA (string), 0, len);
2215 STRING_SET_CHARS (string, len);
2216 STRING_SET_UNIBYTE (string);
2217 return Qnil;
2218 }
2219 \f
2220 /* ARGSUSED */
2221 Lisp_Object
2222 nconc2 (Lisp_Object s1, Lisp_Object s2)
2223 {
2224 Lisp_Object args[2];
2225 args[0] = s1;
2226 args[1] = s2;
2227 return Fnconc (2, args);
2228 }
2229
2230 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2231 doc: /* Concatenate any number of lists by altering them.
2232 Only the last argument is not altered, and need not be a list.
2233 usage: (nconc &rest LISTS) */)
2234 (ptrdiff_t nargs, Lisp_Object *args)
2235 {
2236 ptrdiff_t argnum;
2237 register Lisp_Object tail, tem, val;
2238
2239 val = tail = Qnil;
2240
2241 for (argnum = 0; argnum < nargs; argnum++)
2242 {
2243 tem = args[argnum];
2244 if (NILP (tem)) continue;
2245
2246 if (NILP (val))
2247 val = tem;
2248
2249 if (argnum + 1 == nargs) break;
2250
2251 CHECK_LIST_CONS (tem, tem);
2252
2253 while (CONSP (tem))
2254 {
2255 tail = tem;
2256 tem = XCDR (tail);
2257 QUIT;
2258 }
2259
2260 tem = args[argnum + 1];
2261 Fsetcdr (tail, tem);
2262 if (NILP (tem))
2263 args[argnum + 1] = tail;
2264 }
2265
2266 return val;
2267 }
2268 \f
2269 /* This is the guts of all mapping functions.
2270 Apply FN to each element of SEQ, one by one,
2271 storing the results into elements of VALS, a C vector of Lisp_Objects.
2272 LENI is the length of VALS, which should also be the length of SEQ. */
2273
2274 static void
2275 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2276 {
2277 register Lisp_Object tail;
2278 Lisp_Object dummy;
2279 register EMACS_INT i;
2280 struct gcpro gcpro1, gcpro2, gcpro3;
2281
2282 if (vals)
2283 {
2284 /* Don't let vals contain any garbage when GC happens. */
2285 for (i = 0; i < leni; i++)
2286 vals[i] = Qnil;
2287
2288 GCPRO3 (dummy, fn, seq);
2289 gcpro1.var = vals;
2290 gcpro1.nvars = leni;
2291 }
2292 else
2293 GCPRO2 (fn, seq);
2294 /* We need not explicitly protect `tail' because it is used only on lists, and
2295 1) lists are not relocated and 2) the list is marked via `seq' so will not
2296 be freed */
2297
2298 if (VECTORP (seq) || COMPILEDP (seq))
2299 {
2300 for (i = 0; i < leni; i++)
2301 {
2302 dummy = call1 (fn, AREF (seq, i));
2303 if (vals)
2304 vals[i] = dummy;
2305 }
2306 }
2307 else if (BOOL_VECTOR_P (seq))
2308 {
2309 for (i = 0; i < leni; i++)
2310 {
2311 unsigned char byte;
2312 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2313 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2314 dummy = call1 (fn, dummy);
2315 if (vals)
2316 vals[i] = dummy;
2317 }
2318 }
2319 else if (STRINGP (seq))
2320 {
2321 EMACS_INT i_byte;
2322
2323 for (i = 0, i_byte = 0; i < leni;)
2324 {
2325 int c;
2326 EMACS_INT i_before = i;
2327
2328 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2329 XSETFASTINT (dummy, c);
2330 dummy = call1 (fn, dummy);
2331 if (vals)
2332 vals[i_before] = dummy;
2333 }
2334 }
2335 else /* Must be a list, since Flength did not get an error */
2336 {
2337 tail = seq;
2338 for (i = 0; i < leni && CONSP (tail); i++)
2339 {
2340 dummy = call1 (fn, XCAR (tail));
2341 if (vals)
2342 vals[i] = dummy;
2343 tail = XCDR (tail);
2344 }
2345 }
2346
2347 UNGCPRO;
2348 }
2349
2350 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2351 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2352 In between each pair of results, stick in SEPARATOR. Thus, " " as
2353 SEPARATOR results in spaces between the values returned by FUNCTION.
2354 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2355 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2356 {
2357 Lisp_Object len;
2358 register EMACS_INT leni;
2359 ptrdiff_t i, nargs;
2360 register Lisp_Object *args;
2361 struct gcpro gcpro1;
2362 Lisp_Object ret;
2363 USE_SAFE_ALLOCA;
2364
2365 len = Flength (sequence);
2366 if (CHAR_TABLE_P (sequence))
2367 wrong_type_argument (Qlistp, sequence);
2368 leni = XINT (len);
2369 nargs = leni + leni - 1;
2370 if (nargs < 0) return empty_unibyte_string;
2371
2372 SAFE_ALLOCA_LISP (args, nargs);
2373
2374 GCPRO1 (separator);
2375 mapcar1 (leni, args, function, sequence);
2376 UNGCPRO;
2377
2378 for (i = leni - 1; i > 0; i--)
2379 args[i + i] = args[i];
2380
2381 for (i = 1; i < nargs; i += 2)
2382 args[i] = separator;
2383
2384 ret = Fconcat (nargs, args);
2385 SAFE_FREE ();
2386
2387 return ret;
2388 }
2389
2390 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2391 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2392 The result is a list just as long as SEQUENCE.
2393 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2394 (Lisp_Object function, Lisp_Object sequence)
2395 {
2396 register Lisp_Object len;
2397 register EMACS_INT leni;
2398 register Lisp_Object *args;
2399 Lisp_Object ret;
2400 USE_SAFE_ALLOCA;
2401
2402 len = Flength (sequence);
2403 if (CHAR_TABLE_P (sequence))
2404 wrong_type_argument (Qlistp, sequence);
2405 leni = XFASTINT (len);
2406
2407 SAFE_ALLOCA_LISP (args, leni);
2408
2409 mapcar1 (leni, args, function, sequence);
2410
2411 ret = Flist (leni, args);
2412 SAFE_FREE ();
2413
2414 return ret;
2415 }
2416
2417 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2418 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2419 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2420 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2421 (Lisp_Object function, Lisp_Object sequence)
2422 {
2423 register EMACS_INT leni;
2424
2425 leni = XFASTINT (Flength (sequence));
2426 if (CHAR_TABLE_P (sequence))
2427 wrong_type_argument (Qlistp, sequence);
2428 mapcar1 (leni, 0, function, sequence);
2429
2430 return sequence;
2431 }
2432 \f
2433 /* This is how C code calls `yes-or-no-p' and allows the user
2434 to redefined it.
2435
2436 Anything that calls this function must protect from GC! */
2437
2438 Lisp_Object
2439 do_yes_or_no_p (Lisp_Object prompt)
2440 {
2441 return call1 (intern ("yes-or-no-p"), prompt);
2442 }
2443
2444 /* Anything that calls this function must protect from GC! */
2445
2446 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2447 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2448 PROMPT is the string to display to ask the question. It should end in
2449 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2450
2451 The user must confirm the answer with RET, and can edit it until it
2452 has been confirmed.
2453
2454 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2455 is nil, and `use-dialog-box' is non-nil. */)
2456 (Lisp_Object prompt)
2457 {
2458 register Lisp_Object ans;
2459 Lisp_Object args[2];
2460 struct gcpro gcpro1;
2461
2462 CHECK_STRING (prompt);
2463
2464 #ifdef HAVE_MENUS
2465 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2466 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2467 && use_dialog_box
2468 && have_menus_p ())
2469 {
2470 Lisp_Object pane, menu, obj;
2471 redisplay_preserve_echo_area (4);
2472 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2473 Fcons (Fcons (build_string ("No"), Qnil),
2474 Qnil));
2475 GCPRO1 (pane);
2476 menu = Fcons (prompt, pane);
2477 obj = Fx_popup_dialog (Qt, menu, Qnil);
2478 UNGCPRO;
2479 return obj;
2480 }
2481 #endif /* HAVE_MENUS */
2482
2483 args[0] = prompt;
2484 args[1] = build_string ("(yes or no) ");
2485 prompt = Fconcat (2, args);
2486
2487 GCPRO1 (prompt);
2488
2489 while (1)
2490 {
2491 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2492 Qyes_or_no_p_history, Qnil,
2493 Qnil));
2494 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2495 {
2496 UNGCPRO;
2497 return Qt;
2498 }
2499 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2500 {
2501 UNGCPRO;
2502 return Qnil;
2503 }
2504
2505 Fding (Qnil);
2506 Fdiscard_input ();
2507 message ("Please answer yes or no.");
2508 Fsleep_for (make_number (2), Qnil);
2509 }
2510 }
2511 \f
2512 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2513 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2514
2515 Each of the three load averages is multiplied by 100, then converted
2516 to integer.
2517
2518 When USE-FLOATS is non-nil, floats will be used instead of integers.
2519 These floats are not multiplied by 100.
2520
2521 If the 5-minute or 15-minute load averages are not available, return a
2522 shortened list, containing only those averages which are available.
2523
2524 An error is thrown if the load average can't be obtained. In some
2525 cases making it work would require Emacs being installed setuid or
2526 setgid so that it can read kernel information, and that usually isn't
2527 advisable. */)
2528 (Lisp_Object use_floats)
2529 {
2530 double load_ave[3];
2531 int loads = getloadavg (load_ave, 3);
2532 Lisp_Object ret = Qnil;
2533
2534 if (loads < 0)
2535 error ("load-average not implemented for this operating system");
2536
2537 while (loads-- > 0)
2538 {
2539 Lisp_Object load = (NILP (use_floats)
2540 ? make_number (100.0 * load_ave[loads])
2541 : make_float (load_ave[loads]));
2542 ret = Fcons (load, ret);
2543 }
2544
2545 return ret;
2546 }
2547 \f
2548 static Lisp_Object Qsubfeatures;
2549
2550 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2551 doc: /* Return t if FEATURE is present in this Emacs.
2552
2553 Use this to conditionalize execution of lisp code based on the
2554 presence or absence of Emacs or environment extensions.
2555 Use `provide' to declare that a feature is available. This function
2556 looks at the value of the variable `features'. The optional argument
2557 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2558 (Lisp_Object feature, Lisp_Object subfeature)
2559 {
2560 register Lisp_Object tem;
2561 CHECK_SYMBOL (feature);
2562 tem = Fmemq (feature, Vfeatures);
2563 if (!NILP (tem) && !NILP (subfeature))
2564 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2565 return (NILP (tem)) ? Qnil : Qt;
2566 }
2567
2568 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2569 doc: /* Announce that FEATURE is a feature of the current Emacs.
