(SMBP): Deleted. All uses changed to STRING_MULTIBYTE.
[bpt/emacs.git] / src / coding.c
1 /* Coding system handler (conversion, detection, and etc).
2 Copyright (C) 1995, 1997, 1998, 2002 Electrotechnical Laboratory, JAPAN.
3 Licensed to the Free Software Foundation.
4 Copyright (C) 2001 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs; see the file COPYING. If not, write to
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /*** TABLE OF CONTENTS ***
24
25 0. General comments
26 1. Preamble
27 2. Emacs' internal format (emacs-mule) handlers
28 3. ISO2022 handlers
29 4. Shift-JIS and BIG5 handlers
30 5. CCL handlers
31 6. End-of-line handlers
32 7. C library functions
33 8. Emacs Lisp library functions
34 9. Post-amble
35
36 */
37
38 /*** 0. General comments ***/
39
40
41 /*** GENERAL NOTE on CODING SYSTEMS ***
42
43 A coding system is an encoding mechanism for one or more character
44 sets. Here's a list of coding systems which Emacs can handle. When
45 we say "decode", it means converting some other coding system to
46 Emacs' internal format (emacs-mule), and when we say "encode",
47 it means converting the coding system emacs-mule to some other
48 coding system.
49
50 0. Emacs' internal format (emacs-mule)
51
52 Emacs itself holds a multi-lingual character in buffers and strings
53 in a special format. Details are described in section 2.
54
55 1. ISO2022
56
57 The most famous coding system for multiple character sets. X's
58 Compound Text, various EUCs (Extended Unix Code), and coding
59 systems used in Internet communication such as ISO-2022-JP are
60 all variants of ISO2022. Details are described in section 3.
61
62 2. SJIS (or Shift-JIS or MS-Kanji-Code)
63
64 A coding system to encode character sets: ASCII, JISX0201, and
65 JISX0208. Widely used for PC's in Japan. Details are described in
66 section 4.
67
68 3. BIG5
69
70 A coding system to encode the character sets ASCII and Big5. Widely
71 used for Chinese (mainly in Taiwan and Hong Kong). Details are
72 described in section 4. In this file, when we write "BIG5"
73 (all uppercase), we mean the coding system, and when we write
74 "Big5" (capitalized), we mean the character set.
75
76 4. Raw text
77
78 A coding system for text containing random 8-bit code. Emacs does
79 no code conversion on such text except for end-of-line format.
80
81 5. Other
82
83 If a user wants to read/write text encoded in a coding system not
84 listed above, he can supply a decoder and an encoder for it as CCL
85 (Code Conversion Language) programs. Emacs executes the CCL program
86 while reading/writing.
87
88 Emacs represents a coding system by a Lisp symbol that has a property
89 `coding-system'. But, before actually using the coding system, the
90 information about it is set in a structure of type `struct
91 coding_system' for rapid processing. See section 6 for more details.
92
93 */
94
95 /*** GENERAL NOTES on END-OF-LINE FORMAT ***
96
97 How end-of-line of text is encoded depends on the operating system.
98 For instance, Unix's format is just one byte of `line-feed' code,
99 whereas DOS's format is two-byte sequence of `carriage-return' and
100 `line-feed' codes. MacOS's format is usually one byte of
101 `carriage-return'.
102
103 Since text character encoding and end-of-line encoding are
104 independent, any coding system described above can have any
105 end-of-line format. So Emacs has information about end-of-line
106 format in each coding-system. See section 6 for more details.
107
108 */
109
110 /*** GENERAL NOTES on `detect_coding_XXX ()' functions ***
111
112 These functions check if a text between SRC and SRC_END is encoded
113 in the coding system category XXX. Each returns an integer value in
114 which appropriate flag bits for the category XXX are set. The flag
115 bits are defined in macros CODING_CATEGORY_MASK_XXX. Below is the
116 template for these functions. If MULTIBYTEP is nonzero, 8-bit codes
117 of the range 0x80..0x9F are in multibyte form. */
118 #if 0
119 int
120 detect_coding_emacs_mule (src, src_end, multibytep)
121 unsigned char *src, *src_end;
122 int multibytep;
123 {
124 ...
125 }
126 #endif
127
128 /*** GENERAL NOTES on `decode_coding_XXX ()' functions ***
129
130 These functions decode SRC_BYTES length of unibyte text at SOURCE
131 encoded in CODING to Emacs' internal format. The resulting
132 multibyte text goes to a place pointed to by DESTINATION, the length
133 of which should not exceed DST_BYTES.
134
135 These functions set the information about original and decoded texts
136 in the members `produced', `produced_char', `consumed', and
137 `consumed_char' of the structure *CODING. They also set the member
138 `result' to one of CODING_FINISH_XXX indicating how the decoding
139 finished.
140
141 DST_BYTES zero means that the source area and destination area are
142 overlapped, which means that we can produce a decoded text until it
143 reaches the head of the not-yet-decoded source text.
144
145 Below is a template for these functions. */
146 #if 0
147 static void
148 decode_coding_XXX (coding, source, destination, src_bytes, dst_bytes)
149 struct coding_system *coding;
150 unsigned char *source, *destination;
151 int src_bytes, dst_bytes;
152 {
153 ...
154 }
155 #endif
156
157 /*** GENERAL NOTES on `encode_coding_XXX ()' functions ***
158
159 These functions encode SRC_BYTES length text at SOURCE from Emacs'
160 internal multibyte format to CODING. The resulting unibyte text
161 goes to a place pointed to by DESTINATION, the length of which
162 should not exceed DST_BYTES.
163
164 These functions set the information about original and encoded texts
165 in the members `produced', `produced_char', `consumed', and
166 `consumed_char' of the structure *CODING. They also set the member
167 `result' to one of CODING_FINISH_XXX indicating how the encoding
168 finished.
169
170 DST_BYTES zero means that the source area and destination area are
171 overlapped, which means that we can produce encoded text until it
172 reaches at the head of the not-yet-encoded source text.
173
174 Below is a template for these functions. */
175 #if 0
176 static void
177 encode_coding_XXX (coding, source, destination, src_bytes, dst_bytes)
178 struct coding_system *coding;
179 unsigned char *source, *destination;
180 int src_bytes, dst_bytes;
181 {
182 ...
183 }
184 #endif
185
186 /*** COMMONLY USED MACROS ***/
187
188 /* The following two macros ONE_MORE_BYTE and TWO_MORE_BYTES safely
189 get one, two, and three bytes from the source text respectively.
190 If there are not enough bytes in the source, they jump to
191 `label_end_of_loop'. The caller should set variables `coding',
192 `src' and `src_end' to appropriate pointer in advance. These
193 macros are called from decoding routines `decode_coding_XXX', thus
194 it is assumed that the source text is unibyte. */
195
196 #define ONE_MORE_BYTE(c1) \
197 do { \
198 if (src >= src_end) \
199 { \
200 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
201 goto label_end_of_loop; \
202 } \
203 c1 = *src++; \
204 } while (0)
205
206 #define TWO_MORE_BYTES(c1, c2) \
207 do { \
208 if (src + 1 >= src_end) \
209 { \
210 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
211 goto label_end_of_loop; \
212 } \
213 c1 = *src++; \
214 c2 = *src++; \
215 } while (0)
216
217
218 /* Like ONE_MORE_BYTE, but 8-bit bytes of data at SRC are in multibyte
219 form if MULTIBYTEP is nonzero. */
220
221 #define ONE_MORE_BYTE_CHECK_MULTIBYTE(c1, multibytep) \
222 do { \
223 if (src >= src_end) \
224 { \
225 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
226 goto label_end_of_loop; \
227 } \
228 c1 = *src++; \
229 if (multibytep && c1 == LEADING_CODE_8_BIT_CONTROL) \
230 c1 = *src++ - 0x20; \
231 } while (0)
232
233 /* Set C to the next character at the source text pointed by `src'.
234 If there are not enough characters in the source, jump to
235 `label_end_of_loop'. The caller should set variables `coding'
236 `src', `src_end', and `translation_table' to appropriate pointers
237 in advance. This macro is used in encoding routines
238 `encode_coding_XXX', thus it assumes that the source text is in
239 multibyte form except for 8-bit characters. 8-bit characters are
240 in multibyte form if coding->src_multibyte is nonzero, else they
241 are represented by a single byte. */
242
243 #define ONE_MORE_CHAR(c) \
244 do { \
245 int len = src_end - src; \
246 int bytes; \
247 if (len <= 0) \
248 { \
249 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
250 goto label_end_of_loop; \
251 } \
252 if (coding->src_multibyte \
253 || UNIBYTE_STR_AS_MULTIBYTE_P (src, len, bytes)) \
254 c = STRING_CHAR_AND_LENGTH (src, len, bytes); \
255 else \
256 c = *src, bytes = 1; \
257 if (!NILP (translation_table)) \
258 c = translate_char (translation_table, c, -1, 0, 0); \
259 src += bytes; \
260 } while (0)
261
262
263 /* Produce a multibyte form of character C to `dst'. Jump to
264 `label_end_of_loop' if there's not enough space at `dst'.
265
266 If we are now in the middle of a composition sequence, the decoded
267 character may be ALTCHAR (for the current composition). In that
268 case, the character goes to coding->cmp_data->data instead of
269 `dst'.
270
271 This macro is used in decoding routines. */
272
273 #define EMIT_CHAR(c) \
274 do { \
275 if (! COMPOSING_P (coding) \
276 || coding->composing == COMPOSITION_RELATIVE \
277 || coding->composing == COMPOSITION_WITH_RULE) \
278 { \
279 int bytes = CHAR_BYTES (c); \
280 if ((dst + bytes) > (dst_bytes ? dst_end : src)) \
281 { \
282 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
283 goto label_end_of_loop; \
284 } \
285 dst += CHAR_STRING (c, dst); \
286 coding->produced_char++; \
287 } \
288 \
289 if (COMPOSING_P (coding) \
290 && coding->composing != COMPOSITION_RELATIVE) \
291 { \
292 CODING_ADD_COMPOSITION_COMPONENT (coding, c); \
293 coding->composition_rule_follows \
294 = coding->composing != COMPOSITION_WITH_ALTCHARS; \
295 } \
296 } while (0)
297
298
299 #define EMIT_ONE_BYTE(c) \
300 do { \
301 if (dst >= (dst_bytes ? dst_end : src)) \
302 { \
303 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
304 goto label_end_of_loop; \
305 } \
306 *dst++ = c; \
307 } while (0)
308
309 #define EMIT_TWO_BYTES(c1, c2) \
310 do { \
311 if (dst + 2 > (dst_bytes ? dst_end : src)) \
312 { \
313 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
314 goto label_end_of_loop; \
315 } \
316 *dst++ = c1, *dst++ = c2; \
317 } while (0)
318
319 #define EMIT_BYTES(from, to) \
320 do { \
321 if (dst + (to - from) > (dst_bytes ? dst_end : src)) \
322 { \
323 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
324 goto label_end_of_loop; \
325 } \
326 while (from < to) \
327 *dst++ = *from++; \
328 } while (0)
329
330 \f
331 /*** 1. Preamble ***/
332
333 #ifdef emacs
334 #include <config.h>
335 #endif
336
337 #include <stdio.h>
338
339 #ifdef emacs
340
341 #include "lisp.h"
342 #include "buffer.h"
343 #include "charset.h"
344 #include "composite.h"
345 #include "ccl.h"
346 #include "coding.h"
347 #include "window.h"
348
349 #else /* not emacs */
350
351 #include "mulelib.h"
352
353 #endif /* not emacs */
354
355 Lisp_Object Qcoding_system, Qeol_type;
356 Lisp_Object Qbuffer_file_coding_system;
357 Lisp_Object Qpost_read_conversion, Qpre_write_conversion;
358 Lisp_Object Qno_conversion, Qundecided;
359 Lisp_Object Qcoding_system_history;
360 Lisp_Object Qsafe_chars;
361 Lisp_Object Qvalid_codes;
362
363 extern Lisp_Object Qinsert_file_contents, Qwrite_region;
364 Lisp_Object Qcall_process, Qcall_process_region, Qprocess_argument;
365 Lisp_Object Qstart_process, Qopen_network_stream;
366 Lisp_Object Qtarget_idx;
367
368 Lisp_Object Vselect_safe_coding_system_function;
369
370 /* Mnemonic string for each format of end-of-line. */
371 Lisp_Object eol_mnemonic_unix, eol_mnemonic_dos, eol_mnemonic_mac;
372 /* Mnemonic string to indicate format of end-of-line is not yet
373 decided. */
374 Lisp_Object eol_mnemonic_undecided;
375
376 /* Format of end-of-line decided by system. This is CODING_EOL_LF on
377 Unix, CODING_EOL_CRLF on DOS/Windows, and CODING_EOL_CR on Mac. */
378 int system_eol_type;
379
380 #ifdef emacs
381
382 Lisp_Object Vcoding_system_list, Vcoding_system_alist;
383
384 Lisp_Object Qcoding_system_p, Qcoding_system_error;
385
386 /* Coding system emacs-mule and raw-text are for converting only
387 end-of-line format. */
388 Lisp_Object Qemacs_mule, Qraw_text;
389
390 /* Coding-systems are handed between Emacs Lisp programs and C internal
391 routines by the following three variables. */
392 /* Coding-system for reading files and receiving data from process. */
393 Lisp_Object Vcoding_system_for_read;
394 /* Coding-system for writing files and sending data to process. */
395 Lisp_Object Vcoding_system_for_write;
396 /* Coding-system actually used in the latest I/O. */
397 Lisp_Object Vlast_coding_system_used;
398
399 /* A vector of length 256 which contains information about special
400 Latin codes (especially for dealing with Microsoft codes). */
401 Lisp_Object Vlatin_extra_code_table;
402
403 /* Flag to inhibit code conversion of end-of-line format. */
404 int inhibit_eol_conversion;
405
406 /* Flag to inhibit ISO2022 escape sequence detection. */
407 int inhibit_iso_escape_detection;
408
409 /* Flag to make buffer-file-coding-system inherit from process-coding. */
410 int inherit_process_coding_system;
411
412 /* Coding system to be used to encode text for terminal display. */
413 struct coding_system terminal_coding;
414
415 /* Coding system to be used to encode text for terminal display when
416 terminal coding system is nil. */
417 struct coding_system safe_terminal_coding;
418
419 /* Coding system of what is sent from terminal keyboard. */
420 struct coding_system keyboard_coding;
421
422 /* Default coding system to be used to write a file. */
423 struct coding_system default_buffer_file_coding;
424
425 Lisp_Object Vfile_coding_system_alist;
426 Lisp_Object Vprocess_coding_system_alist;
427 Lisp_Object Vnetwork_coding_system_alist;
428
429 Lisp_Object Vlocale_coding_system;
430
431 #endif /* emacs */
432
433 Lisp_Object Qcoding_category, Qcoding_category_index;
434
435 /* List of symbols `coding-category-xxx' ordered by priority. */
436 Lisp_Object Vcoding_category_list;
437
438 /* Table of coding categories (Lisp symbols). */
439 Lisp_Object Vcoding_category_table;
440
441 /* Table of names of symbol for each coding-category. */
442 char *coding_category_name[CODING_CATEGORY_IDX_MAX] = {
443 "coding-category-emacs-mule",
444 "coding-category-sjis",
445 "coding-category-iso-7",
446 "coding-category-iso-7-tight",
447 "coding-category-iso-8-1",
448 "coding-category-iso-8-2",
449 "coding-category-iso-7-else",
450 "coding-category-iso-8-else",
451 "coding-category-ccl",
452 "coding-category-big5",
453 "coding-category-utf-8",
454 "coding-category-utf-16-be",
455 "coding-category-utf-16-le",
456 "coding-category-raw-text",
457 "coding-category-binary"
458 };
459
460 /* Table of pointers to coding systems corresponding to each coding
461 categories. */
462 struct coding_system *coding_system_table[CODING_CATEGORY_IDX_MAX];
463
464 /* Table of coding category masks. Nth element is a mask for a coding
465 category of which priority is Nth. */
466 static
467 int coding_priorities[CODING_CATEGORY_IDX_MAX];
468
469 /* Flag to tell if we look up translation table on character code
470 conversion. */
471 Lisp_Object Venable_character_translation;
472 /* Standard translation table to look up on decoding (reading). */
473 Lisp_Object Vstandard_translation_table_for_decode;
474 /* Standard translation table to look up on encoding (writing). */
475 Lisp_Object Vstandard_translation_table_for_encode;
476
477 Lisp_Object Qtranslation_table;
478 Lisp_Object Qtranslation_table_id;
479 Lisp_Object Qtranslation_table_for_decode;
480 Lisp_Object Qtranslation_table_for_encode;
481
482 /* Alist of charsets vs revision number. */
483 Lisp_Object Vcharset_revision_alist;
484
485 /* Default coding systems used for process I/O. */
486 Lisp_Object Vdefault_process_coding_system;
487
488 /* Global flag to tell that we can't call post-read-conversion and
489 pre-write-conversion functions. Usually the value is zero, but it
490 is set to 1 temporarily while such functions are running. This is
491 to avoid infinite recursive call. */
492 static int inhibit_pre_post_conversion;
493
494 /* Char-table containing safe coding systems of each character. */
495 Lisp_Object Vchar_coding_system_table;
496 Lisp_Object Qchar_coding_system;
497
498 /* Return `safe-chars' property of coding system CODING. Don't check
499 validity of CODING. */
500
501 Lisp_Object
502 coding_safe_chars (coding)
503 struct coding_system *coding;
504 {
505 Lisp_Object coding_spec, plist, safe_chars;
506
507 coding_spec = Fget (coding->symbol, Qcoding_system);
508 plist = XVECTOR (coding_spec)->contents[3];
509 safe_chars = Fplist_get (XVECTOR (coding_spec)->contents[3], Qsafe_chars);
510 return (CHAR_TABLE_P (safe_chars) ? safe_chars : Qt);
511 }
512
513 #define CODING_SAFE_CHAR_P(safe_chars, c) \
514 (EQ (safe_chars, Qt) || !NILP (CHAR_TABLE_REF (safe_chars, c)))
515
516 \f
517 /*** 2. Emacs internal format (emacs-mule) handlers ***/
518
519 /* Emacs' internal format for representation of multiple character
520 sets is a kind of multi-byte encoding, i.e. characters are
521 represented by variable-length sequences of one-byte codes.
522
523 ASCII characters and control characters (e.g. `tab', `newline') are
524 represented by one-byte sequences which are their ASCII codes, in
525 the range 0x00 through 0x7F.
526
527 8-bit characters of the range 0x80..0x9F are represented by
528 two-byte sequences of LEADING_CODE_8_BIT_CONTROL and (their 8-bit
529 code + 0x20).
530
531 8-bit characters of the range 0xA0..0xFF are represented by
532 one-byte sequences which are their 8-bit code.
533
534 The other characters are represented by a sequence of `base
535 leading-code', optional `extended leading-code', and one or two
536 `position-code's. The length of the sequence is determined by the
537 base leading-code. Leading-code takes the range 0x81 through 0x9D,
538 whereas extended leading-code and position-code take the range 0xA0
539 through 0xFF. See `charset.h' for more details about leading-code
540 and position-code.
541
542 --- CODE RANGE of Emacs' internal format ---
543 character set range
544 ------------- -----
545 ascii 0x00..0x7F
546 eight-bit-control LEADING_CODE_8_BIT_CONTROL + 0xA0..0xBF
547 eight-bit-graphic 0xA0..0xBF
548 ELSE 0x81..0x9D + [0xA0..0xFF]+
549 ---------------------------------------------
550
551 As this is the internal character representation, the format is
552 usually not used externally (i.e. in a file or in a data sent to a
553 process). But, it is possible to have a text externally in this
554 format (i.e. by encoding by the coding system `emacs-mule').
555
556 In that case, a sequence of one-byte codes has a slightly different
557 form.
558
559 Firstly, all characters in eight-bit-control are represented by
560 one-byte sequences which are their 8-bit code.
561
562 Next, character composition data are represented by the byte
563 sequence of the form: 0x80 METHOD BYTES CHARS COMPONENT ...,
564 where,
565 METHOD is 0xF0 plus one of composition method (enum
566 composition_method),
567
568 BYTES is 0xA0 plus the byte length of these composition data,
569
570 CHARS is 0xA0 plus the number of characters composed by these
571 data,
572
573 COMPONENTs are characters of multibyte form or composition
574 rules encoded by two-byte of ASCII codes.
575
576 In addition, for backward compatibility, the following formats are
577 also recognized as composition data on decoding.
578
579 0x80 MSEQ ...
580 0x80 0xFF MSEQ RULE MSEQ RULE ... MSEQ
581
582 Here,
583 MSEQ is a multibyte form but in these special format:
584 ASCII: 0xA0 ASCII_CODE+0x80,
585 other: LEADING_CODE+0x20 FOLLOWING-BYTE ...,
586 RULE is a one byte code of the range 0xA0..0xF0 that
587 represents a composition rule.
588 */
589
590 enum emacs_code_class_type emacs_code_class[256];
591
592 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
593 Check if a text is encoded in Emacs' internal format. If it is,
594 return CODING_CATEGORY_MASK_EMACS_MULE, else return 0. */
595
596 static int
597 detect_coding_emacs_mule (src, src_end, multibytep)
598 unsigned char *src, *src_end;
599 int multibytep;
600 {
601 unsigned char c;
602 int composing = 0;
603 /* Dummy for ONE_MORE_BYTE. */
604 struct coding_system dummy_coding;
605 struct coding_system *coding = &dummy_coding;
606
607 while (1)
608 {
609 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
610
611 if (composing)
612 {
613 if (c < 0xA0)
614 composing = 0;
615 else if (c == 0xA0)
616 {
617 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
618 c &= 0x7F;
619 }
620 else
621 c -= 0x20;
622 }
623
624 if (c < 0x20)
625 {
626 if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
627 return 0;
628 }
629 else if (c >= 0x80 && c < 0xA0)
630 {
631 if (c == 0x80)
632 /* Old leading code for a composite character. */
633 composing = 1;
634 else
635 {
636 unsigned char *src_base = src - 1;
637 int bytes;
638
639 if (!UNIBYTE_STR_AS_MULTIBYTE_P (src_base, src_end - src_base,
640 bytes))
641 return 0;
642 src = src_base + bytes;
643 }
644 }
645 }
646 label_end_of_loop:
647 return CODING_CATEGORY_MASK_EMACS_MULE;
648 }
649
650
651 /* Record the starting position START and METHOD of one composition. */
652
653 #define CODING_ADD_COMPOSITION_START(coding, start, method) \
654 do { \
655 struct composition_data *cmp_data = coding->cmp_data; \
656 int *data = cmp_data->data + cmp_data->used; \
657 coding->cmp_data_start = cmp_data->used; \
658 data[0] = -1; \
659 data[1] = cmp_data->char_offset + start; \
660 data[3] = (int) method; \
661 cmp_data->used += 4; \
662 } while (0)
663
664 /* Record the ending position END of the current composition. */
665
666 #define CODING_ADD_COMPOSITION_END(coding, end) \
667 do { \
668 struct composition_data *cmp_data = coding->cmp_data; \
669 int *data = cmp_data->data + coding->cmp_data_start; \
670 data[0] = cmp_data->used - coding->cmp_data_start; \
671 data[2] = cmp_data->char_offset + end; \
672 } while (0)
673
674 /* Record one COMPONENT (alternate character or composition rule). */
675
676 #define CODING_ADD_COMPOSITION_COMPONENT(coding, component) \
677 (coding->cmp_data->data[coding->cmp_data->used++] = component)
678
679
680 /* Get one byte from a data pointed by SRC and increment SRC. If SRC
681 is not less than SRC_END, return -1 without incrementing Src. */
682
683 #define SAFE_ONE_MORE_BYTE() (src >= src_end ? -1 : *src++)
684
685
686 /* Decode a character represented as a component of composition
687 sequence of Emacs 20 style at SRC. Set C to that character, store
688 its multibyte form sequence at P, and set P to the end of that
689 sequence. If no valid character is found, set C to -1. */
690
691 #define DECODE_EMACS_MULE_COMPOSITION_CHAR(c, p) \
692 do { \
693 int bytes; \
694 \
695 c = SAFE_ONE_MORE_BYTE (); \
696 if (c < 0) \
697 break; \
698 if (CHAR_HEAD_P (c)) \
699 c = -1; \
700 else if (c == 0xA0) \
701 { \
702 c = SAFE_ONE_MORE_BYTE (); \
703 if (c < 0xA0) \
704 c = -1; \
705 else \
706 { \
707 c -= 0xA0; \
708 *p++ = c; \
709 } \
710 } \
711 else if (BASE_LEADING_CODE_P (c - 0x20)) \
712 { \
713 unsigned char *p0 = p; \
714 \
715 c -= 0x20; \
716 *p++ = c; \
717 bytes = BYTES_BY_CHAR_HEAD (c); \
718 while (--bytes) \
719 { \
720 c = SAFE_ONE_MORE_BYTE (); \
721 if (c < 0) \
722 break; \
723 *p++ = c; \
724 } \
725 if (UNIBYTE_STR_AS_MULTIBYTE_P (p0, p - p0, bytes)) \
726 c = STRING_CHAR (p0, bytes); \
727 else \
728 c = -1; \
729 } \
730 else \
731 c = -1; \
732 } while (0)
733
734
735 /* Decode a composition rule represented as a component of composition
736 sequence of Emacs 20 style at SRC. Set C to the rule. If not
737 valid rule is found, set C to -1. */
738
739 #define DECODE_EMACS_MULE_COMPOSITION_RULE(c) \
740 do { \
741 c = SAFE_ONE_MORE_BYTE (); \
742 c -= 0xA0; \
743 if (c < 0 || c >= 81) \
744 c = -1; \
745 else \
746 { \
747 gref = c / 9, nref = c % 9; \
748 c = COMPOSITION_ENCODE_RULE (gref, nref); \
749 } \
750 } while (0)
751
752
753 /* Decode composition sequence encoded by `emacs-mule' at the source
754 pointed by SRC. SRC_END is the end of source. Store information
755 of the composition in CODING->cmp_data.
756
757 For backward compatibility, decode also a composition sequence of
758 Emacs 20 style. In that case, the composition sequence contains
759 characters that should be extracted into a buffer or string. Store
760 those characters at *DESTINATION in multibyte form.
761
762 If we encounter an invalid byte sequence, return 0.
763 If we encounter an insufficient source or destination, or
764 insufficient space in CODING->cmp_data, return 1.
765 Otherwise, return consumed bytes in the source.
766
767 */
768 static INLINE int
769 decode_composition_emacs_mule (coding, src, src_end,
770 destination, dst_end, dst_bytes)
771 struct coding_system *coding;
772 unsigned char *src, *src_end, **destination, *dst_end;
773 int dst_bytes;
774 {
775 unsigned char *dst = *destination;
776 int method, data_len, nchars;
777 unsigned char *src_base = src++;
778 /* Store components of composition. */
779 int component[COMPOSITION_DATA_MAX_BUNCH_LENGTH];
780 int ncomponent;
781 /* Store multibyte form of characters to be composed. This is for
782 Emacs 20 style composition sequence. */
783 unsigned char buf[MAX_COMPOSITION_COMPONENTS * MAX_MULTIBYTE_LENGTH];
784 unsigned char *bufp = buf;
785 int c, i, gref, nref;
786
787 if (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH
788 >= COMPOSITION_DATA_SIZE)
789 {
790 coding->result = CODING_FINISH_INSUFFICIENT_CMP;
791 return -1;
792 }
793
794 ONE_MORE_BYTE (c);
795 if (c - 0xF0 >= COMPOSITION_RELATIVE
796 && c - 0xF0 <= COMPOSITION_WITH_RULE_ALTCHARS)
797 {
798 int with_rule;
799
800 method = c - 0xF0;
801 with_rule = (method == COMPOSITION_WITH_RULE
802 || method == COMPOSITION_WITH_RULE_ALTCHARS);
803 ONE_MORE_BYTE (c);
804 data_len = c - 0xA0;
805 if (data_len < 4
806 || src_base + data_len > src_end)
807 return 0;
808 ONE_MORE_BYTE (c);
809 nchars = c - 0xA0;
810 if (c < 1)
811 return 0;
812 for (ncomponent = 0; src < src_base + data_len; ncomponent++)
813 {
814 /* If it is longer than this, it can't be valid. */
815 if (ncomponent >= COMPOSITION_DATA_MAX_BUNCH_LENGTH)
816 return 0;
817
818 if (ncomponent % 2 && with_rule)
819 {
820 ONE_MORE_BYTE (gref);
821 gref -= 32;
822 ONE_MORE_BYTE (nref);
823 nref -= 32;
824 c = COMPOSITION_ENCODE_RULE (gref, nref);
825 }
826 else
827 {
828 int bytes;
829 if (UNIBYTE_STR_AS_MULTIBYTE_P (src, src_end - src, bytes))
830 c = STRING_CHAR (src, bytes);
831 else
832 c = *src, bytes = 1;
833 src += bytes;
834 }
835 component[ncomponent] = c;
836 }
837 }
838 else
839 {
840 /* This may be an old Emacs 20 style format. See the comment at
841 the section 2 of this file. */
842 while (src < src_end && !CHAR_HEAD_P (*src)) src++;
843 if (src == src_end
844 && !(coding->mode & CODING_MODE_LAST_BLOCK))
845 goto label_end_of_loop;
846
847 src_end = src;
848 src = src_base + 1;
849 if (c < 0xC0)
850 {
851 method = COMPOSITION_RELATIVE;
852 for (ncomponent = 0; ncomponent < MAX_COMPOSITION_COMPONENTS;)
853 {
854 DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
855 if (c < 0)
856 break;
857 component[ncomponent++] = c;
858 }
859 if (ncomponent < 2)
860 return 0;
861 nchars = ncomponent;
862 }
863 else if (c == 0xFF)
864 {
865 method = COMPOSITION_WITH_RULE;
866 src++;
867 DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
868 if (c < 0)
869 return 0;
870 component[0] = c;
871 for (ncomponent = 1;
872 ncomponent < MAX_COMPOSITION_COMPONENTS * 2 - 1;)
873 {
874 DECODE_EMACS_MULE_COMPOSITION_RULE (c);
875 if (c < 0)
876 break;
877 component[ncomponent++] = c;
878 DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
879 if (c < 0)
880 break;
881 component[ncomponent++] = c;
882 }
883 if (ncomponent < 3)
884 return 0;
885 nchars = (ncomponent + 1) / 2;
886 }
887 else
888 return 0;
889 }
890
891 if (buf == bufp || dst + (bufp - buf) <= (dst_bytes ? dst_end : src))
892 {
893 CODING_ADD_COMPOSITION_START (coding, coding->produced_char, method);
894 for (i = 0; i < ncomponent; i++)
895 CODING_ADD_COMPOSITION_COMPONENT (coding, component[i]);
896 CODING_ADD_COMPOSITION_END (coding, coding->produced_char + nchars);
897 if (buf < bufp)
898 {
899 unsigned char *p = buf;
900 EMIT_BYTES (p, bufp);
901 *destination += bufp - buf;
902 coding->produced_char += nchars;
903 }
904 return (src - src_base);
905 }
906 label_end_of_loop:
907 return -1;
908 }
909
910 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
911
912 static void
913 decode_coding_emacs_mule (coding, source, destination, src_bytes, dst_bytes)
914 struct coding_system *coding;
915 unsigned char *source, *destination;
916 int src_bytes, dst_bytes;
917 {
918 unsigned char *src = source;
919 unsigned char *src_end = source + src_bytes;
920 unsigned char *dst = destination;
921 unsigned char *dst_end = destination + dst_bytes;
922 /* SRC_BASE remembers the start position in source in each loop.
923 The loop will be exited when there's not enough source code, or
924 when there's not enough destination area to produce a
925 character. */
926 unsigned char *src_base;
927
928 coding->produced_char = 0;
929 while ((src_base = src) < src_end)
930 {
931 unsigned char tmp[MAX_MULTIBYTE_LENGTH], *p;
932 int bytes;
933
934 if (*src == '\r')
935 {
936 int c = *src++;
937
938 if (coding->eol_type == CODING_EOL_CR)
939 c = '\n';
940 else if (coding->eol_type == CODING_EOL_CRLF)
941 {
942 ONE_MORE_BYTE (c);
943 if (c != '\n')
944 {
945 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
946 {
947 coding->result = CODING_FINISH_INCONSISTENT_EOL;
948 goto label_end_of_loop;
949 }
950 src--;
951 c = '\r';
952 }
953 }
954 *dst++ = c;
955 coding->produced_char++;
956 continue;
957 }
958 else if (*src == '\n')
959 {
960 if ((coding->eol_type == CODING_EOL_CR
961 || coding->eol_type == CODING_EOL_CRLF)
962 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
963 {
964 coding->result = CODING_FINISH_INCONSISTENT_EOL;
965 goto label_end_of_loop;
966 }
967 *dst++ = *src++;
968 coding->produced_char++;
969 continue;
970 }
971 else if (*src == 0x80)
972 {
973 /* Start of composition data. */
974 int consumed = decode_composition_emacs_mule (coding, src, src_end,
975 &dst, dst_end,
976 dst_bytes);
977 if (consumed < 0)
978 goto label_end_of_loop;
979 else if (consumed > 0)
980 {
981 src += consumed;
982 continue;
983 }
984 bytes = CHAR_STRING (*src, tmp);
985 p = tmp;
986 src++;
987 }
988 else if (UNIBYTE_STR_AS_MULTIBYTE_P (src, src_end - src, bytes))
989 {
990 p = src;
991 src += bytes;
992 }
993 else
994 {
995 bytes = CHAR_STRING (*src, tmp);
996 p = tmp;
997 src++;
998 }
999 if (dst + bytes >= (dst_bytes ? dst_end : src))
1000 {
1001 coding->result = CODING_FINISH_INSUFFICIENT_DST;
1002 break;
1003 }
1004 while (bytes--) *dst++ = *p++;
1005 coding->produced_char++;
1006 }
1007 label_end_of_loop:
1008 coding->consumed = coding->consumed_char = src_base - source;
1009 coding->produced = dst - destination;
1010 }
1011
1012
1013 /* Encode composition data stored at DATA into a special byte sequence
1014 starting by 0x80. Update CODING->cmp_data_start and maybe
1015 CODING->cmp_data for the next call. */
1016
1017 #define ENCODE_COMPOSITION_EMACS_MULE(coding, data) \
1018 do { \
1019 unsigned char buf[1024], *p0 = buf, *p; \
1020 int len = data[0]; \
1021 int i; \
1022 \
1023 buf[0] = 0x80; \
1024 buf[1] = 0xF0 + data[3]; /* METHOD */ \
1025 buf[3] = 0xA0 + (data[2] - data[1]); /* COMPOSED-CHARS */ \
1026 p = buf + 4; \
1027 if (data[3] == COMPOSITION_WITH_RULE \
1028 || data[3] == COMPOSITION_WITH_RULE_ALTCHARS) \
1029 { \
1030 p += CHAR_STRING (data[4], p); \
1031 for (i = 5; i < len; i += 2) \
1032 { \
1033 int gref, nref; \
1034 COMPOSITION_DECODE_RULE (data[i], gref, nref); \
1035 *p++ = 0x20 + gref; \
1036 *p++ = 0x20 + nref; \
1037 p += CHAR_STRING (data[i + 1], p); \
1038 } \
1039 } \
1040 else \
1041 { \
1042 for (i = 4; i < len; i++) \
1043 p += CHAR_STRING (data[i], p); \
1044 } \
1045 buf[2] = 0xA0 + (p - buf); /* COMPONENTS-BYTES */ \
1046 \
1047 if (dst + (p - buf) + 4 > (dst_bytes ? dst_end : src)) \
1048 { \
1049 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
1050 goto label_end_of_loop; \
1051 } \
1052 while (p0 < p) \
1053 *dst++ = *p0++; \
1054 coding->cmp_data_start += data[0]; \
1055 if (coding->cmp_data_start == coding->cmp_data->used \
1056 && coding->cmp_data->next) \
1057 { \
1058 coding->cmp_data = coding->cmp_data->next; \
1059 coding->cmp_data_start = 0; \
1060 } \
1061 } while (0)
1062
1063
1064 static void encode_eol P_ ((struct coding_system *, unsigned char *,
1065 unsigned char *, int, int));
1066
1067 static void
1068 encode_coding_emacs_mule (coding, source, destination, src_bytes, dst_bytes)
1069 struct coding_system *coding;
1070 unsigned char *source, *destination;
1071 int src_bytes, dst_bytes;
1072 {
1073 unsigned char *src = source;
1074 unsigned char *src_end = source + src_bytes;
1075 unsigned char *dst = destination;
1076 unsigned char *dst_end = destination + dst_bytes;
1077 unsigned char *src_base;
1078 int c;
1079 int char_offset;
1080 int *data;
1081
1082 Lisp_Object translation_table;
1083
1084 translation_table = Qnil;
1085
1086 /* Optimization for the case that there's no composition. */
1087 if (!coding->cmp_data || coding->cmp_data->used == 0)
1088 {
1089 encode_eol (coding, source, destination, src_bytes, dst_bytes);
1090 return;
1091 }
1092
1093 char_offset = coding->cmp_data->char_offset;
1094 data = coding->cmp_data->data + coding->cmp_data_start;
1095 while (1)
1096 {
1097 src_base = src;
1098
1099 /* If SRC starts a composition, encode the information about the
1100 composition in advance. */
1101 if (coding->cmp_data_start < coding->cmp_data->used
1102 && char_offset + coding->consumed_char == data[1])
1103 {
1104 ENCODE_COMPOSITION_EMACS_MULE (coding, data);
1105 char_offset = coding->cmp_data->char_offset;
1106 data = coding->cmp_data->data + coding->cmp_data_start;
1107 }
1108
1109 ONE_MORE_CHAR (c);
1110 if (c == '\n' && (coding->eol_type == CODING_EOL_CRLF
1111 || coding->eol_type == CODING_EOL_CR))
1112 {
1113 if (coding->eol_type == CODING_EOL_CRLF)
1114 EMIT_TWO_BYTES ('\r', c);
1115 else
1116 EMIT_ONE_BYTE ('\r');
1117 }
1118 else if (SINGLE_BYTE_CHAR_P (c))
1119 EMIT_ONE_BYTE (c);
1120 else
1121 EMIT_BYTES (src_base, src);
1122 coding->consumed_char++;
1123 }
1124 label_end_of_loop:
1125 coding->consumed = src_base - source;
1126 coding->produced = coding->produced_char = dst - destination;
1127 return;
1128 }
1129
1130 \f
1131 /*** 3. ISO2022 handlers ***/
1132
1133 /* The following note describes the coding system ISO2022 briefly.
