GTK version
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 86, 88, 93, 94, 95, 97, 98, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
4
5 This file is part of GNU Emacs.
6
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <config.h>
23 #include <stdio.h>
24
25 #ifdef ALLOC_DEBUG
26 #undef INLINE
27 #endif
28
29 /* Note that this declares bzero on OSF/1. How dumb. */
30
31 #include <signal.h>
32
33 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
34 memory. Can do this only if using gmalloc.c. */
35
36 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
37 #undef GC_MALLOC_CHECK
38 #endif
39
40 /* This file is part of the core Lisp implementation, and thus must
41 deal with the real data structures. If the Lisp implementation is
42 replaced, this file likely will not be used. */
43
44 #undef HIDE_LISP_IMPLEMENTATION
45 #include "lisp.h"
46 #include "process.h"
47 #include "intervals.h"
48 #include "puresize.h"
49 #include "buffer.h"
50 #include "window.h"
51 #include "keyboard.h"
52 #include "frame.h"
53 #include "blockinput.h"
54 #include "charset.h"
55 #include "syssignal.h"
56 #include <setjmp.h>
57
58 #ifdef HAVE_UNISTD_H
59 #include <unistd.h>
60 #else
61 extern POINTER_TYPE *sbrk ();
62 #endif
63
64 #ifdef DOUG_LEA_MALLOC
65
66 #include <malloc.h>
67 /* malloc.h #defines this as size_t, at least in glibc2. */
68 #ifndef __malloc_size_t
69 #define __malloc_size_t int
70 #endif
71
72 /* Specify maximum number of areas to mmap. It would be nice to use a
73 value that explicitly means "no limit". */
74
75 #define MMAP_MAX_AREAS 100000000
76
77 #else /* not DOUG_LEA_MALLOC */
78
79 /* The following come from gmalloc.c. */
80
81 #define __malloc_size_t size_t
82 extern __malloc_size_t _bytes_used;
83 extern __malloc_size_t __malloc_extra_blocks;
84
85 #endif /* not DOUG_LEA_MALLOC */
86
87 /* Macro to verify that storage intended for Lisp objects is not
88 out of range to fit in the space for a pointer.
89 ADDRESS is the start of the block, and SIZE
90 is the amount of space within which objects can start. */
91
92 #define VALIDATE_LISP_STORAGE(address, size) \
93 do \
94 { \
95 Lisp_Object val; \
96 XSETCONS (val, (char *) address + size); \
97 if ((char *) XCONS (val) != (char *) address + size) \
98 { \
99 xfree (address); \
100 memory_full (); \
101 } \
102 } while (0)
103
104 /* Value of _bytes_used, when spare_memory was freed. */
105
106 static __malloc_size_t bytes_used_when_full;
107
108 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
109 to a struct Lisp_String. */
110
111 #define MARK_STRING(S) ((S)->size |= MARKBIT)
112 #define UNMARK_STRING(S) ((S)->size &= ~MARKBIT)
113 #define STRING_MARKED_P(S) ((S)->size & MARKBIT)
114
115 /* Value is the number of bytes/chars of S, a pointer to a struct
116 Lisp_String. This must be used instead of STRING_BYTES (S) or
117 S->size during GC, because S->size contains the mark bit for
118 strings. */
119
120 #define GC_STRING_BYTES(S) (STRING_BYTES (S) & ~MARKBIT)
121 #define GC_STRING_CHARS(S) ((S)->size & ~MARKBIT)
122
123 /* Number of bytes of consing done since the last gc. */
124
125 int consing_since_gc;
126
127 /* Count the amount of consing of various sorts of space. */
128
129 EMACS_INT cons_cells_consed;
130 EMACS_INT floats_consed;
131 EMACS_INT vector_cells_consed;
132 EMACS_INT symbols_consed;
133 EMACS_INT string_chars_consed;
134 EMACS_INT misc_objects_consed;
135 EMACS_INT intervals_consed;
136 EMACS_INT strings_consed;
137
138 /* Number of bytes of consing since GC before another GC should be done. */
139
140 EMACS_INT gc_cons_threshold;
141
142 /* Nonzero during GC. */
143
144 int gc_in_progress;
145
146 /* Nonzero means display messages at beginning and end of GC. */
147
148 int garbage_collection_messages;
149
150 #ifndef VIRT_ADDR_VARIES
151 extern
152 #endif /* VIRT_ADDR_VARIES */
153 int malloc_sbrk_used;
154
155 #ifndef VIRT_ADDR_VARIES
156 extern
157 #endif /* VIRT_ADDR_VARIES */
158 int malloc_sbrk_unused;
159
160 /* Two limits controlling how much undo information to keep. */
161
162 EMACS_INT undo_limit;
163 EMACS_INT undo_strong_limit;
164
165 /* Number of live and free conses etc. */
166
167 static int total_conses, total_markers, total_symbols, total_vector_size;
168 static int total_free_conses, total_free_markers, total_free_symbols;
169 static int total_free_floats, total_floats;
170
171 /* Points to memory space allocated as "spare", to be freed if we run
172 out of memory. */
173
174 static char *spare_memory;
175
176 /* Amount of spare memory to keep in reserve. */
177
178 #define SPARE_MEMORY (1 << 14)
179
180 /* Number of extra blocks malloc should get when it needs more core. */
181
182 static int malloc_hysteresis;
183
184 /* Non-nil means defun should do purecopy on the function definition. */
185
186 Lisp_Object Vpurify_flag;
187
188 /* Non-nil means we are handling a memory-full error. */
189
190 Lisp_Object Vmemory_full;
191
192 #ifndef HAVE_SHM
193
194 /* Force it into data space! */
195
196 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {0,};
197 #define PUREBEG (char *) pure
198
199 #else /* HAVE_SHM */
200
201 #define pure PURE_SEG_BITS /* Use shared memory segment */
202 #define PUREBEG (char *)PURE_SEG_BITS
203
204 #endif /* HAVE_SHM */
205
206 /* Pointer to the pure area, and its size. */
207
208 static char *purebeg;
209 static size_t pure_size;
210
211 /* Number of bytes of pure storage used before pure storage overflowed.
212 If this is non-zero, this implies that an overflow occurred. */
213
214 static size_t pure_bytes_used_before_overflow;
215
216 /* Value is non-zero if P points into pure space. */
217
218 #define PURE_POINTER_P(P) \
219 (((PNTR_COMPARISON_TYPE) (P) \
220 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
221 && ((PNTR_COMPARISON_TYPE) (P) \
222 >= (PNTR_COMPARISON_TYPE) purebeg))
223
224 /* Index in pure at which next pure object will be allocated.. */
225
226 EMACS_INT pure_bytes_used;
227
228 /* If nonzero, this is a warning delivered by malloc and not yet
229 displayed. */
230
231 char *pending_malloc_warning;
232
233 /* Pre-computed signal argument for use when memory is exhausted. */
234
235 Lisp_Object Vmemory_signal_data;
236
237 /* Maximum amount of C stack to save when a GC happens. */
238
239 #ifndef MAX_SAVE_STACK
240 #define MAX_SAVE_STACK 16000
241 #endif
242
243 /* Buffer in which we save a copy of the C stack at each GC. */
244
245 char *stack_copy;
246 int stack_copy_size;
247
248 /* Non-zero means ignore malloc warnings. Set during initialization.
249 Currently not used. */
250
251 int ignore_warnings;
252
253 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
254
255 /* Hook run after GC has finished. */
256
257 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
258
259 static void mark_buffer P_ ((Lisp_Object));
260 static void mark_kboards P_ ((void));
261 static void gc_sweep P_ ((void));
262 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
263 static void mark_face_cache P_ ((struct face_cache *));
264
265 #ifdef HAVE_WINDOW_SYSTEM
266 static void mark_image P_ ((struct image *));
267 static void mark_image_cache P_ ((struct frame *));
268 #endif /* HAVE_WINDOW_SYSTEM */
269
270 static struct Lisp_String *allocate_string P_ ((void));
271 static void compact_small_strings P_ ((void));
272 static void free_large_strings P_ ((void));
273 static void sweep_strings P_ ((void));
274
275 extern int message_enable_multibyte;
276
277 /* When scanning the C stack for live Lisp objects, Emacs keeps track
278 of what memory allocated via lisp_malloc is intended for what
279 purpose. This enumeration specifies the type of memory. */
280
281 enum mem_type
282 {
283 MEM_TYPE_NON_LISP,
284 MEM_TYPE_BUFFER,
285 MEM_TYPE_CONS,
286 MEM_TYPE_STRING,
287 MEM_TYPE_MISC,
288 MEM_TYPE_SYMBOL,
289 MEM_TYPE_FLOAT,
290 /* Keep the following vector-like types together, with
291 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
292 first. Or change the code of live_vector_p, for instance. */
293 MEM_TYPE_VECTOR,
294 MEM_TYPE_PROCESS,
295 MEM_TYPE_HASH_TABLE,
296 MEM_TYPE_FRAME,
297 MEM_TYPE_WINDOW
298 };
299
300 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
301
302 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
303 #include <stdio.h> /* For fprintf. */
304 #endif
305
306 /* A unique object in pure space used to make some Lisp objects
307 on free lists recognizable in O(1). */
308
309 Lisp_Object Vdead;
310
311 #ifdef GC_MALLOC_CHECK
312
313 enum mem_type allocated_mem_type;
314 int dont_register_blocks;
315
316 #endif /* GC_MALLOC_CHECK */
317
318 /* A node in the red-black tree describing allocated memory containing
319 Lisp data. Each such block is recorded with its start and end
320 address when it is allocated, and removed from the tree when it
321 is freed.
322
323 A red-black tree is a balanced binary tree with the following
324 properties:
325
326 1. Every node is either red or black.
327 2. Every leaf is black.
328 3. If a node is red, then both of its children are black.
329 4. Every simple path from a node to a descendant leaf contains
330 the same number of black nodes.
331 5. The root is always black.
332
333 When nodes are inserted into the tree, or deleted from the tree,
334 the tree is "fixed" so that these properties are always true.
335
336 A red-black tree with N internal nodes has height at most 2
337 log(N+1). Searches, insertions and deletions are done in O(log N).
338 Please see a text book about data structures for a detailed
339 description of red-black trees. Any book worth its salt should
340 describe them. */
341
342 struct mem_node
343 {
344 /* Children of this node. These pointers are never NULL. When there
345 is no child, the value is MEM_NIL, which points to a dummy node. */
346 struct mem_node *left, *right;
347
348 /* The parent of this node. In the root node, this is NULL. */
349 struct mem_node *parent;
350
351 /* Start and end of allocated region. */
352 void *start, *end;
353
354 /* Node color. */
355 enum {MEM_BLACK, MEM_RED} color;
356
357 /* Memory type. */
358 enum mem_type type;
359 };
360
361 /* Base address of stack. Set in main. */
362
363 Lisp_Object *stack_base;
364
365 /* Root of the tree describing allocated Lisp memory. */
366
367 static struct mem_node *mem_root;
368
369 /* Lowest and highest known address in the heap. */
370
371 static void *min_heap_address, *max_heap_address;
372
373 /* Sentinel node of the tree. */
374
375 static struct mem_node mem_z;
376 #define MEM_NIL &mem_z
377
378 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
379 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
380 static void lisp_free P_ ((POINTER_TYPE *));
381 static void mark_stack P_ ((void));
382 static int live_vector_p P_ ((struct mem_node *, void *));
383 static int live_buffer_p P_ ((struct mem_node *, void *));
384 static int live_string_p P_ ((struct mem_node *, void *));
385 static int live_cons_p P_ ((struct mem_node *, void *));
386 static int live_symbol_p P_ ((struct mem_node *, void *));
387 static int live_float_p P_ ((struct mem_node *, void *));
388 static int live_misc_p P_ ((struct mem_node *, void *));
389 static void mark_maybe_object P_ ((Lisp_Object));
390 static void mark_memory P_ ((void *, void *));
391 static void mem_init P_ ((void));
392 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
393 static void mem_insert_fixup P_ ((struct mem_node *));
394 static void mem_rotate_left P_ ((struct mem_node *));
395 static void mem_rotate_right P_ ((struct mem_node *));
396 static void mem_delete P_ ((struct mem_node *));
397 static void mem_delete_fixup P_ ((struct mem_node *));
398 static INLINE struct mem_node *mem_find P_ ((void *));
399
400 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
401 static void check_gcpros P_ ((void));
402 #endif
403
404 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
405
406 /* Recording what needs to be marked for gc. */
407
408 struct gcpro *gcprolist;
409
410 /* Addresses of staticpro'd variables. */
411
412 #define NSTATICS 1280
413 Lisp_Object *staticvec[NSTATICS] = {0};
414
415 /* Index of next unused slot in staticvec. */
416
417 int staticidx = 0;
418
419 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
420
421
422 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
423 ALIGNMENT must be a power of 2. */
424
425 #define ALIGN(SZ, ALIGNMENT) \
426 (((SZ) + (ALIGNMENT) - 1) & ~((ALIGNMENT) - 1))
427
428
429 \f
430 /************************************************************************
431 Malloc
432 ************************************************************************/
433
434 /* Function malloc calls this if it finds we are near exhausting storage. */
435
436 void
437 malloc_warning (str)
438 char *str;
439 {
440 pending_malloc_warning = str;
441 }
442
443
444 /* Display an already-pending malloc warning. */
445
446 void
447 display_malloc_warning ()
448 {
449 call3 (intern ("display-warning"),
450 intern ("alloc"),
451 build_string (pending_malloc_warning),
452 intern ("emergency"));
453 pending_malloc_warning = 0;
454 }
455
456
457 #ifdef DOUG_LEA_MALLOC
458 # define BYTES_USED (mallinfo ().arena)
459 #else
460 # define BYTES_USED _bytes_used
461 #endif
462
463
464 /* Called if malloc returns zero. */
465
466 void
467 memory_full ()
468 {
469 Vmemory_full = Qt;
470
471 #ifndef SYSTEM_MALLOC
472 bytes_used_when_full = BYTES_USED;
473 #endif
474
475 /* The first time we get here, free the spare memory. */
476 if (spare_memory)
477 {
478 free (spare_memory);
479 spare_memory = 0;
480 }
481
482 /* This used to call error, but if we've run out of memory, we could
483 get infinite recursion trying to build the string. */
484 while (1)
485 Fsignal (Qnil, Vmemory_signal_data);
486 }
487
488
489 /* Called if we can't allocate relocatable space for a buffer. */
490
491 void
492 buffer_memory_full ()
493 {
494 /* If buffers use the relocating allocator, no need to free
495 spare_memory, because we may have plenty of malloc space left
496 that we could get, and if we don't, the malloc that fails will
497 itself cause spare_memory to be freed. If buffers don't use the
498 relocating allocator, treat this like any other failing
499 malloc. */
500
501 #ifndef REL_ALLOC
502 memory_full ();
503 #endif
504
505 Vmemory_full = Qt;
506
507 /* This used to call error, but if we've run out of memory, we could
508 get infinite recursion trying to build the string. */
509 while (1)
510 Fsignal (Qnil, Vmemory_signal_data);
511 }
512
513
514 /* Like malloc but check for no memory and block interrupt input.. */
515
516 POINTER_TYPE *
517 xmalloc (size)
518 size_t size;
519 {
520 register POINTER_TYPE *val;
521
522 BLOCK_INPUT;
523 val = (POINTER_TYPE *) malloc (size);
524 UNBLOCK_INPUT;
525
526 if (!val && size)
527 memory_full ();
528 return val;
529 }
530
531
532 /* Like realloc but check for no memory and block interrupt input.. */
533
534 POINTER_TYPE *
535 xrealloc (block, size)
536 POINTER_TYPE *block;
537 size_t size;
538 {
539 register POINTER_TYPE *val;
540
541 BLOCK_INPUT;
542 /* We must call malloc explicitly when BLOCK is 0, since some
543 reallocs don't do this. */
544 if (! block)
545 val = (POINTER_TYPE *) malloc (size);
546 else
547 val = (POINTER_TYPE *) realloc (block, size);
548 UNBLOCK_INPUT;
549
550 if (!val && size) memory_full ();
551 return val;
552 }
553
554
555 /* Like free but block interrupt input.. */
556
557 void
558 xfree (block)
559 POINTER_TYPE *block;
560 {
561 BLOCK_INPUT;
562 free (block);
563 UNBLOCK_INPUT;
564 }
565
566
567 /* Like strdup, but uses xmalloc. */
568
569 char *
570 xstrdup (s)
571 const char *s;
572 {
573 size_t len = strlen (s) + 1;
574 char *p = (char *) xmalloc (len);
575 bcopy (s, p, len);
576 return p;
577 }
578
579
580 /* Like malloc but used for allocating Lisp data. NBYTES is the
581 number of bytes to allocate, TYPE describes the intended use of the
582 allcated memory block (for strings, for conses, ...). */
583
584 static POINTER_TYPE *
585 lisp_malloc (nbytes, type)
586 size_t nbytes;
587 enum mem_type type;
588 {
589 register void *val;
590
591 BLOCK_INPUT;
592
593 #ifdef GC_MALLOC_CHECK
594 allocated_mem_type = type;
595 #endif
596
597 val = (void *) malloc (nbytes);
598
599 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
600 if (val && type != MEM_TYPE_NON_LISP)
601 mem_insert (val, (char *) val + nbytes, type);
602 #endif
603
604 UNBLOCK_INPUT;
605 if (!val && nbytes)
606 memory_full ();
607 return val;
608 }
609
610
611 /* Return a new buffer structure allocated from the heap with
612 a call to lisp_malloc. */
613
614 struct buffer *
615 allocate_buffer ()
616 {
617 struct buffer *b
618 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
619 MEM_TYPE_BUFFER);
620 VALIDATE_LISP_STORAGE (b, sizeof *b);
621 return b;
622 }
623
624
625 /* Free BLOCK. This must be called to free memory allocated with a
626 call to lisp_malloc. */
627
628 static void
629 lisp_free (block)
630 POINTER_TYPE *block;
631 {
632 BLOCK_INPUT;
633 free (block);
634 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
635 mem_delete (mem_find (block));
636 #endif
637 UNBLOCK_INPUT;
638 }
639
640 \f
641 /* Arranging to disable input signals while we're in malloc.
642
643 This only works with GNU malloc. To help out systems which can't
644 use GNU malloc, all the calls to malloc, realloc, and free
645 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
646 pairs; unfortunately, we have no idea what C library functions
647 might call malloc, so we can't really protect them unless you're
648 using GNU malloc. Fortunately, most of the major operating can use
649 GNU malloc. */
650
651 #ifndef SYSTEM_MALLOC
652 #ifndef DOUG_LEA_MALLOC
653 extern void * (*__malloc_hook) P_ ((size_t));
654 extern void * (*__realloc_hook) P_ ((void *, size_t));
655 extern void (*__free_hook) P_ ((void *));
656 /* Else declared in malloc.h, perhaps with an extra arg. */
657 #endif /* DOUG_LEA_MALLOC */
658 static void * (*old_malloc_hook) ();
659 static void * (*old_realloc_hook) ();
660 static void (*old_free_hook) ();
661
662 /* This function is used as the hook for free to call. */
663
664 static void
665 emacs_blocked_free (ptr)
666 void *ptr;
667 {
668 BLOCK_INPUT;
669
670 #ifdef GC_MALLOC_CHECK
671 if (ptr)
672 {
673 struct mem_node *m;
674
675 m = mem_find (ptr);
676 if (m == MEM_NIL || m->start != ptr)
677 {
678 fprintf (stderr,
679 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
680 abort ();
681 }
682 else
683 {
684 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
685 mem_delete (m);
686 }
687 }
688 #endif /* GC_MALLOC_CHECK */
689
690 __free_hook = old_free_hook;
691 free (ptr);
692
693 /* If we released our reserve (due to running out of memory),
694 and we have a fair amount free once again,
695 try to set aside another reserve in case we run out once more. */
696 if (spare_memory == 0
697 /* Verify there is enough space that even with the malloc
698 hysteresis this call won't run out again.
699 The code here is correct as long as SPARE_MEMORY
700 is substantially larger than the block size malloc uses. */
701 && (bytes_used_when_full
702 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
703 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
704
705 __free_hook = emacs_blocked_free;
706 UNBLOCK_INPUT;
707 }
708
709
710 /* If we released our reserve (due to running out of memory),
711 and we have a fair amount free once again,
712 try to set aside another reserve in case we run out once more.
