Merge from emacs--rel--22
[bpt/emacs.git] / lisp / emacs-lisp / cl-loaddefs.el
1 ;;; cl-loaddefs.el --- automatically extracted autoloads
2 ;;
3 ;;; Code:
4
5 \f
6 ;;;### (autoloads (cl-prettyexpand cl-macroexpand-all cl-remprop
7 ;;;;;; cl-do-remf cl-set-getf getf get* tailp list-length nreconc
8 ;;;;;; revappend concatenate subseq cl-float-limits random-state-p
9 ;;;;;; make-random-state random* signum rem* mod* round* truncate*
10 ;;;;;; ceiling* floor* isqrt lcm gcd cl-progv-before cl-set-frame-visible-p
11 ;;;;;; cl-map-overlays cl-map-intervals cl-map-keymap-recursively
12 ;;;;;; notevery notany every some mapcon mapcan mapl maplist map
13 ;;;;;; cl-mapcar-many equalp coerce) "cl-extra" "cl-extra.el" "0e52b41c758c56831930100671c58f50")
14 ;;; Generated autoloads from cl-extra.el
15
16 (autoload 'coerce "cl-extra" "\
17 Coerce OBJECT to type TYPE.
18 TYPE is a Common Lisp type specifier.
19
20 \(fn OBJECT TYPE)" nil nil)
21
22 (autoload 'equalp "cl-extra" "\
23 Return t if two Lisp objects have similar structures and contents.
24 This is like `equal', except that it accepts numerically equal
25 numbers of different types (float vs. integer), and also compares
26 strings case-insensitively.
27
28 \(fn X Y)" nil nil)
29
30 (autoload 'cl-mapcar-many "cl-extra" "\
31 Not documented
32
33 \(fn CL-FUNC CL-SEQS)" nil nil)
34
35 (autoload 'map "cl-extra" "\
36 Map a FUNCTION across one or more SEQUENCEs, returning a sequence.
37 TYPE is the sequence type to return.
38
39 \(fn TYPE FUNCTION SEQUENCE...)" nil nil)
40
41 (autoload 'maplist "cl-extra" "\
42 Map FUNCTION to each sublist of LIST or LISTs.
43 Like `mapcar', except applies to lists and their cdr's rather than to
44 the elements themselves.
45
46 \(fn FUNCTION LIST...)" nil nil)
47
48 (autoload 'mapl "cl-extra" "\
49 Like `maplist', but does not accumulate values returned by the function.
50
51 \(fn FUNCTION LIST...)" nil nil)
52
53 (autoload 'mapcan "cl-extra" "\
54 Like `mapcar', but nconc's together the values returned by the function.
55
56 \(fn FUNCTION SEQUENCE...)" nil nil)
57
58 (autoload 'mapcon "cl-extra" "\
59 Like `maplist', but nconc's together the values returned by the function.
60
61 \(fn FUNCTION LIST...)" nil nil)
62
63 (autoload 'some "cl-extra" "\
64 Return true if PREDICATE is true of any element of SEQ or SEQs.
65 If so, return the true (non-nil) value returned by PREDICATE.
66
67 \(fn PREDICATE SEQ...)" nil nil)
68
69 (autoload 'every "cl-extra" "\
70 Return true if PREDICATE is true of every element of SEQ or SEQs.
71
72 \(fn PREDICATE SEQ...)" nil nil)
73
74 (autoload 'notany "cl-extra" "\
75 Return true if PREDICATE is false of every element of SEQ or SEQs.
76
77 \(fn PREDICATE SEQ...)" nil nil)
78
79 (autoload 'notevery "cl-extra" "\
80 Return true if PREDICATE is false of some element of SEQ or SEQs.
81
82 \(fn PREDICATE SEQ...)" nil nil)
83
84 (defalias 'cl-map-keymap 'map-keymap)
85
86 (autoload 'cl-map-keymap-recursively "cl-extra" "\
87 Not documented
88
89 \(fn CL-FUNC-REC CL-MAP &optional CL-BASE)" nil nil)
90
91 (autoload 'cl-map-intervals "cl-extra" "\
92 Not documented
93
94 \(fn CL-FUNC &optional CL-WHAT CL-PROP CL-START CL-END)" nil nil)
95
96 (autoload 'cl-map-overlays "cl-extra" "\
97 Not documented
98
99 \(fn CL-FUNC &optional CL-BUFFER CL-START CL-END CL-ARG)" nil nil)
100
101 (autoload 'cl-set-frame-visible-p "cl-extra" "\
102 Not documented
103
104 \(fn FRAME VAL)" nil nil)
105
106 (autoload 'cl-progv-before "cl-extra" "\
107 Not documented
108
109 \(fn SYMS VALUES)" nil nil)
110
111 (autoload 'gcd "cl-extra" "\
112 Return the greatest common divisor of the arguments.
113
114 \(fn &rest ARGS)" nil nil)
115
116 (autoload 'lcm "cl-extra" "\
117 Return the least common multiple of the arguments.
118
119 \(fn &rest ARGS)" nil nil)
120
121 (autoload 'isqrt "cl-extra" "\
122 Return the integer square root of the argument.
123
124 \(fn X)" nil nil)
125
126 (autoload 'floor* "cl-extra" "\
127 Return a list of the floor of X and the fractional part of X.
128 With two arguments, return floor and remainder of their quotient.
129
130 \(fn X &optional Y)" nil nil)
131
132 (autoload 'ceiling* "cl-extra" "\
133 Return a list of the ceiling of X and the fractional part of X.
134 With two arguments, return ceiling and remainder of their quotient.
135
136 \(fn X &optional Y)" nil nil)
137
138 (autoload 'truncate* "cl-extra" "\
139 Return a list of the integer part of X and the fractional part of X.
140 With two arguments, return truncation and remainder of their quotient.
141
142 \(fn X &optional Y)" nil nil)