2570 The optional argument SUBFEATURES should be a list of symbols listing
2571 particular subfeatures supported in this version of FEATURE. */)
2572 (Lisp_Object feature, Lisp_Object subfeatures)
2573 {
2574 register Lisp_Object tem;
2575 CHECK_SYMBOL (feature);
2576 CHECK_LIST (subfeatures);
2577 if (!NILP (Vautoload_queue))
2578 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2579 Vautoload_queue);
2580 tem = Fmemq (feature, Vfeatures);
2581 if (NILP (tem))
2582 Vfeatures = Fcons (feature, Vfeatures);
2583 if (!NILP (subfeatures))
2584 Fput (feature, Qsubfeatures, subfeatures);
2585 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2586
2587 /* Run any load-hooks for this file. */
2588 tem = Fassq (feature, Vafter_load_alist);
2589 if (CONSP (tem))
2590 Fprogn (XCDR (tem));
2591
2592 return feature;
2593 }
2594 \f
2595 /* `require' and its subroutines. */
2596
2597 /* List of features currently being require'd, innermost first. */
2598
2599 static Lisp_Object require_nesting_list;
2600
2601 static Lisp_Object
2602 require_unwind (Lisp_Object old_value)
2603 {
2604 return require_nesting_list = old_value;
2605 }
2606
2607 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2608 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2609 If FEATURE is not a member of the list `features', then the feature
2610 is not loaded; so load the file FILENAME.
2611 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2612 and `load' will try to load this name appended with the suffix `.elc' or
2613 `.el', in that order. The name without appended suffix will not be used.
2614 If the optional third argument NOERROR is non-nil,
2615 then return nil if the file is not found instead of signaling an error.
2616 Normally the return value is FEATURE.
2617 The normal messages at start and end of loading FILENAME are suppressed. */)
2618 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2619 {
2620 register Lisp_Object tem;
2621 struct gcpro gcpro1, gcpro2;
2622 int from_file = load_in_progress;
2623
2624 CHECK_SYMBOL (feature);
2625
2626 /* Record the presence of `require' in this file
2627 even if the feature specified is already loaded.
2628 But not more than once in any file,
2629 and not when we aren't loading or reading from a file. */
2630 if (!from_file)
2631 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2632 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2633 from_file = 1;
2634
2635 if (from_file)
2636 {
2637 tem = Fcons (Qrequire, feature);
2638 if (NILP (Fmember (tem, Vcurrent_load_list)))
2639 LOADHIST_ATTACH (tem);
2640 }
2641 tem = Fmemq (feature, Vfeatures);
2642
2643 if (NILP (tem))
2644 {
2645 int count = SPECPDL_INDEX ();
2646 int nesting = 0;
2647
2648 /* This is to make sure that loadup.el gives a clear picture
2649 of what files are preloaded and when. */
2650 if (! NILP (Vpurify_flag))
2651 error ("(require %s) while preparing to dump",
2652 SDATA (SYMBOL_NAME (feature)));
2653
2654 /* A certain amount of recursive `require' is legitimate,
2655 but if we require the same feature recursively 3 times,
2656 signal an error. */
2657 tem = require_nesting_list;
2658 while (! NILP (tem))
2659 {
2660 if (! NILP (Fequal (feature, XCAR (tem))))
2661 nesting++;
2662 tem = XCDR (tem);
2663 }
2664 if (nesting > 3)
2665 error ("Recursive `require' for feature `%s'",
2666 SDATA (SYMBOL_NAME (feature)));
2667
2668 /* Update the list for any nested `require's that occur. */
2669 record_unwind_protect (require_unwind, require_nesting_list);
2670 require_nesting_list = Fcons (feature, require_nesting_list);
2671
2672 /* Value saved here is to be restored into Vautoload_queue */
2673 record_unwind_protect (un_autoload, Vautoload_queue);
2674 Vautoload_queue = Qt;
2675
2676 /* Load the file. */
2677 GCPRO2 (feature, filename);
2678 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2679 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2680 UNGCPRO;
2681
2682 /* If load failed entirely, return nil. */
2683 if (NILP (tem))
2684 return unbind_to (count, Qnil);
2685
2686 tem = Fmemq (feature, Vfeatures);
2687 if (NILP (tem))
2688 error ("Required feature `%s' was not provided",
2689 SDATA (SYMBOL_NAME (feature)));
2690
2691 /* Once loading finishes, don't undo it. */
2692 Vautoload_queue = Qt;
2693 feature = unbind_to (count, feature);
2694 }
2695
2696 return feature;
2697 }
2698 \f
2699 /* Primitives for work of the "widget" library.
2700 In an ideal world, this section would not have been necessary.
2701 However, lisp function calls being as slow as they are, it turns
2702 out that some functions in the widget library (wid-edit.el) are the
2703 bottleneck of Widget operation. Here is their translation to C,
2704 for the sole reason of efficiency. */
2705
2706 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2707 doc: /* Return non-nil if PLIST has the property PROP.
2708 PLIST is a property list, which is a list of the form
2709 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2710 Unlike `plist-get', this allows you to distinguish between a missing
2711 property and a property with the value nil.
2712 The value is actually the tail of PLIST whose car is PROP. */)
2713 (Lisp_Object plist, Lisp_Object prop)
2714 {
2715 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2716 {
2717 QUIT;
2718 plist = XCDR (plist);
2719 plist = CDR (plist);
2720 }
2721 return plist;
2722 }
2723
2724 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2725 doc: /* In WIDGET, set PROPERTY to VALUE.
2726 The value can later be retrieved with `widget-get'. */)
2727 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2728 {
2729 CHECK_CONS (widget);
2730 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2731 return value;
2732 }
2733
2734 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2735 doc: /* In WIDGET, get the value of PROPERTY.
2736 The value could either be specified when the widget was created, or
2737 later with `widget-put'. */)
2738 (Lisp_Object widget, Lisp_Object property)
2739 {
2740 Lisp_Object tmp;
2741
2742 while (1)
2743 {
2744 if (NILP (widget))
2745 return Qnil;
2746 CHECK_CONS (widget);
2747 tmp = Fplist_member (XCDR (widget), property);
2748 if (CONSP (tmp))
2749 {
2750 tmp = XCDR (tmp);
2751 return CAR (tmp);
2752 }
2753 tmp = XCAR (widget);
2754 if (NILP (tmp))
2755 return Qnil;
2756 widget = Fget (tmp, Qwidget_type);
2757 }
2758 }
2759
2760 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2761 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2762 ARGS are passed as extra arguments to the function.
2763 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2764 (ptrdiff_t nargs, Lisp_Object *args)
2765 {
2766 /* This function can GC. */
2767 Lisp_Object newargs[3];
2768 struct gcpro gcpro1, gcpro2;
2769 Lisp_Object result;
2770
2771 newargs[0] = Fwidget_get (args[0], args[1]);
2772 newargs[1] = args[0];
2773 newargs[2] = Flist (nargs - 2, args + 2);
2774 GCPRO2 (newargs[0], newargs[2]);
2775 result = Fapply (3, newargs);
2776 UNGCPRO;
2777 return result;
2778 }
2779
2780 #ifdef HAVE_LANGINFO_CODESET
2781 #include <langinfo.h>
2782 #endif
2783
2784 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2785 doc: /* Access locale data ITEM for the current C locale, if available.
2786 ITEM should be one of the following:
2787
2788 `codeset', returning the character set as a string (locale item CODESET);
2789
2790 `days', returning a 7-element vector of day names (locale items DAY_n);
2791
2792 `months', returning a 12-element vector of month names (locale items MON_n);
2793
2794 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2795 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2796
2797 If the system can't provide such information through a call to
2798 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2799
2800 See also Info node `(libc)Locales'.
2801
2802 The data read from the system are decoded using `locale-coding-system'. */)
2803 (Lisp_Object item)
2804 {
2805 char *str = NULL;
2806 #ifdef HAVE_LANGINFO_CODESET
2807 Lisp_Object val;
2808 if (EQ (item, Qcodeset))
2809 {
2810 str = nl_langinfo (CODESET);
2811 return build_string (str);
2812 }
2813 #ifdef DAY_1
2814 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2815 {
2816 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2817 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2818 int i;
2819 struct gcpro gcpro1;
2820 GCPRO1 (v);
2821 synchronize_system_time_locale ();
2822 for (i = 0; i < 7; i++)
2823 {
2824 str = nl_langinfo (days[i]);
2825 val = make_unibyte_string (str, strlen (str));
2826 /* Fixme: Is this coding system necessarily right, even if
2827 it is consistent with CODESET? If not, what to do? */
2828 Faset (v, make_number (i),
2829 code_convert_string_norecord (val, Vlocale_coding_system,
2830 0));
2831 }
2832 UNGCPRO;
2833 return v;
2834 }
2835 #endif /* DAY_1 */
2836 #ifdef MON_1
2837 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2838 {
2839 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2840 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2841 MON_8, MON_9, MON_10, MON_11, MON_12};
2842 int i;
2843 struct gcpro gcpro1;
2844 GCPRO1 (v);
2845 synchronize_system_time_locale ();
2846 for (i = 0; i < 12; i++)
2847 {
2848 str = nl_langinfo (months[i]);
2849 val = make_unibyte_string (str, strlen (str));
2850 Faset (v, make_number (i),
2851 code_convert_string_norecord (val, Vlocale_coding_system, 0));
2852 }
2853 UNGCPRO;
2854 return v;
2855 }
2856 #endif /* MON_1 */
2857 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2858 but is in the locale files. This could be used by ps-print. */
2859 #ifdef PAPER_WIDTH
2860 else if (EQ (item, Qpaper))
2861 {
2862 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
2863 make_number (nl_langinfo (PAPER_HEIGHT)));
2864 }
2865 #endif /* PAPER_WIDTH */
2866 #endif /* HAVE_LANGINFO_CODESET*/
2867 return Qnil;
2868 }
2869 \f
2870 /* base64 encode/decode functions (RFC 2045).
2871 Based on code from GNU recode. */
2872
2873 #define MIME_LINE_LENGTH 76
2874
2875 #define IS_ASCII(Character) \
2876 ((Character) < 128)
2877 #define IS_BASE64(Character) \
2878 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2879 #define IS_BASE64_IGNORABLE(Character) \
2880 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2881 || (Character) == '\f' || (Character) == '\r')
2882
2883 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2884 character or return retval if there are no characters left to
2885 process. */
2886 #define READ_QUADRUPLET_BYTE(retval) \
2887 do \
2888 { \
2889 if (i == length) \
2890 { \
2891 if (nchars_return) \
2892 *nchars_return = nchars; \
2893 return (retval); \
2894 } \
2895 c = from[i++]; \
2896 } \
2897 while (IS_BASE64_IGNORABLE (c))
2898
2899 /* Table of characters coding the 64 values. */
2900 static const char base64_value_to_char[64] =
2901 {
2902 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2903 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2904 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2905 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2906 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2907 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2908 '8', '9', '+', '/' /* 60-63 */
2909 };
2910
2911 /* Table of base64 values for first 128 characters. */
2912 static const short base64_char_to_value[128] =
2913 {
2914 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2915 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2916 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2917 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2918 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2919 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2920 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2921 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2922 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2923 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2924 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2925 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2926 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2927 };
2928
2929 /* The following diagram shows the logical steps by which three octets
2930 get transformed into four base64 characters.
2931
2932 .--------. .--------. .--------.