713
714 This is called when a relocatable block is freed in ralloc.c. */
715
716 void
717 refill_memory_reserve ()
718 {
719 if (spare_memory == 0)
720 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
721 }
722
723
724 /* This function is the malloc hook that Emacs uses. */
725
726 static void *
727 emacs_blocked_malloc (size)
728 size_t size;
729 {
730 void *value;
731
732 BLOCK_INPUT;
733 __malloc_hook = old_malloc_hook;
734 #ifdef DOUG_LEA_MALLOC
735 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
736 #else
737 __malloc_extra_blocks = malloc_hysteresis;
738 #endif
739
740 value = (void *) malloc (size);
741
742 #ifdef GC_MALLOC_CHECK
743 {
744 struct mem_node *m = mem_find (value);
745 if (m != MEM_NIL)
746 {
747 fprintf (stderr, "Malloc returned %p which is already in use\n",
748 value);
749 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
750 m->start, m->end, (char *) m->end - (char *) m->start,
751 m->type);
752 abort ();
753 }
754
755 if (!dont_register_blocks)
756 {
757 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
758 allocated_mem_type = MEM_TYPE_NON_LISP;
759 }
760 }
761 #endif /* GC_MALLOC_CHECK */
762
763 __malloc_hook = emacs_blocked_malloc;
764 UNBLOCK_INPUT;
765
766 /* fprintf (stderr, "%p malloc\n", value); */
767 return value;
768 }
769
770
771 /* This function is the realloc hook that Emacs uses. */
772
773 static void *
774 emacs_blocked_realloc (ptr, size)
775 void *ptr;
776 size_t size;
777 {
778 void *value;
779
780 BLOCK_INPUT;
781 __realloc_hook = old_realloc_hook;
782
783 #ifdef GC_MALLOC_CHECK
784 if (ptr)
785 {
786 struct mem_node *m = mem_find (ptr);
787 if (m == MEM_NIL || m->start != ptr)
788 {
789 fprintf (stderr,
790 "Realloc of %p which wasn't allocated with malloc\n",
791 ptr);
792 abort ();
793 }
794
795 mem_delete (m);
796 }
797
798 /* fprintf (stderr, "%p -> realloc\n", ptr); */
799
800 /* Prevent malloc from registering blocks. */
801 dont_register_blocks = 1;
802 #endif /* GC_MALLOC_CHECK */
803
804 value = (void *) realloc (ptr, size);
805
806 #ifdef GC_MALLOC_CHECK
807 dont_register_blocks = 0;
808
809 {
810 struct mem_node *m = mem_find (value);
811 if (m != MEM_NIL)
812 {
813 fprintf (stderr, "Realloc returns memory that is already in use\n");
814 abort ();
815 }
816
817 /* Can't handle zero size regions in the red-black tree. */
818 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
819 }
820
821 /* fprintf (stderr, "%p <- realloc\n", value); */
822 #endif /* GC_MALLOC_CHECK */
823
824 __realloc_hook = emacs_blocked_realloc;
825 UNBLOCK_INPUT;
826
827 return value;
828 }
829
830
831 /* Called from main to set up malloc to use our hooks. */
832
833 void
834 uninterrupt_malloc ()
835 {
836 if (__free_hook != emacs_blocked_free)
837 old_free_hook = __free_hook;
838 __free_hook = emacs_blocked_free;
839
840 if (__malloc_hook != emacs_blocked_malloc)
841 old_malloc_hook = __malloc_hook;
842 __malloc_hook = emacs_blocked_malloc;
843
844 if (__realloc_hook != emacs_blocked_realloc)
845 old_realloc_hook = __realloc_hook;
846 __realloc_hook = emacs_blocked_realloc;
847 }
848
849 #endif /* not SYSTEM_MALLOC */
850
851
852 \f
853 /***********************************************************************
854 Interval Allocation
855 ***********************************************************************/
856
857 /* Number of intervals allocated in an interval_block structure.
858 The 1020 is 1024 minus malloc overhead. */
859
860 #define INTERVAL_BLOCK_SIZE \
861 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
862
863 /* Intervals are allocated in chunks in form of an interval_block
864 structure. */
865
866 struct interval_block
867 {
868 struct interval_block *next;
869 struct interval intervals[INTERVAL_BLOCK_SIZE];
870 };
871
872 /* Current interval block. Its `next' pointer points to older
873 blocks. */
874
875 struct interval_block *interval_block;
876
877 /* Index in interval_block above of the next unused interval
878 structure. */
879
880 static int interval_block_index;
881
882 /* Number of free and live intervals. */
883
884 static int total_free_intervals, total_intervals;
885
886 /* List of free intervals. */
887
888 INTERVAL interval_free_list;
889
890 /* Total number of interval blocks now in use. */
891
892 int n_interval_blocks;
893
894
895 /* Initialize interval allocation. */
896
897 static void
898 init_intervals ()
899 {
900 interval_block
901 = (struct interval_block *) lisp_malloc (sizeof *interval_block,
902 MEM_TYPE_NON_LISP);
903 interval_block->next = 0;
904 bzero ((char *) interval_block->intervals, sizeof interval_block->intervals);
905 interval_block_index = 0;
906 interval_free_list = 0;
907 n_interval_blocks = 1;
908 }
909
910
911 /* Return a new interval. */
912
913 INTERVAL
914 make_interval ()
915 {
916 INTERVAL val;
917
918 if (interval_free_list)
919 {
920 val = interval_free_list;
921 interval_free_list = INTERVAL_PARENT (interval_free_list);
922 }
923 else
924 {
925 if (interval_block_index == INTERVAL_BLOCK_SIZE)
926 {
927 register struct interval_block *newi;
928
929 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
930 MEM_TYPE_NON_LISP);
931
932 VALIDATE_LISP_STORAGE (newi, sizeof *newi);
933 newi->next = interval_block;
934 interval_block = newi;
935 interval_block_index = 0;
936 n_interval_blocks++;
937 }
938 val = &interval_block->intervals[interval_block_index++];
939 }
940 consing_since_gc += sizeof (struct interval);
941 intervals_consed++;
942 RESET_INTERVAL (val);
943 return val;
944 }
945
946
947 /* Mark Lisp objects in interval I. */
948
949 static void
950 mark_interval (i, dummy)
951 register INTERVAL i;
952 Lisp_Object dummy;
953 {
954 if (XMARKBIT (i->plist))
955 abort ();
956 mark_object (&i->plist);
957 XMARK (i->plist);
958 }
959
960
961 /* Mark the interval tree rooted in TREE. Don't call this directly;
962 use the macro MARK_INTERVAL_TREE instead. */
963
964 static void
965 mark_interval_tree (tree)
966 register INTERVAL tree;
967 {
968 /* No need to test if this tree has been marked already; this
969 function is always called through the MARK_INTERVAL_TREE macro,
970 which takes care of that. */
971
972 /* XMARK expands to an assignment; the LHS of an assignment can't be
973 a cast. */
974 XMARK (tree->up.obj);
975
976 traverse_intervals_noorder (tree, mark_interval, Qnil);
977 }
978
979
980 /* Mark the interval tree rooted in I. */
981
982 #define MARK_INTERVAL_TREE(i) \
983 do { \
984 if (!NULL_INTERVAL_P (i) \
985 && ! XMARKBIT (i->up.obj)) \
986 mark_interval_tree (i); \
987 } while (0)
988
989
990 /* The oddity in the call to XUNMARK is necessary because XUNMARK
991 expands to an assignment to its argument, and most C compilers
992 don't support casts on the left operand of `='. */
993
994 #define UNMARK_BALANCE_INTERVALS(i) \
995 do { \
996 if (! NULL_INTERVAL_P (i)) \
997 { \
998 XUNMARK ((i)->up.obj); \
999 (i) = balance_intervals (i); \
1000 } \
1001 } while (0)
1002
1003 \f
1004 /* Number support. If NO_UNION_TYPE isn't in effect, we
1005 can't create number objects in macros. */
1006 #ifndef make_number
1007 Lisp_Object
1008 make_number (n)
1009 int n;
1010 {
1011 Lisp_Object obj;
1012 obj.s.val = n;
1013 obj.s.type = Lisp_Int;
1014 return obj;
1015 }
1016 #endif
1017 \f
1018 /***********************************************************************
1019 String Allocation
1020 ***********************************************************************/
1021
1022 /* Lisp_Strings are allocated in string_block structures. When a new
1023 string_block is allocated, all the Lisp_Strings it contains are
1024 added to a free-list string_free_list. When a new Lisp_String is
1025 needed, it is taken from that list. During the sweep phase of GC,
1026 string_blocks that are entirely free are freed, except two which
1027 we keep.
1028
1029 String data is allocated from sblock structures. Strings larger
1030 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1031 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1032
1033 Sblocks consist internally of sdata structures, one for each
1034 Lisp_String. The sdata structure points to the Lisp_String it
1035 belongs to. The Lisp_String points back to the `u.data' member of
1036 its sdata structure.
1037
1038 When a Lisp_String is freed during GC, it is put back on
1039 string_free_list, and its `data' member and its sdata's `string'
1040 pointer is set to null. The size of the string is recorded in the
1041 `u.nbytes' member of the sdata. So, sdata structures that are no
1042 longer used, can be easily recognized, and it's easy to compact the
1043 sblocks of small strings which we do in compact_small_strings. */
1044
1045 /* Size in bytes of an sblock structure used for small strings. This
1046 is 8192 minus malloc overhead. */
1047
1048 #define SBLOCK_SIZE 8188
1049
1050 /* Strings larger than this are considered large strings. String data
1051 for large strings is allocated from individual sblocks. */
1052
1053 #define LARGE_STRING_BYTES 1024
1054
1055 /* Structure describing string memory sub-allocated from an sblock.
1056 This is where the contents of Lisp strings are stored. */
1057
1058 struct sdata
1059 {
1060 /* Back-pointer to the string this sdata belongs to. If null, this
1061 structure is free, and the NBYTES member of the union below
1062 contains the string's byte size (the same value that STRING_BYTES
1063 would return if STRING were non-null). If non-null, STRING_BYTES
1064 (STRING) is the size of the data, and DATA contains the string's
1065 contents. */
1066 struct Lisp_String *string;
1067
1068 #ifdef GC_CHECK_STRING_BYTES
1069
1070 EMACS_INT nbytes;
1071 unsigned char data[1];
1072
1073 #define SDATA_NBYTES(S) (S)->nbytes
1074 #define SDATA_DATA(S) (S)->data
1075
1076 #else /* not GC_CHECK_STRING_BYTES */
1077
1078 union
1079 {
1080 /* When STRING in non-null. */
1081 unsigned char data[1];
1082
1083 /* When STRING is null. */
1084 EMACS_INT nbytes;
1085 } u;
1086
1087
1088 #define SDATA_NBYTES(S) (S)->u.nbytes
1089 #define SDATA_DATA(S) (S)->u.data
1090
1091 #endif /* not GC_CHECK_STRING_BYTES */
1092 };
1093
1094
1095 /* Structure describing a block of memory which is sub-allocated to
1096 obtain string data memory for strings. Blocks for small strings
1097 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1098 as large as needed. */
1099
1100 struct sblock
1101 {
1102 /* Next in list. */
1103 struct sblock *next;
1104
1105 /* Pointer to the next free sdata block. This points past the end
1106 of the sblock if there isn't any space left in this block. */
1107 struct sdata *next_free;
1108
1109 /* Start of data. */
1110 struct sdata first_data;
1111 };
1112
1113 /* Number of Lisp strings in a string_block structure. The 1020 is
1114 1024 minus malloc overhead. */
1115
1116 #define STRINGS_IN_STRING_BLOCK \
1117 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1118
1119 /* Structure describing a block from which Lisp_String structures
1120 are allocated. */
1121
1122 struct string_block
1123 {
1124 struct string_block *next;
1125 struct Lisp_String strings[STRINGS_IN_STRING_BLOCK];
1126 };
1127
1128 /* Head and tail of the list of sblock structures holding Lisp string
1129 data. We always allocate from current_sblock. The NEXT pointers
1130 in the sblock structures go from oldest_sblock to current_sblock. */
1131
1132 static struct sblock *oldest_sblock, *current_sblock;
1133
1134 /* List of sblocks for large strings. */
1135
1136 static struct sblock *large_sblocks;
1137
1138 /* List of string_block structures, and how many there are. */
1139
1140 static struct string_block *string_blocks;
1141 static int n_string_blocks;
1142
1143 /* Free-list of Lisp_Strings. */
1144
1145 static struct Lisp_String *string_free_list;
1146
1147 /* Number of live and free Lisp_Strings. */
1148
1149 static int total_strings, total_free_strings;
1150
1151 /* Number of bytes used by live strings. */
1152
1153 static int total_string_size;
1154
1155 /* Given a pointer to a Lisp_String S which is on the free-list
1156 string_free_list, return a pointer to its successor in the
1157 free-list. */
1158
1159 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1160
1161 /* Return a pointer to the sdata structure belonging to Lisp string S.
1162 S must be live, i.e. S->data must not be null. S->data is actually
1163 a pointer to the `u.data' member of its sdata structure; the
1164 structure starts at a constant offset in front of that. */
1165
1166 #ifdef GC_CHECK_STRING_BYTES
1167
1168 #define SDATA_OF_STRING(S) \
1169 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1170 - sizeof (EMACS_INT)))
1171
1172 #else /* not GC_CHECK_STRING_BYTES */
1173
1174 #define SDATA_OF_STRING(S) \
1175 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1176
1177 #endif /* not GC_CHECK_STRING_BYTES */
1178
1179 /* Value is the size of an sdata structure large enough to hold NBYTES
1180 bytes of string data. The value returned includes a terminating
1181 NUL byte, the size of the sdata structure, and padding. */
1182
1183 #ifdef GC_CHECK_STRING_BYTES
1184
1185 #define SDATA_SIZE(NBYTES) \
1186 ((sizeof (struct Lisp_String *) \
1187 + (NBYTES) + 1 \
1188 + sizeof (EMACS_INT) \
1189 + sizeof (EMACS_INT) - 1) \
1190 & ~(sizeof (EMACS_INT) - 1))
1191
1192 #else /* not GC_CHECK_STRING_BYTES */
1193
1194 #define SDATA_SIZE(NBYTES) \
1195 ((sizeof (struct Lisp_String *) \
1196 + (NBYTES) + 1 \
1197 + sizeof (EMACS_INT) - 1) \
1198 & ~(sizeof (EMACS_INT) - 1))
1199
1200 #endif /* not GC_CHECK_STRING_BYTES */
1201
1202 /* Initialize string allocation. Called from init_alloc_once. */
1203
1204 void
1205 init_strings ()
1206 {
1207 total_strings = total_free_strings = total_string_size = 0;
1208 oldest_sblock = current_sblock = large_sblocks = NULL;
1209 string_blocks = NULL;
1210 n_string_blocks = 0;
1211 string_free_list = NULL;
1212 }
1213
1214
1215 #ifdef GC_CHECK_STRING_BYTES
1216
1217 static int check_string_bytes_count;
1218
1219 void check_string_bytes P_ ((int));
1220 void check_sblock P_ ((struct sblock *));
1221
1222 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1223
1224
1225 /* Like GC_STRING_BYTES, but with debugging check. */
1226
1227 int
1228 string_bytes (s)
1229 struct Lisp_String *s;
1230 {
1231 int nbytes = (s->size_byte < 0 ? s->size : s->size_byte) & ~MARKBIT;
1232 if (!PURE_POINTER_P (s)
1233 && s->data
1234 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1235 abort ();
1236 return nbytes;
1237 }
1238
1239 /* Check validity Lisp strings' string_bytes member in B. */
1240
1241 void
1242 check_sblock (b)
1243 struct sblock *b;
1244 {
1245 struct sdata *from, *end, *from_end;
1246
1247 end = b->next_free;
1248
1249 for (from = &b->first_data; from < end; from = from_end)
1250 {
1251 /* Compute the next FROM here because copying below may
1252 overwrite data we need to compute it. */
1253 int nbytes;
1254
1255 /* Check that the string size recorded in the string is the
1256 same as the one recorded in the sdata structure. */
1257 if (from->string)
1258 CHECK_STRING_BYTES (from->string);
1259
1260 if (from->string)
1261 nbytes = GC_STRING_BYTES (from->string);
1262 else
1263 nbytes = SDATA_NBYTES (from);
1264
1265 nbytes = SDATA_SIZE (nbytes);
1266 from_end = (struct sdata *) ((char *) from + nbytes);
1267 }
1268 }
1269
1270
1271 /* Check validity of Lisp strings' string_bytes member. ALL_P
1272 non-zero means check all strings, otherwise check only most
1273 recently allocated strings. Used for hunting a bug. */
1274
1275 void
1276 check_string_bytes (all_p)
1277 int all_p;
1278 {
1279 if (all_p)
1280 {
1281 struct sblock *b;
1282
1283 for (b = large_sblocks; b; b = b->next)
1284 {
1285 struct Lisp_String *s = b->first_data.string;
1286 if (s)
1287 CHECK_STRING_BYTES (s);
1288 }
1289
1290 for (b = oldest_sblock; b; b = b->next)
1291 check_sblock (b);
1292 }
1293 else
1294 check_sblock (current_sblock);
1295 }
1296
1297 #endif /* GC_CHECK_STRING_BYTES */
1298
1299
1300 /* Return a new Lisp_String. */
1301
1302 static struct Lisp_String *
1303 allocate_string ()
1304 {
1305 struct Lisp_String *s;
1306
1307 /* If the free-list is empty, allocate a new string_block, and
1308 add all the Lisp_Strings in it to the free-list. */
1309 if (string_free_list == NULL)
1310 {
1311 struct string_block *b;
1312 int i;
1313
1314 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1315 VALIDATE_LISP_STORAGE (b, sizeof *b);
1316 bzero (b, sizeof *b);
1317 b->next = string_blocks;
1318 string_blocks = b;
1319 ++n_string_blocks;
1320
1321 for (i = STRINGS_IN_STRING_BLOCK - 1; i >= 0; --i)
1322 {
1323 s = b->strings + i;
1324 NEXT_FREE_LISP_STRING (s) = string_free_list;
1325 string_free_list = s;
1326 }
1327
1328 total_free_strings += STRINGS_IN_STRING_BLOCK;
1329 }
1330
1331 /* Pop a Lisp_String off the free-list. */
1332 s = string_free_list;
1333 string_free_list = NEXT_FREE_LISP_STRING (s);
1334
1335 /* Probably not strictly necessary, but play it safe. */
1336 bzero (s, sizeof *s);
1337
1338 --total_free_strings;
1339 ++total_strings;
1340 ++strings_consed;
1341 consing_since_gc += sizeof *s;
1342
1343 #ifdef GC_CHECK_STRING_BYTES
1344 if (!noninteractive
1345 #ifdef MAC_OS8
1346 && current_sblock
1347 #endif
1348 )
1349 {
1350 if (++check_string_bytes_count == 200)
1351 {
1352 check_string_bytes_count = 0;
1353 check_string_bytes (1);
1354 }
1355 else
1356 check_string_bytes (0);
1357 }
1358 #endif /* GC_CHECK_STRING_BYTES */
1359
1360 return s;
1361 }
1362
1363
1364 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1365 plus a NUL byte at the end. Allocate an sdata structure for S, and
1366 set S->data to its `u.data' member. Store a NUL byte at the end of
1367 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1368 S->data if it was initially non-null. */
1369
1370 void
1371 allocate_string_data (s, nchars, nbytes)
1372 struct Lisp_String *s;
1373 int nchars, nbytes;
1374 {
1375 struct sdata *data, *old_data;
1376 struct sblock *b;
1377 int needed, old_nbytes;
1378
1379 /* Determine the number of bytes needed to store NBYTES bytes
1380 of string data. */
1381 needed = SDATA_SIZE (nbytes);
1382
1383 if (nbytes > LARGE_STRING_BYTES)
1384 {
1385 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1386
1387 #ifdef DOUG_LEA_MALLOC
1388 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1389 because mapped region contents are not preserved in
1390 a dumped Emacs. */
1391 mallopt (M_MMAP_MAX, 0);
1392 #endif
1393
1394 b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
1395
1396 #ifdef DOUG_LEA_MALLOC
1397 /* Back to a reasonable maximum of mmap'ed areas. */
1398 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1399 #endif
1400
1401 b->next_free = &b->first_data;
1402 b->first_data.string = NULL;
1403 b->next = large_sblocks;
1404 large_sblocks = b;
1405 }
1406 else if (current_sblock == NULL
1407 || (((char *) current_sblock + SBLOCK_SIZE
1408 - (char *) current_sblock->next_free)
1409 < needed))
1410 {
1411 /* Not enough room in the current sblock. */
1412 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1413 b->next_free = &b->first_data;
1414 b->first_data.string = NULL;
1415 b->next = NULL;
1416
