Merge from emacs-24
[bpt/emacs.git] / lisp / emacs-lisp / cl-loaddefs.el
1 ;;; cl-loaddefs.el --- automatically extracted autoloads
2 ;;
3 ;;; Code:
4
5 \f
6 ;;;### (autoloads (cl-prettyexpand cl-remprop cl--do-remf cl--set-getf
7 ;;;;;; cl-getf cl-get cl-tailp cl-list-length cl-nreconc cl-revappend
8 ;;;;;; cl-concatenate cl-subseq cl-float-limits cl-random-state-p
9 ;;;;;; cl-make-random-state cl-random cl-signum cl-rem cl-mod cl-round
10 ;;;;;; cl-truncate cl-ceiling cl-floor cl-isqrt cl-lcm cl-gcd cl--set-frame-visible-p
11 ;;;;;; cl--map-overlays cl--map-intervals cl--map-keymap-recursively
12 ;;;;;; cl-notevery cl-notany cl-every cl-some cl-mapcon cl-mapcan
13 ;;;;;; cl-mapl cl-maplist cl-map cl--mapcar-many cl-equalp cl-coerce)
14 ;;;;;; "cl-extra" "cl-extra.el" "535a24c1cff55a16e3d51219498a7858")
15 ;;; Generated autoloads from cl-extra.el
16
17 (autoload 'cl-coerce "cl-extra" "\
18 Coerce OBJECT to type TYPE.
19 TYPE is a Common Lisp type specifier.
20
21 \(fn OBJECT TYPE)" nil nil)
22
23 (autoload 'cl-equalp "cl-extra" "\
24 Return t if two Lisp objects have similar structures and contents.
25 This is like `equal', except that it accepts numerically equal
26 numbers of different types (float vs. integer), and also compares
27 strings case-insensitively.
28
29 \(fn X Y)" nil nil)
30
31 (autoload 'cl--mapcar-many "cl-extra" "\
32
33
34 \(fn CL-FUNC CL-SEQS)" nil nil)
35
36 (autoload 'cl-map "cl-extra" "\
37 Map a FUNCTION across one or more SEQUENCEs, returning a sequence.
38 TYPE is the sequence type to return.
39
40 \(fn TYPE FUNCTION SEQUENCE...)" nil nil)
41
42 (autoload 'cl-maplist "cl-extra" "\
43 Map FUNCTION to each sublist of LIST or LISTs.
44 Like `mapcar', except applies to lists and their cdr's rather than to
45 the elements themselves.
46
47 \(fn FUNCTION LIST...)" nil nil)
48
49 (autoload 'cl-mapl "cl-extra" "\
50 Like `cl-maplist', but does not accumulate values returned by the function.
51
52 \(fn FUNCTION LIST...)" nil nil)
53
54 (autoload 'cl-mapcan "cl-extra" "\
55 Like `mapcar', but nconc's together the values returned by the function.
56
57 \(fn FUNCTION SEQUENCE...)" nil nil)
58
59 (autoload 'cl-mapcon "cl-extra" "\
60 Like `cl-maplist', but nconc's together the values returned by the function.
61
62 \(fn FUNCTION LIST...)" nil nil)
63
64 (autoload 'cl-some "cl-extra" "\
65 Return true if PREDICATE is true of any element of SEQ or SEQs.
66 If so, return the true (non-nil) value returned by PREDICATE.
67
68 \(fn PREDICATE SEQ...)" nil nil)
69
70 (autoload 'cl-every "cl-extra" "\
71 Return true if PREDICATE is true of every element of SEQ or SEQs.
72
73 \(fn PREDICATE SEQ...)" nil nil)
74
75 (autoload 'cl-notany "cl-extra" "\
76 Return true if PREDICATE is false of every element of SEQ or SEQs.
77
78 \(fn PREDICATE SEQ...)" nil nil)
79
80 (autoload 'cl-notevery "cl-extra" "\
81 Return true if PREDICATE is false of some element of SEQ or SEQs.
82
83 \(fn PREDICATE SEQ...)" nil nil)
84
85 (autoload 'cl--map-keymap-recursively "cl-extra" "\
86
87
88 \(fn CL-FUNC-REC CL-MAP &optional CL-BASE)" nil nil)
89
90 (autoload 'cl--map-intervals "cl-extra" "\
91
92
93 \(fn CL-FUNC &optional CL-WHAT CL-PROP CL-START CL-END)" nil nil)
94
95 (autoload 'cl--map-overlays "cl-extra" "\
96
97
98 \(fn CL-FUNC &optional CL-BUFFER CL-START CL-END CL-ARG)" nil nil)
99
100 (autoload 'cl--set-frame-visible-p "cl-extra" "\
101
102
103 \(fn FRAME VAL)" nil nil)
104
105 (autoload 'cl-gcd "cl-extra" "\
106 Return the greatest common divisor of the arguments.
107
108 \(fn &rest ARGS)" nil nil)
109
110 (autoload 'cl-lcm "cl-extra" "\
111 Return the least common multiple of the arguments.
112
113 \(fn &rest ARGS)" nil nil)
114
115 (autoload 'cl-isqrt "cl-extra" "\
116 Return the integer square root of the argument.
117
118 \(fn X)" nil nil)
119
120 (autoload 'cl-floor "cl-extra" "\
121 Return a list of the floor of X and the fractional part of X.
122 With two arguments, return floor and remainder of their quotient.
123
124 \(fn X &optional Y)" nil nil)
125
126 (autoload 'cl-ceiling "cl-extra" "\
127 Return a list of the ceiling of X and the fractional part of X.
128 With two arguments, return ceiling and remainder of their quotient.
129
130 \(fn X &optional Y)" nil nil)
131
132 (autoload 'cl-truncate "cl-extra" "\
133 Return a list of the integer part of X and the fractional part of X.
134 With two arguments, return truncation and remainder of their quotient.
135
136 \(fn X &optional Y)" nil nil)
