* lisp/subr.el (zerop): Move from C. Add compiler-macro.
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2014 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
29
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
33
34 #include "lisp.h"
35 #include "process.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "character.h"
39 #include "buffer.h"
40 #include "window.h"
41 #include "keyboard.h"
42 #include "frame.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45 #ifdef HAVE_WINDOW_SYSTEM
46 #include TERM_HEADER
47 #endif /* HAVE_WINDOW_SYSTEM */
48
49 #include <verify.h>
50 #include <execinfo.h> /* For backtrace. */
51
52 #if (defined ENABLE_CHECKING \
53 && defined HAVE_VALGRIND_VALGRIND_H \
54 && !defined USE_VALGRIND)
55 # define USE_VALGRIND 1
56 #endif
57
58 #if USE_VALGRIND
59 #include <valgrind/valgrind.h>
60 #include <valgrind/memcheck.h>
61 static bool valgrind_p;
62 #endif
63
64 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
65 Doable only if GC_MARK_STACK. */
66 #if ! GC_MARK_STACK
67 # undef GC_CHECK_MARKED_OBJECTS
68 #endif
69
70 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
71 memory. Can do this only if using gmalloc.c and if not checking
72 marked objects. */
73
74 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
75 || defined GC_CHECK_MARKED_OBJECTS)
76 #undef GC_MALLOC_CHECK
77 #endif
78
79 #include <unistd.h>
80 #include <fcntl.h>
81
82 #ifdef USE_GTK
83 # include "gtkutil.h"
84 #endif
85 #ifdef WINDOWSNT
86 #include "w32.h"
87 #include "w32heap.h" /* for sbrk */
88 #endif
89
90 #ifdef DOUG_LEA_MALLOC
91
92 #include <malloc.h>
93
94 /* Specify maximum number of areas to mmap. It would be nice to use a
95 value that explicitly means "no limit". */
96
97 #define MMAP_MAX_AREAS 100000000
98
99 #endif /* not DOUG_LEA_MALLOC */
100
101 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
102 to a struct Lisp_String. */
103
104 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
105 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
106 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
107
108 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
109 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
110 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
111
112 /* Default value of gc_cons_threshold (see below). */
113
114 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
115
116 /* Global variables. */
117 struct emacs_globals globals;
118
119 /* Number of bytes of consing done since the last gc. */
120
121 EMACS_INT consing_since_gc;
122
123 /* Similar minimum, computed from Vgc_cons_percentage. */
124
125 EMACS_INT gc_relative_threshold;
126
127 /* Minimum number of bytes of consing since GC before next GC,
128 when memory is full. */
129
130 EMACS_INT memory_full_cons_threshold;
131
132 /* True during GC. */
133
134 bool gc_in_progress;
135
136 /* True means abort if try to GC.
137 This is for code which is written on the assumption that
138 no GC will happen, so as to verify that assumption. */
139
140 bool abort_on_gc;
141
142 /* Number of live and free conses etc. */
143
144 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
145 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
146 static EMACS_INT total_free_floats, total_floats;
147
148 /* Points to memory space allocated as "spare", to be freed if we run
149 out of memory. We keep one large block, four cons-blocks, and
150 two string blocks. */
151
152 static char *spare_memory[7];
153
154 /* Amount of spare memory to keep in large reserve block, or to see
155 whether this much is available when malloc fails on a larger request. */
156
157 #define SPARE_MEMORY (1 << 14)
158
159 /* Initialize it to a nonzero value to force it into data space
160 (rather than bss space). That way unexec will remap it into text
161 space (pure), on some systems. We have not implemented the
162 remapping on more recent systems because this is less important
163 nowadays than in the days of small memories and timesharing. */
164
165 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
166 #define PUREBEG (char *) pure
167
168 /* Pointer to the pure area, and its size. */
169
170 static char *purebeg;
171 static ptrdiff_t pure_size;
172
173 /* Number of bytes of pure storage used before pure storage overflowed.
174 If this is non-zero, this implies that an overflow occurred. */
175
176 static ptrdiff_t pure_bytes_used_before_overflow;
177
178 /* True if P points into pure space. */
179
180 #define PURE_POINTER_P(P) \
181 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
182
183 /* Index in pure at which next pure Lisp object will be allocated.. */
184
185 static ptrdiff_t pure_bytes_used_lisp;
186
187 /* Number of bytes allocated for non-Lisp objects in pure storage. */
188
189 static ptrdiff_t pure_bytes_used_non_lisp;
190
191 /* If nonzero, this is a warning delivered by malloc and not yet
192 displayed. */
193
194 const char *pending_malloc_warning;
195
196 #if 0 /* Normally, pointer sanity only on request... */
197 #ifdef ENABLE_CHECKING
198 #define SUSPICIOUS_OBJECT_CHECKING 1
199 #endif
200 #endif
201
202 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
203 bug is unresolved. */
204 #define SUSPICIOUS_OBJECT_CHECKING 1
205
206 #ifdef SUSPICIOUS_OBJECT_CHECKING
207 struct suspicious_free_record
208 {
209 void *suspicious_object;
210 void *backtrace[128];
211 };
212 static void *suspicious_objects[32];
213 static int suspicious_object_index;
214 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
215 static int suspicious_free_history_index;
216 /* Find the first currently-monitored suspicious pointer in range
217 [begin,end) or NULL if no such pointer exists. */
218 static void *find_suspicious_object_in_range (void *begin, void *end);
219 static void detect_suspicious_free (void *ptr);
220 #else
221 # define find_suspicious_object_in_range(begin, end) NULL
222 # define detect_suspicious_free(ptr) (void)
223 #endif
224
225 /* Maximum amount of C stack to save when a GC happens. */
226
227 #ifndef MAX_SAVE_STACK
228 #define MAX_SAVE_STACK 16000
229 #endif
230
231 /* Buffer in which we save a copy of the C stack at each GC. */
232
233 #if MAX_SAVE_STACK > 0
234 static char *stack_copy;
235 static ptrdiff_t stack_copy_size;
236
237 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
238 avoiding any address sanitization. */
239
240 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
241 no_sanitize_memcpy (void *dest, void const *src, size_t size)
242 {
243 if (! ADDRESS_SANITIZER)
244 return memcpy (dest, src, size);
245 else
246 {
247 size_t i;
248 char *d = dest;
249 char const *s = src;
250 for (i = 0; i < size; i++)
251 d[i] = s[i];
252 return dest;
253 }
254 }
255
256 #endif /* MAX_SAVE_STACK > 0 */
257
258 static Lisp_Object Qconses;
259 static Lisp_Object Qsymbols;
260 static Lisp_Object Qmiscs;
261 static Lisp_Object Qstrings;
262 static Lisp_Object Qvectors;
263 static Lisp_Object Qfloats;
264 static Lisp_Object Qintervals;
265 static Lisp_Object Qbuffers;
266 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
267 static Lisp_Object Qgc_cons_threshold;
268 Lisp_Object Qautomatic_gc;
269 Lisp_Object Qchar_table_extra_slots;
270
271 /* Hook run after GC has finished. */
272
273 static Lisp_Object Qpost_gc_hook;
274
275 static void mark_terminals (void);
276 static void gc_sweep (void);
277 static Lisp_Object make_pure_vector (ptrdiff_t);
278 static void mark_buffer (struct buffer *);
279
280 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
281 static void refill_memory_reserve (void);
282 #endif
283 static void compact_small_strings (void);
284 static void free_large_strings (void);
285 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
286
287 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
288 what memory allocated via lisp_malloc and lisp_align_malloc is intended
289 for what purpose. This enumeration specifies the type of memory. */
290
291 enum mem_type
292 {
293 MEM_TYPE_NON_LISP,
294 MEM_TYPE_BUFFER,
295 MEM_TYPE_CONS,
296 MEM_TYPE_STRING,
297 MEM_TYPE_MISC,
298 MEM_TYPE_SYMBOL,
299 MEM_TYPE_FLOAT,
300 /* Since all non-bool pseudovectors are small enough to be
301 allocated from vector blocks, this memory type denotes
302 large regular vectors and large bool pseudovectors. */
303 MEM_TYPE_VECTORLIKE,
304 /* Special type to denote vector blocks. */
305 MEM_TYPE_VECTOR_BLOCK,
306 /* Special type to denote reserved memory. */
307 MEM_TYPE_SPARE
308 };
309
310 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
311
312 /* A unique object in pure space used to make some Lisp objects
313 on free lists recognizable in O(1). */
314
315 static Lisp_Object Vdead;
316 #define DEADP(x) EQ (x, Vdead)
317
318 #ifdef GC_MALLOC_CHECK
319
320 enum mem_type allocated_mem_type;
321
322 #endif /* GC_MALLOC_CHECK */
323
324 /* A node in the red-black tree describing allocated memory containing
325 Lisp data. Each such block is recorded with its start and end
326 address when it is allocated, and removed from the tree when it
327 is freed.
328
329 A red-black tree is a balanced binary tree with the following
330 properties:
331
332 1. Every node is either red or black.
333 2. Every leaf is black.
334 3. If a node is red, then both of its children are black.
335 4. Every simple path from a node to a descendant leaf contains
336 the same number of black nodes.
337 5. The root is always black.
338
339 When nodes are inserted into the tree, or deleted from the tree,
340 the tree is "fixed" so that these properties are always true.
341
342 A red-black tree with N internal nodes has height at most 2
343 log(N+1). Searches, insertions and deletions are done in O(log N).
344 Please see a text book about data structures for a detailed
345 description of red-black trees. Any book worth its salt should
346 describe them. */
347
348 struct mem_node
349 {
350 /* Children of this node. These pointers are never NULL. When there
351 is no child, the value is MEM_NIL, which points to a dummy node. */
352 struct mem_node *left, *right;
353
354 /* The parent of this node. In the root node, this is NULL. */
355 struct mem_node *parent;
356
357 /* Start and end of allocated region. */
358 void *start, *end;
359
360 /* Node color. */
361 enum {MEM_BLACK, MEM_RED} color;
362
363 /* Memory type. */
364 enum mem_type type;
365 };
366
367 /* Base address of stack. Set in main. */
368
369 Lisp_Object *stack_base;
370
371 /* Root of the tree describing allocated Lisp memory. */
372
373 static struct mem_node *mem_root;
374
375 /* Lowest and highest known address in the heap. */
376
377 static void *min_heap_address, *max_heap_address;
378
379 /* Sentinel node of the tree. */
380
381 static struct mem_node mem_z;
382 #define MEM_NIL &mem_z
383
384 static struct mem_node *mem_insert (void *, void *, enum mem_type);
385 static void mem_insert_fixup (struct mem_node *);
386 static void mem_rotate_left (struct mem_node *);
387 static void mem_rotate_right (struct mem_node *);
388 static void mem_delete (struct mem_node *);
389 static void mem_delete_fixup (struct mem_node *);
390 static struct mem_node *mem_find (void *);
391
392 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
393
394 #ifndef DEADP
395 # define DEADP(x) 0
396 #endif
397
398 /* Recording what needs to be marked for gc. */
399
400 struct gcpro *gcprolist;
401
402 /* Addresses of staticpro'd variables. Initialize it to a nonzero
403 value; otherwise some compilers put it into BSS. */
404
405 enum { NSTATICS = 2048 };
406 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
407
408 /* Index of next unused slot in staticvec. */
409
410 static int staticidx;
411
412 static void *pure_alloc (size_t, int);
413
414 /* Return X rounded to the next multiple of Y. Arguments should not
415 have side effects, as they are evaluated more than once. Assume X
416 + Y - 1 does not overflow. Tune for Y being a power of 2. */
417
418 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
419 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
420 : ((x) + (y) - 1) & ~ ((y) - 1))
421
422 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
423
424 static void *
425 ALIGN (void *ptr, int alignment)
426 {
427 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
428 }
429
430 static void
431 XFLOAT_INIT (Lisp_Object f, double n)
432 {
433 XFLOAT (f)->u.data = n;
434 }
435
436 static bool
437 pointers_fit_in_lispobj_p (void)
438 {
439 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
440 }
441
442 static bool
443 mmap_lisp_allowed_p (void)
444 {
445 /* If we can't store all memory addresses in our lisp objects, it's
446 risky to let the heap use mmap and give us addresses from all
447 over our address space. We also can't use mmap for lisp objects
448 if we might dump: unexec doesn't preserve the contents of mmaped
449 regions. */
450 return pointers_fit_in_lispobj_p () && !might_dump;
451 }
452
453 \f
454 /************************************************************************
455 Malloc
456 ************************************************************************/
457
458 /* Function malloc calls this if it finds we are near exhausting storage. */
459
460 void
461 malloc_warning (const char *str)
462 {
463 pending_malloc_warning = str;
464 }
465
466
467 /* Display an already-pending malloc warning. */
468
469 void
470 display_malloc_warning (void)
471 {
472 call3 (intern ("display-warning"),
473 intern ("alloc"),
474 build_string (pending_malloc_warning),
475 intern ("emergency"));
476 pending_malloc_warning = 0;
477 }
478 \f
479 /* Called if we can't allocate relocatable space for a buffer. */
480
481 void
482 buffer_memory_full (ptrdiff_t nbytes)
483 {
484 /* If buffers use the relocating allocator, no need to free
485 spare_memory, because we may have plenty of malloc space left
486 that we could get, and if we don't, the malloc that fails will
487 itself cause spare_memory to be freed. If buffers don't use the
488 relocating allocator, treat this like any other failing
489 malloc. */
490
491 #ifndef REL_ALLOC
492 memory_full (nbytes);
493 #else
494 /* This used to call error, but if we've run out of memory, we could
495 get infinite recursion trying to build the string. */
496 xsignal (Qnil, Vmemory_signal_data);
497 #endif
498 }
499
500 /* A common multiple of the positive integers A and B. Ideally this
501 would be the least common multiple, but there's no way to do that
502 as a constant expression in C, so do the best that we can easily do. */
503 #define COMMON_MULTIPLE(a, b) \
504 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
505
506 #ifndef XMALLOC_OVERRUN_CHECK
507 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
508 #else
509
510 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
511 around each block.
512
513 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
514 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
515 block size in little-endian order. The trailer consists of
516 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
517
518 The header is used to detect whether this block has been allocated
519 through these functions, as some low-level libc functions may
520 bypass the malloc hooks. */
521
522 #define XMALLOC_OVERRUN_CHECK_SIZE 16
523 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
524 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
525
526 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
527 hold a size_t value and (2) the header size is a multiple of the
528 alignment that Emacs needs for C types and for USE_LSB_TAG. */
529 #define XMALLOC_BASE_ALIGNMENT \
530 alignof (union { long double d; intmax_t i; void *p; })
531
532 #if USE_LSB_TAG
533 # define XMALLOC_HEADER_ALIGNMENT \
534 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
535 #else
536 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
537 #endif
538 #define XMALLOC_OVERRUN_SIZE_SIZE \
539 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
540 + XMALLOC_HEADER_ALIGNMENT - 1) \
541 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
542 - XMALLOC_OVERRUN_CHECK_SIZE)
543
544 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
545 { '\x9a', '\x9b', '\xae', '\xaf',
546 '\xbf', '\xbe', '\xce', '\xcf',
547 '\xea', '\xeb', '\xec', '\xed',
548 '\xdf', '\xde', '\x9c', '\x9d' };
549
550 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
551 { '\xaa', '\xab', '\xac', '\xad',
552 '\xba', '\xbb', '\xbc', '\xbd',
553 '\xca', '\xcb', '\xcc', '\xcd',
554 '\xda', '\xdb', '\xdc', '\xdd' };
555
556 /* Insert and extract the block size in the header. */
557
558 static void
559 xmalloc_put_size (unsigned char *ptr, size_t size)
560 {
561 int i;
562 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
563 {
564 *--ptr = size & ((1 << CHAR_BIT) - 1);
565 size >>= CHAR_BIT;
566 }
567 }
568
569 static size_t
570 xmalloc_get_size (unsigned char *ptr)
571 {
572 size_t size = 0;
573 int i;
574 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
575 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
576 {
577 size <<= CHAR_BIT;
578 size += *ptr++;
579 }
580 return size;
581 }
582
583
584 /* Like malloc, but wraps allocated block with header and trailer. */
585
586 static void *
587 overrun_check_malloc (size_t size)
588 {
589 register unsigned char *val;
590 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
591 emacs_abort ();
592
593 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
594 if (val)
595 {
596 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
597 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
598 xmalloc_put_size (val, size);
599 memcpy (val + size, xmalloc_overrun_check_trailer,
600 XMALLOC_OVERRUN_CHECK_SIZE);
601 }
602 return val;
603 }
604
605
606 /* Like realloc, but checks old block for overrun, and wraps new block
607 with header and trailer. */
608
609 static void *
610 overrun_check_realloc (void *block, size_t size)
611 {
612 register unsigned char *val = (unsigned char *) block;
613 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
614 emacs_abort ();
615
616 if (val
617 && memcmp (xmalloc_overrun_check_header,
618 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
619 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
620 {
621 size_t osize = xmalloc_get_size (val);
622 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
623 XMALLOC_OVERRUN_CHECK_SIZE))
624 emacs_abort ();
625 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
626 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
627 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
628 }
629
630 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
631
632 if (val)
633 {
634 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
635 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
636 xmalloc_put_size (val, size);
637 memcpy (val + size, xmalloc_overrun_check_trailer,
638 XMALLOC_OVERRUN_CHECK_SIZE);
639 }
640 return val;
641 }
642
643 /* Like free, but checks block for overrun. */
644
645 static void
646 overrun_check_free (void *block)
647 {
648 unsigned char *val = (unsigned char *) block;
649
650 if (val
651 && memcmp (xmalloc_overrun_check_header,
652 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
653 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
654 {
655 size_t osize = xmalloc_get_size (val);
656 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
657 XMALLOC_OVERRUN_CHECK_SIZE))
658 emacs_abort ();
659 #ifdef XMALLOC_CLEAR_FREE_MEMORY
660 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
661 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
662 #else
663 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
664 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
665 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
666 #endif
667 }
668
669 free (val);
670 }
671
672 #undef malloc
673 #undef realloc
674 #undef free
675 #define malloc overrun_check_malloc
676 #define realloc overrun_check_realloc
677 #define free overrun_check_free
678 #endif
679
680 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
681 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
682 If that variable is set, block input while in one of Emacs's memory
683 allocation functions. There should be no need for this debugging
684 option, since signal handlers do not allocate memory, but Emacs
685 formerly allocated memory in signal handlers and this compile-time
686 option remains as a way to help debug the issue should it rear its
687 ugly head again. */
688 #ifdef XMALLOC_BLOCK_INPUT_CHECK
689 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
690 static void
691 malloc_block_input (void)
692 {
693 if (block_input_in_memory_allocators)
694 block_input ();
695 }
696 static void
697 malloc_unblock_input (void)
698 {
699 if (block_input_in_memory_allocators)
700 unblock_input ();
701 }
702 # define MALLOC_BLOCK_INPUT malloc_block_input ()
703 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
704 #else
705 # define MALLOC_BLOCK_INPUT ((void) 0)
706 # define MALLOC_UNBLOCK_INPUT ((void) 0)
707 #endif
708
709 #define MALLOC_PROBE(size) \
710 do { \
711 if (profiler_memory_running) \
712 malloc_probe (size); \
713 } while (0)
714
715
716 /* Like malloc but check for no memory and block interrupt input.. */
717
718 void *
719 xmalloc (size_t size)
720 {
721 void *val;
722
723 MALLOC_BLOCK_INPUT;
724 val = malloc (size);
725 MALLOC_UNBLOCK_INPUT;
726
727 if (!val && size)
728 memory_full (size);
729 MALLOC_PROBE (size);
730 return val;
731 }
732
733 /* Like the above, but zeroes out the memory just allocated. */
734
735 void *
736 xzalloc (size_t size)
737 {
738 void *val;
739
740 MALLOC_BLOCK_INPUT;
741 val = malloc (size);
742 MALLOC_UNBLOCK_INPUT;
743
744 if (!val && size)
745 memory_full (size);
746 memset (val, 0, size);
747 MALLOC_PROBE (size);
748 return val;
749 }
750
751 /* Like realloc but check for no memory and block interrupt input.. */
752
753 void *
754 xrealloc (void *block, size_t size)
755 {
756 void *val;
757
758 MALLOC_BLOCK_INPUT;
759 /* We must call malloc explicitly when BLOCK is 0, since some
760 reallocs don't do this. */
761 if (! block)
762 val = malloc (size);
763 else
764 val = realloc (block, size);
765 MALLOC_UNBLOCK_INPUT;
766
767 if (!val && size)
768 memory_full (size);
769 MALLOC_PROBE (size);
770 return val;
771 }
772
773
774 /* Like free but block interrupt input. */
775
776 void
777 xfree (void *block)
778 {
779 if (!block)
780 return;
781 MALLOC_BLOCK_INPUT;
782 free (block);
783 MALLOC_UNBLOCK_INPUT;
784 /* We don't call refill_memory_reserve here
785 because in practice the call in r_alloc_free seems to suffice. */
786 }
787
788
789 /* Other parts of Emacs pass large int values to allocator functions
790 expecting ptrdiff_t. This is portable in practice, but check it to
791 be safe. */
792 verify (INT_MAX <= PTRDIFF_MAX);
793
794
795 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
796 Signal an error on memory exhaustion, and block interrupt input. */
797
798 void *
799 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
800 {
801 eassert (0 <= nitems && 0 < item_size);
802 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
803 memory_full (SIZE_MAX);
804 return xmalloc (nitems * item_size);
805 }
806
807
808 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
809 Signal an error on memory exhaustion, and block interrupt input. */
810
811 void *
812 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
813 {
814 eassert (0 <= nitems && 0 < item_size);
815 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
816 memory_full (SIZE_MAX);
817 return xrealloc (pa, nitems * item_size);
818 }
819
820
821 /* Grow PA, which points to an array of *NITEMS items, and return the
822 location of the reallocated array, updating *NITEMS to reflect its
823 new size. The new array will contain at least NITEMS_INCR_MIN more
824 items, but will not contain more than NITEMS_MAX items total.
825 ITEM_SIZE is the size of each item, in bytes.
826
827 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
828 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
829 infinity.
830
831 If PA is null, then allocate a new array instead of reallocating
832 the old one.
833
834 Block interrupt input as needed. If memory exhaustion occurs, set
835 *NITEMS to zero if PA is null, and signal an error (i.e., do not
836 return).
837
838 Thus, to grow an array A without saving its old contents, do
839 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
840 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
841 and signals an error, and later this code is reexecuted and
842 attempts to free A. */
843
844 void *
845 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
846 ptrdiff_t nitems_max, ptrdiff_t item_size)
847 {
848 /* The approximate size to use for initial small allocation
849 requests. This is the largest "small" request for the GNU C
850 library malloc. */
851 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
852
853 /* If the array is tiny, grow it to about (but no greater than)
854 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
855 ptrdiff_t n = *nitems;
856 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
857 ptrdiff_t half_again = n >> 1;
858 ptrdiff_t incr_estimate = max (tiny_max, half_again);
859
860 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
861 NITEMS_MAX, and what the C language can represent safely. */
862 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
863 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
864 ? nitems_max : C_language_max);
865 ptrdiff_t nitems_incr_max = n_max - n;
866 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
867
868 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
869 if (! pa)
870 *nitems = 0;
871 if (nitems_incr_max < incr)
872 memory_full (SIZE_MAX);
873 n += incr;
874 pa = xrealloc (pa, n * item_size);
875 *nitems = n;
876 return pa;
877 }
878
879
880 /* Like strdup, but uses xmalloc. */
881
882 char *
883 xstrdup (const char *s)
884 {
885 ptrdiff_t size;
886 eassert (s);
887 size = strlen (s) + 1;
888 return memcpy (xmalloc (size), s, size);
889 }
890
891 /* Like above, but duplicates Lisp string to C string. */
892
893 char *
894 xlispstrdup (Lisp_Object string)
895 {
896 ptrdiff_t size = SBYTES (string) + 1;
897 return memcpy (xmalloc (size), SSDATA (string), size);
898 }
899
900 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
901 pointed to. If STRING is null, assign it without copying anything.
902 Allocate before freeing, to avoid a dangling pointer if allocation
903 fails. */
904
905 void
906 dupstring (char **ptr, char const *string)
907 {
908 char *old = *ptr;
909 *ptr = string ? xstrdup (string) : 0;
910 xfree (old);
911 }
912
913
914 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
915 argument is a const pointer. */
916
917 void
918 xputenv (char const *string)
919 {
920 if (putenv ((char *) string) != 0)
921 memory_full (0);
922 }
923
924 /* Return a newly allocated memory block of SIZE bytes, remembering
925 to free it when unwinding. */
926 void *
927 record_xmalloc (size_t size)
928 {
929 void *p = xmalloc (size);
930 record_unwind_protect_ptr (xfree, p);
931 return p;
932 }
933
934
935 /* Like malloc but used for allocating Lisp data. NBYTES is the
936 number of bytes to allocate, TYPE describes the intended use of the
937 allocated memory block (for strings, for conses, ...). */
938
939 #if ! USE_LSB_TAG
940 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
941 #endif
942
943 static void *
944 lisp_malloc (size_t nbytes, enum mem_type type)
945 {
946 register void *val;
947
948 MALLOC_BLOCK_INPUT;
949
950 #ifdef GC_MALLOC_CHECK
951 allocated_mem_type = type;
952 #endif
953
954 val = malloc (nbytes);
955
956 #if ! USE_LSB_TAG
957 /* If the memory just allocated cannot be addressed thru a Lisp
958 object's pointer, and it needs to be,
959 that's equivalent to running out of memory. */
960 if (val && type != MEM_TYPE_NON_LISP)
961 {
962 Lisp_Object tem;
963 XSETCONS (tem, (char *) val + nbytes - 1);
964 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
965 {
966 lisp_malloc_loser = val;
967 free (val);
968 val = 0;
969 }
970 }
971 #endif
972
973 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
974 if (val && type != MEM_TYPE_NON_LISP)
975 mem_insert (val, (char *) val + nbytes, type);
976 #endif
977
978 MALLOC_UNBLOCK_INPUT;
979 if (!val && nbytes)
980 memory_full (nbytes);
981 MALLOC_PROBE (nbytes);
982 return val;
983 }
984
985 /* Free BLOCK. This must be called to free memory allocated with a
986 call to lisp_malloc. */
987
988 static void
989 lisp_free (void *block)
990 {
991 MALLOC_BLOCK_INPUT;
992 free (block);
993 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
994 mem_delete (mem_find (block));
995 #endif
996 MALLOC_UNBLOCK_INPUT;
997 }
998
999 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1000
1001 /* The entry point is lisp_align_malloc which returns blocks of at most
1002 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1003
1004 /* Use aligned_alloc if it or a simple substitute is available.
