* eshell/esh-opt.el (eshell-eval-using-options, eshell-process-args): Doc fixes.
[bpt/emacs.git] / lisp / emacs-lisp / cl-loaddefs.el
1 ;;; cl-loaddefs.el --- automatically extracted autoloads
2 ;;
3 ;;; Code:
4
5 \f
6 ;;;### (autoloads (cl-prettyexpand cl-macroexpand-all cl-remprop
7 ;;;;;; cl-do-remf cl-set-getf getf get* tailp list-length nreconc
8 ;;;;;; revappend concatenate subseq cl-float-limits random-state-p
9 ;;;;;; make-random-state random* signum rem* mod* round* truncate*
10 ;;;;;; ceiling* floor* isqrt lcm gcd cl-progv-before cl-set-frame-visible-p
11 ;;;;;; cl-map-overlays cl-map-intervals cl-map-keymap-recursively
12 ;;;;;; notevery notany every some mapcon mapcan mapl maplist map
13 ;;;;;; cl-mapcar-many equalp coerce) "cl-extra" "cl-extra.el" "60f6b85256416c5f2a0a3954a11523b6")
14 ;;; Generated autoloads from cl-extra.el
15
16 (autoload 'coerce "cl-extra" "\
17 Coerce OBJECT to type TYPE.
18 TYPE is a Common Lisp type specifier.
19
20 \(fn OBJECT TYPE)" nil nil)
21
22 (autoload 'equalp "cl-extra" "\
23 Return t if two Lisp objects have similar structures and contents.
24 This is like `equal', except that it accepts numerically equal
25 numbers of different types (float vs. integer), and also compares
26 strings case-insensitively.
27
28 \(fn X Y)" nil nil)
29
30 (autoload 'cl-mapcar-many "cl-extra" "\
31 Not documented
32
33 \(fn CL-FUNC CL-SEQS)" nil nil)
34
35 (autoload 'map "cl-extra" "\
36 Map a FUNCTION across one or more SEQUENCEs, returning a sequence.
37 TYPE is the sequence type to return.
38
39 \(fn TYPE FUNCTION SEQUENCE...)" nil nil)
40
41 (autoload 'maplist "cl-extra" "\
42 Map FUNCTION to each sublist of LIST or LISTs.
43 Like `mapcar', except applies to lists and their cdr's rather than to
44 the elements themselves.
45
46 \(fn FUNCTION LIST...)" nil nil)
47
48 (autoload 'mapl "cl-extra" "\
49 Like `maplist', but does not accumulate values returned by the function.
50
51 \(fn FUNCTION LIST...)" nil nil)
52
53 (autoload 'mapcan "cl-extra" "\
54 Like `mapcar', but nconc's together the values returned by the function.
55
56 \(fn FUNCTION SEQUENCE...)" nil nil)
57
58 (autoload 'mapcon "cl-extra" "\
59 Like `maplist', but nconc's together the values returned by the function.
60
61 \(fn FUNCTION LIST...)" nil nil)
62
63 (autoload 'some "cl-extra" "\
64 Return true if PREDICATE is true of any element of SEQ or SEQs.
65 If so, return the true (non-nil) value returned by PREDICATE.
66
67 \(fn PREDICATE SEQ...)" nil nil)
68
69 (autoload 'every "cl-extra" "\
70 Return true if PREDICATE is true of every element of SEQ or SEQs.
71
72 \(fn PREDICATE SEQ...)" nil nil)
73
74 (autoload 'notany "cl-extra" "\
75 Return true if PREDICATE is false of every element of SEQ or SEQs.
76
77 \(fn PREDICATE SEQ...)" nil nil)
78
79 (autoload 'notevery "cl-extra" "\
80 Return true if PREDICATE is false of some element of SEQ or SEQs.
81
82 \(fn PREDICATE SEQ...)" nil nil)
83
84 (defalias 'cl-map-keymap 'map-keymap)
85
86 (autoload 'cl-map-keymap-recursively "cl-extra" "\
87 Not documented
88
89 \(fn CL-FUNC-REC CL-MAP &optional CL-BASE)" nil nil)
90
91 (autoload 'cl-map-intervals "cl-extra" "\
92 Not documented
93
94 \(fn CL-FUNC &optional CL-WHAT CL-PROP CL-START CL-END)" nil nil)
95
96 (autoload 'cl-map-overlays "cl-extra" "\
97 Not documented
98
99 \(fn CL-FUNC &optional CL-BUFFER CL-START CL-END CL-ARG)" nil nil)
100
101 (autoload 'cl-set-frame-visible-p "cl-extra" "\
102 Not documented
103
104 \(fn FRAME VAL)" nil nil)
105
106 (autoload 'cl-progv-before "cl-extra" "\
107 Not documented
108
109 \(fn SYMS VALUES)" nil nil)
110
111 (autoload 'gcd "cl-extra" "\
112 Return the greatest common divisor of the arguments.
113
114 \(fn &rest ARGS)" nil nil)
115
116 (autoload 'lcm "cl-extra" "\
117 Return the least common multiple of the arguments.
118
119 \(fn &rest ARGS)" nil nil)
120
121 (autoload 'isqrt "cl-extra" "\
122 Return the integer square root of the argument.
123
124 \(fn X)" nil nil)
125
126 (autoload 'floor* "cl-extra" "\
127 Return a list of the floor of X and the fractional part of X.
128 With two arguments, return floor and remainder of their quotient.
129
130 \(fn X &optional Y)" nil nil)
131
132 (autoload 'ceiling* "cl-extra" "\
133 Return a list of the ceiling of X and the fractional part of X.
134 With two arguments, return ceiling and remainder of their quotient.
135
136 \(fn X &optional Y)" nil nil)
137
138 (autoload 'truncate* "cl-extra" "\
139 Return a list of the integer part of X and the fractional part of X.
140 With two arguments, return truncation and remainder of their quotient.
141
142 \(fn X &optional Y)" nil nil)