137
138 (autoload 'cl-round "cl-extra" "\
139 Return a list of X rounded to the nearest integer and the remainder.
140 With two arguments, return rounding and remainder of their quotient.
141
142 \(fn X &optional Y)" nil nil)
143
144 (autoload 'cl-mod "cl-extra" "\
145 The remainder of X divided by Y, with the same sign as Y.
146
147 \(fn X Y)" nil nil)
148
149 (autoload 'cl-rem "cl-extra" "\
150 The remainder of X divided by Y, with the same sign as X.
151
152 \(fn X Y)" nil nil)
153
154 (autoload 'cl-signum "cl-extra" "\
155 Return 1 if X is positive, -1 if negative, 0 if zero.
156
157 \(fn X)" nil nil)
158
159 (autoload 'cl-random "cl-extra" "\
160 Return a random nonnegative number less than LIM, an integer or float.
161 Optional second arg STATE is a random-state object.
162
163 \(fn LIM &optional STATE)" nil nil)
164
165 (autoload 'cl-make-random-state "cl-extra" "\
166 Return a copy of random-state STATE, or of the internal state if omitted.
167 If STATE is t, return a new state object seeded from the time of day.
168
169 \(fn &optional STATE)" nil nil)
170
171 (autoload 'cl-random-state-p "cl-extra" "\
172 Return t if OBJECT is a random-state object.
173
174 \(fn OBJECT)" nil nil)
175
176 (autoload 'cl-float-limits "cl-extra" "\
177 Initialize the Common Lisp floating-point parameters.
178 This sets the values of: `cl-most-positive-float', `cl-most-negative-float',
179 `cl-least-positive-float', `cl-least-negative-float', `cl-float-epsilon',
180 `cl-float-negative-epsilon', `cl-least-positive-normalized-float', and
181 `cl-least-negative-normalized-float'.
182
183 \(fn)" nil nil)
184
185 (autoload 'cl-subseq "cl-extra" "\
186 Return the subsequence of SEQ from START to END.
187 If END is omitted, it defaults to the length of the sequence.
188 If START or END is negative, it counts from the end.
189
190 \(fn SEQ START &optional END)" nil nil)
191
192 (autoload 'cl-concatenate "cl-extra" "\
193 Concatenate, into a sequence of type TYPE, the argument SEQUENCEs.
194
195 \(fn TYPE SEQUENCE...)" nil nil)
196
197 (autoload 'cl-revappend "cl-extra" "\
198 Equivalent to (append (reverse X) Y).
199
200 \(fn X Y)" nil nil)
201
202 (autoload 'cl-nreconc "cl-extra" "\
203 Equivalent to (nconc (nreverse X) Y).
204
205 \(fn X Y)" nil nil)
206
207 (autoload 'cl-list-length "cl-extra" "\
208 Return the length of list X. Return nil if list is circular.
209
210 \(fn X)" nil nil)
211
212 (autoload 'cl-tailp "cl-extra" "\
213 Return true if SUBLIST is a tail of LIST.
214
215 \(fn SUBLIST LIST)" nil nil)
216
217 (autoload 'cl-get "cl-extra" "\
218 Return the value of SYMBOL's PROPNAME property, or DEFAULT if none.
219
220 \(fn SYMBOL PROPNAME &optional DEFAULT)" nil nil)
221
222 (put 'cl-get 'compiler-macro #'cl--compiler-macro-get)
223
224 (autoload 'cl-getf "cl-extra" "\
225 Search PROPLIST for property PROPNAME; return its value or DEFAULT.
226 PROPLIST is a list of the sort returned by `symbol-plist'.
227
228 \(fn PROPLIST PROPNAME &optional DEFAULT)" nil nil)
229
230 (autoload 'cl--set-getf "cl-extra" "\
231
232
233 \(fn PLIST TAG VAL)" nil nil)
234
235 (autoload 'cl--do-remf "cl-extra" "\
236
237
238 \(fn PLIST TAG)" nil nil)
239
240 (autoload 'cl-remprop "cl-extra" "\
241 Remove from SYMBOL's plist the property PROPNAME and its value.
242
243 \(fn SYMBOL PROPNAME)" nil nil)
244
245 (autoload 'cl-prettyexpand "cl-extra" "\
246
247
248 \(fn FORM &optional FULL)" nil nil)
249
250 ;;;***
251 \f
252 ;;;### (autoloads (cl--compiler-macro-cXXr cl--compiler-macro-list*
253 ;;;;;; cl--compiler-macro-adjoin cl-defsubst cl-compiler-macroexpand
254 ;;;;;; cl-define-compiler-macro cl-assert cl-check-type cl-typep
255 ;;;;;; cl-deftype cl-defstruct cl-callf2 cl-callf cl-letf* cl-letf
256 ;;;;;; cl-rotatef cl-shiftf cl-remf cl-psetf cl-declare cl-the cl-locally
257 ;;;;;; cl-multiple-value-setq cl-multiple-value-bind cl-symbol-macrolet
258 ;;;;;; cl-macrolet cl-labels cl-flet* cl-flet cl-progv cl-psetq
259 ;;;;;; cl-do-all-symbols cl-do-symbols cl-dotimes cl-dolist cl-do*
260 ;;;;;; cl-do cl-loop cl-return-from cl-return cl-block cl-etypecase
261 ;;;;;; cl-typecase cl-ecase cl-case cl-load-time-value cl-eval-when
262 ;;;;;; cl-destructuring-bind cl-function cl-defmacro cl-defun cl-gentemp
263 ;;;;;; cl-gensym) "cl-macs" "cl-macs.el" "a175c7714223c21a617b0460e130f1d8")
264 ;;; Generated autoloads from cl-macs.el
265
266 (autoload 'cl-gensym "cl-macs" "\
267 Generate a new uninterned symbol.
268 The name is made by appending a number to PREFIX, default \"G\".
269
270 \(fn &optional PREFIX)" nil nil)
271
272 (autoload 'cl-gentemp "cl-macs" "\
273 Generate a new interned symbol with a unique name.
274 The name is made by appending a number to PREFIX, default \"G\".
275
276 \(fn &optional PREFIX)" nil nil)
277
278 (autoload 'cl-defun "cl-macs" "\
279 Define NAME as a function.
280 Like normal `defun', except ARGLIST allows full Common Lisp conventions,
281 and BODY is implicitly surrounded by (cl-block NAME ...).