2933 |aaaaaabb| |bbbbcccc| |ccdddddd|
2934 `--------' `--------' `--------'
2935 6 2 4 4 2 6
2936 .--------+--------+--------+--------.
2937 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2938 `--------+--------+--------+--------'
2939
2940 .--------+--------+--------+--------.
2941 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2942 `--------+--------+--------+--------'
2943
2944 The octets are divided into 6 bit chunks, which are then encoded into
2945 base64 characters. */
2946
2947
2948 static EMACS_INT base64_encode_1 (const char *, char *, EMACS_INT, int, int);
2949 static EMACS_INT base64_decode_1 (const char *, char *, EMACS_INT, int,
2950 EMACS_INT *);
2951
2952 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2953 2, 3, "r",
2954 doc: /* Base64-encode the region between BEG and END.
2955 Return the length of the encoded text.
2956 Optional third argument NO-LINE-BREAK means do not break long lines
2957 into shorter lines. */)
2958 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2959 {
2960 char *encoded;
2961 EMACS_INT allength, length;
2962 EMACS_INT ibeg, iend, encoded_length;
2963 EMACS_INT old_pos = PT;
2964 USE_SAFE_ALLOCA;
2965
2966 validate_region (&beg, &end);
2967
2968 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2969 iend = CHAR_TO_BYTE (XFASTINT (end));
2970 move_gap_both (XFASTINT (beg), ibeg);
2971
2972 /* We need to allocate enough room for encoding the text.
2973 We need 33 1/3% more space, plus a newline every 76
2974 characters, and then we round up. */
2975 length = iend - ibeg;
2976 allength = length + length/3 + 1;
2977 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2978
2979 SAFE_ALLOCA (encoded, char *, allength);
2980 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
2981 encoded, length, NILP (no_line_break),
2982 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
2983 if (encoded_length > allength)
2984 abort ();
2985
2986 if (encoded_length < 0)
2987 {
2988 /* The encoding wasn't possible. */
2989 SAFE_FREE ();
2990 error ("Multibyte character in data for base64 encoding");
2991 }
2992
2993 /* Now we have encoded the region, so we insert the new contents
2994 and delete the old. (Insert first in order to preserve markers.) */
2995 SET_PT_BOTH (XFASTINT (beg), ibeg);
2996 insert (encoded, encoded_length);
2997 SAFE_FREE ();
2998 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
2999
3000 /* If point was outside of the region, restore it exactly; else just
3001 move to the beginning of the region. */
3002 if (old_pos >= XFASTINT (end))
3003 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3004 else if (old_pos > XFASTINT (beg))
3005 old_pos = XFASTINT (beg);
3006 SET_PT (old_pos);
3007
3008 /* We return the length of the encoded text. */
3009 return make_number (encoded_length);
3010 }
3011
3012 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3013 1, 2, 0,
3014 doc: /* Base64-encode STRING and return the result.
3015 Optional second argument NO-LINE-BREAK means do not break long lines
3016 into shorter lines. */)
3017 (Lisp_Object string, Lisp_Object no_line_break)
3018 {
3019 EMACS_INT allength, length, encoded_length;
3020 char *encoded;
3021 Lisp_Object encoded_string;
3022 USE_SAFE_ALLOCA;
3023
3024 CHECK_STRING (string);
3025
3026 /* We need to allocate enough room for encoding the text.
3027 We need 33 1/3% more space, plus a newline every 76
3028 characters, and then we round up. */
3029 length = SBYTES (string);
3030 allength = length + length/3 + 1;
3031 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3032
3033 /* We need to allocate enough room for decoding the text. */
3034 SAFE_ALLOCA (encoded, char *, allength);
3035
3036 encoded_length = base64_encode_1 (SSDATA (string),
3037 encoded, length, NILP (no_line_break),
3038 STRING_MULTIBYTE (string));
3039 if (encoded_length > allength)
3040 abort ();
3041
3042 if (encoded_length < 0)
3043 {
3044 /* The encoding wasn't possible. */
3045 SAFE_FREE ();
3046 error ("Multibyte character in data for base64 encoding");
3047 }
3048
3049 encoded_string = make_unibyte_string (encoded, encoded_length);
3050 SAFE_FREE ();
3051
3052 return encoded_string;
3053 }
3054
3055 static EMACS_INT
3056 base64_encode_1 (const char *from, char *to, EMACS_INT length,
3057 int line_break, int multibyte)
3058 {
3059 int counter = 0;
3060 EMACS_INT i = 0;
3061 char *e = to;
3062 int c;
3063 unsigned int value;
3064 int bytes;
3065
3066 while (i < length)
3067 {
3068 if (multibyte)
3069 {
3070 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3071 if (CHAR_BYTE8_P (c))
3072 c = CHAR_TO_BYTE8 (c);
3073 else if (c >= 256)
3074 return -1;
3075 i += bytes;
3076 }
3077 else
3078 c = from[i++];
3079
3080 /* Wrap line every 76 characters. */
3081
3082 if (line_break)
3083 {
3084 if (counter < MIME_LINE_LENGTH / 4)
3085 counter++;
3086 else
3087 {
3088 *e++ = '\n';
3089 counter = 1;
3090 }
3091 }
3092
3093 /* Process first byte of a triplet. */
3094
3095 *e++ = base64_value_to_char[0x3f & c >> 2];
3096 value = (0x03 & c) << 4;
3097
3098 /* Process second byte of a triplet. */
3099
3100 if (i == length)
3101 {
3102 *e++ = base64_value_to_char[value];
3103 *e++ = '=';
3104 *e++ = '=';
3105 break;
3106 }
3107
3108 if (multibyte)
3109 {
3110 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3111 if (CHAR_BYTE8_P (c))
3112 c = CHAR_TO_BYTE8 (c);
3113 else if (c >= 256)
3114 return -1;
3115 i += bytes;
3116 }
3117 else
3118 c = from[i++];
3119
3120 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3121 value = (0x0f & c) << 2;
3122
3123 /* Process third byte of a triplet. */
3124
3125 if (i == length)
3126 {
3127 *e++ = base64_value_to_char[value];
3128 *e++ = '=';
3129 break;
3130 }
3131
3132 if (multibyte)
3133 {
3134 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3135 if (CHAR_BYTE8_P (c))
3136 c = CHAR_TO_BYTE8 (c);
3137 else if (c >= 256)
3138 return -1;
3139 i += bytes;
3140 }
3141 else
3142 c = from[i++];
3143
3144 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3145 *e++ = base64_value_to_char[0x3f & c];
3146 }
3147
3148 return e - to;
3149 }
3150
3151
3152 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3153 2, 2, "r",
3154 doc: /* Base64-decode the region between BEG and END.
3155 Return the length of the decoded text.
3156 If the region can't be decoded, signal an error and don't modify the buffer. */)
3157 (Lisp_Object beg, Lisp_Object end)
3158 {
3159 EMACS_INT ibeg, iend, length, allength;
3160 char *decoded;
3161 EMACS_INT old_pos = PT;
3162 EMACS_INT decoded_length;
3163 EMACS_INT inserted_chars;
3164 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3165 USE_SAFE_ALLOCA;
3166
3167 validate_region (&beg, &end);
3168
3169 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3170 iend = CHAR_TO_BYTE (XFASTINT (end));
3171
3172 length = iend - ibeg;
3173
3174 /* We need to allocate enough room for decoding the text. If we are
3175 working on a multibyte buffer, each decoded code may occupy at
3176 most two bytes. */
3177 allength = multibyte ? length * 2 : length;
3178 SAFE_ALLOCA (decoded, char *, allength);
3179
3180 move_gap_both (XFASTINT (beg), ibeg);
3181 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3182 decoded, length,
3183 multibyte, &inserted_chars);
3184 if (decoded_length > allength)
3185 abort ();
3186
3187 if (decoded_length < 0)
3188 {
3189 /* The decoding wasn't possible. */
3190 SAFE_FREE ();
3191 error ("Invalid base64 data");
3192 }
3193
3194 /* Now we have decoded the region, so we insert the new contents
3195 and delete the old. (Insert first in order to preserve markers.) */
3196 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3197 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3198 SAFE_FREE ();
3199
3200 /* Delete the original text. */
3201 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3202 iend + decoded_length, 1);
3203
3204 /* If point was outside of the region, restore it exactly; else just
3205 move to the beginning of the region. */
3206 if (old_pos >= XFASTINT (end))
3207 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3208 else if (old_pos > XFASTINT (beg))
3209 old_pos = XFASTINT (beg);
3210 SET_PT (old_pos > ZV ? ZV : old_pos);
3211
3212 return make_number (inserted_chars);
3213 }
3214
3215 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3216 1, 1, 0,
3217 doc: /* Base64-decode STRING and return the result. */)
3218 (Lisp_Object string)
3219 {
3220 char *decoded;
3221 EMACS_INT length, decoded_length;
3222 Lisp_Object decoded_string;
3223 USE_SAFE_ALLOCA;
3224
3225 CHECK_STRING (string);
3226
3227 length = SBYTES (string);
3228 /* We need to allocate enough room for decoding the text. */
3229 SAFE_ALLOCA (decoded, char *, length);
3230
3231 /* The decoded result should be unibyte. */
3232 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3233 0, NULL);
3234 if (decoded_length > length)
3235 abort ();
3236 else if (decoded_length >= 0)
3237 decoded_string = make_unibyte_string (decoded, decoded_length);
3238 else
3239 decoded_string = Qnil;
3240
3241 SAFE_FREE ();
3242 if (!STRINGP (decoded_string))
3243 error ("Invalid base64 data");
3244
3245 return decoded_string;
3246 }
3247
3248 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
3249 MULTIBYTE is nonzero, the decoded result should be in multibyte
3250 form. If NCHARS_RETRUN is not NULL, store the number of produced
3251 characters in *NCHARS_RETURN. */
3252
3253 static EMACS_INT
3254 base64_decode_1 (const char *from, char *to, EMACS_INT length,
3255 int multibyte, EMACS_INT *nchars_return)
3256 {
3257 EMACS_INT i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3258 char *e = to;
3259 unsigned char c;
3260 unsigned long value;
3261 EMACS_INT nchars = 0;
3262
3263 while (1)
3264 {
3265 /* Process first byte of a quadruplet. */
3266
3267 READ_QUADRUPLET_BYTE (e-to);
3268
3269 if (!IS_BASE64 (c))
3270 return -1;
3271 value = base64_char_to_value[c] << 18;
3272
3273 /* Process second byte of a quadruplet. */
3274
3275 READ_QUADRUPLET_BYTE (-1);
3276
3277 if (!IS_BASE64 (c))
3278 return -1;
3279 value |= base64_char_to_value[c] << 12;
3280
3281 c = (unsigned char) (value >> 16);
3282 if (multibyte && c >= 128)
3283 e += BYTE8_STRING (c, e);
3284 else
3285 *e++ = c;
3286 nchars++;
3287
3288 /* Process third byte of a quadruplet. */
3289
3290 READ_QUADRUPLET_BYTE (-1);
3291
3292 if (c == '=')
3293 {
3294 READ_QUADRUPLET_BYTE (-1);
3295
3296 if (c != '=')
3297 return -1;
3298 continue;
3299 }
3300
3301 if (!IS_BASE64 (c))
3302 return -1;
3303 value |= base64_char_to_value[c] << 6;
3304
3305 c = (unsigned char) (0xff & value >> 8);
3306 if (multibyte && c >= 128)
3307 e += BYTE8_STRING (c, e);
3308 else
3309 *e++ = c;
3310 nchars++;
3311
3312 /* Process fourth byte of a quadruplet. */
3313
3314 READ_QUADRUPLET_BYTE (-1);
3315
3316 if (c == '=')
3317 continue;
3318
3319 if (!IS_BASE64 (c))
3320 return -1;
3321 value |= base64_char_to_value[c];
3322
3323 c = (unsigned char) (0xff & value);
3324 if (multibyte && c >= 128)
3325 e += BYTE8_STRING (c, e);
3326 else
3327 *e++ = c;
3328 nchars++;
3329 }
3330 }
3331
3332
3333 \f
3334 /***********************************************************************
3335 ***** *****
3336 ***** Hash Tables *****
3337 ***** *****
3338 ***********************************************************************/
3339
3340 /* Implemented by gerd@gnu.org. This hash table implementation was
3341 inspired by CMUCL hash tables. */
3342
3343 /* Ideas:
3344
3345 1. For small tables, association lists are probably faster than
3346 hash tables because they have lower overhead.