143
144 (autoload 'round* "cl-extra" "\
145 Return a list of X rounded to the nearest integer and the remainder.
146 With two arguments, return rounding and remainder of their quotient.
147
148 \(fn X &optional Y)" nil nil)
149
150 (autoload 'mod* "cl-extra" "\
151 The remainder of X divided by Y, with the same sign as Y.
152
153 \(fn X Y)" nil nil)
154
155 (autoload 'rem* "cl-extra" "\
156 The remainder of X divided by Y, with the same sign as X.
157
158 \(fn X Y)" nil nil)
159
160 (autoload 'signum "cl-extra" "\
161 Return 1 if X is positive, -1 if negative, 0 if zero.
162
163 \(fn X)" nil nil)
164
165 (autoload 'random* "cl-extra" "\
166 Return a random nonnegative number less than LIM, an integer or float.
167 Optional second arg STATE is a random-state object.
168
169 \(fn LIM &optional STATE)" nil nil)
170
171 (autoload 'make-random-state "cl-extra" "\
172 Return a copy of random-state STATE, or of `*random-state*' if omitted.
173 If STATE is t, return a new state object seeded from the time of day.
174
175 \(fn &optional STATE)" nil nil)
176
177 (autoload 'random-state-p "cl-extra" "\
178 Return t if OBJECT is a random-state object.
179
180 \(fn OBJECT)" nil nil)
181
182 (autoload 'cl-float-limits "cl-extra" "\
183 Not documented
184
185 \(fn)" nil nil)
186
187 (autoload 'subseq "cl-extra" "\
188 Return the subsequence of SEQ from START to END.
189 If END is omitted, it defaults to the length of the sequence.
190 If START or END is negative, it counts from the end.
191
192 \(fn SEQ START &optional END)" nil nil)
193
194 (autoload 'concatenate "cl-extra" "\
195 Concatenate, into a sequence of type TYPE, the argument SEQUENCEs.
196
197 \(fn TYPE SEQUENCE...)" nil nil)
198
199 (autoload 'revappend "cl-extra" "\
200 Equivalent to (append (reverse X) Y).
201
202 \(fn X Y)" nil nil)
203
204 (autoload 'nreconc "cl-extra" "\
205 Equivalent to (nconc (nreverse X) Y).
206
207 \(fn X Y)" nil nil)
208
209 (autoload 'list-length "cl-extra" "\
210 Return the length of list X. Return nil if list is circular.
211
212 \(fn X)" nil nil)
213
214 (autoload 'tailp "cl-extra" "\
215 Return true if SUBLIST is a tail of LIST.
216
217 \(fn SUBLIST LIST)" nil nil)
218
219 (autoload 'get* "cl-extra" "\
220 Return the value of SYMBOL's PROPNAME property, or DEFAULT if none.
221
222 \(fn SYMBOL PROPNAME &optional DEFAULT)" nil nil)
223
224 (autoload 'getf "cl-extra" "\
225 Search PROPLIST for property PROPNAME; return its value or DEFAULT.
226 PROPLIST is a list of the sort returned by `symbol-plist'.
227
228 \(fn PROPLIST PROPNAME &optional DEFAULT)" nil nil)
229
230 (autoload 'cl-set-getf "cl-extra" "\
231 Not documented
232
233 \(fn PLIST TAG VAL)" nil nil)
234
235 (autoload 'cl-do-remf "cl-extra" "\
236 Not documented
237
238 \(fn PLIST TAG)" nil nil)
239
240 (autoload 'cl-remprop "cl-extra" "\
241 Remove from SYMBOL's plist the property PROPNAME and its value.
242
243 \(fn SYMBOL PROPNAME)" nil nil)
244
245 (defalias 'remprop 'cl-remprop)
246
247 (defalias 'cl-gethash 'gethash)
248
249 (defalias 'cl-puthash 'puthash)
250
251 (defalias 'cl-remhash 'remhash)
252
253 (defalias 'cl-clrhash 'clrhash)
254
255 (defalias 'cl-maphash 'maphash)
256
257 (defalias 'cl-make-hash-table 'make-hash-table)
258
259 (defalias 'cl-hash-table-p 'hash-table-p)
260
261 (defalias 'cl-hash-table-count 'hash-table-count)
262
263 (autoload 'cl-macroexpand-all "cl-extra" "\
264 Expand all macro calls through a Lisp FORM.
265 This also does some trivial optimizations to make the form prettier.
266
267 \(fn FORM &optional ENV)" nil nil)
268
269 (autoload 'cl-prettyexpand "cl-extra" "\
270 Not documented
271
272 \(fn FORM &optional FULL)" nil nil)
273
274 ;;;***
275 \f
276 ;;;### (autoloads (defsubst* compiler-macroexpand define-compiler-macro
277 ;;;;;; assert check-type typep deftype cl-struct-setf-expander defstruct
278 ;;;;;; define-modify-macro callf2 callf letf* letf rotatef shiftf
279 ;;;;;; remf cl-do-pop psetf setf get-setf-method defsetf define-setf-method
280 ;;;;;; declare locally multiple-value-setq multiple-value-bind lexical-let*
281 ;;;;;; lexical-let symbol-macrolet macrolet labels flet progv psetq
282 ;;;;;; do-all-symbols do-symbols dotimes dolist do* do loop return-from
283 ;;;;;; return block etypecase typecase ecase case load-time-value
284 ;;;;;; eval-when destructuring-bind function* defmacro* defun* gentemp
285 ;;;;;; gensym) "cl-macs" "cl-macs.el" "b3031039e82679e5b013ce1cbf174ee8")
286 ;;; Generated autoloads from cl-macs.el
287
288 (autoload 'gensym "cl-macs" "\
289 Generate a new uninterned symbol.
290 The name is made by appending a number to PREFIX, default \"G\".
291
292 \(fn &optional PREFIX)" nil nil)
293
294 (autoload 'gentemp "cl-macs" "\
295 Generate a new interned symbol with a unique name.
296 The name is made by appending a number to PREFIX, default \"G\".
297
298 \(fn &optional PREFIX)" nil nil)
299
300 (autoload 'defun* "cl-macs" "\
301 Define NAME as a function.
302 Like normal `defun', except ARGLIST allows full Common Lisp conventions,
303 and BODY is implicitly surrounded by (block NAME ...).