282
283 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil t)
284
285 (put 'cl-defun 'doc-string-elt '3)
286
287 (put 'cl-defun 'lisp-indent-function '2)
288
289 (autoload 'cl-defmacro "cl-macs" "\
290 Define NAME as a macro.
291 Like normal `defmacro', except ARGLIST allows full Common Lisp conventions,
292 and BODY is implicitly surrounded by (cl-block NAME ...).
293
294 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil t)
295
296 (put 'cl-defmacro 'doc-string-elt '3)
297
298 (put 'cl-defmacro 'lisp-indent-function '2)
299
300 (autoload 'cl-function "cl-macs" "\
301 Introduce a function.
302 Like normal `function', except that if argument is a lambda form,
303 its argument list allows full Common Lisp conventions.
304
305 \(fn FUNC)" nil t)
306
307 (autoload 'cl-destructuring-bind "cl-macs" "\
308
309
310 \(fn ARGS EXPR &rest BODY)" nil t)
311
312 (put 'cl-destructuring-bind 'lisp-indent-function '2)
313
314 (autoload 'cl-eval-when "cl-macs" "\
315 Control when BODY is evaluated.
316 If `compile' is in WHEN, BODY is evaluated when compiled at top-level.
317 If `load' is in WHEN, BODY is evaluated when loaded after top-level compile.
318 If `eval' is in WHEN, BODY is evaluated when interpreted or at non-top-level.
319
320 \(fn (WHEN...) BODY...)" nil t)
321
322 (put 'cl-eval-when 'lisp-indent-function '1)
323
324 (autoload 'cl-load-time-value "cl-macs" "\
325 Like `progn', but evaluates the body at load time.
326 The result of the body appears to the compiler as a quoted constant.
327
328 \(fn FORM &optional READ-ONLY)" nil t)
329
330 (autoload 'cl-case "cl-macs" "\
331 Eval EXPR and choose among clauses on that value.
332 Each clause looks like (KEYLIST BODY...). EXPR is evaluated and compared
333 against each key in each KEYLIST; the corresponding BODY is evaluated.
334 If no clause succeeds, cl-case returns nil. A single atom may be used in
335 place of a KEYLIST of one atom. A KEYLIST of t or `otherwise' is
336 allowed only in the final clause, and matches if no other keys match.
337 Key values are compared by `eql'.
338
339 \(fn EXPR (KEYLIST BODY...)...)" nil t)
340
341 (put 'cl-case 'lisp-indent-function '1)
342
343 (autoload 'cl-ecase "cl-macs" "\
344 Like `cl-case', but error if no case fits.
345 `otherwise'-clauses are not allowed.
346
347 \(fn EXPR (KEYLIST BODY...)...)" nil t)
348
349 (put 'cl-ecase 'lisp-indent-function '1)
350
351 (autoload 'cl-typecase "cl-macs" "\
352 Evals EXPR, chooses among clauses on that value.
353 Each clause looks like (TYPE BODY...). EXPR is evaluated and, if it
354 satisfies TYPE, the corresponding BODY is evaluated. If no clause succeeds,
355 cl-typecase returns nil. A TYPE of t or `otherwise' is allowed only in the
356 final clause, and matches if no other keys match.
357
358 \(fn EXPR (TYPE BODY...)...)" nil t)
359
360 (put 'cl-typecase 'lisp-indent-function '1)
361
362 (autoload 'cl-etypecase "cl-macs" "\
363 Like `cl-typecase', but error if no case fits.
364 `otherwise'-clauses are not allowed.
365
366 \(fn EXPR (TYPE BODY...)...)" nil t)
367
368 (put 'cl-etypecase 'lisp-indent-function '1)
369
370 (autoload 'cl-block "cl-macs" "\
371 Define a lexically-scoped block named NAME.
372 NAME may be any symbol. Code inside the BODY forms can call `cl-return-from'
373 to jump prematurely out of the block. This differs from `catch' and `throw'
374 in two respects: First, the NAME is an unevaluated symbol rather than a
375 quoted symbol or other form; and second, NAME is lexically rather than
376 dynamically scoped: Only references to it within BODY will work. These
377 references may appear inside macro expansions, but not inside functions
378 called from BODY.
379
380 \(fn NAME &rest BODY)" nil t)
381
382 (put 'cl-block 'lisp-indent-function '1)
383
384 (autoload 'cl-return "cl-macs" "\
385 Return from the block named nil.
386 This is equivalent to `(cl-return-from nil RESULT)'.
387
388 \(fn &optional RESULT)" nil t)
389
390 (autoload 'cl-return-from "cl-macs" "\
391 Return from the block named NAME.
392 This jumps out to the innermost enclosing `(cl-block NAME ...)' form,
393 returning RESULT from that form (or nil if RESULT is omitted).
394 This is compatible with Common Lisp, but note that `defun' and
395 `defmacro' do not create implicit blocks as they do in Common Lisp.
396
397 \(fn NAME &optional RESULT)" nil t)
398
399 (put 'cl-return-from 'lisp-indent-function '1)
400
401 (autoload 'cl-loop "cl-macs" "\
402 The Common Lisp `cl-loop' macro.
403 Valid clauses are:
404 for VAR from/upfrom/downfrom NUM to/upto/downto/above/below NUM by NUM,
405 for VAR in LIST by FUNC, for VAR on LIST by FUNC, for VAR = INIT then EXPR,
406 for VAR across ARRAY, repeat NUM, with VAR = INIT, while COND, until COND,
407 always COND, never COND, thereis COND, collect EXPR into VAR,
408 append EXPR into VAR, nconc EXPR into VAR, sum EXPR into VAR,
409 count EXPR into VAR, maximize EXPR into VAR, minimize EXPR into VAR,
410 if COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
411 unless COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
412 do EXPRS..., initially EXPRS..., finally EXPRS..., return EXPR,
413 finally return EXPR, named NAME.