143
144 (autoload 'round* "cl-extra" "\
145 Return a list of X rounded to the nearest integer and the remainder.
146 With two arguments, return rounding and remainder of their quotient.
147
148 \(fn X &optional Y)" nil nil)
149
150 (autoload 'mod* "cl-extra" "\
151 The remainder of X divided by Y, with the same sign as Y.
152
153 \(fn X Y)" nil nil)
154
155 (autoload 'rem* "cl-extra" "\
156 The remainder of X divided by Y, with the same sign as X.
157
158 \(fn X Y)" nil nil)
159
160 (autoload 'signum "cl-extra" "\
161 Return 1 if X is positive, -1 if negative, 0 if zero.
162
163 \(fn X)" nil nil)
164
165 (autoload 'random* "cl-extra" "\
166 Return a random nonnegative number less than LIM, an integer or float.
167 Optional second arg STATE is a random-state object.
168
169 \(fn LIM &optional STATE)" nil nil)
170
171 (autoload 'make-random-state "cl-extra" "\
172 Return a copy of random-state STATE, or of `*random-state*' if omitted.
173 If STATE is t, return a new state object seeded from the time of day.
174
175 \(fn &optional STATE)" nil nil)
176
177 (autoload 'random-state-p "cl-extra" "\
178 Return t if OBJECT is a random-state object.
179
180 \(fn OBJECT)" nil nil)
181
182 (autoload 'cl-float-limits "cl-extra" "\
183 Not documented
184
185 \(fn)" nil nil)
186
187 (autoload 'subseq "cl-extra" "\
188 Return the subsequence of SEQ from START to END.
189 If END is omitted, it defaults to the length of the sequence.
190 If START or END is negative, it counts from the end.
191
192 \(fn SEQ START &optional END)" nil nil)
193
194 (autoload 'concatenate "cl-extra" "\
195 Concatenate, into a sequence of type TYPE, the argument SEQUENCEs.
196
197 \(fn TYPE SEQUENCE...)" nil nil)
198
199 (autoload 'revappend "cl-extra" "\
200 Equivalent to (append (reverse X) Y).
201
202 \(fn X Y)" nil nil)
203
204 (autoload 'nreconc "cl-extra" "\
205 Equivalent to (nconc (nreverse X) Y).
206
207 \(fn X Y)" nil nil)
208
209 (autoload 'list-length "cl-extra" "\
210 Return the length of list X. Return nil if list is circular.
211
212 \(fn X)" nil nil)
213
214 (autoload 'tailp "cl-extra" "\
215 Return true if SUBLIST is a tail of LIST.
216
217 \(fn SUBLIST LIST)" nil nil)
218
219 (autoload 'get* "cl-extra" "\
220 Return the value of SYMBOL's PROPNAME property, or DEFAULT if none.
221
222 \(fn SYMBOL PROPNAME &optional DEFAULT)" nil nil)
223
224 (autoload 'getf "cl-extra" "\
225 Search PROPLIST for property PROPNAME; return its value or DEFAULT.
226 PROPLIST is a list of the sort returned by `symbol-plist'.
227
228 \(fn PROPLIST PROPNAME &optional DEFAULT)" nil nil)
229
230 (autoload 'cl-set-getf "cl-extra" "\
231 Not documented
232
233 \(fn PLIST TAG VAL)" nil nil)
234
235 (autoload 'cl-do-remf "cl-extra" "\
236 Not documented
237
238 \(fn PLIST TAG)" nil nil)
239
240 (autoload 'cl-remprop "cl-extra" "\
241 Remove from SYMBOL's plist the property PROPNAME and its value.
242
243 \(fn SYMBOL PROPNAME)" nil nil)
244
245 (defalias 'remprop 'cl-remprop)
246
247 (defalias 'cl-gethash 'gethash)
248
249 (defalias 'cl-puthash 'puthash)
250
251 (defalias 'cl-remhash 'remhash)
252
253 (defalias 'cl-clrhash 'clrhash)
254
255 (defalias 'cl-maphash 'maphash)
256
257 (defalias 'cl-make-hash-table 'make-hash-table)
258
259 (defalias 'cl-hash-table-p 'hash-table-p)
260
261 (defalias 'cl-hash-table-count 'hash-table-count)
262
263 (autoload 'cl-macroexpand-all "cl-extra" "\
264 Expand all macro calls through a Lisp FORM.
265 This also does some trivial optimizations to make the form prettier.
266
267 \(fn FORM &optional ENV)" nil nil)
268
269 (autoload 'cl-prettyexpand "cl-extra" "\
270 Not documented
271
272 \(fn FORM &optional FULL)" nil nil)
273
274 ;;;***
275 \f
276 ;;;### (autoloads (compiler-macroexpand define-compiler-macro assert
277 ;;;;;; check-type typep cl-struct-setf-expander defstruct define-modify-macro
278 ;;;;;; callf2 callf letf* letf rotatef shiftf remf cl-do-pop psetf
279 ;;;;;; setf get-setf-method defsetf define-setf-method declare the
280 ;;;;;; locally multiple-value-setq multiple-value-bind lexical-let*
281 ;;;;;; lexical-let symbol-macrolet macrolet labels flet progv psetq
282 ;;;;;; do-all-symbols do-symbols dotimes dolist do* do loop return-from
283 ;;;;;; return block etypecase typecase ecase case load-time-value
284 ;;;;;; eval-when destructuring-bind function* defmacro* defun* gentemp
285 ;;;;;; gensym) "cl-macs" "cl-macs.el" "db690711cf205074d21590cc64a26d89")
286 ;;; Generated autoloads from cl-macs.el
287
288 (autoload 'gensym "cl-macs" "\
289 Generate a new uninterned symbol.
290 The name is made by appending a number to PREFIX, default \"G\".
291
292 \(fn &optional PREFIX)" nil nil)
293
294 (autoload 'gentemp "cl-macs" "\
295 Generate a new interned symbol with a unique name.
296 The name is made by appending a number to PREFIX, default \"G\".
297
298 \(fn &optional PREFIX)" nil nil)
299
300 (autoload 'defun* "cl-macs" "\
301 Define NAME as a function.
302 Like normal `defun', except ARGLIST allows full Common Lisp conventions,
303 and BODY is implicitly surrounded by (block NAME ...).