1005 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1006 clang 3.3 anyway. */
1007
1008 #if ! ADDRESS_SANITIZER
1009 # if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC
1010 # define USE_ALIGNED_ALLOC 1
1011 /* Defined in gmalloc.c. */
1012 void *aligned_alloc (size_t, size_t);
1013 # elif defined HAVE_ALIGNED_ALLOC
1014 # define USE_ALIGNED_ALLOC 1
1015 # elif defined HAVE_POSIX_MEMALIGN
1016 # define USE_ALIGNED_ALLOC 1
1017 static void *
1018 aligned_alloc (size_t alignment, size_t size)
1019 {
1020 void *p;
1021 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1022 }
1023 # endif
1024 #endif
1025
1026 /* BLOCK_ALIGN has to be a power of 2. */
1027 #define BLOCK_ALIGN (1 << 10)
1028
1029 /* Padding to leave at the end of a malloc'd block. This is to give
1030 malloc a chance to minimize the amount of memory wasted to alignment.
1031 It should be tuned to the particular malloc library used.
1032 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1033 aligned_alloc on the other hand would ideally prefer a value of 4
1034 because otherwise, there's 1020 bytes wasted between each ablocks.
1035 In Emacs, testing shows that those 1020 can most of the time be
1036 efficiently used by malloc to place other objects, so a value of 0 can
1037 still preferable unless you have a lot of aligned blocks and virtually
1038 nothing else. */
1039 #define BLOCK_PADDING 0
1040 #define BLOCK_BYTES \
1041 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1042
1043 /* Internal data structures and constants. */
1044
1045 #define ABLOCKS_SIZE 16
1046
1047 /* An aligned block of memory. */
1048 struct ablock
1049 {
1050 union
1051 {
1052 char payload[BLOCK_BYTES];
1053 struct ablock *next_free;
1054 } x;
1055 /* `abase' is the aligned base of the ablocks. */
1056 /* It is overloaded to hold the virtual `busy' field that counts
1057 the number of used ablock in the parent ablocks.
1058 The first ablock has the `busy' field, the others have the `abase'
1059 field. To tell the difference, we assume that pointers will have
1060 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1061 is used to tell whether the real base of the parent ablocks is `abase'
1062 (if not, the word before the first ablock holds a pointer to the
1063 real base). */
1064 struct ablocks *abase;
1065 /* The padding of all but the last ablock is unused. The padding of
1066 the last ablock in an ablocks is not allocated. */
1067 #if BLOCK_PADDING
1068 char padding[BLOCK_PADDING];
1069 #endif
1070 };
1071
1072 /* A bunch of consecutive aligned blocks. */
1073 struct ablocks
1074 {
1075 struct ablock blocks[ABLOCKS_SIZE];
1076 };
1077
1078 /* Size of the block requested from malloc or aligned_alloc. */
1079 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1080
1081 #define ABLOCK_ABASE(block) \
1082 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1083 ? (struct ablocks *)(block) \
1084 : (block)->abase)
1085
1086 /* Virtual `busy' field. */
1087 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1088
1089 /* Pointer to the (not necessarily aligned) malloc block. */
1090 #ifdef USE_ALIGNED_ALLOC
1091 #define ABLOCKS_BASE(abase) (abase)
1092 #else
1093 #define ABLOCKS_BASE(abase) \
1094 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1095 #endif
1096
1097 /* The list of free ablock. */
1098 static struct ablock *free_ablock;
1099
1100 /* Allocate an aligned block of nbytes.
1101 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1102 smaller or equal to BLOCK_BYTES. */
1103 static void *
1104 lisp_align_malloc (size_t nbytes, enum mem_type type)
1105 {
1106 void *base, *val;
1107 struct ablocks *abase;
1108
1109 eassert (nbytes <= BLOCK_BYTES);
1110
1111 MALLOC_BLOCK_INPUT;
1112
1113 #ifdef GC_MALLOC_CHECK
1114 allocated_mem_type = type;
1115 #endif
1116
1117 if (!free_ablock)
1118 {
1119 int i;
1120 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1121
1122 #ifdef DOUG_LEA_MALLOC
1123 if (!mmap_lisp_allowed_p ())
1124 mallopt (M_MMAP_MAX, 0);
1125 #endif
1126
1127 #ifdef USE_ALIGNED_ALLOC
1128 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1129 #else
1130 base = malloc (ABLOCKS_BYTES);
1131 abase = ALIGN (base, BLOCK_ALIGN);
1132 #endif
1133
1134 if (base == 0)
1135 {
1136 MALLOC_UNBLOCK_INPUT;
1137 memory_full (ABLOCKS_BYTES);
1138 }
1139
1140 aligned = (base == abase);
1141 if (!aligned)
1142 ((void **) abase)[-1] = base;
1143
1144 #ifdef DOUG_LEA_MALLOC
1145 if (!mmap_lisp_allowed_p ())
1146 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1147 #endif
1148
1149 #if ! USE_LSB_TAG
1150 /* If the memory just allocated cannot be addressed thru a Lisp
1151 object's pointer, and it needs to be, that's equivalent to
1152 running out of memory. */
1153 if (type != MEM_TYPE_NON_LISP)
1154 {
1155 Lisp_Object tem;
1156 char *end = (char *) base + ABLOCKS_BYTES - 1;
1157 XSETCONS (tem, end);
1158 if ((char *) XCONS (tem) != end)
1159 {
1160 lisp_malloc_loser = base;
1161 free (base);
1162 MALLOC_UNBLOCK_INPUT;
1163 memory_full (SIZE_MAX);
1164 }
1165 }
1166 #endif
1167
1168 /* Initialize the blocks and put them on the free list.
1169 If `base' was not properly aligned, we can't use the last block. */
1170 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1171 {
1172 abase->blocks[i].abase = abase;
1173 abase->blocks[i].x.next_free = free_ablock;
1174 free_ablock = &abase->blocks[i];
1175 }
1176 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1177
1178 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1179 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1180 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1181 eassert (ABLOCKS_BASE (abase) == base);
1182 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1183 }
1184
1185 abase = ABLOCK_ABASE (free_ablock);
1186 ABLOCKS_BUSY (abase)
1187 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1188 val = free_ablock;
1189 free_ablock = free_ablock->x.next_free;
1190
1191 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1192 if (type != MEM_TYPE_NON_LISP)
1193 mem_insert (val, (char *) val + nbytes, type);
1194 #endif
1195
1196 MALLOC_UNBLOCK_INPUT;
1197
1198 MALLOC_PROBE (nbytes);
1199
1200 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1201 return val;
1202 }
1203
1204 static void
1205 lisp_align_free (void *block)
1206 {
1207 struct ablock *ablock = block;
1208 struct ablocks *abase = ABLOCK_ABASE (ablock);
1209
1210 MALLOC_BLOCK_INPUT;
1211 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1212 mem_delete (mem_find (block));
1213 #endif
1214 /* Put on free list. */
1215 ablock->x.next_free = free_ablock;
1216 free_ablock = ablock;
1217 /* Update busy count. */
1218 ABLOCKS_BUSY (abase)
1219 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1220
1221 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1222 { /* All the blocks are free. */
1223 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1224 struct ablock **tem = &free_ablock;
1225 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1226
1227 while (*tem)
1228 {
1229 if (*tem >= (struct ablock *) abase && *tem < atop)
1230 {
1231 i++;
1232 *tem = (*tem)->x.next_free;
1233 }
1234 else
1235 tem = &(*tem)->x.next_free;
1236 }
1237 eassert ((aligned & 1) == aligned);
1238 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1239 #ifdef USE_POSIX_MEMALIGN
1240 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1241 #endif
1242 free (ABLOCKS_BASE (abase));
1243 }
1244 MALLOC_UNBLOCK_INPUT;
1245 }
1246
1247 \f
1248 /***********************************************************************
1249 Interval Allocation
1250 ***********************************************************************/
1251
1252 /* Number of intervals allocated in an interval_block structure.
1253 The 1020 is 1024 minus malloc overhead. */
1254
1255 #define INTERVAL_BLOCK_SIZE \
1256 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1257
1258 /* Intervals are allocated in chunks in the form of an interval_block
1259 structure. */
1260
1261 struct interval_block
1262 {
1263 /* Place `intervals' first, to preserve alignment. */
1264 struct interval intervals[INTERVAL_BLOCK_SIZE];
1265 struct interval_block *next;
1266 };
1267
1268 /* Current interval block. Its `next' pointer points to older
1269 blocks. */
1270
1271 static struct interval_block *interval_block;
1272
1273 /* Index in interval_block above of the next unused interval
1274 structure. */
1275
1276 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1277
1278 /* Number of free and live intervals. */
1279
1280 static EMACS_INT total_free_intervals, total_intervals;
1281
1282 /* List of free intervals. */
1283
1284 static INTERVAL interval_free_list;
1285
1286 /* Return a new interval. */
1287
1288 INTERVAL
1289 make_interval (void)
1290 {
1291 INTERVAL val;
1292
1293 MALLOC_BLOCK_INPUT;
1294
1295 if (interval_free_list)
1296 {
1297 val = interval_free_list;
1298 interval_free_list = INTERVAL_PARENT (interval_free_list);
1299 }
1300 else
1301 {
1302 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1303 {
1304 struct interval_block *newi
1305 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1306
1307 newi->next = interval_block;
1308 interval_block = newi;
1309 interval_block_index = 0;
1310 total_free_intervals += INTERVAL_BLOCK_SIZE;
1311 }
1312 val = &interval_block->intervals[interval_block_index++];
1313 }
1314
1315 MALLOC_UNBLOCK_INPUT;
1316
1317 consing_since_gc += sizeof (struct interval);
1318 intervals_consed++;
1319 total_free_intervals--;
1320 RESET_INTERVAL (val);
1321 val->gcmarkbit = 0;
1322 return val;
1323 }
1324
1325
1326 /* Mark Lisp objects in interval I. */
1327
1328 static void
1329 mark_interval (register INTERVAL i, Lisp_Object dummy)
1330 {
1331 /* Intervals should never be shared. So, if extra internal checking is
1332 enabled, GC aborts if it seems to have visited an interval twice. */
1333 eassert (!i->gcmarkbit);
1334 i->gcmarkbit = 1;
1335 mark_object (i->plist);
1336 }
1337
1338 /* Mark the interval tree rooted in I. */
1339
1340 #define MARK_INTERVAL_TREE(i) \
1341 do { \
1342 if (i && !i->gcmarkbit) \
1343 traverse_intervals_noorder (i, mark_interval, Qnil); \
1344 } while (0)
1345
1346 /***********************************************************************
1347 String Allocation
1348 ***********************************************************************/
1349
1350 /* Lisp_Strings are allocated in string_block structures. When a new
1351 string_block is allocated, all the Lisp_Strings it contains are
1352 added to a free-list string_free_list. When a new Lisp_String is
1353 needed, it is taken from that list. During the sweep phase of GC,
1354 string_blocks that are entirely free are freed, except two which
1355 we keep.
1356
1357 String data is allocated from sblock structures. Strings larger
1358 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1359 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1360
1361 Sblocks consist internally of sdata structures, one for each
1362 Lisp_String. The sdata structure points to the Lisp_String it
1363 belongs to. The Lisp_String points back to the `u.data' member of
1364 its sdata structure.
1365
1366 When a Lisp_String is freed during GC, it is put back on
1367 string_free_list, and its `data' member and its sdata's `string'
1368 pointer is set to null. The size of the string is recorded in the
1369 `n.nbytes' member of the sdata. So, sdata structures that are no
1370 longer used, can be easily recognized, and it's easy to compact the
1371 sblocks of small strings which we do in compact_small_strings. */
1372
1373 /* Size in bytes of an sblock structure used for small strings. This
1374 is 8192 minus malloc overhead. */
1375
1376 #define SBLOCK_SIZE 8188
1377
1378 /* Strings larger than this are considered large strings. String data
1379 for large strings is allocated from individual sblocks. */
1380
1381 #define LARGE_STRING_BYTES 1024
1382
1383 /* The SDATA typedef is a struct or union describing string memory
1384 sub-allocated from an sblock. This is where the contents of Lisp
1385 strings are stored. */
1386
1387 struct sdata
1388 {
1389 /* Back-pointer to the string this sdata belongs to. If null, this
1390 structure is free, and NBYTES (in this structure or in the union below)
1391 contains the string's byte size (the same value that STRING_BYTES
1392 would return if STRING were non-null). If non-null, STRING_BYTES
1393 (STRING) is the size of the data, and DATA contains the string's
1394 contents. */
1395 struct Lisp_String *string;
1396
1397 #ifdef GC_CHECK_STRING_BYTES
1398 ptrdiff_t nbytes;
1399 #endif
1400
1401 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1402 };
1403
1404 #ifdef GC_CHECK_STRING_BYTES
1405
1406 typedef struct sdata sdata;
1407 #define SDATA_NBYTES(S) (S)->nbytes
1408 #define SDATA_DATA(S) (S)->data
1409
1410 #else
1411
1412 typedef union
1413 {
1414 struct Lisp_String *string;
1415
1416 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1417 which has a flexible array member. However, if implemented by
1418 giving this union a member of type 'struct sdata', the union
1419 could not be the last (flexible) member of 'struct sblock',
1420 because C99 prohibits a flexible array member from having a type
1421 that is itself a flexible array. So, comment this member out here,
1422 but remember that the option's there when using this union. */
1423 #if 0
1424 struct sdata u;
1425 #endif
1426
1427 /* When STRING is null. */
1428 struct
1429 {
1430 struct Lisp_String *string;
1431 ptrdiff_t nbytes;
1432 } n;
1433 } sdata;
1434
1435 #define SDATA_NBYTES(S) (S)->n.nbytes
1436 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1437
1438 #endif /* not GC_CHECK_STRING_BYTES */
1439
1440 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1441
1442 /* Structure describing a block of memory which is sub-allocated to
1443 obtain string data memory for strings. Blocks for small strings
1444 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1445 as large as needed. */
1446
1447 struct sblock
1448 {
1449 /* Next in list. */
1450 struct sblock *next;
1451
1452 /* Pointer to the next free sdata block. This points past the end
1453 of the sblock if there isn't any space left in this block. */
1454 sdata *next_free;
1455
1456 /* String data. */
1457 sdata data[FLEXIBLE_ARRAY_MEMBER];
1458 };
1459
1460 /* Number of Lisp strings in a string_block structure. The 1020 is
1461 1024 minus malloc overhead. */
1462
1463 #define STRING_BLOCK_SIZE \
1464 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1465
1466 /* Structure describing a block from which Lisp_String structures
1467 are allocated. */
1468
1469 struct string_block
1470 {
1471 /* Place `strings' first, to preserve alignment. */
1472 struct Lisp_String strings[STRING_BLOCK_SIZE];
1473 struct string_block *next;
1474 };
1475
1476 /* Head and tail of the list of sblock structures holding Lisp string
1477 data. We always allocate from current_sblock. The NEXT pointers
1478 in the sblock structures go from oldest_sblock to current_sblock. */
1479
1480 static struct sblock *oldest_sblock, *current_sblock;
1481
1482 /* List of sblocks for large strings. */
1483
1484 static struct sblock *large_sblocks;
1485
1486 /* List of string_block structures. */
1487
1488 static struct string_block *string_blocks;
1489
1490 /* Free-list of Lisp_Strings. */
1491
1492 static struct Lisp_String *string_free_list;
1493
1494 /* Number of live and free Lisp_Strings. */
1495
1496 static EMACS_INT total_strings, total_free_strings;
1497
1498 /* Number of bytes used by live strings. */
1499
1500 static EMACS_INT total_string_bytes;
1501
1502 /* Given a pointer to a Lisp_String S which is on the free-list
1503 string_free_list, return a pointer to its successor in the
1504 free-list. */
1505
1506 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1507
1508 /* Return a pointer to the sdata structure belonging to Lisp string S.
1509 S must be live, i.e. S->data must not be null. S->data is actually
1510 a pointer to the `u.data' member of its sdata structure; the
1511 structure starts at a constant offset in front of that. */
1512
1513 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1514
1515
1516 #ifdef GC_CHECK_STRING_OVERRUN
1517
1518 /* We check for overrun in string data blocks by appending a small
1519 "cookie" after each allocated string data block, and check for the
1520 presence of this cookie during GC. */
1521
1522 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1523 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1524 { '\xde', '\xad', '\xbe', '\xef' };
1525
1526 #else
1527 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1528 #endif
1529
1530 /* Value is the size of an sdata structure large enough to hold NBYTES
1531 bytes of string data. The value returned includes a terminating
1532 NUL byte, the size of the sdata structure, and padding. */
1533
1534 #ifdef GC_CHECK_STRING_BYTES
1535
1536 #define SDATA_SIZE(NBYTES) \
1537 ((SDATA_DATA_OFFSET \
1538 + (NBYTES) + 1 \
1539 + sizeof (ptrdiff_t) - 1) \
1540 & ~(sizeof (ptrdiff_t) - 1))
1541
1542 #else /* not GC_CHECK_STRING_BYTES */
1543
1544 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1545 less than the size of that member. The 'max' is not needed when
1546 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1547 alignment code reserves enough space. */
1548
1549 #define SDATA_SIZE(NBYTES) \
1550 ((SDATA_DATA_OFFSET \
1551 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1552 ? NBYTES \
1553 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1554 + 1 \
1555 + sizeof (ptrdiff_t) - 1) \
1556 & ~(sizeof (ptrdiff_t) - 1))
1557
1558 #endif /* not GC_CHECK_STRING_BYTES */
1559
1560 /* Extra bytes to allocate for each string. */
1561
1562 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1563
1564 /* Exact bound on the number of bytes in a string, not counting the
1565 terminating null. A string cannot contain more bytes than
1566 STRING_BYTES_BOUND, nor can it be so long that the size_t
1567 arithmetic in allocate_string_data would overflow while it is
1568 calculating a value to be passed to malloc. */
1569 static ptrdiff_t const STRING_BYTES_MAX =
1570 min (STRING_BYTES_BOUND,
1571 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1572 - GC_STRING_EXTRA
1573 - offsetof (struct sblock, data)
1574 - SDATA_DATA_OFFSET)
1575 & ~(sizeof (EMACS_INT) - 1)));
1576
1577 /* Initialize string allocation. Called from init_alloc_once. */
1578
1579 static void
1580 init_strings (void)
1581 {
1582 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1583 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1584 }
1585
1586
1587 #ifdef GC_CHECK_STRING_BYTES
1588
1589 static int check_string_bytes_count;
1590
1591 /* Like STRING_BYTES, but with debugging check. Can be
1592 called during GC, so pay attention to the mark bit. */
1593
1594 ptrdiff_t
1595 string_bytes (struct Lisp_String *s)
1596 {
1597 ptrdiff_t nbytes =
1598 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1599
1600 if (!PURE_POINTER_P (s)
1601 && s->data
1602 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1603 emacs_abort ();
1604 return nbytes;
1605 }
1606
1607 /* Check validity of Lisp strings' string_bytes member in B. */
1608
1609 static void
1610 check_sblock (struct sblock *b)
1611 {
1612 sdata *from, *end, *from_end;
1613
1614 end = b->next_free;
1615
1616 for (from = b->data; from < end; from = from_end)
1617 {
1618 /* Compute the next FROM here because copying below may
1619 overwrite data we need to compute it. */
1620 ptrdiff_t nbytes;
1621
1622 /* Check that the string size recorded in the string is the
1623 same as the one recorded in the sdata structure. */
1624 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1625 : SDATA_NBYTES (from));
1626 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1627 }
1628 }
1629
1630
1631 /* Check validity of Lisp strings' string_bytes member. ALL_P
1632 means check all strings, otherwise check only most
1633 recently allocated strings. Used for hunting a bug. */
1634
1635 static void
1636 check_string_bytes (bool all_p)
1637 {
1638 if (all_p)
1639 {
1640 struct sblock *b;
1641
1642 for (b = large_sblocks; b; b = b->next)
1643 {
1644 struct Lisp_String *s = b->data[0].string;
1645 if (s)
1646 string_bytes (s);
1647 }
1648
1649 for (b = oldest_sblock; b; b = b->next)
1650 check_sblock (b);
1651 }
1652 else if (current_sblock)
1653 check_sblock (current_sblock);
1654 }
1655
1656 #else /* not GC_CHECK_STRING_BYTES */
1657
1658 #define check_string_bytes(all) ((void) 0)
1659
1660 #endif /* GC_CHECK_STRING_BYTES */
1661
1662 #ifdef GC_CHECK_STRING_FREE_LIST
1663
1664 /* Walk through the string free list looking for bogus next pointers.