1417 if (current_sblock)
1418 current_sblock->next = b;
1419 else
1420 oldest_sblock = b;
1421 current_sblock = b;
1422 }
1423 else
1424 b = current_sblock;
1425
1426 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1427 old_nbytes = GC_STRING_BYTES (s);
1428
1429 data = b->next_free;
1430 data->string = s;
1431 s->data = SDATA_DATA (data);
1432 #ifdef GC_CHECK_STRING_BYTES
1433 SDATA_NBYTES (data) = nbytes;
1434 #endif
1435 s->size = nchars;
1436 s->size_byte = nbytes;
1437 s->data[nbytes] = '\0';
1438 b->next_free = (struct sdata *) ((char *) data + needed);
1439
1440 /* If S had already data assigned, mark that as free by setting its
1441 string back-pointer to null, and recording the size of the data
1442 in it. */
1443 if (old_data)
1444 {
1445 SDATA_NBYTES (old_data) = old_nbytes;
1446 old_data->string = NULL;
1447 }
1448
1449 consing_since_gc += needed;
1450 }
1451
1452
1453 /* Sweep and compact strings. */
1454
1455 static void
1456 sweep_strings ()
1457 {
1458 struct string_block *b, *next;
1459 struct string_block *live_blocks = NULL;
1460
1461 string_free_list = NULL;
1462 total_strings = total_free_strings = 0;
1463 total_string_size = 0;
1464
1465 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1466 for (b = string_blocks; b; b = next)
1467 {
1468 int i, nfree = 0;
1469 struct Lisp_String *free_list_before = string_free_list;
1470
1471 next = b->next;
1472
1473 for (i = 0; i < STRINGS_IN_STRING_BLOCK; ++i)
1474 {
1475 struct Lisp_String *s = b->strings + i;
1476
1477 if (s->data)
1478 {
1479 /* String was not on free-list before. */
1480 if (STRING_MARKED_P (s))
1481 {
1482 /* String is live; unmark it and its intervals. */
1483 UNMARK_STRING (s);
1484
1485 if (!NULL_INTERVAL_P (s->intervals))
1486 UNMARK_BALANCE_INTERVALS (s->intervals);
1487
1488 ++total_strings;
1489 total_string_size += STRING_BYTES (s);
1490 }
1491 else
1492 {
1493 /* String is dead. Put it on the free-list. */
1494 struct sdata *data = SDATA_OF_STRING (s);
1495
1496 /* Save the size of S in its sdata so that we know
1497 how large that is. Reset the sdata's string
1498 back-pointer so that we know it's free. */
1499 #ifdef GC_CHECK_STRING_BYTES
1500 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
1501 abort ();
1502 #else
1503 data->u.nbytes = GC_STRING_BYTES (s);
1504 #endif
1505 data->string = NULL;
1506
1507 /* Reset the strings's `data' member so that we
1508 know it's free. */
1509 s->data = NULL;
1510
1511 /* Put the string on the free-list. */
1512 NEXT_FREE_LISP_STRING (s) = string_free_list;
1513 string_free_list = s;
1514 ++nfree;
1515 }
1516 }
1517 else
1518 {
1519 /* S was on the free-list before. Put it there again. */
1520 NEXT_FREE_LISP_STRING (s) = string_free_list;
1521 string_free_list = s;
1522 ++nfree;
1523 }
1524 }
1525
1526 /* Free blocks that contain free Lisp_Strings only, except
1527 the first two of them. */
1528 if (nfree == STRINGS_IN_STRING_BLOCK
1529 && total_free_strings > STRINGS_IN_STRING_BLOCK)
1530 {
1531 lisp_free (b);
1532 --n_string_blocks;
1533 string_free_list = free_list_before;
1534 }
1535 else
1536 {
1537 total_free_strings += nfree;
1538 b->next = live_blocks;
1539 live_blocks = b;
1540 }
1541 }
1542
1543 string_blocks = live_blocks;
1544 free_large_strings ();
1545 compact_small_strings ();
1546 }
1547
1548
1549 /* Free dead large strings. */
1550
1551 static void
1552 free_large_strings ()
1553 {
1554 struct sblock *b, *next;
1555 struct sblock *live_blocks = NULL;
1556
1557 for (b = large_sblocks; b; b = next)
1558 {
1559 next = b->next;
1560
1561 if (b->first_data.string == NULL)
1562 lisp_free (b);
1563 else
1564 {
1565 b->next = live_blocks;
1566 live_blocks = b;
1567 }
1568 }
1569
1570 large_sblocks = live_blocks;
1571 }
1572
1573
1574 /* Compact data of small strings. Free sblocks that don't contain
1575 data of live strings after compaction. */
1576
1577 static void
1578 compact_small_strings ()
1579 {
1580 struct sblock *b, *tb, *next;
1581 struct sdata *from, *to, *end, *tb_end;
1582 struct sdata *to_end, *from_end;
1583
1584 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1585 to, and TB_END is the end of TB. */
1586 tb = oldest_sblock;
1587 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1588 to = &tb->first_data;
1589
1590 /* Step through the blocks from the oldest to the youngest. We
1591 expect that old blocks will stabilize over time, so that less
1592 copying will happen this way. */
1593 for (b = oldest_sblock; b; b = b->next)
1594 {
1595 end = b->next_free;
1596 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1597
1598 for (from = &b->first_data; from < end; from = from_end)
1599 {
1600 /* Compute the next FROM here because copying below may
1601 overwrite data we need to compute it. */
1602 int nbytes;
1603
1604 #ifdef GC_CHECK_STRING_BYTES
1605 /* Check that the string size recorded in the string is the
1606 same as the one recorded in the sdata structure. */
1607 if (from->string
1608 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
1609 abort ();
1610 #endif /* GC_CHECK_STRING_BYTES */
1611
1612 if (from->string)
1613 nbytes = GC_STRING_BYTES (from->string);
1614 else
1615 nbytes = SDATA_NBYTES (from);
1616
1617 nbytes = SDATA_SIZE (nbytes);
1618 from_end = (struct sdata *) ((char *) from + nbytes);
1619
1620 /* FROM->string non-null means it's alive. Copy its data. */
1621 if (from->string)
1622 {
1623 /* If TB is full, proceed with the next sblock. */
1624 to_end = (struct sdata *) ((char *) to + nbytes);
1625 if (to_end > tb_end)
1626 {
1627 tb->next_free = to;
1628 tb = tb->next;
1629 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1630 to = &tb->first_data;
1631 to_end = (struct sdata *) ((char *) to + nbytes);
1632 }
1633
1634 /* Copy, and update the string's `data' pointer. */
1635 if (from != to)
1636 {
1637 xassert (tb != b || to <= from);
1638 safe_bcopy ((char *) from, (char *) to, nbytes);
1639 to->string->data = SDATA_DATA (to);
1640 }
1641
1642 /* Advance past the sdata we copied to. */
1643 to = to_end;
1644 }
1645 }
1646 }
1647
1648 /* The rest of the sblocks following TB don't contain live data, so
1649 we can free them. */
1650 for (b = tb->next; b; b = next)
1651 {
1652 next = b->next;
1653 lisp_free (b);
1654 }
1655
1656 tb->next_free = to;
1657 tb->next = NULL;
1658 current_sblock = tb;
1659 }
1660
1661
1662 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1663 doc: /* Return a newly created string of length LENGTH, with each element being INIT.
1664 Both LENGTH and INIT must be numbers. */)
1665 (length, init)
1666 Lisp_Object length, init;
1667 {
1668 register Lisp_Object val;
1669 register unsigned char *p, *end;
1670 int c, nbytes;
1671
1672 CHECK_NATNUM (length);
1673 CHECK_NUMBER (init);
1674
1675 c = XINT (init);
1676 if (SINGLE_BYTE_CHAR_P (c))
1677 {
1678 nbytes = XINT (length);
1679 val = make_uninit_string (nbytes);
1680 p = SDATA (val);
1681 end = p + SCHARS (val);
1682 while (p != end)
1683 *p++ = c;
1684 }
1685 else
1686 {
1687 unsigned char str[MAX_MULTIBYTE_LENGTH];
1688 int len = CHAR_STRING (c, str);
1689
1690 nbytes = len * XINT (length);
1691 val = make_uninit_multibyte_string (XINT (length), nbytes);
1692 p = SDATA (val);
1693 end = p + nbytes;
1694 while (p != end)
1695 {
1696 bcopy (str, p, len);
1697 p += len;
1698 }
1699 }
1700
1701 *p = 0;
1702 return val;
1703 }
1704
1705
1706 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
1707 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
1708 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
1709 (length, init)
1710 Lisp_Object length, init;
1711 {
1712 register Lisp_Object val;
1713 struct Lisp_Bool_Vector *p;
1714 int real_init, i;
1715 int length_in_chars, length_in_elts, bits_per_value;
1716
1717 CHECK_NATNUM (length);
1718
1719 bits_per_value = sizeof (EMACS_INT) * BITS_PER_CHAR;
1720
1721 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
1722 length_in_chars = ((XFASTINT (length) + BITS_PER_CHAR - 1) / BITS_PER_CHAR);
1723
1724 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1725 slot `size' of the struct Lisp_Bool_Vector. */
1726 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1727 p = XBOOL_VECTOR (val);
1728
1729 /* Get rid of any bits that would cause confusion. */
1730 p->vector_size = 0;
1731 XSETBOOL_VECTOR (val, p);
1732 p->size = XFASTINT (length);
1733
1734 real_init = (NILP (init) ? 0 : -1);
1735 for (i = 0; i < length_in_chars ; i++)
1736 p->data[i] = real_init;
1737
1738 /* Clear the extraneous bits in the last byte. */
1739 if (XINT (length) != length_in_chars * BITS_PER_CHAR)
1740 XBOOL_VECTOR (val)->data[length_in_chars - 1]
1741 &= (1 << (XINT (length) % BITS_PER_CHAR)) - 1;
1742
1743 return val;
1744 }
1745
1746
1747 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
1748 of characters from the contents. This string may be unibyte or
1749 multibyte, depending on the contents. */
1750
1751 Lisp_Object
1752 make_string (contents, nbytes)
1753 const char *contents;
1754 int nbytes;
1755 {
1756 register Lisp_Object val;
1757 int nchars, multibyte_nbytes;
1758
1759 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
1760 if (nbytes == nchars || nbytes != multibyte_nbytes)
1761 /* CONTENTS contains no multibyte sequences or contains an invalid
1762 multibyte sequence. We must make unibyte string. */
1763 val = make_unibyte_string (contents, nbytes);
1764 else
1765 val = make_multibyte_string (contents, nchars, nbytes);
1766 return val;
1767 }
1768
1769
1770 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
1771
1772 Lisp_Object
1773 make_unibyte_string (contents, length)
1774 const char *contents;
1775 int length;
1776 {
1777 register Lisp_Object val;
1778 val = make_uninit_string (length);
1779 bcopy (contents, SDATA (val), length);
1780 STRING_SET_UNIBYTE (val);
1781 return val;
1782 }
1783
1784
1785 /* Make a multibyte string from NCHARS characters occupying NBYTES
1786 bytes at CONTENTS. */
1787
1788 Lisp_Object
1789 make_multibyte_string (contents, nchars, nbytes)
1790 const char *contents;
1791 int nchars, nbytes;
1792 {
1793 register Lisp_Object val;
1794 val = make_uninit_multibyte_string (nchars, nbytes);
1795 bcopy (contents, SDATA (val), nbytes);
1796 return val;
1797 }
1798
1799
1800 /* Make a string from NCHARS characters occupying NBYTES bytes at
1801 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
1802
1803 Lisp_Object
1804 make_string_from_bytes (contents, nchars, nbytes)
1805 char *contents;
1806 int nchars, nbytes;
1807 {
1808 register Lisp_Object val;
1809 val = make_uninit_multibyte_string (nchars, nbytes);
1810 bcopy (contents, SDATA (val), nbytes);
1811 if (SBYTES (val) == SCHARS (val))
1812 STRING_SET_UNIBYTE (val);
1813 return val;
1814 }
1815
1816
1817 /* Make a string from NCHARS characters occupying NBYTES bytes at
1818 CONTENTS. The argument MULTIBYTE controls whether to label the
1819 string as multibyte. */
1820
1821 Lisp_Object
1822 make_specified_string (contents, nchars, nbytes, multibyte)
1823 char *contents;
1824 int nchars, nbytes;
1825 int multibyte;
1826 {
1827 register Lisp_Object val;
1828 val = make_uninit_multibyte_string (nchars, nbytes);
1829 bcopy (contents, SDATA (val), nbytes);
1830 if (!multibyte)
1831 STRING_SET_UNIBYTE (val);
1832 return val;
1833 }
1834
1835
1836 /* Make a string from the data at STR, treating it as multibyte if the
1837 data warrants. */
1838
1839 Lisp_Object
1840 build_string (str)
1841 const char *str;
1842 {
1843 return make_string (str, strlen (str));
1844 }
1845
1846
1847 /* Return an unibyte Lisp_String set up to hold LENGTH characters
1848 occupying LENGTH bytes. */
1849
1850 Lisp_Object
1851 make_uninit_string (length)
1852 int length;
1853 {
1854 Lisp_Object val;
1855 val = make_uninit_multibyte_string (length, length);
1856 STRING_SET_UNIBYTE (val);
1857 return val;
1858 }
1859
1860
1861 /* Return a multibyte Lisp_String set up to hold NCHARS characters
1862 which occupy NBYTES bytes. */
1863
1864 Lisp_Object
1865 make_uninit_multibyte_string (nchars, nbytes)
1866 int nchars, nbytes;
1867 {
1868 Lisp_Object string;
1869 struct Lisp_String *s;
1870
1871 if (nchars < 0)
1872 abort ();
1873
1874 s = allocate_string ();
1875 allocate_string_data (s, nchars, nbytes);
1876 XSETSTRING (string, s);
1877 string_chars_consed += nbytes;
1878 return string;
1879 }
1880
1881
1882 \f
1883 /***********************************************************************
1884 Float Allocation
1885 ***********************************************************************/
1886
1887 /* We store float cells inside of float_blocks, allocating a new
1888 float_block with malloc whenever necessary. Float cells reclaimed
1889 by GC are put on a free list to be reallocated before allocating
1890 any new float cells from the latest float_block.
1891
1892 Each float_block is just under 1020 bytes long, since malloc really
1893 allocates in units of powers of two and uses 4 bytes for its own
1894 overhead. */
1895
1896 #define FLOAT_BLOCK_SIZE \
1897 ((1020 - sizeof (struct float_block *)) / sizeof (struct Lisp_Float))
1898
1899 struct float_block
1900 {
1901 struct float_block *next;
1902 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
1903 };
1904
1905 /* Current float_block. */
1906
1907 struct float_block *float_block;
1908
1909 /* Index of first unused Lisp_Float in the current float_block. */
1910
1911 int float_block_index;
1912
1913 /* Total number of float blocks now in use. */
1914
1915 int n_float_blocks;
1916
1917 /* Free-list of Lisp_Floats. */
1918
1919 struct Lisp_Float *float_free_list;
1920
1921
1922 /* Initialize float allocation. */
1923
1924 void
1925 init_float ()
1926 {
1927 float_block = (struct float_block *) lisp_malloc (sizeof *float_block,
1928 MEM_TYPE_FLOAT);
1929 float_block->next = 0;
1930 bzero ((char *) float_block->floats, sizeof float_block->floats);
1931 float_block_index = 0;
1932 float_free_list = 0;
1933 n_float_blocks = 1;
1934 }
1935
1936
1937 /* Explicitly free a float cell by putting it on the free-list. */
1938
1939 void
1940 free_float (ptr)
1941 struct Lisp_Float *ptr;
1942 {
1943 *(struct Lisp_Float **)&ptr->data = float_free_list;
1944 #if GC_MARK_STACK
1945 ptr->type = Vdead;
1946 #endif
1947 float_free_list = ptr;
1948 }
1949
1950
1951 /* Return a new float object with value FLOAT_VALUE. */
1952
1953 Lisp_Object
1954 make_float (float_value)
1955 double float_value;
1956 {
1957 register Lisp_Object val;
1958
1959 if (float_free_list)
1960 {
1961 /* We use the data field for chaining the free list
1962 so that we won't use the same field that has the mark bit. */
1963 XSETFLOAT (val, float_free_list);
1964 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
1965 }
1966 else
1967 {
1968 if (float_block_index == FLOAT_BLOCK_SIZE)
1969 {
1970 register struct float_block *new;
1971
1972 new = (struct float_block *) lisp_malloc (sizeof *new,
1973 MEM_TYPE_FLOAT);
1974 VALIDATE_LISP_STORAGE (new, sizeof *new);
1975 new->next = float_block;
1976 float_block = new;
1977 float_block_index = 0;
1978 n_float_blocks++;
1979 }
1980 XSETFLOAT (val, &float_block->floats[float_block_index++]);
1981 }
1982
1983 XFLOAT_DATA (val) = float_value;
1984 XSETFASTINT (XFLOAT (val)->type, 0); /* bug chasing -wsr */
1985 consing_since_gc += sizeof (struct Lisp_Float);
1986 floats_consed++;
1987 return val;
1988 }
1989
1990
1991 \f
1992 /***********************************************************************
1993 Cons Allocation
1994 ***********************************************************************/
1995
1996 /* We store cons cells inside of cons_blocks, allocating a new
1997 cons_block with malloc whenever necessary. Cons cells reclaimed by
1998 GC are put on a free list to be reallocated before allocating
1999 any new cons cells from the latest cons_block.
2000
2001 Each cons_block is just under 1020 bytes long,
2002 since malloc really allocates in units of powers of two
2003 and uses 4 bytes for its own overhead. */
2004
2005 #define CONS_BLOCK_SIZE \
2006 ((1020 - sizeof (struct cons_block *)) / sizeof (struct Lisp_Cons))
2007
2008 struct cons_block
2009 {
2010 struct cons_block *next;
2011 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2012 };
2013
2014 /* Current cons_block. */
2015
2016 struct cons_block *cons_block;
2017
2018 /* Index of first unused Lisp_Cons in the current block. */
2019
2020 int cons_block_index;
2021
2022 /* Free-list of Lisp_Cons structures. */
2023
2024 struct Lisp_Cons *cons_free_list;
2025
2026 /* Total number of cons blocks now in use. */
2027
2028 int n_cons_blocks;
2029
2030
2031 /* Initialize cons allocation. */
2032
2033 void
2034 init_cons ()
2035 {
2036 cons_block = (struct cons_block *) lisp_malloc (sizeof *cons_block,
2037 MEM_TYPE_CONS);
2038 cons_block->next = 0;
2039 bzero ((char *) cons_block->conses, sizeof cons_block->conses);
2040 cons_block_index = 0;
2041 cons_free_list = 0;
2042 n_cons_blocks = 1;
2043 }
2044
2045
2046 /* Explicitly free a cons cell by putting it on the free-list. */
2047
2048 void
2049 free_cons (ptr)
2050 struct Lisp_Cons *ptr;
2051 {
2052 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2053 #if GC_MARK_STACK
2054 ptr->car = Vdead;
2055 #endif
2056 cons_free_list = ptr;
2057 }
2058
2059
2060 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2061 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2062 (car, cdr)
2063 Lisp_Object car, cdr;
2064 {
2065 register Lisp_Object val;
2066
2067 if (cons_free_list)
2068 {
2069 /* We use the cdr for chaining the free list
2070 so that we won't use the same field that has the mark bit. */
2071 XSETCONS (val, cons_free_list);
2072 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2073 }
2074 else
2075 {
2076 if (cons_block_index == CONS_BLOCK_SIZE)
2077 {
2078 register struct cons_block *new;
2079 new = (struct cons_block *) lisp_malloc (sizeof *new,
2080 MEM_TYPE_CONS);
2081 VALIDATE_LISP_STORAGE (new, sizeof *new);
2082 new->next = cons_block;
2083 cons_block = new;
2084 cons_block_index = 0;
2085 n_cons_blocks++;
2086 }
2087 XSETCONS (val, &cons_block->conses[cons_block_index++]);
2088 }
2089
2090 XSETCAR (val, car);
2091 XSETCDR (val, cdr);
2092 consing_since_gc += sizeof (struct Lisp_Cons);
2093 cons_cells_consed++;
2094 return val;
2095 }
2096
2097
2098 /* Make a list of 2, 3, 4 or 5 specified objects. */
2099
2100 Lisp_Object
2101 list2 (arg1, arg2)
2102 Lisp_Object arg1, arg2;
2103 {
2104 return Fcons (arg1, Fcons (arg2, Qnil));
2105 }
2106
2107
2108 Lisp_Object
2109 list3 (arg1, arg2, arg3)
2110 Lisp_Object arg1, arg2, arg3;
2111 {
2112 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2113 }
2114
2115
2116 Lisp_Object
2117 list4 (arg1, arg2, arg3, arg4)
2118 Lisp_Object arg1, arg2, arg3, arg4;
2119 {
2120 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2121 }
2122
2123
2124 Lisp_Object
2125 list5 (arg1, arg2, arg3, arg4, arg5)
2126 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2127 {
2128 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2129 Fcons (arg5, Qnil)))));
2130 }
2131
2132
2133 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2134 doc: /* Return a newly created list with specified arguments as elements.