304
305 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
306
307 (autoload 'defmacro* "cl-macs" "\
308 Define NAME as a macro.
309 Like normal `defmacro', except ARGLIST allows full Common Lisp conventions,
310 and BODY is implicitly surrounded by (block NAME ...).
311
312 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
313
314 (autoload 'function* "cl-macs" "\
315 Introduce a function.
316 Like normal `function', except that if argument is a lambda form,
317 its argument list allows full Common Lisp conventions.
318
319 \(fn FUNC)" nil (quote macro))
320
321 (autoload 'destructuring-bind "cl-macs" "\
322 Not documented
323
324 \(fn ARGS EXPR &rest BODY)" nil (quote macro))
325
326 (autoload 'eval-when "cl-macs" "\
327 Control when BODY is evaluated.
328 If `compile' is in WHEN, BODY is evaluated when compiled at top-level.
329 If `load' is in WHEN, BODY is evaluated when loaded after top-level compile.
330 If `eval' is in WHEN, BODY is evaluated when interpreted or at non-top-level.
331
332 \(fn (WHEN...) BODY...)" nil (quote macro))
333
334 (autoload 'load-time-value "cl-macs" "\
335 Like `progn', but evaluates the body at load time.
336 The result of the body appears to the compiler as a quoted constant.
337
338 \(fn FORM &optional READ-ONLY)" nil (quote macro))
339
340 (autoload 'case "cl-macs" "\
341 Eval EXPR and choose among clauses on that value.
342 Each clause looks like (KEYLIST BODY...). EXPR is evaluated and compared
343 against each key in each KEYLIST; the corresponding BODY is evaluated.
344 If no clause succeeds, case returns nil. A single atom may be used in
345 place of a KEYLIST of one atom. A KEYLIST of t or `otherwise' is
346 allowed only in the final clause, and matches if no other keys match.
347 Key values are compared by `eql'.
348
349 \(fn EXPR (KEYLIST BODY...)...)" nil (quote macro))
350
351 (autoload 'ecase "cl-macs" "\
352 Like `case', but error if no case fits.
353 `otherwise'-clauses are not allowed.
354
355 \(fn EXPR (KEYLIST BODY...)...)" nil (quote macro))
356
357 (autoload 'typecase "cl-macs" "\
358 Evals EXPR, chooses among clauses on that value.
359 Each clause looks like (TYPE BODY...). EXPR is evaluated and, if it
360 satisfies TYPE, the corresponding BODY is evaluated. If no clause succeeds,
361 typecase returns nil. A TYPE of t or `otherwise' is allowed only in the
362 final clause, and matches if no other keys match.
363
364 \(fn EXPR (TYPE BODY...)...)" nil (quote macro))
365
366 (autoload 'etypecase "cl-macs" "\
367 Like `typecase', but error if no case fits.
368 `otherwise'-clauses are not allowed.
369
370 \(fn EXPR (TYPE BODY...)...)" nil (quote macro))
371
372 (autoload 'block "cl-macs" "\
373 Define a lexically-scoped block named NAME.
374 NAME may be any symbol. Code inside the BODY forms can call `return-from'
375 to jump prematurely out of the block. This differs from `catch' and `throw'
376 in two respects: First, the NAME is an unevaluated symbol rather than a
377 quoted symbol or other form; and second, NAME is lexically rather than
378 dynamically scoped: Only references to it within BODY will work. These
379 references may appear inside macro expansions, but not inside functions
380 called from BODY.
381
382 \(fn NAME &rest BODY)" nil (quote macro))
383
384 (autoload 'return "cl-macs" "\
385 Return from the block named nil.
386 This is equivalent to `(return-from nil RESULT)'.
387
388 \(fn &optional RESULT)" nil (quote macro))
389
390 (autoload 'return-from "cl-macs" "\
391 Return from the block named NAME.
392 This jump out to the innermost enclosing `(block NAME ...)' form,
393 returning RESULT from that form (or nil if RESULT is omitted).
394 This is compatible with Common Lisp, but note that `defun' and
395 `defmacro' do not create implicit blocks as they do in Common Lisp.
396
397 \(fn NAME &optional RESULT)" nil (quote macro))
398
399 (autoload 'loop "cl-macs" "\
400 The Common Lisp `loop' macro.
401 Valid clauses are:
402 for VAR from/upfrom/downfrom NUM to/upto/downto/above/below NUM by NUM,
403 for VAR in LIST by FUNC, for VAR on LIST by FUNC, for VAR = INIT then EXPR,
404 for VAR across ARRAY, repeat NUM, with VAR = INIT, while COND, until COND,
405 always COND, never COND, thereis COND, collect EXPR into VAR,
406 append EXPR into VAR, nconc EXPR into VAR, sum EXPR into VAR,
407 count EXPR into VAR, maximize EXPR into VAR, minimize EXPR into VAR,
408 if COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
409 unless COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
410 do EXPRS..., initially EXPRS..., finally EXPRS..., return EXPR,
411 finally return EXPR, named NAME.
412
413 \(fn CLAUSE...)" nil (quote macro))
414
415 (autoload 'do "cl-macs" "\
416 The Common Lisp `do' loop.
417
418 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil (quote macro))
419
420 (autoload 'do* "cl-macs" "\
421 The Common Lisp `do*' loop.
422
423 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil (quote macro))
424
425 (autoload 'dolist "cl-macs" "\
426 Loop over a list.
427 Evaluate BODY with VAR bound to each `car' from LIST, in turn.
428 Then evaluate RESULT to get return value, default nil.
429
430 \(fn (VAR LIST [RESULT]) BODY...)" nil (quote macro))
431
432 (autoload 'dotimes "cl-macs" "\
433 Loop a certain number of times.
434 Evaluate BODY with VAR bound to successive integers from 0, inclusive,
435 to COUNT, exclusive. Then evaluate RESULT to get return value, default
436 nil.