3347
3348 For uses of hash tables where the O(1) behavior of table
3349 operations is not a requirement, it might therefore be a good idea
3350 not to hash. Instead, we could just do a linear search in the
3351 key_and_value vector of the hash table. This could be done
3352 if a `:linear-search t' argument is given to make-hash-table. */
3353
3354
3355 /* The list of all weak hash tables. Don't staticpro this one. */
3356
3357 static struct Lisp_Hash_Table *weak_hash_tables;
3358
3359 /* Various symbols. */
3360
3361 static Lisp_Object Qhash_table_p, Qkey, Qvalue;
3362 Lisp_Object Qeq, Qeql, Qequal;
3363 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3364 static Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3365
3366 /* Function prototypes. */
3367
3368 static struct Lisp_Hash_Table *check_hash_table (Lisp_Object);
3369 static ptrdiff_t get_key_arg (Lisp_Object, ptrdiff_t, Lisp_Object *, char *);
3370 static void maybe_resize_hash_table (struct Lisp_Hash_Table *);
3371 static int sweep_weak_table (struct Lisp_Hash_Table *, int);
3372
3373
3374 \f
3375 /***********************************************************************
3376 Utilities
3377 ***********************************************************************/
3378
3379 /* If OBJ is a Lisp hash table, return a pointer to its struct
3380 Lisp_Hash_Table. Otherwise, signal an error. */
3381
3382 static struct Lisp_Hash_Table *
3383 check_hash_table (Lisp_Object obj)
3384 {
3385 CHECK_HASH_TABLE (obj);
3386 return XHASH_TABLE (obj);
3387 }
3388
3389
3390 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3391 number. */
3392
3393 EMACS_INT
3394 next_almost_prime (EMACS_INT n)
3395 {
3396 for (n |= 1; ; n += 2)
3397 if (n % 3 != 0 && n % 5 != 0 && n % 7 != 0)
3398 return n;
3399 }
3400
3401
3402 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3403 which USED[I] is non-zero. If found at index I in ARGS, set
3404 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3405 0. This function is used to extract a keyword/argument pair from
3406 a DEFUN parameter list. */
3407
3408 static ptrdiff_t
3409 get_key_arg (Lisp_Object key, ptrdiff_t nargs, Lisp_Object *args, char *used)
3410 {
3411 ptrdiff_t i;
3412
3413 for (i = 1; i < nargs; i++)
3414 if (!used[i - 1] && EQ (args[i - 1], key))
3415 {
3416 used[i - 1] = 1;
3417 used[i] = 1;
3418 return i;
3419 }
3420
3421 return 0;
3422 }
3423
3424
3425 /* Return a Lisp vector which has the same contents as VEC but has
3426 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
3427 vector that are not copied from VEC are set to INIT. */
3428
3429 Lisp_Object
3430 larger_vector (Lisp_Object vec, EMACS_INT new_size, Lisp_Object init)
3431 {
3432 struct Lisp_Vector *v;
3433 EMACS_INT i, old_size;
3434
3435 xassert (VECTORP (vec));
3436 old_size = ASIZE (vec);
3437 xassert (new_size >= old_size);
3438
3439 v = allocate_vector (new_size);
3440 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3441 for (i = old_size; i < new_size; ++i)
3442 v->contents[i] = init;
3443 XSETVECTOR (vec, v);
3444 return vec;
3445 }
3446
3447
3448 /***********************************************************************
3449 Low-level Functions
3450 ***********************************************************************/
3451
3452 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3453 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
3454 KEY2 are the same. */
3455
3456 static int
3457 cmpfn_eql (struct Lisp_Hash_Table *h,
3458 Lisp_Object key1, EMACS_UINT hash1,
3459 Lisp_Object key2, EMACS_UINT hash2)
3460 {
3461 return (FLOATP (key1)
3462 && FLOATP (key2)
3463 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3464 }
3465
3466
3467 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3468 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
3469 KEY2 are the same. */
3470
3471 static int
3472 cmpfn_equal (struct Lisp_Hash_Table *h,
3473 Lisp_Object key1, EMACS_UINT hash1,
3474 Lisp_Object key2, EMACS_UINT hash2)
3475 {
3476 return hash1 == hash2 && !NILP (Fequal (key1, key2));
3477 }
3478
3479
3480 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3481 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
3482 if KEY1 and KEY2 are the same. */
3483
3484 static int
3485 cmpfn_user_defined (struct Lisp_Hash_Table *h,
3486 Lisp_Object key1, EMACS_UINT hash1,
3487 Lisp_Object key2, EMACS_UINT hash2)
3488 {
3489 if (hash1 == hash2)
3490 {
3491 Lisp_Object args[3];
3492
3493 args[0] = h->user_cmp_function;
3494 args[1] = key1;
3495 args[2] = key2;
3496 return !NILP (Ffuncall (3, args));
3497 }
3498 else
3499 return 0;
3500 }
3501
3502
3503 /* Value is a hash code for KEY for use in hash table H which uses
3504 `eq' to compare keys. The hash code returned is guaranteed to fit
3505 in a Lisp integer. */
3506
3507 static EMACS_UINT
3508 hashfn_eq (struct Lisp_Hash_Table *h, Lisp_Object key)
3509 {
3510 EMACS_UINT hash = XUINT (key) ^ XTYPE (key);
3511 xassert ((hash & ~INTMASK) == 0);
3512 return hash;
3513 }
3514
3515
3516 /* Value is a hash code for KEY for use in hash table H which uses
3517 `eql' to compare keys. The hash code returned is guaranteed to fit
3518 in a Lisp integer. */
3519
3520 static EMACS_UINT
3521 hashfn_eql (struct Lisp_Hash_Table *h, Lisp_Object key)
3522 {
3523 EMACS_UINT hash;
3524 if (FLOATP (key))
3525 hash = sxhash (key, 0);
3526 else
3527 hash = XUINT (key) ^ XTYPE (key);
3528 xassert ((hash & ~INTMASK) == 0);
3529 return hash;
3530 }
3531
3532
3533 /* Value is a hash code for KEY for use in hash table H which uses
3534 `equal' to compare keys. The hash code returned is guaranteed to fit
3535 in a Lisp integer. */
3536
3537 static EMACS_UINT
3538 hashfn_equal (struct Lisp_Hash_Table *h, Lisp_Object key)
3539 {
3540 EMACS_UINT hash = sxhash (key, 0);
3541 xassert ((hash & ~INTMASK) == 0);
3542 return hash;
3543 }
3544
3545
3546 /* Value is a hash code for KEY for use in hash table H which uses as
3547 user-defined function to compare keys. The hash code returned is
3548 guaranteed to fit in a Lisp integer. */
3549
3550 static EMACS_UINT
3551 hashfn_user_defined (struct Lisp_Hash_Table *h, Lisp_Object key)
3552 {
3553 Lisp_Object args[2], hash;
3554
3555 args[0] = h->user_hash_function;
3556 args[1] = key;
3557 hash = Ffuncall (2, args);
3558 if (!INTEGERP (hash))
3559 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3560 return XUINT (hash);
3561 }
3562
3563
3564 /* Create and initialize a new hash table.
3565
3566 TEST specifies the test the hash table will use to compare keys.
3567 It must be either one of the predefined tests `eq', `eql' or
3568 `equal' or a symbol denoting a user-defined test named TEST with
3569 test and hash functions USER_TEST and USER_HASH.
3570
3571 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3572
3573 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3574 new size when it becomes full is computed by adding REHASH_SIZE to
3575 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3576 table's new size is computed by multiplying its old size with
3577 REHASH_SIZE.
3578
3579 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3580 be resized when the ratio of (number of entries in the table) /
3581 (table size) is >= REHASH_THRESHOLD.