2135 Any number of arguments, even zero arguments, are allowed.
2136 usage: (list &rest OBJECTS) */)
2137 (nargs, args)
2138 int nargs;
2139 register Lisp_Object *args;
2140 {
2141 register Lisp_Object val;
2142 val = Qnil;
2143
2144 while (nargs > 0)
2145 {
2146 nargs--;
2147 val = Fcons (args[nargs], val);
2148 }
2149 return val;
2150 }
2151
2152
2153 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2154 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2155 (length, init)
2156 register Lisp_Object length, init;
2157 {
2158 register Lisp_Object val;
2159 register int size;
2160
2161 CHECK_NATNUM (length);
2162 size = XFASTINT (length);
2163
2164 val = Qnil;
2165 while (size > 0)
2166 {
2167 val = Fcons (init, val);
2168 --size;
2169
2170 if (size > 0)
2171 {
2172 val = Fcons (init, val);
2173 --size;
2174
2175 if (size > 0)
2176 {
2177 val = Fcons (init, val);
2178 --size;
2179
2180 if (size > 0)
2181 {
2182 val = Fcons (init, val);
2183 --size;
2184
2185 if (size > 0)
2186 {
2187 val = Fcons (init, val);
2188 --size;
2189 }
2190 }
2191 }
2192 }
2193
2194 QUIT;
2195 }
2196
2197 return val;
2198 }
2199
2200
2201 \f
2202 /***********************************************************************
2203 Vector Allocation
2204 ***********************************************************************/
2205
2206 /* Singly-linked list of all vectors. */
2207
2208 struct Lisp_Vector *all_vectors;
2209
2210 /* Total number of vector-like objects now in use. */
2211
2212 int n_vectors;
2213
2214
2215 /* Value is a pointer to a newly allocated Lisp_Vector structure
2216 with room for LEN Lisp_Objects. */
2217
2218 static struct Lisp_Vector *
2219 allocate_vectorlike (len, type)
2220 EMACS_INT len;
2221 enum mem_type type;
2222 {
2223 struct Lisp_Vector *p;
2224 size_t nbytes;
2225
2226 #ifdef DOUG_LEA_MALLOC
2227 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2228 because mapped region contents are not preserved in
2229 a dumped Emacs. */
2230 mallopt (M_MMAP_MAX, 0);
2231 #endif
2232
2233 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2234 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2235
2236 #ifdef DOUG_LEA_MALLOC
2237 /* Back to a reasonable maximum of mmap'ed areas. */
2238 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2239 #endif
2240
2241 VALIDATE_LISP_STORAGE (p, 0);
2242 consing_since_gc += nbytes;
2243 vector_cells_consed += len;
2244
2245 p->next = all_vectors;
2246 all_vectors = p;
2247 ++n_vectors;
2248 return p;
2249 }
2250
2251
2252 /* Allocate a vector with NSLOTS slots. */
2253
2254 struct Lisp_Vector *
2255 allocate_vector (nslots)
2256 EMACS_INT nslots;
2257 {
2258 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2259 v->size = nslots;
2260 return v;
2261 }
2262
2263
2264 /* Allocate other vector-like structures. */
2265
2266 struct Lisp_Hash_Table *
2267 allocate_hash_table ()
2268 {
2269 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2270 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2271 EMACS_INT i;
2272
2273 v->size = len;
2274 for (i = 0; i < len; ++i)
2275 v->contents[i] = Qnil;
2276
2277 return (struct Lisp_Hash_Table *) v;
2278 }
2279
2280
2281 struct window *
2282 allocate_window ()
2283 {
2284 EMACS_INT len = VECSIZE (struct window);
2285 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2286 EMACS_INT i;
2287
2288 for (i = 0; i < len; ++i)
2289 v->contents[i] = Qnil;
2290 v->size = len;
2291
2292 return (struct window *) v;
2293 }
2294
2295
2296 struct frame *
2297 allocate_frame ()
2298 {
2299 EMACS_INT len = VECSIZE (struct frame);
2300 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2301 EMACS_INT i;
2302
2303 for (i = 0; i < len; ++i)
2304 v->contents[i] = make_number (0);
2305 v->size = len;
2306 return (struct frame *) v;
2307 }
2308
2309
2310 struct Lisp_Process *
2311 allocate_process ()
2312 {
2313 EMACS_INT len = VECSIZE (struct Lisp_Process);
2314 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2315 EMACS_INT i;
2316
2317 for (i = 0; i < len; ++i)
2318 v->contents[i] = Qnil;
2319 v->size = len;
2320
2321 return (struct Lisp_Process *) v;
2322 }
2323
2324
2325 struct Lisp_Vector *
2326 allocate_other_vector (len)
2327 EMACS_INT len;
2328 {
2329 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2330 EMACS_INT i;
2331
2332 for (i = 0; i < len; ++i)
2333 v->contents[i] = Qnil;
2334 v->size = len;
2335
2336 return v;
2337 }
2338
2339
2340 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2341 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2342 See also the function `vector'. */)
2343 (length, init)
2344 register Lisp_Object length, init;
2345 {
2346 Lisp_Object vector;
2347 register EMACS_INT sizei;
2348 register int index;
2349 register struct Lisp_Vector *p;
2350
2351 CHECK_NATNUM (length);
2352 sizei = XFASTINT (length);
2353
2354 p = allocate_vector (sizei);
2355 for (index = 0; index < sizei; index++)
2356 p->contents[index] = init;
2357
2358 XSETVECTOR (vector, p);
2359 return vector;
2360 }
2361
2362
2363 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
2364 doc: /* Return a newly created char-table, with purpose PURPOSE.
2365 Each element is initialized to INIT, which defaults to nil.
2366 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
2367 The property's value should be an integer between 0 and 10. */)
2368 (purpose, init)
2369 register Lisp_Object purpose, init;
2370 {
2371 Lisp_Object vector;
2372 Lisp_Object n;
2373 CHECK_SYMBOL (purpose);
2374 n = Fget (purpose, Qchar_table_extra_slots);
2375 CHECK_NUMBER (n);
2376 if (XINT (n) < 0 || XINT (n) > 10)
2377 args_out_of_range (n, Qnil);
2378 /* Add 2 to the size for the defalt and parent slots. */
2379 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
2380 init);
2381 XCHAR_TABLE (vector)->top = Qt;
2382 XCHAR_TABLE (vector)->parent = Qnil;
2383 XCHAR_TABLE (vector)->purpose = purpose;
2384 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2385 return vector;
2386 }
2387
2388
2389 /* Return a newly created sub char table with default value DEFALT.
2390 Since a sub char table does not appear as a top level Emacs Lisp
2391 object, we don't need a Lisp interface to make it. */
2392
2393 Lisp_Object
2394 make_sub_char_table (defalt)
2395 Lisp_Object defalt;
2396 {
2397 Lisp_Object vector
2398 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
2399 XCHAR_TABLE (vector)->top = Qnil;
2400 XCHAR_TABLE (vector)->defalt = defalt;
2401 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2402 return vector;
2403 }
2404
2405
2406 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2407 doc: /* Return a newly created vector with specified arguments as elements.
2408 Any number of arguments, even zero arguments, are allowed.
2409 usage: (vector &rest OBJECTS) */)
2410 (nargs, args)
2411 register int nargs;
2412 Lisp_Object *args;
2413 {
2414 register Lisp_Object len, val;
2415 register int index;
2416 register struct Lisp_Vector *p;
2417
2418 XSETFASTINT (len, nargs);
2419 val = Fmake_vector (len, Qnil);
2420 p = XVECTOR (val);
2421 for (index = 0; index < nargs; index++)
2422 p->contents[index] = args[index];
2423 return val;
2424 }
2425
2426
2427 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2428 doc: /* Create a byte-code object with specified arguments as elements.
2429 The arguments should be the arglist, bytecode-string, constant vector,
2430 stack size, (optional) doc string, and (optional) interactive spec.
2431 The first four arguments are required; at most six have any
2432 significance.
2433 usage: (make-byte-code &rest ELEMENTS) */)
2434 (nargs, args)
2435 register int nargs;
2436 Lisp_Object *args;
2437 {
2438 register Lisp_Object len, val;
2439 register int index;
2440 register struct Lisp_Vector *p;
2441
2442 XSETFASTINT (len, nargs);
2443 if (!NILP (Vpurify_flag))
2444 val = make_pure_vector ((EMACS_INT) nargs);
2445 else
2446 val = Fmake_vector (len, Qnil);
2447
2448 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2449 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2450 earlier because they produced a raw 8-bit string for byte-code
2451 and now such a byte-code string is loaded as multibyte while
2452 raw 8-bit characters converted to multibyte form. Thus, now we
2453 must convert them back to the original unibyte form. */
2454 args[1] = Fstring_as_unibyte (args[1]);
2455
2456 p = XVECTOR (val);
2457 for (index = 0; index < nargs; index++)
2458 {
2459 if (!NILP (Vpurify_flag))
2460 args[index] = Fpurecopy (args[index]);
2461 p->contents[index] = args[index];
2462 }
2463 XSETCOMPILED (val, p);
2464 return val;
2465 }
2466
2467
2468 \f
2469 /***********************************************************************
2470 Symbol Allocation
2471 ***********************************************************************/
2472
2473 /* Each symbol_block is just under 1020 bytes long, since malloc
2474 really allocates in units of powers of two and uses 4 bytes for its
2475 own overhead. */
2476
2477 #define SYMBOL_BLOCK_SIZE \
2478 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2479
2480 struct symbol_block
2481 {
2482 struct symbol_block *next;
2483 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
2484 };
2485
2486 /* Current symbol block and index of first unused Lisp_Symbol
2487 structure in it. */
2488
2489 struct symbol_block *symbol_block;
2490 int symbol_block_index;
2491
2492 /* List of free symbols. */
2493
2494 struct Lisp_Symbol *symbol_free_list;
2495
2496 /* Total number of symbol blocks now in use. */
2497
2498 int n_symbol_blocks;
2499
2500
2501 /* Initialize symbol allocation. */
2502
2503 void
2504 init_symbol ()
2505 {
2506 symbol_block = (struct symbol_block *) lisp_malloc (sizeof *symbol_block,
2507 MEM_TYPE_SYMBOL);
2508 symbol_block->next = 0;
2509 bzero ((char *) symbol_block->symbols, sizeof symbol_block->symbols);
2510 symbol_block_index = 0;
2511 symbol_free_list = 0;
2512 n_symbol_blocks = 1;
2513 }
2514
2515
2516 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
2517 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
2518 Its value and function definition are void, and its property list is nil. */)
2519 (name)
2520 Lisp_Object name;
2521 {
2522 register Lisp_Object val;
2523 register struct Lisp_Symbol *p;
2524
2525 CHECK_STRING (name);
2526
2527 if (symbol_free_list)
2528 {
2529 XSETSYMBOL (val, symbol_free_list);
2530 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
2531 }
2532 else
2533 {
2534 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
2535 {
2536 struct symbol_block *new;
2537 new = (struct symbol_block *) lisp_malloc (sizeof *new,
2538 MEM_TYPE_SYMBOL);
2539 VALIDATE_LISP_STORAGE (new, sizeof *new);
2540 new->next = symbol_block;
2541 symbol_block = new;
2542 symbol_block_index = 0;
2543 n_symbol_blocks++;
2544 }
2545 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index++]);
2546 }
2547
2548 p = XSYMBOL (val);
2549 p->xname = name;
2550 p->plist = Qnil;
2551 p->value = Qunbound;
2552 p->function = Qunbound;
2553 p->next = NULL;
2554 p->interned = SYMBOL_UNINTERNED;
2555 p->constant = 0;
2556 p->indirect_variable = 0;
2557 consing_since_gc += sizeof (struct Lisp_Symbol);
2558 symbols_consed++;
2559 return val;
2560 }
2561
2562
2563 \f
2564 /***********************************************************************
2565 Marker (Misc) Allocation
2566 ***********************************************************************/
2567
2568 /* Allocation of markers and other objects that share that structure.
2569 Works like allocation of conses. */
2570
2571 #define MARKER_BLOCK_SIZE \
2572 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2573
2574 struct marker_block
2575 {
2576 struct marker_block *next;
2577 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
2578 };
2579
2580 struct marker_block *marker_block;
2581 int marker_block_index;
2582
2583 union Lisp_Misc *marker_free_list;
2584
2585 /* Total number of marker blocks now in use. */
2586
2587 int n_marker_blocks;
2588
2589 void
2590 init_marker ()
2591 {
2592 marker_block = (struct marker_block *) lisp_malloc (sizeof *marker_block,
2593 MEM_TYPE_MISC);
2594 marker_block->next = 0;
2595 bzero ((char *) marker_block->markers, sizeof marker_block->markers);
2596 marker_block_index = 0;
2597 marker_free_list = 0;
2598 n_marker_blocks = 1;
2599 }
2600
2601 /* Return a newly allocated Lisp_Misc object, with no substructure. */
2602
2603 Lisp_Object
2604 allocate_misc ()
2605 {
2606 Lisp_Object val;
2607
2608 if (marker_free_list)
2609 {
2610 XSETMISC (val, marker_free_list);
2611 marker_free_list = marker_free_list->u_free.chain;
2612 }
2613 else
2614 {
2615 if (marker_block_index == MARKER_BLOCK_SIZE)
2616 {
2617 struct marker_block *new;
2618 new = (struct marker_block *) lisp_malloc (sizeof *new,
2619 MEM_TYPE_MISC);
2620 VALIDATE_LISP_STORAGE (new, sizeof *new);
2621 new->next = marker_block;
2622 marker_block = new;
2623 marker_block_index = 0;
2624 n_marker_blocks++;
2625 }
2626 XSETMISC (val, &marker_block->markers[marker_block_index++]);
2627 }
2628
2629 consing_since_gc += sizeof (union Lisp_Misc);
2630 misc_objects_consed++;
2631 return val;
2632 }
2633
2634 /* Return a Lisp_Misc_Save_Value object containing POINTER and
2635 INTEGER. This is used to package C values to call record_unwind_protect.
2636 The unwind function can get the C values back using XSAVE_VALUE. */
2637
2638 Lisp_Object
2639 make_save_value (pointer, integer)
2640 void *pointer;
2641 int integer;
2642 {
2643 register Lisp_Object val;
2644 register struct Lisp_Save_Value *p;
2645
2646 val = allocate_misc ();
2647 XMISCTYPE (val) = Lisp_Misc_Save_Value;
2648 p = XSAVE_VALUE (val);
2649 p->pointer = pointer;
2650 p->integer = integer;
2651 return val;
2652 }
2653
2654 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
2655 doc: /* Return a newly allocated marker which does not point at any place. */)
2656 ()
2657 {
2658 register Lisp_Object val;
2659 register struct Lisp_Marker *p;
2660
2661 val = allocate_misc ();
2662 XMISCTYPE (val) = Lisp_Misc_Marker;
2663 p = XMARKER (val);
2664 p->buffer = 0;
2665 p->bytepos = 0;
2666 p->charpos = 0;
2667 p->chain = Qnil;
2668 p->insertion_type = 0;
2669 return val;
2670 }
2671
2672 /* Put MARKER back on the free list after using it temporarily. */
2673
2674 void
2675 free_marker (marker)
2676 Lisp_Object marker;
2677 {
2678 unchain_marker (marker);
2679
2680 XMISC (marker)->u_marker.type = Lisp_Misc_Free;
2681 XMISC (marker)->u_free.chain = marker_free_list;
2682 marker_free_list = XMISC (marker);
2683
2684 total_free_markers++;
2685 }
2686
2687 \f
2688 /* Return a newly created vector or string with specified arguments as
2689 elements. If all the arguments are characters that can fit
2690 in a string of events, make a string; otherwise, make a vector.