304
305 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
306
307 (autoload 'defmacro* "cl-macs" "\
308 Define NAME as a macro.
309 Like normal `defmacro', except ARGLIST allows full Common Lisp conventions,
310 and BODY is implicitly surrounded by (block NAME ...).
311
312 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
313
314 (autoload 'function* "cl-macs" "\
315 Introduce a function.
316 Like normal `function', except that if argument is a lambda form,
317 its argument list allows full Common Lisp conventions.
318
319 \(fn FUNC)" nil (quote macro))
320
321 (autoload 'destructuring-bind "cl-macs" "\
322 Not documented
323
324 \(fn ARGS EXPR &rest BODY)" nil (quote macro))
325
326 (autoload 'eval-when "cl-macs" "\
327 Control when BODY is evaluated.
328 If `compile' is in WHEN, BODY is evaluated when compiled at top-level.
329 If `load' is in WHEN, BODY is evaluated when loaded after top-level compile.
330 If `eval' is in WHEN, BODY is evaluated when interpreted or at non-top-level.
331
332 \(fn (WHEN...) BODY...)" nil (quote macro))
333
334 (autoload 'load-time-value "cl-macs" "\
335 Like `progn', but evaluates the body at load time.
336 The result of the body appears to the compiler as a quoted constant.
337
338 \(fn FORM &optional READ-ONLY)" nil (quote macro))
339
340 (autoload 'case "cl-macs" "\
341 Eval EXPR and choose among clauses on that value.
342 Each clause looks like (KEYLIST BODY...). EXPR is evaluated and compared
343 against each key in each KEYLIST; the corresponding BODY is evaluated.
344 If no clause succeeds, case returns nil. A single atom may be used in
345 place of a KEYLIST of one atom. A KEYLIST of t or `otherwise' is
346 allowed only in the final clause, and matches if no other keys match.
347 Key values are compared by `eql'.
348
349 \(fn EXPR (KEYLIST BODY...)...)" nil (quote macro))
350
351 (autoload 'ecase "cl-macs" "\
352 Like `case', but error if no case fits.
353 `otherwise'-clauses are not allowed.
354
355 \(fn EXPR (KEYLIST BODY...)...)" nil (quote macro))
356
357 (autoload 'typecase "cl-macs" "\
358 Evals EXPR, chooses among clauses on that value.
359 Each clause looks like (TYPE BODY...). EXPR is evaluated and, if it
360 satisfies TYPE, the corresponding BODY is evaluated. If no clause succeeds,
361 typecase returns nil. A TYPE of t or `otherwise' is allowed only in the
362 final clause, and matches if no other keys match.
363
364 \(fn EXPR (TYPE BODY...)...)" nil (quote macro))
365
366 (autoload 'etypecase "cl-macs" "\
367 Like `typecase', but error if no case fits.
368 `otherwise'-clauses are not allowed.
369
370 \(fn EXPR (TYPE BODY...)...)" nil (quote macro))
371
372 (autoload 'block "cl-macs" "\
373 Define a lexically-scoped block named NAME.
374 NAME may be any symbol. Code inside the BODY forms can call `return-from'
375 to jump prematurely out of the block. This differs from `catch' and `throw'
376 in two respects: First, the NAME is an unevaluated symbol rather than a
377 quoted symbol or other form; and second, NAME is lexically rather than
378 dynamically scoped: Only references to it within BODY will work. These
379 references may appear inside macro expansions, but not inside functions
380 called from BODY.
381
382 \(fn NAME &rest BODY)" nil (quote macro))
383
384 (autoload 'return "cl-macs" "\
385 Return from the block named nil.
386 This is equivalent to `(return-from nil RESULT)'.
387
388 \(fn &optional RESULT)" nil (quote macro))
389
390 (autoload 'return-from "cl-macs" "\
391 Return from the block named NAME.
392 This jumps out to the innermost enclosing `(block NAME ...)' form,
393 returning RESULT from that form (or nil if RESULT is omitted).
394 This is compatible with Common Lisp, but note that `defun' and
395 `defmacro' do not create implicit blocks as they do in Common Lisp.
396
397 \(fn NAME &optional RESULT)" nil (quote macro))
398
399 (autoload 'loop "cl-macs" "\
400 The Common Lisp `loop' macro.
401 Valid clauses are:
402 for VAR from/upfrom/downfrom NUM to/upto/downto/above/below NUM by NUM,
403 for VAR in LIST by FUNC, for VAR on LIST by FUNC, for VAR = INIT then EXPR,
404 for VAR across ARRAY, repeat NUM, with VAR = INIT, while COND, until COND,
405 always COND, never COND, thereis COND, collect EXPR into VAR,
406 append EXPR into VAR, nconc EXPR into VAR, sum EXPR into VAR,
407 count EXPR into VAR, maximize EXPR into VAR, minimize EXPR into VAR,
408 if COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
409 unless COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
410 do EXPRS..., initially EXPRS..., finally EXPRS..., return EXPR,
411 finally return EXPR, named NAME.
412
413 \(fn CLAUSE...)" nil (quote macro))
414
415 (autoload 'do "cl-macs" "\
416 The Common Lisp `do' loop.
417
418 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil (quote macro))
419
420 (autoload 'do* "cl-macs" "\
421 The Common Lisp `do*' loop.
422
423 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil (quote macro))
424
425 (autoload 'dolist "cl-macs" "\
426 Loop over a list.
427 Evaluate BODY with VAR bound to each `car' from LIST, in turn.
428 Then evaluate RESULT to get return value, default nil.
429
430 \(fn (VAR LIST [RESULT]) BODY...)" nil (quote macro))
431
432 (autoload 'dotimes "cl-macs" "\
433 Loop a certain number of times.
434 Evaluate BODY with VAR bound to successive integers from 0, inclusive,
435 to COUNT, exclusive. Then evaluate RESULT to get return value, default
436 nil.