1134 Since the intention of this note is to help understand the
1135 functions in this file, some parts are NOT ACCURATE or are OVERLY
1136 SIMPLIFIED. For thorough understanding, please refer to the
1137 original document of ISO2022. This is equivalent to the standard
1138 ECMA-35, obtainable from <URL:http://www.ecma.ch/> (*).
1139
1140 ISO2022 provides many mechanisms to encode several character sets
1141 in 7-bit and 8-bit environments. For 7-bit environments, all text
1142 is encoded using bytes less than 128. This may make the encoded
1143 text a little bit longer, but the text passes more easily through
1144 several types of gateway, some of which strip off the MSB (Most
1145 Significant Bit).
1146
1147 There are two kinds of character sets: control character sets and
1148 graphic character sets. The former contain control characters such
1149 as `newline' and `escape' to provide control functions (control
1150 functions are also provided by escape sequences). The latter
1151 contain graphic characters such as 'A' and '-'. Emacs recognizes
1152 two control character sets and many graphic character sets.
1153
1154 Graphic character sets are classified into one of the following
1155 four classes, according to the number of bytes (DIMENSION) and
1156 number of characters in one dimension (CHARS) of the set:
1157 - DIMENSION1_CHARS94
1158 - DIMENSION1_CHARS96
1159 - DIMENSION2_CHARS94
1160 - DIMENSION2_CHARS96
1161
1162 In addition, each character set is assigned an identification tag,
1163 unique for each set, called the "final character" (denoted as <F>
1164 hereafter). The <F> of each character set is decided by ECMA(*)
1165 when it is registered in ISO. The code range of <F> is 0x30..0x7F
1166 (0x30..0x3F are for private use only).
1167
1168 Note (*): ECMA = European Computer Manufacturers Association
1169
1170 Here are examples of graphic character sets [NAME(<F>)]:
1171 o DIMENSION1_CHARS94 -- ASCII('B'), right-half-of-JISX0201('I'), ...
1172 o DIMENSION1_CHARS96 -- right-half-of-ISO8859-1('A'), ...
1173 o DIMENSION2_CHARS94 -- GB2312('A'), JISX0208('B'), ...
1174 o DIMENSION2_CHARS96 -- none for the moment
1175
1176 A code area (1 byte=8 bits) is divided into 4 areas, C0, GL, C1, and GR.
1177 C0 [0x00..0x1F] -- control character plane 0
1178 GL [0x20..0x7F] -- graphic character plane 0
1179 C1 [0x80..0x9F] -- control character plane 1
1180 GR [0xA0..0xFF] -- graphic character plane 1
1181
1182 A control character set is directly designated and invoked to C0 or
1183 C1 by an escape sequence. The most common case is that:
1184 - ISO646's control character set is designated/invoked to C0, and
1185 - ISO6429's control character set is designated/invoked to C1,
1186 and usually these designations/invocations are omitted in encoded
1187 text. In a 7-bit environment, only C0 can be used, and a control
1188 character for C1 is encoded by an appropriate escape sequence to
1189 fit into the environment. All control characters for C1 are
1190 defined to have corresponding escape sequences.
1191
1192 A graphic character set is at first designated to one of four
1193 graphic registers (G0 through G3), then these graphic registers are
1194 invoked to GL or GR. These designations and invocations can be
1195 done independently. The most common case is that G0 is invoked to
1196 GL, G1 is invoked to GR, and ASCII is designated to G0. Usually
1197 these invocations and designations are omitted in encoded text.
1198 In a 7-bit environment, only GL can be used.
1199
1200 When a graphic character set of CHARS94 is invoked to GL, codes
1201 0x20 and 0x7F of the GL area work as control characters SPACE and
1202 DEL respectively, and codes 0xA0 and 0xFF of the GR area should not
1203 be used.
1204
1205 There are two ways of invocation: locking-shift and single-shift.
1206 With locking-shift, the invocation lasts until the next different
1207 invocation, whereas with single-shift, the invocation affects the
1208 following character only and doesn't affect the locking-shift
1209 state. Invocations are done by the following control characters or
1210 escape sequences:
1211
1212 ----------------------------------------------------------------------
1213 abbrev function cntrl escape seq description
1214 ----------------------------------------------------------------------
1215 SI/LS0 (shift-in) 0x0F none invoke G0 into GL
1216 SO/LS1 (shift-out) 0x0E none invoke G1 into GL
1217 LS2 (locking-shift-2) none ESC 'n' invoke G2 into GL
1218 LS3 (locking-shift-3) none ESC 'o' invoke G3 into GL
1219 LS1R (locking-shift-1 right) none ESC '~' invoke G1 into GR (*)
1220 LS2R (locking-shift-2 right) none ESC '}' invoke G2 into GR (*)
1221 LS3R (locking-shift 3 right) none ESC '|' invoke G3 into GR (*)
1222 SS2 (single-shift-2) 0x8E ESC 'N' invoke G2 for one char
1223 SS3 (single-shift-3) 0x8F ESC 'O' invoke G3 for one char
1224 ----------------------------------------------------------------------
1225 (*) These are not used by any known coding system.
1226
1227 Control characters for these functions are defined by macros
1228 ISO_CODE_XXX in `coding.h'.
1229
1230 Designations are done by the following escape sequences:
1231 ----------------------------------------------------------------------
1232 escape sequence description
1233 ----------------------------------------------------------------------
1234 ESC '(' <F> designate DIMENSION1_CHARS94<F> to G0
1235 ESC ')' <F> designate DIMENSION1_CHARS94<F> to G1
1236 ESC '*' <F> designate DIMENSION1_CHARS94<F> to G2
1237 ESC '+' <F> designate DIMENSION1_CHARS94<F> to G3
1238 ESC ',' <F> designate DIMENSION1_CHARS96<F> to G0 (*)
1239 ESC '-' <F> designate DIMENSION1_CHARS96<F> to G1
1240 ESC '.' <F> designate DIMENSION1_CHARS96<F> to G2
1241 ESC '/' <F> designate DIMENSION1_CHARS96<F> to G3
1242 ESC '$' '(' <F> designate DIMENSION2_CHARS94<F> to G0 (**)
1243 ESC '$' ')' <F> designate DIMENSION2_CHARS94<F> to G1
1244 ESC '$' '*' <F> designate DIMENSION2_CHARS94<F> to G2
1245 ESC '$' '+' <F> designate DIMENSION2_CHARS94<F> to G3
1246 ESC '$' ',' <F> designate DIMENSION2_CHARS96<F> to G0 (*)
1247 ESC '$' '-' <F> designate DIMENSION2_CHARS96<F> to G1
1248 ESC '$' '.' <F> designate DIMENSION2_CHARS96<F> to G2
1249 ESC '$' '/' <F> designate DIMENSION2_CHARS96<F> to G3
1250 ----------------------------------------------------------------------
1251
1252 In this list, "DIMENSION1_CHARS94<F>" means a graphic character set
1253 of dimension 1, chars 94, and final character <F>, etc...
1254
1255 Note (*): Although these designations are not allowed in ISO2022,
1256 Emacs accepts them on decoding, and produces them on encoding
1257 CHARS96 character sets in a coding system which is characterized as
1258 7-bit environment, non-locking-shift, and non-single-shift.
1259
1260 Note (**): If <F> is '@', 'A', or 'B', the intermediate character
1261 '(' can be omitted. We refer to this as "short-form" hereafter.
1262
1263 Now you may notice that there are a lot of ways of encoding the
1264 same multilingual text in ISO2022. Actually, there exist many
1265 coding systems such as Compound Text (used in X11's inter client
1266 communication, ISO-2022-JP (used in Japanese Internet), ISO-2022-KR
1267 (used in Korean Internet), EUC (Extended UNIX Code, used in Asian
1268 localized platforms), and all of these are variants of ISO2022.
1269
1270 In addition to the above, Emacs handles two more kinds of escape
1271 sequences: ISO6429's direction specification and Emacs' private
1272 sequence for specifying character composition.
1273
1274 ISO6429's direction specification takes the following form:
1275 o CSI ']' -- end of the current direction
1276 o CSI '0' ']' -- end of the current direction
1277 o CSI '1' ']' -- start of left-to-right text
1278 o CSI '2' ']' -- start of right-to-left text
1279 The control character CSI (0x9B: control sequence introducer) is
1280 abbreviated to the escape sequence ESC '[' in a 7-bit environment.
1281
1282 Character composition specification takes the following form:
1283 o ESC '0' -- start relative composition
1284 o ESC '1' -- end composition
1285 o ESC '2' -- start rule-base composition (*)
1286 o ESC '3' -- start relative composition with alternate chars (**)
1287 o ESC '4' -- start rule-base composition with alternate chars (**)
1288 Since these are not standard escape sequences of any ISO standard,
1289 the use of them with these meanings is restricted to Emacs only.
1290
1291 (*) This form is used only in Emacs 20.5 and older versions,
1292 but the newer versions can safely decode it.
1293 (**) This form is used only in Emacs 21.1 and newer versions,
1294 and the older versions can't decode it.
1295
1296 Here's a list of example usages of these composition escape
1297 sequences (categorized by `enum composition_method').
1298
1299 COMPOSITION_RELATIVE:
1300 ESC 0 CHAR [ CHAR ] ESC 1
1301 COMPOSITION_WITH_RULE:
1302 ESC 2 CHAR [ RULE CHAR ] ESC 1
1303 COMPOSITION_WITH_ALTCHARS:
1304 ESC 3 ALTCHAR [ ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1
1305 COMPOSITION_WITH_RULE_ALTCHARS:
1306 ESC 4 ALTCHAR [ RULE ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1 */
1307
1308 enum iso_code_class_type iso_code_class[256];
1309
1310 #define CHARSET_OK(idx, charset, c) \
1311 (coding_system_table[idx] \
1312 && (charset == CHARSET_ASCII \
1313 || (safe_chars = coding_safe_chars (coding_system_table[idx]), \
1314 CODING_SAFE_CHAR_P (safe_chars, c))) \
1315 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding_system_table[idx], \
1316 charset) \
1317 != CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION))
1318
1319 #define SHIFT_OUT_OK(idx) \
1320 (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding_system_table[idx], 1) >= 0)
1321
1322 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1323 Check if a text is encoded in ISO2022. If it is, return an
1324 integer in which appropriate flag bits any of:
1325 CODING_CATEGORY_MASK_ISO_7
1326 CODING_CATEGORY_MASK_ISO_7_TIGHT
1327 CODING_CATEGORY_MASK_ISO_8_1
1328 CODING_CATEGORY_MASK_ISO_8_2
1329 CODING_CATEGORY_MASK_ISO_7_ELSE
1330 CODING_CATEGORY_MASK_ISO_8_ELSE
1331 are set. If a code which should never appear in ISO2022 is found,
1332 returns 0. */
1333
1334 static int
1335 detect_coding_iso2022 (src, src_end, multibytep)
1336 unsigned char *src, *src_end;
1337 int multibytep;
1338 {
1339 int mask = CODING_CATEGORY_MASK_ISO;
1340 int mask_found = 0;
1341 int reg[4], shift_out = 0, single_shifting = 0;
1342 int c, c1, charset;
1343 /* Dummy for ONE_MORE_BYTE. */
1344 struct coding_system dummy_coding;
1345 struct coding_system *coding = &dummy_coding;
1346 Lisp_Object safe_chars;
1347
1348 reg[0] = CHARSET_ASCII, reg[1] = reg[2] = reg[3] = -1;
1349 while (mask && src < src_end)
1350 {
1351 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1352 switch (c)
1353 {
1354 case ISO_CODE_ESC:
1355 if (inhibit_iso_escape_detection)
1356 break;
1357 single_shifting = 0;
1358 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1359 if (c >= '(' && c <= '/')
1360 {
1361 /* Designation sequence for a charset of dimension 1. */
1362 ONE_MORE_BYTE_CHECK_MULTIBYTE (c1, multibytep);
1363 if (c1 < ' ' || c1 >= 0x80
1364 || (charset = iso_charset_table[0][c >= ','][c1]) < 0)
1365 /* Invalid designation sequence. Just ignore. */
1366 break;
1367 reg[(c - '(') % 4] = charset;
1368 }
1369 else if (c == '$')
1370 {
1371 /* Designation sequence for a charset of dimension 2. */
1372 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1373 if (c >= '@' && c <= 'B')
1374 /* Designation for JISX0208.1978, GB2312, or JISX0208. */
1375 reg[0] = charset = iso_charset_table[1][0][c];
1376 else if (c >= '(' && c <= '/')
1377 {
1378 ONE_MORE_BYTE_CHECK_MULTIBYTE (c1, multibytep);
1379 if (c1 < ' ' || c1 >= 0x80
1380 || (charset = iso_charset_table[1][c >= ','][c1]) < 0)
1381 /* Invalid designation sequence. Just ignore. */
1382 break;
1383 reg[(c - '(') % 4] = charset;
1384 }
1385 else
1386 /* Invalid designation sequence. Just ignore. */
1387 break;
1388 }
1389 else if (c == 'N' || c == 'O')
1390 {
1391 /* ESC <Fe> for SS2 or SS3. */
1392 mask &= CODING_CATEGORY_MASK_ISO_7_ELSE;
1393 break;
1394 }
1395 else if (c >= '0' && c <= '4')
1396 {
1397 /* ESC <Fp> for start/end composition. */
1398 mask_found |= CODING_CATEGORY_MASK_ISO;
1399 break;
1400 }
1401 else
1402 /* Invalid escape sequence. Just ignore. */
1403 break;
1404
1405 /* We found a valid designation sequence for CHARSET. */
1406 mask &= ~CODING_CATEGORY_MASK_ISO_8BIT;
1407 c = MAKE_CHAR (charset, 0, 0);
1408 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7, charset, c))
1409 mask_found |= CODING_CATEGORY_MASK_ISO_7;
1410 else
1411 mask &= ~CODING_CATEGORY_MASK_ISO_7;
1412 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7_TIGHT, charset, c))
1413 mask_found |= CODING_CATEGORY_MASK_ISO_7_TIGHT;
1414 else
1415 mask &= ~CODING_CATEGORY_MASK_ISO_7_TIGHT;
1416 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7_ELSE, charset, c))
1417 mask_found |= CODING_CATEGORY_MASK_ISO_7_ELSE;
1418 else
1419 mask &= ~CODING_CATEGORY_MASK_ISO_7_ELSE;
1420 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_8_ELSE, charset, c))
1421 mask_found |= CODING_CATEGORY_MASK_ISO_8_ELSE;
1422 else
1423 mask &= ~CODING_CATEGORY_MASK_ISO_8_ELSE;
1424 break;
1425
1426 case ISO_CODE_SO:
1427 if (inhibit_iso_escape_detection)
1428 break;
1429 single_shifting = 0;
1430 if (shift_out == 0
1431 && (reg[1] >= 0
1432 || SHIFT_OUT_OK (CODING_CATEGORY_IDX_ISO_7_ELSE)
1433 || SHIFT_OUT_OK (CODING_CATEGORY_IDX_ISO_8_ELSE)))
1434 {
1435 /* Locking shift out. */
1436 mask &= ~CODING_CATEGORY_MASK_ISO_7BIT;
1437 mask_found |= CODING_CATEGORY_MASK_ISO_SHIFT;
1438 }
1439 break;
1440
1441 case ISO_CODE_SI:
1442 if (inhibit_iso_escape_detection)
1443 break;
1444 single_shifting = 0;
1445 if (shift_out == 1)
1446 {
1447 /* Locking shift in. */
1448 mask &= ~CODING_CATEGORY_MASK_ISO_7BIT;
1449 mask_found |= CODING_CATEGORY_MASK_ISO_SHIFT;
1450 }
1451 break;
1452
1453 case ISO_CODE_CSI:
1454 single_shifting = 0;
1455 case ISO_CODE_SS2:
1456 case ISO_CODE_SS3:
1457 {
1458 int newmask = CODING_CATEGORY_MASK_ISO_8_ELSE;
1459
1460 if (inhibit_iso_escape_detection)
1461 break;
1462 if (c != ISO_CODE_CSI)
1463 {
1464 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1465 & CODING_FLAG_ISO_SINGLE_SHIFT)
1466 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1467 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1468 & CODING_FLAG_ISO_SINGLE_SHIFT)
1469 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1470 single_shifting = 1;
1471 }
1472 if (VECTORP (Vlatin_extra_code_table)
1473 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
1474 {
1475 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1476 & CODING_FLAG_ISO_LATIN_EXTRA)
1477 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1478 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1479 & CODING_FLAG_ISO_LATIN_EXTRA)
1480 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1481 }
1482 mask &= newmask;
1483 mask_found |= newmask;
1484 }
1485 break;
1486
1487 default:
1488 if (c < 0x80)
1489 {
1490 single_shifting = 0;
1491 break;
1492 }
1493 else if (c < 0xA0)
1494 {
1495 single_shifting = 0;
1496 if (VECTORP (Vlatin_extra_code_table)
1497 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
1498 {
1499 int newmask = 0;
1500
1501 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1502 & CODING_FLAG_ISO_LATIN_EXTRA)
1503 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1504 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1505 & CODING_FLAG_ISO_LATIN_EXTRA)
1506 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1507 mask &= newmask;
1508 mask_found |= newmask;
1509 }
1510 else
1511 return 0;
1512 }
1513 else
1514 {
1515 mask &= ~(CODING_CATEGORY_MASK_ISO_7BIT
1516 | CODING_CATEGORY_MASK_ISO_7_ELSE);
1517 mask_found |= CODING_CATEGORY_MASK_ISO_8_1;
1518 /* Check the length of succeeding codes of the range
1519 0xA0..0FF. If the byte length is odd, we exclude
1520 CODING_CATEGORY_MASK_ISO_8_2. We can check this only
1521 when we are not single shifting. */
1522 if (!single_shifting
1523 && mask & CODING_CATEGORY_MASK_ISO_8_2)
1524 {
1525 int i = 1;
1526 while (src < src_end)
1527 {
1528 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1529 if (c < 0xA0)
1530 break;
1531 i++;
1532 }
1533
1534 if (i & 1 && src < src_end)
1535 mask &= ~CODING_CATEGORY_MASK_ISO_8_2;
1536 else
1537 mask_found |= CODING_CATEGORY_MASK_ISO_8_2;
1538 }
1539 }
1540 break;
1541 }
1542 }
1543 label_end_of_loop:
1544 return (mask & mask_found);
1545 }
1546
1547 /* Decode a character of which charset is CHARSET, the 1st position
1548 code is C1, the 2nd position code is C2, and return the decoded
1549 character code. If the variable `translation_table' is non-nil,
1550 returned the translated code. */
1551
1552 #define DECODE_ISO_CHARACTER(charset, c1, c2) \
1553 (NILP (translation_table) \
1554 ? MAKE_CHAR (charset, c1, c2) \
1555 : translate_char (translation_table, -1, charset, c1, c2))
1556
1557 /* Set designation state into CODING. */
1558 #define DECODE_DESIGNATION(reg, dimension, chars, final_char) \
1559 do { \
1560 int charset, c; \
1561 \
1562 if (final_char < '0' || final_char >= 128) \
1563 goto label_invalid_code; \
1564 charset = ISO_CHARSET_TABLE (make_number (dimension), \
1565 make_number (chars), \
1566 make_number (final_char)); \
1567 c = MAKE_CHAR (charset, 0, 0); \
1568 if (charset >= 0 \
1569 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) == reg \
1570 || CODING_SAFE_CHAR_P (safe_chars, c))) \
1571 { \
1572 if (coding->spec.iso2022.last_invalid_designation_register == 0 \
1573 && reg == 0 \
1574 && charset == CHARSET_ASCII) \
1575 { \
1576 /* We should insert this designation sequence as is so \
1577 that it is surely written back to a file. */ \
1578 coding->spec.iso2022.last_invalid_designation_register = -1; \
1579 goto label_invalid_code; \
1580 } \
1581 coding->spec.iso2022.last_invalid_designation_register = -1; \
1582 if ((coding->mode & CODING_MODE_DIRECTION) \
1583 && CHARSET_REVERSE_CHARSET (charset) >= 0) \
1584 charset = CHARSET_REVERSE_CHARSET (charset); \
1585 CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
1586 } \
1587 else \
1588 { \
1589 coding->spec.iso2022.last_invalid_designation_register = reg; \
1590 goto label_invalid_code; \
1591 } \
1592 } while (0)
1593
1594 /* Allocate a memory block for storing information about compositions.
1595 The block is chained to the already allocated blocks. */
1596
1597 void
1598 coding_allocate_composition_data (coding, char_offset)
1599 struct coding_system *coding;
1600 int char_offset;
1601 {
1602 struct composition_data *cmp_data
1603 = (struct composition_data *) xmalloc (sizeof *cmp_data);
1604
1605 cmp_data->char_offset = char_offset;
1606 cmp_data->used = 0;
1607 cmp_data->prev = coding->cmp_data;
1608 cmp_data->next = NULL;
1609 if (coding->cmp_data)
1610 coding->cmp_data->next = cmp_data;
1611 coding->cmp_data = cmp_data;
1612 coding->cmp_data_start = 0;
1613 }
1614
1615 /* Handle composition start sequence ESC 0, ESC 2, ESC 3, or ESC 4.
1616 ESC 0 : relative composition : ESC 0 CHAR ... ESC 1
1617 ESC 2 : rulebase composition : ESC 2 CHAR RULE CHAR RULE ... CHAR ESC 1
1618 ESC 3 : altchar composition : ESC 3 ALT ... ESC 0 CHAR ... ESC 1
1619 ESC 4 : alt&rule composition : ESC 4 ALT RULE .. ALT ESC 0 CHAR ... ESC 1
1620 */
1621
1622 #define DECODE_COMPOSITION_START(c1) \
1623 do { \
1624 if (coding->composing == COMPOSITION_DISABLED) \
1625 { \
1626 *dst++ = ISO_CODE_ESC; \
1627 *dst++ = c1 & 0x7f; \
1628 coding->produced_char += 2; \
1629 } \
1630 else if (!COMPOSING_P (coding)) \
1631 { \
1632 /* This is surely the start of a composition. We must be sure \
1633 that coding->cmp_data has enough space to store the \
1634 information about the composition. If not, terminate the \
1635 current decoding loop, allocate one more memory block for \
1636 coding->cmp_data in the caller, then start the decoding \
1637 loop again. We can't allocate memory here directly because \
1638 it may cause buffer/string relocation. */ \
1639 if (!coding->cmp_data \
1640 || (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH \
1641 >= COMPOSITION_DATA_SIZE)) \
1642 { \
1643 coding->result = CODING_FINISH_INSUFFICIENT_CMP; \
1644 goto label_end_of_loop; \
1645 } \
1646 coding->composing = (c1 == '0' ? COMPOSITION_RELATIVE \
1647 : c1 == '2' ? COMPOSITION_WITH_RULE \
1648 : c1 == '3' ? COMPOSITION_WITH_ALTCHARS \
1649 : COMPOSITION_WITH_RULE_ALTCHARS); \
1650 CODING_ADD_COMPOSITION_START (coding, coding->produced_char, \
1651 coding->composing); \
1652 coding->composition_rule_follows = 0; \
1653 } \
1654 else \
1655 { \
1656 /* We are already handling a composition. If the method is \
1657 the following two, the codes following the current escape \
1658 sequence are actual characters stored in a buffer. */ \
1659 if (coding->composing == COMPOSITION_WITH_ALTCHARS \
1660 || coding->composing == COMPOSITION_WITH_RULE_ALTCHARS) \
1661 { \
1662 coding->composing = COMPOSITION_RELATIVE; \
1663 coding->composition_rule_follows = 0; \
1664 } \
1665 } \
1666 } while (0)
1667
1668 /* Handle composition end sequence ESC 1. */
1669
1670 #define DECODE_COMPOSITION_END(c1) \
1671 do { \
1672 if (! COMPOSING_P (coding)) \
1673 { \
1674 *dst++ = ISO_CODE_ESC; \
1675 *dst++ = c1; \
1676 coding->produced_char += 2; \
1677 } \
1678 else \
1679 { \
1680 CODING_ADD_COMPOSITION_END (coding, coding->produced_char); \
1681 coding->composing = COMPOSITION_NO; \
1682 } \
1683 } while (0)
1684
1685 /* Decode a composition rule from the byte C1 (and maybe one more byte
1686 from SRC) and store one encoded composition rule in
1687 coding->cmp_data. */
1688
1689 #define DECODE_COMPOSITION_RULE(c1) \
1690 do { \
1691 int rule = 0; \
1692 (c1) -= 32; \
1693 if (c1 < 81) /* old format (before ver.21) */ \
1694 { \
1695 int gref = (c1) / 9; \
1696 int nref = (c1) % 9; \
1697 if (gref == 4) gref = 10; \
1698 if (nref == 4) nref = 10; \
1699 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
1700 } \
1701 else if (c1 < 93) /* new format (after ver.21) */ \
1702 { \
1703 ONE_MORE_BYTE (c2); \
1704 rule = COMPOSITION_ENCODE_RULE (c1 - 81, c2 - 32); \
1705 } \
1706 CODING_ADD_COMPOSITION_COMPONENT (coding, rule); \
1707 coding->composition_rule_follows = 0; \
1708 } while (0)
1709
1710
1711 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
1712
1713 static void
1714 decode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes)
1715 struct coding_system *coding;
1716 unsigned char *source, *destination;
1717 int src_bytes, dst_bytes;
1718 {
1719 unsigned char *src = source;
1720 unsigned char *src_end = source + src_bytes;
1721 unsigned char *dst = destination;
1722 unsigned char *dst_end = destination + dst_bytes;
1723 /* Charsets invoked to graphic plane 0 and 1 respectively. */
1724 int charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1725 int charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
1726 /* SRC_BASE remembers the start position in source in each loop.
1727 The loop will be exited when there's not enough source code
1728 (within macro ONE_MORE_BYTE), or when there's not enough
1729 destination area to produce a character (within macro
1730 EMIT_CHAR). */
1731 unsigned char *src_base;
1732 int c, charset;
1733 Lisp_Object translation_table;
1734 Lisp_Object safe_chars;
1735
1736 safe_chars = coding_safe_chars (coding);
1737
1738 if (NILP (Venable_character_translation))
1739 translation_table = Qnil;
1740 else
1741 {
1742 translation_table = coding->translation_table_for_decode;
1743 if (NILP (translation_table))
1744 translation_table = Vstandard_translation_table_for_decode;
1745 }
1746
1747 coding->result = CODING_FINISH_NORMAL;
1748
1749 while (1)
1750 {
1751 int c1, c2;
1752
1753 src_base = src;
1754 ONE_MORE_BYTE (c1);
1755
1756 /* We produce no character or one character. */
1757 switch (iso_code_class [c1])
1758 {
1759 case ISO_0x20_or_0x7F:
1760 if (COMPOSING_P (coding) && coding->composition_rule_follows)
1761 {
1762 DECODE_COMPOSITION_RULE (c1);
1763 continue;
1764 }
1765 if (charset0 < 0 || CHARSET_CHARS (charset0) == 94)
1766 {
1767 /* This is SPACE or DEL. */
1768 charset = CHARSET_ASCII;
1769 break;
1770 }
1771 /* This is a graphic character, we fall down ... */
1772
1773 case ISO_graphic_plane_0:
1774 if (COMPOSING_P (coding) && coding->composition_rule_follows)
1775 {
1776 DECODE_COMPOSITION_RULE (c1);
1777 continue;
1778 }
1779 charset = charset0;
1780 break;
1781
1782 case ISO_0xA0_or_0xFF:
1783 if (charset1 < 0 || CHARSET_CHARS (charset1) == 94
1784 || coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
1785 goto label_invalid_code;
1786 /* This is a graphic character, we fall down ... */
1787
1788 case ISO_graphic_plane_1:
1789 if (charset1 < 0)
1790 goto label_invalid_code;
1791 charset = charset1;
1792 break;
1793
1794 case ISO_control_0:
1795 if (COMPOSING_P (coding))
1796 DECODE_COMPOSITION_END ('1');
1797
1798 /* All ISO2022 control characters in this class have the
1799 same representation in Emacs internal format. */
1800 if (c1 == '\n'
1801 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
1802 && (coding->eol_type == CODING_EOL_CR
1803 || coding->eol_type == CODING_EOL_CRLF))
1804 {
1805 coding->result = CODING_FINISH_INCONSISTENT_EOL;
1806 goto label_end_of_loop;
1807 }
1808 charset = CHARSET_ASCII;
1809 break;
1810
1811 case ISO_control_1:
1812 if (COMPOSING_P (coding))
1813 DECODE_COMPOSITION_END ('1');
1814 goto label_invalid_code;
1815
1816 case ISO_carriage_return:
1817 if (COMPOSING_P (coding))
1818 DECODE_COMPOSITION_END ('1');
1819
1820 if (coding->eol_type == CODING_EOL_CR)
1821 c1 = '\n';
1822 else if (coding->eol_type == CODING_EOL_CRLF)
1823 {
1824 ONE_MORE_BYTE (c1);
1825 if (c1 != ISO_CODE_LF)
1826 {
1827 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
1828 {
1829 coding->result = CODING_FINISH_INCONSISTENT_EOL;
1830 goto label_end_of_loop;
1831 }
1832 src--;
1833 c1 = '\r';
1834 }
1835 }
1836 charset = CHARSET_ASCII;
1837 break;
1838
1839 case ISO_shift_out:
1840 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1841 || CODING_SPEC_ISO_DESIGNATION (coding, 1) < 0)
1842 goto label_invalid_code;
1843 CODING_SPEC_ISO_INVOCATION (coding, 0) = 1;
1844 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1845 continue;
1846
1847 case ISO_shift_in:
1848 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
1849 goto label_invalid_code;
1850 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
1851 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1852 continue;
1853
1854 case ISO_single_shift_2_7:
1855 case ISO_single_shift_2:
1856 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
1857 goto label_invalid_code;
1858 /* SS2 is handled as an escape sequence of ESC 'N' */
1859 c1 = 'N';
1860 goto label_escape_sequence;
1861
1862 case ISO_single_shift_3:
1863 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
1864 goto label_invalid_code;
1865 /* SS2 is handled as an escape sequence of ESC 'O' */
1866 c1 = 'O';
1867 goto label_escape_sequence;
1868
1869 case ISO_control_sequence_introducer:
1870 /* CSI is handled as an escape sequence of ESC '[' ... */
1871 c1 = '[';
1872 goto label_escape_sequence;
1873
1874 case ISO_escape:
1875 ONE_MORE_BYTE (c1);
1876 label_escape_sequence:
1877 /* Escape sequences handled by Emacs are invocation,
1878 designation, direction specification, and character
1879 composition specification. */
1880 switch (c1)
1881 {
1882 case '&': /* revision of following character set */
1883 ONE_MORE_BYTE (c1);
1884 if (!(c1 >= '@' && c1 <= '~'))
1885 goto label_invalid_code;
1886 ONE_MORE_BYTE (c1);
1887 if (c1 != ISO_CODE_ESC)
1888 goto label_invalid_code;
1889 ONE_MORE_BYTE (c1);
1890 goto label_escape_sequence;
1891
1892 case '$': /* designation of 2-byte character set */
1893 if (! (coding->flags & CODING_FLAG_ISO_DESIGNATION))
1894 goto label_invalid_code;
1895 ONE_MORE_BYTE (c1);
1896 if (c1 >= '@' && c1 <= 'B')
1897 { /* designation of JISX0208.1978, GB2312.1980,
1898 or JISX0208.1980 */
1899 DECODE_DESIGNATION (0, 2, 94, c1);
1900 }
1901 else if (c1 >= 0x28 && c1 <= 0x2B)
1902 { /* designation of DIMENSION2_CHARS94 character set */
1903 ONE_MORE_BYTE (c2);
1904 DECODE_DESIGNATION (c1 - 0x28, 2, 94, c2);
1905 }
1906 else if (c1 >= 0x2C && c1 <= 0x2F)
1907 { /* designation of DIMENSION2_CHARS96 character set */
1908 ONE_MORE_BYTE (c2);
1909 DECODE_DESIGNATION (c1 - 0x2C, 2, 96, c2);
1910 }
1911 else
1912 goto label_invalid_code;
1913 /* We must update these variables now. */
1914 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1915 charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
1916 continue;
1917
1918 case 'n': /* invocation of locking-shift-2 */
1919 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1920 || CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
1921 goto label_invalid_code;
1922 CODING_SPEC_ISO_INVOCATION (coding, 0) = 2;
1923 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1924 continue;
1925
1926 case 'o': /* invocation of locking-shift-3 */
1927 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1928 || CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
1929 goto label_invalid_code;
1930 CODING_SPEC_ISO_INVOCATION (coding, 0) = 3;
1931 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1932 continue;
1933
1934 case 'N': /* invocation of single-shift-2 */
1935 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1936 || CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
1937 goto label_invalid_code;
1938 charset = CODING_SPEC_ISO_DESIGNATION (coding, 2);
1939 ONE_MORE_BYTE (c1);
1940 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
1941 goto label_invalid_code;
1942 break;
1943
1944 case 'O': /* invocation of single-shift-3 */
1945 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1946 || CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
1947 goto label_invalid_code;
1948 charset = CODING_SPEC_ISO_DESIGNATION (coding, 3);
1949 ONE_MORE_BYTE (c1);
1950 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
1951 goto label_invalid_code;
1952 break;
1953
1954 case '0': case '2': case '3': case '4': /* start composition */
1955 DECODE_COMPOSITION_START (c1);
1956 continue;
1957
1958 case '1': /* end composition */
1959 DECODE_COMPOSITION_END (c1);
1960 continue;
1961
1962 case '[': /* specification of direction */
1963 if (coding->flags & CODING_FLAG_ISO_NO_DIRECTION)
1964 goto label_invalid_code;
1965 /* For the moment, nested direction is not supported.