2691
2692 Any number of arguments, even zero arguments, are allowed. */
2693
2694 Lisp_Object
2695 make_event_array (nargs, args)
2696 register int nargs;
2697 Lisp_Object *args;
2698 {
2699 int i;
2700
2701 for (i = 0; i < nargs; i++)
2702 /* The things that fit in a string
2703 are characters that are in 0...127,
2704 after discarding the meta bit and all the bits above it. */
2705 if (!INTEGERP (args[i])
2706 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
2707 return Fvector (nargs, args);
2708
2709 /* Since the loop exited, we know that all the things in it are
2710 characters, so we can make a string. */
2711 {
2712 Lisp_Object result;
2713
2714 result = Fmake_string (make_number (nargs), make_number (0));
2715 for (i = 0; i < nargs; i++)
2716 {
2717 SSET (result, i, XINT (args[i]));
2718 /* Move the meta bit to the right place for a string char. */
2719 if (XINT (args[i]) & CHAR_META)
2720 SSET (result, i, SREF (result, i) | 0x80);
2721 }
2722
2723 return result;
2724 }
2725 }
2726
2727
2728 \f
2729 /************************************************************************
2730 C Stack Marking
2731 ************************************************************************/
2732
2733 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
2734
2735 /* Conservative C stack marking requires a method to identify possibly
2736 live Lisp objects given a pointer value. We do this by keeping
2737 track of blocks of Lisp data that are allocated in a red-black tree
2738 (see also the comment of mem_node which is the type of nodes in
2739 that tree). Function lisp_malloc adds information for an allocated
2740 block to the red-black tree with calls to mem_insert, and function
2741 lisp_free removes it with mem_delete. Functions live_string_p etc
2742 call mem_find to lookup information about a given pointer in the
2743 tree, and use that to determine if the pointer points to a Lisp
2744 object or not. */
2745
2746 /* Initialize this part of alloc.c. */
2747
2748 static void
2749 mem_init ()
2750 {
2751 mem_z.left = mem_z.right = MEM_NIL;
2752 mem_z.parent = NULL;
2753 mem_z.color = MEM_BLACK;
2754 mem_z.start = mem_z.end = NULL;
2755 mem_root = MEM_NIL;
2756 }
2757
2758
2759 /* Value is a pointer to the mem_node containing START. Value is
2760 MEM_NIL if there is no node in the tree containing START. */
2761
2762 static INLINE struct mem_node *
2763 mem_find (start)
2764 void *start;
2765 {
2766 struct mem_node *p;
2767
2768 if (start < min_heap_address || start > max_heap_address)
2769 return MEM_NIL;
2770
2771 /* Make the search always successful to speed up the loop below. */
2772 mem_z.start = start;
2773 mem_z.end = (char *) start + 1;
2774
2775 p = mem_root;
2776 while (start < p->start || start >= p->end)
2777 p = start < p->start ? p->left : p->right;
2778 return p;
2779 }
2780
2781
2782 /* Insert a new node into the tree for a block of memory with start
2783 address START, end address END, and type TYPE. Value is a
2784 pointer to the node that was inserted. */
2785
2786 static struct mem_node *
2787 mem_insert (start, end, type)
2788 void *start, *end;
2789 enum mem_type type;
2790 {
2791 struct mem_node *c, *parent, *x;
2792
2793 if (start < min_heap_address)
2794 min_heap_address = start;
2795 if (end > max_heap_address)
2796 max_heap_address = end;
2797
2798 /* See where in the tree a node for START belongs. In this
2799 particular application, it shouldn't happen that a node is already
2800 present. For debugging purposes, let's check that. */
2801 c = mem_root;
2802 parent = NULL;
2803
2804 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
2805
2806 while (c != MEM_NIL)
2807 {
2808 if (start >= c->start && start < c->end)
2809 abort ();
2810 parent = c;
2811 c = start < c->start ? c->left : c->right;
2812 }
2813
2814 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
2815
2816 while (c != MEM_NIL)
2817 {
2818 parent = c;
2819 c = start < c->start ? c->left : c->right;
2820 }
2821
2822 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
2823
2824 /* Create a new node. */
2825 #ifdef GC_MALLOC_CHECK
2826 x = (struct mem_node *) _malloc_internal (sizeof *x);
2827 if (x == NULL)
2828 abort ();
2829 #else
2830 x = (struct mem_node *) xmalloc (sizeof *x);
2831 #endif
2832 x->start = start;
2833 x->end = end;
2834 x->type = type;
2835 x->parent = parent;
2836 x->left = x->right = MEM_NIL;
2837 x->color = MEM_RED;
2838
2839 /* Insert it as child of PARENT or install it as root. */
2840 if (parent)
2841 {
2842 if (start < parent->start)
2843 parent->left = x;
2844 else
2845 parent->right = x;
2846 }
2847 else
2848 mem_root = x;
2849
2850 /* Re-establish red-black tree properties. */
2851 mem_insert_fixup (x);
2852
2853 return x;
2854 }
2855
2856
2857 /* Re-establish the red-black properties of the tree, and thereby
2858 balance the tree, after node X has been inserted; X is always red. */
2859
2860 static void
2861 mem_insert_fixup (x)
2862 struct mem_node *x;
2863 {
2864 while (x != mem_root && x->parent->color == MEM_RED)
2865 {
2866 /* X is red and its parent is red. This is a violation of
2867 red-black tree property #3. */
2868
2869 if (x->parent == x->parent->parent->left)
2870 {
2871 /* We're on the left side of our grandparent, and Y is our
2872 "uncle". */
2873 struct mem_node *y = x->parent->parent->right;
2874
2875 if (y->color == MEM_RED)
2876 {
2877 /* Uncle and parent are red but should be black because
2878 X is red. Change the colors accordingly and proceed
2879 with the grandparent. */
2880 x->parent->color = MEM_BLACK;
2881 y->color = MEM_BLACK;
2882 x->parent->parent->color = MEM_RED;
2883 x = x->parent->parent;
2884 }
2885 else
2886 {
2887 /* Parent and uncle have different colors; parent is
2888 red, uncle is black. */
2889 if (x == x->parent->right)
2890 {
2891 x = x->parent;
2892 mem_rotate_left (x);
2893 }
2894
2895 x->parent->color = MEM_BLACK;
2896 x->parent->parent->color = MEM_RED;
2897 mem_rotate_right (x->parent->parent);
2898 }
2899 }
2900 else
2901 {
2902 /* This is the symmetrical case of above. */
2903 struct mem_node *y = x->parent->parent->left;
2904
2905 if (y->color == MEM_RED)
2906 {
2907 x->parent->color = MEM_BLACK;
2908 y->color = MEM_BLACK;
2909 x->parent->parent->color = MEM_RED;
2910 x = x->parent->parent;
2911 }
2912 else
2913 {
2914 if (x == x->parent->left)
2915 {
2916 x = x->parent;
2917 mem_rotate_right (x);
2918 }
2919
2920 x->parent->color = MEM_BLACK;
2921 x->parent->parent->color = MEM_RED;
2922 mem_rotate_left (x->parent->parent);
2923 }
2924 }
2925 }
2926
2927 /* The root may have been changed to red due to the algorithm. Set
2928 it to black so that property #5 is satisfied. */
2929 mem_root->color = MEM_BLACK;
2930 }
2931
2932
2933 /* (x) (y)
2934 / \ / \
2935 a (y) ===> (x) c
2936 / \ / \
2937 b c a b */
2938
2939 static void
2940 mem_rotate_left (x)
2941 struct mem_node *x;
2942 {
2943 struct mem_node *y;
2944
2945 /* Turn y's left sub-tree into x's right sub-tree. */
2946 y = x->right;
2947 x->right = y->left;
2948 if (y->left != MEM_NIL)
2949 y->left->parent = x;
2950
2951 /* Y's parent was x's parent. */
2952 if (y != MEM_NIL)
2953 y->parent = x->parent;
2954
2955 /* Get the parent to point to y instead of x. */
2956 if (x->parent)
2957 {
2958 if (x == x->parent->left)
2959 x->parent->left = y;
2960 else
2961 x->parent->right = y;
2962 }
2963 else
2964 mem_root = y;
2965
2966 /* Put x on y's left. */
2967 y->left = x;
2968 if (x != MEM_NIL)
2969 x->parent = y;
2970 }
2971
2972
2973 /* (x) (Y)
2974 / \ / \
2975 (y) c ===> a (x)
2976 / \ / \
2977 a b b c */
2978
2979 static void
2980 mem_rotate_right (x)
2981 struct mem_node *x;
2982 {
2983 struct mem_node *y = x->left;
2984
2985 x->left = y->right;
2986 if (y->right != MEM_NIL)
2987 y->right->parent = x;
2988
2989 if (y != MEM_NIL)
2990 y->parent = x->parent;
2991 if (x->parent)
2992 {
2993 if (x == x->parent->right)
2994 x->parent->right = y;
2995 else
2996 x->parent->left = y;
2997 }
2998 else
2999 mem_root = y;
3000
3001 y->right = x;
3002 if (x != MEM_NIL)
3003 x->parent = y;
3004 }
3005
3006
3007 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3008
3009 static void
3010 mem_delete (z)
3011 struct mem_node *z;
3012 {
3013 struct mem_node *x, *y;
3014
3015 if (!z || z == MEM_NIL)
3016 return;
3017
3018 if (z->left == MEM_NIL || z->right == MEM_NIL)
3019 y = z;
3020 else
3021 {
3022 y = z->right;
3023 while (y->left != MEM_NIL)
3024 y = y->left;
3025 }
3026
3027 if (y->left != MEM_NIL)
3028 x = y->left;
3029 else
3030 x = y->right;
3031
3032 x->parent = y->parent;
3033 if (y->parent)
3034 {
3035 if (y == y->parent->left)
3036 y->parent->left = x;
3037 else
3038 y->parent->right = x;
3039 }
3040 else
3041 mem_root = x;
3042
3043 if (y != z)
3044 {
3045 z->start = y->start;
3046 z->end = y->end;
3047 z->type = y->type;
3048 }
3049
3050 if (y->color == MEM_BLACK)
3051 mem_delete_fixup (x);
3052
3053 #ifdef GC_MALLOC_CHECK
3054 _free_internal (y);
3055 #else
3056 xfree (y);
3057 #endif
3058 }
3059
3060
3061 /* Re-establish the red-black properties of the tree, after a
3062 deletion. */
3063
3064 static void
3065 mem_delete_fixup (x)
3066 struct mem_node *x;
3067 {
3068 while (x != mem_root && x->color == MEM_BLACK)
3069 {
3070 if (x == x->parent->left)
3071 {
3072 struct mem_node *w = x->parent->right;
3073
3074 if (w->color == MEM_RED)
3075 {
3076 w->color = MEM_BLACK;
3077 x->parent->color = MEM_RED;
3078 mem_rotate_left (x->parent);
3079 w = x->parent->right;
3080 }
3081
3082 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3083 {
3084 w->color = MEM_RED;
3085 x = x->parent;
3086 }
3087 else
3088 {
3089 if (w->right->color == MEM_BLACK)
3090 {
3091 w->left->color = MEM_BLACK;
3092 w->color = MEM_RED;
3093 mem_rotate_right (w);
3094 w = x->parent->right;
3095 }
3096 w->color = x->parent->color;
3097 x->parent->color = MEM_BLACK;
3098 w->right->color = MEM_BLACK;
3099 mem_rotate_left (x->parent);
3100 x = mem_root;
3101 }
3102 }
3103 else
3104 {
3105 struct mem_node *w = x->parent->left;
3106
3107 if (w->color == MEM_RED)
3108 {
3109 w->color = MEM_BLACK;
3110 x->parent->color = MEM_RED;
3111 mem_rotate_right (x->parent);
3112 w = x->parent->left;
3113 }
3114
3115 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3116 {
3117 w->color = MEM_RED;
3118 x = x->parent;
3119 }
3120 else
3121 {
3122 if (w->left->color == MEM_BLACK)
3123 {
3124 w->right->color = MEM_BLACK;
3125 w->color = MEM_RED;
3126 mem_rotate_left (w);
3127 w = x->parent->left;
3128 }
3129
3130 w->color = x->parent->color;
3131 x->parent->color = MEM_BLACK;
3132 w->left->color = MEM_BLACK;
3133 mem_rotate_right (x->parent);
3134 x = mem_root;
3135 }
3136 }
3137 }
3138
3139 x->color = MEM_BLACK;
3140 }
3141
3142
3143 /* Value is non-zero if P is a pointer to a live Lisp string on
3144 the heap. M is a pointer to the mem_block for P. */
3145
3146 static INLINE int
3147 live_string_p (m, p)
3148 struct mem_node *m;
3149 void *p;
3150 {
3151 if (m->type == MEM_TYPE_STRING)
3152 {
3153 struct string_block *b = (struct string_block *) m->start;
3154 int offset = (char *) p - (char *) &b->strings[0];
3155
3156 /* P must point to the start of a Lisp_String structure, and it
3157 must not be on the free-list. */
3158 return (offset >= 0
3159 && offset % sizeof b->strings[0] == 0
3160 && ((struct Lisp_String *) p)->data != NULL);
3161 }
3162 else
3163 return 0;
3164 }
3165
3166
3167 /* Value is non-zero if P is a pointer to a live Lisp cons on
3168 the heap. M is a pointer to the mem_block for P. */
3169
3170 static INLINE int
3171 live_cons_p (m, p)
3172 struct mem_node *m;
3173 void *p;
3174 {
3175 if (m->type == MEM_TYPE_CONS)
3176 {
3177 struct cons_block *b = (struct cons_block *) m->start;
3178 int offset = (char *) p - (char *) &b->conses[0];
3179
3180 /* P must point to the start of a Lisp_Cons, not be
3181 one of the unused cells in the current cons block,
3182 and not be on the free-list. */
3183 return (offset >= 0
3184 && offset % sizeof b->conses[0] == 0
3185 && (b != cons_block
3186 || offset / sizeof b->conses[0] < cons_block_index)
3187 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3188 }
3189 else
3190 return 0;
3191 }
3192
3193
3194 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3195 the heap. M is a pointer to the mem_block for P. */
3196
3197 static INLINE int
3198 live_symbol_p (m, p)
3199 struct mem_node *m;
3200 void *p;
3201 {
3202 if (m->type == MEM_TYPE_SYMBOL)
3203 {
3204 struct symbol_block *b = (struct symbol_block *) m->start;
3205 int offset = (char *) p - (char *) &b->symbols[0];
3206
3207 /* P must point to the start of a Lisp_Symbol, not be
3208 one of the unused cells in the current symbol block,
3209 and not be on the free-list. */
3210 return (offset >= 0
3211 && offset % sizeof b->symbols[0] == 0
3212 && (b != symbol_block
3213 || offset / sizeof b->symbols[0] < symbol_block_index)
3214 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3215 }
3216 else
3217 return 0;
3218 }
3219
3220
3221 /* Value is non-zero if P is a pointer to a live Lisp float on
3222 the heap. M is a pointer to the mem_block for P. */
3223
3224 static INLINE int
3225 live_float_p (m, p)
3226 struct mem_node *m;
3227 void *p;
3228 {
3229 if (m->type == MEM_TYPE_FLOAT)
3230 {
3231 struct float_block *b = (struct float_block *) m->start;
3232 int offset = (char *) p - (char *) &b->floats[0];
3233
3234 /* P must point to the start of a Lisp_Float, not be
3235 one of the unused cells in the current float block,
3236 and not be on the free-list. */
3237 return (offset >= 0
3238 && offset % sizeof b->floats[0] == 0
3239 && (b != float_block
3240 || offset / sizeof b->floats[0] < float_block_index)
3241 && !EQ (((struct Lisp_Float *) p)->type, Vdead));
3242 }
3243 else
3244 return 0;
3245 }
3246
3247
3248 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3249 the heap. M is a pointer to the mem_block for P. */
3250
3251 static INLINE int
3252 live_misc_p (m, p)
3253 struct mem_node *m;
3254 void *p;
3255 {
3256 if (m->type == MEM_TYPE_MISC)
3257 {
3258 struct marker_block *b = (struct marker_block *) m->start;
3259 int offset = (char *) p - (char *) &b->markers[0];
3260
3261 /* P must point to the start of a Lisp_Misc, not be
3262 one of the unused cells in the current misc block,
3263 and not be on the free-list. */
3264 return (offset >= 0
3265 && offset % sizeof b->markers[0] == 0
3266 && (b != marker_block
3267 || offset / sizeof b->markers[0] < marker_block_index)
3268 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3269 }
3270 else
3271 return 0;
3272 }
3273
3274
3275 /* Value is non-zero if P is a pointer to a live vector-like object.
3276 M is a pointer to the mem_block for P. */
3277
3278 static INLINE int
3279 live_vector_p (m, p)
3280 struct mem_node *m;
3281 void *p;
3282 {
3283 return (p == m->start
3284 && m->type >= MEM_TYPE_VECTOR
3285 && m->type <= MEM_TYPE_WINDOW);
3286 }
3287
3288
3289 /* Value is non-zero of P is a pointer to a live buffer. M is a
3290 pointer to the mem_block for P. */
3291
3292 static INLINE int
3293 live_buffer_p (m, p)
3294 struct mem_node *m;
3295 void *p;
3296 {
3297 /* P must point to the start of the block, and the buffer
3298 must not have been killed. */
3299 return (m->type == MEM_TYPE_BUFFER
3300 && p == m->start
3301 && !NILP (((struct buffer *) p)->name));
3302 }
3303
3304 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3305
3306 #if GC_MARK_STACK
3307
3308 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3309
3310 /* Array of objects that are kept alive because the C stack contains
3311 a pattern that looks like a reference to them . */
3312
3313 #define MAX_ZOMBIES 10
3314 static Lisp_Object zombies[MAX_ZOMBIES];
3315
3316 /* Number of zombie objects. */
3317
3318 static int nzombies;
3319
3320 /* Number of garbage collections. */
3321
3322 static int ngcs;
3323
3324 /* Average percentage of zombies per collection. */
3325
3326 static double avg_zombies;
3327
3328 /* Max. number of live and zombie objects. */
3329
3330 static int max_live, max_zombies;
3331
3332 /* Average number of live objects per GC. */
3333
3334 static double avg_live;
3335
3336 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3337 doc: /* Show information about live and zombie objects. */)
3338 ()
3339 {
3340 Lisp_Object args[7];
3341 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d");
3342 args[1] = make_number (ngcs);
3343 args[2] = make_float (avg_live);
3344 args[3] = make_float (avg_zombies);
3345 args[4] = make_float (avg_zombies / avg_live / 100);
3346 args[5] = make_number (max_live);
3347 args[6] = make_number (max_zombies);
3348 return Fmessage (7, args);
3349 }
3350
3351 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3352
3353
3354 /* Mark OBJ if we can prove it's a Lisp_Object. */
3355
3356 static INLINE void
3357 mark_maybe_object (obj)
3358 Lisp_Object obj;
3359 {
3360 void *po = (void *) XPNTR (obj);
3361 struct mem_node *m = mem_find (po);
3362
3363 if (m != MEM_NIL)
3364 {
3365 int mark_p = 0;
3366
3367 switch (XGCTYPE (obj))
3368 {
3369 case Lisp_String:
3370 mark_p = (live_string_p (m, po)
3371 && !STRING_MARKED_P ((struct Lisp_String *) po));
3372 break;
3373
3374 case Lisp_Cons:
3375 mark_p = (live_cons_p (m, po)
3376 && !XMARKBIT (XCONS (obj)->car));
3377 break;
3378
3379 case Lisp_Symbol:
3380 mark_p = (live_symbol_p (m, po)
3381 && !XMARKBIT (XSYMBOL (obj)->plist));
3382 break;
3383
3384 case Lisp_Float:
3385 mark_p = (live_float_p (m, po)
3386 && !XMARKBIT (XFLOAT (obj)->type));
3387 break;
3388
3389 case Lisp_Vectorlike:
3390 /* Note: can't check GC_BUFFERP before we know it's a
3391 buffer because checking that dereferences the pointer
3392 PO which might point anywhere. */
3393 if (live_vector_p (m, po))
3394 mark_p = (!GC_SUBRP (obj)
3395 && !(XVECTOR (obj)->size & ARRAY_MARK_FLAG));
3396 else if (live_buffer_p (m, po))
3397 mark_p = GC_BUFFERP (obj) && !XMARKBIT (XBUFFER (obj)->name);
3398 break;
3399
3400 case Lisp_Misc:
3401 if (live_misc_p (m, po))
3402 {
3403 switch (XMISCTYPE (obj))
3404 {
3405 case Lisp_Misc_Marker:
3406 mark_p = !XMARKBIT (XMARKER (obj)->chain);
3407 break;
3408
3409 case Lisp_Misc_Buffer_Local_Value:
3410 case Lisp_Misc_Some_Buffer_Local_Value:
3411 mark_p = !XMARKBIT (XBUFFER_LOCAL_VALUE (obj)->realvalue);
3412 break;
3413
3414 case Lisp_Misc_Overlay:
3415 mark_p = !XMARKBIT (XOVERLAY (obj)->plist);
3416 break;
3417 }
3418 }
3419 break;
3420
3421 case Lisp_Int:
3422 case Lisp_Type_Limit:
3423 break;
3424 }
3425
3426 if (mark_p)
3427 {
3428 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3429 if (nzombies < MAX_ZOMBIES)
3430 zombies[nzombies] = *p;
3431 ++nzombies;
3432 #endif
3433 mark_object (&obj);
3434 }
3435 }
3436 }
3437
3438
3439 /* If P points to Lisp data, mark that as live if it isn't already
3440 marked. */
3441
3442 static INLINE void
3443 mark_maybe_pointer (p)
3444 void *p;
3445 {
3446 struct mem_node *m;
3447
3448 /* Quickly rule out some values which can't point to Lisp data. We
3449 assume that Lisp data is aligned on even addresses. */
3450 if ((EMACS_INT) p & 1)
3451 return;
3452
3453 m = mem_find (p);
3454 if (m != MEM_NIL)
3455 {
3456 Lisp_Object obj = Qnil;
3457
3458 switch (m->type)
3459 {
3460 case MEM_TYPE_NON_LISP:
3461 /* Nothing to do; not a pointer to Lisp memory. */
3462 break;
3463
3464 case MEM_TYPE_BUFFER:
3465 if (live_buffer_p (m, p)
3466 && !XMARKBIT (((struct buffer *) p)->name))
3467 XSETVECTOR (obj, p);
3468 break;
3469
3470 case MEM_TYPE_CONS:
3471 if (live_cons_p (m, p)
3472 && !XMARKBIT (((struct Lisp_Cons *) p)->car))
3473 XSETCONS (obj, p);
3474 break;
3475
3476 case MEM_TYPE_STRING:
3477 if (live_string_p (m, p)
3478 && !STRING_MARKED_P ((struct Lisp_String *) p))
3479 XSETSTRING (obj, p);
3480 break;
3481
3482 case MEM_TYPE_MISC:
3483 if (live_misc_p (m, p))
3484 {
3485 Lisp_Object tem;
3486 XSETMISC (tem, p);
3487
3488 switch (XMISCTYPE (tem))
3489 {
3490 case Lisp_Misc_Marker:
3491 if (!XMARKBIT (XMARKER (tem)->chain))
3492 obj = tem;
3493 break;
3494
3495 case Lisp_Misc_Buffer_Local_Value:
3496 case Lisp_Misc_Some_Buffer_Local_Value:
3497 if (!XMARKBIT (XBUFFER_LOCAL_VALUE (tem)->realvalue))
3498 obj = tem;
3499 break;
3500
3501 case Lisp_Misc_Overlay:
3502 if (!XMARKBIT (XOVERLAY (tem)->plist))
3503 obj = tem;
3504 break;
3505 }
3506 }
3507 break;
3508
3509 case MEM_TYPE_SYMBOL:
3510 if (live_symbol_p (m, p)
3511 && !XMARKBIT (((struct Lisp_Symbol *) p)->plist))
3512 XSETSYMBOL (obj, p);
3513 break;
3514
3515 case MEM_TYPE_FLOAT:
3516 if (live_float_p (m, p)
3517 && !XMARKBIT (((struct Lisp_Float *) p)->type))
3518 XSETFLOAT (obj, p);
3519 break;
3520
3521 case MEM_TYPE_VECTOR:
3522 case MEM_TYPE_PROCESS:
3523 case MEM_TYPE_HASH_TABLE:
3524 case MEM_TYPE_FRAME:
3525 case MEM_TYPE_WINDOW:
3526 if (live_vector_p (m, p))
3527 {
3528 Lisp_Object tem;
3529 XSETVECTOR (tem, p);
3530 if (!GC_SUBRP (tem)
3531 && !(XVECTOR (tem)->size & ARRAY_MARK_FLAG))
3532 obj = tem;
3533 }
3534 break;
3535
3536 default:
3537 abort ();
3538 }
3539
3540 if (!GC_NILP (obj))
3541 mark_object (&obj);
3542 }
3543 }
3544
3545
3546 /* Mark Lisp objects referenced from the address range START..END. */
3547
3548 static void
3549 mark_memory (start, end)
3550 void *start, *end;
3551 {
3552 Lisp_Object *p;
3553 void **pp;
3554
3555 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3556 nzombies = 0;
3557 #endif
3558
3559 /* Make START the pointer to the start of the memory region,
3560 if it isn't already. */
3561 if (end < start)
3562 {
3563 void *tem = start;
3564 start = end;
3565 end = tem;
3566 }
3567
3568 /* Mark Lisp_Objects. */
3569 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
3570 mark_maybe_object (*p);
3571
3572 /* Mark Lisp data pointed to. This is necessary because, in some
3573 situations, the C compiler optimizes Lisp objects away, so that
3574 only a pointer to them remains. Example:
3575
3576 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
3577 ()
3578 {
3579 Lisp_Object obj = build_string ("test");
3580 struct Lisp_String *s = XSTRING (obj);
3581 Fgarbage_collect ();
3582 fprintf (stderr, "test `%s'\n", s->data);
3583 return Qnil;
3584 }
3585
3586 Here, `obj' isn't really used, and the compiler optimizes it
3587 away. The only reference to the life string is through the
3588 pointer `s'. */
3589
3590 for (pp = (void **) start; (void *) pp < end; ++pp)
3591 mark_maybe_pointer (*pp);
3592 }
3593
3594 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
3595 the GCC system configuration. In gcc 3.2, the only systems for
3596 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
3597 by others?) and ns32k-pc532-min. */
3598
3599 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3600
3601 static int setjmp_tested_p, longjmps_done;
3602
3603 #define SETJMP_WILL_LIKELY_WORK "\
3604 \n\
3605 Emacs garbage collector has been changed to use conservative stack\n\
3606 marking. Emacs has determined that the method it uses to do the\n\
3607 marking will likely work on your system, but this isn't sure.\n\
3608 \n\
3609 If you are a system-programmer, or can get the help of a local wizard\n\
3610 who is, please take a look at the function mark_stack in alloc.c, and\n\
3611 verify that the methods used are appropriate for your system.\n\
3612 \n\
3613 Please mail the result to <emacs-devel@gnu.org>.\n\
3614 "
3615
3616 #define SETJMP_WILL_NOT_WORK "\
3617 \n\
3618 Emacs garbage collector has been changed to use conservative stack\n\
3619 marking. Emacs has determined that the default method it uses to do the\n\
3620 marking will not work on your system. We will need a system-dependent\n\
3621 solution for your system.\n\
3622 \n\
3623 Please take a look at the function mark_stack in alloc.c, and\n\
3624 try to find a way to make it work on your system.\n\
3625 \n\
3626 Note that you may get false negatives, depending on the compiler.\n\
3627 In particular, you need to use -O with GCC for this test.\n\
3628 \n\
3629 Please mail the result to <emacs-devel@gnu.org>.\n\
3630 "
3631
3632
3633 /* Perform a quick check if it looks like setjmp saves registers in a
3634 jmp_buf. Print a message to stderr saying so. When this test
3635 succeeds, this is _not_ a proof that setjmp is sufficient for
3636 conservative stack marking. Only the sources or a disassembly
3637 can prove that. */
3638
3639 static void
3640 test_setjmp ()
3641 {
3642 char buf[10];
3643 register int x;
3644 jmp_buf jbuf;
3645 int result = 0;
3646
3647 /* Arrange for X to be put in a register. */
3648 sprintf (buf, "1");
3649 x = strlen (buf);
3650 x = 2 * x - 1;
3651
3652 setjmp (jbuf);
3653 if (longjmps_done == 1)
3654 {
3655 /* Came here after the longjmp at the end of the function.