437
438 \(fn (VAR COUNT [RESULT]) BODY...)" nil (quote macro))
439
440 (autoload 'do-symbols "cl-macs" "\
441 Loop over all symbols.
442 Evaluate BODY with VAR bound to each interned symbol, or to each symbol
443 from OBARRAY.
444
445 \(fn (VAR [OBARRAY [RESULT]]) BODY...)" nil (quote macro))
446
447 (autoload 'do-all-symbols "cl-macs" "\
448 Not documented
449
450 \(fn SPEC &rest BODY)" nil (quote macro))
451
452 (autoload 'psetq "cl-macs" "\
453 Set SYMs to the values VALs in parallel.
454 This is like `setq', except that all VAL forms are evaluated (in order)
455 before assigning any symbols SYM to the corresponding values.
456
457 \(fn SYM VAL SYM VAL ...)" nil (quote macro))
458
459 (autoload 'progv "cl-macs" "\
460 Bind SYMBOLS to VALUES dynamically in BODY.
461 The forms SYMBOLS and VALUES are evaluated, and must evaluate to lists.
462 Each symbol in the first list is bound to the corresponding value in the
463 second list (or made unbound if VALUES is shorter than SYMBOLS); then the
464 BODY forms are executed and their result is returned. This is much like
465 a `let' form, except that the list of symbols can be computed at run-time.
466
467 \(fn SYMBOLS VALUES &rest BODY)" nil (quote macro))
468
469 (autoload 'flet "cl-macs" "\
470 Make temporary function definitions.
471 This is an analogue of `let' that operates on the function cell of FUNC
472 rather than its value cell. The FORMs are evaluated with the specified
473 function definitions in place, then the definitions are undone (the FUNCs
474 go back to their previous definitions, or lack thereof).
475
476 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil (quote macro))
477
478 (autoload 'labels "cl-macs" "\
479 Make temporary function bindings.
480 This is like `flet', except the bindings are lexical instead of dynamic.
481 Unlike `flet', this macro is fully compliant with the Common Lisp standard.
482
483 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil (quote macro))
484
485 (autoload 'macrolet "cl-macs" "\
486 Make temporary macro definitions.
487 This is like `flet', but for macros instead of functions.
488
489 \(fn ((NAME ARGLIST BODY...) ...) FORM...)" nil (quote macro))
490
491 (autoload 'symbol-macrolet "cl-macs" "\
492 Make symbol macro definitions.
493 Within the body FORMs, references to the variable NAME will be replaced
494 by EXPANSION, and (setq NAME ...) will act like (setf EXPANSION ...).
495
496 \(fn ((NAME EXPANSION) ...) FORM...)" nil (quote macro))
497
498 (autoload 'lexical-let "cl-macs" "\
499 Like `let', but lexically scoped.
500 The main visible difference is that lambdas inside BODY will create
501 lexical closures as in Common Lisp.
502
503 \(fn VARLIST BODY)" nil (quote macro))
504
505 (autoload 'lexical-let* "cl-macs" "\
506 Like `let*', but lexically scoped.
507 The main visible difference is that lambdas inside BODY will create
508 lexical closures as in Common Lisp.
509
510 \(fn VARLIST BODY)" nil (quote macro))
511
512 (autoload 'multiple-value-bind "cl-macs" "\
513 Collect multiple return values.
514 FORM must return a list; the BODY is then executed with the first N elements
515 of this list bound (`let'-style) to each of the symbols SYM in turn. This
516 is analogous to the Common Lisp `multiple-value-bind' macro, using lists to
517 simulate true multiple return values. For compatibility, (values A B C) is
518 a synonym for (list A B C).
519
520 \(fn (SYM...) FORM BODY)" nil (quote macro))
521
522 (autoload 'multiple-value-setq "cl-macs" "\
523 Collect multiple return values.
524 FORM must return a list; the first N elements of this list are stored in
525 each of the symbols SYM in turn. This is analogous to the Common Lisp
526 `multiple-value-setq' macro, using lists to simulate true multiple return
527 values. For compatibility, (values A B C) is a synonym for (list A B C).
528
529 \(fn (SYM...) FORM)" nil (quote macro))
530
531 (autoload 'locally "cl-macs" "\
532 Not documented
533
534 \(fn &rest BODY)" nil (quote macro))
535
536 (autoload 'the "cl-macs" "\
537 Not documented
538
539 \(fn TYPE FORM)" nil (quote macro))
540
541 (autoload 'declare "cl-macs" "\
542 Not documented
543
544 \(fn &rest SPECS)" nil (quote macro))
545
546 (autoload 'define-setf-method "cl-macs" "\
547 Define a `setf' method.
548 This method shows how to handle `setf's to places of the form (NAME ARGS...).
549 The argument forms ARGS are bound according to ARGLIST, as if NAME were
550 going to be expanded as a macro, then the BODY forms are executed and must
551 return a list of five elements: a temporary-variables list, a value-forms
552 list, a store-variables list (of length one), a store-form, and an access-
553 form. See `defsetf' for a simpler way to define most setf-methods.
554
555 \(fn NAME ARGLIST BODY...)" nil (quote macro))
556
557 (autoload 'defsetf "cl-macs" "\
558 Define a `setf' method.
559 This macro is an easy-to-use substitute for `define-setf-method' that works
560 well for simple place forms. In the simple `defsetf' form, `setf's of
561 the form (setf (NAME ARGS...) VAL) are transformed to function or macro
562 calls of the form (FUNC ARGS... VAL). Example:
563
564 (defsetf aref aset)
565
566 Alternate form: (defsetf NAME ARGLIST (STORE) BODY...).
567 Here, the above `setf' call is expanded by binding the argument forms ARGS
568 according to ARGLIST, binding the value form VAL to STORE, then executing
569 BODY, which must return a Lisp form that does the necessary `setf' operation.
570 Actually, ARGLIST and STORE may be bound to temporary variables which are
571 introduced automatically to preserve proper execution order of the arguments.