1966 So, `coding->mode & CODING_MODE_DIRECTION' zero means
1967 left-to-right, and nonzero means right-to-left. */
1968 ONE_MORE_BYTE (c1);
1969 switch (c1)
1970 {
1971 case ']': /* end of the current direction */
1972 coding->mode &= ~CODING_MODE_DIRECTION;
1973
1974 case '0': /* end of the current direction */
1975 case '1': /* start of left-to-right direction */
1976 ONE_MORE_BYTE (c1);
1977 if (c1 == ']')
1978 coding->mode &= ~CODING_MODE_DIRECTION;
1979 else
1980 goto label_invalid_code;
1981 break;
1982
1983 case '2': /* start of right-to-left direction */
1984 ONE_MORE_BYTE (c1);
1985 if (c1 == ']')
1986 coding->mode |= CODING_MODE_DIRECTION;
1987 else
1988 goto label_invalid_code;
1989 break;
1990
1991 default:
1992 goto label_invalid_code;
1993 }
1994 continue;
1995
1996 default:
1997 if (! (coding->flags & CODING_FLAG_ISO_DESIGNATION))
1998 goto label_invalid_code;
1999 if (c1 >= 0x28 && c1 <= 0x2B)
2000 { /* designation of DIMENSION1_CHARS94 character set */
2001 ONE_MORE_BYTE (c2);
2002 DECODE_DESIGNATION (c1 - 0x28, 1, 94, c2);
2003 }
2004 else if (c1 >= 0x2C && c1 <= 0x2F)
2005 { /* designation of DIMENSION1_CHARS96 character set */
2006 ONE_MORE_BYTE (c2);
2007 DECODE_DESIGNATION (c1 - 0x2C, 1, 96, c2);
2008 }
2009 else
2010 goto label_invalid_code;
2011 /* We must update these variables now. */
2012 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
2013 charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
2014 continue;
2015 }
2016 }
2017
2018 /* Now we know CHARSET and 1st position code C1 of a character.
2019 Produce a multibyte sequence for that character while getting
2020 2nd position code C2 if necessary. */
2021 if (CHARSET_DIMENSION (charset) == 2)
2022 {
2023 ONE_MORE_BYTE (c2);
2024 if (c1 < 0x80 ? c2 < 0x20 || c2 >= 0x80 : c2 < 0xA0)
2025 /* C2 is not in a valid range. */
2026 goto label_invalid_code;
2027 }
2028 c = DECODE_ISO_CHARACTER (charset, c1, c2);
2029 EMIT_CHAR (c);
2030 continue;
2031
2032 label_invalid_code:
2033 coding->errors++;
2034 if (COMPOSING_P (coding))
2035 DECODE_COMPOSITION_END ('1');
2036 src = src_base;
2037 c = *src++;
2038 EMIT_CHAR (c);
2039 }
2040
2041 label_end_of_loop:
2042 coding->consumed = coding->consumed_char = src_base - source;
2043 coding->produced = dst - destination;
2044 return;
2045 }
2046
2047
2048 /* ISO2022 encoding stuff. */
2049
2050 /*
2051 It is not enough to say just "ISO2022" on encoding, we have to
2052 specify more details. In Emacs, each ISO2022 coding system
2053 variant has the following specifications:
2054 1. Initial designation to G0 through G3.
2055 2. Allows short-form designation?
2056 3. ASCII should be designated to G0 before control characters?
2057 4. ASCII should be designated to G0 at end of line?
2058 5. 7-bit environment or 8-bit environment?
2059 6. Use locking-shift?
2060 7. Use Single-shift?
2061 And the following two are only for Japanese:
2062 8. Use ASCII in place of JIS0201-1976-Roman?
2063 9. Use JISX0208-1983 in place of JISX0208-1978?
2064 These specifications are encoded in `coding->flags' as flag bits
2065 defined by macros CODING_FLAG_ISO_XXX. See `coding.h' for more
2066 details.
2067 */
2068
2069 /* Produce codes (escape sequence) for designating CHARSET to graphic
2070 register REG at DST, and increment DST. If <final-char> of CHARSET is
2071 '@', 'A', or 'B' and the coding system CODING allows, produce
2072 designation sequence of short-form. */
2073
2074 #define ENCODE_DESIGNATION(charset, reg, coding) \
2075 do { \
2076 unsigned char final_char = CHARSET_ISO_FINAL_CHAR (charset); \
2077 char *intermediate_char_94 = "()*+"; \
2078 char *intermediate_char_96 = ",-./"; \
2079 int revision = CODING_SPEC_ISO_REVISION_NUMBER(coding, charset); \
2080 \
2081 if (revision < 255) \
2082 { \
2083 *dst++ = ISO_CODE_ESC; \
2084 *dst++ = '&'; \
2085 *dst++ = '@' + revision; \
2086 } \
2087 *dst++ = ISO_CODE_ESC; \
2088 if (CHARSET_DIMENSION (charset) == 1) \
2089 { \
2090 if (CHARSET_CHARS (charset) == 94) \
2091 *dst++ = (unsigned char) (intermediate_char_94[reg]); \
2092 else \
2093 *dst++ = (unsigned char) (intermediate_char_96[reg]); \
2094 } \
2095 else \
2096 { \
2097 *dst++ = '$'; \
2098 if (CHARSET_CHARS (charset) == 94) \
2099 { \
2100 if (! (coding->flags & CODING_FLAG_ISO_SHORT_FORM) \
2101 || reg != 0 \
2102 || final_char < '@' || final_char > 'B') \
2103 *dst++ = (unsigned char) (intermediate_char_94[reg]); \
2104 } \
2105 else \
2106 *dst++ = (unsigned char) (intermediate_char_96[reg]); \
2107 } \
2108 *dst++ = final_char; \
2109 CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
2110 } while (0)
2111
2112 /* The following two macros produce codes (control character or escape
2113 sequence) for ISO2022 single-shift functions (single-shift-2 and
2114 single-shift-3). */
2115
2116 #define ENCODE_SINGLE_SHIFT_2 \
2117 do { \
2118 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2119 *dst++ = ISO_CODE_ESC, *dst++ = 'N'; \
2120 else \
2121 *dst++ = ISO_CODE_SS2; \
2122 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
2123 } while (0)
2124
2125 #define ENCODE_SINGLE_SHIFT_3 \
2126 do { \
2127 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2128 *dst++ = ISO_CODE_ESC, *dst++ = 'O'; \
2129 else \
2130 *dst++ = ISO_CODE_SS3; \
2131 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
2132 } while (0)
2133
2134 /* The following four macros produce codes (control character or
2135 escape sequence) for ISO2022 locking-shift functions (shift-in,
2136 shift-out, locking-shift-2, and locking-shift-3). */
2137
2138 #define ENCODE_SHIFT_IN \
2139 do { \
2140 *dst++ = ISO_CODE_SI; \
2141 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0; \
2142 } while (0)
2143
2144 #define ENCODE_SHIFT_OUT \
2145 do { \
2146 *dst++ = ISO_CODE_SO; \
2147 CODING_SPEC_ISO_INVOCATION (coding, 0) = 1; \
2148 } while (0)
2149
2150 #define ENCODE_LOCKING_SHIFT_2 \
2151 do { \
2152 *dst++ = ISO_CODE_ESC, *dst++ = 'n'; \
2153 CODING_SPEC_ISO_INVOCATION (coding, 0) = 2; \
2154 } while (0)
2155
2156 #define ENCODE_LOCKING_SHIFT_3 \
2157 do { \
2158 *dst++ = ISO_CODE_ESC, *dst++ = 'o'; \
2159 CODING_SPEC_ISO_INVOCATION (coding, 0) = 3; \
2160 } while (0)
2161
2162 /* Produce codes for a DIMENSION1 character whose character set is
2163 CHARSET and whose position-code is C1. Designation and invocation
2164 sequences are also produced in advance if necessary. */
2165
2166 #define ENCODE_ISO_CHARACTER_DIMENSION1(charset, c1) \
2167 do { \
2168 if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
2169 { \
2170 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2171 *dst++ = c1 & 0x7F; \
2172 else \
2173 *dst++ = c1 | 0x80; \
2174 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
2175 break; \
2176 } \
2177 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
2178 { \
2179 *dst++ = c1 & 0x7F; \
2180 break; \
2181 } \
2182 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
2183 { \
2184 *dst++ = c1 | 0x80; \
2185 break; \
2186 } \
2187 else \
2188 /* Since CHARSET is not yet invoked to any graphic planes, we \
2189 must invoke it, or, at first, designate it to some graphic \
2190 register. Then repeat the loop to actually produce the \
2191 character. */ \
2192 dst = encode_invocation_designation (charset, coding, dst); \
2193 } while (1)
2194
2195 /* Produce codes for a DIMENSION2 character whose character set is
2196 CHARSET and whose position-codes are C1 and C2. Designation and
2197 invocation codes are also produced in advance if necessary. */
2198
2199 #define ENCODE_ISO_CHARACTER_DIMENSION2(charset, c1, c2) \
2200 do { \
2201 if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
2202 { \
2203 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2204 *dst++ = c1 & 0x7F, *dst++ = c2 & 0x7F; \
2205 else \
2206 *dst++ = c1 | 0x80, *dst++ = c2 | 0x80; \
2207 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
2208 break; \
2209 } \
2210 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
2211 { \
2212 *dst++ = c1 & 0x7F, *dst++= c2 & 0x7F; \
2213 break; \
2214 } \
2215 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
2216 { \
2217 *dst++ = c1 | 0x80, *dst++= c2 | 0x80; \
2218 break; \
2219 } \
2220 else \
2221 /* Since CHARSET is not yet invoked to any graphic planes, we \
2222 must invoke it, or, at first, designate it to some graphic \
2223 register. Then repeat the loop to actually produce the \
2224 character. */ \
2225 dst = encode_invocation_designation (charset, coding, dst); \
2226 } while (1)
2227
2228 #define ENCODE_ISO_CHARACTER(c) \
2229 do { \
2230 int charset, c1, c2; \
2231 \
2232 SPLIT_CHAR (c, charset, c1, c2); \
2233 if (CHARSET_DEFINED_P (charset)) \
2234 { \
2235 if (CHARSET_DIMENSION (charset) == 1) \
2236 { \
2237 if (charset == CHARSET_ASCII \
2238 && coding->flags & CODING_FLAG_ISO_USE_ROMAN) \
2239 charset = charset_latin_jisx0201; \
2240 ENCODE_ISO_CHARACTER_DIMENSION1 (charset, c1); \
2241 } \
2242 else \
2243 { \
2244 if (charset == charset_jisx0208 \
2245 && coding->flags & CODING_FLAG_ISO_USE_OLDJIS) \
2246 charset = charset_jisx0208_1978; \
2247 ENCODE_ISO_CHARACTER_DIMENSION2 (charset, c1, c2); \
2248 } \
2249 } \
2250 else \
2251 { \
2252 *dst++ = c1; \
2253 if (c2 >= 0) \
2254 *dst++ = c2; \
2255 } \
2256 } while (0)
2257
2258
2259 /* Instead of encoding character C, produce one or two `?'s. */
2260
2261 #define ENCODE_UNSAFE_CHARACTER(c) \
2262 do { \
2263 ENCODE_ISO_CHARACTER (CODING_INHIBIT_CHARACTER_SUBSTITUTION); \
2264 if (CHARSET_WIDTH (CHAR_CHARSET (c)) > 1) \
2265 ENCODE_ISO_CHARACTER (CODING_INHIBIT_CHARACTER_SUBSTITUTION); \
2266 } while (0)
2267
2268
2269 /* Produce designation and invocation codes at a place pointed by DST
2270 to use CHARSET. The element `spec.iso2022' of *CODING is updated.
2271 Return new DST. */
2272
2273 unsigned char *
2274 encode_invocation_designation (charset, coding, dst)
2275 int charset;
2276 struct coding_system *coding;
2277 unsigned char *dst;
2278 {
2279 int reg; /* graphic register number */
2280
2281 /* At first, check designations. */
2282 for (reg = 0; reg < 4; reg++)
2283 if (charset == CODING_SPEC_ISO_DESIGNATION (coding, reg))
2284 break;
2285
2286 if (reg >= 4)
2287 {
2288 /* CHARSET is not yet designated to any graphic registers. */
2289 /* At first check the requested designation. */
2290 reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
2291 if (reg == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION)
2292 /* Since CHARSET requests no special designation, designate it
2293 to graphic register 0. */
2294 reg = 0;
2295
2296 ENCODE_DESIGNATION (charset, reg, coding);
2297 }
2298
2299 if (CODING_SPEC_ISO_INVOCATION (coding, 0) != reg
2300 && CODING_SPEC_ISO_INVOCATION (coding, 1) != reg)
2301 {
2302 /* Since the graphic register REG is not invoked to any graphic
2303 planes, invoke it to graphic plane 0. */
2304 switch (reg)
2305 {
2306 case 0: /* graphic register 0 */
2307 ENCODE_SHIFT_IN;
2308 break;
2309
2310 case 1: /* graphic register 1 */
2311 ENCODE_SHIFT_OUT;
2312 break;
2313
2314 case 2: /* graphic register 2 */
2315 if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
2316 ENCODE_SINGLE_SHIFT_2;
2317 else
2318 ENCODE_LOCKING_SHIFT_2;
2319 break;
2320
2321 case 3: /* graphic register 3 */
2322 if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
2323 ENCODE_SINGLE_SHIFT_3;
2324 else
2325 ENCODE_LOCKING_SHIFT_3;
2326 break;
2327 }
2328 }
2329
2330 return dst;
2331 }
2332
2333 /* Produce 2-byte codes for encoded composition rule RULE. */
2334
2335 #define ENCODE_COMPOSITION_RULE(rule) \
2336 do { \
2337 int gref, nref; \
2338 COMPOSITION_DECODE_RULE (rule, gref, nref); \
2339 *dst++ = 32 + 81 + gref; \
2340 *dst++ = 32 + nref; \
2341 } while (0)
2342
2343 /* Produce codes for indicating the start of a composition sequence
2344 (ESC 0, ESC 3, or ESC 4). DATA points to an array of integers
2345 which specify information about the composition. See the comment
2346 in coding.h for the format of DATA. */
2347
2348 #define ENCODE_COMPOSITION_START(coding, data) \
2349 do { \
2350 coding->composing = data[3]; \
2351 *dst++ = ISO_CODE_ESC; \
2352 if (coding->composing == COMPOSITION_RELATIVE) \
2353 *dst++ = '0'; \
2354 else \
2355 { \
2356 *dst++ = (coding->composing == COMPOSITION_WITH_ALTCHARS \
2357 ? '3' : '4'); \
2358 coding->cmp_data_index = coding->cmp_data_start + 4; \
2359 coding->composition_rule_follows = 0; \
2360 } \
2361 } while (0)
2362
2363 /* Produce codes for indicating the end of the current composition. */
2364
2365 #define ENCODE_COMPOSITION_END(coding, data) \
2366 do { \
2367 *dst++ = ISO_CODE_ESC; \
2368 *dst++ = '1'; \
2369 coding->cmp_data_start += data[0]; \
2370 coding->composing = COMPOSITION_NO; \
2371 if (coding->cmp_data_start == coding->cmp_data->used \
2372 && coding->cmp_data->next) \
2373 { \
2374 coding->cmp_data = coding->cmp_data->next; \
2375 coding->cmp_data_start = 0; \
2376 } \
2377 } while (0)
2378
2379 /* Produce composition start sequence ESC 0. Here, this sequence
2380 doesn't mean the start of a new composition but means that we have
2381 just produced components (alternate chars and composition rules) of
2382 the composition and the actual text follows in SRC. */
2383
2384 #define ENCODE_COMPOSITION_FAKE_START(coding) \
2385 do { \
2386 *dst++ = ISO_CODE_ESC; \
2387 *dst++ = '0'; \
2388 coding->composing = COMPOSITION_RELATIVE; \
2389 } while (0)
2390
2391 /* The following three macros produce codes for indicating direction
2392 of text. */
2393 #define ENCODE_CONTROL_SEQUENCE_INTRODUCER \
2394 do { \
2395 if (coding->flags == CODING_FLAG_ISO_SEVEN_BITS) \
2396 *dst++ = ISO_CODE_ESC, *dst++ = '['; \
2397 else \
2398 *dst++ = ISO_CODE_CSI; \
2399 } while (0)
2400
2401 #define ENCODE_DIRECTION_R2L \
2402 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst), *dst++ = '2', *dst++ = ']'
2403
2404 #define ENCODE_DIRECTION_L2R \
2405 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst), *dst++ = '0', *dst++ = ']'
2406
2407 /* Produce codes for designation and invocation to reset the graphic
2408 planes and registers to initial state. */
2409 #define ENCODE_RESET_PLANE_AND_REGISTER \
2410 do { \
2411 int reg; \
2412 if (CODING_SPEC_ISO_INVOCATION (coding, 0) != 0) \
2413 ENCODE_SHIFT_IN; \
2414 for (reg = 0; reg < 4; reg++) \
2415 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg) >= 0 \
2416 && (CODING_SPEC_ISO_DESIGNATION (coding, reg) \
2417 != CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg))) \
2418 ENCODE_DESIGNATION \
2419 (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg), reg, coding); \
2420 } while (0)
2421
2422 /* Produce designation sequences of charsets in the line started from
2423 SRC to a place pointed by DST, and return updated DST.
2424
2425 If the current block ends before any end-of-line, we may fail to
2426 find all the necessary designations. */
2427
2428 static unsigned char *
2429 encode_designation_at_bol (coding, translation_table, src, src_end, dst)
2430 struct coding_system *coding;
2431 Lisp_Object translation_table;
2432 unsigned char *src, *src_end, *dst;
2433 {
2434 int charset, c, found = 0, reg;
2435 /* Table of charsets to be designated to each graphic register. */
2436 int r[4];
2437
2438 for (reg = 0; reg < 4; reg++)
2439 r[reg] = -1;
2440
2441 while (found < 4)
2442 {
2443 ONE_MORE_CHAR (c);
2444 if (c == '\n')
2445 break;
2446
2447 charset = CHAR_CHARSET (c);
2448 reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
2449 if (reg != CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION && r[reg] < 0)
2450 {
2451 found++;
2452 r[reg] = charset;
2453 }
2454 }
2455
2456 label_end_of_loop:
2457 if (found)
2458 {
2459 for (reg = 0; reg < 4; reg++)
2460 if (r[reg] >= 0
2461 && CODING_SPEC_ISO_DESIGNATION (coding, reg) != r[reg])
2462 ENCODE_DESIGNATION (r[reg], reg, coding);
2463 }
2464
2465 return dst;
2466 }
2467
2468 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions". */
2469
2470 static void
2471 encode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes)
2472 struct coding_system *coding;
2473 unsigned char *source, *destination;
2474 int src_bytes, dst_bytes;
2475 {
2476 unsigned char *src = source;
2477 unsigned char *src_end = source + src_bytes;
2478 unsigned char *dst = destination;
2479 unsigned char *dst_end = destination + dst_bytes;
2480 /* Since the maximum bytes produced by each loop is 20, we subtract 19
2481 from DST_END to assure overflow checking is necessary only at the
2482 head of loop. */
2483 unsigned char *adjusted_dst_end = dst_end - 19;
2484 /* SRC_BASE remembers the start position in source in each loop.
2485 The loop will be exited when there's not enough source text to
2486 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
2487 there's not enough destination area to produce encoded codes
2488 (within macro EMIT_BYTES). */
2489 unsigned char *src_base;
2490 int c;
2491 Lisp_Object translation_table;
2492 Lisp_Object safe_chars;
2493
2494 safe_chars = coding_safe_chars (coding);
2495
2496 if (NILP (Venable_character_translation))
2497 translation_table = Qnil;
2498 else
2499 {
2500 translation_table = coding->translation_table_for_encode;
2501 if (NILP (translation_table))
2502 translation_table = Vstandard_translation_table_for_encode;
2503 }
2504
2505 coding->consumed_char = 0;
2506 coding->errors = 0;
2507 while (1)
2508 {
2509 src_base = src;
2510
2511 if (dst >= (dst_bytes ? adjusted_dst_end : (src - 19)))
2512 {
2513 coding->result = CODING_FINISH_INSUFFICIENT_DST;
2514 break;
2515 }
2516
2517 if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL
2518 && CODING_SPEC_ISO_BOL (coding))
2519 {
2520 /* We have to produce designation sequences if any now. */
2521 dst = encode_designation_at_bol (coding, translation_table,
2522 src, src_end, dst);
2523 CODING_SPEC_ISO_BOL (coding) = 0;
2524 }
2525
2526 /* Check composition start and end. */
2527 if (coding->composing != COMPOSITION_DISABLED
2528 && coding->cmp_data_start < coding->cmp_data->used)
2529 {
2530 struct composition_data *cmp_data = coding->cmp_data;
2531 int *data = cmp_data->data + coding->cmp_data_start;
2532 int this_pos = cmp_data->char_offset + coding->consumed_char;
2533
2534 if (coding->composing == COMPOSITION_RELATIVE)
2535 {
2536 if (this_pos == data[2])
2537 {
2538 ENCODE_COMPOSITION_END (coding, data);
2539 cmp_data = coding->cmp_data;
2540 data = cmp_data->data + coding->cmp_data_start;
2541 }
2542 }
2543 else if (COMPOSING_P (coding))
2544 {
2545 /* COMPOSITION_WITH_ALTCHARS or COMPOSITION_WITH_RULE_ALTCHAR */
2546 if (coding->cmp_data_index == coding->cmp_data_start + data[0])
2547 /* We have consumed components of the composition.
2548 What follows in SRC is the composition's base
2549 text. */
2550 ENCODE_COMPOSITION_FAKE_START (coding);
2551 else
2552 {
2553 int c = cmp_data->data[coding->cmp_data_index++];
2554 if (coding->composition_rule_follows)
2555 {
2556 ENCODE_COMPOSITION_RULE (c);
2557 coding->composition_rule_follows = 0;
2558 }
2559 else
2560 {
2561 if (coding->flags & CODING_FLAG_ISO_SAFE
2562 && ! CODING_SAFE_CHAR_P (safe_chars, c))
2563 ENCODE_UNSAFE_CHARACTER (c);
2564 else
2565 ENCODE_ISO_CHARACTER (c);
2566 if (coding->composing == COMPOSITION_WITH_RULE_ALTCHARS)
2567 coding->composition_rule_follows = 1;
2568 }
2569 continue;
2570 }
2571 }
2572 if (!COMPOSING_P (coding))
2573 {
2574 if (this_pos == data[1])
2575 {
2576 ENCODE_COMPOSITION_START (coding, data);
2577 continue;
2578 }
2579 }
2580 }
2581
2582 ONE_MORE_CHAR (c);
2583
2584 /* Now encode the character C. */
2585 if (c < 0x20 || c == 0x7F)
2586 {
2587 if (c == '\r')
2588 {
2589 if (! (coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
2590 {
2591 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
2592 ENCODE_RESET_PLANE_AND_REGISTER;
2593 *dst++ = c;
2594 continue;
2595 }
2596 /* fall down to treat '\r' as '\n' ... */
2597 c = '\n';
2598 }
2599 if (c == '\n')
2600 {
2601 if (coding->flags & CODING_FLAG_ISO_RESET_AT_EOL)
2602 ENCODE_RESET_PLANE_AND_REGISTER;
2603 if (coding->flags & CODING_FLAG_ISO_INIT_AT_BOL)
2604 bcopy (coding->spec.iso2022.initial_designation,
2605 coding->spec.iso2022.current_designation,
2606 sizeof coding->spec.iso2022.initial_designation);
2607 if (coding->eol_type == CODING_EOL_LF
2608 || coding->eol_type == CODING_EOL_UNDECIDED)
2609 *dst++ = ISO_CODE_LF;
2610 else if (coding->eol_type == CODING_EOL_CRLF)
2611 *dst++ = ISO_CODE_CR, *dst++ = ISO_CODE_LF;
2612 else
2613 *dst++ = ISO_CODE_CR;
2614 CODING_SPEC_ISO_BOL (coding) = 1;
2615 }
2616 else
2617 {
2618 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
2619 ENCODE_RESET_PLANE_AND_REGISTER;
2620 *dst++ = c;
2621 }
2622 }
2623 else if (ASCII_BYTE_P (c))
2624 ENCODE_ISO_CHARACTER (c);
2625 else if (SINGLE_BYTE_CHAR_P (c))
2626 {
2627 *dst++ = c;
2628 coding->errors++;
2629 }
2630 else if (coding->flags & CODING_FLAG_ISO_SAFE
2631 && ! CODING_SAFE_CHAR_P (safe_chars, c))
2632 ENCODE_UNSAFE_CHARACTER (c);
2633 else
2634 ENCODE_ISO_CHARACTER (c);
2635
2636 coding->consumed_char++;
2637 }
2638
2639 label_end_of_loop:
2640 coding->consumed = src_base - source;
2641 coding->produced = coding->produced_char = dst - destination;
2642 }
2643
2644 \f
2645 /*** 4. SJIS and BIG5 handlers ***/
2646
2647 /* Although SJIS and BIG5 are not ISO coding systems, they are used
2648 quite widely. So, for the moment, Emacs supports them in the bare
2649 C code. But, in the future, they may be supported only by CCL. */
2650
2651 /* SJIS is a coding system encoding three character sets: ASCII, right
2652 half of JISX0201-Kana, and JISX0208. An ASCII character is encoded
2653 as is. A character of charset katakana-jisx0201 is encoded by
2654 "position-code + 0x80". A character of charset japanese-jisx0208
2655 is encoded in 2-byte but two position-codes are divided and shifted
2656 so that it fits in the range below.
2657
2658 --- CODE RANGE of SJIS ---
2659 (character set) (range)
2660 ASCII 0x00 .. 0x7F
2661 KATAKANA-JISX0201 0xA1 .. 0xDF
2662 JISX0208 (1st byte) 0x81 .. 0x9F and 0xE0 .. 0xEF
2663 (2nd byte) 0x40 .. 0x7E and 0x80 .. 0xFC
2664 -------------------------------
2665
2666 */
2667
2668 /* BIG5 is a coding system encoding two character sets: ASCII and
2669 Big5. An ASCII character is encoded as is. Big5 is a two-byte
2670 character set and is encoded in two bytes.
2671
2672 --- CODE RANGE of BIG5 ---
2673 (character set) (range)
2674 ASCII 0x00 .. 0x7F
2675 Big5 (1st byte) 0xA1 .. 0xFE
2676 (2nd byte) 0x40 .. 0x7E and 0xA1 .. 0xFE
2677 --------------------------
2678
2679 Since the number of characters in Big5 is larger than maximum
2680 characters in Emacs' charset (96x96), it can't be handled as one
2681 charset. So, in Emacs, Big5 is divided into two: `charset-big5-1'
2682 and `charset-big5-2'. Both are DIMENSION2 and CHARS94. The former
2683 contains frequently used characters and the latter contains less
2684 frequently used characters. */
2685
2686 /* Macros to decode or encode a character of Big5 in BIG5. B1 and B2
2687 are the 1st and 2nd position-codes of Big5 in BIG5 coding system.
2688 C1 and C2 are the 1st and 2nd position-codes of Emacs' internal
2689 format. CHARSET is `charset_big5_1' or `charset_big5_2'. */
2690
2691 /* Number of Big5 characters which have the same code in 1st byte. */
2692 #define BIG5_SAME_ROW (0xFF - 0xA1 + 0x7F - 0x40)
2693
2694 #define DECODE_BIG5(b1, b2, charset, c1, c2) \
2695 do { \
2696 unsigned int temp \
2697 = (b1 - 0xA1) * BIG5_SAME_ROW + b2 - (b2 < 0x7F ? 0x40 : 0x62); \
2698 if (b1 < 0xC9) \
2699 charset = charset_big5_1; \
2700 else \
2701 { \
2702 charset = charset_big5_2; \
2703 temp -= (0xC9 - 0xA1) * BIG5_SAME_ROW; \
2704 } \
2705 c1 = temp / (0xFF - 0xA1) + 0x21; \
2706 c2 = temp % (0xFF - 0xA1) + 0x21; \
2707 } while (0)
2708
2709 #define ENCODE_BIG5(charset, c1, c2, b1, b2) \
2710 do { \
2711 unsigned int temp = (c1 - 0x21) * (0xFF - 0xA1) + (c2 - 0x21); \
2712 if (charset == charset_big5_2) \
2713 temp += BIG5_SAME_ROW * (0xC9 - 0xA1); \
2714 b1 = temp / BIG5_SAME_ROW + 0xA1; \
2715 b2 = temp % BIG5_SAME_ROW; \
2716 b2 += b2 < 0x3F ? 0x40 : 0x62; \
2717 } while (0)
2718
2719 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2720 Check if a text is encoded in SJIS. If it is, return
2721 CODING_CATEGORY_MASK_SJIS, else return 0. */
2722
2723 static int
2724 detect_coding_sjis (src, src_end, multibytep)
2725 unsigned char *src, *src_end;
2726 int multibytep;
2727 {
2728 int c;
2729 /* Dummy for ONE_MORE_BYTE. */
2730 struct coding_system dummy_coding;
2731 struct coding_system *coding = &dummy_coding;
2732
2733 while (1)
2734 {
2735 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2736 if (c < 0x80)
2737 continue;
2738 if (c == 0x80 || c == 0xA0 || c > 0xEF)
2739 return 0;
2740 if (c <= 0x9F || c >= 0xE0)
2741 {
2742 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2743 if (c < 0x40 || c == 0x7F || c > 0xFC)
2744 return 0;
2745 }
2746 }
2747 label_end_of_loop:
2748 return CODING_CATEGORY_MASK_SJIS;
2749 }
2750
2751 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2752 Check if a text is encoded in BIG5. If it is, return
2753 CODING_CATEGORY_MASK_BIG5, else return 0. */
2754
2755 static int
2756 detect_coding_big5 (src, src_end, multibytep)
2757 unsigned char *src, *src_end;
2758 int multibytep;
2759 {
2760 int c;
2761 /* Dummy for ONE_MORE_BYTE. */
2762 struct coding_system dummy_coding;
2763 struct coding_system *coding = &dummy_coding;
2764
2765 while (1)
2766 {
2767 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2768 if (c < 0x80)
2769 continue;
2770 if (c < 0xA1 || c > 0xFE)
2771 return 0;
2772 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2773 if (c < 0x40 || (c > 0x7F && c < 0xA1) || c > 0xFE)
2774 return 0;
2775 }
2776 label_end_of_loop:
2777 return CODING_CATEGORY_MASK_BIG5;
2778 }
2779
2780 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2781 Check if a text is encoded in UTF-8. If it is, return
2782 CODING_CATEGORY_MASK_UTF_8, else return 0. */
2783
2784 #define UTF_8_1_OCTET_P(c) ((c) < 0x80)
2785 #define UTF_8_EXTRA_OCTET_P(c) (((c) & 0xC0) == 0x80)
2786 #define UTF_8_2_OCTET_LEADING_P(c) (((c) & 0xE0) == 0xC0)
2787 #define UTF_8_3_OCTET_LEADING_P(c) (((c) & 0xF0) == 0xE0)
2788 #define UTF_8_4_OCTET_LEADING_P(c) (((c) & 0xF8) == 0xF0)
2789 #define UTF_8_5_OCTET_LEADING_P(c) (((c) & 0xFC) == 0xF8)
2790 #define UTF_8_6_OCTET_LEADING_P(c) (((c) & 0xFE) == 0xFC)
2791
2792 static int
2793 detect_coding_utf_8 (src, src_end, multibytep)
2794 unsigned char *src, *src_end;
2795 int multibytep;
2796 {
2797 unsigned char c;
2798 int seq_maybe_bytes;
2799 /* Dummy for ONE_MORE_BYTE. */
2800 struct coding_system dummy_coding;
2801 struct coding_system *coding = &dummy_coding;
2802
2803 while (1)
2804 {
2805 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2806 if (UTF_8_1_OCTET_P (c))
2807 continue;
2808 else if (UTF_8_2_OCTET_LEADING_P (c))
2809 seq_maybe_bytes = 1;
2810 else if (UTF_8_3_OCTET_LEADING_P (c))
2811 seq_maybe_bytes = 2;
2812 else if (UTF_8_4_OCTET_LEADING_P (c))
2813 seq_maybe_bytes = 3;
2814 else if (UTF_8_5_OCTET_LEADING_P (c))
2815 seq_maybe_bytes = 4;
2816 else if (UTF_8_6_OCTET_LEADING_P (c))
2817 seq_maybe_bytes = 5;
2818 else
2819 return 0;
2820
2821 do
2822 {
2823 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2824 if (!UTF_8_EXTRA_OCTET_P (c))
2825 return 0;
2826 seq_maybe_bytes--;
2827 }
2828 while (seq_maybe_bytes > 0);
2829 }
2830
2831 label_end_of_loop:
2832 return CODING_CATEGORY_MASK_UTF_8;
2833 }
2834
2835 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2836 Check if a text is encoded in UTF-16 Big Endian (endian == 1) or
2837 Little Endian (otherwise). If it is, return
2838 CODING_CATEGORY_MASK_UTF_16_BE or CODING_CATEGORY_MASK_UTF_16_LE,
2839 else return 0. */
2840
2841 #define UTF_16_INVALID_P(val) \
2842 (((val) == 0xFFFE) \
2843 || ((val) == 0xFFFF))
2844
2845 #define UTF_16_HIGH_SURROGATE_P(val) \
2846 (((val) & 0xD800) == 0xD800)
2847
2848 #define UTF_16_LOW_SURROGATE_P(val) \
2849 (((val) & 0xDC00) == 0xDC00)
2850
2851 static int
2852 detect_coding_utf_16 (src, src_end, multibytep)
2853 unsigned char *src, *src_end;
2854 int multibytep;
2855 {
2856 unsigned char c1, c2;
2857 /* Dummy for TWO_MORE_BYTES. */
2858 struct coding_system dummy_coding;
2859 struct coding_system *coding = &dummy_coding;
2860
2861 ONE_MORE_BYTE_CHECK_MULTIBYTE (c1, multibytep);
2862 ONE_MORE_BYTE_CHECK_MULTIBYTE (c2, multibytep);
2863
2864 if ((c1 == 0xFF) && (c2 == 0xFE))
2865 return CODING_CATEGORY_MASK_UTF_16_LE;
2866 else if ((c1 == 0xFE) && (c2 == 0xFF))
2867 return CODING_CATEGORY_MASK_UTF_16_BE;
2868
2869 label_end_of_loop:
2870 return 0;
2871 }
2872
2873 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".