3656
3657 If x == 1, the longjmp has restored the register to its
3658 value before the setjmp, and we can hope that setjmp
3659 saves all such registers in the jmp_buf, although that
3660 isn't sure.
3661
3662 For other values of X, either something really strange is
3663 taking place, or the setjmp just didn't save the register. */
3664
3665 if (x == 1)
3666 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
3667 else
3668 {
3669 fprintf (stderr, SETJMP_WILL_NOT_WORK);
3670 exit (1);
3671 }
3672 }
3673
3674 ++longjmps_done;
3675 x = 2;
3676 if (longjmps_done == 1)
3677 longjmp (jbuf, 1);
3678 }
3679
3680 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3681
3682
3683 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3684
3685 /* Abort if anything GCPRO'd doesn't survive the GC. */
3686
3687 static void
3688 check_gcpros ()
3689 {
3690 struct gcpro *p;
3691 int i;
3692
3693 for (p = gcprolist; p; p = p->next)
3694 for (i = 0; i < p->nvars; ++i)
3695 if (!survives_gc_p (p->var[i]))
3696 abort ();
3697 }
3698
3699 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3700
3701 static void
3702 dump_zombies ()
3703 {
3704 int i;
3705
3706 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
3707 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
3708 {
3709 fprintf (stderr, " %d = ", i);
3710 debug_print (zombies[i]);
3711 }
3712 }
3713
3714 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3715
3716
3717 /* Mark live Lisp objects on the C stack.
3718
3719 There are several system-dependent problems to consider when
3720 porting this to new architectures:
3721
3722 Processor Registers
3723
3724 We have to mark Lisp objects in CPU registers that can hold local
3725 variables or are used to pass parameters.
3726
3727 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
3728 something that either saves relevant registers on the stack, or
3729 calls mark_maybe_object passing it each register's contents.
3730
3731 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
3732 implementation assumes that calling setjmp saves registers we need
3733 to see in a jmp_buf which itself lies on the stack. This doesn't
3734 have to be true! It must be verified for each system, possibly
3735 by taking a look at the source code of setjmp.
3736
3737 Stack Layout
3738
3739 Architectures differ in the way their processor stack is organized.
3740 For example, the stack might look like this
3741
3742 +----------------+
3743 | Lisp_Object | size = 4
3744 +----------------+
3745 | something else | size = 2
3746 +----------------+
3747 | Lisp_Object | size = 4
3748 +----------------+
3749 | ... |
3750
3751 In such a case, not every Lisp_Object will be aligned equally. To
3752 find all Lisp_Object on the stack it won't be sufficient to walk
3753 the stack in steps of 4 bytes. Instead, two passes will be
3754 necessary, one starting at the start of the stack, and a second
3755 pass starting at the start of the stack + 2. Likewise, if the
3756 minimal alignment of Lisp_Objects on the stack is 1, four passes
3757 would be necessary, each one starting with one byte more offset
3758 from the stack start.
3759
3760 The current code assumes by default that Lisp_Objects are aligned
3761 equally on the stack. */
3762
3763 static void
3764 mark_stack ()
3765 {
3766 int i;
3767 jmp_buf j;
3768 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
3769 void *end;
3770
3771 /* This trick flushes the register windows so that all the state of
3772 the process is contained in the stack. */
3773 #ifdef sparc
3774 asm ("ta 3");
3775 #endif
3776
3777 /* Save registers that we need to see on the stack. We need to see
3778 registers used to hold register variables and registers used to
3779 pass parameters. */
3780 #ifdef GC_SAVE_REGISTERS_ON_STACK
3781 GC_SAVE_REGISTERS_ON_STACK (end);
3782 #else /* not GC_SAVE_REGISTERS_ON_STACK */
3783
3784 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
3785 setjmp will definitely work, test it
3786 and print a message with the result
3787 of the test. */
3788 if (!setjmp_tested_p)
3789 {
3790 setjmp_tested_p = 1;
3791 test_setjmp ();
3792 }
3793 #endif /* GC_SETJMP_WORKS */
3794
3795 setjmp (j);
3796 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
3797 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
3798
3799 /* This assumes that the stack is a contiguous region in memory. If
3800 that's not the case, something has to be done here to iterate
3801 over the stack segments. */
3802 #ifndef GC_LISP_OBJECT_ALIGNMENT
3803 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
3804 #endif
3805 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
3806 mark_memory ((char *) stack_base + i, end);
3807
3808 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3809 check_gcpros ();
3810 #endif
3811 }
3812
3813
3814 #endif /* GC_MARK_STACK != 0 */
3815
3816
3817 \f
3818 /***********************************************************************
3819 Pure Storage Management
3820 ***********************************************************************/
3821
3822 /* Allocate room for SIZE bytes from pure Lisp storage and return a
3823 pointer to it. TYPE is the Lisp type for which the memory is
3824 allocated. TYPE < 0 means it's not used for a Lisp object.
3825
3826 If store_pure_type_info is set and TYPE is >= 0, the type of
3827 the allocated object is recorded in pure_types. */
3828
3829 static POINTER_TYPE *
3830 pure_alloc (size, type)
3831 size_t size;
3832 int type;
3833 {
3834 POINTER_TYPE *result;
3835 size_t alignment = sizeof (EMACS_INT);
3836
3837 /* Give Lisp_Floats an extra alignment. */
3838 if (type == Lisp_Float)
3839 {
3840 #if defined __GNUC__ && __GNUC__ >= 2
3841 alignment = __alignof (struct Lisp_Float);
3842 #else
3843 alignment = sizeof (struct Lisp_Float);
3844 #endif
3845 }
3846
3847 again:
3848 result = (POINTER_TYPE *) ALIGN ((EMACS_UINT)purebeg + pure_bytes_used, alignment);
3849 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
3850
3851 if (pure_bytes_used <= pure_size)
3852 return result;
3853
3854 /* Don't allocate a large amount here,
3855 because it might get mmap'd and then its address
3856 might not be usable. */
3857 purebeg = (char *) xmalloc (10000);
3858 pure_size = 10000;
3859 pure_bytes_used_before_overflow += pure_bytes_used - size;
3860 pure_bytes_used = 0;
3861 goto again;
3862 }
3863
3864
3865 /* Print a warning if PURESIZE is too small. */
3866
3867 void
3868 check_pure_size ()
3869 {
3870 if (pure_bytes_used_before_overflow)
3871 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
3872 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
3873 }
3874
3875
3876 /* Return a string allocated in pure space. DATA is a buffer holding
3877 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
3878 non-zero means make the result string multibyte.
3879
3880 Must get an error if pure storage is full, since if it cannot hold
3881 a large string it may be able to hold conses that point to that
3882 string; then the string is not protected from gc. */
3883
3884 Lisp_Object
3885 make_pure_string (data, nchars, nbytes, multibyte)
3886 char *data;
3887 int nchars, nbytes;
3888 int multibyte;
3889 {
3890 Lisp_Object string;
3891 struct Lisp_String *s;
3892
3893 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
3894 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
3895 s->size = nchars;
3896 s->size_byte = multibyte ? nbytes : -1;
3897 bcopy (data, s->data, nbytes);
3898 s->data[nbytes] = '\0';
3899 s->intervals = NULL_INTERVAL;
3900 XSETSTRING (string, s);
3901 return string;
3902 }
3903
3904
3905 /* Return a cons allocated from pure space. Give it pure copies
3906 of CAR as car and CDR as cdr. */
3907
3908 Lisp_Object
3909 pure_cons (car, cdr)
3910 Lisp_Object car, cdr;
3911 {
3912 register Lisp_Object new;
3913 struct Lisp_Cons *p;
3914
3915 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
3916 XSETCONS (new, p);
3917 XSETCAR (new, Fpurecopy (car));
3918 XSETCDR (new, Fpurecopy (cdr));
3919 return new;
3920 }
3921
3922
3923 /* Value is a float object with value NUM allocated from pure space. */
3924
3925 Lisp_Object
3926 make_pure_float (num)
3927 double num;
3928 {
3929 register Lisp_Object new;
3930 struct Lisp_Float *p;
3931
3932 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
3933 XSETFLOAT (new, p);
3934 XFLOAT_DATA (new) = num;
3935 return new;
3936 }
3937
3938
3939 /* Return a vector with room for LEN Lisp_Objects allocated from
3940 pure space. */
3941
3942 Lisp_Object
3943 make_pure_vector (len)
3944 EMACS_INT len;
3945 {
3946 Lisp_Object new;
3947 struct Lisp_Vector *p;
3948 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
3949
3950 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
3951 XSETVECTOR (new, p);
3952 XVECTOR (new)->size = len;
3953 return new;
3954 }
3955
3956
3957 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
3958 doc: /* Make a copy of OBJECT in pure storage.
3959 Recursively copies contents of vectors and cons cells.
3960 Does not copy symbols. Copies strings without text properties. */)
3961 (obj)
3962 register Lisp_Object obj;
3963 {
3964 if (NILP (Vpurify_flag))
3965 return obj;
3966
3967 if (PURE_POINTER_P (XPNTR (obj)))
3968 return obj;
3969
3970 if (CONSP (obj))
3971 return pure_cons (XCAR (obj), XCDR (obj));
3972 else if (FLOATP (obj))
3973 return make_pure_float (XFLOAT_DATA (obj));
3974 else if (STRINGP (obj))
3975 return make_pure_string (SDATA (obj), SCHARS (obj),
3976 SBYTES (obj),
3977 STRING_MULTIBYTE (obj));
3978 else if (COMPILEDP (obj) || VECTORP (obj))
3979 {
3980 register struct Lisp_Vector *vec;
3981 register int i, size;
3982
3983 size = XVECTOR (obj)->size;
3984 if (size & PSEUDOVECTOR_FLAG)
3985 size &= PSEUDOVECTOR_SIZE_MASK;
3986 vec = XVECTOR (make_pure_vector ((EMACS_INT) size));
3987 for (i = 0; i < size; i++)
3988 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
3989 if (COMPILEDP (obj))
3990 XSETCOMPILED (obj, vec);
3991 else
3992 XSETVECTOR (obj, vec);
3993 return obj;
3994 }
3995 else if (MARKERP (obj))
3996 error ("Attempt to copy a marker to pure storage");
3997
3998 return obj;
3999 }
4000
4001
4002 \f
4003 /***********************************************************************
4004 Protection from GC
4005 ***********************************************************************/
4006
4007 /* Put an entry in staticvec, pointing at the variable with address
4008 VARADDRESS. */
4009
4010 void
4011 staticpro (varaddress)
4012 Lisp_Object *varaddress;
4013 {
4014 staticvec[staticidx++] = varaddress;
4015 if (staticidx >= NSTATICS)
4016 abort ();
4017 }
4018
4019 struct catchtag
4020 {
4021 Lisp_Object tag;
4022 Lisp_Object val;
4023 struct catchtag *next;
4024 };
4025
4026 struct backtrace
4027 {
4028 struct backtrace *next;
4029 Lisp_Object *function;
4030 Lisp_Object *args; /* Points to vector of args. */
4031 int nargs; /* Length of vector. */
4032 /* If nargs is UNEVALLED, args points to slot holding list of
4033 unevalled args. */
4034 char evalargs;
4035 };
4036
4037
4038 \f
4039 /***********************************************************************
4040 Protection from GC
4041 ***********************************************************************/
4042
4043 /* Temporarily prevent garbage collection. */
4044
4045 int
4046 inhibit_garbage_collection ()
4047 {
4048 int count = SPECPDL_INDEX ();
4049 int nbits = min (VALBITS, BITS_PER_INT);
4050
4051 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4052 return count;
4053 }
4054
4055
4056 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4057 doc: /* Reclaim storage for Lisp objects no longer needed.
4058 Returns info on amount of space in use:
4059 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4060 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4061 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4062 (USED-STRINGS . FREE-STRINGS))
4063 Garbage collection happens automatically if you cons more than
4064 `gc-cons-threshold' bytes of Lisp data since previous garbage collection. */)
4065 ()
4066 {
4067 register struct gcpro *tail;
4068 register struct specbinding *bind;
4069 struct catchtag *catch;
4070 struct handler *handler;
4071 register struct backtrace *backlist;
4072 char stack_top_variable;
4073 register int i;
4074 int message_p;
4075 Lisp_Object total[8];
4076 int count = SPECPDL_INDEX ();
4077
4078 /* Can't GC if pure storage overflowed because we can't determine
4079 if something is a pure object or not. */
4080 if (pure_bytes_used_before_overflow)
4081 return Qnil;
4082
4083 /* In case user calls debug_print during GC,
4084 don't let that cause a recursive GC. */
4085 consing_since_gc = 0;
4086
4087 /* Save what's currently displayed in the echo area. */
4088 message_p = push_message ();
4089 record_unwind_protect (pop_message_unwind, Qnil);
4090
4091 /* Save a copy of the contents of the stack, for debugging. */
4092 #if MAX_SAVE_STACK > 0
4093 if (NILP (Vpurify_flag))
4094 {
4095 i = &stack_top_variable - stack_bottom;
4096 if (i < 0) i = -i;
4097 if (i < MAX_SAVE_STACK)
4098 {
4099 if (stack_copy == 0)
4100 stack_copy = (char *) xmalloc (stack_copy_size = i);
4101 else if (stack_copy_size < i)
4102 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4103 if (stack_copy)
4104 {
4105 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4106 bcopy (stack_bottom, stack_copy, i);
4107 else
4108 bcopy (&stack_top_variable, stack_copy, i);
4109 }
4110 }
4111 }
4112 #endif /* MAX_SAVE_STACK > 0 */
4113
4114 if (garbage_collection_messages)
4115 message1_nolog ("Garbage collecting...");
4116
4117 BLOCK_INPUT;
4118
4119 shrink_regexp_cache ();
4120
4121 /* Don't keep undo information around forever. */
4122 {
4123 register struct buffer *nextb = all_buffers;
4124
4125 while (nextb)
4126 {
4127 /* If a buffer's undo list is Qt, that means that undo is
4128 turned off in that buffer. Calling truncate_undo_list on
4129 Qt tends to return NULL, which effectively turns undo back on.
4130 So don't call truncate_undo_list if undo_list is Qt. */
4131 if (! EQ (nextb->undo_list, Qt))
4132 nextb->undo_list
4133 = truncate_undo_list (nextb->undo_list, undo_limit,
4134 undo_strong_limit);
4135
4136 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4137 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4138 {
4139 /* If a buffer's gap size is more than 10% of the buffer
4140 size, or larger than 2000 bytes, then shrink it
4141 accordingly. Keep a minimum size of 20 bytes. */
4142 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4143
4144 if (nextb->text->gap_size > size)
4145 {
4146 struct buffer *save_current = current_buffer;
4147 current_buffer = nextb;
4148 make_gap (-(nextb->text->gap_size - size));
4149 current_buffer = save_current;
4150 }
4151 }
4152
4153 nextb = nextb->next;
4154 }
4155 }
4156
4157 gc_in_progress = 1;
4158
4159 /* clear_marks (); */
4160
4161 /* Mark all the special slots that serve as the roots of accessibility.
4162
4163 Usually the special slots to mark are contained in particular structures.
4164 Then we know no slot is marked twice because the structures don't overlap.
4165 In some cases, the structures point to the slots to be marked.
4166 For these, we use MARKBIT to avoid double marking of the slot. */
4167
4168 for (i = 0; i < staticidx; i++)
4169 mark_object (staticvec[i]);
4170
4171 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4172 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4173 mark_stack ();
4174 #else
4175 for (tail = gcprolist; tail; tail = tail->next)
4176 for (i = 0; i < tail->nvars; i++)
4177 if (!XMARKBIT (tail->var[i]))
4178 {
4179 /* Explicit casting prevents compiler warning about
4180 discarding the `volatile' qualifier. */
4181 mark_object ((Lisp_Object *)&tail->var[i]);
4182 XMARK (tail->var[i]);
4183 }
4184 #endif
4185
4186 mark_byte_stack ();
4187 for (bind = specpdl; bind != specpdl_ptr; bind++)
4188 {
4189 mark_object (&bind->symbol);
4190 mark_object (&bind->old_value);
4191 }
4192 for (catch = catchlist; catch; catch = catch->next)
4193 {
4194 mark_object (&catch->tag);
4195 mark_object (&catch->val);
4196 }
4197 for (handler = handlerlist; handler; handler = handler->next)
4198 {
4199 mark_object (&handler->handler);
4200 mark_object (&handler->var);
4201 }
4202 for (backlist = backtrace_list; backlist; backlist = backlist->next)
4203 {
4204 if (!XMARKBIT (*backlist->function))
4205 {
4206 mark_object (backlist->function);
4207 XMARK (*backlist->function);
4208 }
4209 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
4210 i = 0;
4211 else
4212 i = backlist->nargs - 1;
4213 for (; i >= 0; i--)
4214 if (!XMARKBIT (backlist->args[i]))
4215 {
4216 mark_object (&backlist->args[i]);
4217 XMARK (backlist->args[i]);
4218 }
4219 }
4220 mark_kboards ();
4221
4222 /* Look thru every buffer's undo list
4223 for elements that update markers that were not marked,
4224 and delete them. */
4225 {
4226 register struct buffer *nextb = all_buffers;
4227
4228 while (nextb)