414
415 \(fn CLAUSE...)" nil t)
416
417 (autoload 'cl-do "cl-macs" "\
418 The Common Lisp `cl-do' loop.
419
420 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil t)
421
422 (put 'cl-do 'lisp-indent-function '2)
423
424 (autoload 'cl-do* "cl-macs" "\
425 The Common Lisp `cl-do*' loop.
426
427 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil t)
428
429 (put 'cl-do* 'lisp-indent-function '2)
430
431 (autoload 'cl-dolist "cl-macs" "\
432 Loop over a list.
433 Evaluate BODY with VAR bound to each `car' from LIST, in turn.
434 Then evaluate RESULT to get return value, default nil.
435 An implicit nil block is established around the loop.
436
437 \(fn (VAR LIST [RESULT]) BODY...)" nil t)
438
439 (put 'cl-dolist 'lisp-indent-function '1)
440
441 (autoload 'cl-dotimes "cl-macs" "\
442 Loop a certain number of times.
443 Evaluate BODY with VAR bound to successive integers from 0, inclusive,
444 to COUNT, exclusive. Then evaluate RESULT to get return value, default
445 nil.
446
447 \(fn (VAR COUNT [RESULT]) BODY...)" nil t)
448
449 (put 'cl-dotimes 'lisp-indent-function '1)
450
451 (autoload 'cl-do-symbols "cl-macs" "\
452 Loop over all symbols.
453 Evaluate BODY with VAR bound to each interned symbol, or to each symbol
454 from OBARRAY.
455
456 \(fn (VAR [OBARRAY [RESULT]]) BODY...)" nil t)
457
458 (put 'cl-do-symbols 'lisp-indent-function '1)
459
460 (autoload 'cl-do-all-symbols "cl-macs" "\
461
462
463 \(fn SPEC &rest BODY)" nil t)
464
465 (put 'cl-do-all-symbols 'lisp-indent-function '1)
466
467 (autoload 'cl-psetq "cl-macs" "\
468 Set SYMs to the values VALs in parallel.
469 This is like `setq', except that all VAL forms are evaluated (in order)
470 before assigning any symbols SYM to the corresponding values.
471
472 \(fn SYM VAL SYM VAL ...)" nil t)
473
474 (autoload 'cl-progv "cl-macs" "\
475 Bind SYMBOLS to VALUES dynamically in BODY.
476 The forms SYMBOLS and VALUES are evaluated, and must evaluate to lists.
477 Each symbol in the first list is bound to the corresponding value in the
478 second list (or made unbound if VALUES is shorter than SYMBOLS); then the
479 BODY forms are executed and their result is returned. This is much like
480 a `let' form, except that the list of symbols can be computed at run-time.
481
482 \(fn SYMBOLS VALUES &rest BODY)" nil t)
483
484 (put 'cl-progv 'lisp-indent-function '2)
485
486 (autoload 'cl-flet "cl-macs" "\
487 Make temporary function definitions.
488 Like `cl-labels' but the definitions are not recursive.
489
490 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil t)
491
492 (put 'cl-flet 'lisp-indent-function '1)
493
494 (autoload 'cl-flet* "cl-macs" "\
495 Make temporary function definitions.
496 Like `cl-flet' but the definitions can refer to previous ones.
497
498 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil t)
499
500 (put 'cl-flet* 'lisp-indent-function '1)
501
502 (autoload 'cl-labels "cl-macs" "\
503 Make temporary function bindings.
504 The bindings can be recursive and the scoping is lexical, but capturing them
505 in closures will only work if `lexical-binding' is in use.
506
507 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil t)
508
509 (put 'cl-labels 'lisp-indent-function '1)
510
511 (autoload 'cl-macrolet "cl-macs" "\
512 Make temporary macro definitions.
513 This is like `cl-flet', but for macros instead of functions.
514
515 \(fn ((NAME ARGLIST BODY...) ...) FORM...)" nil t)
516
517 (put 'cl-macrolet 'lisp-indent-function '1)
518
519 (autoload 'cl-symbol-macrolet "cl-macs" "\
520 Make symbol macro definitions.
521 Within the body FORMs, references to the variable NAME will be replaced
522 by EXPANSION, and (setq NAME ...) will act like (setf EXPANSION ...).
523
524 \(fn ((NAME EXPANSION) ...) FORM...)" nil t)
525
526 (put 'cl-symbol-macrolet 'lisp-indent-function '1)
527
528 (autoload 'cl-multiple-value-bind "cl-macs" "\
529 Collect multiple return values.
530 FORM must return a list; the BODY is then executed with the first N elements
531 of this list bound (`let'-style) to each of the symbols SYM in turn. This
532 is analogous to the Common Lisp `cl-multiple-value-bind' macro, using lists to
533 simulate true multiple return values. For compatibility, (cl-values A B C) is
534 a synonym for (list A B C).
535
536 \(fn (SYM...) FORM BODY)" nil t)
537
538 (put 'cl-multiple-value-bind 'lisp-indent-function '2)
539
540 (autoload 'cl-multiple-value-setq "cl-macs" "\
541 Collect multiple return values.
542 FORM must return a list; the first N elements of this list are stored in
543 each of the symbols SYM in turn. This is analogous to the Common Lisp
544 `cl-multiple-value-setq' macro, using lists to simulate true multiple return
545 values. For compatibility, (cl-values A B C) is a synonym for (list A B C).
546
547 \(fn (SYM...) FORM)" nil t)
548
549 (put 'cl-multiple-value-setq 'lisp-indent-function '1)
550
551 (autoload 'cl-locally "cl-macs" "\
552
553
554 \(fn &rest BODY)" nil t)
555
556 (autoload 'cl-the "cl-macs" "\
557
558
559 \(fn TYPE FORM)" nil t)
560
561 (put 'cl-the 'lisp-indent-function '1)
562
563 (autoload 'cl-declare "cl-macs" "\
564 Declare SPECS about the current function while compiling.
565 For instance
566
567 (cl-declare (warn 0))
568
569 will turn off byte-compile warnings in the function.
570 See Info node `(cl)Declarations' for details.
571
572 \(fn &rest SPECS)" nil t)
573
574 (autoload 'cl-psetf "cl-macs" "\
575 Set PLACEs to the values VALs in parallel.
576 This is like `setf', except that all VAL forms are evaluated (in order)
577 before assigning any PLACEs to the corresponding values.