1665 This may catch buffer overrun from a previous string. */
1666
1667 static void
1668 check_string_free_list (void)
1669 {
1670 struct Lisp_String *s;
1671
1672 /* Pop a Lisp_String off the free-list. */
1673 s = string_free_list;
1674 while (s != NULL)
1675 {
1676 if ((uintptr_t) s < 1024)
1677 emacs_abort ();
1678 s = NEXT_FREE_LISP_STRING (s);
1679 }
1680 }
1681 #else
1682 #define check_string_free_list()
1683 #endif
1684
1685 /* Return a new Lisp_String. */
1686
1687 static struct Lisp_String *
1688 allocate_string (void)
1689 {
1690 struct Lisp_String *s;
1691
1692 MALLOC_BLOCK_INPUT;
1693
1694 /* If the free-list is empty, allocate a new string_block, and
1695 add all the Lisp_Strings in it to the free-list. */
1696 if (string_free_list == NULL)
1697 {
1698 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1699 int i;
1700
1701 b->next = string_blocks;
1702 string_blocks = b;
1703
1704 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1705 {
1706 s = b->strings + i;
1707 /* Every string on a free list should have NULL data pointer. */
1708 s->data = NULL;
1709 NEXT_FREE_LISP_STRING (s) = string_free_list;
1710 string_free_list = s;
1711 }
1712
1713 total_free_strings += STRING_BLOCK_SIZE;
1714 }
1715
1716 check_string_free_list ();
1717
1718 /* Pop a Lisp_String off the free-list. */
1719 s = string_free_list;
1720 string_free_list = NEXT_FREE_LISP_STRING (s);
1721
1722 MALLOC_UNBLOCK_INPUT;
1723
1724 --total_free_strings;
1725 ++total_strings;
1726 ++strings_consed;
1727 consing_since_gc += sizeof *s;
1728
1729 #ifdef GC_CHECK_STRING_BYTES
1730 if (!noninteractive)
1731 {
1732 if (++check_string_bytes_count == 200)
1733 {
1734 check_string_bytes_count = 0;
1735 check_string_bytes (1);
1736 }
1737 else
1738 check_string_bytes (0);
1739 }
1740 #endif /* GC_CHECK_STRING_BYTES */
1741
1742 return s;
1743 }
1744
1745
1746 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1747 plus a NUL byte at the end. Allocate an sdata structure for S, and
1748 set S->data to its `u.data' member. Store a NUL byte at the end of
1749 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1750 S->data if it was initially non-null. */
1751
1752 void
1753 allocate_string_data (struct Lisp_String *s,
1754 EMACS_INT nchars, EMACS_INT nbytes)
1755 {
1756 sdata *data, *old_data;
1757 struct sblock *b;
1758 ptrdiff_t needed, old_nbytes;
1759
1760 if (STRING_BYTES_MAX < nbytes)
1761 string_overflow ();
1762
1763 /* Determine the number of bytes needed to store NBYTES bytes
1764 of string data. */
1765 needed = SDATA_SIZE (nbytes);
1766 if (s->data)
1767 {
1768 old_data = SDATA_OF_STRING (s);
1769 old_nbytes = STRING_BYTES (s);
1770 }
1771 else
1772 old_data = NULL;
1773
1774 MALLOC_BLOCK_INPUT;
1775
1776 if (nbytes > LARGE_STRING_BYTES)
1777 {
1778 size_t size = offsetof (struct sblock, data) + needed;
1779
1780 #ifdef DOUG_LEA_MALLOC
1781 if (!mmap_lisp_allowed_p ())
1782 mallopt (M_MMAP_MAX, 0);
1783 #endif
1784
1785 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1786
1787 #ifdef DOUG_LEA_MALLOC
1788 if (!mmap_lisp_allowed_p ())
1789 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1790 #endif
1791
1792 b->next_free = b->data;
1793 b->data[0].string = NULL;
1794 b->next = large_sblocks;
1795 large_sblocks = b;
1796 }
1797 else if (current_sblock == NULL
1798 || (((char *) current_sblock + SBLOCK_SIZE
1799 - (char *) current_sblock->next_free)
1800 < (needed + GC_STRING_EXTRA)))
1801 {
1802 /* Not enough room in the current sblock. */
1803 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1804 b->next_free = b->data;
1805 b->data[0].string = NULL;
1806 b->next = NULL;
1807
1808 if (current_sblock)
1809 current_sblock->next = b;
1810 else
1811 oldest_sblock = b;
1812 current_sblock = b;
1813 }
1814 else
1815 b = current_sblock;
1816
1817 data = b->next_free;
1818 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1819
1820 MALLOC_UNBLOCK_INPUT;
1821
1822 data->string = s;
1823 s->data = SDATA_DATA (data);
1824 #ifdef GC_CHECK_STRING_BYTES
1825 SDATA_NBYTES (data) = nbytes;
1826 #endif
1827 s->size = nchars;
1828 s->size_byte = nbytes;
1829 s->data[nbytes] = '\0';
1830 #ifdef GC_CHECK_STRING_OVERRUN
1831 memcpy ((char *) data + needed, string_overrun_cookie,
1832 GC_STRING_OVERRUN_COOKIE_SIZE);
1833 #endif
1834
1835 /* Note that Faset may call to this function when S has already data
1836 assigned. In this case, mark data as free by setting it's string
1837 back-pointer to null, and record the size of the data in it. */
1838 if (old_data)
1839 {
1840 SDATA_NBYTES (old_data) = old_nbytes;
1841 old_data->string = NULL;
1842 }
1843
1844 consing_since_gc += needed;
1845 }
1846
1847
1848 /* Sweep and compact strings. */
1849
1850 NO_INLINE /* For better stack traces */
1851 static void
1852 sweep_strings (void)
1853 {
1854 struct string_block *b, *next;
1855 struct string_block *live_blocks = NULL;
1856
1857 string_free_list = NULL;
1858 total_strings = total_free_strings = 0;
1859 total_string_bytes = 0;
1860
1861 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1862 for (b = string_blocks; b; b = next)
1863 {
1864 int i, nfree = 0;
1865 struct Lisp_String *free_list_before = string_free_list;
1866
1867 next = b->next;
1868
1869 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1870 {
1871 struct Lisp_String *s = b->strings + i;
1872
1873 if (s->data)
1874 {
1875 /* String was not on free-list before. */
1876 if (STRING_MARKED_P (s))
1877 {
1878 /* String is live; unmark it and its intervals. */
1879 UNMARK_STRING (s);
1880
1881 /* Do not use string_(set|get)_intervals here. */
1882 s->intervals = balance_intervals (s->intervals);
1883
1884 ++total_strings;
1885 total_string_bytes += STRING_BYTES (s);
1886 }
1887 else
1888 {
1889 /* String is dead. Put it on the free-list. */
1890 sdata *data = SDATA_OF_STRING (s);
1891
1892 /* Save the size of S in its sdata so that we know
1893 how large that is. Reset the sdata's string
1894 back-pointer so that we know it's free. */
1895 #ifdef GC_CHECK_STRING_BYTES
1896 if (string_bytes (s) != SDATA_NBYTES (data))
1897 emacs_abort ();
1898 #else
1899 data->n.nbytes = STRING_BYTES (s);
1900 #endif
1901 data->string = NULL;
1902
1903 /* Reset the strings's `data' member so that we
1904 know it's free. */
1905 s->data = NULL;
1906
1907 /* Put the string on the free-list. */
1908 NEXT_FREE_LISP_STRING (s) = string_free_list;
1909 string_free_list = s;
1910 ++nfree;
1911 }
1912 }
1913 else
1914 {
1915 /* S was on the free-list before. Put it there again. */
1916 NEXT_FREE_LISP_STRING (s) = string_free_list;
1917 string_free_list = s;
1918 ++nfree;
1919 }
1920 }
1921
1922 /* Free blocks that contain free Lisp_Strings only, except
1923 the first two of them. */
1924 if (nfree == STRING_BLOCK_SIZE
1925 && total_free_strings > STRING_BLOCK_SIZE)
1926 {
1927 lisp_free (b);
1928 string_free_list = free_list_before;
1929 }
1930 else
1931 {
1932 total_free_strings += nfree;
1933 b->next = live_blocks;
1934 live_blocks = b;
1935 }
1936 }
1937
1938 check_string_free_list ();
1939
1940 string_blocks = live_blocks;
1941 free_large_strings ();
1942 compact_small_strings ();
1943
1944 check_string_free_list ();
1945 }
1946
1947
1948 /* Free dead large strings. */
1949
1950 static void
1951 free_large_strings (void)
1952 {
1953 struct sblock *b, *next;
1954 struct sblock *live_blocks = NULL;
1955
1956 for (b = large_sblocks; b; b = next)
1957 {
1958 next = b->next;
1959
1960 if (b->data[0].string == NULL)
1961 lisp_free (b);
1962 else
1963 {
1964 b->next = live_blocks;
1965 live_blocks = b;
1966 }
1967 }
1968
1969 large_sblocks = live_blocks;
1970 }
1971
1972
1973 /* Compact data of small strings. Free sblocks that don't contain
1974 data of live strings after compaction. */
1975
1976 static void
1977 compact_small_strings (void)
1978 {
1979 struct sblock *b, *tb, *next;
1980 sdata *from, *to, *end, *tb_end;
1981 sdata *to_end, *from_end;
1982
1983 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1984 to, and TB_END is the end of TB. */
1985 tb = oldest_sblock;
1986 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1987 to = tb->data;
1988
1989 /* Step through the blocks from the oldest to the youngest. We
1990 expect that old blocks will stabilize over time, so that less
1991 copying will happen this way. */
1992 for (b = oldest_sblock; b; b = b->next)
1993 {
1994 end = b->next_free;
1995 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1996
1997 for (from = b->data; from < end; from = from_end)
1998 {
1999 /* Compute the next FROM here because copying below may
2000 overwrite data we need to compute it. */
2001 ptrdiff_t nbytes;
2002 struct Lisp_String *s = from->string;
2003
2004 #ifdef GC_CHECK_STRING_BYTES
2005 /* Check that the string size recorded in the string is the
2006 same as the one recorded in the sdata structure. */
2007 if (s && string_bytes (s) != SDATA_NBYTES (from))
2008 emacs_abort ();
2009 #endif /* GC_CHECK_STRING_BYTES */
2010
2011 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2012 eassert (nbytes <= LARGE_STRING_BYTES);
2013
2014 nbytes = SDATA_SIZE (nbytes);
2015 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2016
2017 #ifdef GC_CHECK_STRING_OVERRUN
2018 if (memcmp (string_overrun_cookie,
2019 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2020 GC_STRING_OVERRUN_COOKIE_SIZE))
2021 emacs_abort ();
2022 #endif
2023
2024 /* Non-NULL S means it's alive. Copy its data. */
2025 if (s)
2026 {
2027 /* If TB is full, proceed with the next sblock. */
2028 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2029 if (to_end > tb_end)
2030 {
2031 tb->next_free = to;
2032 tb = tb->next;
2033 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2034 to = tb->data;
2035 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2036 }
2037
2038 /* Copy, and update the string's `data' pointer. */
2039 if (from != to)
2040 {
2041 eassert (tb != b || to < from);
2042 memmove (to, from, nbytes + GC_STRING_EXTRA);
2043 to->string->data = SDATA_DATA (to);
2044 }
2045
2046 /* Advance past the sdata we copied to. */
2047 to = to_end;
2048 }
2049 }
2050 }
2051
2052 /* The rest of the sblocks following TB don't contain live data, so
2053 we can free them. */
2054 for (b = tb->next; b; b = next)
2055 {
2056 next = b->next;
2057 lisp_free (b);
2058 }
2059
2060 tb->next_free = to;
2061 tb->next = NULL;
2062 current_sblock = tb;
2063 }
2064
2065 void
2066 string_overflow (void)
2067 {
2068 error ("Maximum string size exceeded");
2069 }
2070
2071 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2072 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2073 LENGTH must be an integer.
2074 INIT must be an integer that represents a character. */)
2075 (Lisp_Object length, Lisp_Object init)
2076 {
2077 register Lisp_Object val;
2078 int c;
2079 EMACS_INT nbytes;
2080
2081 CHECK_NATNUM (length);
2082 CHECK_CHARACTER (init);
2083
2084 c = XFASTINT (init);
2085 if (ASCII_CHAR_P (c))
2086 {
2087 nbytes = XINT (length);
2088 val = make_uninit_string (nbytes);
2089 memset (SDATA (val), c, nbytes);
2090 SDATA (val)[nbytes] = 0;
2091 }
2092 else
2093 {
2094 unsigned char str[MAX_MULTIBYTE_LENGTH];
2095 ptrdiff_t len = CHAR_STRING (c, str);
2096 EMACS_INT string_len = XINT (length);
2097 unsigned char *p, *beg, *end;
2098
2099 if (string_len > STRING_BYTES_MAX / len)
2100 string_overflow ();
2101 nbytes = len * string_len;
2102 val = make_uninit_multibyte_string (string_len, nbytes);
2103 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2104 {
2105 /* First time we just copy `str' to the data of `val'. */
2106 if (p == beg)
2107 memcpy (p, str, len);
2108 else
2109 {
2110 /* Next time we copy largest possible chunk from
2111 initialized to uninitialized part of `val'. */
2112 len = min (p - beg, end - p);
2113 memcpy (p, beg, len);
2114 }
2115 }
2116 *p = 0;
2117 }
2118
2119 return val;
2120 }
2121
2122 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2123 Return A. */
2124
2125 Lisp_Object
2126 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2127 {
2128 EMACS_INT nbits = bool_vector_size (a);
2129 if (0 < nbits)
2130 {
2131 unsigned char *data = bool_vector_uchar_data (a);
2132 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2133 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2134 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2135 memset (data, pattern, nbytes - 1);
2136 data[nbytes - 1] = pattern & last_mask;
2137 }
2138 return a;
2139 }
2140
2141 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2142
2143 Lisp_Object
2144 make_uninit_bool_vector (EMACS_INT nbits)
2145 {
2146 Lisp_Object val;
2147 EMACS_INT words = bool_vector_words (nbits);
2148 EMACS_INT word_bytes = words * sizeof (bits_word);
2149 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2150 + word_size - 1)
2151 / word_size);
2152 struct Lisp_Bool_Vector *p
2153 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2154 XSETVECTOR (val, p);
2155 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2156 p->size = nbits;
2157
2158 /* Clear padding at the end. */
2159 if (words)
2160 p->data[words - 1] = 0;
2161
2162 return val;
2163 }
2164
2165 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2166 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2167 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2168 (Lisp_Object length, Lisp_Object init)
2169 {
2170 Lisp_Object val;
2171
2172 CHECK_NATNUM (length);
2173 val = make_uninit_bool_vector (XFASTINT (length));
2174 return bool_vector_fill (val, init);
2175 }
2176
2177 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2178 doc: /* Return a new bool-vector with specified arguments as elements.
2179 Any number of arguments, even zero arguments, are allowed.
2180 usage: (bool-vector &rest OBJECTS) */)
2181 (ptrdiff_t nargs, Lisp_Object *args)
2182 {
2183 ptrdiff_t i;
2184 Lisp_Object vector;
2185
2186 vector = make_uninit_bool_vector (nargs);
2187 for (i = 0; i < nargs; i++)
2188 bool_vector_set (vector, i, !NILP (args[i]));
2189
2190 return vector;
2191 }
2192
2193 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2194 of characters from the contents. This string may be unibyte or
2195 multibyte, depending on the contents. */
2196
2197 Lisp_Object
2198 make_string (const char *contents, ptrdiff_t nbytes)
2199 {
2200 register Lisp_Object val;
2201 ptrdiff_t nchars, multibyte_nbytes;
2202
2203 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2204 &nchars, &multibyte_nbytes);
2205 if (nbytes == nchars || nbytes != multibyte_nbytes)
2206 /* CONTENTS contains no multibyte sequences or contains an invalid
2207 multibyte sequence. We must make unibyte string. */
2208 val = make_unibyte_string (contents, nbytes);
2209 else
2210 val = make_multibyte_string (contents, nchars, nbytes);
2211 return val;
2212 }
2213
2214
2215 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2216
2217 Lisp_Object
2218 make_unibyte_string (const char *contents, ptrdiff_t length)
2219 {
2220 register Lisp_Object val;
2221 val = make_uninit_string (length);
2222 memcpy (SDATA (val), contents, length);
2223 return val;
2224 }
2225
2226
2227 /* Make a multibyte string from NCHARS characters occupying NBYTES
2228 bytes at CONTENTS. */
2229
2230 Lisp_Object
2231 make_multibyte_string (const char *contents,
2232 ptrdiff_t nchars, ptrdiff_t nbytes)
2233 {
2234 register Lisp_Object val;
2235 val = make_uninit_multibyte_string (nchars, nbytes);
2236 memcpy (SDATA (val), contents, nbytes);
2237 return val;
2238 }
2239
2240
2241 /* Make a string from NCHARS characters occupying NBYTES bytes at
2242 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2243
2244 Lisp_Object
2245 make_string_from_bytes (const char *contents,
2246 ptrdiff_t nchars, ptrdiff_t nbytes)
2247 {
2248 register Lisp_Object val;
2249 val = make_uninit_multibyte_string (nchars, nbytes);
2250 memcpy (SDATA (val), contents, nbytes);
2251 if (SBYTES (val) == SCHARS (val))
2252 STRING_SET_UNIBYTE (val);
2253 return val;
2254 }
2255
2256
2257 /* Make a string from NCHARS characters occupying NBYTES bytes at
2258 CONTENTS. The argument MULTIBYTE controls whether to label the
2259 string as multibyte. If NCHARS is negative, it counts the number of
2260 characters by itself. */
2261
2262 Lisp_Object
2263 make_specified_string (const char *contents,
2264 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2265 {
2266 Lisp_Object val;
2267
2268 if (nchars < 0)
2269 {
2270 if (multibyte)
2271 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2272 nbytes);
2273 else
2274 nchars = nbytes;
2275 }
2276 val = make_uninit_multibyte_string (nchars, nbytes);
2277 memcpy (SDATA (val), contents, nbytes);
2278 if (!multibyte)
2279 STRING_SET_UNIBYTE (val);
2280 return val;
2281 }
2282
2283
2284 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2285 occupying LENGTH bytes. */
2286
2287 Lisp_Object
2288 make_uninit_string (EMACS_INT length)
2289 {
2290 Lisp_Object val;
2291
2292 if (!length)
2293 return empty_unibyte_string;
2294 val = make_uninit_multibyte_string (length, length);
2295 STRING_SET_UNIBYTE (val);
2296 return val;
2297 }
2298
2299
2300 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2301 which occupy NBYTES bytes. */
2302
2303 Lisp_Object
2304 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2305 {
2306 Lisp_Object string;
2307 struct Lisp_String *s;
2308
2309 if (nchars < 0)
2310 emacs_abort ();
2311 if (!nbytes)
2312 return empty_multibyte_string;
2313
2314 s = allocate_string ();
2315 s->intervals = NULL;
2316 allocate_string_data (s, nchars, nbytes);
2317 XSETSTRING (string, s);
2318 string_chars_consed += nbytes;
2319 return string;
2320 }
2321
2322 /* Print arguments to BUF according to a FORMAT, then return
2323 a Lisp_String initialized with the data from BUF. */
2324
2325 Lisp_Object
2326 make_formatted_string (char *buf, const char *format, ...)
2327 {
2328 va_list ap;
2329 int length;
2330
2331 va_start (ap, format);
2332 length = vsprintf (buf, format, ap);
2333 va_end (ap);
2334 return make_string (buf, length);
2335 }
2336
2337 \f
2338 /***********************************************************************
2339 Float Allocation
2340 ***********************************************************************/
2341
2342 /* We store float cells inside of float_blocks, allocating a new
2343 float_block with malloc whenever necessary. Float cells reclaimed
2344 by GC are put on a free list to be reallocated before allocating
2345 any new float cells from the latest float_block. */
2346
2347 #define FLOAT_BLOCK_SIZE \
2348 (((BLOCK_BYTES - sizeof (struct float_block *) \
2349 /* The compiler might add padding at the end. */ \
2350 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2351 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2352
2353 #define GETMARKBIT(block,n) \
2354 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2355 >> ((n) % BITS_PER_BITS_WORD)) \
2356 & 1)
2357
2358 #define SETMARKBIT(block,n) \
2359 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2360 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2361
2362 #define UNSETMARKBIT(block,n) \
2363 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2364 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2365
2366 #define FLOAT_BLOCK(fptr) \
2367 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2368
2369 #define FLOAT_INDEX(fptr) \
2370 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2371
2372 struct float_block
2373 {
2374 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2375 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2376 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2377 struct float_block *next;
2378 };
2379
2380 #define FLOAT_MARKED_P(fptr) \
2381 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2382
2383 #define FLOAT_MARK(fptr) \
2384 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2385
2386 #define FLOAT_UNMARK(fptr) \
2387 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2388
2389 /* Current float_block. */
2390
2391 static struct float_block *float_block;
2392
2393 /* Index of first unused Lisp_Float in the current float_block. */
2394
2395 static int float_block_index = FLOAT_BLOCK_SIZE;
2396
2397 /* Free-list of Lisp_Floats. */
2398
2399 static struct Lisp_Float *float_free_list;
2400
2401 /* Return a new float object with value FLOAT_VALUE. */
2402
2403 Lisp_Object
2404 make_float (double float_value)
2405 {
2406 register Lisp_Object val;
2407
2408 MALLOC_BLOCK_INPUT;
2409
2410 if (float_free_list)
2411 {
2412 /* We use the data field for chaining the free list
2413 so that we won't use the same field that has the mark bit. */
2414 XSETFLOAT (val, float_free_list);
2415 float_free_list = float_free_list->u.chain;
2416 }
2417 else
2418 {
2419 if (float_block_index == FLOAT_BLOCK_SIZE)
2420 {
2421 struct float_block *new
2422 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2423 new->next = float_block;
2424 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2425 float_block = new;
2426 float_block_index = 0;
2427 total_free_floats += FLOAT_BLOCK_SIZE;
2428 }
2429 XSETFLOAT (val, &float_block->floats[float_block_index]);
2430 float_block_index++;
2431 }
2432
2433 MALLOC_UNBLOCK_INPUT;
2434
2435 XFLOAT_INIT (val, float_value);
2436 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2437 consing_since_gc += sizeof (struct Lisp_Float);
2438 floats_consed++;
2439 total_free_floats--;
2440 return val;
2441 }
2442
2443
2444 \f
2445 /***********************************************************************
2446 Cons Allocation
2447 ***********************************************************************/
2448
2449 /* We store cons cells inside of cons_blocks, allocating a new
2450 cons_block with malloc whenever necessary. Cons cells reclaimed by
2451 GC are put on a free list to be reallocated before allocating
2452 any new cons cells from the latest cons_block. */
2453
2454 #define CONS_BLOCK_SIZE \
2455 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2456 /* The compiler might add padding at the end. */ \
2457 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2458 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2459
2460 #define CONS_BLOCK(fptr) \
2461 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2462
2463 #define CONS_INDEX(fptr) \
2464 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2465
2466 struct cons_block
2467 {
2468 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2469 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2470 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2471 struct cons_block *next;
2472 };
2473
2474 #define CONS_MARKED_P(fptr) \
2475 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2476
2477 #define CONS_MARK(fptr) \
2478 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2479
2480 #define CONS_UNMARK(fptr) \
2481 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2482
2483 /* Current cons_block. */
2484
2485 static struct cons_block *cons_block;
2486
2487 /* Index of first unused Lisp_Cons in the current block. */
2488
2489 static int cons_block_index = CONS_BLOCK_SIZE;
2490
2491 /* Free-list of Lisp_Cons structures. */
2492
2493 static struct Lisp_Cons *cons_free_list;
2494
2495 /* Explicitly free a cons cell by putting it on the free-list. */
2496
2497 void
2498 free_cons (struct Lisp_Cons *ptr)
2499 {
2500 ptr->u.chain = cons_free_list;
2501 #if GC_MARK_STACK
2502 ptr->car = Vdead;
2503 #endif
2504 cons_free_list = ptr;
2505 consing_since_gc -= sizeof *ptr;
2506 total_free_conses++;
2507 }
2508
2509 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2510 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2511 (Lisp_Object car, Lisp_Object cdr)
2512 {
2513 register Lisp_Object val;
2514
2515 MALLOC_BLOCK_INPUT;
2516
2517 if (cons_free_list)
2518 {
2519 /* We use the cdr for chaining the free list
2520 so that we won't use the same field that has the mark bit. */
2521 XSETCONS (val, cons_free_list);
2522 cons_free_list = cons_free_list->u.chain;
2523 }
2524 else
2525 {
2526 if (cons_block_index == CONS_BLOCK_SIZE)
2527 {
2528 struct cons_block *new
2529 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2530 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2531 new->next = cons_block;
2532 cons_block = new;
2533 cons_block_index = 0;
2534 total_free_conses += CONS_BLOCK_SIZE;
2535 }
2536 XSETCONS (val, &cons_block->conses[cons_block_index]);
2537 cons_block_index++;
2538 }
2539
2540 MALLOC_UNBLOCK_INPUT;
2541
2542 XSETCAR (val, car);
2543 XSETCDR (val, cdr);
2544 eassert (!CONS_MARKED_P (XCONS (val)));
2545 consing_since_gc += sizeof (struct Lisp_Cons);
2546 total_free_conses--;
2547 cons_cells_consed++;
2548 return val;
2549 }
2550
2551 #ifdef GC_CHECK_CONS_LIST
2552 /* Get an error now if there's any junk in the cons free list. */
2553 void
2554 check_cons_list (void)
2555 {
2556 struct Lisp_Cons *tail = cons_free_list;
2557
2558 while (tail)
2559 tail = tail->u.chain;
2560 }
2561 #endif
2562
2563 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2564
2565 Lisp_Object
2566 list1 (Lisp_Object arg1)
2567 {
2568 return Fcons (arg1, Qnil);
2569 }
2570
2571 Lisp_Object
2572 list2 (Lisp_Object arg1, Lisp_Object arg2)
2573 {
2574 return Fcons (arg1, Fcons (arg2, Qnil));
2575 }
2576
2577
2578 Lisp_Object
2579 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2580 {
2581 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2582 }
2583
2584
2585 Lisp_Object
2586 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2587 {
2588 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2589 }
2590
2591
2592 Lisp_Object
2593 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2594 {
2595 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2596 Fcons (arg5, Qnil)))));
2597 }
2598
2599 /* Make a list of COUNT Lisp_Objects, where ARG is the
2600 first one. Allocate conses from pure space if TYPE
2601 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2602
2603 Lisp_Object
2604 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2605 {
2606 va_list ap;
2607 ptrdiff_t i;
2608 Lisp_Object val, *objp;
2609
2610 /* Change to SAFE_ALLOCA if you hit this eassert. */
2611 eassert (count <= MAX_ALLOCA / word_size);
2612
2613 objp = alloca (count * word_size);
2614 objp[0] = arg;
2615 va_start (ap, arg);
2616 for (i = 1; i < count; i++)
2617 objp[i] = va_arg (ap, Lisp_Object);
2618 va_end (ap);
2619
2620 for (val = Qnil, i = count - 1; i >= 0; i--)
2621 {
2622 if (type == CONSTYPE_PURE)
2623 val = pure_cons (objp[i], val);
2624 else if (type == CONSTYPE_HEAP)
2625 val = Fcons (objp[i], val);
2626 else
2627 emacs_abort ();
2628 }
2629 return val;
2630 }
2631
2632 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2633 doc: /* Return a newly created list with specified arguments as elements.
2634 Any number of arguments, even zero arguments, are allowed.
2635 usage: (list &rest OBJECTS) */)
2636 (ptrdiff_t nargs, Lisp_Object *args)
2637 {
2638 register Lisp_Object val;
2639 val = Qnil;
2640
2641 while (nargs > 0)
2642 {
2643 nargs--;
2644 val = Fcons (args[nargs], val);
2645 }
2646 return val;
2647 }
2648
2649
2650 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2651 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2652 (register Lisp_Object length, Lisp_Object init)
2653 {
2654 register Lisp_Object val;
2655 register EMACS_INT size;
2656
2657 CHECK_NATNUM (length);
2658 size = XFASTINT (length);
2659
2660 val = Qnil;
2661 while (size > 0)
2662 {
2663 val = Fcons (init, val);
2664 --size;
2665
2666 if (size > 0)
2667 {
2668 val = Fcons (init, val);
2669 --size;
2670
2671 if (size > 0)
2672 {
2673 val = Fcons (init, val);
2674 --size;
2675
2676 if (size > 0)
2677 {
2678 val = Fcons (init, val);
2679 --size;
2680
2681 if (size > 0)
2682 {
2683 val = Fcons (init, val);
2684 --size;
2685 }
2686 }
2687 }
2688 }
2689
2690 QUIT;
2691 }
2692
2693 return val;
2694 }
2695
2696
2697 \f
2698 /***********************************************************************
2699 Vector Allocation
2700 ***********************************************************************/
2701
2702 /* Sometimes a vector's contents are merely a pointer internally used
2703 in vector allocation code. On the rare platforms where a null
2704 pointer cannot be tagged, represent it with a Lisp 0.
2705 Usually you don't want to touch this. */
2706
2707 static struct Lisp_Vector *
2708 next_vector (struct Lisp_Vector *v)
2709 {
2710 return XUNTAG (v->contents[0], 0);
2711 }
2712
2713 static void
2714 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2715 {
2716 v->contents[0] = make_lisp_ptr (p, 0);
2717 }
2718
2719 /* This value is balanced well enough to avoid too much internal overhead
2720 for the most common cases; it's not required to be a power of two, but
2721 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2722
2723 #define VECTOR_BLOCK_SIZE 4096
2724
2725 enum
2726 {
2727 /* Alignment of struct Lisp_Vector objects. */
2728 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2729 USE_LSB_TAG ? GCALIGNMENT : 1),
2730
2731 /* Vector size requests are a multiple of this. */
2732 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2733 };
2734
2735 /* Verify assumptions described above. */
2736 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2737 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2738
2739 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2740 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2741 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2742 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2743
2744 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2745
2746 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2747
2748 /* Size of the minimal vector allocated from block. */
2749
2750 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2751
2752 /* Size of the largest vector allocated from block. */
2753
2754 #define VBLOCK_BYTES_MAX \
2755 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2756
2757 /* We maintain one free list for each possible block-allocated
2758 vector size, and this is the number of free lists we have. */
2759
2760 #define VECTOR_MAX_FREE_LIST_INDEX \
2761 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2762
2763 /* Common shortcut to advance vector pointer over a block data. */
2764
2765 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2766
2767 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2768
2769 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2770
2771 /* Common shortcut to setup vector on a free list. */
2772
2773 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2774 do { \
2775 (tmp) = ((nbytes - header_size) / word_size); \
2776 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2777 eassert ((nbytes) % roundup_size == 0); \
2778 (tmp) = VINDEX (nbytes); \
2779 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2780 set_next_vector (v, vector_free_lists[tmp]); \
2781 vector_free_lists[tmp] = (v); \
2782 total_free_vector_slots += (nbytes) / word_size; \
2783 } while (0)
2784
2785 /* This internal type is used to maintain the list of large vectors
2786 which are allocated at their own, e.g. outside of vector blocks.