437
438 \(fn (VAR COUNT [RESULT]) BODY...)" nil (quote macro))
439
440 (autoload 'do-symbols "cl-macs" "\
441 Loop over all symbols.
442 Evaluate BODY with VAR bound to each interned symbol, or to each symbol
443 from OBARRAY.
444
445 \(fn (VAR [OBARRAY [RESULT]]) BODY...)" nil (quote macro))
446
447 (autoload 'do-all-symbols "cl-macs" "\
448 Not documented
449
450 \(fn SPEC &rest BODY)" nil (quote macro))
451
452 (autoload 'psetq "cl-macs" "\
453 Set SYMs to the values VALs in parallel.
454 This is like `setq', except that all VAL forms are evaluated (in order)
455 before assigning any symbols SYM to the corresponding values.
456
457 \(fn SYM VAL SYM VAL ...)" nil (quote macro))
458
459 (autoload 'progv "cl-macs" "\
460 Bind SYMBOLS to VALUES dynamically in BODY.
461 The forms SYMBOLS and VALUES are evaluated, and must evaluate to lists.
462 Each symbol in the first list is bound to the corresponding value in the
463 second list (or made unbound if VALUES is shorter than SYMBOLS); then the
464 BODY forms are executed and their result is returned. This is much like
465 a `let' form, except that the list of symbols can be computed at run-time.
466
467 \(fn SYMBOLS VALUES &rest BODY)" nil (quote macro))
468
469 (autoload 'flet "cl-macs" "\
470 Make temporary function definitions.
471 This is an analogue of `let' that operates on the function cell of FUNC
472 rather than its value cell. The FORMs are evaluated with the specified
473 function definitions in place, then the definitions are undone (the FUNCs
474 go back to their previous definitions, or lack thereof).
475
476 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil (quote macro))
477
478 (autoload 'labels "cl-macs" "\
479 Make temporary function bindings.
480 This is like `flet', except the bindings are lexical instead of dynamic.
481 Unlike `flet', this macro is fully compliant with the Common Lisp standard.
482
483 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil (quote macro))
484
485 (autoload 'macrolet "cl-macs" "\
486 Make temporary macro definitions.
487 This is like `flet', but for macros instead of functions.
488
489 \(fn ((NAME ARGLIST BODY...) ...) FORM...)" nil (quote macro))
490
491 (autoload 'symbol-macrolet "cl-macs" "\
492 Make symbol macro definitions.
493 Within the body FORMs, references to the variable NAME will be replaced
494 by EXPANSION, and (setq NAME ...) will act like (setf EXPANSION ...).
495
496 \(fn ((NAME EXPANSION) ...) FORM...)" nil (quote macro))
497
498 (autoload 'lexical-let "cl-macs" "\
499 Like `let', but lexically scoped.
500 The main visible difference is that lambdas inside BODY will create
501 lexical closures as in Common Lisp.
502
503 \(fn VARLIST BODY)" nil (quote macro))
504
505 (autoload 'lexical-let* "cl-macs" "\
506 Like `let*', but lexically scoped.
507 The main visible difference is that lambdas inside BODY, and in
508 successive bindings within VARLIST, will create lexical closures
509 as in Common Lisp. This is similar to the behavior of `let*' in
510 Common Lisp.
511
512 \(fn VARLIST BODY)" nil (quote macro))
513
514 (autoload 'multiple-value-bind "cl-macs" "\
515 Collect multiple return values.
516 FORM must return a list; the BODY is then executed with the first N elements
517 of this list bound (`let'-style) to each of the symbols SYM in turn. This
518 is analogous to the Common Lisp `multiple-value-bind' macro, using lists to
519 simulate true multiple return values. For compatibility, (values A B C) is
520 a synonym for (list A B C).
521
522 \(fn (SYM...) FORM BODY)" nil (quote macro))
523
524 (autoload 'multiple-value-setq "cl-macs" "\
525 Collect multiple return values.
526 FORM must return a list; the first N elements of this list are stored in
527 each of the symbols SYM in turn. This is analogous to the Common Lisp
528 `multiple-value-setq' macro, using lists to simulate true multiple return
529 values. For compatibility, (values A B C) is a synonym for (list A B C).
530
531 \(fn (SYM...) FORM)" nil (quote macro))
532
533 (autoload 'locally "cl-macs" "\
534 Not documented
535
536 \(fn &rest BODY)" nil (quote macro))
537
538 (autoload 'declare "cl-macs" "\
539 Not documented
540
541 \(fn &rest SPECS)" nil (quote macro))
542
543 (autoload 'define-setf-method "cl-macs" "\
544 Define a `setf' method.
545 This method shows how to handle `setf's to places of the form (NAME ARGS...).
546 The argument forms ARGS are bound according to ARGLIST, as if NAME were
547 going to be expanded as a macro, then the BODY forms are executed and must
548 return a list of five elements: a temporary-variables list, a value-forms
549 list, a store-variables list (of length one), a store-form, and an access-
550 form. See `defsetf' for a simpler way to define most setf-methods.
551
552 \(fn NAME ARGLIST BODY...)" nil (quote macro))
553
554 (autoload 'defsetf "cl-macs" "\
555 Define a `setf' method.
556 This macro is an easy-to-use substitute for `define-setf-method' that works
557 well for simple place forms. In the simple `defsetf' form, `setf's of
558 the form (setf (NAME ARGS...) VAL) are transformed to function or macro
559 calls of the form (FUNC ARGS... VAL). Example:
560
561 (defsetf aref aset)
562
563 Alternate form: (defsetf NAME ARGLIST (STORE) BODY...).
564 Here, the above `setf' call is expanded by binding the argument forms ARGS
565 according to ARGLIST, binding the value form VAL to STORE, then executing
566 BODY, which must return a Lisp form that does the necessary `setf' operation.
567 Actually, ARGLIST and STORE may be bound to temporary variables which are
568 introduced automatically to preserve proper execution order of the arguments.
569 Example:
570
571 (defsetf nth (n x) (v) (list 'setcar (list 'nthcdr n x) v))
572
573 \(fn NAME [FUNC | ARGLIST (STORE) BODY...])" nil (quote macro))
574
575 (autoload 'get-setf-method "cl-macs" "\
576 Return a list of five values describing the setf-method for PLACE.
577 PLACE may be any Lisp form which can appear as the PLACE argument to
578 a macro like `setf' or `incf'.