2874 If SJIS_P is 1, decode SJIS text, else decode BIG5 test. */
2875
2876 static void
2877 decode_coding_sjis_big5 (coding, source, destination,
2878 src_bytes, dst_bytes, sjis_p)
2879 struct coding_system *coding;
2880 unsigned char *source, *destination;
2881 int src_bytes, dst_bytes;
2882 int sjis_p;
2883 {
2884 unsigned char *src = source;
2885 unsigned char *src_end = source + src_bytes;
2886 unsigned char *dst = destination;
2887 unsigned char *dst_end = destination + dst_bytes;
2888 /* SRC_BASE remembers the start position in source in each loop.
2889 The loop will be exited when there's not enough source code
2890 (within macro ONE_MORE_BYTE), or when there's not enough
2891 destination area to produce a character (within macro
2892 EMIT_CHAR). */
2893 unsigned char *src_base;
2894 Lisp_Object translation_table;
2895
2896 if (NILP (Venable_character_translation))
2897 translation_table = Qnil;
2898 else
2899 {
2900 translation_table = coding->translation_table_for_decode;
2901 if (NILP (translation_table))
2902 translation_table = Vstandard_translation_table_for_decode;
2903 }
2904
2905 coding->produced_char = 0;
2906 while (1)
2907 {
2908 int c, charset, c1, c2;
2909
2910 src_base = src;
2911 ONE_MORE_BYTE (c1);
2912
2913 if (c1 < 0x80)
2914 {
2915 charset = CHARSET_ASCII;
2916 if (c1 < 0x20)
2917 {
2918 if (c1 == '\r')
2919 {
2920 if (coding->eol_type == CODING_EOL_CRLF)
2921 {
2922 ONE_MORE_BYTE (c2);
2923 if (c2 == '\n')
2924 c1 = c2;
2925 else if (coding->mode
2926 & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
2927 {
2928 coding->result = CODING_FINISH_INCONSISTENT_EOL;
2929 goto label_end_of_loop;
2930 }
2931 else
2932 /* To process C2 again, SRC is subtracted by 1. */
2933 src--;
2934 }
2935 else if (coding->eol_type == CODING_EOL_CR)
2936 c1 = '\n';
2937 }
2938 else if (c1 == '\n'
2939 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
2940 && (coding->eol_type == CODING_EOL_CR
2941 || coding->eol_type == CODING_EOL_CRLF))
2942 {
2943 coding->result = CODING_FINISH_INCONSISTENT_EOL;
2944 goto label_end_of_loop;
2945 }
2946 }
2947 }
2948 else
2949 {
2950 if (sjis_p)
2951 {
2952 if (c1 == 0x80 || c1 == 0xA0 || c1 > 0xEF)
2953 goto label_invalid_code;
2954 if (c1 <= 0x9F || c1 >= 0xE0)
2955 {
2956 /* SJIS -> JISX0208 */
2957 ONE_MORE_BYTE (c2);
2958 if (c2 < 0x40 || c2 == 0x7F || c2 > 0xFC)
2959 goto label_invalid_code;
2960 DECODE_SJIS (c1, c2, c1, c2);
2961 charset = charset_jisx0208;
2962 }
2963 else
2964 /* SJIS -> JISX0201-Kana */
2965 charset = charset_katakana_jisx0201;
2966 }
2967 else
2968 {
2969 /* BIG5 -> Big5 */
2970 if (c1 < 0xA0 || c1 > 0xFE)
2971 goto label_invalid_code;
2972 ONE_MORE_BYTE (c2);
2973 if (c2 < 0x40 || (c2 > 0x7E && c2 < 0xA1) || c2 > 0xFE)
2974 goto label_invalid_code;
2975 DECODE_BIG5 (c1, c2, charset, c1, c2);
2976 }
2977 }
2978
2979 c = DECODE_ISO_CHARACTER (charset, c1, c2);
2980 EMIT_CHAR (c);
2981 continue;
2982
2983 label_invalid_code:
2984 coding->errors++;
2985 src = src_base;
2986 c = *src++;
2987 EMIT_CHAR (c);
2988 }
2989
2990 label_end_of_loop:
2991 coding->consumed = coding->consumed_char = src_base - source;
2992 coding->produced = dst - destination;
2993 return;
2994 }
2995
2996 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions".
2997 This function can encode charsets `ascii', `katakana-jisx0201',
2998 `japanese-jisx0208', `chinese-big5-1', and `chinese-big5-2'. We
2999 are sure that all these charsets are registered as official charset
3000 (i.e. do not have extended leading-codes). Characters of other
3001 charsets are produced without any encoding. If SJIS_P is 1, encode
3002 SJIS text, else encode BIG5 text. */
3003
3004 static void
3005 encode_coding_sjis_big5 (coding, source, destination,
3006 src_bytes, dst_bytes, sjis_p)
3007 struct coding_system *coding;
3008 unsigned char *source, *destination;
3009 int src_bytes, dst_bytes;
3010 int sjis_p;
3011 {
3012 unsigned char *src = source;
3013 unsigned char *src_end = source + src_bytes;
3014 unsigned char *dst = destination;
3015 unsigned char *dst_end = destination + dst_bytes;
3016 /* SRC_BASE remembers the start position in source in each loop.
3017 The loop will be exited when there's not enough source text to
3018 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
3019 there's not enough destination area to produce encoded codes
3020 (within macro EMIT_BYTES). */
3021 unsigned char *src_base;
3022 Lisp_Object translation_table;
3023
3024 if (NILP (Venable_character_translation))
3025 translation_table = Qnil;
3026 else
3027 {
3028 translation_table = coding->translation_table_for_encode;
3029 if (NILP (translation_table))
3030 translation_table = Vstandard_translation_table_for_encode;
3031 }
3032
3033 while (1)
3034 {
3035 int c, charset, c1, c2;
3036
3037 src_base = src;
3038 ONE_MORE_CHAR (c);
3039
3040 /* Now encode the character C. */
3041 if (SINGLE_BYTE_CHAR_P (c))
3042 {
3043 switch (c)
3044 {
3045 case '\r':
3046 if (!(coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
3047 {
3048 EMIT_ONE_BYTE (c);
3049 break;
3050 }
3051 c = '\n';
3052 case '\n':
3053 if (coding->eol_type == CODING_EOL_CRLF)
3054 {
3055 EMIT_TWO_BYTES ('\r', c);
3056 break;
3057 }
3058 else if (coding->eol_type == CODING_EOL_CR)
3059 c = '\r';
3060 default:
3061 EMIT_ONE_BYTE (c);
3062 }
3063 }
3064 else
3065 {
3066 SPLIT_CHAR (c, charset, c1, c2);
3067 if (sjis_p)
3068 {
3069 if (charset == charset_jisx0208
3070 || charset == charset_jisx0208_1978)
3071 {
3072 ENCODE_SJIS (c1, c2, c1, c2);
3073 EMIT_TWO_BYTES (c1, c2);
3074 }
3075 else if (charset == charset_katakana_jisx0201)
3076 EMIT_ONE_BYTE (c1 | 0x80);
3077 else if (charset == charset_latin_jisx0201)
3078 EMIT_ONE_BYTE (c1);
3079 else
3080 /* There's no way other than producing the internal
3081 codes as is. */
3082 EMIT_BYTES (src_base, src);
3083 }
3084 else
3085 {
3086 if (charset == charset_big5_1 || charset == charset_big5_2)
3087 {
3088 ENCODE_BIG5 (charset, c1, c2, c1, c2);
3089 EMIT_TWO_BYTES (c1, c2);
3090 }
3091 else
3092 /* There's no way other than producing the internal
3093 codes as is. */
3094 EMIT_BYTES (src_base, src);
3095 }
3096 }
3097 coding->consumed_char++;
3098 }
3099
3100 label_end_of_loop:
3101 coding->consumed = src_base - source;
3102 coding->produced = coding->produced_char = dst - destination;
3103 }
3104
3105 \f
3106 /*** 5. CCL handlers ***/
3107
3108 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
3109 Check if a text is encoded in a coding system of which
3110 encoder/decoder are written in CCL program. If it is, return
3111 CODING_CATEGORY_MASK_CCL, else return 0. */
3112
3113 static int
3114 detect_coding_ccl (src, src_end, multibytep)
3115 unsigned char *src, *src_end;
3116 int multibytep;
3117 {
3118 unsigned char *valid;
3119 int c;
3120 /* Dummy for ONE_MORE_BYTE. */
3121 struct coding_system dummy_coding;
3122 struct coding_system *coding = &dummy_coding;
3123
3124 /* No coding system is assigned to coding-category-ccl. */
3125 if (!coding_system_table[CODING_CATEGORY_IDX_CCL])
3126 return 0;
3127
3128 valid = coding_system_table[CODING_CATEGORY_IDX_CCL]->spec.ccl.valid_codes;
3129 while (1)
3130 {
3131 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
3132 if (! valid[c])
3133 return 0;
3134 }
3135 label_end_of_loop:
3136 return CODING_CATEGORY_MASK_CCL;
3137 }
3138
3139 \f
3140 /*** 6. End-of-line handlers ***/
3141
3142 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
3143
3144 static void
3145 decode_eol (coding, source, destination, src_bytes, dst_bytes)
3146 struct coding_system *coding;
3147 unsigned char *source, *destination;
3148 int src_bytes, dst_bytes;
3149 {
3150 unsigned char *src = source;
3151 unsigned char *dst = destination;
3152 unsigned char *src_end = src + src_bytes;
3153 unsigned char *dst_end = dst + dst_bytes;
3154 Lisp_Object translation_table;
3155 /* SRC_BASE remembers the start position in source in each loop.
3156 The loop will be exited when there's not enough source code
3157 (within macro ONE_MORE_BYTE), or when there's not enough
3158 destination area to produce a character (within macro
3159 EMIT_CHAR). */
3160 unsigned char *src_base;
3161 int c;
3162
3163 translation_table = Qnil;
3164 switch (coding->eol_type)
3165 {
3166 case CODING_EOL_CRLF:
3167 while (1)
3168 {
3169 src_base = src;
3170 ONE_MORE_BYTE (c);
3171 if (c == '\r')
3172 {
3173 ONE_MORE_BYTE (c);
3174 if (c != '\n')
3175 {
3176 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
3177 {
3178 coding->result = CODING_FINISH_INCONSISTENT_EOL;
3179 goto label_end_of_loop;
3180 }
3181 src--;
3182 c = '\r';
3183 }
3184 }
3185 else if (c == '\n'
3186 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL))
3187 {
3188 coding->result = CODING_FINISH_INCONSISTENT_EOL;
3189 goto label_end_of_loop;
3190 }
3191 EMIT_CHAR (c);
3192 }
3193 break;
3194
3195 case CODING_EOL_CR:
3196 while (1)
3197 {
3198 src_base = src;
3199 ONE_MORE_BYTE (c);
3200 if (c == '\n')
3201 {
3202 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
3203 {
3204 coding->result = CODING_FINISH_INCONSISTENT_EOL;
3205 goto label_end_of_loop;
3206 }
3207 }
3208 else if (c == '\r')
3209 c = '\n';
3210 EMIT_CHAR (c);
3211 }
3212 break;
3213
3214 default: /* no need for EOL handling */
3215 while (1)
3216 {
3217 src_base = src;
3218 ONE_MORE_BYTE (c);
3219 EMIT_CHAR (c);
3220 }
3221 }
3222
3223 label_end_of_loop:
3224 coding->consumed = coding->consumed_char = src_base - source;
3225 coding->produced = dst - destination;
3226 return;
3227 }
3228
3229 /* See "GENERAL NOTES about `encode_coding_XXX ()' functions". Encode
3230 format of end-of-line according to `coding->eol_type'. It also
3231 convert multibyte form 8-bit characters to unibyte if
3232 CODING->src_multibyte is nonzero. If `coding->mode &
3233 CODING_MODE_SELECTIVE_DISPLAY' is nonzero, code '\r' in source text
3234 also means end-of-line. */
3235
3236 static void
3237 encode_eol (coding, source, destination, src_bytes, dst_bytes)
3238 struct coding_system *coding;
3239 unsigned char *source, *destination;
3240 int src_bytes, dst_bytes;
3241 {
3242 unsigned char *src = source;
3243 unsigned char *dst = destination;
3244 unsigned char *src_end = src + src_bytes;
3245 unsigned char *dst_end = dst + dst_bytes;
3246 Lisp_Object translation_table;
3247 /* SRC_BASE remembers the start position in source in each loop.
3248 The loop will be exited when there's not enough source text to
3249 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
3250 there's not enough destination area to produce encoded codes
3251 (within macro EMIT_BYTES). */
3252 unsigned char *src_base;
3253 int c;
3254 int selective_display = coding->mode & CODING_MODE_SELECTIVE_DISPLAY;
3255
3256 translation_table = Qnil;
3257 if (coding->src_multibyte
3258 && *(src_end - 1) == LEADING_CODE_8_BIT_CONTROL)
3259 {
3260 src_end--;
3261 src_bytes--;
3262 coding->result = CODING_FINISH_INSUFFICIENT_SRC;
3263 }
3264
3265 if (coding->eol_type == CODING_EOL_CRLF)
3266 {
3267 while (src < src_end)
3268 {
3269 src_base = src;
3270 c = *src++;
3271 if (c >= 0x20)
3272 EMIT_ONE_BYTE (c);
3273 else if (c == '\n' || (c == '\r' && selective_display))
3274 EMIT_TWO_BYTES ('\r', '\n');
3275 else
3276 EMIT_ONE_BYTE (c);
3277 }
3278 src_base = src;
3279 label_end_of_loop:
3280 ;
3281 }
3282 else
3283 {
3284 if (!dst_bytes || src_bytes <= dst_bytes)
3285 {
3286 safe_bcopy (src, dst, src_bytes);
3287 src_base = src_end;
3288 dst += src_bytes;
3289 }
3290 else
3291 {
3292 if (coding->src_multibyte
3293 && *(src + dst_bytes - 1) == LEADING_CODE_8_BIT_CONTROL)
3294 dst_bytes--;
3295 safe_bcopy (src, dst, dst_bytes);
3296 src_base = src + dst_bytes;
3297 dst = destination + dst_bytes;
3298 coding->result = CODING_FINISH_INSUFFICIENT_DST;
3299 }
3300 if (coding->eol_type == CODING_EOL_CR)
3301 {
3302 for (src = destination; src < dst; src++)
3303 if (*src == '\n') *src = '\r';
3304 }
3305 else if (selective_display)
3306 {
3307 for (src = destination; src < dst; src++)
3308 if (*src == '\r') *src = '\n';
3309 }
3310 }
3311 if (coding->src_multibyte)
3312 dst = destination + str_as_unibyte (destination, dst - destination);
3313
3314 coding->consumed = src_base - source;
3315 coding->produced = dst - destination;
3316 coding->produced_char = coding->produced;
3317 }
3318
3319 \f
3320 /*** 7. C library functions ***/
3321
3322 /* In Emacs Lisp, a coding system is represented by a Lisp symbol which
3323 has a property `coding-system'. The value of this property is a
3324 vector of length 5 (called the coding-vector). Among elements of
3325 this vector, the first (element[0]) and the fifth (element[4])
3326 carry important information for decoding/encoding. Before
3327 decoding/encoding, this information should be set in fields of a
3328 structure of type `coding_system'.
3329
3330 The value of the property `coding-system' can be a symbol of another
3331 subsidiary coding-system. In that case, Emacs gets coding-vector
3332 from that symbol.
3333
3334 `element[0]' contains information to be set in `coding->type'. The
3335 value and its meaning is as follows:
3336
3337 0 -- coding_type_emacs_mule
3338 1 -- coding_type_sjis
3339 2 -- coding_type_iso2022
3340 3 -- coding_type_big5
3341 4 -- coding_type_ccl encoder/decoder written in CCL
3342 nil -- coding_type_no_conversion
3343 t -- coding_type_undecided (automatic conversion on decoding,
3344 no-conversion on encoding)
3345
3346 `element[4]' contains information to be set in `coding->flags' and
3347 `coding->spec'. The meaning varies by `coding->type'.
3348
3349 If `coding->type' is `coding_type_iso2022', element[4] is a vector
3350 of length 32 (of which the first 13 sub-elements are used now).
3351 Meanings of these sub-elements are:
3352
3353 sub-element[N] where N is 0 through 3: to be set in `coding->spec.iso2022'
3354 If the value is an integer of valid charset, the charset is
3355 assumed to be designated to graphic register N initially.
3356
3357 If the value is minus, it is a minus value of charset which
3358 reserves graphic register N, which means that the charset is
3359 not designated initially but should be designated to graphic
3360 register N just before encoding a character in that charset.
3361
3362 If the value is nil, graphic register N is never used on
3363 encoding.
3364
3365 sub-element[N] where N is 4 through 11: to be set in `coding->flags'
3366 Each value takes t or nil. See the section ISO2022 of
3367 `coding.h' for more information.
3368
3369 If `coding->type' is `coding_type_big5', element[4] is t to denote
3370 BIG5-ETen or nil to denote BIG5-HKU.
3371
3372 If `coding->type' takes the other value, element[4] is ignored.
3373
3374 Emacs Lisp's coding systems also carry information about format of
3375 end-of-line in a value of property `eol-type'. If the value is
3376 integer, 0 means CODING_EOL_LF, 1 means CODING_EOL_CRLF, and 2
3377 means CODING_EOL_CR. If it is not integer, it should be a vector
3378 of subsidiary coding systems of which property `eol-type' has one
3379 of the above values.
3380
3381 */
3382
3383 /* Extract information for decoding/encoding from CODING_SYSTEM_SYMBOL
3384 and set it in CODING. If CODING_SYSTEM_SYMBOL is invalid, CODING
3385 is setup so that no conversion is necessary and return -1, else
3386 return 0. */
3387
3388 int
3389 setup_coding_system (coding_system, coding)
3390 Lisp_Object coding_system;
3391 struct coding_system *coding;
3392 {
3393 Lisp_Object coding_spec, coding_type, eol_type, plist;
3394 Lisp_Object val;
3395
3396 /* At first, zero clear all members. */
3397 bzero (coding, sizeof (struct coding_system));
3398
3399 /* Initialize some fields required for all kinds of coding systems. */
3400 coding->symbol = coding_system;
3401 coding->heading_ascii = -1;
3402 coding->post_read_conversion = coding->pre_write_conversion = Qnil;
3403 coding->composing = COMPOSITION_DISABLED;
3404 coding->cmp_data = NULL;
3405
3406 if (NILP (coding_system))
3407 goto label_invalid_coding_system;
3408
3409 coding_spec = Fget (coding_system, Qcoding_system);
3410
3411 if (!VECTORP (coding_spec)
3412 || XVECTOR (coding_spec)->size != 5
3413 || !CONSP (XVECTOR (coding_spec)->contents[3]))
3414 goto label_invalid_coding_system;
3415
3416 eol_type = inhibit_eol_conversion ? Qnil : Fget (coding_system, Qeol_type);
3417 if (VECTORP (eol_type))
3418 {
3419 coding->eol_type = CODING_EOL_UNDECIDED;
3420 coding->common_flags = CODING_REQUIRE_DETECTION_MASK;
3421 }
3422 else if (XFASTINT (eol_type) == 1)
3423 {
3424 coding->eol_type = CODING_EOL_CRLF;
3425 coding->common_flags
3426 = CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3427 }
3428 else if (XFASTINT (eol_type) == 2)
3429 {
3430 coding->eol_type = CODING_EOL_CR;
3431 coding->common_flags
3432 = CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3433 }
3434 else
3435 coding->eol_type = CODING_EOL_LF;
3436
3437 coding_type = XVECTOR (coding_spec)->contents[0];
3438 /* Try short cut. */
3439 if (SYMBOLP (coding_type))
3440 {
3441 if (EQ (coding_type, Qt))
3442 {
3443 coding->type = coding_type_undecided;
3444 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
3445 }
3446 else
3447 coding->type = coding_type_no_conversion;
3448 /* Initialize this member. Any thing other than
3449 CODING_CATEGORY_IDX_UTF_16_BE and
3450 CODING_CATEGORY_IDX_UTF_16_LE are ok because they have
3451 special treatment in detect_eol. */
3452 coding->category_idx = CODING_CATEGORY_IDX_EMACS_MULE;
3453
3454 return 0;
3455 }
3456
3457 /* Get values of coding system properties:
3458 `post-read-conversion', `pre-write-conversion',
3459 `translation-table-for-decode', `translation-table-for-encode'. */
3460 plist = XVECTOR (coding_spec)->contents[3];
3461 /* Pre & post conversion functions should be disabled if
3462 inhibit_eol_conversion is nonzero. This is the case that a code
3463 conversion function is called while those functions are running. */
3464 if (! inhibit_pre_post_conversion)
3465 {
3466 coding->post_read_conversion = Fplist_get (plist, Qpost_read_conversion);
3467 coding->pre_write_conversion = Fplist_get (plist, Qpre_write_conversion);
3468 }
3469 val = Fplist_get (plist, Qtranslation_table_for_decode);
3470 if (SYMBOLP (val))
3471 val = Fget (val, Qtranslation_table_for_decode);
3472 coding->translation_table_for_decode = CHAR_TABLE_P (val) ? val : Qnil;
3473 val = Fplist_get (plist, Qtranslation_table_for_encode);
3474 if (SYMBOLP (val))
3475 val = Fget (val, Qtranslation_table_for_encode);
3476 coding->translation_table_for_encode = CHAR_TABLE_P (val) ? val : Qnil;
3477 val = Fplist_get (plist, Qcoding_category);
3478 if (!NILP (val))
3479 {
3480 val = Fget (val, Qcoding_category_index);
3481 if (INTEGERP (val))
3482 coding->category_idx = XINT (val);
3483 else
3484 goto label_invalid_coding_system;
3485 }
3486 else
3487 goto label_invalid_coding_system;
3488
3489 /* If the coding system has non-nil `composition' property, enable
3490 composition handling. */
3491 val = Fplist_get (plist, Qcomposition);
3492 if (!NILP (val))
3493 coding->composing = COMPOSITION_NO;
3494
3495 switch (XFASTINT (coding_type))
3496 {
3497 case 0:
3498 coding->type = coding_type_emacs_mule;
3499 coding->common_flags
3500 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3501 coding->composing = COMPOSITION_NO;
3502 if (!NILP (coding->post_read_conversion))
3503 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
3504 if (!NILP (coding->pre_write_conversion))
3505 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
3506 break;
3507
3508 case 1:
3509 coding->type = coding_type_sjis;
3510 coding->common_flags
3511 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3512 break;
3513
3514 case 2:
3515 coding->type = coding_type_iso2022;
3516 coding->common_flags
3517 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3518 {
3519 Lisp_Object val, temp;
3520 Lisp_Object *flags;
3521 int i, charset, reg_bits = 0;
3522
3523 val = XVECTOR (coding_spec)->contents[4];
3524
3525 if (!VECTORP (val) || XVECTOR (val)->size != 32)
3526 goto label_invalid_coding_system;
3527
3528 flags = XVECTOR (val)->contents;
3529 coding->flags
3530 = ((NILP (flags[4]) ? 0 : CODING_FLAG_ISO_SHORT_FORM)
3531 | (NILP (flags[5]) ? 0 : CODING_FLAG_ISO_RESET_AT_EOL)
3532 | (NILP (flags[6]) ? 0 : CODING_FLAG_ISO_RESET_AT_CNTL)
3533 | (NILP (flags[7]) ? 0 : CODING_FLAG_ISO_SEVEN_BITS)
3534 | (NILP (flags[8]) ? 0 : CODING_FLAG_ISO_LOCKING_SHIFT)
3535 | (NILP (flags[9]) ? 0 : CODING_FLAG_ISO_SINGLE_SHIFT)
3536 | (NILP (flags[10]) ? 0 : CODING_FLAG_ISO_USE_ROMAN)
3537 | (NILP (flags[11]) ? 0 : CODING_FLAG_ISO_USE_OLDJIS)
3538 | (NILP (flags[12]) ? 0 : CODING_FLAG_ISO_NO_DIRECTION)
3539 | (NILP (flags[13]) ? 0 : CODING_FLAG_ISO_INIT_AT_BOL)
3540 | (NILP (flags[14]) ? 0 : CODING_FLAG_ISO_DESIGNATE_AT_BOL)
3541 | (NILP (flags[15]) ? 0 : CODING_FLAG_ISO_SAFE)
3542 | (NILP (flags[16]) ? 0 : CODING_FLAG_ISO_LATIN_EXTRA)
3543 );
3544
3545 /* Invoke graphic register 0 to plane 0. */
3546 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
3547 /* Invoke graphic register 1 to plane 1 if we can use full 8-bit. */
3548 CODING_SPEC_ISO_INVOCATION (coding, 1)
3549 = (coding->flags & CODING_FLAG_ISO_SEVEN_BITS ? -1 : 1);
3550 /* Not single shifting at first. */
3551 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0;
3552 /* Beginning of buffer should also be regarded as bol. */
3553 CODING_SPEC_ISO_BOL (coding) = 1;
3554
3555 for (charset = 0; charset <= MAX_CHARSET; charset++)
3556 CODING_SPEC_ISO_REVISION_NUMBER (coding, charset) = 255;
3557 val = Vcharset_revision_alist;
3558 while (CONSP (val))
3559 {
3560 charset = get_charset_id (Fcar_safe (XCAR (val)));
3561 if (charset >= 0
3562 && (temp = Fcdr_safe (XCAR (val)), INTEGERP (temp))
3563 && (i = XINT (temp), (i >= 0 && (i + '@') < 128)))
3564 CODING_SPEC_ISO_REVISION_NUMBER (coding, charset) = i;
3565 val = XCDR (val);
3566 }
3567
3568 /* Checks FLAGS[REG] (REG = 0, 1, 2 3) and decide designations.
3569 FLAGS[REG] can be one of below:
3570 integer CHARSET: CHARSET occupies register I,
3571 t: designate nothing to REG initially, but can be used
3572 by any charsets,
3573 list of integer, nil, or t: designate the first
3574 element (if integer) to REG initially, the remaining
3575 elements (if integer) is designated to REG on request,
3576 if an element is t, REG can be used by any charsets,
3577 nil: REG is never used. */
3578 for (charset = 0; charset <= MAX_CHARSET; charset++)
3579 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3580 = CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION;
3581 for (i = 0; i < 4; i++)
3582 {
3583 if ((INTEGERP (flags[i])
3584 && (charset = XINT (flags[i]), CHARSET_VALID_P (charset)))
3585 || (charset = get_charset_id (flags[i])) >= 0)
3586 {
3587 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
3588 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) = i;
3589 }
3590 else if (EQ (flags[i], Qt))
3591 {
3592 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3593 reg_bits |= 1 << i;
3594 coding->flags |= CODING_FLAG_ISO_DESIGNATION;
3595 }
3596 else if (CONSP (flags[i]))
3597 {
3598 Lisp_Object tail;
3599 tail = flags[i];
3600
3601 coding->flags |= CODING_FLAG_ISO_DESIGNATION;
3602 if ((INTEGERP (XCAR (tail))
3603 && (charset = XINT (XCAR (tail)),
3604 CHARSET_VALID_P (charset)))
3605 || (charset = get_charset_id (XCAR (tail))) >= 0)
3606 {
3607 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
3608 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) =i;
3609 }
3610 else
3611 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3612 tail = XCDR (tail);
3613 while (CONSP (tail))
3614 {
3615 if ((INTEGERP (XCAR (tail))
3616 && (charset = XINT (XCAR (tail)),
3617 CHARSET_VALID_P (charset)))
3618 || (charset = get_charset_id (XCAR (tail))) >= 0)
3619 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3620 = i;
3621 else if (EQ (XCAR (tail), Qt))
3622 reg_bits |= 1 << i;
3623 tail = XCDR (tail);
3624 }
3625 }
3626 else
3627 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3628
3629 CODING_SPEC_ISO_DESIGNATION (coding, i)
3630 = CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i);
3631 }
3632
3633 if (reg_bits && ! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
3634 {
3635 /* REG 1 can be used only by locking shift in 7-bit env. */
3636 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
3637 reg_bits &= ~2;
3638 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
3639 /* Without any shifting, only REG 0 and 1 can be used. */
3640 reg_bits &= 3;
3641 }
3642
3643 if (reg_bits)
3644 for (charset = 0; charset <= MAX_CHARSET; charset++)
3645 {
3646 if (CHARSET_DEFINED_P (charset)
3647 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3648 == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION))
3649 {
3650 /* There exist some default graphic registers to be
3651 used by CHARSET. */
3652
3653 /* We had better avoid designating a charset of
3654 CHARS96 to REG 0 as far as possible. */
3655 if (CHARSET_CHARS (charset) == 96)
3656 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3657 = (reg_bits & 2
3658 ? 1 : (reg_bits & 4 ? 2 : (reg_bits & 8 ? 3 : 0)));
3659 else
3660 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3661 = (reg_bits & 1
3662 ? 0 : (reg_bits & 2 ? 1 : (reg_bits & 4 ? 2 : 3)));
3663 }
3664 }
3665 }
3666 coding->common_flags |= CODING_REQUIRE_FLUSHING_MASK;
3667 coding->spec.iso2022.last_invalid_designation_register = -1;
3668 break;
3669
3670 case 3:
3671 coding->type = coding_type_big5;
3672 coding->common_flags
3673 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3674 coding->flags
3675 = (NILP (XVECTOR (coding_spec)->contents[4])
3676 ? CODING_FLAG_BIG5_HKU
3677 : CODING_FLAG_BIG5_ETEN);
3678 break;
3679
3680 case 4:
3681 coding->type = coding_type_ccl;
3682 coding->common_flags
3683 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3684 {
3685 val = XVECTOR (coding_spec)->contents[4];
3686 if (! CONSP (val)
3687 || setup_ccl_program (&(coding->spec.ccl.decoder),
3688 XCAR (val)) < 0
3689 || setup_ccl_program (&(coding->spec.ccl.encoder),
3690 XCDR (val)) < 0)
3691 goto label_invalid_coding_system;
3692
3693 bzero (coding->spec.ccl.valid_codes, 256);
3694 val = Fplist_get (plist, Qvalid_codes);
3695 if (CONSP (val))
3696 {
3697 Lisp_Object this;
3698
3699 for (; CONSP (val); val = XCDR (val))
3700 {
3701 this = XCAR (val);
3702 if (INTEGERP (this)
3703 && XINT (this) >= 0 && XINT (this) < 256)
3704 coding->spec.ccl.valid_codes[XINT (this)] = 1;
3705 else if (CONSP (this)
3706 && INTEGERP (XCAR (this))
3707 && INTEGERP (XCDR (this)))
3708 {
3709 int start = XINT (XCAR (this));
3710 int end = XINT (XCDR (this));
3711
3712 if (start >= 0 && start <= end && end < 256)
3713 while (start <= end)
3714 coding->spec.ccl.valid_codes[start++] = 1;
3715 }
3716 }
3717 }
3718 }
3719 coding->common_flags |= CODING_REQUIRE_FLUSHING_MASK;
3720 coding->spec.ccl.cr_carryover = 0;
3721 coding->spec.ccl.eight_bit_carryover[0] = 0;
3722 break;
3723
3724 case 5:
3725 coding->type = coding_type_raw_text;
3726 break;
3727
3728 default:
3729 goto label_invalid_coding_system;
3730 }
3731 return 0;
3732
3733 label_invalid_coding_system:
3734 coding->type = coding_type_no_conversion;
3735 coding->category_idx = CODING_CATEGORY_IDX_BINARY;
3736 coding->common_flags = 0;
3737 coding->eol_type = CODING_EOL_LF;
3738 coding->pre_write_conversion = coding->post_read_conversion = Qnil;
3739 return -1;
3740 }
3741
3742 /* Free memory blocks allocated for storing composition information. */
3743
3744 void
3745 coding_free_composition_data (coding)
3746 struct coding_system *coding;
3747 {
3748 struct composition_data *cmp_data = coding->cmp_data, *next;
3749
3750 if (!cmp_data)
3751 return;
3752 /* Memory blocks are chained. At first, rewind to the first, then,
3753 free blocks one by one. */
3754 while (cmp_data->prev)
3755 cmp_data = cmp_data->prev;
3756 while (cmp_data)
3757 {
3758 next = cmp_data->next;
3759 xfree (cmp_data);
3760 cmp_data = next;
3761 }
3762 coding->cmp_data = NULL;
3763 }
3764
3765 /* Set `char_offset' member of all memory blocks pointed by
3766 coding->cmp_data to POS. */
3767
3768 void
3769 coding_adjust_composition_offset (coding, pos)
3770 struct coding_system *coding;
3771 int pos;
3772 {
3773 struct composition_data *cmp_data;
3774
3775 for (cmp_data = coding->cmp_data; cmp_data; cmp_data = cmp_data->next)
3776 cmp_data->char_offset = pos;
3777 }
3778
3779 /* Setup raw-text or one of its subsidiaries in the structure
3780 coding_system CODING according to the already setup value eol_type
3781 in CODING. CODING should be setup for some coding system in
3782 advance. */
3783
3784 void
3785 setup_raw_text_coding_system (coding)
3786 struct coding_system *coding;
3787 {
3788 if (coding->type != coding_type_raw_text)
3789 {
3790 coding->symbol = Qraw_text;
3791 coding->type = coding_type_raw_text;
3792 if (coding->eol_type != CODING_EOL_UNDECIDED)
3793 {
3794 Lisp_Object subsidiaries;
3795 subsidiaries = Fget (Qraw_text, Qeol_type);
3796
3797 if (VECTORP (subsidiaries)
3798 && XVECTOR (subsidiaries)->size == 3)
3799 coding->symbol
3800 = XVECTOR (subsidiaries)->contents[coding->eol_type];
3801 }
3802 setup_coding_system (coding->symbol, coding);
3803 }
3804 return;
3805 }
3806
3807 /* Emacs has a mechanism to automatically detect a coding system if it
3808 is one of Emacs' internal format, ISO2022, SJIS, and BIG5. But,
3809 it's impossible to distinguish some coding systems accurately
3810 because they use the same range of codes. So, at first, coding
3811 systems are categorized into 7, those are:
3812
3813 o coding-category-emacs-mule
3814
3815 The category for a coding system which has the same code range
3816 as Emacs' internal format. Assigned the coding-system (Lisp
3817 symbol) `emacs-mule' by default.
3818
3819 o coding-category-sjis
3820
3821 The category for a coding system which has the same code range
3822 as SJIS. Assigned the coding-system (Lisp
3823 symbol) `japanese-shift-jis' by default.
3824
3825 o coding-category-iso-7
3826
3827 The category for a coding system which has the same code range
3828 as ISO2022 of 7-bit environment. This doesn't use any locking
3829 shift and single shift functions. This can encode/decode all
3830 charsets. Assigned the coding-system (Lisp symbol)
3831 `iso-2022-7bit' by default.
3832
3833 o coding-category-iso-7-tight
3834
3835 Same as coding-category-iso-7 except that this can
3836 encode/decode only the specified charsets.