2787
2788 struct large_vector itself cannot contain a struct Lisp_Vector, as
2789 the latter contains a flexible array member and C99 does not allow
2790 such structs to be nested. Instead, each struct large_vector
2791 object LV is followed by a struct Lisp_Vector, which is at offset
2792 large_vector_offset from LV, and whose address is therefore
2793 large_vector_vec (&LV). */
2794
2795 struct large_vector
2796 {
2797 struct large_vector *next;
2798 };
2799
2800 enum
2801 {
2802 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2803 };
2804
2805 static struct Lisp_Vector *
2806 large_vector_vec (struct large_vector *p)
2807 {
2808 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2809 }
2810
2811 /* This internal type is used to maintain an underlying storage
2812 for small vectors. */
2813
2814 struct vector_block
2815 {
2816 char data[VECTOR_BLOCK_BYTES];
2817 struct vector_block *next;
2818 };
2819
2820 /* Chain of vector blocks. */
2821
2822 static struct vector_block *vector_blocks;
2823
2824 /* Vector free lists, where NTH item points to a chain of free
2825 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2826
2827 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2828
2829 /* Singly-linked list of large vectors. */
2830
2831 static struct large_vector *large_vectors;
2832
2833 /* The only vector with 0 slots, allocated from pure space. */
2834
2835 Lisp_Object zero_vector;
2836
2837 /* Number of live vectors. */
2838
2839 static EMACS_INT total_vectors;
2840
2841 /* Total size of live and free vectors, in Lisp_Object units. */
2842
2843 static EMACS_INT total_vector_slots, total_free_vector_slots;
2844
2845 /* Get a new vector block. */
2846
2847 static struct vector_block *
2848 allocate_vector_block (void)
2849 {
2850 struct vector_block *block = xmalloc (sizeof *block);
2851
2852 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2853 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2854 MEM_TYPE_VECTOR_BLOCK);
2855 #endif
2856
2857 block->next = vector_blocks;
2858 vector_blocks = block;
2859 return block;
2860 }
2861
2862 /* Called once to initialize vector allocation. */
2863
2864 static void
2865 init_vectors (void)
2866 {
2867 zero_vector = make_pure_vector (0);
2868 }
2869
2870 /* Allocate vector from a vector block. */
2871
2872 static struct Lisp_Vector *
2873 allocate_vector_from_block (size_t nbytes)
2874 {
2875 struct Lisp_Vector *vector;
2876 struct vector_block *block;
2877 size_t index, restbytes;
2878
2879 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2880 eassert (nbytes % roundup_size == 0);
2881
2882 /* First, try to allocate from a free list
2883 containing vectors of the requested size. */
2884 index = VINDEX (nbytes);
2885 if (vector_free_lists[index])
2886 {
2887 vector = vector_free_lists[index];
2888 vector_free_lists[index] = next_vector (vector);
2889 total_free_vector_slots -= nbytes / word_size;
2890 return vector;
2891 }
2892
2893 /* Next, check free lists containing larger vectors. Since
2894 we will split the result, we should have remaining space
2895 large enough to use for one-slot vector at least. */
2896 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2897 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2898 if (vector_free_lists[index])
2899 {
2900 /* This vector is larger than requested. */
2901 vector = vector_free_lists[index];
2902 vector_free_lists[index] = next_vector (vector);
2903 total_free_vector_slots -= nbytes / word_size;
2904
2905 /* Excess bytes are used for the smaller vector,
2906 which should be set on an appropriate free list. */
2907 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2908 eassert (restbytes % roundup_size == 0);
2909 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2910 return vector;
2911 }
2912
2913 /* Finally, need a new vector block. */
2914 block = allocate_vector_block ();
2915
2916 /* New vector will be at the beginning of this block. */
2917 vector = (struct Lisp_Vector *) block->data;
2918
2919 /* If the rest of space from this block is large enough
2920 for one-slot vector at least, set up it on a free list. */
2921 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2922 if (restbytes >= VBLOCK_BYTES_MIN)
2923 {
2924 eassert (restbytes % roundup_size == 0);
2925 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2926 }
2927 return vector;
2928 }
2929
2930 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2931
2932 #define VECTOR_IN_BLOCK(vector, block) \
2933 ((char *) (vector) <= (block)->data \
2934 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2935
2936 /* Return the memory footprint of V in bytes. */
2937
2938 static ptrdiff_t
2939 vector_nbytes (struct Lisp_Vector *v)
2940 {
2941 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2942 ptrdiff_t nwords;
2943
2944 if (size & PSEUDOVECTOR_FLAG)
2945 {
2946 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2947 {
2948 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2949 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
2950 * sizeof (bits_word));
2951 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
2952 verify (header_size <= bool_header_size);
2953 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
2954 }
2955 else
2956 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
2957 + ((size & PSEUDOVECTOR_REST_MASK)
2958 >> PSEUDOVECTOR_SIZE_BITS));
2959 }
2960 else
2961 nwords = size;
2962 return vroundup (header_size + word_size * nwords);
2963 }
2964
2965 /* Release extra resources still in use by VECTOR, which may be any
2966 vector-like object. For now, this is used just to free data in
2967 font objects. */
2968
2969 static void
2970 cleanup_vector (struct Lisp_Vector *vector)
2971 {
2972 detect_suspicious_free (vector);
2973 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
2974 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
2975 == FONT_OBJECT_MAX))
2976 {
2977 /* Attempt to catch subtle bugs like Bug#16140. */
2978 eassert (valid_font_driver (((struct font *) vector)->driver));
2979 ((struct font *) vector)->driver->close ((struct font *) vector);
2980 }
2981 }
2982
2983 /* Reclaim space used by unmarked vectors. */
2984
2985 NO_INLINE /* For better stack traces */
2986 static void
2987 sweep_vectors (void)
2988 {
2989 struct vector_block *block, **bprev = &vector_blocks;
2990 struct large_vector *lv, **lvprev = &large_vectors;
2991 struct Lisp_Vector *vector, *next;
2992
2993 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2994 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2995
2996 /* Looking through vector blocks. */
2997
2998 for (block = vector_blocks; block; block = *bprev)
2999 {
3000 bool free_this_block = 0;
3001 ptrdiff_t nbytes;
3002
3003 for (vector = (struct Lisp_Vector *) block->data;
3004 VECTOR_IN_BLOCK (vector, block); vector = next)
3005 {
3006 if (VECTOR_MARKED_P (vector))
3007 {
3008 VECTOR_UNMARK (vector);
3009 total_vectors++;
3010 nbytes = vector_nbytes (vector);
3011 total_vector_slots += nbytes / word_size;
3012 next = ADVANCE (vector, nbytes);
3013 }
3014 else
3015 {
3016 ptrdiff_t total_bytes;
3017
3018 cleanup_vector (vector);
3019 nbytes = vector_nbytes (vector);
3020 total_bytes = nbytes;
3021 next = ADVANCE (vector, nbytes);
3022
3023 /* While NEXT is not marked, try to coalesce with VECTOR,
3024 thus making VECTOR of the largest possible size. */
3025
3026 while (VECTOR_IN_BLOCK (next, block))
3027 {
3028 if (VECTOR_MARKED_P (next))
3029 break;
3030 cleanup_vector (next);
3031 nbytes = vector_nbytes (next);
3032 total_bytes += nbytes;
3033 next = ADVANCE (next, nbytes);
3034 }
3035
3036 eassert (total_bytes % roundup_size == 0);
3037
3038 if (vector == (struct Lisp_Vector *) block->data
3039 && !VECTOR_IN_BLOCK (next, block))
3040 /* This block should be freed because all of its
3041 space was coalesced into the only free vector. */
3042 free_this_block = 1;
3043 else
3044 {
3045 size_t tmp;
3046 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3047 }
3048 }
3049 }
3050
3051 if (free_this_block)
3052 {
3053 *bprev = block->next;
3054 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3055 mem_delete (mem_find (block->data));
3056 #endif
3057 xfree (block);
3058 }
3059 else
3060 bprev = &block->next;
3061 }
3062
3063 /* Sweep large vectors. */
3064
3065 for (lv = large_vectors; lv; lv = *lvprev)
3066 {
3067 vector = large_vector_vec (lv);
3068 if (VECTOR_MARKED_P (vector))
3069 {
3070 VECTOR_UNMARK (vector);
3071 total_vectors++;
3072 if (vector->header.size & PSEUDOVECTOR_FLAG)
3073 {
3074 /* All non-bool pseudovectors are small enough to be allocated
3075 from vector blocks. This code should be redesigned if some
3076 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3077 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3078 total_vector_slots += vector_nbytes (vector) / word_size;
3079 }
3080 else
3081 total_vector_slots
3082 += header_size / word_size + vector->header.size;
3083 lvprev = &lv->next;
3084 }
3085 else
3086 {
3087 *lvprev = lv->next;
3088 lisp_free (lv);
3089 }
3090 }
3091 }
3092
3093 /* Value is a pointer to a newly allocated Lisp_Vector structure
3094 with room for LEN Lisp_Objects. */
3095
3096 static struct Lisp_Vector *
3097 allocate_vectorlike (ptrdiff_t len)
3098 {
3099 struct Lisp_Vector *p;
3100
3101 MALLOC_BLOCK_INPUT;
3102
3103 if (len == 0)
3104 p = XVECTOR (zero_vector);
3105 else
3106 {
3107 size_t nbytes = header_size + len * word_size;
3108
3109 #ifdef DOUG_LEA_MALLOC
3110 if (!mmap_lisp_allowed_p ())
3111 mallopt (M_MMAP_MAX, 0);
3112 #endif
3113
3114 if (nbytes <= VBLOCK_BYTES_MAX)
3115 p = allocate_vector_from_block (vroundup (nbytes));
3116 else
3117 {
3118 struct large_vector *lv
3119 = lisp_malloc ((large_vector_offset + header_size
3120 + len * word_size),
3121 MEM_TYPE_VECTORLIKE);
3122 lv->next = large_vectors;
3123 large_vectors = lv;
3124 p = large_vector_vec (lv);
3125 }
3126
3127 #ifdef DOUG_LEA_MALLOC
3128 if (!mmap_lisp_allowed_p ())
3129 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3130 #endif
3131
3132 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3133 emacs_abort ();
3134
3135 consing_since_gc += nbytes;
3136 vector_cells_consed += len;
3137 }
3138
3139 MALLOC_UNBLOCK_INPUT;
3140
3141 return p;
3142 }
3143
3144
3145 /* Allocate a vector with LEN slots. */
3146
3147 struct Lisp_Vector *
3148 allocate_vector (EMACS_INT len)
3149 {
3150 struct Lisp_Vector *v;
3151 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3152
3153 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3154 memory_full (SIZE_MAX);
3155 v = allocate_vectorlike (len);
3156 v->header.size = len;
3157 return v;
3158 }
3159
3160
3161 /* Allocate other vector-like structures. */
3162
3163 struct Lisp_Vector *
3164 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
3165 {
3166 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3167 int i;
3168
3169 /* Catch bogus values. */
3170 eassert (tag <= PVEC_FONT);
3171 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3172 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3173
3174 /* Only the first lisplen slots will be traced normally by the GC. */
3175 for (i = 0; i < lisplen; ++i)
3176 v->contents[i] = Qnil;
3177
3178 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3179 return v;
3180 }
3181
3182 struct buffer *
3183 allocate_buffer (void)
3184 {
3185 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3186
3187 BUFFER_PVEC_INIT (b);
3188 /* Put B on the chain of all buffers including killed ones. */
3189 b->next = all_buffers;
3190 all_buffers = b;
3191 /* Note that the rest fields of B are not initialized. */
3192 return b;
3193 }
3194
3195 struct Lisp_Hash_Table *
3196 allocate_hash_table (void)
3197 {
3198 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3199 }
3200
3201 struct window *
3202 allocate_window (void)
3203 {
3204 struct window *w;
3205
3206 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3207 /* Users assumes that non-Lisp data is zeroed. */
3208 memset (&w->current_matrix, 0,
3209 sizeof (*w) - offsetof (struct window, current_matrix));
3210 return w;
3211 }
3212
3213 struct terminal *
3214 allocate_terminal (void)
3215 {
3216 struct terminal *t;
3217
3218 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3219 /* Users assumes that non-Lisp data is zeroed. */
3220 memset (&t->next_terminal, 0,
3221 sizeof (*t) - offsetof (struct terminal, next_terminal));
3222 return t;
3223 }
3224
3225 struct frame *
3226 allocate_frame (void)
3227 {
3228 struct frame *f;
3229
3230 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3231 /* Users assumes that non-Lisp data is zeroed. */
3232 memset (&f->face_cache, 0,
3233 sizeof (*f) - offsetof (struct frame, face_cache));
3234 return f;
3235 }
3236
3237 struct Lisp_Process *
3238 allocate_process (void)
3239 {
3240 struct Lisp_Process *p;
3241
3242 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3243 /* Users assumes that non-Lisp data is zeroed. */
3244 memset (&p->pid, 0,
3245 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3246 return p;
3247 }
3248
3249 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3250 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3251 See also the function `vector'. */)
3252 (register Lisp_Object length, Lisp_Object init)
3253 {
3254 Lisp_Object vector;
3255 register ptrdiff_t sizei;
3256 register ptrdiff_t i;
3257 register struct Lisp_Vector *p;
3258
3259 CHECK_NATNUM (length);
3260
3261 p = allocate_vector (XFASTINT (length));
3262 sizei = XFASTINT (length);
3263 for (i = 0; i < sizei; i++)
3264 p->contents[i] = init;
3265
3266 XSETVECTOR (vector, p);
3267 return vector;
3268 }
3269
3270
3271 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3272 doc: /* Return a newly created vector with specified arguments as elements.
3273 Any number of arguments, even zero arguments, are allowed.
3274 usage: (vector &rest OBJECTS) */)
3275 (ptrdiff_t nargs, Lisp_Object *args)
3276 {
3277 ptrdiff_t i;
3278 register Lisp_Object val = make_uninit_vector (nargs);
3279 register struct Lisp_Vector *p = XVECTOR (val);
3280
3281 for (i = 0; i < nargs; i++)
3282 p->contents[i] = args[i];
3283 return val;
3284 }
3285
3286 void
3287 make_byte_code (struct Lisp_Vector *v)
3288 {
3289 /* Don't allow the global zero_vector to become a byte code object. */
3290 eassert (0 < v->header.size);
3291
3292 if (v->header.size > 1 && STRINGP (v->contents[1])
3293 && STRING_MULTIBYTE (v->contents[1]))
3294 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3295 earlier because they produced a raw 8-bit string for byte-code
3296 and now such a byte-code string is loaded as multibyte while
3297 raw 8-bit characters converted to multibyte form. Thus, now we
3298 must convert them back to the original unibyte form. */
3299 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3300 XSETPVECTYPE (v, PVEC_COMPILED);
3301 }
3302
3303 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3304 doc: /* Create a byte-code object with specified arguments as elements.
3305 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3306 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3307 and (optional) INTERACTIVE-SPEC.
3308 The first four arguments are required; at most six have any
3309 significance.
3310 The ARGLIST can be either like the one of `lambda', in which case the arguments
3311 will be dynamically bound before executing the byte code, or it can be an
3312 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3313 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3314 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3315 argument to catch the left-over arguments. If such an integer is used, the
3316 arguments will not be dynamically bound but will be instead pushed on the
3317 stack before executing the byte-code.
3318 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3319 (ptrdiff_t nargs, Lisp_Object *args)
3320 {
3321 ptrdiff_t i;
3322 register Lisp_Object val = make_uninit_vector (nargs);
3323 register struct Lisp_Vector *p = XVECTOR (val);
3324
3325 /* We used to purecopy everything here, if purify-flag was set. This worked
3326 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3327 dangerous, since make-byte-code is used during execution to build
3328 closures, so any closure built during the preload phase would end up
3329 copied into pure space, including its free variables, which is sometimes
3330 just wasteful and other times plainly wrong (e.g. those free vars may want
3331 to be setcar'd). */
3332
3333 for (i = 0; i < nargs; i++)
3334 p->contents[i] = args[i];
3335 make_byte_code (p);
3336 XSETCOMPILED (val, p);
3337 return val;
3338 }
3339
3340
3341 \f
3342 /***********************************************************************
3343 Symbol Allocation
3344 ***********************************************************************/
3345
3346 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3347 of the required alignment if LSB tags are used. */
3348
3349 union aligned_Lisp_Symbol
3350 {
3351 struct Lisp_Symbol s;
3352 #if USE_LSB_TAG
3353 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3354 & -GCALIGNMENT];
3355 #endif
3356 };
3357
3358 /* Each symbol_block is just under 1020 bytes long, since malloc
3359 really allocates in units of powers of two and uses 4 bytes for its
3360 own overhead. */
3361
3362 #define SYMBOL_BLOCK_SIZE \
3363 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3364
3365 struct symbol_block
3366 {
3367 /* Place `symbols' first, to preserve alignment. */
3368 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3369 struct symbol_block *next;
3370 };
3371
3372 /* Current symbol block and index of first unused Lisp_Symbol
3373 structure in it. */
3374
3375 static struct symbol_block *symbol_block;
3376 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3377 /* Pointer to the first symbol_block that contains pinned symbols.
3378 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3379 10K of which are pinned (and all but 250 of them are interned in obarray),
3380 whereas a "typical session" has in the order of 30K symbols.
3381 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3382 than 30K to find the 10K symbols we need to mark. */
3383 static struct symbol_block *symbol_block_pinned;
3384
3385 /* List of free symbols. */
3386
3387 static struct Lisp_Symbol *symbol_free_list;
3388
3389 static void
3390 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3391 {
3392 XSYMBOL (sym)->name = name;
3393 }
3394
3395 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3396 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3397 Its value is void, and its function definition and property list are nil. */)
3398 (Lisp_Object name)
3399 {
3400 register Lisp_Object val;
3401 register struct Lisp_Symbol *p;
3402
3403 CHECK_STRING (name);
3404
3405 MALLOC_BLOCK_INPUT;
3406
3407 if (symbol_free_list)
3408 {
3409 XSETSYMBOL (val, symbol_free_list);
3410 symbol_free_list = symbol_free_list->next;
3411 }
3412 else
3413 {
3414 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3415 {
3416 struct symbol_block *new
3417 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3418 new->next = symbol_block;
3419 symbol_block = new;
3420 symbol_block_index = 0;
3421 total_free_symbols += SYMBOL_BLOCK_SIZE;
3422 }
3423 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3424 symbol_block_index++;
3425 }
3426
3427 MALLOC_UNBLOCK_INPUT;
3428
3429 p = XSYMBOL (val);
3430 set_symbol_name (val, name);
3431 set_symbol_plist (val, Qnil);
3432 p->redirect = SYMBOL_PLAINVAL;
3433 SET_SYMBOL_VAL (p, Qunbound);
3434 set_symbol_function (val, Qnil);
3435 set_symbol_next (val, NULL);
3436 p->gcmarkbit = false;
3437 p->interned = SYMBOL_UNINTERNED;
3438 p->constant = 0;
3439 p->declared_special = false;
3440 p->pinned = false;
3441 consing_since_gc += sizeof (struct Lisp_Symbol);
3442 symbols_consed++;
3443 total_free_symbols--;
3444 return val;
3445 }
3446
3447
3448 \f
3449 /***********************************************************************
3450 Marker (Misc) Allocation
3451 ***********************************************************************/
3452
3453 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3454 the required alignment when LSB tags are used. */
3455
3456 union aligned_Lisp_Misc
3457 {
3458 union Lisp_Misc m;
3459 #if USE_LSB_TAG
3460 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3461 & -GCALIGNMENT];
3462 #endif
3463 };
3464
3465 /* Allocation of markers and other objects that share that structure.
3466 Works like allocation of conses. */
3467
3468 #define MARKER_BLOCK_SIZE \
3469 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3470
3471 struct marker_block
3472 {
3473 /* Place `markers' first, to preserve alignment. */
3474 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3475 struct marker_block *next;
3476 };
3477
3478 static struct marker_block *marker_block;
3479 static int marker_block_index = MARKER_BLOCK_SIZE;
3480
3481 static union Lisp_Misc *marker_free_list;
3482
3483 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3484
3485 static Lisp_Object
3486 allocate_misc (enum Lisp_Misc_Type type)
3487 {
3488 Lisp_Object val;
3489
3490 MALLOC_BLOCK_INPUT;
3491
3492 if (marker_free_list)
3493 {
3494 XSETMISC (val, marker_free_list);
3495 marker_free_list = marker_free_list->u_free.chain;
3496 }
3497 else
3498 {
3499 if (marker_block_index == MARKER_BLOCK_SIZE)
3500 {
3501 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3502 new->next = marker_block;
3503 marker_block = new;
3504 marker_block_index = 0;
3505 total_free_markers += MARKER_BLOCK_SIZE;
3506 }
3507 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3508 marker_block_index++;
3509 }
3510
3511 MALLOC_UNBLOCK_INPUT;
3512
3513 --total_free_markers;
3514 consing_since_gc += sizeof (union Lisp_Misc);
3515 misc_objects_consed++;
3516 XMISCANY (val)->type = type;
3517 XMISCANY (val)->gcmarkbit = 0;
3518 return val;
3519 }
3520
3521 /* Free a Lisp_Misc object. */
3522
3523 void
3524 free_misc (Lisp_Object misc)
3525 {
3526 XMISCANY (misc)->type = Lisp_Misc_Free;
3527 XMISC (misc)->u_free.chain = marker_free_list;
3528 marker_free_list = XMISC (misc);
3529 consing_since_gc -= sizeof (union Lisp_Misc);
3530 total_free_markers++;
3531 }
3532
3533 /* Verify properties of Lisp_Save_Value's representation
3534 that are assumed here and elsewhere. */
3535
3536 verify (SAVE_UNUSED == 0);
3537 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3538 >> SAVE_SLOT_BITS)
3539 == 0);
3540
3541 /* Return Lisp_Save_Value objects for the various combinations
3542 that callers need. */
3543
3544 Lisp_Object
3545 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3546 {
3547 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3548 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3549 p->save_type = SAVE_TYPE_INT_INT_INT;
3550 p->data[0].integer = a;
3551 p->data[1].integer = b;
3552 p->data[2].integer = c;
3553 return val;
3554 }
3555
3556 Lisp_Object
3557 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3558 Lisp_Object d)
3559 {
3560 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3561 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3562 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3563 p->data[0].object = a;
3564 p->data[1].object = b;
3565 p->data[2].object = c;
3566 p->data[3].object = d;
3567 return val;
3568 }
3569
3570 Lisp_Object
3571 make_save_ptr (void *a)
3572 {
3573 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3574 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3575 p->save_type = SAVE_POINTER;
3576 p->data[0].pointer = a;
3577 return val;
3578 }
3579
3580 Lisp_Object
3581 make_save_ptr_int (void *a, ptrdiff_t b)
3582 {
3583 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3584 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3585 p->save_type = SAVE_TYPE_PTR_INT;
3586 p->data[0].pointer = a;
3587 p->data[1].integer = b;
3588 return val;
3589 }
3590
3591 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3592 Lisp_Object
3593 make_save_ptr_ptr (void *a, void *b)
3594 {
3595 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3596 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3597 p->save_type = SAVE_TYPE_PTR_PTR;
3598 p->data[0].pointer = a;
3599 p->data[1].pointer = b;
3600 return val;
3601 }
3602 #endif
3603
3604 Lisp_Object
3605 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3606 {
3607 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3608 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3609 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3610 p->data[0].funcpointer = a;
3611 p->data[1].pointer = b;
3612 p->data[2].object = c;
3613 return val;
3614 }
3615
3616 /* Return a Lisp_Save_Value object that represents an array A
3617 of N Lisp objects. */
3618
3619 Lisp_Object
3620 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3621 {
3622 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3623 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3624 p->save_type = SAVE_TYPE_MEMORY;
3625 p->data[0].pointer = a;
3626 p->data[1].integer = n;
3627 return val;
3628 }
3629
3630 /* Free a Lisp_Save_Value object. Do not use this function
3631 if SAVE contains pointer other than returned by xmalloc. */
3632
3633 void
3634 free_save_value (Lisp_Object save)
3635 {
3636 xfree (XSAVE_POINTER (save, 0));
3637 free_misc (save);
3638 }
3639
3640 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3641
3642 Lisp_Object
3643 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3644 {
3645 register Lisp_Object overlay;
3646
3647 overlay = allocate_misc (Lisp_Misc_Overlay);
3648 OVERLAY_START (overlay) = start;
3649 OVERLAY_END (overlay) = end;
3650 set_overlay_plist (overlay, plist);
3651 XOVERLAY (overlay)->next = NULL;
3652 return overlay;
3653 }
3654
3655 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3656 doc: /* Return a newly allocated marker which does not point at any place. */)
3657 (void)
3658 {
3659 register Lisp_Object val;
3660 register struct Lisp_Marker *p;
3661
3662 val = allocate_misc (Lisp_Misc_Marker);
3663 p = XMARKER (val);
3664 p->buffer = 0;
3665 p->bytepos = 0;
3666 p->charpos = 0;
3667 p->next = NULL;
3668 p->insertion_type = 0;
3669 p->need_adjustment = 0;
3670 return val;
3671 }
3672
3673 /* Return a newly allocated marker which points into BUF
3674 at character position CHARPOS and byte position BYTEPOS. */
3675
3676 Lisp_Object
3677 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3678 {
3679 Lisp_Object obj;
3680 struct Lisp_Marker *m;
3681
3682 /* No dead buffers here. */
3683 eassert (BUFFER_LIVE_P (buf));
3684
3685 /* Every character is at least one byte. */
3686 eassert (charpos <= bytepos);
3687
3688 obj = allocate_misc (Lisp_Misc_Marker);
3689 m = XMARKER (obj);
3690 m->buffer = buf;
3691 m->charpos = charpos;
3692 m->bytepos = bytepos;
3693 m->insertion_type = 0;
3694 m->need_adjustment = 0;
3695 m->next = BUF_MARKERS (buf);
3696 BUF_MARKERS (buf) = m;
3697 return obj;
3698 }
3699
3700 /* Put MARKER back on the free list after using it temporarily. */
3701
3702 void
3703 free_marker (Lisp_Object marker)
3704 {
3705 unchain_marker (XMARKER (marker));
3706 free_misc (marker);
3707 }
3708
3709 \f
3710 /* Return a newly created vector or string with specified arguments as
3711 elements. If all the arguments are characters that can fit
3712 in a string of events, make a string; otherwise, make a vector.