579
580 \(fn PLACE &optional ENV)" nil nil)
581
582 (autoload 'setf "cl-macs" "\
583 Set each PLACE to the value of its VAL.
584 This is a generalized version of `setq'; the PLACEs may be symbolic
585 references such as (car x) or (aref x i), as well as plain symbols.
586 For example, (setf (cadar x) y) is equivalent to (setcar (cdar x) y).
587 The return value is the last VAL in the list.
588
589 \(fn PLACE VAL PLACE VAL ...)" nil (quote macro))
590
591 (autoload 'psetf "cl-macs" "\
592 Set PLACEs to the values VALs in parallel.
593 This is like `setf', except that all VAL forms are evaluated (in order)
594 before assigning any PLACEs to the corresponding values.
595
596 \(fn PLACE VAL PLACE VAL ...)" nil (quote macro))
597
598 (autoload 'cl-do-pop "cl-macs" "\
599 Not documented
600
601 \(fn PLACE)" nil nil)
602
603 (autoload 'remf "cl-macs" "\
604 Remove TAG from property list PLACE.
605 PLACE may be a symbol, or any generalized variable allowed by `setf'.
606 The form returns true if TAG was found and removed, nil otherwise.
607
608 \(fn PLACE TAG)" nil (quote macro))
609
610 (autoload 'shiftf "cl-macs" "\
611 Shift left among PLACEs.
612 Example: (shiftf A B C) sets A to B, B to C, and returns the old A.
613 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
614
615 \(fn PLACE... VAL)" nil (quote macro))
616
617 (autoload 'rotatef "cl-macs" "\
618 Rotate left among PLACEs.
619 Example: (rotatef A B C) sets A to B, B to C, and C to A. It returns nil.
620 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
621
622 \(fn PLACE...)" nil (quote macro))
623
624 (autoload 'letf "cl-macs" "\
625 Temporarily bind to PLACEs.
626 This is the analogue of `let', but with generalized variables (in the
627 sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
628 VALUE, then the BODY forms are executed. On exit, either normally or
629 because of a `throw' or error, the PLACEs are set back to their original
630 values. Note that this macro is *not* available in Common Lisp.
631 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
632 the PLACE is not modified before executing BODY.
633
634 \(fn ((PLACE VALUE) ...) BODY...)" nil (quote macro))
635
636 (autoload 'letf* "cl-macs" "\
637 Temporarily bind to PLACEs.
638 This is the analogue of `let*', but with generalized variables (in the
639 sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
640 VALUE, then the BODY forms are executed. On exit, either normally or
641 because of a `throw' or error, the PLACEs are set back to their original
642 values. Note that this macro is *not* available in Common Lisp.
643 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
644 the PLACE is not modified before executing BODY.
645
646 \(fn ((PLACE VALUE) ...) BODY...)" nil (quote macro))
647
648 (autoload 'callf "cl-macs" "\
649 Set PLACE to (FUNC PLACE ARGS...).
650 FUNC should be an unquoted function name. PLACE may be a symbol,
651 or any generalized variable allowed by `setf'.
652
653 \(fn FUNC PLACE ARGS...)" nil (quote macro))
654
655 (autoload 'callf2 "cl-macs" "\
656 Set PLACE to (FUNC ARG1 PLACE ARGS...).
657 Like `callf', but PLACE is the second argument of FUNC, not the first.
658
659 \(fn FUNC ARG1 PLACE ARGS...)" nil (quote macro))
660
661 (autoload 'define-modify-macro "cl-macs" "\
662 Define a `setf'-like modify macro.
663 If NAME is called, it combines its PLACE argument with the other arguments
664 from ARGLIST using FUNC: (define-modify-macro incf (&optional (n 1)) +)
665
666 \(fn NAME ARGLIST FUNC &optional DOC)" nil (quote macro))
667
668 (autoload 'defstruct "cl-macs" "\
669 Define a struct type.
670 This macro defines a new data type called NAME that stores data
671 in SLOTs. It defines a `make-NAME' constructor, a `copy-NAME'
672 copier, a `NAME-p' predicate, and slot accessors named `NAME-SLOT'.
673 You can use the accessors to set the corresponding slots, via `setf'.
674
675 NAME may instead take the form (NAME OPTIONS...), where each
676 OPTION is either a single keyword or (KEYWORD VALUE).
677 See Info node `(cl)Structures' for a list of valid keywords.
678
679 Each SLOT may instead take the form (SLOT SLOT-OPTS...), where
680 SLOT-OPTS are keyword-value pairs for that slot. Currently, only
681 one keyword is supported, `:read-only'. If this has a non-nil
682 value, that slot cannot be set via `setf'.
683
684 \(fn NAME SLOTS...)" nil (quote macro))
685
686 (autoload 'cl-struct-setf-expander "cl-macs" "\
687 Not documented
688
689 \(fn X NAME ACCESSOR PRED-FORM POS)" nil nil)
690
691 (autoload 'deftype "cl-macs" "\
692 Define NAME as a new data type.
693 The type name can then be used in `typecase', `check-type', etc.
694
695 \(fn NAME ARGLIST &rest BODY)" nil (quote macro))
696
697 (autoload 'typep "cl-macs" "\
698 Check that OBJECT is of type TYPE.
699 TYPE is a Common Lisp-style type specifier.
700
701 \(fn OBJECT TYPE)" nil nil)
702
703 (autoload 'check-type "cl-macs" "\
704 Verify that FORM is of type TYPE; signal an error if not.
705 STRING is an optional description of the desired type.
706
707 \(fn FORM TYPE &optional STRING)" nil (quote macro))
708
709 (autoload 'assert "cl-macs" "\
710 Verify that FORM returns non-nil; signal an error if not.
711 Second arg SHOW-ARGS means to include arguments of FORM in message.
712 Other args STRING and ARGS... are arguments to be passed to `error'.
713 They are not evaluated unless the assertion fails. If STRING is
714 omitted, a default message listing FORM itself is used.