3582
3583 WEAK specifies the weakness of the table. If non-nil, it must be
3584 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3585
3586 Lisp_Object
3587 make_hash_table (Lisp_Object test, Lisp_Object size, Lisp_Object rehash_size,
3588 Lisp_Object rehash_threshold, Lisp_Object weak,
3589 Lisp_Object user_test, Lisp_Object user_hash)
3590 {
3591 struct Lisp_Hash_Table *h;
3592 Lisp_Object table;
3593 EMACS_INT index_size, i, sz;
3594 double index_float;
3595
3596 /* Preconditions. */
3597 xassert (SYMBOLP (test));
3598 xassert (INTEGERP (size) && XINT (size) >= 0);
3599 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3600 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
3601 xassert (FLOATP (rehash_threshold)
3602 && 0 < XFLOAT_DATA (rehash_threshold)
3603 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3604
3605 if (XFASTINT (size) == 0)
3606 size = make_number (1);
3607
3608 sz = XFASTINT (size);
3609 index_float = sz / XFLOAT_DATA (rehash_threshold);
3610 index_size = (index_float < MOST_POSITIVE_FIXNUM + 1
3611 ? next_almost_prime (index_float)
3612 : MOST_POSITIVE_FIXNUM + 1);
3613 if (MOST_POSITIVE_FIXNUM < max (index_size, 2 * sz))
3614 error ("Hash table too large");
3615
3616 /* Allocate a table and initialize it. */
3617 h = allocate_hash_table ();
3618
3619 /* Initialize hash table slots. */
3620 h->test = test;
3621 if (EQ (test, Qeql))
3622 {
3623 h->cmpfn = cmpfn_eql;
3624 h->hashfn = hashfn_eql;
3625 }
3626 else if (EQ (test, Qeq))
3627 {
3628 h->cmpfn = NULL;
3629 h->hashfn = hashfn_eq;
3630 }
3631 else if (EQ (test, Qequal))
3632 {
3633 h->cmpfn = cmpfn_equal;
3634 h->hashfn = hashfn_equal;
3635 }
3636 else
3637 {
3638 h->user_cmp_function = user_test;
3639 h->user_hash_function = user_hash;
3640 h->cmpfn = cmpfn_user_defined;
3641 h->hashfn = hashfn_user_defined;
3642 }
3643
3644 h->weak = weak;
3645 h->rehash_threshold = rehash_threshold;
3646 h->rehash_size = rehash_size;
3647 h->count = 0;
3648 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3649 h->hash = Fmake_vector (size, Qnil);
3650 h->next = Fmake_vector (size, Qnil);
3651 h->index = Fmake_vector (make_number (index_size), Qnil);
3652
3653 /* Set up the free list. */
3654 for (i = 0; i < sz - 1; ++i)
3655 HASH_NEXT (h, i) = make_number (i + 1);
3656 h->next_free = make_number (0);
3657
3658 XSET_HASH_TABLE (table, h);
3659 xassert (HASH_TABLE_P (table));
3660 xassert (XHASH_TABLE (table) == h);
3661
3662 /* Maybe add this hash table to the list of all weak hash tables. */
3663 if (NILP (h->weak))
3664 h->next_weak = NULL;
3665 else
3666 {
3667 h->next_weak = weak_hash_tables;
3668 weak_hash_tables = h;
3669 }
3670
3671 return table;
3672 }
3673
3674
3675 /* Return a copy of hash table H1. Keys and values are not copied,
3676 only the table itself is. */
3677
3678 static Lisp_Object
3679 copy_hash_table (struct Lisp_Hash_Table *h1)
3680 {
3681 Lisp_Object table;
3682 struct Lisp_Hash_Table *h2;
3683 struct Lisp_Vector *next;
3684
3685 h2 = allocate_hash_table ();
3686 next = h2->header.next.vector;
3687 memcpy (h2, h1, sizeof *h2);
3688 h2->header.next.vector = next;
3689 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3690 h2->hash = Fcopy_sequence (h1->hash);
3691 h2->next = Fcopy_sequence (h1->next);
3692 h2->index = Fcopy_sequence (h1->index);
3693 XSET_HASH_TABLE (table, h2);
3694
3695 /* Maybe add this hash table to the list of all weak hash tables. */
3696 if (!NILP (h2->weak))
3697 {
3698 h2->next_weak = weak_hash_tables;
3699 weak_hash_tables = h2;
3700 }
3701
3702 return table;
3703 }
3704
3705
3706 /* Resize hash table H if it's too full. If H cannot be resized
3707 because it's already too large, throw an error. */
3708
3709 static inline void
3710 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3711 {
3712 if (NILP (h->next_free))
3713 {
3714 EMACS_INT old_size = HASH_TABLE_SIZE (h);
3715 EMACS_INT i, new_size, index_size;
3716 EMACS_INT nsize;
3717 double index_float;
3718
3719 if (INTEGERP (h->rehash_size))
3720 new_size = old_size + XFASTINT (h->rehash_size);
3721 else
3722 {
3723 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3724 if (float_new_size < MOST_POSITIVE_FIXNUM + 1)
3725 {
3726 new_size = float_new_size;
3727 if (new_size <= old_size)
3728 new_size = old_size + 1;
3729 }
3730 else
3731 new_size = MOST_POSITIVE_FIXNUM + 1;
3732 }
3733 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3734 index_size = (index_float < MOST_POSITIVE_FIXNUM + 1
3735 ? next_almost_prime (index_float)
3736 : MOST_POSITIVE_FIXNUM + 1);
3737 nsize = max (index_size, 2 * new_size);
3738 if (nsize > MOST_POSITIVE_FIXNUM)
3739 error ("Hash table too large to resize");
3740
3741 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
3742 h->next = larger_vector (h->next, new_size, Qnil);
3743 h->hash = larger_vector (h->hash, new_size, Qnil);
3744 h->index = Fmake_vector (make_number (index_size), Qnil);
3745
3746 /* Update the free list. Do it so that new entries are added at
3747 the end of the free list. This makes some operations like
3748 maphash faster. */
3749 for (i = old_size; i < new_size - 1; ++i)
3750 HASH_NEXT (h, i) = make_number (i + 1);
3751
3752 if (!NILP (h->next_free))
3753 {
3754 Lisp_Object last, next;
3755
3756 last = h->next_free;
3757 while (next = HASH_NEXT (h, XFASTINT (last)),
3758 !NILP (next))
3759 last = next;
3760
3761 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
3762 }
3763 else
3764 XSETFASTINT (h->next_free, old_size);
3765
3766 /* Rehash. */
3767 for (i = 0; i < old_size; ++i)
3768 if (!NILP (HASH_HASH (h, i)))
3769 {
3770 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3771 EMACS_INT start_of_bucket = hash_code % ASIZE (h->index);
3772 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3773 HASH_INDEX (h, start_of_bucket) = make_number (i);
3774 }
3775 }
3776 }
3777
3778
3779 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3780 the hash code of KEY. Value is the index of the entry in H
3781 matching KEY, or -1 if not found. */
3782
3783 EMACS_INT
3784 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3785 {
3786 EMACS_UINT hash_code;
3787 EMACS_INT start_of_bucket;
3788 Lisp_Object idx;
3789
3790 hash_code = h->hashfn (h, key);
3791 if (hash)
3792 *hash = hash_code;
3793
3794 start_of_bucket = hash_code % ASIZE (h->index);
3795 idx = HASH_INDEX (h, start_of_bucket);
3796
3797 /* We need not gcpro idx since it's either an integer or nil. */
3798 while (!NILP (idx))
3799 {
3800 EMACS_INT i = XFASTINT (idx);
3801 if (EQ (key, HASH_KEY (h, i))
3802 || (h->cmpfn
3803 && h->cmpfn (h, key, hash_code,
3804 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3805 break;
3806 idx = HASH_NEXT (h, i);
3807 }
3808
3809 return NILP (idx) ? -1 : XFASTINT (idx);
3810 }
3811
3812
3813 /* Put an entry into hash table H that associates KEY with VALUE.
3814 HASH is a previously computed hash code of KEY.
3815 Value is the index of the entry in H matching KEY. */
3816
3817 EMACS_INT
3818 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
3819 EMACS_UINT hash)
3820 {
3821 EMACS_INT start_of_bucket, i;
3822
3823 xassert ((hash & ~INTMASK) == 0);
3824
3825 /* Increment count after resizing because resizing may fail. */
3826 maybe_resize_hash_table (h);
3827 h->count++;
3828
3829 /* Store key/value in the key_and_value vector. */
3830 i = XFASTINT (h->next_free);
3831 h->next_free = HASH_NEXT (h, i);
3832 HASH_KEY (h, i) = key;
3833 HASH_VALUE (h, i) = value;
3834
3835 /* Remember its hash code. */
3836 HASH_HASH (h, i) = make_number (hash);
3837
3838 /* Add new entry to its collision chain. */
3839 start_of_bucket = hash % ASIZE (h->index);
3840 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
3841 HASH_INDEX (h, start_of_bucket) = make_number (i);
3842 return i;
3843 }
3844
3845
3846 /* Remove the entry matching KEY from hash table H, if there is one. */
3847
3848 static void
3849 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3850 {
3851 EMACS_UINT hash_code;
3852 EMACS_INT start_of_bucket;
3853 Lisp_Object idx, prev;
3854
3855 hash_code = h->hashfn (h, key);
3856 start_of_bucket = hash_code % ASIZE (h->index);
3857 idx = HASH_INDEX (h, start_of_bucket);
3858 prev = Qnil;
3859
3860 /* We need not gcpro idx, prev since they're either integers or nil. */
3861 while (!NILP (idx))
3862 {
3863 EMACS_INT i = XFASTINT (idx);
3864
3865 if (EQ (key, HASH_KEY (h, i))
3866 || (h->cmpfn
3867 && h->cmpfn (h, key, hash_code,
3868 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
3869 {
3870 /* Take entry out of collision chain. */
3871 if (NILP (prev))
3872 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
3873 else
3874 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
3875
3876 /* Clear slots in key_and_value and add the slots to
3877 the free list. */
3878 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
3879 HASH_NEXT (h, i) = h->next_free;
3880 h->next_free = make_number (i);
3881 h->count--;
3882 xassert (h->count >= 0);
3883 break;
3884 }
3885 else
3886 {
3887 prev = idx;
3888 idx = HASH_NEXT (h, i);
3889 }
3890 }
3891 }
3892
3893
3894 /* Clear hash table H. */
3895
3896 static void
3897 hash_clear (struct Lisp_Hash_Table *h)
3898 {
3899 if (h->count > 0)
3900 {
3901 EMACS_INT i, size = HASH_TABLE_SIZE (h);
3902
3903 for (i = 0; i < size; ++i)
3904 {
3905 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
3906 HASH_KEY (h, i) = Qnil;
3907 HASH_VALUE (h, i) = Qnil;
3908 HASH_HASH (h, i) = Qnil;
3909 }
3910
3911 for (i = 0; i < ASIZE (h->index); ++i)
3912 ASET (h->index, i, Qnil);
3913
3914 h->next_free = make_number (0);
3915 h->count = 0;
3916 }
3917 }
3918
3919
3920 \f
3921 /************************************************************************
3922 Weak Hash Tables
3923 ************************************************************************/
3924
3925 void
3926 init_weak_hash_tables (void)
3927 {
3928 weak_hash_tables = NULL;
3929 }
3930
3931 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
3932 entries from the table that don't survive the current GC.