3713
3714 Any number of arguments, even zero arguments, are allowed. */
3715
3716 Lisp_Object
3717 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3718 {
3719 ptrdiff_t i;
3720
3721 for (i = 0; i < nargs; i++)
3722 /* The things that fit in a string
3723 are characters that are in 0...127,
3724 after discarding the meta bit and all the bits above it. */
3725 if (!INTEGERP (args[i])
3726 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3727 return Fvector (nargs, args);
3728
3729 /* Since the loop exited, we know that all the things in it are
3730 characters, so we can make a string. */
3731 {
3732 Lisp_Object result;
3733
3734 result = Fmake_string (make_number (nargs), make_number (0));
3735 for (i = 0; i < nargs; i++)
3736 {
3737 SSET (result, i, XINT (args[i]));
3738 /* Move the meta bit to the right place for a string char. */
3739 if (XINT (args[i]) & CHAR_META)
3740 SSET (result, i, SREF (result, i) | 0x80);
3741 }
3742
3743 return result;
3744 }
3745 }
3746
3747
3748 \f
3749 /************************************************************************
3750 Memory Full Handling
3751 ************************************************************************/
3752
3753
3754 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3755 there may have been size_t overflow so that malloc was never
3756 called, or perhaps malloc was invoked successfully but the
3757 resulting pointer had problems fitting into a tagged EMACS_INT. In
3758 either case this counts as memory being full even though malloc did
3759 not fail. */
3760
3761 void
3762 memory_full (size_t nbytes)
3763 {
3764 /* Do not go into hysterics merely because a large request failed. */
3765 bool enough_free_memory = 0;
3766 if (SPARE_MEMORY < nbytes)
3767 {
3768 void *p;
3769
3770 MALLOC_BLOCK_INPUT;
3771 p = malloc (SPARE_MEMORY);
3772 if (p)
3773 {
3774 free (p);
3775 enough_free_memory = 1;
3776 }
3777 MALLOC_UNBLOCK_INPUT;
3778 }
3779
3780 if (! enough_free_memory)
3781 {
3782 int i;
3783
3784 Vmemory_full = Qt;
3785
3786 memory_full_cons_threshold = sizeof (struct cons_block);
3787
3788 /* The first time we get here, free the spare memory. */
3789 for (i = 0; i < ARRAYELTS (spare_memory); i++)
3790 if (spare_memory[i])
3791 {
3792 if (i == 0)
3793 free (spare_memory[i]);
3794 else if (i >= 1 && i <= 4)
3795 lisp_align_free (spare_memory[i]);
3796 else
3797 lisp_free (spare_memory[i]);
3798 spare_memory[i] = 0;
3799 }
3800 }
3801
3802 /* This used to call error, but if we've run out of memory, we could
3803 get infinite recursion trying to build the string. */
3804 xsignal (Qnil, Vmemory_signal_data);
3805 }
3806
3807 /* If we released our reserve (due to running out of memory),
3808 and we have a fair amount free once again,
3809 try to set aside another reserve in case we run out once more.
3810
3811 This is called when a relocatable block is freed in ralloc.c,
3812 and also directly from this file, in case we're not using ralloc.c. */
3813
3814 void
3815 refill_memory_reserve (void)
3816 {
3817 #ifndef SYSTEM_MALLOC
3818 if (spare_memory[0] == 0)
3819 spare_memory[0] = malloc (SPARE_MEMORY);
3820 if (spare_memory[1] == 0)
3821 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3822 MEM_TYPE_SPARE);
3823 if (spare_memory[2] == 0)
3824 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3825 MEM_TYPE_SPARE);
3826 if (spare_memory[3] == 0)
3827 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3828 MEM_TYPE_SPARE);
3829 if (spare_memory[4] == 0)
3830 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3831 MEM_TYPE_SPARE);
3832 if (spare_memory[5] == 0)
3833 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3834 MEM_TYPE_SPARE);
3835 if (spare_memory[6] == 0)
3836 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3837 MEM_TYPE_SPARE);
3838 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3839 Vmemory_full = Qnil;
3840 #endif
3841 }
3842 \f
3843 /************************************************************************
3844 C Stack Marking
3845 ************************************************************************/
3846
3847 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3848
3849 /* Conservative C stack marking requires a method to identify possibly
3850 live Lisp objects given a pointer value. We do this by keeping
3851 track of blocks of Lisp data that are allocated in a red-black tree
3852 (see also the comment of mem_node which is the type of nodes in
3853 that tree). Function lisp_malloc adds information for an allocated
3854 block to the red-black tree with calls to mem_insert, and function
3855 lisp_free removes it with mem_delete. Functions live_string_p etc
3856 call mem_find to lookup information about a given pointer in the
3857 tree, and use that to determine if the pointer points to a Lisp
3858 object or not. */
3859
3860 /* Initialize this part of alloc.c. */
3861
3862 static void
3863 mem_init (void)
3864 {
3865 mem_z.left = mem_z.right = MEM_NIL;
3866 mem_z.parent = NULL;
3867 mem_z.color = MEM_BLACK;
3868 mem_z.start = mem_z.end = NULL;
3869 mem_root = MEM_NIL;
3870 }
3871
3872
3873 /* Value is a pointer to the mem_node containing START. Value is
3874 MEM_NIL if there is no node in the tree containing START. */
3875
3876 static struct mem_node *
3877 mem_find (void *start)
3878 {
3879 struct mem_node *p;
3880
3881 if (start < min_heap_address || start > max_heap_address)
3882 return MEM_NIL;
3883
3884 /* Make the search always successful to speed up the loop below. */
3885 mem_z.start = start;
3886 mem_z.end = (char *) start + 1;
3887
3888 p = mem_root;
3889 while (start < p->start || start >= p->end)
3890 p = start < p->start ? p->left : p->right;
3891 return p;
3892 }
3893
3894
3895 /* Insert a new node into the tree for a block of memory with start
3896 address START, end address END, and type TYPE. Value is a
3897 pointer to the node that was inserted. */
3898
3899 static struct mem_node *
3900 mem_insert (void *start, void *end, enum mem_type type)
3901 {
3902 struct mem_node *c, *parent, *x;
3903
3904 if (min_heap_address == NULL || start < min_heap_address)
3905 min_heap_address = start;
3906 if (max_heap_address == NULL || end > max_heap_address)
3907 max_heap_address = end;
3908
3909 /* See where in the tree a node for START belongs. In this
3910 particular application, it shouldn't happen that a node is already
3911 present. For debugging purposes, let's check that. */
3912 c = mem_root;
3913 parent = NULL;
3914
3915 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3916
3917 while (c != MEM_NIL)
3918 {
3919 if (start >= c->start && start < c->end)
3920 emacs_abort ();
3921 parent = c;
3922 c = start < c->start ? c->left : c->right;
3923 }
3924
3925 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3926
3927 while (c != MEM_NIL)
3928 {
3929 parent = c;
3930 c = start < c->start ? c->left : c->right;
3931 }
3932
3933 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3934
3935 /* Create a new node. */
3936 #ifdef GC_MALLOC_CHECK
3937 x = malloc (sizeof *x);
3938 if (x == NULL)
3939 emacs_abort ();
3940 #else
3941 x = xmalloc (sizeof *x);
3942 #endif
3943 x->start = start;
3944 x->end = end;
3945 x->type = type;
3946 x->parent = parent;
3947 x->left = x->right = MEM_NIL;
3948 x->color = MEM_RED;
3949
3950 /* Insert it as child of PARENT or install it as root. */
3951 if (parent)
3952 {
3953 if (start < parent->start)
3954 parent->left = x;
3955 else
3956 parent->right = x;
3957 }
3958 else
3959 mem_root = x;
3960
3961 /* Re-establish red-black tree properties. */
3962 mem_insert_fixup (x);
3963
3964 return x;
3965 }
3966
3967
3968 /* Re-establish the red-black properties of the tree, and thereby
3969 balance the tree, after node X has been inserted; X is always red. */
3970
3971 static void
3972 mem_insert_fixup (struct mem_node *x)
3973 {
3974 while (x != mem_root && x->parent->color == MEM_RED)
3975 {
3976 /* X is red and its parent is red. This is a violation of
3977 red-black tree property #3. */
3978
3979 if (x->parent == x->parent->parent->left)
3980 {
3981 /* We're on the left side of our grandparent, and Y is our
3982 "uncle". */
3983 struct mem_node *y = x->parent->parent->right;
3984
3985 if (y->color == MEM_RED)
3986 {
3987 /* Uncle and parent are red but should be black because
3988 X is red. Change the colors accordingly and proceed
3989 with the grandparent. */
3990 x->parent->color = MEM_BLACK;
3991 y->color = MEM_BLACK;
3992 x->parent->parent->color = MEM_RED;
3993 x = x->parent->parent;
3994 }
3995 else
3996 {
3997 /* Parent and uncle have different colors; parent is
3998 red, uncle is black. */
3999 if (x == x->parent->right)
4000 {
4001 x = x->parent;
4002 mem_rotate_left (x);
4003 }
4004
4005 x->parent->color = MEM_BLACK;
4006 x->parent->parent->color = MEM_RED;
4007 mem_rotate_right (x->parent->parent);
4008 }
4009 }
4010 else
4011 {
4012 /* This is the symmetrical case of above. */
4013 struct mem_node *y = x->parent->parent->left;
4014
4015 if (y->color == MEM_RED)
4016 {
4017 x->parent->color = MEM_BLACK;
4018 y->color = MEM_BLACK;
4019 x->parent->parent->color = MEM_RED;
4020 x = x->parent->parent;
4021 }
4022 else
4023 {
4024 if (x == x->parent->left)
4025 {
4026 x = x->parent;
4027 mem_rotate_right (x);
4028 }
4029
4030 x->parent->color = MEM_BLACK;
4031 x->parent->parent->color = MEM_RED;
4032 mem_rotate_left (x->parent->parent);
4033 }
4034 }
4035 }
4036
4037 /* The root may have been changed to red due to the algorithm. Set
4038 it to black so that property #5 is satisfied. */
4039 mem_root->color = MEM_BLACK;
4040 }
4041
4042
4043 /* (x) (y)
4044 / \ / \
4045 a (y) ===> (x) c
4046 / \ / \
4047 b c a b */
4048
4049 static void
4050 mem_rotate_left (struct mem_node *x)
4051 {
4052 struct mem_node *y;
4053
4054 /* Turn y's left sub-tree into x's right sub-tree. */
4055 y = x->right;
4056 x->right = y->left;
4057 if (y->left != MEM_NIL)
4058 y->left->parent = x;
4059
4060 /* Y's parent was x's parent. */
4061 if (y != MEM_NIL)
4062 y->parent = x->parent;
4063
4064 /* Get the parent to point to y instead of x. */
4065 if (x->parent)
4066 {
4067 if (x == x->parent->left)
4068 x->parent->left = y;
4069 else
4070 x->parent->right = y;
4071 }
4072 else
4073 mem_root = y;
4074
4075 /* Put x on y's left. */
4076 y->left = x;
4077 if (x != MEM_NIL)
4078 x->parent = y;
4079 }
4080
4081
4082 /* (x) (Y)
4083 / \ / \
4084 (y) c ===> a (x)
4085 / \ / \
4086 a b b c */
4087
4088 static void
4089 mem_rotate_right (struct mem_node *x)
4090 {
4091 struct mem_node *y = x->left;
4092
4093 x->left = y->right;
4094 if (y->right != MEM_NIL)
4095 y->right->parent = x;
4096
4097 if (y != MEM_NIL)
4098 y->parent = x->parent;
4099 if (x->parent)
4100 {
4101 if (x == x->parent->right)
4102 x->parent->right = y;
4103 else
4104 x->parent->left = y;
4105 }
4106 else
4107 mem_root = y;
4108
4109 y->right = x;
4110 if (x != MEM_NIL)
4111 x->parent = y;
4112 }
4113
4114
4115 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4116
4117 static void
4118 mem_delete (struct mem_node *z)
4119 {
4120 struct mem_node *x, *y;
4121
4122 if (!z || z == MEM_NIL)
4123 return;
4124
4125 if (z->left == MEM_NIL || z->right == MEM_NIL)
4126 y = z;
4127 else
4128 {
4129 y = z->right;
4130 while (y->left != MEM_NIL)
4131 y = y->left;
4132 }
4133
4134 if (y->left != MEM_NIL)
4135 x = y->left;
4136 else
4137 x = y->right;
4138
4139 x->parent = y->parent;
4140 if (y->parent)
4141 {
4142 if (y == y->parent->left)
4143 y->parent->left = x;
4144 else
4145 y->parent->right = x;
4146 }
4147 else
4148 mem_root = x;
4149
4150 if (y != z)
4151 {
4152 z->start = y->start;
4153 z->end = y->end;
4154 z->type = y->type;
4155 }
4156
4157 if (y->color == MEM_BLACK)
4158 mem_delete_fixup (x);
4159
4160 #ifdef GC_MALLOC_CHECK
4161 free (y);
4162 #else
4163 xfree (y);
4164 #endif
4165 }
4166
4167
4168 /* Re-establish the red-black properties of the tree, after a
4169 deletion. */
4170
4171 static void
4172 mem_delete_fixup (struct mem_node *x)
4173 {
4174 while (x != mem_root && x->color == MEM_BLACK)
4175 {
4176 if (x == x->parent->left)
4177 {
4178 struct mem_node *w = x->parent->right;
4179
4180 if (w->color == MEM_RED)
4181 {
4182 w->color = MEM_BLACK;
4183 x->parent->color = MEM_RED;
4184 mem_rotate_left (x->parent);
4185 w = x->parent->right;
4186 }
4187
4188 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4189 {
4190 w->color = MEM_RED;
4191 x = x->parent;
4192 }
4193 else
4194 {
4195 if (w->right->color == MEM_BLACK)
4196 {
4197 w->left->color = MEM_BLACK;
4198 w->color = MEM_RED;
4199 mem_rotate_right (w);
4200 w = x->parent->right;
4201 }
4202 w->color = x->parent->color;
4203 x->parent->color = MEM_BLACK;
4204 w->right->color = MEM_BLACK;
4205 mem_rotate_left (x->parent);
4206 x = mem_root;
4207 }
4208 }
4209 else
4210 {
4211 struct mem_node *w = x->parent->left;
4212
4213 if (w->color == MEM_RED)
4214 {
4215 w->color = MEM_BLACK;
4216 x->parent->color = MEM_RED;
4217 mem_rotate_right (x->parent);
4218 w = x->parent->left;
4219 }
4220
4221 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4222 {
4223 w->color = MEM_RED;
4224 x = x->parent;
4225 }
4226 else
4227 {
4228 if (w->left->color == MEM_BLACK)
4229 {
4230 w->right->color = MEM_BLACK;
4231 w->color = MEM_RED;
4232 mem_rotate_left (w);
4233 w = x->parent->left;
4234 }
4235
4236 w->color = x->parent->color;
4237 x->parent->color = MEM_BLACK;
4238 w->left->color = MEM_BLACK;
4239 mem_rotate_right (x->parent);
4240 x = mem_root;
4241 }
4242 }
4243 }
4244
4245 x->color = MEM_BLACK;
4246 }
4247
4248
4249 /* Value is non-zero if P is a pointer to a live Lisp string on
4250 the heap. M is a pointer to the mem_block for P. */
4251
4252 static bool
4253 live_string_p (struct mem_node *m, void *p)
4254 {
4255 if (m->type == MEM_TYPE_STRING)
4256 {
4257 struct string_block *b = m->start;
4258 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4259
4260 /* P must point to the start of a Lisp_String structure, and it
4261 must not be on the free-list. */
4262 return (offset >= 0
4263 && offset % sizeof b->strings[0] == 0
4264 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4265 && ((struct Lisp_String *) p)->data != NULL);
4266 }
4267 else
4268 return 0;
4269 }
4270
4271
4272 /* Value is non-zero if P is a pointer to a live Lisp cons on
4273 the heap. M is a pointer to the mem_block for P. */
4274
4275 static bool
4276 live_cons_p (struct mem_node *m, void *p)
4277 {
4278 if (m->type == MEM_TYPE_CONS)
4279 {
4280 struct cons_block *b = m->start;
4281 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4282
4283 /* P must point to the start of a Lisp_Cons, not be
4284 one of the unused cells in the current cons block,
4285 and not be on the free-list. */
4286 return (offset >= 0
4287 && offset % sizeof b->conses[0] == 0
4288 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4289 && (b != cons_block
4290 || offset / sizeof b->conses[0] < cons_block_index)
4291 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4292 }
4293 else
4294 return 0;
4295 }
4296
4297
4298 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4299 the heap. M is a pointer to the mem_block for P. */
4300
4301 static bool
4302 live_symbol_p (struct mem_node *m, void *p)
4303 {
4304 if (m->type == MEM_TYPE_SYMBOL)
4305 {
4306 struct symbol_block *b = m->start;
4307 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4308
4309 /* P must point to the start of a Lisp_Symbol, not be
4310 one of the unused cells in the current symbol block,
4311 and not be on the free-list. */
4312 return (offset >= 0
4313 && offset % sizeof b->symbols[0] == 0
4314 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4315 && (b != symbol_block
4316 || offset / sizeof b->symbols[0] < symbol_block_index)
4317 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4318 }
4319 else
4320 return 0;
4321 }
4322
4323
4324 /* Value is non-zero if P is a pointer to a live Lisp float on
4325 the heap. M is a pointer to the mem_block for P. */
4326
4327 static bool
4328 live_float_p (struct mem_node *m, void *p)
4329 {
4330 if (m->type == MEM_TYPE_FLOAT)
4331 {
4332 struct float_block *b = m->start;
4333 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4334
4335 /* P must point to the start of a Lisp_Float and not be
4336 one of the unused cells in the current float block. */
4337 return (offset >= 0
4338 && offset % sizeof b->floats[0] == 0
4339 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4340 && (b != float_block
4341 || offset / sizeof b->floats[0] < float_block_index));
4342 }
4343 else
4344 return 0;
4345 }
4346
4347
4348 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4349 the heap. M is a pointer to the mem_block for P. */
4350
4351 static bool
4352 live_misc_p (struct mem_node *m, void *p)
4353 {
4354 if (m->type == MEM_TYPE_MISC)
4355 {
4356 struct marker_block *b = m->start;
4357 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4358
4359 /* P must point to the start of a Lisp_Misc, not be
4360 one of the unused cells in the current misc block,
4361 and not be on the free-list. */
4362 return (offset >= 0
4363 && offset % sizeof b->markers[0] == 0
4364 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4365 && (b != marker_block
4366 || offset / sizeof b->markers[0] < marker_block_index)
4367 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4368 }
4369 else
4370 return 0;
4371 }
4372
4373
4374 /* Value is non-zero if P is a pointer to a live vector-like object.
4375 M is a pointer to the mem_block for P. */
4376
4377 static bool
4378 live_vector_p (struct mem_node *m, void *p)
4379 {
4380 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4381 {
4382 /* This memory node corresponds to a vector block. */
4383 struct vector_block *block = m->start;
4384 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4385
4386 /* P is in the block's allocation range. Scan the block
4387 up to P and see whether P points to the start of some
4388 vector which is not on a free list. FIXME: check whether
4389 some allocation patterns (probably a lot of short vectors)
4390 may cause a substantial overhead of this loop. */
4391 while (VECTOR_IN_BLOCK (vector, block)
4392 && vector <= (struct Lisp_Vector *) p)
4393 {
4394 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4395 return 1;
4396 else
4397 vector = ADVANCE (vector, vector_nbytes (vector));
4398 }
4399 }
4400 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4401 /* This memory node corresponds to a large vector. */
4402 return 1;
4403 return 0;
4404 }
4405
4406
4407 /* Value is non-zero if P is a pointer to a live buffer. M is a
4408 pointer to the mem_block for P. */
4409
4410 static bool
4411 live_buffer_p (struct mem_node *m, void *p)
4412 {
4413 /* P must point to the start of the block, and the buffer
4414 must not have been killed. */
4415 return (m->type == MEM_TYPE_BUFFER
4416 && p == m->start
4417 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4418 }
4419
4420 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4421
4422 #if GC_MARK_STACK
4423
4424 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4425
4426 /* Currently not used, but may be called from gdb. */
4427
4428 void dump_zombies (void) EXTERNALLY_VISIBLE;
4429
4430 /* Array of objects that are kept alive because the C stack contains
4431 a pattern that looks like a reference to them. */
4432
4433 #define MAX_ZOMBIES 10
4434 static Lisp_Object zombies[MAX_ZOMBIES];
4435
4436 /* Number of zombie objects. */
4437
4438 static EMACS_INT nzombies;
4439
4440 /* Number of garbage collections. */
4441
4442 static EMACS_INT ngcs;
4443
4444 /* Average percentage of zombies per collection. */
4445
4446 static double avg_zombies;
4447
4448 /* Max. number of live and zombie objects. */
4449
4450 static EMACS_INT max_live, max_zombies;
4451
4452 /* Average number of live objects per GC. */
4453
4454 static double avg_live;
4455
4456 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4457 doc: /* Show information about live and zombie objects. */)
4458 (void)
4459 {
4460 Lisp_Object args[8], zombie_list = Qnil;
4461 EMACS_INT i;
4462 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4463 zombie_list = Fcons (zombies[i], zombie_list);
4464 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4465 args[1] = make_number (ngcs);
4466 args[2] = make_float (avg_live);
4467 args[3] = make_float (avg_zombies);
4468 args[4] = make_float (avg_zombies / avg_live / 100);
4469 args[5] = make_number (max_live);
4470 args[6] = make_number (max_zombies);
4471 args[7] = zombie_list;
4472 return Fmessage (8, args);
4473 }
4474
4475 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4476
4477
4478 /* Mark OBJ if we can prove it's a Lisp_Object. */
4479
4480 static void
4481 mark_maybe_object (Lisp_Object obj)
4482 {
4483 void *po;
4484 struct mem_node *m;
4485
4486 #if USE_VALGRIND
4487 if (valgrind_p)
4488 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4489 #endif
4490
4491 if (INTEGERP (obj))
4492 return;
4493
4494 po = (void *) XPNTR (obj);
4495 m = mem_find (po);
4496
4497 if (m != MEM_NIL)
4498 {
4499 bool mark_p = 0;
4500
4501 switch (XTYPE (obj))
4502 {
4503 case Lisp_String:
4504 mark_p = (live_string_p (m, po)
4505 && !STRING_MARKED_P ((struct Lisp_String *) po));
4506 break;
4507
4508 case Lisp_Cons:
4509 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4510 break;
4511
4512 case Lisp_Symbol:
4513 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4514 break;
4515
4516 case Lisp_Float:
4517 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4518 break;
4519
4520 case Lisp_Vectorlike:
4521 /* Note: can't check BUFFERP before we know it's a
4522 buffer because checking that dereferences the pointer
4523 PO which might point anywhere. */
4524 if (live_vector_p (m, po))
4525 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4526 else if (live_buffer_p (m, po))
4527 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4528 break;
4529
4530 case Lisp_Misc:
4531 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4532 break;
4533
4534 default:
4535 break;
4536 }
4537
4538 if (mark_p)
4539 {
4540 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4541 if (nzombies < MAX_ZOMBIES)
4542 zombies[nzombies] = obj;
4543 ++nzombies;
4544 #endif
4545 mark_object (obj);
4546 }
4547 }
4548 }
4549
4550
4551 /* If P points to Lisp data, mark that as live if it isn't already
4552 marked. */
4553
4554 static void
4555 mark_maybe_pointer (void *p)
4556 {
4557 struct mem_node *m;
4558
4559 #if USE_VALGRIND
4560 if (valgrind_p)
4561 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4562 #endif
4563
4564 /* Quickly rule out some values which can't point to Lisp data.