3837
3838 o coding-category-iso-8-1
3839
3840 The category for a coding system which has the same code range
3841 as ISO2022 of 8-bit environment and graphic plane 1 used only
3842 for DIMENSION1 charset. This doesn't use any locking shift
3843 and single shift functions. Assigned the coding-system (Lisp
3844 symbol) `iso-latin-1' by default.
3845
3846 o coding-category-iso-8-2
3847
3848 The category for a coding system which has the same code range
3849 as ISO2022 of 8-bit environment and graphic plane 1 used only
3850 for DIMENSION2 charset. This doesn't use any locking shift
3851 and single shift functions. Assigned the coding-system (Lisp
3852 symbol) `japanese-iso-8bit' by default.
3853
3854 o coding-category-iso-7-else
3855
3856 The category for a coding system which has the same code range
3857 as ISO2022 of 7-bit environment but uses locking shift or
3858 single shift functions. Assigned the coding-system (Lisp
3859 symbol) `iso-2022-7bit-lock' by default.
3860
3861 o coding-category-iso-8-else
3862
3863 The category for a coding system which has the same code range
3864 as ISO2022 of 8-bit environment but uses locking shift or
3865 single shift functions. Assigned the coding-system (Lisp
3866 symbol) `iso-2022-8bit-ss2' by default.
3867
3868 o coding-category-big5
3869
3870 The category for a coding system which has the same code range
3871 as BIG5. Assigned the coding-system (Lisp symbol)
3872 `cn-big5' by default.
3873
3874 o coding-category-utf-8
3875
3876 The category for a coding system which has the same code range
3877 as UTF-8 (cf. RFC2279). Assigned the coding-system (Lisp
3878 symbol) `utf-8' by default.
3879
3880 o coding-category-utf-16-be
3881
3882 The category for a coding system in which a text has an
3883 Unicode signature (cf. Unicode Standard) in the order of BIG
3884 endian at the head. Assigned the coding-system (Lisp symbol)
3885 `utf-16-be' by default.
3886
3887 o coding-category-utf-16-le
3888
3889 The category for a coding system in which a text has an
3890 Unicode signature (cf. Unicode Standard) in the order of
3891 LITTLE endian at the head. Assigned the coding-system (Lisp
3892 symbol) `utf-16-le' by default.
3893
3894 o coding-category-ccl
3895
3896 The category for a coding system of which encoder/decoder is
3897 written in CCL programs. The default value is nil, i.e., no
3898 coding system is assigned.
3899
3900 o coding-category-binary
3901
3902 The category for a coding system not categorized in any of the
3903 above. Assigned the coding-system (Lisp symbol)
3904 `no-conversion' by default.
3905
3906 Each of them is a Lisp symbol and the value is an actual
3907 `coding-system' (this is also a Lisp symbol) assigned by a user.
3908 What Emacs does actually is to detect a category of coding system.
3909 Then, it uses a `coding-system' assigned to it. If Emacs can't
3910 decide a single possible category, it selects a category of the
3911 highest priority. Priorities of categories are also specified by a
3912 user in a Lisp variable `coding-category-list'.
3913
3914 */
3915
3916 static
3917 int ascii_skip_code[256];
3918
3919 /* Detect how a text of length SRC_BYTES pointed by SOURCE is encoded.
3920 If it detects possible coding systems, return an integer in which
3921 appropriate flag bits are set. Flag bits are defined by macros
3922 CODING_CATEGORY_MASK_XXX in `coding.h'. If PRIORITIES is non-NULL,
3923 it should point the table `coding_priorities'. In that case, only
3924 the flag bit for a coding system of the highest priority is set in
3925 the returned value. If MULTIBYTEP is nonzero, 8-bit codes of the
3926 range 0x80..0x9F are in multibyte form.
3927
3928 How many ASCII characters are at the head is returned as *SKIP. */
3929
3930 static int
3931 detect_coding_mask (source, src_bytes, priorities, skip, multibytep)
3932 unsigned char *source;
3933 int src_bytes, *priorities, *skip;
3934 int multibytep;
3935 {
3936 register unsigned char c;
3937 unsigned char *src = source, *src_end = source + src_bytes;
3938 unsigned int mask, utf16_examined_p, iso2022_examined_p;
3939 int i;
3940
3941 /* At first, skip all ASCII characters and control characters except
3942 for three ISO2022 specific control characters. */
3943 ascii_skip_code[ISO_CODE_SO] = 0;
3944 ascii_skip_code[ISO_CODE_SI] = 0;
3945 ascii_skip_code[ISO_CODE_ESC] = 0;
3946
3947 label_loop_detect_coding:
3948 while (src < src_end && ascii_skip_code[*src]) src++;
3949 *skip = src - source;
3950
3951 if (src >= src_end)
3952 /* We found nothing other than ASCII. There's nothing to do. */
3953 return 0;
3954
3955 c = *src;
3956 /* The text seems to be encoded in some multilingual coding system.
3957 Now, try to find in which coding system the text is encoded. */
3958 if (c < 0x80)
3959 {
3960 /* i.e. (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO) */
3961 /* C is an ISO2022 specific control code of C0. */
3962 mask = detect_coding_iso2022 (src, src_end, multibytep);
3963 if (mask == 0)
3964 {
3965 /* No valid ISO2022 code follows C. Try again. */
3966 src++;
3967 if (c == ISO_CODE_ESC)
3968 ascii_skip_code[ISO_CODE_ESC] = 1;
3969 else
3970 ascii_skip_code[ISO_CODE_SO] = ascii_skip_code[ISO_CODE_SI] = 1;
3971 goto label_loop_detect_coding;
3972 }
3973 if (priorities)
3974 {
3975 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
3976 {
3977 if (mask & priorities[i])
3978 return priorities[i];
3979 }
3980 return CODING_CATEGORY_MASK_RAW_TEXT;
3981 }
3982 }
3983 else
3984 {
3985 int try;
3986
3987 if (multibytep && c == LEADING_CODE_8_BIT_CONTROL)
3988 c = src[1] - 0x20;
3989
3990 if (c < 0xA0)
3991 {
3992 /* C is the first byte of SJIS character code,
3993 or a leading-code of Emacs' internal format (emacs-mule),
3994 or the first byte of UTF-16. */
3995 try = (CODING_CATEGORY_MASK_SJIS
3996 | CODING_CATEGORY_MASK_EMACS_MULE
3997 | CODING_CATEGORY_MASK_UTF_16_BE
3998 | CODING_CATEGORY_MASK_UTF_16_LE);
3999
4000 /* Or, if C is a special latin extra code,
4001 or is an ISO2022 specific control code of C1 (SS2 or SS3),
4002 or is an ISO2022 control-sequence-introducer (CSI),
4003 we should also consider the possibility of ISO2022 codings. */
4004 if ((VECTORP (Vlatin_extra_code_table)
4005 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
4006 || (c == ISO_CODE_SS2 || c == ISO_CODE_SS3)
4007 || (c == ISO_CODE_CSI
4008 && (src < src_end
4009 && (*src == ']'
4010 || ((*src == '0' || *src == '1' || *src == '2')
4011 && src + 1 < src_end
4012 && src[1] == ']')))))
4013 try |= (CODING_CATEGORY_MASK_ISO_8_ELSE
4014 | CODING_CATEGORY_MASK_ISO_8BIT);
4015 }
4016 else
4017 /* C is a character of ISO2022 in graphic plane right,
4018 or a SJIS's 1-byte character code (i.e. JISX0201),
4019 or the first byte of BIG5's 2-byte code,
4020 or the first byte of UTF-8/16. */
4021 try = (CODING_CATEGORY_MASK_ISO_8_ELSE
4022 | CODING_CATEGORY_MASK_ISO_8BIT
4023 | CODING_CATEGORY_MASK_SJIS
4024 | CODING_CATEGORY_MASK_BIG5
4025 | CODING_CATEGORY_MASK_UTF_8
4026 | CODING_CATEGORY_MASK_UTF_16_BE
4027 | CODING_CATEGORY_MASK_UTF_16_LE);
4028
4029 /* Or, we may have to consider the possibility of CCL. */
4030 if (coding_system_table[CODING_CATEGORY_IDX_CCL]
4031 && (coding_system_table[CODING_CATEGORY_IDX_CCL]
4032 ->spec.ccl.valid_codes)[c])
4033 try |= CODING_CATEGORY_MASK_CCL;
4034
4035 mask = 0;
4036 utf16_examined_p = iso2022_examined_p = 0;
4037 if (priorities)
4038 {
4039 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
4040 {
4041 if (!iso2022_examined_p
4042 && (priorities[i] & try & CODING_CATEGORY_MASK_ISO))
4043 {
4044 mask |= detect_coding_iso2022 (src, src_end, multibytep);
4045 iso2022_examined_p = 1;
4046 }
4047 else if (priorities[i] & try & CODING_CATEGORY_MASK_SJIS)
4048 mask |= detect_coding_sjis (src, src_end, multibytep);
4049 else if (priorities[i] & try & CODING_CATEGORY_MASK_UTF_8)
4050 mask |= detect_coding_utf_8 (src, src_end, multibytep);
4051 else if (!utf16_examined_p
4052 && (priorities[i] & try &
4053 CODING_CATEGORY_MASK_UTF_16_BE_LE))
4054 {
4055 mask |= detect_coding_utf_16 (src, src_end, multibytep);
4056 utf16_examined_p = 1;
4057 }
4058 else if (priorities[i] & try & CODING_CATEGORY_MASK_BIG5)
4059 mask |= detect_coding_big5 (src, src_end, multibytep);
4060 else if (priorities[i] & try & CODING_CATEGORY_MASK_EMACS_MULE)
4061 mask |= detect_coding_emacs_mule (src, src_end, multibytep);
4062 else if (priorities[i] & try & CODING_CATEGORY_MASK_CCL)
4063 mask |= detect_coding_ccl (src, src_end, multibytep);
4064 else if (priorities[i] & CODING_CATEGORY_MASK_RAW_TEXT)
4065 mask |= CODING_CATEGORY_MASK_RAW_TEXT;
4066 else if (priorities[i] & CODING_CATEGORY_MASK_BINARY)
4067 mask |= CODING_CATEGORY_MASK_BINARY;
4068 if (mask & priorities[i])
4069 return priorities[i];
4070 }
4071 return CODING_CATEGORY_MASK_RAW_TEXT;
4072 }
4073 if (try & CODING_CATEGORY_MASK_ISO)
4074 mask |= detect_coding_iso2022 (src, src_end, multibytep);
4075 if (try & CODING_CATEGORY_MASK_SJIS)
4076 mask |= detect_coding_sjis (src, src_end, multibytep);
4077 if (try & CODING_CATEGORY_MASK_BIG5)
4078 mask |= detect_coding_big5 (src, src_end, multibytep);
4079 if (try & CODING_CATEGORY_MASK_UTF_8)
4080 mask |= detect_coding_utf_8 (src, src_end, multibytep);
4081 if (try & CODING_CATEGORY_MASK_UTF_16_BE_LE)
4082 mask |= detect_coding_utf_16 (src, src_end, multibytep);
4083 if (try & CODING_CATEGORY_MASK_EMACS_MULE)
4084 mask |= detect_coding_emacs_mule (src, src_end, multibytep);
4085 if (try & CODING_CATEGORY_MASK_CCL)
4086 mask |= detect_coding_ccl (src, src_end, multibytep);
4087 }
4088 return (mask | CODING_CATEGORY_MASK_RAW_TEXT | CODING_CATEGORY_MASK_BINARY);
4089 }
4090
4091 /* Detect how a text of length SRC_BYTES pointed by SRC is encoded.
4092 The information of the detected coding system is set in CODING. */
4093
4094 void
4095 detect_coding (coding, src, src_bytes)
4096 struct coding_system *coding;
4097 unsigned char *src;
4098 int src_bytes;
4099 {
4100 unsigned int idx;
4101 int skip, mask;
4102 Lisp_Object val;
4103
4104 val = Vcoding_category_list;
4105 mask = detect_coding_mask (src, src_bytes, coding_priorities, &skip,
4106 coding->src_multibyte);
4107 coding->heading_ascii = skip;
4108
4109 if (!mask) return;
4110
4111 /* We found a single coding system of the highest priority in MASK. */
4112 idx = 0;
4113 while (mask && ! (mask & 1)) mask >>= 1, idx++;
4114 if (! mask)
4115 idx = CODING_CATEGORY_IDX_RAW_TEXT;
4116
4117 val = SYMBOL_VALUE (XVECTOR (Vcoding_category_table)->contents[idx]);
4118
4119 if (coding->eol_type != CODING_EOL_UNDECIDED)
4120 {
4121 Lisp_Object tmp;
4122
4123 tmp = Fget (val, Qeol_type);
4124 if (VECTORP (tmp))
4125 val = XVECTOR (tmp)->contents[coding->eol_type];
4126 }
4127
4128 /* Setup this new coding system while preserving some slots. */
4129 {
4130 int src_multibyte = coding->src_multibyte;
4131 int dst_multibyte = coding->dst_multibyte;
4132
4133 setup_coding_system (val, coding);
4134 coding->src_multibyte = src_multibyte;
4135 coding->dst_multibyte = dst_multibyte;
4136 coding->heading_ascii = skip;
4137 }
4138 }
4139
4140 /* Detect how end-of-line of a text of length SRC_BYTES pointed by
4141 SOURCE is encoded. Return one of CODING_EOL_LF, CODING_EOL_CRLF,
4142 CODING_EOL_CR, and CODING_EOL_UNDECIDED.
4143
4144 How many non-eol characters are at the head is returned as *SKIP. */
4145
4146 #define MAX_EOL_CHECK_COUNT 3
4147
4148 static int
4149 detect_eol_type (source, src_bytes, skip)
4150 unsigned char *source;
4151 int src_bytes, *skip;
4152 {
4153 unsigned char *src = source, *src_end = src + src_bytes;
4154 unsigned char c;
4155 int total = 0; /* How many end-of-lines are found so far. */
4156 int eol_type = CODING_EOL_UNDECIDED;
4157 int this_eol_type;
4158
4159 *skip = 0;
4160
4161 while (src < src_end && total < MAX_EOL_CHECK_COUNT)
4162 {
4163 c = *src++;
4164 if (c == '\n' || c == '\r')
4165 {
4166 if (*skip == 0)
4167 *skip = src - 1 - source;
4168 total++;
4169 if (c == '\n')
4170 this_eol_type = CODING_EOL_LF;
4171 else if (src >= src_end || *src != '\n')
4172 this_eol_type = CODING_EOL_CR;
4173 else
4174 this_eol_type = CODING_EOL_CRLF, src++;
4175
4176 if (eol_type == CODING_EOL_UNDECIDED)
4177 /* This is the first end-of-line. */
4178 eol_type = this_eol_type;
4179 else if (eol_type != this_eol_type)
4180 {
4181 /* The found type is different from what found before. */
4182 eol_type = CODING_EOL_INCONSISTENT;
4183 break;
4184 }
4185 }
4186 }
4187
4188 if (*skip == 0)
4189 *skip = src_end - source;
4190 return eol_type;
4191 }
4192
4193 /* Like detect_eol_type, but detect EOL type in 2-octet
4194 big-endian/little-endian format for coding systems utf-16-be and
4195 utf-16-le. */
4196
4197 static int
4198 detect_eol_type_in_2_octet_form (source, src_bytes, skip, big_endian_p)
4199 unsigned char *source;
4200 int src_bytes, *skip, big_endian_p;
4201 {
4202 unsigned char *src = source, *src_end = src + src_bytes;
4203 unsigned int c1, c2;
4204 int total = 0; /* How many end-of-lines are found so far. */
4205 int eol_type = CODING_EOL_UNDECIDED;
4206 int this_eol_type;
4207 int msb, lsb;
4208
4209 if (big_endian_p)
4210 msb = 0, lsb = 1;
4211 else
4212 msb = 1, lsb = 0;
4213
4214 *skip = 0;
4215
4216 while ((src + 1) < src_end && total < MAX_EOL_CHECK_COUNT)
4217 {
4218 c1 = (src[msb] << 8) | (src[lsb]);
4219 src += 2;
4220
4221 if (c1 == '\n' || c1 == '\r')
4222 {
4223 if (*skip == 0)
4224 *skip = src - 2 - source;
4225 total++;
4226 if (c1 == '\n')
4227 {
4228 this_eol_type = CODING_EOL_LF;
4229 }
4230 else
4231 {
4232 if ((src + 1) >= src_end)
4233 {
4234 this_eol_type = CODING_EOL_CR;
4235 }
4236 else
4237 {
4238 c2 = (src[msb] << 8) | (src[lsb]);
4239 if (c2 == '\n')
4240 this_eol_type = CODING_EOL_CRLF, src += 2;
4241 else
4242 this_eol_type = CODING_EOL_CR;
4243 }
4244 }
4245
4246 if (eol_type == CODING_EOL_UNDECIDED)
4247 /* This is the first end-of-line. */
4248 eol_type = this_eol_type;
4249 else if (eol_type != this_eol_type)
4250 {
4251 /* The found type is different from what found before. */
4252 eol_type = CODING_EOL_INCONSISTENT;
4253 break;
4254 }
4255 }
4256 }
4257
4258 if (*skip == 0)
4259 *skip = src_end - source;
4260 return eol_type;
4261 }
4262
4263 /* Detect how end-of-line of a text of length SRC_BYTES pointed by SRC
4264 is encoded. If it detects an appropriate format of end-of-line, it
4265 sets the information in *CODING. */
4266
4267 void
4268 detect_eol (coding, src, src_bytes)
4269 struct coding_system *coding;
4270 unsigned char *src;
4271 int src_bytes;
4272 {
4273 Lisp_Object val;
4274 int skip;
4275 int eol_type;
4276
4277 switch (coding->category_idx)
4278 {
4279 case CODING_CATEGORY_IDX_UTF_16_BE:
4280 eol_type = detect_eol_type_in_2_octet_form (src, src_bytes, &skip, 1);
4281 break;
4282 case CODING_CATEGORY_IDX_UTF_16_LE:
4283 eol_type = detect_eol_type_in_2_octet_form (src, src_bytes, &skip, 0);
4284 break;
4285 default:
4286 eol_type = detect_eol_type (src, src_bytes, &skip);
4287 break;
4288 }
4289
4290 if (coding->heading_ascii > skip)
4291 coding->heading_ascii = skip;
4292 else
4293 skip = coding->heading_ascii;
4294
4295 if (eol_type == CODING_EOL_UNDECIDED)
4296 return;
4297 if (eol_type == CODING_EOL_INCONSISTENT)
4298 {
4299 #if 0
4300 /* This code is suppressed until we find a better way to
4301 distinguish raw text file and binary file. */
4302
4303 /* If we have already detected that the coding is raw-text, the
4304 coding should actually be no-conversion. */
4305 if (coding->type == coding_type_raw_text)
4306 {
4307 setup_coding_system (Qno_conversion, coding);
4308 return;
4309 }
4310 /* Else, let's decode only text code anyway. */
4311 #endif /* 0 */
4312 eol_type = CODING_EOL_LF;
4313 }
4314
4315 val = Fget (coding->symbol, Qeol_type);
4316 if (VECTORP (val) && XVECTOR (val)->size == 3)
4317 {
4318 int src_multibyte = coding->src_multibyte;
4319 int dst_multibyte = coding->dst_multibyte;
4320 struct composition_data *cmp_data = coding->cmp_data;
4321
4322 setup_coding_system (XVECTOR (val)->contents[eol_type], coding);
4323 coding->src_multibyte = src_multibyte;
4324 coding->dst_multibyte = dst_multibyte;
4325 coding->heading_ascii = skip;
4326 coding->cmp_data = cmp_data;
4327 }
4328 }
4329
4330 #define CONVERSION_BUFFER_EXTRA_ROOM 256
4331
4332 #define DECODING_BUFFER_MAG(coding) \
4333 (coding->type == coding_type_iso2022 \
4334 ? 3 \
4335 : (coding->type == coding_type_ccl \
4336 ? coding->spec.ccl.decoder.buf_magnification \
4337 : 2))
4338
4339 /* Return maximum size (bytes) of a buffer enough for decoding
4340 SRC_BYTES of text encoded in CODING. */
4341
4342 int
4343 decoding_buffer_size (coding, src_bytes)
4344 struct coding_system *coding;
4345 int src_bytes;
4346 {
4347 return (src_bytes * DECODING_BUFFER_MAG (coding)
4348 + CONVERSION_BUFFER_EXTRA_ROOM);
4349 }
4350
4351 /* Return maximum size (bytes) of a buffer enough for encoding
4352 SRC_BYTES of text to CODING. */
4353
4354 int
4355 encoding_buffer_size (coding, src_bytes)
4356 struct coding_system *coding;
4357 int src_bytes;
4358 {
4359 int magnification;
4360
4361 if (coding->type == coding_type_ccl)
4362 magnification = coding->spec.ccl.encoder.buf_magnification;
4363 else if (CODING_REQUIRE_ENCODING (coding))
4364 magnification = 3;
4365 else
4366 magnification = 1;
4367
4368 return (src_bytes * magnification + CONVERSION_BUFFER_EXTRA_ROOM);
4369 }
4370
4371 /* Working buffer for code conversion. */
4372 struct conversion_buffer
4373 {
4374 int size; /* size of data. */
4375 int on_stack; /* 1 if allocated by alloca. */
4376 unsigned char *data;
4377 };
4378
4379 /* Don't use alloca for allocating memory space larger than this, lest
4380 we overflow their stack. */
4381 #define MAX_ALLOCA 16*1024
4382
4383 /* Allocate LEN bytes of memory for BUF (struct conversion_buffer). */
4384 #define allocate_conversion_buffer(buf, len) \
4385 do { \
4386 if (len < MAX_ALLOCA) \
4387 { \
4388 buf.data = (unsigned char *) alloca (len); \
4389 buf.on_stack = 1; \
4390 } \
4391 else \
4392 { \
4393 buf.data = (unsigned char *) xmalloc (len); \
4394 buf.on_stack = 0; \
4395 } \
4396 buf.size = len; \
4397 } while (0)
4398
4399 /* Double the allocated memory for *BUF. */
4400 static void
4401 extend_conversion_buffer (buf)
4402 struct conversion_buffer *buf;
4403 {
4404 if (buf->on_stack)
4405 {
4406 unsigned char *save = buf->data;
4407 buf->data = (unsigned char *) xmalloc (buf->size * 2);
4408 bcopy (save, buf->data, buf->size);
4409 buf->on_stack = 0;
4410 }
4411 else
4412 {
4413 buf->data = (unsigned char *) xrealloc (buf->data, buf->size * 2);
4414 }
4415 buf->size *= 2;
4416 }
4417
4418 /* Free the allocated memory for BUF if it is not on stack. */
4419 static void
4420 free_conversion_buffer (buf)
4421 struct conversion_buffer *buf;
4422 {
4423 if (!buf->on_stack)
4424 xfree (buf->data);
4425 }
4426
4427 int
4428 ccl_coding_driver (coding, source, destination, src_bytes, dst_bytes, encodep)
4429 struct coding_system *coding;
4430 unsigned char *source, *destination;
4431 int src_bytes, dst_bytes, encodep;
4432 {
4433 struct ccl_program *ccl
4434 = encodep ? &coding->spec.ccl.encoder : &coding->spec.ccl.decoder;
4435 unsigned char *dst = destination;
4436
4437 ccl->suppress_error = coding->suppress_error;
4438 ccl->last_block = coding->mode & CODING_MODE_LAST_BLOCK;
4439 if (encodep)
4440 {
4441 /* On encoding, EOL format is converted within ccl_driver. For
4442 that, setup proper information in the structure CCL. */
4443 ccl->eol_type = coding->eol_type;
4444 if (ccl->eol_type ==CODING_EOL_UNDECIDED)
4445 ccl->eol_type = CODING_EOL_LF;
4446 ccl->cr_consumed = coding->spec.ccl.cr_carryover;
4447 }
4448 ccl->multibyte = coding->src_multibyte;
4449 if (coding->spec.ccl.eight_bit_carryover[0] != 0)
4450 {
4451 /* Move carryover bytes to DESTINATION. */
4452 unsigned char *p = coding->spec.ccl.eight_bit_carryover;
4453 while (*p)
4454 *dst++ = *p++;
4455 coding->spec.ccl.eight_bit_carryover[0] = 0;
4456 if (dst_bytes)
4457 dst_bytes -= dst - destination;
4458 }
4459
4460 coding->produced = (ccl_driver (ccl, source, dst, src_bytes, dst_bytes,
4461 &(coding->consumed))
4462 + dst - destination);
4463
4464 if (encodep)
4465 {
4466 coding->produced_char = coding->produced;
4467 coding->spec.ccl.cr_carryover = ccl->cr_consumed;
4468 }
4469 else if (!ccl->eight_bit_control)
4470 {
4471 /* The produced bytes forms a valid multibyte sequence. */
4472 coding->produced_char
4473 = multibyte_chars_in_text (destination, coding->produced);
4474 coding->spec.ccl.eight_bit_carryover[0] = 0;
4475 }
4476 else
4477 {
4478 /* On decoding, the destination should always multibyte. But,
4479 CCL program might have been generated an invalid multibyte
4480 sequence. Here we make such a sequence valid as
4481 multibyte. */
4482 int bytes
4483 = dst_bytes ? dst_bytes : source + coding->consumed - destination;
4484
4485 if ((coding->consumed < src_bytes
4486 || !ccl->last_block)
4487 && coding->produced >= 1
4488 && destination[coding->produced - 1] >= 0x80)
4489 {
4490 /* We should not convert the tailing 8-bit codes to
4491 multibyte form even if they doesn't form a valid
4492 multibyte sequence. They may form a valid sequence in
4493 the next call. */
4494 int carryover = 0;
4495
4496 if (destination[coding->produced - 1] < 0xA0)
4497 carryover = 1;
4498 else if (coding->produced >= 2)
4499 {
4500 if (destination[coding->produced - 2] >= 0x80)
4501 {
4502 if (destination[coding->produced - 2] < 0xA0)
4503 carryover = 2;
4504 else if (coding->produced >= 3
4505 && destination[coding->produced - 3] >= 0x80
4506 && destination[coding->produced - 3] < 0xA0)
4507 carryover = 3;
4508 }
4509 }
4510 if (carryover > 0)
4511 {
4512 BCOPY_SHORT (destination + coding->produced - carryover,
4513 coding->spec.ccl.eight_bit_carryover,
4514 carryover);
4515 coding->spec.ccl.eight_bit_carryover[carryover] = 0;
4516 coding->produced -= carryover;
4517 }
4518 }
4519 coding->produced = str_as_multibyte (destination, bytes,
4520 coding->produced,
4521 &(coding->produced_char));
4522 }
4523
4524 switch (ccl->status)
4525 {
4526 case CCL_STAT_SUSPEND_BY_SRC:
4527 coding->result = CODING_FINISH_INSUFFICIENT_SRC;
4528 break;
4529 case CCL_STAT_SUSPEND_BY_DST:
4530 coding->result = CODING_FINISH_INSUFFICIENT_DST;
4531 break;
4532 case CCL_STAT_QUIT:
4533 case CCL_STAT_INVALID_CMD:
4534 coding->result = CODING_FINISH_INTERRUPT;
4535 break;
4536 default:
4537 coding->result = CODING_FINISH_NORMAL;
4538 break;
4539 }
4540 return coding->result;
4541 }
4542
4543 /* Decode EOL format of the text at PTR of BYTES length destructively
4544 according to CODING->eol_type. This is called after the CCL
4545 program produced a decoded text at PTR. If we do CRLF->LF
4546 conversion, update CODING->produced and CODING->produced_char. */
4547
4548 static void
4549 decode_eol_post_ccl (coding, ptr, bytes)
4550 struct coding_system *coding;
4551 unsigned char *ptr;
4552 int bytes;
4553 {
4554 Lisp_Object val, saved_coding_symbol;
4555 unsigned char *pend = ptr + bytes;
4556 int dummy;
4557
4558 /* Remember the current coding system symbol. We set it back when
4559 an inconsistent EOL is found so that `last-coding-system-used' is
4560 set to the coding system that doesn't specify EOL conversion. */
4561 saved_coding_symbol = coding->symbol;
4562
4563 coding->spec.ccl.cr_carryover = 0;
4564 if (coding->eol_type == CODING_EOL_UNDECIDED)
4565 {
4566 /* Here, to avoid the call of setup_coding_system, we directly
4567 call detect_eol_type. */
4568 coding->eol_type = detect_eol_type (ptr, bytes, &dummy);
4569 if (coding->eol_type == CODING_EOL_INCONSISTENT)
4570 coding->eol_type = CODING_EOL_LF;
4571 if (coding->eol_type != CODING_EOL_UNDECIDED)
4572 {
4573 val = Fget (coding->symbol, Qeol_type);
4574 if (VECTORP (val) && XVECTOR (val)->size == 3)
4575 coding->symbol = XVECTOR (val)->contents[coding->eol_type];
4576 }
4577 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
4578 }
4579
4580 if (coding->eol_type == CODING_EOL_LF
4581 || coding->eol_type == CODING_EOL_UNDECIDED)
4582 {
4583 /* We have nothing to do. */
4584 ptr = pend;
4585 }
4586 else if (coding->eol_type == CODING_EOL_CRLF)
4587 {
4588 unsigned char *pstart = ptr, *p = ptr;
4589
4590 if (! (coding->mode & CODING_MODE_LAST_BLOCK)
4591 && *(pend - 1) == '\r')
4592 {
4593 /* If the last character is CR, we can't handle it here
4594 because LF will be in the not-yet-decoded source text.
4595 Record that the CR is not yet processed. */
4596 coding->spec.ccl.cr_carryover = 1;
4597 coding->produced--;
4598 coding->produced_char--;
4599 pend--;
4600 }
4601 while (ptr < pend)
4602 {
4603 if (*ptr == '\r')
4604 {
4605 if (ptr + 1 < pend && *(ptr + 1) == '\n')
4606 {
4607 *p++ = '\n';
4608 ptr += 2;
4609 }
4610 else
4611 {
4612 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4613 goto undo_eol_conversion;
4614 *p++ = *ptr++;
4615 }
4616 }
4617 else if (*ptr == '\n'
4618 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4619 goto undo_eol_conversion;
4620 else
4621 *p++ = *ptr++;
4622 continue;
4623
4624 undo_eol_conversion:
4625 /* We have faced with inconsistent EOL format at PTR.
4626 Convert all LFs before PTR back to CRLFs. */
4627 for (p--, ptr--; p >= pstart; p--)
4628 {
4629 if (*p == '\n')
4630 *ptr-- = '\n', *ptr-- = '\r';
4631 else
4632 *ptr-- = *p;
4633 }
4634 /* If carryover is recorded, cancel it because we don't
4635 convert CRLF anymore. */
4636 if (coding->spec.ccl.cr_carryover)
4637 {
4638 coding->spec.ccl.cr_carryover = 0;
4639 coding->produced++;
4640 coding->produced_char++;
4641 pend++;
4642 }
4643 p = ptr = pend;
4644 coding->eol_type = CODING_EOL_LF;
4645 coding->symbol = saved_coding_symbol;
4646 }
4647 if (p < pend)
4648 {
4649 /* As each two-byte sequence CRLF was converted to LF, (PEND
4650 - P) is the number of deleted characters. */
4651 coding->produced -= pend - p;
4652 coding->produced_char -= pend - p;
4653 }
4654 }
4655 else /* i.e. coding->eol_type == CODING_EOL_CR */
4656 {
4657 unsigned char *p = ptr;
4658
4659 for (; ptr < pend; ptr++)
4660 {
4661 if (*ptr == '\r')
4662 *ptr = '\n';
4663 else if (*ptr == '\n'
4664 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4665 {
4666 for (; p < ptr; p++)
4667 {
4668 if (*p == '\n')
4669 *p = '\r';
4670 }
4671 ptr = pend;
4672 coding->eol_type = CODING_EOL_LF;
4673 coding->symbol = saved_coding_symbol;
4674 }
4675 }
4676 }
4677 }
4678
4679 /* See "GENERAL NOTES about `decode_coding_XXX ()' functions". Before
4680 decoding, it may detect coding system and format of end-of-line if
4681 those are not yet decided. The source should be unibyte, the
4682 result is multibyte if CODING->dst_multibyte is nonzero, else
4683 unibyte. */
4684
4685 int
4686 decode_coding (coding, source, destination, src_bytes, dst_bytes)
4687 struct coding_system *coding;
4688 unsigned char *source, *destination;
4689 int src_bytes, dst_bytes;
4690 {
4691 int extra = 0;
4692
4693 if (coding->type == coding_type_undecided)
4694 detect_coding (coding, source, src_bytes);
4695
4696 if (coding->eol_type == CODING_EOL_UNDECIDED
4697 && coding->type != coding_type_ccl)
4698 {
4699 detect_eol (coding, source, src_bytes);
4700 /* We had better recover the original eol format if we
4701 encounter an inconsistent eol format while decoding. */
4702 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
4703 }
4704
4705 coding->produced = coding->produced_char = 0;
4706 coding->consumed = coding->consumed_char = 0;
4707 coding->errors = 0;
4708 coding->result = CODING_FINISH_NORMAL;
4709
4710 switch (coding->type)
4711 {
4712 case coding_type_sjis:
4713 decode_coding_sjis_big5 (coding, source, destination,
4714 src_bytes, dst_bytes, 1);
4715 break;
4716
4717 case coding_type_iso2022:
4718 decode_coding_iso2022 (coding, source, destination,
4719 src_bytes, dst_bytes);
4720 break;
4721
4722 case coding_type_big5:
4723 decode_coding_sjis_big5 (coding, source, destination,
4724 src_bytes, dst_bytes, 0);
4725 break;
4726
4727 case coding_type_emacs_mule:
4728 decode_coding_emacs_mule (coding, source, destination,
4729 src_bytes, dst_bytes);
4730 break;
4731
4732 case coding_type_ccl:
4733 if (coding->spec.ccl.cr_carryover)
4734 {
4735 /* Put the CR which was not processed by the previous call
4736 of decode_eol_post_ccl in DESTINATION. It will be
4737 decoded together with the following LF by the call to
4738 decode_eol_post_ccl below. */
4739 *destination = '\r';
4740 coding->produced++;
4741 coding->produced_char++;
4742 dst_bytes--;
4743 extra = coding->spec.ccl.cr_carryover;
4744 }
4745 ccl_coding_driver (coding, source, destination + extra,
4746 src_bytes, dst_bytes, 0);
4747 if (coding->eol_type != CODING_EOL_LF)
4748 {
4749 coding->produced += extra;
4750 coding->produced_char += extra;
4751 decode_eol_post_ccl (coding, destination, coding->produced);
4752 }
4753 break;
4754
4755 default:
4756 decode_eol (coding, source, destination, src_bytes, dst_bytes);
4757 }
4758
4759 if (coding->result == CODING_FINISH_INSUFFICIENT_SRC
4760 && coding->mode & CODING_MODE_LAST_BLOCK
4761 && coding->consumed == src_bytes)
4762 coding->result = CODING_FINISH_NORMAL;
4763
4764 if (coding->mode & CODING_MODE_LAST_BLOCK
4765 && coding->result == CODING_FINISH_INSUFFICIENT_SRC)
4766 {
4767 unsigned char *src = source + coding->consumed;
4768 unsigned char *dst = destination + coding->produced;
4769
4770 src_bytes -= coding->consumed;
4771 coding->errors++;
4772 if (COMPOSING_P (coding))
4773 DECODE_COMPOSITION_END ('1');
4774 while (src_bytes--)
4775 {
4776 int c = *src++;
4777 dst += CHAR_STRING (c, dst);
4778 coding->produced_char++;
4779 }
4780 coding->consumed = coding->consumed_char = src - source;
4781 coding->produced = dst - destination;
4782 coding->result = CODING_FINISH_NORMAL;
4783 }
4784
4785 if (!coding->dst_multibyte)
4786 {
4787 coding->produced = str_as_unibyte (destination, coding->produced);
4788 coding->produced_char = coding->produced;
4789 }
4790
4791 return coding->result;
4792 }
4793
4794 /* See "GENERAL NOTES about `encode_coding_XXX ()' functions". The
4795 multibyteness of the source is CODING->src_multibyte, the
4796 multibyteness of the result is always unibyte. */
4797
4798 int
4799 encode_coding (coding, source, destination, src_bytes, dst_bytes)
4800 struct coding_system *coding;
4801 unsigned char *source, *destination;
4802 int src_bytes, dst_bytes;
4803 {
4804 coding->produced = coding->produced_char = 0;
4805 coding->consumed = coding->consumed_char = 0;
4806 coding->errors = 0;
4807 coding->result = CODING_FINISH_NORMAL;
4808
4809 switch (coding->type)
4810 {
4811 case coding_type_sjis:
4812 encode_coding_sjis_big5 (coding, source, destination,
4813 src_bytes, dst_bytes, 1);
4814 break;
4815
4816 case coding_type_iso2022:
4817 encode_coding_iso2022 (coding, source, destination,
4818 src_bytes, dst_bytes);
4819 break;
4820
4821 case coding_type_big5:
4822 encode_coding_sjis_big5 (coding, source, destination,
4823 src_bytes, dst_bytes, 0);
4824 break;
4825
4826 case coding_type_emacs_mule:
4827 encode_coding_emacs_mule (coding, source, destination,
4828 src_bytes, dst_bytes);
4829 break;
4830
4831 case coding_type_ccl:
4832 ccl_coding_driver (coding, source, destination,
4833 src_bytes, dst_bytes, 1);
4834 break;
4835
4836 default:
4837 encode_eol (coding, source, destination, src_bytes, dst_bytes);
4838 }
4839
4840 if (coding->mode & CODING_MODE_LAST_BLOCK
4841 && coding->result == CODING_FINISH_INSUFFICIENT_SRC)
4842 {
4843 unsigned char *src = source + coding->consumed;
4844 unsigned char *dst = destination + coding->produced;
4845
4846 if (coding->type == coding_type_iso2022)
4847 ENCODE_RESET_PLANE_AND_REGISTER;
4848 if (COMPOSING_P (coding))
4849 *dst++ = ISO_CODE_ESC, *dst++ = '1';
4850 if (coding->consumed < src_bytes)
4851 {
4852 int len = src_bytes - coding->consumed;
4853
4854 BCOPY_SHORT (src, dst, len);
4855 if (coding->src_multibyte)
4856 len = str_as_unibyte (dst, len);
4857 dst += len;
4858 coding->consumed = src_bytes;
4859 }
4860 coding->produced = coding->produced_char = dst - destination;
4861 coding->result = CODING_FINISH_NORMAL;
4862 }
4863
4864 if (coding->result == CODING_FINISH_INSUFFICIENT_SRC
4865 && coding->consumed == src_bytes)
4866 coding->result = CODING_FINISH_NORMAL;
4867
4868 return coding->result;
4869 }
4870
4871 /* Scan text in the region between *BEG and *END (byte positions),
4872 skip characters which we don't have to decode by coding system
4873 CODING at the head and tail, then set *BEG and *END to the region
4874 of the text we actually have to convert. The caller should move
4875 the gap out of the region in advance if the region is from a
4876 buffer.