578
579 \(fn PLACE VAL PLACE VAL ...)" nil t)
580
581 (autoload 'cl-remf "cl-macs" "\
582 Remove TAG from property list PLACE.
583 PLACE may be a symbol, or any generalized variable allowed by `setf'.
584 The form returns true if TAG was found and removed, nil otherwise.
585
586 \(fn PLACE TAG)" nil t)
587
588 (autoload 'cl-shiftf "cl-macs" "\
589 Shift left among PLACEs.
590 Example: (cl-shiftf A B C) sets A to B, B to C, and returns the old A.
591 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
592
593 \(fn PLACE... VAL)" nil t)
594
595 (autoload 'cl-rotatef "cl-macs" "\
596 Rotate left among PLACEs.
597 Example: (cl-rotatef A B C) sets A to B, B to C, and C to A. It returns nil.
598 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
599
600 \(fn PLACE...)" nil t)
601
602 (autoload 'cl-letf "cl-macs" "\
603 Temporarily bind to PLACEs.
604 This is the analogue of `let', but with generalized variables (in the
605 sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
606 VALUE, then the BODY forms are executed. On exit, either normally or
607 because of a `throw' or error, the PLACEs are set back to their original
608 values. Note that this macro is *not* available in Common Lisp.
609 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
610 the PLACE is not modified before executing BODY.
611
612 \(fn ((PLACE VALUE) ...) BODY...)" nil t)
613
614 (put 'cl-letf 'lisp-indent-function '1)
615
616 (autoload 'cl-letf* "cl-macs" "\
617 Temporarily bind to PLACEs.
618 Like `cl-letf' but where the bindings are performed one at a time,
619 rather than all at the end (i.e. like `let*' rather than like `let').
620
621 \(fn BINDINGS &rest BODY)" nil t)
622
623 (put 'cl-letf* 'lisp-indent-function '1)
624
625 (autoload 'cl-callf "cl-macs" "\
626 Set PLACE to (FUNC PLACE ARGS...).
627 FUNC should be an unquoted function name. PLACE may be a symbol,
628 or any generalized variable allowed by `setf'.
629
630 \(fn FUNC PLACE &rest ARGS)" nil t)
631
632 (put 'cl-callf 'lisp-indent-function '2)
633
634 (autoload 'cl-callf2 "cl-macs" "\
635 Set PLACE to (FUNC ARG1 PLACE ARGS...).
636 Like `cl-callf', but PLACE is the second argument of FUNC, not the first.
637
638 \(fn FUNC ARG1 PLACE ARGS...)" nil t)
639
640 (put 'cl-callf2 'lisp-indent-function '3)
641
642 (autoload 'cl-defstruct "cl-macs" "\
643 Define a struct type.
644 This macro defines a new data type called NAME that stores data
645 in SLOTs. It defines a `make-NAME' constructor, a `copy-NAME'
646 copier, a `NAME-p' predicate, and slot accessors named `NAME-SLOT'.
647 You can use the accessors to set the corresponding slots, via `setf'.
648
649 NAME may instead take the form (NAME OPTIONS...), where each
650 OPTION is either a single keyword or (KEYWORD VALUE).
651 See Info node `(cl)Structures' for a list of valid keywords.
652
653 Each SLOT may instead take the form (SLOT SLOT-OPTS...), where
654 SLOT-OPTS are keyword-value pairs for that slot. Currently, only
655 one keyword is supported, `:read-only'. If this has a non-nil
656 value, that slot cannot be set via `setf'.
657
658 \(fn NAME SLOTS...)" nil t)
659
660 (put 'cl-defstruct 'doc-string-elt '2)
661
662 (autoload 'cl-deftype "cl-macs" "\
663 Define NAME as a new data type.
664 The type name can then be used in `cl-typecase', `cl-check-type', etc.
665
666 \(fn NAME ARGLIST &rest BODY)" nil t)
667
668 (put 'cl-deftype 'doc-string-elt '3)
669
670 (autoload 'cl-typep "cl-macs" "\
671 Check that OBJECT is of type TYPE.
672 TYPE is a Common Lisp-style type specifier.
673
674 \(fn OBJECT TYPE)" nil nil)
675
676 (autoload 'cl-check-type "cl-macs" "\
677 Verify that FORM is of type TYPE; signal an error if not.
678 STRING is an optional description of the desired type.
679
680 \(fn FORM TYPE &optional STRING)" nil t)
681
682 (autoload 'cl-assert "cl-macs" "\
683 Verify that FORM returns non-nil; signal an error if not.
684 Second arg SHOW-ARGS means to include arguments of FORM in message.
685 Other args STRING and ARGS... are arguments to be passed to `error'.
686 They are not evaluated unless the assertion fails. If STRING is
687 omitted, a default message listing FORM itself is used.
688
689 \(fn FORM &optional SHOW-ARGS STRING &rest ARGS)" nil t)
690
691 (autoload 'cl-define-compiler-macro "cl-macs" "\
692 Define a compiler-only macro.
693 This is like `defmacro', but macro expansion occurs only if the call to
694 FUNC is compiled (i.e., not interpreted). Compiler macros should be used
695 for optimizing the way calls to FUNC are compiled; the form returned by
696 BODY should do the same thing as a call to the normal function called
697 FUNC, though possibly more efficiently. Note that, like regular macros,
698 compiler macros are expanded repeatedly until no further expansions are
699 possible. Unlike regular macros, BODY can decide to \"punt\" and leave the
700 original function call alone by declaring an initial `&whole foo' parameter
701 and then returning foo.
702
703 \(fn FUNC ARGS &rest BODY)" nil t)
704
705 (autoload 'cl-compiler-macroexpand "cl-macs" "\
706
707
708 \(fn FORM)" nil nil)
709
710 (autoload 'cl-defsubst "cl-macs" "\
711 Define NAME as a function.
712 Like `defun', except the function is automatically declared `inline',
713 ARGLIST allows full Common Lisp conventions, and BODY is implicitly
714 surrounded by (cl-block NAME ...).