4565 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4566 Otherwise, assume that Lisp data is aligned on even addresses. */
4567 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4568 return;
4569
4570 m = mem_find (p);
4571 if (m != MEM_NIL)
4572 {
4573 Lisp_Object obj = Qnil;
4574
4575 switch (m->type)
4576 {
4577 case MEM_TYPE_NON_LISP:
4578 case MEM_TYPE_SPARE:
4579 /* Nothing to do; not a pointer to Lisp memory. */
4580 break;
4581
4582 case MEM_TYPE_BUFFER:
4583 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4584 XSETVECTOR (obj, p);
4585 break;
4586
4587 case MEM_TYPE_CONS:
4588 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4589 XSETCONS (obj, p);
4590 break;
4591
4592 case MEM_TYPE_STRING:
4593 if (live_string_p (m, p)
4594 && !STRING_MARKED_P ((struct Lisp_String *) p))
4595 XSETSTRING (obj, p);
4596 break;
4597
4598 case MEM_TYPE_MISC:
4599 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4600 XSETMISC (obj, p);
4601 break;
4602
4603 case MEM_TYPE_SYMBOL:
4604 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4605 XSETSYMBOL (obj, p);
4606 break;
4607
4608 case MEM_TYPE_FLOAT:
4609 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4610 XSETFLOAT (obj, p);
4611 break;
4612
4613 case MEM_TYPE_VECTORLIKE:
4614 case MEM_TYPE_VECTOR_BLOCK:
4615 if (live_vector_p (m, p))
4616 {
4617 Lisp_Object tem;
4618 XSETVECTOR (tem, p);
4619 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4620 obj = tem;
4621 }
4622 break;
4623
4624 default:
4625 emacs_abort ();
4626 }
4627
4628 if (!NILP (obj))
4629 mark_object (obj);
4630 }
4631 }
4632
4633
4634 /* Alignment of pointer values. Use alignof, as it sometimes returns
4635 a smaller alignment than GCC's __alignof__ and mark_memory might
4636 miss objects if __alignof__ were used. */
4637 #define GC_POINTER_ALIGNMENT alignof (void *)
4638
4639 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4640 not suffice, which is the typical case. A host where a Lisp_Object is
4641 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4642 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4643 suffice to widen it to to a Lisp_Object and check it that way. */
4644 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4645 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4646 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4647 nor mark_maybe_object can follow the pointers. This should not occur on
4648 any practical porting target. */
4649 # error "MSB type bits straddle pointer-word boundaries"
4650 # endif
4651 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4652 pointer words that hold pointers ORed with type bits. */
4653 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4654 #else
4655 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4656 words that hold unmodified pointers. */
4657 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4658 #endif
4659
4660 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4661 or END+OFFSET..START. */
4662
4663 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4664 mark_memory (void *start, void *end)
4665 {
4666 void **pp;
4667 int i;
4668
4669 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4670 nzombies = 0;
4671 #endif
4672
4673 /* Make START the pointer to the start of the memory region,
4674 if it isn't already. */
4675 if (end < start)
4676 {
4677 void *tem = start;
4678 start = end;
4679 end = tem;
4680 }
4681
4682 /* Mark Lisp data pointed to. This is necessary because, in some
4683 situations, the C compiler optimizes Lisp objects away, so that
4684 only a pointer to them remains. Example:
4685
4686 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4687 ()
4688 {
4689 Lisp_Object obj = build_string ("test");
4690 struct Lisp_String *s = XSTRING (obj);
4691 Fgarbage_collect ();
4692 fprintf (stderr, "test `%s'\n", s->data);
4693 return Qnil;
4694 }
4695
4696 Here, `obj' isn't really used, and the compiler optimizes it
4697 away. The only reference to the life string is through the
4698 pointer `s'. */
4699
4700 for (pp = start; (void *) pp < end; pp++)
4701 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4702 {
4703 void *p = *(void **) ((char *) pp + i);
4704 mark_maybe_pointer (p);
4705 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4706 mark_maybe_object (XIL ((intptr_t) p));
4707 }
4708 }
4709
4710 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4711
4712 static bool setjmp_tested_p;
4713 static int longjmps_done;
4714
4715 #define SETJMP_WILL_LIKELY_WORK "\
4716 \n\
4717 Emacs garbage collector has been changed to use conservative stack\n\
4718 marking. Emacs has determined that the method it uses to do the\n\
4719 marking will likely work on your system, but this isn't sure.\n\
4720 \n\
4721 If you are a system-programmer, or can get the help of a local wizard\n\
4722 who is, please take a look at the function mark_stack in alloc.c, and\n\
4723 verify that the methods used are appropriate for your system.\n\
4724 \n\
4725 Please mail the result to <emacs-devel@gnu.org>.\n\
4726 "
4727
4728 #define SETJMP_WILL_NOT_WORK "\
4729 \n\
4730 Emacs garbage collector has been changed to use conservative stack\n\
4731 marking. Emacs has determined that the default method it uses to do the\n\
4732 marking will not work on your system. We will need a system-dependent\n\
4733 solution for your system.\n\
4734 \n\
4735 Please take a look at the function mark_stack in alloc.c, and\n\
4736 try to find a way to make it work on your system.\n\
4737 \n\
4738 Note that you may get false negatives, depending on the compiler.\n\
4739 In particular, you need to use -O with GCC for this test.\n\
4740 \n\
4741 Please mail the result to <emacs-devel@gnu.org>.\n\
4742 "
4743
4744
4745 /* Perform a quick check if it looks like setjmp saves registers in a
4746 jmp_buf. Print a message to stderr saying so. When this test
4747 succeeds, this is _not_ a proof that setjmp is sufficient for
4748 conservative stack marking. Only the sources or a disassembly
4749 can prove that. */
4750
4751 static void
4752 test_setjmp (void)
4753 {
4754 char buf[10];
4755 register int x;
4756 sys_jmp_buf jbuf;
4757
4758 /* Arrange for X to be put in a register. */
4759 sprintf (buf, "1");
4760 x = strlen (buf);
4761 x = 2 * x - 1;
4762
4763 sys_setjmp (jbuf);
4764 if (longjmps_done == 1)
4765 {
4766 /* Came here after the longjmp at the end of the function.
4767
4768 If x == 1, the longjmp has restored the register to its
4769 value before the setjmp, and we can hope that setjmp
4770 saves all such registers in the jmp_buf, although that
4771 isn't sure.
4772
4773 For other values of X, either something really strange is
4774 taking place, or the setjmp just didn't save the register. */
4775
4776 if (x == 1)
4777 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4778 else
4779 {
4780 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4781 exit (1);
4782 }
4783 }
4784
4785 ++longjmps_done;
4786 x = 2;
4787 if (longjmps_done == 1)
4788 sys_longjmp (jbuf, 1);
4789 }
4790
4791 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4792
4793
4794 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4795
4796 /* Abort if anything GCPRO'd doesn't survive the GC. */
4797
4798 static void
4799 check_gcpros (void)
4800 {
4801 struct gcpro *p;
4802 ptrdiff_t i;
4803
4804 for (p = gcprolist; p; p = p->next)
4805 for (i = 0; i < p->nvars; ++i)
4806 if (!survives_gc_p (p->var[i]))
4807 /* FIXME: It's not necessarily a bug. It might just be that the
4808 GCPRO is unnecessary or should release the object sooner. */
4809 emacs_abort ();
4810 }
4811
4812 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4813
4814 void
4815 dump_zombies (void)
4816 {
4817 int i;
4818
4819 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4820 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4821 {
4822 fprintf (stderr, " %d = ", i);
4823 debug_print (zombies[i]);
4824 }
4825 }
4826
4827 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4828
4829
4830 /* Mark live Lisp objects on the C stack.
4831
4832 There are several system-dependent problems to consider when
4833 porting this to new architectures:
4834
4835 Processor Registers
4836
4837 We have to mark Lisp objects in CPU registers that can hold local
4838 variables or are used to pass parameters.
4839
4840 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4841 something that either saves relevant registers on the stack, or
4842 calls mark_maybe_object passing it each register's contents.
4843
4844 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4845 implementation assumes that calling setjmp saves registers we need
4846 to see in a jmp_buf which itself lies on the stack. This doesn't
4847 have to be true! It must be verified for each system, possibly
4848 by taking a look at the source code of setjmp.
4849
4850 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4851 can use it as a machine independent method to store all registers
4852 to the stack. In this case the macros described in the previous
4853 two paragraphs are not used.
4854
4855 Stack Layout
4856
4857 Architectures differ in the way their processor stack is organized.
4858 For example, the stack might look like this
4859
4860 +----------------+
4861 | Lisp_Object | size = 4
4862 +----------------+
4863 | something else | size = 2
4864 +----------------+
4865 | Lisp_Object | size = 4
4866 +----------------+
4867 | ... |
4868
4869 In such a case, not every Lisp_Object will be aligned equally. To
4870 find all Lisp_Object on the stack it won't be sufficient to walk
4871 the stack in steps of 4 bytes. Instead, two passes will be
4872 necessary, one starting at the start of the stack, and a second
4873 pass starting at the start of the stack + 2. Likewise, if the
4874 minimal alignment of Lisp_Objects on the stack is 1, four passes
4875 would be necessary, each one starting with one byte more offset
4876 from the stack start. */
4877
4878 static void
4879 mark_stack (void *end)
4880 {
4881
4882 /* This assumes that the stack is a contiguous region in memory. If
4883 that's not the case, something has to be done here to iterate
4884 over the stack segments. */
4885 mark_memory (stack_base, end);
4886
4887 /* Allow for marking a secondary stack, like the register stack on the
4888 ia64. */
4889 #ifdef GC_MARK_SECONDARY_STACK
4890 GC_MARK_SECONDARY_STACK ();
4891 #endif
4892
4893 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4894 check_gcpros ();
4895 #endif
4896 }
4897
4898 #else /* GC_MARK_STACK == 0 */
4899
4900 #define mark_maybe_object(obj) emacs_abort ()
4901
4902 #endif /* GC_MARK_STACK != 0 */
4903
4904
4905 /* Determine whether it is safe to access memory at address P. */
4906 static int
4907 valid_pointer_p (void *p)
4908 {
4909 #ifdef WINDOWSNT
4910 return w32_valid_pointer_p (p, 16);
4911 #else
4912 int fd[2];
4913
4914 /* Obviously, we cannot just access it (we would SEGV trying), so we
4915 trick the o/s to tell us whether p is a valid pointer.
4916 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4917 not validate p in that case. */
4918
4919 if (emacs_pipe (fd) == 0)
4920 {
4921 bool valid = emacs_write (fd[1], p, 16) == 16;
4922 emacs_close (fd[1]);
4923 emacs_close (fd[0]);
4924 return valid;
4925 }
4926
4927 return -1;
4928 #endif
4929 }
4930
4931 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4932 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4933 cannot validate OBJ. This function can be quite slow, so its primary
4934 use is the manual debugging. The only exception is print_object, where
4935 we use it to check whether the memory referenced by the pointer of
4936 Lisp_Save_Value object contains valid objects. */
4937
4938 int
4939 valid_lisp_object_p (Lisp_Object obj)
4940 {
4941 void *p;
4942 #if GC_MARK_STACK
4943 struct mem_node *m;
4944 #endif
4945
4946 if (INTEGERP (obj))
4947 return 1;
4948
4949 p = (void *) XPNTR (obj);
4950 if (PURE_POINTER_P (p))
4951 return 1;
4952
4953 if (p == &buffer_defaults || p == &buffer_local_symbols)
4954 return 2;
4955
4956 #if !GC_MARK_STACK
4957 return valid_pointer_p (p);
4958 #else
4959
4960 m = mem_find (p);
4961
4962 if (m == MEM_NIL)
4963 {
4964 int valid = valid_pointer_p (p);
4965 if (valid <= 0)
4966 return valid;
4967
4968 if (SUBRP (obj))
4969 return 1;
4970
4971 return 0;
4972 }
4973
4974 switch (m->type)
4975 {
4976 case MEM_TYPE_NON_LISP:
4977 case MEM_TYPE_SPARE:
4978 return 0;
4979
4980 case MEM_TYPE_BUFFER:
4981 return live_buffer_p (m, p) ? 1 : 2;
4982
4983 case MEM_TYPE_CONS:
4984 return live_cons_p (m, p);
4985
4986 case MEM_TYPE_STRING:
4987 return live_string_p (m, p);
4988
4989 case MEM_TYPE_MISC:
4990 return live_misc_p (m, p);
4991
4992 case MEM_TYPE_SYMBOL:
4993 return live_symbol_p (m, p);
4994
4995 case MEM_TYPE_FLOAT:
4996 return live_float_p (m, p);
4997
4998 case MEM_TYPE_VECTORLIKE:
4999 case MEM_TYPE_VECTOR_BLOCK:
5000 return live_vector_p (m, p);
5001
5002 default:
5003 break;
5004 }
5005
5006 return 0;
5007 #endif
5008 }
5009
5010
5011
5012 \f
5013 /***********************************************************************
5014 Pure Storage Management
5015 ***********************************************************************/
5016
5017 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5018 pointer to it. TYPE is the Lisp type for which the memory is
5019 allocated. TYPE < 0 means it's not used for a Lisp object. */
5020
5021 static void *
5022 pure_alloc (size_t size, int type)
5023 {
5024 void *result;
5025 #if USE_LSB_TAG
5026 size_t alignment = GCALIGNMENT;
5027 #else
5028 size_t alignment = alignof (EMACS_INT);
5029
5030 /* Give Lisp_Floats an extra alignment. */
5031 if (type == Lisp_Float)
5032 alignment = alignof (struct Lisp_Float);
5033 #endif
5034
5035 again:
5036 if (type >= 0)
5037 {
5038 /* Allocate space for a Lisp object from the beginning of the free
5039 space with taking account of alignment. */
5040 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5041 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5042 }
5043 else
5044 {
5045 /* Allocate space for a non-Lisp object from the end of the free
5046 space. */
5047 pure_bytes_used_non_lisp += size;
5048 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5049 }
5050 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5051
5052 if (pure_bytes_used <= pure_size)
5053 return result;
5054
5055 /* Don't allocate a large amount here,
5056 because it might get mmap'd and then its address
5057 might not be usable. */
5058 purebeg = xmalloc (10000);
5059 pure_size = 10000;
5060 pure_bytes_used_before_overflow += pure_bytes_used - size;
5061 pure_bytes_used = 0;
5062 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5063 goto again;
5064 }
5065
5066
5067 /* Print a warning if PURESIZE is too small. */
5068
5069 void
5070 check_pure_size (void)
5071 {
5072 if (pure_bytes_used_before_overflow)
5073 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5074 " bytes needed)"),
5075 pure_bytes_used + pure_bytes_used_before_overflow);
5076 }
5077
5078
5079 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5080 the non-Lisp data pool of the pure storage, and return its start
5081 address. Return NULL if not found. */
5082
5083 static char *
5084 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5085 {
5086 int i;
5087 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5088 const unsigned char *p;
5089 char *non_lisp_beg;
5090
5091 if (pure_bytes_used_non_lisp <= nbytes)
5092 return NULL;
5093
5094 /* Set up the Boyer-Moore table. */
5095 skip = nbytes + 1;
5096 for (i = 0; i < 256; i++)
5097 bm_skip[i] = skip;
5098
5099 p = (const unsigned char *) data;
5100 while (--skip > 0)
5101 bm_skip[*p++] = skip;
5102
5103 last_char_skip = bm_skip['\0'];
5104
5105 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5106 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5107
5108 /* See the comments in the function `boyer_moore' (search.c) for the
5109 use of `infinity'. */
5110 infinity = pure_bytes_used_non_lisp + 1;
5111 bm_skip['\0'] = infinity;
5112
5113 p = (const unsigned char *) non_lisp_beg + nbytes;
5114 start = 0;
5115 do
5116 {
5117 /* Check the last character (== '\0'). */
5118 do
5119 {
5120 start += bm_skip[*(p + start)];
5121 }
5122 while (start <= start_max);
5123
5124 if (start < infinity)
5125 /* Couldn't find the last character. */
5126 return NULL;
5127
5128 /* No less than `infinity' means we could find the last
5129 character at `p[start - infinity]'. */
5130 start -= infinity;
5131
5132 /* Check the remaining characters. */
5133 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5134 /* Found. */
5135 return non_lisp_beg + start;
5136
5137 start += last_char_skip;
5138 }
5139 while (start <= start_max);
5140
5141 return NULL;
5142 }
5143
5144
5145 /* Return a string allocated in pure space. DATA is a buffer holding
5146 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5147 means make the result string multibyte.
5148
5149 Must get an error if pure storage is full, since if it cannot hold
5150 a large string it may be able to hold conses that point to that
5151 string; then the string is not protected from gc. */
5152
5153 Lisp_Object
5154 make_pure_string (const char *data,
5155 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5156 {
5157 Lisp_Object string;
5158 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5159 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5160 if (s->data == NULL)
5161 {
5162 s->data = pure_alloc (nbytes + 1, -1);
5163 memcpy (s->data, data, nbytes);
5164 s->data[nbytes] = '\0';
5165 }
5166 s->size = nchars;
5167 s->size_byte = multibyte ? nbytes : -1;
5168 s->intervals = NULL;
5169 XSETSTRING (string, s);
5170 return string;
5171 }
5172
5173 /* Return a string allocated in pure space. Do not
5174 allocate the string data, just point to DATA. */
5175
5176 Lisp_Object
5177 make_pure_c_string (const char *data, ptrdiff_t nchars)
5178 {
5179 Lisp_Object string;
5180 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5181 s->size = nchars;
5182 s->size_byte = -1;
5183 s->data = (unsigned char *) data;
5184 s->intervals = NULL;
5185 XSETSTRING (string, s);
5186 return string;
5187 }
5188
5189 static Lisp_Object purecopy (Lisp_Object obj);
5190
5191 /* Return a cons allocated from pure space. Give it pure copies
5192 of CAR as car and CDR as cdr. */
5193
5194 Lisp_Object
5195 pure_cons (Lisp_Object car, Lisp_Object cdr)
5196 {
5197 Lisp_Object new;
5198 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5199 XSETCONS (new, p);
5200 XSETCAR (new, purecopy (car));
5201 XSETCDR (new, purecopy (cdr));
5202 return new;
5203 }
5204
5205
5206 /* Value is a float object with value NUM allocated from pure space. */
5207
5208 static Lisp_Object
5209 make_pure_float (double num)
5210 {
5211 Lisp_Object new;
5212 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5213 XSETFLOAT (new, p);
5214 XFLOAT_INIT (new, num);
5215 return new;
5216 }
5217
5218
5219 /* Return a vector with room for LEN Lisp_Objects allocated from
5220 pure space. */
5221
5222 static Lisp_Object
5223 make_pure_vector (ptrdiff_t len)
5224 {
5225 Lisp_Object new;
5226 size_t size = header_size + len * word_size;
5227 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5228 XSETVECTOR (new, p);
5229 XVECTOR (new)->header.size = len;
5230 return new;
5231 }
5232
5233
5234 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5235 doc: /* Make a copy of object OBJ in pure storage.
5236 Recursively copies contents of vectors and cons cells.
5237 Does not copy symbols. Copies strings without text properties. */)
5238 (register Lisp_Object obj)
5239 {
5240 if (NILP (Vpurify_flag))
5241 return obj;
5242 else if (MARKERP (obj) || OVERLAYP (obj)
5243 || HASH_TABLE_P (obj) || SYMBOLP (obj))
5244 /* Can't purify those. */
5245 return obj;
5246 else
5247 return purecopy (obj);
5248 }
5249
5250 static Lisp_Object
5251 purecopy (Lisp_Object obj)
5252 {
5253 if (PURE_POINTER_P (XPNTR (obj)) || INTEGERP (obj) || SUBRP (obj))
5254 return obj; /* Already pure. */
5255
5256 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5257 {
5258 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5259 if (!NILP (tmp))
5260 return tmp;
5261 }
5262
5263 if (CONSP (obj))
5264 obj = pure_cons (XCAR (obj), XCDR (obj));
5265 else if (FLOATP (obj))
5266 obj = make_pure_float (XFLOAT_DATA (obj));
5267 else if (STRINGP (obj))
5268 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5269 SBYTES (obj),
5270 STRING_MULTIBYTE (obj));
5271 else if (COMPILEDP (obj) || VECTORP (obj))
5272 {
5273 register struct Lisp_Vector *vec;
5274 register ptrdiff_t i;
5275 ptrdiff_t size;
5276
5277 size = ASIZE (obj);
5278 if (size & PSEUDOVECTOR_FLAG)
5279 size &= PSEUDOVECTOR_SIZE_MASK;
5280 vec = XVECTOR (make_pure_vector (size));
5281 for (i = 0; i < size; i++)
5282 vec->contents[i] = purecopy (AREF (obj, i));
5283 if (COMPILEDP (obj))
5284 {
5285 XSETPVECTYPE (vec, PVEC_COMPILED);
5286 XSETCOMPILED (obj, vec);
5287 }
5288 else
5289 XSETVECTOR (obj, vec);
5290 }
5291 else if (SYMBOLP (obj))
5292 {
5293 if (!XSYMBOL (obj)->pinned)
5294 { /* We can't purify them, but they appear in many pure objects.
5295 Mark them as `pinned' so we know to mark them at every GC cycle. */
5296 XSYMBOL (obj)->pinned = true;
5297 symbol_block_pinned = symbol_block;
5298 }
5299 return obj;
5300 }
5301 else
5302 {
5303 Lisp_Object args[2];
5304 args[0] = build_pure_c_string ("Don't know how to purify: %S");
5305 args[1] = obj;
5306 Fsignal (Qerror, (Fcons (Fformat (2, args), Qnil)));
5307 }
5308
5309 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5310 Fputhash (obj, obj, Vpurify_flag);
5311
5312 return obj;
5313 }
5314
5315
5316 \f
5317 /***********************************************************************
5318 Protection from GC
5319 ***********************************************************************/
5320
5321 /* Put an entry in staticvec, pointing at the variable with address
5322 VARADDRESS. */
5323
5324 void
5325 staticpro (Lisp_Object *varaddress)
5326 {
5327 if (staticidx >= NSTATICS)
5328 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5329 staticvec[staticidx++] = varaddress;
5330 }
5331
5332 \f
5333 /***********************************************************************
5334 Protection from GC
5335 ***********************************************************************/
5336
5337 /* Temporarily prevent garbage collection. */
5338
5339 ptrdiff_t
5340 inhibit_garbage_collection (void)
5341 {
5342 ptrdiff_t count = SPECPDL_INDEX ();
5343
5344 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5345 return count;
5346 }
5347
5348 /* Used to avoid possible overflows when
5349 converting from C to Lisp integers. */
5350
5351 static Lisp_Object
5352 bounded_number (EMACS_INT number)
5353 {
5354 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5355 }
5356
5357 /* Calculate total bytes of live objects. */
5358
5359 static size_t
5360 total_bytes_of_live_objects (void)
5361 {
5362 size_t tot = 0;
5363 tot += total_conses * sizeof (struct Lisp_Cons);
5364 tot += total_symbols * sizeof (struct Lisp_Symbol);
5365 tot += total_markers * sizeof (union Lisp_Misc);
5366 tot += total_string_bytes;
5367 tot += total_vector_slots * word_size;
5368 tot += total_floats * sizeof (struct Lisp_Float);
5369 tot += total_intervals * sizeof (struct interval);
5370 tot += total_strings * sizeof (struct Lisp_String);
5371 return tot;
5372 }
5373
5374 #ifdef HAVE_WINDOW_SYSTEM
5375
5376 /* This code has a few issues on MS-Windows, see Bug#15876 and Bug#16140. */
5377
5378 #if !defined (HAVE_NTGUI)
5379
5380 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5381 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5382
5383 static Lisp_Object
5384 compact_font_cache_entry (Lisp_Object entry)
5385 {
5386 Lisp_Object tail, *prev = &entry;
5387
5388 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5389 {
5390 bool drop = 0;
5391 Lisp_Object obj = XCAR (tail);
5392
5393 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5394 if (CONSP (obj) && FONT_SPEC_P (XCAR (obj))
5395 && !VECTOR_MARKED_P (XFONT_SPEC (XCAR (obj)))
5396 && VECTORP (XCDR (obj)))
5397 {
5398 ptrdiff_t i, size = ASIZE (XCDR (obj)) & ~ARRAY_MARK_FLAG;
5399
5400 /* If font-spec is not marked, most likely all font-entities
5401 are not marked too. But we must be sure that nothing is
5402 marked within OBJ before we really drop it. */
5403 for (i = 0; i < size; i++)
5404 if (VECTOR_MARKED_P (XFONT_ENTITY (AREF (XCDR (obj), i))))
5405 break;
5406
5407 if (i == size)
5408 drop = 1;
5409 }
5410 if (drop)
5411 *prev = XCDR (tail);
5412 else
5413 prev = xcdr_addr (tail);
5414 }
5415 return entry;
5416 }
5417
5418 #endif /* not HAVE_NTGUI */
5419
5420 /* Compact font caches on all terminals and mark
5421 everything which is still here after compaction. */
5422
5423 static void
5424 compact_font_caches (void)
5425 {
5426 struct terminal *t;
5427
5428 for (t = terminal_list; t; t = t->next_terminal)
5429 {
5430 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5431 #if !defined (HAVE_NTGUI)
5432 if (CONSP (cache))
5433 {
5434 Lisp_Object entry;
5435
5436 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5437 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5438 }
5439 #endif /* not HAVE_NTGUI */
5440 mark_object (cache);
5441 }
5442 }
5443
5444 #else /* not HAVE_WINDOW_SYSTEM */
5445
5446 #define compact_font_caches() (void)(0)
5447
5448 #endif /* HAVE_WINDOW_SYSTEM */
5449
5450 /* Remove (MARKER . DATA) entries with unmarked MARKER
5451 from buffer undo LIST and return changed list. */
5452
5453 static Lisp_Object
5454 compact_undo_list (Lisp_Object list)
5455 {
5456 Lisp_Object tail, *prev = &list;
5457
5458 for (tail = list; CONSP (tail); tail = XCDR (tail))
5459 {
5460 if (CONSP (XCAR (tail))
5461 && MARKERP (XCAR (XCAR (tail)))
5462 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5463 *prev = XCDR (tail);
5464 else
5465 prev = xcdr_addr (tail);
5466 }
5467 return list;
5468 }
5469
5470 static void
5471 mark_pinned_symbols (void)
5472 {
5473 struct symbol_block *sblk;
5474 int lim = (symbol_block_pinned == symbol_block
5475 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5476
5477 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5478 {
5479 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5480 for (; sym < end; ++sym)
5481 if (sym->s.pinned)
5482 mark_object (make_lisp_ptr (&sym->s, Lisp_Symbol));
5483
5484 lim = SYMBOL_BLOCK_SIZE;
5485 }
5486 }
5487
5488 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5489 separate function so that we could limit mark_stack in searching
5490 the stack frames below this function, thus avoiding the rare cases
5491 where mark_stack finds values that look like live Lisp objects on
5492 portions of stack that couldn't possibly contain such live objects.