4877
4878 If STR is not NULL, *BEG and *END are indices into STR. */
4879
4880 static void
4881 shrink_decoding_region (beg, end, coding, str)
4882 int *beg, *end;
4883 struct coding_system *coding;
4884 unsigned char *str;
4885 {
4886 unsigned char *begp_orig, *begp, *endp_orig, *endp, c;
4887 int eol_conversion;
4888 Lisp_Object translation_table;
4889
4890 if (coding->type == coding_type_ccl
4891 || coding->type == coding_type_undecided
4892 || coding->eol_type != CODING_EOL_LF
4893 || !NILP (coding->post_read_conversion)
4894 || coding->composing != COMPOSITION_DISABLED)
4895 {
4896 /* We can't skip any data. */
4897 return;
4898 }
4899 if (coding->type == coding_type_no_conversion
4900 || coding->type == coding_type_raw_text
4901 || coding->type == coding_type_emacs_mule)
4902 {
4903 /* We need no conversion, but don't have to skip any data here.
4904 Decoding routine handles them effectively anyway. */
4905 return;
4906 }
4907
4908 translation_table = coding->translation_table_for_decode;
4909 if (NILP (translation_table) && !NILP (Venable_character_translation))
4910 translation_table = Vstandard_translation_table_for_decode;
4911 if (CHAR_TABLE_P (translation_table))
4912 {
4913 int i;
4914 for (i = 0; i < 128; i++)
4915 if (!NILP (CHAR_TABLE_REF (translation_table, i)))
4916 break;
4917 if (i < 128)
4918 /* Some ASCII character should be translated. We give up
4919 shrinking. */
4920 return;
4921 }
4922
4923 if (coding->heading_ascii >= 0)
4924 /* Detection routine has already found how much we can skip at the
4925 head. */
4926 *beg += coding->heading_ascii;
4927
4928 if (str)
4929 {
4930 begp_orig = begp = str + *beg;
4931 endp_orig = endp = str + *end;
4932 }
4933 else
4934 {
4935 begp_orig = begp = BYTE_POS_ADDR (*beg);
4936 endp_orig = endp = begp + *end - *beg;
4937 }
4938
4939 eol_conversion = (coding->eol_type == CODING_EOL_CR
4940 || coding->eol_type == CODING_EOL_CRLF);
4941
4942 switch (coding->type)
4943 {
4944 case coding_type_sjis:
4945 case coding_type_big5:
4946 /* We can skip all ASCII characters at the head. */
4947 if (coding->heading_ascii < 0)
4948 {
4949 if (eol_conversion)
4950 while (begp < endp && *begp < 0x80 && *begp != '\r') begp++;
4951 else
4952 while (begp < endp && *begp < 0x80) begp++;
4953 }
4954 /* We can skip all ASCII characters at the tail except for the
4955 second byte of SJIS or BIG5 code. */
4956 if (eol_conversion)
4957 while (begp < endp && endp[-1] < 0x80 && endp[-1] != '\r') endp--;
4958 else
4959 while (begp < endp && endp[-1] < 0x80) endp--;
4960 /* Do not consider LF as ascii if preceded by CR, since that
4961 confuses eol decoding. */
4962 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
4963 endp++;
4964 if (begp < endp && endp < endp_orig && endp[-1] >= 0x80)
4965 endp++;
4966 break;
4967
4968 case coding_type_iso2022:
4969 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, 0) != CHARSET_ASCII)
4970 /* We can't skip any data. */
4971 break;
4972 if (coding->heading_ascii < 0)
4973 {
4974 /* We can skip all ASCII characters at the head except for a
4975 few control codes. */
4976 while (begp < endp && (c = *begp) < 0x80
4977 && c != ISO_CODE_CR && c != ISO_CODE_SO
4978 && c != ISO_CODE_SI && c != ISO_CODE_ESC
4979 && (!eol_conversion || c != ISO_CODE_LF))
4980 begp++;
4981 }
4982 switch (coding->category_idx)
4983 {
4984 case CODING_CATEGORY_IDX_ISO_8_1:
4985 case CODING_CATEGORY_IDX_ISO_8_2:
4986 /* We can skip all ASCII characters at the tail. */
4987 if (eol_conversion)
4988 while (begp < endp && (c = endp[-1]) < 0x80 && c != '\r') endp--;
4989 else
4990 while (begp < endp && endp[-1] < 0x80) endp--;
4991 /* Do not consider LF as ascii if preceded by CR, since that
4992 confuses eol decoding. */
4993 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
4994 endp++;
4995 break;
4996
4997 case CODING_CATEGORY_IDX_ISO_7:
4998 case CODING_CATEGORY_IDX_ISO_7_TIGHT:
4999 {
5000 /* We can skip all characters at the tail except for 8-bit
5001 codes and ESC and the following 2-byte at the tail. */
5002 unsigned char *eight_bit = NULL;
5003
5004 if (eol_conversion)
5005 while (begp < endp
5006 && (c = endp[-1]) != ISO_CODE_ESC && c != '\r')
5007 {
5008 if (!eight_bit && c & 0x80) eight_bit = endp;
5009 endp--;
5010 }
5011 else
5012 while (begp < endp
5013 && (c = endp[-1]) != ISO_CODE_ESC)
5014 {
5015 if (!eight_bit && c & 0x80) eight_bit = endp;
5016 endp--;
5017 }
5018 /* Do not consider LF as ascii if preceded by CR, since that
5019 confuses eol decoding. */
5020 if (begp < endp && endp < endp_orig
5021 && endp[-1] == '\r' && endp[0] == '\n')
5022 endp++;
5023 if (begp < endp && endp[-1] == ISO_CODE_ESC)
5024 {
5025 if (endp + 1 < endp_orig && end[0] == '(' && end[1] == 'B')
5026 /* This is an ASCII designation sequence. We can
5027 surely skip the tail. But, if we have
5028 encountered an 8-bit code, skip only the codes
5029 after that. */
5030 endp = eight_bit ? eight_bit : endp + 2;
5031 else
5032 /* Hmmm, we can't skip the tail. */
5033 endp = endp_orig;
5034 }
5035 else if (eight_bit)
5036 endp = eight_bit;
5037 }
5038 }
5039 break;
5040
5041 default:
5042 abort ();
5043 }
5044 *beg += begp - begp_orig;
5045 *end += endp - endp_orig;
5046 return;
5047 }
5048
5049 /* Like shrink_decoding_region but for encoding. */
5050
5051 static void
5052 shrink_encoding_region (beg, end, coding, str)
5053 int *beg, *end;
5054 struct coding_system *coding;
5055 unsigned char *str;
5056 {
5057 unsigned char *begp_orig, *begp, *endp_orig, *endp;
5058 int eol_conversion;
5059 Lisp_Object translation_table;
5060
5061 if (coding->type == coding_type_ccl
5062 || coding->eol_type == CODING_EOL_CRLF
5063 || coding->eol_type == CODING_EOL_CR
5064 || (coding->cmp_data && coding->cmp_data->used > 0))
5065 {
5066 /* We can't skip any data. */
5067 return;
5068 }
5069 if (coding->type == coding_type_no_conversion
5070 || coding->type == coding_type_raw_text
5071 || coding->type == coding_type_emacs_mule
5072 || coding->type == coding_type_undecided)
5073 {
5074 /* We need no conversion, but don't have to skip any data here.
5075 Encoding routine handles them effectively anyway. */
5076 return;
5077 }
5078
5079 translation_table = coding->translation_table_for_encode;
5080 if (NILP (translation_table) && !NILP (Venable_character_translation))
5081 translation_table = Vstandard_translation_table_for_encode;
5082 if (CHAR_TABLE_P (translation_table))
5083 {
5084 int i;
5085 for (i = 0; i < 128; i++)
5086 if (!NILP (CHAR_TABLE_REF (translation_table, i)))
5087 break;
5088 if (i < 128)
5089 /* Some ASCII character should be translated. We give up
5090 shrinking. */
5091 return;
5092 }
5093
5094 if (str)
5095 {
5096 begp_orig = begp = str + *beg;
5097 endp_orig = endp = str + *end;
5098 }
5099 else
5100 {
5101 begp_orig = begp = BYTE_POS_ADDR (*beg);
5102 endp_orig = endp = begp + *end - *beg;
5103 }
5104
5105 eol_conversion = (coding->eol_type == CODING_EOL_CR
5106 || coding->eol_type == CODING_EOL_CRLF);
5107
5108 /* Here, we don't have to check coding->pre_write_conversion because
5109 the caller is expected to have handled it already. */
5110 switch (coding->type)
5111 {
5112 case coding_type_iso2022:
5113 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, 0) != CHARSET_ASCII)
5114 /* We can't skip any data. */
5115 break;
5116 if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL)
5117 {
5118 unsigned char *bol = begp;
5119 while (begp < endp && *begp < 0x80)
5120 {
5121 begp++;
5122 if (begp[-1] == '\n')
5123 bol = begp;
5124 }
5125 begp = bol;
5126 goto label_skip_tail;
5127 }
5128 /* fall down ... */
5129
5130 case coding_type_sjis:
5131 case coding_type_big5:
5132 /* We can skip all ASCII characters at the head and tail. */
5133 if (eol_conversion)
5134 while (begp < endp && *begp < 0x80 && *begp != '\n') begp++;
5135 else
5136 while (begp < endp && *begp < 0x80) begp++;
5137 label_skip_tail:
5138 if (eol_conversion)
5139 while (begp < endp && endp[-1] < 0x80 && endp[-1] != '\n') endp--;
5140 else
5141 while (begp < endp && *(endp - 1) < 0x80) endp--;
5142 break;
5143
5144 default:
5145 abort ();
5146 }
5147
5148 *beg += begp - begp_orig;
5149 *end += endp - endp_orig;
5150 return;
5151 }
5152
5153 /* As shrinking conversion region requires some overhead, we don't try
5154 shrinking if the length of conversion region is less than this
5155 value. */
5156 static int shrink_conversion_region_threshhold = 1024;
5157
5158 #define SHRINK_CONVERSION_REGION(beg, end, coding, str, encodep) \
5159 do { \
5160 if (*(end) - *(beg) > shrink_conversion_region_threshhold) \
5161 { \
5162 if (encodep) shrink_encoding_region (beg, end, coding, str); \
5163 else shrink_decoding_region (beg, end, coding, str); \
5164 } \
5165 } while (0)
5166
5167 static Lisp_Object
5168 code_convert_region_unwind (dummy)
5169 Lisp_Object dummy;
5170 {
5171 inhibit_pre_post_conversion = 0;
5172 return Qnil;
5173 }
5174
5175 /* Store information about all compositions in the range FROM and TO
5176 of OBJ in memory blocks pointed by CODING->cmp_data. OBJ is a
5177 buffer or a string, defaults to the current buffer. */
5178
5179 void
5180 coding_save_composition (coding, from, to, obj)
5181 struct coding_system *coding;
5182 int from, to;
5183 Lisp_Object obj;
5184 {
5185 Lisp_Object prop;
5186 int start, end;
5187
5188 if (coding->composing == COMPOSITION_DISABLED)
5189 return;
5190 if (!coding->cmp_data)
5191 coding_allocate_composition_data (coding, from);
5192 if (!find_composition (from, to, &start, &end, &prop, obj)
5193 || end > to)
5194 return;
5195 if (start < from
5196 && (!find_composition (end, to, &start, &end, &prop, obj)
5197 || end > to))
5198 return;
5199 coding->composing = COMPOSITION_NO;
5200 do
5201 {
5202 if (COMPOSITION_VALID_P (start, end, prop))
5203 {
5204 enum composition_method method = COMPOSITION_METHOD (prop);
5205 if (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH
5206 >= COMPOSITION_DATA_SIZE)
5207 coding_allocate_composition_data (coding, from);
5208 /* For relative composition, we remember start and end
5209 positions, for the other compositions, we also remember
5210 components. */
5211 CODING_ADD_COMPOSITION_START (coding, start - from, method);
5212 if (method != COMPOSITION_RELATIVE)
5213 {
5214 /* We must store a*/
5215 Lisp_Object val, ch;
5216
5217 val = COMPOSITION_COMPONENTS (prop);
5218 if (CONSP (val))
5219 while (CONSP (val))
5220 {
5221 ch = XCAR (val), val = XCDR (val);
5222 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (ch));
5223 }
5224 else if (VECTORP (val) || STRINGP (val))
5225 {
5226 int len = (VECTORP (val)
5227 ? XVECTOR (val)->size : XSTRING (val)->size);
5228 int i;
5229 for (i = 0; i < len; i++)
5230 {
5231 ch = (STRINGP (val)
5232 ? Faref (val, make_number (i))
5233 : XVECTOR (val)->contents[i]);
5234 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (ch));
5235 }
5236 }
5237 else /* INTEGERP (val) */
5238 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (val));
5239 }
5240 CODING_ADD_COMPOSITION_END (coding, end - from);
5241 }
5242 start = end;
5243 }
5244 while (start < to
5245 && find_composition (start, to, &start, &end, &prop, obj)
5246 && end <= to);
5247
5248 /* Make coding->cmp_data point to the first memory block. */
5249 while (coding->cmp_data->prev)
5250 coding->cmp_data = coding->cmp_data->prev;
5251 coding->cmp_data_start = 0;
5252 }
5253
5254 /* Reflect the saved information about compositions to OBJ.
5255 CODING->cmp_data points to a memory block for the information. OBJ
5256 is a buffer or a string, defaults to the current buffer. */
5257
5258 void
5259 coding_restore_composition (coding, obj)
5260 struct coding_system *coding;
5261 Lisp_Object obj;
5262 {
5263 struct composition_data *cmp_data = coding->cmp_data;
5264
5265 if (!cmp_data)
5266 return;
5267
5268 while (cmp_data->prev)
5269 cmp_data = cmp_data->prev;
5270
5271 while (cmp_data)
5272 {
5273 int i;
5274
5275 for (i = 0; i < cmp_data->used && cmp_data->data[i] > 0;
5276 i += cmp_data->data[i])
5277 {
5278 int *data = cmp_data->data + i;
5279 enum composition_method method = (enum composition_method) data[3];
5280 Lisp_Object components;
5281
5282 if (method == COMPOSITION_RELATIVE)
5283 components = Qnil;
5284 else
5285 {
5286 int len = data[0] - 4, j;
5287 Lisp_Object args[MAX_COMPOSITION_COMPONENTS * 2 - 1];
5288
5289 for (j = 0; j < len; j++)
5290 args[j] = make_number (data[4 + j]);
5291 components = (method == COMPOSITION_WITH_ALTCHARS
5292 ? Fstring (len, args) : Fvector (len, args));
5293 }
5294 compose_text (data[1], data[2], components, Qnil, obj);
5295 }
5296 cmp_data = cmp_data->next;
5297 }
5298 }
5299
5300 /* Decode (if ENCODEP is zero) or encode (if ENCODEP is nonzero) the
5301 text from FROM to TO (byte positions are FROM_BYTE and TO_BYTE) by
5302 coding system CODING, and return the status code of code conversion
5303 (currently, this value has no meaning).
5304
5305 How many characters (and bytes) are converted to how many
5306 characters (and bytes) are recorded in members of the structure
5307 CODING.
5308
5309 If REPLACE is nonzero, we do various things as if the original text
5310 is deleted and a new text is inserted. See the comments in
5311 replace_range (insdel.c) to know what we are doing.
5312
5313 If REPLACE is zero, it is assumed that the source text is unibyte.
5314 Otherwise, it is assumed that the source text is multibyte. */
5315
5316 int
5317 code_convert_region (from, from_byte, to, to_byte, coding, encodep, replace)
5318 int from, from_byte, to, to_byte, encodep, replace;
5319 struct coding_system *coding;
5320 {
5321 int len = to - from, len_byte = to_byte - from_byte;
5322 int nchars_del = 0, nbytes_del = 0;
5323 int require, inserted, inserted_byte;
5324 int head_skip, tail_skip, total_skip = 0;
5325 Lisp_Object saved_coding_symbol;
5326 int first = 1;
5327 unsigned char *src, *dst;
5328 Lisp_Object deletion;
5329 int orig_point = PT, orig_len = len;
5330 int prev_Z;
5331 int multibyte_p = !NILP (current_buffer->enable_multibyte_characters);
5332
5333 deletion = Qnil;
5334 saved_coding_symbol = coding->symbol;
5335
5336 if (from < PT && PT < to)
5337 {
5338 TEMP_SET_PT_BOTH (from, from_byte);
5339 orig_point = from;
5340 }
5341
5342 if (replace)
5343 {
5344 int saved_from = from;
5345 int saved_inhibit_modification_hooks;
5346
5347 prepare_to_modify_buffer (from, to, &from);
5348 if (saved_from != from)
5349 {
5350 to = from + len;
5351 from_byte = CHAR_TO_BYTE (from), to_byte = CHAR_TO_BYTE (to);
5352 len_byte = to_byte - from_byte;
5353 }
5354
5355 /* The code conversion routine can not preserve text properties
5356 for now. So, we must remove all text properties in the
5357 region. Here, we must suppress all modification hooks. */
5358 saved_inhibit_modification_hooks = inhibit_modification_hooks;
5359 inhibit_modification_hooks = 1;
5360 Fset_text_properties (make_number (from), make_number (to), Qnil, Qnil);
5361 inhibit_modification_hooks = saved_inhibit_modification_hooks;
5362 }
5363
5364 if (! encodep && CODING_REQUIRE_DETECTION (coding))
5365 {
5366 /* We must detect encoding of text and eol format. */
5367
5368 if (from < GPT && to > GPT)
5369 move_gap_both (from, from_byte);
5370 if (coding->type == coding_type_undecided)
5371 {
5372 detect_coding (coding, BYTE_POS_ADDR (from_byte), len_byte);
5373 if (coding->type == coding_type_undecided)
5374 {
5375 /* It seems that the text contains only ASCII, but we
5376 should not leave it undecided because the deeper
5377 decoding routine (decode_coding) tries to detect the
5378 encodings again in vain. */
5379 coding->type = coding_type_emacs_mule;
5380 coding->category_idx = CODING_CATEGORY_IDX_EMACS_MULE;
5381 /* As emacs-mule decoder will handle composition, we
5382 need this setting to allocate coding->cmp_data
5383 later. */
5384 coding->composing = COMPOSITION_NO;
5385 }
5386 }
5387 if (coding->eol_type == CODING_EOL_UNDECIDED
5388 && coding->type != coding_type_ccl)
5389 {
5390 detect_eol (coding, BYTE_POS_ADDR (from_byte), len_byte);
5391 if (coding->eol_type == CODING_EOL_UNDECIDED)
5392 coding->eol_type = CODING_EOL_LF;
5393 /* We had better recover the original eol format if we
5394 encounter an inconsistent eol format while decoding. */
5395 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
5396 }
5397 }
5398
5399 /* Now we convert the text. */
5400
5401 /* For encoding, we must process pre-write-conversion in advance. */
5402 if (! inhibit_pre_post_conversion
5403 && encodep
5404 && SYMBOLP (coding->pre_write_conversion)
5405 && ! NILP (Ffboundp (coding->pre_write_conversion)))
5406 {
5407 /* The function in pre-write-conversion may put a new text in a
5408 new buffer. */
5409 struct buffer *prev = current_buffer;
5410 Lisp_Object new;
5411
5412 record_unwind_protect (code_convert_region_unwind, Qnil);
5413 /* We should not call any more pre-write/post-read-conversion
5414 functions while this pre-write-conversion is running. */
5415 inhibit_pre_post_conversion = 1;
5416 call2 (coding->pre_write_conversion,
5417 make_number (from), make_number (to));
5418 inhibit_pre_post_conversion = 0;
5419 /* Discard the unwind protect. */
5420 specpdl_ptr--;
5421
5422 if (current_buffer != prev)
5423 {
5424 len = ZV - BEGV;
5425 new = Fcurrent_buffer ();
5426 set_buffer_internal_1 (prev);
5427 del_range_2 (from, from_byte, to, to_byte, 0);
5428 TEMP_SET_PT_BOTH (from, from_byte);
5429 insert_from_buffer (XBUFFER (new), 1, len, 0);
5430 Fkill_buffer (new);
5431 if (orig_point >= to)
5432 orig_point += len - orig_len;
5433 else if (orig_point > from)
5434 orig_point = from;
5435 orig_len = len;
5436 to = from + len;
5437 from_byte = CHAR_TO_BYTE (from);
5438 to_byte = CHAR_TO_BYTE (to);
5439 len_byte = to_byte - from_byte;
5440 TEMP_SET_PT_BOTH (from, from_byte);
5441 }
5442 }
5443
5444 if (replace)
5445 {
5446 if (! EQ (current_buffer->undo_list, Qt))
5447 deletion = make_buffer_string_both (from, from_byte, to, to_byte, 1);
5448 else
5449 {
5450 nchars_del = to - from;
5451 nbytes_del = to_byte - from_byte;
5452 }
5453 }
5454
5455 if (coding->composing != COMPOSITION_DISABLED)
5456 {
5457 if (encodep)
5458 coding_save_composition (coding, from, to, Fcurrent_buffer ());
5459 else
5460 coding_allocate_composition_data (coding, from);
5461 }
5462
5463 /* Try to skip the heading and tailing ASCIIs. */
5464 if (coding->type != coding_type_ccl)
5465 {
5466 int from_byte_orig = from_byte, to_byte_orig = to_byte;
5467
5468 if (from < GPT && GPT < to)
5469 move_gap_both (from, from_byte);
5470 SHRINK_CONVERSION_REGION (&from_byte, &to_byte, coding, NULL, encodep);
5471 if (from_byte == to_byte
5472 && (encodep || NILP (coding->post_read_conversion))
5473 && ! CODING_REQUIRE_FLUSHING (coding))
5474 {
5475 coding->produced = len_byte;
5476 coding->produced_char = len;
5477 if (!replace)
5478 /* We must record and adjust for this new text now. */
5479 adjust_after_insert (from, from_byte_orig, to, to_byte_orig, len);
5480 return 0;
5481 }
5482
5483 head_skip = from_byte - from_byte_orig;
5484 tail_skip = to_byte_orig - to_byte;
5485 total_skip = head_skip + tail_skip;
5486 from += head_skip;
5487 to -= tail_skip;
5488 len -= total_skip; len_byte -= total_skip;
5489 }
5490
5491 /* For conversion, we must put the gap before the text in addition to
5492 making the gap larger for efficient decoding. The required gap
5493 size starts from 2000 which is the magic number used in make_gap.
5494 But, after one batch of conversion, it will be incremented if we
5495 find that it is not enough . */
5496 require = 2000;
5497
5498 if (GAP_SIZE < require)
5499 make_gap (require - GAP_SIZE);
5500 move_gap_both (from, from_byte);
5501
5502 inserted = inserted_byte = 0;
5503
5504 GAP_SIZE += len_byte;
5505 ZV -= len;
5506 Z -= len;
5507 ZV_BYTE -= len_byte;
5508 Z_BYTE -= len_byte;
5509
5510 if (GPT - BEG < BEG_UNCHANGED)
5511 BEG_UNCHANGED = GPT - BEG;
5512 if (Z - GPT < END_UNCHANGED)
5513 END_UNCHANGED = Z - GPT;
5514
5515 if (!encodep && coding->src_multibyte)
5516 {
5517 /* Decoding routines expects that the source text is unibyte.
5518 We must convert 8-bit characters of multibyte form to
5519 unibyte. */
5520 int len_byte_orig = len_byte;
5521 len_byte = str_as_unibyte (GAP_END_ADDR - len_byte, len_byte);
5522 if (len_byte < len_byte_orig)
5523 safe_bcopy (GAP_END_ADDR - len_byte_orig, GAP_END_ADDR - len_byte,
5524 len_byte);
5525 coding->src_multibyte = 0;
5526 }
5527
5528 for (;;)
5529 {
5530 int result;
5531
5532 /* The buffer memory is now:
5533 +--------+converted-text+---------+-------original-text-------+---+
5534 |<-from->|<--inserted-->|---------|<--------len_byte--------->|---|
5535 |<---------------------- GAP ----------------------->| */
5536 src = GAP_END_ADDR - len_byte;
5537 dst = GPT_ADDR + inserted_byte;
5538
5539 if (encodep)
5540 result = encode_coding (coding, src, dst, len_byte, 0);
5541 else
5542 {
5543 if (coding->composing != COMPOSITION_DISABLED)
5544 coding->cmp_data->char_offset = from + inserted;
5545 result = decode_coding (coding, src, dst, len_byte, 0);
5546 }
5547
5548 /* The buffer memory is now:
5549 +--------+-------converted-text----+--+------original-text----+---+
5550 |<-from->|<-inserted->|<-produced->|--|<-(len_byte-consumed)->|---|
5551 |<---------------------- GAP ----------------------->| */
5552
5553 inserted += coding->produced_char;
5554 inserted_byte += coding->produced;
5555 len_byte -= coding->consumed;
5556
5557 if (result == CODING_FINISH_INSUFFICIENT_CMP)
5558 {
5559 coding_allocate_composition_data (coding, from + inserted);
5560 continue;
5561 }
5562
5563 src += coding->consumed;
5564 dst += coding->produced;
5565
5566 if (result == CODING_FINISH_NORMAL)
5567 {
5568 src += len_byte;
5569 break;
5570 }
5571 if (! encodep && result == CODING_FINISH_INCONSISTENT_EOL)
5572 {
5573 unsigned char *pend = dst, *p = pend - inserted_byte;
5574 Lisp_Object eol_type;
5575
5576 /* Encode LFs back to the original eol format (CR or CRLF). */
5577 if (coding->eol_type == CODING_EOL_CR)
5578 {
5579 while (p < pend) if (*p++ == '\n') p[-1] = '\r';
5580 }
5581 else
5582 {
5583 int count = 0;
5584
5585 while (p < pend) if (*p++ == '\n') count++;
5586 if (src - dst < count)
5587 {
5588 /* We don't have sufficient room for encoding LFs
5589 back to CRLF. We must record converted and
5590 not-yet-converted text back to the buffer
5591 content, enlarge the gap, then record them out of
5592 the buffer contents again. */
5593 int add = len_byte + inserted_byte;
5594
5595 GAP_SIZE -= add;
5596 ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
5597 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5598 make_gap (count - GAP_SIZE);
5599 GAP_SIZE += add;
5600 ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
5601 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5602 /* Don't forget to update SRC, DST, and PEND. */
5603 src = GAP_END_ADDR - len_byte;
5604 dst = GPT_ADDR + inserted_byte;
5605 pend = dst;
5606 }
5607 inserted += count;
5608 inserted_byte += count;
5609 coding->produced += count;
5610 p = dst = pend + count;
5611 while (count)
5612 {
5613 *--p = *--pend;
5614 if (*p == '\n') count--, *--p = '\r';
5615 }
5616 }
5617
5618 /* Suppress eol-format conversion in the further conversion. */
5619 coding->eol_type = CODING_EOL_LF;
5620
5621 /* Set the coding system symbol to that for Unix-like EOL. */
5622 eol_type = Fget (saved_coding_symbol, Qeol_type);
5623 if (VECTORP (eol_type)
5624 && XVECTOR (eol_type)->size == 3
5625 && SYMBOLP (XVECTOR (eol_type)->contents[CODING_EOL_LF]))
5626 coding->symbol = XVECTOR (eol_type)->contents[CODING_EOL_LF];
5627 else
5628 coding->symbol = saved_coding_symbol;
5629
5630 continue;
5631 }
5632 if (len_byte <= 0)
5633 {
5634 if (coding->type != coding_type_ccl
5635 || coding->mode & CODING_MODE_LAST_BLOCK)
5636 break;
5637 coding->mode |= CODING_MODE_LAST_BLOCK;
5638 continue;
5639 }
5640 if (result == CODING_FINISH_INSUFFICIENT_SRC)
5641 {
5642 /* The source text ends in invalid codes. Let's just
5643 make them valid buffer contents, and finish conversion. */
5644 if (multibyte_p)
5645 {
5646 unsigned char *start = dst;
5647
5648 inserted += len_byte;
5649 while (len_byte--)
5650 {
5651 int c = *src++;
5652 dst += CHAR_STRING (c, dst);
5653 }
5654
5655 inserted_byte += dst - start;
5656 }
5657 else
5658 {
5659 inserted += len_byte;
5660 inserted_byte += len_byte;
5661 while (len_byte--)
5662 *dst++ = *src++;
5663 }
5664 break;
5665 }
5666 if (result == CODING_FINISH_INTERRUPT)
5667 {
5668 /* The conversion procedure was interrupted by a user. */
5669 break;
5670 }
5671 /* Now RESULT == CODING_FINISH_INSUFFICIENT_DST */
5672 if (coding->consumed < 1)
5673 {
5674 /* It's quite strange to require more memory without
5675 consuming any bytes. Perhaps CCL program bug. */
5676 break;
5677 }
5678 if (first)
5679 {
5680 /* We have just done the first batch of conversion which was
5681 stopped because of insufficient gap. Let's reconsider the
5682 required gap size (i.e. SRT - DST) now.