572 Example:
573
574 (defsetf nth (n x) (v) (list 'setcar (list 'nthcdr n x) v))
575
576 \(fn NAME [FUNC | ARGLIST (STORE) BODY...])" nil (quote macro))
577
578 (autoload 'get-setf-method "cl-macs" "\
579 Return a list of five values describing the setf-method for PLACE.
580 PLACE may be any Lisp form which can appear as the PLACE argument to
581 a macro like `setf' or `incf'.
582
583 \(fn PLACE &optional ENV)" nil nil)
584
585 (autoload 'setf "cl-macs" "\
586 Set each PLACE to the value of its VAL.
587 This is a generalized version of `setq'; the PLACEs may be symbolic
588 references such as (car x) or (aref x i), as well as plain symbols.
589 For example, (setf (cadar x) y) is equivalent to (setcar (cdar x) y).
590 The return value is the last VAL in the list.
591
592 \(fn PLACE VAL PLACE VAL ...)" nil (quote macro))
593
594 (autoload 'psetf "cl-macs" "\
595 Set PLACEs to the values VALs in parallel.
596 This is like `setf', except that all VAL forms are evaluated (in order)
597 before assigning any PLACEs to the corresponding values.
598
599 \(fn PLACE VAL PLACE VAL ...)" nil (quote macro))
600
601 (autoload 'cl-do-pop "cl-macs" "\
602 Not documented
603
604 \(fn PLACE)" nil nil)
605
606 (autoload 'remf "cl-macs" "\
607 Remove TAG from property list PLACE.
608 PLACE may be a symbol, or any generalized variable allowed by `setf'.
609 The form returns true if TAG was found and removed, nil otherwise.
610
611 \(fn PLACE TAG)" nil (quote macro))
612
613 (autoload 'shiftf "cl-macs" "\
614 Shift left among PLACEs.
615 Example: (shiftf A B C) sets A to B, B to C, and returns the old A.
616 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
617
618 \(fn PLACE... VAL)" nil (quote macro))
619
620 (autoload 'rotatef "cl-macs" "\
621 Rotate left among PLACEs.
622 Example: (rotatef A B C) sets A to B, B to C, and C to A. It returns nil.
623 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
624
625 \(fn PLACE...)" nil (quote macro))
626
627 (autoload 'letf "cl-macs" "\
628 Temporarily bind to PLACEs.
629 This is the analogue of `let', but with generalized variables (in the
630 sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
631 VALUE, then the BODY forms are executed. On exit, either normally or
632 because of a `throw' or error, the PLACEs are set back to their original
633 values. Note that this macro is *not* available in Common Lisp.
634 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
635 the PLACE is not modified before executing BODY.
636
637 \(fn ((PLACE VALUE) ...) BODY...)" nil (quote macro))
638
639 (autoload 'letf* "cl-macs" "\
640 Temporarily bind to PLACEs.
641 This is the analogue of `let*', but with generalized variables (in the
642 sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
643 VALUE, then the BODY forms are executed. On exit, either normally or
644 because of a `throw' or error, the PLACEs are set back to their original
645 values. Note that this macro is *not* available in Common Lisp.
646 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
647 the PLACE is not modified before executing BODY.
648
649 \(fn ((PLACE VALUE) ...) BODY...)" nil (quote macro))
650
651 (autoload 'callf "cl-macs" "\
652 Set PLACE to (FUNC PLACE ARGS...).
653 FUNC should be an unquoted function name. PLACE may be a symbol,
654 or any generalized variable allowed by `setf'.
655
656 \(fn FUNC PLACE ARGS...)" nil (quote macro))
657
658 (autoload 'callf2 "cl-macs" "\
659 Set PLACE to (FUNC ARG1 PLACE ARGS...).
660 Like `callf', but PLACE is the second argument of FUNC, not the first.
661
662 \(fn FUNC ARG1 PLACE ARGS...)" nil (quote macro))
663
664 (autoload 'define-modify-macro "cl-macs" "\
665 Define a `setf'-like modify macro.
666 If NAME is called, it combines its PLACE argument with the other arguments
667 from ARGLIST using FUNC: (define-modify-macro incf (&optional (n 1)) +)
668
669 \(fn NAME ARGLIST FUNC &optional DOC)" nil (quote macro))
670
671 (autoload 'defstruct "cl-macs" "\
672 Define a struct type.
673 This macro defines a new Lisp data type called NAME, which contains data
674 stored in SLOTs. This defines a `make-NAME' constructor, a `copy-NAME'
675 copier, a `NAME-p' predicate, and setf-able `NAME-SLOT' accessors.
676
677 \(fn (NAME OPTIONS...) (SLOT SLOT-OPTS...)...)" nil (quote macro))
678
679 (autoload 'cl-struct-setf-expander "cl-macs" "\
680 Not documented
681
682 \(fn X NAME ACCESSOR PRED-FORM POS)" nil nil)
683
684 (autoload 'typep "cl-macs" "\
685 Check that OBJECT is of type TYPE.
686 TYPE is a Common Lisp-style type specifier.
687
688 \(fn OBJECT TYPE)" nil nil)
689
690 (autoload 'check-type "cl-macs" "\
691 Verify that FORM is of type TYPE; signal an error if not.
692 STRING is an optional description of the desired type.
693
694 \(fn FORM TYPE &optional STRING)" nil (quote macro))
695
696 (autoload 'assert "cl-macs" "\
697 Verify that FORM returns non-nil; signal an error if not.
698 Second arg SHOW-ARGS means to include arguments of FORM in message.
699 Other args STRING and ARGS... are arguments to be passed to `error'.
700 They are not evaluated unless the assertion fails. If STRING is
701 omitted, a default message listing FORM itself is used.