5493 For more details of this, see the discussion at
5494 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5495 static Lisp_Object
5496 garbage_collect_1 (void *end)
5497 {
5498 struct buffer *nextb;
5499 char stack_top_variable;
5500 ptrdiff_t i;
5501 bool message_p;
5502 ptrdiff_t count = SPECPDL_INDEX ();
5503 struct timespec start;
5504 Lisp_Object retval = Qnil;
5505 size_t tot_before = 0;
5506
5507 if (abort_on_gc)
5508 emacs_abort ();
5509
5510 /* Can't GC if pure storage overflowed because we can't determine
5511 if something is a pure object or not. */
5512 if (pure_bytes_used_before_overflow)
5513 return Qnil;
5514
5515 /* Record this function, so it appears on the profiler's backtraces. */
5516 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5517
5518 check_cons_list ();
5519
5520 /* Don't keep undo information around forever.
5521 Do this early on, so it is no problem if the user quits. */
5522 FOR_EACH_BUFFER (nextb)
5523 compact_buffer (nextb);
5524
5525 if (profiler_memory_running)
5526 tot_before = total_bytes_of_live_objects ();
5527
5528 start = current_timespec ();
5529
5530 /* In case user calls debug_print during GC,
5531 don't let that cause a recursive GC. */
5532 consing_since_gc = 0;
5533
5534 /* Save what's currently displayed in the echo area. */
5535 message_p = push_message ();
5536 record_unwind_protect_void (pop_message_unwind);
5537
5538 /* Save a copy of the contents of the stack, for debugging. */
5539 #if MAX_SAVE_STACK > 0
5540 if (NILP (Vpurify_flag))
5541 {
5542 char *stack;
5543 ptrdiff_t stack_size;
5544 if (&stack_top_variable < stack_bottom)
5545 {
5546 stack = &stack_top_variable;
5547 stack_size = stack_bottom - &stack_top_variable;
5548 }
5549 else
5550 {
5551 stack = stack_bottom;
5552 stack_size = &stack_top_variable - stack_bottom;
5553 }
5554 if (stack_size <= MAX_SAVE_STACK)
5555 {
5556 if (stack_copy_size < stack_size)
5557 {
5558 stack_copy = xrealloc (stack_copy, stack_size);
5559 stack_copy_size = stack_size;
5560 }
5561 no_sanitize_memcpy (stack_copy, stack, stack_size);
5562 }
5563 }
5564 #endif /* MAX_SAVE_STACK > 0 */
5565
5566 if (garbage_collection_messages)
5567 message1_nolog ("Garbage collecting...");
5568
5569 block_input ();
5570
5571 shrink_regexp_cache ();
5572
5573 gc_in_progress = 1;
5574
5575 /* Mark all the special slots that serve as the roots of accessibility. */
5576
5577 mark_buffer (&buffer_defaults);
5578 mark_buffer (&buffer_local_symbols);
5579
5580 for (i = 0; i < staticidx; i++)
5581 mark_object (*staticvec[i]);
5582
5583 mark_pinned_symbols ();
5584 mark_specpdl ();
5585 mark_terminals ();
5586 mark_kboards ();
5587
5588 #ifdef USE_GTK
5589 xg_mark_data ();
5590 #endif
5591
5592 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5593 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5594 mark_stack (end);
5595 #else
5596 {
5597 register struct gcpro *tail;
5598 for (tail = gcprolist; tail; tail = tail->next)
5599 for (i = 0; i < tail->nvars; i++)
5600 mark_object (tail->var[i]);
5601 }
5602 mark_byte_stack ();
5603 #endif
5604 {
5605 struct handler *handler;
5606 for (handler = handlerlist; handler; handler = handler->next)
5607 {
5608 mark_object (handler->tag_or_ch);
5609 mark_object (handler->val);
5610 }
5611 }
5612 #ifdef HAVE_WINDOW_SYSTEM
5613 mark_fringe_data ();
5614 #endif
5615
5616 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5617 mark_stack (end);
5618 #endif
5619
5620 /* Everything is now marked, except for the data in font caches
5621 and undo lists. They're compacted by removing an items which
5622 aren't reachable otherwise. */
5623
5624 compact_font_caches ();
5625
5626 FOR_EACH_BUFFER (nextb)
5627 {
5628 if (!EQ (BVAR (nextb, undo_list), Qt))
5629 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5630 /* Now that we have stripped the elements that need not be
5631 in the undo_list any more, we can finally mark the list. */
5632 mark_object (BVAR (nextb, undo_list));
5633 }
5634
5635 gc_sweep ();
5636
5637 /* Clear the mark bits that we set in certain root slots. */
5638
5639 unmark_byte_stack ();
5640 VECTOR_UNMARK (&buffer_defaults);
5641 VECTOR_UNMARK (&buffer_local_symbols);
5642
5643 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5644 dump_zombies ();
5645 #endif
5646
5647 check_cons_list ();
5648
5649 gc_in_progress = 0;
5650
5651 unblock_input ();
5652
5653 consing_since_gc = 0;
5654 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5655 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5656
5657 gc_relative_threshold = 0;
5658 if (FLOATP (Vgc_cons_percentage))
5659 { /* Set gc_cons_combined_threshold. */
5660 double tot = total_bytes_of_live_objects ();
5661
5662 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5663 if (0 < tot)
5664 {
5665 if (tot < TYPE_MAXIMUM (EMACS_INT))
5666 gc_relative_threshold = tot;
5667 else
5668 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5669 }
5670 }
5671
5672 if (garbage_collection_messages)
5673 {
5674 if (message_p || minibuf_level > 0)
5675 restore_message ();
5676 else
5677 message1_nolog ("Garbage collecting...done");
5678 }
5679
5680 unbind_to (count, Qnil);
5681 {
5682 Lisp_Object total[11];
5683 int total_size = 10;
5684
5685 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5686 bounded_number (total_conses),
5687 bounded_number (total_free_conses));
5688
5689 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5690 bounded_number (total_symbols),
5691 bounded_number (total_free_symbols));
5692
5693 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5694 bounded_number (total_markers),
5695 bounded_number (total_free_markers));
5696
5697 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5698 bounded_number (total_strings),
5699 bounded_number (total_free_strings));
5700
5701 total[4] = list3 (Qstring_bytes, make_number (1),
5702 bounded_number (total_string_bytes));
5703
5704 total[5] = list3 (Qvectors,
5705 make_number (header_size + sizeof (Lisp_Object)),
5706 bounded_number (total_vectors));
5707
5708 total[6] = list4 (Qvector_slots, make_number (word_size),
5709 bounded_number (total_vector_slots),
5710 bounded_number (total_free_vector_slots));
5711
5712 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5713 bounded_number (total_floats),
5714 bounded_number (total_free_floats));
5715
5716 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5717 bounded_number (total_intervals),
5718 bounded_number (total_free_intervals));
5719
5720 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5721 bounded_number (total_buffers));
5722
5723 #ifdef DOUG_LEA_MALLOC
5724 total_size++;
5725 total[10] = list4 (Qheap, make_number (1024),
5726 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5727 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5728 #endif
5729 retval = Flist (total_size, total);
5730 }
5731
5732 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5733 {
5734 /* Compute average percentage of zombies. */
5735 double nlive
5736 = (total_conses + total_symbols + total_markers + total_strings
5737 + total_vectors + total_floats + total_intervals + total_buffers);
5738
5739 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5740 max_live = max (nlive, max_live);
5741 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5742 max_zombies = max (nzombies, max_zombies);
5743 ++ngcs;
5744 }
5745 #endif
5746
5747 if (!NILP (Vpost_gc_hook))
5748 {
5749 ptrdiff_t gc_count = inhibit_garbage_collection ();
5750 safe_run_hooks (Qpost_gc_hook);
5751 unbind_to (gc_count, Qnil);
5752 }
5753
5754 /* Accumulate statistics. */
5755 if (FLOATP (Vgc_elapsed))
5756 {
5757 struct timespec since_start = timespec_sub (current_timespec (), start);
5758 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5759 + timespectod (since_start));
5760 }
5761
5762 gcs_done++;
5763
5764 /* Collect profiling data. */
5765 if (profiler_memory_running)
5766 {
5767 size_t swept = 0;
5768 size_t tot_after = total_bytes_of_live_objects ();
5769 if (tot_before > tot_after)
5770 swept = tot_before - tot_after;
5771 malloc_probe (swept);
5772 }
5773
5774 return retval;
5775 }
5776
5777 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5778 doc: /* Reclaim storage for Lisp objects no longer needed.
5779 Garbage collection happens automatically if you cons more than
5780 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5781 `garbage-collect' normally returns a list with info on amount of space in use,
5782 where each entry has the form (NAME SIZE USED FREE), where:
5783 - NAME is a symbol describing the kind of objects this entry represents,
5784 - SIZE is the number of bytes used by each one,
5785 - USED is the number of those objects that were found live in the heap,
5786 - FREE is the number of those objects that are not live but that Emacs
5787 keeps around for future allocations (maybe because it does not know how
5788 to return them to the OS).
5789 However, if there was overflow in pure space, `garbage-collect'
5790 returns nil, because real GC can't be done.
5791 See Info node `(elisp)Garbage Collection'. */)
5792 (void)
5793 {
5794 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5795 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS \
5796 || GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES)
5797 void *end;
5798
5799 #ifdef HAVE___BUILTIN_UNWIND_INIT
5800 /* Force callee-saved registers and register windows onto the stack.
5801 This is the preferred method if available, obviating the need for
5802 machine dependent methods. */
5803 __builtin_unwind_init ();
5804 end = &end;
5805 #else /* not HAVE___BUILTIN_UNWIND_INIT */
5806 #ifndef GC_SAVE_REGISTERS_ON_STACK
5807 /* jmp_buf may not be aligned enough on darwin-ppc64 */
5808 union aligned_jmpbuf {
5809 Lisp_Object o;
5810 sys_jmp_buf j;
5811 } j;
5812 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
5813 #endif
5814 /* This trick flushes the register windows so that all the state of
5815 the process is contained in the stack. */
5816 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
5817 needed on ia64 too. See mach_dep.c, where it also says inline
5818 assembler doesn't work with relevant proprietary compilers. */
5819 #ifdef __sparc__
5820 #if defined (__sparc64__) && defined (__FreeBSD__)
5821 /* FreeBSD does not have a ta 3 handler. */
5822 asm ("flushw");
5823 #else
5824 asm ("ta 3");
5825 #endif
5826 #endif
5827
5828 /* Save registers that we need to see on the stack. We need to see
5829 registers used to hold register variables and registers used to
5830 pass parameters. */
5831 #ifdef GC_SAVE_REGISTERS_ON_STACK
5832 GC_SAVE_REGISTERS_ON_STACK (end);
5833 #else /* not GC_SAVE_REGISTERS_ON_STACK */
5834
5835 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
5836 setjmp will definitely work, test it
5837 and print a message with the result
5838 of the test. */
5839 if (!setjmp_tested_p)
5840 {
5841 setjmp_tested_p = 1;
5842 test_setjmp ();
5843 }
5844 #endif /* GC_SETJMP_WORKS */
5845
5846 sys_setjmp (j.j);
5847 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
5848 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
5849 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
5850 #endif /* GC_MARK_STACK */
5851 return garbage_collect_1 (end);
5852 }
5853
5854 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5855 only interesting objects referenced from glyphs are strings. */
5856
5857 static void
5858 mark_glyph_matrix (struct glyph_matrix *matrix)
5859 {
5860 struct glyph_row *row = matrix->rows;
5861 struct glyph_row *end = row + matrix->nrows;
5862
5863 for (; row < end; ++row)
5864 if (row->enabled_p)
5865 {
5866 int area;
5867 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5868 {
5869 struct glyph *glyph = row->glyphs[area];
5870 struct glyph *end_glyph = glyph + row->used[area];
5871
5872 for (; glyph < end_glyph; ++glyph)
5873 if (STRINGP (glyph->object)
5874 && !STRING_MARKED_P (XSTRING (glyph->object)))
5875 mark_object (glyph->object);
5876 }
5877 }
5878 }
5879
5880 /* Mark reference to a Lisp_Object.
5881 If the object referred to has not been seen yet, recursively mark
5882 all the references contained in it. */
5883
5884 #define LAST_MARKED_SIZE 500
5885 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5886 static int last_marked_index;
5887
5888 /* For debugging--call abort when we cdr down this many
5889 links of a list, in mark_object. In debugging,
5890 the call to abort will hit a breakpoint.
5891 Normally this is zero and the check never goes off. */
5892 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5893
5894 static void
5895 mark_vectorlike (struct Lisp_Vector *ptr)
5896 {
5897 ptrdiff_t size = ptr->header.size;
5898 ptrdiff_t i;
5899
5900 eassert (!VECTOR_MARKED_P (ptr));
5901 VECTOR_MARK (ptr); /* Else mark it. */
5902 if (size & PSEUDOVECTOR_FLAG)
5903 size &= PSEUDOVECTOR_SIZE_MASK;
5904
5905 /* Note that this size is not the memory-footprint size, but only
5906 the number of Lisp_Object fields that we should trace.
5907 The distinction is used e.g. by Lisp_Process which places extra
5908 non-Lisp_Object fields at the end of the structure... */
5909 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5910 mark_object (ptr->contents[i]);
5911 }
5912
5913 /* Like mark_vectorlike but optimized for char-tables (and
5914 sub-char-tables) assuming that the contents are mostly integers or
5915 symbols. */
5916
5917 static void
5918 mark_char_table (struct Lisp_Vector *ptr)
5919 {
5920 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5921 int i;
5922
5923 eassert (!VECTOR_MARKED_P (ptr));
5924 VECTOR_MARK (ptr);
5925 for (i = 0; i < size; i++)
5926 {
5927 Lisp_Object val = ptr->contents[i];
5928
5929 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5930 continue;
5931 if (SUB_CHAR_TABLE_P (val))
5932 {
5933 if (! VECTOR_MARKED_P (XVECTOR (val)))
5934 mark_char_table (XVECTOR (val));
5935 }
5936 else
5937 mark_object (val);
5938 }
5939 }
5940
5941 /* Mark the chain of overlays starting at PTR. */
5942
5943 static void
5944 mark_overlay (struct Lisp_Overlay *ptr)
5945 {
5946 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5947 {
5948 ptr->gcmarkbit = 1;
5949 mark_object (ptr->start);
5950 mark_object (ptr->end);
5951 mark_object (ptr->plist);
5952 }
5953 }
5954
5955 /* Mark Lisp_Objects and special pointers in BUFFER. */
5956
5957 static void
5958 mark_buffer (struct buffer *buffer)
5959 {
5960 /* This is handled much like other pseudovectors... */
5961 mark_vectorlike ((struct Lisp_Vector *) buffer);
5962
5963 /* ...but there are some buffer-specific things. */
5964
5965 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5966
5967 /* For now, we just don't mark the undo_list. It's done later in
5968 a special way just before the sweep phase, and after stripping
5969 some of its elements that are not needed any more. */
5970
5971 mark_overlay (buffer->overlays_before);
5972 mark_overlay (buffer->overlays_after);
5973
5974 /* If this is an indirect buffer, mark its base buffer. */
5975 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5976 mark_buffer (buffer->base_buffer);
5977 }
5978
5979 /* Mark Lisp faces in the face cache C. */
5980
5981 static void
5982 mark_face_cache (struct face_cache *c)
5983 {
5984 if (c)
5985 {
5986 int i, j;
5987 for (i = 0; i < c->used; ++i)
5988 {
5989 struct face *face = FACE_FROM_ID (c->f, i);
5990
5991 if (face)
5992 {
5993 if (face->font && !VECTOR_MARKED_P (face->font))
5994 mark_vectorlike ((struct Lisp_Vector *) face->font);
5995
5996 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5997 mark_object (face->lface[j]);
5998 }
5999 }
6000 }
6001 }
6002
6003 /* Remove killed buffers or items whose car is a killed buffer from
6004 LIST, and mark other items. Return changed LIST, which is marked. */
6005
6006 static Lisp_Object
6007 mark_discard_killed_buffers (Lisp_Object list)
6008 {
6009 Lisp_Object tail, *prev = &list;
6010
6011 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6012 tail = XCDR (tail))
6013 {
6014 Lisp_Object tem = XCAR (tail);
6015 if (CONSP (tem))
6016 tem = XCAR (tem);
6017 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6018 *prev = XCDR (tail);
6019 else
6020 {
6021 CONS_MARK (XCONS (tail));
6022 mark_object (XCAR (tail));
6023 prev = xcdr_addr (tail);
6024 }
6025 }
6026 mark_object (tail);
6027 return list;
6028 }
6029
6030 /* Determine type of generic Lisp_Object and mark it accordingly. */
6031
6032 void
6033 mark_object (Lisp_Object arg)
6034 {
6035 register Lisp_Object obj = arg;
6036 #ifdef GC_CHECK_MARKED_OBJECTS
6037 void *po;
6038 struct mem_node *m;
6039 #endif
6040 ptrdiff_t cdr_count = 0;
6041
6042 loop:
6043
6044 if (PURE_POINTER_P (XPNTR (obj)))
6045 return;
6046
6047 last_marked[last_marked_index++] = obj;
6048 if (last_marked_index == LAST_MARKED_SIZE)
6049 last_marked_index = 0;
6050
6051 /* Perform some sanity checks on the objects marked here. Abort if
6052 we encounter an object we know is bogus. This increases GC time
6053 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
6054 #ifdef GC_CHECK_MARKED_OBJECTS
6055
6056 po = (void *) XPNTR (obj);
6057
6058 /* Check that the object pointed to by PO is known to be a Lisp
6059 structure allocated from the heap. */
6060 #define CHECK_ALLOCATED() \
6061 do { \
6062 m = mem_find (po); \
6063 if (m == MEM_NIL) \
6064 emacs_abort (); \
6065 } while (0)
6066
6067 /* Check that the object pointed to by PO is live, using predicate
6068 function LIVEP. */
6069 #define CHECK_LIVE(LIVEP) \
6070 do { \
6071 if (!LIVEP (m, po)) \
6072 emacs_abort (); \
6073 } while (0)
6074
6075 /* Check both of the above conditions. */
6076 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6077 do { \
6078 CHECK_ALLOCATED (); \
6079 CHECK_LIVE (LIVEP); \
6080 } while (0) \
6081
6082 #else /* not GC_CHECK_MARKED_OBJECTS */
6083
6084 #define CHECK_LIVE(LIVEP) (void) 0
6085 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
6086
6087 #endif /* not GC_CHECK_MARKED_OBJECTS */
6088
6089 switch (XTYPE (obj))
6090 {
6091 case Lisp_String:
6092 {
6093 register struct Lisp_String *ptr = XSTRING (obj);
6094 if (STRING_MARKED_P (ptr))
6095 break;
6096 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6097 MARK_STRING (ptr);
6098 MARK_INTERVAL_TREE (ptr->intervals);
6099 #ifdef GC_CHECK_STRING_BYTES
6100 /* Check that the string size recorded in the string is the
6101 same as the one recorded in the sdata structure. */
6102 string_bytes (ptr);
6103 #endif /* GC_CHECK_STRING_BYTES */
6104 }
6105 break;
6106
6107 case Lisp_Vectorlike:
6108 {
6109 register struct Lisp_Vector *ptr = XVECTOR (obj);
6110 register ptrdiff_t pvectype;
6111
6112 if (VECTOR_MARKED_P (ptr))
6113 break;
6114
6115 #ifdef GC_CHECK_MARKED_OBJECTS
6116 m = mem_find (po);
6117 if (m == MEM_NIL && !SUBRP (obj))
6118 emacs_abort ();
6119 #endif /* GC_CHECK_MARKED_OBJECTS */
6120
6121 if (ptr->header.size & PSEUDOVECTOR_FLAG)
6122 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6123 >> PSEUDOVECTOR_AREA_BITS);
6124 else
6125 pvectype = PVEC_NORMAL_VECTOR;
6126
6127 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6128 CHECK_LIVE (live_vector_p);
6129
6130 switch (pvectype)
6131 {
6132 case PVEC_BUFFER:
6133 #ifdef GC_CHECK_MARKED_OBJECTS
6134 {
6135 struct buffer *b;
6136 FOR_EACH_BUFFER (b)
6137 if (b == po)
6138 break;
6139 if (b == NULL)
6140 emacs_abort ();
6141 }
6142 #endif /* GC_CHECK_MARKED_OBJECTS */
6143 mark_buffer ((struct buffer *) ptr);
6144 break;
6145
6146 case PVEC_COMPILED:
6147 { /* We could treat this just like a vector, but it is better
6148 to save the COMPILED_CONSTANTS element for last and avoid
6149 recursion there. */
6150 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6151 int i;
6152
6153 VECTOR_MARK (ptr);
6154 for (i = 0; i < size; i++)
6155 if (i != COMPILED_CONSTANTS)
6156 mark_object (ptr->contents[i]);
6157 if (size > COMPILED_CONSTANTS)
6158 {
6159 obj = ptr->contents[COMPILED_CONSTANTS];
6160 goto loop;
6161 }
6162 }
6163 break;
6164
6165 case PVEC_FRAME:
6166 {
6167 struct frame *f = (struct frame *) ptr;
6168
6169 mark_vectorlike (ptr);
6170 mark_face_cache (f->face_cache);
6171 #ifdef HAVE_WINDOW_SYSTEM
6172 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6173 {
6174 struct font *font = FRAME_FONT (f);
6175
6176 if (font && !VECTOR_MARKED_P (font))
6177 mark_vectorlike ((struct Lisp_Vector *) font);
6178 }
6179 #endif
6180 }
6181 break;
6182
6183 case PVEC_WINDOW:
6184 {
6185 struct window *w = (struct window *) ptr;
6186
6187 mark_vectorlike (ptr);
6188
6189 /* Mark glyph matrices, if any. Marking window
6190 matrices is sufficient because frame matrices
6191 use the same glyph memory. */
6192 if (w->current_matrix)
6193 {
6194 mark_glyph_matrix (w->current_matrix);
6195 mark_glyph_matrix (w->desired_matrix);
6196 }
6197
6198 /* Filter out killed buffers from both buffer lists
6199 in attempt to help GC to reclaim killed buffers faster.
6200 We can do it elsewhere for live windows, but this is the
6201 best place to do it for dead windows. */
6202 wset_prev_buffers
6203 (w, mark_discard_killed_buffers (w->prev_buffers));
6204 wset_next_buffers
6205 (w, mark_discard_killed_buffers (w->next_buffers));
6206 }
6207 break;
6208
6209 case PVEC_HASH_TABLE:
6210 {
6211 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6212
6213 mark_vectorlike (ptr);
6214 mark_object (h->test.name);
6215 mark_object (h->test.user_hash_function);
6216 mark_object (h->test.user_cmp_function);
6217 /* If hash table is not weak, mark all keys and values.
6218 For weak tables, mark only the vector. */
6219 if (NILP (h->weak))
6220 mark_object (h->key_and_value);
6221 else
6222 VECTOR_MARK (XVECTOR (h->key_and_value));
6223 }
6224 break;
6225
6226 case PVEC_CHAR_TABLE:
6227 mark_char_table (ptr);
6228 break;
6229
6230 case PVEC_BOOL_VECTOR:
6231 /* No Lisp_Objects to mark in a bool vector. */
6232 VECTOR_MARK (ptr);
6233 break;
6234
6235 case PVEC_SUBR:
6236 break;
6237
6238 case PVEC_FREE:
6239 emacs_abort ();
6240
6241 default:
6242 mark_vectorlike (ptr);
6243 }
6244 }
6245 break;
6246
6247 case Lisp_Symbol:
6248 {
6249 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6250 struct Lisp_Symbol *ptrx;
6251
6252 if (ptr->gcmarkbit)
6253 break;
6254 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6255 ptr->gcmarkbit = 1;
6256 /* Attempt to catch bogus objects. */
6257 eassert (valid_lisp_object_p (ptr->function) >= 1);
6258 mark_object (ptr->function);
6259 mark_object (ptr->plist);
6260 switch (ptr->redirect)
6261 {
6262 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6263 case SYMBOL_VARALIAS:
6264 {
6265 Lisp_Object tem;
6266 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6267 mark_object (tem);
6268 break;
6269 }
6270 case SYMBOL_LOCALIZED:
6271 {
6272 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6273 Lisp_Object where = blv->where;
6274 /* If the value is set up for a killed buffer or deleted
6275 frame, restore it's global binding. If the value is
6276 forwarded to a C variable, either it's not a Lisp_Object
6277 var, or it's staticpro'd already. */
6278 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6279 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6280 swap_in_global_binding (ptr);
6281 mark_object (blv->where);
6282 mark_object (blv->valcell);
6283 mark_object (blv->defcell);
6284 break;
6285 }
6286 case SYMBOL_FORWARDED:
6287 /* If the value is forwarded to a buffer or keyboard field,
6288 these are marked when we see the corresponding object.
6289 And if it's forwarded to a C variable, either it's not
6290 a Lisp_Object var, or it's staticpro'd already. */
6291 break;
6292 default: emacs_abort ();
6293 }
6294 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6295 MARK_STRING (XSTRING (ptr->name));
6296 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6297
6298 ptr = ptr->next;
6299 if (ptr)
6300 {
6301 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
6302 XSETSYMBOL (obj, ptrx);
6303 goto loop;
6304 }
6305 }
6306 break;
6307
6308 case Lisp_Misc:
6309 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6310
6311 if (XMISCANY (obj)->gcmarkbit)
6312 break;
6313
6314 switch (XMISCTYPE (obj))
6315 {
6316 case Lisp_Misc_Marker:
6317 /* DO NOT mark thru the marker's chain.