5683
5684 We have converted ORIG bytes (== coding->consumed) into
5685 NEW bytes (coding->produced). To convert the remaining
5686 LEN bytes, we may need REQUIRE bytes of gap, where:
5687 REQUIRE + LEN_BYTE = LEN_BYTE * (NEW / ORIG)
5688 REQUIRE = LEN_BYTE * (NEW - ORIG) / ORIG
5689 Here, we are sure that NEW >= ORIG. */
5690 float ratio = coding->produced - coding->consumed;
5691 ratio /= coding->consumed;
5692 require = len_byte * ratio;
5693 first = 0;
5694 }
5695 if ((src - dst) < (require + 2000))
5696 {
5697 /* See the comment above the previous call of make_gap. */
5698 int add = len_byte + inserted_byte;
5699
5700 GAP_SIZE -= add;
5701 ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
5702 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5703 make_gap (require + 2000);
5704 GAP_SIZE += add;
5705 ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
5706 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5707 }
5708 }
5709 if (src - dst > 0) *dst = 0; /* Put an anchor. */
5710
5711 if (encodep && coding->dst_multibyte)
5712 {
5713 /* The output is unibyte. We must convert 8-bit characters to
5714 multibyte form. */
5715 if (inserted_byte * 2 > GAP_SIZE)
5716 {
5717 GAP_SIZE -= inserted_byte;
5718 ZV += inserted_byte; Z += inserted_byte;
5719 ZV_BYTE += inserted_byte; Z_BYTE += inserted_byte;
5720 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5721 make_gap (inserted_byte - GAP_SIZE);
5722 GAP_SIZE += inserted_byte;
5723 ZV -= inserted_byte; Z -= inserted_byte;
5724 ZV_BYTE -= inserted_byte; Z_BYTE -= inserted_byte;
5725 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5726 }
5727 inserted_byte = str_to_multibyte (GPT_ADDR, GAP_SIZE, inserted_byte);
5728 }
5729
5730 /* If we shrank the conversion area, adjust it now. */
5731 if (total_skip > 0)
5732 {
5733 if (tail_skip > 0)
5734 safe_bcopy (GAP_END_ADDR, GPT_ADDR + inserted_byte, tail_skip);
5735 inserted += total_skip; inserted_byte += total_skip;
5736 GAP_SIZE += total_skip;
5737 GPT -= head_skip; GPT_BYTE -= head_skip;
5738 ZV -= total_skip; ZV_BYTE -= total_skip;
5739 Z -= total_skip; Z_BYTE -= total_skip;
5740 from -= head_skip; from_byte -= head_skip;
5741 to += tail_skip; to_byte += tail_skip;
5742 }
5743
5744 prev_Z = Z;
5745 if (! EQ (current_buffer->undo_list, Qt))
5746 adjust_after_replace (from, from_byte, deletion, inserted, inserted_byte);
5747 else
5748 adjust_after_replace_noundo (from, from_byte, nchars_del, nbytes_del,
5749 inserted, inserted_byte);
5750 inserted = Z - prev_Z;
5751
5752 if (!encodep && coding->cmp_data && coding->cmp_data->used)
5753 coding_restore_composition (coding, Fcurrent_buffer ());
5754 coding_free_composition_data (coding);
5755
5756 if (! inhibit_pre_post_conversion
5757 && ! encodep && ! NILP (coding->post_read_conversion))
5758 {
5759 Lisp_Object val;
5760
5761 if (from != PT)
5762 TEMP_SET_PT_BOTH (from, from_byte);
5763 prev_Z = Z;
5764 record_unwind_protect (code_convert_region_unwind, Qnil);
5765 /* We should not call any more pre-write/post-read-conversion
5766 functions while this post-read-conversion is running. */
5767 inhibit_pre_post_conversion = 1;
5768 val = call1 (coding->post_read_conversion, make_number (inserted));
5769 inhibit_pre_post_conversion = 0;
5770 /* Discard the unwind protect. */
5771 specpdl_ptr--;
5772 CHECK_NUMBER (val);
5773 inserted += Z - prev_Z;
5774 }
5775
5776 if (orig_point >= from)
5777 {
5778 if (orig_point >= from + orig_len)
5779 orig_point += inserted - orig_len;
5780 else
5781 orig_point = from;
5782 TEMP_SET_PT (orig_point);
5783 }
5784
5785 if (replace)
5786 {
5787 signal_after_change (from, to - from, inserted);
5788 update_compositions (from, from + inserted, CHECK_BORDER);
5789 }
5790
5791 {
5792 coding->consumed = to_byte - from_byte;
5793 coding->consumed_char = to - from;
5794 coding->produced = inserted_byte;
5795 coding->produced_char = inserted;
5796 }
5797
5798 return 0;
5799 }
5800
5801 Lisp_Object
5802 run_pre_post_conversion_on_str (str, coding, encodep)
5803 Lisp_Object str;
5804 struct coding_system *coding;
5805 int encodep;
5806 {
5807 int count = SPECPDL_INDEX ();
5808 struct gcpro gcpro1;
5809 int multibyte = STRING_MULTIBYTE (str);
5810 Lisp_Object buffer;
5811 struct buffer *buf;
5812
5813 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
5814 record_unwind_protect (code_convert_region_unwind, Qnil);
5815 GCPRO1 (str);
5816
5817 buffer = Fget_buffer_create (build_string (" *code-converting-work*"));
5818 buf = XBUFFER (buffer);
5819
5820 buf->directory = current_buffer->directory;
5821 buf->read_only = Qnil;
5822 buf->filename = Qnil;
5823 buf->undo_list = Qt;
5824 buf->overlays_before = Qnil;
5825 buf->overlays_after = Qnil;
5826
5827 set_buffer_internal (buf);
5828 /* We must insert the contents of STR as is without
5829 unibyte<->multibyte conversion. For that, we adjust the
5830 multibyteness of the working buffer to that of STR. */
5831 Ferase_buffer ();
5832 buf->enable_multibyte_characters = multibyte ? Qt : Qnil;
5833
5834 insert_from_string (str, 0, 0,
5835 XSTRING (str)->size, STRING_BYTES (XSTRING (str)), 0);
5836 UNGCPRO;
5837 inhibit_pre_post_conversion = 1;
5838 if (encodep)
5839 call2 (coding->pre_write_conversion, make_number (BEG), make_number (Z));
5840 else
5841 {
5842 TEMP_SET_PT_BOTH (BEG, BEG_BYTE);
5843 call1 (coding->post_read_conversion, make_number (Z - BEG));
5844 }
5845 inhibit_pre_post_conversion = 0;
5846 str = make_buffer_string (BEG, Z, 1);
5847 return unbind_to (count, str);
5848 }
5849
5850 Lisp_Object
5851 decode_coding_string (str, coding, nocopy)
5852 Lisp_Object str;
5853 struct coding_system *coding;
5854 int nocopy;
5855 {
5856 int len;
5857 struct conversion_buffer buf;
5858 int from, to_byte;
5859 Lisp_Object saved_coding_symbol;
5860 int result;
5861 int require_decoding;
5862 int shrinked_bytes = 0;
5863 Lisp_Object newstr;
5864 int consumed, consumed_char, produced, produced_char;
5865
5866 from = 0;
5867 to_byte = STRING_BYTES (XSTRING (str));
5868
5869 saved_coding_symbol = coding->symbol;
5870 coding->src_multibyte = STRING_MULTIBYTE (str);
5871 coding->dst_multibyte = 1;
5872 if (CODING_REQUIRE_DETECTION (coding))
5873 {
5874 /* See the comments in code_convert_region. */
5875 if (coding->type == coding_type_undecided)
5876 {
5877 detect_coding (coding, XSTRING (str)->data, to_byte);
5878 if (coding->type == coding_type_undecided)
5879 {
5880 coding->type = coding_type_emacs_mule;
5881 coding->category_idx = CODING_CATEGORY_IDX_EMACS_MULE;
5882 /* As emacs-mule decoder will handle composition, we
5883 need this setting to allocate coding->cmp_data
5884 later. */
5885 coding->composing = COMPOSITION_NO;
5886 }
5887 }
5888 if (coding->eol_type == CODING_EOL_UNDECIDED
5889 && coding->type != coding_type_ccl)
5890 {
5891 saved_coding_symbol = coding->symbol;
5892 detect_eol (coding, XSTRING (str)->data, to_byte);
5893 if (coding->eol_type == CODING_EOL_UNDECIDED)
5894 coding->eol_type = CODING_EOL_LF;
5895 /* We had better recover the original eol format if we
5896 encounter an inconsistent eol format while decoding. */
5897 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
5898 }
5899 }
5900
5901 if (coding->type == coding_type_no_conversion
5902 || coding->type == coding_type_raw_text)
5903 coding->dst_multibyte = 0;
5904
5905 require_decoding = CODING_REQUIRE_DECODING (coding);
5906
5907 if (STRING_MULTIBYTE (str))
5908 {
5909 /* Decoding routines expect the source text to be unibyte. */
5910 str = Fstring_as_unibyte (str);
5911 to_byte = STRING_BYTES (XSTRING (str));
5912 nocopy = 1;
5913 coding->src_multibyte = 0;
5914 }
5915
5916 /* Try to skip the heading and tailing ASCIIs. */
5917 if (require_decoding && coding->type != coding_type_ccl)
5918 {
5919 SHRINK_CONVERSION_REGION (&from, &to_byte, coding, XSTRING (str)->data,
5920 0);
5921 if (from == to_byte)
5922 require_decoding = 0;
5923 shrinked_bytes = from + (STRING_BYTES (XSTRING (str)) - to_byte);
5924 }
5925
5926 if (!require_decoding)
5927 {
5928 coding->consumed = STRING_BYTES (XSTRING (str));
5929 coding->consumed_char = XSTRING (str)->size;
5930 if (coding->dst_multibyte)
5931 {
5932 str = Fstring_as_multibyte (str);
5933 nocopy = 1;
5934 }
5935 coding->produced = STRING_BYTES (XSTRING (str));
5936 coding->produced_char = XSTRING (str)->size;
5937 return (nocopy ? str : Fcopy_sequence (str));
5938 }
5939
5940 if (coding->composing != COMPOSITION_DISABLED)
5941 coding_allocate_composition_data (coding, from);
5942 len = decoding_buffer_size (coding, to_byte - from);
5943 allocate_conversion_buffer (buf, len);
5944
5945 consumed = consumed_char = produced = produced_char = 0;
5946 while (1)
5947 {
5948 result = decode_coding (coding, XSTRING (str)->data + from + consumed,
5949 buf.data + produced, to_byte - from - consumed,
5950 buf.size - produced);
5951 consumed += coding->consumed;
5952 consumed_char += coding->consumed_char;
5953 produced += coding->produced;
5954 produced_char += coding->produced_char;
5955 if (result == CODING_FINISH_NORMAL
5956 || (result == CODING_FINISH_INSUFFICIENT_SRC
5957 && coding->consumed == 0))
5958 break;
5959 if (result == CODING_FINISH_INSUFFICIENT_CMP)
5960 coding_allocate_composition_data (coding, from + produced_char);
5961 else if (result == CODING_FINISH_INSUFFICIENT_DST)
5962 extend_conversion_buffer (&buf);
5963 else if (result == CODING_FINISH_INCONSISTENT_EOL)
5964 {
5965 Lisp_Object eol_type;
5966
5967 /* Recover the original EOL format. */
5968 if (coding->eol_type == CODING_EOL_CR)
5969 {
5970 unsigned char *p;
5971 for (p = buf.data; p < buf.data + produced; p++)
5972 if (*p == '\n') *p = '\r';
5973 }
5974 else if (coding->eol_type == CODING_EOL_CRLF)
5975 {
5976 int num_eol = 0;
5977 unsigned char *p0, *p1;
5978 for (p0 = buf.data, p1 = p0 + produced; p0 < p1; p0++)
5979 if (*p0 == '\n') num_eol++;
5980 if (produced + num_eol >= buf.size)
5981 extend_conversion_buffer (&buf);
5982 for (p0 = buf.data + produced, p1 = p0 + num_eol; p0 > buf.data;)
5983 {
5984 *--p1 = *--p0;
5985 if (*p0 == '\n') *--p1 = '\r';
5986 }
5987 produced += num_eol;
5988 produced_char += num_eol;
5989 }
5990 /* Suppress eol-format conversion in the further conversion. */
5991 coding->eol_type = CODING_EOL_LF;
5992
5993 /* Set the coding system symbol to that for Unix-like EOL. */
5994 eol_type = Fget (saved_coding_symbol, Qeol_type);
5995 if (VECTORP (eol_type)
5996 && XVECTOR (eol_type)->size == 3
5997 && SYMBOLP (XVECTOR (eol_type)->contents[CODING_EOL_LF]))
5998 coding->symbol = XVECTOR (eol_type)->contents[CODING_EOL_LF];
5999 else
6000 coding->symbol = saved_coding_symbol;
6001
6002
6003 }
6004 }
6005
6006 coding->consumed = consumed;
6007 coding->consumed_char = consumed_char;
6008 coding->produced = produced;
6009 coding->produced_char = produced_char;
6010
6011 if (coding->dst_multibyte)
6012 newstr = make_uninit_multibyte_string (produced_char + shrinked_bytes,
6013 produced + shrinked_bytes);
6014 else
6015 newstr = make_uninit_string (produced + shrinked_bytes);
6016 if (from > 0)
6017 bcopy (XSTRING (str)->data, XSTRING (newstr)->data, from);
6018 bcopy (buf.data, XSTRING (newstr)->data + from, produced);
6019 if (shrinked_bytes > from)
6020 bcopy (XSTRING (str)->data + to_byte,
6021 XSTRING (newstr)->data + from + produced,
6022 shrinked_bytes - from);
6023 free_conversion_buffer (&buf);
6024
6025 if (coding->cmp_data && coding->cmp_data->used)
6026 coding_restore_composition (coding, newstr);
6027 coding_free_composition_data (coding);
6028
6029 if (SYMBOLP (coding->post_read_conversion)
6030 && !NILP (Ffboundp (coding->post_read_conversion)))
6031 newstr = run_pre_post_conversion_on_str (newstr, coding, 0);
6032
6033 return newstr;
6034 }
6035
6036 Lisp_Object
6037 encode_coding_string (str, coding, nocopy)
6038 Lisp_Object str;
6039 struct coding_system *coding;
6040 int nocopy;
6041 {
6042 int len;
6043 struct conversion_buffer buf;
6044 int from, to, to_byte;
6045 int result;
6046 int shrinked_bytes = 0;
6047 Lisp_Object newstr;
6048 int consumed, consumed_char, produced, produced_char;
6049
6050 if (SYMBOLP (coding->pre_write_conversion)
6051 && !NILP (Ffboundp (coding->pre_write_conversion)))
6052 str = run_pre_post_conversion_on_str (str, coding, 1);
6053
6054 from = 0;
6055 to = XSTRING (str)->size;
6056 to_byte = STRING_BYTES (XSTRING (str));
6057
6058 /* Encoding routines determine the multibyteness of the source text
6059 by coding->src_multibyte. */
6060 coding->src_multibyte = STRING_MULTIBYTE (str);
6061 coding->dst_multibyte = 0;
6062 if (! CODING_REQUIRE_ENCODING (coding))
6063 {
6064 coding->consumed = STRING_BYTES (XSTRING (str));
6065 coding->consumed_char = XSTRING (str)->size;
6066 if (STRING_MULTIBYTE (str))
6067 {
6068 str = Fstring_as_unibyte (str);
6069 nocopy = 1;
6070 }
6071 coding->produced = STRING_BYTES (XSTRING (str));
6072 coding->produced_char = XSTRING (str)->size;
6073 return (nocopy ? str : Fcopy_sequence (str));
6074 }
6075
6076 if (coding->composing != COMPOSITION_DISABLED)
6077 coding_save_composition (coding, from, to, str);
6078
6079 /* Try to skip the heading and tailing ASCIIs. */
6080 if (coding->type != coding_type_ccl)
6081 {
6082 SHRINK_CONVERSION_REGION (&from, &to_byte, coding, XSTRING (str)->data,
6083 1);
6084 if (from == to_byte)
6085 return (nocopy ? str : Fcopy_sequence (str));
6086 shrinked_bytes = from + (STRING_BYTES (XSTRING (str)) - to_byte);
6087 }
6088
6089 len = encoding_buffer_size (coding, to_byte - from);
6090 allocate_conversion_buffer (buf, len);
6091
6092 consumed = consumed_char = produced = produced_char = 0;
6093 while (1)
6094 {
6095 result = encode_coding (coding, XSTRING (str)->data + from + consumed,
6096 buf.data + produced, to_byte - from - consumed,
6097 buf.size - produced);
6098 consumed += coding->consumed;
6099 consumed_char += coding->consumed_char;
6100 produced += coding->produced;
6101 produced_char += coding->produced_char;
6102 if (result == CODING_FINISH_NORMAL
6103 || (result == CODING_FINISH_INSUFFICIENT_SRC
6104 && coding->consumed == 0))
6105 break;
6106 /* Now result should be CODING_FINISH_INSUFFICIENT_DST. */
6107 extend_conversion_buffer (&buf);
6108 }
6109
6110 coding->consumed = consumed;
6111 coding->consumed_char = consumed_char;
6112 coding->produced = produced;
6113 coding->produced_char = produced_char;
6114
6115 newstr = make_uninit_string (produced + shrinked_bytes);
6116 if (from > 0)
6117 bcopy (XSTRING (str)->data, XSTRING (newstr)->data, from);
6118 bcopy (buf.data, XSTRING (newstr)->data + from, produced);
6119 if (shrinked_bytes > from)
6120 bcopy (XSTRING (str)->data + to_byte,
6121 XSTRING (newstr)->data + from + produced,
6122 shrinked_bytes - from);
6123
6124 free_conversion_buffer (&buf);
6125 coding_free_composition_data (coding);
6126
6127 return newstr;
6128 }
6129
6130 \f
6131 #ifdef emacs
6132 /*** 8. Emacs Lisp library functions ***/
6133
6134 DEFUN ("coding-system-p", Fcoding_system_p, Scoding_system_p, 1, 1, 0,
6135 doc: /* Return t if OBJECT is nil or a coding-system.
6136 See the documentation of `make-coding-system' for information
6137 about coding-system objects. */)
6138 (obj)
6139 Lisp_Object obj;
6140 {
6141 if (NILP (obj))
6142 return Qt;
6143 if (!SYMBOLP (obj))
6144 return Qnil;
6145 /* Get coding-spec vector for OBJ. */
6146 obj = Fget (obj, Qcoding_system);
6147 return ((VECTORP (obj) && XVECTOR (obj)->size == 5)
6148 ? Qt : Qnil);
6149 }
6150
6151 DEFUN ("read-non-nil-coding-system", Fread_non_nil_coding_system,
6152 Sread_non_nil_coding_system, 1, 1, 0,
6153 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT. */)
6154 (prompt)
6155 Lisp_Object prompt;
6156 {
6157 Lisp_Object val;
6158 do
6159 {
6160 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
6161 Qt, Qnil, Qcoding_system_history, Qnil, Qnil);
6162 }
6163 while (XSTRING (val)->size == 0);
6164 return (Fintern (val, Qnil));
6165 }
6166
6167 DEFUN ("read-coding-system", Fread_coding_system, Sread_coding_system, 1, 2, 0,
6168 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT.
6169 If the user enters null input, return second argument DEFAULT-CODING-SYSTEM. */)
6170 (prompt, default_coding_system)
6171 Lisp_Object prompt, default_coding_system;
6172 {
6173 Lisp_Object val;
6174 if (SYMBOLP (default_coding_system))
6175 default_coding_system = SYMBOL_NAME (default_coding_system);
6176 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
6177 Qt, Qnil, Qcoding_system_history,
6178 default_coding_system, Qnil);
6179 return (XSTRING (val)->size == 0 ? Qnil : Fintern (val, Qnil));
6180 }
6181
6182 DEFUN ("check-coding-system", Fcheck_coding_system, Scheck_coding_system,
6183 1, 1, 0,
6184 doc: /* Check validity of CODING-SYSTEM.
6185 If valid, return CODING-SYSTEM, else signal a `coding-system-error' error.
6186 It is valid if it is a symbol with a non-nil `coding-system' property.
6187 The value of property should be a vector of length 5. */)
6188 (coding_system)
6189 Lisp_Object coding_system;
6190 {
6191 CHECK_SYMBOL (coding_system);
6192 if (!NILP (Fcoding_system_p (coding_system)))
6193 return coding_system;
6194 while (1)
6195 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
6196 }
6197 \f
6198 Lisp_Object
6199 detect_coding_system (src, src_bytes, highest, multibytep)
6200 unsigned char *src;
6201 int src_bytes, highest;
6202 int multibytep;
6203 {
6204 int coding_mask, eol_type;
6205 Lisp_Object val, tmp;
6206 int dummy;
6207
6208 coding_mask = detect_coding_mask (src, src_bytes, NULL, &dummy, multibytep);
6209 eol_type = detect_eol_type (src, src_bytes, &dummy);
6210 if (eol_type == CODING_EOL_INCONSISTENT)
6211 eol_type = CODING_EOL_UNDECIDED;
6212
6213 if (!coding_mask)
6214 {
6215 val = Qundecided;
6216 if (eol_type != CODING_EOL_UNDECIDED)
6217 {
6218 Lisp_Object val2;
6219 val2 = Fget (Qundecided, Qeol_type);
6220 if (VECTORP (val2))
6221 val = XVECTOR (val2)->contents[eol_type];
6222 }
6223 return (highest ? val : Fcons (val, Qnil));
6224 }
6225
6226 /* At first, gather possible coding systems in VAL. */
6227 val = Qnil;
6228 for (tmp = Vcoding_category_list; CONSP (tmp); tmp = XCDR (tmp))
6229 {
6230 Lisp_Object category_val, category_index;
6231
6232 category_index = Fget (XCAR (tmp), Qcoding_category_index);
6233 category_val = Fsymbol_value (XCAR (tmp));
6234 if (!NILP (category_val)
6235 && NATNUMP (category_index)
6236 && (coding_mask & (1 << XFASTINT (category_index))))
6237 {
6238 val = Fcons (category_val, val);
6239 if (highest)
6240 break;
6241 }
6242 }
6243 if (!highest)
6244 val = Fnreverse (val);
6245
6246 /* Then, replace the elements with subsidiary coding systems. */
6247 for (tmp = val; CONSP (tmp); tmp = XCDR (tmp))
6248 {
6249 if (eol_type != CODING_EOL_UNDECIDED
6250 && eol_type != CODING_EOL_INCONSISTENT)
6251 {
6252 Lisp_Object eol;
6253 eol = Fget (XCAR (tmp), Qeol_type);
6254 if (VECTORP (eol))
6255 XSETCAR (tmp, XVECTOR (eol)->contents[eol_type]);
6256 }
6257 }
6258 return (highest ? XCAR (val) : val);
6259 }
6260
6261 DEFUN ("detect-coding-region", Fdetect_coding_region, Sdetect_coding_region,
6262 2, 3, 0,
6263 doc: /* Detect coding system of the text in the region between START and END.
6264 Return a list of possible coding systems ordered by priority.
6265
6266 If only ASCII characters are found, it returns a list of single element
6267 `undecided' or its subsidiary coding system according to a detected
6268 end-of-line format.
6269
6270 If optional argument HIGHEST is non-nil, return the coding system of
6271 highest priority. */)
6272 (start, end, highest)
6273 Lisp_Object start, end, highest;
6274 {
6275 int from, to;
6276 int from_byte, to_byte;
6277 int include_anchor_byte = 0;
6278
6279 CHECK_NUMBER_COERCE_MARKER (start);
6280 CHECK_NUMBER_COERCE_MARKER (end);
6281
6282 validate_region (&start, &end);
6283 from = XINT (start), to = XINT (end);
6284 from_byte = CHAR_TO_BYTE (from);
6285 to_byte = CHAR_TO_BYTE (to);
6286
6287 if (from < GPT && to >= GPT)
6288 move_gap_both (to, to_byte);
6289 /* If we an anchor byte `\0' follows the region, we include it in
6290 the detecting source. Then code detectors can handle the tailing
6291 byte sequence more accurately.
6292
6293 Fix me: This is not an perfect solution. It is better that we
6294 add one more argument, say LAST_BLOCK, to all detect_coding_XXX.
6295 */
6296 if (to == Z || (to == GPT && GAP_SIZE > 0))
6297 include_anchor_byte = 1;
6298 return detect_coding_system (BYTE_POS_ADDR (from_byte),
6299 to_byte - from_byte + include_anchor_byte,
6300 !NILP (highest),
6301 !NILP (current_buffer
6302 ->enable_multibyte_characters));
6303 }
6304
6305 DEFUN ("detect-coding-string", Fdetect_coding_string, Sdetect_coding_string,
6306 1, 2, 0,
6307 doc: /* Detect coding system of the text in STRING.
6308 Return a list of possible coding systems ordered by priority.
6309
6310 If only ASCII characters are found, it returns a list of single element
6311 `undecided' or its subsidiary coding system according to a detected
6312 end-of-line format.
6313
6314 If optional argument HIGHEST is non-nil, return the coding system of
6315 highest priority. */)
6316 (string, highest)
6317 Lisp_Object string, highest;
6318 {
6319 CHECK_STRING (string);
6320
6321 return detect_coding_system (XSTRING (string)->data,
6322 /* "+ 1" is to include the anchor byte
6323 `\0'. With this, code detectors can
6324 handle the tailing bytes more
6325 accurately. */
6326 STRING_BYTES (XSTRING (string)) + 1,
6327 !NILP (highest),
6328 STRING_MULTIBYTE (string));
6329 }
6330
6331 /* Return an intersection of lists L1 and L2. */
6332
6333 static Lisp_Object
6334 intersection (l1, l2)
6335 Lisp_Object l1, l2;
6336 {
6337 Lisp_Object val = Fcons (Qnil, Qnil), tail;
6338
6339 for (tail = val; CONSP (l1); l1 = XCDR (l1))
6340 {
6341 if (!NILP (Fmemq (XCAR (l1), l2)))
6342 {
6343 XSETCDR (tail, Fcons (XCAR (l1), Qnil));
6344 tail = XCDR (tail);
6345 }
6346 }
6347 return XCDR (val);
6348 }
6349
6350
6351 /* Subroutine for Fsafe_coding_systems_region_internal.
6352
6353 Return a list of coding systems that safely encode the multibyte
6354 text between P and PEND. SAFE_CODINGS, if non-nil, is a list of
6355 possible coding systems. If it is nil, it means that we have not
6356 yet found any coding systems.
6357
6358 WORK_TABLE is a copy of the char-table Vchar_coding_system_table. An
6359 element of WORK_TABLE is set to t once the element is looked up.
6360
6361 If a non-ASCII single byte char is found, set
6362 *single_byte_char_found to 1. */
6363
6364 static Lisp_Object
6365 find_safe_codings (p, pend, safe_codings, work_table, single_byte_char_found)
6366 unsigned char *p, *pend;
6367 Lisp_Object safe_codings, work_table;
6368 int *single_byte_char_found;
6369 {
6370 int c, len, idx;
6371 Lisp_Object val;
6372
6373 while (p < pend)
6374 {
6375 c = STRING_CHAR_AND_LENGTH (p, pend - p, len);
6376 p += len;
6377 if (ASCII_BYTE_P (c))
6378 /* We can ignore ASCII characters here. */
6379 continue;
6380 if (SINGLE_BYTE_CHAR_P (c))
6381 *single_byte_char_found = 1;
6382 if (NILP (safe_codings))
6383 continue;
6384 /* Check the safe coding systems for C. */
6385 val = char_table_ref_and_index (work_table, c, &idx);
6386 if (EQ (val, Qt))
6387 /* This element was already checked. Ignore it. */
6388 continue;
6389 /* Remember that we checked this element. */
6390 CHAR_TABLE_SET (work_table, make_number (idx), Qt);
6391
6392 /* If there are some safe coding systems for C and we have
6393 already found the other set of coding systems for the
6394 different characters, get the intersection of them. */
6395 if (!EQ (safe_codings, Qt) && !NILP (val))
6396 val = intersection (safe_codings, val);
6397 safe_codings = val;
6398 }
6399 return safe_codings;
6400 }
6401
6402
6403 /* Return a list of coding systems that safely encode the text between
6404 START and END. If the text contains only ASCII or is unibyte,
6405 return t. */
6406
6407 DEFUN ("find-coding-systems-region-internal",
6408 Ffind_coding_systems_region_internal,
6409 Sfind_coding_systems_region_internal, 2, 2, 0,
6410 doc: /* Internal use only. */)
6411 (start, end)
6412 Lisp_Object start, end;
6413 {
6414 Lisp_Object work_table, safe_codings;
6415 int non_ascii_p = 0;
6416 int single_byte_char_found = 0;
6417 unsigned char *p1, *p1end, *p2, *p2end, *p;
6418
6419 if (STRINGP (start))
6420 {
6421 if (!STRING_MULTIBYTE (start))
6422 return Qt;
6423 p1 = XSTRING (start)->data, p1end = p1 + STRING_BYTES (XSTRING (start));
6424 p2 = p2end = p1end;
6425 if (XSTRING (start)->size != STRING_BYTES (XSTRING (start)))
6426 non_ascii_p = 1;
6427 }
6428 else
6429 {
6430 int from, to, stop;
6431
6432 CHECK_NUMBER_COERCE_MARKER (start);
6433 CHECK_NUMBER_COERCE_MARKER (end);
6434 if (XINT (start) < BEG || XINT (end) > Z || XINT (start) > XINT (end))
6435 args_out_of_range (start, end);
6436 if (NILP (current_buffer->enable_multibyte_characters))
6437 return Qt;
6438 from = CHAR_TO_BYTE (XINT (start));
6439 to = CHAR_TO_BYTE (XINT (end));
6440 stop = from < GPT_BYTE && GPT_BYTE < to ? GPT_BYTE : to;
6441 p1 = BYTE_POS_ADDR (from), p1end = p1 + (stop - from);
6442 if (stop == to)
6443 p2 = p2end = p1end;
6444 else
6445 p2 = BYTE_POS_ADDR (stop), p2end = p2 + (to - stop);
6446 if (XINT (end) - XINT (start) != to - from)
6447 non_ascii_p = 1;
6448 }
6449
6450 if (!non_ascii_p)
6451 {
6452 /* We are sure that the text contains no multibyte character.
6453 Check if it contains eight-bit-graphic. */
6454 p = p1;
6455 for (p = p1; p < p1end && ASCII_BYTE_P (*p); p++);
6456 if (p == p1end)
6457 {
6458 for (p = p2; p < p2end && ASCII_BYTE_P (*p); p++);
6459 if (p == p2end)
6460 return Qt;
6461 }
6462 }
6463
6464 /* The text contains non-ASCII characters. */
6465 work_table = Fcopy_sequence (Vchar_coding_system_table);
6466 safe_codings = find_safe_codings (p1, p1end, Qt, work_table,
6467 &single_byte_char_found);
6468 if (p2 < p2end)
6469 safe_codings = find_safe_codings (p2, p2end, safe_codings, work_table,
6470 &single_byte_char_found);
6471
6472 if (EQ (safe_codings, Qt))
6473 ; /* Nothing to be done. */
6474 else if (!single_byte_char_found)
6475 {
6476 /* Append generic coding systems. */
6477 Lisp_Object args[2];
6478 args[0] = safe_codings;
6479 args[1] = Fchar_table_extra_slot (Vchar_coding_system_table,
6480 make_number (0));
6481 safe_codings = Fappend (2, args);
6482 }
6483 else
6484 safe_codings = Fcons (Qraw_text,
6485 Fcons (Qemacs_mule,
6486 Fcons (Qno_conversion, safe_codings)));
6487 return safe_codings;
6488 }
6489
6490
6491 Lisp_Object
6492 code_convert_region1 (start, end, coding_system, encodep)
6493 Lisp_Object start, end, coding_system;
6494 int encodep;
6495 {
6496 struct coding_system coding;
6497 int from, to;
6498
6499 CHECK_NUMBER_COERCE_MARKER (start);
6500 CHECK_NUMBER_COERCE_MARKER (end);
6501 CHECK_SYMBOL (coding_system);
6502
6503 validate_region (&start, &end);
6504 from = XFASTINT (start);
6505 to = XFASTINT (end);
6506
6507 if (NILP (coding_system))
6508 return make_number (to - from);
6509
6510 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
6511 error ("Invalid coding system: %s", XSTRING (SYMBOL_NAME (coding_system))->data);
6512
6513 coding.mode |= CODING_MODE_LAST_BLOCK;
6514 coding.src_multibyte = coding.dst_multibyte
6515 = !NILP (current_buffer->enable_multibyte_characters);
6516 code_convert_region (from, CHAR_TO_BYTE (from), to, CHAR_TO_BYTE (to),
6517 &coding, encodep, 1);
6518 Vlast_coding_system_used = coding.symbol;
6519 return make_number (coding.produced_char);
6520 }
6521
6522 DEFUN ("decode-coding-region", Fdecode_coding_region, Sdecode_coding_region,
6523 3, 3, "r\nzCoding system: ",
6524 doc: /* Decode the current region from the specified coding system.
6525 When called from a program, takes three arguments:
6526 START, END, and CODING-SYSTEM. START and END are buffer positions.
6527 This function sets `last-coding-system-used' to the precise coding system
6528 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
6529 not fully specified.)
6530 It returns the length of the decoded text. */)
6531 (start, end, coding_system)
6532 Lisp_Object start, end, coding_system;
6533 {
6534 return code_convert_region1 (start, end, coding_system, 0);
6535 }
6536
6537 DEFUN ("encode-coding-region", Fencode_coding_region, Sencode_coding_region,
6538 3, 3, "r\nzCoding system: ",
6539 doc: /* Encode the current region into the specified coding system.
6540 When called from a program, takes three arguments:
6541 START, END, and CODING-SYSTEM. START and END are buffer positions.
6542 This function sets `last-coding-system-used' to the precise coding system
6543 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
6544 not fully specified.)
6545 It returns the length of the encoded text. */)
6546 (start, end, coding_system)
6547 Lisp_Object start, end, coding_system;
6548 {
6549 return code_convert_region1 (start, end, coding_system, 1);
6550 }
6551
6552 Lisp_Object
6553 code_convert_string1 (string, coding_system, nocopy, encodep)
6554 Lisp_Object string, coding_system, nocopy;
6555 int encodep;
6556 {
6557 struct coding_system coding;
6558
6559 CHECK_STRING (string);
6560 CHECK_SYMBOL (coding_system);
6561
6562 if (NILP (coding_system))
6563 return (NILP (nocopy) ? Fcopy_sequence (string) : string);
6564
6565 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
6566 error ("Invalid coding system: %s", XSTRING (SYMBOL_NAME (coding_system))->data);
6567
6568 coding.mode |= CODING_MODE_LAST_BLOCK;
6569 string = (encodep
6570 ? encode_coding_string (string, &coding, !NILP (nocopy))
6571 : decode_coding_string (string, &coding, !NILP (nocopy)));
6572 Vlast_coding_system_used = coding.symbol;
6573
6574 return string;
6575 }
6576
6577 DEFUN ("decode-coding-string", Fdecode_coding_string, Sdecode_coding_string,
6578 2, 3, 0,
6579 doc: /* Decode STRING which is encoded in CODING-SYSTEM, and return the result.
6580 Optional arg NOCOPY non-nil means it is OK to return STRING itself
6581 if the decoding operation is trivial.
6582 This function sets `last-coding-system-used' to the precise coding system
6583 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
6584 not fully specified.) */)
6585 (string, coding_system, nocopy)
6586 Lisp_Object string, coding_system, nocopy;
6587 {
6588 return code_convert_string1 (string, coding_system, nocopy, 0);
6589 }
6590
6591 DEFUN ("encode-coding-string", Fencode_coding_string, Sencode_coding_string,
6592 2, 3, 0,
6593 doc: /* Encode STRING to CODING-SYSTEM, and return the result.
6594 Optional arg NOCOPY non-nil means it is OK to return STRING itself
6595 if the encoding operation is trivial.
6596 This function sets `last-coding-system-used' to the precise coding system
6597 used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
6598 not fully specified.) */)
6599 (string, coding_system, nocopy)
6600 Lisp_Object string, coding_system, nocopy;
6601 {
6602 return code_convert_string1 (string, coding_system, nocopy, 1);
6603 }
6604
6605 /* Encode or decode STRING according to CODING_SYSTEM.
6606 Do not set Vlast_coding_system_used.
6607
6608 This function is called only from macros DECODE_FILE and
6609 ENCODE_FILE, thus we ignore character composition. */
6610
6611 Lisp_Object
6612 code_convert_string_norecord (string, coding_system, encodep)
6613 Lisp_Object string, coding_system;
6614 int encodep;
6615 {
6616 struct coding_system coding;
6617
6618 CHECK_STRING (string);
6619 CHECK_SYMBOL (coding_system);
6620
6621 if (NILP (coding_system))
6622 return string;
6623
6624 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
6625 error ("Invalid coding system: %s", XSTRING (SYMBOL_NAME (coding_system))->data);
6626
6627 coding.composing = COMPOSITION_DISABLED;
6628 coding.mode |= CODING_MODE_LAST_BLOCK;
6629 return (encodep
6630 ? encode_coding_string (string, &coding, 1)
6631 : decode_coding_string (string, &coding, 1));
6632 }
6633 \f
6634 DEFUN ("decode-sjis-char", Fdecode_sjis_char, Sdecode_sjis_char, 1, 1, 0,
6635 doc: /* Decode a Japanese character which has CODE in shift_jis encoding.