702
703 \(fn FORM &optional SHOW-ARGS STRING &rest ARGS)" nil (quote macro))
704
705 (autoload 'define-compiler-macro "cl-macs" "\
706 Define a compiler-only macro.
707 This is like `defmacro', but macro expansion occurs only if the call to
708 FUNC is compiled (i.e., not interpreted). Compiler macros should be used
709 for optimizing the way calls to FUNC are compiled; the form returned by
710 BODY should do the same thing as a call to the normal function called
711 FUNC, though possibly more efficiently. Note that, like regular macros,
712 compiler macros are expanded repeatedly until no further expansions are
713 possible. Unlike regular macros, BODY can decide to \"punt\" and leave the
714 original function call alone by declaring an initial `&whole foo' parameter
715 and then returning foo.
716
717 \(fn FUNC ARGS &rest BODY)" nil (quote macro))
718
719 (autoload 'compiler-macroexpand "cl-macs" "\
720 Not documented
721
722 \(fn FORM)" nil nil)
723
724 ;;;***
725 \f
726 ;;;### (autoloads (tree-equal nsublis sublis nsubst-if-not nsubst-if
727 ;;;;;; nsubst subst-if-not subst-if subsetp nset-exclusive-or set-exclusive-or
728 ;;;;;; nset-difference set-difference nintersection intersection
729 ;;;;;; nunion union rassoc-if-not rassoc-if rassoc* assoc-if-not
730 ;;;;;; assoc-if assoc* cl-adjoin member-if-not member-if member*
731 ;;;;;; merge stable-sort sort* search mismatch count-if-not count-if
732 ;;;;;; count position-if-not position-if position find-if-not find-if
733 ;;;;;; find nsubstitute-if-not nsubstitute-if nsubstitute substitute-if-not
734 ;;;;;; substitute-if substitute delete-duplicates remove-duplicates
735 ;;;;;; delete-if-not delete-if delete* remove-if-not remove-if remove*
736 ;;;;;; replace fill reduce) "cl-seq" "cl-seq.el" "50e97e33d680423c1a09239e41c42e3e")
737 ;;; Generated autoloads from cl-seq.el
738
739 (autoload 'reduce "cl-seq" "\
740 Reduce two-argument FUNCTION across SEQ.
741
742 Keywords supported: :start :end :from-end :initial-value :key
743
744 \(fn FUNCTION SEQ [KEYWORD VALUE]...)" nil nil)
745
746 (autoload 'fill "cl-seq" "\
747 Fill the elements of SEQ with ITEM.
748
749 Keywords supported: :start :end
750
751 \(fn SEQ ITEM [KEYWORD VALUE]...)" nil nil)
752
753 (autoload 'replace "cl-seq" "\
754 Replace the elements of SEQ1 with the elements of SEQ2.
755 SEQ1 is destructively modified, then returned.
756
757 Keywords supported: :start1 :end1 :start2 :end2
758
759 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
760
761 (autoload 'remove* "cl-seq" "\
762 Remove all occurrences of ITEM in SEQ.
763 This is a non-destructive function; it makes a copy of SEQ if necessary
764 to avoid corrupting the original SEQ.
765
766 Keywords supported: :test :test-not :key :count :start :end :from-end
767
768 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
769
770 (autoload 'remove-if "cl-seq" "\
771 Remove all items satisfying PREDICATE in SEQ.
772 This is a non-destructive function; it makes a copy of SEQ if necessary
773 to avoid corrupting the original SEQ.
774
775 Keywords supported: :key :count :start :end :from-end
776
777 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
778
779 (autoload 'remove-if-not "cl-seq" "\
780 Remove all items not satisfying PREDICATE in SEQ.
781 This is a non-destructive function; it makes a copy of SEQ if necessary
782 to avoid corrupting the original SEQ.
783
784 Keywords supported: :key :count :start :end :from-end
785
786 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
787
788 (autoload 'delete* "cl-seq" "\
789 Remove all occurrences of ITEM in SEQ.
790 This is a destructive function; it reuses the storage of SEQ whenever possible.
791
792 Keywords supported: :test :test-not :key :count :start :end :from-end
793
794 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
795
796 (autoload 'delete-if "cl-seq" "\
797 Remove all items satisfying PREDICATE in SEQ.
798 This is a destructive function; it reuses the storage of SEQ whenever possible.
799
800 Keywords supported: :key :count :start :end :from-end
801
802 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
803
804 (autoload 'delete-if-not "cl-seq" "\
805 Remove all items not satisfying PREDICATE in SEQ.
806 This is a destructive function; it reuses the storage of SEQ whenever possible.
807
808 Keywords supported: :key :count :start :end :from-end
809
810 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
811
812 (autoload 'remove-duplicates "cl-seq" "\
813 Return a copy of SEQ with all duplicate elements removed.
814
815 Keywords supported: :test :test-not :key :start :end :from-end
816
817 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
818
819 (autoload 'delete-duplicates "cl-seq" "\
820 Remove all duplicate elements from SEQ (destructively).
821
822 Keywords supported: :test :test-not :key :start :end :from-end
823
824 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
825
826 (autoload 'substitute "cl-seq" "\
827 Substitute NEW for OLD in SEQ.
828 This is a non-destructive function; it makes a copy of SEQ if necessary
829 to avoid corrupting the original SEQ.
830
831 Keywords supported: :test :test-not :key :count :start :end :from-end
832
833 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
834
835 (autoload 'substitute-if "cl-seq" "\
836 Substitute NEW for all items satisfying PREDICATE in SEQ.
837 This is a non-destructive function; it makes a copy of SEQ if necessary
838 to avoid corrupting the original SEQ.
839
840 Keywords supported: :key :count :start :end :from-end
841
842 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
843
844 (autoload 'substitute-if-not "cl-seq" "\
845 Substitute NEW for all items not satisfying PREDICATE in SEQ.
846 This is a non-destructive function; it makes a copy of SEQ if necessary
847 to avoid corrupting the original SEQ.