6318 The buffer's markers chain does not preserve markers from gc;
6319 instead, markers are removed from the chain when freed by gc. */
6320 XMISCANY (obj)->gcmarkbit = 1;
6321 break;
6322
6323 case Lisp_Misc_Save_Value:
6324 XMISCANY (obj)->gcmarkbit = 1;
6325 {
6326 struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6327 /* If `save_type' is zero, `data[0].pointer' is the address
6328 of a memory area containing `data[1].integer' potential
6329 Lisp_Objects. */
6330 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
6331 {
6332 Lisp_Object *p = ptr->data[0].pointer;
6333 ptrdiff_t nelt;
6334 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6335 mark_maybe_object (*p);
6336 }
6337 else
6338 {
6339 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6340 int i;
6341 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6342 if (save_type (ptr, i) == SAVE_OBJECT)
6343 mark_object (ptr->data[i].object);
6344 }
6345 }
6346 break;
6347
6348 case Lisp_Misc_Overlay:
6349 mark_overlay (XOVERLAY (obj));
6350 break;
6351
6352 default:
6353 emacs_abort ();
6354 }
6355 break;
6356
6357 case Lisp_Cons:
6358 {
6359 register struct Lisp_Cons *ptr = XCONS (obj);
6360 if (CONS_MARKED_P (ptr))
6361 break;
6362 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6363 CONS_MARK (ptr);
6364 /* If the cdr is nil, avoid recursion for the car. */
6365 if (EQ (ptr->u.cdr, Qnil))
6366 {
6367 obj = ptr->car;
6368 cdr_count = 0;
6369 goto loop;
6370 }
6371 mark_object (ptr->car);
6372 obj = ptr->u.cdr;
6373 cdr_count++;
6374 if (cdr_count == mark_object_loop_halt)
6375 emacs_abort ();
6376 goto loop;
6377 }
6378
6379 case Lisp_Float:
6380 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6381 FLOAT_MARK (XFLOAT (obj));
6382 break;
6383
6384 case_Lisp_Int:
6385 break;
6386
6387 default:
6388 emacs_abort ();
6389 }
6390
6391 #undef CHECK_LIVE
6392 #undef CHECK_ALLOCATED
6393 #undef CHECK_ALLOCATED_AND_LIVE
6394 }
6395 /* Mark the Lisp pointers in the terminal objects.
6396 Called by Fgarbage_collect. */
6397
6398 static void
6399 mark_terminals (void)
6400 {
6401 struct terminal *t;
6402 for (t = terminal_list; t; t = t->next_terminal)
6403 {
6404 eassert (t->name != NULL);
6405 #ifdef HAVE_WINDOW_SYSTEM
6406 /* If a terminal object is reachable from a stacpro'ed object,
6407 it might have been marked already. Make sure the image cache
6408 gets marked. */
6409 mark_image_cache (t->image_cache);
6410 #endif /* HAVE_WINDOW_SYSTEM */
6411 if (!VECTOR_MARKED_P (t))
6412 mark_vectorlike ((struct Lisp_Vector *)t);
6413 }
6414 }
6415
6416
6417
6418 /* Value is non-zero if OBJ will survive the current GC because it's
6419 either marked or does not need to be marked to survive. */
6420
6421 bool
6422 survives_gc_p (Lisp_Object obj)
6423 {
6424 bool survives_p;
6425
6426 switch (XTYPE (obj))
6427 {
6428 case_Lisp_Int:
6429 survives_p = 1;
6430 break;
6431
6432 case Lisp_Symbol:
6433 survives_p = XSYMBOL (obj)->gcmarkbit;
6434 break;
6435
6436 case Lisp_Misc:
6437 survives_p = XMISCANY (obj)->gcmarkbit;
6438 break;
6439
6440 case Lisp_String:
6441 survives_p = STRING_MARKED_P (XSTRING (obj));
6442 break;
6443
6444 case Lisp_Vectorlike:
6445 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6446 break;
6447
6448 case Lisp_Cons:
6449 survives_p = CONS_MARKED_P (XCONS (obj));
6450 break;
6451
6452 case Lisp_Float:
6453 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6454 break;
6455
6456 default:
6457 emacs_abort ();
6458 }
6459
6460 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6461 }
6462
6463
6464 \f
6465
6466 NO_INLINE /* For better stack traces */
6467 static void
6468 sweep_conses (void)
6469 {
6470 struct cons_block *cblk;
6471 struct cons_block **cprev = &cons_block;
6472 int lim = cons_block_index;
6473 EMACS_INT num_free = 0, num_used = 0;
6474
6475 cons_free_list = 0;
6476
6477 for (cblk = cons_block; cblk; cblk = *cprev)
6478 {
6479 int i = 0;
6480 int this_free = 0;
6481 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6482
6483 /* Scan the mark bits an int at a time. */
6484 for (i = 0; i < ilim; i++)
6485 {
6486 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6487 {
6488 /* Fast path - all cons cells for this int are marked. */
6489 cblk->gcmarkbits[i] = 0;
6490 num_used += BITS_PER_BITS_WORD;
6491 }
6492 else
6493 {
6494 /* Some cons cells for this int are not marked.
6495 Find which ones, and free them. */
6496 int start, pos, stop;
6497
6498 start = i * BITS_PER_BITS_WORD;
6499 stop = lim - start;
6500 if (stop > BITS_PER_BITS_WORD)
6501 stop = BITS_PER_BITS_WORD;
6502 stop += start;
6503
6504 for (pos = start; pos < stop; pos++)
6505 {
6506 if (!CONS_MARKED_P (&cblk->conses[pos]))
6507 {
6508 this_free++;
6509 cblk->conses[pos].u.chain = cons_free_list;
6510 cons_free_list = &cblk->conses[pos];
6511 #if GC_MARK_STACK
6512 cons_free_list->car = Vdead;
6513 #endif
6514 }
6515 else
6516 {
6517 num_used++;
6518 CONS_UNMARK (&cblk->conses[pos]);
6519 }
6520 }
6521 }
6522 }
6523
6524 lim = CONS_BLOCK_SIZE;
6525 /* If this block contains only free conses and we have already
6526 seen more than two blocks worth of free conses then deallocate
6527 this block. */
6528 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6529 {
6530 *cprev = cblk->next;
6531 /* Unhook from the free list. */
6532 cons_free_list = cblk->conses[0].u.chain;
6533 lisp_align_free (cblk);
6534 }
6535 else
6536 {
6537 num_free += this_free;
6538 cprev = &cblk->next;
6539 }
6540 }
6541 total_conses = num_used;
6542 total_free_conses = num_free;
6543 }
6544
6545 NO_INLINE /* For better stack traces */
6546 static void
6547 sweep_floats (void)
6548 {
6549 register struct float_block *fblk;
6550 struct float_block **fprev = &float_block;
6551 register int lim = float_block_index;
6552 EMACS_INT num_free = 0, num_used = 0;
6553
6554 float_free_list = 0;
6555
6556 for (fblk = float_block; fblk; fblk = *fprev)
6557 {
6558 register int i;
6559 int this_free = 0;
6560 for (i = 0; i < lim; i++)
6561 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6562 {
6563 this_free++;
6564 fblk->floats[i].u.chain = float_free_list;
6565 float_free_list = &fblk->floats[i];
6566 }
6567 else
6568 {
6569 num_used++;
6570 FLOAT_UNMARK (&fblk->floats[i]);
6571 }
6572 lim = FLOAT_BLOCK_SIZE;
6573 /* If this block contains only free floats and we have already
6574 seen more than two blocks worth of free floats then deallocate
6575 this block. */
6576 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6577 {
6578 *fprev = fblk->next;
6579 /* Unhook from the free list. */
6580 float_free_list = fblk->floats[0].u.chain;
6581 lisp_align_free (fblk);
6582 }
6583 else
6584 {
6585 num_free += this_free;
6586 fprev = &fblk->next;
6587 }
6588 }
6589 total_floats = num_used;
6590 total_free_floats = num_free;
6591 }
6592
6593 NO_INLINE /* For better stack traces */
6594 static void
6595 sweep_intervals (void)
6596 {
6597 register struct interval_block *iblk;
6598 struct interval_block **iprev = &interval_block;
6599 register int lim = interval_block_index;
6600 EMACS_INT num_free = 0, num_used = 0;
6601
6602 interval_free_list = 0;
6603
6604 for (iblk = interval_block; iblk; iblk = *iprev)
6605 {
6606 register int i;
6607 int this_free = 0;
6608
6609 for (i = 0; i < lim; i++)
6610 {
6611 if (!iblk->intervals[i].gcmarkbit)
6612 {
6613 set_interval_parent (&iblk->intervals[i], interval_free_list);
6614 interval_free_list = &iblk->intervals[i];
6615 this_free++;
6616 }
6617 else
6618 {
6619 num_used++;
6620 iblk->intervals[i].gcmarkbit = 0;
6621 }
6622 }
6623 lim = INTERVAL_BLOCK_SIZE;
6624 /* If this block contains only free intervals and we have already
6625 seen more than two blocks worth of free intervals then
6626 deallocate this block. */
6627 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6628 {
6629 *iprev = iblk->next;
6630 /* Unhook from the free list. */
6631 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6632 lisp_free (iblk);
6633 }
6634 else
6635 {
6636 num_free += this_free;
6637 iprev = &iblk->next;
6638 }
6639 }
6640 total_intervals = num_used;
6641 total_free_intervals = num_free;
6642 }
6643
6644 NO_INLINE /* For better stack traces */
6645 static void
6646 sweep_symbols (void)
6647 {
6648 register struct symbol_block *sblk;
6649 struct symbol_block **sprev = &symbol_block;
6650 register int lim = symbol_block_index;
6651 EMACS_INT num_free = 0, num_used = 0;
6652
6653 symbol_free_list = NULL;
6654
6655 for (sblk = symbol_block; sblk; sblk = *sprev)
6656 {
6657 int this_free = 0;
6658 union aligned_Lisp_Symbol *sym = sblk->symbols;
6659 union aligned_Lisp_Symbol *end = sym + lim;
6660
6661 for (; sym < end; ++sym)
6662 {
6663 if (!sym->s.gcmarkbit)
6664 {
6665 if (sym->s.redirect == SYMBOL_LOCALIZED)
6666 xfree (SYMBOL_BLV (&sym->s));
6667 sym->s.next = symbol_free_list;
6668 symbol_free_list = &sym->s;
6669 #if GC_MARK_STACK
6670 symbol_free_list->function = Vdead;
6671 #endif
6672 ++this_free;
6673 }
6674 else
6675 {
6676 ++num_used;
6677 sym->s.gcmarkbit = 0;
6678 /* Attempt to catch bogus objects. */
6679 eassert (valid_lisp_object_p (sym->s.function) >= 1);
6680 }
6681 }
6682
6683 lim = SYMBOL_BLOCK_SIZE;
6684 /* If this block contains only free symbols and we have already
6685 seen more than two blocks worth of free symbols then deallocate
6686 this block. */
6687 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6688 {
6689 *sprev = sblk->next;
6690 /* Unhook from the free list. */
6691 symbol_free_list = sblk->symbols[0].s.next;
6692 lisp_free (sblk);
6693 }
6694 else
6695 {
6696 num_free += this_free;
6697 sprev = &sblk->next;
6698 }
6699 }
6700 total_symbols = num_used;
6701 total_free_symbols = num_free;
6702 }
6703
6704 NO_INLINE /* For better stack traces */
6705 static void
6706 sweep_misc (void)
6707 {
6708 register struct marker_block *mblk;
6709 struct marker_block **mprev = &marker_block;
6710 register int lim = marker_block_index;
6711 EMACS_INT num_free = 0, num_used = 0;
6712
6713 /* Put all unmarked misc's on free list. For a marker, first
6714 unchain it from the buffer it points into. */
6715
6716 marker_free_list = 0;
6717
6718 for (mblk = marker_block; mblk; mblk = *mprev)
6719 {
6720 register int i;
6721 int this_free = 0;
6722
6723 for (i = 0; i < lim; i++)
6724 {
6725 if (!mblk->markers[i].m.u_any.gcmarkbit)
6726 {
6727 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6728 unchain_marker (&mblk->markers[i].m.u_marker);
6729 /* Set the type of the freed object to Lisp_Misc_Free.
6730 We could leave the type alone, since nobody checks it,
6731 but this might catch bugs faster. */
6732 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6733 mblk->markers[i].m.u_free.chain = marker_free_list;
6734 marker_free_list = &mblk->markers[i].m;
6735 this_free++;
6736 }
6737 else
6738 {
6739 num_used++;
6740 mblk->markers[i].m.u_any.gcmarkbit = 0;
6741 }
6742 }
6743 lim = MARKER_BLOCK_SIZE;
6744 /* If this block contains only free markers and we have already
6745 seen more than two blocks worth of free markers then deallocate
6746 this block. */
6747 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6748 {
6749 *mprev = mblk->next;
6750 /* Unhook from the free list. */
6751 marker_free_list = mblk->markers[0].m.u_free.chain;
6752 lisp_free (mblk);
6753 }
6754 else
6755 {
6756 num_free += this_free;
6757 mprev = &mblk->next;
6758 }
6759 }
6760
6761 total_markers = num_used;
6762 total_free_markers = num_free;
6763 }
6764
6765 NO_INLINE /* For better stack traces */
6766 static void
6767 sweep_buffers (void)
6768 {
6769 register struct buffer *buffer, **bprev = &all_buffers;
6770
6771 total_buffers = 0;
6772 for (buffer = all_buffers; buffer; buffer = *bprev)
6773 if (!VECTOR_MARKED_P (buffer))
6774 {
6775 *bprev = buffer->next;
6776 lisp_free (buffer);
6777 }
6778 else
6779 {
6780 VECTOR_UNMARK (buffer);
6781 /* Do not use buffer_(set|get)_intervals here. */
6782 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6783 total_buffers++;
6784 bprev = &buffer->next;
6785 }
6786 }
6787
6788 /* Sweep: find all structures not marked, and free them. */
6789 static void
6790 gc_sweep (void)
6791 {
6792 /* Remove or mark entries in weak hash tables.
6793 This must be done before any object is unmarked. */
6794 sweep_weak_hash_tables ();
6795
6796 sweep_strings ();
6797 check_string_bytes (!noninteractive);
6798 sweep_conses ();
6799 sweep_floats ();
6800 sweep_intervals ();
6801 sweep_symbols ();
6802 sweep_misc ();
6803 sweep_buffers ();
6804 sweep_vectors ();
6805 check_string_bytes (!noninteractive);
6806 }
6807
6808 \f
6809 /* Debugging aids. */
6810
6811 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6812 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6813 This may be helpful in debugging Emacs's memory usage.
6814 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6815 (void)
6816 {
6817 Lisp_Object end;
6818
6819 #ifdef HAVE_NS
6820 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
6821 XSETINT (end, 0);
6822 #else
6823 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6824 #endif
6825
6826 return end;
6827 }
6828
6829 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6830 doc: /* Return a list of counters that measure how much consing there has been.
6831 Each of these counters increments for a certain kind of object.
6832 The counters wrap around from the largest positive integer to zero.
6833 Garbage collection does not decrease them.
6834 The elements of the value are as follows:
6835 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6836 All are in units of 1 = one object consed
6837 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6838 objects consed.
6839 MISCS include overlays, markers, and some internal types.
6840 Frames, windows, buffers, and subprocesses count as vectors
6841 (but the contents of a buffer's text do not count here). */)
6842 (void)
6843 {
6844 return listn (CONSTYPE_HEAP, 8,
6845 bounded_number (cons_cells_consed),
6846 bounded_number (floats_consed),
6847 bounded_number (vector_cells_consed),
6848 bounded_number (symbols_consed),
6849 bounded_number (string_chars_consed),
6850 bounded_number (misc_objects_consed),
6851 bounded_number (intervals_consed),
6852 bounded_number (strings_consed));
6853 }
6854
6855 /* Find at most FIND_MAX symbols which have OBJ as their value or
6856 function. This is used in gdbinit's `xwhichsymbols' command. */
6857
6858 Lisp_Object
6859 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6860 {
6861 struct symbol_block *sblk;
6862 ptrdiff_t gc_count = inhibit_garbage_collection ();
6863 Lisp_Object found = Qnil;
6864
6865 if (! DEADP (obj))
6866 {
6867 for (sblk = symbol_block; sblk; sblk = sblk->next)
6868 {
6869 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6870 int bn;
6871
6872 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6873 {
6874 struct Lisp_Symbol *sym = &aligned_sym->s;
6875 Lisp_Object val;
6876 Lisp_Object tem;
6877
6878 if (sblk == symbol_block && bn >= symbol_block_index)
6879 break;
6880
6881 XSETSYMBOL (tem, sym);
6882 val = find_symbol_value (tem);
6883 if (EQ (val, obj)
6884 || EQ (sym->function, obj)
6885 || (!NILP (sym->function)
6886 && COMPILEDP (sym->function)
6887 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6888 || (!NILP (val)
6889 && COMPILEDP (val)
6890 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6891 {
6892 found = Fcons (tem, found);
6893 if (--find_max == 0)
6894 goto out;
6895 }
6896 }
6897 }
6898 }
6899
6900 out:
6901 unbind_to (gc_count, Qnil);
6902 return found;
6903 }
6904
6905 #ifdef SUSPICIOUS_OBJECT_CHECKING
6906
6907 static void *
6908 find_suspicious_object_in_range (void *begin, void *end)
6909 {
6910 char *begin_a = begin;
6911 char *end_a = end;
6912 int i;
6913
6914 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
6915 {
6916 char *suspicious_object = suspicious_objects[i];
6917 if (begin_a <= suspicious_object && suspicious_object < end_a)
6918 return suspicious_object;
6919 }
6920
6921 return NULL;
6922 }
6923
6924 static void
6925 note_suspicious_free (void* ptr)
6926 {
6927 struct suspicious_free_record* rec;
6928
6929 rec = &suspicious_free_history[suspicious_free_history_index++];
6930 if (suspicious_free_history_index ==
6931 ARRAYELTS (suspicious_free_history))
6932 {
6933 suspicious_free_history_index = 0;
6934 }
6935
6936 memset (rec, 0, sizeof (*rec));
6937 rec->suspicious_object = ptr;
6938 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
6939 }
6940
6941 static void
6942 detect_suspicious_free (void* ptr)
6943 {
6944 int i;
6945
6946 eassert (ptr != NULL);
6947
6948 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
6949 if (suspicious_objects[i] == ptr)
6950 {
6951 note_suspicious_free (ptr);
6952 suspicious_objects[i] = NULL;
6953 }
6954 }
6955
6956 #endif /* SUSPICIOUS_OBJECT_CHECKING */
6957
6958 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
6959 doc: /* Return OBJ, maybe marking it for extra scrutiny.
6960 If Emacs is compiled with suspicous object checking, capture
6961 a stack trace when OBJ is freed in order to help track down
6962 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
6963 (Lisp_Object obj)
6964 {
6965 #ifdef SUSPICIOUS_OBJECT_CHECKING
6966 /* Right now, we care only about vectors. */
6967 if (VECTORLIKEP (obj))
6968 {
6969 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
6970 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
6971 suspicious_object_index = 0;
6972 }
6973 #endif
6974 return obj;
6975 }
6976
6977 #ifdef ENABLE_CHECKING
6978
6979 bool suppress_checking;
6980
6981 void
6982 die (const char *msg, const char *file, int line)
6983 {
6984 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
6985 file, line, msg);
6986 terminate_due_to_signal (SIGABRT, INT_MAX);
6987 }
6988 #endif
6989 \f
6990 /* Initialization. */
6991
6992 void
6993 init_alloc_once (void)
6994 {
6995 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6996 purebeg = PUREBEG;
6997 pure_size = PURESIZE;
6998
6999 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
7000 mem_init ();
7001 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7002 #endif
7003
7004 #ifdef DOUG_LEA_MALLOC
7005 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7006 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7007 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7008 #endif
7009 init_strings ();
7010 init_vectors ();
7011
7012 refill_memory_reserve ();
7013 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7014 }
7015
7016 void
7017 init_alloc (void)
7018 {
7019 gcprolist = 0;
7020 byte_stack_list = 0;
7021 #if GC_MARK_STACK
7022 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
7023 setjmp_tested_p = longjmps_done = 0;
7024 #endif
7025 #endif
7026 Vgc_elapsed = make_float (0.0);
7027 gcs_done = 0;
7028
7029 #if USE_VALGRIND
7030 valgrind_p = RUNNING_ON_VALGRIND != 0;
7031 #endif
7032 }
7033
7034 void
7035 syms_of_alloc (void)
7036 {
7037 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7038 doc: /* Number of bytes of consing between garbage collections.
7039 Garbage collection can happen automatically once this many bytes have been
7040 allocated since the last garbage collection. All data types count.
7041
7042 Garbage collection happens automatically only when `eval' is called.
7043
7044 By binding this temporarily to a large number, you can effectively
7045 prevent garbage collection during a part of the program.
7046 See also `gc-cons-percentage'. */);
7047
7048 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7049 doc: /* Portion of the heap used for allocation.
7050 Garbage collection can happen automatically once this portion of the heap
7051 has been allocated since the last garbage collection.
7052 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7053 Vgc_cons_percentage = make_float (0.1);
7054
7055 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7056 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7057
7058 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7059 doc: /* Number of cons cells that have been consed so far. */);
7060
7061 DEFVAR_INT ("floats-consed", floats_consed,
7062 doc: /* Number of floats that have been consed so far. */);
7063
7064 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7065 doc: /* Number of vector cells that have been consed so far. */);
7066
7067 DEFVAR_INT ("symbols-consed", symbols_consed,
7068 doc: /* Number of symbols that have been consed so far. */);
7069
7070 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7071 doc: /* Number of string characters that have been consed so far. */);
7072
7073 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7074 doc: /* Number of miscellaneous objects that have been consed so far.
7075 These include markers and overlays, plus certain objects not visible
7076 to users. */);
7077
7078 DEFVAR_INT ("intervals-consed", intervals_consed,
7079 doc: /* Number of intervals that have been consed so far. */);
7080
7081 DEFVAR_INT ("strings-consed", strings_consed,
7082 doc: /* Number of strings that have been consed so far. */);
7083
7084 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7085 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7086 This means that certain objects should be allocated in shared (pure) space.
7087 It can also be set to a hash-table, in which case this table is used to
7088 do hash-consing of the objects allocated to pure space. */);
7089
7090 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7091 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7092 garbage_collection_messages = 0;
7093
7094 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7095 doc: /* Hook run after garbage collection has finished. */);
7096 Vpost_gc_hook = Qnil;
7097 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7098
7099 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7100 doc: /* Precomputed `signal' argument for memory-full error. */);
7101 /* We build this in advance because if we wait until we need it, we might
7102 not be able to allocate the memory to hold it. */
7103 Vmemory_signal_data
7104 = listn (CONSTYPE_PURE, 2, Qerror,
7105 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7106
7107 DEFVAR_LISP ("memory-full", Vmemory_full,
7108 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7109 Vmemory_full = Qnil;
7110
7111 DEFSYM (Qconses, "conses");
7112 DEFSYM (Qsymbols, "symbols");
7113 DEFSYM (Qmiscs, "miscs");
7114 DEFSYM (Qstrings, "strings");
7115 DEFSYM (Qvectors, "vectors");
7116 DEFSYM (Qfloats, "floats");
7117 DEFSYM (Qintervals, "intervals");
7118 DEFSYM (Qbuffers, "buffers");
7119 DEFSYM (Qstring_bytes, "string-bytes");
7120 DEFSYM (Qvector_slots, "vector-slots");
7121 DEFSYM (Qheap, "heap");
7122 DEFSYM (Qautomatic_gc, "Automatic GC");
7123
7124 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7125 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7126
7127 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7128 doc: /* Accumulated time elapsed in garbage collections.
7129 The time is in seconds as a floating point value. */);
7130 DEFVAR_INT ("gcs-done", gcs_done,
7131 doc: /* Accumulated number of garbage collections done. */);
7132
7133 defsubr (&Scons);
7134 defsubr (&Slist);
7135 defsubr (&Svector);
7136 defsubr (&Sbool_vector);
7137 defsubr (&Smake_byte_code);
7138 defsubr (&Smake_list);
7139 defsubr (&Smake_vector);
7140 defsubr (&Smake_string);
7141 defsubr (&Smake_bool_vector);
7142 defsubr (&Smake_symbol);
7143 defsubr (&Smake_marker);
7144 defsubr (&Spurecopy);
7145 defsubr (&Sgarbage_collect);
7146 defsubr (&Smemory_limit);
7147 defsubr (&Smemory_use_counts);
7148 defsubr (&Ssuspicious_object);
7149
7150 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7151 defsubr (&Sgc_status);
7152 #endif
7153 }
7154
7155 /* When compiled with GCC, GDB might say "No enum type named
7156 pvec_type" if we don't have at least one symbol with that type, and
7157 then xbacktrace could fail. Similarly for the other enums and
7158 their values. Some non-GCC compilers don't like these constructs. */
7159 #ifdef __GNUC__
7160 union
7161 {
7162 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7163 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
7164 enum char_bits char_bits;
7165 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7166 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7167 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
7168 enum Lisp_Bits Lisp_Bits;
7169 enum Lisp_Compiled Lisp_Compiled;
7170 enum maxargs maxargs;
7171 enum MAX_ALLOCA MAX_ALLOCA;
7172 enum More_Lisp_Bits More_Lisp_Bits;
7173 enum pvec_type pvec_type;
7174 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7175 #endif /* __GNUC__ */