6636 Return the corresponding character. */)
6637 (code)
6638 Lisp_Object code;
6639 {
6640 unsigned char c1, c2, s1, s2;
6641 Lisp_Object val;
6642
6643 CHECK_NUMBER (code);
6644 s1 = (XFASTINT (code)) >> 8, s2 = (XFASTINT (code)) & 0xFF;
6645 if (s1 == 0)
6646 {
6647 if (s2 < 0x80)
6648 XSETFASTINT (val, s2);
6649 else if (s2 >= 0xA0 || s2 <= 0xDF)
6650 XSETFASTINT (val, MAKE_CHAR (charset_katakana_jisx0201, s2, 0));
6651 else
6652 error ("Invalid Shift JIS code: %x", XFASTINT (code));
6653 }
6654 else
6655 {
6656 if ((s1 < 0x80 || (s1 > 0x9F && s1 < 0xE0) || s1 > 0xEF)
6657 || (s2 < 0x40 || s2 == 0x7F || s2 > 0xFC))
6658 error ("Invalid Shift JIS code: %x", XFASTINT (code));
6659 DECODE_SJIS (s1, s2, c1, c2);
6660 XSETFASTINT (val, MAKE_CHAR (charset_jisx0208, c1, c2));
6661 }
6662 return val;
6663 }
6664
6665 DEFUN ("encode-sjis-char", Fencode_sjis_char, Sencode_sjis_char, 1, 1, 0,
6666 doc: /* Encode a Japanese character CHAR to shift_jis encoding.
6667 Return the corresponding code in SJIS. */)
6668 (ch)
6669 Lisp_Object ch;
6670 {
6671 int charset, c1, c2, s1, s2;
6672 Lisp_Object val;
6673
6674 CHECK_NUMBER (ch);
6675 SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
6676 if (charset == CHARSET_ASCII)
6677 {
6678 val = ch;
6679 }
6680 else if (charset == charset_jisx0208
6681 && c1 > 0x20 && c1 < 0x7F && c2 > 0x20 && c2 < 0x7F)
6682 {
6683 ENCODE_SJIS (c1, c2, s1, s2);
6684 XSETFASTINT (val, (s1 << 8) | s2);
6685 }
6686 else if (charset == charset_katakana_jisx0201
6687 && c1 > 0x20 && c2 < 0xE0)
6688 {
6689 XSETFASTINT (val, c1 | 0x80);
6690 }
6691 else
6692 error ("Can't encode to shift_jis: %d", XFASTINT (ch));
6693 return val;
6694 }
6695
6696 DEFUN ("decode-big5-char", Fdecode_big5_char, Sdecode_big5_char, 1, 1, 0,
6697 doc: /* Decode a Big5 character which has CODE in BIG5 coding system.
6698 Return the corresponding character. */)
6699 (code)
6700 Lisp_Object code;
6701 {
6702 int charset;
6703 unsigned char b1, b2, c1, c2;
6704 Lisp_Object val;
6705
6706 CHECK_NUMBER (code);
6707 b1 = (XFASTINT (code)) >> 8, b2 = (XFASTINT (code)) & 0xFF;
6708 if (b1 == 0)
6709 {
6710 if (b2 >= 0x80)
6711 error ("Invalid BIG5 code: %x", XFASTINT (code));
6712 val = code;
6713 }
6714 else
6715 {
6716 if ((b1 < 0xA1 || b1 > 0xFE)
6717 || (b2 < 0x40 || (b2 > 0x7E && b2 < 0xA1) || b2 > 0xFE))
6718 error ("Invalid BIG5 code: %x", XFASTINT (code));
6719 DECODE_BIG5 (b1, b2, charset, c1, c2);
6720 XSETFASTINT (val, MAKE_CHAR (charset, c1, c2));
6721 }
6722 return val;
6723 }
6724
6725 DEFUN ("encode-big5-char", Fencode_big5_char, Sencode_big5_char, 1, 1, 0,
6726 doc: /* Encode the Big5 character CHAR to BIG5 coding system.
6727 Return the corresponding character code in Big5. */)
6728 (ch)
6729 Lisp_Object ch;
6730 {
6731 int charset, c1, c2, b1, b2;
6732 Lisp_Object val;
6733
6734 CHECK_NUMBER (ch);
6735 SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
6736 if (charset == CHARSET_ASCII)
6737 {
6738 val = ch;
6739 }
6740 else if ((charset == charset_big5_1
6741 && (XFASTINT (ch) >= 0x250a1 && XFASTINT (ch) <= 0x271ec))
6742 || (charset == charset_big5_2
6743 && XFASTINT (ch) >= 0x290a1 && XFASTINT (ch) <= 0x2bdb2))
6744 {
6745 ENCODE_BIG5 (charset, c1, c2, b1, b2);
6746 XSETFASTINT (val, (b1 << 8) | b2);
6747 }
6748 else
6749 error ("Can't encode to Big5: %d", XFASTINT (ch));
6750 return val;
6751 }
6752 \f
6753 DEFUN ("set-terminal-coding-system-internal",
6754 Fset_terminal_coding_system_internal,
6755 Sset_terminal_coding_system_internal, 1, 1, 0,
6756 doc: /* Internal use only. */)
6757 (coding_system)
6758 Lisp_Object coding_system;
6759 {
6760 CHECK_SYMBOL (coding_system);
6761 setup_coding_system (Fcheck_coding_system (coding_system), &terminal_coding);
6762 /* We had better not send unsafe characters to terminal. */
6763 terminal_coding.flags |= CODING_FLAG_ISO_SAFE;
6764 /* Character composition should be disabled. */
6765 terminal_coding.composing = COMPOSITION_DISABLED;
6766 /* Error notification should be suppressed. */
6767 terminal_coding.suppress_error = 1;
6768 terminal_coding.src_multibyte = 1;
6769 terminal_coding.dst_multibyte = 0;
6770 return Qnil;
6771 }
6772
6773 DEFUN ("set-safe-terminal-coding-system-internal",
6774 Fset_safe_terminal_coding_system_internal,
6775 Sset_safe_terminal_coding_system_internal, 1, 1, 0,
6776 doc: /* Internal use only. */)
6777 (coding_system)
6778 Lisp_Object coding_system;
6779 {
6780 CHECK_SYMBOL (coding_system);
6781 setup_coding_system (Fcheck_coding_system (coding_system),
6782 &safe_terminal_coding);
6783 /* Character composition should be disabled. */
6784 safe_terminal_coding.composing = COMPOSITION_DISABLED;
6785 /* Error notification should be suppressed. */
6786 terminal_coding.suppress_error = 1;
6787 safe_terminal_coding.src_multibyte = 1;
6788 safe_terminal_coding.dst_multibyte = 0;
6789 return Qnil;
6790 }
6791
6792 DEFUN ("terminal-coding-system",
6793 Fterminal_coding_system, Sterminal_coding_system, 0, 0, 0,
6794 doc: /* Return coding system specified for terminal output. */)
6795 ()
6796 {
6797 return terminal_coding.symbol;
6798 }
6799
6800 DEFUN ("set-keyboard-coding-system-internal",
6801 Fset_keyboard_coding_system_internal,
6802 Sset_keyboard_coding_system_internal, 1, 1, 0,
6803 doc: /* Internal use only. */)
6804 (coding_system)
6805 Lisp_Object coding_system;
6806 {
6807 CHECK_SYMBOL (coding_system);
6808 setup_coding_system (Fcheck_coding_system (coding_system), &keyboard_coding);
6809 /* Character composition should be disabled. */
6810 keyboard_coding.composing = COMPOSITION_DISABLED;
6811 return Qnil;
6812 }
6813
6814 DEFUN ("keyboard-coding-system",
6815 Fkeyboard_coding_system, Skeyboard_coding_system, 0, 0, 0,
6816 doc: /* Return coding system specified for decoding keyboard input. */)
6817 ()
6818 {
6819 return keyboard_coding.symbol;
6820 }
6821
6822 \f
6823 DEFUN ("find-operation-coding-system", Ffind_operation_coding_system,
6824 Sfind_operation_coding_system, 1, MANY, 0,
6825 doc: /* Choose a coding system for an operation based on the target name.
6826 The value names a pair of coding systems: (DECODING-SYSTEM . ENCODING-SYSTEM).
6827 DECODING-SYSTEM is the coding system to use for decoding
6828 \(in case OPERATION does decoding), and ENCODING-SYSTEM is the coding system
6829 for encoding (in case OPERATION does encoding).
6830
6831 The first argument OPERATION specifies an I/O primitive:
6832 For file I/O, `insert-file-contents' or `write-region'.
6833 For process I/O, `call-process', `call-process-region', or `start-process'.
6834 For network I/O, `open-network-stream'.
6835
6836 The remaining arguments should be the same arguments that were passed
6837 to the primitive. Depending on which primitive, one of those arguments
6838 is selected as the TARGET. For example, if OPERATION does file I/O,
6839 whichever argument specifies the file name is TARGET.
6840
6841 TARGET has a meaning which depends on OPERATION:
6842 For file I/O, TARGET is a file name.
6843 For process I/O, TARGET is a process name.
6844 For network I/O, TARGET is a service name or a port number
6845
6846 This function looks up what specified for TARGET in,
6847 `file-coding-system-alist', `process-coding-system-alist',
6848 or `network-coding-system-alist' depending on OPERATION.
6849 They may specify a coding system, a cons of coding systems,
6850 or a function symbol to call.
6851 In the last case, we call the function with one argument,
6852 which is a list of all the arguments given to this function.
6853
6854 usage: (find-operation-coding-system OPERATION ARGUMENTS ...) */)
6855 (nargs, args)
6856 int nargs;
6857 Lisp_Object *args;
6858 {
6859 Lisp_Object operation, target_idx, target, val;
6860 register Lisp_Object chain;
6861
6862 if (nargs < 2)
6863 error ("Too few arguments");
6864 operation = args[0];
6865 if (!SYMBOLP (operation)
6866 || !INTEGERP (target_idx = Fget (operation, Qtarget_idx)))
6867 error ("Invalid first argument");
6868 if (nargs < 1 + XINT (target_idx))
6869 error ("Too few arguments for operation: %s",
6870 XSTRING (SYMBOL_NAME (operation))->data);
6871 target = args[XINT (target_idx) + 1];
6872 if (!(STRINGP (target)
6873 || (EQ (operation, Qopen_network_stream) && INTEGERP (target))))
6874 error ("Invalid argument %d", XINT (target_idx) + 1);
6875
6876 chain = ((EQ (operation, Qinsert_file_contents)
6877 || EQ (operation, Qwrite_region))
6878 ? Vfile_coding_system_alist
6879 : (EQ (operation, Qopen_network_stream)
6880 ? Vnetwork_coding_system_alist
6881 : Vprocess_coding_system_alist));
6882 if (NILP (chain))
6883 return Qnil;
6884
6885 for (; CONSP (chain); chain = XCDR (chain))
6886 {
6887 Lisp_Object elt;
6888 elt = XCAR (chain);
6889
6890 if (CONSP (elt)
6891 && ((STRINGP (target)
6892 && STRINGP (XCAR (elt))
6893 && fast_string_match (XCAR (elt), target) >= 0)
6894 || (INTEGERP (target) && EQ (target, XCAR (elt)))))
6895 {
6896 val = XCDR (elt);
6897 /* Here, if VAL is both a valid coding system and a valid
6898 function symbol, we return VAL as a coding system. */
6899 if (CONSP (val))
6900 return val;
6901 if (! SYMBOLP (val))
6902 return Qnil;
6903 if (! NILP (Fcoding_system_p (val)))
6904 return Fcons (val, val);
6905 if (! NILP (Ffboundp (val)))
6906 {
6907 val = call1 (val, Flist (nargs, args));
6908 if (CONSP (val))
6909 return val;
6910 if (SYMBOLP (val) && ! NILP (Fcoding_system_p (val)))
6911 return Fcons (val, val);
6912 }
6913 return Qnil;
6914 }
6915 }
6916 return Qnil;
6917 }
6918
6919 DEFUN ("update-coding-systems-internal", Fupdate_coding_systems_internal,
6920 Supdate_coding_systems_internal, 0, 0, 0,
6921 doc: /* Update internal database for ISO2022 and CCL based coding systems.
6922 When values of any coding categories are changed, you must
6923 call this function. */)
6924 ()
6925 {
6926 int i;
6927
6928 for (i = CODING_CATEGORY_IDX_EMACS_MULE; i < CODING_CATEGORY_IDX_MAX; i++)
6929 {
6930 Lisp_Object val;
6931
6932 val = SYMBOL_VALUE (XVECTOR (Vcoding_category_table)->contents[i]);
6933 if (!NILP (val))
6934 {
6935 if (! coding_system_table[i])
6936 coding_system_table[i] = ((struct coding_system *)
6937 xmalloc (sizeof (struct coding_system)));
6938 setup_coding_system (val, coding_system_table[i]);
6939 }
6940 else if (coding_system_table[i])
6941 {
6942 xfree (coding_system_table[i]);
6943 coding_system_table[i] = NULL;
6944 }
6945 }
6946
6947 return Qnil;
6948 }
6949
6950 DEFUN ("set-coding-priority-internal", Fset_coding_priority_internal,
6951 Sset_coding_priority_internal, 0, 0, 0,
6952 doc: /* Update internal database for the current value of `coding-category-list'.
6953 This function is internal use only. */)
6954 ()
6955 {
6956 int i = 0, idx;
6957 Lisp_Object val;
6958
6959 val = Vcoding_category_list;
6960
6961 while (CONSP (val) && i < CODING_CATEGORY_IDX_MAX)
6962 {
6963 if (! SYMBOLP (XCAR (val)))
6964 break;
6965 idx = XFASTINT (Fget (XCAR (val), Qcoding_category_index));
6966 if (idx >= CODING_CATEGORY_IDX_MAX)
6967 break;
6968 coding_priorities[i++] = (1 << idx);
6969 val = XCDR (val);
6970 }
6971 /* If coding-category-list is valid and contains all coding
6972 categories, `i' should be CODING_CATEGORY_IDX_MAX now. If not,
6973 the following code saves Emacs from crashing. */
6974 while (i < CODING_CATEGORY_IDX_MAX)
6975 coding_priorities[i++] = CODING_CATEGORY_MASK_RAW_TEXT;
6976
6977 return Qnil;
6978 }
6979
6980 #endif /* emacs */
6981
6982 \f
6983 /*** 9. Post-amble ***/
6984
6985 void
6986 init_coding_once ()
6987 {
6988 int i;
6989
6990 /* Emacs' internal format specific initialize routine. */
6991 for (i = 0; i <= 0x20; i++)
6992 emacs_code_class[i] = EMACS_control_code;
6993 emacs_code_class[0x0A] = EMACS_linefeed_code;
6994 emacs_code_class[0x0D] = EMACS_carriage_return_code;
6995 for (i = 0x21 ; i < 0x7F; i++)
6996 emacs_code_class[i] = EMACS_ascii_code;
6997 emacs_code_class[0x7F] = EMACS_control_code;
6998 for (i = 0x80; i < 0xFF; i++)
6999 emacs_code_class[i] = EMACS_invalid_code;
7000 emacs_code_class[LEADING_CODE_PRIVATE_11] = EMACS_leading_code_3;
7001 emacs_code_class[LEADING_CODE_PRIVATE_12] = EMACS_leading_code_3;
7002 emacs_code_class[LEADING_CODE_PRIVATE_21] = EMACS_leading_code_4;
7003 emacs_code_class[LEADING_CODE_PRIVATE_22] = EMACS_leading_code_4;
7004
7005 /* ISO2022 specific initialize routine. */
7006 for (i = 0; i < 0x20; i++)
7007 iso_code_class[i] = ISO_control_0;
7008 for (i = 0x21; i < 0x7F; i++)
7009 iso_code_class[i] = ISO_graphic_plane_0;
7010 for (i = 0x80; i < 0xA0; i++)
7011 iso_code_class[i] = ISO_control_1;
7012 for (i = 0xA1; i < 0xFF; i++)
7013 iso_code_class[i] = ISO_graphic_plane_1;
7014 iso_code_class[0x20] = iso_code_class[0x7F] = ISO_0x20_or_0x7F;
7015 iso_code_class[0xA0] = iso_code_class[0xFF] = ISO_0xA0_or_0xFF;
7016 iso_code_class[ISO_CODE_CR] = ISO_carriage_return;
7017 iso_code_class[ISO_CODE_SO] = ISO_shift_out;
7018 iso_code_class[ISO_CODE_SI] = ISO_shift_in;
7019 iso_code_class[ISO_CODE_SS2_7] = ISO_single_shift_2_7;
7020 iso_code_class[ISO_CODE_ESC] = ISO_escape;
7021 iso_code_class[ISO_CODE_SS2] = ISO_single_shift_2;
7022 iso_code_class[ISO_CODE_SS3] = ISO_single_shift_3;
7023 iso_code_class[ISO_CODE_CSI] = ISO_control_sequence_introducer;
7024
7025 setup_coding_system (Qnil, &keyboard_coding);
7026 setup_coding_system (Qnil, &terminal_coding);
7027 setup_coding_system (Qnil, &safe_terminal_coding);
7028 setup_coding_system (Qnil, &default_buffer_file_coding);
7029
7030 bzero (coding_system_table, sizeof coding_system_table);
7031
7032 bzero (ascii_skip_code, sizeof ascii_skip_code);
7033 for (i = 0; i < 128; i++)
7034 ascii_skip_code[i] = 1;
7035
7036 #if defined (MSDOS) || defined (WINDOWSNT)
7037 system_eol_type = CODING_EOL_CRLF;
7038 #else
7039 system_eol_type = CODING_EOL_LF;
7040 #endif
7041
7042 inhibit_pre_post_conversion = 0;
7043 }
7044
7045 #ifdef emacs
7046
7047 void
7048 syms_of_coding ()
7049 {
7050 Qtarget_idx = intern ("target-idx");
7051 staticpro (&Qtarget_idx);
7052
7053 Qcoding_system_history = intern ("coding-system-history");
7054 staticpro (&Qcoding_system_history);
7055 Fset (Qcoding_system_history, Qnil);
7056
7057 /* Target FILENAME is the first argument. */
7058 Fput (Qinsert_file_contents, Qtarget_idx, make_number (0));
7059 /* Target FILENAME is the third argument. */
7060 Fput (Qwrite_region, Qtarget_idx, make_number (2));
7061
7062 Qcall_process = intern ("call-process");
7063 staticpro (&Qcall_process);
7064 /* Target PROGRAM is the first argument. */
7065 Fput (Qcall_process, Qtarget_idx, make_number (0));
7066
7067 Qcall_process_region = intern ("call-process-region");
7068 staticpro (&Qcall_process_region);
7069 /* Target PROGRAM is the third argument. */
7070 Fput (Qcall_process_region, Qtarget_idx, make_number (2));
7071
7072 Qstart_process = intern ("start-process");
7073 staticpro (&Qstart_process);
7074 /* Target PROGRAM is the third argument. */
7075 Fput (Qstart_process, Qtarget_idx, make_number (2));
7076
7077 Qopen_network_stream = intern ("open-network-stream");
7078 staticpro (&Qopen_network_stream);
7079 /* Target SERVICE is the fourth argument. */
7080 Fput (Qopen_network_stream, Qtarget_idx, make_number (3));
7081
7082 Qcoding_system = intern ("coding-system");
7083 staticpro (&Qcoding_system);
7084
7085 Qeol_type = intern ("eol-type");
7086 staticpro (&Qeol_type);
7087
7088 Qbuffer_file_coding_system = intern ("buffer-file-coding-system");
7089 staticpro (&Qbuffer_file_coding_system);
7090
7091 Qpost_read_conversion = intern ("post-read-conversion");
7092 staticpro (&Qpost_read_conversion);
7093
7094 Qpre_write_conversion = intern ("pre-write-conversion");
7095 staticpro (&Qpre_write_conversion);
7096
7097 Qno_conversion = intern ("no-conversion");
7098 staticpro (&Qno_conversion);
7099
7100 Qundecided = intern ("undecided");
7101 staticpro (&Qundecided);
7102
7103 Qcoding_system_p = intern ("coding-system-p");
7104 staticpro (&Qcoding_system_p);
7105
7106 Qcoding_system_error = intern ("coding-system-error");
7107 staticpro (&Qcoding_system_error);
7108
7109 Fput (Qcoding_system_error, Qerror_conditions,
7110 Fcons (Qcoding_system_error, Fcons (Qerror, Qnil)));
7111 Fput (Qcoding_system_error, Qerror_message,
7112 build_string ("Invalid coding system"));
7113
7114 Qcoding_category = intern ("coding-category");
7115 staticpro (&Qcoding_category);
7116 Qcoding_category_index = intern ("coding-category-index");
7117 staticpro (&Qcoding_category_index);
7118
7119 Vcoding_category_table
7120 = Fmake_vector (make_number (CODING_CATEGORY_IDX_MAX), Qnil);
7121 staticpro (&Vcoding_category_table);
7122 {
7123 int i;
7124 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
7125 {
7126 XVECTOR (Vcoding_category_table)->contents[i]
7127 = intern (coding_category_name[i]);
7128 Fput (XVECTOR (Vcoding_category_table)->contents[i],
7129 Qcoding_category_index, make_number (i));
7130 }
7131 }
7132
7133 Qtranslation_table = intern ("translation-table");
7134 staticpro (&Qtranslation_table);
7135 Fput (Qtranslation_table, Qchar_table_extra_slots, make_number (1));
7136
7137 Qtranslation_table_id = intern ("translation-table-id");
7138 staticpro (&Qtranslation_table_id);
7139
7140 Qtranslation_table_for_decode = intern ("translation-table-for-decode");
7141 staticpro (&Qtranslation_table_for_decode);
7142
7143 Qtranslation_table_for_encode = intern ("translation-table-for-encode");
7144 staticpro (&Qtranslation_table_for_encode);
7145
7146 Qsafe_chars = intern ("safe-chars");
7147 staticpro (&Qsafe_chars);
7148
7149 Qchar_coding_system = intern ("char-coding-system");
7150 staticpro (&Qchar_coding_system);
7151
7152 /* Intern this now in case it isn't already done.
7153 Setting this variable twice is harmless.
7154 But don't staticpro it here--that is done in alloc.c. */
7155 Qchar_table_extra_slots = intern ("char-table-extra-slots");
7156 Fput (Qsafe_chars, Qchar_table_extra_slots, make_number (0));
7157 Fput (Qchar_coding_system, Qchar_table_extra_slots, make_number (2));
7158
7159 Qvalid_codes = intern ("valid-codes");
7160 staticpro (&Qvalid_codes);
7161
7162 Qemacs_mule = intern ("emacs-mule");
7163 staticpro (&Qemacs_mule);
7164
7165 Qraw_text = intern ("raw-text");
7166 staticpro (&Qraw_text);
7167
7168 defsubr (&Scoding_system_p);
7169 defsubr (&Sread_coding_system);
7170 defsubr (&Sread_non_nil_coding_system);
7171 defsubr (&Scheck_coding_system);
7172 defsubr (&Sdetect_coding_region);
7173 defsubr (&Sdetect_coding_string);
7174 defsubr (&Sfind_coding_systems_region_internal);
7175 defsubr (&Sdecode_coding_region);
7176 defsubr (&Sencode_coding_region);
7177 defsubr (&Sdecode_coding_string);
7178 defsubr (&Sencode_coding_string);
7179 defsubr (&Sdecode_sjis_char);
7180 defsubr (&Sencode_sjis_char);
7181 defsubr (&Sdecode_big5_char);
7182 defsubr (&Sencode_big5_char);
7183 defsubr (&Sset_terminal_coding_system_internal);
7184 defsubr (&Sset_safe_terminal_coding_system_internal);
7185 defsubr (&Sterminal_coding_system);
7186 defsubr (&Sset_keyboard_coding_system_internal);
7187 defsubr (&Skeyboard_coding_system);
7188 defsubr (&Sfind_operation_coding_system);
7189 defsubr (&Supdate_coding_systems_internal);
7190 defsubr (&Sset_coding_priority_internal);
7191
7192 DEFVAR_LISP ("coding-system-list", &Vcoding_system_list,
7193 doc: /* List of coding systems.
7194
7195 Do not alter the value of this variable manually. This variable should be
7196 updated by the functions `make-coding-system' and
7197 `define-coding-system-alias'. */);
7198 Vcoding_system_list = Qnil;
7199
7200 DEFVAR_LISP ("coding-system-alist", &Vcoding_system_alist,
7201 doc: /* Alist of coding system names.
7202 Each element is one element list of coding system name.
7203 This variable is given to `completing-read' as TABLE argument.
7204
7205 Do not alter the value of this variable manually. This variable should be
7206 updated by the functions `make-coding-system' and
7207 `define-coding-system-alias'. */);
7208 Vcoding_system_alist = Qnil;
7209
7210 DEFVAR_LISP ("coding-category-list", &Vcoding_category_list,
7211 doc: /* List of coding-categories (symbols) ordered by priority.
7212
7213 On detecting a coding system, Emacs tries code detection algorithms
7214 associated with each coding-category one by one in this order. When
7215 one algorithm agrees with a byte sequence of source text, the coding
7216 system bound to the corresponding coding-category is selected. */);
7217 {
7218 int i;
7219
7220 Vcoding_category_list = Qnil;
7221 for (i = CODING_CATEGORY_IDX_MAX - 1; i >= 0; i--)
7222 Vcoding_category_list
7223 = Fcons (XVECTOR (Vcoding_category_table)->contents[i],
7224 Vcoding_category_list);
7225 }
7226
7227 DEFVAR_LISP ("coding-system-for-read", &Vcoding_system_for_read,
7228 doc: /* Specify the coding system for read operations.
7229 It is useful to bind this variable with `let', but do not set it globally.
7230 If the value is a coding system, it is used for decoding on read operation.
7231 If not, an appropriate element is used from one of the coding system alists:
7232 There are three such tables, `file-coding-system-alist',
7233 `process-coding-system-alist', and `network-coding-system-alist'. */);
7234 Vcoding_system_for_read = Qnil;
7235
7236 DEFVAR_LISP ("coding-system-for-write", &Vcoding_system_for_write,
7237 doc: /* Specify the coding system for write operations.
7238 Programs bind this variable with `let', but you should not set it globally.
7239 If the value is a coding system, it is used for encoding of output,
7240 when writing it to a file and when sending it to a file or subprocess.
7241
7242 If this does not specify a coding system, an appropriate element
7243 is used from one of the coding system alists:
7244 There are three such tables, `file-coding-system-alist',
7245 `process-coding-system-alist', and `network-coding-system-alist'.
7246 For output to files, if the above procedure does not specify a coding system,
7247 the value of `buffer-file-coding-system' is used. */);
7248 Vcoding_system_for_write = Qnil;
7249
7250 DEFVAR_LISP ("last-coding-system-used", &Vlast_coding_system_used,
7251 doc: /* Coding system used in the latest file or process I/O. */);
7252 Vlast_coding_system_used = Qnil;
7253
7254 DEFVAR_BOOL ("inhibit-eol-conversion", &inhibit_eol_conversion,
7255 doc: /* *Non-nil means always inhibit code conversion of end-of-line format.
7256 See info node `Coding Systems' and info node `Text and Binary' concerning
7257 such conversion. */);
7258 inhibit_eol_conversion = 0;
7259
7260 DEFVAR_BOOL ("inherit-process-coding-system", &inherit_process_coding_system,
7261 doc: /* Non-nil means process buffer inherits coding system of process output.
7262 Bind it to t if the process output is to be treated as if it were a file
7263 read from some filesystem. */);
7264 inherit_process_coding_system = 0;
7265
7266 DEFVAR_LISP ("file-coding-system-alist", &Vfile_coding_system_alist,
7267 doc: /* Alist to decide a coding system to use for a file I/O operation.
7268 The format is ((PATTERN . VAL) ...),
7269 where PATTERN is a regular expression matching a file name,
7270 VAL is a coding system, a cons of coding systems, or a function symbol.
7271 If VAL is a coding system, it is used for both decoding and encoding
7272 the file contents.
7273 If VAL is a cons of coding systems, the car part is used for decoding,
7274 and the cdr part is used for encoding.
7275 If VAL is a function symbol, the function must return a coding system
7276 or a cons of coding systems which are used as above. The function gets
7277 the arguments with which `find-operation-coding-system' was called.
7278
7279 See also the function `find-operation-coding-system'
7280 and the variable `auto-coding-alist'. */);
7281 Vfile_coding_system_alist = Qnil;
7282
7283 DEFVAR_LISP ("process-coding-system-alist", &Vprocess_coding_system_alist,
7284 doc: /* Alist to decide a coding system to use for a process I/O operation.
7285 The format is ((PATTERN . VAL) ...),
7286 where PATTERN is a regular expression matching a program name,
7287 VAL is a coding system, a cons of coding systems, or a function symbol.
7288 If VAL is a coding system, it is used for both decoding what received
7289 from the program and encoding what sent to the program.
7290 If VAL is a cons of coding systems, the car part is used for decoding,
7291 and the cdr part is used for encoding.
7292 If VAL is a function symbol, the function must return a coding system
7293 or a cons of coding systems which are used as above.
7294
7295 See also the function `find-operation-coding-system'. */);
7296 Vprocess_coding_system_alist = Qnil;
7297
7298 DEFVAR_LISP ("network-coding-system-alist", &Vnetwork_coding_system_alist,
7299 doc: /* Alist to decide a coding system to use for a network I/O operation.
7300 The format is ((PATTERN . VAL) ...),
7301 where PATTERN is a regular expression matching a network service name
7302 or is a port number to connect to,
7303 VAL is a coding system, a cons of coding systems, or a function symbol.
7304 If VAL is a coding system, it is used for both decoding what received
7305 from the network stream and encoding what sent to the network stream.
7306 If VAL is a cons of coding systems, the car part is used for decoding,
7307 and the cdr part is used for encoding.
7308 If VAL is a function symbol, the function must return a coding system
7309 or a cons of coding systems which are used as above.
7310
7311 See also the function `find-operation-coding-system'. */);
7312 Vnetwork_coding_system_alist = Qnil;
7313
7314 DEFVAR_LISP ("locale-coding-system", &Vlocale_coding_system,
7315 doc: /* Coding system to use with system messages.
7316 Also used for decoding keyboard input on X Window system. */);
7317 Vlocale_coding_system = Qnil;
7318
7319 /* The eol mnemonics are reset in startup.el system-dependently. */
7320 DEFVAR_LISP ("eol-mnemonic-unix", &eol_mnemonic_unix,
7321 doc: /* *String displayed in mode line for UNIX-like (LF) end-of-line format. */);
7322 eol_mnemonic_unix = build_string (":");
7323
7324 DEFVAR_LISP ("eol-mnemonic-dos", &eol_mnemonic_dos,
7325 doc: /* *String displayed in mode line for DOS-like (CRLF) end-of-line format. */);
7326 eol_mnemonic_dos = build_string ("\\");
7327
7328 DEFVAR_LISP ("eol-mnemonic-mac", &eol_mnemonic_mac,
7329 doc: /* *String displayed in mode line for MAC-like (CR) end-of-line format. */);
7330 eol_mnemonic_mac = build_string ("/");
7331
7332 DEFVAR_LISP ("eol-mnemonic-undecided", &eol_mnemonic_undecided,
7333 doc: /* *String displayed in mode line when end-of-line format is not yet determined. */);
7334 eol_mnemonic_undecided = build_string (":");
7335
7336 DEFVAR_LISP ("enable-character-translation", &Venable_character_translation,
7337 doc: /* *Non-nil enables character translation while encoding and decoding. */);
7338 Venable_character_translation = Qt;
7339
7340 DEFVAR_LISP ("standard-translation-table-for-decode",
7341 &Vstandard_translation_table_for_decode,
7342 doc: /* Table for translating characters while decoding. */);
7343 Vstandard_translation_table_for_decode = Qnil;
7344
7345 DEFVAR_LISP ("standard-translation-table-for-encode",
7346 &Vstandard_translation_table_for_encode,
7347 doc: /* Table for translating characters while encoding. */);
7348 Vstandard_translation_table_for_encode = Qnil;
7349
7350 DEFVAR_LISP ("charset-revision-table", &Vcharset_revision_alist,
7351 doc: /* Alist of charsets vs revision numbers.
7352 While encoding, if a charset (car part of an element) is found,
7353 designate it with the escape sequence identifying revision (cdr part of the element). */);
7354 Vcharset_revision_alist = Qnil;
7355
7356 DEFVAR_LISP ("default-process-coding-system",
7357 &Vdefault_process_coding_system,
7358 doc: /* Cons of coding systems used for process I/O by default.
7359 The car part is used for decoding a process output,
7360 the cdr part is used for encoding a text to be sent to a process. */);
7361 Vdefault_process_coding_system = Qnil;
7362
7363 DEFVAR_LISP ("latin-extra-code-table", &Vlatin_extra_code_table,
7364 doc: /* Table of extra Latin codes in the range 128..159 (inclusive).
7365 This is a vector of length 256.
7366 If Nth element is non-nil, the existence of code N in a file
7367 \(or output of subprocess) doesn't prevent it to be detected as
7368 a coding system of ISO 2022 variant which has a flag
7369 `accept-latin-extra-code' t (e.g. iso-latin-1) on reading a file
7370 or reading output of a subprocess.
7371 Only 128th through 159th elements has a meaning. */);
7372 Vlatin_extra_code_table = Fmake_vector (make_number (256), Qnil);
7373
7374 DEFVAR_LISP ("select-safe-coding-system-function",
7375 &Vselect_safe_coding_system_function,
7376 doc: /* Function to call to select safe coding system for encoding a text.
7377
7378 If set, this function is called to force a user to select a proper
7379 coding system which can encode the text in the case that a default
7380 coding system used in each operation can't encode the text.
7381
7382 The default value is `select-safe-coding-system' (which see). */);
7383 Vselect_safe_coding_system_function = Qnil;
7384
7385 DEFVAR_LISP ("char-coding-system-table", &Vchar_coding_system_table,
7386 doc: /* Char-table containing safe coding systems of each characters.
7387 Each element doesn't include such generic coding systems that can
7388 encode any characters. They are in the first extra slot. */);
7389 Vchar_coding_system_table = Fmake_char_table (Qchar_coding_system, Qnil);
7390
7391 DEFVAR_BOOL ("inhibit-iso-escape-detection",
7392 &inhibit_iso_escape_detection,
7393 doc: /* If non-nil, Emacs ignores ISO2022's escape sequence on code detection.
7394
7395 By default, on reading a file, Emacs tries to detect how the text is
7396 encoded. This code detection is sensitive to escape sequences. If
7397 the sequence is valid as ISO2022, the code is determined as one of
7398 the ISO2022 encodings, and the file is decoded by the corresponding
7399 coding system (e.g. `iso-2022-7bit').
7400
7401 However, there may be a case that you want to read escape sequences in
7402 a file as is. In such a case, you can set this variable to non-nil.
7403 Then, as the code detection ignores any escape sequences, no file is
7404 detected as encoded in some ISO2022 encoding. The result is that all
7405 escape sequences become visible in a buffer.
7406
7407 The default value is nil, and it is strongly recommended not to change
7408 it. That is because many Emacs Lisp source files that contain
7409 non-ASCII characters are encoded by the coding system `iso-2022-7bit'
7410 in Emacs's distribution, and they won't be decoded correctly on
7411 reading if you suppress escape sequence detection.
7412
7413 The other way to read escape sequences in a file without decoding is
7414 to explicitly specify some coding system that doesn't use ISO2022's
7415 escape sequence (e.g `latin-1') on reading by \\[universal-coding-system-argument]. */);
7416 inhibit_iso_escape_detection = 0;
7417 }
7418
7419 char *
7420 emacs_strerror (error_number)
7421 int error_number;
7422 {
7423 char *str;
7424
7425 synchronize_system_messages_locale ();
7426 str = strerror (error_number);
7427
7428 if (! NILP (Vlocale_coding_system))
7429 {
7430 Lisp_Object dec = code_convert_string_norecord (build_string (str),
7431 Vlocale_coding_system,
7432 0);
7433 str = (char *) XSTRING (dec)->data;
7434 }
7435
7436 return str;
7437 }
7438
7439 #endif /* emacs */
7440