848
849 Keywords supported: :key :count :start :end :from-end
850
851 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
852
853 (autoload 'nsubstitute "cl-seq" "\
854 Substitute NEW for OLD in SEQ.
855 This is a destructive function; it reuses the storage of SEQ whenever possible.
856
857 Keywords supported: :test :test-not :key :count :start :end :from-end
858
859 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
860
861 (autoload 'nsubstitute-if "cl-seq" "\
862 Substitute NEW for all items satisfying PREDICATE in SEQ.
863 This is a destructive function; it reuses the storage of SEQ whenever possible.
864
865 Keywords supported: :key :count :start :end :from-end
866
867 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
868
869 (autoload 'nsubstitute-if-not "cl-seq" "\
870 Substitute NEW for all items not satisfying PREDICATE in SEQ.
871 This is a destructive function; it reuses the storage of SEQ whenever possible.
872
873 Keywords supported: :key :count :start :end :from-end
874
875 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
876
877 (autoload 'find "cl-seq" "\
878 Find the first occurrence of ITEM in SEQ.
879 Return the matching ITEM, or nil if not found.
880
881 Keywords supported: :test :test-not :key :start :end :from-end
882
883 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
884
885 (autoload 'find-if "cl-seq" "\
886 Find the first item satisfying PREDICATE in SEQ.
887 Return the matching item, or nil if not found.
888
889 Keywords supported: :key :start :end :from-end
890
891 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
892
893 (autoload 'find-if-not "cl-seq" "\
894 Find the first item not satisfying PREDICATE in SEQ.
895 Return the matching item, or nil if not found.
896
897 Keywords supported: :key :start :end :from-end
898
899 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
900
901 (autoload 'position "cl-seq" "\
902 Find the first occurrence of ITEM in SEQ.
903 Return the index of the matching item, or nil if not found.
904
905 Keywords supported: :test :test-not :key :start :end :from-end
906
907 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
908
909 (autoload 'position-if "cl-seq" "\
910 Find the first item satisfying PREDICATE in SEQ.
911 Return the index of the matching item, or nil if not found.
912
913 Keywords supported: :key :start :end :from-end
914
915 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
916
917 (autoload 'position-if-not "cl-seq" "\
918 Find the first item not satisfying PREDICATE in SEQ.
919 Return the index of the matching item, or nil if not found.
920
921 Keywords supported: :key :start :end :from-end
922
923 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
924
925 (autoload 'count "cl-seq" "\
926 Count the number of occurrences of ITEM in SEQ.
927
928 Keywords supported: :test :test-not :key :start :end
929
930 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
931
932 (autoload 'count-if "cl-seq" "\
933 Count the number of items satisfying PREDICATE in SEQ.
934
935 Keywords supported: :key :start :end
936
937 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
938
939 (autoload 'count-if-not "cl-seq" "\
940 Count the number of items not satisfying PREDICATE in SEQ.
941
942 Keywords supported: :key :start :end
943
944 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
945
946 (autoload 'mismatch "cl-seq" "\
947 Compare SEQ1 with SEQ2, return index of first mismatching element.
948 Return nil if the sequences match. If one sequence is a prefix of the
949 other, the return value indicates the end of the shorter sequence.
950
951 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
952
953 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
954
955 (autoload 'search "cl-seq" "\
956 Search for SEQ1 as a subsequence of SEQ2.
957 Return the index of the leftmost element of the first match found;
958 return nil if there are no matches.
959
960 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
961
962 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
963
964 (autoload 'sort* "cl-seq" "\
965 Sort the argument SEQ according to PREDICATE.
966 This is a destructive function; it reuses the storage of SEQ if possible.
967
968 Keywords supported: :key
969
970 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
971
972 (autoload 'stable-sort "cl-seq" "\
973 Sort the argument SEQ stably according to PREDICATE.
974 This is a destructive function; it reuses the storage of SEQ if possible.
975
976 Keywords supported: :key
977
978 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
979
980 (autoload 'merge "cl-seq" "\
981 Destructively merge the two sequences to produce a new sequence.
982 TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
983 sequences, and PREDICATE is a `less-than' predicate on the elements.
984
985 Keywords supported: :key
986
987 \(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)" nil nil)
988
989 (autoload 'member* "cl-seq" "\
990 Find the first occurrence of ITEM in LIST.
991 Return the sublist of LIST whose car is ITEM.
992
993 Keywords supported: :test :test-not :key
994
995 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
996
997 (autoload 'member-if "cl-seq" "\
998 Find the first item satisfying PREDICATE in LIST.
999 Return the sublist of LIST whose car matches.
1000
1001 Keywords supported: :key
1002
1003 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1004
1005 (autoload 'member-if-not "cl-seq" "\
1006 Find the first item not satisfying PREDICATE in LIST.
1007 Return the sublist of LIST whose car matches.
1008
1009 Keywords supported: :key
1010
1011 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1012
1013 (autoload 'cl-adjoin "cl-seq" "\
1014 Not documented
1015
1016 \(fn CL-ITEM CL-LIST &rest CL-KEYS)" nil nil)
1017
1018 (autoload 'assoc* "cl-seq" "\
1019 Find the first item whose car matches ITEM in LIST.
1020
1021 Keywords supported: :test :test-not :key
1022
1023 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1024
1025 (autoload 'assoc-if "cl-seq" "\
1026 Find the first item whose car satisfies PREDICATE in LIST.
1027
1028 Keywords supported: :key
1029
1030 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1031
1032 (autoload 'assoc-if-not "cl-seq" "\
1033 Find the first item whose car does not satisfy PREDICATE in LIST.
1034
1035 Keywords supported: :key
1036
1037 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1038
1039 (autoload 'rassoc* "cl-seq" "\
1040 Find the first item whose cdr matches ITEM in LIST.
1041
1042 Keywords supported: :test :test-not :key
1043
1044 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1045
1046 (autoload 'rassoc-if "cl-seq" "\
1047 Find the first item whose cdr satisfies PREDICATE in LIST.
1048
1049 Keywords supported: :key
1050
1051 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1052
1053 (autoload 'rassoc-if-not "cl-seq" "\
1054 Find the first item whose cdr does not satisfy PREDICATE in LIST.
1055
1056 Keywords supported: :key
1057
1058 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1059
1060 (autoload 'union "cl-seq" "\
1061 Combine LIST1 and LIST2 using a set-union operation.
1062 The result list contains all items that appear in either LIST1 or LIST2.
1063 This is a non-destructive function; it makes a copy of the data if necessary
1064 to avoid corrupting the original LIST1 and LIST2.