4229 {
4230 /* If a buffer's undo list is Qt, that means that undo is
4231 turned off in that buffer. Calling truncate_undo_list on
4232 Qt tends to return NULL, which effectively turns undo back on.
4233 So don't call truncate_undo_list if undo_list is Qt. */
4234 if (! EQ (nextb->undo_list, Qt))
4235 {
4236 Lisp_Object tail, prev;
4237 tail = nextb->undo_list;
4238 prev = Qnil;
4239 while (CONSP (tail))
4240 {
4241 if (GC_CONSP (XCAR (tail))
4242 && GC_MARKERP (XCAR (XCAR (tail)))
4243 && ! XMARKBIT (XMARKER (XCAR (XCAR (tail)))->chain))
4244 {
4245 if (NILP (prev))
4246 nextb->undo_list = tail = XCDR (tail);
4247 else
4248 {
4249 tail = XCDR (tail);
4250 XSETCDR (prev, tail);
4251 }
4252 }
4253 else
4254 {
4255 prev = tail;
4256 tail = XCDR (tail);
4257 }
4258 }
4259 }
4260
4261 nextb = nextb->next;
4262 }
4263 }
4264
4265 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4266 mark_stack ();
4267 #endif
4268
4269 #ifdef USE_GTK
4270 {
4271 extern void xg_mark_data ();
4272 xg_mark_data ();
4273 }
4274 #endif
4275
4276 gc_sweep ();
4277
4278 /* Clear the mark bits that we set in certain root slots. */
4279
4280 #if (GC_MARK_STACK == GC_USE_GCPROS_AS_BEFORE \
4281 || GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES)
4282 for (tail = gcprolist; tail; tail = tail->next)
4283 for (i = 0; i < tail->nvars; i++)
4284 XUNMARK (tail->var[i]);
4285 #endif
4286
4287 unmark_byte_stack ();
4288 for (backlist = backtrace_list; backlist; backlist = backlist->next)
4289 {
4290 XUNMARK (*backlist->function);
4291 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
4292 i = 0;
4293 else
4294 i = backlist->nargs - 1;
4295 for (; i >= 0; i--)
4296 XUNMARK (backlist->args[i]);
4297 }
4298 XUNMARK (buffer_defaults.name);
4299 XUNMARK (buffer_local_symbols.name);
4300
4301 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4302 dump_zombies ();
4303 #endif
4304
4305 UNBLOCK_INPUT;
4306
4307 /* clear_marks (); */
4308 gc_in_progress = 0;
4309
4310 consing_since_gc = 0;
4311 if (gc_cons_threshold < 10000)
4312 gc_cons_threshold = 10000;
4313
4314 if (garbage_collection_messages)
4315 {
4316 if (message_p || minibuf_level > 0)
4317 restore_message ();
4318 else
4319 message1_nolog ("Garbage collecting...done");
4320 }
4321
4322 unbind_to (count, Qnil);
4323
4324 total[0] = Fcons (make_number (total_conses),
4325 make_number (total_free_conses));
4326 total[1] = Fcons (make_number (total_symbols),
4327 make_number (total_free_symbols));
4328 total[2] = Fcons (make_number (total_markers),
4329 make_number (total_free_markers));
4330 total[3] = make_number (total_string_size);
4331 total[4] = make_number (total_vector_size);
4332 total[5] = Fcons (make_number (total_floats),
4333 make_number (total_free_floats));
4334 total[6] = Fcons (make_number (total_intervals),
4335 make_number (total_free_intervals));
4336 total[7] = Fcons (make_number (total_strings),
4337 make_number (total_free_strings));
4338
4339 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4340 {
4341 /* Compute average percentage of zombies. */
4342 double nlive = 0;
4343
4344 for (i = 0; i < 7; ++i)
4345 nlive += XFASTINT (XCAR (total[i]));
4346
4347 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4348 max_live = max (nlive, max_live);
4349 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4350 max_zombies = max (nzombies, max_zombies);
4351 ++ngcs;
4352 }
4353 #endif
4354
4355 if (!NILP (Vpost_gc_hook))
4356 {
4357 int count = inhibit_garbage_collection ();
4358 safe_run_hooks (Qpost_gc_hook);
4359 unbind_to (count, Qnil);
4360 }
4361
4362 return Flist (sizeof total / sizeof *total, total);
4363 }
4364
4365
4366 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4367 only interesting objects referenced from glyphs are strings. */
4368
4369 static void
4370 mark_glyph_matrix (matrix)
4371 struct glyph_matrix *matrix;
4372 {
4373 struct glyph_row *row = matrix->rows;
4374 struct glyph_row *end = row + matrix->nrows;
4375
4376 for (; row < end; ++row)
4377 if (row->enabled_p)
4378 {
4379 int area;
4380 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4381 {
4382 struct glyph *glyph = row->glyphs[area];
4383 struct glyph *end_glyph = glyph + row->used[area];
4384
4385 for (; glyph < end_glyph; ++glyph)
4386 if (GC_STRINGP (glyph->object)
4387 && !STRING_MARKED_P (XSTRING (glyph->object)))
4388 mark_object (&glyph->object);
4389 }
4390 }
4391 }
4392
4393
4394 /* Mark Lisp faces in the face cache C. */
4395
4396 static void
4397 mark_face_cache (c)
4398 struct face_cache *c;
4399 {
4400 if (c)
4401 {
4402 int i, j;
4403 for (i = 0; i < c->used; ++i)
4404 {
4405 struct face *face = FACE_FROM_ID (c->f, i);
4406
4407 if (face)
4408 {
4409 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
4410 mark_object (&face->lface[j]);
4411 }
4412 }
4413 }
4414 }
4415
4416
4417 #ifdef HAVE_WINDOW_SYSTEM
4418
4419 /* Mark Lisp objects in image IMG. */
4420
4421 static void
4422 mark_image (img)
4423 struct image *img;
4424 {
4425 mark_object (&img->spec);
4426
4427 if (!NILP (img->data.lisp_val))
4428 mark_object (&img->data.lisp_val);
4429 }
4430
4431
4432 /* Mark Lisp objects in image cache of frame F. It's done this way so
4433 that we don't have to include xterm.h here. */
4434
4435 static void
4436 mark_image_cache (f)
4437 struct frame *f;
4438 {
4439 forall_images_in_image_cache (f, mark_image);
4440 }
4441
4442 #endif /* HAVE_X_WINDOWS */
4443
4444
4445 \f
4446 /* Mark reference to a Lisp_Object.
4447 If the object referred to has not been seen yet, recursively mark
4448 all the references contained in it. */
4449
4450 #define LAST_MARKED_SIZE 500
4451 Lisp_Object *last_marked[LAST_MARKED_SIZE];
4452 int last_marked_index;
4453
4454 /* For debugging--call abort when we cdr down this many
4455 links of a list, in mark_object. In debugging,
4456 the call to abort will hit a breakpoint.
4457 Normally this is zero and the check never goes off. */
4458 int mark_object_loop_halt;
4459
4460 void
4461 mark_object (argptr)
4462 Lisp_Object *argptr;
4463 {
4464 Lisp_Object *objptr = argptr;
4465 register Lisp_Object obj;
4466 #ifdef GC_CHECK_MARKED_OBJECTS
4467 void *po;
4468 struct mem_node *m;
4469 #endif
4470 int cdr_count = 0;
4471
4472 loop:
4473 obj = *objptr;
4474 loop2:
4475 XUNMARK (obj);
4476
4477 if (PURE_POINTER_P (XPNTR (obj)))
4478 return;
4479
4480 last_marked[last_marked_index++] = objptr;
4481 if (last_marked_index == LAST_MARKED_SIZE)
4482 last_marked_index = 0;
4483
4484 /* Perform some sanity checks on the objects marked here. Abort if
4485 we encounter an object we know is bogus. This increases GC time
4486 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4487 #ifdef GC_CHECK_MARKED_OBJECTS
4488
4489 po = (void *) XPNTR (obj);
4490
4491 /* Check that the object pointed to by PO is known to be a Lisp
4492 structure allocated from the heap. */
4493 #define CHECK_ALLOCATED() \
4494 do { \
4495 m = mem_find (po); \
4496 if (m == MEM_NIL) \
4497 abort (); \
4498 } while (0)
4499
4500 /* Check that the object pointed to by PO is live, using predicate
4501 function LIVEP. */
4502 #define CHECK_LIVE(LIVEP) \
4503 do { \
4504 if (!LIVEP (m, po)) \
4505 abort (); \
4506 } while (0)
4507
4508 /* Check both of the above conditions. */
4509 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4510 do { \
4511 CHECK_ALLOCATED (); \
4512 CHECK_LIVE (LIVEP); \
4513 } while (0) \
4514
4515 #else /* not GC_CHECK_MARKED_OBJECTS */
4516
4517 #define CHECK_ALLOCATED() (void) 0
4518 #define CHECK_LIVE(LIVEP) (void) 0
4519 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
4520
4521 #endif /* not GC_CHECK_MARKED_OBJECTS */
4522
4523 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
4524 {
4525 case Lisp_String:
4526 {
4527 register struct Lisp_String *ptr = XSTRING (obj);
4528 CHECK_ALLOCATED_AND_LIVE (live_string_p);
4529 MARK_INTERVAL_TREE (ptr->intervals);
4530 MARK_STRING (ptr);
4531 #ifdef GC_CHECK_STRING_BYTES
4532 /* Check that the string size recorded in the string is the
4533 same as the one recorded in the sdata structure. */
4534 CHECK_STRING_BYTES (ptr);
4535 #endif /* GC_CHECK_STRING_BYTES */
4536 }
4537 break;
4538
4539 case Lisp_Vectorlike:
4540 #ifdef GC_CHECK_MARKED_OBJECTS
4541 m = mem_find (po);
4542 if (m == MEM_NIL && !GC_SUBRP (obj)
4543 && po != &buffer_defaults
4544 && po != &buffer_local_symbols)
4545 abort ();
4546 #endif /* GC_CHECK_MARKED_OBJECTS */
4547
4548 if (GC_BUFFERP (obj))
4549 {
4550 if (!XMARKBIT (XBUFFER (obj)->name))
4551 {
4552 #ifdef GC_CHECK_MARKED_OBJECTS
4553 if (po != &buffer_defaults && po != &buffer_local_symbols)
4554 {
4555 struct buffer *b;
4556 for (b = all_buffers; b && b != po; b = b->next)
4557 ;
4558 if (b == NULL)
4559 abort ();
4560 }
4561 #endif /* GC_CHECK_MARKED_OBJECTS */
4562 mark_buffer (obj);
4563 }
4564 }
4565 else if (GC_SUBRP (obj))
4566 break;
4567 else if (GC_COMPILEDP (obj))
4568 /* We could treat this just like a vector, but it is better to
4569 save the COMPILED_CONSTANTS element for last and avoid
4570 recursion there. */
4571 {
4572 register struct Lisp_Vector *ptr = XVECTOR (obj);
4573 register EMACS_INT size = ptr->size;
4574 register int i;
4575
4576 if (size & ARRAY_MARK_FLAG)
4577 break; /* Already marked */
4578
4579 CHECK_LIVE (live_vector_p);
4580 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
4581 size &= PSEUDOVECTOR_SIZE_MASK;
4582 for (i = 0; i < size; i++) /* and then mark its elements */
4583 {
4584 if (i != COMPILED_CONSTANTS)
4585 mark_object (&ptr->contents[i]);
4586 }
4587 /* This cast should be unnecessary, but some Mips compiler complains
4588 (MIPS-ABI + SysVR4, DC/OSx, etc). */
4589 objptr = (Lisp_Object *) &ptr->contents[COMPILED_CONSTANTS];
4590 goto loop;
4591 }
4592 else if (GC_FRAMEP (obj))
4593 {
4594 register struct frame *ptr = XFRAME (obj);
4595 register EMACS_INT size = ptr->size;
4596
4597 if (size & ARRAY_MARK_FLAG) break; /* Already marked */
4598 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
4599
4600 CHECK_LIVE (live_vector_p);
4601 mark_object (&ptr->name);
4602 mark_object (&ptr->icon_name);
4603 mark_object (&ptr->title);
4604 mark_object (&ptr->focus_frame);
4605 mark_object (&ptr->selected_window);
4606 mark_object (&ptr->minibuffer_window);
4607 mark_object (&ptr->param_alist);
4608 mark_object (&ptr->scroll_bars);
4609 mark_object (&ptr->condemned_scroll_bars);
4610 mark_object (&ptr->menu_bar_items);
4611 mark_object (&ptr->face_alist);
4612 mark_object (&ptr->menu_bar_vector);
4613 mark_object (&ptr->buffer_predicate);
4614 mark_object (&ptr->buffer_list);
4615 mark_object (&ptr->menu_bar_window);
4616 mark_object (&ptr->tool_bar_window);
4617 mark_face_cache (ptr->face_cache);
4618 #ifdef HAVE_WINDOW_SYSTEM
4619 mark_image_cache (ptr);
4620 mark_object (&ptr->tool_bar_items);
4621 mark_object (&ptr->desired_tool_bar_string);
4622 mark_object (&ptr->current_tool_bar_string);
4623 #endif /* HAVE_WINDOW_SYSTEM */
4624 }
4625 else if (GC_BOOL_VECTOR_P (obj))
4626 {
4627 register struct Lisp_Vector *ptr = XVECTOR (obj);
4628
4629 if (ptr->size & ARRAY_MARK_FLAG)
4630 break; /* Already marked */
4631 CHECK_LIVE (live_vector_p);
4632 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
4633 }
4634 else if (GC_WINDOWP (obj))
4635 {
4636 register struct Lisp_Vector *ptr = XVECTOR (obj);
4637 struct window *w = XWINDOW (obj);
4638 register EMACS_INT size = ptr->size;
4639 register int i;
4640
4641 /* Stop if already marked. */
4642 if (size & ARRAY_MARK_FLAG)
4643 break;
4644
4645 /* Mark it. */
4646 CHECK_LIVE (live_vector_p);
4647 ptr->size |= ARRAY_MARK_FLAG;
4648
4649 /* There is no Lisp data above The member CURRENT_MATRIX in
4650 struct WINDOW. Stop marking when that slot is reached. */
4651 for (i = 0;
4652 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
4653 i++)
4654 mark_object (&ptr->contents[i]);
4655
4656 /* Mark glyphs for leaf windows. Marking window matrices is
4657 sufficient because frame matrices use the same glyph
4658 memory. */
4659 if (NILP (w->hchild)
4660 && NILP (w->vchild)
4661 && w->current_matrix)
4662 {
4663 mark_glyph_matrix (w->current_matrix);
4664 mark_glyph_matrix (w->desired_matrix);
4665 }
4666 }
4667 else if (GC_HASH_TABLE_P (obj))
4668 {
4669 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
4670 EMACS_INT size = h->size;
4671
4672 /* Stop if already marked. */
4673 if (size & ARRAY_MARK_FLAG)
4674 break;
4675
4676 /* Mark it. */
4677 CHECK_LIVE (live_vector_p);
4678 h->size |= ARRAY_MARK_FLAG;
4679
4680 /* Mark contents. */
4681 /* Do not mark next_free or next_weak.
4682 Being in the next_weak chain
4683 should not keep the hash table alive.
4684 No need to mark `count' since it is an integer. */
4685 mark_object (&h->test);
4686 mark_object (&h->weak);
4687 mark_object (&h->rehash_size);
4688 mark_object (&h->rehash_threshold);
4689 mark_object (&h->hash);
4690 mark_object (&h->next);
4691 mark_object (&h->index);
4692 mark_object (&h->user_hash_function);
4693 mark_object (&h->user_cmp_function);
4694
4695 /* If hash table is not weak, mark all keys and values.
4696 For weak tables, mark only the vector. */
4697 if (GC_NILP (h->weak))
4698 mark_object (&h->key_and_value);
4699 else
4700 XVECTOR (h->key_and_value)->size |= ARRAY_MARK_FLAG;
4701
4702 }
4703 else
4704 {
4705 register struct Lisp_Vector *ptr = XVECTOR (obj);
4706 register EMACS_INT size = ptr->size;
4707 register int i;
4708
4709 if (size & ARRAY_MARK_FLAG) break; /* Already marked */
4710 CHECK_LIVE (live_vector_p);
4711 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
4712 if (size & PSEUDOVECTOR_FLAG)
4713 size &= PSEUDOVECTOR_SIZE_MASK;
4714
4715 for (i = 0; i < size; i++) /* and then mark its elements */
4716 mark_object (&ptr->contents[i]);
4717 }
4718 break;
4719
4720 case Lisp_Symbol:
4721 {
4722 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
4723 struct Lisp_Symbol *ptrx;
4724
4725 if (XMARKBIT (ptr->plist)) break;
4726 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
4727 XMARK (ptr->plist);
4728 mark_object ((Lisp_Object *) &ptr->value);
4729 mark_object (&ptr->function);
4730 mark_object (&ptr->plist);
4731
4732 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
4733 MARK_STRING (XSTRING (ptr->xname));
4734 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
4735
4736 /* Note that we do not mark the obarray of the symbol.
4737 It is safe not to do so because nothing accesses that
4738 slot except to check whether it is nil. */
4739 ptr = ptr->next;
4740 if (ptr)
4741 {
4742 /* For the benefit of the last_marked log. */
4743 objptr = (Lisp_Object *)&XSYMBOL (obj)->next;
4744 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
4745 XSETSYMBOL (obj, ptrx);
4746 /* We can't goto loop here because *objptr doesn't contain an
4747 actual Lisp_Object with valid datatype field. */
4748 goto loop2;
4749 }
4750 }
4751 break;
4752
4753 case Lisp_Misc:
4754 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
4755 switch (XMISCTYPE (obj))
4756 {
4757 case Lisp_Misc_Marker:
4758 XMARK (XMARKER (obj)->chain);
4759 /* DO NOT mark thru the marker's chain.
4760 The buffer's markers chain does not preserve markers from gc;
4761 instead, markers are removed from the chain when freed by gc. */
4762 break;
4763
4764 case Lisp_Misc_Buffer_Local_Value:
4765 case Lisp_Misc_Some_Buffer_Local_Value:
4766 {
4767 register struct Lisp_Buffer_Local_Value *ptr
4768 = XBUFFER_LOCAL_VALUE (obj);
4769 if (XMARKBIT (ptr->realvalue)) break;
4770 XMARK (ptr->realvalue);
4771 /* If the cdr is nil, avoid recursion for the car. */
4772 if (EQ (ptr->cdr, Qnil))
4773 {
4774 objptr = &ptr->realvalue;
4775 goto loop;
4776 }
4777 mark_object (&ptr->realvalue);
4778 mark_object (&ptr->buffer);
4779 mark_object (&ptr->frame);
4780 objptr = &ptr->cdr;
4781 goto loop;
4782 }
4783
4784 case Lisp_Misc_Intfwd:
4785 case Lisp_Misc_Boolfwd:
4786 case Lisp_Misc_Objfwd:
4787 case Lisp_Misc_Buffer_Objfwd:
4788 case Lisp_Misc_Kboard_Objfwd:
4789 /* Don't bother with Lisp_Buffer_Objfwd,
4790 since all markable slots in current buffer marked anyway. */
4791 /* Don't need to do Lisp_Objfwd, since the places they point
4792 are protected with staticpro. */
4793 break;
4794
4795 case Lisp_Misc_Overlay:
4796 {
4797 struct Lisp_Overlay *ptr = XOVERLAY (obj);
4798 if (!XMARKBIT (ptr->plist))
4799 {
4800 XMARK (ptr->plist);
4801 mark_object (&ptr->start);
4802 mark_object (&ptr->end);
4803 objptr = &ptr->plist;
4804 goto loop;
4805 }
4806 }
4807 break;
4808
4809 default:
4810 abort ();
4811 }
4812 break;
4813
4814 case Lisp_Cons:
4815 {
4816 register struct Lisp_Cons *ptr = XCONS (obj);
4817 if (XMARKBIT (ptr->car)) break;
4818 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
4819 XMARK (ptr->car);
4820 /* If the cdr is nil, avoid recursion for the car. */
4821 if (EQ (ptr->cdr, Qnil))
4822 {
4823 objptr = &ptr->car;
4824 cdr_count = 0;
4825 goto loop;
4826 }
4827 mark_object (&ptr->car);
4828 objptr = &ptr->cdr;
4829 cdr_count++;
4830 if (cdr_count == mark_object_loop_halt)
4831 abort ();
4832 goto loop;
4833 }
4834
4835 case Lisp_Float:
4836 CHECK_ALLOCATED_AND_LIVE (live_float_p);
4837 XMARK (XFLOAT (obj)->type);
4838 break;
4839
4840 case Lisp_Int:
4841 break;
4842
4843 default:
4844 abort ();
4845 }
4846
4847 #undef CHECK_LIVE
4848 #undef CHECK_ALLOCATED
4849 #undef CHECK_ALLOCATED_AND_LIVE
4850 }
4851
4852 /* Mark the pointers in a buffer structure. */
4853
4854 static void
4855 mark_buffer (buf)
4856 Lisp_Object buf;
4857 {
4858 register struct buffer *buffer = XBUFFER (buf);
4859 register Lisp_Object *ptr;
4860 Lisp_Object base_buffer;
4861
4862 /* This is the buffer's markbit */
4863 mark_object (&buffer->name);
4864 XMARK (buffer->name);
4865
4866 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
4867
4868 if (CONSP (buffer->undo_list))
4869 {
4870 Lisp_Object tail;
4871 tail = buffer->undo_list;
4872
4873 while (CONSP (tail))
4874 {
4875 register struct Lisp_Cons *ptr = XCONS (tail);
4876
4877 if (XMARKBIT (ptr->car))
4878 break;
4879 XMARK (ptr->car);
4880 if (GC_CONSP (ptr->car)
4881 && ! XMARKBIT (XCAR (ptr->car))
4882 && GC_MARKERP (XCAR (ptr->car)))
4883 {
4884 XMARK (XCAR_AS_LVALUE (ptr->car));
4885 mark_object (&XCDR_AS_LVALUE (ptr->car));
4886 }
4887 else
4888 mark_object (&ptr->car);
4889
4890 if (CONSP (ptr->cdr))
4891 tail = ptr->cdr;
4892 else
4893 break;
4894 }
4895
4896 mark_object (&XCDR_AS_LVALUE (tail));
4897 }
4898 else
4899 mark_object (&buffer->undo_list);
4900
4901 for (ptr = &buffer->name + 1;
4902 (char *)ptr < (char *)buffer + sizeof (struct buffer);
4903 ptr++)
4904 mark_object (ptr);
4905
4906 /* If this is an indirect buffer, mark its base buffer. */
4907 if (buffer->base_buffer && !XMARKBIT (buffer->base_buffer->name))
4908 {
4909 XSETBUFFER (base_buffer, buffer->base_buffer);
4910 mark_buffer (base_buffer);
4911 }
4912 }
4913
4914
4915 /* Mark the pointers in the kboard objects. */
4916
4917 static void
4918 mark_kboards ()
4919 {
4920 KBOARD *kb;
4921 Lisp_Object *p;
4922 for (kb = all_kboards; kb; kb = kb->next_kboard)
4923 {
4924 if (kb->kbd_macro_buffer)
4925 for (p = kb->kbd_macro_buffer; p < kb->kbd_macro_ptr; p++)
4926 mark_object (p);
4927 mark_object (&kb->Voverriding_terminal_local_map);
4928 mark_object (&kb->Vlast_command);
4929 mark_object (&kb->Vreal_last_command);
4930 mark_object (&kb->Vprefix_arg);
4931 mark_object (&kb->Vlast_prefix_arg);
4932 mark_object (&kb->kbd_queue);
4933 mark_object (&kb->defining_kbd_macro);
4934 mark_object (&kb->Vlast_kbd_macro);
4935 mark_object (&kb->Vsystem_key_alist);
4936 mark_object (&kb->system_key_syms);
4937 mark_object (&kb->Vdefault_minibuffer_frame);
4938 mark_object (&kb->echo_string);
4939 }
4940 }
4941
4942
4943 /* Value is non-zero if OBJ will survive the current GC because it's
4944 either marked or does not need to be marked to survive. */
4945
4946 int
4947 survives_gc_p (obj)
4948 Lisp_Object obj;
4949 {
4950 int survives_p;
4951
4952 switch (XGCTYPE (obj))
4953 {
4954 case Lisp_Int:
4955 survives_p = 1;
4956 break;
4957
4958 case Lisp_Symbol:
4959 survives_p = XMARKBIT (XSYMBOL (obj)->plist);
4960 break;
4961
4962 case Lisp_Misc:
4963 switch (XMISCTYPE (obj))
4964 {
4965 case Lisp_Misc_Marker:
4966 survives_p = XMARKBIT (obj);
4967 break;
4968
4969 case Lisp_Misc_Buffer_Local_Value:
4970 case Lisp_Misc_Some_Buffer_Local_Value:
4971 survives_p = XMARKBIT (XBUFFER_LOCAL_VALUE (obj)->realvalue);
4972 break;
4973
4974 case Lisp_Misc_Intfwd:
4975 case Lisp_Misc_Boolfwd:
4976 case Lisp_Misc_Objfwd:
4977 case Lisp_Misc_Buffer_Objfwd:
4978 case Lisp_Misc_Kboard_Objfwd:
4979 survives_p = 1;
4980 break;
4981
4982 case Lisp_Misc_Overlay:
4983 survives_p = XMARKBIT (XOVERLAY (obj)->plist);
4984 break;
4985
4986 default:
4987 abort ();
4988 }
4989 break;
4990
4991 case Lisp_String:
4992 {
4993 struct Lisp_String *s = XSTRING (obj);
4994 survives_p = STRING_MARKED_P (s);
4995 }
4996 break;
4997
4998 case Lisp_Vectorlike:
4999 if (GC_BUFFERP (obj))
5000 survives_p = XMARKBIT (XBUFFER (obj)->name);
5001 else if (GC_SUBRP (obj))
5002 survives_p = 1;
5003 else
5004 survives_p = XVECTOR (obj)->size & ARRAY_MARK_FLAG;
5005 break;
5006
5007 case Lisp_Cons:
5008 survives_p = XMARKBIT (XCAR (obj));
5009 break;
5010
5011 case Lisp_Float:
5012 survives_p = XMARKBIT (XFLOAT (obj)->type);
5013 break;
5014
5015 default:
5016 abort ();
5017 }
5018
5019 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5020 }
5021
5022
5023 \f
5024 /* Sweep: find all structures not marked, and free them. */
5025
5026 static void
5027 gc_sweep ()
5028 {
5029 /* Remove or mark entries in weak hash tables.