715
716 \(fn FORM &optional SHOW-ARGS STRING &rest ARGS)" nil (quote macro))
717
718 (autoload 'define-compiler-macro "cl-macs" "\
719 Define a compiler-only macro.
720 This is like `defmacro', but macro expansion occurs only if the call to
721 FUNC is compiled (i.e., not interpreted). Compiler macros should be used
722 for optimizing the way calls to FUNC are compiled; the form returned by
723 BODY should do the same thing as a call to the normal function called
724 FUNC, though possibly more efficiently. Note that, like regular macros,
725 compiler macros are expanded repeatedly until no further expansions are
726 possible. Unlike regular macros, BODY can decide to \"punt\" and leave the
727 original function call alone by declaring an initial `&whole foo' parameter
728 and then returning foo.
729
730 \(fn FUNC ARGS &rest BODY)" nil (quote macro))
731
732 (autoload 'compiler-macroexpand "cl-macs" "\
733 Not documented
734
735 \(fn FORM)" nil nil)
736
737 (autoload 'defsubst* "cl-macs" "\
738 Define NAME as a function.
739 Like `defun', except the function is automatically declared `inline',
740 ARGLIST allows full Common Lisp conventions, and BODY is implicitly
741 surrounded by (block NAME ...).
742
743 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil (quote macro))
744
745 ;;;***
746 \f
747 ;;;### (autoloads (tree-equal nsublis sublis nsubst-if-not nsubst-if
748 ;;;;;; nsubst subst-if-not subst-if subsetp nset-exclusive-or set-exclusive-or
749 ;;;;;; nset-difference set-difference nintersection intersection
750 ;;;;;; nunion union rassoc-if-not rassoc-if rassoc* assoc-if-not
751 ;;;;;; assoc-if assoc* cl-adjoin member-if-not member-if member*
752 ;;;;;; merge stable-sort sort* search mismatch count-if-not count-if
753 ;;;;;; count position-if-not position-if position find-if-not find-if
754 ;;;;;; find nsubstitute-if-not nsubstitute-if nsubstitute substitute-if-not
755 ;;;;;; substitute-if substitute delete-duplicates remove-duplicates
756 ;;;;;; delete-if-not delete-if delete* remove-if-not remove-if remove*
757 ;;;;;; replace fill reduce) "cl-seq" "cl-seq.el" "df375ddc313f0c1c262cacab5cffd3e4")
758 ;;; Generated autoloads from cl-seq.el
759
760 (autoload 'reduce "cl-seq" "\
761 Reduce two-argument FUNCTION across SEQ.
762
763 Keywords supported: :start :end :from-end :initial-value :key
764
765 \(fn FUNCTION SEQ [KEYWORD VALUE]...)" nil nil)
766
767 (autoload 'fill "cl-seq" "\
768 Fill the elements of SEQ with ITEM.
769
770 Keywords supported: :start :end
771
772 \(fn SEQ ITEM [KEYWORD VALUE]...)" nil nil)
773
774 (autoload 'replace "cl-seq" "\
775 Replace the elements of SEQ1 with the elements of SEQ2.
776 SEQ1 is destructively modified, then returned.
777
778 Keywords supported: :start1 :end1 :start2 :end2
779
780 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
781
782 (autoload 'remove* "cl-seq" "\
783 Remove all occurrences of ITEM in SEQ.
784 This is a non-destructive function; it makes a copy of SEQ if necessary
785 to avoid corrupting the original SEQ.
786
787 Keywords supported: :test :test-not :key :count :start :end :from-end
788
789 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
790
791 (autoload 'remove-if "cl-seq" "\
792 Remove all items satisfying PREDICATE in SEQ.
793 This is a non-destructive function; it makes a copy of SEQ if necessary
794 to avoid corrupting the original SEQ.
795
796 Keywords supported: :key :count :start :end :from-end
797
798 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
799
800 (autoload 'remove-if-not "cl-seq" "\
801 Remove all items not satisfying PREDICATE in SEQ.
802 This is a non-destructive function; it makes a copy of SEQ if necessary
803 to avoid corrupting the original SEQ.
804
805 Keywords supported: :key :count :start :end :from-end
806
807 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
808
809 (autoload 'delete* "cl-seq" "\
810 Remove all occurrences of ITEM in SEQ.
811 This is a destructive function; it reuses the storage of SEQ whenever possible.
812
813 Keywords supported: :test :test-not :key :count :start :end :from-end
814
815 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
816
817 (autoload 'delete-if "cl-seq" "\
818 Remove all items satisfying PREDICATE in SEQ.
819 This is a destructive function; it reuses the storage of SEQ whenever possible.
820
821 Keywords supported: :key :count :start :end :from-end
822
823 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
824
825 (autoload 'delete-if-not "cl-seq" "\
826 Remove all items not satisfying PREDICATE in SEQ.
827 This is a destructive function; it reuses the storage of SEQ whenever possible.
828
829 Keywords supported: :key :count :start :end :from-end
830
831 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
832
833 (autoload 'remove-duplicates "cl-seq" "\
834 Return a copy of SEQ with all duplicate elements removed.
835
836 Keywords supported: :test :test-not :key :start :end :from-end
837
838 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
839
840 (autoload 'delete-duplicates "cl-seq" "\
841 Remove all duplicate elements from SEQ (destructively).
842
843 Keywords supported: :test :test-not :key :start :end :from-end
844
845 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
846
847 (autoload 'substitute "cl-seq" "\
848 Substitute NEW for OLD in SEQ.
849 This is a non-destructive function; it makes a copy of SEQ if necessary
850 to avoid corrupting the original SEQ.
851
852 Keywords supported: :test :test-not :key :count :start :end :from-end
853
854 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
855
856 (autoload 'substitute-if "cl-seq" "\
857 Substitute NEW for all items satisfying PREDICATE in SEQ.
858 This is a non-destructive function; it makes a copy of SEQ if necessary
859 to avoid corrupting the original SEQ.