3933 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
3934 non-zero if anything was marked. */
3935
3936 static int
3937 sweep_weak_table (struct Lisp_Hash_Table *h, int remove_entries_p)
3938 {
3939 EMACS_INT bucket, n;
3940 int marked;
3941
3942 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3943 marked = 0;
3944
3945 for (bucket = 0; bucket < n; ++bucket)
3946 {
3947 Lisp_Object idx, next, prev;
3948
3949 /* Follow collision chain, removing entries that
3950 don't survive this garbage collection. */
3951 prev = Qnil;
3952 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3953 {
3954 EMACS_INT i = XFASTINT (idx);
3955 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3956 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3957 int remove_p;
3958
3959 if (EQ (h->weak, Qkey))
3960 remove_p = !key_known_to_survive_p;
3961 else if (EQ (h->weak, Qvalue))
3962 remove_p = !value_known_to_survive_p;
3963 else if (EQ (h->weak, Qkey_or_value))
3964 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3965 else if (EQ (h->weak, Qkey_and_value))
3966 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3967 else
3968 abort ();
3969
3970 next = HASH_NEXT (h, i);
3971
3972 if (remove_entries_p)
3973 {
3974 if (remove_p)
3975 {
3976 /* Take out of collision chain. */
3977 if (NILP (prev))
3978 HASH_INDEX (h, bucket) = next;
3979 else
3980 HASH_NEXT (h, XFASTINT (prev)) = next;
3981
3982 /* Add to free list. */
3983 HASH_NEXT (h, i) = h->next_free;
3984 h->next_free = idx;
3985
3986 /* Clear key, value, and hash. */
3987 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
3988 HASH_HASH (h, i) = Qnil;
3989
3990 h->count--;
3991 }
3992 else
3993 {
3994 prev = idx;
3995 }
3996 }
3997 else
3998 {
3999 if (!remove_p)
4000 {
4001 /* Make sure key and value survive. */
4002 if (!key_known_to_survive_p)
4003 {
4004 mark_object (HASH_KEY (h, i));
4005 marked = 1;
4006 }
4007
4008 if (!value_known_to_survive_p)
4009 {
4010 mark_object (HASH_VALUE (h, i));
4011 marked = 1;
4012 }
4013 }
4014 }
4015 }
4016 }
4017
4018 return marked;
4019 }
4020
4021 /* Remove elements from weak hash tables that don't survive the
4022 current garbage collection. Remove weak tables that don't survive
4023 from Vweak_hash_tables. Called from gc_sweep. */
4024
4025 void
4026 sweep_weak_hash_tables (void)
4027 {
4028 struct Lisp_Hash_Table *h, *used, *next;
4029 int marked;
4030
4031 /* Mark all keys and values that are in use. Keep on marking until
4032 there is no more change. This is necessary for cases like
4033 value-weak table A containing an entry X -> Y, where Y is used in a
4034 key-weak table B, Z -> Y. If B comes after A in the list of weak
4035 tables, X -> Y might be removed from A, although when looking at B
4036 one finds that it shouldn't. */
4037 do
4038 {
4039 marked = 0;
4040 for (h = weak_hash_tables; h; h = h->next_weak)
4041 {
4042 if (h->header.size & ARRAY_MARK_FLAG)
4043 marked |= sweep_weak_table (h, 0);
4044 }
4045 }
4046 while (marked);
4047
4048 /* Remove tables and entries that aren't used. */
4049 for (h = weak_hash_tables, used = NULL; h; h = next)
4050 {
4051 next = h->next_weak;
4052
4053 if (h->header.size & ARRAY_MARK_FLAG)
4054 {
4055 /* TABLE is marked as used. Sweep its contents. */
4056 if (h->count > 0)
4057 sweep_weak_table (h, 1);
4058
4059 /* Add table to the list of used weak hash tables. */
4060 h->next_weak = used;
4061 used = h;
4062 }
4063 }
4064
4065 weak_hash_tables = used;
4066 }
4067
4068
4069 \f
4070 /***********************************************************************
4071 Hash Code Computation
4072 ***********************************************************************/
4073
4074 /* Maximum depth up to which to dive into Lisp structures. */
4075
4076 #define SXHASH_MAX_DEPTH 3
4077
4078 /* Maximum length up to which to take list and vector elements into
4079 account. */
4080
4081 #define SXHASH_MAX_LEN 7
4082
4083 /* Combine two integers X and Y for hashing. The result might not fit
4084 into a Lisp integer. */
4085
4086 #define SXHASH_COMBINE(X, Y) \
4087 ((((EMACS_UINT) (X) << 4) + ((EMACS_UINT) (X) >> (BITS_PER_EMACS_INT - 4))) \
4088 + (EMACS_UINT) (Y))
4089
4090 /* Hash X, returning a value that fits into a Lisp integer. */
4091 #define SXHASH_REDUCE(X) \
4092 ((((X) ^ (X) >> (BITS_PER_EMACS_INT - FIXNUM_BITS))) & INTMASK)
4093
4094 /* Return a hash for string PTR which has length LEN. The hash
4095 code returned is guaranteed to fit in a Lisp integer. */
4096
4097 static EMACS_UINT
4098 sxhash_string (unsigned char *ptr, EMACS_INT len)
4099 {
4100 unsigned char *p = ptr;
4101 unsigned char *end = p + len;
4102 unsigned char c;
4103 EMACS_UINT hash = 0;
4104
4105 while (p != end)
4106 {
4107 c = *p++;
4108 if (c >= 0140)
4109 c -= 40;
4110 hash = SXHASH_COMBINE (hash, c);
4111 }
4112
4113 return SXHASH_REDUCE (hash);
4114 }
4115
4116 /* Return a hash for the floating point value VAL. */
4117
4118 static EMACS_INT
4119 sxhash_float (double val)
4120 {
4121 EMACS_UINT hash = 0;
4122 enum {
4123 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
4124 + (sizeof val % sizeof hash != 0))
4125 };
4126 union {
4127 double val;
4128 EMACS_UINT word[WORDS_PER_DOUBLE];
4129 } u;
4130 int i;
4131 u.val = val;
4132 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
4133 for (i = 0; i < WORDS_PER_DOUBLE; i++)
4134 hash = SXHASH_COMBINE (hash, u.word[i]);
4135 return SXHASH_REDUCE (hash);
4136 }
4137
4138 /* Return a hash for list LIST. DEPTH is the current depth in the
4139 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4140
4141 static EMACS_UINT
4142 sxhash_list (Lisp_Object list, int depth)
4143 {
4144 EMACS_UINT hash = 0;
4145 int i;
4146
4147 if (depth < SXHASH_MAX_DEPTH)
4148 for (i = 0;
4149 CONSP (list) && i < SXHASH_MAX_LEN;
4150 list = XCDR (list), ++i)
4151 {
4152 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
4153 hash = SXHASH_COMBINE (hash, hash2);
4154 }
4155
4156 if (!NILP (list))
4157 {
4158 EMACS_UINT hash2 = sxhash (list, depth + 1);
4159 hash = SXHASH_COMBINE (hash, hash2);
4160 }
4161
4162 return SXHASH_REDUCE (hash);
4163 }
4164
4165
4166 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4167 the Lisp structure. */
4168
4169 static EMACS_UINT
4170 sxhash_vector (Lisp_Object vec, int depth)
4171 {
4172 EMACS_UINT hash = ASIZE (vec);
4173 int i, n;
4174
4175 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4176 for (i = 0; i < n; ++i)
4177 {
4178 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4179 hash = SXHASH_COMBINE (hash, hash2);
4180 }
4181
4182 return SXHASH_REDUCE (hash);
4183 }
4184
4185 /* Return a hash for bool-vector VECTOR. */
4186
4187 static EMACS_UINT
4188 sxhash_bool_vector (Lisp_Object vec)
4189 {
4190 EMACS_UINT hash = XBOOL_VECTOR (vec)->size;
4191 int i, n;
4192
4193 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->header.size);
4194 for (i = 0; i < n; ++i)
4195 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4196
4197 return SXHASH_REDUCE (hash);
4198 }
4199
4200
4201 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4202 structure. Value is an unsigned integer clipped to INTMASK. */
4203
4204 EMACS_UINT
4205 sxhash (Lisp_Object obj, int depth)
4206 {
4207 EMACS_UINT hash;
4208
4209 if (depth > SXHASH_MAX_DEPTH)
4210 return 0;
4211
4212 switch (XTYPE (obj))
4213 {
4214 case_Lisp_Int:
4215 hash = XUINT (obj);
4216 break;
4217
4218 case Lisp_Misc:
4219 hash = XUINT (obj);
4220 break;
4221
4222 case Lisp_Symbol:
4223 obj = SYMBOL_NAME (obj);
4224 /* Fall through. */
4225
4226 case Lisp_String:
4227 hash = sxhash_string (SDATA (obj), SCHARS (obj));
4228 break;
4229
4230 /* This can be everything from a vector to an overlay. */
4231 case Lisp_Vectorlike:
4232 if (VECTORP (obj))
4233 /* According to the CL HyperSpec, two arrays are equal only if
4234 they are `eq', except for strings and bit-vectors. In
4235 Emacs, this works differently. We have to compare element
4236 by element. */
4237 hash = sxhash_vector (obj, depth);
4238 else if (BOOL_VECTOR_P (obj))
4239 hash = sxhash_bool_vector (obj);
4240 else
4241 /* Others are `equal' if they are `eq', so let's take their
4242 address as hash. */
4243 hash = XUINT (obj);
4244 break;
4245
4246 case Lisp_Cons:
4247 hash = sxhash_list (obj, depth);
4248 break;
4249
4250 case Lisp_Float:
4251 hash = sxhash_float (XFLOAT_DATA (obj));
4252 break;
4253
4254 default:
4255 abort ();
4256 }
4257
4258 return hash;
4259 }
4260
4261
4262 \f
4263 /***********************************************************************
4264 Lisp Interface
4265 ***********************************************************************/
4266
4267
4268 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4269 doc: /* Compute a hash code for OBJ and return it as integer. */)
4270 (Lisp_Object obj)
4271 {
4272 EMACS_UINT hash = sxhash (obj, 0);
4273 return make_number (hash);
4274 }
4275
4276
4277 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4278 doc: /* Create and return a new hash table.
4279
4280 Arguments are specified as keyword/argument pairs. The following
4281 arguments are defined:
4282
4283 :test TEST -- TEST must be a symbol that specifies how to compare
4284 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4285 `equal'. User-supplied test and hash functions can be specified via
4286 `define-hash-table-test'.
4287
4288 :size SIZE -- A hint as to how many elements will be put in the table.
4289 Default is 65.
4290
4291 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4292 fills up. If REHASH-SIZE is an integer, increase the size by that
4293 amount. If it is a float, it must be > 1.0, and the new size is the
4294 old size multiplied by that factor. Default is 1.5.
4295
4296 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4297 Resize the hash table when the ratio (number of entries / table size)
4298 is greater than or equal to THRESHOLD. Default is 0.8.
4299
4300 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4301 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4302 returned is a weak table. Key/value pairs are removed from a weak
4303 hash table when there are no non-weak references pointing to their
4304 key, value, one of key or value, or both key and value, depending on
4305 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4306 is nil.