1065
1066 Keywords supported: :test :test-not :key
1067
1068 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1069
1070 (autoload 'nunion "cl-seq" "\
1071 Combine LIST1 and LIST2 using a set-union operation.
1072 The result list contains all items that appear in either LIST1 or LIST2.
1073 This is a destructive function; it reuses the storage of LIST1 and LIST2
1074 whenever possible.
1075
1076 Keywords supported: :test :test-not :key
1077
1078 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1079
1080 (autoload 'intersection "cl-seq" "\
1081 Combine LIST1 and LIST2 using a set-intersection operation.
1082 The result list contains all items that appear in both LIST1 and LIST2.
1083 This is a non-destructive function; it makes a copy of the data if necessary
1084 to avoid corrupting the original LIST1 and LIST2.
1085
1086 Keywords supported: :test :test-not :key
1087
1088 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1089
1090 (autoload 'nintersection "cl-seq" "\
1091 Combine LIST1 and LIST2 using a set-intersection operation.
1092 The result list contains all items that appear in both LIST1 and LIST2.
1093 This is a destructive function; it reuses the storage of LIST1 and LIST2
1094 whenever possible.
1095
1096 Keywords supported: :test :test-not :key
1097
1098 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1099
1100 (autoload 'set-difference "cl-seq" "\
1101 Combine LIST1 and LIST2 using a set-difference operation.
1102 The result list contains all items that appear in LIST1 but not LIST2.
1103 This is a non-destructive function; it makes a copy of the data if necessary
1104 to avoid corrupting the original LIST1 and LIST2.
1105
1106 Keywords supported: :test :test-not :key
1107
1108 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1109
1110 (autoload 'nset-difference "cl-seq" "\
1111 Combine LIST1 and LIST2 using a set-difference operation.
1112 The result list contains all items that appear in LIST1 but not LIST2.
1113 This is a destructive function; it reuses the storage of LIST1 and LIST2
1114 whenever possible.
1115
1116 Keywords supported: :test :test-not :key
1117
1118 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1119
1120 (autoload 'set-exclusive-or "cl-seq" "\
1121 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1122 The result list contains all items that appear in exactly one of LIST1, LIST2.
1123 This is a non-destructive function; it makes a copy of the data if necessary
1124 to avoid corrupting the original LIST1 and LIST2.
1125
1126 Keywords supported: :test :test-not :key
1127
1128 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1129
1130 (autoload 'nset-exclusive-or "cl-seq" "\
1131 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1132 The result list contains all items that appear in exactly one of LIST1, LIST2.
1133 This is a destructive function; it reuses the storage of LIST1 and LIST2
1134 whenever possible.
1135
1136 Keywords supported: :test :test-not :key
1137
1138 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1139
1140 (autoload 'subsetp "cl-seq" "\
1141 Return true if LIST1 is a subset of LIST2.
1142 I.e., if every element of LIST1 also appears in LIST2.
1143
1144 Keywords supported: :test :test-not :key
1145
1146 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1147
1148 (autoload 'subst-if "cl-seq" "\
1149 Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
1150 Return a copy of TREE with all matching elements replaced by NEW.
1151
1152 Keywords supported: :key
1153
1154 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1155
1156 (autoload 'subst-if-not "cl-seq" "\
1157 Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
1158 Return a copy of TREE with all non-matching elements replaced by NEW.
1159
1160 Keywords supported: :key
1161
1162 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1163
1164 (autoload 'nsubst "cl-seq" "\
1165 Substitute NEW for OLD everywhere in TREE (destructively).
1166 Any element of TREE which is `eql' to OLD is changed to NEW (via a call
1167 to `setcar').
1168
1169 Keywords supported: :test :test-not :key
1170
1171 \(fn NEW OLD TREE [KEYWORD VALUE]...)" nil nil)
1172
1173 (autoload 'nsubst-if "cl-seq" "\
1174 Substitute NEW for elements matching PREDICATE in TREE (destructively).
1175 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1176
1177 Keywords supported: :key
1178
1179 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1180
1181 (autoload 'nsubst-if-not "cl-seq" "\
1182 Substitute NEW for elements not matching PREDICATE in TREE (destructively).
1183 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1184
1185 Keywords supported: :key
1186
1187 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1188
1189 (autoload 'sublis "cl-seq" "\
1190 Perform substitutions indicated by ALIST in TREE (non-destructively).
1191 Return a copy of TREE with all matching elements replaced.
1192
1193 Keywords supported: :test :test-not :key
1194
1195 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1196
1197 (autoload 'nsublis "cl-seq" "\
1198 Perform substitutions indicated by ALIST in TREE (destructively).
1199 Any matching element of TREE is changed via a call to `setcar'.
1200
1201 Keywords supported: :test :test-not :key
1202
1203 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1204
1205 (autoload 'tree-equal "cl-seq" "\
1206 Return t if trees TREE1 and TREE2 have `eql' leaves.
1207 Atoms are compared by `eql'; cons cells are compared recursively.
1208
1209 Keywords supported: :test :test-not :key
1210
1211 \(fn TREE1 TREE2 [KEYWORD VALUE]...)" nil nil)
1212
1213 ;;;***
1214 \f
1215 ;; Local Variables:
1216 ;; version-control: never
1217 ;; no-byte-compile: t
1218 ;; no-update-autoloads: t
1219 ;; End:
1220
1221 ;; arch-tag: 08cc5aab-e992-47f6-992e-12a7428c1a0e
1222 ;;; cl-loaddefs.el ends here