860
861 Keywords supported: :key :count :start :end :from-end
862
863 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
864
865 (autoload 'substitute-if-not "cl-seq" "\
866 Substitute NEW for all items not satisfying PREDICATE in SEQ.
867 This is a non-destructive function; it makes a copy of SEQ if necessary
868 to avoid corrupting the original SEQ.
869
870 Keywords supported: :key :count :start :end :from-end
871
872 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
873
874 (autoload 'nsubstitute "cl-seq" "\
875 Substitute NEW for OLD in SEQ.
876 This is a destructive function; it reuses the storage of SEQ whenever possible.
877
878 Keywords supported: :test :test-not :key :count :start :end :from-end
879
880 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
881
882 (autoload 'nsubstitute-if "cl-seq" "\
883 Substitute NEW for all items satisfying PREDICATE in SEQ.
884 This is a destructive function; it reuses the storage of SEQ whenever possible.
885
886 Keywords supported: :key :count :start :end :from-end
887
888 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
889
890 (autoload 'nsubstitute-if-not "cl-seq" "\
891 Substitute NEW for all items not satisfying PREDICATE in SEQ.
892 This is a destructive function; it reuses the storage of SEQ whenever possible.
893
894 Keywords supported: :key :count :start :end :from-end
895
896 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
897
898 (autoload 'find "cl-seq" "\
899 Find the first occurrence of ITEM in SEQ.
900 Return the matching ITEM, or nil if not found.
901
902 Keywords supported: :test :test-not :key :start :end :from-end
903
904 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
905
906 (autoload 'find-if "cl-seq" "\
907 Find the first item satisfying PREDICATE in SEQ.
908 Return the matching item, or nil if not found.
909
910 Keywords supported: :key :start :end :from-end
911
912 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
913
914 (autoload 'find-if-not "cl-seq" "\
915 Find the first item not satisfying PREDICATE in SEQ.
916 Return the matching item, or nil if not found.
917
918 Keywords supported: :key :start :end :from-end
919
920 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
921
922 (autoload 'position "cl-seq" "\
923 Find the first occurrence of ITEM in SEQ.
924 Return the index of the matching item, or nil if not found.
925
926 Keywords supported: :test :test-not :key :start :end :from-end
927
928 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
929
930 (autoload 'position-if "cl-seq" "\
931 Find the first item satisfying PREDICATE in SEQ.
932 Return the index of the matching item, or nil if not found.
933
934 Keywords supported: :key :start :end :from-end
935
936 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
937
938 (autoload 'position-if-not "cl-seq" "\
939 Find the first item not satisfying PREDICATE in SEQ.
940 Return the index of the matching item, or nil if not found.
941
942 Keywords supported: :key :start :end :from-end
943
944 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
945
946 (autoload 'count "cl-seq" "\
947 Count the number of occurrences of ITEM in SEQ.
948
949 Keywords supported: :test :test-not :key :start :end
950
951 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
952
953 (autoload 'count-if "cl-seq" "\
954 Count the number of items satisfying PREDICATE in SEQ.
955
956 Keywords supported: :key :start :end
957
958 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
959
960 (autoload 'count-if-not "cl-seq" "\
961 Count the number of items not satisfying PREDICATE in SEQ.
962
963 Keywords supported: :key :start :end
964
965 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
966
967 (autoload 'mismatch "cl-seq" "\
968 Compare SEQ1 with SEQ2, return index of first mismatching element.
969 Return nil if the sequences match. If one sequence is a prefix of the
970 other, the return value indicates the end of the shorter sequence.
971
972 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
973
974 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
975
976 (autoload 'search "cl-seq" "\
977 Search for SEQ1 as a subsequence of SEQ2.
978 Return the index of the leftmost element of the first match found;
979 return nil if there are no matches.
980
981 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
982
983 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
984
985 (autoload 'sort* "cl-seq" "\
986 Sort the argument SEQ according to PREDICATE.
987 This is a destructive function; it reuses the storage of SEQ if possible.
988
989 Keywords supported: :key
990
991 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
992
993 (autoload 'stable-sort "cl-seq" "\
994 Sort the argument SEQ stably according to PREDICATE.
995 This is a destructive function; it reuses the storage of SEQ if possible.
996
997 Keywords supported: :key
998
999 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
1000
1001 (autoload 'merge "cl-seq" "\
1002 Destructively merge the two sequences to produce a new sequence.
1003 TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
1004 sequences, and PREDICATE is a `less-than' predicate on the elements.
1005
1006 Keywords supported: :key
1007
1008 \(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)" nil nil)
1009
1010 (autoload 'member* "cl-seq" "\
1011 Find the first occurrence of ITEM in LIST.
1012 Return the sublist of LIST whose car is ITEM.
1013
1014 Keywords supported: :test :test-not :key
1015
1016 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1017
1018 (autoload 'member-if "cl-seq" "\
1019 Find the first item satisfying PREDICATE in LIST.
1020 Return the sublist of LIST whose car matches.
1021
1022 Keywords supported: :key
1023
1024 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1025
1026 (autoload 'member-if-not "cl-seq" "\
1027 Find the first item not satisfying PREDICATE in LIST.
1028 Return the sublist of LIST whose car matches.
1029
1030 Keywords supported: :key
1031
1032 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1033
1034 (autoload 'cl-adjoin "cl-seq" "\
1035 Not documented
1036
1037 \(fn CL-ITEM CL-LIST &rest CL-KEYS)" nil nil)
1038
1039 (autoload 'assoc* "cl-seq" "\
1040 Find the first item whose car matches ITEM in LIST.
1041
1042 Keywords supported: :test :test-not :key
1043
1044 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1045
1046 (autoload 'assoc-if "cl-seq" "\
1047 Find the first item whose car satisfies PREDICATE in LIST.
1048
1049 Keywords supported: :key
1050
1051 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1052
1053 (autoload 'assoc-if-not "cl-seq" "\
1054 Find the first item whose car does not satisfy PREDICATE in LIST.
1055
1056 Keywords supported: :key
1057
1058 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1059
1060 (autoload 'rassoc* "cl-seq" "\
1061 Find the first item whose cdr matches ITEM in LIST.
1062
1063 Keywords supported: :test :test-not :key
1064
1065 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1066
1067 (autoload 'rassoc-if "cl-seq" "\
1068 Find the first item whose cdr satisfies PREDICATE in LIST.
1069
1070 Keywords supported: :key
1071
1072 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1073
1074 (autoload 'rassoc-if-not "cl-seq" "\
1075 Find the first item whose cdr does not satisfy PREDICATE in LIST.
1076
1077 Keywords supported: :key
1078
1079 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1080
1081 (autoload 'union "cl-seq" "\
1082 Combine LIST1 and LIST2 using a set-union operation.
1083 The resulting list contains all items that appear in either LIST1 or LIST2.
1084 This is a non-destructive function; it makes a copy of the data if necessary
1085 to avoid corrupting the original LIST1 and LIST2.