715
716 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil t)
717
718 (put 'cl-defsubst 'lisp-indent-function '2)
719
720 (autoload 'cl--compiler-macro-adjoin "cl-macs" "\
721
722
723 \(fn FORM A LIST &rest KEYS)" nil nil)
724
725 (autoload 'cl--compiler-macro-list* "cl-macs" "\
726
727
728 \(fn FORM ARG &rest OTHERS)" nil nil)
729
730 (autoload 'cl--compiler-macro-cXXr "cl-macs" "\
731
732
733 \(fn FORM X)" nil nil)
734
735 ;;;***
736 \f
737 ;;;### (autoloads (cl-tree-equal cl-nsublis cl-sublis cl-nsubst-if-not
738 ;;;;;; cl-nsubst-if cl-nsubst cl-subst-if-not cl-subst-if cl-subsetp
739 ;;;;;; cl-nset-exclusive-or cl-set-exclusive-or cl-nset-difference
740 ;;;;;; cl-set-difference cl-nintersection cl-intersection cl-nunion
741 ;;;;;; cl-union cl-rassoc-if-not cl-rassoc-if cl-rassoc cl-assoc-if-not
742 ;;;;;; cl-assoc-if cl-assoc cl--adjoin cl-member-if-not cl-member-if
743 ;;;;;; cl-member cl-merge cl-stable-sort cl-sort cl-search cl-mismatch
744 ;;;;;; cl-count-if-not cl-count-if cl-count cl-position-if-not cl-position-if
745 ;;;;;; cl-position cl-find-if-not cl-find-if cl-find cl-nsubstitute-if-not
746 ;;;;;; cl-nsubstitute-if cl-nsubstitute cl-substitute-if-not cl-substitute-if
747 ;;;;;; cl-substitute cl-delete-duplicates cl-remove-duplicates cl-delete-if-not
748 ;;;;;; cl-delete-if cl-delete cl-remove-if-not cl-remove-if cl-remove
749 ;;;;;; cl-replace cl-fill cl-reduce) "cl-seq" "cl-seq.el" "b444601641dcbd14a23ca5182bc80ffa")
750 ;;; Generated autoloads from cl-seq.el
751
752 (autoload 'cl-reduce "cl-seq" "\
753 Reduce two-argument FUNCTION across SEQ.
754
755 Keywords supported: :start :end :from-end :initial-value :key
756
757 \(fn FUNCTION SEQ [KEYWORD VALUE]...)" nil nil)
758
759 (autoload 'cl-fill "cl-seq" "\
760 Fill the elements of SEQ with ITEM.
761
762 Keywords supported: :start :end
763
764 \(fn SEQ ITEM [KEYWORD VALUE]...)" nil nil)
765
766 (autoload 'cl-replace "cl-seq" "\
767 Replace the elements of SEQ1 with the elements of SEQ2.
768 SEQ1 is destructively modified, then returned.
769
770 Keywords supported: :start1 :end1 :start2 :end2
771
772 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
773
774 (autoload 'cl-remove "cl-seq" "\
775 Remove all occurrences of ITEM in SEQ.
776 This is a non-destructive function; it makes a copy of SEQ if necessary
777 to avoid corrupting the original SEQ.
778
779 Keywords supported: :test :test-not :key :count :start :end :from-end
780
781 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
782
783 (autoload 'cl-remove-if "cl-seq" "\
784 Remove all items satisfying PREDICATE in SEQ.
785 This is a non-destructive function; it makes a copy of SEQ if necessary
786 to avoid corrupting the original SEQ.
787
788 Keywords supported: :key :count :start :end :from-end
789
790 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
791
792 (autoload 'cl-remove-if-not "cl-seq" "\
793 Remove all items not satisfying PREDICATE in SEQ.
794 This is a non-destructive function; it makes a copy of SEQ if necessary
795 to avoid corrupting the original SEQ.
796
797 Keywords supported: :key :count :start :end :from-end
798
799 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
800
801 (autoload 'cl-delete "cl-seq" "\
802 Remove all occurrences of ITEM in SEQ.
803 This is a destructive function; it reuses the storage of SEQ whenever possible.
804
805 Keywords supported: :test :test-not :key :count :start :end :from-end
806
807 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
808
809 (autoload 'cl-delete-if "cl-seq" "\
810 Remove all items satisfying PREDICATE in SEQ.
811 This is a destructive function; it reuses the storage of SEQ whenever possible.
812
813 Keywords supported: :key :count :start :end :from-end
814
815 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
816
817 (autoload 'cl-delete-if-not "cl-seq" "\
818 Remove all items not satisfying PREDICATE in SEQ.
819 This is a destructive function; it reuses the storage of SEQ whenever possible.
820
821 Keywords supported: :key :count :start :end :from-end
822
823 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
824
825 (autoload 'cl-remove-duplicates "cl-seq" "\
826 Return a copy of SEQ with all duplicate elements removed.
827
828 Keywords supported: :test :test-not :key :start :end :from-end
829
830 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
831
832 (autoload 'cl-delete-duplicates "cl-seq" "\
833 Remove all duplicate elements from SEQ (destructively).
834
835 Keywords supported: :test :test-not :key :start :end :from-end
836
837 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
838
839 (autoload 'cl-substitute "cl-seq" "\
840 Substitute NEW for OLD in SEQ.
841 This is a non-destructive function; it makes a copy of SEQ if necessary
842 to avoid corrupting the original SEQ.
843
844 Keywords supported: :test :test-not :key :count :start :end :from-end
845
846 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
847
848 (autoload 'cl-substitute-if "cl-seq" "\
849 Substitute NEW for all items satisfying PREDICATE in SEQ.
850 This is a non-destructive function; it makes a copy of SEQ if necessary
851 to avoid corrupting the original SEQ.
852
853 Keywords supported: :key :count :start :end :from-end
854
855 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
856
857 (autoload 'cl-substitute-if-not "cl-seq" "\
858 Substitute NEW for all items not satisfying PREDICATE in SEQ.
859 This is a non-destructive function; it makes a copy of SEQ if necessary
860 to avoid corrupting the original SEQ.