5030 This must be done before any object is unmarked. */
5031 sweep_weak_hash_tables ();
5032
5033 sweep_strings ();
5034 #ifdef GC_CHECK_STRING_BYTES
5035 if (!noninteractive)
5036 check_string_bytes (1);
5037 #endif
5038
5039 /* Put all unmarked conses on free list */
5040 {
5041 register struct cons_block *cblk;
5042 struct cons_block **cprev = &cons_block;
5043 register int lim = cons_block_index;
5044 register int num_free = 0, num_used = 0;
5045
5046 cons_free_list = 0;
5047
5048 for (cblk = cons_block; cblk; cblk = *cprev)
5049 {
5050 register int i;
5051 int this_free = 0;
5052 for (i = 0; i < lim; i++)
5053 if (!XMARKBIT (cblk->conses[i].car))
5054 {
5055 this_free++;
5056 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
5057 cons_free_list = &cblk->conses[i];
5058 #if GC_MARK_STACK
5059 cons_free_list->car = Vdead;
5060 #endif
5061 }
5062 else
5063 {
5064 num_used++;
5065 XUNMARK (cblk->conses[i].car);
5066 }
5067 lim = CONS_BLOCK_SIZE;
5068 /* If this block contains only free conses and we have already
5069 seen more than two blocks worth of free conses then deallocate
5070 this block. */
5071 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5072 {
5073 *cprev = cblk->next;
5074 /* Unhook from the free list. */
5075 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5076 lisp_free (cblk);
5077 n_cons_blocks--;
5078 }
5079 else
5080 {
5081 num_free += this_free;
5082 cprev = &cblk->next;
5083 }
5084 }
5085 total_conses = num_used;
5086 total_free_conses = num_free;
5087 }
5088
5089 /* Put all unmarked floats on free list */
5090 {
5091 register struct float_block *fblk;
5092 struct float_block **fprev = &float_block;
5093 register int lim = float_block_index;
5094 register int num_free = 0, num_used = 0;
5095
5096 float_free_list = 0;
5097
5098 for (fblk = float_block; fblk; fblk = *fprev)
5099 {
5100 register int i;
5101 int this_free = 0;
5102 for (i = 0; i < lim; i++)
5103 if (!XMARKBIT (fblk->floats[i].type))
5104 {
5105 this_free++;
5106 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5107 float_free_list = &fblk->floats[i];
5108 #if GC_MARK_STACK
5109 float_free_list->type = Vdead;
5110 #endif
5111 }
5112 else
5113 {
5114 num_used++;
5115 XUNMARK (fblk->floats[i].type);
5116 }
5117 lim = FLOAT_BLOCK_SIZE;
5118 /* If this block contains only free floats and we have already
5119 seen more than two blocks worth of free floats then deallocate
5120 this block. */
5121 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5122 {
5123 *fprev = fblk->next;
5124 /* Unhook from the free list. */
5125 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5126 lisp_free (fblk);
5127 n_float_blocks--;
5128 }
5129 else
5130 {
5131 num_free += this_free;
5132 fprev = &fblk->next;
5133 }
5134 }
5135 total_floats = num_used;
5136 total_free_floats = num_free;
5137 }
5138
5139 /* Put all unmarked intervals on free list */
5140 {
5141 register struct interval_block *iblk;
5142 struct interval_block **iprev = &interval_block;
5143 register int lim = interval_block_index;
5144 register int num_free = 0, num_used = 0;
5145
5146 interval_free_list = 0;
5147
5148 for (iblk = interval_block; iblk; iblk = *iprev)
5149 {
5150 register int i;
5151 int this_free = 0;
5152
5153 for (i = 0; i < lim; i++)
5154 {
5155 if (! XMARKBIT (iblk->intervals[i].plist))
5156 {
5157 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5158 interval_free_list = &iblk->intervals[i];
5159 this_free++;
5160 }
5161 else
5162 {
5163 num_used++;
5164 XUNMARK (iblk->intervals[i].plist);
5165 }
5166 }
5167 lim = INTERVAL_BLOCK_SIZE;
5168 /* If this block contains only free intervals and we have already
5169 seen more than two blocks worth of free intervals then
5170 deallocate this block. */
5171 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5172 {
5173 *iprev = iblk->next;
5174 /* Unhook from the free list. */
5175 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5176 lisp_free (iblk);
5177 n_interval_blocks--;
5178 }
5179 else
5180 {
5181 num_free += this_free;
5182 iprev = &iblk->next;
5183 }
5184 }
5185 total_intervals = num_used;
5186 total_free_intervals = num_free;
5187 }
5188
5189 /* Put all unmarked symbols on free list */
5190 {
5191 register struct symbol_block *sblk;
5192 struct symbol_block **sprev = &symbol_block;
5193 register int lim = symbol_block_index;
5194 register int num_free = 0, num_used = 0;
5195
5196 symbol_free_list = NULL;
5197
5198 for (sblk = symbol_block; sblk; sblk = *sprev)
5199 {
5200 int this_free = 0;
5201 struct Lisp_Symbol *sym = sblk->symbols;
5202 struct Lisp_Symbol *end = sym + lim;
5203
5204 for (; sym < end; ++sym)
5205 {
5206 /* Check if the symbol was created during loadup. In such a case
5207 it might be pointed to by pure bytecode which we don't trace,
5208 so we conservatively assume that it is live. */
5209 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5210
5211 if (!XMARKBIT (sym->plist) && !pure_p)
5212 {
5213 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5214 symbol_free_list = sym;
5215 #if GC_MARK_STACK
5216 symbol_free_list->function = Vdead;
5217 #endif
5218 ++this_free;
5219 }
5220 else
5221 {
5222 ++num_used;
5223 if (!pure_p)
5224 UNMARK_STRING (XSTRING (sym->xname));
5225 XUNMARK (sym->plist);
5226 }
5227 }
5228
5229 lim = SYMBOL_BLOCK_SIZE;
5230 /* If this block contains only free symbols and we have already
5231 seen more than two blocks worth of free symbols then deallocate
5232 this block. */
5233 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5234 {
5235 *sprev = sblk->next;
5236 /* Unhook from the free list. */
5237 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5238 lisp_free (sblk);
5239 n_symbol_blocks--;
5240 }
5241 else
5242 {
5243 num_free += this_free;
5244 sprev = &sblk->next;
5245 }
5246 }
5247 total_symbols = num_used;
5248 total_free_symbols = num_free;
5249 }
5250
5251 /* Put all unmarked misc's on free list.
5252 For a marker, first unchain it from the buffer it points into. */
5253 {
5254 register struct marker_block *mblk;
5255 struct marker_block **mprev = &marker_block;
5256 register int lim = marker_block_index;
5257 register int num_free = 0, num_used = 0;
5258
5259 marker_free_list = 0;
5260
5261 for (mblk = marker_block; mblk; mblk = *mprev)
5262 {
5263 register int i;
5264 int this_free = 0;
5265 EMACS_INT already_free = -1;
5266
5267 for (i = 0; i < lim; i++)
5268 {
5269 Lisp_Object *markword;
5270 switch (mblk->markers[i].u_marker.type)
5271 {
5272 case Lisp_Misc_Marker:
5273 markword = &mblk->markers[i].u_marker.chain;
5274 break;
5275 case Lisp_Misc_Buffer_Local_Value:
5276 case Lisp_Misc_Some_Buffer_Local_Value:
5277 markword = &mblk->markers[i].u_buffer_local_value.realvalue;
5278 break;
5279 case Lisp_Misc_Overlay:
5280 markword = &mblk->markers[i].u_overlay.plist;
5281 break;
5282 case Lisp_Misc_Free:
5283 /* If the object was already free, keep it
5284 on the free list. */
5285 markword = (Lisp_Object *) &already_free;
5286 break;
5287 default:
5288 markword = 0;
5289 break;
5290 }
5291 if (markword && !XMARKBIT (*markword))
5292 {
5293 Lisp_Object tem;
5294 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5295 {
5296 /* tem1 avoids Sun compiler bug */
5297 struct Lisp_Marker *tem1 = &mblk->markers[i].u_marker;
5298 XSETMARKER (tem, tem1);
5299 unchain_marker (tem);
5300 }
5301 /* Set the type of the freed object to Lisp_Misc_Free.
5302 We could leave the type alone, since nobody checks it,
5303 but this might catch bugs faster. */
5304 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5305 mblk->markers[i].u_free.chain = marker_free_list;
5306 marker_free_list = &mblk->markers[i];
5307 this_free++;
5308 }
5309 else
5310 {
5311 num_used++;
5312 if (markword)
5313 XUNMARK (*markword);
5314 }
5315 }
5316 lim = MARKER_BLOCK_SIZE;
5317 /* If this block contains only free markers and we have already
5318 seen more than two blocks worth of free markers then deallocate
5319 this block. */
5320 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5321 {
5322 *mprev = mblk->next;
5323 /* Unhook from the free list. */
5324 marker_free_list = mblk->markers[0].u_free.chain;
5325 lisp_free (mblk);
5326 n_marker_blocks--;
5327 }
5328 else
5329 {
5330 num_free += this_free;
5331 mprev = &mblk->next;
5332 }
5333 }
5334
5335 total_markers = num_used;
5336 total_free_markers = num_free;
5337 }
5338
5339 /* Free all unmarked buffers */
5340 {
5341 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5342
5343 while (buffer)
5344 if (!XMARKBIT (buffer->name))
5345 {
5346 if (prev)
5347 prev->next = buffer->next;
5348 else
5349 all_buffers = buffer->next;
5350 next = buffer->next;
5351 lisp_free (buffer);
5352 buffer = next;
5353 }
5354 else
5355 {
5356 XUNMARK (buffer->name);
5357 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5358 prev = buffer, buffer = buffer->next;
5359 }
5360 }
5361
5362 /* Free all unmarked vectors */
5363 {
5364 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5365 total_vector_size = 0;
5366
5367 while (vector)
5368 if (!(vector->size & ARRAY_MARK_FLAG))
5369 {
5370 if (prev)
5371 prev->next = vector->next;
5372 else
5373 all_vectors = vector->next;
5374 next = vector->next;
5375 lisp_free (vector);
5376 n_vectors--;
5377 vector = next;
5378
5379 }
5380 else
5381 {
5382 vector->size &= ~ARRAY_MARK_FLAG;
5383 if (vector->size & PSEUDOVECTOR_FLAG)
5384 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5385 else
5386 total_vector_size += vector->size;
5387 prev = vector, vector = vector->next;
5388 }
5389 }
5390
5391 #ifdef GC_CHECK_STRING_BYTES
5392 if (!noninteractive)
5393 check_string_bytes (1);
5394 #endif
5395 }
5396
5397
5398
5399 \f
5400 /* Debugging aids. */
5401
5402 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5403 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5404 This may be helpful in debugging Emacs's memory usage.
5405 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5406 ()
5407 {
5408 Lisp_Object end;
5409
5410 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5411
5412 return end;
5413 }
5414
5415 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5416 doc: /* Return a list of counters that measure how much consing there has been.
5417 Each of these counters increments for a certain kind of object.
5418 The counters wrap around from the largest positive integer to zero.
5419 Garbage collection does not decrease them.
5420 The elements of the value are as follows:
5421 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5422 All are in units of 1 = one object consed
5423 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5424 objects consed.
5425 MISCS include overlays, markers, and some internal types.
5426 Frames, windows, buffers, and subprocesses count as vectors
5427 (but the contents of a buffer's text do not count here). */)
5428 ()
5429 {
5430 Lisp_Object consed[8];
5431
5432 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5433 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5434 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5435 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5436 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5437 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5438 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5439 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5440
5441 return Flist (8, consed);
5442 }
5443
5444 int suppress_checking;
5445 void
5446 die (msg, file, line)
5447 const char *msg;
5448 const char *file;
5449 int line;
5450 {
5451 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5452 file, line, msg);
5453 abort ();
5454 }
5455 \f
5456 /* Initialization */
5457
5458 void
5459 init_alloc_once ()
5460 {
5461 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5462 purebeg = PUREBEG;
5463 pure_size = PURESIZE;
5464 pure_bytes_used = 0;
5465 pure_bytes_used_before_overflow = 0;
5466
5467 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5468 mem_init ();
5469 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5470 #endif
5471
5472 all_vectors = 0;
5473 ignore_warnings = 1;
5474 #ifdef DOUG_LEA_MALLOC
5475 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5476 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5477 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5478 #endif
5479 init_strings ();
5480 init_cons ();
5481 init_symbol ();
5482 init_marker ();
5483 init_float ();
5484 init_intervals ();
5485
5486 #ifdef REL_ALLOC
5487 malloc_hysteresis = 32;
5488 #else
5489 malloc_hysteresis = 0;
5490 #endif
5491
5492 spare_memory = (char *) malloc (SPARE_MEMORY);
5493
5494 ignore_warnings = 0;
5495 gcprolist = 0;
5496 byte_stack_list = 0;
5497 staticidx = 0;
5498 consing_since_gc = 0;
5499 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
5500 #ifdef VIRT_ADDR_VARIES
5501 malloc_sbrk_unused = 1<<22; /* A large number */
5502 malloc_sbrk_used = 100000; /* as reasonable as any number */
5503 #endif /* VIRT_ADDR_VARIES */
5504 }
5505
5506 void
5507 init_alloc ()
5508 {
5509 gcprolist = 0;
5510 byte_stack_list = 0;
5511 #if GC_MARK_STACK
5512 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5513 setjmp_tested_p = longjmps_done = 0;
5514 #endif
5515 #endif
5516 }
5517
5518 void
5519 syms_of_alloc ()
5520 {
5521 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
5522 doc: /* *Number of bytes of consing between garbage collections.
5523 Garbage collection can happen automatically once this many bytes have been
5524 allocated since the last garbage collection. All data types count.
5525
5526 Garbage collection happens automatically only when `eval' is called.
5527
5528 By binding this temporarily to a large number, you can effectively
5529 prevent garbage collection during a part of the program. */);
5530
5531 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
5532 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
5533
5534 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
5535 doc: /* Number of cons cells that have been consed so far. */);
5536
5537 DEFVAR_INT ("floats-consed", &floats_consed,
5538 doc: /* Number of floats that have been consed so far. */);
5539
5540 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
5541 doc: /* Number of vector cells that have been consed so far. */);
5542
5543 DEFVAR_INT ("symbols-consed", &symbols_consed,
5544 doc: /* Number of symbols that have been consed so far. */);
5545
5546 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
5547 doc: /* Number of string characters that have been consed so far. */);
5548
5549 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
5550 doc: /* Number of miscellaneous objects that have been consed so far. */);
5551
5552 DEFVAR_INT ("intervals-consed", &intervals_consed,
5553 doc: /* Number of intervals that have been consed so far. */);
5554
5555 DEFVAR_INT ("strings-consed", &strings_consed,
5556 doc: /* Number of strings that have been consed so far. */);
5557
5558 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
5559 doc: /* Non-nil means loading Lisp code in order to dump an executable.
5560 This means that certain objects should be allocated in shared (pure) space. */);
5561
5562 DEFVAR_INT ("undo-limit", &undo_limit,
5563 doc: /* Keep no more undo information once it exceeds this size.
5564 This limit is applied when garbage collection happens.
5565 The size is counted as the number of bytes occupied,
5566 which includes both saved text and other data. */);
5567 undo_limit = 20000;
5568
5569 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
5570 doc: /* Don't keep more than this much size of undo information.
5571 A command which pushes past this size is itself forgotten.
5572 This limit is applied when garbage collection happens.
5573 The size is counted as the number of bytes occupied,
5574 which includes both saved text and other data. */);
5575 undo_strong_limit = 30000;
5576
5577 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
5578 doc: /* Non-nil means display messages at start and end of garbage collection. */);
5579 garbage_collection_messages = 0;
5580
5581 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
5582 doc: /* Hook run after garbage collection has finished. */);
5583 Vpost_gc_hook = Qnil;
5584 Qpost_gc_hook = intern ("post-gc-hook");
5585 staticpro (&Qpost_gc_hook);
5586
5587 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
5588 doc: /* Precomputed `signal' argument for memory-full error. */);
5589 /* We build this in advance because if we wait until we need it, we might
5590 not be able to allocate the memory to hold it. */
5591 Vmemory_signal_data
5592 = list2 (Qerror,
5593 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
5594
5595 DEFVAR_LISP ("memory-full", &Vmemory_full,
5596 doc: /* Non-nil means we are handling a memory-full error. */);
5597 Vmemory_full = Qnil;
5598
5599 staticpro (&Qgc_cons_threshold);
5600 Qgc_cons_threshold = intern ("gc-cons-threshold");
5601
5602 staticpro (&Qchar_table_extra_slots);
5603 Qchar_table_extra_slots = intern ("char-table-extra-slots");
5604
5605 defsubr (&Scons);
5606 defsubr (&Slist);
5607 defsubr (&Svector);
5608 defsubr (&Smake_byte_code);
5609 defsubr (&Smake_list);
5610 defsubr (&Smake_vector);
5611 defsubr (&Smake_char_table);
5612 defsubr (&Smake_string);
5613 defsubr (&Smake_bool_vector);
5614 defsubr (&Smake_symbol);
5615 defsubr (&Smake_marker);
5616 defsubr (&Spurecopy);
5617 defsubr (&Sgarbage_collect);
5618 defsubr (&Smemory_limit);
5619 defsubr (&Smemory_use_counts);
5620
5621 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5622 defsubr (&Sgc_status);
5623 #endif
5624 }