1086
1087 Keywords supported: :test :test-not :key
1088
1089 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1090
1091 (autoload 'nunion "cl-seq" "\
1092 Combine LIST1 and LIST2 using a set-union operation.
1093 The resulting list contains all items that appear in either LIST1 or LIST2.
1094 This is a destructive function; it reuses the storage of LIST1 and LIST2
1095 whenever possible.
1096
1097 Keywords supported: :test :test-not :key
1098
1099 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1100
1101 (autoload 'intersection "cl-seq" "\
1102 Combine LIST1 and LIST2 using a set-intersection operation.
1103 The resulting list contains all items that appear in both LIST1 and LIST2.
1104 This is a non-destructive function; it makes a copy of the data if necessary
1105 to avoid corrupting the original LIST1 and LIST2.
1106
1107 Keywords supported: :test :test-not :key
1108
1109 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1110
1111 (autoload 'nintersection "cl-seq" "\
1112 Combine LIST1 and LIST2 using a set-intersection operation.
1113 The resulting list contains all items that appear in both LIST1 and LIST2.
1114 This is a destructive function; it reuses the storage of LIST1 and LIST2
1115 whenever possible.
1116
1117 Keywords supported: :test :test-not :key
1118
1119 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1120
1121 (autoload 'set-difference "cl-seq" "\
1122 Combine LIST1 and LIST2 using a set-difference operation.
1123 The resulting list contains all items that appear in LIST1 but not LIST2.
1124 This is a non-destructive function; it makes a copy of the data if necessary
1125 to avoid corrupting the original LIST1 and LIST2.
1126
1127 Keywords supported: :test :test-not :key
1128
1129 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1130
1131 (autoload 'nset-difference "cl-seq" "\
1132 Combine LIST1 and LIST2 using a set-difference operation.
1133 The resulting list contains all items that appear in LIST1 but not LIST2.
1134 This is a destructive function; it reuses the storage of LIST1 and LIST2
1135 whenever possible.
1136
1137 Keywords supported: :test :test-not :key
1138
1139 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1140
1141 (autoload 'set-exclusive-or "cl-seq" "\
1142 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1143 The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1144 This is a non-destructive function; it makes a copy of the data if necessary
1145 to avoid corrupting the original LIST1 and LIST2.
1146
1147 Keywords supported: :test :test-not :key
1148
1149 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1150
1151 (autoload 'nset-exclusive-or "cl-seq" "\
1152 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1153 The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1154 This is a destructive function; it reuses the storage of LIST1 and LIST2
1155 whenever possible.
1156
1157 Keywords supported: :test :test-not :key
1158
1159 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1160
1161 (autoload 'subsetp "cl-seq" "\
1162 Return true if LIST1 is a subset of LIST2.
1163 I.e., if every element of LIST1 also appears in LIST2.
1164
1165 Keywords supported: :test :test-not :key
1166
1167 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1168
1169 (autoload 'subst-if "cl-seq" "\
1170 Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
1171 Return a copy of TREE with all matching elements replaced by NEW.
1172
1173 Keywords supported: :key
1174
1175 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1176
1177 (autoload 'subst-if-not "cl-seq" "\
1178 Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
1179 Return a copy of TREE with all non-matching elements replaced by NEW.
1180
1181 Keywords supported: :key
1182
1183 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1184
1185 (autoload 'nsubst "cl-seq" "\
1186 Substitute NEW for OLD everywhere in TREE (destructively).
1187 Any element of TREE which is `eql' to OLD is changed to NEW (via a call
1188 to `setcar').
1189
1190 Keywords supported: :test :test-not :key
1191
1192 \(fn NEW OLD TREE [KEYWORD VALUE]...)" nil nil)
1193
1194 (autoload 'nsubst-if "cl-seq" "\
1195 Substitute NEW for elements matching PREDICATE in TREE (destructively).
1196 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1197
1198 Keywords supported: :key
1199
1200 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1201
1202 (autoload 'nsubst-if-not "cl-seq" "\
1203 Substitute NEW for elements not matching PREDICATE in TREE (destructively).
1204 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1205
1206 Keywords supported: :key
1207
1208 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1209
1210 (autoload 'sublis "cl-seq" "\
1211 Perform substitutions indicated by ALIST in TREE (non-destructively).
1212 Return a copy of TREE with all matching elements replaced.
1213
1214 Keywords supported: :test :test-not :key
1215
1216 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1217
1218 (autoload 'nsublis "cl-seq" "\
1219 Perform substitutions indicated by ALIST in TREE (destructively).
1220 Any matching element of TREE is changed via a call to `setcar'.
1221
1222 Keywords supported: :test :test-not :key
1223
1224 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1225
1226 (autoload 'tree-equal "cl-seq" "\
1227 Return t if trees TREE1 and TREE2 have `eql' leaves.
1228 Atoms are compared by `eql'; cons cells are compared recursively.
1229
1230 Keywords supported: :test :test-not :key
1231
1232 \(fn TREE1 TREE2 [KEYWORD VALUE]...)" nil nil)
1233
1234 ;;;***
1235 \f
1236 ;; Local Variables:
1237 ;; version-control: never
1238 ;; no-byte-compile: t
1239 ;; no-update-autoloads: t
1240 ;; coding: utf-8
1241 ;; End:
1242 ;;; cl-loaddefs.el ends here