861
862 Keywords supported: :key :count :start :end :from-end
863
864 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
865
866 (autoload 'cl-nsubstitute "cl-seq" "\
867 Substitute NEW for OLD in SEQ.
868 This is a destructive function; it reuses the storage of SEQ whenever possible.
869
870 Keywords supported: :test :test-not :key :count :start :end :from-end
871
872 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
873
874 (autoload 'cl-nsubstitute-if "cl-seq" "\
875 Substitute NEW for all items satisfying PREDICATE in SEQ.
876 This is a destructive function; it reuses the storage of SEQ whenever possible.
877
878 Keywords supported: :key :count :start :end :from-end
879
880 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
881
882 (autoload 'cl-nsubstitute-if-not "cl-seq" "\
883 Substitute NEW for all items not satisfying PREDICATE in SEQ.
884 This is a destructive function; it reuses the storage of SEQ whenever possible.
885
886 Keywords supported: :key :count :start :end :from-end
887
888 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
889
890 (autoload 'cl-find "cl-seq" "\
891 Find the first occurrence of ITEM in SEQ.
892 Return the matching ITEM, or nil if not found.
893
894 Keywords supported: :test :test-not :key :start :end :from-end
895
896 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
897
898 (autoload 'cl-find-if "cl-seq" "\
899 Find the first item satisfying PREDICATE in SEQ.
900 Return the matching item, or nil if not found.
901
902 Keywords supported: :key :start :end :from-end
903
904 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
905
906 (autoload 'cl-find-if-not "cl-seq" "\
907 Find the first item not satisfying PREDICATE in SEQ.
908 Return the matching item, or nil if not found.
909
910 Keywords supported: :key :start :end :from-end
911
912 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
913
914 (autoload 'cl-position "cl-seq" "\
915 Find the first occurrence of ITEM in SEQ.
916 Return the index of the matching item, or nil if not found.
917
918 Keywords supported: :test :test-not :key :start :end :from-end
919
920 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
921
922 (autoload 'cl-position-if "cl-seq" "\
923 Find the first item satisfying PREDICATE in SEQ.
924 Return the index of the matching item, or nil if not found.
925
926 Keywords supported: :key :start :end :from-end
927
928 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
929
930 (autoload 'cl-position-if-not "cl-seq" "\
931 Find the first item not satisfying PREDICATE in SEQ.
932 Return the index of the matching item, or nil if not found.
933
934 Keywords supported: :key :start :end :from-end
935
936 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
937
938 (autoload 'cl-count "cl-seq" "\
939 Count the number of occurrences of ITEM in SEQ.
940
941 Keywords supported: :test :test-not :key :start :end
942
943 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
944
945 (autoload 'cl-count-if "cl-seq" "\
946 Count the number of items satisfying PREDICATE in SEQ.
947
948 Keywords supported: :key :start :end
949
950 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
951
952 (autoload 'cl-count-if-not "cl-seq" "\
953 Count the number of items not satisfying PREDICATE in SEQ.
954
955 Keywords supported: :key :start :end
956
957 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
958
959 (autoload 'cl-mismatch "cl-seq" "\
960 Compare SEQ1 with SEQ2, return index of first mismatching element.
961 Return nil if the sequences match. If one sequence is a prefix of the
962 other, the return value indicates the end of the shorter sequence.
963
964 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
965
966 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
967
968 (autoload 'cl-search "cl-seq" "\
969 Search for SEQ1 as a subsequence of SEQ2.
970 Return the index of the leftmost element of the first match found;
971 return nil if there are no matches.
972
973 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
974
975 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
976
977 (autoload 'cl-sort "cl-seq" "\
978 Sort the argument SEQ according to PREDICATE.
979 This is a destructive function; it reuses the storage of SEQ if possible.
980
981 Keywords supported: :key
982
983 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
984
985 (autoload 'cl-stable-sort "cl-seq" "\
986 Sort the argument SEQ stably according to PREDICATE.
987 This is a destructive function; it reuses the storage of SEQ if possible.
988
989 Keywords supported: :key
990
991 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
992
993 (autoload 'cl-merge "cl-seq" "\
994 Destructively merge the two sequences to produce a new sequence.
995 TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
996 sequences, and PREDICATE is a `less-than' predicate on the elements.
997
998 Keywords supported: :key
999
1000 \(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)" nil nil)
1001
1002 (autoload 'cl-member "cl-seq" "\
1003 Find the first occurrence of ITEM in LIST.
1004 Return the sublist of LIST whose car is ITEM.
1005
1006 Keywords supported: :test :test-not :key
1007
1008 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1009
1010 (put 'cl-member 'compiler-macro #'cl--compiler-macro-member)
1011
1012 (autoload 'cl-member-if "cl-seq" "\
1013 Find the first item satisfying PREDICATE in LIST.
1014 Return the sublist of LIST whose car matches.
1015
1016 Keywords supported: :key
1017
1018 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1019
1020 (autoload 'cl-member-if-not "cl-seq" "\
1021 Find the first item not satisfying PREDICATE in LIST.
1022 Return the sublist of LIST whose car matches.
1023
1024 Keywords supported: :key
1025
1026 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1027
1028 (autoload 'cl--adjoin "cl-seq" "\
1029
1030
1031 \(fn CL-ITEM CL-LIST &rest CL-KEYS)" nil nil)
1032
1033 (autoload 'cl-assoc "cl-seq" "\
1034 Find the first item whose car matches ITEM in LIST.
1035
1036 Keywords supported: :test :test-not :key
1037
1038 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1039
1040 (put 'cl-assoc 'compiler-macro #'cl--compiler-macro-assoc)
1041
1042 (autoload 'cl-assoc-if "cl-seq" "\
1043 Find the first item whose car satisfies PREDICATE in LIST.
1044
1045 Keywords supported: :key
1046
1047 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1048
1049 (autoload 'cl-assoc-if-not "cl-seq" "\
1050 Find the first item whose car does not satisfy PREDICATE in LIST.
1051
1052 Keywords supported: :key
1053
1054 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1055
1056 (autoload 'cl-rassoc "cl-seq" "\
1057 Find the first item whose cdr matches ITEM in LIST.
1058
1059 Keywords supported: :test :test-not :key
1060
1061 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1062
1063 (autoload 'cl-rassoc-if "cl-seq" "\
1064 Find the first item whose cdr satisfies PREDICATE in LIST.
1065
1066 Keywords supported: :key
1067
1068 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1069
1070 (autoload 'cl-rassoc-if-not "cl-seq" "\
1071 Find the first item whose cdr does not satisfy PREDICATE in LIST.
1072
1073 Keywords supported: :key
1074
1075 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1076
1077 (autoload 'cl-union "cl-seq" "\
1078 Combine LIST1 and LIST2 using a set-union operation.
1079 The resulting list contains all items that appear in either LIST1 or LIST2.
1080 This is a non-destructive function; it makes a copy of the data if necessary
1081 to avoid corrupting the original LIST1 and LIST2.