4307
4308 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4309 (ptrdiff_t nargs, Lisp_Object *args)
4310 {
4311 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4312 Lisp_Object user_test, user_hash;
4313 char *used;
4314 ptrdiff_t i;
4315
4316 /* The vector `used' is used to keep track of arguments that
4317 have been consumed. */
4318 used = (char *) alloca (nargs * sizeof *used);
4319 memset (used, 0, nargs * sizeof *used);
4320
4321 /* See if there's a `:test TEST' among the arguments. */
4322 i = get_key_arg (QCtest, nargs, args, used);
4323 test = i ? args[i] : Qeql;
4324 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
4325 {
4326 /* See if it is a user-defined test. */
4327 Lisp_Object prop;
4328
4329 prop = Fget (test, Qhash_table_test);
4330 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4331 signal_error ("Invalid hash table test", test);
4332 user_test = XCAR (prop);
4333 user_hash = XCAR (XCDR (prop));
4334 }
4335 else
4336 user_test = user_hash = Qnil;
4337
4338 /* See if there's a `:size SIZE' argument. */
4339 i = get_key_arg (QCsize, nargs, args, used);
4340 size = i ? args[i] : Qnil;
4341 if (NILP (size))
4342 size = make_number (DEFAULT_HASH_SIZE);
4343 else if (!INTEGERP (size) || XINT (size) < 0)
4344 signal_error ("Invalid hash table size", size);
4345
4346 /* Look for `:rehash-size SIZE'. */
4347 i = get_key_arg (QCrehash_size, nargs, args, used);
4348 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4349 if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
4350 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
4351 signal_error ("Invalid hash table rehash size", rehash_size);
4352
4353 /* Look for `:rehash-threshold THRESHOLD'. */
4354 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4355 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4356 if (! (FLOATP (rehash_threshold)
4357 && 0 < XFLOAT_DATA (rehash_threshold)
4358 && XFLOAT_DATA (rehash_threshold) <= 1))
4359 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4360
4361 /* Look for `:weakness WEAK'. */
4362 i = get_key_arg (QCweakness, nargs, args, used);
4363 weak = i ? args[i] : Qnil;
4364 if (EQ (weak, Qt))
4365 weak = Qkey_and_value;
4366 if (!NILP (weak)
4367 && !EQ (weak, Qkey)
4368 && !EQ (weak, Qvalue)
4369 && !EQ (weak, Qkey_or_value)
4370 && !EQ (weak, Qkey_and_value))
4371 signal_error ("Invalid hash table weakness", weak);
4372
4373 /* Now, all args should have been used up, or there's a problem. */
4374 for (i = 0; i < nargs; ++i)
4375 if (!used[i])
4376 signal_error ("Invalid argument list", args[i]);
4377
4378 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4379 user_test, user_hash);
4380 }
4381
4382
4383 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4384 doc: /* Return a copy of hash table TABLE. */)
4385 (Lisp_Object table)
4386 {
4387 return copy_hash_table (check_hash_table (table));
4388 }
4389
4390
4391 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4392 doc: /* Return the number of elements in TABLE. */)
4393 (Lisp_Object table)
4394 {
4395 return make_number (check_hash_table (table)->count);
4396 }
4397
4398
4399 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4400 Shash_table_rehash_size, 1, 1, 0,
4401 doc: /* Return the current rehash size of TABLE. */)
4402 (Lisp_Object table)
4403 {
4404 return check_hash_table (table)->rehash_size;
4405 }
4406
4407
4408 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4409 Shash_table_rehash_threshold, 1, 1, 0,
4410 doc: /* Return the current rehash threshold of TABLE. */)
4411 (Lisp_Object table)
4412 {
4413 return check_hash_table (table)->rehash_threshold;
4414 }
4415
4416
4417 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4418 doc: /* Return the size of TABLE.
4419 The size can be used as an argument to `make-hash-table' to create
4420 a hash table than can hold as many elements as TABLE holds
4421 without need for resizing. */)
4422 (Lisp_Object table)
4423 {
4424 struct Lisp_Hash_Table *h = check_hash_table (table);
4425 return make_number (HASH_TABLE_SIZE (h));
4426 }
4427
4428
4429 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4430 doc: /* Return the test TABLE uses. */)
4431 (Lisp_Object table)
4432 {
4433 return check_hash_table (table)->test;
4434 }
4435
4436
4437 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4438 1, 1, 0,
4439 doc: /* Return the weakness of TABLE. */)
4440 (Lisp_Object table)
4441 {
4442 return check_hash_table (table)->weak;
4443 }
4444
4445
4446 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4447 doc: /* Return t if OBJ is a Lisp hash table object. */)
4448 (Lisp_Object obj)
4449 {
4450 return HASH_TABLE_P (obj) ? Qt : Qnil;
4451 }
4452
4453
4454 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4455 doc: /* Clear hash table TABLE and return it. */)
4456 (Lisp_Object table)
4457 {
4458 hash_clear (check_hash_table (table));
4459 /* Be compatible with XEmacs. */
4460 return table;
4461 }
4462
4463
4464 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4465 doc: /* Look up KEY in TABLE and return its associated value.
4466 If KEY is not found, return DFLT which defaults to nil. */)
4467 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4468 {
4469 struct Lisp_Hash_Table *h = check_hash_table (table);
4470 EMACS_INT i = hash_lookup (h, key, NULL);
4471 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4472 }
4473
4474
4475 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4476 doc: /* Associate KEY with VALUE in hash table TABLE.
4477 If KEY is already present in table, replace its current value with
4478 VALUE. In any case, return VALUE. */)
4479 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4480 {
4481 struct Lisp_Hash_Table *h = check_hash_table (table);
4482 EMACS_INT i;
4483 EMACS_UINT hash;
4484
4485 i = hash_lookup (h, key, &hash);
4486 if (i >= 0)
4487 HASH_VALUE (h, i) = value;
4488 else
4489 hash_put (h, key, value, hash);
4490
4491 return value;
4492 }
4493
4494
4495 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4496 doc: /* Remove KEY from TABLE. */)
4497 (Lisp_Object key, Lisp_Object table)
4498 {
4499 struct Lisp_Hash_Table *h = check_hash_table (table);
4500 hash_remove_from_table (h, key);
4501 return Qnil;
4502 }
4503
4504
4505 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4506 doc: /* Call FUNCTION for all entries in hash table TABLE.
4507 FUNCTION is called with two arguments, KEY and VALUE. */)
4508 (Lisp_Object function, Lisp_Object table)
4509 {
4510 struct Lisp_Hash_Table *h = check_hash_table (table);
4511 Lisp_Object args[3];
4512 EMACS_INT i;
4513
4514 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4515 if (!NILP (HASH_HASH (h, i)))
4516 {
4517 args[0] = function;
4518 args[1] = HASH_KEY (h, i);
4519 args[2] = HASH_VALUE (h, i);
4520 Ffuncall (3, args);
4521 }
4522
4523 return Qnil;
4524 }
4525
4526
4527 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4528 Sdefine_hash_table_test, 3, 3, 0,
4529 doc: /* Define a new hash table test with name NAME, a symbol.
4530
4531 In hash tables created with NAME specified as test, use TEST to
4532 compare keys, and HASH for computing hash codes of keys.
4533
4534 TEST must be a function taking two arguments and returning non-nil if
4535 both arguments are the same. HASH must be a function taking one
4536 argument and return an integer that is the hash code of the argument.
4537 Hash code computation should use the whole value range of integers,
4538 including negative integers. */)
4539 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4540 {
4541 return Fput (name, Qhash_table_test, list2 (test, hash));
4542 }
4543
4544
4545 \f
4546 /************************************************************************
4547 MD5 and SHA1
4548 ************************************************************************/
4549
4550 #include "md5.h"
4551 #include "sha1.h"
4552
4553 /* Convert a possibly-signed character to an unsigned character. This is
4554 a bit safer than casting to unsigned char, since it catches some type
4555 errors that the cast doesn't. */
4556 static inline unsigned char to_uchar (char ch) { return ch; }
4557
4558 /* TYPE: 0 for md5, 1 for sha1. */
4559
4560 static Lisp_Object
4561 crypto_hash_function (int type, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror, Lisp_Object binary)
4562 {
4563 int i;
4564 EMACS_INT size;
4565 EMACS_INT size_byte = 0;
4566 EMACS_INT start_char = 0, end_char = 0;
4567 EMACS_INT start_byte = 0, end_byte = 0;
4568 register EMACS_INT b, e;
4569 register struct buffer *bp;
4570 EMACS_INT temp;
4571 Lisp_Object res=Qnil;
4572
4573 if (STRINGP (object))
4574 {
4575 if (NILP (coding_system))
4576 {
4577 /* Decide the coding-system to encode the data with. */
4578
4579 if (STRING_MULTIBYTE (object))
4580 /* use default, we can't guess correct value */
4581 coding_system = preferred_coding_system ();
4582 else
4583 coding_system = Qraw_text;
4584 }
4585
4586 if (NILP (Fcoding_system_p (coding_system)))
4587 {
4588 /* Invalid coding system. */
4589
4590 if (!NILP (noerror))
4591 coding_system = Qraw_text;
4592 else
4593 xsignal1 (Qcoding_system_error, coding_system);
4594 }
4595
4596 if (STRING_MULTIBYTE (object))
4597 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4598
4599 size = SCHARS (object);
4600 size_byte = SBYTES (object);
4601
4602 if (!NILP (start))
4603 {
4604 CHECK_NUMBER (start);
4605
4606 start_char = XINT (start);
4607
4608 if (start_char < 0)
4609 start_char += size;
4610
4611 start_byte = string_char_to_byte (object, start_char);
4612 }
4613
4614 if (NILP (end))
4615 {
4616 end_char = size;
4617 end_byte = size_byte;
4618 }
4619 else
4620 {
4621 CHECK_NUMBER (end);
4622
4623 end_char = XINT (end);
4624
4625 if (end_char < 0)
4626 end_char += size;
4627
4628 end_byte = string_char_to_byte (object, end_char);
4629 }
4630
4631 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4632 args_out_of_range_3 (object, make_number (start_char),
4633 make_number (end_char));
4634 }
4635 else
4636 {
4637 struct buffer *prev = current_buffer;
4638
4639 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
4640
4641 CHECK_BUFFER (object);
4642
4643 bp = XBUFFER (object);
4644 if (bp != current_buffer)
4645 set_buffer_internal (bp);
4646
4647 if (NILP (start))
4648 b = BEGV;
4649 else
4650 {
4651 CHECK_NUMBER_COERCE_MARKER (start);
4652 b = XINT (start);
4653 }
4654
4655 if (NILP (end))
4656 e = ZV;
4657 else
4658 {
4659 CHECK_NUMBER_COERCE_MARKER (end);
4660 e = XINT (end);
4661 }
4662
4663 if (b > e)
4664 temp = b, b = e, e = temp;
4665
4666 if (!(BEGV <= b && e <= ZV))
4667 args_out_of_range (start, end);
4668
4669 if (NILP (coding_system))
4670 {
4671 /* Decide the coding-system to encode the data with.