1082
1083 Keywords supported: :test :test-not :key
1084
1085 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1086
1087 (autoload 'cl-nunion "cl-seq" "\
1088 Combine LIST1 and LIST2 using a set-union operation.
1089 The resulting list contains all items that appear in either LIST1 or LIST2.
1090 This is a destructive function; it reuses the storage of LIST1 and LIST2
1091 whenever possible.
1092
1093 Keywords supported: :test :test-not :key
1094
1095 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1096
1097 (autoload 'cl-intersection "cl-seq" "\
1098 Combine LIST1 and LIST2 using a set-intersection operation.
1099 The resulting list contains all items that appear in both LIST1 and LIST2.
1100 This is a non-destructive function; it makes a copy of the data if necessary
1101 to avoid corrupting the original LIST1 and LIST2.
1102
1103 Keywords supported: :test :test-not :key
1104
1105 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1106
1107 (autoload 'cl-nintersection "cl-seq" "\
1108 Combine LIST1 and LIST2 using a set-intersection operation.
1109 The resulting list contains all items that appear in both LIST1 and LIST2.
1110 This is a destructive function; it reuses the storage of LIST1 and LIST2
1111 whenever possible.
1112
1113 Keywords supported: :test :test-not :key
1114
1115 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1116
1117 (autoload 'cl-set-difference "cl-seq" "\
1118 Combine LIST1 and LIST2 using a set-difference operation.
1119 The resulting list contains all items that appear in LIST1 but not LIST2.
1120 This is a non-destructive function; it makes a copy of the data if necessary
1121 to avoid corrupting the original LIST1 and LIST2.
1122
1123 Keywords supported: :test :test-not :key
1124
1125 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1126
1127 (autoload 'cl-nset-difference "cl-seq" "\
1128 Combine LIST1 and LIST2 using a set-difference operation.
1129 The resulting list contains all items that appear in LIST1 but not LIST2.
1130 This is a destructive function; it reuses the storage of LIST1 and LIST2
1131 whenever possible.
1132
1133 Keywords supported: :test :test-not :key
1134
1135 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1136
1137 (autoload 'cl-set-exclusive-or "cl-seq" "\
1138 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1139 The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1140 This is a non-destructive function; it makes a copy of the data if necessary
1141 to avoid corrupting the original LIST1 and LIST2.
1142
1143 Keywords supported: :test :test-not :key
1144
1145 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1146
1147 (autoload 'cl-nset-exclusive-or "cl-seq" "\
1148 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1149 The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1150 This is a destructive function; it reuses the storage of LIST1 and LIST2
1151 whenever possible.
1152
1153 Keywords supported: :test :test-not :key
1154
1155 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1156
1157 (autoload 'cl-subsetp "cl-seq" "\
1158 Return true if LIST1 is a subset of LIST2.
1159 I.e., if every element of LIST1 also appears in LIST2.
1160
1161 Keywords supported: :test :test-not :key
1162
1163 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1164
1165 (autoload 'cl-subst-if "cl-seq" "\
1166 Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
1167 Return a copy of TREE with all matching elements replaced by NEW.
1168
1169 Keywords supported: :key
1170
1171 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1172
1173 (autoload 'cl-subst-if-not "cl-seq" "\
1174 Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
1175 Return a copy of TREE with all non-matching elements replaced by NEW.
1176
1177 Keywords supported: :key
1178
1179 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1180
1181 (autoload 'cl-nsubst "cl-seq" "\
1182 Substitute NEW for OLD everywhere in TREE (destructively).
1183 Any element of TREE which is `eql' to OLD is changed to NEW (via a call
1184 to `setcar').
1185
1186 Keywords supported: :test :test-not :key
1187
1188 \(fn NEW OLD TREE [KEYWORD VALUE]...)" nil nil)
1189
1190 (autoload 'cl-nsubst-if "cl-seq" "\
1191 Substitute NEW for elements matching PREDICATE in TREE (destructively).
1192 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1193
1194 Keywords supported: :key
1195
1196 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1197
1198 (autoload 'cl-nsubst-if-not "cl-seq" "\
1199 Substitute NEW for elements not matching PREDICATE in TREE (destructively).
1200 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1201
1202 Keywords supported: :key
1203
1204 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1205
1206 (autoload 'cl-sublis "cl-seq" "\
1207 Perform substitutions indicated by ALIST in TREE (non-destructively).
1208 Return a copy of TREE with all matching elements replaced.
1209
1210 Keywords supported: :test :test-not :key
1211
1212 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1213
1214 (autoload 'cl-nsublis "cl-seq" "\
1215 Perform substitutions indicated by ALIST in TREE (destructively).
1216 Any matching element of TREE is changed via a call to `setcar'.
1217
1218 Keywords supported: :test :test-not :key
1219
1220 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1221
1222 (autoload 'cl-tree-equal "cl-seq" "\
1223 Return t if trees TREE1 and TREE2 have `eql' leaves.
1224 Atoms are compared by `eql'; cons cells are compared recursively.
1225
1226 Keywords supported: :test :test-not :key
1227
1228 \(fn TREE1 TREE2 [KEYWORD VALUE]...)" nil nil)
1229
1230 ;;;***
1231 \f
1232 ;; Local Variables:
1233 ;; version-control: never
1234 ;; no-byte-compile: t
1235 ;; no-update-autoloads: t
1236 ;; coding: utf-8
1237 ;; End:
1238 ;;; cl-loaddefs.el ends here