4672 See fileio.c:Fwrite-region */
4673
4674 if (!NILP (Vcoding_system_for_write))
4675 coding_system = Vcoding_system_for_write;
4676 else
4677 {
4678 int force_raw_text = 0;
4679
4680 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4681 if (NILP (coding_system)
4682 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4683 {
4684 coding_system = Qnil;
4685 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4686 force_raw_text = 1;
4687 }
4688
4689 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
4690 {
4691 /* Check file-coding-system-alist. */
4692 Lisp_Object args[4], val;
4693
4694 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4695 args[3] = Fbuffer_file_name(object);
4696 val = Ffind_operation_coding_system (4, args);
4697 if (CONSP (val) && !NILP (XCDR (val)))
4698 coding_system = XCDR (val);
4699 }
4700
4701 if (NILP (coding_system)
4702 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4703 {
4704 /* If we still have not decided a coding system, use the
4705 default value of buffer-file-coding-system. */
4706 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4707 }
4708
4709 if (!force_raw_text
4710 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4711 /* Confirm that VAL can surely encode the current region. */
4712 coding_system = call4 (Vselect_safe_coding_system_function,
4713 make_number (b), make_number (e),
4714 coding_system, Qnil);
4715
4716 if (force_raw_text)
4717 coding_system = Qraw_text;
4718 }
4719
4720 if (NILP (Fcoding_system_p (coding_system)))
4721 {
4722 /* Invalid coding system. */
4723
4724 if (!NILP (noerror))
4725 coding_system = Qraw_text;
4726 else
4727 xsignal1 (Qcoding_system_error, coding_system);
4728 }
4729 }
4730
4731 object = make_buffer_string (b, e, 0);
4732 if (prev != current_buffer)
4733 set_buffer_internal (prev);
4734 /* Discard the unwind protect for recovering the current
4735 buffer. */
4736 specpdl_ptr--;
4737
4738 if (STRING_MULTIBYTE (object))
4739 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4740 }
4741
4742 switch (type)
4743 {
4744 case 0: /* MD5 */
4745 {
4746 char digest[16];
4747 md5_buffer (SSDATA (object) + start_byte,
4748 SBYTES (object) - (size_byte - end_byte),
4749 digest);
4750
4751 if (NILP (binary))
4752 {
4753 char value[33];
4754 for (i = 0; i < 16; i++)
4755 sprintf (&value[2 * i], "%02x", to_uchar (digest[i]));
4756 res = make_string (value, 32);
4757 }
4758 else
4759 res = make_string (digest, 16);
4760 break;
4761 }
4762
4763 case 1: /* SHA1 */
4764 {
4765 char digest[20];
4766 sha1_buffer (SSDATA (object) + start_byte,
4767 SBYTES (object) - (size_byte - end_byte),
4768 digest);
4769 if (NILP (binary))
4770 {
4771 char value[41];
4772 for (i = 0; i < 20; i++)
4773 sprintf (&value[2 * i], "%02x", to_uchar (digest[i]));
4774 res = make_string (value, 40);
4775 }
4776 else
4777 res = make_string (digest, 20);
4778 break;
4779 }
4780 }
4781
4782 return res;
4783 }
4784
4785 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4786 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4787
4788 A message digest is a cryptographic checksum of a document, and the
4789 algorithm to calculate it is defined in RFC 1321.
4790
4791 The two optional arguments START and END are character positions
4792 specifying for which part of OBJECT the message digest should be
4793 computed. If nil or omitted, the digest is computed for the whole
4794 OBJECT.
4795
4796 The MD5 message digest is computed from the result of encoding the
4797 text in a coding system, not directly from the internal Emacs form of
4798 the text. The optional fourth argument CODING-SYSTEM specifies which
4799 coding system to encode the text with. It should be the same coding
4800 system that you used or will use when actually writing the text into a
4801 file.
4802
4803 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4804 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4805 system would be chosen by default for writing this text into a file.
4806
4807 If OBJECT is a string, the most preferred coding system (see the
4808 command `prefer-coding-system') is used.
4809
4810 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4811 guesswork fails. Normally, an error is signaled in such case. */)
4812 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4813 {
4814 return crypto_hash_function (0, object, start, end, coding_system, noerror, Qnil);
4815 }
4816
4817 DEFUN ("sha1", Fsha1, Ssha1, 1, 4, 0,
4818 doc: /* Return the SHA-1 (Secure Hash Algorithm) of an OBJECT.
4819
4820 OBJECT is either a string or a buffer. Optional arguments START and
4821 END are character positions specifying which portion of OBJECT for
4822 computing the hash. If BINARY is non-nil, return a string in binary
4823 form. */)
4824 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
4825 {
4826 return crypto_hash_function (1, object, start, end, Qnil, Qnil, binary);
4827 }
4828
4829 \f
4830 void
4831 syms_of_fns (void)
4832 {
4833 /* Hash table stuff. */
4834 Qhash_table_p = intern_c_string ("hash-table-p");
4835 staticpro (&Qhash_table_p);
4836 Qeq = intern_c_string ("eq");
4837 staticpro (&Qeq);
4838 Qeql = intern_c_string ("eql");
4839 staticpro (&Qeql);
4840 Qequal = intern_c_string ("equal");
4841 staticpro (&Qequal);
4842 QCtest = intern_c_string (":test");
4843 staticpro (&QCtest);
4844 QCsize = intern_c_string (":size");
4845 staticpro (&QCsize);
4846 QCrehash_size = intern_c_string (":rehash-size");
4847 staticpro (&QCrehash_size);
4848 QCrehash_threshold = intern_c_string (":rehash-threshold");
4849 staticpro (&QCrehash_threshold);
4850 QCweakness = intern_c_string (":weakness");
4851 staticpro (&QCweakness);
4852 Qkey = intern_c_string ("key");
4853 staticpro (&Qkey);
4854 Qvalue = intern_c_string ("value");
4855 staticpro (&Qvalue);
4856 Qhash_table_test = intern_c_string ("hash-table-test");
4857 staticpro (&Qhash_table_test);
4858 Qkey_or_value = intern_c_string ("key-or-value");
4859 staticpro (&Qkey_or_value);
4860 Qkey_and_value = intern_c_string ("key-and-value");
4861 staticpro (&Qkey_and_value);
4862
4863 defsubr (&Ssxhash);
4864 defsubr (&Smake_hash_table);
4865 defsubr (&Scopy_hash_table);
4866 defsubr (&Shash_table_count);
4867 defsubr (&Shash_table_rehash_size);
4868 defsubr (&Shash_table_rehash_threshold);
4869 defsubr (&Shash_table_size);
4870 defsubr (&Shash_table_test);
4871 defsubr (&Shash_table_weakness);
4872 defsubr (&Shash_table_p);
4873 defsubr (&Sclrhash);
4874 defsubr (&Sgethash);
4875 defsubr (&Sputhash);
4876 defsubr (&Sremhash);
4877 defsubr (&Smaphash);
4878 defsubr (&Sdefine_hash_table_test);
4879
4880 Qstring_lessp = intern_c_string ("string-lessp");
4881 staticpro (&Qstring_lessp);
4882 Qprovide = intern_c_string ("provide");
4883 staticpro (&Qprovide);
4884 Qrequire = intern_c_string ("require");
4885 staticpro (&Qrequire);
4886 Qyes_or_no_p_history = intern_c_string ("yes-or-no-p-history");
4887 staticpro (&Qyes_or_no_p_history);
4888 Qcursor_in_echo_area = intern_c_string ("cursor-in-echo-area");
4889 staticpro (&Qcursor_in_echo_area);
4890 Qwidget_type = intern_c_string ("widget-type");
4891 staticpro (&Qwidget_type);
4892
4893 staticpro (&string_char_byte_cache_string);
4894 string_char_byte_cache_string = Qnil;
4895
4896 require_nesting_list = Qnil;
4897 staticpro (&require_nesting_list);
4898
4899 Fset (Qyes_or_no_p_history, Qnil);
4900
4901 DEFVAR_LISP ("features", Vfeatures,
4902 doc: /* A list of symbols which are the features of the executing Emacs.
4903 Used by `featurep' and `require', and altered by `provide'. */);
4904 Vfeatures = Fcons (intern_c_string ("emacs"), Qnil);
4905 Qsubfeatures = intern_c_string ("subfeatures");
4906 staticpro (&Qsubfeatures);
4907
4908 #ifdef HAVE_LANGINFO_CODESET
4909 Qcodeset = intern_c_string ("codeset");
4910 staticpro (&Qcodeset);
4911 Qdays = intern_c_string ("days");
4912 staticpro (&Qdays);
4913 Qmonths = intern_c_string ("months");
4914 staticpro (&Qmonths);
4915 Qpaper = intern_c_string ("paper");
4916 staticpro (&Qpaper);
4917 #endif /* HAVE_LANGINFO_CODESET */
4918
4919 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4920 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
4921 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4922 invoked by mouse clicks and mouse menu items.
4923
4924 On some platforms, file selection dialogs are also enabled if this is
4925 non-nil. */);
4926 use_dialog_box = 1;
4927
4928 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4929 doc: /* *Non-nil means mouse commands use a file dialog to ask for files.
4930 This applies to commands from menus and tool bar buttons even when
4931 they are initiated from the keyboard. If `use-dialog-box' is nil,
4932 that disables the use of a file dialog, regardless of the value of
4933 this variable. */);
4934 use_file_dialog = 1;
4935
4936 defsubr (&Sidentity);
4937 defsubr (&Srandom);
4938 defsubr (&Slength);
4939 defsubr (&Ssafe_length);
4940 defsubr (&Sstring_bytes);
4941 defsubr (&Sstring_equal);
4942 defsubr (&Scompare_strings);
4943 defsubr (&Sstring_lessp);
4944 defsubr (&Sappend);
4945 defsubr (&Sconcat);
4946 defsubr (&Svconcat);
4947 defsubr (&Scopy_sequence);
4948 defsubr (&Sstring_make_multibyte);
4949 defsubr (&Sstring_make_unibyte);
4950 defsubr (&Sstring_as_multibyte);
4951 defsubr (&Sstring_as_unibyte);
4952 defsubr (&Sstring_to_multibyte);
4953 defsubr (&Sstring_to_unibyte);
4954 defsubr (&Scopy_alist);
4955 defsubr (&Ssubstring);
4956 defsubr (&Ssubstring_no_properties);
4957 defsubr (&Snthcdr);
4958 defsubr (&Snth);
4959 defsubr (&Selt);
4960 defsubr (&Smember);
4961 defsubr (&Smemq);
4962 defsubr (&Smemql);
4963 defsubr (&Sassq);
4964 defsubr (&Sassoc);
4965 defsubr (&Srassq);
4966 defsubr (&Srassoc);
4967 defsubr (&Sdelq);
4968 defsubr (&Sdelete);
4969 defsubr (&Snreverse);
4970 defsubr (&Sreverse);
4971 defsubr (&Ssort);
4972 defsubr (&Splist_get);
4973 defsubr (&Sget);
4974 defsubr (&Splist_put);
4975 defsubr (&Sput);
4976 defsubr (&Slax_plist_get);
4977 defsubr (&Slax_plist_put);
4978 defsubr (&Seql);
4979 defsubr (&Sequal);
4980 defsubr (&Sequal_including_properties);
4981 defsubr (&Sfillarray);
4982 defsubr (&Sclear_string);
4983 defsubr (&Snconc);
4984 defsubr (&Smapcar);
4985 defsubr (&Smapc);
4986 defsubr (&Smapconcat);
4987 defsubr (&Syes_or_no_p);
4988 defsubr (&Sload_average);
4989 defsubr (&Sfeaturep);
4990 defsubr (&Srequire);
4991 defsubr (&Sprovide);
4992 defsubr (&Splist_member);
4993 defsubr (&Swidget_put);
4994 defsubr (&Swidget_get);
4995 defsubr (&Swidget_apply);
4996 defsubr (&Sbase64_encode_region);
4997 defsubr (&Sbase64_decode_region);
4998 defsubr (&Sbase64_encode_string);
4999 defsubr (&Sbase64_decode_string);
5000 defsubr (&Smd5);
5001 defsubr (&Ssha1);
5002 defsubr (&Slocale_info);
5003 }
5004
5005
5006 void
5007 init_fns (void)
5008 {
5009 }